mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-19 08:17:05 +01:00
Merge branch 'develop' into feature/gpu-port
This commit is contained in:
@ -57,14 +57,15 @@ struct StaggeredImplParams {
|
||||
StaggeredImplParams() {};
|
||||
};
|
||||
|
||||
struct OneFlavourRationalParams : Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(OneFlavourRationalParams,
|
||||
RealD, lo,
|
||||
RealD, hi,
|
||||
int, MaxIter,
|
||||
RealD, tolerance,
|
||||
int, degree,
|
||||
int, precision);
|
||||
struct OneFlavourRationalParams : Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(OneFlavourRationalParams,
|
||||
RealD, lo,
|
||||
RealD, hi,
|
||||
int, MaxIter,
|
||||
RealD, tolerance,
|
||||
int, degree,
|
||||
int, precision,
|
||||
int, BoundsCheckFreq);
|
||||
|
||||
// MaxIter and tolerance, vectors??
|
||||
|
||||
@ -74,15 +75,17 @@ struct OneFlavourRationalParams : Serializable {
|
||||
int _maxit = 1000,
|
||||
RealD tol = 1.0e-8,
|
||||
int _degree = 10,
|
||||
int _precision = 64)
|
||||
: lo(_lo),
|
||||
hi(_hi),
|
||||
MaxIter(_maxit),
|
||||
tolerance(tol),
|
||||
degree(_degree),
|
||||
precision(_precision){};
|
||||
};
|
||||
|
||||
int _precision = 64,
|
||||
int _BoundsCheckFreq=20)
|
||||
: lo(_lo),
|
||||
hi(_hi),
|
||||
MaxIter(_maxit),
|
||||
tolerance(tol),
|
||||
degree(_degree),
|
||||
precision(_precision),
|
||||
BoundsCheckFreq(_BoundsCheckFreq){};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
||||
|
@ -41,7 +41,7 @@ public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
public:
|
||||
|
||||
void FreePropagator(const FermionField &in,FermionField &out,RealD mass, std::vector<double> twist, bool fiveD) {
|
||||
void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary, std::vector<double> twist, bool fiveD) {
|
||||
FermionField in_k(in.Grid());
|
||||
FermionField prop_k(in.Grid());
|
||||
|
||||
@ -54,15 +54,19 @@ public:
|
||||
typedef typename Simd::scalar_type Scalar;
|
||||
Scalar ci(0.0,1.0);
|
||||
assert(twist.size() == Nd);//check that twist is Nd
|
||||
assert(boundary.size() == Nd);//check that boundary conditions is Nd
|
||||
int shift = 0;
|
||||
if(fiveD) shift = 1;
|
||||
for(unsigned int nu = 0; nu < Nd; nu++)
|
||||
{
|
||||
// Shift coordinate lattice index by 1 to account for 5th dimension.
|
||||
LatticeCoordinate(coor, nu + shift);
|
||||
ph = ph + twist[nu]*coor*((1./(in.Grid()->FullDimensions()[nu+shift])));
|
||||
double boundary_phase = ::acos(real(boundary[nu]));
|
||||
ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu+shift])));
|
||||
//momenta for propagator shifted by twist+boundary
|
||||
twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI));
|
||||
}
|
||||
in_buf = exp(Scalar(2.0*M_PI)*ci*ph*(-1.0))*in;
|
||||
in_buf = exp(ci*ph*(-1.0))*in;
|
||||
|
||||
if(fiveD){//FFT only on temporal and spatial dimensions
|
||||
std::vector<int> mask(Nd+1,1); mask[0] = 0;
|
||||
@ -75,26 +79,29 @@ public:
|
||||
this->MomentumSpacePropagatorHt(prop_k,in_k,mass,twist);
|
||||
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
|
||||
}
|
||||
|
||||
//phase for boundary condition
|
||||
out = out * exp(Scalar(2.0*M_PI)*ci*ph);
|
||||
};
|
||||
|
||||
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<double> twist) {
|
||||
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary,std::vector<double> twist) {
|
||||
bool fiveD = true; //5d propagator by default
|
||||
FreePropagator(in,out,mass,twist,fiveD);
|
||||
FreePropagator(in,out,mass,boundary,twist,fiveD);
|
||||
};
|
||||
|
||||
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass, bool fiveD) {
|
||||
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
|
||||
FreePropagator(in,out,mass,twist,fiveD);
|
||||
std::vector<Complex> boundary;
|
||||
for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions
|
||||
FreePropagator(in,out,mass,boundary,twist,fiveD);
|
||||
};
|
||||
|
||||
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
|
||||
bool fiveD = true; //5d propagator by default
|
||||
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
|
||||
FreePropagator(in,out,mass,twist,fiveD);
|
||||
};
|
||||
std::vector<double> twist(Nd,0.0); //default: twist angle 0
|
||||
std::vector<Complex> boundary;
|
||||
for(int i=0;i<Nd;i++) boundary.push_back(1); //default: periodic boundary conditions
|
||||
FreePropagator(in,out,mass,boundary,twist,fiveD);
|
||||
};
|
||||
|
||||
virtual void Instantiatable(void) {};
|
||||
// Constructors
|
||||
|
@ -93,7 +93,7 @@ public:
|
||||
|
||||
virtual void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) { assert(0);};
|
||||
|
||||
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<double> twist)
|
||||
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary,std::vector<double> twist)
|
||||
{
|
||||
FFT theFFT((GridCartesian *) in.Grid());
|
||||
|
||||
@ -106,27 +106,35 @@ public:
|
||||
ComplexField coor(in.Grid());
|
||||
ComplexField ph(in.Grid()); ph = Zero();
|
||||
FermionField in_buf(in.Grid()); in_buf = Zero();
|
||||
|
||||
Scalar ci(0.0,1.0);
|
||||
assert(twist.size() == Nd);//check that twist is Nd
|
||||
assert(boundary.size() == Nd);//check that boundary conditions is Nd
|
||||
for(unsigned int nu = 0; nu < Nd; nu++)
|
||||
{
|
||||
LatticeCoordinate(coor, nu);
|
||||
ph = ph + twist[nu]*coor*((1./(in.Grid()->_fdimensions[nu])));
|
||||
double boundary_phase = ::acos(real(boundary[nu]));
|
||||
ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu])));
|
||||
//momenta for propagator shifted by twist+boundary
|
||||
twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI));
|
||||
}
|
||||
in_buf = (exp(Scalar(2.0*M_PI)*ci*ph*(-1.0)))*in;
|
||||
in_buf = exp(ci*ph*(-1.0))*in;
|
||||
|
||||
theFFT.FFT_all_dim(in_k,in_buf,FFT::forward);
|
||||
this->MomentumSpacePropagator(prop_k,in_k,mass,twist);
|
||||
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
|
||||
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
|
||||
|
||||
//phase for boundary condition
|
||||
out = out * exp(Scalar(2.0*M_PI)*ci*ph);
|
||||
|
||||
};
|
||||
|
||||
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
|
||||
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
|
||||
FreePropagator(in,out,mass,twist);
|
||||
};
|
||||
std::vector<Complex> boundary;
|
||||
for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions
|
||||
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
|
||||
FreePropagator(in,out,mass,boundary,twist);
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////
|
||||
// Updates gauge field during HMC
|
||||
@ -146,8 +154,14 @@ public:
|
||||
Current curr_type,
|
||||
unsigned int mu,
|
||||
unsigned int tmin,
|
||||
unsigned int tmax,
|
||||
ComplexField &lattice_cmplx)=0;
|
||||
unsigned int tmax,
|
||||
ComplexField &lattice_cmplx)=0;
|
||||
|
||||
// Only reimplemented in Wilson5D
|
||||
// Default to just a zero correlation function
|
||||
virtual void ContractJ5q(FermionField &q_in ,ComplexField &J5q) { J5q=Zero(); };
|
||||
virtual void ContractJ5q(PropagatorField &q_in,ComplexField &J5q) { J5q=Zero(); };
|
||||
|
||||
///////////////////////////////////////////////
|
||||
// Physical field import/export
|
||||
///////////////////////////////////////////////
|
||||
|
@ -63,6 +63,7 @@ public:
|
||||
public:
|
||||
typedef WilsonFermion<Impl> WilsonBase;
|
||||
|
||||
virtual int ConstEE(void) { return 0; };
|
||||
virtual void Instantiatable(void){};
|
||||
// Constructors
|
||||
WilsonCloverFermion(GaugeField &_Umu, GridCartesian &Fgrid,
|
||||
|
@ -229,6 +229,10 @@ public:
|
||||
unsigned int tmin,
|
||||
unsigned int tmax,
|
||||
ComplexField &lattice_cmplx);
|
||||
|
||||
void ContractJ5q(PropagatorField &q_in,ComplexField &J5q);
|
||||
void ContractJ5q(FermionField &q_in,ComplexField &J5q);
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -898,6 +898,79 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHw(FermionField &out,const Fe
|
||||
merge(qSiteRev, qSiteVec); \
|
||||
}
|
||||
|
||||
// psi = chiralProjectPlus(Result_s[Ls/2-1]);
|
||||
// psi+= chiralProjectMinus(Result_s[Ls/2]);
|
||||
// PJ5q+=localInnerProduct(psi,psi);
|
||||
|
||||
template<class vobj>
|
||||
Lattice<vobj> spProj5p(const Lattice<vobj> & in)
|
||||
{
|
||||
GridBase *grid=in.Grid();
|
||||
Gamma G5(Gamma::Algebra::Gamma5);
|
||||
Lattice<vobj> ret(grid);
|
||||
auto ret_v = ret.View();
|
||||
auto in_v = in.View();
|
||||
thread_for(ss,grid->oSites(),{
|
||||
ret_v[ss] = in_v[ss] + G5*in_v[ss];
|
||||
});
|
||||
return ret;
|
||||
}
|
||||
template<class vobj>
|
||||
Lattice<vobj> spProj5m(const Lattice<vobj> & in)
|
||||
{
|
||||
Gamma G5(Gamma::Algebra::Gamma5);
|
||||
GridBase *grid=in.Grid();
|
||||
Lattice<vobj> ret(grid);
|
||||
auto ret_v = ret.View();
|
||||
auto in_v = in.View();
|
||||
thread_for(ss,grid->oSites(),{
|
||||
ret_v[ss] = in_v[ss] - G5*in_v[ss];
|
||||
});
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void WilsonFermion5D<Impl>::ContractJ5q(FermionField &q_in,ComplexField &J5q)
|
||||
{
|
||||
conformable(GaugeGrid(), J5q.Grid());
|
||||
conformable(q_in.Grid(), FermionGrid());
|
||||
|
||||
// 4d field
|
||||
int Ls = this->Ls;
|
||||
FermionField psi(GaugeGrid());
|
||||
FermionField p_plus (GaugeGrid());
|
||||
FermionField p_minus(GaugeGrid());
|
||||
FermionField p(GaugeGrid());
|
||||
|
||||
ExtractSlice(p_plus , q_in, Ls/2 , 0);
|
||||
ExtractSlice(p_minus, q_in, Ls/2-1 , 0);
|
||||
p_plus = spProj5p(p_plus );
|
||||
p_minus= spProj5m(p_minus);
|
||||
p=p_plus+p_minus;
|
||||
J5q = localInnerProduct(p,p);
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void WilsonFermion5D<Impl>::ContractJ5q(PropagatorField &q_in,ComplexField &J5q)
|
||||
{
|
||||
conformable(GaugeGrid(), J5q.Grid());
|
||||
conformable(q_in.Grid(), FermionGrid());
|
||||
|
||||
// 4d field
|
||||
int Ls = this->Ls;
|
||||
PropagatorField psi(GaugeGrid());
|
||||
PropagatorField p_plus (GaugeGrid());
|
||||
PropagatorField p_minus(GaugeGrid());
|
||||
PropagatorField p(GaugeGrid());
|
||||
|
||||
ExtractSlice(p_plus , q_in, Ls/2 , 0);
|
||||
ExtractSlice(p_minus, q_in, Ls/2-1 , 0);
|
||||
p_plus = spProj5p(p_plus );
|
||||
p_minus= spProj5m(p_minus);
|
||||
p=p_plus+p_minus;
|
||||
J5q = localInnerProduct(p,p);
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void WilsonFermion5D<Impl>::ContractConservedCurrent(PropagatorField &q_in_1,
|
||||
PropagatorField &q_in_2,
|
||||
@ -908,6 +981,7 @@ void WilsonFermion5D<Impl>::ContractConservedCurrent(PropagatorField &q_in_1,
|
||||
conformable(q_in_1.Grid(), FermionGrid());
|
||||
conformable(q_in_1.Grid(), q_in_2.Grid());
|
||||
conformable(_FourDimGrid, q_out.Grid());
|
||||
|
||||
PropagatorField tmp1(FermionGrid()), tmp2(FermionGrid());
|
||||
unsigned int LLs = q_in_1.Grid()->_rdimensions[0];
|
||||
q_out = Zero();
|
||||
@ -960,7 +1034,6 @@ void WilsonFermion5D<Impl>::ContractConservedCurrent(PropagatorField &q_in_1,
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <class Impl>
|
||||
void WilsonFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
|
||||
PropagatorField &q_out,
|
||||
|
@ -29,14 +29,24 @@ directory
|
||||
#ifndef GRID_GAUGE_IMPL_TYPES_H
|
||||
#define GRID_GAUGE_IMPL_TYPES_H
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#define CPS_MD_TIME
|
||||
|
||||
#ifdef CPS_MD_TIME
|
||||
#define HMC_MOMENTUM_DENOMINATOR (2.0)
|
||||
#else
|
||||
#define HMC_MOMENTUM_DENOMINATOR (1.0)
|
||||
#endif
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Implementation dependent gauge types
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#define INHERIT_GIMPL_TYPES(GImpl) \
|
||||
typedef typename GImpl::Simd Simd; \
|
||||
typedef typename GImpl::Scalar Scalar; \
|
||||
typedef typename GImpl::LinkField GaugeLinkField; \
|
||||
typedef typename GImpl::Field GaugeField; \
|
||||
typedef typename GImpl::ComplexField ComplexField;\
|
||||
@ -54,7 +64,8 @@ NAMESPACE_BEGIN(Grid);
|
||||
template <class S, int Nrepresentation = Nc, int Nexp = 12 > class GaugeImplTypes {
|
||||
public:
|
||||
typedef S Simd;
|
||||
|
||||
typedef typename Simd::scalar_type scalar_type;
|
||||
typedef scalar_type Scalar;
|
||||
template <typename vtype> using iImplScalar = iScalar<iScalar<iScalar<vtype> > >;
|
||||
template <typename vtype> using iImplGaugeLink = iScalar<iScalar<iMatrix<vtype, Nrepresentation> > >;
|
||||
template <typename vtype> using iImplGaugeField = iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nd>;
|
||||
@ -85,12 +96,10 @@ public:
|
||||
///////////////////////////////////////////////////////////
|
||||
// Move these to another class
|
||||
// HMC auxiliary functions
|
||||
static inline void generate_momenta(Field &P, GridParallelRNG &pRNG) {
|
||||
// specific for SU gauge fields
|
||||
LinkField Pmu(P.Grid());
|
||||
Pmu = Zero();
|
||||
//
|
||||
static inline void generate_momenta(Field &P, GridParallelRNG &pRNG)
|
||||
{
|
||||
// Zbigniew Srocinsky thesis:
|
||||
//
|
||||
// P(p) = N \Prod_{x\mu}e^-{1/2 Tr (p^2_mux)}
|
||||
//
|
||||
// p_x,mu = c_x,mu,a T_a
|
||||
@ -101,26 +110,16 @@ public:
|
||||
//
|
||||
// = N \Prod_{x,\mu,a} e^-{1/2 (c_xmua/sqrt{2})^2 }
|
||||
//
|
||||
// Expect cx' = cxmua/sqrt(2) to be a unit variance gaussian.
|
||||
//
|
||||
// Expect cxmua_new variance sqrt(2).
|
||||
// Was variance cxmua_old variance 1
|
||||
//
|
||||
// tau_old * Pold = 1 = tau_old/sqrt(2) * [Pold * sqrt(2)]
|
||||
// = tau_new * Pnew
|
||||
// Expect cxmua variance sqrt(2).
|
||||
//
|
||||
// Hence tau_new = tau_cps = tau_guido/sqrt(2).
|
||||
// Must scale the momentum by sqrt(2) to invoke CPS and UKQCD conventions
|
||||
//
|
||||
//
|
||||
// Must scale the momentum by sqrt(2) up to invoke CPS and UKQCD conventions
|
||||
//
|
||||
//
|
||||
// Hence expect cxmua = cx'*sqrt(2).
