1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-19 08:17:05 +01:00

Merge branch 'develop' into feature/gpu-port

This commit is contained in:
Peter Boyle
2019-07-16 11:55:17 +01:00
274 changed files with 7120 additions and 4663 deletions

View File

@ -57,14 +57,15 @@ struct StaggeredImplParams {
StaggeredImplParams() {};
};
struct OneFlavourRationalParams : Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(OneFlavourRationalParams,
RealD, lo,
RealD, hi,
int, MaxIter,
RealD, tolerance,
int, degree,
int, precision);
struct OneFlavourRationalParams : Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(OneFlavourRationalParams,
RealD, lo,
RealD, hi,
int, MaxIter,
RealD, tolerance,
int, degree,
int, precision,
int, BoundsCheckFreq);
// MaxIter and tolerance, vectors??
@ -74,15 +75,17 @@ struct OneFlavourRationalParams : Serializable {
int _maxit = 1000,
RealD tol = 1.0e-8,
int _degree = 10,
int _precision = 64)
: lo(_lo),
hi(_hi),
MaxIter(_maxit),
tolerance(tol),
degree(_degree),
precision(_precision){};
};
int _precision = 64,
int _BoundsCheckFreq=20)
: lo(_lo),
hi(_hi),
MaxIter(_maxit),
tolerance(tol),
degree(_degree),
precision(_precision),
BoundsCheckFreq(_BoundsCheckFreq){};
};
NAMESPACE_END(Grid);
#endif

View File

@ -41,7 +41,7 @@ public:
INHERIT_IMPL_TYPES(Impl);
public:
void FreePropagator(const FermionField &in,FermionField &out,RealD mass, std::vector<double> twist, bool fiveD) {
void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary, std::vector<double> twist, bool fiveD) {
FermionField in_k(in.Grid());
FermionField prop_k(in.Grid());
@ -54,15 +54,19 @@ public:
typedef typename Simd::scalar_type Scalar;
Scalar ci(0.0,1.0);
assert(twist.size() == Nd);//check that twist is Nd
assert(boundary.size() == Nd);//check that boundary conditions is Nd
int shift = 0;
if(fiveD) shift = 1;
for(unsigned int nu = 0; nu < Nd; nu++)
{
// Shift coordinate lattice index by 1 to account for 5th dimension.
LatticeCoordinate(coor, nu + shift);
ph = ph + twist[nu]*coor*((1./(in.Grid()->FullDimensions()[nu+shift])));
double boundary_phase = ::acos(real(boundary[nu]));
ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu+shift])));
//momenta for propagator shifted by twist+boundary
twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI));
}
in_buf = exp(Scalar(2.0*M_PI)*ci*ph*(-1.0))*in;
in_buf = exp(ci*ph*(-1.0))*in;
if(fiveD){//FFT only on temporal and spatial dimensions
std::vector<int> mask(Nd+1,1); mask[0] = 0;
@ -75,26 +79,29 @@ public:
this->MomentumSpacePropagatorHt(prop_k,in_k,mass,twist);
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
}
//phase for boundary condition
out = out * exp(Scalar(2.0*M_PI)*ci*ph);
};
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<double> twist) {
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary,std::vector<double> twist) {
bool fiveD = true; //5d propagator by default
FreePropagator(in,out,mass,twist,fiveD);
FreePropagator(in,out,mass,boundary,twist,fiveD);
};
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass, bool fiveD) {
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
FreePropagator(in,out,mass,twist,fiveD);
std::vector<Complex> boundary;
for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions
FreePropagator(in,out,mass,boundary,twist,fiveD);
};
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
bool fiveD = true; //5d propagator by default
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
FreePropagator(in,out,mass,twist,fiveD);
};
std::vector<double> twist(Nd,0.0); //default: twist angle 0
std::vector<Complex> boundary;
for(int i=0;i<Nd;i++) boundary.push_back(1); //default: periodic boundary conditions
FreePropagator(in,out,mass,boundary,twist,fiveD);
};
virtual void Instantiatable(void) {};
// Constructors

View File

@ -93,7 +93,7 @@ public:
virtual void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) { assert(0);};
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<double> twist)
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary,std::vector<double> twist)
{
FFT theFFT((GridCartesian *) in.Grid());
@ -106,27 +106,35 @@ public:
ComplexField coor(in.Grid());
ComplexField ph(in.Grid()); ph = Zero();
FermionField in_buf(in.Grid()); in_buf = Zero();
Scalar ci(0.0,1.0);
assert(twist.size() == Nd);//check that twist is Nd
assert(boundary.size() == Nd);//check that boundary conditions is Nd
for(unsigned int nu = 0; nu < Nd; nu++)
{
LatticeCoordinate(coor, nu);
ph = ph + twist[nu]*coor*((1./(in.Grid()->_fdimensions[nu])));
double boundary_phase = ::acos(real(boundary[nu]));
ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu])));
//momenta for propagator shifted by twist+boundary
twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI));
}
in_buf = (exp(Scalar(2.0*M_PI)*ci*ph*(-1.0)))*in;
in_buf = exp(ci*ph*(-1.0))*in;
theFFT.FFT_all_dim(in_k,in_buf,FFT::forward);
this->MomentumSpacePropagator(prop_k,in_k,mass,twist);
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
//phase for boundary condition
out = out * exp(Scalar(2.0*M_PI)*ci*ph);
};
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
FreePropagator(in,out,mass,twist);
};
std::vector<Complex> boundary;
for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
FreePropagator(in,out,mass,boundary,twist);
};
///////////////////////////////////////////////
// Updates gauge field during HMC
@ -146,8 +154,14 @@ public:
Current curr_type,
unsigned int mu,
unsigned int tmin,
unsigned int tmax,
ComplexField &lattice_cmplx)=0;
unsigned int tmax,
ComplexField &lattice_cmplx)=0;
// Only reimplemented in Wilson5D
// Default to just a zero correlation function
virtual void ContractJ5q(FermionField &q_in ,ComplexField &J5q) { J5q=Zero(); };
virtual void ContractJ5q(PropagatorField &q_in,ComplexField &J5q) { J5q=Zero(); };
///////////////////////////////////////////////
// Physical field import/export
///////////////////////////////////////////////

View File

@ -63,6 +63,7 @@ public:
public:
typedef WilsonFermion<Impl> WilsonBase;
virtual int ConstEE(void) { return 0; };
virtual void Instantiatable(void){};
// Constructors
WilsonCloverFermion(GaugeField &_Umu, GridCartesian &Fgrid,

View File

@ -229,6 +229,10 @@ public:
unsigned int tmin,
unsigned int tmax,
ComplexField &lattice_cmplx);
void ContractJ5q(PropagatorField &q_in,ComplexField &J5q);
void ContractJ5q(FermionField &q_in,ComplexField &J5q);
};
NAMESPACE_END(Grid);

View File

@ -898,6 +898,79 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHw(FermionField &out,const Fe
merge(qSiteRev, qSiteVec); \
}
// psi = chiralProjectPlus(Result_s[Ls/2-1]);
// psi+= chiralProjectMinus(Result_s[Ls/2]);
// PJ5q+=localInnerProduct(psi,psi);
template<class vobj>
Lattice<vobj> spProj5p(const Lattice<vobj> & in)
{
GridBase *grid=in.Grid();
Gamma G5(Gamma::Algebra::Gamma5);
Lattice<vobj> ret(grid);
auto ret_v = ret.View();
auto in_v = in.View();
thread_for(ss,grid->oSites(),{
ret_v[ss] = in_v[ss] + G5*in_v[ss];
});
return ret;
}
template<class vobj>
Lattice<vobj> spProj5m(const Lattice<vobj> & in)
{
Gamma G5(Gamma::Algebra::Gamma5);
GridBase *grid=in.Grid();
Lattice<vobj> ret(grid);
auto ret_v = ret.View();
auto in_v = in.View();
thread_for(ss,grid->oSites(),{
ret_v[ss] = in_v[ss] - G5*in_v[ss];
});
return ret;
}
template <class Impl>
void WilsonFermion5D<Impl>::ContractJ5q(FermionField &q_in,ComplexField &J5q)
{
conformable(GaugeGrid(), J5q.Grid());
conformable(q_in.Grid(), FermionGrid());
// 4d field
int Ls = this->Ls;
FermionField psi(GaugeGrid());
FermionField p_plus (GaugeGrid());
FermionField p_minus(GaugeGrid());
FermionField p(GaugeGrid());
ExtractSlice(p_plus , q_in, Ls/2 , 0);
ExtractSlice(p_minus, q_in, Ls/2-1 , 0);
p_plus = spProj5p(p_plus );
p_minus= spProj5m(p_minus);
p=p_plus+p_minus;
J5q = localInnerProduct(p,p);
}
template <class Impl>
void WilsonFermion5D<Impl>::ContractJ5q(PropagatorField &q_in,ComplexField &J5q)
{
conformable(GaugeGrid(), J5q.Grid());
conformable(q_in.Grid(), FermionGrid());
// 4d field
int Ls = this->Ls;
PropagatorField psi(GaugeGrid());
PropagatorField p_plus (GaugeGrid());
PropagatorField p_minus(GaugeGrid());
PropagatorField p(GaugeGrid());
ExtractSlice(p_plus , q_in, Ls/2 , 0);
ExtractSlice(p_minus, q_in, Ls/2-1 , 0);
p_plus = spProj5p(p_plus );
p_minus= spProj5m(p_minus);
p=p_plus+p_minus;
J5q = localInnerProduct(p,p);
}
template <class Impl>
void WilsonFermion5D<Impl>::ContractConservedCurrent(PropagatorField &q_in_1,
PropagatorField &q_in_2,
@ -908,6 +981,7 @@ void WilsonFermion5D<Impl>::ContractConservedCurrent(PropagatorField &q_in_1,
conformable(q_in_1.Grid(), FermionGrid());
conformable(q_in_1.Grid(), q_in_2.Grid());
conformable(_FourDimGrid, q_out.Grid());
PropagatorField tmp1(FermionGrid()), tmp2(FermionGrid());
unsigned int LLs = q_in_1.Grid()->_rdimensions[0];
q_out = Zero();
@ -960,7 +1034,6 @@ void WilsonFermion5D<Impl>::ContractConservedCurrent(PropagatorField &q_in_1,
}
template <class Impl>
void WilsonFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
PropagatorField &q_out,

View File

@ -29,14 +29,24 @@ directory
#ifndef GRID_GAUGE_IMPL_TYPES_H
#define GRID_GAUGE_IMPL_TYPES_H
NAMESPACE_BEGIN(Grid);
#define CPS_MD_TIME
#ifdef CPS_MD_TIME
#define HMC_MOMENTUM_DENOMINATOR (2.0)
#else
#define HMC_MOMENTUM_DENOMINATOR (1.0)
#endif
////////////////////////////////////////////////////////////////////////
// Implementation dependent gauge types
////////////////////////////////////////////////////////////////////////
#define INHERIT_GIMPL_TYPES(GImpl) \
typedef typename GImpl::Simd Simd; \
typedef typename GImpl::Scalar Scalar; \
typedef typename GImpl::LinkField GaugeLinkField; \
typedef typename GImpl::Field GaugeField; \
typedef typename GImpl::ComplexField ComplexField;\
@ -54,7 +64,8 @@ NAMESPACE_BEGIN(Grid);
template <class S, int Nrepresentation = Nc, int Nexp = 12 > class GaugeImplTypes {
public:
typedef S Simd;
typedef typename Simd::scalar_type scalar_type;
typedef scalar_type Scalar;
template <typename vtype> using iImplScalar = iScalar<iScalar<iScalar<vtype> > >;
template <typename vtype> using iImplGaugeLink = iScalar<iScalar<iMatrix<vtype, Nrepresentation> > >;
template <typename vtype> using iImplGaugeField = iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nd>;
@ -85,12 +96,10 @@ public:
///////////////////////////////////////////////////////////
// Move these to another class
// HMC auxiliary functions
static inline void generate_momenta(Field &P, GridParallelRNG &pRNG) {
// specific for SU gauge fields
LinkField Pmu(P.Grid());
Pmu = Zero();
//
static inline void generate_momenta(Field &P, GridParallelRNG &pRNG)
{
// Zbigniew Srocinsky thesis:
//
// P(p) = N \Prod_{x\mu}e^-{1/2 Tr (p^2_mux)}
//
// p_x,mu = c_x,mu,a T_a
@ -101,26 +110,16 @@ public:
//
// = N \Prod_{x,\mu,a} e^-{1/2 (c_xmua/sqrt{2})^2 }
//
// Expect cx' = cxmua/sqrt(2) to be a unit variance gaussian.
//
// Expect cxmua_new variance sqrt(2).
// Was variance cxmua_old variance 1
//
// tau_old * Pold = 1 = tau_old/sqrt(2) * [Pold * sqrt(2)]
// = tau_new * Pnew
// Expect cxmua variance sqrt(2).
//
// Hence tau_new = tau_cps = tau_guido/sqrt(2).
// Must scale the momentum by sqrt(2) to invoke CPS and UKQCD conventions
//
//
// Must scale the momentum by sqrt(2) up to invoke CPS and UKQCD conventions
//
//
// Hence expect cxmua = cx'*sqrt(2).
//
// Seek the scale parameter to be
LinkField Pmu(P.Grid());
Pmu = Zero();
for (int mu = 0; mu < Nd; mu++) {
SU<Nrepresentation>::GaussianFundamentalLieAlgebraMatrix(pRNG, Pmu);
RealD scale = ::sqrt(2) ;
RealD scale = ::sqrt(HMC_MOMENTUM_DENOMINATOR) ;
Pmu = Pmu*scale;
PokeIndex<LorentzIndex>(P, Pmu, mu);
}

View File

@ -36,6 +36,7 @@ NAMESPACE_BEGIN(Grid);
{
public:
typedef S Simd;
typedef typename Simd::scalar_type Scalar;
template <typename vtype>
using iImplGaugeLink = iScalar<iScalar<iScalar<vtype>>>;

View File

@ -74,7 +74,7 @@ public:
virtual void deriv(const GaugeField &Umu,GaugeField & dSdU) {
//extend Ta to include Lorentz indexes
RealD factor_p = c_plaq/RealD(Nc)*0.5;
RealD factor_r = c_rect/RealD(Nc)*0.5;
RealD factor_r = c_rect/RealD(Nc)*0.5;
GridBase *grid = Umu.Grid();

View File

@ -0,0 +1,53 @@
#pragma once
namespace Grid{
namespace QCD{
template<class Field>
void HighBoundCheck(LinearOperatorBase<Field> &HermOp,
Field &Phi,
RealD hi)
{
// Eigenvalue bound check at high end
PowerMethod<Field> power_method;
auto lambda_max = power_method(HermOp,Phi);
std::cout << GridLogMessage << "Pseudofermion action lamda_max "<<lambda_max<<"( bound "<<hi<<")"<<std::endl;
assert( (lambda_max < hi) && " High Bounds Check on operator failed" );
}
template<class Field> void InverseSqrtBoundsCheck(int MaxIter,double tol,
LinearOperatorBase<Field> &HermOp,
Field &GaussNoise,
MultiShiftFunction &PowerNegHalf)
{
GridBase *FermionGrid = GaussNoise._grid;
Field X(FermionGrid);
Field Y(FermionGrid);
Field Z(FermionGrid);
X=GaussNoise;
RealD Nx = norm2(X);
ConjugateGradientMultiShift<Field> msCG(MaxIter,PowerNegHalf);
msCG(HermOp,X,Y);
msCG(HermOp,Y,Z);
RealD Nz = norm2(Z);
HermOp.HermOp(Z,Y);
RealD Ny = norm2(Y);
X=X-Y;
RealD Nd = norm2(X);
std::cout << "************************* "<<std::endl;
std::cout << " noise = "<<Nx<<std::endl;
std::cout << " (MdagM^-1/2)^2 noise = "<<Nz<<std::endl;
std::cout << " MdagM (MdagM^-1/2)^2 noise = "<<Ny<<std::endl;
std::cout << " noise - MdagM (MdagM^-1/2)^2 noise = "<<Nd<<std::endl;
std::cout << "************************* "<<std::endl;
assert( (std::sqrt(Nd/Nx)<tol) && " InverseSqrtBoundsCheck ");
}
}
}

