1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-14 01:35:36 +00:00

Reorganise to abstract kernels that know about the lattice layout.

Move these back into grid.
This commit is contained in:
Peter Boyle 2018-09-04 12:30:00 +01:00
parent 5b8b630919
commit e307bb7528
3 changed files with 1083 additions and 1104 deletions

View File

@ -6,7 +6,7 @@
#include <Grid/Hadrons/ModuleFactory.hpp>
#include <Grid/Hadrons/AllToAllVectors.hpp>
#include <unsupported/Eigen/CXX11/Tensor>
#include <Grid/Hadrons/Modules/MContraction/A2Autils.hpp>
BEGIN_HADRONS_NAMESPACE
@ -53,17 +53,6 @@ class TA2AMesonField : public Module<A2AMesonFieldPar>
// execution
virtual void execute(void);
// Arithmetic help. Move to Grid??
virtual void MesonField(Eigen::Tensor<ComplexD,5> &mat,
const LatticeFermion *lhs,
const LatticeFermion *rhs,
std::vector<Gamma::Algebra> gammas,
const std::vector<LatticeComplex > &mom,
int orthogdim,
double &t0,
double &t1,
double &t2,
double &t3);
};
MODULE_REGISTER(A2AMesonField, ARG(TA2AMesonField<FIMPL>), MContraction);
@ -117,189 +106,6 @@ void TA2AMesonField<FImpl>::setup(void)
envTmpLat(FermionField, "tmp_5d", Ls_);
}
//////////////////////////////////////////////////////////////////////////////////
// Cache blocked arithmetic routine
// Could move to Grid ???
//////////////////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2AMesonField<FImpl>::MesonField(Eigen::Tensor<ComplexD,5> &mat,
const LatticeFermion *lhs_wi,
const LatticeFermion *rhs_vj,
std::vector<Gamma::Algebra> gammas,
const std::vector<LatticeComplex > &mom,
int orthogdim,
double &t0,
double &t1,
double &t2,
double &t3)
{
typedef typename FImpl::SiteSpinor vobj;
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef iSpinMatrix<vector_type> SpinMatrix_v;
typedef iSpinMatrix<scalar_type> SpinMatrix_s;
int Lblock = mat.dimension(3);
int Rblock = mat.dimension(4);
GridBase *grid = lhs_wi[0]._grid;
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
int Nt = grid->GlobalDimensions()[orthogdim];
int Ngamma = gammas.size();
int Nmom = mom.size();
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
// will locally sum vectors first
// sum across these down to scalars
// splitting the SIMD
int MFrvol = rd*Lblock*Rblock*Nmom;
int MFlvol = ld*Lblock*Rblock*Nmom;
Vector<SpinMatrix_v > lvSum(MFrvol);
parallel_for (int r = 0; r < MFrvol; r++){
lvSum[r] = zero;
}
Vector<SpinMatrix_s > lsSum(MFlvol);
parallel_for (int r = 0; r < MFlvol; r++){
lsSum[r]=scalar_type(0.0);
}
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
t0-=usecond();
// Nested parallelism would be ok
// Wasting cores here. Test case r
parallel_for(int r=0;r<rd;r++){
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
for(int i=0;i<Lblock;i++){
auto left = conjugate(lhs_wi[i]._odata[ss]);
for(int j=0;j<Rblock;j++){
SpinMatrix_v vv;
auto right = rhs_vj[j]._odata[ss];
for(int s1=0;s1<Ns;s1++){
for(int s2=0;s2<Ns;s2++){
vv()(s1,s2)() = left()(s2)(0) * right()(s1)(0)
+ left()(s2)(1) * right()(s1)(1)
+ left()(s2)(2) * right()(s1)(2);
}}
// After getting the sitewise product do the mom phase loop
int base = Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*r;
for ( int m=0;m<Nmom;m++){
int idx = m+base;
auto phase = mom[m]._odata[ss];
mac(&lvSum[idx],&vv,&phase);
}
}
}
}
}
}
t0+=usecond();