|
||||
//
|
||||
// Seek the scale parameter to be
|
||||
LinkField Pmu(P.Grid());
|
||||
Pmu = Zero();
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
SU<Nrepresentation>::GaussianFundamentalLieAlgebraMatrix(pRNG, Pmu);
|
||||
RealD scale = ::sqrt(2) ;
|
||||
RealD scale = ::sqrt(HMC_MOMENTUM_DENOMINATOR) ;
|
||||
Pmu = Pmu*scale;
|
||||
PokeIndex<LorentzIndex>(P, Pmu, mu);
|
||||
}
|
||||
|
@ -36,6 +36,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
{
|
||||
public:
|
||||
typedef S Simd;
|
||||
typedef typename Simd::scalar_type Scalar;
|
||||
|
||||
template <typename vtype>
|
||||
using iImplGaugeLink = iScalar<iScalar<iScalar<vtype>>>;
|
||||
|
@ -74,7 +74,7 @@ public:
|
||||
virtual void deriv(const GaugeField &Umu,GaugeField & dSdU) {
|
||||
//extend Ta to include Lorentz indexes
|
||||
RealD factor_p = c_plaq/RealD(Nc)*0.5;
|
||||
RealD factor_r = c_rect/RealD(Nc)*0.5;
|
||||
RealD factor_r = c_rect/RealD(Nc)*0.5;
|
||||
|
||||
GridBase *grid = Umu.Grid();
|
||||
|
||||
|
53
Grid/qcd/action/pseudofermion/Bounds.h
Normal file
53
Grid/qcd/action/pseudofermion/Bounds.h
Normal file
@ -0,0 +1,53 @@
|
||||
#pragma once
|
||||
|
||||
namespace Grid{
|
||||
namespace QCD{
|
||||
|
||||
template<class Field>
|
||||
void HighBoundCheck(LinearOperatorBase<Field> &HermOp,
|
||||
Field &Phi,
|
||||
RealD hi)
|
||||
{
|
||||
// Eigenvalue bound check at high end
|
||||
PowerMethod<Field> power_method;
|
||||
auto lambda_max = power_method(HermOp,Phi);
|
||||
std::cout << GridLogMessage << "Pseudofermion action lamda_max "<<lambda_max<<"( bound "<<hi<<")"<<std::endl;
|
||||
assert( (lambda_max < hi) && " High Bounds Check on operator failed" );
|
||||
}
|
||||
|
||||
template<class Field> void InverseSqrtBoundsCheck(int MaxIter,double tol,
|
||||
LinearOperatorBase<Field> &HermOp,
|
||||
Field &GaussNoise,
|
||||
MultiShiftFunction &PowerNegHalf)
|
||||
{
|
||||
GridBase *FermionGrid = GaussNoise._grid;
|
||||
|
||||
Field X(FermionGrid);
|
||||
Field Y(FermionGrid);
|
||||
Field Z(FermionGrid);
|
||||
|
||||
X=GaussNoise;
|
||||
RealD Nx = norm2(X);
|
||||
|
||||
ConjugateGradientMultiShift<Field> msCG(MaxIter,PowerNegHalf);
|
||||
msCG(HermOp,X,Y);
|
||||
msCG(HermOp,Y,Z);
|
||||
|
||||
RealD Nz = norm2(Z);
|
||||
|
||||
HermOp.HermOp(Z,Y);
|
||||
RealD Ny = norm2(Y);
|
||||
|
||||
X=X-Y;
|
||||
RealD Nd = norm2(X);
|
||||
std::cout << "************************* "<<std::endl;
|
||||
std::cout << " noise = "<<Nx<<std::endl;
|
||||
std::cout << " (MdagM^-1/2)^2 noise = "<<Nz<<std::endl;
|
||||
std::cout << " MdagM (MdagM^-1/2)^2 noise = "<<Ny<<std::endl;
|
||||
std::cout << " noise - MdagM (MdagM^-1/2)^2 noise = "<<Nd<<std::endl;
|
||||
std::cout << "************************* "<<std::endl;
|
||||
assert( (std::sqrt(Nd/Nx)<tol) && " InverseSqrtBoundsCheck ");
|
||||
}
|
||||
|
||||
}
|
||||
}
|
@ -25,240 +25,302 @@ with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
/* END LEGAL */
|
||||
|
||||
/////////////////////////////////////////////////////////////////
|
||||
// Implementation of exact one flavour algorithm (EOFA) //
|
||||
// using fermion classes defined in: //
|
||||
// Grid/qcd/action/fermion/DomainWallEOFAFermion.h (Shamir) //
|
||||
// Grid/qcd/action/fermion/MobiusEOFAFermion.h (Mobius) //
|
||||
// arXiv: 1403.1683, 1706.05843 //
|
||||
/////////////////////////////////////////////////////////////////
|
||||
/////////////////////////////////////////////////////////////////
|
||||
// Implementation of exact one flavour algorithm (EOFA) //
|
||||
// using fermion classes defined in: //
|
||||
// Grid/qcd/action/fermion/DomainWallEOFAFermion.h (Shamir) //
|
||||
// Grid/qcd/action/fermion/MobiusEOFAFermion.h (Mobius) //
|
||||
// arXiv: 1403.1683, 1706.05843 //
|
||||
/////////////////////////////////////////////////////////////////
|
||||
|
||||
#ifndef QCD_PSEUDOFERMION_EXACT_ONE_FLAVOUR_RATIO_H
|
||||
#define QCD_PSEUDOFERMION_EXACT_ONE_FLAVOUR_RATIO_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
namespace Grid{
|
||||
namespace QCD{
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// Exact one flavour implementation of DWF determinant ratio //
|
||||
///////////////////////////////////////////////////////////////
|
||||
///////////////////////////////////////////////////////////////
|
||||
// Exact one flavour implementation of DWF determinant ratio //
|
||||
///////////////////////////////////////////////////////////////
|
||||
|
||||
template<class Impl>
|
||||
class ExactOneFlavourRatioPseudoFermionAction : public Action<typename Impl::GaugeField>
|
||||
{
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
typedef OneFlavourRationalParams Params;
|
||||
Params param;
|
||||
MultiShiftFunction PowerNegHalf;
|
||||
|
||||
private:
|
||||
bool use_heatbath_forecasting;
|
||||
AbstractEOFAFermion<Impl>& Lop; // the basic LH operator
|
||||
AbstractEOFAFermion<Impl>& Rop; // the basic RH operator
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> Solver;
|
||||
FermionField Phi; // the pseudofermion field for this trajectory
|
||||
|
||||
public:
|
||||
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop, AbstractEOFAFermion<Impl>& _Rop,
|
||||
OperatorFunction<FermionField>& S, Params& p, bool use_fc=false) : Lop(_Lop), Rop(_Rop), Solver(S),
|
||||
Phi(_Lop.FermionGrid()), param(p), use_heatbath_forecasting(use_fc)
|
||||
template<class Impl>
|
||||
class ExactOneFlavourRatioPseudoFermionAction : public Action<typename Impl::GaugeField>
|
||||
{
|
||||
AlgRemez remez(param.lo, param.hi, param.precision);
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
typedef OneFlavourRationalParams Params;
|
||||
Params param;
|
||||
MultiShiftFunction PowerNegHalf;
|
||||
|
||||
// MdagM^(+- 1/2)
|
||||
std::cout << GridLogMessage << "Generating degree " << param.degree << " for x^(-1/2)" << std::endl;
|
||||
remez.generateApprox(param.degree, 1, 2);
|
||||
PowerNegHalf.Init(remez, param.tolerance, true);
|
||||
};
|
||||
private:
|
||||
bool use_heatbath_forecasting;
|
||||
AbstractEOFAFermion<Impl>& Lop; // the basic LH operator
|
||||
AbstractEOFAFermion<Impl>& Rop; // the basic RH operator
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverHB;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverL;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverR;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverL;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverR;
|
||||
FermionField Phi; // the pseudofermion field for this trajectory
|
||||
|
||||
virtual std::string action_name() { return "ExactOneFlavourRatioPseudoFermionAction"; }
|
||||
public:
|
||||
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
|
||||
AbstractEOFAFermion<Impl>& _Rop,
|
||||
OperatorFunction<FermionField>& HeatbathCG,
|
||||
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
|
||||
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
|
||||
Params& p,
|
||||
bool use_fc=false) :
|
||||
Lop(_Lop),
|
||||
Rop(_Rop),
|
||||
SolverHB(HeatbathCG,false,true),
|
||||
SolverL(ActionCGL, false, true), SolverR(ActionCGR, false, true),
|
||||
DerivativeSolverL(DerivCGL, false, true), DerivativeSolverR(DerivCGR, false, true),
|
||||
Phi(_Lop.FermionGrid()),
|
||||
param(p),
|
||||
use_heatbath_forecasting(use_fc)
|
||||
{
|
||||
AlgRemez remez(param.lo, param.hi, param.precision);
|
||||
|
||||
virtual std::string LogParameters() {
|
||||
std::stringstream sstream;
|
||||
sstream << GridLogMessage << "[" << action_name() << "] Low :" << param.lo << std::endl;
|
||||
sstream << GridLogMessage << "[" << action_name() << "] High :" << param.hi << std::endl;
|
||||
sstream << GridLogMessage << "[" << action_name() << "] Max iterations :" << param.MaxIter << std::endl;
|
||||
sstream << GridLogMessage << "[" << action_name() << "] Tolerance :" << param.tolerance << std::endl;
|
||||
sstream << GridLogMessage << "[" << action_name() << "] Degree :" << param.degree << std::endl;
|
||||
sstream << GridLogMessage << "[" << action_name() << "] Precision :" << param.precision << std::endl;
|
||||
return sstream.str();
|
||||
}
|
||||
// MdagM^(+- 1/2)
|
||||
std::cout << GridLogMessage << "Generating degree " << param.degree << " for x^(-1/2)" << std::endl;
|
||||
remez.generateApprox(param.degree, 1, 2);
|
||||
PowerNegHalf.Init(remez, param.tolerance, true);
|
||||
};
|
||||
|
||||
// Spin projection
|
||||
void spProj(const FermionField& in, FermionField& out, int sign, int Ls)
|
||||
{
|
||||
if(sign == 1){ for(int s=0; s<Ls; ++s){ axpby_ssp_pplus(out, 0.0, in, 1.0, in, s, s); } }
|
||||
else{ for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(out, 0.0, in, 1.0, in, s, s); } }
|
||||
}
|
||||
virtual std::string action_name() { return "ExactOneFlavourRatioPseudoFermionAction"; }
|
||||
|
||||
// EOFA heatbath: see Eqn. (29) of arXiv:1706.05843
|
||||
// We generate a Gaussian noise vector \eta, and then compute
|
||||
// \Phi = M_{\rm EOFA}^{-1/2} * \eta
|
||||
// using a rational approximation to the inverse square root
|
||||
virtual void refresh(const GaugeField& U, GridParallelRNG& pRNG)
|
||||
{
|
||||
Lop.ImportGauge(U);
|
||||
Rop.ImportGauge(U);
|
||||
|
||||
FermionField eta (Lop.FermionGrid());
|
||||
FermionField CG_src (Lop.FermionGrid());
|
||||
FermionField CG_soln (Lop.FermionGrid());
|
||||
FermionField Forecast_src(Lop.FermionGrid());
|
||||
std::vector<FermionField> tmp(2, Lop.FermionGrid());
|
||||
|
||||
// Use chronological inverter to forecast solutions across poles
|
||||
std::vector<FermionField> prev_solns;
|
||||
if(use_heatbath_forecasting){ prev_solns.reserve(param.degree); }
|
||||
ChronoForecast<AbstractEOFAFermion<Impl>, FermionField> Forecast;
|
||||
|
||||
// Seed with Gaussian noise vector (var = 0.5)
|
||||
RealD scale = std::sqrt(0.5);
|
||||
gaussian(pRNG,eta);
|
||||
eta = eta * scale;
|
||||
printf("Heatbath source vector: <\\eta|\\eta> = %1.15e\n", norm2(eta));
|
||||
|
||||
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
|
||||
RealD N(PowerNegHalf.norm);
|
||||
for(int k=0; k<param.degree; ++k){ N += PowerNegHalf.residues[k] / ( 1.0 + PowerNegHalf.poles[k] ); }
|
||||
Phi = eta * N;
|
||||
|
||||
// LH terms:
|
||||
// \Phi = \Phi + k \sum_{k=1}^{N_{p}} P_{-} \Omega_{-}^{\dagger} ( H(mf)
|
||||
// - \gamma_{l} \Delta_{-}(mf,mb) P_{-} )^{-1} \Omega_{-} P_{-} \eta
|
||||
RealD gamma_l(0.0);
|
||||
spProj(eta, tmp[0], -1, Lop.Ls);
|
||||
Lop.Omega(tmp[0], tmp[1], -1, 0);
|
||||
G5R5(CG_src, tmp[1]);
|
||||
tmp[1] = Zero();
|
||||
for(int k=0; k<param.degree; ++k){
|
||||
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
|
||||
Lop.RefreshShiftCoefficients(-gamma_l);
|
||||
if(use_heatbath_forecasting){ // Forecast CG guess using solutions from previous poles
|
||||
Lop.Mdag(CG_src, Forecast_src);
|
||||
CG_soln = Forecast(Lop, Forecast_src, prev_solns);
|
||||
Solver(Lop, CG_src, CG_soln);
|
||||
prev_solns.push_back(CG_soln);
|
||||
} else {
|
||||
CG_soln = Zero(); // Just use zero as the initial guess
|
||||
Solver(Lop, CG_src, CG_soln);
|
||||
virtual std::string LogParameters() {
|
||||
std::stringstream sstream;
|
||||
sstream << GridLogMessage << "[" << action_name() << "] Low :" << param.lo << std::endl;
|
||||
sstream << GridLogMessage << "[" << action_name() << "] High :" << param.hi << std::endl;
|
||||
sstream << GridLogMessage << "[" << action_name() << "] Max iterations :" << param.MaxIter << std::endl;
|
||||
sstream << GridLogMessage << "[" << action_name() << "] Tolerance :" << param.tolerance << std::endl;
|
||||
sstream << GridLogMessage << "[" << action_name() << "] Degree :" << param.degree << std::endl;
|
||||
sstream << GridLogMessage << "[" << action_name() << "] Precision :" << param.precision << std::endl;
|
||||
return sstream.str();
|
||||
}
|
||||
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
||||
tmp[1] = tmp[1] + ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Lop.k ) * tmp[0];
|
||||
}
|
||||
Lop.Omega(tmp[1], tmp[0], -1, 1);
|
||||
spProj(tmp[0], tmp[1], -1, Lop.Ls);
|
||||
Phi = Phi + tmp[1];
|
||||
|
||||
// RH terms:
|
||||
// \Phi = \Phi - k \sum_{k=1}^{N_{p}} P_{+} \Omega_{+}^{\dagger} ( H(mb)
|
||||
// + \gamma_{l} \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \eta
|
||||
spProj(eta, tmp[0], 1, Rop.Ls);
|
||||
Rop.Omega(tmp[0], tmp[1], 1, 0);
|
||||
G5R5(CG_src, tmp[1]);
|
||||
tmp[1] = Zero();
|
||||
if(use_heatbath_forecasting){ prev_solns.clear(); } // empirically, LH solns don't help for RH solves
|
||||
for(int k=0; k<param.degree; ++k){
|
||||
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
|
||||
Rop.RefreshShiftCoefficients(-gamma_l*PowerNegHalf.poles[k]);
|
||||
if(use_heatbath_forecasting){
|
||||
Rop.Mdag(CG_src, Forecast_src);
|
||||
CG_soln = Forecast(Rop, Forecast_src, prev_solns);
|
||||
Solver(Rop, CG_src, CG_soln);
|
||||
prev_solns.push_back(CG_soln);
|
||||
} else {
|
||||
CG_soln = Zero();
|
||||
Solver(Rop, CG_src, CG_soln);
|
||||
// Spin projection
|
||||
void spProj(const FermionField& in, FermionField& out, int sign, int Ls)
|
||||
{
|
||||
if(sign == 1){ for(int s=0; s<Ls; ++s){ axpby_ssp_pplus(out, 0.0, in, 1.0, in, s, s); } }
|
||||
else{ for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(out, 0.0, in, 1.0, in, s, s); } }
|
||||
}
|
||||
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
||||
tmp[1] = tmp[1] - ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Rop.k ) * tmp[0];
|
||||
}
|
||||
Rop.Omega(tmp[1], tmp[0], 1, 1);
|
||||
spProj(tmp[0], tmp[1], 1, Rop.Ls);
|
||||
Phi = Phi + tmp[1];
|
||||
|
||||
// Reset shift coefficients for energy and force evals
|
||||
Lop.RefreshShiftCoefficients(0.0);
|
||||
Rop.RefreshShiftCoefficients(-1.0);
|
||||
// EOFA heatbath: see Eqn. (29) of arXiv:1706.05843
|
||||
// We generate a Gaussian noise vector \eta, and then compute
|
||||
// \Phi = M_{\rm EOFA}^{-1/2} * \eta
|
||||
// using a rational approximation to the inverse square root
|
||||
//
|
||||
// As a check of rational require \Phi^dag M_{EOFA} \Phi == eta^dag M^-1/2^dag M M^-1/2 eta = eta^dag eta
|
||||
//
|
||||
virtual void refresh(const GaugeField& U, GridParallelRNG& pRNG)
|
||||
{
|
||||
Lop.ImportGauge(U);
|
||||
Rop.ImportGauge(U);
|
||||
|
||||
FermionField eta (Lop.FermionGrid());
|
||||
FermionField CG_src (Lop.FermionGrid());
|
||||
FermionField CG_soln (Lop.FermionGrid());
|
||||
FermionField Forecast_src(Lop.FermionGrid());
|
||||
std::vector<FermionField> tmp(2, Lop.FermionGrid());
|
||||
|
||||
// Use chronological inverter to forecast solutions across poles
|
||||
std::vector<FermionField> prev_solns;
|
||||
if(use_heatbath_forecasting){ prev_solns.reserve(param.degree); }
|
||||
ChronoForecast<AbstractEOFAFermion<Impl>, FermionField> Forecast;
|
||||
|
||||
// Seed with Gaussian noise vector (var = 0.5)
|
||||
RealD scale = std::sqrt(0.5);
|
||||
gaussian(pRNG,eta);
|
||||
eta = eta * scale;
|
||||
|
||||
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
|
||||
RealD N(PowerNegHalf.norm);
|
||||
for(int k=0; k<param.degree; ++k){ N += PowerNegHalf.residues[k] / ( 1.0 + PowerNegHalf.poles[k] ); }
|
||||
Phi = eta * N;
|
||||
|
||||
// LH terms:
|
||||
// \Phi = \Phi + k \sum_{k=1}^{N_{p}} P_{-} \Omega_{-}^{\dagger} ( H(mf)
|
||||
// - \gamma_{l} \Delta_{-}(mf,mb) P_{-} )^{-1} \Omega_{-} P_{-} \eta
|
||||
RealD gamma_l(0.0);
|
||||
spProj(eta, tmp[0], -1, Lop.Ls);
|
||||
Lop.Omega(tmp[0], tmp[1], -1, 0);
|
||||
G5R5(CG_src, tmp[1]);
|
||||
tmp[1] = zero;
|
||||
for(int k=0; k<param.degree; ++k){
|
||||
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
|
||||
Lop.RefreshShiftCoefficients(-gamma_l);
|
||||
if(use_heatbath_forecasting){ // Forecast CG guess using solutions from previous poles
|
||||
Lop.Mdag(CG_src, Forecast_src);
|
||||
CG_soln = Forecast(Lop, Forecast_src, prev_solns);
|
||||
SolverHB(Lop, CG_src, CG_soln);
|
||||
prev_solns.push_back(CG_soln);
|
||||
} else {
|
||||
CG_soln = zero; // Just use zero as the initial guess
|
||||
SolverHB(Lop, CG_src, CG_soln);
|
||||
}
|
||||
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
||||
tmp[1] = tmp[1] + ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Lop.k ) * tmp[0];
|
||||
}
|
||||
Lop.Omega(tmp[1], tmp[0], -1, 1);
|
||||
spProj(tmp[0], tmp[1], -1, Lop.Ls);
|
||||
Phi = Phi + tmp[1];
|
||||
|
||||
// RH terms:
|
||||
// \Phi = \Phi - k \sum_{k=1}^{N_{p}} P_{+} \Omega_{+}^{\dagger} ( H(mb)
|
||||
// + \gamma_{l} \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \eta
|
||||
spProj(eta, tmp[0], 1, Rop.Ls);
|
||||
Rop.Omega(tmp[0], tmp[1], 1, 0);
|
||||
G5R5(CG_src, tmp[1]);
|
||||
tmp[1] = zero;
|
||||
if(use_heatbath_forecasting){ prev_solns.clear(); } // empirically, LH solns don't help for RH solves
|
||||
for(int k=0; k<param.degree; ++k){
|
||||
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
|
||||
Rop.RefreshShiftCoefficients(-gamma_l*PowerNegHalf.poles[k]);
|
||||
if(use_heatbath_forecasting){
|
||||
Rop.Mdag(CG_src, Forecast_src);
|
||||
CG_soln = Forecast(Rop, Forecast_src, prev_solns);
|
||||
SolverHB(Rop, CG_src, CG_soln);
|
||||
prev_solns.push_back(CG_soln);
|
||||
} else {
|
||||
CG_soln = zero;
|
||||
SolverHB(Rop, CG_src, CG_soln);
|
||||
}
|
||||
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
||||
tmp[1] = tmp[1] - ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Rop.k ) * tmp[0];
|
||||
}
|
||||
Rop.Omega(tmp[1], tmp[0], 1, 1);
|
||||
spProj(tmp[0], tmp[1], 1, Rop.Ls);
|
||||
Phi = Phi + tmp[1];
|
||||
|
||||
// Reset shift coefficients for energy and force evals
|
||||
Lop.RefreshShiftCoefficients(0.0);
|
||||
Rop.RefreshShiftCoefficients(-1.0);
|
||||
|
||||
// Bounds check
|
||||
RealD EtaDagEta = norm2(eta);
|
||||
// RealD PhiDagMPhi= norm2(eta);
|
||||
|
||||
};
|
||||
|
||||
void Meofa(const GaugeField& U,const FermionField &phi, FermionField & Mphi)
|
||||
{
|
||||
#if 0
|
||||
Lop.ImportGauge(U);
|
||||
Rop.ImportGauge(U);
|
||||
|
||||
FermionField spProj_Phi(Lop.FermionGrid());
|
||||
FermionField mPhi(Lop.FermionGrid());
|
||||
std::vector<FermionField> tmp(2, Lop.FermionGrid());
|
||||
mPhi = phi;
|
||||
|
||||
// LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi>
|
||||
spProj(Phi, spProj_Phi, -1, Lop.Ls);
|
||||
Lop.Omega(spProj_Phi, tmp[0], -1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = zero;
|
||||
SolverL(Lop, tmp[1], tmp[0]);
|
||||
Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
|
||||
Lop.Omega(tmp[1], tmp[0], -1, 1);
|
||||
mPhi = mPhi - Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
|
||||
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
|
||||
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
|
||||
spProj(Phi, spProj_Phi, 1, Rop.Ls);
|
||||
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = zero;
|
||||
SolverR(Rop, tmp[1], tmp[0]);
|
||||
Rop.Dtilde(tmp[0], tmp[1]);
|
||||
Rop.Omega(tmp[1], tmp[0], 1, 1);
|
||||
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
#endif
|
||||
}
|
||||
|
||||
// EOFA action: see Eqn. (10) of arXiv:1706.05843
|
||||
virtual RealD S(const GaugeField& U)
|
||||
{
|
||||
Lop.ImportGauge(U);
|
||||
Rop.ImportGauge(U);
|
||||
|
||||
FermionField spProj_Phi(Lop.FermionGrid());
|
||||
std::vector<FermionField> tmp(2, Lop.FermionGrid());
|
||||
|
||||
// S = <\Phi|\Phi>
|
||||
RealD action(norm2(Phi));
|
||||
|
||||
// LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi>
|
||||
spProj(Phi, spProj_Phi, -1, Lop.Ls);
|
||||
Lop.Omega(spProj_Phi, tmp[0], -1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = zero;
|
||||
SolverL(Lop, tmp[1], tmp[0]);
|
||||
Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
|
||||
Lop.Omega(tmp[1], tmp[0], -1, 1);
|
||||
action -= Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
|
||||
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
|
||||
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
|
||||
spProj(Phi, spProj_Phi, 1, Rop.Ls);
|
||||
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = zero;
|
||||
SolverR(Rop, tmp[1], tmp[0]);
|
||||
Rop.Dtilde(tmp[0], tmp[1]);
|
||||
Rop.Omega(tmp[1], tmp[0], 1, 1);
|
||||
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
|
||||
return action;
|
||||
};
|
||||
|
||||
// EOFA pseudofermion force: see Eqns. (34)-(36) of arXiv:1706.05843
|
||||
virtual void deriv(const GaugeField& U, GaugeField& dSdU)
|
||||
{
|
||||
Lop.ImportGauge(U);
|
||||
Rop.ImportGauge(U);
|
||||
|
||||
FermionField spProj_Phi (Lop.FermionGrid());
|
||||
FermionField Omega_spProj_Phi(Lop.FermionGrid());
|
||||
FermionField CG_src (Lop.FermionGrid());
|
||||
FermionField Chi (Lop.FermionGrid());
|
||||
FermionField g5_R5_Chi (Lop.FermionGrid());
|
||||
|
||||
GaugeField force(Lop.GaugeGrid());
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// PAB:
|
||||
// Optional single precision derivative ?