View File

@ -25,240 +25,302 @@ with this program; if not, write to the Free Software Foundation, Inc.,
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
/* END LEGAL */
/////////////////////////////////////////////////////////////////
// Implementation of exact one flavour algorithm (EOFA) //
// using fermion classes defined in: //
// Grid/qcd/action/fermion/DomainWallEOFAFermion.h (Shamir) //
// Grid/qcd/action/fermion/MobiusEOFAFermion.h (Mobius) //
// arXiv: 1403.1683, 1706.05843 //
/////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
// Implementation of exact one flavour algorithm (EOFA) //
// using fermion classes defined in: //
// Grid/qcd/action/fermion/DomainWallEOFAFermion.h (Shamir) //
// Grid/qcd/action/fermion/MobiusEOFAFermion.h (Mobius) //
// arXiv: 1403.1683, 1706.05843 //
/////////////////////////////////////////////////////////////////
#ifndef QCD_PSEUDOFERMION_EXACT_ONE_FLAVOUR_RATIO_H
#define QCD_PSEUDOFERMION_EXACT_ONE_FLAVOUR_RATIO_H
NAMESPACE_BEGIN(Grid);
namespace Grid{
namespace QCD{
///////////////////////////////////////////////////////////////
// Exact one flavour implementation of DWF determinant ratio //
///////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////
// Exact one flavour implementation of DWF determinant ratio //
///////////////////////////////////////////////////////////////
template<class Impl>
class ExactOneFlavourRatioPseudoFermionAction : public Action<typename Impl::GaugeField>
{
public:
INHERIT_IMPL_TYPES(Impl);
typedef OneFlavourRationalParams Params;
Params param;
MultiShiftFunction PowerNegHalf;
private:
bool use_heatbath_forecasting;
AbstractEOFAFermion<Impl>& Lop; // the basic LH operator
AbstractEOFAFermion<Impl>& Rop; // the basic RH operator
SchurRedBlackDiagMooeeSolve<FermionField> Solver;
FermionField Phi; // the pseudofermion field for this trajectory
public:
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop, AbstractEOFAFermion<Impl>& _Rop,
OperatorFunction<FermionField>& S, Params& p, bool use_fc=false) : Lop(_Lop), Rop(_Rop), Solver(S),
Phi(_Lop.FermionGrid()), param(p), use_heatbath_forecasting(use_fc)
template<class Impl>
class ExactOneFlavourRatioPseudoFermionAction : public Action<typename Impl::GaugeField>
{
AlgRemez remez(param.lo, param.hi, param.precision);
public:
INHERIT_IMPL_TYPES(Impl);
typedef OneFlavourRationalParams Params;
Params param;
MultiShiftFunction PowerNegHalf;
// MdagM^(+- 1/2)
std::cout << GridLogMessage << "Generating degree " << param.degree << " for x^(-1/2)" << std::endl;
remez.generateApprox(param.degree, 1, 2);
PowerNegHalf.Init(remez, param.tolerance, true);
};
private:
bool use_heatbath_forecasting;
AbstractEOFAFermion<Impl>& Lop; // the basic LH operator
AbstractEOFAFermion<Impl>& Rop; // the basic RH operator
SchurRedBlackDiagMooeeSolve<FermionField> SolverHB;
SchurRedBlackDiagMooeeSolve<FermionField> SolverL;
SchurRedBlackDiagMooeeSolve<FermionField> SolverR;
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverL;
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverR;
FermionField Phi; // the pseudofermion field for this trajectory
virtual std::string action_name() { return "ExactOneFlavourRatioPseudoFermionAction"; }
public:
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
AbstractEOFAFermion<Impl>& _Rop,
OperatorFunction<FermionField>& HeatbathCG,
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
Params& p,
bool use_fc=false) :
Lop(_Lop),
Rop(_Rop),
SolverHB(HeatbathCG,false,true),
SolverL(ActionCGL, false, true), SolverR(ActionCGR, false, true),
DerivativeSolverL(DerivCGL, false, true), DerivativeSolverR(DerivCGR, false, true),
Phi(_Lop.FermionGrid()),
param(p),
use_heatbath_forecasting(use_fc)
{
AlgRemez remez(param.lo, param.hi, param.precision);
virtual std::string LogParameters() {
std::stringstream sstream;
sstream << GridLogMessage << "[" << action_name() << "] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] High :" << param.hi << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Tolerance :" << param.tolerance << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Degree :" << param.degree << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Precision :" << param.precision << std::endl;
return sstream.str();
}
// MdagM^(+- 1/2)
std::cout << GridLogMessage << "Generating degree " << param.degree << " for x^(-1/2)" << std::endl;
remez.generateApprox(param.degree, 1, 2);
PowerNegHalf.Init(remez, param.tolerance, true);
};
// Spin projection
void spProj(const FermionField& in, FermionField& out, int sign, int Ls)
{
if(sign == 1){ for(int s=0; s<Ls; ++s){ axpby_ssp_pplus(out, 0.0, in, 1.0, in, s, s); } }
else{ for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(out, 0.0, in, 1.0, in, s, s); } }
}
virtual std::string action_name() { return "ExactOneFlavourRatioPseudoFermionAction"; }
// EOFA heatbath: see Eqn. (29) of arXiv:1706.05843
// We generate a Gaussian noise vector \eta, and then compute
// \Phi = M_{\rm EOFA}^{-1/2} * \eta
// using a rational approximation to the inverse square root
virtual void refresh(const GaugeField& U, GridParallelRNG& pRNG)
{
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField eta (Lop.FermionGrid());
FermionField CG_src (Lop.FermionGrid());
FermionField CG_soln (Lop.FermionGrid());
FermionField Forecast_src(Lop.FermionGrid());
std::vector<FermionField> tmp(2, Lop.FermionGrid());
// Use chronological inverter to forecast solutions across poles
std::vector<FermionField> prev_solns;
if(use_heatbath_forecasting){ prev_solns.reserve(param.degree); }
ChronoForecast<AbstractEOFAFermion<Impl>, FermionField> Forecast;
// Seed with Gaussian noise vector (var = 0.5)
RealD scale = std::sqrt(0.5);
gaussian(pRNG,eta);
eta = eta * scale;
printf("Heatbath source vector: <\\eta|\\eta> = %1.15e\n", norm2(eta));
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
RealD N(PowerNegHalf.norm);
for(int k=0; k<param.degree; ++k){ N += PowerNegHalf.residues[k] / ( 1.0 + PowerNegHalf.poles[k] ); }
Phi = eta * N;
// LH terms:
// \Phi = \Phi + k \sum_{k=1}^{N_{p}} P_{-} \Omega_{-}^{\dagger} ( H(mf)
// - \gamma_{l} \Delta_{-}(mf,mb) P_{-} )^{-1} \Omega_{-} P_{-} \eta
RealD gamma_l(0.0);
spProj(eta, tmp[0], -1, Lop.Ls);
Lop.Omega(tmp[0], tmp[1], -1, 0);
G5R5(CG_src, tmp[1]);
tmp[1] = Zero();
for(int k=0; k<param.degree; ++k){
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
Lop.RefreshShiftCoefficients(-gamma_l);
if(use_heatbath_forecasting){ // Forecast CG guess using solutions from previous poles
Lop.Mdag(CG_src, Forecast_src);
CG_soln = Forecast(Lop, Forecast_src, prev_solns);
Solver(Lop, CG_src, CG_soln);
prev_solns.push_back(CG_soln);
} else {
CG_soln = Zero(); // Just use zero as the initial guess
Solver(Lop, CG_src, CG_soln);
virtual std::string LogParameters() {
std::stringstream sstream;
sstream << GridLogMessage << "[" << action_name() << "] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] High :" << param.hi << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Tolerance :" << param.tolerance << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Degree :" << param.degree << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Precision :" << param.precision << std::endl;
return sstream.str();
}
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = tmp[1] + ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Lop.k ) * tmp[0];
}
Lop.Omega(tmp[1], tmp[0], -1, 1);
spProj(tmp[0], tmp[1], -1, Lop.Ls);
Phi = Phi + tmp[1];
// RH terms:
// \Phi = \Phi - k \sum_{k=1}^{N_{p}} P_{+} \Omega_{+}^{\dagger} ( H(mb)
// + \gamma_{l} \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \eta
spProj(eta, tmp[0], 1, Rop.Ls);
Rop.Omega(tmp[0], tmp[1], 1, 0);
G5R5(CG_src, tmp[1]);
tmp[1] = Zero();
if(use_heatbath_forecasting){ prev_solns.clear(); } // empirically, LH solns don't help for RH solves
for(int k=0; k<param.degree; ++k){
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
Rop.RefreshShiftCoefficients(-gamma_l*PowerNegHalf.poles[k]);
if(use_heatbath_forecasting){
Rop.Mdag(CG_src, Forecast_src);
CG_soln = Forecast(Rop, Forecast_src, prev_solns);
Solver(Rop, CG_src, CG_soln);
prev_solns.push_back(CG_soln);
} else {
CG_soln = Zero();
Solver(Rop, CG_src, CG_soln);
// Spin projection
void spProj(const FermionField& in, FermionField& out, int sign, int Ls)
{
if(sign == 1){ for(int s=0; s<Ls; ++s){ axpby_ssp_pplus(out, 0.0, in, 1.0, in, s, s); } }
else{ for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(out, 0.0, in, 1.0, in, s, s); } }
}
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = tmp[1] - ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Rop.k ) * tmp[0];
}
Rop.Omega(tmp[1], tmp[0], 1, 1);
spProj(tmp[0], tmp[1], 1, Rop.Ls);
Phi = Phi + tmp[1];
// Reset shift coefficients for energy and force evals
Lop.RefreshShiftCoefficients(0.0);
Rop.RefreshShiftCoefficients(-1.0);
// EOFA heatbath: see Eqn. (29) of arXiv:1706.05843
// We generate a Gaussian noise vector \eta, and then compute
// \Phi = M_{\rm EOFA}^{-1/2} * \eta
// using a rational approximation to the inverse square root
//
// As a check of rational require \Phi^dag M_{EOFA} \Phi == eta^dag M^-1/2^dag M M^-1/2 eta = eta^dag eta
//
virtual void refresh(const GaugeField& U, GridParallelRNG& pRNG)
{
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField eta (Lop.FermionGrid());
FermionField CG_src (Lop.FermionGrid());
FermionField CG_soln (Lop.FermionGrid());
FermionField Forecast_src(Lop.FermionGrid());
std::vector<FermionField> tmp(2, Lop.FermionGrid());
// Use chronological inverter to forecast solutions across poles
std::vector<FermionField> prev_solns;
if(use_heatbath_forecasting){ prev_solns.reserve(param.degree); }
ChronoForecast<AbstractEOFAFermion<Impl>, FermionField> Forecast;
// Seed with Gaussian noise vector (var = 0.5)
RealD scale = std::sqrt(0.5);
gaussian(pRNG,eta);
eta = eta * scale;
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
RealD N(PowerNegHalf.norm);
for(int k=0; k<param.degree; ++k){ N += PowerNegHalf.residues[k] / ( 1.0 + PowerNegHalf.poles[k] ); }
Phi = eta * N;
// LH terms:
// \Phi = \Phi + k \sum_{k=1}^{N_{p}} P_{-} \Omega_{-}^{\dagger} ( H(mf)
// - \gamma_{l} \Delta_{-}(mf,mb) P_{-} )^{-1} \Omega_{-} P_{-} \eta
RealD gamma_l(0.0);
spProj(eta, tmp[0], -1, Lop.Ls);
Lop.Omega(tmp[0], tmp[1], -1, 0);
G5R5(CG_src, tmp[1]);
tmp[1] = zero;
for(int k=0; k<param.degree; ++k){
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
Lop.RefreshShiftCoefficients(-gamma_l);
if(use_heatbath_forecasting){ // Forecast CG guess using solutions from previous poles
Lop.Mdag(CG_src, Forecast_src);
CG_soln = Forecast(Lop, Forecast_src, prev_solns);
SolverHB(Lop, CG_src, CG_soln);
prev_solns.push_back(CG_soln);
} else {
CG_soln = zero; // Just use zero as the initial guess
SolverHB(Lop, CG_src, CG_soln);
}
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = tmp[1] + ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Lop.k ) * tmp[0];
}
Lop.Omega(tmp[1], tmp[0], -1, 1);
spProj(tmp[0], tmp[1], -1, Lop.Ls);
Phi = Phi + tmp[1];
// RH terms:
// \Phi = \Phi - k \sum_{k=1}^{N_{p}} P_{+} \Omega_{+}^{\dagger} ( H(mb)
// + \gamma_{l} \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \eta
spProj(eta, tmp[0], 1, Rop.Ls);
Rop.Omega(tmp[0], tmp[1], 1, 0);
G5R5(CG_src, tmp[1]);
tmp[1] = zero;
if(use_heatbath_forecasting){ prev_solns.clear(); } // empirically, LH solns don't help for RH solves
for(int k=0; k<param.degree; ++k){
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
Rop.RefreshShiftCoefficients(-gamma_l*PowerNegHalf.poles[k]);
if(use_heatbath_forecasting){
Rop.Mdag(CG_src, Forecast_src);
CG_soln = Forecast(Rop, Forecast_src, prev_solns);
SolverHB(Rop, CG_src, CG_soln);
prev_solns.push_back(CG_soln);
} else {
CG_soln = zero;
SolverHB(Rop, CG_src, CG_soln);
}
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = tmp[1] - ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Rop.k ) * tmp[0];
}
Rop.Omega(tmp[1], tmp[0], 1, 1);
spProj(tmp[0], tmp[1], 1, Rop.Ls);
Phi = Phi + tmp[1];
// Reset shift coefficients for energy and force evals
Lop.RefreshShiftCoefficients(0.0);
Rop.RefreshShiftCoefficients(-1.0);
// Bounds check
RealD EtaDagEta = norm2(eta);
// RealD PhiDagMPhi= norm2(eta);
};
void Meofa(const GaugeField& U,const FermionField &phi, FermionField & Mphi)
{
#if 0
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField spProj_Phi(Lop.FermionGrid());
FermionField mPhi(Lop.FermionGrid());
std::vector<FermionField> tmp(2, Lop.FermionGrid());
mPhi = phi;
// LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi>
spProj(Phi, spProj_Phi, -1, Lop.Ls);
Lop.Omega(spProj_Phi, tmp[0], -1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
SolverL(Lop, tmp[1], tmp[0]);
Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
Lop.Omega(tmp[1], tmp[0], -1, 1);
mPhi = mPhi - Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
spProj(Phi, spProj_Phi, 1, Rop.Ls);
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
SolverR(Rop, tmp[1], tmp[0]);
Rop.Dtilde(tmp[0], tmp[1]);
Rop.Omega(tmp[1], tmp[0], 1, 1);
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
#endif
}
// EOFA action: see Eqn. (10) of arXiv:1706.05843
virtual RealD S(const GaugeField& U)
{
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField spProj_Phi(Lop.FermionGrid());
std::vector<FermionField> tmp(2, Lop.FermionGrid());
// S = <\Phi|\Phi>
RealD action(norm2(Phi));
// LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi>
spProj(Phi, spProj_Phi, -1, Lop.Ls);
Lop.Omega(spProj_Phi, tmp[0], -1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
SolverL(Lop, tmp[1], tmp[0]);
Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
Lop.Omega(tmp[1], tmp[0], -1, 1);
action -= Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
spProj(Phi, spProj_Phi, 1, Rop.Ls);
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
SolverR(Rop, tmp[1], tmp[0]);
Rop.Dtilde(tmp[0], tmp[1]);
Rop.Omega(tmp[1], tmp[0], 1, 1);
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
return action;
};
// EOFA pseudofermion force: see Eqns. (34)-(36) of arXiv:1706.05843
virtual void deriv(const GaugeField& U, GaugeField& dSdU)
{
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField spProj_Phi (Lop.FermionGrid());
FermionField Omega_spProj_Phi(Lop.FermionGrid());
FermionField CG_src (Lop.FermionGrid());
FermionField Chi (Lop.FermionGrid());
FermionField g5_R5_Chi (Lop.FermionGrid());
GaugeField force(Lop.GaugeGrid());
/////////////////////////////////////////////
// PAB:
// Optional single precision derivative ?
/////////////////////////////////////////////
// LH: dSdU = k \chi_{L}^{\dagger} \gamma_{5} R_{5} ( \partial_{x,\mu} D_{w} ) \chi_{L}
// \chi_{L} = H(mf)^{-1} \Omega_{-} P_{-} \Phi
spProj(Phi, spProj_Phi, -1, Lop.Ls);
Lop.Omega(spProj_Phi, Omega_spProj_Phi, -1, 0);
G5R5(CG_src, Omega_spProj_Phi);
spProj_Phi = zero;
DerivativeSolverL(Lop, CG_src, spProj_Phi);
Lop.Dtilde(spProj_Phi, Chi);
G5R5(g5_R5_Chi, Chi);
Lop.MDeriv(force, g5_R5_Chi, Chi, DaggerNo);
dSdU = -Lop.k * force;
// RH: dSdU = dSdU - k \chi_{R}^{\dagger} \gamma_{5} R_{5} ( \partial_{x,\mu} D_{w} ) \chi_{}
// \chi_{R} = ( H(mb) - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \Phi
spProj(Phi, spProj_Phi, 1, Rop.Ls);
Rop.Omega(spProj_Phi, Omega_spProj_Phi, 1, 0);
G5R5(CG_src, Omega_spProj_Phi);
spProj_Phi = zero;
DerivativeSolverR(Rop, CG_src, spProj_Phi);
Rop.Dtilde(spProj_Phi, Chi);
G5R5(g5_R5_Chi, Chi);
Lop.MDeriv(force, g5_R5_Chi, Chi, DaggerNo);
dSdU = dSdU + Rop.k * force;
};
};
// EOFA action: see Eqn. (10) of arXiv:1706.05843
virtual RealD S(const GaugeField& U)
{
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField spProj_Phi(Lop.FermionGrid());
std::vector<FermionField> tmp(2, Lop.FermionGrid());
// S = <\Phi|\Phi>
RealD action(norm2(Phi));
// LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi>
spProj(Phi, spProj_Phi, -1, Lop.Ls);
Lop.Omega(spProj_Phi, tmp[0], -1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = Zero();
Solver(Lop, tmp[1], tmp[0]);
Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
Lop.Omega(tmp[1], tmp[0], -1, 1);
action -= Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
spProj(Phi, spProj_Phi, 1, Rop.Ls);
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = Zero();
Solver(Rop, tmp[1], tmp[0]);
Rop.Dtilde(tmp[0], tmp[1]);
Rop.Omega(tmp[1], tmp[0], 1, 1);
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
return action;
};
// EOFA pseudofermion force: see Eqns. (34)-(36) of arXiv:1706.05843
virtual void deriv(const GaugeField& U, GaugeField& dSdU)
{
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField spProj_Phi (Lop.FermionGrid());
FermionField Omega_spProj_Phi(Lop.FermionGrid());
FermionField CG_src (Lop.FermionGrid());
FermionField Chi (Lop.FermionGrid());
FermionField g5_R5_Chi (Lop.FermionGrid());
GaugeField force(Lop.GaugeGrid());
// LH: dSdU = k \chi_{L}^{\dagger} \gamma_{5} R_{5} ( \partial_{x,\mu} D_{w} ) \chi_{L}
// \chi_{L} = H(mf)^{-1} \Omega_{-} P_{-} \Phi
spProj(Phi, spProj_Phi, -1, Lop.Ls);
Lop.Omega(spProj_Phi, Omega_spProj_Phi, -1, 0);
G5R5(CG_src, Omega_spProj_Phi);
spProj_Phi = Zero();
Solver(Lop, CG_src, spProj_Phi);
Lop.Dtilde(spProj_Phi, Chi);
G5R5(g5_R5_Chi, Chi);
Lop.MDeriv(force, g5_R5_Chi, Chi, DaggerNo);
dSdU = Lop.k * force;
// RH: dSdU = dSdU - k \chi_{R}^{\dagger} \gamma_{5} R_{5} ( \partial_{x,\mu} D_{w} ) \chi_{}
// \chi_{R} = ( H(mb) - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \Phi
spProj(Phi, spProj_Phi, 1, Rop.Ls);
Rop.Omega(spProj_Phi, Omega_spProj_Phi, 1, 0);
G5R5(CG_src, Omega_spProj_Phi);
spProj_Phi = Zero();
Solver(Rop, CG_src, spProj_Phi);
Rop.Dtilde(spProj_Phi, Chi);
G5R5(g5_R5_Chi, Chi);
Lop.MDeriv(force, g5_R5_Chi, Chi, DaggerNo);
dSdU = dSdU - Rop.k * force;
};
};
NAMESPACE_END(Grid);
}}
#endif

