mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 07:55:35 +00:00
Merge remote-tracking branch 'upstream/develop' into feature/kl2QED
This commit is contained in:
commit
e675c6a48c
@ -212,9 +212,8 @@ namespace Grid {
|
||||
};
|
||||
template<class Matrix,class Field>
|
||||
class SchurDiagMooeeOperator : public SchurOperatorBase<Field> {
|
||||
protected:
|
||||
Matrix &_Mat;
|
||||
public:
|
||||
Matrix &_Mat;
|
||||
SchurDiagMooeeOperator (Matrix &Mat): _Mat(Mat){};
|
||||
virtual RealD Mpc (const Field &in, Field &out) {
|
||||
Field tmp(in._grid);
|
||||
|
@ -89,6 +89,8 @@ class ConjugateGradient : public OperatorFunction<Field> {
|
||||
|
||||
// Check if guess is really REALLY good :)
|
||||
if (cp <= rsq) {
|
||||
std::cout << GridLogMessage << "ConjugateGradient guess is converged already " << std::endl;
|
||||
IterationsToComplete = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
@ -104,7 +106,7 @@ class ConjugateGradient : public OperatorFunction<Field> {
|
||||
|
||||
SolverTimer.Start();
|
||||
int k;
|
||||
for (k = 1; k <= MaxIterations*1000; k++) {
|
||||
for (k = 1; k <= MaxIterations; k++) {
|
||||
c = cp;
|
||||
|
||||
MatrixTimer.Start();
|
||||
@ -165,8 +167,7 @@ class ConjugateGradient : public OperatorFunction<Field> {
|
||||
return;
|
||||
}
|
||||
}
|
||||
std::cout << GridLogMessage << "ConjugateGradient did NOT converge"
|
||||
<< std::endl;
|
||||
std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations<< std::endl;
|
||||
|
||||
if (ErrorOnNoConverge) assert(0);
|
||||
IterationsToComplete = k;
|
||||
|
@ -30,8 +30,11 @@ Author: Christopher Kelly <ckelly@phys.columbia.edu>
|
||||
|
||||
namespace Grid {
|
||||
|
||||
|
||||
//Mixed precision restarted defect correction CG
|
||||
template<class FieldD,class FieldF, typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
||||
template<class FieldD,class FieldF,
|
||||
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
|
||||
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
||||
class MixedPrecisionConjugateGradient : public LinearFunction<FieldD> {
|
||||
public:
|
||||
RealD Tolerance;
|
||||
@ -50,7 +53,12 @@ namespace Grid {
|
||||
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
|
||||
LinearFunction<FieldF> *guesser;
|
||||
|
||||
MixedPrecisionConjugateGradient(RealD tol, Integer maxinnerit, Integer maxouterit, GridBase* _sp_grid, LinearOperatorBase<FieldF> &_Linop_f, LinearOperatorBase<FieldD> &_Linop_d) :
|
||||
MixedPrecisionConjugateGradient(RealD tol,
|
||||
Integer maxinnerit,
|
||||
Integer maxouterit,
|
||||
GridBase* _sp_grid,
|
||||
LinearOperatorBase<FieldF> &_Linop_f,
|
||||
LinearOperatorBase<FieldD> &_Linop_d) :
|
||||
Linop_f(_Linop_f), Linop_d(_Linop_d),
|
||||
Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit), MaxOuterIterations(maxouterit), SinglePrecGrid(_sp_grid),
|
||||
OuterLoopNormMult(100.), guesser(NULL){ };
|
||||
@ -149,6 +157,8 @@ namespace Grid {
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -35,7 +35,11 @@ class ZeroGuesser: public LinearFunction<Field> {
|
||||
public:
|
||||
virtual void operator()(const Field &src, Field &guess) { guess = zero; };
|
||||
};
|
||||
|
||||
template<class Field>
|
||||
class DoNothingGuesser: public LinearFunction<Field> {
|
||||
public:
|
||||
virtual void operator()(const Field &src, Field &guess) { };
|
||||
};
|
||||
template<class Field>
|
||||
class SourceGuesser: public LinearFunction<Field> {
|
||||
public:
|
||||
|
@ -261,7 +261,7 @@ namespace Grid {
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Override in derived. Not virtual as template methods
|
||||
// Override in derived.
|
||||
/////////////////////////////////////////////////////////////
|
||||
virtual void RedBlackSource (Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o) =0;
|
||||
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol) =0;
|
||||
|
@ -103,6 +103,8 @@ class GlobalSharedMemory {
|
||||
//////////////////////////////////////////////////////////////////////////////////////
|
||||
static void Init(Grid_MPI_Comm comm); // Typically MPI_COMM_WORLD
|
||||
static void OptimalCommunicator(const std::vector<int> &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
|
||||
static void OptimalCommunicatorHypercube(const std::vector<int> &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
|
||||
static void OptimalCommunicatorSharedMemory(const std::vector<int> &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
|
||||
///////////////////////////////////////////////////
|
||||
// Provide shared memory facilities off comm world
|
||||
///////////////////////////////////////////////////
|
||||
|
@ -132,7 +132,22 @@ int Log2Size(int TwoToPower,int MAXLOG2)
|
||||
}
|
||||
void GlobalSharedMemory::OptimalCommunicator(const std::vector<int> &processors,Grid_MPI_Comm & optimal_comm)
|
||||
{
|
||||
#ifdef HYPERCUBE
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// Look and see if it looks like an HPE 8600 based on hostname conventions
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
const int namelen = _POSIX_HOST_NAME_MAX;
|
||||
char name[namelen];
|
||||
int R;
|
||||
int I;
|
||||
int N;
|
||||
gethostname(name,namelen);
|
||||
int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ;
|
||||
|
||||
if(nscan==3) OptimalCommunicatorHypercube(processors,optimal_comm);
|
||||
else OptimalCommunicatorSharedMemory(processors,optimal_comm);
|
||||
}
|
||||
void GlobalSharedMemory::OptimalCommunicatorHypercube(const std::vector<int> &processors,Grid_MPI_Comm & optimal_comm)
|
||||
{
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Assert power of two shm_size.
