1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00

Tensor serialisation is fully functional

This commit is contained in:
Michael Marshall 2019-03-08 00:01:45 +00:00
parent dde118fed9
commit e63019ac50
4 changed files with 107 additions and 134 deletions

View File

@ -316,7 +316,7 @@ namespace Grid {
pWriteBuffer = getFirstScalar( output );
} else {
// Regardless of the Eigen::Tensor storage order, the copy will be Row Major
pCopyBuffer = static_cast<Scalar *>(malloc(TotalNumElements * sizeof(Scalar)));
pCopyBuffer = new Scalar[TotalNumElements];
pWriteBuffer = pCopyBuffer;
Scalar * pCopy = pCopyBuffer;
std::array<Index, TensorRank> MyIndex;
@ -330,7 +330,7 @@ namespace Grid {
}
}
upcast->template writeMultiDim<Scalar>(s, TotalDims, pWriteBuffer, TotalNumElements);
if( pCopyBuffer ) free( pCopyBuffer );
if( pCopyBuffer ) delete [] pCopyBuffer;
}
template <typename T>

View File

@ -138,15 +138,30 @@ namespace Grid
{
push(s);
size_t count = 1;
const size_t Rank = Dimensions.size();
const int Rank = static_cast<int>( Dimensions.size() );
write("rank", Rank );
std::vector<size_t> MyIndex( Rank );
for( auto d : Dimensions ) {
write("dim", d);
count *= d;
}
assert( count == NumElements && "XmlIO : element count doesn't match dimensions" );
while (NumElements--)
static const char sName[] = "tensor";
for( int i = 0 ; i < Rank ; i++ ) {
MyIndex[i] = 0;
push(sName);
}
while (NumElements--) {
write("elem", *pDataRowMajor++);
int i;
for( i = Rank - 1 ; i != -1 && ++MyIndex[i] == Dimensions[i] ; i-- )
MyIndex[i] = 0;
int Rollover = Rank - 1 - i;
for( i = 0 ; i < Rollover ; i++ )
pop();
for( i = 0 ; NumElements && i < Rollover ; i++ )
push(sName);
}
pop();
}
@ -189,7 +204,9 @@ namespace Grid
std::cout << GridLogWarning << "XML: cannot open node '" << s << "'";
std::cout << std::endl;
} else {
size_t Rank;
static const char sName[] = "tensor";
static const char sNameDone[] = "tensor-done";
int Rank;
read("rank", Rank);
dim.resize( Rank );
size_t NumElements = 1;
@ -200,10 +217,27 @@ namespace Grid
NumElements *= d;
}
buf.resize( NumElements );
std::vector<size_t> MyIndex( Rank );
for( int i = 0 ; i < Rank ; i++ ) {
MyIndex[i] = 0;
push(sName);
}
for( auto &x : buf )
{
NumElements--;
read("elem", x);
node_.child("elem").set_name("elem-done");
int i;
for( i = Rank - 1 ; i != -1 && ++MyIndex[i] == dim[i] ; i-- )
MyIndex[i] = 0;
int Rollover = Rank - 1 - i;
for( i = 0 ; i < Rollover ; i++ ) {
node_.set_name(sNameDone);
pop();
}
for( i = 0 ; NumElements && i < Rollover ; i++ )
push(sName);
}
pop();
}