|
||||
/////////////////////////////////////////////
|
||||
|
||||
// LH: dSdU = k \chi_{L}^{\dagger} \gamma_{5} R_{5} ( \partial_{x,\mu} D_{w} ) \chi_{L}
|
||||
// \chi_{L} = H(mf)^{-1} \Omega_{-} P_{-} \Phi
|
||||
spProj(Phi, spProj_Phi, -1, Lop.Ls);
|
||||
Lop.Omega(spProj_Phi, Omega_spProj_Phi, -1, 0);
|
||||
G5R5(CG_src, Omega_spProj_Phi);
|
||||
spProj_Phi = zero;
|
||||
DerivativeSolverL(Lop, CG_src, spProj_Phi);
|
||||
Lop.Dtilde(spProj_Phi, Chi);
|
||||
G5R5(g5_R5_Chi, Chi);
|
||||
Lop.MDeriv(force, g5_R5_Chi, Chi, DaggerNo);
|
||||
dSdU = -Lop.k * force;
|
||||
|
||||
// RH: dSdU = dSdU - k \chi_{R}^{\dagger} \gamma_{5} R_{5} ( \partial_{x,\mu} D_{w} ) \chi_{}
|
||||
// \chi_{R} = ( H(mb) - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \Phi
|
||||
spProj(Phi, spProj_Phi, 1, Rop.Ls);
|
||||
Rop.Omega(spProj_Phi, Omega_spProj_Phi, 1, 0);
|
||||
G5R5(CG_src, Omega_spProj_Phi);
|
||||
spProj_Phi = zero;
|
||||
DerivativeSolverR(Rop, CG_src, spProj_Phi);
|
||||
Rop.Dtilde(spProj_Phi, Chi);
|
||||
G5R5(g5_R5_Chi, Chi);
|
||||
Lop.MDeriv(force, g5_R5_Chi, Chi, DaggerNo);
|
||||
dSdU = dSdU + Rop.k * force;
|
||||
};
|
||||
};
|
||||
|
||||
// EOFA action: see Eqn. (10) of arXiv:1706.05843
|
||||
virtual RealD S(const GaugeField& U)
|
||||
{
|
||||
Lop.ImportGauge(U);
|
||||
Rop.ImportGauge(U);
|
||||
|
||||
FermionField spProj_Phi(Lop.FermionGrid());
|
||||
std::vector<FermionField> tmp(2, Lop.FermionGrid());
|
||||
|
||||
// S = <\Phi|\Phi>
|
||||
RealD action(norm2(Phi));
|
||||
|
||||
// LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi>
|
||||
spProj(Phi, spProj_Phi, -1, Lop.Ls);
|
||||
Lop.Omega(spProj_Phi, tmp[0], -1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = Zero();
|
||||
Solver(Lop, tmp[1], tmp[0]);
|
||||
Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
|
||||
Lop.Omega(tmp[1], tmp[0], -1, 1);
|
||||
action -= Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
|
||||
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
|
||||
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
|
||||
spProj(Phi, spProj_Phi, 1, Rop.Ls);
|
||||
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = Zero();
|
||||
Solver(Rop, tmp[1], tmp[0]);
|
||||
Rop.Dtilde(tmp[0], tmp[1]);
|
||||
Rop.Omega(tmp[1], tmp[0], 1, 1);
|
||||
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
|
||||
return action;
|
||||
};
|
||||
|
||||
// EOFA pseudofermion force: see Eqns. (34)-(36) of arXiv:1706.05843
|
||||
virtual void deriv(const GaugeField& U, GaugeField& dSdU)
|
||||
{
|
||||
Lop.ImportGauge(U);
|
||||
Rop.ImportGauge(U);
|
||||
|
||||
FermionField spProj_Phi (Lop.FermionGrid());
|
||||
FermionField Omega_spProj_Phi(Lop.FermionGrid());
|
||||
FermionField CG_src (Lop.FermionGrid());
|
||||
FermionField Chi (Lop.FermionGrid());
|
||||
FermionField g5_R5_Chi (Lop.FermionGrid());
|
||||
|
||||
GaugeField force(Lop.GaugeGrid());
|
||||
|
||||
// LH: dSdU = k \chi_{L}^{\dagger} \gamma_{5} R_{5} ( \partial_{x,\mu} D_{w} ) \chi_{L}
|
||||
// \chi_{L} = H(mf)^{-1} \Omega_{-} P_{-} \Phi
|
||||
spProj(Phi, spProj_Phi, -1, Lop.Ls);
|
||||
Lop.Omega(spProj_Phi, Omega_spProj_Phi, -1, 0);
|
||||
G5R5(CG_src, Omega_spProj_Phi);
|
||||
spProj_Phi = Zero();
|
||||
Solver(Lop, CG_src, spProj_Phi);
|
||||
Lop.Dtilde(spProj_Phi, Chi);
|
||||
G5R5(g5_R5_Chi, Chi);
|
||||
Lop.MDeriv(force, g5_R5_Chi, Chi, DaggerNo);
|
||||
dSdU = Lop.k * force;
|
||||
|
||||
// RH: dSdU = dSdU - k \chi_{R}^{\dagger} \gamma_{5} R_{5} ( \partial_{x,\mu} D_{w} ) \chi_{}
|
||||
// \chi_{R} = ( H(mb) - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \Phi
|
||||
spProj(Phi, spProj_Phi, 1, Rop.Ls);
|
||||
Rop.Omega(spProj_Phi, Omega_spProj_Phi, 1, 0);
|
||||
G5R5(CG_src, Omega_spProj_Phi);
|
||||
spProj_Phi = Zero();
|
||||
Solver(Rop, CG_src, spProj_Phi);
|
||||
Rop.Dtilde(spProj_Phi, Chi);
|
||||
G5R5(g5_R5_Chi, Chi);
|
||||
Lop.MDeriv(force, g5_R5_Chi, Chi, DaggerNo);
|
||||
dSdU = dSdU - Rop.k * force;
|
||||
};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
}}
|
||||
|
||||
#endif
|
||||
|
@ -156,6 +156,13 @@ public:
|
||||
|
||||
msCG(Mpc, PhiOdd, Y);
|
||||
|
||||
if ( (rand()%param.BoundsCheckFreq)==0 ) {
|
||||
FermionField gauss(FermOp.FermionRedBlackGrid());
|
||||
gauss = PhiOdd;
|
||||
HighBoundCheck(Mpc,gauss,param.hi);
|
||||
InverseSqrtBoundsCheck(param.MaxIter,param.tolerance*100,Mpc,gauss,PowerNegHalf);
|
||||
}
|
||||
|
||||
RealD action = norm2(Y);
|
||||
std::cout << GridLogMessage << "Pseudofermion action FIXME -- is -1/4 "
|
||||
"solve or -1/2 solve faster??? "
|
||||
|
@ -1,4 +1,4 @@
|
||||
/*************************************************************************************
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
@ -23,257 +23,267 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_RATIO_H
|
||||
#define QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_RATIO_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
///////////////////////////////////////
|
||||
// One flavour rational
|
||||
///////////////////////////////////////
|
||||
namespace Grid{
|
||||
namespace QCD{
|
||||
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// Here P/Q \sim R_{1/4} ~ (V^dagV)^{1/4}
|
||||
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
|
||||
|
||||
template<class Impl>
|
||||
class OneFlavourEvenOddRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
||||
public:
|
||||
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
typedef OneFlavourRationalParams Params;
|
||||
Params param;
|
||||
|
||||
MultiShiftFunction PowerHalf ;
|
||||
MultiShiftFunction PowerNegHalf;
|
||||
MultiShiftFunction PowerQuarter;
|
||||
MultiShiftFunction PowerNegQuarter;
|
||||
|
||||
private:
|
||||
|
||||
FermionOperator<Impl> & NumOp;// the basic operator
|
||||
FermionOperator<Impl> & DenOp;// the basic operator
|
||||
FermionField PhiEven; // the pseudo fermion field for this trajectory
|
||||
FermionField PhiOdd; // the pseudo fermion field for this trajectory
|
||||
|
||||
public:
|
||||
|
||||
OneFlavourEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||
FermionOperator<Impl> &_DenOp,
|
||||
Params & p
|
||||
) :
|
||||
NumOp(_NumOp),
|
||||
DenOp(_DenOp),
|
||||
PhiOdd (_NumOp.FermionRedBlackGrid()),
|
||||
PhiEven(_NumOp.FermionRedBlackGrid()),
|
||||
param(p)
|
||||
{
|
||||
AlgRemez remez(param.lo,param.hi,param.precision);
|
||||
|
||||
// MdagM^(+- 1/2)
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,2);
|
||||
PowerHalf.Init(remez,param.tolerance,false);
|
||||
PowerNegHalf.Init(remez,param.tolerance,true);
|
||||
|
||||
// MdagM^(+- 1/4)
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,4);
|
||||
PowerQuarter.Init(remez,param.tolerance,false);
|
||||
PowerNegQuarter.Init(remez,param.tolerance,true);
|
||||
};
|
||||
|
||||
virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}
|
||||
|
||||
virtual std::string LogParameters(){
|
||||
std::stringstream sstream;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
|
||||
return sstream.str();
|
||||
}
|
||||
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
|
||||
///////////////////////////////////////
|
||||
// One flavour rational
|
||||
///////////////////////////////////////
|
||||
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// P(phi) = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/2 (VdagV)^1/4 phi}
|
||||
// = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/4 (MdagM)^-1/4 (VdagV)^1/4 phi}
|
||||
//
|
||||
// Phi = (VdagV)^-1/4 Mdag^{1/4} eta
|
||||
//
|
||||
// P(eta) = e^{- eta^dag eta}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
//
|
||||
// So eta should be of width sig = 1/sqrt(2).
|
||||
// Here P/Q \sim R_{1/4} ~ (V^dagV)^{1/4}
|
||||
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
|
||||
|
||||
template<class Impl>
|
||||
class OneFlavourEvenOddRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
||||
public:
|
||||
|
||||
RealD scale = std::sqrt(0.5);
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
FermionField eta(NumOp.FermionGrid());
|
||||
FermionField etaOdd (NumOp.FermionRedBlackGrid());
|
||||
FermionField etaEven(NumOp.FermionRedBlackGrid());
|
||||
FermionField tmp(NumOp.FermionRedBlackGrid());
|
||||
typedef OneFlavourRationalParams Params;
|
||||
Params param;
|
||||
|
||||
gaussian(pRNG,eta); eta=eta*scale;
|
||||
MultiShiftFunction PowerHalf ;
|
||||
MultiShiftFunction PowerNegHalf;
|
||||
MultiShiftFunction PowerQuarter;
|
||||
MultiShiftFunction PowerNegQuarter;
|
||||
|
||||
pickCheckerboard(Even,etaEven,eta);
|
||||
pickCheckerboard(Odd,etaOdd,eta);
|
||||
private:
|
||||
|
||||
FermionOperator<Impl> & NumOp;// the basic operator
|
||||
FermionOperator<Impl> & DenOp;// the basic operator
|
||||
FermionField PhiEven; // the pseudo fermion field for this trajectory
|
||||
FermionField PhiOdd; // the pseudo fermion field for this trajectory
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
public:
|
||||
|
||||
OneFlavourEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||
FermionOperator<Impl> &_DenOp,
|
||||
Params & p
|
||||
) :
|
||||
NumOp(_NumOp),
|
||||
DenOp(_DenOp),
|
||||
PhiOdd (_NumOp.FermionRedBlackGrid()),
|
||||
PhiEven(_NumOp.FermionRedBlackGrid()),
|
||||
param(p)
|
||||
{
|
||||
AlgRemez remez(param.lo,param.hi,param.precision);
|
||||
|
||||
// MdagM^(+- 1/2)
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,2);
|
||||
PowerHalf.Init(remez,param.tolerance,false);
|
||||
PowerNegHalf.Init(remez,param.tolerance,true);
|
||||
|
||||
// MdagM^(+- 1/4)
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,4);
|
||||
PowerQuarter.Init(remez,param.tolerance,false);
|
||||
PowerNegQuarter.Init(remez,param.tolerance,true);
|
||||
};
|
||||
|
||||
virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}
|
||||
|
||||
virtual std::string LogParameters(){
|
||||
std::stringstream sstream;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
|
||||
return sstream.str();
|
||||
}
|
||||
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
|
||||
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// P(phi) = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/2 (VdagV)^1/4 phi}
|
||||
// = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/4 (MdagM)^-1/4 (VdagV)^1/4 phi}
|
||||
//
|
||||
// Phi = (VdagV)^-1/4 Mdag^{1/4} eta
|
||||
//
|
||||
// P(eta) = e^{- eta^dag eta}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
//
|
||||
// So eta should be of width sig = 1/sqrt(2).
|
||||
|
||||
RealD scale = std::sqrt(0.5);
|
||||
|
||||
FermionField eta(NumOp.FermionGrid());
|
||||
FermionField etaOdd (NumOp.FermionRedBlackGrid());
|
||||
FermionField etaEven(NumOp.FermionRedBlackGrid());
|
||||
FermionField tmp(NumOp.FermionRedBlackGrid());
|
||||
|
||||
gaussian(pRNG,eta); eta=eta*scale;
|
||||
|
||||
pickCheckerboard(Even,etaEven,eta);
|
||||
pickCheckerboard(Odd,etaOdd,eta);
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
|
||||
// MdagM^1/4 eta
|
||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerQuarter);
|
||||
msCG_M(MdagM,etaOdd,tmp);
|
||||
// MdagM^1/4 eta
|
||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerQuarter);
|
||||
msCG_M(MdagM,etaOdd,tmp);
|
||||
|
||||
// VdagV^-1/4 MdagM^1/4 eta
|
||||
SchurDifferentiableOperator<Impl> VdagV(NumOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerNegQuarter);
|
||||
msCG_V(VdagV,tmp,PhiOdd);
|
||||
// VdagV^-1/4 MdagM^1/4 eta
|
||||
SchurDifferentiableOperator<Impl> VdagV(NumOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerNegQuarter);
|
||||
msCG_V(VdagV,tmp,PhiOdd);
|
||||
|
||||
assert(NumOp.ConstEE() == 1);
|
||||
assert(DenOp.ConstEE() == 1);
|
||||
PhiEven = Zero();
|
||||
assert(NumOp.ConstEE() == 1);
|
||||
assert(DenOp.ConstEE() == 1);
|
||||
PhiEven = zero;
|
||||
|
||||
};
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
//////////////////////////////////////////////////////
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
FermionField X(NumOp.FermionRedBlackGrid());
|
||||
FermionField Y(NumOp.FermionRedBlackGrid());
|
||||
FermionField X(NumOp.FermionRedBlackGrid());
|
||||
FermionField Y(NumOp.FermionRedBlackGrid());
|
||||
|
||||
// VdagV^1/4 Phi
|
||||
SchurDifferentiableOperator<Impl> VdagV(NumOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
|
||||
msCG_V(VdagV,PhiOdd,X);
|
||||
// VdagV^1/4 Phi
|
||||
SchurDifferentiableOperator<Impl> VdagV(NumOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
|
||||
msCG_V(VdagV,PhiOdd,X);
|
||||
|
||||
// MdagM^-1/4 VdagV^1/4 Phi
|
||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegQuarter);
|
||||
msCG_M(MdagM,X,Y);
|
||||
// MdagM^-1/4 VdagV^1/4 Phi
|
||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegQuarter);
|
||||
msCG_M(MdagM,X,Y);
|
||||
|
||||
// Phidag VdagV^1/4 MdagM^-1/4 MdagM^-1/4 VdagV^1/4 Phi
|
||||
RealD action = norm2(Y);
|
||||
// Randomly apply rational bounds checks.
|
||||
if ( (rand()%param.BoundsCheckFreq)==0 ) {
|
||||
FermionField gauss(NumOp.FermionRedBlackGrid());
|
||||
gauss = PhiOdd;
|
||||
HighBoundCheck(MdagM,gauss,param.hi);
|
||||
InverseSqrtBoundsCheck(param.MaxIter,param.tolerance*100,MdagM,gauss,PowerNegHalf);
|
||||
}
|
||||
|
||||
return action;
|
||||
};
|
||||
// Phidag VdagV^1/4 MdagM^-1/4 MdagM^-1/4 VdagV^1/4 Phi
|
||||
RealD action = norm2(Y);
|
||||
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// Here, M is some 5D operator and V is the Pauli-Villars field
|
||||
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
|
||||
//
|
||||
// Need
|
||||
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
|
||||
// + chi^dag P/Q d[N/D] P/Q chi
|
||||
// + chi^dag P/Q N/D d[P/Q] chi
|
||||
//
|
||||
// P/Q is expressed as partial fraction expansion:
|
||||
//
|
||||
// a0 + \sum_k ak/(V^dagV + bk)
|
||||
//
|
||||
// d[P/Q] is then
|
||||
//
|
||||
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
|
||||
//
|
||||
// and similar for N/D.
|
||||
//
|
||||
// Need
|
||||
// MpvPhi_k = [Vdag V + bk]^{-1} chi
|
||||
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
|
||||
//
|
||||
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
|
||||
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
|
||||
//
|
||||
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
|
||||
//
|
||||
return action;
|
||||
};
|
||||
|
||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// Here, M is some 5D operator and V is the Pauli-Villars field
|
||||
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
|
||||
//
|
||||
// Need
|
||||
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
|
||||
// + chi^dag P/Q d[N/D] P/Q chi
|
||||
// + chi^dag P/Q N/D d[P/Q] chi
|
||||
//
|
||||
// P/Q is expressed as partial fraction expansion:
|
||||
//
|
||||
// a0 + \sum_k ak/(V^dagV + bk)
|
||||
//
|
||||
// d[P/Q] is then
|
||||
//
|
||||
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
|
||||
//
|
||||
// and similar for N/D.
|
||||
//
|
||||
// Need
|
||||
// MpvPhi_k = [Vdag V + bk]^{-1} chi
|
||||
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
|
||||
//
|
||||
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
|
||||
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
|
||||
//
|
||||
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
|
||||
//
|
||||
|
||||
const int n_f = PowerNegHalf.poles.size();
|
||||
const int n_pv = PowerQuarter.poles.size();
|
||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
||||
|
||||
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionRedBlackGrid());
|
||||
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid());
|
||||
std::vector<FermionField> MfMpvPhi_k (n_f ,NumOp.FermionRedBlackGrid());
|
||||
const int n_f = PowerNegHalf.poles.size();
|
||||
const int n_pv = PowerQuarter.poles.size();
|
||||
|
||||
FermionField MpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField MfMpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField Y(NumOp.FermionRedBlackGrid());
|
||||
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionRedBlackGrid());
|
||||
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid());
|
||||
std::vector<FermionField> MfMpvPhi_k (n_f ,NumOp.FermionRedBlackGrid());
|
||||
|
||||
GaugeField tmp(NumOp.GaugeGrid());
|
||||
FermionField MpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField MfMpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField Y(NumOp.FermionRedBlackGrid());
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
GaugeField tmp(NumOp.GaugeGrid());
|
||||
|
||||
SchurDifferentiableOperator<Impl> VdagV(NumOp);
|
||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegHalf);
|
||||
SchurDifferentiableOperator<Impl> VdagV(NumOp);
|
||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
||||
|
||||
msCG_V(VdagV,PhiOdd,MpvPhi_k,MpvPhi);
|
||||
msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
|
||||
msCG_V(VdagV,MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegHalf);
|
||||
|
||||
RealD ak;
|
||||
msCG_V(VdagV,PhiOdd,MpvPhi_k,MpvPhi);
|
||||
msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
|
||||
msCG_V(VdagV,MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
|
||||
|
||||
dSdU = Zero();
|
||||
RealD ak;
|
||||
|
||||
// With these building blocks
|
||||
//
|
||||
// dS/dU =
|
||||
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
|
||||
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
|
||||
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
|
||||
dSdU = zero;
|
||||
|
||||
//(1)
|
||||
for(int k=0;k<n_f;k++){
|
||||
ak = PowerNegHalf.residues[k];
|
||||
MdagM.Mpc(MfMpvPhi_k[k],Y);
|
||||
MdagM.MpcDagDeriv(tmp , MfMpvPhi_k[k], Y ); dSdU=dSdU+ak*tmp;
|
||||
MdagM.MpcDeriv(tmp , Y, MfMpvPhi_k[k] ); dSdU=dSdU+ak*tmp;
|
||||
}
|
||||
// With these building blocks
|
||||
//
|
||||
// dS/dU =
|
||||
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
|
||||
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
|
||||
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
|
||||
|
||||
//(1)
|
||||
for(int k=0;k<n_f;k++){
|
||||
ak = PowerNegHalf.residues[k];
|
||||
MdagM.Mpc(MfMpvPhi_k[k],Y);
|
||||
MdagM.MpcDagDeriv(tmp , MfMpvPhi_k[k], Y ); dSdU=dSdU+ak*tmp;
|
||||
MdagM.MpcDeriv(tmp , Y, MfMpvPhi_k[k] ); dSdU=dSdU+ak*tmp;
|
||||
}
|
||||
|
||||
//(2)
|
||||
//(3)
|
||||
for(int k=0;k<n_pv;k++){
|
||||
//(2)
|
||||
//(3)
|
||||
for(int k=0;k<n_pv;k++){
|
||||
|
||||
ak = PowerQuarter.residues[k];
|
||||
ak = PowerQuarter.residues[k];
|
||||
|
||||
VdagV.Mpc(MpvPhi_k[k],Y);
|
||||
VdagV.MpcDagDeriv(tmp,MpvMfMpvPhi_k[k],Y); dSdU=dSdU+ak*tmp;
|
||||
VdagV.MpcDeriv (tmp,Y,MpvMfMpvPhi_k[k]); dSdU=dSdU+ak*tmp;
|
||||
VdagV.Mpc(MpvPhi_k[k],Y);
|
||||
VdagV.MpcDagDeriv(tmp,MpvMfMpvPhi_k[k],Y); dSdU=dSdU+ak*tmp;
|
||||
VdagV.MpcDeriv (tmp,Y,MpvMfMpvPhi_k[k]); dSdU=dSdU+ak*tmp;
|
||||
|
||||
VdagV.Mpc(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
|
||||
VdagV.MpcDeriv (tmp,Y, MpvPhi_k[k]); dSdU=dSdU+ak*tmp;
|
||||
VdagV.MpcDagDeriv(tmp,MpvPhi_k[k], Y); dSdU=dSdU+ak*tmp;
|
||||
VdagV.Mpc(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
|
||||
VdagV.MpcDeriv (tmp,Y, MpvPhi_k[k]); dSdU=dSdU+ak*tmp;
|
||||
VdagV.MpcDagDeriv(tmp,MpvPhi_k[k], Y); dSdU=dSdU+ak*tmp;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
//dSdU = Ta(dSdU);
|
||||
//dSdU = Ta(dSdU);
|
||||
|
||||
};
|
||||
};
|
||||
};
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
||||
|
@ -1,4 +1,4 @@
|
||||
/*************************************************************************************
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
@ -23,190 +23,199 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef QCD_PSEUDOFERMION_ONE_FLAVOUR_RATIONAL_H
|
||||
#define QCD_PSEUDOFERMION_ONE_FLAVOUR_RATIONAL_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
namespace Grid{
|
||||
namespace QCD{
|
||||
|
||||
///////////////////////////////////////
|
||||
// One flavour rational
|
||||
///////////////////////////////////////
|
||||
///////////////////////////////////////
|
||||
// One flavour rational
|
||||
///////////////////////////////////////
|
||||
|
||||
// S_f = chi^dag * N(M^dag*M)/D(M^dag*M) * chi
|
||||
//
|
||||
// Here, M is some operator
|
||||
// N and D makeup the rat. poly
|
||||
//
|
||||
// S_f = chi^dag * N(M^dag*M)/D(M^dag*M) * chi
|
||||
//
|
||||
// Here, M is some operator
|
||||
// N and D makeup the rat. poly
|
||||
//
|
||||
|
||||
template<class Impl>
|
||||
class OneFlavourRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
template<class Impl>
|
||||
class OneFlavourRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
typedef OneFlavourRationalParams Params;
|
||||
Params param;
|
||||
typedef OneFlavourRationalParams Params;
|
||||
Params param;
|
||||
|
||||
MultiShiftFunction PowerHalf ;
|
||||
MultiShiftFunction PowerNegHalf;
|
||||
MultiShiftFunction PowerQuarter;
|
||||
MultiShiftFunction PowerNegQuarter;
|
||||
MultiShiftFunction PowerHalf ;
|
||||
MultiShiftFunction PowerNegHalf;
|
||||
MultiShiftFunction PowerQuarter;
|
||||
MultiShiftFunction PowerNegQuarter;
|
||||
|
||||
private:
|
||||
private:
|
||||
|
||||
FermionOperator<Impl> & FermOp;// the basic operator
|
||||
FermionOperator<Impl> & FermOp;// the basic operator
|
||||
|
||||
// NOT using "Nroots"; IroIro is -- perhaps later, but this wasn't good for us historically
|
||||
// and hasenbusch works better
|
||||
// NOT using "Nroots"; IroIro is -- perhaps later, but this wasn't good for us historically
|
||||
// and hasenbusch works better
|
||||
|
||||
FermionField Phi; // the pseudo fermion field for this trajectory
|
||||
FermionField Phi; // the pseudo fermion field for this trajectory
|
||||
|
||||
public:
|
||||
public:
|
||||
|
||||
OneFlavourRationalPseudoFermionAction(FermionOperator<Impl> &Op,
|
||||
Params & p
|
||||
) : FermOp(Op), Phi(Op.FermionGrid()), param(p)
|
||||
{
|
||||
AlgRemez remez(param.lo,param.hi,param.precision);
|
||||
OneFlavourRationalPseudoFermionAction(FermionOperator<Impl> &Op,
|
||||
Params & p
|
||||
) : FermOp(Op), Phi(Op.FermionGrid()), param(p)
|
||||
{
|
||||
AlgRemez remez(param.lo,param.hi,param.precision);
|
||||
|
||||
// MdagM^(+- 1/2)
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,2);
|
||||
PowerHalf.Init(remez,param.tolerance,false);
|
||||
PowerNegHalf.Init(remez,param.tolerance,true);
|
||||
// MdagM^(+- 1/2)
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,2);
|
||||
PowerHalf.Init(remez,param.tolerance,false);
|
||||
PowerNegHalf.Init(remez,param.tolerance,true);
|
||||
|
||||
// MdagM^(+- 1/4)
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,4);
|
||||
PowerQuarter.Init(remez,param.tolerance,false);
|
||||
PowerNegQuarter.Init(remez,param.tolerance,true);
|
||||
};
|
||||
// MdagM^(+- 1/4)
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,4);
|
||||
PowerQuarter.Init(remez,param.tolerance,false);
|
||||
PowerNegQuarter.Init(remez,param.tolerance,true);
|
||||
};
|
||||
|
||||
virtual std::string action_name(){return "OneFlavourRationalPseudoFermionAction";}
|
||||
virtual std::string action_name(){return "OneFlavourRationalPseudoFermionAction";}
|
||||
|
||||
virtual std::string LogParameters(){
|
||||
std::stringstream sstream;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
|
||||
return sstream.str();
|
||||
}
|
||||
virtual std::string LogParameters(){
|
||||
std::stringstream sstream;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
|
||||
return sstream.str();
|
||||
}
|
||||
|
||||
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
|
||||
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
|
||||
|
||||
|
||||
// P(phi) = e^{- phi^dag (MdagM)^-1/2 phi}
|
||||
// = e^{- phi^dag (MdagM)^-1/4 (MdagM)^-1/4 phi}
|
||||
// Phi = Mdag^{1/4} eta
|
||||
// P(eta) = e^{- eta^dag eta}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
//
|
||||
// So eta should be of width sig = 1/sqrt(2).