|
||||
////////////////////////////////////////////////////////////////
|
||||
@ -253,7 +268,9 @@ void GlobalSharedMemory::OptimalCommunicator(const std::vector<int> &processors,
|
||||
/////////////////////////////////////////////////////////////////
|
||||
int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
|
||||
assert(ierr==0);
|
||||
#else
|
||||
}
|
||||
void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const std::vector<int> &processors,Grid_MPI_Comm & optimal_comm)
|
||||
{
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Assert power of two shm_size.
|
||||
////////////////////////////////////////////////////////////////
|
||||
@ -306,7 +323,6 @@ void GlobalSharedMemory::OptimalCommunicator(const std::vector<int> &processors,
|
||||
/////////////////////////////////////////////////////////////////
|
||||
int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
|
||||
assert(ierr==0);
|
||||
#endif
|
||||
}
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// SHMGET
|
||||
@ -337,7 +353,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
int errsv = errno;
|
||||
printf("Errno %d\n",errsv);
|
||||
printf("key %d\n",key);
|
||||
printf("size %lld\n",size);
|
||||
printf("size %ld\n",size);
|
||||
printf("flags %d\n",flags);
|
||||
perror("shmget");
|
||||
exit(1);
|
||||
|
@ -58,13 +58,29 @@ namespace QCD{
|
||||
bool use_heatbath_forecasting;
|
||||
AbstractEOFAFermion<Impl>& Lop; // the basic LH operator
|
||||
AbstractEOFAFermion<Impl>& Rop; // the basic RH operator
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> Solver;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverHB;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverL;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverR;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverL;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverR;
|
||||
FermionField Phi; // the pseudofermion field for this trajectory
|
||||
|
||||
public:
|
||||
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop, AbstractEOFAFermion<Impl>& _Rop,
|
||||
OperatorFunction<FermionField>& S, Params& p, bool use_fc=false) : Lop(_Lop), Rop(_Rop),
|
||||
Solver(S, false, true), Phi(_Lop.FermionGrid()), param(p), use_heatbath_forecasting(use_fc)
|
||||
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
|
||||
AbstractEOFAFermion<Impl>& _Rop,
|
||||
OperatorFunction<FermionField>& HeatbathCG,
|
||||
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
|
||||
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
|
||||
Params& p,
|
||||
bool use_fc=false) :
|
||||
Lop(_Lop),
|
||||
Rop(_Rop),
|
||||
SolverHB(HeatbathCG,false,true),
|
||||
SolverL(ActionCGL, false, true), SolverR(ActionCGR, false, true),
|
||||
DerivativeSolverL(DerivCGL, false, true), DerivativeSolverR(DerivCGR, false, true),
|
||||
Phi(_Lop.FermionGrid()),
|
||||
param(p),
|
||||
use_heatbath_forecasting(use_fc)
|
||||
{
|
||||
AlgRemez remez(param.lo, param.hi, param.precision);
|
||||
|
||||
@ -98,6 +114,9 @@ namespace QCD{
|
||||
// We generate a Gaussian noise vector \eta, and then compute
|
||||
// \Phi = M_{\rm EOFA}^{-1/2} * \eta
|
||||
// using a rational approximation to the inverse square root
|
||||
//
|
||||
// As a check of rational require \Phi^dag M_{EOFA} \Phi == eta^dag M^-1/2^dag M M^-1/2 eta = eta^dag eta
|
||||
//
|
||||
virtual void refresh(const GaugeField& U, GridParallelRNG& pRNG)
|
||||
{
|
||||
Lop.ImportGauge(U);
|
||||
@ -118,7 +137,6 @@ namespace QCD{
|
||||
RealD scale = std::sqrt(0.5);
|
||||
gaussian(pRNG,eta);
|
||||
eta = eta * scale;
|
||||
printf("Heatbath source vector: <\\eta|\\eta> = %1.15e\n", norm2(eta));
|
||||
|
||||
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
|
||||
RealD N(PowerNegHalf.norm);
|
||||
@ -139,11 +157,11 @@ namespace QCD{
|
||||
if(use_heatbath_forecasting){ // Forecast CG guess using solutions from previous poles
|
||||
Lop.Mdag(CG_src, Forecast_src);
|
||||
CG_soln = Forecast(Lop, Forecast_src, prev_solns);
|
||||
Solver(Lop, CG_src, CG_soln);
|
||||
SolverHB(Lop, CG_src, CG_soln);
|
||||
prev_solns.push_back(CG_soln);
|
||||
} else {
|
||||
CG_soln = zero; // Just use zero as the initial guess
|
||||
Solver(Lop, CG_src, CG_soln);
|
||||
SolverHB(Lop, CG_src, CG_soln);
|
||||
}
|
||||
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
||||
tmp[1] = tmp[1] + ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Lop.k ) * tmp[0];
|
||||
@ -166,11 +184,11 @@ namespace QCD{
|
||||
if(use_heatbath_forecasting){
|
||||
Rop.Mdag(CG_src, Forecast_src);
|
||||
CG_soln = Forecast(Rop, Forecast_src, prev_solns);
|
||||
Solver(Rop, CG_src, CG_soln);
|
||||
SolverHB(Rop, CG_src, CG_soln);
|
||||
prev_solns.push_back(CG_soln);
|
||||
} else {
|
||||
CG_soln = zero;
|
||||
Solver(Rop, CG_src, CG_soln);
|
||||
SolverHB(Rop, CG_src, CG_soln);
|
||||
}
|
||||
