1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-24 02:32:02 +01:00

Merge branch 'develop' into gparity_HMC_merge_develop

This commit is contained in:
Christopher Kelly
2022-02-22 14:25:27 -05:00
99 changed files with 4060 additions and 656 deletions

View File

@ -0,0 +1,226 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/core/Test_compact_wilson_clover_speedup.cc
Copyright (C) 2020 - 2022
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
Author: Nils Meyer <nils.meyer@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
NAMESPACE_BEGIN(CommandlineHelpers);
static bool checkPresent(int* argc, char*** argv, const std::string& option) {
return GridCmdOptionExists(*argv, *argv + *argc, option);
}
static std::string getContent(int* argc, char*** argv, const std::string& option) {
return GridCmdOptionPayload(*argv, *argv + *argc, option);
}
static int readInt(int* argc, char*** argv, std::string&& option, int defaultValue) {
std::string arg;
int ret = defaultValue;
if(checkPresent(argc, argv, option)) {
arg = getContent(argc, argv, option);
GridCmdOptionInt(arg, ret);
}
return ret;
}
static float readFloat(int* argc, char*** argv, std::string&& option, float defaultValue) {
std::string arg;
float ret = defaultValue;
if(checkPresent(argc, argv, option)) {
arg = getContent(argc, argv, option);
GridCmdOptionFloat(arg, ret);
}
return ret;
}
NAMESPACE_END(CommandlineHelpers);
#define _grid_printf(LOGGER, ...) \
{ \
if((LOGGER).isActive()) { /* this makes it safe to put, e.g., norm2 in the calling code w.r.t. performance */ \
char _printf_buf[1024]; \
std::sprintf(_printf_buf, __VA_ARGS__); \
std::cout << (LOGGER) << _printf_buf; \
fflush(stdout); \
} \
}
#define grid_printf_msg(...) _grid_printf(GridLogMessage, __VA_ARGS__)
template<typename Field>
bool resultsAgree(const Field& ref, const Field& res, const std::string& name) {
RealD checkTolerance = (getPrecision<Field>::value == 2) ? 1e-15 : 1e-7;
Field diff(ref.Grid());
diff = ref - res;
auto absDev = norm2(diff);
auto relDev = absDev / norm2(ref);
std::cout << GridLogMessage
<< "norm2(reference), norm2(" << name << "), abs. deviation, rel. deviation: " << norm2(ref) << " "
<< norm2(res) << " " << absDev << " " << relDev << " -> check "
<< ((relDev < checkTolerance) ? "passed" : "failed") << std::endl;
return relDev <= checkTolerance;
}
template<typename vCoeff_t>
void runBenchmark(int* argc, char*** argv) {
// read from command line
const int nIter = CommandlineHelpers::readInt( argc, argv, "--niter", 1000);
const RealD mass = CommandlineHelpers::readFloat( argc, argv, "--mass", 0.5);
const RealD csw = CommandlineHelpers::readFloat( argc, argv, "--csw", 1.0);
const RealD cF = CommandlineHelpers::readFloat( argc, argv, "--cF", 1.0);
const bool antiPeriodic = CommandlineHelpers::checkPresent(argc, argv, "--antiperiodic");
// precision
static_assert(getPrecision<vCoeff_t>::value == 2 || getPrecision<vCoeff_t>::value == 1, "Incorrect precision"); // double or single
std::string precision = (getPrecision<vCoeff_t>::value == 2 ? "double" : "single");
// setup grids
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vCoeff_t::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
// clang-format on
// setup rng
std::vector<int> seeds({1, 2, 3, 4});
GridParallelRNG pRNG(UGrid);
pRNG.SeedFixedIntegers(seeds);
// type definitions
typedef WilsonImpl<vCoeff_t, FundamentalRepresentation, CoeffReal> WImpl;
typedef WilsonCloverFermion<WImpl> WilsonCloverOperator;
typedef CompactWilsonCloverFermion<WImpl> CompactWilsonCloverOperator;
typedef typename WilsonCloverOperator::FermionField Fermion;
typedef typename WilsonCloverOperator::GaugeField Gauge;
// setup fields
Fermion src(UGrid); random(pRNG, src);
Fermion ref(UGrid); ref = Zero();
Fermion res(UGrid); res = Zero();
Fermion hop(UGrid); hop = Zero();
Fermion diff(UGrid); diff = Zero();
Gauge Umu(UGrid); SU3::HotConfiguration(pRNG, Umu);
// setup boundary phases
typename WilsonCloverOperator::ImplParams implParams;
std::vector<Complex> boundary_phases(Nd, 1.);
if(antiPeriodic) boundary_phases[Nd-1] = -1.;
implParams.boundary_phases = boundary_phases;
WilsonAnisotropyCoefficients anisParams;
// misc stuff needed for benchmarks
double volume=1.0; for(int mu=0; mu<Nd; mu++) volume*=UGrid->_fdimensions[mu];
// setup fermion operators
