1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-20 00:36:55 +01:00

Merge branch 'develop' into feature/gpu-port

This commit is contained in:
Peter Boyle
2019-07-16 11:55:17 +01:00
274 changed files with 7120 additions and 4663 deletions

View File

@ -57,14 +57,15 @@ struct StaggeredImplParams {
StaggeredImplParams() {};
};
struct OneFlavourRationalParams : Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(OneFlavourRationalParams,
RealD, lo,
RealD, hi,
int, MaxIter,
RealD, tolerance,
int, degree,
int, precision);
struct OneFlavourRationalParams : Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(OneFlavourRationalParams,
RealD, lo,
RealD, hi,
int, MaxIter,
RealD, tolerance,
int, degree,
int, precision,
int, BoundsCheckFreq);
// MaxIter and tolerance, vectors??
@ -74,15 +75,17 @@ struct OneFlavourRationalParams : Serializable {
int _maxit = 1000,
RealD tol = 1.0e-8,
int _degree = 10,
int _precision = 64)
: lo(_lo),
hi(_hi),
MaxIter(_maxit),
tolerance(tol),
degree(_degree),
precision(_precision){};
};
int _precision = 64,
int _BoundsCheckFreq=20)
: lo(_lo),
hi(_hi),
MaxIter(_maxit),
tolerance(tol),
degree(_degree),
precision(_precision),
BoundsCheckFreq(_BoundsCheckFreq){};
};
NAMESPACE_END(Grid);
#endif

View File

@ -41,7 +41,7 @@ public:
INHERIT_IMPL_TYPES(Impl);
public:
void FreePropagator(const FermionField &in,FermionField &out,RealD mass, std::vector<double> twist, bool fiveD) {
void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary, std::vector<double> twist, bool fiveD) {
FermionField in_k(in.Grid());
FermionField prop_k(in.Grid());
@ -54,15 +54,19 @@ public:
typedef typename Simd::scalar_type Scalar;
Scalar ci(0.0,1.0);
assert(twist.size() == Nd);//check that twist is Nd
assert(boundary.size() == Nd);//check that boundary conditions is Nd
int shift = 0;
if(fiveD) shift = 1;
for(unsigned int nu = 0; nu < Nd; nu++)
{
// Shift coordinate lattice index by 1 to account for 5th dimension.
LatticeCoordinate(coor, nu + shift);
ph = ph + twist[nu]*coor*((1./(in.Grid()->FullDimensions()[nu+shift])));
double boundary_phase = ::acos(real(boundary[nu]));
ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu+shift])));
//momenta for propagator shifted by twist+boundary
twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI));
}
in_buf = exp(Scalar(2.0*M_PI)*ci*ph*(-1.0))*in;
in_buf = exp(ci*ph*(-1.0))*in;
if(fiveD){//FFT only on temporal and spatial dimensions
std::vector<int> mask(Nd+1,1); mask[0] = 0;
@ -75,26 +79,29 @@ public:
this->MomentumSpacePropagatorHt(prop_k,in_k,mass,twist);
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
}
//phase for boundary condition
out = out * exp(Scalar(2.0*M_PI)*ci*ph);
};
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<double> twist) {
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary,std::vector<double> twist) {
bool fiveD = true; //5d propagator by default
FreePropagator(in,out,mass,twist,fiveD);
FreePropagator(in,out,mass,boundary,twist,fiveD);
};
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass, bool fiveD) {
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
FreePropagator(in,out,mass,twist,fiveD);
std::vector<Complex> boundary;
for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions
FreePropagator(in,out,mass,boundary,twist,fiveD);
};
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
bool fiveD = true; //5d propagator by default
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
FreePropagator(in,out,mass,twist,fiveD);
};
std::vector<double> twist(Nd,0.0); //default: twist angle 0
std::vector<Complex> boundary;
for(int i=0;i<Nd;i++) boundary.push_back(1); //default: periodic boundary conditions
FreePropagator(in,out,mass,boundary,twist,fiveD);
};
virtual void Instantiatable(void) {};
// Constructors

View File

@ -93,7 +93,7 @@ public:
virtual void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) { assert(0);};
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<double> twist)
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary,std::vector<double> twist)
{
FFT theFFT((GridCartesian *) in.Grid());
@ -106,27 +106,35 @@ public:
ComplexField coor(in.Grid());
ComplexField ph(in.Grid()); ph = Zero();
FermionField in_buf(in.Grid()); in_buf = Zero();
Scalar ci(0.0,1.0);
assert(twist.size() == Nd);//check that twist is Nd
assert(boundary.size() == Nd);//check that boundary conditions is Nd
for(unsigned int nu = 0; nu < Nd; nu++)
{
LatticeCoordinate(coor, nu);
ph = ph + twist[nu]*coor*((1./(in.Grid()->_fdimensions[nu])));
double boundary_phase = ::acos(real(boundary[nu]));
ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu])));
//momenta for propagator shifted by twist+boundary
twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI));
}
in_buf = (exp(Scalar(2.0*M_PI)*ci*ph*(-1.0)))*in;
in_buf = exp(ci*ph*(-1.0))*in;
theFFT.FFT_all_dim(in_k,in_buf,FFT::forward);
this->MomentumSpacePropagator(prop_k,in_k,mass,twist);
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
//phase for boundary condition
out = out * exp(Scalar(2.0*M_PI)*ci*ph);
};
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
FreePropagator(in,out,mass,twist);
};
std::vector<Complex> boundary;
for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
FreePropagator(in,out,mass,boundary,twist);
};
///////////////////////////////////////////////
// Updates gauge field during HMC
@ -146,8 +154,14 @@ public:
Current curr_type,
unsigned int mu,
unsigned int tmin,
unsigned int tmax,
ComplexField &lattice_cmplx)=0;
unsigned int tmax,
ComplexField &lattice_cmplx)=0;
// Only reimplemented in Wilson5D
// Default to just a zero correlation function
virtual void ContractJ5q(FermionField &q_in ,ComplexField &J5q) { J5q=Zero(); };
virtual void ContractJ5q(PropagatorField &q_in,ComplexField &J5q) { J5q=Zero(); };
///////////////////////////////////////////////
// Physical field import/export
///////////////////////////////////////////////