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
||||
tmp[1] = tmp[1] - ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Rop.k ) * tmp[0];
|
||||
@ -182,8 +200,47 @@ namespace QCD{
|
||||
// Reset shift coefficients for energy and force evals
|
||||
Lop.RefreshShiftCoefficients(0.0);
|
||||
Rop.RefreshShiftCoefficients(-1.0);
|
||||
|
||||
// Bounds check
|
||||
RealD EtaDagEta = norm2(eta);
|
||||
// RealD PhiDagMPhi= norm2(eta);
|
||||
|
||||
};
|
||||
|
||||
void Meofa(const GaugeField& U,const FermionField &phi, FermionField & Mphi)
|
||||
{
|
||||
#if 0
|
||||
Lop.ImportGauge(U);
|
||||
Rop.ImportGauge(U);
|
||||
|
||||
FermionField spProj_Phi(Lop.FermionGrid());
|
||||
FermionField mPhi(Lop.FermionGrid());
|
||||
std::vector<FermionField> tmp(2, Lop.FermionGrid());
|
||||
mPhi = phi;
|
||||
|
||||
// LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi>
|
||||
spProj(Phi, spProj_Phi, -1, Lop.Ls);
|
||||
Lop.Omega(spProj_Phi, tmp[0], -1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = zero;
|
||||
SolverL(Lop, tmp[1], tmp[0]);
|
||||
Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
|
||||
Lop.Omega(tmp[1], tmp[0], -1, 1);
|
||||
mPhi = mPhi - Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
|
||||
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
|
||||
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
|
||||
spProj(Phi, spProj_Phi, 1, Rop.Ls);
|
||||
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = zero;
|
||||
SolverR(Rop, tmp[1], tmp[0]);
|
||||
Rop.Dtilde(tmp[0], tmp[1]);
|
||||
Rop.Omega(tmp[1], tmp[0], 1, 1);
|
||||
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
#endif
|
||||
}
|
||||
|
||||
// EOFA action: see Eqn. (10) of arXiv:1706.05843
|
||||
virtual RealD S(const GaugeField& U)
|
||||
{
|
||||
@ -201,7 +258,7 @@ namespace QCD{
|
||||
Lop.Omega(spProj_Phi, tmp[0], -1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = zero;
|
||||
Solver(Lop, tmp[1], tmp[0]);
|
||||
SolverL(Lop, tmp[1], tmp[0]);
|
||||
Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
|
||||
Lop.Omega(tmp[1], tmp[0], -1, 1);
|
||||
action -= Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
@ -212,7 +269,7 @@ namespace QCD{
|
||||
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = zero;
|
||||
Solver(Rop, tmp[1], tmp[0]);
|
||||
SolverR(Rop, tmp[1], tmp[0]);
|
||||
Rop.Dtilde(tmp[0], tmp[1]);
|
||||
Rop.Omega(tmp[1], tmp[0], 1, 1);
|
||||
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
@ -245,7 +302,7 @@ namespace QCD{
|
||||
Lop.Omega(spProj_Phi, Omega_spProj_Phi, -1, 0);
|
||||
G5R5(CG_src, Omega_spProj_Phi);
|
||||
spProj_Phi = zero;
|
||||
Solver(Lop, CG_src, spProj_Phi);
|
||||
DerivativeSolverL(Lop, CG_src, spProj_Phi);
|
||||
Lop.Dtilde(spProj_Phi, Chi);
|
||||
G5R5(g5_R5_Chi, Chi);
|
||||
Lop.MDeriv(force, g5_R5_Chi, Chi, DaggerNo);
|
||||
@ -257,7 +314,7 @@ namespace QCD{
|
||||
Rop.Omega(spProj_Phi, Omega_spProj_Phi, 1, 0);
|
||||
G5R5(CG_src, Omega_spProj_Phi);
|
||||
spProj_Phi = zero;
|
||||
Solver(Rop, CG_src, spProj_Phi);
|
||||
DerivativeSolverR(Rop, CG_src, spProj_Phi);
|
||||
Rop.Dtilde(spProj_Phi, Chi);
|
||||
G5R5(g5_R5_Chi, Chi);
|
||||
Lop.MDeriv(force, g5_R5_Chi, Chi, DaggerNo);
|
||||
|
@ -46,6 +46,7 @@ namespace Grid{
|
||||
|
||||
OperatorFunction<FermionField> &DerivativeSolver;
|
||||
OperatorFunction<FermionField> &ActionSolver;
|
||||
OperatorFunction<FermionField> &HeatbathSolver;
|
||||
|
||||
FermionField PhiOdd; // the pseudo fermion field for this trajectory
|
||||
FermionField PhiEven; // the pseudo fermion field for this trajectory
|
||||
@ -54,11 +55,18 @@ namespace Grid{
|
||||
TwoFlavourEvenOddRatioPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||
FermionOperator<Impl> &_DenOp,
|
||||
OperatorFunction<FermionField> & DS,
|
||||
OperatorFunction<FermionField> & AS) :
|
||||
OperatorFunction<FermionField> & AS ) :
|
||||
TwoFlavourEvenOddRatioPseudoFermionAction(_NumOp,_DenOp, DS,AS,AS) {};
|
||||
|
||||
TwoFlavourEvenOddRatioPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||
FermionOperator<Impl> &_DenOp,
|
||||
OperatorFunction<FermionField> & DS,
|
||||
OperatorFunction<FermionField> & AS, OperatorFunction<FermionField> & HS) :
|
||||
NumOp(_NumOp),
|
||||
DenOp(_DenOp),
|
||||
DerivativeSolver(DS),
|
||||
ActionSolver(AS),
|
||||
HeatbathSolver(HS),
|
||||
PhiEven(_NumOp.FermionRedBlackGrid()),
|
||||
PhiOdd(_NumOp.FermionRedBlackGrid())
|
||||
{
|
||||
@ -111,7 +119,7 @@ namespace Grid{
|
||||
// Odd det factors
|
||||
Mpc.MpcDag(etaOdd,PhiOdd);
|
||||
tmp=zero;
|
||||
ActionSolver(Vpc,PhiOdd,tmp);
|
||||
HeatbathSolver(Vpc,PhiOdd,tmp);
|
||||
Vpc.Mpc(tmp,PhiOdd);
|
||||
|
||||
// Even det factors
|
||||
|
@ -54,7 +54,7 @@ public:
|
||||
|
||||
template <class ReaderClass, typename std::enable_if<isReader<ReaderClass>::value, int >::type = 0 >
|
||||
IntegratorParameters(ReaderClass & Reader){