|
||||
// P(phi) = e^{- phi^dag (MdagM)^-1/2 phi}
|
||||
// = e^{- phi^dag (MdagM)^-1/4 (MdagM)^-1/4 phi}
|
||||
// Phi = Mdag^{1/4} eta
|
||||
// P(eta) = e^{- eta^dag eta}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
//
|
||||
// So eta should be of width sig = 1/sqrt(2).
|
||||
|
||||
RealD scale = std::sqrt(0.5);
|
||||
RealD scale = std::sqrt(0.5);
|
||||
|
||||
FermionField eta(FermOp.FermionGrid());
|
||||
FermionField eta(FermOp.FermionGrid());
|
||||
|
||||
gaussian(pRNG,eta);
|
||||
gaussian(pRNG,eta);
|
||||
|
||||
FermOp.ImportGauge(U);
|
||||
FermOp.ImportGauge(U);
|
||||
|
||||
// mutishift CG
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerQuarter);
|
||||
msCG(MdagMOp,eta,Phi);
|
||||
// mutishift CG
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerQuarter);
|
||||
msCG(MdagMOp,eta,Phi);
|
||||
|
||||
Phi=Phi*scale;
|
||||
Phi=Phi*scale;
|
||||
|
||||
};
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// S = phi^dag (Mdag M)^-1/2 phi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
//////////////////////////////////////////////////////
|
||||
// S = phi^dag (Mdag M)^-1/2 phi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
|
||||
FermOp.ImportGauge(U);
|
||||
FermOp.ImportGauge(U);
|
||||
|
||||
FermionField Y(FermOp.FermionGrid());
|
||||
FermionField Y(FermOp.FermionGrid());
|
||||
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
|
||||
|
||||
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerNegQuarter);
|
||||
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerNegQuarter);
|
||||
|
||||
msCG(MdagMOp,Phi,Y);
|
||||
msCG(MdagMOp,Phi,Y);
|
||||
|
||||
RealD action = norm2(Y);
|
||||
std::cout << GridLogMessage << "Pseudofermion action FIXME -- is -1/4 solve or -1/2 solve faster??? "<<action<<std::endl;
|
||||
return action;
|
||||
};
|
||||
if ( (rand()%param.BoundsCheckFreq)==0 ) {
|
||||
FermionField gauss(FermOp.FermionGrid());
|
||||
gauss = Phi;
|
||||
HighBoundCheck(MdagMOp,gauss,param.hi);
|
||||
InverseSqrtBoundsCheck(param.MaxIter,param.tolerance*100,MdagMOp,gauss,PowerNegHalf);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// Need
|
||||
// dS_f/dU = chi^dag d[N/D] chi
|
||||
//
|
||||
// N/D is expressed as partial fraction expansion:
|
||||
//
|
||||
// a0 + \sum_k ak/(M^dagM + bk)
|
||||
//
|
||||
// d[N/D] is then
|
||||
//
|
||||
// \sum_k -ak [M^dagM+bk]^{-1} [ dM^dag M + M^dag dM ] [M^dag M + bk]^{-1}
|
||||
//
|
||||
// Need
|
||||
// Mf Phi_k = [MdagM+bk]^{-1} Phi
|
||||
// Mf Phi = \sum_k ak [MdagM+bk]^{-1} Phi
|
||||
//
|
||||
// With these building blocks
|
||||
//
|
||||
// dS/dU = \sum_k -ak Mf Phi_k^dag [ dM^dag M + M^dag dM ] Mf Phi_k
|
||||
// S = innerprodReal(Phi,Mf Phi);
|
||||
//////////////////////////////////////////////////////
|
||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
||||
|
||||
const int Npole = PowerNegHalf.poles.size();
|
||||
RealD action = norm2(Y);
|
||||
std::cout << GridLogMessage << "Pseudofermion action FIXME -- is -1/4 solve or -1/2 solve faster??? "<<action<<std::endl;
|
||||
return action;
|
||||
};
|
||||
|
||||
std::vector<FermionField> MPhi_k (Npole,FermOp.FermionGrid());
|
||||
//////////////////////////////////////////////////////
|
||||
// Need
|
||||
// dS_f/dU = chi^dag d[N/D] chi
|
||||
//
|
||||
// N/D is expressed as partial fraction expansion:
|
||||
//
|
||||
// a0 + \sum_k ak/(M^dagM + bk)
|
||||
//
|
||||
// d[N/D] is then
|
||||
//
|
||||
// \sum_k -ak [M^dagM+bk]^{-1} [ dM^dag M + M^dag dM ] [M^dag M + bk]^{-1}
|
||||
//
|
||||
// Need
|
||||
// Mf Phi_k = [MdagM+bk]^{-1} Phi
|
||||
// Mf Phi = \sum_k ak [MdagM+bk]^{-1} Phi
|
||||
//
|
||||
// With these building blocks
|
||||
//
|
||||
// dS/dU = \sum_k -ak Mf Phi_k^dag [ dM^dag M + M^dag dM ] Mf Phi_k
|
||||
// S = innerprodReal(Phi,Mf Phi);
|
||||
//////////////////////////////////////////////////////
|
||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
||||
|
||||
FermionField X(FermOp.FermionGrid());
|
||||
FermionField Y(FermOp.FermionGrid());
|
||||
const int Npole = PowerNegHalf.poles.size();
|
||||
|
||||
GaugeField tmp(FermOp.GaugeGrid());
|
||||
std::vector<FermionField> MPhi_k (Npole,FermOp.FermionGrid());
|
||||
|
||||
FermOp.ImportGauge(U);
|
||||
FermionField X(FermOp.FermionGrid());
|
||||
FermionField Y(FermOp.FermionGrid());
|
||||
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
|
||||
GaugeField tmp(FermOp.GaugeGrid());
|
||||
|
||||
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerNegHalf);
|
||||
FermOp.ImportGauge(U);
|
||||
|
||||
msCG(MdagMOp,Phi,MPhi_k);
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
|
||||
|
||||
dSdU = Zero();
|
||||
for(int k=0;k<Npole;k++){
|
||||
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerNegHalf);
|
||||
|
||||
RealD ak = PowerNegHalf.residues[k];
|
||||
msCG(MdagMOp,Phi,MPhi_k);
|
||||
|
||||
X = MPhi_k[k];
|
||||
dSdU = zero;
|
||||
for(int k=0;k<Npole;k++){
|
||||
|
||||
FermOp.M(X,Y);
|
||||
RealD ak = PowerNegHalf.residues[k];
|
||||
|
||||
FermOp.MDeriv(tmp , Y, X,DaggerNo ); dSdU=dSdU+ak*tmp;
|
||||
FermOp.MDeriv(tmp , X, Y,DaggerYes); dSdU=dSdU+ak*tmp;
|
||||
X = MPhi_k[k];
|
||||
|
||||
}
|
||||
FermOp.M(X,Y);
|
||||
|
||||
//dSdU = Ta(dSdU);
|
||||
FermOp.MDeriv(tmp , Y, X,DaggerNo ); dSdU=dSdU+ak*tmp;
|
||||
FermOp.MDeriv(tmp , X, Y,DaggerYes); dSdU=dSdU+ak*tmp;
|
||||
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
//dSdU = Ta(dSdU);
|
||||
|
||||
};
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif
|
||||
|
@ -1,4 +1,4 @@
|
||||
/*************************************************************************************
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
@ -23,243 +23,253 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef QCD_PSEUDOFERMION_ONE_FLAVOUR_RATIONAL_RATIO_H
|
||||
#define QCD_PSEUDOFERMION_ONE_FLAVOUR_RATIONAL_RATIO_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
///////////////////////////////////////
|
||||
// One flavour rational
|
||||
///////////////////////////////////////
|
||||
namespace Grid{
|
||||
namespace QCD{
|
||||
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// Here P/Q \sim R_{1/4} ~ (V^dagV)^{1/4}
|
||||
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
|
||||
|
||||
template<class Impl>
|
||||
class OneFlavourRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
||||
public:
|
||||
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
typedef OneFlavourRationalParams Params;
|
||||
Params param;
|
||||
|
||||
MultiShiftFunction PowerHalf ;
|
||||
MultiShiftFunction PowerNegHalf;
|
||||
MultiShiftFunction PowerQuarter;
|
||||
MultiShiftFunction PowerNegQuarter;
|
||||
|
||||
private:
|
||||
|
||||
FermionOperator<Impl> & NumOp;// the basic operator
|
||||
FermionOperator<Impl> & DenOp;// the basic operator
|
||||
FermionField Phi; // the pseudo fermion field for this trajectory
|
||||
|
||||
public:
|
||||
|
||||
OneFlavourRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||
FermionOperator<Impl> &_DenOp,
|
||||
Params & p
|
||||
) : NumOp(_NumOp), DenOp(_DenOp), Phi(_NumOp.FermionGrid()), param(p)
|
||||
{
|
||||
AlgRemez remez(param.lo,param.hi,param.precision);
|
||||
|
||||
// MdagM^(+- 1/2)
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,2);
|
||||
PowerHalf.Init(remez,param.tolerance,false);
|
||||
PowerNegHalf.Init(remez,param.tolerance,true);
|
||||
|
||||
// MdagM^(+- 1/4)
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,4);
|
||||
PowerQuarter.Init(remez,param.tolerance,false);
|
||||
PowerNegQuarter.Init(remez,param.tolerance,true);
|
||||
};
|
||||
|
||||
virtual std::string action_name(){return "OneFlavourRatioRationalPseudoFermionAction";}
|
||||
|
||||
virtual std::string LogParameters(){
|
||||
std::stringstream sstream;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
|
||||
return sstream.str();
|
||||
}
|
||||
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
|
||||
///////////////////////////////////////
|
||||
// One flavour rational
|
||||
///////////////////////////////////////
|
||||
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// P(phi) = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/2 (VdagV)^1/4 phi}
|
||||
// = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/4 (MdagM)^-1/4 (VdagV)^1/4 phi}
|
||||
//
|
||||
// Phi = (VdagV)^-1/4 Mdag^{1/4} eta
|
||||
//
|
||||
// P(eta) = e^{- eta^dag eta}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
//
|
||||
// So eta should be of width sig = 1/sqrt(2).
|
||||
// Here P/Q \sim R_{1/4} ~ (V^dagV)^{1/4}
|
||||
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
|
||||
|
||||
template<class Impl>
|
||||
class OneFlavourRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
||||
public:
|
||||
|
||||
RealD scale = std::sqrt(0.5);
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
FermionField tmp(NumOp.FermionGrid());
|
||||
FermionField eta(NumOp.FermionGrid());
|
||||
typedef OneFlavourRationalParams Params;
|
||||
Params param;
|
||||
|
||||
gaussian(pRNG,eta);
|
||||
MultiShiftFunction PowerHalf ;
|
||||
MultiShiftFunction PowerNegHalf;
|
||||
MultiShiftFunction PowerQuarter;
|
||||
MultiShiftFunction PowerNegQuarter;
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
private:
|
||||
|
||||
FermionOperator<Impl> & NumOp;// the basic operator
|
||||
FermionOperator<Impl> & DenOp;// the basic operator
|
||||
FermionField Phi; // the pseudo fermion field for this trajectory
|
||||
|
||||
// MdagM^1/4 eta
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagM(DenOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerQuarter);
|
||||
msCG_M(MdagM,eta,tmp);
|
||||
public:
|
||||
|
||||
// VdagV^-1/4 MdagM^1/4 eta
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> VdagV(NumOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerNegQuarter);
|
||||
msCG_V(VdagV,tmp,Phi);
|
||||
OneFlavourRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||
FermionOperator<Impl> &_DenOp,
|
||||
Params & p
|
||||
) : NumOp(_NumOp), DenOp(_DenOp), Phi(_NumOp.FermionGrid()), param(p)
|
||||
{
|
||||
AlgRemez remez(param.lo,param.hi,param.precision);
|
||||
|
||||
Phi=Phi*scale;
|
||||
// MdagM^(+- 1/2)
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,2);
|
||||
PowerHalf.Init(remez,param.tolerance,false);
|
||||
PowerNegHalf.Init(remez,param.tolerance,true);
|
||||
|
||||
// MdagM^(+- 1/4)
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,4);
|
||||
PowerQuarter.Init(remez,param.tolerance,false);
|
||||
PowerNegQuarter.Init(remez,param.tolerance,true);
|
||||
};
|
||||
|
||||
virtual std::string action_name(){return "OneFlavourRatioRationalPseudoFermionAction";}
|
||||
|
||||
virtual std::string LogParameters(){
|
||||
std::stringstream sstream;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
|
||||
return sstream.str();
|
||||
}
|
||||
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
|
||||
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// P(phi) = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/2 (VdagV)^1/4 phi}
|
||||
// = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/4 (MdagM)^-1/4 (VdagV)^1/4 phi}
|
||||
//
|
||||
// Phi = (VdagV)^-1/4 Mdag^{1/4} eta
|
||||
//
|
||||
// P(eta) = e^{- eta^dag eta}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
//
|
||||
// So eta should be of width sig = 1/sqrt(2).
|
||||
|
||||
RealD scale = std::sqrt(0.5);
|
||||
|
||||
FermionField tmp(NumOp.FermionGrid());
|
||||
FermionField eta(NumOp.FermionGrid());
|
||||
|
||||
gaussian(pRNG,eta);
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
// MdagM^1/4 eta
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagM(DenOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerQuarter);
|
||||
msCG_M(MdagM,eta,tmp);
|
||||
|
||||
// VdagV^-1/4 MdagM^1/4 eta
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> VdagV(NumOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerNegQuarter);
|
||||
msCG_V(VdagV,tmp,Phi);
|
||||
|
||||
Phi=Phi*scale;
|
||||
|
||||
};
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
//////////////////////////////////////////////////////
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
FermionField X(NumOp.FermionGrid());
|
||||
FermionField Y(NumOp.FermionGrid());
|
||||
FermionField X(NumOp.FermionGrid());
|
||||
FermionField Y(NumOp.FermionGrid());
|
||||
|
||||
// VdagV^1/4 Phi
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> VdagV(NumOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
|
||||
msCG_V(VdagV,Phi,X);
|
||||
// VdagV^1/4 Phi
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> VdagV(NumOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
|
||||
msCG_V(VdagV,Phi,X);
|
||||
|
||||
// MdagM^-1/4 VdagV^1/4 Phi
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagM(DenOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegQuarter);
|
||||
msCG_M(MdagM,X,Y);
|
||||
// MdagM^-1/4 VdagV^1/4 Phi
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagM(DenOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegQuarter);
|
||||
msCG_M(MdagM,X,Y);
|
||||
|
||||
// Phidag VdagV^1/4 MdagM^-1/4 MdagM^-1/4 VdagV^1/4 Phi
|
||||
RealD action = norm2(Y);
|
||||
// Randomly apply rational bounds checks.
|
||||
if ( (rand()%param.BoundsCheckFreq)==0 ) {
|
||||
FermionField gauss(NumOp.FermionGrid());
|
||||
gauss = Phi;
|
||||
HighBoundCheck(MdagM,gauss,param.hi);
|
||||
InverseSqrtBoundsCheck(param.MaxIter,param.tolerance*100,MdagM,gauss,PowerNegHalf);
|
||||
}
|
||||
|
||||
return action;
|
||||
};
|
||||
// Phidag VdagV^1/4 MdagM^-1/4 MdagM^-1/4 VdagV^1/4 Phi
|
||||
RealD action = norm2(Y);
|
||||
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// Here, M is some 5D operator and V is the Pauli-Villars field
|
||||
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
|
||||
//
|
||||
// Need
|
||||
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
|
||||
// + chi^dag P/Q d[N/D] P/Q chi
|
||||
// + chi^dag P/Q N/D d[P/Q] chi
|
||||
//
|
||||
// P/Q is expressed as partial fraction expansion:
|
||||
//
|
||||
// a0 + \sum_k ak/(V^dagV + bk)
|
||||
//
|
||||
// d[P/Q] is then
|
||||
//
|
||||
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
|
||||
//
|
||||
// and similar for N/D.
|
||||
//
|
||||
// Need
|
||||
// MpvPhi_k = [Vdag V + bk]^{-1} chi
|
||||
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
|
||||
//
|
||||
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
|
||||
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
|
||||
//
|
||||
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
|
||||
//
|
||||
return action;
|
||||
};
|
||||
|
||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// Here, M is some 5D operator and V is the Pauli-Villars field
|
||||
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
|
||||
//
|
||||
// Need
|
||||
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
|
||||
// + chi^dag P/Q d[N/D] P/Q chi
|
||||
// + chi^dag P/Q N/D d[P/Q] chi
|
||||
//
|
||||
// P/Q is expressed as partial fraction expansion:
|
||||
//
|
||||
// a0 + \sum_k ak/(V^dagV + bk)
|
||||
//
|
||||
// d[P/Q] is then
|
||||
//
|
||||
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
|
||||
//
|
||||
// and similar for N/D.