WilsonCloverOperator Dwc( Umu, *UGrid, *UrbGrid, mass, csw, csw, anisParams, implParams);
CompactWilsonCloverOperator Dwc_compact(Umu, *UGrid, *UrbGrid, mass, csw, csw, cF, anisParams, implParams);
// now test the conversions
typename CompactWilsonCloverOperator::CloverField tmp_ref(UGrid); tmp_ref = Dwc.CloverTerm;
typename CompactWilsonCloverOperator::CloverField tmp_res(UGrid); tmp_res = Zero();
typename CompactWilsonCloverOperator::CloverField tmp_diff(UGrid); tmp_diff = Zero();
typename CompactWilsonCloverOperator::CloverDiagonalField diagonal(UGrid); diagonal = Zero();
typename CompactWilsonCloverOperator::CloverTriangleField triangle(UGrid); diagonal = Zero();
CompactWilsonCloverOperator::CompactHelpers::ConvertLayout(tmp_ref, diagonal, triangle);
CompactWilsonCloverOperator::CompactHelpers::ConvertLayout(diagonal, triangle, tmp_res);
tmp_diff = tmp_ref - tmp_res;
std::cout << GridLogMessage << "conversion: ref, res, diff, eps"
<< " " << norm2(tmp_ref)
<< " " << norm2(tmp_res)
<< " " << norm2(tmp_diff)
<< " " << norm2(tmp_diff) / norm2(tmp_ref)
<< std::endl;
// performance per site (use minimal values necessary)
double hop_flop_per_site = 1320; // Rich's Talk + what Peter uses
double hop_byte_per_site = (8 * 9 + 9 * 12) * 2 * getPrecision<vCoeff_t>::value * 4;
double clov_flop_per_site = 504; // Rich's Talk and 1412.2629
double clov_byte_per_site = (2 * 18 + 12 + 12) * 2 * getPrecision<vCoeff_t>::value * 4;
double clov_flop_per_site_performed = 1128;
double clov_byte_per_site_performed = (12 * 12 + 12 + 12) * 2 * getPrecision<vCoeff_t>::value * 4;
// total performance numbers
double hop_gflop_total = volume * nIter * hop_flop_per_site / 1e9;
double hop_gbyte_total = volume * nIter * hop_byte_per_site / 1e9;
double clov_gflop_total = volume * nIter * clov_flop_per_site / 1e9;
double clov_gbyte_total = volume * nIter * clov_byte_per_site / 1e9;
double clov_gflop_performed_total = volume * nIter * clov_flop_per_site_performed / 1e9;
double clov_gbyte_performed_total = volume * nIter * clov_byte_per_site_performed / 1e9;
// warmup + measure dhop
for(auto n : {1, 2, 3, 4, 5}) Dwc.Dhop(src, hop, 0);
double t0 = usecond();
for(int n = 0; n < nIter; n++) Dwc.Dhop(src, hop, 0);
double t1 = usecond();
double secs_hop = (t1-t0)/1e6;
grid_printf_msg("Performance(%35s, %s): %2.4f s, %6.0f GFlop/s, %6.0f GByte/s, speedup vs ref = %.2f, fraction of hop = %.2f\n",
"hop", precision.c_str(), secs_hop, hop_gflop_total/secs_hop, hop_gbyte_total/secs_hop, 0.0, secs_hop/secs_hop);
#define BENCH_CLOVER_KERNEL(KERNEL) { \
/* warmup + measure reference clover */ \
for(auto n : {1, 2, 3, 4, 5}) Dwc.KERNEL(src, ref); \
double t2 = usecond(); \
for(int n = 0; n < nIter; n++) Dwc.KERNEL(src, ref); \
double t3 = usecond(); \
double secs_ref = (t3-t2)/1e6; \
grid_printf_msg("Performance(%35s, %s): %2.4f s, %6.0f GFlop/s, %6.0f GByte/s, speedup vs ref = %.2f, fraction of hop = %.2f\n", \
"reference_"#KERNEL, precision.c_str(), secs_ref, clov_gflop_total/secs_ref, clov_gbyte_total/secs_ref, secs_ref/secs_ref, secs_ref/secs_hop); \
grid_printf_msg("Performance(%35s, %s): %2.4f s, %6.0f GFlop/s, %6.0f GByte/s, speedup vs ref = %.2f, fraction of hop = %.2f\n", /* to see how well the ET performs */ \
"reference_"#KERNEL"_performed", precision.c_str(), secs_ref, clov_gflop_performed_total/secs_ref, clov_gbyte_performed_total/secs_ref, secs_ref/secs_ref, secs_ref/secs_hop); \
\
/* warmup + measure compact clover */ \
for(auto n : {1, 2, 3, 4, 5}) Dwc_compact.KERNEL(src, res); \
double t4 = usecond(); \
for(int n = 0; n < nIter; n++) Dwc_compact.KERNEL(src, res); \
double t5 = usecond(); \
double secs_res = (t5-t4)/1e6; \
grid_printf_msg("Performance(%35s, %s): %2.4f s, %6.0f GFlop/s, %6.0f GByte/s, speedup vs ref = %.2f, fraction of hop = %.2f\n", \
"compact_"#KERNEL, precision.c_str(), secs_res, clov_gflop_total/secs_res, clov_gbyte_total/secs_res, secs_ref/secs_res, secs_res/secs_hop); \
assert(resultsAgree(ref, res, #KERNEL)); \
}
BENCH_CLOVER_KERNEL(Mooee);
BENCH_CLOVER_KERNEL(MooeeDag);
BENCH_CLOVER_KERNEL(MooeeInv);
BENCH_CLOVER_KERNEL(MooeeInvDag);
grid_printf_msg("finalize %s\n", precision.c_str());
}
int main(int argc, char** argv) {
Grid_init(&argc, &argv);
runBenchmark<vComplexD>(&argc, &argv);
runBenchmark<vComplexF>(&argc, &argv);
Grid_finalize();
}

