1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-07-25 17:07:07 +01:00

Merge branch 'develop' into release/v0.6.0

This commit is contained in:
azusayamaguchi
2016-11-04 16:08:07 +00:00
41 changed files with 1661 additions and 895 deletions

View File

@@ -365,6 +365,18 @@ namespace Optimization {
}
};
struct Div{
// Real float
inline __m256 operator()(__m256 a, __m256 b){
return _mm256_div_ps(a,b);
}
// Real double
inline __m256d operator()(__m256d a, __m256d b){
return _mm256_div_pd(a,b);
}
};
struct Conj{
// Complex single
inline __m256 operator()(__m256 in){
@@ -437,14 +449,13 @@ namespace Optimization {
};
#if defined (AVX2) || defined (AVXFMA4)
#define _mm256_alignr_epi32(ret,a,b,n) ret=(__m256) _mm256_alignr_epi8((__m256i)a,(__m256i)b,(n*4)%16)
#define _mm256_alignr_epi64(ret,a,b,n) ret=(__m256d) _mm256_alignr_epi8((__m256i)a,(__m256i)b,(n*8)%16)
#if defined (AVX2)
#define _mm256_alignr_epi32_grid(ret,a,b,n) ret=(__m256) _mm256_alignr_epi8((__m256i)a,(__m256i)b,(n*4)%16)
#define _mm256_alignr_epi64_grid(ret,a,b,n) ret=(__m256d) _mm256_alignr_epi8((__m256i)a,(__m256i)b,(n*8)%16)
#endif
#if defined (AVX1) || defined (AVXFMA)
#define _mm256_alignr_epi32(ret,a,b,n) { \
#if defined (AVX1) || defined (AVXFMA)
#define _mm256_alignr_epi32_grid(ret,a,b,n) { \
__m128 aa, bb; \
\
aa = _mm256_extractf128_ps(a,1); \
@@ -458,7 +469,7 @@ namespace Optimization {
ret = _mm256_insertf128_ps(ret,aa,0); \
}
#define _mm256_alignr_epi64(ret,a,b,n) { \
#define _mm256_alignr_epi64_grid(ret,a,b,n) { \
__m128d aa, bb; \
\
aa = _mm256_extractf128_pd(a,1); \
@@ -474,19 +485,6 @@ namespace Optimization {
#endif
inline std::ostream & operator << (std::ostream& stream, const __m256 a)
{
const float *p=(const float *)&a;
stream<< "{"<<p[0]<<","<<p[1]<<","<<p[2]<<","<<p[3]<<","<<p[4]<<","<<p[5]<<","<<p[6]<<","<<p[7]<<"}";
return stream;
};
inline std::ostream & operator<< (std::ostream& stream, const __m256d a)
{
const double *p=(const double *)&a;
stream<< "{"<<p[0]<<","<<p[1]<<","<<p[2]<<","<<p[3]<<"}";
return stream;
};
struct Rotate{
static inline __m256 rotate(__m256 in,int n){
@@ -518,11 +516,10 @@ namespace Optimization {
__m256 tmp = Permute::Permute0(in);
__m256 ret;
if ( n > 3 ) {
_mm256_alignr_epi32(ret,in,tmp,n);
_mm256_alignr_epi32_grid(ret,in,tmp,n);
} else {
_mm256_alignr_epi32(ret,tmp,in,n);
_mm256_alignr_epi32_grid(ret,tmp,in,n);
}
// std::cout << " align epi32 n=" <<n<<" in "<<tmp<<in<<" -> "<< ret <<std::endl;
return ret;
};
@@ -531,18 +528,15 @@ namespace Optimization {
__m256d tmp = Permute::Permute0(in);
__m256d ret;
if ( n > 1 ) {
_mm256_alignr_epi64(ret,in,tmp,n);
_mm256_alignr_epi64_grid(ret,in,tmp,n);
} else {
_mm256_alignr_epi64(ret,tmp,in,n);
_mm256_alignr_epi64_grid(ret,tmp,in,n);
}
// std::cout << " align epi64 n=" <<n<<" in "<<tmp<<in<<" -> "<< ret <<std::endl;
return ret;
};
};
//Complex float Reduce
template<>
inline Grid::ComplexF Reduce<Grid::ComplexF, __m256>::operator()(__m256 in){
@@ -631,6 +625,7 @@ namespace Optimization {
// Arithmetic operations
typedef Optimization::Sum SumSIMD;
typedef Optimization::Sub SubSIMD;
typedef Optimization::Div DivSIMD;
typedef Optimization::Mult MultSIMD;
typedef Optimization::MultComplex MultComplexSIMD;
typedef Optimization::Conj ConjSIMD;

