1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-10 14:10:46 +01:00

Synchronize blocking infrastructure with GPT

This commit is contained in:
Christoph Lehner 2020-05-06 08:42:28 -04:00
parent 6b64727161
commit e9b295f967
4 changed files with 216 additions and 282 deletions

View File

@ -37,211 +37,6 @@ Author: Christoph Lehner <clehner@bnl.gov>
NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////////
// Move following 100 LOC to lattice/Lattice_basis.h
////////////////////////////////////////////////////////
template<class Field>
void basisOrthogonalize(std::vector<Field> &basis,Field &w,int k)
{
// If assume basis[j] are already orthonormal,
// can take all inner products in parallel saving 2x bandwidth
// Save 3x bandwidth on the second line of loop.
// perhaps 2.5x speed up.
// 2x overall in Multigrid Lanczos
for(int j=0; j<k; ++j){
auto ip = innerProduct(basis[j],w);
w = w - ip*basis[j];
}
}
template<class Field>
void basisRotate(std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j0, int j1, int k0,int k1,int Nm)
{
typedef decltype(basis[0].View()) View;
auto tmp_v = basis[0].View();
Vector<View> basis_v(basis.size(),tmp_v);
typedef typename Field::vector_object vobj;
GridBase* grid = basis[0].Grid();
for(int k=0;k<basis.size();k++){
basis_v[k] = basis[k].View();
}
#if 0
std::vector < vobj , commAllocator<vobj> > Bt(thread_max() * Nm); // Thread private
thread_region
{
vobj* B = Bt.data() + Nm * thread_num();
thread_for_in_region(ss, grid->oSites(),{
for(int j=j0; j<j1; ++j) B[j]=0.;
for(int j=j0; j<j1; ++j){
for(int k=k0; k<k1; ++k){
B[j] +=Qt(j,k) * basis_v[k][ss];
}
}
for(int j=j0; j<j1; ++j){
basis_v[j][ss] = B[j];
}
});
}
#else
int nrot = j1-j0;
uint64_t oSites =grid->oSites();
uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead
// printf("BasisRotate %d %d nrot %d siteBlock %d\n",j0,j1,nrot,siteBlock);
Vector <vobj> Bt(siteBlock * nrot);
auto Bp=&Bt[0];
// GPU readable copy of Eigen matrix
Vector<double> Qt_jv(Nm*Nm);
double *Qt_p = & Qt_jv[0];
for(int k=0;k<Nm;++k){
for(int j=0;j<Nm;++j){
Qt_p[j*Nm+k]=Qt(j,k);
}
}
// Block the loop to keep storage footprint down
vobj zz=Zero();
for(uint64_t s=0;s<oSites;s+=siteBlock){
// remaining work in this block
int ssites=MIN(siteBlock,oSites-s);
// zero out the accumulators
accelerator_for(ss,siteBlock*nrot,vobj::Nsimd(),{
auto z=coalescedRead(zz);
coalescedWrite(Bp[ss],z);
});
accelerator_for(sj,ssites*nrot,vobj::Nsimd(),{
int j =sj%nrot;
int jj =j0+j;
int ss =sj/nrot;
int sss=ss+s;
for(int k=k0; k<k1; ++k){
auto tmp = coalescedRead(Bp[ss*nrot+j]);
coalescedWrite(Bp[ss*nrot+j],tmp+ Qt_p[jj*Nm+k] * coalescedRead(basis_v[k][sss]));
}
});
accelerator_for(sj,ssites*nrot,vobj::Nsimd(),{
int j =sj%nrot;
int jj =j0+j;
int ss =sj/nrot;
int sss=ss+s;
coalescedWrite(basis_v[jj][sss],coalescedRead(Bp[ss*nrot+j]));
});
}
#endif
}
// Extract a single rotated vector
template<class Field>
void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j, int k0,int k1,int Nm)
{
typedef decltype(basis[0].View()) View;
typedef typename Field::vector_object vobj;
GridBase* grid = basis[0].Grid();
result.Checkerboard() = basis[0].Checkerboard();
auto result_v=result.View();
Vector<View> basis_v(basis.size(),result_v);
for(int k=0;k<basis.size();k++){
basis_v[k] = basis[k].View();
}
vobj zz=Zero();
Vector<double> Qt_jv(Nm);
double * Qt_j = & Qt_jv[0];
for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k);
accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
auto B=coalescedRead(zz);
for(int k=k0; k<k1; ++k){
B +=Qt_j[k] * coalescedRead(basis_v[k][ss]);
}
coalescedWrite(result_v[ss], B);
});
}
template<class Field>
void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, std::vector<int>& idx)
{
int vlen = idx.size();
assert(vlen>=1);
assert(vlen<=sort_vals.size());
assert(vlen<=_v.size());
for (size_t i=0;i<vlen;i++) {
if (idx[i] != i) {
//////////////////////////////////////
// idx[i] is a table of desired sources giving a permutation.
// Swap v[i] with v[idx[i]].
// Find j>i for which _vnew[j] = _vold[i],
// track the move idx[j] => idx[i]
// track the move idx[i] => i
//////////////////////////////////////
size_t j;
for (j=i;j<idx.size();j++)
if (idx[j]==i)
break;
assert(idx[i] > i); assert(j!=idx.size()); assert(idx[j]==i);
swap(_v[i],_v[idx[i]]); // should use vector move constructor, no data copy
std::swap(sort_vals[i],sort_vals[idx[i]]);
idx[j] = idx[i];
idx[i] = i;
}
}
}
inline std::vector<int> basisSortGetIndex(std::vector<RealD>& sort_vals)
{
std::vector<int> idx(sort_vals.size());
std::iota(idx.begin(), idx.end(), 0);
// sort indexes based on comparing values in v
std::sort(idx.begin(), idx.end(), [&sort_vals](int i1, int i2) {
return ::fabs(sort_vals[i1]) < ::fabs(sort_vals[i2]);
});
return idx;
}
template<class Field>
void basisSortInPlace(std::vector<Field> & _v,std::vector<RealD>& sort_vals, bool reverse)
{
std::vector<int> idx = basisSortGetIndex(sort_vals);
if (reverse)
std::reverse(idx.begin(), idx.end());
basisReorderInPlace(_v,sort_vals,idx);
}
// PAB: faster to compute the inner products first then fuse loops.
// If performance critical can improve.
template<class Field>
void basisDeflate(const std::vector<Field> &_v,const std::vector<RealD>& eval,const Field& src_orig,Field& result) {
result = Zero();
assert(_v.size()==eval.size());
int N = (int)_v.size();
for (int i=0;i<N;i++) {
Field& tmp = _v[i];
axpy(result,TensorRemove(innerProduct(tmp,src_orig)) / eval[i],tmp,result);
}
}
/////////////////////////////////////////////////////////////
// Implicitly restarted lanczos
/////////////////////////////////////////////////////////////

