1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-13 04:37:05 +01:00

Merge branch 'develop' into feature/distil

* develop: (27 commits)
  Update README.md
  result layout standardised, iterator size more elegant
  updated syntac in Test_hadrons_spectrum
  chroma-regression test now prints difference correctly
  baryon input strings are now pairs of pairs of gammas - still ugly!!
  second update to pull request
  Changing back interface for Gamma3pt
  Removing old debug code
  Changes to A2Autils
  suggested changes for 1st pull request implemented
  changed input parameters for easier use
  Should compile everywhere now
  changed baryon interface
  added author information
  ready for pull request
  code compiling now - still need to test
  Baryons module works in 1 of 3 cases - still need SlicedProp and Msource part!!
  thread_for caused the problems - slow for loop for now
  still bugfix
  weird bug...
  ...

# Conflicts:
#	Hadrons/Modules.hpp
#	Hadrons/modules.inc
This commit is contained in:
Michael Marshall
2019-10-30 14:13:00 +00:00
16 changed files with 1886 additions and 483 deletions

View File

@ -0,0 +1,7 @@
#include <Hadrons/Modules/MContraction/A2AFourQuarkContraction.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
template class Grid::Hadrons::MContraction::TA2AFourQuarkContraction<FIMPL>;

View File

@ -0,0 +1,138 @@
#ifndef Hadrons_MContraction_A2AFourQuarkContraction_hpp_
#define Hadrons_MContraction_A2AFourQuarkContraction_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
#include <Hadrons/DiskVector.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* A2AFourQuarkContraction *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
class A2AFourQuarkContractionPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(A2AFourQuarkContractionPar,
std::string, v1,
std::string, v2,
std::string, mf12,
bool, allContr,
unsigned int, dt);
};
template <typename FImpl>
class TA2AFourQuarkContraction: public Module<A2AFourQuarkContractionPar>
{
public:
FERM_TYPE_ALIASES(FImpl, );
// constructor
TA2AFourQuarkContraction(const std::string name);
// destructor
virtual ~TA2AFourQuarkContraction(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
private:
unsigned int nt_;
};
MODULE_REGISTER_TMP(A2AFourQuarkContraction, TA2AFourQuarkContraction<FIMPL>, MContraction);
/******************************************************************************
* TA2AFourQuarkContraction implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TA2AFourQuarkContraction<FImpl>::TA2AFourQuarkContraction(const std::string name)
: Module<A2AFourQuarkContractionPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TA2AFourQuarkContraction<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().v1, par().v2, par().mf12};
return in;
}
template <typename FImpl>
std::vector<std::string> TA2AFourQuarkContraction<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2AFourQuarkContraction<FImpl>::setup(void)
{
if (par().allContr)
{
nt_ = env().getDim(Tp);
envTmp(std::vector<PropagatorField>, "tmpWWVV", 1, nt_, envGetGrid(PropagatorField));
envCreate(std::vector<PropagatorField>, getName(), 1, nt_, envGetGrid(PropagatorField));
}
else
{
envTmp(std::vector<PropagatorField>, "tmpWWVV", 1, 1, envGetGrid(PropagatorField));
envCreate(PropagatorField, getName(), 1, envGetGrid(PropagatorField));
}
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2AFourQuarkContraction<FImpl>::execute(void)
{
auto &v1 = envGet(std::vector<FermionField>, par().v1);
auto &v2 = envGet(std::vector<FermionField>, par().v2);
auto &mf12 = envGet(EigenDiskVector<Complex>, par().mf12);
envGetTmp(std::vector<PropagatorField>, tmpWWVV);
unsigned int dt = par().dt;
unsigned int nt = env().getDim(Tp);
if (par().allContr)
{
LOG(Message) << "Computing 4 quark contraction for " << getName()
<< " for all t0 time translations "
<< "with nt = " << nt_ << " and dt = " << dt << std::endl;
auto &WWVV = envGet(std::vector<PropagatorField>, getName());
A2Autils<FImpl>::ContractWWVV(tmpWWVV, mf12, &v1[0], &v2[0]);
for(unsigned int t = 0; t < nt_; t++){
unsigned int t0 = (t + dt) % nt_;
WWVV[t] = tmpWWVV[t0];
}
}
else
{
LOG(Message) << "Computing 4 quark contraction for: " << getName()
<< " for time dt = " << dt << std::endl;
auto &WWVV = envGet(PropagatorField, getName());
int ni = v1.size();
int nj = v2.size();
Eigen::Matrix<Complex, -1, -1, Eigen::RowMajor> mf;
mf = mf12[dt];
Eigen::TensorMap<Eigen::Tensor<Complex, 3, Eigen::RowMajor>> mfT(mf.data(), 1, ni, nj);
A2Autils<FImpl>::ContractWWVV(tmpWWVV, mfT, &v1[0], &v2[0]);
WWVV = tmpWWVV[0];
}
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MContraction_A2AFourQuarkContraction_hpp_