View File

@ -63,6 +63,7 @@ public:
public:
typedef WilsonFermion<Impl> WilsonBase;
virtual int ConstEE(void) { return 0; };
virtual void Instantiatable(void){};
// Constructors
WilsonCloverFermion(GaugeField &_Umu, GridCartesian &Fgrid,

View File

@ -229,6 +229,10 @@ public:
unsigned int tmin,
unsigned int tmax,
ComplexField &lattice_cmplx);
void ContractJ5q(PropagatorField &q_in,ComplexField &J5q);
void ContractJ5q(FermionField &q_in,ComplexField &J5q);
};
NAMESPACE_END(Grid);

View File

@ -898,6 +898,79 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHw(FermionField &out,const Fe
merge(qSiteRev, qSiteVec); \
}
// psi = chiralProjectPlus(Result_s[Ls/2-1]);
// psi+= chiralProjectMinus(Result_s[Ls/2]);
// PJ5q+=localInnerProduct(psi,psi);
template<class vobj>
Lattice<vobj> spProj5p(const Lattice<vobj> & in)
{
GridBase *grid=in.Grid();
Gamma G5(Gamma::Algebra::Gamma5);
Lattice<vobj> ret(grid);
auto ret_v = ret.View();
auto in_v = in.View();
thread_for(ss,grid->oSites(),{
ret_v[ss] = in_v[ss] + G5*in_v[ss];
});
return ret;
}
template<class vobj>
Lattice<vobj> spProj5m(const Lattice<vobj> & in)
{
Gamma G5(Gamma::Algebra::Gamma5);
GridBase *grid=in.Grid();
Lattice<vobj> ret(grid);
auto ret_v = ret.View();
auto in_v = in.View();
thread_for(ss,grid->oSites(),{
ret_v[ss] = in_v[ss] - G5*in_v[ss];
});
return ret;
}
template <class Impl>
void WilsonFermion5D<Impl>::ContractJ5q(FermionField &q_in,ComplexField &J5q)
{
conformable(GaugeGrid(), J5q.Grid());
conformable(q_in.Grid(), FermionGrid());
// 4d field
int Ls = this->Ls;
FermionField psi(GaugeGrid());
FermionField p_plus (GaugeGrid());
FermionField p_minus(GaugeGrid());
FermionField p(GaugeGrid());
ExtractSlice(p_plus , q_in, Ls/2 , 0);
ExtractSlice(p_minus, q_in, Ls/2-1 , 0);
p_plus = spProj5p(p_plus );
p_minus= spProj5m(p_minus);
p=p_plus+p_minus;
J5q = localInnerProduct(p,p);
}
template <class Impl>
void WilsonFermion5D<Impl>::ContractJ5q(PropagatorField &q_in,ComplexField &J5q)
{
conformable(GaugeGrid(), J5q.Grid());
conformable(q_in.Grid(), FermionGrid());
// 4d field
int Ls = this->Ls;
PropagatorField psi(GaugeGrid());
PropagatorField p_plus (GaugeGrid());
PropagatorField p_minus(GaugeGrid());
PropagatorField p(GaugeGrid());
ExtractSlice(p_plus , q_in, Ls/2 , 0);
ExtractSlice(p_minus, q_in, Ls/2-1 , 0);
p_plus = spProj5p(p_plus );
p_minus= spProj5m(p_minus);
p=p_plus+p_minus;
J5q = localInnerProduct(p,p);
}
template <class Impl>
void WilsonFermion5D<Impl>::ContractConservedCurrent(PropagatorField &q_in_1,
PropagatorField &q_in_2,
@ -908,6 +981,7 @@ void WilsonFermion5D<Impl>::ContractConservedCurrent(PropagatorField &q_in_1,
conformable(q_in_1.Grid(), FermionGrid());
conformable(q_in_1.Grid(), q_in_2.Grid());
conformable(_FourDimGrid, q_out.Grid());
PropagatorField tmp1(FermionGrid()), tmp2(FermionGrid());
unsigned int LLs = q_in_1.Grid()->_rdimensions[0];
q_out = Zero();
@ -960,7 +1034,6 @@ void WilsonFermion5D<Impl>::ContractConservedCurrent(PropagatorField &q_in_1,
}
template <class Impl>
void WilsonFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
PropagatorField &q_out,

View File

@ -29,14 +29,24 @@ directory
#ifndef GRID_GAUGE_IMPL_TYPES_H
#define GRID_GAUGE_IMPL_TYPES_H
NAMESPACE_BEGIN(Grid);
#define CPS_MD_TIME
#ifdef CPS_MD_TIME
#define HMC_MOMENTUM_DENOMINATOR (2.0)
#else
#define HMC_MOMENTUM_DENOMINATOR (1.0)
#endif
////////////////////////////////////////////////////////////////////////
// Implementation dependent gauge types
////////////////////////////////////////////////////////////////////////
#define INHERIT_GIMPL_TYPES(GImpl) \
typedef typename GImpl::Simd Simd; \
typedef typename GImpl::Scalar Scalar; \
typedef typename GImpl::LinkField GaugeLinkField; \
typedef typename GImpl::Field GaugeField; \
typedef typename GImpl::ComplexField ComplexField;\
@ -54,7 +64,8 @@ NAMESPACE_BEGIN(Grid);
template <class S, int Nrepresentation = Nc, int Nexp = 12 > class GaugeImplTypes {
public:
typedef S Simd;
typedef typename Simd::scalar_type scalar_type;
typedef scalar_type Scalar;
template <typename vtype> using iImplScalar = iScalar<iScalar<iScalar<vtype> > >;
template <typename vtype> using iImplGaugeLink = iScalar<iScalar<iMatrix<vtype, Nrepresentation> > >;
template <typename vtype> using iImplGaugeField = iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nd>;
@ -85,12 +96,10 @@ public:
///////////////////////////////////////////////////////////
// Move these to another class
// HMC auxiliary functions
static inline void generate_momenta(Field &P, GridParallelRNG &pRNG) {
// specific for SU gauge fields
LinkField Pmu(P.Grid());
Pmu = Zero();
//
static inline void generate_momenta(Field &P, GridParallelRNG &pRNG)
{
// Zbigniew Srocinsky thesis:
//
// P(p) = N \Prod_{x\mu}e^-{1/2 Tr (p^2_mux)}
//
// p_x,mu = c_x,mu,a T_a
@ -101,26 +110,16 @@ public:
//
// = N \Prod_{x,\mu,a} e^-{1/2 (c_xmua/sqrt{2})^2 }
//
// Expect cx' = cxmua/sqrt(2) to be a unit variance gaussian.
//
// Expect cxmua_new variance sqrt(2).
// Was variance cxmua_old variance 1
//
// tau_old * Pold = 1 = tau_old/sqrt(2) * [Pold * sqrt(2)]
// = tau_new * Pnew
// Expect cxmua variance sqrt(2).
//
// Hence tau_new = tau_cps = tau_guido/sqrt(2).
// Must scale the momentum by sqrt(2) to invoke CPS and UKQCD conventions
//
//
// Must scale the momentum by sqrt(2) up to invoke CPS and UKQCD conventions
//
//
// Hence expect cxmua = cx'*sqrt(2).
//
// Seek the scale parameter to be
LinkField Pmu(P.Grid());
Pmu = Zero();
for (int mu = 0; mu < Nd; mu++) {
SU<Nrepresentation>::GaussianFundamentalLieAlgebraMatrix(pRNG, Pmu);
RealD scale = ::sqrt(2) ;
RealD scale = ::sqrt(HMC_MOMENTUM_DENOMINATOR) ;
Pmu = Pmu*scale;
PokeIndex<LorentzIndex>(P, Pmu, mu);
}