View File

@ -43,4 +43,4 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/lattice/Lattice_rng.h>
#include <Grid/lattice/Lattice_unary.h>
#include <Grid/lattice/Lattice_transfer.h>
#include <Grid/lattice/Lattice_basis.h>

View File

@ -116,7 +116,6 @@ public:
int target;
cudaGetDevice(&target);
cudaMemPrefetchAsync(_odata,_odata_size*sizeof(vobj),target);
//std::cout<< GridLogMessage << "To Device " << target << std::endl;
#endif
#endif
};
@ -125,7 +124,6 @@ public:
#ifdef GRID_NVCC
#ifndef __CUDA_ARCH__ // only on host
cudaMemPrefetchAsync(_odata,_odata_size*sizeof(vobj),cudaCpuDeviceId);
//std::cout<< GridLogMessage << "To Host" << std::endl;
#endif
#endif
};
@ -425,7 +423,6 @@ public:
// copy constructor
///////////////////////////////////////////
Lattice(const Lattice& r){
// std::cout << "Lattice constructor(const Lattice &) "<<this<<std::endl;
this->_grid = r.Grid();
resize(this->_grid->oSites());
*this = r;
@ -448,7 +445,6 @@ public:
typename std::enable_if<!std::is_same<robj,vobj>::value,int>::type i=0;
conformable(*this,r);
this->checkerboard = r.Checkerboard();
//std::cout << GridLogMessage << "Copy other" << std::endl;
auto me = AcceleratorView(ViewWrite);
auto him= r.AcceleratorView(ViewRead);
accelerator_for(ss,me.size(),vobj::Nsimd(),{
@ -463,7 +459,6 @@ public:
inline Lattice<vobj> & operator = (const Lattice<vobj> & r){
this->checkerboard = r.Checkerboard();
conformable(*this,r);
//std::cout << GridLogMessage << "Copy same" << std::endl;
auto me = AcceleratorView(ViewWrite);
auto him= r.AcceleratorView(ViewRead);
accelerator_for(ss,me.size(),vobj::Nsimd(),{

