mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 07:55:35 +00:00
Tensor serialisation is fully functional
This commit is contained in:
parent
dde118fed9
commit
e63019ac50
@ -316,7 +316,7 @@ namespace Grid {
|
||||
pWriteBuffer = getFirstScalar( output );
|
||||
} else {
|
||||
// Regardless of the Eigen::Tensor storage order, the copy will be Row Major
|
||||
pCopyBuffer = static_cast<Scalar *>(malloc(TotalNumElements * sizeof(Scalar)));
|
||||
pCopyBuffer = new Scalar[TotalNumElements];
|
||||
pWriteBuffer = pCopyBuffer;
|
||||
Scalar * pCopy = pCopyBuffer;
|
||||
std::array<Index, TensorRank> MyIndex;
|
||||
@ -330,7 +330,7 @@ namespace Grid {
|
||||
}
|
||||
}
|
||||
upcast->template writeMultiDim<Scalar>(s, TotalDims, pWriteBuffer, TotalNumElements);
|
||||
if( pCopyBuffer ) free( pCopyBuffer );
|
||||
if( pCopyBuffer ) delete [] pCopyBuffer;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
|
@ -138,15 +138,30 @@ namespace Grid
|
||||
{
|
||||
push(s);
|
||||
size_t count = 1;
|
||||
const size_t Rank = Dimensions.size();
|
||||
const int Rank = static_cast<int>( Dimensions.size() );
|
||||
write("rank", Rank );
|
||||
std::vector<size_t> MyIndex( Rank );
|
||||
for( auto d : Dimensions ) {
|
||||
write("dim", d);
|
||||
count *= d;
|
||||
}
|
||||
assert( count == NumElements && "XmlIO : element count doesn't match dimensions" );
|
||||
while (NumElements--)
|
||||
static const char sName[] = "tensor";
|
||||
for( int i = 0 ; i < Rank ; i++ ) {
|
||||
MyIndex[i] = 0;
|
||||
push(sName);
|
||||
}
|
||||
while (NumElements--) {
|
||||
write("elem", *pDataRowMajor++);
|
||||
int i;
|
||||
for( i = Rank - 1 ; i != -1 && ++MyIndex[i] == Dimensions[i] ; i-- )
|
||||
MyIndex[i] = 0;
|
||||
int Rollover = Rank - 1 - i;
|
||||
for( i = 0 ; i < Rollover ; i++ )
|
||||
pop();
|
||||
for( i = 0 ; NumElements && i < Rollover ; i++ )
|
||||
push(sName);
|
||||
}
|
||||
pop();
|
||||
}
|
||||
|
||||
@ -189,7 +204,9 @@ namespace Grid
|
||||
std::cout << GridLogWarning << "XML: cannot open node '" << s << "'";
|
||||
std::cout << std::endl;
|
||||
} else {
|
||||
size_t Rank;
|
||||
static const char sName[] = "tensor";
|
||||
static const char sNameDone[] = "tensor-done";
|
||||
int Rank;
|
||||
read("rank", Rank);
|
||||
dim.resize( Rank );
|
||||
size_t NumElements = 1;
|
||||
@ -200,10 +217,27 @@ namespace Grid
|
||||
NumElements *= d;
|
||||
}
|
||||
buf.resize( NumElements );
|
||||
std::vector<size_t> MyIndex( Rank );
|
||||
for( int i = 0 ; i < Rank ; i++ ) {
|
||||
MyIndex[i] = 0;
|
||||
push(sName);
|
||||
}
|
||||
|
||||
for( auto &x : buf )
|
||||
{
|
||||
NumElements--;
|
||||
read("elem", x);
|
||||
node_.child("elem").set_name("elem-done");
|
||||
int i;
|
||||
for( i = Rank - 1 ; i != -1 && ++MyIndex[i] == dim[i] ; i-- )
|
||||
MyIndex[i] = 0;
|
||||
int Rollover = Rank - 1 - i;
|
||||
for( i = 0 ; i < Rollover ; i++ ) {
|
||||
node_.set_name(sNameDone);
|
||||
pop();
|
||||
}
|
||||
for( i = 0 ; NumElements && i < Rollover ; i++ )
|
||||
push(sName);
|
||||
}
|
||||
pop();
|
||||