View File

@ -36,6 +36,7 @@ NAMESPACE_BEGIN(Grid);
{
public:
typedef S Simd;
typedef typename Simd::scalar_type Scalar;
template <typename vtype>
using iImplGaugeLink = iScalar<iScalar<iScalar<vtype>>>;

View File

@ -74,7 +74,7 @@ public:
virtual void deriv(const GaugeField &Umu,GaugeField & dSdU) {
//extend Ta to include Lorentz indexes
RealD factor_p = c_plaq/RealD(Nc)*0.5;
RealD factor_r = c_rect/RealD(Nc)*0.5;
RealD factor_r = c_rect/RealD(Nc)*0.5;
GridBase *grid = Umu.Grid();

View File

@ -0,0 +1,53 @@
#pragma once
namespace Grid{
namespace QCD{
template<class Field>
void HighBoundCheck(LinearOperatorBase<Field> &HermOp,
Field &Phi,
RealD hi)
{
// Eigenvalue bound check at high end
PowerMethod<Field> power_method;
auto lambda_max = power_method(HermOp,Phi);
std::cout << GridLogMessage << "Pseudofermion action lamda_max "<<lambda_max<<"( bound "<<hi<<")"<<std::endl;
assert( (lambda_max < hi) && " High Bounds Check on operator failed" );
}
template<class Field> void InverseSqrtBoundsCheck(int MaxIter,double tol,
LinearOperatorBase<Field> &HermOp,
Field &GaussNoise,
MultiShiftFunction &PowerNegHalf)
{
GridBase *FermionGrid = GaussNoise._grid;
Field X(FermionGrid);
Field Y(FermionGrid);
Field Z(FermionGrid);
X=GaussNoise;
RealD Nx = norm2(X);
ConjugateGradientMultiShift<Field> msCG(MaxIter,PowerNegHalf);
msCG(HermOp,X,Y);
msCG(HermOp,Y,Z);
RealD Nz = norm2(Z);
HermOp.HermOp(Z,Y);
RealD Ny = norm2(Y);
X=X-Y;
RealD Nd = norm2(X);
std::cout << "************************* "<<std::endl;
std::cout << " noise = "<<Nx<<std::endl;
std::cout << " (MdagM^-1/2)^2 noise = "<<Nz<<std::endl;
std::cout << " MdagM (MdagM^-1/2)^2 noise = "<<Ny<<std::endl;
std::cout << " noise - MdagM (MdagM^-1/2)^2 noise = "<<Nd<<std::endl;
std::cout << "************************* "<<std::endl;
assert( (std::sqrt(Nd/Nx)<tol) && " InverseSqrtBoundsCheck ");
}
}
}

