1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-18 07:47:06 +01:00

Merge branch 'feature/gparity_HMC' into feature/ddhmc

This commit is contained in:
Peter Boyle
2021-05-06 20:55:03 +02:00
51 changed files with 4291 additions and 426 deletions

View File

@ -34,6 +34,9 @@ directory
#if defined __GNUC__ && __GNUC__>=6
#pragma GCC diagnostic ignored "-Wignored-attributes"
#endif
#if defined __GNUC__
#pragma GCC diagnostic ignored "-Wpsabi"
#endif
//disables and intel compiler specific warning (in json.hpp)

View File

@ -36,6 +36,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#include <Grid/GridCore.h>
#include <Grid/qcd/QCD.h>
#include <Grid/qcd/spin/Spin.h>
#include <Grid/qcd/gparity/Gparity.h>
#include <Grid/qcd/utils/Utils.h>
#include <Grid/qcd/representations/Representations.h>
NAMESPACE_CHECK(GridQCDCore);

View File

@ -54,6 +54,7 @@ NAMESPACE_CHECK(BiCGSTAB);
#include <Grid/algorithms/iterative/SchurRedBlack.h>
#include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h>
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
#include <Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h>
#include <Grid/algorithms/iterative/BiCGSTABMixedPrec.h>
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>

View File

@ -292,6 +292,7 @@ public:
template<class Field>
class ChebyshevLanczos : public Chebyshev<Field> {
private:
std::vector<RealD> Coeffs;
int order;
RealD alpha;

View File

@ -48,6 +48,7 @@ NAMESPACE_BEGIN(Grid);
Integer TotalInnerIterations; //Number of inner CG iterations
Integer TotalOuterIterations; //Number of restarts
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
RealD TrueResidual;
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
LinearFunction<FieldF> *guesser;
@ -79,6 +80,11 @@ NAMESPACE_BEGIN(Grid);
RealD stop = src_norm * Tolerance*Tolerance;
GridBase* DoublePrecGrid = src_d_in.Grid();
//Generate precision change workspaces
precisionChangeWorkspace wk_dp_from_sp(DoublePrecGrid, SinglePrecGrid);
precisionChangeWorkspace wk_sp_from_dp(SinglePrecGrid, DoublePrecGrid);
FieldD tmp_d(DoublePrecGrid);
tmp_d.Checkerboard() = cb;
@ -119,7 +125,7 @@ NAMESPACE_BEGIN(Grid);
while(norm * inner_tol * inner_tol < stop) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
PrecChangeTimer.Start();
precisionChange(src_f, src_d);
precisionChange(src_f, src_d, wk_sp_from_dp);
PrecChangeTimer.Stop();
sol_f = Zero();
@ -137,7 +143,7 @@ NAMESPACE_BEGIN(Grid);
//Convert sol back to double and add to double prec solution
PrecChangeTimer.Start();
precisionChange(tmp_d, sol_f);
precisionChange(tmp_d, sol_f, wk_dp_from_sp);
PrecChangeTimer.Stop();
axpy(sol_d, 1.0, tmp_d, sol_d);
@ -149,6 +155,7 @@ NAMESPACE_BEGIN(Grid);
ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations);
CG_d(Linop_d, src_d_in, sol_d);
TotalFinalStepIterations = CG_d.IterationsToComplete;
TrueResidual = CG_d.TrueResidual;
TotalTimer.Stop();
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;

View File

@ -52,7 +52,7 @@ public:
MultiShiftFunction shifts;
std::vector<RealD> TrueResidualShift;
ConjugateGradientMultiShift(Integer maxit,MultiShiftFunction &_shifts) :
ConjugateGradientMultiShift(Integer maxit, const MultiShiftFunction &_shifts) :
MaxIterations(maxit),
shifts(_shifts)
{
@ -182,6 +182,9 @@ public:
for(int s=0;s<nshift;s++) {
axpby(psi[s],0.,-bs[s]*alpha[s],src,src);
}
std::cout << GridLogIterative << "ConjugateGradientMultiShift: initial rn (|src|^2) =" << rn << " qq (|MdagM src|^2) =" << qq << " d ( dot(src, [MdagM + m_0]src) ) =" << d << " c=" << c << std::endl;
///////////////////////////////////////
// Timers

View File

@ -0,0 +1,411 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Christopher Kelly <ckelly@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
#define GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
NAMESPACE_BEGIN(Grid);
//CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision.
//The residual is stored in single precision, but the search directions and solution are stored in double precision.
//Every update_freq iterations the residual is corrected in double precision.
//For safety the a final regular CG is applied to clean up if necessary
//Linop to add shift to input linop, used in cleanup CG
namespace ConjugateGradientMultiShiftMixedPrecSupport{
template<typename Field>
class ShiftedLinop: public LinearOperatorBase<Field>{
public:
LinearOperatorBase<Field> &linop_base;
RealD shift;
ShiftedLinop(LinearOperatorBase<Field> &_linop_base, RealD _shift): linop_base(_linop_base), shift(_shift){}
void OpDiag (const Field &in, Field &out){ assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
void Op (const Field &in, Field &out){ assert(0); }
void AdjOp (const Field &in, Field &out){ assert(0); }
void HermOp(const Field &in, Field &out){
linop_base.HermOp(in, out);
axpy(out, shift, in, out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
HermOp(in,out);
ComplexD dot = innerProduct(in,out);
n1=real(dot);
n2=norm2(out);
}
};
};
template<class FieldD, class FieldF,
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class ConjugateGradientMultiShiftMixedPrec : public OperatorMultiFunction<FieldD>,
public OperatorFunction<FieldD>
{
public:
using OperatorFunction<FieldD>::operator();
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
int verbose;
MultiShiftFunction shifts;
std::vector<RealD> TrueResidualShift;
int ReliableUpdateFreq; //number of iterations between reliable updates
GridBase* SinglePrecGrid; //Grid for single-precision fields
LinearOperatorBase<FieldF> &Linop_f; //single precision
ConjugateGradientMultiShiftMixedPrec(Integer maxit, const MultiShiftFunction &_shifts,
GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
int _ReliableUpdateFreq
) :
MaxIterations(maxit), shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq)
{
verbose=1;
IterationsToCompleteShift.resize(_shifts.order);
TrueResidualShift.resize(_shifts.order);
}
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi)
{
GridBase *grid = src.Grid();
int nshift = shifts.order;
std::vector<FieldD> results(nshift,grid);
(*this)(Linop,src,results,psi);
}
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi)
{
int nshift = shifts.order;
(*this)(Linop,src,results);
psi = shifts.norm*src;
for(int i=0;i<nshift;i++){
psi = psi + shifts.residues[i]*results[i];
}
return;
}
void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d)
{
GridBase *DoublePrecGrid = src_d.Grid();
precisionChangeWorkspace wk_f_from_d(SinglePrecGrid, DoublePrecGrid);
precisionChangeWorkspace wk_d_from_f(DoublePrecGrid, SinglePrecGrid);
////////////////////////////////////////////////////////////////////////
// Convenience references to the info stored in "MultiShiftFunction"
////////////////////////////////////////////////////////////////////////
int nshift = shifts.order;
std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
std::vector<RealD> &mresidual(shifts.tolerances);
std::vector<RealD> alpha(nshift,1.0);
//Double precision search directions
FieldD p_d(DoublePrecGrid);
std::vector<FieldD> ps_d(nshift, DoublePrecGrid);// Search directions (double precision)
FieldD tmp_d(DoublePrecGrid);
FieldD r_d(DoublePrecGrid);
FieldD mmp_d(DoublePrecGrid);
assert(psi_d.size()==nshift);
assert(mass.size()==nshift);
assert(mresidual.size()==nshift);
// dynamic sized arrays on stack; 2d is a pain with vector
RealD bs[nshift];
RealD rsq[nshift];
RealD z[nshift][2];
int converged[nshift];
const int primary =0;
//Primary shift fields CG iteration
RealD a,b,c,d;
RealD cp,bp,qq; //prev
// Matrix mult fields
FieldF r_f(SinglePrecGrid);
FieldF p_f(SinglePrecGrid);
FieldF tmp_f(SinglePrecGrid);
FieldF mmp_f(SinglePrecGrid);
FieldF src_f(SinglePrecGrid);
precisionChange(src_f, src_d, wk_f_from_d);
// Check lightest mass
for(int s=0;s<nshift;s++){
assert( mass[s]>= mass[primary] );
converged[s]=0;
}
// Wire guess to zero
// Residuals "r" are src
// First search direction "p" is also src
cp = norm2(src_d);
// Handle trivial case of zero src.
if( cp == 0. ){
for(int s=0;s<nshift;s++){
psi_d[s] = Zero();
IterationsToCompleteShift[s] = 1;
TrueResidualShift[s] = 0.;
}
return;
}
for(int s=0;s<nshift;s++){
rsq[s] = cp * mresidual[s] * mresidual[s];
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
ps_d[s] = src_d;
}
// r and p for primary
r_f=src_f; //residual maintained in single
p_f=src_f;
p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
//MdagM+m[0]
Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
axpy(mmp_f,mass[0],p_f,mmp_f);
RealD rn = norm2(p_f);
d += rn*mass[0];
b = -cp /d;
// Set up the various shift variables
int iz=0;
z[0][1-iz] = 1.0;
z[0][iz] = 1.0;
bs[0] = b;
for(int s=1;s<nshift;s++){
z[s][1-iz] = 1.0;
z[s][iz] = 1.0/( 1.0 - b*(mass[s]-mass[0]));
bs[s] = b*z[s][iz];
}
// r += b[0] A.p[0]
// c= norm(r)
c=axpy_norm(r_f,b,mmp_f,r_f);
for(int s=0;s<nshift;s++) {
axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
}
///////////////////////////////////////
// Timers
///////////////////////////////////////
GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer;
SolverTimer.Start();
// Iteration loop
int k;
for (k=1;k<=MaxIterations;k++){
a = c /cp;
//Update double precision search direction by residual
PrecChangeTimer.Start();
precisionChange(r_d, r_f, wk_d_from_f);
PrecChangeTimer.Stop();
AXPYTimer.Start();
axpy(p_d,a,p_d,r_d);
for(int s=0;s<nshift;s++){
if ( ! converged[s] ) {
if (s==0){
axpy(ps_d[s],a,ps_d[s],r_d);
} else{
RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
axpby(ps_d[s],z[s][iz],as,r_d,ps_d[s]);
}
}
}
AXPYTimer.Stop();
PrecChangeTimer.Start();
precisionChange(p_f, p_d, wk_f_from_d); //get back single prec search direction for linop
PrecChangeTimer.Stop();
cp=c;
MatrixTimer.Start();
Linop_f.HermOp(p_f,mmp_f);
d=real(innerProduct(p_f,mmp_f));
MatrixTimer.Stop();
AXPYTimer.Start();
axpy(mmp_f,mass[0],p_f,mmp_f);
AXPYTimer.Stop();
RealD rn = norm2(p_f);
d += rn*mass[0];
bp=b;
b=-cp/d;
// Toggle the recurrence history
bs[0] = b;
iz = 1-iz;
ShiftTimer.Start();
for(int s=1;s<nshift;s++){
if((!converged[s])){
RealD z0 = z[s][1-iz];
RealD z1 = z[s][iz];
z[s][iz] = z0*z1*bp
/ (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));
bs[s] = b*z[s][iz]/z0; // NB sign rel to Mike
}
}
ShiftTimer.Stop();
//Update double precision solutions
AXPYTimer.Start();
for(int s=0;s<nshift;s++){
int ss = s;
if( (!converged[s]) ) {
axpy(psi_d[ss],-bs[s]*alpha[s],ps_d[s],psi_d[ss]);
}
}
//Perform reliable update if necessary; otherwise update residual from single-prec mmp
RealD c_f = axpy_norm(r_f,b,mmp_f,r_f);
AXPYTimer.Stop();
c = c_f;
if(k % ReliableUpdateFreq == 0){
//Replace r with true residual
MatrixTimer.Start();
Linop_d.HermOp(psi_d[0],mmp_d);
MatrixTimer.Stop();
AXPYTimer.Start();
axpy(mmp_d,mass[0],psi_d[0],mmp_d);
RealD c_d = axpy_norm(r_d, -1.0, mmp_d, src_d);
AXPYTimer.Stop();
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<< ", replaced |r|^2 = "<<c_f <<" with |r|^2 = "<<c_d<<std::endl;
PrecChangeTimer.Start();
precisionChange(r_f, r_d, wk_f_from_d);
PrecChangeTimer.Stop();
c = c_d;
}
// Convergence checks
int all_converged = 1;
for(int s=0;s<nshift;s++){
if ( (!converged[s]) ){
IterationsToCompleteShift[s] = k;
RealD css = c * z[s][iz]* z[s][iz];
if(css<rsq[s]){
if ( ! converged[s] )
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
converged[s]=1;
} else {
all_converged=0;
}
}
}
if ( all_converged ){
SolverTimer.Stop();
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: All shifts have converged iteration "<<k<<std::endl;
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Checking solutions"<<std::endl;
// Check answers
for(int s=0; s < nshift; s++) {
Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq);
axpy(tmp_d,mass[s],psi_d[s],mmp_d);
axpy(r_d,-alpha[s],src_d,tmp_d);
RealD rn = norm2(r_d);
RealD cn = norm2(src_d);
TrueResidualShift[s] = std::sqrt(rn/cn);
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl;
//If we have not reached the desired tolerance, do a (mixed precision) CG cleanup
if(rn >= rsq[s]){
CleanupTimer.Start();
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: performing cleanup step for shift " << s << std::endl;
//Setup linear operators for final cleanup
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]);
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]);
MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d);
cg(src_d, psi_d[s]);
TrueResidualShift[s] = cg.TrueResidual;
CleanupTimer.Stop();
}
}
std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrec: Time Breakdown for body"<<std::endl;
std::cout << GridLogMessage << "\tSolver " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tShift " << ShiftTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl;
IterationsToComplete = k;
return;
}
}
// ugly hack
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
// assert(0);
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -46,3 +46,4 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/lattice/Lattice_unary.h>
#include <Grid/lattice/Lattice_transfer.h>
#include <Grid/lattice/Lattice_basis.h>
#include <Grid/lattice/Lattice_crc.h>

