mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-13 04:37:05 +01:00
Debugged the real() and imag() functions and added tests to Test_Simd
This commit is contained in:
@ -5,163 +5,156 @@
|
||||
#ifndef STOUT_SMEAR_
|
||||
#define STOUT_SMEAR_
|
||||
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
/*! @brief Stout smearing of link variable. */
|
||||
template <class Gimpl>
|
||||
class Smear_Stout: public Smear<Gimpl> {
|
||||
private:
|
||||
const Smear < Gimpl > * SmearBase;
|
||||
/*! @brief Stout smearing of link variable. */
|
||||
template <class Gimpl>
|
||||
class Smear_Stout : public Smear<Gimpl> {
|
||||
private:
|
||||
const Smear<Gimpl>* SmearBase;
|
||||
|
||||
public:
|
||||
INHERIT_GIMPL_TYPES(Gimpl)
|
||||
public:
|
||||
INHERIT_GIMPL_TYPES(Gimpl)
|
||||
|
||||
Smear_Stout(Smear < Gimpl >* base):SmearBase(base){
|
||||
static_assert(Nc==3, "Stout smearing currently implemented only for Nc==3");
|
||||
}
|
||||
Smear_Stout(Smear<Gimpl>* base) : SmearBase(base) {
|
||||
static_assert(Nc == 3,
|
||||
"Stout smearing currently implemented only for Nc==3");
|
||||
}
|
||||
|
||||
/*! Default constructor */
|
||||
Smear_Stout(double rho = 1.0):SmearBase(new Smear_APE < Gimpl > (rho)){
|
||||
static_assert(Nc==3, "Stout smearing currently implemented only for Nc==3");
|
||||
}
|
||||
/*! Default constructor */
|
||||
Smear_Stout(double rho = 1.0) : SmearBase(new Smear_APE<Gimpl>(rho)) {
|
||||
static_assert(Nc == 3,
|
||||
"Stout smearing currently implemented only for Nc==3");
|
||||
}
|
||||
|
||||
~Smear_Stout(){} //delete SmearBase...
|
||||
~Smear_Stout() {} // delete SmearBase...
|
||||
|
||||
void smear(GaugeField& u_smr,const GaugeField& U) const{
|
||||
GaugeField C(U._grid);
|
||||
GaugeLinkField tmp(U._grid), iq_mu(U._grid), Umu(U._grid);
|
||||
void smear(GaugeField& u_smr, const GaugeField& U) const {
|
||||
GaugeField C(U._grid);
|
||||
GaugeLinkField tmp(U._grid), iq_mu(U._grid), Umu(U._grid);
|
||||
|
||||
std::cout<< GridLogDebug << "Stout smearing started\n";
|
||||
std::cout << GridLogDebug << "Stout smearing started\n";
|
||||
|
||||
//Smear the configurations
|
||||
SmearBase->smear(C, U);
|
||||
// Smear the configurations
|
||||
SmearBase->smear(C, U);
|
||||
|
||||
for (int mu = 0; mu<Nd; mu++)
|
||||
{
|
||||
tmp = peekLorentz(C,mu);
|
||||
Umu = peekLorentz(U,mu);
|
||||
iq_mu = Ta(tmp * adj(Umu)); // iq_mu = Ta(Omega_mu) to match the signs with the paper
|
||||
exponentiate_iQ(tmp, iq_mu);
|
||||
pokeLorentz(u_smr, tmp*Umu, mu);// u_smr = exp(iQ_mu)*U_mu
|
||||
}
|
||||
std::cout<< GridLogDebug << "Stout smearing completed\n";
|
||||
};
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
tmp = peekLorentz(C, mu);
|
||||
Umu = peekLorentz(U, mu);
|
||||
iq_mu = Ta(
|
||||
tmp *
|
||||
adj(Umu)); // iq_mu = Ta(Omega_mu) to match the signs with the paper
|
||||
exponentiate_iQ(tmp, iq_mu);
|
||||
pokeLorentz(u_smr, tmp * Umu, mu); // u_smr = exp(iQ_mu)*U_mu
|
||||
}
|
||||
std::cout << GridLogDebug << "Stout smearing completed\n";
|
||||
};
|
||||
|
||||
void derivative(GaugeField& SigmaTerm, const GaugeField& iLambda,
|
||||
const GaugeField& Gauge) const {
|
||||
SmearBase->derivative(SigmaTerm, iLambda, Gauge);
|
||||
};
|
||||
|
||||
void derivative(GaugeField& SigmaTerm,
|
||||
const GaugeField& iLambda,
|
||||
const GaugeField& Gauge) const{
|
||||