}
|
||||
|
@ -2,7 +2,7 @@
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: Grid/util/Eigen.h
|
||||
Source file: Grid/util/EigenUtil.h
|
||||
|
||||
Copyright (C) 2019
|
||||
|
||||
@ -25,8 +25,8 @@
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_UTIL_EIGEN_H
|
||||
#define GRID_UTIL_EIGEN_H
|
||||
#ifndef GRID_UTIL_EIGENUTIL_H
|
||||
#define GRID_UTIL_EIGENUTIL_H
|
||||
#include <Grid/tensors/Tensor_traits.h>
|
||||
#include <Grid/Eigen/unsupported/CXX11/Tensor>
|
||||
|
||||
@ -35,25 +35,28 @@ namespace Grid {
|
||||
template <typename ETensor, typename Lambda>
|
||||
typename std::enable_if<EigenIO::is_tensor_of_scalar<ETensor>::value, void>::type
|
||||
for_all_do_lambda( Lambda lambda, typename ETensor::Scalar &scalar, typename ETensor::Index &Seq,
|
||||
std::array<std::size_t, ETensor::NumIndices + EigenIO::Traits<ETensor>::Rank> &MyIndex)
|
||||
const std::array<typename ETensor::Index, ETensor::NumIndices> &MyIndex,
|
||||
const std::array<int, EigenIO::Traits<ETensor>::Rank> &DimGridTensor,
|
||||
std::array<int, EigenIO::Traits<ETensor>::Rank> &GridTensorIndex)
|
||||
{
|
||||
lambda( scalar, Seq++, MyIndex );
|
||||
lambda( scalar, Seq++, MyIndex, GridTensorIndex );
|
||||
}
|
||||
|
||||
// for_all helper function to call the lambda for container
|
||||
template <typename ETensor, typename Lambda>
|
||||
typename std::enable_if<EigenIO::is_tensor_of_container<ETensor>::value, void>::type
|
||||
for_all_do_lambda( Lambda lambda, typename ETensor::Scalar &container, typename ETensor::Index &Seq,
|
||||
std::array<std::size_t, ETensor::NumIndices + EigenIO::Traits<ETensor>::Rank> &MyIndex)
|
||||
const std::array<typename ETensor::Index, ETensor::NumIndices> &MyIndex,
|
||||
const std::array<int, EigenIO::Traits<ETensor>::Rank> &DimGridTensor,
|
||||
std::array<int, EigenIO::Traits<ETensor>::Rank> &GridTensorIndex)
|
||||
{
|
||||
using Traits = EigenIO::Traits<ETensor>;
|
||||
const auto rank{ETensor::NumIndices};
|
||||
const auto InnerRank = Traits::Rank;
|
||||
for( typename Traits::scalar_type &Source : container ) {
|
||||
lambda(Source, Seq++, MyIndex );
|
||||
lambda(Source, Seq++, MyIndex, GridTensorIndex );
|
||||
// Now increment SubIndex
|
||||
for( auto i = InnerRank - 1; i != -1 && ++MyIndex[rank + i] == Traits::Dimension(i); i-- )
|
||||
MyIndex[rank + i] = 0;
|
||||
for( auto i = InnerRank - 1; i != -1 && ++GridTensorIndex[i] == DimGridTensor[i]; i-- )
|
||||
GridTensorIndex[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
@ -65,58 +68,51 @@ namespace Grid {
|
||||
for_all( ETensor &ET, Lambda lambda )
|
||||
{
|
||||
using Scalar = typename ETensor::Scalar; // This could be a Container - we'll check later
|
||||
using Traits = EigenIO::Traits<ETensor>;
|
||||
const std::size_t NumScalars = ET.size();
|
||||
assert( NumScalars > 0 );
|
||||
using Index = typename ETensor::Index;
|
||||
using Traits = EigenIO::Traits<ETensor>;
|
||||
// Check that the number of elements in the container is the product of tensor dimensions
|
||||
const Index NumScalars = ET.size();