View File

@ -0,0 +1,42 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_crc.h
Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template<class vobj> uint32_t crc(Lattice<vobj> & buf)
{
autoView( buf_v , buf, CpuRead);
return ::crc32(0L,(unsigned char *)&buf_v[0],(size_t)sizeof(vobj)*buf.oSites());
}
#define CRC(U) std::cout << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
NAMESPACE_END(Grid);

View File

@ -32,8 +32,9 @@
#include <random>
#ifdef RNG_SITMO
#include <Grid/sitmo_rng/sitmo_prng_engine.hpp>
#include <Grid/random/sitmo_prng_engine.hpp>
#endif
#include <Grid/random/gaussian.h>
#if defined(RNG_SITMO)
#define RNG_FAST_DISCARD
@ -142,8 +143,8 @@ public:
std::vector<RngEngine> _generators;
std::vector<std::uniform_real_distribution<RealD> > _uniform;
std::vector<std::normal_distribution<RealD> > _gaussian;
std::vector<std::discrete_distribution<int32_t> > _bernoulli;
std::vector<Grid::gaussian_distribution<RealD> > _gaussian;
// std::vector<std::discrete_distribution<int32_t> > _bernoulli;
std::vector<std::uniform_int_distribution<uint32_t> > _uid;
///////////////////////
@ -243,8 +244,8 @@ public:
GridSerialRNG() : GridRNGbase() {
_generators.resize(1);
_uniform.resize(1,std::uniform_real_distribution<RealD>{0,1});
_gaussian.resize(1,std::normal_distribution<RealD>(0.0,1.0) );
_bernoulli.resize(1,std::discrete_distribution<int32_t>{1,1});
_gaussian.resize(1,gaussian_distribution<RealD>(0.0,1.0) );
// _bernoulli.resize(1,std::discrete_distribution<int32_t>{1,1});
_uid.resize(1,std::uniform_int_distribution<uint32_t>() );
}
@ -357,8 +358,8 @@ public:
_generators.resize(_vol);
_uniform.resize(_vol,std::uniform_real_distribution<RealD>{0,1});
_gaussian.resize(_vol,std::normal_distribution<RealD>(0.0,1.0) );
_bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
_gaussian.resize(_vol,gaussian_distribution<RealD>(0.0,1.0) );
// _bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
_uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
}
@ -515,11 +516,11 @@ public:
template <class vobj> inline void random(GridParallelRNG &rng,Lattice<vobj> &l) { rng.fill(l,rng._uniform); }
template <class vobj> inline void gaussian(GridParallelRNG &rng,Lattice<vobj> &l) { rng.fill(l,rng._gaussian); }
template <class vobj> inline void bernoulli(GridParallelRNG &rng,Lattice<vobj> &l){ rng.fill(l,rng._bernoulli);}
//template <class vobj> inline void bernoulli(GridParallelRNG &rng,Lattice<vobj> &l){ rng.fill(l,rng._bernoulli);}
template <class sobj> inline void random(GridSerialRNG &rng,sobj &l) { rng.fill(l,rng._uniform ); }
template <class sobj> inline void gaussian(GridSerialRNG &rng,sobj &l) { rng.fill(l,rng._gaussian ); }
template <class sobj> inline void bernoulli(GridSerialRNG &rng,sobj &l){ rng.fill(l,rng._bernoulli); }
//template <class sobj> inline void bernoulli(GridSerialRNG &rng,sobj &l){ rng.fill(l,rng._bernoulli); }
NAMESPACE_END(Grid);
#endif

View File

@ -777,7 +777,7 @@ void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int
template<class vobj>
void Replicate(Lattice<vobj> &coarse,Lattice<vobj> & fine)
void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine)
{
typedef typename vobj::scalar_object sobj;
@ -1002,54 +1002,96 @@ vectorizeFromRevLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out)
});
}
//Convert a Lattice from one precision to another
template<class VobjOut, class VobjIn>
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
{
assert(out.Grid()->Nd() == in.Grid()->Nd());
for(int d=0;d<out.Grid()->Nd();d++){
assert(out.Grid()->FullDimensions()[d] == in.Grid()->FullDimensions()[d]);
}
out.Checkerboard() = in.Checkerboard();
GridBase *in_grid=in.Grid();
GridBase *out_grid = out.Grid();
typedef typename VobjOut::scalar_object SobjOut;
typedef typename VobjIn::scalar_object SobjIn;
int ndim = out.Grid()->Nd();
int out_nsimd = out_grid->Nsimd();
std::vector<Coordinate > out_icoor(out_nsimd);
for(int lane=0; lane < out_nsimd; lane++){
out_icoor[lane].resize(ndim);
out_grid->iCoorFromIindex(out_icoor[lane], lane);
}
std::vector<SobjOut> in_slex_conv(in_grid->lSites());
unvectorizeToLexOrdArray(in_slex_conv, in);
autoView( out_v , out, CpuWrite);
thread_for(out_oidx,out_grid->oSites(),{
Coordinate out_ocoor(ndim);
out_grid->oCoorFromOindex(out_ocoor, out_oidx);
ExtractPointerArray<SobjOut> ptrs(out_nsimd);
Coordinate lcoor(out_grid->Nd());
for(int lane=0; lane < out_nsimd; lane++){
for(int mu=0;mu<ndim;mu++)
lcoor[mu] = out_ocoor[mu] + out_grid->_rdimensions[mu]*out_icoor[lane][mu];
int llex; Lexicographic::IndexFromCoor(lcoor, llex, out_grid->_ldimensions);
ptrs[lane] = &in_slex_conv[llex];
//The workspace for a precision change operation allowing for the reuse of the mapping to save time on subsequent calls
class precisionChangeWorkspace{
std::pair<Integer,Integer>* fmap_device; //device pointer
public:
precisionChangeWorkspace(GridBase *out_grid, GridBase *in_grid){
//Build a map between the sites and lanes of the output field and the input field as we cannot use the Grids on the device
assert(out_grid->Nd() == in_grid->Nd());
for(int d=0;d<out_grid->Nd();d++){
assert(out_grid->FullDimensions()[d] == in_grid->FullDimensions()[d]);
}
merge(out_v[out_oidx], ptrs, 0);
});
int Nsimd_out = out_grid->Nsimd();
std::vector<Coordinate> out_icorrs(out_grid->Nsimd()); //reuse these
for(int lane=0; lane < out_grid->Nsimd(); lane++)
out_grid->iCoorFromIindex(out_icorrs[lane], lane);
std::vector<std::pair<Integer,Integer> > fmap_host(out_grid->lSites()); //lsites = osites*Nsimd
thread_for(out_oidx,out_grid->oSites(),{
Coordinate out_ocorr;
out_grid->oCoorFromOindex(out_ocorr, out_oidx);
Coordinate lcorr; //the local coordinate (common to both in and out as full coordinate)
for(int out_lane=0; out_lane < Nsimd_out; out_lane++){
out_grid->InOutCoorToLocalCoor(out_ocorr, out_icorrs[out_lane], lcorr);
//int in_oidx = in_grid->oIndex(lcorr), in_lane = in_grid->iIndex(lcorr);
//Note oIndex and OcorrFromOindex (and same for iIndex) are not inverse for checkerboarded lattice, the former coordinates being defined on the full lattice and the latter on the reduced lattice
//Until this is fixed we need to circumvent the problem locally. Here I will use the coordinates defined on the reduced lattice for simplicity
int in_oidx = 0, in_lane = 0;
for(int d=0;d<in_grid->_ndimension;d++){
in_oidx += in_grid->_ostride[d] * ( lcorr[d] % in_grid->_rdimensions[d] );
in_lane += in_grid->_istride[d] * ( lcorr[d] / in_grid->_rdimensions[d] );
}
fmap_host[out_lane + Nsimd_out*out_oidx] = std::pair<Integer,Integer>( in_oidx, in_lane );
}
});
//Copy the map to the device (if we had a way to tell if an accelerator is in use we could avoid this copy for CPU-only machines)
size_t fmap_bytes = out_grid->lSites() * sizeof(std::pair<Integer,Integer>);
fmap_device = (std::pair<Integer,Integer>*)acceleratorAllocDevice(fmap_bytes);
acceleratorCopyToDevice(fmap_host.data(), fmap_device, fmap_bytes);
}
//Prevent moving or copying
precisionChangeWorkspace(const precisionChangeWorkspace &r) = delete;
precisionChangeWorkspace(precisionChangeWorkspace &&r) = delete;
precisionChangeWorkspace &operator=(const precisionChangeWorkspace &r) = delete;
precisionChangeWorkspace &operator=(precisionChangeWorkspace &&r) = delete;
std::pair<Integer,Integer> const* getMap() const{ return fmap_device; }
~precisionChangeWorkspace(){
acceleratorFreeDevice(fmap_device);
}
};
//Convert a lattice of one precision to another. The input workspace contains the mapping data.
template<class VobjOut, class VobjIn>
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in, const precisionChangeWorkspace &workspace){
static_assert( std::is_same<typename VobjOut::DoublePrecision, typename VobjIn::DoublePrecision>::value == 1, "copyLane: tensor types must be the same" ); //if tensor types are same the DoublePrecision type must be the same
out.Checkerboard() = in.Checkerboard();
constexpr int Nsimd_out = VobjOut::Nsimd();
std::pair<Integer,Integer> const* fmap_device = workspace.getMap();
//Do the copy/precision change
autoView( out_v , out, AcceleratorWrite);
autoView( in_v , in, AcceleratorRead);
accelerator_for(out_oidx, out.Grid()->oSites(), 1,{
std::pair<Integer,Integer> const* fmap_osite = fmap_device + out_oidx*Nsimd_out;
for(int out_lane=0; out_lane < Nsimd_out; out_lane++){
int in_oidx = fmap_osite[out_lane].first;
int in_lane = fmap_osite[out_lane].second;
copyLane(out_v[out_oidx], out_lane, in_v[in_oidx], in_lane);
}
});
}
//Convert a Lattice from one precision to another
//Generate the workspace in place; if multiple calls with the same mapping are performed, consider pregenerating the workspace and reusing
template<class VobjOut, class VobjIn>
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in){
precisionChangeWorkspace workspace(out.Grid(), in.Grid());
precisionChange(out, in, workspace);
}
////////////////////////////////////////////////////////////////////////////////
// Communicate between grids
////////////////////////////////////////////////////////////////////////////////