SmearBase->derivative(SigmaTerm, iLambda, Gauge);
|
||||
};
|
||||
void BaseSmear(GaugeField& C, const GaugeField& U) const {
|
||||
SmearBase->smear(C, U);
|
||||
};
|
||||
|
||||
void exponentiate_iQ(GaugeLinkField& e_iQ, const GaugeLinkField& iQ) const {
|
||||
// Put this outside
|
||||
// only valid for SU(3) matrices
|
||||
|
||||
void BaseSmear(GaugeField& C,
|
||||
const GaugeField& U) const{
|
||||
SmearBase->smear(C, U);
|
||||
};
|
||||
// only one Lorentz direction at a time
|
||||
|
||||
void exponentiate_iQ(GaugeLinkField& e_iQ,
|
||||
const GaugeLinkField& iQ) const{
|
||||
// Put this outside
|
||||
// only valid for SU(3) matrices
|
||||
// notice that it actually computes
|
||||
// exp ( input matrix )
|
||||
// the i sign is coming from outside
|
||||
// input matrix is anti-hermitian NOT hermitian
|
||||
|
||||
// only one Lorentz direction at a time
|
||||
GridBase* grid = iQ._grid;
|
||||
GaugeLinkField unity(grid);
|
||||
unity = 1.0;
|
||||
|
||||
// notice that it actually computes
|
||||
// exp ( input matrix )
|
||||
// the i sign is coming from outside
|
||||
// input matrix is anti-hermitian NOT hermitian
|
||||
GaugeLinkField iQ2(grid), iQ3(grid);
|
||||
LatticeComplex u(grid), w(grid);
|
||||
LatticeComplex f0(grid), f1(grid), f2(grid);
|
||||
|
||||
GridBase *grid = iQ._grid;
|
||||
GaugeLinkField unity(grid);
|
||||
unity=1.0;
|
||||
iQ2 = iQ * iQ;
|
||||
iQ3 = iQ * iQ2;
|
||||
|
||||
GaugeLinkField iQ2(grid), iQ3(grid);
|
||||
LatticeComplex u(grid), w(grid);
|
||||
LatticeComplex f0(grid), f1(grid), f2(grid);
|
||||
set_uw(u, w, iQ2, iQ3);
|
||||
set_fj(f0, f1, f2, u, w);
|
||||
|
||||
iQ2 = iQ * iQ;
|
||||
iQ3 = iQ * iQ2;
|
||||
e_iQ = f0 * unity + timesMinusI(f1) * iQ - f2 * iQ2;
|
||||
};
|
||||
|
||||
set_uw(u, w, iQ2, iQ3);
|
||||
set_fj(f0, f1, f2, u, w);
|
||||
void set_uw(LatticeComplex& u, LatticeComplex& w, GaugeLinkField& iQ2,
|
||||
GaugeLinkField& iQ3) const {
|
||||
Complex one_over_three = 1.0 / 3.0;
|
||||
Complex one_over_two = 1.0 / 2.0;
|
||||
|
||||
e_iQ = f0*unity + timesMinusI(f1) * iQ - f2 * iQ2;
|
||||
GridBase* grid = u._grid;
|
||||
LatticeComplex c0(grid), c1(grid), tmp(grid), c0max(grid), theta(grid);
|
||||
|
||||
// sign in c0 from the conventions on the Ta
|
||||
c0 = -imag(trace(iQ3)) * one_over_three;
|
||||
c1 = -real(trace(iQ2)) * one_over_two;
|
||||
|
||||
};
|
||||
// Cayley Hamilton checks to machine precision, tested
|
||||
tmp = c1 * one_over_three;
|
||||
c0max = 2.0 * pow(tmp, 1.5);
|
||||
|
||||
theta = acos(c0 / c0max) *
|
||||
one_over_three; // divide by three here, now leave as it is
|
||||
u = sqrt(tmp) * cos(theta);
|
||||
w = sqrt(c1) * sin(theta);
|
||||
}
|
||||
|
||||
void set_uw(LatticeComplex& u, LatticeComplex& w,
|
||||
GaugeLinkField& iQ2, GaugeLinkField& iQ3) const{
|
||||
Complex one_over_three = 1.0/3.0;
|
||||
Complex one_over_two = 1.0/2.0;
|
||||
void set_fj(LatticeComplex& f0, LatticeComplex& f1, LatticeComplex& f2,
|
||||
const LatticeComplex& u, const LatticeComplex& w) const {
|
||||
GridBase* grid = u._grid;
|
||||
LatticeComplex xi0(grid), u2(grid), w2(grid), cosw(grid);
|
||||
LatticeComplex fden(grid);
|
||||
LatticeComplex h0(grid), h1(grid), h2(grid);
|
||||
LatticeComplex e2iu(grid), emiu(grid), ixi0(grid), qt(grid);
|
||||
LatticeComplex unity(grid);
|
||||
unity = 1.0;
|
||||
|
||||
GridBase *grid = u._grid;