View File

@ -25,240 +25,302 @@ with this program; if not, write to the Free Software Foundation, Inc.,
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
/* END LEGAL */
/////////////////////////////////////////////////////////////////
// Implementation of exact one flavour algorithm (EOFA) //
// using fermion classes defined in: //
// Grid/qcd/action/fermion/DomainWallEOFAFermion.h (Shamir) //
// Grid/qcd/action/fermion/MobiusEOFAFermion.h (Mobius) //
// arXiv: 1403.1683, 1706.05843 //
/////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
// Implementation of exact one flavour algorithm (EOFA) //
// using fermion classes defined in: //
// Grid/qcd/action/fermion/DomainWallEOFAFermion.h (Shamir) //
// Grid/qcd/action/fermion/MobiusEOFAFermion.h (Mobius) //
// arXiv: 1403.1683, 1706.05843 //
/////////////////////////////////////////////////////////////////
#ifndef QCD_PSEUDOFERMION_EXACT_ONE_FLAVOUR_RATIO_H
#define QCD_PSEUDOFERMION_EXACT_ONE_FLAVOUR_RATIO_H
NAMESPACE_BEGIN(Grid);
namespace Grid{
namespace QCD{
///////////////////////////////////////////////////////////////
// Exact one flavour implementation of DWF determinant ratio //
///////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////
// Exact one flavour implementation of DWF determinant ratio //
///////////////////////////////////////////////////////////////
template<class Impl>
class ExactOneFlavourRatioPseudoFermionAction : public Action<typename Impl::GaugeField>
{
public:
INHERIT_IMPL_TYPES(Impl);
typedef OneFlavourRationalParams Params;
Params param;
MultiShiftFunction PowerNegHalf;
private:
bool use_heatbath_forecasting;
AbstractEOFAFermion<Impl>& Lop; // the basic LH operator
AbstractEOFAFermion<Impl>& Rop; // the basic RH operator
SchurRedBlackDiagMooeeSolve<FermionField> Solver;
FermionField Phi; // the pseudofermion field for this trajectory
public:
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop, AbstractEOFAFermion<Impl>& _Rop,
OperatorFunction<FermionField>& S, Params& p, bool use_fc=false) : Lop(_Lop), Rop(_Rop), Solver(S),
Phi(_Lop.FermionGrid()), param(p), use_heatbath_forecasting(use_fc)
template<class Impl>
class ExactOneFlavourRatioPseudoFermionAction : public Action<typename Impl::GaugeField>
{
AlgRemez remez(param.lo, param.hi, param.precision);
public:
INHERIT_IMPL_TYPES(Impl);
typedef OneFlavourRationalParams Params;
Params param;
MultiShiftFunction PowerNegHalf;
// MdagM^(+- 1/2)
std::cout << GridLogMessage << "Generating degree " << param.degree << " for x^(-1/2)" << std::endl;
remez.generateApprox(param.degree, 1, 2);
PowerNegHalf.Init(remez, param.tolerance, true);
};
private:
bool use_heatbath_forecasting;
AbstractEOFAFermion<Impl>& Lop; // the basic LH operator
AbstractEOFAFermion<Impl>& Rop; // the basic RH operator
SchurRedBlackDiagMooeeSolve<FermionField> SolverHB;
SchurRedBlackDiagMooeeSolve<FermionField> SolverL;
SchurRedBlackDiagMooeeSolve<FermionField> SolverR;
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverL;
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverR;
FermionField Phi; // the pseudofermion field for this trajectory
virtual std::string action_name() { return "ExactOneFlavourRatioPseudoFermionAction"; }
public:
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
AbstractEOFAFermion<Impl>& _Rop,
OperatorFunction<FermionField>& HeatbathCG,
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
Params& p,
bool use_fc=false) :
Lop(_Lop),
Rop(_Rop),
SolverHB(HeatbathCG,false,true),
SolverL(ActionCGL, false, true), SolverR(ActionCGR, false, true),
DerivativeSolverL(DerivCGL, false, true), DerivativeSolverR(DerivCGR, false, true),
Phi(_Lop.FermionGrid()),
param(p),
use_heatbath_forecasting(use_fc)
{
AlgRemez remez(param.lo, param.hi, param.precision);
virtual std::string LogParameters() {
std::stringstream sstream;
sstream << GridLogMessage << "[" << action_name() << "] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] High :" << param.hi << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Tolerance :" << param.tolerance << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Degree :" << param.degree << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Precision :" << param.precision << std::endl;
return sstream.str();
}
// MdagM^(+- 1/2)
std::cout << GridLogMessage << "Generating degree " << param.degree << " for x^(-1/2)" << std::endl;
remez.generateApprox(param.degree, 1, 2);
PowerNegHalf.Init(remez, param.tolerance, true);
};
// Spin projection
void spProj(const FermionField& in, FermionField& out, int sign, int Ls)
{
if(sign == 1){ for(int s=0; s<Ls; ++s){ axpby_ssp_pplus(out, 0.0, in, 1.0, in, s, s); } }
else{ for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(out, 0.0, in, 1.0, in, s, s); } }
}
virtual std::string action_name() { return "ExactOneFlavourRatioPseudoFermionAction"; }
// EOFA heatbath: see Eqn. (29) of arXiv:1706.05843
// We generate a Gaussian noise vector \eta, and then compute
// \Phi = M_{\rm EOFA}^{-1/2} * \eta
// using a rational approximation to the inverse square root
virtual void refresh(const GaugeField& U, GridParallelRNG& pRNG)
{
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField eta (Lop.FermionGrid());
FermionField CG_src (Lop.FermionGrid());
FermionField CG_soln (Lop.FermionGrid());
FermionField Forecast_src(Lop.FermionGrid());
std::vector<FermionField> tmp(2, Lop.FermionGrid());
// Use chronological inverter to forecast solutions across poles
std::vector<FermionField> prev_solns;
if(use_heatbath_forecasting){ prev_solns.reserve(param.degree); }
ChronoForecast<AbstractEOFAFermion<Impl>, FermionField> Forecast;
// Seed with Gaussian noise vector (var = 0.5)
RealD scale = std::sqrt(0.5);
gaussian(pRNG,eta);
eta = eta * scale;
printf("Heatbath source vector: <\\eta|\\eta> = %1.15e\n", norm2(eta));
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
RealD N(PowerNegHalf.norm);