View File

@ -7,7 +7,7 @@ Source file: Hadrons/Modules/MContraction/Baryon.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
Author: Felix Erben <felix.erben@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -33,6 +33,7 @@ See the full license in the file "LICENSE" in the top level distribution directo
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
#include <Grid/qcd/utils/BaryonUtils.h>
BEGIN_HADRONS_NAMESPACE
@ -41,6 +42,9 @@ BEGIN_HADRONS_NAMESPACE
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
typedef std::pair<Gamma::Algebra, Gamma::Algebra> GammaAB;
typedef std::pair<GammaAB, GammaAB> GammaABPair;
class BaryonPar: Serializable
{
public:
@ -48,6 +52,11 @@ public:
std::string, q1,
std::string, q2,
std::string, q3,
std::string, gammas,
std::string, quarks,
std::string, prefactors,
std::string, parity,
std::string, sink,
std::string, output);
};
@ -58,12 +67,21 @@ public:
FERM_TYPE_ALIASES(FImpl1, 1);
FERM_TYPE_ALIASES(FImpl2, 2);
FERM_TYPE_ALIASES(FImpl3, 3);
class Result: Serializable
BASIC_TYPE_ALIASES(ScalarImplCR, Scalar);
SINK_TYPE_ALIASES(Scalar);
class Metadata: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Result,
std::vector<std::vector<std::vector<Complex>>>, corr);
GRID_SERIALIZABLE_CLASS_MEMBERS(Metadata,
Gamma::Algebra, gammaA_left,
Gamma::Algebra, gammaB_left,
Gamma::Algebra, gammaA_right,
Gamma::Algebra, gammaB_right,
std::string, quarks,
std::string, prefactors,
int, parity);
};
typedef Correlator<Metadata> Result;
public:
// constructor
TBaryon(const std::string name);
@ -72,11 +90,14 @@ public:
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
virtual void parseGammaString(std::vector<GammaABPair> &gammaList);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
// Which gamma algebra was specified
Gamma::Algebra al;
};
MODULE_REGISTER_TMP(Baryon, ARG(TBaryon<FIMPL, FIMPL, FIMPL>), MContraction);
@ -94,7 +115,7 @@ TBaryon<FImpl1, FImpl2, FImpl3>::TBaryon(const std::string name)
template <typename FImpl1, typename FImpl2, typename FImpl3>
std::vector<std::string> TBaryon<FImpl1, FImpl2, FImpl3>::getInput(void)
{
std::vector<std::string> input = {par().q1, par().q2, par().q3};
std::vector<std::string> input = {par().q1, par().q2, par().q3, par().sink};
return input;
}
@ -107,30 +128,199 @@ std::vector<std::string> TBaryon<FImpl1, FImpl2, FImpl3>::getOutput(void)
return out;
}
template <typename FImpl1, typename FImpl2, typename FImpl3>
void TBaryon<FImpl1, FImpl2,FImpl3>::parseGammaString(std::vector<GammaABPair> &gammaList)
{
gammaList.clear();
std::string gammaString = par().gammas;
//Shorthands for standard baryon operators
gammaString = regex_replace(gammaString, std::regex("j12"),"(Identity SigmaXZ)");
gammaString = regex_replace(gammaString, std::regex("j32X"),"(Identity MinusGammaZGamma5)");
gammaString = regex_replace(gammaString, std::regex("j32Y"),"(Identity GammaT)");
gammaString = regex_replace(gammaString, std::regex("j32Z"),"(Identity GammaXGamma5)");
//Shorthands for less common baryon operators
gammaString = regex_replace(gammaString, std::regex("j12_alt1"),"(Gamma5 MinusSigmaYT)");
gammaString = regex_replace(gammaString, std::regex("j12_alt2"),"(Identity GammaYGamma5)");