|
||||
std::cout << "Reading integrator\n";
|
||||
std::cout << GridLogMessage << "Reading integrator\n";
|
||||
read(Reader, "Integrator", *this);
|
||||
}
|
||||
|
||||
@ -132,7 +132,7 @@ class Integrator {
|
||||
double end_full = usecond();
|
||||
double time_full = (end_full - start_full) / 1e3;
|
||||
double time_force = (end_force - start_force) / 1e3;
|
||||
std::cout << GridLogIntegrator << "["<<level<<"]["<<a<<"] P update elapsed time: " << time_full << " ms (force: " << time_force << " ms)" << std::endl;
|
||||
std::cout << GridLogMessage << "["<<level<<"]["<<a<<"] P update elapsed time: " << time_full << " ms (force: " << time_force << " ms)" << std::endl;
|
||||
}
|
||||
|
||||
// Force from the other representations
|
||||
@ -237,8 +237,7 @@ class Integrator {
|
||||
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
|
||||
// get gauge field from the SmearingPolicy and
|
||||
// based on the boolean is_smeared in actionID
|
||||
Field& Us =
|
||||
Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
|
||||
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
|
||||
as[level].actions.at(actionID)->refresh(Us, pRNG);
|
||||
}
|
||||
|
||||
@ -251,13 +250,11 @@ class Integrator {
|
||||
// over the representations
|
||||
struct _S {
|
||||
template <class FieldType, class Repr>
|
||||
void operator()(std::vector<Action<FieldType>*> repr_set, Repr& Rep,
|
||||
int level, RealD& H) {
|
||||
void operator()(std::vector<Action<FieldType>*> repr_set, Repr& Rep, int level, RealD& H) {
|
||||
|
||||
for (int a = 0; a < repr_set.size(); ++a) {
|
||||
RealD Hterm = repr_set.at(a)->S(Rep.U);
|
||||
std::cout << GridLogMessage << "S Level " << level << " term " << a
|
||||
<< " H Hirep = " << Hterm << std::endl;
|
||||
std::cout << GridLogMessage << "S Level " << level << " term " << a << " H Hirep = " << Hterm << std::endl;
|
||||
H += Hterm;
|
||||
|
||||
}
|
||||
@ -267,9 +264,10 @@ class Integrator {
|
||||
// Calculate action
|
||||
RealD S(Field& U) { // here also U not used
|
||||
|
||||
std::cout << GridLogIntegrator << "Integrator action\n";
|
||||
|
||||
RealD H = - FieldImplementation::FieldSquareNorm(P)/HMC_MOMENTUM_DENOMINATOR; // - trace (P*P)/denom
|
||||
std::cout << " Momentum hamiltonian "<< -H<<std::endl;
|
||||
|
||||
RealD Hterm;
|
||||
|
||||
// Actions
|
||||
@ -278,9 +276,9 @@ class Integrator {
|
||||
// get gauge field from the SmearingPolicy and
|
||||
// based on the boolean is_smeared in actionID
|
||||
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
|
||||
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] action eval " << std::endl;
|
||||
Hterm = as[level].actions.at(actionID)->S(Us);
|
||||
std::cout << GridLogMessage << "S Level " << level << " term "
|
||||
<< actionID << " H = " << Hterm << std::endl;
|
||||
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] H = " << Hterm << std::endl;
|
||||
H += Hterm;
|
||||
}
|
||||
as[level].apply(S_hireps, Representations, level, H);
|
||||
@ -305,8 +303,7 @@ class Integrator {
|
||||
// Check the clocks all match on all levels
|
||||
for (int level = 0; level < as.size(); ++level) {
|
||||
assert(fabs(t_U - t_P[level]) < 1.0e-6); // must be the same
|
||||
std::cout << GridLogIntegrator << " times[" << level
|
||||
<< "]= " << t_P[level] << " " << t_U << std::endl;
|
||||
std::cout << GridLogIntegrator << " times[" << level << "]= " << t_P[level] << " " << t_U << std::endl;
|
||||
}
|
||||
|
||||
// and that we indeed got to the end of the trajectory
|
||||
|
@ -231,8 +231,7 @@ class ForceGradient : public Integrator<FieldImplementation, SmearingPolicy,
|
||||
Field Pfg(U._grid);
|
||||
Ufg = U;
|
||||
Pfg = zero;
|
||||
std::cout << GridLogIntegrator << "FG update " << fg_dt << " " << ep
|
||||
<< std::endl;
|
||||
std::cout << GridLogIntegrator << "FG update " << fg_dt << " " << ep << std::endl;
|
||||
// prepare_fg; no prediction/result cache for now
|
||||
// could relax CG stopping conditions for the
|
||||
// derivatives in the small step since the force gets multiplied by
|
||||
@ -271,8 +270,7 @@ class ForceGradient : public Integrator<FieldImplementation, SmearingPolicy,
|
||||
this->step(U, level + 1, first_step, 0);
|
||||
}
|
||||
|
||||
this->FG_update_P(U, level, 2 * Chi / ((1.0 - 2.0 * lambda) * eps),
|
||||
(1.0 - 2.0 * lambda) * eps);
|
||||
this->FG_update_P(U, level, 2 * Chi / ((1.0 - 2.0 * lambda) * eps), (1.0 - 2.0 * lambda) * eps);
|
||||
|
||||
if (level == fl) { // lowest level
|
||||
this->update_U(U, 0.5 * eps);
|
||||
|
@ -30,6 +30,137 @@ directory
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
#define MIXED_PRECISION
|
||||
|
||||
namespace Grid{
|
||||
namespace QCD{
|
||||
|
||||
/*
|
||||
* Need a plan for gauge field update for mixed precision in HMC (2x speed up)
|
||||
* -- Store the single prec action operator.