for(int k=0; k<param.degree; ++k){ N += PowerNegHalf.residues[k] / ( 1.0 + PowerNegHalf.poles[k] ); }
Phi = eta * N;
// LH terms:
// \Phi = \Phi + k \sum_{k=1}^{N_{p}} P_{-} \Omega_{-}^{\dagger} ( H(mf)
// - \gamma_{l} \Delta_{-}(mf,mb) P_{-} )^{-1} \Omega_{-} P_{-} \eta
RealD gamma_l(0.0);
spProj(eta, tmp[0], -1, Lop.Ls);
Lop.Omega(tmp[0], tmp[1], -1, 0);
G5R5(CG_src, tmp[1]);
tmp[1] = Zero();
for(int k=0; k<param.degree; ++k){
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
Lop.RefreshShiftCoefficients(-gamma_l);
if(use_heatbath_forecasting){ // Forecast CG guess using solutions from previous poles
Lop.Mdag(CG_src, Forecast_src);
CG_soln = Forecast(Lop, Forecast_src, prev_solns);
Solver(Lop, CG_src, CG_soln);
prev_solns.push_back(CG_soln);
} else {
CG_soln = Zero(); // Just use zero as the initial guess
Solver(Lop, CG_src, CG_soln);
virtual std::string LogParameters() {
std::stringstream sstream;
sstream << GridLogMessage << "[" << action_name() << "] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] High :" << param.hi << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Tolerance :" << param.tolerance << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Degree :" << param.degree << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Precision :" << param.precision << std::endl;
return sstream.str();
}
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = tmp[1] + ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Lop.k ) * tmp[0];
}
Lop.Omega(tmp[1], tmp[0], -1, 1);
spProj(tmp[0], tmp[1], -1, Lop.Ls);
Phi = Phi + tmp[1];
// RH terms:
// \Phi = \Phi - k \sum_{k=1}^{N_{p}} P_{+} \Omega_{+}^{\dagger} ( H(mb)
// + \gamma_{l} \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \eta
spProj(eta, tmp[0], 1, Rop.Ls);
Rop.Omega(tmp[0], tmp[1], 1, 0);
G5R5(CG_src, tmp[1]);
tmp[1] = Zero();
if(use_heatbath_forecasting){ prev_solns.clear(); } // empirically, LH solns don't help for RH solves
for(int k=0; k<param.degree; ++k){
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
Rop.RefreshShiftCoefficients(-gamma_l*PowerNegHalf.poles[k]);
if(use_heatbath_forecasting){
Rop.Mdag(CG_src, Forecast_src);
CG_soln = Forecast(Rop, Forecast_src, prev_solns);
Solver(Rop, CG_src, CG_soln);
prev_solns.push_back(CG_soln);
} else {
CG_soln = Zero();
Solver(Rop, CG_src, CG_soln);
// Spin projection
void spProj(const FermionField& in, FermionField& out, int sign, int Ls)
{
if(sign == 1){ for(int s=0; s<Ls; ++s){ axpby_ssp_pplus(out, 0.0, in, 1.0, in, s, s); } }
else{ for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(out, 0.0, in, 1.0, in, s, s); } }
}
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = tmp[1] - ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Rop.k ) * tmp[0];
}
Rop.Omega(tmp[1], tmp[0], 1, 1);
spProj(tmp[0], tmp[1], 1, Rop.Ls);
Phi = Phi + tmp[1];
// Reset shift coefficients for energy and force evals
Lop.RefreshShiftCoefficients(0.0);
Rop.RefreshShiftCoefficients(-1.0);
// EOFA heatbath: see Eqn. (29) of arXiv:1706.05843
// We generate a Gaussian noise vector \eta, and then compute
// \Phi = M_{\rm EOFA}^{-1/2} * \eta
// using a rational approximation to the inverse square root
//
// As a check of rational require \Phi^dag M_{EOFA} \Phi == eta^dag M^-1/2^dag M M^-1/2 eta = eta^dag eta
//
virtual void refresh(const GaugeField& U, GridParallelRNG& pRNG)
{
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField eta (Lop.FermionGrid());
FermionField CG_src (Lop.FermionGrid());
FermionField CG_soln (Lop.FermionGrid());
FermionField Forecast_src(Lop.FermionGrid());
std::vector<FermionField> tmp(2, Lop.FermionGrid());
// Use chronological inverter to forecast solutions across poles
std::vector<FermionField> prev_solns;
if(use_heatbath_forecasting){ prev_solns.reserve(param.degree); }
ChronoForecast<AbstractEOFAFermion<Impl>, FermionField> Forecast;
// Seed with Gaussian noise vector (var = 0.5)
RealD scale = std::sqrt(0.5);
gaussian(pRNG,eta);
eta = eta * scale;
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
RealD N(PowerNegHalf.norm);
for(int k=0; k<param.degree; ++k){ N += PowerNegHalf.residues[k] / ( 1.0 + PowerNegHalf.poles[k] ); }
Phi = eta * N;
// LH terms:
// \Phi = \Phi + k \sum_{k=1}^{N_{p}} P_{-} \Omega_{-}^{\dagger} ( H(mf)
// - \gamma_{l} \Delta_{-}(mf,mb) P_{-} )^{-1} \Omega_{-} P_{-} \eta
RealD gamma_l(0.0);
spProj(eta, tmp[0], -1, Lop.Ls);
Lop.Omega(tmp[0], tmp[1], -1, 0);
G5R5(CG_src, tmp[1]);
tmp[1] = zero;
for(int k=0; k<param.degree; ++k){
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
Lop.RefreshShiftCoefficients(-gamma_l);
if(use_heatbath_forecasting){ // Forecast CG guess using solutions from previous poles
Lop.Mdag(CG_src, Forecast_src);
CG_soln = Forecast(Lop, Forecast_src, prev_solns);
SolverHB(Lop, CG_src, CG_soln);
prev_solns.push_back(CG_soln);
} else {
CG_soln = zero; // Just use zero as the initial guess
SolverHB(Lop, CG_src, CG_soln);
}
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = tmp[1] + ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Lop.k ) * tmp[0];
}
Lop.Omega(tmp[1], tmp[0], -1, 1);
spProj(tmp[0], tmp[1], -1, Lop.Ls);
Phi = Phi + tmp[1];
// RH terms:
// \Phi = \Phi - k \sum_{k=1}^{N_{p}} P_{+} \Omega_{+}^{\dagger} ( H(mb)
// + \gamma_{l} \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \eta
spProj(eta, tmp[0], 1, Rop.Ls);
Rop.Omega(tmp[0], tmp[1], 1, 0);
G5R5(CG_src, tmp[1]);
tmp[1] = zero;
if(use_heatbath_forecasting){ prev_solns.clear(); } // empirically, LH solns don't help for RH solves
for(int k=0; k<param.degree; ++k){
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
Rop.RefreshShiftCoefficients(-gamma_l*PowerNegHalf.poles[k]);
if(use_heatbath_forecasting){
Rop.Mdag(CG_src, Forecast_src);
CG_soln = Forecast(Rop, Forecast_src, prev_solns);
SolverHB(Rop, CG_src, CG_soln);
prev_solns.push_back(CG_soln);
} else {
CG_soln = zero;
SolverHB(Rop, CG_src, CG_soln);
}