|
||||
LatticeComplex c0(grid), c1(grid), tmp(grid), c0max(grid), theta(grid);
|
||||
xi0 = func_xi0(w);
|
||||
u2 = u * u;
|
||||
w2 = w * w;
|
||||
cosw = cos(w);
|
||||
|
||||
// sign in c0 from the conventions on the Ta
|
||||
c0 = - real(timesMinusI(trace(iQ3))) * one_over_three; //temporary hack
|
||||
c1 = - real(trace(iQ2)) * one_over_two;
|
||||
ixi0 = timesI(xi0);
|
||||
emiu = cos(u) - timesI(sin(u));
|
||||
e2iu = cos(2.0 * u) + timesI(sin(2.0 * u));
|
||||
|
||||
//Cayley Hamilton checks to machine precision, tested
|
||||
tmp = c1 * one_over_three;
|
||||
c0max = 2.0 * pow(tmp, 1.5);
|
||||
h0 = e2iu * (u2 - w2) +
|
||||
emiu * ((8.0 * u2 * cosw) + (2.0 * u * (3.0 * u2 + w2) * ixi0));
|
||||
h1 = e2iu * (2.0 * u) - emiu * ((2.0 * u * cosw) - (3.0 * u2 - w2) * ixi0);
|
||||
h2 = e2iu - emiu * (cosw + (3.0 * u) * ixi0);
|
||||
|
||||
theta = acos(c0/c0max)*one_over_three; // divide by three here, now leave as it is
|
||||
u = sqrt(tmp) * cos( theta );
|
||||
w = sqrt(c1) * sin( theta );
|
||||
}
|
||||
fden = unity / (9.0 * u2 - w2); // reals
|
||||
f0 = h0 * fden;
|
||||
f1 = h1 * fden;
|
||||
f2 = h2 * fden;
|
||||
}
|
||||
|
||||
void set_fj(LatticeComplex& f0, LatticeComplex& f1, LatticeComplex& f2,
|
||||
const LatticeComplex& u, const LatticeComplex& w) const{
|
||||
LatticeComplex func_xi0(const LatticeComplex& w) const {
|
||||
// Define a function to do the check
|
||||
// if( w < 1e-4 ) std::cout << GridLogWarning<< "[Smear_stout] w too small:
|
||||
// "<< w <<"\n";
|
||||
return sin(w) / w;
|
||||
}
|
||||
|
||||
GridBase *grid = u._grid;
|
||||
LatticeComplex xi0(grid), u2(grid), w2(grid), cosw(grid);
|
||||
LatticeComplex fden(grid);
|
||||
LatticeComplex h0(grid), h1(grid), h2(grid);
|
||||
LatticeComplex e2iu(grid), emiu(grid), ixi0(grid), qt(grid);
|
||||
LatticeComplex unity(grid);
|
||||
unity = 1.0;
|
||||
|
||||
xi0 = func_xi0(w);
|
||||
u2 = u * u;
|
||||
w2 = w * w;
|
||||
cosw = cos(w);
|
||||
|
||||
ixi0 = timesI(xi0);
|
||||
emiu = cos(u) - timesI(sin(u));
|
||||
e2iu = cos(2.0*u) + timesI(sin(2.0*u));
|
||||
|
||||
h0 = e2iu * (u2 - w2) + emiu * ( (8.0*u2*cosw) + (2.0*u*(3.0*u2 + w2)*ixi0));
|
||||
h1 = e2iu * (2.0 * u) - emiu * ( (2.0*u*cosw) - (3.0*u2-w2)*ixi0);
|
||||
h2 = e2iu - emiu * ( cosw + (3.0*u)*ixi0);
|
||||
|
||||
fden = unity/(9.0*u2 - w2);// reals
|
||||
f0 = h0 * fden;
|
||||
f1 = h1 * fden;
|
||||
f2 = h2 * fden;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
LatticeComplex func_xi0(const LatticeComplex& w) const{
|
||||
// Define a function to do the check
|
||||
//if( w < 1e-4 ) std::cout << GridLogWarning<< "[Smear_stout] w too small: "<< w <<"\n";
|
||||
return sin(w)/w;
|
||||
}
|
||||
|
||||
LatticeComplex func_xi1(const LatticeComplex& w) const{
|
||||
// Define a function to do the check
|
||||
//if( w < 1e-4 ) std::cout << GridLogWarning << "[Smear_stout] w too small: "<< w <<"\n";
|
||||
return cos(w)/(w*w) - sin(w)/(w*w*w);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
LatticeComplex func_xi1(const LatticeComplex& w) const {
|
||||
// Define a function to do the check
|
||||
// if( w < 1e-4 ) std::cout << GridLogWarning << "[Smear_stout] w too small:
|
||||
// "<< w <<"\n";
|
||||
return cos(w) / (w * w) - sin(w) / (w * w * w);
|
||||
}
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
Reference in New Issue
Block a user