|
||||
assert( NumScalars > 0 && "EigenUtil: tensor has no elements" );
|
||||
Index ScalarElementCount{1};
|
||||
const auto InnerRank = Traits::Rank;
|
||||
const auto rank{ETensor::NumIndices};
|
||||
std::array<std::size_t, rank + InnerRank> Dims;
|
||||
for(auto i = 0; i < rank; i++ ) {
|
||||
auto dim = ET.dimension(i);
|
||||
assert( dim > 0 );
|
||||
Dims[i] = static_cast<std::size_t>(dim);
|
||||
assert( Dims[i] == dim ); // check we didn't lose anything in the conversion
|
||||
ScalarElementCount *= Dims[i];
|
||||
std::array<Index, rank> DimTensor, MyIndex;
|
||||
for(int i = 0; i < rank; i++ ) {
|
||||
DimTensor[i] = ET.dimension(i);
|
||||
ScalarElementCount *= DimTensor[i];
|
||||
MyIndex[i] = 0;
|
||||
}
|
||||
// Check that the number of containers is correct ... and we didn't lose anything in conversions
|
||||
assert( NumScalars == ScalarElementCount );
|
||||
// If the Scalar is actually a container, add the inner Scalar's dimensions
|
||||
size_t InnerScalarCount{1};
|
||||
for(auto i = 0; i < InnerRank; i++ ) {
|
||||
auto dim = Traits::Dimension(i);
|
||||
assert( dim > 0 );
|
||||
Dims[rank + i] = static_cast<std::size_t>(dim);
|
||||
assert( Dims[rank + i] == dim ); // check we didn't lose anything in the conversion
|
||||
InnerScalarCount *= dim;
|
||||
assert( NumScalars == ScalarElementCount && "EigenUtil: tensor size not product of dimensions" );
|
||||
// Save the GridTensor dimensions
|
||||
const auto InnerRank{Traits::Rank};
|
||||
std::array<int, InnerRank> DimGridTensor, GridTensorIndex;
|
||||
for(int i = 0; i < InnerRank; i++ ) {
|
||||
DimGridTensor[i] = Traits::Dimension(i);
|
||||
GridTensorIndex[i] = 0;
|
||||
}
|
||||
assert(Traits::count == InnerScalarCount);
|
||||
std::array<std::size_t, rank + InnerRank> MyIndex;
|
||||
for( auto &idx : MyIndex ) idx = 0;
|
||||
// Now walk the tensor in memory order
|
||||
Index Seq = 0;
|
||||
Scalar * pScalar = ET.data();
|
||||
for( std::size_t j = 0; j < NumScalars; j++ ) {
|
||||
for_all_do_lambda<ETensor, Lambda>( lambda, * pScalar, Seq, MyIndex );
|
||||
for( Index j = 0; j < NumScalars; j++ ) {
|
||||
for_all_do_lambda<ETensor, Lambda>( lambda, * pScalar, Seq, MyIndex, DimGridTensor, GridTensorIndex );
|
||||
// Now increment the index to pass to the lambda (bearing in mind we're walking in memory order)
|
||||
if( ETensor::Options & Eigen::RowMajor ) {
|
||||
for( auto i = rank - 1; i != -1 && ++MyIndex[i] == Dims[i]; i-- )
|
||||
for( auto i = rank - 1; i != -1 && ++MyIndex[i] == DimTensor[i]; i-- )
|
||||
MyIndex[i] = 0;
|
||||
} else {
|
||||
for( auto i = 0; i < rank && ++MyIndex[i] == Dims[i]; i++ )
|
||||
for( auto i = 0; i < rank && ++MyIndex[i] == DimTensor[i]; i++ )
|
||||
MyIndex[i] = 0;
|
||||
size_t NewSeq = 0;
|
||||
for( auto i = 0; i < rank + InnerRank ; i++ ) {
|
||||
NewSeq *= Dims[i];
|
||||
NewSeq += MyIndex[i];
|
||||
Seq = 0;
|
||||
for( auto i = 0; i < rank; i++ ) {
|
||||
Seq *= DimTensor[i];
|
||||
Seq += MyIndex[i];
|
||||
}
|
||||
Seq = static_cast<Index>( NewSeq );