View File

@ -6,6 +6,7 @@
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -63,6 +64,7 @@ template<class vobj> inline void pickCheckerboard(int cb,Lattice<vobj> &half,con
}
});
}
template<class vobj> inline void setCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half){
int cb = half.Checkerboard();
auto half_v = half.View();
@ -82,24 +84,129 @@ template<class vobj> inline void setCheckerboard(Lattice<vobj> &full,const Latti
});
}
template<class vobj,class CComplex,int nbasis>
////////////////////////////////////////////////////////////////////////////////////////////
// Flexible Type Conversion for internal promotion to double as well as graceful
// treatment of scalar-compatible types
////////////////////////////////////////////////////////////////////////////////////////////
accelerator_inline void convertType(ComplexD & out, const std::complex<double> & in) {
out = in;
}
accelerator_inline void convertType(ComplexF & out, const std::complex<float> & in) {
out = in;
}
#ifdef __CUDA_ARCH__
accelerator_inline void convertType(vComplexF & out, const ComplexF & in) {
((ComplexF*)&out)[SIMTlane(vComplexF::Nsimd())] = in;
}
accelerator_inline void convertType(vComplexD & out, const ComplexD & in) {
((ComplexD*)&out)[SIMTlane(vComplexD::Nsimd())] = in;
}
accelerator_inline void convertType(vComplexD2 & out, const ComplexD & in) {
((ComplexD*)&out)[SIMTlane(vComplexD::Nsimd()*2)] = in;
}
#endif
accelerator_inline void convertType(vComplexF & out, const vComplexD2 & in) {
out.v = Optimization::PrecisionChange::DtoS(in._internal[0].v,in._internal[1].v);
}
accelerator_inline void convertType(vComplexD2 & out, const vComplexF & in) {
Optimization::PrecisionChange::StoD(in.v,out._internal[0].v,out._internal[1].v);
}
template<typename T1,typename T2,int N>
accelerator_inline void convertType(iMatrix<T1,N> & out, const iMatrix<T2,N> & in);
template<typename T1,typename T2,int N>
accelerator_inline void convertType(iVector<T1,N> & out, const iVector<T2,N> & in);
template<typename T1,typename T2, typename std::enable_if<!isGridScalar<T1>::value, T1>::type* = nullptr>
accelerator_inline void convertType(T1 & out, const iScalar<T2> & in) {
convertType(out,in._internal);
}
template<typename T1,typename T2>
accelerator_inline void convertType(iScalar<T1> & out, const T2 & in) {
convertType(out._internal,in);
}
template<typename T1,typename T2,int N>
accelerator_inline void convertType(iMatrix<T1,N> & out, const iMatrix<T2,N> & in) {
for (int i=0;i<N;i++)
for (int j=0;j<N;j++)
convertType(out._internal[i][j],in._internal[i][j]);
}
template<typename T1,typename T2,int N>
accelerator_inline void convertType(iVector<T1,N> & out, const iVector<T2,N> & in) {
for (int i=0;i<N;i++)
convertType(out._internal[i],in._internal[i]);
}
template<typename T, typename std::enable_if<isGridFundamental<T>::value, T>::type* = nullptr>
accelerator_inline void convertType(T & out, const T & in) {
out = in;
}
template<typename T1,typename T2>
accelerator_inline void convertType(Lattice<T1> & out, const Lattice<T2> & in) {
auto out_v = out.AcceleratorView(ViewWrite);
auto in_v = in.AcceleratorView(ViewRead);
accelerator_for(ss,out_v.size(),T1::Nsimd(),{
convertType(out_v[ss],in_v(ss));
});
}
////////////////////////////////////////////////////////////////////////////////////////////
// precision-promoted local inner product
////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj>
inline auto localInnerProductD(const Lattice<vobj> &lhs,const Lattice<vobj> &rhs)
-> Lattice<iScalar<decltype(TensorRemove(innerProductD2(lhs.View()[0],rhs.View()[0])))>>
{
auto lhs_v = lhs.AcceleratorView(ViewRead);
auto rhs_v = rhs.AcceleratorView(ViewRead);
typedef decltype(TensorRemove(innerProductD2(lhs_v[0],rhs_v[0]))) t_inner;