View File

@ -156,6 +156,13 @@ public:
msCG(Mpc, PhiOdd, Y);
if ( (rand()%param.BoundsCheckFreq)==0 ) {
FermionField gauss(FermOp.FermionRedBlackGrid());
gauss = PhiOdd;
HighBoundCheck(Mpc,gauss,param.hi);
InverseSqrtBoundsCheck(param.MaxIter,param.tolerance*100,Mpc,gauss,PowerNegHalf);
}
RealD action = norm2(Y);
std::cout << GridLogMessage << "Pseudofermion action FIXME -- is -1/4 "
"solve or -1/2 solve faster??? "

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -23,257 +23,267 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_RATIO_H
#define QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_RATIO_H
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////
// One flavour rational
///////////////////////////////////////
namespace Grid{
namespace QCD{
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// Here P/Q \sim R_{1/4} ~ (V^dagV)^{1/4}
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
template<class Impl>
class OneFlavourEvenOddRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
typedef OneFlavourRationalParams Params;
Params param;
MultiShiftFunction PowerHalf ;
MultiShiftFunction PowerNegHalf;
MultiShiftFunction PowerQuarter;
MultiShiftFunction PowerNegQuarter;
private:
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
FermionField PhiEven; // the pseudo fermion field for this trajectory
FermionField PhiOdd; // the pseudo fermion field for this trajectory
public:
OneFlavourEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
Params & p
) :
NumOp(_NumOp),
DenOp(_DenOp),
PhiOdd (_NumOp.FermionRedBlackGrid()),
PhiEven(_NumOp.FermionRedBlackGrid()),
param(p)
{
AlgRemez remez(param.lo,param.hi,param.precision);
// MdagM^(+- 1/2)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
remez.generateApprox(param.degree,1,2);
PowerHalf.Init(remez,param.tolerance,false);
PowerNegHalf.Init(remez,param.tolerance,true);
// MdagM^(+- 1/4)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
remez.generateApprox(param.degree,1,4);
PowerQuarter.Init(remez,param.tolerance,false);
PowerNegQuarter.Init(remez,param.tolerance,true);
};
virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
///////////////////////////////////////
// One flavour rational
///////////////////////////////////////
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// P(phi) = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/2 (VdagV)^1/4 phi}
// = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/4 (MdagM)^-1/4 (VdagV)^1/4 phi}
//
// Phi = (VdagV)^-1/4 Mdag^{1/4} eta
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2).
// Here P/Q \sim R_{1/4} ~ (V^dagV)^{1/4}
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
template<class Impl>
class OneFlavourEvenOddRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
RealD scale = std::sqrt(0.5);
INHERIT_IMPL_TYPES(Impl);
FermionField eta(NumOp.FermionGrid());
FermionField etaOdd (NumOp.FermionRedBlackGrid());
FermionField etaEven(NumOp.FermionRedBlackGrid());
FermionField tmp(NumOp.FermionRedBlackGrid());
typedef OneFlavourRationalParams Params;
Params param;
gaussian(pRNG,eta); eta=eta*scale;
MultiShiftFunction PowerHalf ;
MultiShiftFunction PowerNegHalf;
MultiShiftFunction PowerQuarter;
MultiShiftFunction PowerNegQuarter;
pickCheckerboard(Even,etaEven,eta);
pickCheckerboard(Odd,etaOdd,eta);
private:
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
FermionField PhiEven; // the pseudo fermion field for this trajectory
FermionField PhiOdd; // the pseudo fermion field for this trajectory
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
public:
OneFlavourEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
Params & p
) :
NumOp(_NumOp),
DenOp(_DenOp),
PhiOdd (_NumOp.FermionRedBlackGrid()),
PhiEven(_NumOp.FermionRedBlackGrid()),
param(p)
{
AlgRemez remez(param.lo,param.hi,param.precision);
// MdagM^(+- 1/2)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
remez.generateApprox(param.degree,1,2);
PowerHalf.Init(remez,param.tolerance,false);
PowerNegHalf.Init(remez,param.tolerance,true);
// MdagM^(+- 1/4)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
remez.generateApprox(param.degree,1,4);
PowerQuarter.Init(remez,param.tolerance,false);
PowerNegQuarter.Init(remez,param.tolerance,true);
};
virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// P(phi) = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/2 (VdagV)^1/4 phi}
// = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/4 (MdagM)^-1/4 (VdagV)^1/4 phi}
//
// Phi = (VdagV)^-1/4 Mdag^{1/4} eta
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2).
RealD scale = std::sqrt(0.5);
FermionField eta(NumOp.FermionGrid());
FermionField etaOdd (NumOp.FermionRedBlackGrid());
FermionField etaEven(NumOp.FermionRedBlackGrid());
FermionField tmp(NumOp.FermionRedBlackGrid());
gaussian(pRNG,eta); eta=eta*scale;
pickCheckerboard(Even,etaEven,eta);
pickCheckerboard(Odd,etaOdd,eta);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
// MdagM^1/4 eta
SchurDifferentiableOperator<Impl> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerQuarter);
msCG_M(MdagM,etaOdd,tmp);
// MdagM^1/4 eta
SchurDifferentiableOperator<Impl> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerQuarter);
msCG_M(MdagM,etaOdd,tmp);
// VdagV^-1/4 MdagM^1/4 eta
SchurDifferentiableOperator<Impl> VdagV(NumOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerNegQuarter);
msCG_V(VdagV,tmp,PhiOdd);
// VdagV^-1/4 MdagM^1/4 eta
SchurDifferentiableOperator<Impl> VdagV(NumOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerNegQuarter);
msCG_V(VdagV,tmp,PhiOdd);
assert(NumOp.ConstEE() == 1);
assert(DenOp.ConstEE() == 1);
PhiEven = Zero();
assert(NumOp.ConstEE() == 1);
assert(DenOp.ConstEE() == 1);
PhiEven = zero;
};
};
//////////////////////////////////////////////////////
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
//////////////////////////////////////////////////////
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
FermionField X(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
FermionField X(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
// VdagV^1/4 Phi
SchurDifferentiableOperator<Impl> VdagV(NumOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
msCG_V(VdagV,PhiOdd,X);
// VdagV^1/4 Phi
SchurDifferentiableOperator<Impl> VdagV(NumOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
msCG_V(VdagV,PhiOdd,X);
// MdagM^-1/4 VdagV^1/4 Phi
SchurDifferentiableOperator<Impl> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegQuarter);
msCG_M(MdagM,X,Y);
// MdagM^-1/4 VdagV^1/4 Phi
SchurDifferentiableOperator<Impl> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegQuarter);
msCG_M(MdagM,X,Y);
// Phidag VdagV^1/4 MdagM^-1/4 MdagM^-1/4 VdagV^1/4 Phi
RealD action = norm2(Y);
// Randomly apply rational bounds checks.
if ( (rand()%param.BoundsCheckFreq)==0 ) {
FermionField gauss(NumOp.FermionRedBlackGrid());
gauss = PhiOdd;
HighBoundCheck(MdagM,gauss,param.hi);
InverseSqrtBoundsCheck(param.MaxIter,param.tolerance*100,MdagM,gauss,PowerNegHalf);
}
return action;
};
// Phidag VdagV^1/4 MdagM^-1/4 MdagM^-1/4 VdagV^1/4 Phi
RealD action = norm2(Y);
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// Here, M is some 5D operator and V is the Pauli-Villars field
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
//
// Need
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
// + chi^dag P/Q d[N/D] P/Q chi
// + chi^dag P/Q N/D d[P/Q] chi
//
// P/Q is expressed as partial fraction expansion:
//
// a0 + \sum_k ak/(V^dagV + bk)
//
// d[P/Q] is then
//
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
//
// and similar for N/D.
//
// Need
// MpvPhi_k = [Vdag V + bk]^{-1} chi
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
//
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
//
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
//
return action;
};
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// Here, M is some 5D operator and V is the Pauli-Villars field
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
//
// Need
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
// + chi^dag P/Q d[N/D] P/Q chi
// + chi^dag P/Q N/D d[P/Q] chi
//
// P/Q is expressed as partial fraction expansion:
//
// a0 + \sum_k ak/(V^dagV + bk)
//
// d[P/Q] is then
//
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
//
// and similar for N/D.
//
// Need
// MpvPhi_k = [Vdag V + bk]^{-1} chi
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
//
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
//
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
//
const int n_f = PowerNegHalf.poles.size();
const int n_pv = PowerQuarter.poles.size();
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionRedBlackGrid());
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid());
std::vector<FermionField> MfMpvPhi_k (n_f ,NumOp.FermionRedBlackGrid());
const int n_f = PowerNegHalf.poles.size();
const int n_pv = PowerQuarter.poles.size();
FermionField MpvPhi(NumOp.FermionRedBlackGrid());
FermionField MfMpvPhi(NumOp.FermionRedBlackGrid());
FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionRedBlackGrid());
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid());
std::vector<FermionField> MfMpvPhi_k (n_f ,NumOp.FermionRedBlackGrid());
GaugeField tmp(NumOp.GaugeGrid());
FermionField MpvPhi(NumOp.FermionRedBlackGrid());
FermionField MfMpvPhi(NumOp.FermionRedBlackGrid());
FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
GaugeField tmp(NumOp.GaugeGrid());
SchurDifferentiableOperator<Impl> VdagV(NumOp);
SchurDifferentiableOperator<Impl> MdagM(DenOp);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegHalf);
SchurDifferentiableOperator<Impl> VdagV(NumOp);
SchurDifferentiableOperator<Impl> MdagM(DenOp);
msCG_V(VdagV,PhiOdd,MpvPhi_k,MpvPhi);
msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
msCG_V(VdagV,MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegHalf);
RealD ak;
msCG_V(VdagV,PhiOdd,MpvPhi_k,MpvPhi);
msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
msCG_V(VdagV,MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
dSdU = Zero();
RealD ak;
// With these building blocks
//
// dS/dU =
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
dSdU = zero;
//(1)
for(int k=0;k<n_f;k++){
ak = PowerNegHalf.residues[k];
MdagM.Mpc(MfMpvPhi_k[k],Y);
MdagM.MpcDagDeriv(tmp , MfMpvPhi_k[k], Y ); dSdU=dSdU+ak*tmp;
MdagM.MpcDeriv(tmp , Y, MfMpvPhi_k[k] ); dSdU=dSdU+ak*tmp;
}
// With these building blocks
//
// dS/dU =
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
//(1)
for(int k=0;k<n_f;k++){
ak = PowerNegHalf.residues[k];
MdagM.Mpc(MfMpvPhi_k[k],Y);
MdagM.MpcDagDeriv(tmp , MfMpvPhi_k[k], Y ); dSdU=dSdU+ak*tmp;
MdagM.MpcDeriv(tmp , Y, MfMpvPhi_k[k] ); dSdU=dSdU+ak*tmp;
}
//(2)
//(3)
for(int k=0;k<n_pv;k++){
//(2)
//(3)
for(int k=0;k<n_pv;k++){
ak = PowerQuarter.residues[k];
ak = PowerQuarter.residues[k];
VdagV.Mpc(MpvPhi_k[k],Y);
VdagV.MpcDagDeriv(tmp,MpvMfMpvPhi_k[k],Y); dSdU=dSdU+ak*tmp;
VdagV.MpcDeriv (tmp,Y,MpvMfMpvPhi_k[k]); dSdU=dSdU+ak*tmp;
VdagV.Mpc(MpvPhi_k[k],Y);
VdagV.MpcDagDeriv(tmp,MpvMfMpvPhi_k[k],Y); dSdU=dSdU+ak*tmp;
VdagV.MpcDeriv (tmp,Y,MpvMfMpvPhi_k[k]); dSdU=dSdU+ak*tmp;
VdagV.Mpc(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
VdagV.MpcDeriv (tmp,Y, MpvPhi_k[k]); dSdU=dSdU+ak*tmp;
VdagV.MpcDagDeriv(tmp,MpvPhi_k[k], Y); dSdU=dSdU+ak*tmp;
VdagV.Mpc(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
VdagV.MpcDeriv (tmp,Y, MpvPhi_k[k]); dSdU=dSdU+ak*tmp;
VdagV.MpcDagDeriv(tmp,MpvPhi_k[k], Y); dSdU=dSdU+ak*tmp;
}
}
//dSdU = Ta(dSdU);
//dSdU = Ta(dSdU);
};
};
};
};
}
}
NAMESPACE_END(Grid);
#endif