View File

@ -69,6 +69,7 @@ GridLogger GridLogDebug (1, "Debug", GridLogColours, "PURPLE");
GridLogger GridLogPerformance(1, "Performance", GridLogColours, "GREEN");
GridLogger GridLogIterative (1, "Iterative", GridLogColours, "BLUE");
GridLogger GridLogIntegrator (1, "Integrator", GridLogColours, "BLUE");
GridLogger GridLogHMC (1, "HMC", GridLogColours, "BLUE");
void GridLogConfigure(std::vector<std::string> &logstreams) {
GridLogError.Active(0);
@ -79,6 +80,7 @@ void GridLogConfigure(std::vector<std::string> &logstreams) {
GridLogPerformance.Active(0);
GridLogIntegrator.Active(1);
GridLogColours.Active(0);
GridLogHMC.Active(1);
for (int i = 0; i < logstreams.size(); i++) {
if (logstreams[i] == std::string("Error")) GridLogError.Active(1);
@ -87,7 +89,8 @@ void GridLogConfigure(std::vector<std::string> &logstreams) {
if (logstreams[i] == std::string("Iterative")) GridLogIterative.Active(1);
if (logstreams[i] == std::string("Debug")) GridLogDebug.Active(1);
if (logstreams[i] == std::string("Performance")) GridLogPerformance.Active(1);
if (logstreams[i] == std::string("Integrator")) GridLogIntegrator.Active(1);
if (logstreams[i] == std::string("NoIntegrator")) GridLogIntegrator.Active(0);
if (logstreams[i] == std::string("NoHMC")) GridLogHMC.Active(0);
if (logstreams[i] == std::string("Colours")) GridLogColours.Active(1);
}
}

View File

@ -182,6 +182,7 @@ extern GridLogger GridLogDebug ;
extern GridLogger GridLogPerformance;
extern GridLogger GridLogIterative ;
extern GridLogger GridLogIntegrator ;
extern GridLogger GridLogHMC;
extern Colours GridLogColours;
std::string demangle(const char* name) ;

View File

@ -39,9 +39,11 @@ using namespace Grid;
////////////////////////////////////////////////////////////////////////////////
class NerscIO : public BinaryIO {
public:
typedef Lattice<vLorentzColourMatrixD> GaugeField;
// Enable/disable exiting if the plaquette in the header does not match the value computed (default true)
static bool & exitOnReadPlaquetteMismatch(){ static bool v=true; return v; }
static inline void truncate(std::string file){
std::ofstream fout(file,std::ios::out);
}
@ -198,7 +200,7 @@ public:
std::cerr << " nersc_csum " <<std::hex<< nersc_csum << " " << header.checksum<< std::dec<< std::endl;
exit(0);
}
assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
if(exitOnReadPlaquetteMismatch()) assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
assert(fabs(clone.link_trace-header.link_trace) < 1.0e-6 );
assert(nersc_csum == header.checksum );

View File

@ -63,6 +63,7 @@ static constexpr int Ngp=2; // gparity index range
#define ColourIndex (2)
#define SpinIndex (1)
#define LorentzIndex (0)
#define GparityFlavourIndex (0)
// Also should make these a named enum type
static constexpr int DaggerNo=0;
@ -87,6 +88,8 @@ template<typename T> struct isCoarsened {
template <typename T> using IfCoarsened = Invoke<std::enable_if< isCoarsened<T>::value,int> > ;
template <typename T> using IfNotCoarsened = Invoke<std::enable_if<!isCoarsened<T>::value,int> > ;
const int GparityFlavourTensorIndex = 3; //TensorLevel counts from the bottom!
// ChrisK very keen to add extra space for Gparity doubling.
//
// Also add domain wall index, in a way where Wilson operator
@ -110,8 +113,10 @@ template<typename vtype> using iHalfSpinColourVector = iScalar<iVector<iVec
template<typename vtype> using iSpinColourSpinColourMatrix = iScalar<iMatrix<iMatrix<iMatrix<iMatrix<vtype, Nc>, Ns>, Nc>, Ns> >;
template<typename vtype> using iGparityFlavourVector = iVector<iScalar<iScalar<vtype> >, Ngp>;
template<typename vtype> using iGparitySpinColourVector = iVector<iVector<iVector<vtype, Nc>, Ns>, Ngp >;
template<typename vtype> using iGparityHalfSpinColourVector = iVector<iVector<iVector<vtype, Nc>, Nhs>, Ngp >;
template<typename vtype> using iGparityFlavourMatrix = iMatrix<iScalar<iScalar<vtype> >, Ngp>;
// Spin matrix
typedef iSpinMatrix<Complex > SpinMatrix;
@ -176,6 +181,16 @@ typedef iDoubleStoredColourMatrix<vComplex > vDoubleStoredColourMatrix;
typedef iDoubleStoredColourMatrix<vComplexF> vDoubleStoredColourMatrixF;
typedef iDoubleStoredColourMatrix<vComplexD> vDoubleStoredColourMatrixD;
//G-parity flavour matrix
typedef iGparityFlavourMatrix<Complex> GparityFlavourMatrix;
typedef iGparityFlavourMatrix<ComplexF> GparityFlavourMatrixF;
typedef iGparityFlavourMatrix<ComplexD> GparityFlavourMatrixD;
typedef iGparityFlavourMatrix<vComplex> vGparityFlavourMatrix;
typedef iGparityFlavourMatrix<vComplexF> vGparityFlavourMatrixF;
typedef iGparityFlavourMatrix<vComplexD> vGparityFlavourMatrixD;
// Spin vector
typedef iSpinVector<Complex > SpinVector;
typedef iSpinVector<ComplexF> SpinVectorF;
@ -220,6 +235,16 @@ typedef iHalfSpinColourVector<ComplexD> HalfSpinColourVectorD;
typedef iHalfSpinColourVector<vComplex > vHalfSpinColourVector;
typedef iHalfSpinColourVector<vComplexF> vHalfSpinColourVectorF;
typedef iHalfSpinColourVector<vComplexD> vHalfSpinColourVectorD;
//G-parity flavour vector
typedef iGparityFlavourVector<Complex > GparityFlavourVector;
typedef iGparityFlavourVector<ComplexF> GparityFlavourVectorF;
typedef iGparityFlavourVector<ComplexD> GparityFlavourVectorD;
typedef iGparityFlavourVector<vComplex > vGparityFlavourVector;
typedef iGparityFlavourVector<vComplexF> vGparityFlavourVectorF;
typedef iGparityFlavourVector<vComplexD> vGparityFlavourVectorD;
// singlets
typedef iSinglet<Complex > TComplex; // FIXME This is painful. Tensor singlet complex type.

View File

@ -36,7 +36,8 @@ NAMESPACE_BEGIN(Grid);
// These can move into a params header and be given MacroMagic serialisation
struct GparityWilsonImplParams {
Coordinate twists;
Coordinate twists; //Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction.
//mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
GparityWilsonImplParams() : twists(Nd, 0) {};
};
@ -85,6 +86,50 @@ struct StaggeredImplParams {
precision(_precision),
BoundsCheckFreq(_BoundsCheckFreq){};
};
/*Action parameters for the generalized rational action
The approximation is for (M^dag M)^{1/inv_pow}
where inv_pow is the denominator of the fractional power.
Default inv_pow=2 for square root, making this equivalent to
the OneFlavourRational action
*/
struct RationalActionParams : Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(RationalActionParams,
int, inv_pow,
RealD, lo, //low eigenvalue bound of rational approx
RealD, hi, //high eigenvalue bound of rational approx
int, MaxIter, //maximum iterations in msCG
RealD, action_tolerance, //msCG tolerance in action evaluation
int, action_degree, //rational approx tolerance in action evaluation
RealD, md_tolerance, //msCG tolerance in MD integration
int, md_degree, //rational approx tolerance in MD integration
int, precision, //precision of floating point arithmetic
int, BoundsCheckFreq); //frequency the approximation is tested (with Metropolis degree/tolerance); 0 disables the check
// constructor
RationalActionParams(int _inv_pow = 2,
RealD _lo = 0.0,
RealD _hi = 1.0,
int _maxit = 1000,
RealD _action_tolerance = 1.0e-8,
int _action_degree = 10,
RealD _md_tolerance = 1.0e-8,
int _md_degree = 10,
int _precision = 64,
int _BoundsCheckFreq=20)
: inv_pow(_inv_pow),
lo(_lo),
hi(_hi),
MaxIter(_maxit),
action_tolerance(_action_tolerance),
action_degree(_action_degree),
md_tolerance(_md_tolerance),
md_degree(_md_degree),
precision(_precision),
BoundsCheckFreq(_BoundsCheckFreq){};
};
NAMESPACE_END(Grid);

View File

@ -30,6 +30,18 @@ directory
NAMESPACE_BEGIN(Grid);
/*
Policy implementation for G-parity boundary conditions
Rather than treating the gauge field as a flavored field, the Grid implementation of G-parity treats the gauge field as a regular
field with complex conjugate boundary conditions. In order to ensure the second flavor interacts with the conjugate links and the first
with the regular links we overload the functionality of doubleStore, whose purpose is to store the gauge field and the barrel-shifted gauge field
to avoid communicating links when applying the Dirac operator, such that the double-stored field contains also a flavor index which maps to
either the link or the conjugate link. This flavored field is then used by multLink to apply the correct link to a spinor.
Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction.
mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
*/
template <class S, class Representation = FundamentalRepresentation, class Options=CoeffReal>
class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Representation::Dimension> > {
public:
@ -113,7 +125,7 @@ public:
|| ((distance== 1)&&(icoor[direction]==1))
|| ((distance==-1)&&(icoor[direction]==0));
permute_lane = permute_lane && SE->_around_the_world && St.parameters.twists[mmu]; //only if we are going around the world
permute_lane = permute_lane && SE->_around_the_world && St.parameters.twists[mmu] && mmu < Nd-1; //only if we are going around the world in a spatial direction
//Apply the links
int f_upper = permute_lane ? 1 : 0;
@ -139,10 +151,10 @@ public:
assert((distance == 1) || (distance == -1)); // nearest neighbour stencil hard code
assert((sl == 1) || (sl == 2));
if ( SE->_around_the_world && St.parameters.twists[mmu] ) {
//If this site is an global boundary site, perform the G-parity flavor twist
if ( mmu < Nd-1 && SE->_around_the_world && St.parameters.twists[mmu] ) {
if ( sl == 2 ) {
//Only do the twist for lanes on the edge of the physical node
ExtractBuffer<sobj> vals(Nsimd);
extract(chi,vals);
@ -197,6 +209,19 @@ public:
reg = memory;
}
//Poke 'poke_f0' onto flavor 0 and 'poke_f1' onto flavor 1 in direction mu of the doubled gauge field Uds
inline void pokeGparityDoubledGaugeField(DoubledGaugeField &Uds, const GaugeLinkField &poke_f0, const GaugeLinkField &poke_f1, const int mu){
autoView(poke_f0_v, poke_f0, CpuRead);
autoView(poke_f1_v, poke_f1, CpuRead);
autoView(Uds_v, Uds, CpuWrite);
thread_foreach(ss,poke_f0_v,{
Uds_v[ss](0)(mu) = poke_f0_v[ss]();
Uds_v[ss](1)(mu) = poke_f1_v[ss]();
});
}
inline void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
{
conformable(Uds.Grid(),GaugeGrid);
@ -207,14 +232,19 @@ public:
GaugeLinkField Uconj(GaugeGrid);
Lattice<iScalar<vInteger> > coor(GaugeGrid);
for(int mu=0;mu<Nd;mu++){
LatticeCoordinate(coor,mu);
//Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction.
//mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
for(int mu=0;mu<Nd-1;mu++){
if( Params.twists[mu] ){
LatticeCoordinate(coor,mu);
}
U = PeekIndex<LorentzIndex>(Umu,mu);
Uconj = conjugate(U);
// Implement the isospin rotation sign on the boundary between f=1 and f=0
// This phase could come from a simple bc 1,1,-1,1 ..
int neglink = GaugeGrid->GlobalDimensions()[mu]-1;
if ( Params.twists[mu] ) {
@ -229,7 +259,7 @@ public:
thread_foreach(ss,U_v,{
Uds_v[ss](0)(mu) = U_v[ss]();
Uds_v[ss](1)(mu) = Uconj_v[ss]();
});
});
}
U = adj(Cshift(U ,mu,-1)); // correct except for spanning the boundary
@ -260,6 +290,38 @@ public:
});
}
}
{ //periodic / antiperiodic temporal BCs
int mu = Nd-1;
int L = GaugeGrid->GlobalDimensions()[mu];
int Lmu = L - 1;
LatticeCoordinate(coor, mu);
U = PeekIndex<LorentzIndex>(Umu, mu); //Get t-directed links
GaugeLinkField *Upoke = &U;
if(Params.twists[mu]){ //antiperiodic
Utmp = where(coor == Lmu, -U, U);
Upoke = &Utmp;
}
Uconj = conjugate(*Upoke); //second flavor interacts with conjugate links
pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu);
//Get the barrel-shifted field
Utmp = adj(Cshift(U, mu, -1)); //is a forward shift!
Upoke = &Utmp;
if(Params.twists[mu]){
U = where(coor == 0, -Utmp, Utmp); //boundary phase
Upoke = &U;
}
Uconj = conjugate(*Upoke);
pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu + 4);
}
}
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A, int mu) {
@ -298,28 +360,48 @@ public:
inline void extractLinkField(std::vector<GaugeLinkField> &mat, DoubledGaugeField &Uds){
assert(0);
}
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField &Atilde, int mu) {
int Ls = Btilde.Grid()->_fdimensions[0];
GaugeLinkField tmp(mat.Grid());
tmp = Zero();
int Ls=Btilde.Grid()->_fdimensions[0];
{
autoView( tmp_v , tmp, CpuWrite);
autoView( Atilde_v , Atilde, CpuRead);
autoView( Btilde_v , Btilde, CpuRead);
thread_for(ss,tmp.Grid()->oSites(),{
for (int s = 0; s < Ls; s++) {
int sF = s + Ls * ss;
auto ttmp = traceIndex<SpinIndex>(outerProduct(Btilde_v[sF], Atilde_v[sF]));
tmp_v[ss]() = tmp_v[ss]() + ttmp(0, 0) + conjugate(ttmp(1, 1));
}
});
GridBase *GaugeGrid = mat.Grid();
Lattice<iScalar<vInteger> > coor(GaugeGrid);
if( Params.twists[mu] ){
LatticeCoordinate(coor,mu);
}
autoView( mat_v , mat, AcceleratorWrite);
autoView( Btilde_v , Btilde, AcceleratorRead);
autoView( Atilde_v , Atilde, AcceleratorRead);
accelerator_for(sss,mat.Grid()->oSites(), FermionField::vector_type::Nsimd(),{
int sU=sss;
typedef decltype(coalescedRead(mat_v[sU](mu)() )) ColorMatrixType;
ColorMatrixType sum;
zeroit(sum);
for(int s=0;s<Ls;s++){
int sF = s+Ls*sU;
for(int spn=0;spn<Ns;spn++){ //sum over spin
//Flavor 0
auto bb = coalescedRead(Btilde_v[sF](0)(spn) ); //color vector
auto aa = coalescedRead(Atilde_v[sF](0)(spn) );
sum = sum + outerProduct(bb,aa);
//Flavor 1
bb = coalescedRead(Btilde_v[sF](1)(spn) );
aa = coalescedRead(Atilde_v[sF](1)(spn) );
sum = sum + conjugate(outerProduct(bb,aa));
}
}
coalescedWrite(mat_v[sU](mu)(), sum);
});
}
PokeIndex<LorentzIndex>(mat, tmp, mu);
return;
}
};