|
||||
Seq *= Traits::count;
|
||||
}
|
||||
pScalar++;
|
||||
}
|
||||
}
|
||||
|
||||
// Sequential initialisation of tensors
|
||||
// Sequential initialisation of tensors up to specified precision
|
||||
// Would have preferred to define template variables for this, but that's c++ 17
|
||||
template <typename ETensor>
|
||||
typename std::enable_if<EigenIO::is_tensor<ETensor>::value && !EigenIO::Traits<ETensor>::is_complex>::type
|
||||
@ -124,11 +120,13 @@ namespace Grid {
|
||||
{
|
||||
using Traits = EigenIO::Traits<ETensor>;
|
||||
using scalar_type = typename Traits::scalar_type;
|
||||
for_all( ET, [&](scalar_type &c, typename ETensor::Index n, const std::array<size_t, ETensor::NumIndices + Traits::Rank> &Dims ) {
|
||||
using Index = typename ETensor::Index;
|
||||
for_all( ET, [&](scalar_type &c, Index n, const std::array<Index, ETensor::NumIndices> &TensorIndex,
|
||||
const std::array<int, Traits::Rank> &ScalarIndex ) {
|
||||
scalar_type x = Inc * static_cast<scalar_type>(n);
|
||||
if( Precision ) {
|
||||
std::stringstream s;
|
||||
s << std::scientific << std::setprecision(Precision) << x;
|
||||
s << std::setprecision(Precision) << x;
|
||||
s >> x;
|
||||
}
|
||||
c = x;
|
||||
@ -141,7 +139,9 @@ namespace Grid {
|
||||
{
|
||||
using Traits = EigenIO::Traits<ETensor>;
|
||||
using scalar_type = typename Traits::scalar_type;
|
||||
for_all( ET, [&](scalar_type &c, typename ETensor::Index n, const std::array<size_t, ETensor::NumIndices + Traits::Rank> &Dims ) {
|
||||
using Index = typename ETensor::Index;
|
||||
for_all( ET, [&](scalar_type &c, Index n, const std::array<Index, ETensor::NumIndices> &TensorIndex,
|
||||
const std::array<int, Traits::Rank> &ScalarIndex ) {
|
||||
auto re = Inc.real();
|
||||
auto im = Inc.imag();
|
||||
re *= n;
|
||||
@ -159,24 +159,28 @@ namespace Grid {
|
||||
}
|
||||
|
||||
// Helper to dump a tensor
|
||||
#ifdef DEBUG
|
||||
#define dump_tensor(args...) dump_tensor_func(args)
|
||||
template <typename T>
|
||||
typename std::enable_if<EigenIO::is_tensor<T>::value, void>::type
|
||||
dump_tensor_func(T &t, const char * pName = nullptr)
|
||||
dump_tensor(T &t, const char * pName = nullptr)
|
||||
{
|
||||
using Traits = EigenIO::Traits<T>;
|
||||
using scalar_type = typename Traits::scalar_type;
|
||||
using Index = typename T::Index;
|
||||
const auto rank{T::NumIndices};
|
||||
const auto &dims = t.dimensions();
|
||||
std::cout << "Dumping rank " << rank << ((T::Options & Eigen::RowMajor) ? ", row" : ", column") << "-major tensor ";
|
||||
std::cout << "Dumping rank " << rank + Traits::Rank << ((T::Options & Eigen::RowMajor) ? ", row" : ", column") << "-major tensor ";
|
||||
if( pName )
|
||||
std::cout << pName;
|
||||
for( auto i = 0 ; i < rank; i++ ) std::cout << "[" << dims[i] << "]";
|
||||
for( int i = 0 ; i < rank; i++ ) std::cout << "[" << dims[i] << "]";
|
||||
for( int i = 0 ; i < Traits::Rank; i++ ) std::cout << "(" << Traits::Dimension(i) << ")";
|
||||
std::cout << " in memory order:" << std::endl;
|
||||