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -23,190 +23,199 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PSEUDOFERMION_ONE_FLAVOUR_RATIONAL_H
#define QCD_PSEUDOFERMION_ONE_FLAVOUR_RATIONAL_H
NAMESPACE_BEGIN(Grid);
namespace Grid{
namespace QCD{
///////////////////////////////////////
// One flavour rational
///////////////////////////////////////
///////////////////////////////////////
// One flavour rational
///////////////////////////////////////
// S_f = chi^dag * N(M^dag*M)/D(M^dag*M) * chi
//
// Here, M is some operator
// N and D makeup the rat. poly
//
// S_f = chi^dag * N(M^dag*M)/D(M^dag*M) * chi
//
// Here, M is some operator
// N and D makeup the rat. poly
//
template<class Impl>
class OneFlavourRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
template<class Impl>
class OneFlavourRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
typedef OneFlavourRationalParams Params;
Params param;
typedef OneFlavourRationalParams Params;
Params param;
MultiShiftFunction PowerHalf ;
MultiShiftFunction PowerNegHalf;
MultiShiftFunction PowerQuarter;
MultiShiftFunction PowerNegQuarter;
MultiShiftFunction PowerHalf ;
MultiShiftFunction PowerNegHalf;
MultiShiftFunction PowerQuarter;
MultiShiftFunction PowerNegQuarter;
private:
private:
FermionOperator<Impl> & FermOp;// the basic operator
FermionOperator<Impl> & FermOp;// the basic operator
// NOT using "Nroots"; IroIro is -- perhaps later, but this wasn't good for us historically
// and hasenbusch works better
// NOT using "Nroots"; IroIro is -- perhaps later, but this wasn't good for us historically
// and hasenbusch works better
FermionField Phi; // the pseudo fermion field for this trajectory
FermionField Phi; // the pseudo fermion field for this trajectory
public:
public:
OneFlavourRationalPseudoFermionAction(FermionOperator<Impl> &Op,
Params & p
) : FermOp(Op), Phi(Op.FermionGrid()), param(p)
{
AlgRemez remez(param.lo,param.hi,param.precision);
OneFlavourRationalPseudoFermionAction(FermionOperator<Impl> &Op,
Params & p
) : FermOp(Op), Phi(Op.FermionGrid()), param(p)
{
AlgRemez remez(param.lo,param.hi,param.precision);
// MdagM^(+- 1/2)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
remez.generateApprox(param.degree,1,2);
PowerHalf.Init(remez,param.tolerance,false);
PowerNegHalf.Init(remez,param.tolerance,true);
// MdagM^(+- 1/2)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
remez.generateApprox(param.degree,1,2);
PowerHalf.Init(remez,param.tolerance,false);
PowerNegHalf.Init(remez,param.tolerance,true);
// MdagM^(+- 1/4)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
remez.generateApprox(param.degree,1,4);
PowerQuarter.Init(remez,param.tolerance,false);
PowerNegQuarter.Init(remez,param.tolerance,true);
};
// MdagM^(+- 1/4)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
remez.generateApprox(param.degree,1,4);
PowerQuarter.Init(remez,param.tolerance,false);
PowerNegQuarter.Init(remez,param.tolerance,true);
};
virtual std::string action_name(){return "OneFlavourRationalPseudoFermionAction";}
virtual std::string action_name(){return "OneFlavourRationalPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
return sstream.str();
}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
// P(phi) = e^{- phi^dag (MdagM)^-1/2 phi}
// = e^{- phi^dag (MdagM)^-1/4 (MdagM)^-1/4 phi}
// Phi = Mdag^{1/4} eta
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2).
// P(phi) = e^{- phi^dag (MdagM)^-1/2 phi}
// = e^{- phi^dag (MdagM)^-1/4 (MdagM)^-1/4 phi}
// Phi = Mdag^{1/4} eta
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2).
RealD scale = std::sqrt(0.5);
RealD scale = std::sqrt(0.5);
FermionField eta(FermOp.FermionGrid());
FermionField eta(FermOp.FermionGrid());
gaussian(pRNG,eta);
gaussian(pRNG,eta);
FermOp.ImportGauge(U);
FermOp.ImportGauge(U);
// mutishift CG
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerQuarter);
msCG(MdagMOp,eta,Phi);
// mutishift CG
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerQuarter);
msCG(MdagMOp,eta,Phi);
Phi=Phi*scale;
Phi=Phi*scale;
};
};
//////////////////////////////////////////////////////
// S = phi^dag (Mdag M)^-1/2 phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
//////////////////////////////////////////////////////
// S = phi^dag (Mdag M)^-1/2 phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
FermOp.ImportGauge(U);
FermOp.ImportGauge(U);
FermionField Y(FermOp.FermionGrid());
FermionField Y(FermOp.FermionGrid());
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerNegQuarter);
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerNegQuarter);
msCG(MdagMOp,Phi,Y);
msCG(MdagMOp,Phi,Y);
RealD action = norm2(Y);
std::cout << GridLogMessage << "Pseudofermion action FIXME -- is -1/4 solve or -1/2 solve faster??? "<<action<<std::endl;
return action;
};
if ( (rand()%param.BoundsCheckFreq)==0 ) {
FermionField gauss(FermOp.FermionGrid());
gauss = Phi;
HighBoundCheck(MdagMOp,gauss,param.hi);
InverseSqrtBoundsCheck(param.MaxIter,param.tolerance*100,MdagMOp,gauss,PowerNegHalf);
}
//////////////////////////////////////////////////////
// Need
// dS_f/dU = chi^dag d[N/D] chi
//
// N/D is expressed as partial fraction expansion:
//
// a0 + \sum_k ak/(M^dagM + bk)
//
// d[N/D] is then
//
// \sum_k -ak [M^dagM+bk]^{-1} [ dM^dag M + M^dag dM ] [M^dag M + bk]^{-1}
//
// Need
// Mf Phi_k = [MdagM+bk]^{-1} Phi
// Mf Phi = \sum_k ak [MdagM+bk]^{-1} Phi
//
// With these building blocks
//
// dS/dU = \sum_k -ak Mf Phi_k^dag [ dM^dag M + M^dag dM ] Mf Phi_k
// S = innerprodReal(Phi,Mf Phi);
//////////////////////////////////////////////////////
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
const int Npole = PowerNegHalf.poles.size();
RealD action = norm2(Y);
std::cout << GridLogMessage << "Pseudofermion action FIXME -- is -1/4 solve or -1/2 solve faster??? "<<action<<std::endl;
return action;
};
std::vector<FermionField> MPhi_k (Npole,FermOp.FermionGrid());
//////////////////////////////////////////////////////
// Need
// dS_f/dU = chi^dag d[N/D] chi
//
// N/D is expressed as partial fraction expansion:
//
// a0 + \sum_k ak/(M^dagM + bk)
//
// d[N/D] is then
//
// \sum_k -ak [M^dagM+bk]^{-1} [ dM^dag M + M^dag dM ] [M^dag M + bk]^{-1}
//
// Need
// Mf Phi_k = [MdagM+bk]^{-1} Phi
// Mf Phi = \sum_k ak [MdagM+bk]^{-1} Phi
//
// With these building blocks
//
// dS/dU = \sum_k -ak Mf Phi_k^dag [ dM^dag M + M^dag dM ] Mf Phi_k
// S = innerprodReal(Phi,Mf Phi);
//////////////////////////////////////////////////////
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
FermionField X(FermOp.FermionGrid());
FermionField Y(FermOp.FermionGrid());
const int Npole = PowerNegHalf.poles.size();
GaugeField tmp(FermOp.GaugeGrid());
std::vector<FermionField> MPhi_k (Npole,FermOp.FermionGrid());
FermOp.ImportGauge(U);
FermionField X(FermOp.FermionGrid());
FermionField Y(FermOp.FermionGrid());
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
GaugeField tmp(FermOp.GaugeGrid());
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerNegHalf);
FermOp.ImportGauge(U);
msCG(MdagMOp,Phi,MPhi_k);
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
dSdU = Zero();
for(int k=0;k<Npole;k++){
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerNegHalf);
RealD ak = PowerNegHalf.residues[k];
msCG(MdagMOp,Phi,MPhi_k);
X = MPhi_k[k];
dSdU = zero;
for(int k=0;k<Npole;k++){
FermOp.M(X,Y);
RealD ak = PowerNegHalf.residues[k];
FermOp.MDeriv(tmp , Y, X,DaggerNo ); dSdU=dSdU+ak*tmp;
FermOp.MDeriv(tmp , X, Y,DaggerYes); dSdU=dSdU+ak*tmp;
X = MPhi_k[k];
}
FermOp.M(X,Y);
//dSdU = Ta(dSdU);
FermOp.MDeriv(tmp , Y, X,DaggerNo ); dSdU=dSdU+ak*tmp;
FermOp.MDeriv(tmp , X, Y,DaggerYes); dSdU=dSdU+ak*tmp;
};
};
}
NAMESPACE_END(Grid);
//dSdU = Ta(dSdU);
};
};
}
}
#endif

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -23,243 +23,253 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PSEUDOFERMION_ONE_FLAVOUR_RATIONAL_RATIO_H
#define QCD_PSEUDOFERMION_ONE_FLAVOUR_RATIONAL_RATIO_H
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////
// One flavour rational
///////////////////////////////////////
namespace Grid{
namespace QCD{
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// Here P/Q \sim R_{1/4} ~ (V^dagV)^{1/4}
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
template<class Impl>
class OneFlavourRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
typedef OneFlavourRationalParams Params;
Params param;
MultiShiftFunction PowerHalf ;
MultiShiftFunction PowerNegHalf;
MultiShiftFunction PowerQuarter;
MultiShiftFunction PowerNegQuarter;
private:
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
FermionField Phi; // the pseudo fermion field for this trajectory
public:
OneFlavourRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
Params & p
) : NumOp(_NumOp), DenOp(_DenOp), Phi(_NumOp.FermionGrid()), param(p)
{
AlgRemez remez(param.lo,param.hi,param.precision);
// MdagM^(+- 1/2)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
remez.generateApprox(param.degree,1,2);
PowerHalf.Init(remez,param.tolerance,false);
PowerNegHalf.Init(remez,param.tolerance,true);
// MdagM^(+- 1/4)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
remez.generateApprox(param.degree,1,4);
PowerQuarter.Init(remez,param.tolerance,false);
PowerNegQuarter.Init(remez,param.tolerance,true);
};
virtual std::string action_name(){return "OneFlavourRatioRationalPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
///////////////////////////////////////
// One flavour rational
///////////////////////////////////////
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// P(phi) = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/2 (VdagV)^1/4 phi}
// = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/4 (MdagM)^-1/4 (VdagV)^1/4 phi}
//
// Phi = (VdagV)^-1/4 Mdag^{1/4} eta
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2).
// Here P/Q \sim R_{1/4} ~ (V^dagV)^{1/4}
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
template<class Impl>
class OneFlavourRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
RealD scale = std::sqrt(0.5);
INHERIT_IMPL_TYPES(Impl);
FermionField tmp(NumOp.FermionGrid());
FermionField eta(NumOp.FermionGrid());
typedef OneFlavourRationalParams Params;
Params param;
gaussian(pRNG,eta);
MultiShiftFunction PowerHalf ;
MultiShiftFunction PowerNegHalf;
MultiShiftFunction PowerQuarter;
MultiShiftFunction PowerNegQuarter;
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
private:
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
FermionField Phi; // the pseudo fermion field for this trajectory
// MdagM^1/4 eta
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerQuarter);
msCG_M(MdagM,eta,tmp);
public:
// VdagV^-1/4 MdagM^1/4 eta
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> VdagV(NumOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerNegQuarter);
msCG_V(VdagV,tmp,Phi);
OneFlavourRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
Params & p
) : NumOp(_NumOp), DenOp(_DenOp), Phi(_NumOp.FermionGrid()), param(p)
{
AlgRemez remez(param.lo,param.hi,param.precision);
Phi=Phi*scale;
// MdagM^(+- 1/2)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
remez.generateApprox(param.degree,1,2);
PowerHalf.Init(remez,param.tolerance,false);
PowerNegHalf.Init(remez,param.tolerance,true);
// MdagM^(+- 1/4)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
remez.generateApprox(param.degree,1,4);
PowerQuarter.Init(remez,param.tolerance,false);
PowerNegQuarter.Init(remez,param.tolerance,true);
};
virtual std::string action_name(){return "OneFlavourRatioRationalPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// P(phi) = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/2 (VdagV)^1/4 phi}
// = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/4 (MdagM)^-1/4 (VdagV)^1/4 phi}
//
// Phi = (VdagV)^-1/4 Mdag^{1/4} eta
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2).
RealD scale = std::sqrt(0.5);
FermionField tmp(NumOp.FermionGrid());
FermionField eta(NumOp.FermionGrid());
gaussian(pRNG,eta);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
// MdagM^1/4 eta
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerQuarter);
msCG_M(MdagM,eta,tmp);
// VdagV^-1/4 MdagM^1/4 eta
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> VdagV(NumOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerNegQuarter);
msCG_V(VdagV,tmp,Phi);
Phi=Phi*scale;
};
};
//////////////////////////////////////////////////////
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
//////////////////////////////////////////////////////
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
FermionField X(NumOp.FermionGrid());
FermionField Y(NumOp.FermionGrid());
FermionField X(NumOp.FermionGrid());
FermionField Y(NumOp.FermionGrid());
// VdagV^1/4 Phi
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> VdagV(NumOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
msCG_V(VdagV,Phi,X);
// VdagV^1/4 Phi
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> VdagV(NumOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
msCG_V(VdagV,Phi,X);
// MdagM^-1/4 VdagV^1/4 Phi
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegQuarter);
msCG_M(MdagM,X,Y);
// MdagM^-1/4 VdagV^1/4 Phi
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegQuarter);
msCG_M(MdagM,X,Y);
// Phidag VdagV^1/4 MdagM^-1/4 MdagM^-1/4 VdagV^1/4 Phi
RealD action = norm2(Y);
// Randomly apply rational bounds checks.
if ( (rand()%param.BoundsCheckFreq)==0 ) {
FermionField gauss(NumOp.FermionGrid());
gauss = Phi;
HighBoundCheck(MdagM,gauss,param.hi);
InverseSqrtBoundsCheck(param.MaxIter,param.tolerance*100,MdagM,gauss,PowerNegHalf);
}
return action;
};
// Phidag VdagV^1/4 MdagM^-1/4 MdagM^-1/4 VdagV^1/4 Phi
RealD action = norm2(Y);
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// Here, M is some 5D operator and V is the Pauli-Villars field
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
//
// Need
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
// + chi^dag P/Q d[N/D] P/Q chi
// + chi^dag P/Q N/D d[P/Q] chi
//
// P/Q is expressed as partial fraction expansion:
//
// a0 + \sum_k ak/(V^dagV + bk)
//
// d[P/Q] is then
//
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
//
// and similar for N/D.
//
// Need
// MpvPhi_k = [Vdag V + bk]^{-1} chi
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
//
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
//
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
//
return action;
};
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// Here, M is some 5D operator and V is the Pauli-Villars field
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
//
// Need
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
// + chi^dag P/Q d[N/D] P/Q chi
// + chi^dag P/Q N/D d[P/Q] chi
//
// P/Q is expressed as partial fraction expansion:
//
// a0 + \sum_k ak/(V^dagV + bk)
//
// d[P/Q] is then
//
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
//
// and similar for N/D.
//
// Need
// MpvPhi_k = [Vdag V + bk]^{-1} chi
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
//
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
//
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
//
const int n_f = PowerNegHalf.poles.size();
const int n_pv = PowerQuarter.poles.size();
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionGrid());
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionGrid());
std::vector<FermionField> MfMpvPhi_k (n_f,NumOp.FermionGrid());
const int n_f = PowerNegHalf.poles.size();
const int n_pv = PowerQuarter.poles.size();
FermionField MpvPhi(NumOp.FermionGrid());
FermionField MfMpvPhi(NumOp.FermionGrid());
FermionField MpvMfMpvPhi(NumOp.FermionGrid());
FermionField Y(NumOp.FermionGrid());
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionGrid());
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionGrid());
std::vector<FermionField> MfMpvPhi_k (n_f,NumOp.FermionGrid());
GaugeField tmp(NumOp.GaugeGrid());
FermionField MpvPhi(NumOp.FermionGrid());
FermionField MfMpvPhi(NumOp.FermionGrid());
FermionField MpvMfMpvPhi(NumOp.FermionGrid());
FermionField Y(NumOp.FermionGrid());
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
GaugeField tmp(NumOp.GaugeGrid());
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagM(DenOp);
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> VdagV(NumOp);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegHalf);
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagM(DenOp);
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> VdagV(NumOp);
msCG_V(VdagV,Phi,MpvPhi_k,MpvPhi);
msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
msCG_V(VdagV,MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegHalf);
RealD ak;
msCG_V(VdagV,Phi,MpvPhi_k,MpvPhi);
msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
msCG_V(VdagV,MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
dSdU = Zero();
RealD ak;
// With these building blocks
//
// dS/dU =
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
dSdU = zero;
//(1)
for(int k=0;k<n_f;k++){
ak = PowerNegHalf.residues[k];
DenOp.M(MfMpvPhi_k[k],Y);
DenOp.MDeriv(tmp , MfMpvPhi_k[k], Y,DaggerYes ); dSdU=dSdU+ak*tmp;
DenOp.MDeriv(tmp , Y, MfMpvPhi_k[k], DaggerNo ); dSdU=dSdU+ak*tmp;
}
// With these building blocks
//
// dS/dU =
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
//(1)
for(int k=0;k<n_f;k++){
ak = PowerNegHalf.residues[k];
DenOp.M(MfMpvPhi_k[k],Y);
DenOp.MDeriv(tmp , MfMpvPhi_k[k], Y,DaggerYes ); dSdU=dSdU+ak*tmp;
DenOp.MDeriv(tmp , Y, MfMpvPhi_k[k], DaggerNo ); dSdU=dSdU+ak*tmp;
}
//(2)
//(3)
for(int k=0;k<n_pv;k++){
//(2)
//(3)
for(int k=0;k<n_pv;k++){
ak = PowerQuarter.residues[k];
ak = PowerQuarter.residues[k];
NumOp.M(MpvPhi_k[k],Y);
NumOp.MDeriv(tmp,MpvMfMpvPhi_k[k],Y,DaggerYes); dSdU=dSdU+ak*tmp;
NumOp.MDeriv(tmp,Y,MpvMfMpvPhi_k[k],DaggerNo); dSdU=dSdU+ak*tmp;
NumOp.M(MpvPhi_k[k],Y);
NumOp.MDeriv(tmp,MpvMfMpvPhi_k[k],Y,DaggerYes); dSdU=dSdU+ak*tmp;
NumOp.MDeriv(tmp,Y,MpvMfMpvPhi_k[k],DaggerNo); dSdU=dSdU+ak*tmp;
NumOp.M(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
NumOp.MDeriv(tmp,Y, MpvPhi_k[k], DaggerNo); dSdU=dSdU+ak*tmp;
NumOp.MDeriv(tmp,MpvPhi_k[k], Y,DaggerYes); dSdU=dSdU+ak*tmp;
NumOp.M(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
NumOp.MDeriv(tmp,Y, MpvPhi_k[k], DaggerNo); dSdU=dSdU+ak*tmp;
NumOp.MDeriv(tmp,MpvPhi_k[k], Y,DaggerYes); dSdU=dSdU+ak*tmp;
}
}
//dSdU = Ta(dSdU);
//dSdU = Ta(dSdU);
};
};
};
};
}
}
NAMESPACE_END(Grid);
#endif