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = tmp[1] - ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Rop.k ) * tmp[0];
}
Rop.Omega(tmp[1], tmp[0], 1, 1);
spProj(tmp[0], tmp[1], 1, Rop.Ls);
Phi = Phi + tmp[1];
// Reset shift coefficients for energy and force evals
Lop.RefreshShiftCoefficients(0.0);
Rop.RefreshShiftCoefficients(-1.0);
// Bounds check
RealD EtaDagEta = norm2(eta);
// RealD PhiDagMPhi= norm2(eta);
};
void Meofa(const GaugeField& U,const FermionField &phi, FermionField & Mphi)
{
#if 0
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField spProj_Phi(Lop.FermionGrid());
FermionField mPhi(Lop.FermionGrid());
std::vector<FermionField> tmp(2, Lop.FermionGrid());
mPhi = phi;
// LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi>
spProj(Phi, spProj_Phi, -1, Lop.Ls);
Lop.Omega(spProj_Phi, tmp[0], -1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
SolverL(Lop, tmp[1], tmp[0]);
Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
Lop.Omega(tmp[1], tmp[0], -1, 1);
mPhi = mPhi - Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
spProj(Phi, spProj_Phi, 1, Rop.Ls);
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
SolverR(Rop, tmp[1], tmp[0]);
Rop.Dtilde(tmp[0], tmp[1]);
Rop.Omega(tmp[1], tmp[0], 1, 1);
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
#endif
}
// EOFA action: see Eqn. (10) of arXiv:1706.05843
virtual RealD S(const GaugeField& U)
{
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField spProj_Phi(Lop.FermionGrid());
std::vector<FermionField> tmp(2, Lop.FermionGrid());
// S = <\Phi|\Phi>
RealD action(norm2(Phi));
// LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi>
spProj(Phi, spProj_Phi, -1, Lop.Ls);
Lop.Omega(spProj_Phi, tmp[0], -1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
SolverL(Lop, tmp[1], tmp[0]);
Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
Lop.Omega(tmp[1], tmp[0], -1, 1);
action -= Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
spProj(Phi, spProj_Phi, 1, Rop.Ls);
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
SolverR(Rop, tmp[1], tmp[0]);
Rop.Dtilde(tmp[0], tmp[1]);
Rop.Omega(tmp[1], tmp[0], 1, 1);
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
return action;
};
// EOFA pseudofermion force: see Eqns. (34)-(36) of arXiv:1706.05843
virtual void deriv(const GaugeField& U, GaugeField& dSdU)
{
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField spProj_Phi (Lop.FermionGrid());
FermionField Omega_spProj_Phi(Lop.FermionGrid());
FermionField CG_src (Lop.FermionGrid());
FermionField Chi (Lop.FermionGrid());
FermionField g5_R5_Chi (Lop.FermionGrid());
GaugeField force(Lop.GaugeGrid());
/////////////////////////////////////////////
// PAB:
// Optional single precision derivative ?
/////////////////////////////////////////////
// LH: dSdU = k \chi_{L}^{\dagger} \gamma_{5} R_{5} ( \partial_{x,\mu} D_{w} ) \chi_{L}
// \chi_{L} = H(mf)^{-1} \Omega_{-} P_{-} \Phi
spProj(Phi, spProj_Phi, -1, Lop.Ls);
Lop.Omega(spProj_Phi, Omega_spProj_Phi, -1, 0);
G5R5(CG_src, Omega_spProj_Phi);
spProj_Phi = zero;
DerivativeSolverL(Lop, CG_src, spProj_Phi);
Lop.Dtilde(spProj_Phi, Chi);
G5R5(g5_R5_Chi, Chi);
Lop.MDeriv(force, g5_R5_Chi, Chi, DaggerNo);
dSdU = -Lop.k * force;
// RH: dSdU = dSdU - k \chi_{R}^{\dagger} \gamma_{5} R_{5} ( \partial_{x,\mu} D_{w} ) \chi_{}
// \chi_{R} = ( H(mb) - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \Phi
spProj(Phi, spProj_Phi, 1, Rop.Ls);
Rop.Omega(spProj_Phi, Omega_spProj_Phi, 1, 0);
G5R5(CG_src, Omega_spProj_Phi);
spProj_Phi = zero;
DerivativeSolverR(Rop, CG_src, spProj_Phi);
Rop.Dtilde(spProj_Phi, Chi);
G5R5(g5_R5_Chi, Chi);
Lop.MDeriv(force, g5_R5_Chi, Chi, DaggerNo);
dSdU = dSdU + Rop.k * force;
};
};
// EOFA action: see Eqn. (10) of arXiv:1706.05843
virtual RealD S(const GaugeField& U)
{
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField spProj_Phi(Lop.FermionGrid());
std::vector<FermionField> tmp(2, Lop.FermionGrid());
// S = <\Phi|\Phi>
RealD action(norm2(Phi));
// LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi>
spProj(Phi, spProj_Phi, -1, Lop.Ls);
Lop.Omega(spProj_Phi, tmp[0], -1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = Zero();
Solver(Lop, tmp[1], tmp[0]);
Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
Lop.Omega(tmp[1], tmp[0], -1, 1);
action -= Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
spProj(Phi, spProj_Phi, 1, Rop.Ls);
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = Zero();
Solver(Rop, tmp[1], tmp[0]);
Rop.Dtilde(tmp[0], tmp[1]);
Rop.Omega(tmp[1], tmp[0], 1, 1);
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
return action;
};
// EOFA pseudofermion force: see Eqns. (34)-(36) of arXiv:1706.05843
virtual void deriv(const GaugeField& U, GaugeField& dSdU)
{
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField spProj_Phi (Lop.FermionGrid());
FermionField Omega_spProj_Phi(Lop.FermionGrid());
FermionField CG_src (Lop.FermionGrid());
FermionField Chi (Lop.FermionGrid());
FermionField g5_R5_Chi (Lop.FermionGrid());
GaugeField force(Lop.GaugeGrid());
// LH: dSdU = k \chi_{L}^{\dagger} \gamma_{5} R_{5} ( \partial_{x,\mu} D_{w} ) \chi_{L}
// \chi_{L} = H(mf)^{-1} \Omega_{-} P_{-} \Phi
spProj(Phi, spProj_Phi, -1, Lop.Ls);
Lop.Omega(spProj_Phi, Omega_spProj_Phi, -1, 0);
G5R5(CG_src, Omega_spProj_Phi);
spProj_Phi = Zero();
Solver(Lop, CG_src, spProj_Phi);
Lop.Dtilde(spProj_Phi, Chi);
G5R5(g5_R5_Chi, Chi);
Lop.MDeriv(force, g5_R5_Chi, Chi, DaggerNo);
dSdU = Lop.k * force;
// RH: dSdU = dSdU - k \chi_{R}^{\dagger} \gamma_{5} R_{5} ( \partial_{x,\mu} D_{w} ) \chi_{}
// \chi_{R} = ( H(mb) - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \Phi
spProj(Phi, spProj_Phi, 1, Rop.Ls);
Rop.Omega(spProj_Phi, Omega_spProj_Phi, 1, 0);
G5R5(CG_src, Omega_spProj_Phi);
spProj_Phi = Zero();
Solver(Rop, CG_src, spProj_Phi);
Rop.Dtilde(spProj_Phi, Chi);
G5R5(g5_R5_Chi, Chi);
Lop.MDeriv(force, g5_R5_Chi, Chi, DaggerNo);
dSdU = dSdU - Rop.k * force;
};
};
NAMESPACE_END(Grid);
}}
#endif