View File

@ -235,7 +235,6 @@ void TestWhat(What & Ddwf,
pickCheckerboard(Odd ,chi_o,chi);
pickCheckerboard(Even,phi_e,phi);
pickCheckerboard(Odd ,phi_o,phi);
RealD t1,t2;
SchurDiagMooeeOperator<What,LatticeFermion> HermOpEO(Ddwf);
HermOpEO.MpcDagMpc(chi_e,dchi_e);

View File

@ -215,7 +215,6 @@ int main (int argc, char ** argv)
pickCheckerboard(Odd , chi_o, chi);
pickCheckerboard(Even, phi_e, phi);
pickCheckerboard(Odd , phi_o, phi);
RealD t1,t2;
SchurDiagMooeeOperator<DomainWallEOFAFermionR,LatticeFermion> HermOpEO(Ddwf);
HermOpEO.MpcDagMpc(chi_e, dchi_e);

View File

@ -212,8 +212,6 @@ int main (int argc, char ** argv)
pickCheckerboard(Odd ,chi_o,chi);
pickCheckerboard(Even,phi_e,phi);
pickCheckerboard(Odd ,phi_o,phi);
RealD t1,t2;
SchurDiagMooeeOperator<DomainWallFermionR,LatticeFermion> HermOpEO(Ddwf);
HermOpEO.MpcDagMpc(chi_e,dchi_e);

View File

@ -181,8 +181,8 @@ void checkAdj(const Gamma::Algebra a)
void checkProject(GridSerialRNG &rng)
{
SpinVector rv, recon, full;
HalfSpinVector hsp, hsm;
SpinVector rv, recon;
HalfSpinVector hsm;
random(rng, rv);

View File

@ -198,7 +198,6 @@ int main (int argc, char ** argv)
pickCheckerboard(Odd ,chi_o,chi);
pickCheckerboard(Even,phi_e,phi);
pickCheckerboard(Odd ,phi_o,phi);
RealD t1,t2;
SchurDiagMooeeOperator<GparityWilsonFermionR,FermionField> HermOpEO(Dw);
HermOpEO.MpcDagMpc(chi_e,dchi_e);