View File

@ -29,6 +29,9 @@ directory
#ifndef QCD_PSEUDOFERMION_AGGREGATE_H
#define QCD_PSEUDOFERMION_AGGREGATE_H
// Rational functions
#include <Grid/qcd/action/pseudofermion/Bounds.h>
#include <Grid/qcd/action/pseudofermion/EvenOddSchurDifferentiable.h>
#include <Grid/qcd/action/pseudofermion/TwoFlavour.h>
#include <Grid/qcd/action/pseudofermion/TwoFlavourRatio.h>

View File

@ -84,21 +84,20 @@ public:
// and must multiply by 0.707....
//
// Chroma has this scale factor: two_flavor_monomial_w.h
// CPS uses this factor
// IroIro: does not use this scale. It is absorbed by a change of vars
// in the Phi integral, and thus is only an irrelevant prefactor for
// the partition function.
//
RealD scale = std::sqrt(0.5);
const RealD scale = std::sqrt(0.5);
FermionField eta(FermOp.FermionGrid());
gaussian(pRNG, eta);
gaussian(pRNG, eta); eta = scale *eta;
FermOp.ImportGauge(U);
FermOp.Mdag(eta, Phi);
Phi = Phi * scale;
};
//////////////////////////////////////////////////////

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -24,186 +24,194 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PSEUDOFERMION_TWO_FLAVOUR_EVEN_ODD_RATIO_H
#define QCD_PSEUDOFERMION_TWO_FLAVOUR_EVEN_ODD_RATIO_H
NAMESPACE_BEGIN(Grid);
namespace Grid{
namespace QCD{
///////////////////////////////////////
// Two flavour ratio
///////////////////////////////////////
template<class Impl>
class TwoFlavourEvenOddRatioPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
///////////////////////////////////////
// Two flavour ratio
///////////////////////////////////////
template<class Impl>
class TwoFlavourEvenOddRatioPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
private:
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
private:
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
OperatorFunction<FermionField> &DerivativeSolver;
OperatorFunction<FermionField> &ActionSolver;
OperatorFunction<FermionField> &DerivativeSolver;
OperatorFunction<FermionField> &ActionSolver;
OperatorFunction<FermionField> &HeatbathSolver;
FermionField PhiOdd; // the pseudo fermion field for this trajectory
FermionField PhiEven; // the pseudo fermion field for this trajectory
FermionField PhiOdd; // the pseudo fermion field for this trajectory
FermionField PhiEven; // the pseudo fermion field for this trajectory
public:
TwoFlavourEvenOddRatioPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
OperatorFunction<FermionField> & DS,
OperatorFunction<FermionField> & AS) :
NumOp(_NumOp),
DenOp(_DenOp),
DerivativeSolver(DS),
ActionSolver(AS),
PhiEven(_NumOp.FermionRedBlackGrid()),
PhiOdd(_NumOp.FermionRedBlackGrid())
{
conformable(_NumOp.FermionGrid(), _DenOp.FermionGrid());
conformable(_NumOp.FermionRedBlackGrid(), _DenOp.FermionRedBlackGrid());
conformable(_NumOp.GaugeGrid(), _DenOp.GaugeGrid());
conformable(_NumOp.GaugeRedBlackGrid(), _DenOp.GaugeRedBlackGrid());
};
public:
TwoFlavourEvenOddRatioPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
OperatorFunction<FermionField> & DS,
OperatorFunction<FermionField> & AS ) :
TwoFlavourEvenOddRatioPseudoFermionAction(_NumOp,_DenOp, DS,AS,AS) {};
virtual std::string action_name(){return "TwoFlavourEvenOddRatioPseudoFermionAction";}
TwoFlavourEvenOddRatioPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
OperatorFunction<FermionField> & DS,
OperatorFunction<FermionField> & AS, OperatorFunction<FermionField> & HS) :
NumOp(_NumOp),
DenOp(_DenOp),
DerivativeSolver(DS),
ActionSolver(AS),
HeatbathSolver(HS),
PhiEven(_NumOp.FermionRedBlackGrid()),
PhiOdd(_NumOp.FermionRedBlackGrid())
{
conformable(_NumOp.FermionGrid(), _DenOp.FermionGrid());
conformable(_NumOp.FermionRedBlackGrid(), _DenOp.FermionRedBlackGrid());
conformable(_NumOp.GaugeGrid(), _DenOp.GaugeGrid());
conformable(_NumOp.GaugeRedBlackGrid(), _DenOp.GaugeRedBlackGrid());
};
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] has no parameters" << std::endl;
return sstream.str();
}
virtual std::string action_name(){return "TwoFlavourEvenOddRatioPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] has no parameters" << std::endl;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
// P(phi) = e^{- phi^dag Vpc (MpcdagMpc)^-1 Vpcdag phi}
//
// NumOp == V
// DenOp == M
//
// Take phi_o = Vpcdag^{-1} Mpcdag eta_o ; eta_o = Mpcdag^{-1} Vpcdag Phi
//
// P(eta_o) = e^{- eta_o^dag eta_o}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
RealD scale = std::sqrt(0.5);
// P(phi) = e^{- phi^dag Vpc (MpcdagMpc)^-1 Vpcdag phi}
//
// NumOp == V
// DenOp == M
//
// Take phi_o = Vpcdag^{-1} Mpcdag eta_o ; eta_o = Mpcdag^{-1} Vpcdag Phi
//
// P(eta_o) = e^{- eta_o^dag eta_o}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
RealD scale = std::sqrt(0.5);
FermionField eta (NumOp.FermionGrid());
FermionField etaOdd (NumOp.FermionRedBlackGrid());
FermionField etaEven(NumOp.FermionRedBlackGrid());
FermionField tmp (NumOp.FermionRedBlackGrid());
FermionField eta (NumOp.FermionGrid());
FermionField etaOdd (NumOp.FermionRedBlackGrid());
FermionField etaEven(NumOp.FermionRedBlackGrid());
FermionField tmp (NumOp.FermionRedBlackGrid());
gaussian(pRNG,eta);
gaussian(pRNG,eta);
pickCheckerboard(Even,etaEven,eta);
pickCheckerboard(Odd,etaOdd,eta);
pickCheckerboard(Even,etaEven,eta);
pickCheckerboard(Odd,etaOdd,eta);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
SchurDifferentiableOperator<Impl> Mpc(DenOp);
SchurDifferentiableOperator<Impl> Vpc(NumOp);
SchurDifferentiableOperator<Impl> Mpc(DenOp);
SchurDifferentiableOperator<Impl> Vpc(NumOp);
// Odd det factors
Mpc.MpcDag(etaOdd,PhiOdd);
tmp=Zero();
ActionSolver(Vpc,PhiOdd,tmp);
Vpc.Mpc(tmp,PhiOdd);
// Odd det factors
Mpc.MpcDag(etaOdd,PhiOdd);
tmp=zero;
HeatbathSolver(Vpc,PhiOdd,tmp);
Vpc.Mpc(tmp,PhiOdd);
// Even det factors
DenOp.MooeeDag(etaEven,tmp);
NumOp.MooeeInvDag(tmp,PhiEven);
// Even det factors
DenOp.MooeeDag(etaEven,tmp);
NumOp.MooeeInvDag(tmp,PhiEven);
PhiOdd =PhiOdd*scale;
PhiEven=PhiEven*scale;
PhiOdd =PhiOdd*scale;
PhiEven=PhiEven*scale;
};
};
//////////////////////////////////////////////////////
// S = phi^dag V (Mdag M)^-1 Vdag phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
//////////////////////////////////////////////////////
// S = phi^dag V (Mdag M)^-1 Vdag phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
SchurDifferentiableOperator<Impl> Mpc(DenOp);
SchurDifferentiableOperator<Impl> Vpc(NumOp);
SchurDifferentiableOperator<Impl> Mpc(DenOp);
SchurDifferentiableOperator<Impl> Vpc(NumOp);
FermionField X(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
FermionField X(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
Vpc.MpcDag(PhiOdd,Y); // Y= Vdag phi
X=Zero();
ActionSolver(Mpc,Y,X); // X= (MdagM)^-1 Vdag phi
//Mpc.Mpc(X,Y); // Y= Mdag^-1 Vdag phi
// Multiply by Ydag
RealD action = real(innerProduct(Y,X));
Vpc.MpcDag(PhiOdd,Y); // Y= Vdag phi
X=zero;
ActionSolver(Mpc,Y,X); // X= (MdagM)^-1 Vdag phi
//Mpc.Mpc(X,Y); // Y= Mdag^-1 Vdag phi
// Multiply by Ydag
RealD action = real(innerProduct(Y,X));
//RealD action = norm2(Y);
//RealD action = norm2(Y);
// The EE factorised block; normally can replace with Zero() if det is constant (gauge field indept)
// Only really clover term that creates this. Leave the EE portion as a future to do to make most
// rapid progresss on DWF for now.
//
NumOp.MooeeDag(PhiEven,X);
DenOp.MooeeInvDag(X,Y);
action = action + norm2(Y);
// The EE factorised block; normally can replace with zero if det is constant (gauge field indept)
// Only really clover term that creates this. Leave the EE portion as a future to do to make most
// rapid progresss on DWF for now.
//
NumOp.MooeeDag(PhiEven,X);
DenOp.MooeeInvDag(X,Y);
action = action + norm2(Y);
return action;
};
return action;
};
//////////////////////////////////////////////////////
// dS/du = phi^dag dV (Mdag M)^-1 V^dag phi
// - phi^dag V (Mdag M)^-1 [ Mdag dM + dMdag M ] (Mdag M)^-1 V^dag phi
// + phi^dag V (Mdag M)^-1 dV^dag phi
//////////////////////////////////////////////////////
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
//////////////////////////////////////////////////////
// dS/du = phi^dag dV (Mdag M)^-1 V^dag phi
// - phi^dag V (Mdag M)^-1 [ Mdag dM + dMdag M ] (Mdag M)^-1 V^dag phi
// + phi^dag V (Mdag M)^-1 dV^dag phi
//////////////////////////////////////////////////////
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
SchurDifferentiableOperator<Impl> Mpc(DenOp);
SchurDifferentiableOperator<Impl> Vpc(NumOp);
SchurDifferentiableOperator<Impl> Mpc(DenOp);
SchurDifferentiableOperator<Impl> Vpc(NumOp);
FermionField X(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
FermionField X(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
// This assignment is necessary to be compliant with the HMC grids
GaugeField force(dSdU.Grid());
// This assignment is necessary to be compliant with the HMC grids
GaugeField force(dSdU._grid);
//Y=Vdag phi
//X = (Mdag M)^-1 V^dag phi
//Y = (Mdag)^-1 V^dag phi
Vpc.MpcDag(PhiOdd,Y); // Y= Vdag phi
X=Zero();
DerivativeSolver(Mpc,Y,X); // X= (MdagM)^-1 Vdag phi
Mpc.Mpc(X,Y); // Y= Mdag^-1 Vdag phi
//Y=Vdag phi
//X = (Mdag M)^-1 V^dag phi
//Y = (Mdag)^-1 V^dag phi
Vpc.MpcDag(PhiOdd,Y); // Y= Vdag phi
X=zero;
DerivativeSolver(Mpc,Y,X); // X= (MdagM)^-1 Vdag phi
Mpc.Mpc(X,Y); // Y= Mdag^-1 Vdag phi
// phi^dag V (Mdag M)^-1 dV^dag phi
Vpc.MpcDagDeriv(force , X, PhiOdd ); dSdU = force;
// phi^dag V (Mdag M)^-1 dV^dag phi
Vpc.MpcDagDeriv(force , X, PhiOdd ); dSdU = force;
// phi^dag dV (Mdag M)^-1 V^dag phi
Vpc.MpcDeriv(force , PhiOdd, X ); dSdU = dSdU+force;
// phi^dag dV (Mdag M)^-1 V^dag phi
Vpc.MpcDeriv(force , PhiOdd, X ); dSdU = dSdU+force;
// - phi^dag V (Mdag M)^-1 Mdag dM (Mdag M)^-1 V^dag phi
// - phi^dag V (Mdag M)^-1 dMdag M (Mdag M)^-1 V^dag phi
Mpc.MpcDeriv(force,Y,X); dSdU = dSdU-force;
Mpc.MpcDagDeriv(force,X,Y); dSdU = dSdU-force;
// - phi^dag V (Mdag M)^-1 Mdag dM (Mdag M)^-1 V^dag phi
// - phi^dag V (Mdag M)^-1 dMdag M (Mdag M)^-1 V^dag phi
Mpc.MpcDeriv(force,Y,X); dSdU = dSdU-force;
Mpc.MpcDagDeriv(force,X,Y); dSdU = dSdU-force;
// FIXME No force contribution from EvenEven assumed here
// Needs a fix for clover.
assert(NumOp.ConstEE() == 1);
assert(DenOp.ConstEE() == 1);
// FIXME No force contribution from EvenEven assumed here
// Needs a fix for clover.
assert(NumOp.ConstEE() == 1);
assert(DenOp.ConstEE() == 1);
dSdU = -dSdU;
dSdU = -dSdU;
};
};
NAMESPACE_END(Grid);
};
};
}
}
#endif