//A single gamma matrix
std::regex rex_g("([0-9a-zA-Z]+)");
//The full string we expect
std::regex rex("( *\\(( *\\(([0-9a-zA-Z]+) +([0-9a-zA-Z]+) *\\)){2} *\\) *)+");
std::smatch sm;
std::regex_match(gammaString, sm, rex);
assert(sm[0].matched && "invalid gamma structure.");
auto gamma_begin = std::sregex_iterator(gammaString.begin(), gammaString.end(), rex_g);
auto gamma_end = std::sregex_iterator();
int nGamma = std::distance(gamma_begin, gamma_end);
//couldn't find out how to count the size in the iterator, other than looping through it...
/* int nGamma=0;
for (std::sregex_iterator i = gamma_begin; i != gamma_end; ++i) {
nGamma++;
}
*/
gammaList.resize(nGamma/4);
std::vector<std::string> gS;
gS.resize(nGamma);
//even more ugly workarounds here...
int iG=0;
for (std::sregex_iterator i = gamma_begin; i != gamma_end; ++i) {
std::smatch match = *i;
gS[iG] = match.str();
iG++;
}
for (int i = 0; i < gammaList.size(); i++){
std::vector<Gamma::Algebra> gS1 = strToVec<Gamma::Algebra>(gS[4*i]);
std::vector<Gamma::Algebra> gS2 = strToVec<Gamma::Algebra>(gS[4*i+1]);
std::vector<Gamma::Algebra> gS3 = strToVec<Gamma::Algebra>(gS[4*i+2]);
std::vector<Gamma::Algebra> gS4 = strToVec<Gamma::Algebra>(gS[4*i+3]);
gammaList[i].first.first=gS1[0];
gammaList[i].first.second=gS2[0];
gammaList[i].second.first=gS3[0];
gammaList[i].second.second=gS4[0];
}
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2, typename FImpl3>
void TBaryon<FImpl1, FImpl2, FImpl3>::setup(void)
{
envTmpLat(LatticeComplex, "c");
envTmpLat(LatticeComplex, "c2");
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2, typename FImpl3>
void TBaryon<FImpl1, FImpl2, FImpl3>::execute(void)
{
LOG(Message) << "Computing baryon contractions '" << getName() << "' using"
<< " quarks '" << par().q1 << "', '" << par().q2 << "', and '"
<< par().q3 << "'" << std::endl;
auto &q1 = envGet(PropagatorField1, par().q1);
auto &q2 = envGet(PropagatorField2, par().q2);
auto &q3 = envGet(PropagatorField3, par().q2);
std::vector<std::string> quarks = strToVec<std::string>(par().quarks);
std::vector<double> prefactors = strToVec<double>(par().prefactors);
int nQ=quarks.size();
const int parity {par().parity.size()>0 ? std::stoi(par().parity) : 1};
std::vector<GammaABPair> gammaList;
parseGammaString(gammaList);
assert(prefactors.size()==nQ && "number of prefactors needs to match number of quark-structures.");
for (int iQ = 0; iQ < nQ; iQ++)
assert(quarks[iQ].size()==3 && "quark-structures must consist of 3 quarks each.");
LOG(Message) << "Computing baryon contractions '" << getName() << "'" << std::endl;
for (int iQ1 = 0; iQ1 < nQ; iQ1++)
for (int iQ2 = 0; iQ2 < nQ; iQ2++)
LOG(Message) << prefactors[iQ1]*prefactors[iQ2] << "*<" << quarks[iQ1] << "|" << quarks[iQ2] << ">" << std::endl;
LOG(Message) << " using quarks " << par().q1 << "', " << par().q2 << "', and '" << par().q3 << std::endl;
for (int iG = 0; iG < gammaList.size(); iG++)
LOG(Message) << "' with (Gamma^A,Gamma^B)_left = ( " << gammaList[iG].first.first << " , " << gammaList[iG].first.second << "') and (Gamma^A,Gamma^B)_right = ( " << gammaList[iG].second.first << " , " << gammaList[iG].second.second << ")" << std::endl;