View File

@ -156,6 +156,13 @@ public:
msCG(Mpc, PhiOdd, Y);
if ( (rand()%param.BoundsCheckFreq)==0 ) {
FermionField gauss(FermOp.FermionRedBlackGrid());
gauss = PhiOdd;
HighBoundCheck(Mpc,gauss,param.hi);
InverseSqrtBoundsCheck(param.MaxIter,param.tolerance*100,Mpc,gauss,PowerNegHalf);
}
RealD action = norm2(Y);
std::cout << GridLogMessage << "Pseudofermion action FIXME -- is -1/4 "
"solve or -1/2 solve faster??? "

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -23,257 +23,267 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_RATIO_H
#define QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_RATIO_H
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////
// One flavour rational
///////////////////////////////////////
namespace Grid{
namespace QCD{
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// Here P/Q \sim R_{1/4} ~ (V^dagV)^{1/4}
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
template<class Impl>
class OneFlavourEvenOddRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
typedef OneFlavourRationalParams Params;
Params param;
MultiShiftFunction PowerHalf ;
MultiShiftFunction PowerNegHalf;
MultiShiftFunction PowerQuarter;
MultiShiftFunction PowerNegQuarter;
private:
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
FermionField PhiEven; // the pseudo fermion field for this trajectory
FermionField PhiOdd; // the pseudo fermion field for this trajectory
public:
OneFlavourEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
Params & p
) :
NumOp(_NumOp),
DenOp(_DenOp),
PhiOdd (_NumOp.FermionRedBlackGrid()),
PhiEven(_NumOp.FermionRedBlackGrid()),
param(p)
{
AlgRemez remez(param.lo,param.hi,param.precision);
// MdagM^(+- 1/2)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
remez.generateApprox(param.degree,1,2);
PowerHalf.Init(remez,param.tolerance,false);
PowerNegHalf.Init(remez,param.tolerance,true);
// MdagM^(+- 1/4)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
remez.generateApprox(param.degree,1,4);
PowerQuarter.Init(remez,param.tolerance,false);
PowerNegQuarter.Init(remez,param.tolerance,true);
};
virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
///////////////////////////////////////
// One flavour rational
///////////////////////////////////////
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// P(phi) = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/2 (VdagV)^1/4 phi}
// = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/4 (MdagM)^-1/4 (VdagV)^1/4 phi}
//
// Phi = (VdagV)^-1/4 Mdag^{1/4} eta
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2).
// Here P/Q \sim R_{1/4} ~ (V^dagV)^{1/4}
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
template<class Impl>
class OneFlavourEvenOddRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
RealD scale = std::sqrt(0.5);
INHERIT_IMPL_TYPES(Impl);
FermionField eta(NumOp.FermionGrid());
FermionField etaOdd (NumOp.FermionRedBlackGrid());
FermionField etaEven(NumOp.FermionRedBlackGrid());
FermionField tmp(NumOp.FermionRedBlackGrid());
typedef OneFlavourRationalParams Params;
Params param;
gaussian(pRNG,eta); eta=eta*scale;
MultiShiftFunction PowerHalf ;
MultiShiftFunction PowerNegHalf;
MultiShiftFunction PowerQuarter;
MultiShiftFunction PowerNegQuarter;
pickCheckerboard(Even,etaEven,eta);
pickCheckerboard(Odd,etaOdd,eta);
private:
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
FermionField PhiEven; // the pseudo fermion field for this trajectory
FermionField PhiOdd; // the pseudo fermion field for this trajectory
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
public:
OneFlavourEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
Params & p
) :
NumOp(_NumOp),
DenOp(_DenOp),
PhiOdd (_NumOp.FermionRedBlackGrid()),
PhiEven(_NumOp.FermionRedBlackGrid()),
param(p)
{
AlgRemez remez(param.lo,param.hi,param.precision);
// MdagM^(+- 1/2)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
remez.generateApprox(param.degree,1,2);
PowerHalf.Init(remez,param.tolerance,false);
PowerNegHalf.Init(remez,param.tolerance,true);
// MdagM^(+- 1/4)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
remez.generateApprox(param.degree,1,4);
PowerQuarter.Init(remez,param.tolerance,false);
PowerNegQuarter.Init(remez,param.tolerance,true);
};
virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// P(phi) = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/2 (VdagV)^1/4 phi}
// = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/4 (MdagM)^-1/4 (VdagV)^1/4 phi}
//
// Phi = (VdagV)^-1/4 Mdag^{1/4} eta
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2).
RealD scale = std::sqrt(0.5);
FermionField eta(NumOp.FermionGrid());
FermionField etaOdd (NumOp.FermionRedBlackGrid());
FermionField etaEven(NumOp.FermionRedBlackGrid());
FermionField tmp(NumOp.FermionRedBlackGrid());
gaussian(pRNG,eta); eta=eta*scale;
pickCheckerboard(Even,etaEven,eta);
pickCheckerboard(Odd,etaOdd,eta);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
// MdagM^1/4 eta
SchurDifferentiableOperator<Impl> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerQuarter);
msCG_M(MdagM,etaOdd,tmp);
// MdagM^1/4 eta
SchurDifferentiableOperator<Impl> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerQuarter);
msCG_M(MdagM,etaOdd,tmp);
// VdagV^-1/4 MdagM^1/4 eta
SchurDifferentiableOperator<Impl> VdagV(NumOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerNegQuarter);
msCG_V(VdagV,tmp,PhiOdd);
// VdagV^-1/4 MdagM^1/4 eta