View File

@ -41,19 +41,16 @@ public:
GRID_SERIALIZABLE_CLASS_MEMBERS(IntegratorParameters,
std::string, name, // name of the integrator
unsigned int, MDsteps, // number of outer steps
RealD, trajL, // trajectory length
)
RealD, trajL) // trajectory length
IntegratorParameters(int MDsteps_ = 10, RealD trajL_ = 1.0)
: MDsteps(MDsteps_),
trajL(trajL_){
// empty body constructor
};
trajL(trajL_) {};
template <class ReaderClass, typename std::enable_if<isReader<ReaderClass>::value, int >::type = 0 >
IntegratorParameters(ReaderClass & Reader){
std::cout << "Reading integrator\n";
IntegratorParameters(ReaderClass & Reader)
{
std::cout << GridLogMessage << "Reading integrator\n";
read(Reader, "Integrator", *this);
}
@ -83,17 +80,18 @@ protected:
const ActionSet<Field, RepresentationPolicy> as;
void update_P(Field& U, int level, double ep) {
void update_P(Field& U, int level, double ep)
{
t_P[level] += ep;
update_P(P, U, level, ep);
std::cout << GridLogIntegrator << "[" << level << "] P "
<< " dt " << ep << " : t_P " << t_P[level] << std::endl;
std::cout << GridLogIntegrator << "[" << level << "] P " << " dt " << ep << " : t_P " << t_P[level] << std::endl;
}
// to be used by the actionlevel class to iterate
// over the representations
struct _updateP {
struct _updateP
{
template <class FieldType, class GF, class Repr>
void operator()(std::vector<Action<FieldType>*> repr_set, Repr& Rep,
GF& Mom, GF& U, double ep) {
@ -104,7 +102,7 @@ protected:
GF force = Rep.RtoFundamentalProject(forceR); // Ta for the fundamental rep
Real force_abs = std::sqrt(norm2(force)/(U.Grid()->gSites()));
std::cout << GridLogIntegrator << "Hirep Force average: " << force_abs << std::endl;
Mom -= force * ep ;
Mom -= force * ep* HMC_MOMENTUM_DENOMINATOR;;
}
}
} update_P_hireps{};
@ -128,18 +126,19 @@ protected:
double end_force = usecond();
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites());
std::cout << GridLogIntegrator << "["<<level<<"]["<<a<<"] Force average: " << force_abs << std::endl;
Mom -= force * ep;
Mom -= force * ep* HMC_MOMENTUM_DENOMINATOR;;
double end_full = usecond();
double time_full = (end_full - start_full) / 1e3;
double time_force = (end_force - start_force) / 1e3;
std::cout << GridLogIntegrator << "["<<level<<"]["<<a<<"] P update elapsed time: " << time_full << " ms (force: " << time_force << " ms)" << std::endl;
std::cout << GridLogMessage << "["<<level<<"]["<<a<<"] P update elapsed time: " << time_full << " ms (force: " << time_force << " ms)" << std::endl;
}
// Force from the other representations
as[level].apply(update_P_hireps, Representations, Mom, U, ep);
}
void update_U(Field& U, double ep) {
void update_U(Field& U, double ep)
{
update_U(P, U, ep);
t_U += ep;
@ -147,7 +146,8 @@ protected:
std::cout << GridLogIntegrator << " " << "[" << fl << "] U " << " dt " << ep << " : t_U " << t_U << std::endl;
}
void update_U(MomentaField& Mom, Field& U, double ep) {
void update_U(MomentaField& Mom, Field& U, double ep)
{
// exponential of Mom*U in the gauge fields case
FieldImplementation::update_field(Mom, U, ep);
@ -169,7 +169,8 @@ public:
P(grid),
levels(Aset.size()),
Smearer(Sm),
Representations(grid) {
Representations(grid)
{
t_P.resize(levels, 0.0);
t_U = 0.0;
// initialization of smearer delegated outside of Integrator
@ -179,12 +180,14 @@ public:
virtual std::string integrator_name() = 0;
void print_parameters(){
void print_parameters()
{
std::cout << GridLogMessage << "[Integrator] Name : "<< integrator_name() << std::endl;
Params.print_parameters();
}
void print_actions(){
void print_actions()
{
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::" << std::endl;
std::cout << GridLogMessage << "[Integrator] Action summary: "<<std::endl;
for (int level = 0; level < as.size(); ++level) {
@ -198,7 +201,8 @@ public:
}
void reverse_momenta(){
void reverse_momenta()
{
P *= -1.0;
}
@ -217,7 +221,8 @@ public:
} refresh_hireps{};
// Initialization of momenta and actions
void refresh(Field& U, GridParallelRNG& pRNG) {
void refresh(Field& U, GridParallelRNG& pRNG)
{
assert(P.Grid() == U.Grid());
std::cout << GridLogIntegrator << "Integrator refresh\n";
@ -237,8 +242,7 @@ public:
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
// get gauge field from the SmearingPolicy and
// based on the boolean is_smeared in actionID
Field& Us =
Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
as[level].actions.at(actionID)->refresh(Us, pRNG);
}
@ -251,13 +255,11 @@ public:
// over the representations
struct _S {
template <class FieldType, class Repr>
void operator()(std::vector<Action<FieldType>*> repr_set, Repr& Rep,
int level, RealD& H) {
void operator()(std::vector<Action<FieldType>*> repr_set, Repr& Rep, int level, RealD& H) {
for (int a = 0; a < repr_set.size(); ++a) {
RealD Hterm = repr_set.at(a)->S(Rep.U);
std::cout << GridLogMessage << "S Level " << level << " term " << a
<< " H Hirep = " << Hterm << std::endl;
std::cout << GridLogMessage << "S Level " << level << " term " << a << " H Hirep = " << Hterm << std::endl;
H += Hterm;
}
@ -265,22 +267,24 @@ public:
} S_hireps{};
// Calculate action
RealD S(Field& U) { // here also U not used
RealD S(Field& U)
{ // here also U not used
std::cout << GridLogIntegrator << "Integrator action\n";
RealD H = - FieldImplementation::FieldSquareNorm(P)/HMC_MOMENTUM_DENOMINATOR; // - trace (P*P)/denom
RealD H = - FieldImplementation::FieldSquareNorm(P); // - trace (P*P)
RealD Hterm;
std::cout << GridLogMessage << "Momentum action H_p = " << H << "\n";
// Actions
for (int level = 0; level < as.size(); ++level) {
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
// get gauge field from the SmearingPolicy and
// based on the boolean is_smeared in actionID
Field& Us =
Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] action eval " << std::endl;
Hterm = as[level].actions.at(actionID)->S(Us);
std::cout << GridLogMessage << "S Level " << level << " term "
<< actionID << " H = " << Hterm << std::endl;
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] H = " << Hterm << std::endl;
H += Hterm;
}
as[level].apply(S_hireps, Representations, level, H);
@ -289,7 +293,8 @@ public:
return H;
}
void integrate(Field& U) {
void integrate(Field& U)
{
// reset the clocks
t_U = 0;
for (int level = 0; level < as.size(); ++level) {
@ -305,8 +310,7 @@ public:
// Check the clocks all match on all levels
for (int level = 0; level < as.size(); ++level) {
assert(fabs(t_U - t_P[level]) < 1.0e-6); // must be the same
std::cout << GridLogIntegrator << " times[" << level
<< "]= " << t_P[level] << " " << t_U << std::endl;
std::cout << GridLogIntegrator << " times[" << level << "]= " << t_P[level] << " " << t_U << std::endl;
}
// and that we indeed got to the end of the trajectory

View File

@ -26,15 +26,15 @@ with this program; if not, write to the Free Software Foundation, Inc.,
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
//--------------------------------------------------------------------
/* END LEGAL */
//--------------------------------------------------------------------
/*! @file Integrator_algorithm.h
* @brief Declaration of classes for the Molecular Dynamics algorithms
*
*/
//--------------------------------------------------------------------
/*! @file Integrator_algorithm.h
* @brief Declaration of classes for the Molecular Dynamics algorithms
*
*/
//--------------------------------------------------------------------
#ifndef INTEGRATOR_ALG_INCLUDED
#define INTEGRATOR_ALG_INCLUDED
@ -92,22 +92,17 @@ NAMESPACE_BEGIN(Grid);
* P 1/2 P 1/2
*/
template <class FieldImplementation, class SmearingPolicy,
class RepresentationPolicy =
Representations<FundamentalRepresentation> >
class LeapFrog : public Integrator<FieldImplementation, SmearingPolicy,
RepresentationPolicy> {
template <class FieldImplementation, class SmearingPolicy, class RepresentationPolicy = Representations<FundamentalRepresentation> >
class LeapFrog : public Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>
{
public:
typedef LeapFrog<FieldImplementation, SmearingPolicy, RepresentationPolicy>
Algorithm;
typedef LeapFrog<FieldImplementation, SmearingPolicy, RepresentationPolicy> Algorithm;
INHERIT_FIELD_TYPES(FieldImplementation);
std::string integrator_name(){return "LeapFrog";}
LeapFrog(GridBase* grid, IntegratorParameters Par,
ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(
grid, Par, Aset, Sm){};
LeapFrog(GridBase* grid, IntegratorParameters Par, ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(grid, Par, Aset, Sm){};
void step(Field& U, int level, int _first, int _last) {
int fl = this->as.size() - 1;
@ -140,21 +135,17 @@ public:
}
};
template <class FieldImplementation, class SmearingPolicy,
class RepresentationPolicy =
Representations<FundamentalRepresentation> >
class MinimumNorm2 : public Integrator<FieldImplementation, SmearingPolicy,
RepresentationPolicy> {
template <class FieldImplementation, class SmearingPolicy, class RepresentationPolicy = Representations<FundamentalRepresentation> >
class MinimumNorm2 : public Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>
{
private:
const RealD lambda = 0.1931833275037836;
public:
INHERIT_FIELD_TYPES(FieldImplementation);
MinimumNorm2(GridBase* grid, IntegratorParameters Par,
ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(
grid, Par, Aset, Sm){};
MinimumNorm2(GridBase* grid, IntegratorParameters Par, ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(grid, Par, Aset, Sm){};
std::string integrator_name(){return "MininumNorm2";}
@ -201,14 +192,11 @@ public:
}
};
template <class FieldImplementation, class SmearingPolicy,
class RepresentationPolicy =
Representations<FundamentalRepresentation> >
class ForceGradient : public Integrator<FieldImplementation, SmearingPolicy,
RepresentationPolicy> {
template <class FieldImplementation, class SmearingPolicy, class RepresentationPolicy = Representations<FundamentalRepresentation> >
class ForceGradient : public Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>
{
private:
const RealD lambda = 1.0 / 6.0;
;
const RealD chi = 1.0 / 72.0;
const RealD xi = 0.0;
const RealD theta = 0.0;
@ -230,8 +218,7 @@ public:
Field Pfg(U.Grid());
Ufg = U;
Pfg = Zero();
std::cout << GridLogIntegrator << "FG update " << fg_dt << " " << ep
<< std::endl;
std::cout << GridLogIntegrator << "FG update " << fg_dt << " " << ep << std::endl;
// prepare_fg; no prediction/result cache for now
// could relax CG stopping conditions for the
// derivatives in the small step since the force gets multiplied by
@ -270,8 +257,7 @@ public:
this->step(U, level + 1, first_step, 0);
}
this->FG_update_P(U, level, 2 * Chi / ((1.0 - 2.0 * lambda) * eps),
(1.0 - 2.0 * lambda) * eps);
this->FG_update_P(U, level, 2 * Chi / ((1.0 - 2.0 * lambda) * eps), (1.0 - 2.0 * lambda) * eps);
if (level == fl) { // lowest level
this->update_U(U, 0.5 * eps);

View File

@ -10,6 +10,24 @@ const std::array<const Gamma, 4> Gamma::gmu = {{
Gamma(Gamma::Algebra::GammaZ),
Gamma(Gamma::Algebra::GammaT)}};
const std::array<const Gamma, 16> Gamma::gall = {{
Gamma(Gamma::Algebra::Identity),
Gamma(Gamma::Algebra::Gamma5),
Gamma(Gamma::Algebra::GammaX),
Gamma(Gamma::Algebra::GammaY),
Gamma(Gamma::Algebra::GammaZ),
Gamma(Gamma::Algebra::GammaT),
Gamma(Gamma::Algebra::GammaXGamma5),
Gamma(Gamma::Algebra::GammaYGamma5),
Gamma(Gamma::Algebra::GammaZGamma5),
Gamma(Gamma::Algebra::GammaTGamma5),
Gamma(Gamma::Algebra::SigmaXT),
Gamma(Gamma::Algebra::SigmaXY),
Gamma(Gamma::Algebra::SigmaXZ),
Gamma(Gamma::Algebra::SigmaYT),
Gamma(Gamma::Algebra::SigmaYZ),
Gamma(Gamma::Algebra::SigmaZT)}};
const std::array<const char *, Gamma::nGamma> Gamma::name = {{
"-Gamma5 ",
"Gamma5 ",

View File

@ -47,6 +47,7 @@ class Gamma {
static const std::array<std::array<Algebra, nGamma>, nGamma> mul;
static const std::array<Algebra, nGamma> adj;
static const std::array<const Gamma, 4> gmu;
static const std::array<const Gamma, 16> gall;
Algebra g;
public:
accelerator Gamma(Algebra initg): g(initg) {}