View File

@@ -240,6 +240,17 @@ namespace Optimization {
}
};
struct Div{
// Real float
inline __m512 operator()(__m512 a, __m512 b){
return _mm512_div_ps(a,b);
}
// Real double
inline __m512d operator()(__m512d a, __m512d b){
return _mm512_div_pd(a,b);
}
};
struct Conj{
// Complex single
@@ -497,6 +508,7 @@ namespace Optimization {
typedef Optimization::Sum SumSIMD;
typedef Optimization::Sub SubSIMD;
typedef Optimization::Mult MultSIMD;
typedef Optimization::Div DivSIMD;
typedef Optimization::MultComplex MultComplexSIMD;
typedef Optimization::Conj ConjSIMD;
typedef Optimization::TimesMinusI TimesMinusISIMD;

View File

@@ -244,6 +244,17 @@ namespace Optimization {
}
};
struct Div{
// Real float
inline __m512 operator()(__m512 a, __m512 b){
return _mm512_div_ps(a,b);
}
// Real double
inline __m512d operator()(__m512d a, __m512d b){
return _mm512_div_pd(a,b);
}
};
struct Conj{
// Complex single
@@ -437,6 +448,7 @@ namespace Optimization {
// Arithmetic operations
typedef Optimization::Sum SumSIMD;
typedef Optimization::Sub SubSIMD;
typedef Optimization::Div DivSIMD;
typedef Optimization::Mult MultSIMD;
typedef Optimization::MultComplex MultComplexSIMD;
typedef Optimization::Conj ConjSIMD;

View File

@@ -224,6 +224,18 @@ namespace Optimization {
}
};
struct Div{
// Real float
inline __m128 operator()(__m128 a, __m128 b){
return _mm_div_ps(a,b);
}
// Real double
inline __m128d operator()(__m128d a, __m128d b){
return _mm_div_pd(a,b);
}
};
struct Conj{
// Complex single
inline __m128 operator()(__m128 in){
@@ -372,6 +384,8 @@ namespace Optimization {
}
}
//////////////////////////////////////////////////////////////////////////////////////
// Here assign types
@@ -398,6 +412,7 @@ namespace Optimization {
// Arithmetic operations
typedef Optimization::Sum SumSIMD;
typedef Optimization::Sub SubSIMD;
typedef Optimization::Div DivSIMD;
typedef Optimization::Mult MultSIMD;
typedef Optimization::MultComplex MultComplexSIMD;
typedef Optimization::Conj ConjSIMD;