Lattice<iScalar<t_inner>> ret(lhs.Grid());
auto ret_v = ret.AcceleratorView(ViewWrite);
accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{
convertType(ret_v[ss],innerProductD2(lhs_v(ss),rhs_v(ss)));
});
return ret;
}
////////////////////////////////////////////////////////////////////////////////////////////
// block routines
////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj,class CComplex,int nbasis,class VLattice>
inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
const Lattice<vobj> &fineData,
const std::vector<Lattice<vobj> > &Basis)
const VLattice &Basis)
{
GridBase * fine = fineData.Grid();
GridBase * coarse= coarseData.Grid();
Lattice<CComplex> ip(coarse);
Lattice<iScalar<CComplex>> ip(coarse);
Lattice<vobj> fineDataRed = fineData;
// auto fineData_ = fineData.View();
auto coarseData_ = coarseData.View();
auto ip_ = ip.View();
auto coarseData_ = coarseData.AcceleratorView(ViewWrite);
auto ip_ = ip.AcceleratorView(ViewReadWrite);
for(int v=0;v<nbasis;v++) {
blockInnerProduct(ip,Basis[v],fineData);
blockInnerProductD(ip,Basis[v],fineDataRed); // ip = <basis|fine>
accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
coalescedWrite(coarseData_[sc](v),ip_(sc));
convertType(coarseData_[sc](v),ip_[sc]);
});
// improve numerical stability of projection
// |fine> = |fine> - <basis|fine> |basis>
ip=-ip;
blockZAXPY(fineDataRed,ip,Basis[v],fineDataRed);
}
}
@ -166,10 +273,10 @@ inline void blockProject1(Lattice<iVector<CComplex,nbasis > > &coarseData,
return;
}
template<class vobj,class CComplex>
template<class vobj,class vobj2,class CComplex>
inline void blockZAXPY(Lattice<vobj> &fineZ,
const Lattice<CComplex> &coarseA,
const Lattice<vobj> &fineX,
const Lattice<vobj2> &fineX,
const Lattice<vobj> &fineY)
{
GridBase * fine = fineZ.Grid();
@ -191,10 +298,10 @@ inline void blockZAXPY(Lattice<vobj> &fineZ,
assert(block_r[d]*coarse->_rdimensions[d]==fine->_rdimensions[d]);
}
auto fineZ_ = fineZ.View();
auto fineX_ = fineX.View();
auto fineY_ = fineY.View();
auto coarseA_= coarseA.View();
auto fineZ_ = fineZ.AcceleratorView(ViewWrite);
auto fineX_ = fineX.AcceleratorView(ViewRead);
auto fineY_ = fineY.AcceleratorView(ViewRead);
auto coarseA_= coarseA.AcceleratorView(ViewRead);
accelerator_for(sf, fine->oSites(), CComplex::Nsimd(), {
@ -207,13 +314,49 @@ inline void blockZAXPY(Lattice<vobj> &fineZ,
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
// z = A x + y
coalescedWrite(fineZ_[sf],coarseA_(sc)*fineX_(sf)+fineY_(sf));
#ifdef __CUDA_ARCH__
typename vobj2::tensor_reduced::scalar_object cA;
typename vobj::scalar_object cAx;
#else
typename vobj2::tensor_reduced cA;
vobj cAx;
#endif
convertType(cA,TensorRemove(coarseA_(sc)));
auto prod = cA*fineX_(sf);
convertType(cAx,prod);
coalescedWrite(fineZ_[sf],cAx+fineY_(sf));
});
return;
}
template<class vobj,class CComplex>
inline void blockInnerProductD(Lattice<CComplex> &CoarseInner,
const Lattice<vobj> &fineX,
const Lattice<vobj> &fineY)
{
typedef iScalar<decltype(TensorRemove(innerProductD2(vobj(),vobj())))> dotp;
GridBase *coarse(CoarseInner.Grid());
GridBase *fine (fineX.Grid());
Lattice<dotp> fine_inner(fine); fine_inner.Checkerboard() = fineX.Checkerboard();
Lattice<dotp> coarse_inner(coarse);
auto CoarseInner_ = CoarseInner.AcceleratorView(ViewWrite);
auto coarse_inner_ = coarse_inner.AcceleratorView(ViewReadWrite);
// Precision promotion
fine_inner = localInnerProductD(fineX,fineY);
blockSum(coarse_inner,fine_inner);
accelerator_for(ss, coarse->oSites(), 1, {
convertType(CoarseInner_[ss], TensorRemove(coarse_inner_[ss]));
});
}
template<class vobj,class CComplex> // deprecate
inline void blockInnerProduct(Lattice<CComplex> &CoarseInner,
const Lattice<vobj> &fineX,