|
||||
* -- Clone the gauge field from the operator function argument.
|
||||
* -- Build the mixed precision operator dynamically from the passed operator and single prec clone.
|
||||
*/
|
||||
|
||||
template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class SchurOperatorF>
|
||||
class MixedPrecisionConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
|
||||
public:
|
||||
typedef typename FermionOperatorD::FermionField FieldD;
|
||||
typedef typename FermionOperatorF::FermionField FieldF;
|
||||
|
||||
RealD Tolerance;
|
||||
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
|
||||
Integer MaxInnerIterations;
|
||||
Integer MaxOuterIterations;
|
||||
GridBase* SinglePrecGrid4; //Grid for single-precision fields
|
||||
GridBase* SinglePrecGrid5; //Grid for single-precision fields
|
||||
RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
|
||||
|
||||
FermionOperatorF &FermOpF;
|
||||
FermionOperatorD &FermOpD;;
|
||||
SchurOperatorF &LinOpF;
|
||||
SchurOperatorD &LinOpD;
|
||||
|
||||
Integer TotalInnerIterations; //Number of inner CG iterations
|
||||
Integer TotalOuterIterations; //Number of restarts
|
||||
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
|
||||
|
||||
MixedPrecisionConjugateGradientOperatorFunction(RealD tol,
|
||||
Integer maxinnerit,
|
||||
Integer maxouterit,
|
||||
GridBase* _sp_grid4,
|
||||
GridBase* _sp_grid5,
|
||||
FermionOperatorF &_FermOpF,
|
||||
FermionOperatorD &_FermOpD,
|
||||
SchurOperatorF &_LinOpF,
|
||||
SchurOperatorD &_LinOpD):
|
||||
LinOpF(_LinOpF),
|
||||
LinOpD(_LinOpD),
|
||||
FermOpF(_FermOpF),
|
||||
FermOpD(_FermOpD),
|
||||
Tolerance(tol),
|
||||
InnerTolerance(tol),
|
||||
MaxInnerIterations(maxinnerit),
|
||||
MaxOuterIterations(maxouterit),
|
||||
SinglePrecGrid4(_sp_grid4),
|
||||
SinglePrecGrid5(_sp_grid5),
|
||||
OuterLoopNormMult(100.)
|
||||
{
|
||||
/* Debugging instances of objects; references are stored
|
||||
std::cout << GridLogMessage << " Mixed precision CG wrapper LinOpF " <<std::hex<< &LinOpF<<std::dec <<std::endl;
|
||||
std::cout << GridLogMessage << " Mixed precision CG wrapper LinOpD " <<std::hex<< &LinOpD<<std::dec <<std::endl;
|
||||
std::cout << GridLogMessage << " Mixed precision CG wrapper FermOpF " <<std::hex<< &FermOpF<<std::dec <<std::endl;
|
||||
std::cout << GridLogMessage << " Mixed precision CG wrapper FermOpD " <<std::hex<< &FermOpD<<std::dec <<std::endl;
|
||||
*/
|
||||
};
|
||||
|
||||
void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
|
||||
|
||||
std::cout << GridLogMessage << " Mixed precision CG wrapper operator() "<<std::endl;
|
||||
|
||||
SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
|
||||
|
||||
// std::cout << GridLogMessage << " Mixed precision CG wrapper operator() FermOpU " <<std::hex<< &(SchurOpU->_Mat)<<std::dec <<std::endl;
|
||||
// std::cout << GridLogMessage << " Mixed precision CG wrapper operator() FermOpD " <<std::hex<< &(LinOpD._Mat) <<std::dec <<std::endl;
|
||||
// Assumption made in code to extract gauge field
|
||||
// We could avoid storing LinopD reference alltogether ?
|
||||
assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// Must snarf a single precision copy of the gauge field in Linop_d argument
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
typedef typename FermionOperatorF::GaugeField GaugeFieldF;
|
||||
typedef typename FermionOperatorF::GaugeLinkField GaugeLinkFieldF;
|
||||
typedef typename FermionOperatorD::GaugeField GaugeFieldD;
|
||||
typedef typename FermionOperatorD::GaugeLinkField GaugeLinkFieldD;
|
||||
|
||||
GridBase * GridPtrF = SinglePrecGrid4;
|
||||
GridBase * GridPtrD = FermOpD.Umu._grid;
|
||||
GaugeFieldF U_f (GridPtrF);
|
||||
GaugeLinkFieldF Umu_f(GridPtrF);
|
||||
// std::cout << " Dim gauge field "<<GridPtrF->Nd()<<std::endl; // 4d
|
||||
// std::cout << " Dim gauge field "<<GridPtrD->Nd()<<std::endl; // 4d
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// Moving this to a Clone method of fermion operator would allow to duplicate the
|
||||
// physics parameters and decrease gauge field copies
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
GaugeLinkFieldD Umu_d(GridPtrD);
|
||||
for(int mu=0;mu<Nd*2;mu++){
|
||||
Umu_d = PeekIndex<LorentzIndex>(FermOpD.Umu, mu);
|
||||
precisionChange(Umu_f,Umu_d);
|
||||
PokeIndex<LorentzIndex>(FermOpF.Umu, Umu_f, mu);
|
||||
}
|
||||
pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
|
||||
pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// Could test to make sure that LinOpF and LinOpD agree to single prec?