for_all( t, [&](typename Traits::scalar_type &c, typename T::Index index, const std::array<size_t, T::NumIndices + Traits::Rank> &Dims ){
|
||||
for_all( t, [&](scalar_type &c, Index n, const std::array<Index, rank> &TensorIndex,
|
||||
const std::array<int, Traits::Rank> &ScalarIndex ){
|
||||
std::cout << " ";
|
||||
for( auto dim : Dims )
|
||||
for( auto dim : TensorIndex )
|
||||
std::cout << "[" << dim << "]";
|
||||
for( auto dim : ScalarIndex )
|
||||
std::cout << "(" << dim << ")";
|
||||
std::cout << " = " << c << std::endl;
|
||||
} );
|
||||
std::cout << "========================================" << std::endl;
|
||||
@ -184,64 +188,11 @@ namespace Grid {
|
||||
|
||||
template <typename T>
|
||||
typename std::enable_if<!EigenIO::is_tensor<T>::value, void>::type
|
||||
dump_tensor_func(T &t, const char * pName = nullptr)
|
||||
dump_tensor(T &t, const char * pName = nullptr)
|
||||
{
|
||||
std::cout << "Dumping non-tensor object ";
|
||||
if( pName )
|
||||
std::cout << pName;
|
||||
if( pName ) std::cout << pName;
|
||||
std::cout << "=" << t;
|
||||
}
|
||||
|
||||
// Helper to dump a tensor in memory order
|
||||
// Kind of superfluous given the above ... just keeping in case I need to fall back to this
|
||||
#define DumpMemoryOrder(args...) DumpMemoryOrder_func(args)
|
||||
template <typename T>
|
||||
typename std::enable_if<EigenIO::is_tensor_of_scalar<T>::value, void>::type
|
||||
DumpMemoryOrder_func(T &t, const char * pName = nullptr)
|
||||
{
|
||||
const auto rank = t.rank();
|
||||
const auto &dims = t.dimensions();
|
||||
std::cout << "Dumping rank " << rank << ((T::Options & Eigen::RowMajor) ? ", row" : ", column") << "-major tensor ";
|
||||
if( pName )
|
||||
std::cout << pName;
|
||||
for( auto d : dims ) std::cout << "[" << d << "]";
|
||||
std::cout << " in memory order:" << std::endl;
|
||||
const typename T::Scalar * p = t.data();
|
||||
const auto size = t.size();
|
||||
const typename T::Scalar * pEnd = p + size;
|
||||
if( rank <= 2 ) {
|
||||
for( unsigned int i = 0 ; i < t.size() ; i++ )
|
||||
std::cout << "[" << i << "]=" << *p++ << " ";
|
||||
std::cout << std::endl;
|
||||
} else {
|
||||
const auto innersize = dims[rank-2] * dims[rank-1];
|
||||
using Index = typename T::Index;
|
||||
std::vector<Index> idx(rank - 2);
|
||||
for( auto &i : idx ) i = 0;
|
||||
Index idxCounter = 0;
|
||||
while( p < pEnd ) {
|
||||
if( T::Options & Eigen::RowMajor ) {
|
||||
if( pName )
|
||||
std::cout << pName;
|
||||
idxCounter = 0;
|
||||
for(auto i = 0 ; i < rank - 2 ; i++)
|
||||
std::cout << "[" << idx[i] << "]:";
|
||||
}
|
||||
for( unsigned int i = 0 ; i < innersize ; i++ )
|
||||
std::cout << " [" << idxCounter++ << "]=" << *p++;
|
||||
if( T::Options & Eigen::RowMajor )
|
||||
std::cout << std::endl;
|
||||
// Now increment MyIndex
|
||||
for( auto i = rank - 3; i != -1 && ++idx[i] == dims[i]; i-- )
|
||||
idx[i] = 0;
|
||||
}
|
||||
if( ! ( T::Options & Eigen::RowMajor ) )
|
||||
std::cout << std::endl;
|
||||
}
|
||||
}
|
||||
#else
|
||||
#define dump_tensor(args...)