// Sum across simd lanes in the plane, breaking out orthog dir.
t1-=usecond();
parallel_for(int rt=0;rt<rd;rt++){
std::vector<int> icoor(Nd);
std::vector<SpinMatrix_s> extracted(Nsimd);
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
for(int m=0;m<Nmom;m++){
int ij_rdx = m+Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*rt;
extract(lvSum[ij_rdx],extracted);
for(int idx=0;idx<Nsimd;idx++){
grid->iCoorFromIindex(icoor,idx);
int ldx = rt+icoor[orthogdim]*rd;
int ij_ldx = m+Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*ldx;
lsSum[ij_ldx]=lsSum[ij_ldx]+extracted[idx];
}
}}}
}
t1+=usecond();
assert(mat.dimension(0) == Nmom);
assert(mat.dimension(1) == Ngamma);
assert(mat.dimension(2) == Nt);
t2-=usecond();
// ld loop and local only??
int pd = grid->_processors[orthogdim];
int pc = grid->_processor_coor[orthogdim];
parallel_for_nest2(int lt=0;lt<ld;lt++)
{
for(int pt=0;pt<pd;pt++){
int t = lt + pt*ld;
if (pt == pc){
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
for(int m=0;m<Nmom;m++){
int ij_dx = m+Nmom*i + Nmom*Lblock * j + Nmom*Lblock * Rblock * lt;
for(int mu=0;mu<Ngamma;mu++){
// this is a bit slow
mat(m,mu,t,i,j) = trace(lsSum[ij_dx]*Gamma(gammas[mu]));
}
}
}
}
} else {
const scalar_type zz(0.0);
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
for(int mu=0;mu<Ngamma;mu++){
for(int m=0;m<Nmom;m++){
mat(m,mu,t,i,j) =zz;
}
}
}
}
}
}
}
t2+=usecond();
////////////////////////////////////////////////////////////////////
// This global sum is taking as much as 50% of time on 16 nodes
// Vector size is 7 x 16 x 32 x 16 x 16 x sizeof(complex) = 2MB - 60MB depending on volume
// Healthy size that should suffice
////////////////////////////////////////////////////////////////////
t3-=usecond();
grid->GlobalSumVector(&mat(0,0,0,0,0),Nmom*Ngamma*Nt*Lblock*Rblock);
t3+=usecond();
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2AMesonField<FImpl>::execute(void)
@ -412,8 +218,9 @@ void TA2AMesonField<FImpl>::execute(void)
Eigen::Tensor<ComplexD,5> mesonFieldBlocked(nmom,ngamma,nt,N_iii,N_jjj);
t_contr-=usecond();
MesonField(mesonFieldBlocked, &w[ii], &v[jj], gammas, phases,Tp,
t_int_0,t_int_1,t_int_2,t_int_3);
A2Autils<FImpl>::MesonField(mesonFieldBlocked,
&w[ii],
&v[jj], gammas, phases,Tp);
t_contr+=usecond();
flops += vol * ( 2 * 8.0 + 6.0 + 8.0*nmom) * N_iii*N_jjj*ngamma;
@ -441,14 +248,6 @@ void TA2AMesonField<FImpl>::execute(void)
LOG(Message) << " Contraction of MesonFields took "<<(t1-t0)/1.0e6<< " seconds " << std::endl;
LOG(Message) << " Schur "<<(t_schur)/1.0e6<< " seconds " << std::endl;
LOG(Message) << " Contr "<<(t_contr)/1.0e6<< " seconds " << std::endl;
LOG(Message) << " Intern0 "<<(t_int_0)/1.0e6<< " seconds " << std::endl;
LOG(Message) << " Intern1 "<<(t_int_1)/1.0e6<< " seconds " << std::endl;
LOG(Message) << " Intern2 "<<(t_int_2)/1.0e6<< " seconds " << std::endl;
LOG(Message) << " Intern3 "<<(t_int_3)/1.0e6<< " seconds " << std::endl;
double t_kernel = t_int_0 + t_int_1;
LOG(Message) << " Arith "<<flops/(t_kernel)/1.0e3/nodes<< " Gflop/s / node " << std::endl;
LOG(Message) << " Arith "<<bytes/(t_kernel)/1.0e3/nodes<< " GB/s /node " << std::endl;
/////////////////////////////////////////////////////////////////////////
// Test: Build the pion correlator (two end)

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff