mirror of
https://github.com/paboyle/Grid.git
synced 2025-04-09 21:50:45 +01:00
Very early version of MR solver
This commit is contained in:
parent
074db32e54
commit
f61c0b5d03
@ -47,6 +47,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|||||||
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
|
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
|
||||||
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
|
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
|
||||||
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>
|
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>
|
||||||
|
#include <Grid/algorithms/iterative/MinimalResidual.h>
|
||||||
#include <Grid/algorithms/iterative/GeneralisedMinimalResidual.h>
|
#include <Grid/algorithms/iterative/GeneralisedMinimalResidual.h>
|
||||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
|
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
|
||||||
#include <Grid/algorithms/CoarsenedMatrix.h>
|
#include <Grid/algorithms/CoarsenedMatrix.h>
|
||||||
|
@ -38,177 +38,24 @@ namespace Grid {
|
|||||||
// single input vec, single output vec.
|
// single input vec, single output vec.
|
||||||
/////////////////////////////////////////////////////////////
|
/////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
template <class Field>
|
template<class Field> class MinimalResidual : public OperatorFunction<Field> {
|
||||||
class MinimalResidual : public OperatorFunction<Field> {
|
|
||||||
public:
|
public:
|
||||||
bool ErrorOnNoConverge; // throw an assert when the MR fails to converge.
|
bool ErrorOnNoConverge; // throw an assert when the MR fails to converge.
|
||||||
// Defaults true.
|
// Defaults true.
|
||||||
RealD Tolerance;
|
RealD Tolerance;
|
||||||
Integer MaxIterations;
|
Integer MaxIterations;
|
||||||
Integer IterationsToComplete; //Number of iterations the MR took to finish. Filled in upon completion
|
Integer IterationsToComplete; // Number of iterations the MR took to finish. Filled in upon completion
|
||||||
|
|
||||||
MinimalResidual(RealD tol, Integer maxit, bool err_on_no_conv = true)
|
MinimalResidual(RealD tol, Integer maxit, bool err_on_no_conv = true)
|
||||||
: Tolerance(tol),
|
: Tolerance(tol),
|
||||||
MaxIterations(maxit),
|
MaxIterations(maxit),
|
||||||
ErrorOnNoConverge(err_on_no_conv){};
|
ErrorOnNoConverge(err_on_no_conv){};
|
||||||
|
|
||||||
void operator()(LinearOperatorBase<Field> &Linop, const Field &src,
|
|
||||||
Field &psi) {
|
|
||||||
psi.checkerboard = src.checkerboard; // Check
|
|
||||||
conformable(psi, src);
|
|
||||||
|
|
||||||
/////
|
|
||||||
RealD cp, c, a, d, b, ssq, qq, b_pred;
|
|
||||||
|
|
||||||
Field p(src);
|
|
||||||
Field mmp(src);
|
|
||||||
Field r(src);
|
|
||||||
|
|
||||||
// Initial residual computation & set up
|
|
||||||
RealD guess = norm2(psi);
|
|
||||||
assert(std::isnan(guess) == 0);
|
|
||||||
/////
|
|
||||||
|
|
||||||
Field p {src};
|
|
||||||
Field matrixTimesPsi {src};
|
|
||||||
Field r {src};
|
|
||||||
|
|
||||||
RealD alpha {};
|
|
||||||
|
|
||||||
// Initial residual computation & set up
|
|
||||||
RealD guess = norm2(psi);
|
|
||||||
assert(std::isnan(guess) == 0);
|
|
||||||
|
|
||||||
Linop.HermOp(psi, matrixTimesPsi);
|
|
||||||
|
|
||||||
r = src - matrixTimesPsi;
|
|
||||||
|
|
||||||
Linop.HermOp(r, p);
|
|
||||||
|
|
||||||
alpha = innerProduct(p,r) / innerProduct(p,p);
|
|
||||||
psi = psi + alpha * r;
|
|
||||||
r = r - alpha * p;
|
|
||||||
|
|
||||||
Linop.HermOp(r, p);
|
|
||||||
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////
|
|
||||||
////////////////////////////////////////////////////////////////////////////////
|
|
||||||
|
|
||||||
// RealD cp, c, a, d, b, ssq, qq, b_pred;
|
|
||||||
|
|
||||||
Field p(src);
|
|
||||||
Field matrixTimesPsi(src);
|
|
||||||
// Field r(src);
|
|
||||||
|
|
||||||
// Initial residual computation & set up
|
|
||||||
RealD guess = norm2(psi);
|
|
||||||
assert(std::isnan(guess) == 0);
|
|
||||||
|
|
||||||
|
|
||||||
Linop.HermOpAndNorm(psi, matrixTimesPsi, d, b);
|
|
||||||
|
|
||||||
|
|
||||||
r = src - matrixTimesPsi;
|
|
||||||
p = matrixTimesPsi;
|
|
||||||
|
|
||||||
a = norm2(p);
|
|
||||||
cp = a;
|
|
||||||
ssq = norm2(src);
|
|
||||||
|
|
||||||
std::cout << GridLogIterative << std::setprecision(4)
|
|
||||||
<< "MinimalResidual: guess " << guess << std::endl;
|
|
||||||
std::cout << GridLogIterative << std::setprecision(4)
|
|
||||||
<< "MinimalResidual: src " << ssq << std::endl;
|
|
||||||
std::cout << GridLogIterative << std::setprecision(4)
|
|
||||||
<< "MinimalResidual: mp " << d << std::endl;
|
|
||||||
std::cout << GridLogIterative << std::setprecision(4)
|
|
||||||
<< "MinimalResidual: matrixTimesPsi " << b << std::endl;
|
|
||||||
std::cout << GridLogIterative << std::setprecision(4)
|
|
||||||
<< "MinimalResidual: cp,r " << cp << std::endl;
|
|
||||||
std::cout << GridLogIterative << std::setprecision(4)
|
|
||||||
<< "MinimalResidual: p " << a << std::endl;
|
|
||||||
|
|
||||||
RealD rsq = Tolerance * Tolerance * ssq;
|
|
||||||
|
|
||||||
// Check if guess is really REALLY good :)
|
|
||||||
if (cp <= rsq) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::cout << GridLogIterative << std::setprecision(4)
|
|
||||||
<< "MinimalResidual: k=0 residual " << cp << " target " << rsq
|
|
||||||
<< std::endl;
|
|
||||||
|
|
||||||
GridStopWatch LinalgTimer;
|
|
||||||
GridStopWatch MatrixTimer;
|
|
||||||
GridStopWatch SolverTimer;
|
|
||||||
|
|
||||||
SolverTimer.Start();
|
|
||||||
int k;
|
|
||||||
for (k = 1; k <= MaxIterations; k++) {
|
|
||||||
c = cp;
|
|
||||||
|
|
||||||
MatrixTimer.Start();
|
|
||||||
Linop.HermOpAndNorm(p, matrixTimesPsi, d, qq);
|
|
||||||
MatrixTimer.Stop();
|
|
||||||
|
|
||||||
LinalgTimer.Start();
|
|
||||||
// RealD qqck = norm2(matrixTimesPsi);
|
|
||||||
// ComplexD dck = innerProduct(p,matrixTimesPsi);
|
|
||||||
|
|
||||||
a = c / d;
|
|
||||||
b_pred = a * (a * qq - d) / c;
|
|
||||||
|
|
||||||
cp = axpy_norm(r, -a, matrixTimesPsi, r);
|
|
||||||
b = cp / c;
|
|
||||||
|
|
||||||
// Fuse these loops ; should be really easy
|
|
||||||
psi = a * p + psi;
|
|
||||||
p = p * b + r;
|
|
||||||
|
|
||||||
LinalgTimer.Stop();
|
|
||||||
std::cout << GridLogIterative << "MinimalResidual: Iteration " << k
|
|
||||||
<< " residual " << cp << " target " << rsq << std::endl;
|
|
||||||
|
|
||||||
// Stopping condition
|
|
||||||
if (cp <= rsq) {
|
|
||||||
SolverTimer.Stop();
|
|
||||||
Linop.HermOpAndNorm(psi, matrixTimesPsi, d, qq);
|
|
||||||
p = matrixTimesPsi - src;
|
|
||||||
|
|
||||||
RealD matrixTimesPsiNorm = sqrt(norm2(matrixTimesPsi));
|
|
||||||
RealD psinorm = sqrt(norm2(psi));
|
|
||||||
RealD srcnorm = sqrt(norm2(src));
|
|
||||||
RealD resnorm = sqrt(norm2(p));
|
|
||||||
RealD true_residual = resnorm / srcnorm;
|
|
||||||
|
|
||||||
std::cout << GridLogMessage
|
|
||||||
<< "MinimalResidual: Converged on iteration " << k << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Computed residual " << sqrt(cp / ssq)
|
|
||||||
<< " true residual " << true_residual << " target "
|
|
||||||
<< Tolerance << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Time elapsed: Iterations "
|
|
||||||
<< SolverTimer.Elapsed() << " Matrix "
|
|
||||||
<< MatrixTimer.Elapsed() << " Linalg "
|
|
||||||
<< LinalgTimer.Elapsed();
|
|
||||||
std::cout << std::endl;
|
|
||||||
|
|
||||||
if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
|
|
||||||
IterationsToComplete = k;
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
std::cout << GridLogMessage << "MinimalResidual did NOT converge"
|
|
||||||
<< std::endl;
|
|
||||||
if (ErrorOnNoConverge) assert(0);
|
|
||||||
IterationsToComplete = k;
|
|
||||||
}
|
|
||||||
|
|
||||||
//! Minimal-residual (MR) algorithm for a generic Linear Operator
|
//! Minimal-residual (MR) algorithm for a generic Linear Operator
|
||||||
/*! \ingroup invert
|
/*! \ingroup invert
|
||||||
* This subroutine uses the Minimal Residual (MR) algorithm to determine
|
* This subroutine uses the Minimal Residual (MR) algorithm to determine
|
||||||
* the solution of the set of linear equations. Here we allow M to be nonhermitian.
|
* the solution of the set of linear equations. Here we allow M to be
|
||||||
|
nonhermitian.
|
||||||
*
|
*
|
||||||
* M . Psi = src
|
* M . Psi = src
|
||||||
*
|
*
|
||||||
@ -256,15 +103,13 @@ class MinimalResidual : public OperatorFunction<Field> {
|
|||||||
* @{
|
* @{
|
||||||
*/
|
*/
|
||||||
|
|
||||||
// TODO: figure out what isign from chroma is supposed to do
|
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
|
||||||
void tmpImplFromChroma(LinearOperatorBase<Field> &Linop, const Field &src,
|
|
||||||
Field &psi) {
|
|
||||||
psi.checkerboard = src.checkerboard;
|
psi.checkerboard = src.checkerboard;
|
||||||
conformable(psi, src);
|
conformable(psi, src);
|
||||||
|
|
||||||
Complex a, c;
|
Complex a, c;
|
||||||
Complex c;
|
RealD d;
|
||||||
RealD d;
|
|
||||||
|
|
||||||
Field Mr(src);
|
Field Mr(src);
|
||||||
Field r(src);
|
Field r(src);
|
||||||
@ -274,72 +119,98 @@ class MinimalResidual : public OperatorFunction<Field> {
|
|||||||
assert(std::isnan(guess) == 0);
|
assert(std::isnan(guess) == 0);
|
||||||
|
|
||||||
RealD ssq = norm2(src); // flopcount.addSiteFlops(4*Nc*Ns,s); // stands for "source squared"
|
RealD ssq = norm2(src); // flopcount.addSiteFlops(4*Nc*Ns,s); // stands for "source squared"
|
||||||
RealD rsd_sq = Tolerance * Tolerance * ssq; // flopcount.addSiteFlops(4*Nc*Ns,s); // stands for "residual squared"
|
RealD rsd_sq = Tolerance * Tolerance * ssq; // flopcount.addSiteFlops(4*Nc*Ns,s); //
|
||||||
|
// stands for "residual squared"
|
||||||
|
|
||||||
/* r[0] := src - M . Psi[0] */
|
/* r[0] := src - M . Psi[0] */
|
||||||
/* r := M . Psi */
|
/* r := M . Psi */
|
||||||
M(Mr, psi, isign); // flopcount.addFlops(M.nFlops());
|
// M(Mr, psi, isign); // flopcount.addFlops(M.nFlops());
|
||||||
|
Linop.Op(psi, Mr); // flopcount.addFlops(M.nFlops());
|
||||||
|
|
||||||
r = src - Mr; // flopcount.addSiteFlops(2*Nc*Ns,s);
|
r = src - Mr; // flopcount.addSiteFlops(2*Nc*Ns,s);
|
||||||
|
|
||||||
RealD cp = norm2(r); /* Cp = |r[0]|^2 */ /* 2 Nc Ns flops */ // flopcount.addSiteFlops(4*Nc*Ns, s);
|
RealD cp = norm2(r); /* Cp = |r[0]|^2 */
|
||||||
|
/* 2 Nc Ns flops */ // flopcount.addSiteFlops(4*Nc*Ns, s);
|
||||||
|
// auto cp = norm2(r); /* Cp = |r[0]|^2 */ /* 2 Nc Ns flops */ //
|
||||||
|
// flopcount.addSiteFlops(4*Nc*Ns, s);
|
||||||
|
|
||||||
if (cp <= rsd_sq) { /* IF |r[0]| <= Tolerance|src| THEN RETURN; */
|
if(cp <= rsd_sq) { /* IF |r[0]| <= Tolerance|src| THEN RETURN; */
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
std::cout << GridLogIterative << std::setprecision(4)
|
std::cout << GridLogIterative << std::setprecision(4)
|
||||||
<< "MinimalResidual: k=0 residual " << cp << " target " << rsq_sq << std::endl;
|
<< "MinimalResidual: k=0 residual " << cp << " target " << rsd_sq << std::endl;
|
||||||
|
|
||||||
/* FOR k FROM 1 TO MaxIterations DO */
|
GridStopWatch LinalgTimer;
|
||||||
|
GridStopWatch MatrixTimer;
|
||||||
|
GridStopWatch SolverTimer;
|
||||||
|
|
||||||
|
SolverTimer.Start();
|
||||||
auto k = 0;
|
auto k = 0;
|
||||||
while( (k < MaxIterations) && (cp > rsd_sq) )
|
while((k < MaxIterations) && (cp > rsd_sq)) {
|
||||||
{
|
|
||||||
++k;
|
++k;
|
||||||
|
|
||||||
/* a[k-1] := < M.r[k-1], r[k-1] >/ < M.r[k-1], M.r[k-1] > ; */
|
/* a[k-1] := < M.r[k-1], r[k-1] >/ < M.r[k-1], M.r[k-1] > ; */
|
||||||
|
|
||||||
M(Mr, r, isign); /* Mr = M * r */ // flopcount.addFlops(M.nFlops());
|
MatrixTimer.Start();
|
||||||
|
// M(Mr, r, isign); /* Mr = M * r */ // flopcount.addFlops(M.nFlops());
|
||||||
|
Linop.Op(r, Mr); /* Mr = M * r */ // flopcount.addFlops(M.nFlops());
|
||||||
|
MatrixTimer.Stop();
|
||||||
|
|
||||||
|
LinalgTimer.Start();
|
||||||
|
|
||||||
c = innerProduct(Mr, r); /* c = < M.r, r > */ // flopcount.addSiteFlops(4*Nc*Ns,s);
|
c = innerProduct(Mr, r); /* c = < M.r, r > */ // flopcount.addSiteFlops(4*Nc*Ns,s);
|
||||||
|
|
||||||
d = norm2(Mr); /* d = | M.r | ** 2 */ // flopcount.addSiteFlops(4*Nc*Ns,s);
|
d = norm2(Mr); /* d = | M.r | ** 2 */ // flopcount.addSiteFlops(4*Nc*Ns,s);
|
||||||
|
|
||||||
a = c / d; /* a = c / d */
|
a = c / d;
|
||||||
|
|
||||||
a = a * MRovpar; /* a[k-1] *= MRovpar ; */
|
// a = a * MRovpar; /* a[k-1] *= MRovpar ; */
|
||||||
|
|
||||||
|
psi = psi + r * a; /* Psi[k] += a[k-1] r[k-1] ; */ // flopcount.addSiteFlops(4*Nc*Ns,s);
|
||||||
psi = psi + r * a; /* Psi[k] += a[k-1] r[k-1] ; */ // flopcount.addSiteFlops(4*Nc*Ns,s);
|
|
||||||
|
|
||||||
r = r - Mr * a; /* r[k] -= a[k-1] M . r[k-1] ; */ // flopcount.addSiteFlops(4*Nc*Ns,s);
|
r = r - Mr * a; /* r[k] -= a[k-1] M . r[k-1] ; */ // flopcount.addSiteFlops(4*Nc*Ns,s);
|
||||||
|
|
||||||
cp = norm2(r); /* cp = | r[k] |**2 */ // flopcount.addSiteFlops(4*Nc*Ns,s);
|
cp = norm2(r); /* cp = | r[k] |**2 */ // flopcount.addSiteFlops(4*Nc*Ns,s);
|
||||||
|
|
||||||
// std::cout << "InvMR: k = " << k << " cp = " << cp << endl;
|
LinalgTimer.Stop();
|
||||||
|
|
||||||
|
std::cout << GridLogIterative << "MinimalResidual: Iteration " << k
|
||||||
|
<< " residual " << cp << " target " << rsd_sq << std::endl;
|
||||||
}
|
}
|
||||||
|
SolverTimer.Stop();
|
||||||
|
|
||||||
IterationsToComplete = k;
|
IterationsToComplete = k;
|
||||||
|
|
||||||
res.resid = sqrt(cp);
|
// res.resid = sqrt(cp);
|
||||||
swatch.stop();
|
std::cout << "InvMR: k = " << k << " cp = " << cp << std::endl;
|
||||||
std::cout << "InvMR: k = " << k << " cp = " << cp << endl;
|
|
||||||
// flopcount.report("invmr", swatch.getTimeInSeconds());
|
// flopcount.report("invmr", swatch.getTimeInSeconds());
|
||||||
|
|
||||||
|
std::cout << GridLogMessage << "MinimalResidual Converged on iteration " << k << std::endl;
|
||||||
|
std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp / ssq)<<std::endl;
|
||||||
|
// std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl;
|
||||||
|
// std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
|
||||||
|
|
||||||
|
std::cout << GridLogMessage << "Time breakdown "<<std::endl;
|
||||||
|
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||||
|
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||||
|
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
||||||
|
|
||||||
// Compute the actual residual
|
// Compute the actual residual
|
||||||
{
|
{
|
||||||
M(Mr, psi, isign);
|
// M(Mr, psi, isign);
|
||||||
RealD actual_res = norm2(src- Mr);
|
Linop.Op(psi, Mr);
|
||||||
res.resid = sqrt(actual_res);
|
Field tmp = src - Mr;
|
||||||
|
// RealD actual_res = norm2(src-Mr);
|
||||||
|
RealD actual_res = norm2(tmp);
|
||||||
|
// res.resid = sqrt(actual_res);
|
||||||
}
|
}
|
||||||
|
|
||||||
if ( IterationsToComplete == MaxIterations )
|
if(IterationsToComplete == MaxIterations)
|
||||||
std::cerr << "Nonconvergence Warning" << endl;
|
std::cerr << "Nonconvergence Warning" << std::endl;
|
||||||
|
|
||||||
END_CODE();
|
|
||||||
return res;
|
|
||||||
|
|
||||||
|
// return res;
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
}
|
} // namespace Grid
|
||||||
#endif
|
#endif
|
||||||
|
Loading…
x
Reference in New Issue
Block a user