mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-21 17:22:03 +01:00
Reorganise multigrid into multiple headers
This commit is contained in:
286
Grid/algorithms/multigrid/Aggregates.h
Normal file
286
Grid/algorithms/multigrid/Aggregates.h
Normal file
@ -0,0 +1,286 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/Aggregates.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class Aggregation {
|
||||
public:
|
||||
typedef iVector<CComplex,nbasis > siteVector;
|
||||
typedef Lattice<siteVector> CoarseVector;
|
||||
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
||||
|
||||
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj > FineField;
|
||||
|
||||
GridBase *CoarseGrid;
|
||||
GridBase *FineGrid;
|
||||
std::vector<Lattice<Fobj> > subspace;
|
||||
int checkerboard;
|
||||
int Checkerboard(void){return checkerboard;}
|
||||
Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :
|
||||
CoarseGrid(_CoarseGrid),
|
||||
FineGrid(_FineGrid),
|
||||
subspace(nbasis,_FineGrid),
|
||||
checkerboard(_checkerboard)
|
||||
{
|
||||
};
|
||||
|
||||
void SaveState(std::string file)
|
||||
{
|
||||
#ifdef HAVE_LIME
|
||||
emptyUserRecord record;
|
||||
ScidacWriter WR(Grid()->IsBoss());
|
||||
WR.open(file);
|
||||
for(int b=0;b<nbasis;b++){
|
||||
WR.writeScidacFieldRecord(subspace[b],record);
|
||||
}
|
||||
WR.close();
|
||||
#endif
|
||||
}
|
||||
void LoadState(std::string file)
|
||||
{
|
||||
#ifdef HAVE_LIME
|
||||
emptyUserRecord record;
|
||||
Grid::ScidacReader RD ;
|
||||
RD.open(file);
|
||||
for(int b=0;b<nbasis;b++){
|
||||
RD.readScidacFieldRecord(subspace[b],record);
|
||||
}
|
||||
RD.close();
|
||||
#endif
|
||||
}
|
||||
|
||||
void Orthogonalise(void){
|
||||
CoarseScalar InnerProd(CoarseGrid);
|
||||
// std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
|
||||
blockOrthogonalise(InnerProd,subspace);
|
||||
}
|
||||
void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
|
||||
blockProject(CoarseVec,FineVec,subspace);
|
||||
}
|
||||
void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
|
||||
FineVec.Checkerboard() = subspace[0].Checkerboard();
|
||||
blockPromote(CoarseVec,FineVec,subspace);
|
||||
}
|
||||
|
||||
virtual void CreateSubspaceRandom(GridParallelRNG &RNG) {
|
||||
int nn=nbasis;
|
||||
RealD scale;
|
||||
FineField noise(FineGrid);
|
||||
for(int b=0;b<nn;b++){
|
||||
subspace[b] = Zero();
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
subspace[b] = noise;
|
||||
}
|
||||
}
|
||||
virtual void CreateSubspace(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis)
|
||||
{
|
||||
|
||||
RealD scale;
|
||||
|
||||
ConjugateGradient<FineField> CG(1.0e-2,100,false);
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
|
||||
for(int b=0;b<nn;b++){
|
||||
|
||||
subspace[b] = Zero();
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
for(int i=0;i<1;i++){
|
||||
|
||||
CG(hermop,noise,subspace[b]);
|
||||
|
||||
noise = subspace[b];
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
}
|
||||
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
|
||||
subspace[b] = noise;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
|
||||
// and this is the best I found
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
int nn,
|
||||
double hi,
|
||||
double lo,
|
||||
int orderfilter,
|
||||
int ordermin,
|
||||
int orderstep,
|
||||
double filterlo
|
||||
) {
|
||||
|
||||
RealD scale;
|
||||
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
|
||||
// New normalised noise
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
std::cout << GridLogMessage<<" Chebyshev subspace pass-1 : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
|
||||
std::cout << GridLogMessage<<" Chebyshev subspace pass-2 : nbasis"<<nn<<" min "
|
||||
<<ordermin<<" step "<<orderstep
|
||||
<<" lo"<<filterlo<<std::endl;
|
||||
|
||||
// Initial matrix element
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
int b =0;
|
||||
{
|
||||
// Filter
|
||||
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
|
||||
Cheb(hermop,noise,Mn);
|
||||
// normalise
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
b++;
|
||||
}
|
||||
|
||||
// Generate a full sequence of Chebyshevs
|
||||
{
|
||||
lo=filterlo;
|
||||
noise=Mn;
|
||||
|
||||
FineField T0(FineGrid); T0 = noise;
|
||||
FineField T1(FineGrid);
|
||||
FineField T2(FineGrid);
|
||||
FineField y(FineGrid);
|
||||
|
||||
FineField *Tnm = &T0;
|
||||
FineField *Tn = &T1;
|
||||
FineField *Tnp = &T2;
|
||||
|
||||
// Tn=T1 = (xscale M + mscale)in
|
||||
RealD xscale = 2.0/(hi-lo);
|
||||
RealD mscale = -(hi+lo)/(hi-lo);
|
||||
hermop.HermOp(T0,y);
|
||||
T1=y*xscale+noise*mscale;
|
||||
|
||||
for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
|
||||
|
||||
hermop.HermOp(*Tn,y);
|
||||
|
||||
autoView( y_v , y, AcceleratorWrite);
|
||||
autoView( Tn_v , (*Tn), AcceleratorWrite);
|
||||
autoView( Tnp_v , (*Tnp), AcceleratorWrite);
|
||||
autoView( Tnm_v , (*Tnm), AcceleratorWrite);
|
||||
const int Nsimd = CComplex::Nsimd();
|
||||
accelerator_for(ss, FineGrid->oSites(), Nsimd, {
|
||||
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
|
||||
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
|
||||
});
|
||||
|
||||
// Possible more fine grained control is needed than a linear sweep,
|
||||
// but huge productivity gain if this is simple algorithm and not a tunable
|
||||
int m =1;
|
||||
if ( n>=ordermin ) m=n-ordermin;
|
||||
if ( (m%orderstep)==0 ) {
|
||||
Mn=*Tnp;
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
b++;
|
||||
}
|
||||
|
||||
// Cycle pointers to avoid copies
|
||||
FineField *swizzle = Tnm;
|
||||
Tnm =Tn;
|
||||
Tn =Tnp;
|
||||
Tnp =swizzle;
|
||||
|
||||
}
|
||||
}
|
||||
assert(b==nn);
|
||||
}
|
||||
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
int nn,
|
||||
double hi,
|
||||
double lo,
|
||||
int orderfilter
|
||||
) {
|
||||
|
||||
RealD scale;
|
||||
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
|
||||
// New normalised noise
|
||||
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
|
||||
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : nbasis "<<nn<<std::endl;
|
||||
|
||||
|
||||
for(int b =0;b<nbasis;b++)
|
||||
{
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
// Initial matrix element
|
||||
hermop.Op(noise,Mn);
|
||||
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
// Filter
|
||||
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
|
||||
Cheb(hermop,noise,Mn);
|
||||
// normalise
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
};
|
||||
NAMESPACE_END(Grid);
|
Reference in New Issue
Block a user