View File

@ -10,10 +10,10 @@
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 75090, 1956]
NotebookOptionsPosition[ 69536, 1867]
NotebookOutlinePosition[ 69898, 1883]
CellTagsIndexPosition[ 69855, 1880]
NotebookDataLength[ 67118, 1714]
NotebookOptionsPosition[ 63485, 1652]
NotebookOutlinePosition[ 63842, 1668]
CellTagsIndexPosition[ 63799, 1665]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
@ -76,234 +76,6 @@ Cell[BoxData["\<\"/Users/antonin/Development/Grid/lib/qcd/spin/gamma-gen\"\>"]\
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FactorInteger", "[", "3152", "]"}]], "Input",
CellChangeTimes->{{3.7432347536316767`*^9, 3.7432347764739027`*^9}, {
3.743234833567358*^9,
3.743234862146022*^9}},ExpressionUUID->"d1a0fd03-85e1-43af-ba80-\
3ca4235675d8"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"2", ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"197", ",", "1"}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{{3.743234836792224*^9,
3.743234862493619*^9}},ExpressionUUID->"16d3f953-4b24-4ed2-ae62-\
306dcab66ca7"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"sol", "=",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}], "\[Equal]", "2"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], ",", "Integers"}],
"]"}]}]], "Input",
CellChangeTimes->{{3.743235304127721*^9,
3.7432353087929983`*^9}},ExpressionUUID->"f0fa2a5c-3d81-4d75-a447-\
50c7ca3459ff"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"x", "\[Rule]",
RowBox[{"-", "1"}]}], ",",
RowBox[{"y", "\[Rule]",
RowBox[{"-", "1"}]}], ",",
RowBox[{"z", "\[Rule]", "0"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"x", "\[Rule]",
RowBox[{"-", "1"}]}], ",",
RowBox[{"y", "\[Rule]", "0"}], ",",
RowBox[{"z", "\[Rule]",
RowBox[{"-", "1"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"x", "\[Rule]",
RowBox[{"-", "1"}]}], ",",
RowBox[{"y", "\[Rule]", "0"}], ",",
RowBox[{"z", "\[Rule]", "1"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"x", "\[Rule]",
RowBox[{"-", "1"}]}], ",",
RowBox[{"y", "\[Rule]", "1"}], ",",
RowBox[{"z", "\[Rule]", "0"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"x", "\[Rule]", "0"}], ",",
RowBox[{"y", "\[Rule]",
RowBox[{"-", "1"}]}], ",",
RowBox[{"z", "\[Rule]",
RowBox[{"-", "1"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"x", "\[Rule]", "0"}], ",",
RowBox[{"y", "\[Rule]",
RowBox[{"-", "1"}]}], ",",
RowBox[{"z", "\[Rule]", "1"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"x", "\[Rule]", "0"}], ",",
RowBox[{"y", "\[Rule]", "1"}], ",",
RowBox[{"z", "\[Rule]",
RowBox[{"-", "1"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"x", "\[Rule]", "0"}], ",",
RowBox[{"y", "\[Rule]", "1"}], ",",
RowBox[{"z", "\[Rule]", "1"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"x", "\[Rule]", "1"}], ",",
RowBox[{"y", "\[Rule]",
RowBox[{"-", "1"}]}], ",",
RowBox[{"z", "\[Rule]", "0"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"x", "\[Rule]", "1"}], ",",
RowBox[{"y", "\[Rule]", "0"}], ",",
RowBox[{"z", "\[Rule]",
RowBox[{"-", "1"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"x", "\[Rule]", "1"}], ",",
RowBox[{"y", "\[Rule]", "0"}], ",",
RowBox[{"z", "\[Rule]", "1"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"x", "\[Rule]", "1"}], ",",
RowBox[{"y", "\[Rule]", "1"}], ",",
RowBox[{"z", "\[Rule]", "0"}]}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{{3.743235305220907*^9,
3.743235309139554*^9}},ExpressionUUID->"d9825c95-24bb-442a-8734-\
4c0f47e99dfc"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"xmlElem", "[", "x_", "]"}], ":=",
RowBox[{"Print", "[",
RowBox[{"\"\<<elem>\>\"", "<>",
RowBox[{"ToString", "[",
RowBox[{"x", "[",
RowBox[{"[", "1", "]"}], "]"}], "]"}], "<>", "\"\< \>\"", "<>",
RowBox[{"ToString", "[",
RowBox[{"x", "[",
RowBox[{"[", "2", "]"}], "]"}], "]"}], "<>", "\"\< \>\"", "<>",
RowBox[{"ToString", "[",
RowBox[{"x", "[",
RowBox[{"[", "3", "]"}], "]"}], "]"}], "<>", "\"\<</elem>\>\""}],
"]"}]}]], "Input",
CellChangeTimes->{{3.74323534002862*^9, 3.743235351000985*^9}, {
3.743235403233039*^9, 3.743235413488028*^9}, {3.743235473169856*^9,
3.7432354747126904`*^9}},ExpressionUUID->"aea76313-c89e-45e8-b429-\
3f454091666d"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"xmlElem", "[",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "/.", "#"}], "]"}], "&"}], "/@",
"sol"}]], "Input",
CellChangeTimes->{{3.743235415820318*^9,
3.743235467025091*^9}},ExpressionUUID->"07da3998-8eab-40ba-8c0b-\
ac6b130cb4fb"],
Cell[CellGroupData[{
Cell[BoxData["\<\"<elem>-1 -1 0</elem>\"\>"], "Print",
CellChangeTimes->{
3.743235476581676*^9},ExpressionUUID->"c577ba06-b67a-405a-9ff5-\
2bf7dc898d03"],
Cell[BoxData["\<\"<elem>-1 0 -1</elem>\"\>"], "Print",
CellChangeTimes->{
3.743235476588011*^9},ExpressionUUID->"d041aa36-0cea-457c-9d4b-\
1fe9be66e2ab"],
Cell[BoxData["\<\"<elem>-1 0 1</elem>\"\>"], "Print",
CellChangeTimes->{
3.743235476596887*^9},ExpressionUUID->"bf141b55-86b2-4430-a994-\
5c03d5a19441"],
Cell[BoxData["\<\"<elem>-1 1 0</elem>\"\>"], "Print",
CellChangeTimes->{
3.743235476605785*^9},ExpressionUUID->"4968a660-4ecf-4b66-9071-\
8bd798c18d21"],
Cell[BoxData["\<\"<elem>0 -1 -1</elem>\"\>"], "Print",
CellChangeTimes->{
3.743235476613523*^9},ExpressionUUID->"4e22d943-2680-416b-a1d7-\
a16ca20b781f"],
Cell[BoxData["\<\"<elem>0 -1 1</elem>\"\>"], "Print",
CellChangeTimes->{
3.7432354766218576`*^9},ExpressionUUID->"6dd38385-08b3-4dd9-932f-\
98a00c6db1b2"],
Cell[BoxData["\<\"<elem>0 1 -1</elem>\"\>"], "Print",
CellChangeTimes->{
3.743235476629427*^9},ExpressionUUID->"ef3baad3-91d1-4735-9a22-\
53495a624c15"],
Cell[BoxData["\<\"<elem>0 1 1</elem>\"\>"], "Print",
CellChangeTimes->{
3.743235476638257*^9},ExpressionUUID->"413fbb68-5017-4272-a62a-\
fa234e6daaea"],
Cell[BoxData["\<\"<elem>1 -1 0</elem>\"\>"], "Print",
CellChangeTimes->{
3.743235476646203*^9},ExpressionUUID->"3a832a60-ae00-414b-a9ac-\
f5e86e67e917"],
Cell[BoxData["\<\"<elem>1 0 -1</elem>\"\>"], "Print",
CellChangeTimes->{
3.743235476653907*^9},ExpressionUUID->"bfc79ef6-f6c7-4f1e-88e8-\
005ac314be9c"],
Cell[BoxData["\<\"<elem>1 0 1</elem>\"\>"], "Print",
CellChangeTimes->{
3.743235476662575*^9},ExpressionUUID->"0f892891-f885-489c-9925-\
ddef4d698410"],
Cell[BoxData["\<\"<elem>1 1 0</elem>\"\>"], "Print",
CellChangeTimes->{
3.7432354766702337`*^9},ExpressionUUID->"2906f190-e673-4f33-9c34-\
e8e56efe7a27"]
}, Open ]],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"Null", ",", "Null", ",", "Null", ",", "Null", ",", "Null", ",", "Null",
",", "Null", ",", "Null", ",", "Null", ",", "Null", ",", "Null", ",",
"Null"}], "}"}]], "Output",
CellChangeTimes->{
3.7432354246225967`*^9, {3.7432354674878073`*^9,
3.743235476678007*^9}},ExpressionUUID->"500ca3c1-88d8-46e5-a1a1-\
86a7878e5638"]
}, Open ]],
Cell[CellGroupData[{
Cell["Clifford algebra generation", "Section",
CellChangeTimes->{{3.6942089434583883`*^9,
3.694208978559093*^9}},ExpressionUUID->"a5b064b3-3011-4922-8559-\
@ -1048,9 +820,10 @@ generated by the Mathematica notebook gamma-gen/gamma-gen.nb\n\n#include \
"\"\< static const std::array<const char *, nGamma> \
name;\n static const std::array<std::array<Algebra, nGamma>, nGamma> mul;\n\
static const std::array<Algebra, nGamma> adj;\n \
static const std::array<const Gamma, 4> gmu;\n \
Algebra g;\n public:\n \
Gamma(Algebra initg): g(initg) {} \n};\n\n\>\""}]}], ";",
static const std::array<const Gamma, 4> gmu;\n static \
const std::array<const Gamma, 16> gall;\n Algebra \
g;\n public:\n \
Gamma(Algebra initg): g(initg) {} \n};\n\n\>\""}]}], ";",
"\[IndentingNewLine]",
RowBox[{"out", " ", "=",
RowBox[{"out", "<>", "funcCode"}]}], ";", "\[IndentingNewLine]",
@ -1076,7 +849,8 @@ Algebra g;\n public:\n \
3.694963343265525*^9}, {3.694964367519239*^9, 3.69496439461199*^9}, {
3.694964462130747*^9, 3.6949644669959793`*^9}, 3.694964509762739*^9, {
3.694964705045744*^9, 3.694964723148797*^9}, {3.694964992988984*^9,
3.6949649968504257`*^9}},ExpressionUUID->"c7103bd6-b539-4495-b98c-\
3.6949649968504257`*^9}, {3.758291687176977*^9,
3.758291694181189*^9}},ExpressionUUID->"c7103bd6-b539-4495-b98c-\
d4d12ac6cad8"],
Cell["Gamma enum generation:", "Text",
@ -1745,8 +1519,17 @@ namespace QCD {\>\""}]}], ";", "\[IndentingNewLine]",
"\"\<\n\nconst std::array<const Gamma, 4> Gamma::gmu = {{\n \
Gamma(Gamma::Algebra::GammaX),\n Gamma(Gamma::Algebra::GammaY),\n \
Gamma(Gamma::Algebra::GammaZ),\n Gamma(Gamma::Algebra::GammaT)}};\n\nconst \
std::array<const char *, Gamma::nGamma> Gamma::name = {{\n\>\""}]}], ";",
"\[IndentingNewLine]",
std::array<const Gamma, 16> Gamma::gall = {{\n \
Gamma(Gamma::Algebra::Identity),\n Gamma(Gamma::Algebra::Gamma5),\n \
Gamma(Gamma::Algebra::GammaX),\n Gamma(Gamma::Algebra::GammaY),\n \
Gamma(Gamma::Algebra::GammaZ),\n Gamma(Gamma::Algebra::GammaT),\n \
Gamma(Gamma::Algebra::GammaXGamma5),\n Gamma(Gamma::Algebra::GammaYGamma5),\n\
Gamma(Gamma::Algebra::GammaZGamma5),\n \
Gamma(Gamma::Algebra::GammaTGamma5),\n Gamma(Gamma::Algebra::SigmaXT), \
\n Gamma(Gamma::Algebra::SigmaXY), \n Gamma(Gamma::Algebra::SigmaXZ), \
\n Gamma(Gamma::Algebra::SigmaYT),\n Gamma(Gamma::Algebra::SigmaYZ),\n \
Gamma(Gamma::Algebra::SigmaZT)}};\n\nconst std::array<const char *, \
Gamma::nGamma> Gamma::name = {{\n\>\""}]}], ";", "\[IndentingNewLine]",
RowBox[{"Do", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"out", " ", "=", " ",
@ -1847,7 +1630,9 @@ Gamma::nGamma> Gamma::mul = {{\\n\>\""}]}], ";", "\[IndentingNewLine]",
3.694963031525289*^9}, {3.694963065828494*^9, 3.694963098327538*^9}, {
3.6949632020836153`*^9, 3.6949632715940027`*^9}, {3.694963440035037*^9,
3.6949634418966017`*^9}, {3.6949651447067547`*^9, 3.694965161228381*^9}, {
3.694967957845581*^9, 3.694967958364184*^9}}],
3.694967957845581*^9, 3.694967958364184*^9}, {3.758291673792514*^9,
3.758291676983432*^9}},ExpressionUUID->"b1b309f8-a3a7-4081-a781-\
c3845e3cd372"],
Cell[BoxData[
RowBox[{
@ -1867,8 +1652,8 @@ Cell[BoxData[""], "Input",
},
WindowSize->{1246, 1005},
WindowMargins->{{282, Automatic}, {Automatic, 14}},
FrontEndVersion->"11.2 for Mac OS X x86 (32-bit, 64-bit Kernel) (September \
10, 2017)",
FrontEndVersion->"11.3 for Mac OS X x86 (32-bit, 64-bit Kernel) (March 5, \
2018)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
@ -1888,75 +1673,48 @@ Cell[1948, 43, 570, 11, 73, "Input",ExpressionUUID->"5c937a3e-adfd-4d7e-8fde-afb
Cell[2521, 56, 1172, 17, 34, "Output",ExpressionUUID->"72817ba6-2f6a-4a4d-8212-6f0970f49e7c"]
}, Open ]],
Cell[CellGroupData[{
Cell[3730, 78, 248, 5, 30, "Input",ExpressionUUID->"d1a0fd03-85e1-43af-ba80-3ca4235675d8"],
Cell[3981, 85, 299, 9, 34, "Output",ExpressionUUID->"16d3f953-4b24-4ed2-ae62-306dcab66ca7"]
Cell[3730, 78, 174, 3, 67, "Section",ExpressionUUID->"a5b064b3-3011-4922-8559-ead857cad102"],
Cell[3907, 83, 535, 16, 52, "Input",ExpressionUUID->"aa28f02b-31e1-4df2-9b5d-482177464b59"],
Cell[4445, 101, 250, 4, 35, "Text",ExpressionUUID->"c8896b88-f1db-4ce4-b7a6-0c9838bdb8f1"],
Cell[4698, 107, 5511, 169, 425, "Input",ExpressionUUID->"52a96ff6-047e-4043-86d0-e303866e5f8e"],
Cell[CellGroupData[{
Cell[10234, 280, 2183, 58, 135, "Input",ExpressionUUID->"8b0f4955-2c3f-418c-9226-9be8f87621e8"],
Cell[12420, 340, 1027, 27, 56, "Output",ExpressionUUID->"edd0619f-6f12-4070-a1d2-6b547877fadc"]
}, Open ]],
Cell[CellGroupData[{
Cell[4317, 99, 469, 14, 33, "Input",ExpressionUUID->"f0fa2a5c-3d81-4d75-a447-50c7ca3459ff"],
Cell[4789, 115, 2423, 77, 56, "Output",ExpressionUUID->"d9825c95-24bb-442a-8734-4c0f47e99dfc"]
Cell[13484, 372, 1543, 46, 114, "Input",ExpressionUUID->"fb45123c-c610-4075-99b0-7cd71c728ae7"],
Cell[15030, 420, 1311, 32, 87, "Output",ExpressionUUID->"2ae14565-b412-4dc0-9dce-bd6c1ba5ef27"]
}, Open ]],
Cell[7227, 195, 751, 18, 30, "Input",ExpressionUUID->"aea76313-c89e-45e8-b429-3f454091666d"],
Cell[16356, 455, 179, 3, 35, "Text",ExpressionUUID->"af247231-a58d-417b-987a-26908dafffdb"],
Cell[16538, 460, 2175, 65, 94, "Input",ExpressionUUID->"7c44cadd-e488-4f51-87d8-c64eef11f40c"],
Cell[18716, 527, 193, 3, 35, "Text",ExpressionUUID->"856f1746-1107-4509-a5ce-ac9c7f56cdb1"],
Cell[CellGroupData[{
Cell[8003, 217, 323, 10, 30, "Input",ExpressionUUID->"07da3998-8eab-40ba-8c0b-ac6b130cb4fb"],
Cell[CellGroupData[{
Cell[8351, 231, 156, 3, 24, "Print",ExpressionUUID->"c577ba06-b67a-405a-9ff5-2bf7dc898d03"],
Cell[8510, 236, 156, 3, 24, "Print",ExpressionUUID->"d041aa36-0cea-457c-9d4b-1fe9be66e2ab"],
Cell[8669, 241, 155, 3, 24, "Print",ExpressionUUID->"bf141b55-86b2-4430-a994-5c03d5a19441"],
Cell[8827, 246, 155, 3, 24, "Print",ExpressionUUID->"4968a660-4ecf-4b66-9071-8bd798c18d21"],
Cell[8985, 251, 156, 3, 24, "Print",ExpressionUUID->"4e22d943-2680-416b-a1d7-a16ca20b781f"],
Cell[9144, 256, 157, 3, 24, "Print",ExpressionUUID->"6dd38385-08b3-4dd9-932f-98a00c6db1b2"],
Cell[9304, 261, 155, 3, 24, "Print",ExpressionUUID->"ef3baad3-91d1-4735-9a22-53495a624c15"],
Cell[9462, 266, 154, 3, 24, "Print",ExpressionUUID->"413fbb68-5017-4272-a62a-fa234e6daaea"],
Cell[9619, 271, 155, 3, 24, "Print",ExpressionUUID->"3a832a60-ae00-414b-a9ac-f5e86e67e917"],
Cell[9777, 276, 155, 3, 24, "Print",ExpressionUUID->"bfc79ef6-f6c7-4f1e-88e8-005ac314be9c"],
Cell[9935, 281, 154, 3, 24, "Print",ExpressionUUID->"0f892891-f885-489c-9925-ddef4d698410"],
Cell[10092, 286, 156, 3, 24, "Print",ExpressionUUID->"2906f190-e673-4f33-9c34-e8e56efe7a27"]
}, Open ]],
Cell[10263, 292, 376, 9, 34, "Output",ExpressionUUID->"500ca3c1-88d8-46e5-a1a1-86a7878e5638"]
Cell[18934, 534, 536, 16, 30, "Input",ExpressionUUID->"8674484a-8543-434f-b177-3b27f9353212"],
Cell[19473, 552, 1705, 35, 87, "Output",ExpressionUUID->"c3b3f84d-91f6-41af-af6b-a394ca020511"]
}, Open ]],
Cell[21193, 590, 170, 3, 35, "Text",ExpressionUUID->"518a3040-54b1-4d43-8947-5c7d12efa94d"],
Cell[CellGroupData[{
Cell[10676, 306, 174, 3, 67, "Section",ExpressionUUID->"a5b064b3-3011-4922-8559-ead857cad102"],
Cell[10853, 311, 535, 16, 52, "Input",ExpressionUUID->"aa28f02b-31e1-4df2-9b5d-482177464b59"],
Cell[11391, 329, 250, 4, 35, "Text",ExpressionUUID->"c8896b88-f1db-4ce4-b7a6-0c9838bdb8f1"],
Cell[11644, 335, 5511, 169, 425, "Input",ExpressionUUID->"52a96ff6-047e-4043-86d0-e303866e5f8e"],
Cell[CellGroupData[{
Cell[17180, 508, 2183, 58, 135, "Input",ExpressionUUID->"8b0f4955-2c3f-418c-9226-9be8f87621e8"],
Cell[19366, 568, 1027, 27, 67, "Output",ExpressionUUID->"edd0619f-6f12-4070-a1d2-6b547877fadc"]
}, Open ]],
Cell[CellGroupData[{
Cell[20430, 600, 1543, 46, 114, "Input",ExpressionUUID->"fb45123c-c610-4075-99b0-7cd71c728ae7"],
Cell[21976, 648, 1311, 32, 98, "Output",ExpressionUUID->"2ae14565-b412-4dc0-9dce-bd6c1ba5ef27"]
}, Open ]],
Cell[23302, 683, 179, 3, 35, "Text",ExpressionUUID->"af247231-a58d-417b-987a-26908dafffdb"],
Cell[23484, 688, 2175, 65, 94, "Input",ExpressionUUID->"7c44cadd-e488-4f51-87d8-c64eef11f40c"],
Cell[25662, 755, 193, 3, 35, "Text",ExpressionUUID->"856f1746-1107-4509-a5ce-ac9c7f56cdb1"],
Cell[CellGroupData[{
Cell[25880, 762, 536, 16, 30, "Input",ExpressionUUID->"8674484a-8543-434f-b177-3b27f9353212"],
Cell[26419, 780, 1705, 35, 87, "Output",ExpressionUUID->"c3b3f84d-91f6-41af-af6b-a394ca020511"]
}, Open ]],
Cell[28139, 818, 170, 3, 35, "Text",ExpressionUUID->"518a3040-54b1-4d43-8947-5c7d12efa94d"],
Cell[CellGroupData[{
Cell[28334, 825, 536, 14, 30, "Input",ExpressionUUID->"61a2e974-2b39-4a07-8043-2dfd39a70569"],
Cell[28873, 841, 6754, 167, 303, "Output",ExpressionUUID->"73480ac0-3043-4077-80cc-b952a94c822a"]
Cell[21388, 597, 536, 14, 30, "Input",ExpressionUUID->"61a2e974-2b39-4a07-8043-2dfd39a70569"],
Cell[21927, 613, 6754, 167, 303, "Output",ExpressionUUID->"73480ac0-3043-4077-80cc-b952a94c822a"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[35676, 1014, 226, 4, 67, "Section",ExpressionUUID->"4e833cd6-9f0e-4aa3-a873-3d579e874720"],
Cell[35905, 1020, 188, 4, 44, "Text",ExpressionUUID->"6d27fc04-3a60-4e03-8df7-3dd3aeee35b4"],
Cell[36096, 1026, 2980, 53, 703, "Input",ExpressionUUID->"c7103bd6-b539-4495-b98c-d4d12ac6cad8"],
Cell[39079, 1081, 221, 4, 44, "Text",ExpressionUUID->"0625593d-290f-4a39-9d80-8e2c6fdbc94e"],
Cell[39303, 1087, 4936, 150, 682, "Input",ExpressionUUID->"1ad4904c-352f-4b1d-a7c7-91e1b0549409"],
Cell[44242, 1239, 2645, 56, 199, "Input",ExpressionUUID->"0221674f-9b63-4662-91bc-ccc8c6ae9589"],
Cell[46890, 1297, 209, 4, 44, "Text",ExpressionUUID->"d2d2257a-487b-416f-bc40-abd4482225f7"],
Cell[47102, 1303, 15306, 397, 2131, "Input",ExpressionUUID->"daea68a9-c9e8-46ab-9bc8-5186e2cf477c"],
Cell[62411, 1702, 137, 2, 44, "Text",ExpressionUUID->"76ba9d5a-7ee3-4888-be7e-6377003275e8"],
Cell[62551, 1706, 521, 12, 30, "Input",ExpressionUUID->"4ec61f4c-3fd3-49ea-b5ef-6f7f04a16b34"]
Cell[28730, 786, 226, 4, 67, "Section",ExpressionUUID->"4e833cd6-9f0e-4aa3-a873-3d579e874720"],
Cell[28959, 792, 188, 4, 44, "Text",ExpressionUUID->"6d27fc04-3a60-4e03-8df7-3dd3aeee35b4"],
Cell[29150, 798, 3104, 55, 724, "Input",ExpressionUUID->"c7103bd6-b539-4495-b98c-d4d12ac6cad8"],
Cell[32257, 855, 221, 4, 44, "Text",ExpressionUUID->"0625593d-290f-4a39-9d80-8e2c6fdbc94e"],
Cell[32481, 861, 4936, 150, 682, "Input",ExpressionUUID->"1ad4904c-352f-4b1d-a7c7-91e1b0549409"],
Cell[37420, 1013, 2645, 56, 199, "Input",ExpressionUUID->"0221674f-9b63-4662-91bc-ccc8c6ae9589"],
Cell[40068, 1071, 209, 4, 44, "Text",ExpressionUUID->"d2d2257a-487b-416f-bc40-abd4482225f7"],
Cell[40280, 1077, 15306, 397, 2131, "Input",ExpressionUUID->"daea68a9-c9e8-46ab-9bc8-5186e2cf477c"],
Cell[55589, 1476, 137, 2, 44, "Text",ExpressionUUID->"76ba9d5a-7ee3-4888-be7e-6377003275e8"],
Cell[55729, 1480, 521, 12, 30, "Input",ExpressionUUID->"4ec61f4c-3fd3-49ea-b5ef-6f7f04a16b34"]
}, Open ]],
Cell[CellGroupData[{
Cell[63109, 1723, 167, 2, 67, "Section",ExpressionUUID->"a4458b3a-09b5-4e36-a1fc-781d6702b2dc"],
Cell[63279, 1727, 5693, 122, 829, "Input",ExpressionUUID->"b1b309f8-a3a7-4081-a781-c3845e3cd372"],
Cell[68975, 1851, 448, 10, 30, "Input",ExpressionUUID->"cba42949-b0f2-42ce-aebd-ffadfd83ef88"],
Cell[69426, 1863, 94, 1, 30, "Input",ExpressionUUID->"6175b72c-af9f-43c2-b4ca-bd84c48a456d"]
Cell[56287, 1497, 167, 2, 67, "Section",ExpressionUUID->"a4458b3a-09b5-4e36-a1fc-781d6702b2dc"],
Cell[56457, 1501, 6464, 133, 1207, "Input",ExpressionUUID->"b1b309f8-a3a7-4081-a781-c3845e3cd372"],
Cell[62924, 1636, 448, 10, 30, "Input",ExpressionUUID->"cba42949-b0f2-42ce-aebd-ffadfd83ef88"],
Cell[63375, 1648, 94, 1, 30, "Input",ExpressionUUID->"6175b72c-af9f-43c2-b4ca-bd84c48a456d"]
}, Open ]]
}
]