|
||||
//
|
||||
// Need
|
||||
// MpvPhi_k = [Vdag V + bk]^{-1} chi
|
||||
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
|
||||
//
|
||||
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
|
||||
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
|
||||
//
|
||||
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
|
||||
//
|
||||
|
||||
const int n_f = PowerNegHalf.poles.size();
|
||||
const int n_pv = PowerQuarter.poles.size();
|
||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
||||
|
||||
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionGrid());
|
||||
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionGrid());
|
||||
std::vector<FermionField> MfMpvPhi_k (n_f,NumOp.FermionGrid());
|
||||
const int n_f = PowerNegHalf.poles.size();
|
||||
const int n_pv = PowerQuarter.poles.size();
|
||||
|
||||
FermionField MpvPhi(NumOp.FermionGrid());
|
||||
FermionField MfMpvPhi(NumOp.FermionGrid());
|
||||
FermionField MpvMfMpvPhi(NumOp.FermionGrid());
|
||||
FermionField Y(NumOp.FermionGrid());
|
||||
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionGrid());
|
||||
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionGrid());
|
||||
std::vector<FermionField> MfMpvPhi_k (n_f,NumOp.FermionGrid());
|
||||
|
||||
GaugeField tmp(NumOp.GaugeGrid());
|
||||
FermionField MpvPhi(NumOp.FermionGrid());
|
||||
FermionField MfMpvPhi(NumOp.FermionGrid());
|
||||
FermionField MpvMfMpvPhi(NumOp.FermionGrid());
|
||||
FermionField Y(NumOp.FermionGrid());
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
GaugeField tmp(NumOp.GaugeGrid());
|
||||
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagM(DenOp);
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> VdagV(NumOp);
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegHalf);
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagM(DenOp);
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> VdagV(NumOp);
|
||||
|
||||
msCG_V(VdagV,Phi,MpvPhi_k,MpvPhi);
|
||||
msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
|
||||
msCG_V(VdagV,MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegHalf);
|
||||
|
||||
RealD ak;
|
||||
msCG_V(VdagV,Phi,MpvPhi_k,MpvPhi);
|
||||
msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
|
||||
msCG_V(VdagV,MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
|
||||
|
||||
dSdU = Zero();
|
||||
RealD ak;
|
||||
|
||||
// With these building blocks
|
||||
//
|
||||
// dS/dU =
|
||||
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
|
||||
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
|
||||
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
|
||||
dSdU = zero;
|
||||
|
||||
//(1)
|
||||
for(int k=0;k<n_f;k++){
|
||||
ak = PowerNegHalf.residues[k];
|
||||
DenOp.M(MfMpvPhi_k[k],Y);
|
||||
DenOp.MDeriv(tmp , MfMpvPhi_k[k], Y,DaggerYes ); dSdU=dSdU+ak*tmp;
|
||||
DenOp.MDeriv(tmp , Y, MfMpvPhi_k[k], DaggerNo ); dSdU=dSdU+ak*tmp;
|
||||
}
|
||||
// With these building blocks
|
||||
//
|
||||
// dS/dU =
|
||||
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
|
||||
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
|
||||
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
|
||||
|
||||
//(1)
|
||||
for(int k=0;k<n_f;k++){
|
||||
ak = PowerNegHalf.residues[k];
|
||||
DenOp.M(MfMpvPhi_k[k],Y);
|
||||
DenOp.MDeriv(tmp , MfMpvPhi_k[k], Y,DaggerYes ); dSdU=dSdU+ak*tmp;
|
||||
DenOp.MDeriv(tmp , Y, MfMpvPhi_k[k], DaggerNo ); dSdU=dSdU+ak*tmp;
|
||||
}
|
||||
|
||||
//(2)
|
||||
//(3)
|
||||
for(int k=0;k<n_pv;k++){
|
||||
//(2)
|
||||
//(3)
|
||||
for(int k=0;k<n_pv;k++){
|
||||
|
||||
ak = PowerQuarter.residues[k];
|
||||
ak = PowerQuarter.residues[k];
|
||||
|
||||
NumOp.M(MpvPhi_k[k],Y);
|
||||
NumOp.MDeriv(tmp,MpvMfMpvPhi_k[k],Y,DaggerYes); dSdU=dSdU+ak*tmp;
|
||||
NumOp.MDeriv(tmp,Y,MpvMfMpvPhi_k[k],DaggerNo); dSdU=dSdU+ak*tmp;
|
||||
NumOp.M(MpvPhi_k[k],Y);
|
||||
NumOp.MDeriv(tmp,MpvMfMpvPhi_k[k],Y,DaggerYes); dSdU=dSdU+ak*tmp;
|
||||
NumOp.MDeriv(tmp,Y,MpvMfMpvPhi_k[k],DaggerNo); dSdU=dSdU+ak*tmp;
|
||||
|
||||
NumOp.M(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
|
||||
NumOp.MDeriv(tmp,Y, MpvPhi_k[k], DaggerNo); dSdU=dSdU+ak*tmp;
|
||||
NumOp.MDeriv(tmp,MpvPhi_k[k], Y,DaggerYes); dSdU=dSdU+ak*tmp;
|
||||
NumOp.M(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
|
||||
NumOp.MDeriv(tmp,Y, MpvPhi_k[k], DaggerNo); dSdU=dSdU+ak*tmp;
|
||||
NumOp.MDeriv(tmp,MpvPhi_k[k], Y,DaggerYes); dSdU=dSdU+ak*tmp;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
//dSdU = Ta(dSdU);
|
||||
//dSdU = Ta(dSdU);
|
||||
|
||||
};
|
||||
};
|
||||
};
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
||||
|
@ -29,6 +29,9 @@ directory
|
||||
#ifndef QCD_PSEUDOFERMION_AGGREGATE_H
|
||||
#define QCD_PSEUDOFERMION_AGGREGATE_H
|
||||
|
||||
// Rational functions
|
||||
#include <Grid/qcd/action/pseudofermion/Bounds.h>
|
||||
|
||||
#include <Grid/qcd/action/pseudofermion/EvenOddSchurDifferentiable.h>
|
||||
#include <Grid/qcd/action/pseudofermion/TwoFlavour.h>
|
||||
#include <Grid/qcd/action/pseudofermion/TwoFlavourRatio.h>
|
||||
|
@ -84,21 +84,20 @@ public:
|
||||
// and must multiply by 0.707....
|
||||
//
|
||||
// Chroma has this scale factor: two_flavor_monomial_w.h
|
||||
// CPS uses this factor
|
||||
// IroIro: does not use this scale. It is absorbed by a change of vars
|
||||
// in the Phi integral, and thus is only an irrelevant prefactor for
|
||||
// the partition function.
|
||||
//
|
||||
|
||||
RealD scale = std::sqrt(0.5);
|
||||
const RealD scale = std::sqrt(0.5);
|
||||
|
||||
FermionField eta(FermOp.FermionGrid());
|
||||
|
||||
gaussian(pRNG, eta);
|
||||
gaussian(pRNG, eta); eta = scale *eta;
|
||||
|
||||
FermOp.ImportGauge(U);
|
||||
FermOp.Mdag(eta, Phi);
|
||||
|
||||
Phi = Phi * scale;
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
|
@ -1,4 +1,4 @@
|
||||
/*************************************************************************************
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
@ -24,186 +24,194 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef QCD_PSEUDOFERMION_TWO_FLAVOUR_EVEN_ODD_RATIO_H
|
||||
#define QCD_PSEUDOFERMION_TWO_FLAVOUR_EVEN_ODD_RATIO_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
namespace Grid{
|
||||
namespace QCD{
|
||||
|
||||
///////////////////////////////////////
|
||||
// Two flavour ratio
|
||||
///////////////////////////////////////
|
||||
template<class Impl>
|
||||
class TwoFlavourEvenOddRatioPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
///////////////////////////////////////
|
||||
// Two flavour ratio
|
||||
///////////////////////////////////////
|
||||
template<class Impl>
|
||||
class TwoFlavourEvenOddRatioPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
private:
|
||||
FermionOperator<Impl> & NumOp;// the basic operator
|
||||
FermionOperator<Impl> & DenOp;// the basic operator
|
||||
private:
|
||||
FermionOperator<Impl> & NumOp;// the basic operator
|
||||
FermionOperator<Impl> & DenOp;// the basic operator
|
||||
|
||||
OperatorFunction<FermionField> &DerivativeSolver;
|
||||
OperatorFunction<FermionField> &ActionSolver;
|
||||
OperatorFunction<FermionField> &DerivativeSolver;
|
||||
OperatorFunction<FermionField> &ActionSolver;
|
||||
OperatorFunction<FermionField> &HeatbathSolver;
|
||||
|
||||
FermionField PhiOdd; // the pseudo fermion field for this trajectory
|
||||
FermionField PhiEven; // the pseudo fermion field for this trajectory
|
||||
FermionField PhiOdd; // the pseudo fermion field for this trajectory
|
||||
FermionField PhiEven; // the pseudo fermion field for this trajectory
|
||||
|
||||
public:
|
||||
TwoFlavourEvenOddRatioPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||
FermionOperator<Impl> &_DenOp,
|
||||
OperatorFunction<FermionField> & DS,
|
||||
OperatorFunction<FermionField> & AS) :
|
||||
NumOp(_NumOp),
|
||||
DenOp(_DenOp),
|
||||
DerivativeSolver(DS),
|
||||
ActionSolver(AS),
|
||||
PhiEven(_NumOp.FermionRedBlackGrid()),
|
||||
PhiOdd(_NumOp.FermionRedBlackGrid())
|
||||
{
|
||||
conformable(_NumOp.FermionGrid(), _DenOp.FermionGrid());
|
||||
conformable(_NumOp.FermionRedBlackGrid(), _DenOp.FermionRedBlackGrid());
|
||||
conformable(_NumOp.GaugeGrid(), _DenOp.GaugeGrid());
|
||||
conformable(_NumOp.GaugeRedBlackGrid(), _DenOp.GaugeRedBlackGrid());
|
||||
};
|
||||
public:
|
||||
TwoFlavourEvenOddRatioPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||
FermionOperator<Impl> &_DenOp,
|
||||
OperatorFunction<FermionField> & DS,
|
||||
OperatorFunction<FermionField> & AS ) :
|
||||
TwoFlavourEvenOddRatioPseudoFermionAction(_NumOp,_DenOp, DS,AS,AS) {};
|
||||
|
||||
virtual std::string action_name(){return "TwoFlavourEvenOddRatioPseudoFermionAction";}
|
||||
TwoFlavourEvenOddRatioPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||
FermionOperator<Impl> &_DenOp,
|
||||
OperatorFunction<FermionField> & DS,
|
||||
OperatorFunction<FermionField> & AS, OperatorFunction<FermionField> & HS) :
|
||||
NumOp(_NumOp),
|
||||
DenOp(_DenOp),
|
||||
DerivativeSolver(DS),
|
||||
ActionSolver(AS),
|
||||
HeatbathSolver(HS),
|
||||
PhiEven(_NumOp.FermionRedBlackGrid()),
|
||||
PhiOdd(_NumOp.FermionRedBlackGrid())
|
||||
{
|
||||
conformable(_NumOp.FermionGrid(), _DenOp.FermionGrid());
|
||||
conformable(_NumOp.FermionRedBlackGrid(), _DenOp.FermionRedBlackGrid());
|
||||
conformable(_NumOp.GaugeGrid(), _DenOp.GaugeGrid());
|
||||
conformable(_NumOp.GaugeRedBlackGrid(), _DenOp.GaugeRedBlackGrid());
|
||||
};
|
||||
|
||||
virtual std::string LogParameters(){
|
||||
std::stringstream sstream;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] has no parameters" << std::endl;
|
||||
return sstream.str();
|
||||
}
|
||||
virtual std::string action_name(){return "TwoFlavourEvenOddRatioPseudoFermionAction";}
|
||||
|
||||
virtual std::string LogParameters(){
|
||||
std::stringstream sstream;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] has no parameters" << std::endl;
|
||||
return sstream.str();
|
||||
}
|
||||
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
|
||||
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
|
||||
|
||||
// P(phi) = e^{- phi^dag Vpc (MpcdagMpc)^-1 Vpcdag phi}
|
||||
//
|
||||
// NumOp == V
|
||||
// DenOp == M
|
||||
//
|
||||
// Take phi_o = Vpcdag^{-1} Mpcdag eta_o ; eta_o = Mpcdag^{-1} Vpcdag Phi
|
||||
//
|
||||
// P(eta_o) = e^{- eta_o^dag eta_o}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
//
|
||||
RealD scale = std::sqrt(0.5);
|
||||
// P(phi) = e^{- phi^dag Vpc (MpcdagMpc)^-1 Vpcdag phi}
|
||||
//
|
||||
// NumOp == V
|
||||
// DenOp == M
|
||||
//
|
||||
// Take phi_o = Vpcdag^{-1} Mpcdag eta_o ; eta_o = Mpcdag^{-1} Vpcdag Phi
|
||||
//
|
||||
// P(eta_o) = e^{- eta_o^dag eta_o}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
//
|
||||
RealD scale = std::sqrt(0.5);
|
||||
|
||||
FermionField eta (NumOp.FermionGrid());
|
||||
FermionField etaOdd (NumOp.FermionRedBlackGrid());
|
||||
FermionField etaEven(NumOp.FermionRedBlackGrid());
|
||||
FermionField tmp (NumOp.FermionRedBlackGrid());
|
||||
FermionField eta (NumOp.FermionGrid());
|
||||
FermionField etaOdd (NumOp.FermionRedBlackGrid());
|
||||
FermionField etaEven(NumOp.FermionRedBlackGrid());
|
||||
FermionField tmp (NumOp.FermionRedBlackGrid());
|
||||
|
||||
gaussian(pRNG,eta);
|
||||
gaussian(pRNG,eta);
|
||||
|
||||
pickCheckerboard(Even,etaEven,eta);
|
||||
pickCheckerboard(Odd,etaOdd,eta);
|
||||
pickCheckerboard(Even,etaEven,eta);
|
||||
pickCheckerboard(Odd,etaOdd,eta);
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
SchurDifferentiableOperator<Impl> Mpc(DenOp);
|
||||
SchurDifferentiableOperator<Impl> Vpc(NumOp);
|
||||
SchurDifferentiableOperator<Impl> Mpc(DenOp);
|
||||
SchurDifferentiableOperator<Impl> Vpc(NumOp);
|
||||
|
||||
// Odd det factors
|
||||
Mpc.MpcDag(etaOdd,PhiOdd);
|
||||
tmp=Zero();
|
||||
ActionSolver(Vpc,PhiOdd,tmp);
|
||||
Vpc.Mpc(tmp,PhiOdd);
|
||||
// Odd det factors
|
||||
Mpc.MpcDag(etaOdd,PhiOdd);
|
||||
tmp=zero;
|
||||
HeatbathSolver(Vpc,PhiOdd,tmp);
|
||||
Vpc.Mpc(tmp,PhiOdd);
|
||||
|
||||
// Even det factors
|
||||
DenOp.MooeeDag(etaEven,tmp);
|
||||
NumOp.MooeeInvDag(tmp,PhiEven);
|
||||
// Even det factors
|
||||
DenOp.MooeeDag(etaEven,tmp);
|
||||
NumOp.MooeeInvDag(tmp,PhiEven);
|
||||
|
||||
PhiOdd =PhiOdd*scale;
|
||||
PhiEven=PhiEven*scale;
|
||||
PhiOdd =PhiOdd*scale;
|
||||
PhiEven=PhiEven*scale;
|
||||
|
||||
};
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// S = phi^dag V (Mdag M)^-1 Vdag phi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
//////////////////////////////////////////////////////
|
||||
// S = phi^dag V (Mdag M)^-1 Vdag phi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
SchurDifferentiableOperator<Impl> Mpc(DenOp);
|
||||
SchurDifferentiableOperator<Impl> Vpc(NumOp);
|
||||
SchurDifferentiableOperator<Impl> Mpc(DenOp);
|
||||
SchurDifferentiableOperator<Impl> Vpc(NumOp);
|
||||
|
||||
FermionField X(NumOp.FermionRedBlackGrid());
|
||||
FermionField Y(NumOp.FermionRedBlackGrid());
|
||||
FermionField X(NumOp.FermionRedBlackGrid());
|
||||
FermionField Y(NumOp.FermionRedBlackGrid());
|
||||
|
||||
Vpc.MpcDag(PhiOdd,Y); // Y= Vdag phi
|
||||
X=Zero();
|
||||
ActionSolver(Mpc,Y,X); // X= (MdagM)^-1 Vdag phi
|
||||
//Mpc.Mpc(X,Y); // Y= Mdag^-1 Vdag phi
|
||||
// Multiply by Ydag
|
||||
RealD action = real(innerProduct(Y,X));
|
||||
Vpc.MpcDag(PhiOdd,Y); // Y= Vdag phi
|
||||
X=zero;
|
||||
ActionSolver(Mpc,Y,X); // X= (MdagM)^-1 Vdag phi
|
||||
//Mpc.Mpc(X,Y); // Y= Mdag^-1 Vdag phi
|
||||
// Multiply by Ydag
|
||||
RealD action = real(innerProduct(Y,X));
|
||||
|
||||
//RealD action = norm2(Y);
|
||||
//RealD action = norm2(Y);
|
||||
|
||||
// The EE factorised block; normally can replace with Zero() if det is constant (gauge field indept)
|
||||
// Only really clover term that creates this. Leave the EE portion as a future to do to make most
|
||||
// rapid progresss on DWF for now.
|
||||
//
|
||||
NumOp.MooeeDag(PhiEven,X);
|
||||
DenOp.MooeeInvDag(X,Y);
|
||||
action = action + norm2(Y);
|
||||
// The EE factorised block; normally can replace with zero if det is constant (gauge field indept)
|
||||
// Only really clover term that creates this. Leave the EE portion as a future to do to make most
|
||||
// rapid progresss on DWF for now.
|
||||
//
|
||||
NumOp.MooeeDag(PhiEven,X);
|
||||
DenOp.MooeeInvDag(X,Y);
|
||||
action = action + norm2(Y);
|
||||
|
||||
return action;
|
||||
};
|
||||
return action;
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// dS/du = phi^dag dV (Mdag M)^-1 V^dag phi
|
||||
// - phi^dag V (Mdag M)^-1 [ Mdag dM + dMdag M ] (Mdag M)^-1 V^dag phi
|
||||
// + phi^dag V (Mdag M)^-1 dV^dag phi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
||||
//////////////////////////////////////////////////////
|
||||
// dS/du = phi^dag dV (Mdag M)^-1 V^dag phi
|
||||
// - phi^dag V (Mdag M)^-1 [ Mdag dM + dMdag M ] (Mdag M)^-1 V^dag phi
|
||||
// + phi^dag V (Mdag M)^-1 dV^dag phi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
SchurDifferentiableOperator<Impl> Mpc(DenOp);
|
||||
SchurDifferentiableOperator<Impl> Vpc(NumOp);
|
||||
SchurDifferentiableOperator<Impl> Mpc(DenOp);
|
||||
SchurDifferentiableOperator<Impl> Vpc(NumOp);
|
||||
|
||||
FermionField X(NumOp.FermionRedBlackGrid());
|
||||
FermionField Y(NumOp.FermionRedBlackGrid());
|
||||
FermionField X(NumOp.FermionRedBlackGrid());
|
||||
FermionField Y(NumOp.FermionRedBlackGrid());
|
||||
|
||||
// This assignment is necessary to be compliant with the HMC grids
|
||||
GaugeField force(dSdU.Grid());
|
||||
// This assignment is necessary to be compliant with the HMC grids
|
||||
GaugeField force(dSdU._grid);
|
||||
|
||||
//Y=Vdag phi
|
||||
//X = (Mdag M)^-1 V^dag phi
|
||||
//Y = (Mdag)^-1 V^dag phi
|
||||
Vpc.MpcDag(PhiOdd,Y); // Y= Vdag phi
|
||||
X=Zero();
|
||||
DerivativeSolver(Mpc,Y,X); // X= (MdagM)^-1 Vdag phi
|
||||
Mpc.Mpc(X,Y); // Y= Mdag^-1 Vdag phi
|
||||
//Y=Vdag phi
|
||||
//X = (Mdag M)^-1 V^dag phi
|
||||
//Y = (Mdag)^-1 V^dag phi
|
||||
Vpc.MpcDag(PhiOdd,Y); // Y= Vdag phi
|
||||
X=zero;
|
||||
DerivativeSolver(Mpc,Y,X); // X= (MdagM)^-1 Vdag phi
|
||||
Mpc.Mpc(X,Y); // Y= Mdag^-1 Vdag phi
|
||||
|
||||
// phi^dag V (Mdag M)^-1 dV^dag phi
|
||||
Vpc.MpcDagDeriv(force , X, PhiOdd ); dSdU = force;
|
||||
// phi^dag V (Mdag M)^-1 dV^dag phi
|
||||
Vpc.MpcDagDeriv(force , X, PhiOdd ); dSdU = force;
|
||||
|
||||
// phi^dag dV (Mdag M)^-1 V^dag phi
|
||||
Vpc.MpcDeriv(force , PhiOdd, X ); dSdU = dSdU+force;
|
||||
// phi^dag dV (Mdag M)^-1 V^dag phi
|
||||
Vpc.MpcDeriv(force , PhiOdd, X ); dSdU = dSdU+force;
|
||||
|
||||
// - phi^dag V (Mdag M)^-1 Mdag dM (Mdag M)^-1 V^dag phi
|
||||
// - phi^dag V (Mdag M)^-1 dMdag M (Mdag M)^-1 V^dag phi
|
||||
Mpc.MpcDeriv(force,Y,X); dSdU = dSdU-force;
|
||||
Mpc.MpcDagDeriv(force,X,Y); dSdU = dSdU-force;
|
||||
// - phi^dag V (Mdag M)^-1 Mdag dM (Mdag M)^-1 V^dag phi
|
||||
// - phi^dag V (Mdag M)^-1 dMdag M (Mdag M)^-1 V^dag phi
|
||||
Mpc.MpcDeriv(force,Y,X); dSdU = dSdU-force;
|
||||
Mpc.MpcDagDeriv(force,X,Y); dSdU = dSdU-force;
|
||||
|
||||
// FIXME No force contribution from EvenEven assumed here
|
||||
// Needs a fix for clover.