View File

@@ -77,38 +77,24 @@ struct RealPart<std::complex<T> > {
//////////////////////////////////////
// demote a vector to real type
//////////////////////////////////////
// type alias used to simplify the syntax of std::enable_if
template <typename T>
using Invoke = typename T::type;
template <typename Condition, typename ReturnType>
using EnableIf = Invoke<std::enable_if<Condition::value, ReturnType> >;
template <typename Condition, typename ReturnType>
using NotEnableIf = Invoke<std::enable_if<!Condition::value, ReturnType> >;
template <typename T> using Invoke = typename T::type;
template <typename Condition, typename ReturnType> using EnableIf = Invoke<std::enable_if<Condition::value, ReturnType> >;
template <typename Condition, typename ReturnType> using NotEnableIf = Invoke<std::enable_if<!Condition::value, ReturnType> >;
////////////////////////////////////////////////////////
// Check for complexity with type traits
template <typename T>
struct is_complex : public std::false_type {};
template <>
struct is_complex<std::complex<double> > : public std::true_type {};
template <>
struct is_complex<std::complex<float> > : public std::true_type {};
template <typename T> struct is_complex : public std::false_type {};
template <> struct is_complex<std::complex<double> > : public std::true_type {};
template <> struct is_complex<std::complex<float> > : public std::true_type {};
template <typename T>
using IfReal = Invoke<std::enable_if<std::is_floating_point<T>::value, int> >;
template <typename T>
using IfComplex = Invoke<std::enable_if<is_complex<T>::value, int> >;
template <typename T>
using IfInteger = Invoke<std::enable_if<std::is_integral<T>::value, int> >;
template <typename T> using IfReal = Invoke<std::enable_if<std::is_floating_point<T>::value, int> >;
template <typename T> using IfComplex = Invoke<std::enable_if<is_complex<T>::value, int> >;
template <typename T> using IfInteger = Invoke<std::enable_if<std::is_integral<T>::value, int> >;
template <typename T>
using IfNotReal =
Invoke<std::enable_if<!std::is_floating_point<T>::value, int> >;
template <typename T>
using IfNotComplex = Invoke<std::enable_if<!is_complex<T>::value, int> >;
template <typename T>
using IfNotInteger = Invoke<std::enable_if<!std::is_integral<T>::value, int> >;
template <typename T> using IfNotReal = Invoke<std::enable_if<!std::is_floating_point<T>::value, int> >;
template <typename T> using IfNotComplex = Invoke<std::enable_if<!is_complex<T>::value, int> >;
template <typename T> using IfNotInteger = Invoke<std::enable_if<!std::is_integral<T>::value, int> >;
////////////////////////////////////////////////////////
// Define the operation templates functors
@@ -285,6 +271,20 @@ class Grid_simd {
return a * b;
}
//////////////////////////////////
// Divides
//////////////////////////////////
friend inline Grid_simd operator/(const Scalar_type &a, Grid_simd b) {
Grid_simd va;
vsplat(va, a);
return va / b;
}
friend inline Grid_simd operator/(Grid_simd b, const Scalar_type &a) {
Grid_simd va;
vsplat(va, a);
return b / a;
}
///////////////////////
// Unary negation
///////////////////////
@@ -428,7 +428,6 @@ inline void rotate(Grid_simd<S,V> &ret,Grid_simd<S,V> b,int nrot)
ret.v = Optimization::Rotate::rotate(b.v,2*nrot);
}
template <class S, class V>
inline void vbroadcast(Grid_simd<S,V> &ret,const Grid_simd<S,V> &src,int lane){
S* typepun =(S*) &src;
@@ -512,7 +511,6 @@ template <class S, class V, IfInteger<S> = 0>
inline void vfalse(Grid_simd<S, V> &ret) {
vsplat(ret, 0);
}
template <class S, class V>
inline void zeroit(Grid_simd<S, V> &z) {
vzero(z);
@@ -530,7 +528,6 @@ inline void vstream(Grid_simd<S, V> &out, const Grid_simd<S, V> &in) {
typedef typename S::value_type T;
binary<void>((T *)&out.v, in.v, VstreamSIMD());
}
template <class S, class V, IfInteger<S> = 0>
inline void vstream(Grid_simd<S, V> &out, const Grid_simd<S, V> &in) {
out = in;
@@ -569,6 +566,34 @@ inline Grid_simd<S, V> operator*(Grid_simd<S, V> a, Grid_simd<S, V> b) {
return ret;
};
// Distinguish between complex types and others
template <class S, class V, IfComplex<S> = 0>
inline Grid_simd<S, V> operator/(Grid_simd<S, V> a, Grid_simd<S, V> b) {
typedef Grid_simd<S, V> simd;
simd ret;
simd den;
typename simd::conv_t conv;
ret = a * conjugate(b) ;
den = b * conjugate(b) ;
auto real_den = toReal(den);
ret.v=binary<V>(ret.v, real_den.v, DivSIMD());
return ret;
};
// Real/Integer types
template <class S, class V, IfNotComplex<S> = 0>
inline Grid_simd<S, V> operator/(Grid_simd<S, V> a, Grid_simd<S, V> b) {
Grid_simd<S, V> ret;
ret.v = binary<V>(a.v, b.v, DivSIMD());
return ret;
};
///////////////////////
// Conjugate
///////////////////////
@@ -582,7 +607,6 @@ template <class S, class V, IfNotComplex<S> = 0>
inline Grid_simd<S, V> conjugate(const Grid_simd<S, V> &in) {
return in; // for real objects
}
// Suppress adj for integer types... // odd; why conjugate above but not adj??
template <class S, class V, IfNotInteger<S> = 0>
inline Grid_simd<S, V> adj(const Grid_simd<S, V> &in) {
@@ -596,14 +620,12 @@ template <class S, class V, IfComplex<S> = 0>
inline void timesMinusI(Grid_simd<S, V> &ret, const Grid_simd<S, V> &in) {
ret.v = binary<V>(in.v, ret.v, TimesMinusISIMD());
}
template <class S, class V, IfComplex<S> = 0>
inline Grid_simd<S, V> timesMinusI(const Grid_simd<S, V> &in) {
Grid_simd<S, V> ret;
timesMinusI(ret, in);
return ret;
}
template <class S, class V, IfNotComplex<S> = 0>
inline Grid_simd<S, V> timesMinusI(const Grid_simd<S, V> &in) {
return in;
@@ -616,14 +638,12 @@ template <class S, class V, IfComplex<S> = 0>
inline void timesI(Grid_simd<S, V> &ret, const Grid_simd<S, V> &in) {
ret.v = binary<V>(in.v, ret.v, TimesISIMD());
}
template <class S, class V, IfComplex<S> = 0>
inline Grid_simd<S, V> timesI(const Grid_simd<S, V> &in) {
Grid_simd<S, V> ret;
timesI(ret, in);
return ret;
}
template <class S, class V, IfNotComplex<S> = 0>
inline Grid_simd<S, V> timesI(const Grid_simd<S, V> &in) {
return in;