|
||||
#define DumpMemoryOrder(args...)
|
||||
#endif
|
||||
}
|
||||
#endif
|
@ -29,7 +29,7 @@ Author: Michael Marshall <michael.marshall@ed.ac.uk>
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/util/Eigen.h>
|
||||
#include <Grid/util/EigenUtil.h>
|
||||
|
||||
using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
@ -158,8 +158,8 @@ public:
|
||||
|
||||
template <typename WTR_, typename RDR_, typename T, typename... IndexTypes>
|
||||
void EigenTensorTestSingle(const char * MyTypeName, typename EigenIO::Traits<T>::scalar_type Flag,
|
||||
unsigned short Precision, std::string &filename, const char * pszExtension, unsigned int &TestNum,
|
||||
IndexTypes... otherDims)
|
||||
unsigned short Precision, std::string &filename, const char * pszExtension,
|
||||
unsigned int &TestNum, IndexTypes... otherDims)
|
||||
{
|
||||
using Traits = EigenIO::Traits<T>;
|
||||
using scalar_type = typename Traits::scalar_type;
|
||||
@ -187,15 +187,17 @@ void EigenTensorTest(const char * pszExtension, unsigned short Precision = 0)
|
||||
EigenTensorTestSingle<WTR_, RDR_, Tensor_9_4_2>(TEST_PARAMS( Tensor_9_4_2 ));
|
||||
{
|
||||
unsigned short Flag = 1;
|
||||
TensorRank5UShort t;
|
||||
EigenTensorTestSingle<WTR_, RDR_, TensorRank5UShort>(TEST_PARAMS( TensorRank5UShort ));
|
||||
std::cout << " Testing alternate memory order read ... ";
|
||||
TensorRank5UShortAlt t2;
|
||||
RDR_ reader(filename);
|
||||
read(reader, "TensorRank5UShort", t2);
|
||||
bool good = true;
|
||||
for_all( t2, [&](unsigned short c, unsigned short n,
|
||||
const std::array<size_t, TensorRank5UShortAlt::NumIndices> &Dims ) {
|
||||
using Index = typename TensorRank5UShortAlt::Index;
|
||||
// NB: I can't call
|
||||
for_all( t2, [&](unsigned short c, Index n,
|
||||
const std::array<Index, TensorRank5UShortAlt::NumIndices> &TensorIndex,
|
||||
const std::array<int, EigenIO::Traits<TensorRank5UShortAlt>::Rank> &GridTensorIndex ){
|
||||
good = good && ( c == n );
|
||||
} );
|
||||
if (!good) {
|
||||
@ -240,20 +242,6 @@ void tensorConvTestFn(GridSerialRNG &rng, const std::string label)
|
||||
|
||||
int main(int argc,char **argv)
|
||||
{
|
||||
{
|
||||
LSCTensor Bingo;
|
||||
constexpr Complex Flag{1,-3.1415927};
|
||||
Complex z{0};
|
||||
SpinColourVector * pV = Bingo.data();
|
||||
for( std::size_t i = Bingo.size(); i--; ) {
|
||||
for( typename GridTypeMapper<SpinColourVector>::scalar_type &s : *pV++ ) {
|
||||
s = z;
|
||||
z += Flag;
|
||||
}
|
||||
}
|
||||
dump_tensor( Bingo );
|
||||
}
|
||||
|
||||
Grid_init(&argc,&argv);
|
||||
std::cout << std::boolalpha << "==== basic IO" << std::endl; // display true / false for boolean
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user