|
||||
assert(NumOp.ConstEE() == 1);
|
||||
assert(DenOp.ConstEE() == 1);
|
||||
// FIXME No force contribution from EvenEven assumed here
|
||||
// Needs a fix for clover.
|
||||
assert(NumOp.ConstEE() == 1);
|
||||
assert(DenOp.ConstEE() == 1);
|
||||
|
||||
dSdU = -dSdU;
|
||||
dSdU = -dSdU;
|
||||
|
||||
};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
};
|
||||
};
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
@ -41,19 +41,16 @@ public:
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(IntegratorParameters,
|
||||
std::string, name, // name of the integrator
|
||||
unsigned int, MDsteps, // number of outer steps
|
||||
RealD, trajL, // trajectory length
|
||||
)
|
||||
RealD, trajL) // trajectory length
|
||||
|
||||
IntegratorParameters(int MDsteps_ = 10, RealD trajL_ = 1.0)
|
||||
: MDsteps(MDsteps_),
|
||||
trajL(trajL_){
|
||||
// empty body constructor
|
||||
};
|
||||
|
||||
trajL(trajL_) {};
|
||||
|
||||
template <class ReaderClass, typename std::enable_if<isReader<ReaderClass>::value, int >::type = 0 >
|
||||
IntegratorParameters(ReaderClass & Reader){
|
||||
std::cout << "Reading integrator\n";
|
||||
IntegratorParameters(ReaderClass & Reader)
|
||||
{
|
||||
std::cout << GridLogMessage << "Reading integrator\n";
|
||||
read(Reader, "Integrator", *this);
|
||||
}
|
||||
|
||||
@ -83,17 +80,18 @@ protected:
|
||||
|
||||
const ActionSet<Field, RepresentationPolicy> as;
|
||||
|
||||
void update_P(Field& U, int level, double ep) {
|
||||
void update_P(Field& U, int level, double ep)
|
||||
{
|
||||
t_P[level] += ep;
|
||||
update_P(P, U, level, ep);
|
||||
|
||||
std::cout << GridLogIntegrator << "[" << level << "] P "
|
||||
<< " dt " << ep << " : t_P " << t_P[level] << std::endl;
|
||||
std::cout << GridLogIntegrator << "[" << level << "] P " << " dt " << ep << " : t_P " << t_P[level] << std::endl;
|
||||
}
|
||||
|
||||
// to be used by the actionlevel class to iterate
|
||||
// over the representations
|
||||
struct _updateP {
|
||||
struct _updateP
|
||||
{
|
||||
template <class FieldType, class GF, class Repr>
|
||||
void operator()(std::vector<Action<FieldType>*> repr_set, Repr& Rep,
|
||||
GF& Mom, GF& U, double ep) {
|
||||
@ -104,7 +102,7 @@ protected:
|
||||
GF force = Rep.RtoFundamentalProject(forceR); // Ta for the fundamental rep
|
||||
Real force_abs = std::sqrt(norm2(force)/(U.Grid()->gSites()));
|
||||
std::cout << GridLogIntegrator << "Hirep Force average: " << force_abs << std::endl;
|
||||
Mom -= force * ep ;
|
||||
Mom -= force * ep* HMC_MOMENTUM_DENOMINATOR;;
|
||||
}
|
||||
}
|
||||
} update_P_hireps{};
|
||||
@ -128,18 +126,19 @@ protected:
|
||||
double end_force = usecond();
|
||||
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites());
|
||||
std::cout << GridLogIntegrator << "["<<level<<"]["<<a<<"] Force average: " << force_abs << std::endl;
|
||||
Mom -= force * ep;
|
||||
Mom -= force * ep* HMC_MOMENTUM_DENOMINATOR;;
|
||||
double end_full = usecond();
|
||||
double time_full = (end_full - start_full) / 1e3;
|
||||
double time_force = (end_force - start_force) / 1e3;
|
||||
std::cout << GridLogIntegrator << "["<<level<<"]["<<a<<"] P update elapsed time: " << time_full << " ms (force: " << time_force << " ms)" << std::endl;
|
||||
std::cout << GridLogMessage << "["<<level<<"]["<<a<<"] P update elapsed time: " << time_full << " ms (force: " << time_force << " ms)" << std::endl;
|
||||
}
|
||||
|
||||
// Force from the other representations
|
||||
as[level].apply(update_P_hireps, Representations, Mom, U, ep);
|
||||
}
|
||||
|
||||
void update_U(Field& U, double ep) {
|
||||
void update_U(Field& U, double ep)
|
||||
{
|
||||
update_U(P, U, ep);
|
||||
|
||||
t_U += ep;
|
||||
@ -147,7 +146,8 @@ protected:
|
||||
std::cout << GridLogIntegrator << " " << "[" << fl << "] U " << " dt " << ep << " : t_U " << t_U << std::endl;
|
||||
}
|
||||
|
||||
void update_U(MomentaField& Mom, Field& U, double ep) {
|
||||
void update_U(MomentaField& Mom, Field& U, double ep)
|
||||
{
|
||||
// exponential of Mom*U in the gauge fields case
|
||||
FieldImplementation::update_field(Mom, U, ep);
|
||||
|
||||
@ -169,7 +169,8 @@ public:
|
||||
P(grid),
|
||||
levels(Aset.size()),
|
||||
Smearer(Sm),
|
||||
Representations(grid) {
|
||||
Representations(grid)
|
||||
{
|
||||
t_P.resize(levels, 0.0);
|
||||
t_U = 0.0;
|
||||
// initialization of smearer delegated outside of Integrator
|
||||
@ -179,12 +180,14 @@ public:
|
||||
|
||||
virtual std::string integrator_name() = 0;
|
||||
|
||||
void print_parameters(){
|
||||
void print_parameters()
|
||||
{
|
||||
std::cout << GridLogMessage << "[Integrator] Name : "<< integrator_name() << std::endl;
|
||||
Params.print_parameters();
|
||||
}
|
||||
|
||||
void print_actions(){
|
||||
void print_actions()
|
||||
{
|
||||
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::" << std::endl;
|
||||
std::cout << GridLogMessage << "[Integrator] Action summary: "<<std::endl;
|
||||
for (int level = 0; level < as.size(); ++level) {
|
||||
@ -198,7 +201,8 @@ public:
|
||||
|
||||
}
|
||||
|
||||
void reverse_momenta(){
|
||||
void reverse_momenta()
|
||||
{
|
||||
P *= -1.0;
|
||||
}
|
||||
|
||||
@ -217,7 +221,8 @@ public:
|
||||
} refresh_hireps{};
|
||||
|
||||
// Initialization of momenta and actions
|
||||
void refresh(Field& U, GridParallelRNG& pRNG) {
|
||||
void refresh(Field& U, GridParallelRNG& pRNG)
|
||||
{
|
||||
assert(P.Grid() == U.Grid());
|
||||
std::cout << GridLogIntegrator << "Integrator refresh\n";
|
||||
|
||||
@ -237,8 +242,7 @@ public:
|
||||
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
|
||||
// get gauge field from the SmearingPolicy and
|
||||
// based on the boolean is_smeared in actionID
|
||||
Field& Us =
|
||||
Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
|
||||
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
|
||||
as[level].actions.at(actionID)->refresh(Us, pRNG);
|
||||
}
|
||||
|
||||
@ -251,13 +255,11 @@ public:
|
||||
// over the representations
|
||||
struct _S {
|
||||
template <class FieldType, class Repr>
|
||||
void operator()(std::vector<Action<FieldType>*> repr_set, Repr& Rep,
|
||||
int level, RealD& H) {
|
||||
void operator()(std::vector<Action<FieldType>*> repr_set, Repr& Rep, int level, RealD& H) {
|
||||
|
||||
for (int a = 0; a < repr_set.size(); ++a) {
|
||||
RealD Hterm = repr_set.at(a)->S(Rep.U);
|
||||
std::cout << GridLogMessage << "S Level " << level << " term " << a
|
||||
<< " H Hirep = " << Hterm << std::endl;
|
||||
std::cout << GridLogMessage << "S Level " << level << " term " << a << " H Hirep = " << Hterm << std::endl;
|
||||
H += Hterm;
|
||||
|
||||
}
|
||||
@ -265,22 +267,24 @@ public:
|
||||
} S_hireps{};
|
||||
|
||||
// Calculate action
|
||||
RealD S(Field& U) { // here also U not used
|
||||
RealD S(Field& U)
|
||||
{ // here also U not used
|
||||
|
||||
std::cout << GridLogIntegrator << "Integrator action\n";
|
||||
|
||||
RealD H = - FieldImplementation::FieldSquareNorm(P)/HMC_MOMENTUM_DENOMINATOR; // - trace (P*P)/denom
|
||||
|
||||
RealD H = - FieldImplementation::FieldSquareNorm(P); // - trace (P*P)
|
||||
RealD Hterm;
|
||||
std::cout << GridLogMessage << "Momentum action H_p = " << H << "\n";
|
||||
|
||||
// Actions
|
||||
for (int level = 0; level < as.size(); ++level) {
|
||||
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
|
||||
// get gauge field from the SmearingPolicy and
|
||||
// based on the boolean is_smeared in actionID
|
||||
Field& Us =
|
||||
Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
|
||||
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
|
||||
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] action eval " << std::endl;
|
||||
Hterm = as[level].actions.at(actionID)->S(Us);
|
||||
std::cout << GridLogMessage << "S Level " << level << " term "
|
||||
<< actionID << " H = " << Hterm << std::endl;
|
||||
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] H = " << Hterm << std::endl;
|
||||
H += Hterm;
|
||||
}
|
||||
as[level].apply(S_hireps, Representations, level, H);
|
||||
@ -289,7 +293,8 @@ public:
|
||||
return H;
|
||||
}
|
||||
|
||||
void integrate(Field& U) {
|
||||
void integrate(Field& U)
|
||||
{
|
||||
// reset the clocks
|
||||
t_U = 0;
|
||||
for (int level = 0; level < as.size(); ++level) {
|
||||
@ -305,8 +310,7 @@ public:
|
||||
// Check the clocks all match on all levels
|
||||
for (int level = 0; level < as.size(); ++level) {
|
||||
assert(fabs(t_U - t_P[level]) < 1.0e-6); // must be the same
|
||||
std::cout << GridLogIntegrator << " times[" << level
|
||||
<< "]= " << t_P[level] << " " << t_U << std::endl;
|
||||
std::cout << GridLogIntegrator << " times[" << level << "]= " << t_P[level] << " " << t_U << std::endl;
|
||||
}
|
||||
|
||||
// and that we indeed got to the end of the trajectory
|
||||
|
@ -26,15 +26,15 @@ with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
//--------------------------------------------------------------------
|
||||
/* END LEGAL */
|
||||
//--------------------------------------------------------------------
|
||||
|
||||
|
||||
/*! @file Integrator_algorithm.h
|
||||
* @brief Declaration of classes for the Molecular Dynamics algorithms
|
||||
*
|
||||
*/
|
||||
//--------------------------------------------------------------------
|
||||
/*! @file Integrator_algorithm.h
|
||||
* @brief Declaration of classes for the Molecular Dynamics algorithms
|
||||
*
|
||||
*/
|
||||
//--------------------------------------------------------------------
|
||||
|
||||
#ifndef INTEGRATOR_ALG_INCLUDED
|
||||
#define INTEGRATOR_ALG_INCLUDED
|
||||
@ -92,22 +92,17 @@ NAMESPACE_BEGIN(Grid);
|
||||
* P 1/2 P 1/2
|
||||
*/
|
||||
|
||||
template <class FieldImplementation, class SmearingPolicy,
|
||||
class RepresentationPolicy =
|
||||
Representations<FundamentalRepresentation> >
|
||||
class LeapFrog : public Integrator<FieldImplementation, SmearingPolicy,
|
||||
RepresentationPolicy> {
|
||||
template <class FieldImplementation, class SmearingPolicy, class RepresentationPolicy = Representations<FundamentalRepresentation> >
|
||||
class LeapFrog : public Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>
|
||||
{
|
||||
public:
|
||||
typedef LeapFrog<FieldImplementation, SmearingPolicy, RepresentationPolicy>
|
||||
Algorithm;
|
||||
typedef LeapFrog<FieldImplementation, SmearingPolicy, RepresentationPolicy> Algorithm;
|
||||
INHERIT_FIELD_TYPES(FieldImplementation);
|
||||
|
||||
std::string integrator_name(){return "LeapFrog";}
|
||||
|
||||
LeapFrog(GridBase* grid, IntegratorParameters Par,
|
||||
ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm)
|
||||
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(
|
||||
grid, Par, Aset, Sm){};
|
||||
LeapFrog(GridBase* grid, IntegratorParameters Par, ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm)
|
||||
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(grid, Par, Aset, Sm){};
|
||||
|
||||
void step(Field& U, int level, int _first, int _last) {
|
||||
int fl = this->as.size() - 1;
|
||||
@ -140,21 +135,17 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
template <class FieldImplementation, class SmearingPolicy,
|
||||
class RepresentationPolicy =
|
||||
Representations<FundamentalRepresentation> >
|
||||
class MinimumNorm2 : public Integrator<FieldImplementation, SmearingPolicy,
|
||||
RepresentationPolicy> {
|
||||
template <class FieldImplementation, class SmearingPolicy, class RepresentationPolicy = Representations<FundamentalRepresentation> >
|
||||
class MinimumNorm2 : public Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>
|
||||
{
|
||||
private:
|
||||
const RealD lambda = 0.1931833275037836;
|
||||
|
||||
public:
|
||||
INHERIT_FIELD_TYPES(FieldImplementation);
|
||||
|
||||
MinimumNorm2(GridBase* grid, IntegratorParameters Par,
|
||||
ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm)
|
||||
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(
|
||||
grid, Par, Aset, Sm){};
|
||||
MinimumNorm2(GridBase* grid, IntegratorParameters Par, ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm)
|
||||
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(grid, Par, Aset, Sm){};
|
||||
|
||||
std::string integrator_name(){return "MininumNorm2";}
|
||||
|
||||
@ -201,14 +192,11 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
template <class FieldImplementation, class SmearingPolicy,
|
||||
class RepresentationPolicy =
|
||||
Representations<FundamentalRepresentation> >
|
||||
class ForceGradient : public Integrator<FieldImplementation, SmearingPolicy,
|
||||
RepresentationPolicy> {
|
||||
template <class FieldImplementation, class SmearingPolicy, class RepresentationPolicy = Representations<FundamentalRepresentation> >
|
||||
class ForceGradient : public Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>
|
||||
{
|
||||
private:
|
||||
const RealD lambda = 1.0 / 6.0;
|
||||
;
|
||||
const RealD chi = 1.0 / 72.0;
|
||||
const RealD xi = 0.0;
|
||||
const RealD theta = 0.0;
|
||||
@ -230,8 +218,7 @@ public:
|
||||
Field Pfg(U.Grid());
|
||||
Ufg = U;
|
||||
Pfg = Zero();
|
||||
std::cout << GridLogIntegrator << "FG update " << fg_dt << " " << ep
|
||||
<< std::endl;
|
||||
std::cout << GridLogIntegrator << "FG update " << fg_dt << " " << ep << std::endl;
|
||||
// prepare_fg; no prediction/result cache for now
|
||||
// could relax CG stopping conditions for the
|
||||
// derivatives in the small step since the force gets multiplied by
|
||||
@ -270,8 +257,7 @@ public:
|
||||
this->step(U, level + 1, first_step, 0);
|
||||
}
|
||||
|
||||
this->FG_update_P(U, level, 2 * Chi / ((1.0 - 2.0 * lambda) * eps),
|
||||
(1.0 - 2.0 * lambda) * eps);
|
||||
this->FG_update_P(U, level, 2 * Chi / ((1.0 - 2.0 * lambda) * eps), (1.0 - 2.0 * lambda) * eps);
|
||||
|
||||
if (level == fl) { // lowest level
|
||||
this->update_U(U, 0.5 * eps);
|
||||
|
@ -10,6 +10,24 @@ const std::array<const Gamma, 4> Gamma::gmu = {{
|
||||
Gamma(Gamma::Algebra::GammaZ),
|
||||
Gamma(Gamma::Algebra::GammaT)}};
|
||||
|
||||
const std::array<const Gamma, 16> Gamma::gall = {{
|
||||
Gamma(Gamma::Algebra::Identity),
|
||||
Gamma(Gamma::Algebra::Gamma5),
|
||||
Gamma(Gamma::Algebra::GammaX),
|
||||
Gamma(Gamma::Algebra::GammaY),
|
||||
Gamma(Gamma::Algebra::GammaZ),
|
||||
Gamma(Gamma::Algebra::GammaT),
|
||||
Gamma(Gamma::Algebra::GammaXGamma5),
|
||||
Gamma(Gamma::Algebra::GammaYGamma5),
|
||||
Gamma(Gamma::Algebra::GammaZGamma5),
|
||||
Gamma(Gamma::Algebra::GammaTGamma5),
|
||||
Gamma(Gamma::Algebra::SigmaXT),
|
||||
Gamma(Gamma::Algebra::SigmaXY),
|
||||
Gamma(Gamma::Algebra::SigmaXZ),
|
||||
Gamma(Gamma::Algebra::SigmaYT),
|
||||
Gamma(Gamma::Algebra::SigmaYZ),
|
||||
Gamma(Gamma::Algebra::SigmaZT)}};
|
||||
|
||||
const std::array<const char *, Gamma::nGamma> Gamma::name = {{
|
||||
"-Gamma5 ",
|
||||
"Gamma5 ",
|
||||
|
@ -47,6 +47,7 @@ class Gamma {
|
||||
static const std::array<std::array<Algebra, nGamma>, nGamma> mul;
|
||||
static const std::array<Algebra, nGamma> adj;
|
||||
static const std::array<const Gamma, 4> gmu;
|
||||
static const std::array<const Gamma, 16> gall;
|
||||
Algebra g;
|
||||
public:
|
||||
accelerator Gamma(Algebra initg): g(initg) {}
|
||||
|
@ -10,10 +10,10 @@
|
||||
NotebookFileLineBreakTest
|
||||
NotebookFileLineBreakTest
|
||||
NotebookDataPosition[ 158, 7]
|
||||
NotebookDataLength[ 75090, 1956]
|
||||
NotebookOptionsPosition[ 69536, 1867]
|
||||
NotebookOutlinePosition[ 69898, 1883]
|
||||
CellTagsIndexPosition[ 69855, 1880]
|
||||
NotebookDataLength[ 67118, 1714]
|
||||
NotebookOptionsPosition[ 63485, 1652]
|
||||
NotebookOutlinePosition[ 63842, 1668]
|
||||
CellTagsIndexPosition[ 63799, 1665]
|
||||
WindowFrame->Normal*)
|
||||
|
||||
(* Beginning of Notebook Content *)
|
||||
@ -76,234 +76,6 @@ Cell[BoxData["\<\"/Users/antonin/Development/Grid/lib/qcd/spin/gamma-gen\"\>"]\
|
||||
|
||||
Cell[CellGroupData[{
|
||||
|
||||
Cell[BoxData[
|
||||
RowBox[{"FactorInteger", "[", "3152", "]"}]], "Input",
|
||||
CellChangeTimes->{{3.7432347536316767`*^9, 3.7432347764739027`*^9}, {
|
||||
3.743234833567358*^9,
|
||||
3.743234862146022*^9}},ExpressionUUID->"d1a0fd03-85e1-43af-ba80-\
|
||||
3ca4235675d8"],
|
||||
|
||||
Cell[BoxData[
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
RowBox[{"{",
|
||||
RowBox[{"2", ",", "4"}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{"197", ",", "1"}], "}"}]}], "}"}]], "Output",
|
||||
CellChangeTimes->{{3.743234836792224*^9,
|
||||
3.743234862493619*^9}},ExpressionUUID->"16d3f953-4b24-4ed2-ae62-\
|
||||
306dcab66ca7"]
|
||||
}, Open ]],
|
||||
|
||||
Cell[CellGroupData[{
|
||||
|
||||
Cell[BoxData[
|
||||
RowBox[{"sol", "=",
|
||||
RowBox[{"Solve", "[",
|
||||
RowBox[{
|
||||
RowBox[{
|
||||
RowBox[{
|
||||
SuperscriptBox["x", "2"], "+",
|
||||
SuperscriptBox["y", "2"], "+",
|
||||
SuperscriptBox["z", "2"]}], "\[Equal]", "2"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{"x", ",", "y", ",", "z"}], "}"}], ",", "Integers"}],
|
||||
"]"}]}]], "Input",
|
||||
CellChangeTimes->{{3.743235304127721*^9,
|
||||
3.7432353087929983`*^9}},ExpressionUUID->"f0fa2a5c-3d81-4d75-a447-\
|
||||
50c7ca3459ff"],
|
||||
|
||||
Cell[BoxData[
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
RowBox[{"x", "\[Rule]",
|
||||
RowBox[{"-", "1"}]}], ",",
|
||||
RowBox[{"y", "\[Rule]",
|
||||
RowBox[{"-", "1"}]}], ",",
|
||||
RowBox[{"z", "\[Rule]", "0"}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
RowBox[{"x", "\[Rule]",
|
||||
RowBox[{"-", "1"}]}], ",",
|
||||
RowBox[{"y", "\[Rule]", "0"}], ",",
|
||||
RowBox[{"z", "\[Rule]",
|
||||
RowBox[{"-", "1"}]}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
RowBox[{"x", "\[Rule]",
|
||||
RowBox[{"-", "1"}]}], ",",
|
||||
RowBox[{"y", "\[Rule]", "0"}], ",",
|
||||
RowBox[{"z", "\[Rule]", "1"}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
RowBox[{"x", "\[Rule]",
|
||||
RowBox[{"-", "1"}]}], ",",
|
||||
RowBox[{"y", "\[Rule]", "1"}], ",",
|
||||
RowBox[{"z", "\[Rule]", "0"}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
RowBox[{"x", "\[Rule]", "0"}], ",",
|
||||
RowBox[{"y", "\[Rule]",
|
||||
RowBox[{"-", "1"}]}], ",",
|
||||
RowBox[{"z", "\[Rule]",
|
||||
RowBox[{"-", "1"}]}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
RowBox[{"x", "\[Rule]", "0"}], ",",
|
||||
RowBox[{"y", "\[Rule]",
|
||||
RowBox[{"-", "1"}]}], ",",
|
||||
RowBox[{"z", "\[Rule]", "1"}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
RowBox[{"x", "\[Rule]", "0"}], ",",
|
||||
RowBox[{"y", "\[Rule]", "1"}], ",",
|
||||
RowBox[{"z", "\[Rule]",
|
||||
RowBox[{"-", "1"}]}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
RowBox[{"x", "\[Rule]", "0"}], ",",
|
||||
RowBox[{"y", "\[Rule]", "1"}], ",",
|
||||
RowBox[{"z", "\[Rule]", "1"}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
RowBox[{"x", "\[Rule]", "1"}], ",",
|
||||
RowBox[{"y", "\[Rule]",
|
||||
RowBox[{"-", "1"}]}], ",",
|
||||
RowBox[{"z", "\[Rule]", "0"}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
RowBox[{"x", "\[Rule]", "1"}], ",",
|
||||
RowBox[{"y", "\[Rule]", "0"}], ",",
|
||||
RowBox[{"z", "\[Rule]",
|
||||
RowBox[{"-", "1"}]}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
RowBox[{"x", "\[Rule]", "1"}], ",",
|
||||
RowBox[{"y", "\[Rule]", "0"}], ",",
|
||||
RowBox[{"z", "\[Rule]", "1"}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
RowBox[{"x", "\[Rule]", "1"}], ",",
|
||||
RowBox[{"y", "\[Rule]", "1"}], ",",
|
||||
RowBox[{"z", "\[Rule]", "0"}]}], "}"}]}], "}"}]], "Output",
|
||||
CellChangeTimes->{{3.743235305220907*^9,
|
||||
3.743235309139554*^9}},ExpressionUUID->"d9825c95-24bb-442a-8734-\
|
||||
4c0f47e99dfc"]
|
||||
}, Open ]],
|
||||
|
||||
Cell[BoxData[
|
||||
RowBox[{
|
||||
RowBox[{"xmlElem", "[", "x_", "]"}], ":=",
|
||||
RowBox[{"Print", "[",
|
||||
RowBox[{"\"\<<elem>\>\"", "<>",
|
||||
RowBox[{"ToString", "[",
|
||||
RowBox[{"x", "[",
|
||||
RowBox[{"[", "1", "]"}], "]"}], "]"}], "<>", "\"\< \>\"", "<>",
|
||||
RowBox[{"ToString", "[",
|
||||
RowBox[{"x", "[",
|
||||
RowBox[{"[", "2", "]"}], "]"}], "]"}], "<>", "\"\< \>\"", "<>",
|
||||
RowBox[{"ToString", "[",
|
||||
RowBox[{"x", "[",
|
||||
RowBox[{"[", "3", "]"}], "]"}], "]"}], "<>", "\"\<</elem>\>\""}],
|
||||
"]"}]}]], "Input",
|
||||
CellChangeTimes->{{3.74323534002862*^9, 3.743235351000985*^9}, {
|
||||
3.743235403233039*^9, 3.743235413488028*^9}, {3.743235473169856*^9,
|
||||
3.7432354747126904`*^9}},ExpressionUUID->"aea76313-c89e-45e8-b429-\
|
||||
3f454091666d"],
|
||||
|
||||
Cell[CellGroupData[{
|
||||
|
||||
Cell[BoxData[
|
||||
RowBox[{
|
||||
RowBox[{
|
||||
RowBox[{"xmlElem", "[",
|
||||
RowBox[{
|
||||
RowBox[{"{",
|
||||
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "/.", "#"}], "]"}], "&"}], "/@",
|
||||
"sol"}]], "Input",
|
||||
CellChangeTimes->{{3.743235415820318*^9,
|
||||
3.743235467025091*^9}},ExpressionUUID->"07da3998-8eab-40ba-8c0b-\
|
||||
ac6b130cb4fb"],
|
||||
|
||||
Cell[CellGroupData[{
|
||||
|
||||
Cell[BoxData["\<\"<elem>-1 -1 0</elem>\"\>"], "Print",
|
||||
CellChangeTimes->{
|
||||
3.743235476581676*^9},ExpressionUUID->"c577ba06-b67a-405a-9ff5-\
|
||||
2bf7dc898d03"],
|
||||
|
||||
Cell[BoxData["\<\"<elem>-1 0 -1</elem>\"\>"], "Print",
|
||||
CellChangeTimes->{
|
||||
3.743235476588011*^9},ExpressionUUID->"d041aa36-0cea-457c-9d4b-\
|
||||
1fe9be66e2ab"],
|
||||
|
||||
Cell[BoxData["\<\"<elem>-1 0 1</elem>\"\>"], "Print",
|
||||
CellChangeTimes->{
|
||||
3.743235476596887*^9},ExpressionUUID->"bf141b55-86b2-4430-a994-\
|
||||
5c03d5a19441"],
|
||||
|
||||
Cell[BoxData["\<\"<elem>-1 1 0</elem>\"\>"], "Print",
|
||||
CellChangeTimes->{
|
||||
3.743235476605785*^9},ExpressionUUID->"4968a660-4ecf-4b66-9071-\
|
||||
8bd798c18d21"],
|
||||
|
||||
Cell[BoxData["\<\"<elem>0 -1 -1</elem>\"\>"], "Print",
|
||||
CellChangeTimes->{
|
||||
3.743235476613523*^9},ExpressionUUID->"4e22d943-2680-416b-a1d7-\
|
||||
a16ca20b781f"],
|
||||
|
||||
Cell[BoxData["\<\"<elem>0 -1 1</elem>\"\>"], "Print",
|
||||
CellChangeTimes->{
|
||||
3.7432354766218576`*^9},ExpressionUUID->"6dd38385-08b3-4dd9-932f-\
|
||||
98a00c6db1b2"],
|
||||
|
||||
Cell[BoxData["\<\"<elem>0 1 -1</elem>\"\>"], "Print",
|
||||
CellChangeTimes->{
|
||||
3.743235476629427*^9},ExpressionUUID->"ef3baad3-91d1-4735-9a22-\
|
||||
53495a624c15"],
|
||||
|
||||
Cell[BoxData["\<\"<elem>0 1 1</elem>\"\>"], "Print",
|
||||
CellChangeTimes->{
|
||||
3.743235476638257*^9},ExpressionUUID->"413fbb68-5017-4272-a62a-\
|
||||
fa234e6daaea"],
|
||||
|
||||
Cell[BoxData["\<\"<elem>1 -1 0</elem>\"\>"], "Print",
|
||||
CellChangeTimes->{
|
||||
3.743235476646203*^9},ExpressionUUID->"3a832a60-ae00-414b-a9ac-\
|
||||
f5e86e67e917"],
|
||||
|
||||
Cell[BoxData["\<\"<elem>1 0 -1</elem>\"\>"], "Print",
|
||||
CellChangeTimes->{
|
||||
3.743235476653907*^9},ExpressionUUID->"bfc79ef6-f6c7-4f1e-88e8-\
|
||||
005ac314be9c"],
|
||||
|
||||
Cell[BoxData["\<\"<elem>1 0 1</elem>\"\>"], "Print",
|
||||
CellChangeTimes->{
|
||||
3.743235476662575*^9},ExpressionUUID->"0f892891-f885-489c-9925-\
|
||||
ddef4d698410"],
|
||||
|
||||
Cell[BoxData["\<\"<elem>1 1 0</elem>\"\>"], "Print",
|
||||
CellChangeTimes->{
|
||||
3.7432354766702337`*^9},ExpressionUUID->"2906f190-e673-4f33-9c34-\
|
||||
e8e56efe7a27"]
|
||||
}, Open ]],
|
||||
|
||||
Cell[BoxData[
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
"Null", ",", "Null", ",", "Null", ",", "Null", ",", "Null", ",", "Null",
|
||||
",", "Null", ",", "Null", ",", "Null", ",", "Null", ",", "Null", ",",
|
||||
"Null"}], "}"}]], "Output",
|
||||
CellChangeTimes->{
|
||||
3.7432354246225967`*^9, {3.7432354674878073`*^9,
|
||||
3.743235476678007*^9}},ExpressionUUID->"500ca3c1-88d8-46e5-a1a1-\
|
||||
86a7878e5638"]
|
||||
}, Open ]],
|
||||
|
||||
Cell[CellGroupData[{
|
||||
|
||||
Cell["Clifford algebra generation", "Section",
|
||||
CellChangeTimes->{{3.6942089434583883`*^9,
|
||||
3.694208978559093*^9}},ExpressionUUID->"a5b064b3-3011-4922-8559-\
|
||||
@ -1048,9 +820,10 @@ generated by the Mathematica notebook gamma-gen/gamma-gen.nb\n\n#include \
|
||||
"\"\< static const std::array<const char *, nGamma> \
|
||||
name;\n static const std::array<std::array<Algebra, nGamma>, nGamma> mul;\n\
|
||||
static const std::array<Algebra, nGamma> adj;\n \
|
||||
static const std::array<const Gamma, 4> gmu;\n \
|
||||
Algebra g;\n public:\n \
|
||||
Gamma(Algebra initg): g(initg) {} \n};\n\n\>\""}]}], ";",
|
||||
static const std::array<const Gamma, 4> gmu;\n static \
|
||||
const std::array<const Gamma, 16> gall;\n Algebra \
|
||||
g;\n public:\n \
|
||||
Gamma(Algebra initg): g(initg) {} \n};\n\n\>\""}]}], ";",
|
||||
"\[IndentingNewLine]",
|
||||
RowBox[{"out", " ", "=",
|
||||
RowBox[{"out", "<>", "funcCode"}]}], ";", "\[IndentingNewLine]",
|
||||
@ -1076,7 +849,8 @@ Algebra g;\n public:\n \
|
||||
3.694963343265525*^9}, {3.694964367519239*^9, 3.69496439461199*^9}, {
|
||||
3.694964462130747*^9, 3.6949644669959793`*^9}, 3.694964509762739*^9, {
|
||||
3.694964705045744*^9, 3.694964723148797*^9}, {3.694964992988984*^9,
|
||||
3.6949649968504257`*^9}},ExpressionUUID->"c7103bd6-b539-4495-b98c-\
|
||||
3.6949649968504257`*^9}, {3.758291687176977*^9,
|
||||
3.758291694181189*^9}},ExpressionUUID->"c7103bd6-b539-4495-b98c-\
|
||||
d4d12ac6cad8"],
|
||||
|
||||
Cell["Gamma enum generation:", "Text",
|
||||
@ -1745,8 +1519,17 @@ namespace QCD {\>\""}]}], ";", "\[IndentingNewLine]",
|
||||
"\"\<\n\nconst std::array<const Gamma, 4> Gamma::gmu = {{\n \
|
||||
Gamma(Gamma::Algebra::GammaX),\n Gamma(Gamma::Algebra::GammaY),\n \
|
||||
Gamma(Gamma::Algebra::GammaZ),\n Gamma(Gamma::Algebra::GammaT)}};\n\nconst \
|
||||
std::array<const char *, Gamma::nGamma> Gamma::name = {{\n\>\""}]}], ";",
|
||||
"\[IndentingNewLine]",
|
||||
std::array<const Gamma, 16> Gamma::gall = {{\n \
|
||||
Gamma(Gamma::Algebra::Identity),\n Gamma(Gamma::Algebra::Gamma5),\n \
|
||||
Gamma(Gamma::Algebra::GammaX),\n Gamma(Gamma::Algebra::GammaY),\n \
|
||||
Gamma(Gamma::Algebra::GammaZ),\n Gamma(Gamma::Algebra::GammaT),\n \
|
||||
Gamma(Gamma::Algebra::GammaXGamma5),\n Gamma(Gamma::Algebra::GammaYGamma5),\n\
|
||||
Gamma(Gamma::Algebra::GammaZGamma5),\n \
|
||||
Gamma(Gamma::Algebra::GammaTGamma5),\n Gamma(Gamma::Algebra::SigmaXT), \
|
||||
\n Gamma(Gamma::Algebra::SigmaXY), \n Gamma(Gamma::Algebra::SigmaXZ), \
|
||||
\n Gamma(Gamma::Algebra::SigmaYT),\n Gamma(Gamma::Algebra::SigmaYZ),\n \
|
||||
Gamma(Gamma::Algebra::SigmaZT)}};\n\nconst std::array<const char *, \
|
||||
Gamma::nGamma> Gamma::name = {{\n\>\""}]}], ";", "\[IndentingNewLine]",
|
||||
RowBox[{"Do", "[", "\[IndentingNewLine]",
|
||||
RowBox[{
|
||||
RowBox[{"out", " ", "=", " ",
|
||||
@ -1847,7 +1630,9 @@ Gamma::nGamma> Gamma::mul = {{\\n\>\""}]}], ";", "\[IndentingNewLine]",
|
||||
3.694963031525289*^9}, {3.694963065828494*^9, 3.694963098327538*^9}, {
|
||||
3.6949632020836153`*^9, 3.6949632715940027`*^9}, {3.694963440035037*^9,
|
||||
3.6949634418966017`*^9}, {3.6949651447067547`*^9, 3.694965161228381*^9}, {
|
||||
3.694967957845581*^9, 3.694967958364184*^9}}],
|
||||
3.694967957845581*^9, 3.694967958364184*^9}, {3.758291673792514*^9,
|
||||
3.758291676983432*^9}},ExpressionUUID->"b1b309f8-a3a7-4081-a781-\
|
||||
c3845e3cd372"],
|
||||
|
||||
Cell[BoxData[
|
||||
RowBox[{
|
||||
@ -1867,8 +1652,8 @@ Cell[BoxData[""], "Input",
|
||||
},
|
||||
WindowSize->{1246, 1005},
|
||||
WindowMargins->{{282, Automatic}, {Automatic, 14}},
|
||||
FrontEndVersion->"11.2 for Mac OS X x86 (32-bit, 64-bit Kernel) (September \
|
||||
10, 2017)",
|
||||
FrontEndVersion->"11.3 for Mac OS X x86 (32-bit, 64-bit Kernel) (March 5, \
|
||||
2018)",
|
||||
StyleDefinitions->"Default.nb"
|
||||
]
|
||||
(* End of Notebook Content *)
|
||||
@ -1888,75 +1673,48 @@ Cell[1948, 43, 570, 11, 73, "Input",ExpressionUUID->"5c937a3e-adfd-4d7e-8fde-afb
|
||||
Cell[2521, 56, 1172, 17, 34, "Output",ExpressionUUID->"72817ba6-2f6a-4a4d-8212-6f0970f49e7c"]
|
||||
}, Open ]],
|
||||
Cell[CellGroupData[{
|
||||
Cell[3730, 78, 248, 5, 30, "Input",ExpressionUUID->"d1a0fd03-85e1-43af-ba80-3ca4235675d8"],
|
||||
Cell[3981, 85, 299, 9, 34, "Output",ExpressionUUID->"16d3f953-4b24-4ed2-ae62-306dcab66ca7"]
|
||||
Cell[3730, 78, 174, 3, 67, "Section",ExpressionUUID->"a5b064b3-3011-4922-8559-ead857cad102"],
|
||||
Cell[3907, 83, 535, 16, 52, "Input",ExpressionUUID->"aa28f02b-31e1-4df2-9b5d-482177464b59"],
|
||||
Cell[4445, 101, 250, 4, 35, "Text",ExpressionUUID->"c8896b88-f1db-4ce4-b7a6-0c9838bdb8f1"],
|
||||
Cell[4698, 107, 5511, 169, 425, "Input",ExpressionUUID->"52a96ff6-047e-4043-86d0-e303866e5f8e"],
|
||||
Cell[CellGroupData[{
|
||||
Cell[10234, 280, 2183, 58, 135, "Input",ExpressionUUID->"8b0f4955-2c3f-418c-9226-9be8f87621e8"],
|
||||
Cell[12420, 340, 1027, 27, 56, "Output",ExpressionUUID->"edd0619f-6f12-4070-a1d2-6b547877fadc"]
|
||||
}, Open ]],
|
||||
Cell[CellGroupData[{
|
||||
Cell[4317, 99, 469, 14, 33, "Input",ExpressionUUID->"f0fa2a5c-3d81-4d75-a447-50c7ca3459ff"],
|
||||
Cell[4789, 115, 2423, 77, 56, "Output",ExpressionUUID->"d9825c95-24bb-442a-8734-4c0f47e99dfc"]
|
||||
Cell[13484, 372, 1543, 46, 114, "Input",ExpressionUUID->"fb45123c-c610-4075-99b0-7cd71c728ae7"],
|
||||
Cell[15030, 420, 1311, 32, 87, "Output",ExpressionUUID->"2ae14565-b412-4dc0-9dce-bd6c1ba5ef27"]
|
||||
}, Open ]],
|
||||
Cell[7227, 195, 751, 18, 30, "Input",ExpressionUUID->"aea76313-c89e-45e8-b429-3f454091666d"],
|
||||
Cell[16356, 455, 179, 3, 35, "Text",ExpressionUUID->"af247231-a58d-417b-987a-26908dafffdb"],
|
||||
Cell[16538, 460, 2175, 65, 94, "Input",ExpressionUUID->"7c44cadd-e488-4f51-87d8-c64eef11f40c"],
|
||||
Cell[18716, 527, 193, 3, 35, "Text",ExpressionUUID->"856f1746-1107-4509-a5ce-ac9c7f56cdb1"],
|
||||
Cell[CellGroupData[{
|
||||
Cell[8003, 217, 323, 10, 30, "Input",ExpressionUUID->"07da3998-8eab-40ba-8c0b-ac6b130cb4fb"],
|
||||
Cell[CellGroupData[{
|
||||
Cell[8351, 231, 156, 3, 24, "Print",ExpressionUUID->"c577ba06-b67a-405a-9ff5-2bf7dc898d03"],
|
||||
Cell[8510, 236, 156, 3, 24, "Print",ExpressionUUID->"d041aa36-0cea-457c-9d4b-1fe9be66e2ab"],
|
||||
Cell[8669, 241, 155, 3, 24, "Print",ExpressionUUID->"bf141b55-86b2-4430-a994-5c03d5a19441"],
|
||||
Cell[8827, 246, 155, 3, 24, "Print",ExpressionUUID->"4968a660-4ecf-4b66-9071-8bd798c18d21"],
|
||||
Cell[8985, 251, 156, 3, 24, "Print",ExpressionUUID->"4e22d943-2680-416b-a1d7-a16ca20b781f"],
|
||||
Cell[9144, 256, 157, 3, 24, "Print",ExpressionUUID->"6dd38385-08b3-4dd9-932f-98a00c6db1b2"],
|
||||
Cell[9304, 261, 155, 3, 24, "Print",ExpressionUUID->"ef3baad3-91d1-4735-9a22-53495a624c15"],
|
||||
Cell[9462, 266, 154, 3, 24, "Print",ExpressionUUID->"413fbb68-5017-4272-a62a-fa234e6daaea"],
|
||||
Cell[9619, 271, 155, 3, 24, "Print",ExpressionUUID->"3a832a60-ae00-414b-a9ac-f5e86e67e917"],
|
||||
Cell[9777, 276, 155, 3, 24, "Print",ExpressionUUID->"bfc79ef6-f6c7-4f1e-88e8-005ac314be9c"],
|
||||
Cell[9935, 281, 154, 3, 24, "Print",ExpressionUUID->"0f892891-f885-489c-9925-ddef4d698410"],
|
||||
Cell[10092, 286, 156, 3, 24, "Print",ExpressionUUID->"2906f190-e673-4f33-9c34-e8e56efe7a27"]
|
||||
}, Open ]],
|
||||
Cell[10263, 292, 376, 9, 34, "Output",ExpressionUUID->"500ca3c1-88d8-46e5-a1a1-86a7878e5638"]
|
||||
Cell[18934, 534, 536, 16, 30, "Input",ExpressionUUID->"8674484a-8543-434f-b177-3b27f9353212"],
|
||||