View File

@ -995,21 +995,20 @@ void A2Autils<FImpl>::ContractWWVV(std::vector<PropagatorField> &WWVV,
auto vs_v = vs[s].View();
auto tmp1 = vs_v[ss];
vobj tmp2 = Zero();
vobj tmp3 = Zero();
for(int d=d_o;d<MIN(d_o+d_unroll,N_d);d++){
Scalar_v coeff = WW_sd(t,s,d);
auto vd_v = vd[d].View();
mac(&tmp2 ,& coeff, & vd_v[ss]);
Scalar_v coeff = WW_sd(t,s,d);
tmp3 = conjugate(vd_v[ss]);
mac(&tmp2, &coeff, &tmp3);
}
//////////////////////////
// Fast outer product of tmp1 with a sum of terms suppressed by d_unroll
//////////////////////////
tmp2 = conjugate(tmp2);
auto WWVV_v = WWVV[t].View();
for(int s1=0;s1<Ns;s1++){
for(int s2=0;s2<Ns;s2++){
WWVV_v[ss]()(s1,s2)(0,0) += tmp1()(s1)(0)*tmp2()(s2)(0);
WWVV_v[ss]()(s1,s2)(0,1) += tmp1()(s1)(0)*tmp2()(s2)(1);
WWVV_v[ss]()(s1,s2)(0,2) += tmp1()(s1)(0)*tmp2()(s2)(2);

View File

@ -0,0 +1,87 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/scalar/CovariantLaplacian.h
Copyright (C) 2016
Author: Azusa Yamaguchi
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
#pragma once
namespace Grid {
namespace QCD {
template <class Gimpl> class CovariantSmearing : public Gimpl
{
public:
INHERIT_GIMPL_TYPES(Gimpl);
typedef typename Gimpl::GaugeLinkField GaugeMat;
typedef typename Gimpl::GaugeField GaugeLorentz;
template<typename T>
static void GaussianSmear(const std::vector<LatticeColourMatrix>& U,
T& chi,
const Real& width, int Iterations, int orthog)
{
GridBase *grid = chi._grid;
T psi(grid);
////////////////////////////////////////////////////////////////////////////////////
// Follow Chroma conventions for width to keep compatibility with previous data
// Free field iterates
// chi = (1 - w^2/4N p^2)^N chi
//
// ~ (e^(-w^2/4N p^2)^N chi
// ~ (e^(-w^2/4 p^2) chi
// ~ (e^(-w'^2/2 p^2) chi [ w' = w/sqrt(2) ]
//
// Which in coordinate space is proportional to
//
// e^(-x^2/w^2) = e^(-x^2/2w'^2)
//
// The 4 is a bit unconventional from Gaussian width perspective, but... it's Chroma convention.
// 2nd derivative approx d^2/dx^2 = x+mu + x-mu - 2x
//
// d^2/dx^2 = - p^2
//
// chi = ( 1 + w^2/4N d^2/dx^2 )^N chi
//
////////////////////////////////////////////////////////////////////////////////////
Real coeff = (width*width) / Real(4*Iterations);
int dims = Nd;
if( orthog < Nd ) dims=Nd-1;
for(int n = 0; n < Iterations; ++n) {
psi = (-2.0*dims)*chi;
for(int mu=0;mu<Nd;mu++) {
if ( mu != orthog ) {
psi = psi + Gimpl::CovShiftForward(U[mu],mu,chi);
psi = psi + Gimpl::CovShiftBackward(U[mu],mu,chi);
}
}
chi = chi + coeff*psi;
}
}
};
}}

View File

@ -31,6 +31,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
template <class Gimpl>
class FourierAcceleratedGaugeFixer : public Gimpl {
public:
@ -45,30 +46,57 @@ public:
A[mu] = Ta(U[mu]) * cmi;
}
}
static void DmuAmu(const std::vector<GaugeMat> &A,GaugeMat &dmuAmu) {
static void DmuAmu(const std::vector<GaugeMat> &A,GaugeMat &dmuAmu,int orthog) {
dmuAmu=Zero();
for(int mu=0;mu<Nd;mu++){
dmuAmu = dmuAmu + A[mu] - Cshift(A[mu],mu,-1);
if ( mu != orthog ) {
dmuAmu = dmuAmu + A[mu] - Cshift(A[mu],mu,-1);
}
}
}
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false) {
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
GridBase *grid = Umu.Grid();
GaugeMat xform(grid);
SteepestDescentGaugeFix(Umu,xform,alpha,maxiter,Omega_tol,Phi_tol,Fourier,orthog);
}
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,GaugeMat &xform,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
GridBase *grid = Umu.Grid();
Real org_plaq =WilsonLoops<Gimpl>::avgPlaquette(Umu);
Real org_link_trace=WilsonLoops<Gimpl>::linkTrace(Umu);
Real old_trace = org_link_trace;
Real trG;
xform=1.0;
std::vector<GaugeMat> U(Nd,grid);
GaugeMat dmuAmu(grid);
for(int i=0;i<maxiter;i++){
for(int mu=0;mu<Nd;mu++) U[mu]= PeekIndex<LorentzIndex>(Umu,mu);
if ( Fourier==false ) {
trG = SteepestDescentStep(U,alpha,dmuAmu);
{
Real plaq =WilsonLoops<Gimpl>::avgPlaquette(Umu);
Real link_trace=WilsonLoops<Gimpl>::linkTrace(Umu);
if( (orthog>=0) && (orthog<Nd) ){
std::cout << GridLogMessage << " Gauge fixing to Coulomb gauge time="<<orthog<< " plaq= "<<plaq<<" link trace = "<<link_trace<< std::endl;
} else {
trG = FourierAccelSteepestDescentStep(U,alpha,dmuAmu);
std::cout << GridLogMessage << " Gauge fixing to Landau gauge plaq= "<<plaq<<" link trace = "<<link_trace<< std::endl;
}
}
for(int i=0;i<maxiter;i++){
for(int mu=0;mu<Nd;mu++) U[mu]= PeekIndex<LorentzIndex>(Umu,mu);
if ( Fourier==false ) {
trG = SteepestDescentStep(U,xform,alpha,dmuAmu,orthog);
} else {
trG = FourierAccelSteepestDescentStep(U,xform,alpha,dmuAmu,orthog);
}
// std::cout << GridLogMessage << "trG "<< trG<< std::endl;
// std::cout << GridLogMessage << "xform "<< norm2(xform)<< std::endl;
// std::cout << GridLogMessage << "dmuAmu "<< norm2(dmuAmu)<< std::endl;
for(int mu=0;mu<Nd;mu++) PokeIndex<LorentzIndex>(Umu,U[mu],mu);
// Monitor progress and convergence test
// infrequently to minimise cost overhead
@ -84,7 +112,6 @@ public:
Real Phi = 1.0 - old_trace / link_trace ;
Real Omega= 1.0 - trG;
std::cout << GridLogMessage << " Iteration "<<i<< " Phi= "<<Phi<< " Omega= " << Omega<< " trG " << trG <<std::endl;
if ( (Omega < Omega_tol) && ( ::fabs(Phi) < Phi_tol) ) {
std::cout << GridLogMessage << "Converged ! "<<std::endl;
@ -96,25 +123,26 @@ public:
}
}
};
static Real SteepestDescentStep(std::vector<GaugeMat> &U,Real & alpha, GaugeMat & dmuAmu) {
static Real SteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) {
GridBase *grid = U[0].Grid();
std::vector<GaugeMat> A(Nd,grid);
GaugeMat g(grid);
GaugeLinkToLieAlgebraField(U,A);
ExpiAlphaDmuAmu(A,g,alpha,dmuAmu);
ExpiAlphaDmuAmu(A,g,alpha,dmuAmu,orthog);
Real vol = grid->gSites();
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
xform = g*xform ;
SU<Nc>::GaugeTransform(U,g);
return trG;
}
static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,Real & alpha, GaugeMat & dmuAmu) {
static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) {
GridBase *grid = U[0].Grid();
@ -133,38 +161,41 @@ public:
GaugeLinkToLieAlgebraField(U,A);
DmuAmu(A,dmuAmu);
DmuAmu(A,dmuAmu,orthog);
theFFT.FFT_all_dim(dmuAmu_p,dmuAmu,FFT::forward);
std::vector<int> mask(Nd,1);
for(int mu=0;mu<Nd;mu++) if (mu==orthog) mask[mu]=0;
theFFT.FFT_dim_mask(dmuAmu_p,dmuAmu,mask,FFT::forward);
//////////////////////////////////
// Work out Fp = psq_max/ psq...
// Avoid singularities in Fp
//////////////////////////////////
Coordinate latt_size = grid->GlobalDimensions();
Coordinate coor(grid->_ndimension,0);
for(int mu=0;mu<Nd;mu++) {
Real TwoPiL = M_PI * 2.0/ latt_size[mu];
LatticeCoordinate(pmu,mu);
pmu = TwoPiL * pmu ;
psq = psq + 4.0*sin(pmu*0.5)*sin(pmu*0.5);
if ( mu != orthog ) {
Real TwoPiL = M_PI * 2.0/ latt_size[mu];
LatticeCoordinate(pmu,mu);
pmu = TwoPiL * pmu ;
psq = psq + 4.0*sin(pmu*0.5)*sin(pmu*0.5);
}
}
Complex psqMax(16.0);
Fp = psqMax*one/psq;
/*
static int once;
if ( once == 0 ) {
std::cout << " Fp " << Fp <<std::endl;
once ++;
}*/
pokeSite(TComplex(1.0),Fp,coor);
pokeSite(TComplex(16.0),Fp,coor);
if( (orthog>=0) && (orthog<Nd) ){
for(int t=0;t<grid->GlobalDimensions()[orthog];t++){
coor[orthog]=t;
pokeSite(TComplex(16.0),Fp,coor);
}
}
dmuAmu_p = dmuAmu_p * Fp;
theFFT.FFT_all_dim(dmuAmu,dmuAmu_p,FFT::backward);
theFFT.FFT_dim_mask(dmuAmu,dmuAmu_p,mask,FFT::backward);
GaugeMat ciadmam(grid);
Complex cialpha(0.0,-alpha);
@ -173,16 +204,17 @@ public:
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
xform = g*xform ;
SU<Nc>::GaugeTransform(U,g);
return trG;
}
static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &A,GaugeMat &g,Real & alpha, GaugeMat &dmuAmu) {
static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &A,GaugeMat &g,Real & alpha, GaugeMat &dmuAmu,int orthog) {
GridBase *grid = g.Grid();
Complex cialpha(0.0,-alpha);
GaugeMat ciadmam(grid);
DmuAmu(A,dmuAmu);
DmuAmu(A,dmuAmu,orthog);
ciadmam = dmuAmu*cialpha;
SU<Nc>::taExp(ciadmam,g);
}

View File

@ -678,9 +678,18 @@ public:
out += la;
}
}
/*
add GaugeTrans
*/
/*
* Fundamental rep gauge xform
*/
template<typename Fundamental,typename GaugeMat>
static void GaugeTransformFundamental( Fundamental &ferm, GaugeMat &g){
GridBase *grid = ferm._grid;
conformable(grid,g._grid);
ferm = g*ferm;
}
/*
* Adjoint rep gauge xform
*/
template<typename GaugeField,typename GaugeMat>
static void GaugeTransform( GaugeField &Umu, GaugeMat &g){