View File

@ -2,7 +2,7 @@
Grid physics library, www.github.com/paboyle/Grid
Source file: Grid/util/Eigen.h
Source file: Grid/util/EigenUtil.h
Copyright (C) 2019
@ -25,8 +25,8 @@
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_UTIL_EIGEN_H
#define GRID_UTIL_EIGEN_H
#ifndef GRID_UTIL_EIGENUTIL_H
#define GRID_UTIL_EIGENUTIL_H
#include <Grid/tensors/Tensor_traits.h>
#include <Grid/Eigen/unsupported/CXX11/Tensor>
@ -35,25 +35,28 @@ namespace Grid {
template <typename ETensor, typename Lambda>
typename std::enable_if<EigenIO::is_tensor_of_scalar<ETensor>::value, void>::type
for_all_do_lambda( Lambda lambda, typename ETensor::Scalar &scalar, typename ETensor::Index &Seq,
std::array<std::size_t, ETensor::NumIndices + EigenIO::Traits<ETensor>::Rank> &MyIndex)
const std::array<typename ETensor::Index, ETensor::NumIndices> &MyIndex,
const std::array<int, EigenIO::Traits<ETensor>::Rank> &DimGridTensor,
std::array<int, EigenIO::Traits<ETensor>::Rank> &GridTensorIndex)
{
lambda( scalar, Seq++, MyIndex );
lambda( scalar, Seq++, MyIndex, GridTensorIndex );
}
// for_all helper function to call the lambda for container
template <typename ETensor, typename Lambda>
typename std::enable_if<EigenIO::is_tensor_of_container<ETensor>::value, void>::type
for_all_do_lambda( Lambda lambda, typename ETensor::Scalar &container, typename ETensor::Index &Seq,
std::array<std::size_t, ETensor::NumIndices + EigenIO::Traits<ETensor>::Rank> &MyIndex)
const std::array<typename ETensor::Index, ETensor::NumIndices> &MyIndex,
const std::array<int, EigenIO::Traits<ETensor>::Rank> &DimGridTensor,
std::array<int, EigenIO::Traits<ETensor>::Rank> &GridTensorIndex)
{
using Traits = EigenIO::Traits<ETensor>;
const auto rank{ETensor::NumIndices};
const auto InnerRank = Traits::Rank;
for( typename Traits::scalar_type &Source : container ) {
lambda(Source, Seq++, MyIndex );
lambda(Source, Seq++, MyIndex, GridTensorIndex );
// Now increment SubIndex
for( auto i = InnerRank - 1; i != -1 && ++MyIndex[rank + i] == Traits::Dimension(i); i-- )
MyIndex[rank + i] = 0;
for( auto i = InnerRank - 1; i != -1 && ++GridTensorIndex[i] == DimGridTensor[i]; i-- )
GridTensorIndex[i] = 0;
}
}
@ -65,58 +68,51 @@ namespace Grid {
for_all( ETensor &ET, Lambda lambda )
{
using Scalar = typename ETensor::Scalar; // This could be a Container - we'll check later
using Traits = EigenIO::Traits<ETensor>;
const std::size_t NumScalars = ET.size();
assert( NumScalars > 0 );
using Index = typename ETensor::Index;
using Traits = EigenIO::Traits<ETensor>;
// Check that the number of elements in the container is the product of tensor dimensions
const Index NumScalars = ET.size();
assert( NumScalars > 0 && "EigenUtil: tensor has no elements" );
Index ScalarElementCount{1};
const auto InnerRank = Traits::Rank;
const auto rank{ETensor::NumIndices};
std::array<std::size_t, rank + InnerRank> Dims;
for(auto i = 0; i < rank; i++ ) {
auto dim = ET.dimension(i);
assert( dim > 0 );
Dims[i] = static_cast<std::size_t>(dim);
assert( Dims[i] == dim ); // check we didn't lose anything in the conversion
ScalarElementCount *= Dims[i];
std::array<Index, rank> DimTensor, MyIndex;
for(int i = 0; i < rank; i++ ) {
DimTensor[i] = ET.dimension(i);
ScalarElementCount *= DimTensor[i];
MyIndex[i] = 0;
}
// Check that the number of containers is correct ... and we didn't lose anything in conversions
assert( NumScalars == ScalarElementCount );
// If the Scalar is actually a container, add the inner Scalar's dimensions
size_t InnerScalarCount{1};
for(auto i = 0; i < InnerRank; i++ ) {
auto dim = Traits::Dimension(i);
assert( dim > 0 );
Dims[rank + i] = static_cast<std::size_t>(dim);
assert( Dims[rank + i] == dim ); // check we didn't lose anything in the conversion
InnerScalarCount *= dim;
assert( NumScalars == ScalarElementCount && "EigenUtil: tensor size not product of dimensions" );
// Save the GridTensor dimensions
const auto InnerRank{Traits::Rank};
std::array<int, InnerRank> DimGridTensor, GridTensorIndex;
for(int i = 0; i < InnerRank; i++ ) {
DimGridTensor[i] = Traits::Dimension(i);
GridTensorIndex[i] = 0;
}
assert(Traits::count == InnerScalarCount);
std::array<std::size_t, rank + InnerRank> MyIndex;
for( auto &idx : MyIndex ) idx = 0;
// Now walk the tensor in memory order
Index Seq = 0;
Scalar * pScalar = ET.data();
for( std::size_t j = 0; j < NumScalars; j++ ) {
for_all_do_lambda<ETensor, Lambda>( lambda, * pScalar, Seq, MyIndex );
for( Index j = 0; j < NumScalars; j++ ) {
for_all_do_lambda<ETensor, Lambda>( lambda, * pScalar, Seq, MyIndex, DimGridTensor, GridTensorIndex );
// Now increment the index to pass to the lambda (bearing in mind we're walking in memory order)
if( ETensor::Options & Eigen::RowMajor ) {
for( auto i = rank - 1; i != -1 && ++MyIndex[i] == Dims[i]; i-- )
for( auto i = rank - 1; i != -1 && ++MyIndex[i] == DimTensor[i]; i-- )
MyIndex[i] = 0;
} else {
for( auto i = 0; i < rank && ++MyIndex[i] == Dims[i]; i++ )
for( auto i = 0; i < rank && ++MyIndex[i] == DimTensor[i]; i++ )
MyIndex[i] = 0;
size_t NewSeq = 0;
for( auto i = 0; i < rank + InnerRank ; i++ ) {
NewSeq *= Dims[i];
NewSeq += MyIndex[i];
Seq = 0;
for( auto i = 0; i < rank; i++ ) {
Seq *= DimTensor[i];
Seq += MyIndex[i];
}