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
/*
|
||||
GridBase *Fgrid = psi._grid;
|
||||
FieldD tmp2(Fgrid);
|
||||
FieldD tmp1(Fgrid);
|
||||
LinOpU.Op(src,tmp1);
|
||||
LinOpD.Op(src,tmp2);
|
||||
std::cout << " Double gauge field "<< norm2(FermOpD.Umu)<<std::endl;
|
||||
std::cout << " Single gauge field "<< norm2(FermOpF.Umu)<<std::endl;
|
||||
std::cout << " Test of operators "<<norm2(tmp1)<<std::endl;
|
||||
std::cout << " Test of operators "<<norm2(tmp2)<<std::endl;
|
||||
tmp1=tmp1-tmp2;
|
||||
std::cout << " Test of operators diff "<<norm2(tmp1)<<std::endl;
|
||||
*/
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// Make a mixed precision conjugate gradient
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
MixedPrecisionConjugateGradient<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid5,LinOpF,LinOpD);
|
||||
std::cout << GridLogMessage << "Calling mixed precision Conjugate Gradient" <<std::endl;
|
||||
MPCG(src,psi);
|
||||
}
|
||||
};
|
||||
}};
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
@ -42,7 +173,11 @@ int main(int argc, char **argv) {
|
||||
// Typedefs to simplify notation
|
||||
typedef WilsonImplR FermionImplPolicy;
|
||||
typedef MobiusFermionR FermionAction;
|
||||
typedef MobiusFermionF FermionActionF;
|
||||
typedef MobiusEOFAFermionR FermionEOFAAction;
|
||||
typedef MobiusEOFAFermionF FermionEOFAActionF;
|
||||
typedef typename FermionAction::FermionField FermionField;
|
||||
typedef typename FermionActionF::FermionField FermionFieldF;
|
||||
|
||||
typedef Grid::XmlReader Serialiser;
|
||||
|
||||
@ -54,12 +189,12 @@ int main(int argc, char **argv) {
|
||||
MD.name = std::string("Force Gradient");
|
||||
// typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;
|
||||
// MD.name = std::string("MinimumNorm2");
|
||||
MD.MDsteps = 8;
|
||||
MD.MDsteps = 6;
|
||||
MD.trajL = 1.0;
|
||||
|
||||
HMCparameters HMCparams;
|
||||
HMCparams.StartTrajectory = 70;
|
||||
HMCparams.Trajectories = 200;
|
||||
HMCparams.StartTrajectory = 590;
|
||||
HMCparams.Trajectories = 1000;
|
||||
HMCparams.NoMetropolisUntil= 0;
|
||||
// "[HotStart, ColdStart, TepidStart, CheckpointStart]\n";
|
||||
// HMCparams.StartingType =std::string("ColdStart");
|
||||
@ -97,42 +232,53 @@ int main(int argc, char **argv) {
|
||||
RealD b = 1.0;
|
||||
RealD c = 0.0;
|
||||
|
||||
std::vector<Real> hasenbusch({ 0.1, 0.3 });
|
||||
std::vector<Real> hasenbusch({ 0.1, 0.3, 0.6 });
|
||||
|
||||
auto GridPtr = TheHMC.Resources.GetCartesian();
|
||||
auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
|
||||
auto FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtr);
|
||||
auto FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtr);
|
||||
|
||||
std::vector<int> latt = GridDefaultLatt();
|
||||
std::vector<int> mpi = GridDefaultMpi();
|
||||
std::vector<int> simdF = GridDefaultSimd(Nd,vComplexF::Nsimd());
|
||||
std::vector<int> simdD = GridDefaultSimd(Nd,vComplexD::Nsimd());
|
||||
auto GridPtrF = SpaceTimeGrid::makeFourDimGrid(latt,simdF,mpi);
|
||||
auto GridRBPtrF = SpaceTimeGrid::makeFourDimRedBlackGrid(GridPtrF);
|
||||
auto FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtrF);
|
||||
auto FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtrF);
|
||||
|
||||
IwasakiGaugeActionR GaugeAction(beta);
|
||||
|
||||
// temporarily need a gauge field
|
||||
LatticeGaugeField U(GridPtr);
|
||||
LatticeGaugeFieldF UF(GridPtrF);
|
||||
|
||||
// These lines are unecessary if BC are all periodic
|
||||
std::vector<Complex> boundary = {1,1,1,-1};
|
||||
FermionAction::ImplParams Params(boundary);
|
||||
FermionActionF::ImplParams ParamsF(boundary);
|
||||
|
||||
double ActionStoppingCondition = 1e-10;
|
||||
double DerivativeStoppingCondition = 1e-7;
|
||||
double DerivativeStoppingCondition = 1e-6;
|
||||
double MaxCGIterations = 30000;
|
||||
ConjugateGradient<FermionField> ActionCG(ActionStoppingCondition,MaxCGIterations);
|
||||
ConjugateGradient<FermionField> DerivativeCG(DerivativeStoppingCondition,MaxCGIterations);
|
||||
|
||||
////////////////////////////////////
|
||||
// Collect actions
|
||||
////////////////////////////////////
|
||||
ActionLevel<HMCWrapper::Field> Level1(1);
|
||||
ActionLevel<HMCWrapper::Field> Level2(4);
|
||||
ActionLevel<HMCWrapper::Field> Level2(8);
|
||||
|
||||
////////////////////////////////////
|
||||
// Strange action
|
||||
////////////////////////////////////
|
||||
typedef SchurDiagMooeeOperator<FermionActionF,FermionFieldF> LinearOperatorF;