View File

@ -40,13 +40,66 @@ NAMESPACE_BEGIN(Grid);
X=X-Y;
RealD Nd = norm2(X);
std::cout << "************************* "<<std::endl;
std::cout << " noise = "<<Nx<<std::endl;
std::cout << " (MdagM^-1/2)^2 noise = "<<Nz<<std::endl;
std::cout << " MdagM (MdagM^-1/2)^2 noise = "<<Ny<<std::endl;
std::cout << " noise - MdagM (MdagM^-1/2)^2 noise = "<<Nd<<std::endl;
std::cout << " | noise |^2 = "<<Nx<<std::endl;
std::cout << " | (MdagM^-1/2)^2 noise |^2 = "<<Nz<<std::endl;
std::cout << " | MdagM (MdagM^-1/2)^2 noise |^2 = "<<Ny<<std::endl;
std::cout << " | noise - MdagM (MdagM^-1/2)^2 noise |^2 = "<<Nd<<std::endl;
std::cout << " | noise - MdagM (MdagM^-1/2)^2 noise|/|noise| = " << std::sqrt(Nd/Nx) << std::endl;
std::cout << "************************* "<<std::endl;
assert( (std::sqrt(Nd/Nx)<tol) && " InverseSqrtBoundsCheck ");
}
/* For a HermOp = M^dag M, check the approximation of HermOp^{-1/inv_pow}
by computing |X - HermOp * [ Hermop^{-1/inv_pow} ]^{inv_pow} X| < tol
for noise X (aka GaussNoise).
ApproxNegPow should be the rational approximation for X^{-1/inv_pow}
*/
template<class Field> void InversePowerBoundsCheck(int inv_pow,
int MaxIter,double tol,
LinearOperatorBase<Field> &HermOp,
Field &GaussNoise,
MultiShiftFunction &ApproxNegPow)
{
GridBase *FermionGrid = GaussNoise.Grid();
Field X(FermionGrid);
Field Y(FermionGrid);
Field Z(FermionGrid);
Field tmp1(FermionGrid), tmp2(FermionGrid);
X=GaussNoise;
RealD Nx = norm2(X);
ConjugateGradientMultiShift<Field> msCG(MaxIter,ApproxNegPow);
tmp1 = X;
Field* in = &tmp1;
Field* out = &tmp2;
for(int i=0;i<inv_pow;i++){ //apply [ Hermop^{-1/inv_pow} ]^{inv_pow} X = HermOp^{-1} X
msCG(HermOp, *in, *out); //backwards conventions!
if(i!=inv_pow-1) std::swap(in, out);
}
Z = *out;
RealD Nz = norm2(Z);
HermOp.HermOp(Z,Y);
RealD Ny = norm2(Y);
X=X-Y;
RealD Nd = norm2(X);
std::cout << "************************* "<<std::endl;
std::cout << " | noise |^2 = "<<Nx<<std::endl;
std::cout << " | (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |^2 = "<<Nz<<std::endl;
std::cout << " | MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |^2 = "<<Ny<<std::endl;
std::cout << " | noise - MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |^2 = "<<Nd<<std::endl;
std::cout << " | noise - MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |/| noise | = "<<std::sqrt(Nd/Nx)<<std::endl;
std::cout << "************************* "<<std::endl;
assert( (std::sqrt(Nd/Nx)<tol) && " InversePowerBoundsCheck ");
}
NAMESPACE_END(Grid);