Seq = static_cast<Index>( NewSeq );
Seq *= Traits::count;
}
pScalar++;
}
}
// Sequential initialisation of tensors
// Sequential initialisation of tensors up to specified precision
// Would have preferred to define template variables for this, but that's c++ 17
template <typename ETensor>
typename std::enable_if<EigenIO::is_tensor<ETensor>::value && !EigenIO::Traits<ETensor>::is_complex>::type
@ -124,11 +120,13 @@ namespace Grid {
{
using Traits = EigenIO::Traits<ETensor>;
using scalar_type = typename Traits::scalar_type;
for_all( ET, [&](scalar_type &c, typename ETensor::Index n, const std::array<size_t, ETensor::NumIndices + Traits::Rank> &Dims ) {
using Index = typename ETensor::Index;
for_all( ET, [&](scalar_type &c, Index n, const std::array<Index, ETensor::NumIndices> &TensorIndex,
const std::array<int, Traits::Rank> &ScalarIndex ) {
scalar_type x = Inc * static_cast<scalar_type>(n);
if( Precision ) {
std::stringstream s;
s << std::scientific << std::setprecision(Precision) << x;
s << std::setprecision(Precision) << x;
s >> x;
}
c = x;
@ -141,7 +139,9 @@ namespace Grid {
{
using Traits = EigenIO::Traits<ETensor>;
using scalar_type = typename Traits::scalar_type;
for_all( ET, [&](scalar_type &c, typename ETensor::Index n, const std::array<size_t, ETensor::NumIndices + Traits::Rank> &Dims ) {
using Index = typename ETensor::Index;
for_all( ET, [&](scalar_type &c, Index n, const std::array<Index, ETensor::NumIndices> &TensorIndex,
const std::array<int, Traits::Rank> &ScalarIndex ) {
auto re = Inc.real();
auto im = Inc.imag();
re *= n;
@ -159,24 +159,28 @@ namespace Grid {
}
// Helper to dump a tensor
#ifdef DEBUG
#define dump_tensor(args...) dump_tensor_func(args)
template <typename T>
typename std::enable_if<EigenIO::is_tensor<T>::value, void>::type
dump_tensor_func(T &t, const char * pName = nullptr)
dump_tensor(T &t, const char * pName = nullptr)
{
using Traits = EigenIO::Traits<T>;
using scalar_type = typename Traits::scalar_type;
using Index = typename T::Index;
const auto rank{T::NumIndices};
const auto &dims = t.dimensions();
std::cout << "Dumping rank " << rank << ((T::Options & Eigen::RowMajor) ? ", row" : ", column") << "-major tensor ";
std::cout << "Dumping rank " << rank + Traits::Rank << ((T::Options & Eigen::RowMajor) ? ", row" : ", column") << "-major tensor ";
if( pName )
std::cout << pName;
for( auto i = 0 ; i < rank; i++ ) std::cout << "[" << dims[i] << "]";
for( int i = 0 ; i < rank; i++ ) std::cout << "[" << dims[i] << "]";
for( int i = 0 ; i < Traits::Rank; i++ ) std::cout << "(" << Traits::Dimension(i) << ")";
std::cout << " in memory order:" << std::endl;
for_all( t, [&](typename Traits::scalar_type &c, typename T::Index index, const std::array<size_t, T::NumIndices + Traits::Rank> &Dims ){
for_all( t, [&](scalar_type &c, Index n, const std::array<Index, rank> &TensorIndex,
const std::array<int, Traits::Rank> &ScalarIndex ){
std::cout << " ";
for( auto dim : Dims )
for( auto dim : TensorIndex )
std::cout << "[" << dim << "]";
for( auto dim : ScalarIndex )
std::cout << "(" << dim << ")";
std::cout << " = " << c << std::endl;
} );
std::cout << "========================================" << std::endl;
@ -184,64 +188,11 @@ namespace Grid {
template <typename T>
typename std::enable_if<!EigenIO::is_tensor<T>::value, void>::type
dump_tensor_func(T &t, const char * pName = nullptr)
dump_tensor(T &t, const char * pName = nullptr)
{
std::cout << "Dumping non-tensor object ";
if( pName )
std::cout << pName;
if( pName ) std::cout << pName;
std::cout << "=" << t;
}
// Helper to dump a tensor in memory order
// Kind of superfluous given the above ... just keeping in case I need to fall back to this
#define DumpMemoryOrder(args...) DumpMemoryOrder_func(args)
template <typename T>
typename std::enable_if<EigenIO::is_tensor_of_scalar<T>::value, void>::type
DumpMemoryOrder_func(T &t, const char * pName = nullptr)
{
const auto rank = t.rank();
const auto &dims = t.dimensions();
std::cout << "Dumping rank " << rank << ((T::Options & Eigen::RowMajor) ? ", row" : ", column") << "-major tensor ";
if( pName )
std::cout << pName;
for( auto d : dims ) std::cout << "[" << d << "]";
std::cout << " in memory order:" << std::endl;
const typename T::Scalar * p = t.data();
const auto size = t.size();
const typename T::Scalar * pEnd = p + size;
if( rank <= 2 ) {
for( unsigned int i = 0 ; i < t.size() ; i++ )
std::cout << "[" << i << "]=" << *p++ << " ";
std::cout << std::endl;
} else {
const auto innersize = dims[rank-2] * dims[rank-1];
using Index = typename T::Index;
std::vector<Index> idx(rank - 2);
for( auto &i : idx ) i = 0;
Index idxCounter = 0;
while( p < pEnd ) {
if( T::Options & Eigen::RowMajor ) {
if( pName )
std::cout << pName;
idxCounter = 0;
for(auto i = 0 ; i < rank - 2 ; i++)
std::cout << "[" << idx[i] << "]:";
}
for( unsigned int i = 0 ; i < innersize ; i++ )
std::cout << " [" << idxCounter++ << "]=" << *p++;
if( T::Options & Eigen::RowMajor )
std::cout << std::endl;
// Now increment MyIndex
for( auto i = rank - 3; i != -1 && ++idx[i] == dims[i]; i-- )
idx[i] = 0;
}
if( ! ( T::Options & Eigen::RowMajor ) )
std::cout << std::endl;
}
}
#else
#define dump_tensor(args...)
#define DumpMemoryOrder(args...)
#endif
}
#endif