|
||||
typedef SchurDiagMooeeOperator<FermionAction ,FermionField > LinearOperatorD;
|
||||
typedef SchurDiagMooeeOperator<FermionEOFAActionF,FermionFieldF> LinearOperatorEOFAF;
|
||||
typedef SchurDiagMooeeOperator<FermionEOFAAction ,FermionField > LinearOperatorEOFAD;
|
||||
|
||||
// FermionAction StrangeOp (U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,strange_mass,M5,b,c, Params);
|
||||
// FermionAction StrangePauliVillarsOp(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,pv_mass, M5,b,c, Params);
|
||||
// OneFlavourEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy> StrangePseudoFermion(StrangePauliVillarsOp,StrangeOp,OFRp);
|
||||
// Level1.push_back(&StrangePseudoFermion);
|
||||
typedef MixedPrecisionConjugateGradientOperatorFunction<MobiusFermionD,MobiusFermionF,LinearOperatorD,LinearOperatorF> MxPCG;
|
||||
typedef MixedPrecisionConjugateGradientOperatorFunction<MobiusEOFAFermionD,MobiusEOFAFermionF,LinearOperatorEOFAD,LinearOperatorEOFAF> MxPCG_EOFA;
|
||||
|
||||
// DJM: setup for EOFA ratio (Mobius)
|
||||
OneFlavourRationalParams OFRp;
|
||||
@ -143,9 +289,67 @@ int main(int argc, char **argv) {
|
||||
OFRp.degree = 14;
|
||||
OFRp.precision= 50;
|
||||
|
||||
MobiusEOFAFermionR Strange_Op_L(U, *FGrid, *FrbGrid, *GridPtr, *GridRBPtr, strange_mass, strange_mass, pv_mass, 0.0, -1, M5, b, c);
|
||||
MobiusEOFAFermionR Strange_Op_R(U, *FGrid, *FrbGrid, *GridPtr, *GridRBPtr, pv_mass, strange_mass, pv_mass, -1.0, 1, M5, b, c);
|
||||
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> EOFA(Strange_Op_L, Strange_Op_R, ActionCG, OFRp, true);
|
||||
|
||||
MobiusEOFAFermionR Strange_Op_L (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , strange_mass, strange_mass, pv_mass, 0.0, -1, M5, b, c);
|
||||
MobiusEOFAFermionF Strange_Op_LF(UF, *FGridF, *FrbGridF, *GridPtrF, *GridRBPtrF, strange_mass, strange_mass, pv_mass, 0.0, -1, M5, b, c);
|
||||
MobiusEOFAFermionR Strange_Op_R (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , pv_mass, strange_mass, pv_mass, -1.0, 1, M5, b, c);
|
||||
MobiusEOFAFermionF Strange_Op_RF(UF, *FGridF, *FrbGridF, *GridPtrF, *GridRBPtrF, pv_mass, strange_mass, pv_mass, -1.0, 1, M5, b, c);
|
||||
|
||||
ConjugateGradient<FermionField> ActionCG(ActionStoppingCondition,MaxCGIterations);
|
||||
ConjugateGradient<FermionField> DerivativeCG(DerivativeStoppingCondition,MaxCGIterations);
|
||||
#ifdef MIXED_PRECISION
|
||||
const int MX_inner = 1000;
|
||||
// Mixed precision EOFA
|
||||
LinearOperatorEOFAD Strange_LinOp_L (Strange_Op_L);
|
||||
LinearOperatorEOFAD Strange_LinOp_R (Strange_Op_R);
|
||||
LinearOperatorEOFAF Strange_LinOp_LF(Strange_Op_LF);
|
||||
LinearOperatorEOFAF Strange_LinOp_RF(Strange_Op_RF);
|
||||
|
||||
MxPCG_EOFA ActionCGL(ActionStoppingCondition,
|
||||
MX_inner,
|
||||
MaxCGIterations,
|
||||
GridPtrF,
|
||||
FrbGridF,
|
||||
Strange_Op_LF,Strange_Op_L,
|
||||
Strange_LinOp_LF,Strange_LinOp_L);
|
||||
|
||||
MxPCG_EOFA DerivativeCGL(DerivativeStoppingCondition,
|
||||
MX_inner,
|
||||
MaxCGIterations,
|
||||
GridPtrF,
|
||||
FrbGridF,
|
||||
Strange_Op_LF,Strange_Op_L,
|
||||
Strange_LinOp_LF,Strange_LinOp_L);
|
||||
|
||||
MxPCG_EOFA ActionCGR(ActionStoppingCondition,
|
||||
MX_inner,
|
||||
MaxCGIterations,
|
||||
GridPtrF,
|
||||
FrbGridF,
|
||||
Strange_Op_RF,Strange_Op_R,
|
||||
Strange_LinOp_RF,Strange_LinOp_R);
|
||||
|
||||
MxPCG_EOFA DerivativeCGR(DerivativeStoppingCondition,
|
||||
MX_inner,
|
||||
MaxCGIterations,
|
||||
GridPtrF,
|
||||
FrbGridF,
|
||||
Strange_Op_RF,Strange_Op_R,
|
||||
Strange_LinOp_RF,Strange_LinOp_R);
|
||||
|
||||
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy>
|
||||
EOFA(Strange_Op_L, Strange_Op_R,
|
||||
ActionCG,
|
||||
ActionCGL, ActionCGR,
|
||||
DerivativeCGL, DerivativeCGR,
|
||||
OFRp, true);
|
||||
#else
|
||||
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy>
|
||||
EOFA(Strange_Op_L, Strange_Op_R,
|
||||
ActionCG, ActionCG,
|
||||
DerivativeCG, DerivativeCG,
|
||||
OFRp, true);
|
||||
#endif
|
||||
Level1.push_back(&EOFA);
|
||||
|
||||
////////////////////////////////////
|
||||
@ -162,15 +366,62 @@ int main(int argc, char **argv) {
|
||||
}
|
||||
light_num.push_back(pv_mass);
|
||||
|
||||
//////////////////////////////////////////////////////////////
|
||||
// Forced to replicate the MxPCG and DenominatorsF etc.. because
|
||||
// there is no convenient way to "Clone" physics params from double op
|
||||
// into single op for any operator pair.