View File

@ -0,0 +1,372 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h
Copyright (C) 2015
Author: Christopher Kelly <ckelly@bnl.gov>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_H
#define QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_H
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////
// Generic rational approximation for ratios of operators
/////////////////////////////////////////////////////////
/* S_f = -log( det( [M^dag M]/[V^dag V] )^{1/inv_pow} )
= chi^dag ( [M^dag M]/[V^dag V] )^{-1/inv_pow} chi\
= chi^dag ( [V^dag V]^{-1/2} [M^dag M] [V^dag V]^{-1/2} )^{-1/inv_pow} chi\
= chi^dag [V^dag V]^{1/(2*inv_pow)} [M^dag M]^{-1/inv_pow} [V^dag V]^{1/(2*inv_pow)} chi\
S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
BIG WARNING:
Here V^dag V is referred to in this code as the "numerator" operator and M^dag M is the *denominator* operator.
this refers to their position in the pseudofermion action, which is the *inverse* of what appears in the determinant
Thus for DWF the numerator operator is the Pauli-Villars operator
Here P/Q \sim R_{1/(2*inv_pow)} ~ (V^dagV)^{1/(2*inv_pow)}
Here N/D \sim R_{-1/inv_pow} ~ (M^dagM)^{-1/inv_pow}
*/
template<class Impl>
class GeneralEvenOddRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
typedef RationalActionParams Params;
Params param;
//For action evaluation
MultiShiftFunction ApproxPowerAction ; //rational approx for X^{1/inv_pow}
MultiShiftFunction ApproxNegPowerAction; //rational approx for X^{-1/inv_pow}
MultiShiftFunction ApproxHalfPowerAction; //rational approx for X^{1/(2*inv_pow)}
MultiShiftFunction ApproxNegHalfPowerAction; //rational approx for X^{-1/(2*inv_pow)}
//For the MD integration
MultiShiftFunction ApproxPowerMD ; //rational approx for X^{1/inv_pow}
MultiShiftFunction ApproxNegPowerMD; //rational approx for X^{-1/inv_pow}
MultiShiftFunction ApproxHalfPowerMD; //rational approx for X^{1/(2*inv_pow)}
MultiShiftFunction ApproxNegHalfPowerMD; //rational approx for X^{-1/(2*inv_pow)}
private:
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
FermionField PhiEven; // the pseudo fermion field for this trajectory
FermionField PhiOdd; // the pseudo fermion field for this trajectory
//Generate the approximation to x^{1/inv_pow} (->approx) and x^{-1/inv_pow} (-> approx_inv) by an approx_degree degree rational approximation
//CG_tolerance is used to issue a warning if the approximation error is larger than the tolerance of the CG and is otherwise just stored in the MultiShiftFunction for use by the multi-shift
static void generateApprox(MultiShiftFunction &approx, MultiShiftFunction &approx_inv, int inv_pow, int approx_degree, double CG_tolerance, AlgRemez &remez){
std::cout<<GridLogMessage << "Generating degree "<< approx_degree<<" approximation for x^(1/" << inv_pow << ")"<<std::endl;
double error = remez.generateApprox(approx_degree,1,inv_pow);
if(error > CG_tolerance)
std::cout<<GridLogMessage << "WARNING: Remez approximation has a larger error " << error << " than the CG tolerance " << CG_tolerance << "! Try increasing the number of poles" << std::endl;
approx.Init(remez, CG_tolerance,false);
approx_inv.Init(remez, CG_tolerance,true);
}
protected:
static constexpr bool Numerator = true;
static constexpr bool Denominator = false;
//Allow derived classes to override the multishift CG
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionField &in, FermionField &out){
SchurDifferentiableOperator<Impl> schurOp(numerator ? NumOp : DenOp);
ConjugateGradientMultiShift<FermionField> msCG(MaxIter, approx);
msCG(schurOp,in, out);
}
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionField &in, std::vector<FermionField> &out_elems, FermionField &out){
SchurDifferentiableOperator<Impl> schurOp(numerator ? NumOp : DenOp);
ConjugateGradientMultiShift<FermionField> msCG(MaxIter, approx);
msCG(schurOp,in, out_elems, out);
}
//Allow derived classes to override the gauge import
virtual void ImportGauge(const GaugeField &U){
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
}
public:
GeneralEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
const Params & p
) :
NumOp(_NumOp),
DenOp(_DenOp),
PhiOdd (_NumOp.FermionRedBlackGrid()),
PhiEven(_NumOp.FermionRedBlackGrid()),
param(p)
{
std::cout<<GridLogMessage << action_name() << " initialize: starting" << std::endl;
AlgRemez remez(param.lo,param.hi,param.precision);
//Generate approximations for action eval
generateApprox(ApproxPowerAction, ApproxNegPowerAction, param.inv_pow, param.action_degree, param.action_tolerance, remez);
generateApprox(ApproxHalfPowerAction, ApproxNegHalfPowerAction, 2*param.inv_pow, param.action_degree, param.action_tolerance, remez);
//Generate approximations for MD
if(param.md_degree != param.action_degree){ //note the CG tolerance is unrelated to the stopping condition of the Remez algorithm
generateApprox(ApproxPowerMD, ApproxNegPowerMD, param.inv_pow, param.md_degree, param.md_tolerance, remez);
generateApprox(ApproxHalfPowerMD, ApproxNegHalfPowerMD, 2*param.inv_pow, param.md_degree, param.md_tolerance, remez);
}else{
std::cout<<GridLogMessage << "Using same rational approximations for MD as for action evaluation" << std::endl;
ApproxPowerMD = ApproxPowerAction;
ApproxNegPowerMD = ApproxNegPowerAction;
for(int i=0;i<ApproxPowerMD.tolerances.size();i++)
ApproxNegPowerMD.tolerances[i] = ApproxPowerMD.tolerances[i] = param.md_tolerance; //used for multishift
ApproxHalfPowerMD = ApproxHalfPowerAction;
ApproxNegHalfPowerMD = ApproxNegHalfPowerAction;
for(int i=0;i<ApproxPowerMD.tolerances.size();i++)
ApproxNegHalfPowerMD.tolerances[i] = ApproxHalfPowerMD.tolerances[i] = param.md_tolerance;
}
std::cout<<GridLogMessage << action_name() << " initialize: complete" << std::endl;
};
virtual std::string action_name(){return "GeneralEvenOddRatioRationalPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] Power : 1/" << param.inv_pow << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance (Action) :" << param.action_tolerance << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Degree (Action) :" << param.action_degree << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance (MD) :" << param.md_tolerance << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Degree (MD) :" << param.md_degree << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
return sstream.str();
}
//Access the fermion field
const FermionField &getPhiOdd() const{ return PhiOdd; }
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
std::cout<<GridLogMessage << action_name() << " refresh: starting" << std::endl;
FermionField eta(NumOp.FermionGrid());
// P(eta) \propto e^{- eta^dag eta}
//
// The gaussian function draws from P(x) \propto e^{- x^2 / 2 } [i.e. sigma=1]
// Thus eta = x/sqrt{2} = x * sqrt(1/2)
RealD scale = std::sqrt(0.5);
gaussian(pRNG,eta); eta=eta*scale;
refresh(U,eta);
}
//Allow for manual specification of random field for testing
void refresh(const GaugeField &U, const FermionField &eta) {
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// P(phi) = e^{- phi^dag (VdagV)^1/(2*inv_pow) (MdagM)^-1/inv_pow (VdagV)^1/(2*inv_pow) phi}
// = e^{- phi^dag (VdagV)^1/(2*inv_pow) (MdagM)^-1/(2*inv_pow) (MdagM)^-1/(2*inv_pow) (VdagV)^1/(2*inv_pow) phi}
//
// Phi = (VdagV)^-1/(2*inv_pow) Mdag^{1/(2*inv_pow)} eta
std::cout<<GridLogMessage << action_name() << " refresh: starting" << std::endl;
FermionField etaOdd (NumOp.FermionRedBlackGrid());
FermionField etaEven(NumOp.FermionRedBlackGrid());
FermionField tmp(NumOp.FermionRedBlackGrid());
pickCheckerboard(Even,etaEven,eta);
pickCheckerboard(Odd,etaOdd,eta);
ImportGauge(U);
// MdagM^1/(2*inv_pow) eta
std::cout<<GridLogMessage << action_name() << " refresh: doing (M^dag M)^{1/" << 2*param.inv_pow << "} eta" << std::endl;
multiShiftInverse(Denominator, ApproxHalfPowerAction, param.MaxIter, etaOdd, tmp);
// VdagV^-1/(2*inv_pow) MdagM^1/(2*inv_pow) eta
std::cout<<GridLogMessage << action_name() << " refresh: doing (V^dag V)^{-1/" << 2*param.inv_pow << "} ( (M^dag M)^{1/" << 2*param.inv_pow << "} eta)" << std::endl;
multiShiftInverse(Numerator, ApproxNegHalfPowerAction, param.MaxIter, tmp, PhiOdd);
assert(NumOp.ConstEE() == 1);
assert(DenOp.ConstEE() == 1);
PhiEven = Zero();
std::cout<<GridLogMessage << action_name() << " refresh: starting" << std::endl;
};
//////////////////////////////////////////////////////
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
std::cout<<GridLogMessage << action_name() << " compute action: starting" << std::endl;
ImportGauge(U);
FermionField X(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
// VdagV^1/(2*inv_pow) Phi
std::cout<<GridLogMessage << action_name() << " compute action: doing (V^dag V)^{1/" << 2*param.inv_pow << "} Phi" << std::endl;
multiShiftInverse(Numerator, ApproxHalfPowerAction, param.MaxIter, PhiOdd,X);
// MdagM^-1/(2*inv_pow) VdagV^1/(2*inv_pow) Phi
std::cout<<GridLogMessage << action_name() << " compute action: doing (M^dag M)^{-1/" << 2*param.inv_pow << "} ( (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
multiShiftInverse(Denominator, ApproxNegHalfPowerAction, param.MaxIter, X,Y);
// Randomly apply rational bounds checks.
int rcheck = rand();
auto grid = NumOp.FermionGrid();
auto r=rand();
grid->Broadcast(0,r);
if ( param.BoundsCheckFreq != 0 && (r % param.BoundsCheckFreq)==0 ) {
std::cout<<GridLogMessage << action_name() << " compute action: doing bounds check" << std::endl;
FermionField gauss(NumOp.FermionRedBlackGrid());
gauss = PhiOdd;
SchurDifferentiableOperator<Impl> MdagM(DenOp);
std::cout<<GridLogMessage << action_name() << " compute action: checking high bounds" << std::endl;
HighBoundCheck(MdagM,gauss,param.hi);
std::cout<<GridLogMessage << action_name() << " compute action: full approximation" << std::endl;
InversePowerBoundsCheck(param.inv_pow,param.MaxIter,param.action_tolerance*100,MdagM,gauss,ApproxNegPowerAction);
std::cout<<GridLogMessage << action_name() << " compute action: bounds check complete" << std::endl;
}
// Phidag VdagV^1/(2*inv_pow) MdagM^-1/(2*inv_pow) MdagM^-1/(2*inv_pow) VdagV^1/(2*inv_pow) Phi
RealD action = norm2(Y);
std::cout<<GridLogMessage << action_name() << " compute action: complete" << std::endl;
return action;
};
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// Here, M is some 5D operator and V is the Pauli-Villars field
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
//
// Need
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
// + chi^dag P/Q d[N/D] P/Q chi
// + chi^dag P/Q N/D d[P/Q] chi
//
// P/Q is expressed as partial fraction expansion:
//
// a0 + \sum_k ak/(V^dagV + bk)
//
// d[P/Q] is then
//
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
//
// and similar for N/D.
//
// Need
// MpvPhi_k = [Vdag V + bk]^{-1} chi
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
//
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
//
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
//
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
std::cout<<GridLogMessage << action_name() << " deriv: starting" << std::endl;
const int n_f = ApproxNegPowerMD.poles.size();
const int n_pv = ApproxHalfPowerMD.poles.size();
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionRedBlackGrid());
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid());
std::vector<FermionField> MfMpvPhi_k (n_f ,NumOp.FermionRedBlackGrid());
FermionField MpvPhi(NumOp.FermionRedBlackGrid());
FermionField MfMpvPhi(NumOp.FermionRedBlackGrid());
FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
GaugeField tmp(NumOp.GaugeGrid());
ImportGauge(U);
std::cout<<GridLogMessage << action_name() << " deriv: doing (V^dag V)^{1/" << 2*param.inv_pow << "} Phi" << std::endl;
multiShiftInverse(Numerator, ApproxHalfPowerMD, param.MaxIter, PhiOdd,MpvPhi_k,MpvPhi);
std::cout<<GridLogMessage << action_name() << " deriv: doing (M^dag M)^{-1/" << param.inv_pow << "} ( (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
multiShiftInverse(Denominator, ApproxNegPowerMD, param.MaxIter, MpvPhi,MfMpvPhi_k,MfMpvPhi);
std::cout<<GridLogMessage << action_name() << " deriv: doing (V^dag V)^{1/" << 2*param.inv_pow << "} ( (M^dag M)^{-1/" << param.inv_pow << "} (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
multiShiftInverse(Numerator, ApproxHalfPowerMD, param.MaxIter, MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
SchurDifferentiableOperator<Impl> MdagM(DenOp);
SchurDifferentiableOperator<Impl> VdagV(NumOp);
RealD ak;
dSdU = Zero();
// With these building blocks
//
// dS/dU =
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
//(1)
std::cout<<GridLogMessage << action_name() << " deriv: doing dS/dU part (1)" << std::endl;
for(int k=0;k<n_f;k++){
ak = ApproxNegPowerMD.residues[k];
MdagM.Mpc(MfMpvPhi_k[k],Y);
MdagM.MpcDagDeriv(tmp , MfMpvPhi_k[k], Y ); dSdU=dSdU+ak*tmp;
MdagM.MpcDeriv(tmp , Y, MfMpvPhi_k[k] ); dSdU=dSdU+ak*tmp;
}
//(2)
//(3)
std::cout<<GridLogMessage << action_name() << " deriv: doing dS/dU part (2)+(3)" << std::endl;
for(int k=0;k<n_pv;k++){
ak = ApproxHalfPowerMD.residues[k];
VdagV.Mpc(MpvPhi_k[k],Y);
VdagV.MpcDagDeriv(tmp,MpvMfMpvPhi_k[k],Y); dSdU=dSdU+ak*tmp;
VdagV.MpcDeriv (tmp,Y,MpvMfMpvPhi_k[k]); dSdU=dSdU+ak*tmp;
VdagV.Mpc(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
VdagV.MpcDeriv (tmp,Y, MpvPhi_k[k]); dSdU=dSdU+ak*tmp;
VdagV.MpcDagDeriv(tmp,MpvPhi_k[k], Y); dSdU=dSdU+ak*tmp;
}
//dSdU = Ta(dSdU);
std::cout<<GridLogMessage << action_name() << " deriv: complete" << std::endl;
};
};
NAMESPACE_END(Grid);
#endif

View File

@ -0,0 +1,93 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/GeneralEvenOddRationalRatioMixedPrec.h
Copyright (C) 2015
Author: Christopher Kelly <ckelly@bnl.gov>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_MIXED_PREC_H
#define QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_MIXED_PREC_H
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Generic rational approximation for ratios of operators utilizing the mixed precision multishift algorithm
// cf. GeneralEvenOddRational.h for details
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
template<class ImplD, class ImplF>
class GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction : public GeneralEvenOddRatioRationalPseudoFermionAction<ImplD> {
private:
typedef typename ImplD::FermionField FermionFieldD;
typedef typename ImplF::FermionField FermionFieldF;
FermionOperator<ImplD> & NumOpD;
FermionOperator<ImplD> & DenOpD;
FermionOperator<ImplF> & NumOpF;
FermionOperator<ImplF> & DenOpF;
Integer ReliableUpdateFreq;
protected:
//Allow derived classes to override the multishift CG
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionFieldD &in, FermionFieldD &out){
SchurDifferentiableOperator<ImplD> schurOpD(numerator ? NumOpD : DenOpD);
SchurDifferentiableOperator<ImplF> schurOpF(numerator ? NumOpF : DenOpF);
ConjugateGradientMultiShiftMixedPrec<FermionFieldD, FermionFieldF> msCG(MaxIter, approx, NumOpF.FermionRedBlackGrid(), schurOpF, ReliableUpdateFreq);
msCG(schurOpD, in, out);
}
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionFieldD &in, std::vector<FermionFieldD> &out_elems, FermionFieldD &out){
SchurDifferentiableOperator<ImplD> schurOpD(numerator ? NumOpD : DenOpD);
SchurDifferentiableOperator<ImplF> schurOpF(numerator ? NumOpF : DenOpF);
ConjugateGradientMultiShiftMixedPrec<FermionFieldD, FermionFieldF> msCG(MaxIter, approx, NumOpF.FermionRedBlackGrid(), schurOpF, ReliableUpdateFreq);
msCG(schurOpD, in, out_elems, out);
}
//Allow derived classes to override the gauge import
virtual void ImportGauge(const typename ImplD::GaugeField &Ud){
typename ImplF::GaugeField Uf(NumOpF.GaugeGrid());
precisionChange(Uf, Ud);
NumOpD.ImportGauge(Ud);
DenOpD.ImportGauge(Ud);
NumOpF.ImportGauge(Uf);
DenOpF.ImportGauge(Uf);
}
public:
GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction(FermionOperator<ImplD> &_NumOpD, FermionOperator<ImplD> &_DenOpD,
FermionOperator<ImplF> &_NumOpF, FermionOperator<ImplF> &_DenOpF,
const RationalActionParams & p, Integer _ReliableUpdateFreq
) : GeneralEvenOddRatioRationalPseudoFermionAction<ImplD>(_NumOpD, _DenOpD, p),
ReliableUpdateFreq(_ReliableUpdateFreq), NumOpD(_NumOpD), DenOpD(_DenOpD), NumOpF(_NumOpF), DenOpF(_DenOpF){}
virtual std::string action_name(){return "GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction";}
};
NAMESPACE_END(Grid);
#endif