LOG(Message) << "and parity " << parity << " using sink " << par().sink << "." << std::endl;
envGetTmp(LatticeComplex, c);
Result result;
// FIXME: do contractions
// saveResult(par().output, "meson", result);
envGetTmp(LatticeComplex, c2);
int nt = env().getDim(Tp);
std::vector<TComplex> buf;
TComplex cs;
TComplex ch;
std::vector<Result> result;
Result r;
r.info.parity = parity;
r.info.quarks = par().quarks;
r.info.prefactors = par().prefactors;
if (envHasType(SlicedPropagator1, par().q1) and
envHasType(SlicedPropagator2, par().q2) and
envHasType(SlicedPropagator3, par().q3))
{
auto &q1 = envGet(SlicedPropagator1, par().q1);
auto &q2 = envGet(SlicedPropagator2, par().q2);
auto &q3 = envGet(SlicedPropagator3, par().q3);
for (unsigned int i = 0; i < gammaList.size(); ++i)
{
r.info.gammaA_left = gammaList[i].first.first;
r.info.gammaB_left = gammaList[i].first.second;
r.info.gammaA_right = gammaList[i].second.first;
r.info.gammaB_right = gammaList[i].second.second;
Gamma gAl(gammaList[i].first.first);
Gamma gBl(gammaList[i].first.second);
Gamma gAr(gammaList[i].second.first);
Gamma gBr(gammaList[i].second.second);
LOG(Message) << "(propagator already sinked)" << std::endl;
r.corr.clear();
for (unsigned int t = 0; t < buf.size(); ++t)
{
cs = Zero();
for (int iQ1 = 0; iQ1 < nQ; iQ1++){
for (int iQ2 = 0; iQ2 < nQ; iQ2++){
BaryonUtils<FIMPL>::ContractBaryons_Sliced(q1[t],q2[t],q3[t],gAl,gBl,gAr,gBr,quarks[iQ1].c_str(),quarks[iQ2].c_str(),parity,ch);
cs += prefactors[iQ1]*prefactors[iQ2]*ch;
}
}
r.corr.push_back(TensorRemove(cs));
}
result.push_back(r);
}
}
else
{
auto &q1 = envGet(PropagatorField1, par().q1);
auto &q2 = envGet(PropagatorField2, par().q2);
auto &q3 = envGet(PropagatorField3, par().q3);
for (unsigned int i = 0; i < gammaList.size(); ++i)
{
r.info.gammaA_left = gammaList[i].first.first;
r.info.gammaB_left = gammaList[i].first.second;
r.info.gammaA_right = gammaList[i].second.first;
r.info.gammaB_right = gammaList[i].second.second;
Gamma gAl(gammaList[i].first.first);
Gamma gBl(gammaList[i].first.second);
Gamma gAr(gammaList[i].second.first);
Gamma gBr(gammaList[i].second.second);
std::string ns;
ns = vm().getModuleNamespace(env().getObjectModule(par().sink));
if (ns == "MSource")
{
c=Zero();
for (int iQ1 = 0; iQ1 < nQ; iQ1++){
for (int iQ2 = 0; iQ2 < nQ; iQ2++){
BaryonUtils<FIMPL>::ContractBaryons(q1,q2,q3,gAl,gBl,gAr,gBr,quarks[iQ1].c_str(),quarks[iQ2].c_str(),parity,c2);
c+=prefactors[iQ1]*prefactors[iQ2]*c2;
}
}
PropagatorField1 &sink = envGet(PropagatorField1, par().sink);
auto test = closure(trace(sink*c));
sliceSum(test, buf, Tp);
}
else if (ns == "MSink")
{
c=Zero();
for (int iQ1 = 0; iQ1 < nQ; iQ1++){
for (int iQ2 = 0; iQ2 < nQ; iQ2++){
BaryonUtils<FIMPL>::ContractBaryons(q1,q2,q3,gAl,gBl,gAr,gBr,quarks[iQ1].c_str(),quarks[iQ2].c_str(),parity,c2);
c+=prefactors[iQ1]*prefactors[iQ2]*c2;
}
}
SinkFnScalar &sink = envGet(SinkFnScalar, par().sink);
buf = sink(c);
}
r.corr.clear();
for (unsigned int t = 0; t < buf.size(); ++t)
{
r.corr.push_back(TensorRemove(buf[t]));
}
result.push_back(r);
}
}
saveResult(par().output, "baryon", result);
}
END_MODULE_NAMESPACE

View File

@ -57,7 +57,8 @@ BEGIN_HADRONS_NAMESPACE
* - q1: sink smeared propagator, source at i
* - q2: propagator, source at i
* - q3: propagator, source at f
* - gamma: gamma matrix to insert
* - gammas: gamma matrices to insert
* (space-separated strings e.g. "GammaT GammaX GammaY")
* - tSnk: sink position for propagator q1.
*
*/
@ -71,12 +72,12 @@ class Gamma3ptPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Gamma3ptPar,
std::string, q1,
std::string, q2,
std::string, q3,
Gamma::Algebra, gamma,
unsigned int, tSnk,
std::string, output);
std::string, q1,
std::string, q2,
std::string, q3,
std::string, gamma,
unsigned int, tSnk,
std::string, output);
};
template <typename FImpl1, typename FImpl2, typename FImpl3>
@ -100,6 +101,7 @@ public:
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
virtual void parseGammaString(std::vector<Gamma::Algebra> &gammaList);
protected:
// setup
virtual void setup(void);
@ -142,37 +144,67 @@ void TGamma3pt<FImpl1, FImpl2, FImpl3>::setup(void)
envTmpLat(LatticeComplex, "c");
}
template <typename FImpl1, typename FImpl2, typename FImpl3>
void TGamma3pt<FImpl1, FImpl2, FImpl3>::parseGammaString(std::vector<Gamma::Algebra> &gammaList)
{
gammaList.clear();
// Determine gamma matrices to insert at source/sink.
if (par().gamma.compare("all") == 0)
{
// Do all contractions.
for (unsigned int i = 1; i < Gamma::nGamma; i += 2)
{
gammaList.push_back((Gamma::Algebra)i);
}
}
else
{
// Parse individual contractions from input string.
gammaList = strToVec<Gamma::Algebra>(par().gamma);
}
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2, typename FImpl3>
void TGamma3pt<FImpl1, FImpl2, FImpl3>::execute(void)
{
LOG(Message) << "Computing 3pt contractions '" << getName() << "' using"
<< " quarks '" << par().q1 << "', '" << par().q2 << "' and '"
<< par().q3 << "', with " << par().gamma << " insertion."
<< par().q3 << "', with " << par().gamma << " insertions."
<< std::endl;
// Initialise variables. q2 and q3 are normal propagators, q1 may be
// sink smeared.
auto &q1 = envGet(SlicedPropagator1, par().q1);
auto &q2 = envGet(PropagatorField2, par().q2);
auto &q3 = envGet(PropagatorField2, par().q3);
Gamma g5(Gamma::Algebra::Gamma5);
Gamma gamma(par().gamma);
std::vector<TComplex> buf;
Result result;
auto &q1 = envGet(SlicedPropagator1, par().q1);
auto &q2 = envGet(PropagatorField2, par().q2);
auto &q3 = envGet(PropagatorField2, par().q3);
Gamma g5(Gamma::Algebra::Gamma5);
std::vector<Gamma::Algebra> gammaList;
std::vector<TComplex> buf;
std::vector<Result> result;
int nt = env().getDim(Tp);
parseGammaString(gammaList);
result.resize(gammaList.size());
for (unsigned int i = 0; i < result.size(); ++i)
{
result[i].gamma = gammaList[i];
result[i].corr.resize(nt);
}
// Extract relevant timeslice of sinked propagator q1, then contract &
// sum over all spacial positions of gamma insertion.
SitePropagator1 q1Snk = q1[par().tSnk];
envGetTmp(LatticeComplex, c);
c = trace(g5*q1Snk*adj(q2)*(g5*gamma)*q3);
sliceSum(c, buf, Tp);
result.gamma = par().gamma;
result.corr.resize(buf.size());
for (unsigned int t = 0; t < buf.size(); ++t)
for (unsigned int i = 0; i < result.size(); ++i)
{
result.corr[t] = TensorRemove(buf[t]);
Gamma gamma(gammaList[i]);
c = trace(g5*q1Snk*adj(q2)*(g5*gamma)*q3);
sliceSum(c, buf, Tp);
for (unsigned int t = 0; t < buf.size(); ++t)
{
result[i].corr[t] = TensorRemove(buf[t]);
}
}
saveResult(par().output, "gamma3pt", result);
}