View File

@ -29,7 +29,7 @@ Author: Michael Marshall <michael.marshall@ed.ac.uk>
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/util/Eigen.h>
#include <Grid/util/EigenUtil.h>
using namespace Grid;
using namespace Grid::QCD;
@ -158,8 +158,8 @@ public:
template <typename WTR_, typename RDR_, typename T, typename... IndexTypes>
void EigenTensorTestSingle(const char * MyTypeName, typename EigenIO::Traits<T>::scalar_type Flag,
unsigned short Precision, std::string &filename, const char * pszExtension, unsigned int &TestNum,
IndexTypes... otherDims)
unsigned short Precision, std::string &filename, const char * pszExtension,
unsigned int &TestNum, IndexTypes... otherDims)
{
using Traits = EigenIO::Traits<T>;
using scalar_type = typename Traits::scalar_type;
@ -187,15 +187,17 @@ void EigenTensorTest(const char * pszExtension, unsigned short Precision = 0)
EigenTensorTestSingle<WTR_, RDR_, Tensor_9_4_2>(TEST_PARAMS( Tensor_9_4_2 ));
{
unsigned short Flag = 1;
TensorRank5UShort t;
EigenTensorTestSingle<WTR_, RDR_, TensorRank5UShort>(TEST_PARAMS( TensorRank5UShort ));
std::cout << " Testing alternate memory order read ... ";
TensorRank5UShortAlt t2;
RDR_ reader(filename);
read(reader, "TensorRank5UShort", t2);
bool good = true;
for_all( t2, [&](unsigned short c, unsigned short n,
const std::array<size_t, TensorRank5UShortAlt::NumIndices> &Dims ) {
using Index = typename TensorRank5UShortAlt::Index;
// NB: I can't call
for_all( t2, [&](unsigned short c, Index n,
const std::array<Index, TensorRank5UShortAlt::NumIndices> &TensorIndex,
const std::array<int, EigenIO::Traits<TensorRank5UShortAlt>::Rank> &GridTensorIndex ){
good = good && ( c == n );
} );
if (!good) {
@ -240,20 +242,6 @@ void tensorConvTestFn(GridSerialRNG &rng, const std::string label)
int main(int argc,char **argv)
{
{
LSCTensor Bingo;
constexpr Complex Flag{1,-3.1415927};
Complex z{0};
SpinColourVector * pV = Bingo.data();
for( std::size_t i = Bingo.size(); i--; ) {
for( typename GridTypeMapper<SpinColourVector>::scalar_type &s : *pV++ ) {
s = z;
z += Flag;
}
}
dump_tensor( Bingo );
}
Grid_init(&argc,&argv);
std::cout << std::boolalpha << "==== basic IO" << std::endl; // display true / false for boolean