View File

@ -40,249 +40,31 @@ NAMESPACE_BEGIN(Grid);
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
template<class Impl>
class OneFlavourEvenOddRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
class OneFlavourEvenOddRatioRationalPseudoFermionAction : public GeneralEvenOddRatioRationalPseudoFermionAction<Impl> {
public:
INHERIT_IMPL_TYPES(Impl);
typedef OneFlavourRationalParams Params;
Params param;
MultiShiftFunction PowerHalf ;
MultiShiftFunction PowerNegHalf;
MultiShiftFunction PowerQuarter;
MultiShiftFunction PowerNegQuarter;
private:
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
FermionField PhiEven; // the pseudo fermion field for this trajectory
FermionField PhiOdd; // the pseudo fermion field for this trajectory
static RationalActionParams transcribe(const Params &in){
RationalActionParams out;
out.inv_pow = 2;
out.lo = in.lo;
out.hi = in.hi;
out.MaxIter = in.MaxIter;
out.action_tolerance = out.md_tolerance = in.tolerance;
out.action_degree = out.md_degree = in.degree;
out.precision = in.precision;
out.BoundsCheckFreq = in.BoundsCheckFreq;
return out;
}
public:
OneFlavourEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
Params & p
) :
NumOp(_NumOp),
DenOp(_DenOp),
PhiOdd (_NumOp.FermionRedBlackGrid()),
PhiEven(_NumOp.FermionRedBlackGrid()),
param(p)
{
AlgRemez remez(param.lo,param.hi,param.precision);
FermionOperator<Impl> &_DenOp,
const Params & p
) :
GeneralEvenOddRatioRationalPseudoFermionAction<Impl>(_NumOp, _DenOp, transcribe(p)){}
// MdagM^(+- 1/2)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
remez.generateApprox(param.degree,1,2);
PowerHalf.Init(remez,param.tolerance,false);
PowerNegHalf.Init(remez,param.tolerance,true);
// MdagM^(+- 1/4)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
remez.generateApprox(param.degree,1,4);
PowerQuarter.Init(remez,param.tolerance,false);
PowerNegQuarter.Init(remez,param.tolerance,true);
};
virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// P(phi) = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/2 (VdagV)^1/4 phi}
// = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/4 (MdagM)^-1/4 (VdagV)^1/4 phi}
//
// Phi = (VdagV)^-1/4 Mdag^{1/4} eta
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2).
RealD scale = std::sqrt(0.5);
FermionField eta(NumOp.FermionGrid());
FermionField etaOdd (NumOp.FermionRedBlackGrid());
FermionField etaEven(NumOp.FermionRedBlackGrid());
FermionField tmp(NumOp.FermionRedBlackGrid());
gaussian(pRNG,eta); eta=eta*scale;
pickCheckerboard(Even,etaEven,eta);
pickCheckerboard(Odd,etaOdd,eta);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
// MdagM^1/4 eta
SchurDifferentiableOperator<Impl> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerQuarter);
msCG_M(MdagM,etaOdd,tmp);
// VdagV^-1/4 MdagM^1/4 eta
SchurDifferentiableOperator<Impl> VdagV(NumOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerNegQuarter);
msCG_V(VdagV,tmp,PhiOdd);
assert(NumOp.ConstEE() == 1);
assert(DenOp.ConstEE() == 1);
PhiEven = Zero();
};
//////////////////////////////////////////////////////
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
FermionField X(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
// VdagV^1/4 Phi
SchurDifferentiableOperator<Impl> VdagV(NumOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
msCG_V(VdagV,PhiOdd,X);
// MdagM^-1/4 VdagV^1/4 Phi
SchurDifferentiableOperator<Impl> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegQuarter);
msCG_M(MdagM,X,Y);
// Randomly apply rational bounds checks.
auto grid = NumOp.FermionGrid();
auto r=rand();
grid->Broadcast(0,r);
if ( (r%param.BoundsCheckFreq)==0 ) {
FermionField gauss(NumOp.FermionRedBlackGrid());
gauss = PhiOdd;
HighBoundCheck(MdagM,gauss,param.hi);
InverseSqrtBoundsCheck(param.MaxIter,param.tolerance*100,MdagM,gauss,PowerNegHalf);
}
// Phidag VdagV^1/4 MdagM^-1/4 MdagM^-1/4 VdagV^1/4 Phi
RealD action = norm2(Y);
return action;
};
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// Here, M is some 5D operator and V is the Pauli-Villars field
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
//
// Need
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
// + chi^dag P/Q d[N/D] P/Q chi
// + chi^dag P/Q N/D d[P/Q] chi
//
// P/Q is expressed as partial fraction expansion:
//
// a0 + \sum_k ak/(V^dagV + bk)
//
// d[P/Q] is then
//
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
//
// and similar for N/D.
//
// Need
// MpvPhi_k = [Vdag V + bk]^{-1} chi
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
//
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
//
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
//
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
const int n_f = PowerNegHalf.poles.size();
const int n_pv = PowerQuarter.poles.size();
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionRedBlackGrid());
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid());
std::vector<FermionField> MfMpvPhi_k (n_f ,NumOp.FermionRedBlackGrid());
FermionField MpvPhi(NumOp.FermionRedBlackGrid());
FermionField MfMpvPhi(NumOp.FermionRedBlackGrid());
FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
GaugeField tmp(NumOp.GaugeGrid());
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
SchurDifferentiableOperator<Impl> VdagV(NumOp);
SchurDifferentiableOperator<Impl> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegHalf);
msCG_V(VdagV,PhiOdd,MpvPhi_k,MpvPhi);
msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
msCG_V(VdagV,MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
RealD ak;
dSdU = Zero();
// With these building blocks
//
// dS/dU =
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
//(1)
for(int k=0;k<n_f;k++){
ak = PowerNegHalf.residues[k];
MdagM.Mpc(MfMpvPhi_k[k],Y);
MdagM.MpcDagDeriv(tmp , MfMpvPhi_k[k], Y ); dSdU=dSdU+ak*tmp;
MdagM.MpcDeriv(tmp , Y, MfMpvPhi_k[k] ); dSdU=dSdU+ak*tmp;
}
//(2)
//(3)
for(int k=0;k<n_pv;k++){
ak = PowerQuarter.residues[k];
VdagV.Mpc(MpvPhi_k[k],Y);
VdagV.MpcDagDeriv(tmp,MpvMfMpvPhi_k[k],Y); dSdU=dSdU+ak*tmp;
VdagV.MpcDeriv (tmp,Y,MpvMfMpvPhi_k[k]); dSdU=dSdU+ak*tmp;
VdagV.Mpc(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
VdagV.MpcDeriv (tmp,Y, MpvPhi_k[k]); dSdU=dSdU+ak*tmp;
VdagV.MpcDagDeriv(tmp,MpvPhi_k[k], Y); dSdU=dSdU+ak*tmp;
}
//dSdU = Ta(dSdU);
};
virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}
};
NAMESPACE_END(Grid);

View File

@ -40,6 +40,8 @@ directory
#include <Grid/qcd/action/pseudofermion/OneFlavourRational.h>
#include <Grid/qcd/action/pseudofermion/OneFlavourRationalRatio.h>
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRational.h>
#include <Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h>
#include <Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatioMixedPrec.h>
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRationalRatio.h>
#include <Grid/qcd/action/pseudofermion/ExactOneFlavourRatio.h>

View File

@ -83,16 +83,7 @@ NAMESPACE_BEGIN(Grid);
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
// P(phi) = e^{- phi^dag Vpc (MpcdagMpc)^-1 Vpcdag phi}
//
// NumOp == V
// DenOp == M
//
// Take phi_o = Vpcdag^{-1} Mpcdag eta_o ; eta_o = Mpcdag^{-1} Vpcdag Phi
//
// P(eta_o) = e^{- eta_o^dag eta_o}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
@ -100,12 +91,22 @@ NAMESPACE_BEGIN(Grid);
RealD scale = std::sqrt(0.5);
FermionField eta (NumOp.FermionGrid());
gaussian(pRNG,eta); eta = eta * scale;
refresh(U,eta);
}
void refresh(const GaugeField &U, const FermionField &eta) {
// P(phi) = e^{- phi^dag Vpc (MpcdagMpc)^-1 Vpcdag phi}
//
// NumOp == V
// DenOp == M
//
// Take phi_o = Vpcdag^{-1} Mpcdag eta_o ; eta_o = Mpcdag^{-1} Vpcdag Phi
FermionField etaOdd (NumOp.FermionRedBlackGrid());
FermionField etaEven(NumOp.FermionRedBlackGrid());
FermionField tmp (NumOp.FermionRedBlackGrid());
gaussian(pRNG,eta);
pickCheckerboard(Even,etaEven,eta);
pickCheckerboard(Odd,etaOdd,eta);
@ -125,8 +126,8 @@ NAMESPACE_BEGIN(Grid);
DenOp.MooeeDag(etaEven,tmp);
NumOp.MooeeInvDag(tmp,PhiEven);
PhiOdd =PhiOdd*scale;
PhiEven=PhiEven*scale;
//PhiOdd =PhiOdd*scale;
//PhiEven=PhiEven*scale;
};

View File

@ -0,0 +1,6 @@
#ifndef GRID_GPARITY_H_
#define GRID_GPARITY_H_
#include<Grid/qcd/gparity/GparityFlavour.h>
#endif

View File

@ -0,0 +1,34 @@
#include <Grid/Grid.h>
NAMESPACE_BEGIN(Grid);
const std::array<const GparityFlavour, 3> GparityFlavour::sigma_mu = {{
GparityFlavour(GparityFlavour::Algebra::SigmaX),
GparityFlavour(GparityFlavour::Algebra::SigmaY),
GparityFlavour(GparityFlavour::Algebra::SigmaZ)
}};
const std::array<const GparityFlavour, 6> GparityFlavour::sigma_all = {{
GparityFlavour(GparityFlavour::Algebra::Identity),
GparityFlavour(GparityFlavour::Algebra::SigmaX),
GparityFlavour(GparityFlavour::Algebra::SigmaY),
GparityFlavour(GparityFlavour::Algebra::SigmaZ),
GparityFlavour(GparityFlavour::Algebra::ProjPlus),
GparityFlavour(GparityFlavour::Algebra::ProjMinus)
}};
const std::array<const char *, GparityFlavour::nSigma> GparityFlavour::name = {{
"SigmaX",
"MinusSigmaX",
"SigmaY",
"MinusSigmaY",
"SigmaZ",
"MinusSigmaZ",
"Identity",
"MinusIdentity",
"ProjPlus",
"MinusProjPlus",
"ProjMinus",
"MinusProjMinus"}};
NAMESPACE_END(Grid);