|
||||
// Same issue prevents using MxPCG in the Heatbath step
|
||||
//////////////////////////////////////////////////////////////
|
||||
std::vector<FermionAction *> Numerators;
|
||||
std::vector<FermionAction *> Denominators;
|
||||
std::vector<TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy> *> Quotients;
|
||||
std::vector<MxPCG *> ActionMPCG;
|
||||
std::vector<MxPCG *> MPCG;
|
||||
std::vector<FermionActionF *> DenominatorsF;
|
||||
std::vector<LinearOperatorD *> LinOpD;
|
||||
std::vector<LinearOperatorF *> LinOpF;
|
||||
|
||||
for(int h=0;h<n_hasenbusch+1;h++){
|
||||
|
||||
std::cout << GridLogMessage << " 2f quotient Action "<< light_num[h] << " / " << light_den[h]<< std::endl;
|
||||
|
||||
Numerators.push_back (new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[h],M5,b,c, Params));
|
||||
Denominators.push_back(new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[h],M5,b,c, Params));
|
||||
|
||||
#ifdef MIXED_PRECISION
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Mixed precision CG for 2f force
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
DenominatorsF.push_back(new FermionActionF(UF,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,light_den[h],M5,b,c, ParamsF));
|
||||
LinOpD.push_back(new LinearOperatorD(*Denominators[h]));
|
||||
LinOpF.push_back(new LinearOperatorF(*DenominatorsF[h]));
|
||||
|
||||
MPCG.push_back(new MxPCG(DerivativeStoppingCondition,
|
||||
MX_inner,
|
||||
MaxCGIterations,
|
||||
GridPtrF,
|
||||
FrbGridF,
|
||||
*DenominatorsF[h],*Denominators[h],
|
||||
*LinOpF[h], *LinOpD[h]) );
|
||||
|
||||
ActionMPCG.push_back(new MxPCG(ActionStoppingCondition,
|
||||
MX_inner,
|
||||
MaxCGIterations,
|
||||
GridPtrF,
|
||||
FrbGridF,
|
||||
*DenominatorsF[h],*Denominators[h],
|
||||
*LinOpF[h], *LinOpD[h]) );
|
||||
|
||||
// Heatbath not mixed yet. As inverts numerators not so important as raised mass.
|
||||
Quotients.push_back (new TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],*MPCG[h],*ActionMPCG[h],ActionCG));
|
||||
#else
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Standard CG for 2f force
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
Quotients.push_back (new TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],DerivativeCG,ActionCG));
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
for(int h=0;h<n_hasenbusch+1;h++){
|
||||
|
56
HMC/README
56
HMC/README
@ -1,14 +1,54 @@
|
||||
* Sign off 2+1f HMC with Hasenbush and strange RHMC
|
||||
|
||||
- Wilson plaquette cross checked against CPS and literature GwilsonFnone
|
||||
- Timesteps matched
|
||||
|
||||
- Use 16^3x32
|
||||
|
||||
********************************************************************
|
||||
* From previous CPS runs:
|
||||
TODO:
|
||||
********************************************************************
|
||||
|
||||
i) Got mixed precision in 2f and EOFA force and action solves.
|
||||
But need mixed precision in the heatbath solve. Best for Fermop to have a "clone" method, to
|
||||
reduce the number of solver and action objects. Needed ideally for the EOFA heatbath.
|
||||
15% perhaps
|
||||
Combine with 2x trajectory length?
|
||||
|
||||
ii) Rational on EOFA HB -- relax order
|
||||
-- Test the approx as per David email
|
||||
|
||||
Resume / roll.sh
|
||||
|
||||
----------------------------------------------------------------
|
||||
|
||||
- 16^3 Currently 10 traj per hour
|
||||
|
||||
- EOFA use a different derivative solver from action solver
|
||||
- EOFA fix Davids hack to the SchurRedBlack guessing
|
||||
|
||||
*** Reduce precision/tolerance in EOFA with second CG param. (10% speed up)
|
||||
*** Force gradient - reduced precision solve for the gradient (4/3x speedup)
|
||||
|
||||
|
||||
*** Need a plan for gauge field update for mixed precision in HMC (2x speed up)
|
||||
-- Store the single prec action operator.
|
||||
-- Clone the gauge field from the operator function argument.
|
||||
-- Build the mixed precision operator dynamically from the passed operator and single prec clone.
|
||||
|
||||
*** Mixed precision CG into EOFA portion
|
||||
*** Further reduce precision in forces to 10^-6 ?
|
||||
|
||||
*** Overall: a 3x or so is still possible => 500s -> 160s and 20 traj per hour on 16^3.
|
||||
|
||||
- Use mixed precision CG in HMC
|
||||
- SchurRedBlack.h: stop use of operator function; use LinearOperator or similar instead.
|
||||
- Or make an OperatorFunction for mixed precision as a wrapper
|
||||
|
||||
********************************************************************
|
||||
* Signed off 2+1f HMC with Hasenbush and strange RHMC 16^3 x 32 DWF Ls=16 Plaquette 0.5883 ish
|
||||
* Signed off 2+1f HMC with Hasenbush and strange EOFA 16^3 x 32 DWF Ls=16 Plaquette 0.5883 ish
|
||||
* Wilson plaquette cross checked against CPS and literature GwilsonFnone
|
||||
********************************************************************
|
||||
|
||||
********************************************************************
|
||||
* RHMC: Timesteps & eigenranges matched from previous CPS 16^3 x 32 runs:
|
||||
********************************************************************
|
||||
|
||||
****
|
||||
Strange (m=0.04) has eigenspan
|
||||
****
|
||||
16^3 done as 1+1+1 with separate PV's.
|
||||
|
@ -370,5 +370,18 @@ int main(int argc,char **argv)
|
||||
tensorConvTest(rng, SpinMatrix);
|
||||
tensorConvTest(rng, SpinVector);
|
||||
|
||||
{
|
||||
HMCparameters HMCparams;
|
||||
HMCparams.StartingType =std::string("CheckpointStart");
|
||||
HMCparams.StartTrajectory =7;
|
||||
HMCparams.Trajectories =1000;
|
||||
HMCparams.NoMetropolisUntil=0;
|
||||
HMCparams.MD.name =std::string("Force Gradient");
|
||||
HMCparams.MD.MDsteps = 10;
|
||||
HMCparams.MD.trajL = 1.0;
|
||||
|
||||
XmlWriter HMCwr("HMCparameters.xml");
|
||||
write(HMCwr,"HMCparameters",HMCparams);
|
||||
}
|
||||
Grid_finalize();
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user