View File

@ -364,14 +364,12 @@ int main(int argc, char **argv) {
{ // Peek-ology and Poke-ology, with a little app-ology
Complex c;
ColourMatrix c_m;
SpinMatrix s_m;
SpinColourMatrix sc_m;
ColourMatrix c_m = Zero();
SpinMatrix s_m = Zero();
SpinColourMatrix sc_m = Zero();
s_m = TensorIndexRecursion<ColourIndex>::traceIndex(
sc_m); // Map to traceColour
c_m = TensorIndexRecursion<SpinIndex>::traceIndex(
sc_m); // map to traceSpin
s_m = TensorIndexRecursion<ColourIndex>::traceIndex(sc_m); // Map to traceColour
c_m = TensorIndexRecursion<SpinIndex>::traceIndex(sc_m); // map to traceSpin
c = TensorIndexRecursion<SpinIndex>::traceIndex(s_m);
c = TensorIndexRecursion<ColourIndex>::traceIndex(c_m);

View File

@ -217,7 +217,6 @@ int main (int argc, char ** argv)
pickCheckerboard(Odd , chi_o, chi);
pickCheckerboard(Even, phi_e, phi);
pickCheckerboard(Odd , phi_o, phi);
RealD t1,t2;
SchurDiagMooeeOperator<MobiusEOFAFermionR,LatticeFermion> HermOpEO(Ddwf);
HermOpEO.MpcDagMpc(chi_e, dchi_e);

View File

@ -262,7 +262,6 @@ int main (int argc, char ** argv)
pickCheckerboard(Odd ,chi_o,chi);
pickCheckerboard(Even,phi_e,phi);
pickCheckerboard(Odd ,phi_o,phi);
RealD t1,t2;
SchurDiagMooeeOperator<MobiusFermionR,LatticeFermion> HermOpEO(Ddwf);

View File

@ -144,7 +144,7 @@ int main (int argc, char ** argv)
Ds.Dhop(src,result,0);
}
double t1=usecond();
double t2;
double flops=(16*(3*(6+8+8)) + 15*3*2)*volume*ncall; // == 66*16 + == 1146
std::cout<<GridLogMessage << "Called Ds"<<std::endl;

View File

@ -162,7 +162,6 @@ int main (int argc, char ** argv)
}
double t1=usecond();
double t2;
double flops=(16*(3*(6+8+8)) + 15*3*2)*volume*ncall; // == 66*16 + == 1146
std::cout<<GridLogMessage << "Called Ds"<<std::endl;

View File

@ -30,7 +30,6 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
using namespace std;
using namespace Grid;
;
int main (int argc, char ** argv)
{
@ -135,7 +134,6 @@ int main (int argc, char ** argv)
Ds.Dhop(src,result,0);
}
double t1=usecond();
double t2;
double flops=(16*(3*(6+8+8)) + 15*3*2)*volume*ncall; // == 66*16 + == 1146
std::cout<<GridLogMessage << "Called Ds"<<std::endl;

View File

@ -204,7 +204,6 @@ int main (int argc, char ** argv)
pickCheckerboard(Odd ,chi_o,chi);
pickCheckerboard(Even,phi_e,phi);
pickCheckerboard(Odd ,phi_o,phi);
RealD t1,t2;
SchurDiagMooeeOperator<WilsonFermionR,LatticeFermion> HermOpEO(Dw);
HermOpEO.MpcDagMpc(chi_e,dchi_e);

View File

@ -205,7 +205,6 @@ int main (int argc, char ** argv)
pickCheckerboard(Odd ,chi_o,chi);
pickCheckerboard(Even,phi_e,phi);
pickCheckerboard(Odd ,phi_o,phi);
RealD t1,t2;
SchurDiagMooeeOperator<WilsonTMFermionR,LatticeFermion> HermOpEO(Dw);
HermOpEO.MpcDagMpc(chi_e,dchi_e);

View File

@ -276,7 +276,6 @@ int main (int argc, char ** argv)
pickCheckerboard(Odd ,chi_o,chi);
pickCheckerboard(Even,phi_e,phi);
pickCheckerboard(Odd ,phi_o,phi);
RealD t1,t2;
SchurDiagMooeeOperator<ZMobiusFermionR,LatticeFermion> HermOpEO(Ddwf);