const Lattice<vobj> &fineY)
@ -227,8 +370,8 @@ inline void blockInnerProduct(Lattice<CComplex> &CoarseInner,
Lattice<dotp> coarse_inner(coarse);
// Precision promotion?
auto CoarseInner_ = CoarseInner.View();
auto coarse_inner_ = coarse_inner.View();
auto CoarseInner_ = CoarseInner.AcceleratorView(ViewWrite);
auto coarse_inner_ = coarse_inner.AcceleratorView(ViewReadWrite);
fine_inner = localInnerProduct(fineX,fineY);
blockSum(coarse_inner,fine_inner);
@ -236,6 +379,7 @@ inline void blockInnerProduct(Lattice<CComplex> &CoarseInner,
CoarseInner_[ss] = coarse_inner_[ss];
});
}
template<class vobj,class CComplex>
inline void blockNormalise(Lattice<CComplex> &ip,Lattice<vobj> &fineX)
{
@ -264,10 +408,8 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
}
int blockVol = fine->oSites()/coarse->oSites();
// Turn this around to loop threaded over sc and interior loop
// over sf would thread better
auto coarseData_ = coarseData.View();
auto fineData_ = fineData.View();
auto coarseData_ = coarseData.AcceleratorView(ViewReadWrite);
auto fineData_ = fineData.AcceleratorView(ViewRead);
accelerator_for(sc,coarse->oSites(),1,{
@ -292,6 +434,7 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
return;
}
template<class vobj>
inline void blockPick(GridBase *coarse,const Lattice<vobj> &unpicked,Lattice<vobj> &picked,Coordinate coor)
{
@ -313,8 +456,8 @@ inline void blockPick(GridBase *coarse,const Lattice<vobj> &unpicked,Lattice<vob
}
}
template<class vobj,class CComplex>
inline void blockOrthogonalise(Lattice<CComplex> &ip,std::vector<Lattice<vobj> > &Basis)
template<class CComplex,class VLattice>
inline void blockOrthonormalize(Lattice<CComplex> &ip,VLattice &Basis)
{
GridBase *coarse = ip.Grid();
GridBase *fine = Basis[0].Grid();
@ -330,15 +473,22 @@ inline void blockOrthogonalise(Lattice<CComplex> &ip,std::vector<Lattice<vobj> >
for(int v=0;v<nbasis;v++) {
for(int u=0;u<v;u++) {
//Inner product & remove component
blockInnerProduct(ip,Basis[u],Basis[v]);
blockInnerProductD(ip,Basis[u],Basis[v]);
ip = -ip;
blockZAXPY<vobj,CComplex> (Basis[v],ip,Basis[u],Basis[v]);
blockZAXPY(Basis[v],ip,Basis[u],Basis[v]);
}
blockNormalise(ip,Basis[v]);
}
}
template<class vobj,class CComplex>
inline void blockOrthogonalise(Lattice<CComplex> &ip,std::vector<Lattice<vobj> > &Basis) // deprecated inaccurate naming
{
blockOrthonormalize(ip,Basis);
}
#if 0
// TODO: CPU optimized version here
template<class vobj,class CComplex,int nbasis>
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
Lattice<vobj> &fineData,
@ -383,24 +533,18 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
}
#else
template<class vobj,class CComplex,int nbasis>
template<class vobj,class CComplex,int nbasis,class VLattice>
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
Lattice<vobj> &fineData,
const std::vector<Lattice<vobj> > &Basis)
const VLattice &Basis)
{
GridBase * fine = fineData.Grid();
GridBase * coarse= coarseData.Grid();
fineData=Zero();
for(int i=0;i<nbasis;i++) {
Lattice<iScalar<CComplex> > ip = PeekIndex<0>(coarseData,i);
Lattice<CComplex> cip(coarse);
auto cip_ = cip.View();
auto ip_ = ip.View();
accelerator_forNB(sc,coarse->oSites(),CComplex::Nsimd(),{
coalescedWrite(cip_[sc], ip_(sc)());
});
blockZAXPY<vobj,CComplex >(fineData,cip,Basis[i],fineData);
auto ip_ = ip.AcceleratorView(ViewRead);
blockZAXPY(fineData,ip,Basis[i],fineData);
}
}
#endif
@ -470,8 +614,8 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
Coordinate rdt = Tg->_rdimensions;
Coordinate ist = Tg->_istride;
Coordinate ost = Tg->_ostride;
auto t_v = To.View();
auto f_v = From.View();
auto t_v = To.AcceleratorView(ViewWrite);
auto f_v = From.AcceleratorView(ViewRead);
accelerator_for(idx,Fg->lSites(),1,{
sobj s;
Coordinate Fcoor(nd);