Cell[19473, 552, 1705, 35, 87, "Output",ExpressionUUID->"c3b3f84d-91f6-41af-af6b-a394ca020511"]
|
||||
}, Open ]],
|
||||
Cell[21193, 590, 170, 3, 35, "Text",ExpressionUUID->"518a3040-54b1-4d43-8947-5c7d12efa94d"],
|
||||
Cell[CellGroupData[{
|
||||
Cell[10676, 306, 174, 3, 67, "Section",ExpressionUUID->"a5b064b3-3011-4922-8559-ead857cad102"],
|
||||
Cell[10853, 311, 535, 16, 52, "Input",ExpressionUUID->"aa28f02b-31e1-4df2-9b5d-482177464b59"],
|
||||
Cell[11391, 329, 250, 4, 35, "Text",ExpressionUUID->"c8896b88-f1db-4ce4-b7a6-0c9838bdb8f1"],
|
||||
Cell[11644, 335, 5511, 169, 425, "Input",ExpressionUUID->"52a96ff6-047e-4043-86d0-e303866e5f8e"],
|
||||
Cell[CellGroupData[{
|
||||
Cell[17180, 508, 2183, 58, 135, "Input",ExpressionUUID->"8b0f4955-2c3f-418c-9226-9be8f87621e8"],
|
||||
Cell[19366, 568, 1027, 27, 67, "Output",ExpressionUUID->"edd0619f-6f12-4070-a1d2-6b547877fadc"]
|
||||
}, Open ]],
|
||||
Cell[CellGroupData[{
|
||||
Cell[20430, 600, 1543, 46, 114, "Input",ExpressionUUID->"fb45123c-c610-4075-99b0-7cd71c728ae7"],
|
||||
Cell[21976, 648, 1311, 32, 98, "Output",ExpressionUUID->"2ae14565-b412-4dc0-9dce-bd6c1ba5ef27"]
|
||||
}, Open ]],
|
||||
Cell[23302, 683, 179, 3, 35, "Text",ExpressionUUID->"af247231-a58d-417b-987a-26908dafffdb"],
|
||||
Cell[23484, 688, 2175, 65, 94, "Input",ExpressionUUID->"7c44cadd-e488-4f51-87d8-c64eef11f40c"],
|
||||
Cell[25662, 755, 193, 3, 35, "Text",ExpressionUUID->"856f1746-1107-4509-a5ce-ac9c7f56cdb1"],
|
||||
Cell[CellGroupData[{
|
||||
Cell[25880, 762, 536, 16, 30, "Input",ExpressionUUID->"8674484a-8543-434f-b177-3b27f9353212"],
|
||||
Cell[26419, 780, 1705, 35, 87, "Output",ExpressionUUID->"c3b3f84d-91f6-41af-af6b-a394ca020511"]
|
||||
}, Open ]],
|
||||
Cell[28139, 818, 170, 3, 35, "Text",ExpressionUUID->"518a3040-54b1-4d43-8947-5c7d12efa94d"],
|
||||
Cell[CellGroupData[{
|
||||
Cell[28334, 825, 536, 14, 30, "Input",ExpressionUUID->"61a2e974-2b39-4a07-8043-2dfd39a70569"],
|
||||
Cell[28873, 841, 6754, 167, 303, "Output",ExpressionUUID->"73480ac0-3043-4077-80cc-b952a94c822a"]
|
||||
Cell[21388, 597, 536, 14, 30, "Input",ExpressionUUID->"61a2e974-2b39-4a07-8043-2dfd39a70569"],
|
||||
Cell[21927, 613, 6754, 167, 303, "Output",ExpressionUUID->"73480ac0-3043-4077-80cc-b952a94c822a"]
|
||||
}, Open ]]
|
||||
}, Open ]],
|
||||
Cell[CellGroupData[{
|
||||
Cell[35676, 1014, 226, 4, 67, "Section",ExpressionUUID->"4e833cd6-9f0e-4aa3-a873-3d579e874720"],
|
||||
Cell[35905, 1020, 188, 4, 44, "Text",ExpressionUUID->"6d27fc04-3a60-4e03-8df7-3dd3aeee35b4"],
|
||||
Cell[36096, 1026, 2980, 53, 703, "Input",ExpressionUUID->"c7103bd6-b539-4495-b98c-d4d12ac6cad8"],
|
||||
Cell[39079, 1081, 221, 4, 44, "Text",ExpressionUUID->"0625593d-290f-4a39-9d80-8e2c6fdbc94e"],
|
||||
Cell[39303, 1087, 4936, 150, 682, "Input",ExpressionUUID->"1ad4904c-352f-4b1d-a7c7-91e1b0549409"],
|
||||
Cell[44242, 1239, 2645, 56, 199, "Input",ExpressionUUID->"0221674f-9b63-4662-91bc-ccc8c6ae9589"],
|
||||
Cell[46890, 1297, 209, 4, 44, "Text",ExpressionUUID->"d2d2257a-487b-416f-bc40-abd4482225f7"],
|
||||
Cell[47102, 1303, 15306, 397, 2131, "Input",ExpressionUUID->"daea68a9-c9e8-46ab-9bc8-5186e2cf477c"],
|
||||
Cell[62411, 1702, 137, 2, 44, "Text",ExpressionUUID->"76ba9d5a-7ee3-4888-be7e-6377003275e8"],
|
||||
Cell[62551, 1706, 521, 12, 30, "Input",ExpressionUUID->"4ec61f4c-3fd3-49ea-b5ef-6f7f04a16b34"]
|
||||
Cell[28730, 786, 226, 4, 67, "Section",ExpressionUUID->"4e833cd6-9f0e-4aa3-a873-3d579e874720"],
|
||||
Cell[28959, 792, 188, 4, 44, "Text",ExpressionUUID->"6d27fc04-3a60-4e03-8df7-3dd3aeee35b4"],
|
||||
Cell[29150, 798, 3104, 55, 724, "Input",ExpressionUUID->"c7103bd6-b539-4495-b98c-d4d12ac6cad8"],
|
||||
Cell[32257, 855, 221, 4, 44, "Text",ExpressionUUID->"0625593d-290f-4a39-9d80-8e2c6fdbc94e"],
|
||||
Cell[32481, 861, 4936, 150, 682, "Input",ExpressionUUID->"1ad4904c-352f-4b1d-a7c7-91e1b0549409"],
|
||||
Cell[37420, 1013, 2645, 56, 199, "Input",ExpressionUUID->"0221674f-9b63-4662-91bc-ccc8c6ae9589"],
|
||||
Cell[40068, 1071, 209, 4, 44, "Text",ExpressionUUID->"d2d2257a-487b-416f-bc40-abd4482225f7"],
|
||||
Cell[40280, 1077, 15306, 397, 2131, "Input",ExpressionUUID->"daea68a9-c9e8-46ab-9bc8-5186e2cf477c"],
|
||||
Cell[55589, 1476, 137, 2, 44, "Text",ExpressionUUID->"76ba9d5a-7ee3-4888-be7e-6377003275e8"],
|
||||
Cell[55729, 1480, 521, 12, 30, "Input",ExpressionUUID->"4ec61f4c-3fd3-49ea-b5ef-6f7f04a16b34"]
|
||||
}, Open ]],
|
||||
Cell[CellGroupData[{
|
||||
Cell[63109, 1723, 167, 2, 67, "Section",ExpressionUUID->"a4458b3a-09b5-4e36-a1fc-781d6702b2dc"],
|
||||
Cell[63279, 1727, 5693, 122, 829, "Input",ExpressionUUID->"b1b309f8-a3a7-4081-a781-c3845e3cd372"],
|
||||
Cell[68975, 1851, 448, 10, 30, "Input",ExpressionUUID->"cba42949-b0f2-42ce-aebd-ffadfd83ef88"],
|
||||
Cell[69426, 1863, 94, 1, 30, "Input",ExpressionUUID->"6175b72c-af9f-43c2-b4ca-bd84c48a456d"]
|
||||
Cell[56287, 1497, 167, 2, 67, "Section",ExpressionUUID->"a4458b3a-09b5-4e36-a1fc-781d6702b2dc"],
|
||||
Cell[56457, 1501, 6464, 133, 1207, "Input",ExpressionUUID->"b1b309f8-a3a7-4081-a781-c3845e3cd372"],
|
||||
Cell[62924, 1636, 448, 10, 30, "Input",ExpressionUUID->"cba42949-b0f2-42ce-aebd-ffadfd83ef88"],
|
||||
Cell[63375, 1648, 94, 1, 30, "Input",ExpressionUUID->"6175b72c-af9f-43c2-b4ca-bd84c48a456d"]
|
||||
}, Open ]]
|
||||
}
|
||||
]
|
||||
|
@ -995,21 +995,20 @@ void A2Autils<FImpl>::ContractWWVV(std::vector<PropagatorField> &WWVV,
|
||||
auto vs_v = vs[s].View();
|
||||
auto tmp1 = vs_v[ss];
|
||||
vobj tmp2 = Zero();
|
||||
|
||||
vobj tmp3 = Zero();
|
||||
for(int d=d_o;d<MIN(d_o+d_unroll,N_d);d++){
|
||||
Scalar_v coeff = WW_sd(t,s,d);
|
||||
auto vd_v = vd[d].View();
|
||||
mac(&tmp2 ,& coeff, & vd_v[ss]);
|
||||
Scalar_v coeff = WW_sd(t,s,d);
|
||||
tmp3 = conjugate(vd_v[ss]);
|
||||
mac(&tmp2, &coeff, &tmp3);
|
||||
}
|
||||
|
||||
//////////////////////////
|
||||
// Fast outer product of tmp1 with a sum of terms suppressed by d_unroll
|
||||
//////////////////////////
|
||||
tmp2 = conjugate(tmp2);
|
||||
auto WWVV_v = WWVV[t].View();
|
||||
for(int s1=0;s1<Ns;s1++){
|
||||
for(int s2=0;s2<Ns;s2++){
|
||||
|
||||
WWVV_v[ss]()(s1,s2)(0,0) += tmp1()(s1)(0)*tmp2()(s2)(0);
|
||||
WWVV_v[ss]()(s1,s2)(0,1) += tmp1()(s1)(0)*tmp2()(s2)(1);
|
||||
WWVV_v[ss]()(s1,s2)(0,2) += tmp1()(s1)(0)*tmp2()(s2)(2);
|
||||
|
87
Grid/qcd/utils/CovariantSmearing.h
Normal file
87
Grid/qcd/utils/CovariantSmearing.h
Normal file
@ -0,0 +1,87 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/scalar/CovariantLaplacian.h
|
||||
|
||||
Copyright (C) 2016
|
||||
|
||||
Author: Azusa Yamaguchi
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
#pragma once
|
||||
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
template <class Gimpl> class CovariantSmearing : public Gimpl
|
||||
{
|
||||
public:
|
||||
INHERIT_GIMPL_TYPES(Gimpl);
|
||||
|
||||
typedef typename Gimpl::GaugeLinkField GaugeMat;
|
||||
typedef typename Gimpl::GaugeField GaugeLorentz;
|
||||
|
||||
template<typename T>
|
||||
static void GaussianSmear(const std::vector<LatticeColourMatrix>& U,
|
||||
T& chi,
|
||||
const Real& width, int Iterations, int orthog)
|
||||
{
|
||||
GridBase *grid = chi._grid;
|
||||
T psi(grid);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// Follow Chroma conventions for width to keep compatibility with previous data
|
||||
// Free field iterates
|
||||
// chi = (1 - w^2/4N p^2)^N chi
|
||||
//
|
||||
// ~ (e^(-w^2/4N p^2)^N chi
|
||||
// ~ (e^(-w^2/4 p^2) chi
|
||||
// ~ (e^(-w'^2/2 p^2) chi [ w' = w/sqrt(2) ]
|
||||
//
|
||||
// Which in coordinate space is proportional to
|
||||
//
|
||||
// e^(-x^2/w^2) = e^(-x^2/2w'^2)
|
||||
//
|
||||
// The 4 is a bit unconventional from Gaussian width perspective, but... it's Chroma convention.
|
||||
// 2nd derivative approx d^2/dx^2 = x+mu + x-mu - 2x
|
||||
//
|
||||
// d^2/dx^2 = - p^2
|
||||
//
|
||||
// chi = ( 1 + w^2/4N d^2/dx^2 )^N chi
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
Real coeff = (width*width) / Real(4*Iterations);
|
||||
|
||||
int dims = Nd;
|
||||
if( orthog < Nd ) dims=Nd-1;
|
||||
|
||||
for(int n = 0; n < Iterations; ++n) {
|
||||
psi = (-2.0*dims)*chi;
|
||||
for(int mu=0;mu<Nd;mu++) {
|
||||
if ( mu != orthog ) {
|
||||
psi = psi + Gimpl::CovShiftForward(U[mu],mu,chi);
|
||||
psi = psi + Gimpl::CovShiftBackward(U[mu],mu,chi);
|
||||
}
|
||||
}
|
||||
chi = chi + coeff*psi;
|
||||
}
|
||||
}
|
||||
};
|
||||
}}
|
@ -31,6 +31,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
template <class Gimpl>
|
||||
class FourierAcceleratedGaugeFixer : public Gimpl {
|
||||
public:
|
||||
@ -45,30 +46,57 @@ public:
|
||||
A[mu] = Ta(U[mu]) * cmi;
|
||||
}
|
||||
}
|
||||
static void DmuAmu(const std::vector<GaugeMat> &A,GaugeMat &dmuAmu) {
|
||||
static void DmuAmu(const std::vector<GaugeMat> &A,GaugeMat &dmuAmu,int orthog) {
|
||||
dmuAmu=Zero();
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
dmuAmu = dmuAmu + A[mu] - Cshift(A[mu],mu,-1);
|
||||
if ( mu != orthog ) {
|
||||
dmuAmu = dmuAmu + A[mu] - Cshift(A[mu],mu,-1);
|
||||
}
|
||||
}
|
||||
}
|
||||
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false) {
|
||||
|
||||
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
|
||||
GridBase *grid = Umu.Grid();
|
||||
GaugeMat xform(grid);
|
||||
SteepestDescentGaugeFix(Umu,xform,alpha,maxiter,Omega_tol,Phi_tol,Fourier,orthog);
|
||||
}
|
||||
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,GaugeMat &xform,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
|
||||
|
||||
GridBase *grid = Umu.Grid();
|
||||
|
||||
Real org_plaq =WilsonLoops<Gimpl>::avgPlaquette(Umu);
|
||||
Real org_link_trace=WilsonLoops<Gimpl>::linkTrace(Umu);
|
||||
Real old_trace = org_link_trace;
|
||||
Real trG;
|
||||
|
||||
xform=1.0;
|
||||
|
||||
std::vector<GaugeMat> U(Nd,grid);
|
||||
GaugeMat dmuAmu(grid);
|
||||
|
||||
for(int i=0;i<maxiter;i++){
|
||||
for(int mu=0;mu<Nd;mu++) U[mu]= PeekIndex<LorentzIndex>(Umu,mu);
|
||||
if ( Fourier==false ) {
|
||||
trG = SteepestDescentStep(U,alpha,dmuAmu);
|
||||
{
|
||||
Real plaq =WilsonLoops<Gimpl>::avgPlaquette(Umu);
|
||||
Real link_trace=WilsonLoops<Gimpl>::linkTrace(Umu);
|
||||
if( (orthog>=0) && (orthog<Nd) ){
|
||||
std::cout << GridLogMessage << " Gauge fixing to Coulomb gauge time="<<orthog<< " plaq= "<<plaq<<" link trace = "<<link_trace<< std::endl;
|
||||
} else {
|
||||
trG = FourierAccelSteepestDescentStep(U,alpha,dmuAmu);
|
||||
std::cout << GridLogMessage << " Gauge fixing to Landau gauge plaq= "<<plaq<<" link trace = "<<link_trace<< std::endl;
|
||||
}
|
||||
}
|
||||
for(int i=0;i<maxiter;i++){
|
||||
|
||||
for(int mu=0;mu<Nd;mu++) U[mu]= PeekIndex<LorentzIndex>(Umu,mu);
|
||||
|
||||
if ( Fourier==false ) {
|
||||
trG = SteepestDescentStep(U,xform,alpha,dmuAmu,orthog);
|
||||
} else {
|
||||
trG = FourierAccelSteepestDescentStep(U,xform,alpha,dmuAmu,orthog);
|
||||
}
|
||||
|
||||
// std::cout << GridLogMessage << "trG "<< trG<< std::endl;
|
||||
// std::cout << GridLogMessage << "xform "<< norm2(xform)<< std::endl;
|
||||
// std::cout << GridLogMessage << "dmuAmu "<< norm2(dmuAmu)<< std::endl;
|
||||
|
||||
for(int mu=0;mu<Nd;mu++) PokeIndex<LorentzIndex>(Umu,U[mu],mu);
|
||||
// Monitor progress and convergence test
|
||||
// infrequently to minimise cost overhead
|
||||
@ -84,7 +112,6 @@ public:
|
||||
Real Phi = 1.0 - old_trace / link_trace ;
|
||||
Real Omega= 1.0 - trG;
|
||||
|
||||
|
||||
std::cout << GridLogMessage << " Iteration "<<i<< " Phi= "<<Phi<< " Omega= " << Omega<< " trG " << trG <<std::endl;
|
||||
if ( (Omega < Omega_tol) && ( ::fabs(Phi) < Phi_tol) ) {
|
||||
std::cout << GridLogMessage << "Converged ! "<<std::endl;
|
||||
@ -96,25 +123,26 @@ public:
|
||||
}
|
||||
}
|
||||
};
|
||||
static Real SteepestDescentStep(std::vector<GaugeMat> &U,Real & alpha, GaugeMat & dmuAmu) {
|
||||
static Real SteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) {
|
||||
GridBase *grid = U[0].Grid();
|
||||
|
||||
std::vector<GaugeMat> A(Nd,grid);
|
||||
GaugeMat g(grid);
|
||||
|
||||
GaugeLinkToLieAlgebraField(U,A);
|
||||
ExpiAlphaDmuAmu(A,g,alpha,dmuAmu);
|
||||
ExpiAlphaDmuAmu(A,g,alpha,dmuAmu,orthog);
|
||||
|
||||
|
||||
Real vol = grid->gSites();
|
||||
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
|
||||
|
||||
xform = g*xform ;
|
||||
SU<Nc>::GaugeTransform(U,g);
|
||||
|
||||
return trG;
|
||||
}
|
||||
|
||||
static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,Real & alpha, GaugeMat & dmuAmu) {
|
||||
static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) {
|
||||
|
||||
GridBase *grid = U[0].Grid();
|
||||
|
||||
@ -133,38 +161,41 @@ public:
|
||||
|
||||
GaugeLinkToLieAlgebraField(U,A);
|
||||
|
||||
DmuAmu(A,dmuAmu);
|
||||
DmuAmu(A,dmuAmu,orthog);
|
||||
|
||||
theFFT.FFT_all_dim(dmuAmu_p,dmuAmu,FFT::forward);
|
||||
std::vector<int> mask(Nd,1);
|
||||
for(int mu=0;mu<Nd;mu++) if (mu==orthog) mask[mu]=0;
|
||||
theFFT.FFT_dim_mask(dmuAmu_p,dmuAmu,mask,FFT::forward);
|
||||
|
||||
//////////////////////////////////
|
||||
// Work out Fp = psq_max/ psq...
|
||||
// Avoid singularities in Fp
|
||||
//////////////////////////////////
|
||||
Coordinate latt_size = grid->GlobalDimensions();
|
||||
Coordinate coor(grid->_ndimension,0);
|
||||
for(int mu=0;mu<Nd;mu++) {
|
||||
|
||||
Real TwoPiL = M_PI * 2.0/ latt_size[mu];
|
||||
LatticeCoordinate(pmu,mu);
|
||||
pmu = TwoPiL * pmu ;
|
||||
psq = psq + 4.0*sin(pmu*0.5)*sin(pmu*0.5);
|
||||
if ( mu != orthog ) {
|
||||
Real TwoPiL = M_PI * 2.0/ latt_size[mu];
|
||||
LatticeCoordinate(pmu,mu);
|
||||
pmu = TwoPiL * pmu ;
|
||||
psq = psq + 4.0*sin(pmu*0.5)*sin(pmu*0.5);
|
||||
}
|
||||
}
|
||||
|
||||
Complex psqMax(16.0);
|
||||
Fp = psqMax*one/psq;
|
||||
|
||||
/*
|
||||
static int once;
|
||||
if ( once == 0 ) {
|
||||
std::cout << " Fp " << Fp <<std::endl;
|
||||
once ++;
|
||||
}*/
|
||||
|
||||
pokeSite(TComplex(1.0),Fp,coor);
|
||||
|
||||
pokeSite(TComplex(16.0),Fp,coor);
|
||||
if( (orthog>=0) && (orthog<Nd) ){
|
||||
for(int t=0;t<grid->GlobalDimensions()[orthog];t++){
|
||||
coor[orthog]=t;
|
||||
pokeSite(TComplex(16.0),Fp,coor);
|
||||
}
|
||||
}
|
||||
|
||||
dmuAmu_p = dmuAmu_p * Fp;
|
||||
|
||||
theFFT.FFT_all_dim(dmuAmu,dmuAmu_p,FFT::backward);
|
||||
theFFT.FFT_dim_mask(dmuAmu,dmuAmu_p,mask,FFT::backward);
|
||||
|
||||
GaugeMat ciadmam(grid);
|
||||
Complex cialpha(0.0,-alpha);
|
||||
@ -173,16 +204,17 @@ public:
|
||||
|
||||
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
|
||||
|
||||
xform = g*xform ;
|
||||
SU<Nc>::GaugeTransform(U,g);
|
||||
|
||||
return trG;
|
||||
}
|
||||
|
||||
static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &A,GaugeMat &g,Real & alpha, GaugeMat &dmuAmu) {
|
||||
static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &A,GaugeMat &g,Real & alpha, GaugeMat &dmuAmu,int orthog) {
|
||||
GridBase *grid = g.Grid();
|
||||
Complex cialpha(0.0,-alpha);
|
||||
GaugeMat ciadmam(grid);
|
||||
DmuAmu(A,dmuAmu);
|
||||
DmuAmu(A,dmuAmu,orthog);
|
||||
ciadmam = dmuAmu*cialpha;
|
||||
SU<Nc>::taExp(ciadmam,g);
|
||||
}
|
||||
|
@ -678,9 +678,18 @@ public:
|
||||
out += la;
|
||||
}
|
||||
}
|
||||
/*
|
||||
add GaugeTrans
|
||||
*/
|
||||
/*
|
||||
* Fundamental rep gauge xform
|
||||
*/
|
||||
template<typename Fundamental,typename GaugeMat>
|
||||
static void GaugeTransformFundamental( Fundamental &ferm, GaugeMat &g){
|
||||
GridBase *grid = ferm._grid;
|
||||
conformable(grid,g._grid);
|
||||
ferm = g*ferm;
|
||||
}
|
||||
/*
|
||||
* Adjoint rep gauge xform
|
||||
*/
|
||||
|
||||
template<typename GaugeField,typename GaugeMat>
|
||||
static void GaugeTransform( GaugeField &Umu, GaugeMat &g){
|
||||
|
Reference in New Issue
Block a user