1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-17 15:27:06 +01:00

second way to compute baryons - qdp style

This commit is contained in:
Felix Erben
2019-07-30 13:46:59 +01:00
parent e7050a7aed
commit e66d48c142
6 changed files with 306 additions and 85 deletions

View File

@ -164,13 +164,13 @@ void TBaryon<FImpl1, FImpl2, FImpl3>::setup(void)
template <typename FImpl1, typename FImpl2, typename FImpl3>
void TBaryon<FImpl1, FImpl2, FImpl3>::execute(void)
{
LOG(Message) << "Computing nucleon contractions '" << getName() << "' using"
<< " quarks '" << par().q1 << "', '" << par().q2 << "', and '"
<< par().q3 << "'" << std::endl;
LOG(Message) << "Computing baryon contractions '" << getName() << "' using"
<< " quarks '" << par().q1 << "', and a diquark formed of ('" << par().q2 << "', and '"
<< par().q3 << "')" << std::endl;
auto &q1 = envGet(PropagatorField1, par().q1);
auto &q2 = envGet(PropagatorField2, par().q2);
auto &q3 = envGet(PropagatorField3, par().q2);
auto &q3 = envGet(PropagatorField3, par().q3);
envGetTmp(LatticeComplex, c);
envGetTmp(LatticeComplex, diquark);
Result result;
@ -178,84 +178,6 @@ void TBaryon<FImpl1, FImpl2, FImpl3>::execute(void)
result.corr.resize(nt);
const std::string gamma{ par().gamma };
std::vector<TComplex> buf;
// C = i gamma_2 gamma_4 => C gamma_5 = - i gamma_1 gamma_3
/* Gamma GammaA(Gamma::Algebra::Identity); //Still hardcoded 1
Gamma GammaB(Gamma::Algebra::SigmaXZ); //Still hardcoded Cg5
Gamma g4(Gamma::Algebra::GammaT); //needed for parity P_\pm = 0.5*(1 \pm \gamma_4)
std::vector<std::vector<int>> epsilon = {{0,1,2},{1,2,0},{2,0,1},{0,2,1},{2,1,0},{1,0,2}};
std::vector<int> epsilon_sgn = {1,1,1,-1,-1,-1};
char left[] = "uud";
char right[] = "uud";
std::vector<int> wick_contraction = {0,0,0,0,0,0};
for (int ie=0; ie < 6 ; ie++)
if (left[0] == right[epsilon[ie][0]] && left[1] == right[epsilon[ie][1]] && left[2] == right[epsilon[ie][2]])
wick_contraction[ie]=1;
int parity = 1;
for (int ie_src=0; ie_src < 6 ; ie_src++){
int a_src = epsilon[ie_src][0]; //a
int b_src = epsilon[ie_src][1]; //b
int c_src = epsilon[ie_src][2]; //c
for (int ie_snk=0; ie_snk < 6 ; ie_snk++){
int a_snk = epsilon[ie_snk][0]; //a'
int b_snk = epsilon[ie_snk][1]; //b'
int c_snk = epsilon[ie_snk][2]; //c'
auto Daa = peekColour(q2,a_snk,a_src); //D_{alpha' alpha}
auto Dbb = peekColour(q3,b_snk,b_src); //D_{beta' beta}
auto Dcc = peekColour(q1,c_snk,c_src); //D_{gamma' gamma}
auto Dab = peekColour(q2,a_snk,b_src); //D_{alpha' beta}
auto Dac = peekColour(q2,a_snk,c_src); //D_{alpha' gamma}
auto Dba = peekColour(q3,b_snk,a_src); //D_{beta' alpha}
auto Dbc = peekColour(q3,b_snk,c_src); //D_{beta' gamma}
auto Dca = peekColour(q1,c_snk,a_src); //D_{gamma' alpha}
auto Dcb = peekColour(q1,c_snk,b_src); //D_{gamma' beta}
// This is the \delta_{123}^{123} part
if (wick_contraction[0]){
diquark = trace(GammaB * Daa * GammaB * Dbb); //1st GammaB and Daa transposed????
auto temp = GammaA * Dcc * diquark;
auto g4_temp = GammaA * g4 * temp;
c += epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * 0.5 * trace(GammaA * temp + (double)parity * g4_temp);
}
// This is the \delta_{123}^{231} part
if (wick_contraction[1]){
auto temp = GammaA * Dca * GammaB * Dab * GammaB * Dbc; //Dab transposed???
auto g4_temp = GammaA * g4 * temp;
c += epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * 0.5 * trace(GammaA * temp + (double)parity * g4_temp);
}
// This is the \delta_{123}^{312} part
if (wick_contraction[2]){
auto temp = GammaA * Dcb * GammaB * Dba * GammaB * Dac; //both GammaB and Dba transposed???
auto g4_temp = GammaA * g4 * temp;
c += epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * 0.5 * trace(GammaA * temp + (double)parity * g4_temp);
}
// This is the \delta_{123}^{132} part
if (wick_contraction[3]){
diquark = trace(GammaB * Dba * GammaB * Dab); //2nd GammaB and Dab transposed????
auto temp = GammaA * Dcc * diquark;
auto g4_temp = GammaA * g4 * temp;
c -= epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * 0.5 * trace(GammaA * temp + (double)parity * g4_temp);
}
// This is the \delta_{123}^{321} part
if (wick_contraction[4]){
auto temp = GammaA * Dcb * GammaB * Daa * GammaB * Dbc; //1st GammaB and Daa transposed???
auto g4_temp = GammaA * g4 * temp;
c -= epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * 0.5 * trace(GammaA * temp + (double)parity * g4_temp);
}
// This is the \delta_{123}^{213} part
if (wick_contraction[5]){
auto temp = GammaA * Dca * GammaB * Dbb * GammaB * Dac; //(Dbb*GammaB) transposed???
auto g4_temp = GammaA * g4 * temp;
c -= epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * 0.5 * trace(GammaA * temp + (double)parity * g4_temp);
}
}
}
*/
const Gamma GammaA{ Gamma::Algebra::Identity };
const Gamma GammaB{ al };