View File

@ -0,0 +1,7 @@
#include <Hadrons/Modules/MIO/LoadA2AMatrixDiskVector.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MIO;
template class Grid::Hadrons::MIO::TLoadA2AMatrixDiskVector<FIMPL>;

View File

@ -0,0 +1,115 @@
#ifndef Hadrons_MIO_LoadA2AMatrixDiskVector_hpp_
#define Hadrons_MIO_LoadA2AMatrixDiskVector_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
#include <Hadrons/A2AMatrix.hpp>
#include <Hadrons/DiskVector.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* LoadA2AMatrixDiskVector *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MIO)
class LoadA2AMatrixDiskVectorPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(LoadA2AMatrixDiskVectorPar,
std::string, file,
std::string, dataset,
std::string, diskVectorDir,
int, cacheSize);
};
template <typename FImpl>
class TLoadA2AMatrixDiskVector: public Module<LoadA2AMatrixDiskVectorPar>
{
public:
FERM_TYPE_ALIASES(FImpl, );
// constructor
TLoadA2AMatrixDiskVector(const std::string name);
// destructor
virtual ~TLoadA2AMatrixDiskVector(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(LoadA2AMatrixDiskVector, TLoadA2AMatrixDiskVector<FIMPL>, MIO);
/******************************************************************************
* TLoadA2AMatrixDiskVector implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TLoadA2AMatrixDiskVector<FImpl>::TLoadA2AMatrixDiskVector(const std::string name)
: Module<LoadA2AMatrixDiskVectorPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TLoadA2AMatrixDiskVector<FImpl>::getInput(void)
{
std::vector<std::string> in;
return in;
}
template <typename FImpl>
std::vector<std::string> TLoadA2AMatrixDiskVector<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TLoadA2AMatrixDiskVector<FImpl>::setup(void)
{
int Ls = 1;
std::string dvDir = par().diskVectorDir;
std::string dataset = par().dataset;
std::string dvFile = dvDir + "/" + getName() + "." + std::to_string(vm().getTrajectory());
int nt = env().getDim(Tp);
int cacheSize = par().cacheSize;
bool clean = true;
GridBase *grid = envGetGrid(FermionField);
envCreate(EigenDiskVector<ComplexD>, getName(), Ls, dvFile, nt, cacheSize, clean, grid);
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TLoadA2AMatrixDiskVector<FImpl>::execute(void)
{
int nt = env().getDim(Tp);
std::string file = par().file;
std::string dataset = par().dataset;
GridBase *grid = envGetGrid(FermionField);
auto &mesonFieldDV = envGet(EigenDiskVector<ComplexD>, getName());
int traj = vm().getTrajectory();
tokenReplace(file, "traj", traj);
LOG(Message) << "-- Loading '" << file << "'-- " << std::endl;
double t;
A2AMatrixIo<HADRONS_A2AM_IO_TYPE> mfIO(file, dataset, nt);
mfIO.load(mesonFieldDV, &t, grid);
LOG(Message) << "Read " << mfIO.getSize() << " bytes in " << t << " usec, " << mfIO.getSize() / t * 1.0e6 / 1024 / 1024 << " MB/s" << std::endl;
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MIO_LoadA2AMatrixDiskVector_hpp_