View File

@ -0,0 +1,475 @@
#ifndef GRID_QCD_GPARITY_FLAVOUR_H
#define GRID_QCD_GPARITY_FLAVOUR_H
//Support for flavour-matrix operations acting on the G-parity flavour index
#include <array>
NAMESPACE_BEGIN(Grid);
class GparityFlavour {
public:
GRID_SERIALIZABLE_ENUM(Algebra, undef,
SigmaX, 0,
MinusSigmaX, 1,
SigmaY, 2,
MinusSigmaY, 3,
SigmaZ, 4,
MinusSigmaZ, 5,
Identity, 6,
MinusIdentity, 7,
ProjPlus, 8,
MinusProjPlus, 9,
ProjMinus, 10,
MinusProjMinus, 11
);
static constexpr unsigned int nSigma = 12;
static const std::array<const char *, nSigma> name;
static const std::array<const GparityFlavour, 3> sigma_mu;
static const std::array<const GparityFlavour, 6> sigma_all;
Algebra g;
public:
accelerator GparityFlavour(Algebra initg): g(initg) {}
};
// 0 1 x vector
// 1 0
template<class vtype>
accelerator_inline void multFlavourSigmaX(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = rhs(1);
ret(1) = rhs(0);
};
template<class vtype>
accelerator_inline void lmultFlavourSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = rhs(1,0);
ret(0,1) = rhs(1,1);
ret(1,0) = rhs(0,0);
ret(1,1) = rhs(0,1);
};
template<class vtype>
accelerator_inline void rmultFlavourSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = rhs(0,1);
ret(0,1) = rhs(0,0);
ret(1,0) = rhs(1,1);
ret(1,1) = rhs(1,0);
};
template<class vtype>
accelerator_inline void multFlavourMinusSigmaX(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = -rhs(1);
ret(1) = -rhs(0);
};
template<class vtype>
accelerator_inline void lmultFlavourMinusSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -rhs(1,0);
ret(0,1) = -rhs(1,1);
ret(1,0) = -rhs(0,0);
ret(1,1) = -rhs(0,1);
};
template<class vtype>
accelerator_inline void rmultFlavourMinusSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -rhs(0,1);
ret(0,1) = -rhs(0,0);
ret(1,0) = -rhs(1,1);
ret(1,1) = -rhs(1,0);
};
// 0 -i x vector
// i 0
template<class vtype>
accelerator_inline void multFlavourSigmaY(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = timesMinusI(rhs(1));
ret(1) = timesI(rhs(0));
};
template<class vtype>
accelerator_inline void lmultFlavourSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = timesMinusI(rhs(1,0));
ret(0,1) = timesMinusI(rhs(1,1));
ret(1,0) = timesI(rhs(0,0));
ret(1,1) = timesI(rhs(0,1));
};
template<class vtype>
accelerator_inline void rmultFlavourSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = timesI(rhs(0,1));
ret(0,1) = timesMinusI(rhs(0,0));
ret(1,0) = timesI(rhs(1,1));
ret(1,1) = timesMinusI(rhs(1,0));
};
template<class vtype>
accelerator_inline void multFlavourMinusSigmaY(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = timesI(rhs(1));
ret(1) = timesMinusI(rhs(0));
};
template<class vtype>
accelerator_inline void lmultFlavourMinusSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = timesI(rhs(1,0));
ret(0,1) = timesI(rhs(1,1));
ret(1,0) = timesMinusI(rhs(0,0));
ret(1,1) = timesMinusI(rhs(0,1));
};
template<class vtype>
accelerator_inline void rmultFlavourMinusSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = timesMinusI(rhs(0,1));
ret(0,1) = timesI(rhs(0,0));
ret(1,0) = timesMinusI(rhs(1,1));
ret(1,1) = timesI(rhs(1,0));
};
// 1 0 x vector
// 0 -1
template<class vtype>
accelerator_inline void multFlavourSigmaZ(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = rhs(0);
ret(1) = -rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = rhs(0,0);
ret(0,1) = rhs(0,1);
ret(1,0) = -rhs(1,0);
ret(1,1) = -rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = rhs(0,0);
ret(0,1) = -rhs(0,1);
ret(1,0) = rhs(1,0);
ret(1,1) = -rhs(1,1);
};
template<class vtype>
accelerator_inline void multFlavourMinusSigmaZ(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = -rhs(0);
ret(1) = rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourMinusSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -rhs(0,0);
ret(0,1) = -rhs(0,1);
ret(1,0) = rhs(1,0);
ret(1,1) = rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourMinusSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -rhs(0,0);
ret(0,1) = rhs(0,1);
ret(1,0) = -rhs(1,0);
ret(1,1) = rhs(1,1);
};
template<class vtype>
accelerator_inline void multFlavourIdentity(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = rhs(0);
ret(1) = rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = rhs(0,0);
ret(0,1) = rhs(0,1);
ret(1,0) = rhs(1,0);
ret(1,1) = rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = rhs(0,0);
ret(0,1) = rhs(0,1);
ret(1,0) = rhs(1,0);
ret(1,1) = rhs(1,1);
};
template<class vtype>
accelerator_inline void multFlavourMinusIdentity(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = -rhs(0);
ret(1) = -rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourMinusIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -rhs(0,0);
ret(0,1) = -rhs(0,1);
ret(1,0) = -rhs(1,0);
ret(1,1) = -rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourMinusIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -rhs(0,0);
ret(0,1) = -rhs(0,1);
ret(1,0) = -rhs(1,0);
ret(1,1) = -rhs(1,1);
};
//G-parity flavour projection 1/2(1+\sigma_2)
//1 -i
//i 1
template<class vtype>
accelerator_inline void multFlavourProjPlus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = 0.5*rhs(0) + 0.5*timesMinusI(rhs(1));
ret(1) = 0.5*timesI(rhs(0)) + 0.5*rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesMinusI(rhs(1,0));
ret(0,1) = 0.5*rhs(0,1) + 0.5*timesMinusI(rhs(1,1));
ret(1,0) = 0.5*timesI(rhs(0,0)) + 0.5*rhs(1,0);
ret(1,1) = 0.5*timesI(rhs(0,1)) + 0.5*rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesI(rhs(0,1));
ret(0,1) = 0.5*timesMinusI(rhs(0,0)) + 0.5*rhs(0,1);
ret(1,0) = 0.5*rhs(1,0) + 0.5*timesI(rhs(1,1));
ret(1,1) = 0.5*timesMinusI(rhs(1,0)) + 0.5*rhs(1,1);
};
template<class vtype>
accelerator_inline void multFlavourMinusProjPlus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = -0.5*rhs(0) + 0.5*timesI(rhs(1));
ret(1) = 0.5*timesMinusI(rhs(0)) - 0.5*rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourMinusProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesI(rhs(1,0));
ret(0,1) = -0.5*rhs(0,1) + 0.5*timesI(rhs(1,1));
ret(1,0) = 0.5*timesMinusI(rhs(0,0)) - 0.5*rhs(1,0);
ret(1,1) = 0.5*timesMinusI(rhs(0,1)) - 0.5*rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourMinusProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesMinusI(rhs(0,1));
ret(0,1) = 0.5*timesI(rhs(0,0)) - 0.5*rhs(0,1);
ret(1,0) = -0.5*rhs(1,0) + 0.5*timesMinusI(rhs(1,1));
ret(1,1) = 0.5*timesI(rhs(1,0)) - 0.5*rhs(1,1);
};
//G-parity flavour projection 1/2(1-\sigma_2)
//1 i
//-i 1
template<class vtype>
accelerator_inline void multFlavourProjMinus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = 0.5*rhs(0) + 0.5*timesI(rhs(1));
ret(1) = 0.5*timesMinusI(rhs(0)) + 0.5*rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesI(rhs(1,0));
ret(0,1) = 0.5*rhs(0,1) + 0.5*timesI(rhs(1,1));
ret(1,0) = 0.5*timesMinusI(rhs(0,0)) + 0.5*rhs(1,0);
ret(1,1) = 0.5*timesMinusI(rhs(0,1)) + 0.5*rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesMinusI(rhs(0,1));
ret(0,1) = 0.5*timesI(rhs(0,0)) + 0.5*rhs(0,1);
ret(1,0) = 0.5*rhs(1,0) + 0.5*timesMinusI(rhs(1,1));
ret(1,1) = 0.5*timesI(rhs(1,0)) + 0.5*rhs(1,1);
};
template<class vtype>
accelerator_inline void multFlavourMinusProjMinus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = -0.5*rhs(0) + 0.5*timesMinusI(rhs(1));
ret(1) = 0.5*timesI(rhs(0)) - 0.5*rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourMinusProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesMinusI(rhs(1,0));
ret(0,1) = -0.5*rhs(0,1) + 0.5*timesMinusI(rhs(1,1));
ret(1,0) = 0.5*timesI(rhs(0,0)) - 0.5*rhs(1,0);
ret(1,1) = 0.5*timesI(rhs(0,1)) - 0.5*rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourMinusProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesI(rhs(0,1));
ret(0,1) = 0.5*timesMinusI(rhs(0,0)) - 0.5*rhs(0,1);
ret(1,0) = -0.5*rhs(1,0) + 0.5*timesI(rhs(1,1));
ret(1,1) = 0.5*timesMinusI(rhs(1,0)) - 0.5*rhs(1,1);
};
template<class vtype>
accelerator_inline auto operator*(const GparityFlavour &G, const iVector<vtype, Ngp> &arg)
->typename std::enable_if<matchGridTensorIndex<iVector<vtype, Ngp>, GparityFlavourTensorIndex>::value, iVector<vtype, Ngp>>::type
{
iVector<vtype, Ngp> ret;
switch (G.g)
{
case GparityFlavour::Algebra::SigmaX:
multFlavourSigmaX(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaX:
multFlavourMinusSigmaX(ret, arg); break;
case GparityFlavour::Algebra::SigmaY:
multFlavourSigmaY(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaY:
multFlavourMinusSigmaY(ret, arg); break;
case GparityFlavour::Algebra::SigmaZ:
multFlavourSigmaZ(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaZ:
multFlavourMinusSigmaZ(ret, arg); break;
case GparityFlavour::Algebra::Identity:
multFlavourIdentity(ret, arg); break;
case GparityFlavour::Algebra::MinusIdentity:
multFlavourMinusIdentity(ret, arg); break;
case GparityFlavour::Algebra::ProjPlus:
multFlavourProjPlus(ret, arg); break;
case GparityFlavour::Algebra::MinusProjPlus:
multFlavourMinusProjPlus(ret, arg); break;
case GparityFlavour::Algebra::ProjMinus:
multFlavourProjMinus(ret, arg); break;
case GparityFlavour::Algebra::MinusProjMinus:
multFlavourMinusProjMinus(ret, arg); break;
default: assert(0);
}
return ret;
}
template<class vtype>
accelerator_inline auto operator*(const GparityFlavour &G, const iMatrix<vtype, Ngp> &arg)
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Ngp>, GparityFlavourTensorIndex>::value, iMatrix<vtype, Ngp>>::type
{
iMatrix<vtype, Ngp> ret;
switch (G.g)
{
case GparityFlavour::Algebra::SigmaX:
lmultFlavourSigmaX(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaX:
lmultFlavourMinusSigmaX(ret, arg); break;
case GparityFlavour::Algebra::SigmaY:
lmultFlavourSigmaY(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaY:
lmultFlavourMinusSigmaY(ret, arg); break;
case GparityFlavour::Algebra::SigmaZ:
lmultFlavourSigmaZ(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaZ:
lmultFlavourMinusSigmaZ(ret, arg); break;
case GparityFlavour::Algebra::Identity:
lmultFlavourIdentity(ret, arg); break;
case GparityFlavour::Algebra::MinusIdentity:
lmultFlavourMinusIdentity(ret, arg); break;
case GparityFlavour::Algebra::ProjPlus:
lmultFlavourProjPlus(ret, arg); break;
case GparityFlavour::Algebra::MinusProjPlus:
lmultFlavourMinusProjPlus(ret, arg); break;
case GparityFlavour::Algebra::ProjMinus:
lmultFlavourProjMinus(ret, arg); break;
case GparityFlavour::Algebra::MinusProjMinus:
lmultFlavourMinusProjMinus(ret, arg); break;
default: assert(0);
}
return ret;
}
template<class vtype>
accelerator_inline auto operator*(const iMatrix<vtype, Ngp> &arg, const GparityFlavour &G)
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Ngp>, GparityFlavourTensorIndex>::value, iMatrix<vtype, Ngp>>::type
{
iMatrix<vtype, Ngp> ret;
switch (G.g)
{
case GparityFlavour::Algebra::SigmaX:
rmultFlavourSigmaX(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaX:
rmultFlavourMinusSigmaX(ret, arg); break;
case GparityFlavour::Algebra::SigmaY:
rmultFlavourSigmaY(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaY:
rmultFlavourMinusSigmaY(ret, arg); break;
case GparityFlavour::Algebra::SigmaZ:
rmultFlavourSigmaZ(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaZ:
rmultFlavourMinusSigmaZ(ret, arg); break;
case GparityFlavour::Algebra::Identity:
rmultFlavourIdentity(ret, arg); break;
case GparityFlavour::Algebra::MinusIdentity:
rmultFlavourMinusIdentity(ret, arg); break;
case GparityFlavour::Algebra::ProjPlus:
rmultFlavourProjPlus(ret, arg); break;
case GparityFlavour::Algebra::MinusProjPlus:
rmultFlavourMinusProjPlus(ret, arg); break;
case GparityFlavour::Algebra::ProjMinus:
rmultFlavourProjMinus(ret, arg); break;
case GparityFlavour::Algebra::MinusProjMinus:
rmultFlavourMinusProjMinus(ret, arg); break;
default: assert(0);
}
return ret;
}
NAMESPACE_END(Grid);
#endif // include guard

View File

@ -129,18 +129,10 @@ public:
Runner(S);
}
//////////////////////////////////////////////////////////////////
private:
template <class SmearingPolicy>
void Runner(SmearingPolicy &Smearing) {
auto UGrid = Resources.GetCartesian();
Resources.AddRNGs();
Field U(UGrid);
// Can move this outside?
typedef IntegratorType<SmearingPolicy> TheIntegrator;
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing);
//Use the checkpointer to initialize the RNGs and the gauge field, writing the resulting gauge field into U.
//This is called automatically by Run but may be useful elsewhere, e.g. for integrator tuning experiments
void initializeGaugeFieldAndRNGs(Field &U){
if(!Resources.haveRNGs()) Resources.AddRNGs();
if (Parameters.StartingType == "HotStart") {
// Hot start
@ -167,6 +159,22 @@ private:
<< "Valid [HotStart, ColdStart, TepidStart, CheckpointStart]\n";
exit(1);
}
}
//////////////////////////////////////////////////////////////////
private:
template <class SmearingPolicy>
void Runner(SmearingPolicy &Smearing) {
auto UGrid = Resources.GetCartesian();
Field U(UGrid);
initializeGaugeFieldAndRNGs(U);
typedef IntegratorType<SmearingPolicy> TheIntegrator;
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing);
Smearing.set_Field(U);

View File

@ -115,21 +115,21 @@ private:
random(sRNG, rn_test);
std::cout << GridLogMessage
std::cout << GridLogHMC
<< "--------------------------------------------------\n";
std::cout << GridLogMessage << "exp(-dH) = " << prob
std::cout << GridLogHMC << "exp(-dH) = " << prob
<< " Random = " << rn_test << "\n";
std::cout << GridLogMessage
std::cout << GridLogHMC
<< "Acc. Probability = " << ((prob < 1.0) ? prob : 1.0) << "\n";
if ((prob > 1.0) || (rn_test <= prob)) { // accepted
std::cout << GridLogMessage << "Metropolis_test -- ACCEPTED\n";
std::cout << GridLogMessage
std::cout << GridLogHMC << "Metropolis_test -- ACCEPTED\n";
std::cout << GridLogHMC
<< "--------------------------------------------------\n";
return true;
} else { // rejected
std::cout << GridLogMessage << "Metropolis_test -- REJECTED\n";
std::cout << GridLogMessage
std::cout << GridLogHMC << "Metropolis_test -- REJECTED\n";
std::cout << GridLogHMC
<< "--------------------------------------------------\n";
return false;
}
@ -145,7 +145,7 @@ private:
std::streamsize current_precision = std::cout.precision();
std::cout.precision(15);
std::cout << GridLogMessage << "Total H before trajectory = " << H0 << "\n";
std::cout << GridLogHMC << "Total H before trajectory = " << H0 << "\n";
std::cout.precision(current_precision);
TheIntegrator.integrate(U);
@ -165,7 +165,7 @@ private:
std::cout.precision(15);
std::cout << GridLogMessage << "Total H after trajectory = " << H1
std::cout << GridLogHMC << "Total H after trajectory = " << H1
<< " dH = " << H1 - H0 << "\n";
std::cout.precision(current_precision);
@ -196,9 +196,9 @@ public:
// Actual updates (evolve a copy Ucopy then copy back eventually)
unsigned int FinalTrajectory = Params.Trajectories + Params.NoMetropolisUntil + Params.StartTrajectory;
for (int traj = Params.StartTrajectory; traj < FinalTrajectory; ++traj) {
std::cout << GridLogMessage << "-- # Trajectory = " << traj << "\n";
std::cout << GridLogHMC << "-- # Trajectory = " << traj << "\n";
if (traj < Params.StartTrajectory + Params.NoMetropolisUntil) {
std::cout << GridLogMessage << "-- Thermalization" << std::endl;
std::cout << GridLogHMC << "-- Thermalization" << std::endl;
}
double t0=usecond();
@ -207,10 +207,10 @@ public:
DeltaH = evolve_hmc_step(Ucopy);
// Metropolis-Hastings test
bool accept = true;
if (traj >= Params.StartTrajectory + Params.NoMetropolisUntil) {
if (Params.MetropolisTest && traj >= Params.StartTrajectory + Params.NoMetropolisUntil) {
accept = metropolis_test(DeltaH);
} else {
std::cout << GridLogMessage << "Skipping Metropolis test" << std::endl;
std::cout << GridLogHMC << "Skipping Metropolis test" << std::endl;
}
if (accept)
@ -219,7 +219,7 @@ public:
double t1=usecond();
std::cout << GridLogMessage << "Total time for trajectory (s): " << (t1-t0)/1e6 << std::endl;
std::cout << GridLogHMC << "Total time for trajectory (s): " << (t1-t0)/1e6 << std::endl;
for (int obs = 0; obs < Observables.size(); obs++) {
@ -228,7 +228,7 @@ public:
std::cout << GridLogDebug << "Observables pointer " << Observables[obs] << std::endl;
Observables[obs]->TrajectoryComplete(traj + 1, Ucur, sRNG, pRNG);
}
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::::" << std::endl;
std::cout << GridLogHMC << ":::::::::::::::::::::::::::::::::::::::::::" << std::endl;
}
}

View File

@ -226,6 +226,9 @@ public:
//////////////////////////////////////////////////////
// Random number generators
//////////////////////////////////////////////////////
//Return true if the RNG objects have been instantiated
bool haveRNGs() const{ return have_RNG; }
void AddRNGs(std::string s = "") {
// Couple the RNGs to the GridModule tagged by s

View File

@ -136,8 +136,14 @@ protected:
if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force);
force = FieldImplementation::projectForce(force); // Ta for gauge fields
double end_force = usecond();
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites());
std::cout << GridLogIntegrator << "["<<level<<"]["<<a<<"] Force average: " << force_abs << std::endl;
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites()); //average per-site norm. nb. norm2(latt) = \sum_x norm2(latt[x])
Real impulse_abs = force_abs * ep * HMC_MOMENTUM_DENOMINATOR;
Real max_force_abs = std::sqrt(maxLocalNorm2(force));
Real max_impulse_abs = max_force_abs * ep * HMC_MOMENTUM_DENOMINATOR;
std::cout << GridLogIntegrator << "["<<level<<"]["<<a<<"] Force average: " << force_abs << " Max force: " << max_force_abs << " Time step: " << ep << " Impulse average: " << impulse_abs << " Max impulse: " << max_impulse_abs << std::endl;
Mom -= force * ep* HMC_MOMENTUM_DENOMINATOR;;
double end_full = usecond();
double time_full = (end_full - start_full) / 1e3;

200
Grid/random/gaussian.h Normal file
View File

@ -0,0 +1,200 @@
// -*- C++ -*-
//===--------------------------- random -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Peter Boyle: Taken from libc++ in Clang/LLVM.
// Reason is that libstdc++ and clang differ in their return order in the normal_distribution / box mueller type step.
// standardise on one and call it "gaussian_distribution".
#pragma once
#include <cstddef>
#include <cstdint>
#include <cmath>
#include <type_traits>
#include <initializer_list>
#include <limits>
#include <algorithm>
#include <numeric>
#include <vector>
#include <string>
#include <istream>
#include <ostream>
#include <random>
// normal_distribution -> gaussian distribution
namespace Grid {
template<class _RealType = double>
class gaussian_distribution
{
public:
// types
typedef _RealType result_type;
class param_type
{
result_type __mean_;
result_type __stddev_;
public:
typedef gaussian_distribution distribution_type;
strong_inline
explicit param_type(result_type __mean = 0, result_type __stddev = 1)
: __mean_(__mean), __stddev_(__stddev) {}
strong_inline
result_type mean() const {return __mean_;}
strong_inline
result_type stddev() const {return __stddev_;}
friend strong_inline
bool operator==(const param_type& __x, const param_type& __y)
{return __x.__mean_ == __y.__mean_ && __x.__stddev_ == __y.__stddev_;}
friend strong_inline
bool operator!=(const param_type& __x, const param_type& __y)
{return !(__x == __y);}
};
private:
param_type __p_;
result_type _V_;
bool _V_hot_;
public:
// constructors and reset functions
strong_inline
explicit gaussian_distribution(result_type __mean = 0, result_type __stddev = 1)
: __p_(param_type(__mean, __stddev)), _V_hot_(false) {}
strong_inline
explicit gaussian_distribution(const param_type& __p)
: __p_(__p), _V_hot_(false) {}
strong_inline
void reset() {_V_hot_ = false;}
// generating functions
template<class _URNG>
strong_inline
result_type operator()(_URNG& __g)
{return (*this)(__g, __p_);}
template<class _URNG> result_type operator()(_URNG& __g, const param_type& __p);
// property functions
strong_inline
result_type mean() const {return __p_.mean();}
strong_inline
result_type stddev() const {return __p_.stddev();}
strong_inline
param_type param() const {return __p_;}
strong_inline
void param(const param_type& __p) {__p_ = __p;}
strong_inline
result_type min() const {return -std::numeric_limits<result_type>::infinity();}
strong_inline
result_type max() const {return std::numeric_limits<result_type>::infinity();}
friend strong_inline
bool operator==(const gaussian_distribution& __x,
const gaussian_distribution& __y)
{return __x.__p_ == __y.__p_ && __x._V_hot_ == __y._V_hot_ &&
(!__x._V_hot_ || __x._V_ == __y._V_);}
friend strong_inline
bool operator!=(const gaussian_distribution& __x,
const gaussian_distribution& __y)
{return !(__x == __y);}
template <class _CharT, class _Traits, class _RT>
friend
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const gaussian_distribution<_RT>& __x);
template <class _CharT, class _Traits, class _RT>
friend
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
gaussian_distribution<_RT>& __x);
};
template <class _RealType>
template<class _URNG>
_RealType
gaussian_distribution<_RealType>::operator()(_URNG& __g, const param_type& __p)
{
result_type _Up;
if (_V_hot_)
{
_V_hot_ = false;
_Up = _V_;
}
else
{
std::uniform_real_distribution<result_type> _Uni(-1, 1);
result_type __u;
result_type __v;
result_type __s;
do
{
__u = _Uni(__g);
__v = _Uni(__g);
__s = __u * __u + __v * __v;
} while (__s > 1 || __s == 0);
result_type _Fp = std::sqrt(-2 * std::log(__s) / __s);
_V_ = __v * _Fp;
_V_hot_ = true;
_Up = __u * _Fp;
}
return _Up * __p.stddev() + __p.mean();
}
template <class _CharT, class _Traits, class _RT>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const gaussian_distribution<_RT>& __x)
{
auto __save_flags = __os.flags();
__os.flags(std::ios_base::dec | std::ios_base::left | std::ios_base::fixed |
std::ios_base::scientific);
_CharT __sp = __os.widen(' ');
__os.fill(__sp);
__os << __x.mean() << __sp << __x.stddev() << __sp << __x._V_hot_;
if (__x._V_hot_)
__os << __sp << __x._V_;
__os.flags(__save_flags);
return __os;
}
template <class _CharT, class _Traits, class _RT>
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
gaussian_distribution<_RT>& __x)
{
typedef gaussian_distribution<_RT> _Eng;
typedef typename _Eng::result_type result_type;
typedef typename _Eng::param_type param_type;
auto __save_flags = __is.flags();
__is.flags(std::ios_base::dec | std::ios_base::skipws);
result_type __mean;
result_type __stddev;
result_type _Vp = 0;
bool _V_hot = false;
__is >> __mean >> __stddev >> _V_hot;
if (_V_hot)
__is >> _Vp;
if (!__is.fail())
{
__x.param(param_type(__mean, __stddev));
__x._V_hot_ = _V_hot;
__x._V_ = _Vp;
}
__is.flags(__save_flags);
return __is;
}
}

View File

@ -208,5 +208,46 @@ void merge(vobj &vec,ExtractPointerArray<sobj> &extracted, int offset)
}
//////////////////////////////////////////////////////////////////////////////////
//Copy a single lane of a SIMD tensor type from one object to another
//Output object must be of the same tensor type but may be of a different precision (i.e. it can have a different root data type)
///////////////////////////////////////////////////////////////////////////////////
template<class vobjOut, class vobjIn>
accelerator_inline
void copyLane(vobjOut & __restrict__ vecOut, int lane_out, const vobjIn & __restrict__ vecIn, int lane_in)
{
static_assert( std::is_same<typename vobjOut::DoublePrecision, typename vobjIn::DoublePrecision>::value == 1, "copyLane: tensor types must be the same" ); //if tensor types are same the DoublePrecision type must be the same
typedef typename vobjOut::vector_type ovector_type;
typedef typename vobjIn::vector_type ivector_type;
constexpr int owords=sizeof(vobjOut)/sizeof(ovector_type);
constexpr int iwords=sizeof(vobjIn)/sizeof(ivector_type);
static_assert( owords == iwords, "copyLane: Expected number of vector words in input and output objects to be equal" );
typedef typename vobjOut::scalar_type oscalar_type;
typedef typename vobjIn::scalar_type iscalar_type;
typedef typename ExtractTypeMap<oscalar_type>::extract_type oextract_type;
typedef typename ExtractTypeMap<iscalar_type>::extract_type iextract_type;
typedef oextract_type * opointer;
typedef iextract_type * ipointer;
constexpr int oNsimd=ovector_type::Nsimd();
constexpr int iNsimd=ivector_type::Nsimd();
iscalar_type itmp;
oscalar_type otmp;
opointer __restrict__ op = (opointer)&vecOut;
ipointer __restrict__ ip = (ipointer)&vecIn;
for(int w=0;w<owords;w++){
memcpy( (char*)&itmp, (char*)(ip + lane_in + iNsimd*w), sizeof(iscalar_type) );
otmp = itmp; //potential precision change
memcpy( (char*)(op + lane_out + oNsimd*w), (char*)&otmp, sizeof(oscalar_type) );
}
}
NAMESPACE_END(Grid);

View File

@ -192,7 +192,7 @@ inline void *acceleratorAllocShared(size_t bytes)
auto err = cudaMallocManaged((void **)&ptr,bytes);
if( err != cudaSuccess ) {
ptr = (void *) NULL;
printf(" cudaMallocManaged failed for %d %s \n",bytes,cudaGetErrorString(err));
printf(" cudaMallocManaged failed for %lu %s \n",bytes,cudaGetErrorString(err));
}
return ptr;
};
@ -202,7 +202,7 @@ inline void *acceleratorAllocDevice(size_t bytes)
auto err = cudaMalloc((void **)&ptr,bytes);
if( err != cudaSuccess ) {
ptr = (void *) NULL;
printf(" cudaMalloc failed for %d %s \n",bytes,cudaGetErrorString(err));
printf(" cudaMalloc failed for %lu %s \n",bytes,cudaGetErrorString(err));
}
return ptr;
};