SchurDifferentiableOperator<Impl> VdagV(NumOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerNegQuarter);
msCG_V(VdagV,tmp,PhiOdd);
assert(NumOp.ConstEE() == 1);
assert(DenOp.ConstEE() == 1);
PhiEven = Zero();
assert(NumOp.ConstEE() == 1);
assert(DenOp.ConstEE() == 1);
PhiEven = zero;
};
};
//////////////////////////////////////////////////////
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
//////////////////////////////////////////////////////
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
FermionField X(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
FermionField X(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
// VdagV^1/4 Phi
SchurDifferentiableOperator<Impl> VdagV(NumOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
msCG_V(VdagV,PhiOdd,X);
// VdagV^1/4 Phi
SchurDifferentiableOperator<Impl> VdagV(NumOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
msCG_V(VdagV,PhiOdd,X);
// MdagM^-1/4 VdagV^1/4 Phi
SchurDifferentiableOperator<Impl> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegQuarter);
msCG_M(MdagM,X,Y);
// MdagM^-1/4 VdagV^1/4 Phi
SchurDifferentiableOperator<Impl> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegQuarter);
msCG_M(MdagM,X,Y);
// Phidag VdagV^1/4 MdagM^-1/4 MdagM^-1/4 VdagV^1/4 Phi
RealD action = norm2(Y);
// Randomly apply rational bounds checks.
if ( (rand()%param.BoundsCheckFreq)==0 ) {
FermionField gauss(NumOp.FermionRedBlackGrid());
gauss = PhiOdd;
HighBoundCheck(MdagM,gauss,param.hi);
InverseSqrtBoundsCheck(param.MaxIter,param.tolerance*100,MdagM,gauss,PowerNegHalf);
}
return action;
};
// Phidag VdagV^1/4 MdagM^-1/4 MdagM^-1/4 VdagV^1/4 Phi
RealD action = norm2(Y);
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// Here, M is some 5D operator and V is the Pauli-Villars field
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
//
// Need
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
// + chi^dag P/Q d[N/D] P/Q chi
// + chi^dag P/Q N/D d[P/Q] chi
//
// P/Q is expressed as partial fraction expansion:
//
// a0 + \sum_k ak/(V^dagV + bk)
//
// d[P/Q] is then
//
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
//
// and similar for N/D.
//
// Need
// MpvPhi_k = [Vdag V + bk]^{-1} chi
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
//
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
//
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
//
return action;
};
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// Here, M is some 5D operator and V is the Pauli-Villars field
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
//
// Need
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
// + chi^dag P/Q d[N/D] P/Q chi
// + chi^dag P/Q N/D d[P/Q] chi
//
// P/Q is expressed as partial fraction expansion:
//
// a0 + \sum_k ak/(V^dagV + bk)
//
// d[P/Q] is then
//
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
//
// and similar for N/D.
//
// Need
// MpvPhi_k = [Vdag V + bk]^{-1} chi
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
//
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
//
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
//
const int n_f = PowerNegHalf.poles.size();
const int n_pv = PowerQuarter.poles.size();
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionRedBlackGrid());
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid());
std::vector<FermionField> MfMpvPhi_k (n_f ,NumOp.FermionRedBlackGrid());
const int n_f = PowerNegHalf.poles.size();
const int n_pv = PowerQuarter.poles.size();
FermionField MpvPhi(NumOp.FermionRedBlackGrid());
FermionField MfMpvPhi(NumOp.FermionRedBlackGrid());
FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionRedBlackGrid());
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid());
std::vector<FermionField> MfMpvPhi_k (n_f ,NumOp.FermionRedBlackGrid());
GaugeField tmp(NumOp.GaugeGrid());
FermionField MpvPhi(NumOp.FermionRedBlackGrid());
FermionField MfMpvPhi(NumOp.FermionRedBlackGrid());
FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
GaugeField tmp(NumOp.GaugeGrid());
SchurDifferentiableOperator<Impl> VdagV(NumOp);
SchurDifferentiableOperator<Impl> MdagM(DenOp);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegHalf);
SchurDifferentiableOperator<Impl> VdagV(NumOp);
SchurDifferentiableOperator<Impl> MdagM(DenOp);
msCG_V(VdagV,PhiOdd,MpvPhi_k,MpvPhi);
msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
msCG_V(VdagV,MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegHalf);
RealD ak;
msCG_V(VdagV,PhiOdd,MpvPhi_k,MpvPhi);
msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
msCG_V(VdagV,MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
dSdU = Zero();
RealD ak;
// With these building blocks
//
// dS/dU =
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
dSdU = zero;
//(1)
for(int k=0;k<n_f;k++){
ak = PowerNegHalf.residues[k];
MdagM.Mpc(MfMpvPhi_k[k],Y);
MdagM.MpcDagDeriv(tmp , MfMpvPhi_k[k], Y ); dSdU=dSdU+ak*tmp;
MdagM.MpcDeriv(tmp , Y, MfMpvPhi_k[k] ); dSdU=dSdU+ak*tmp;
}
// With these building blocks
//
// dS/dU =
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
//(1)
for(int k=0;k<n_f;k++){
ak = PowerNegHalf.residues[k];
MdagM.Mpc(MfMpvPhi_k[k],Y);
MdagM.MpcDagDeriv(tmp , MfMpvPhi_k[k], Y ); dSdU=dSdU+ak*tmp;
MdagM.MpcDeriv(tmp , Y, MfMpvPhi_k[k] ); dSdU=dSdU+ak*tmp;
}
//(2)
//(3)
for(int k=0;k<n_pv;k++){
//(2)
//(3)
for(int k=0;k<n_pv;k++){
ak = PowerQuarter.residues[k];
ak = PowerQuarter.residues[k];
VdagV.Mpc(MpvPhi_k[k],Y);
VdagV.MpcDagDeriv(tmp,MpvMfMpvPhi_k[k],Y); dSdU=dSdU+ak*tmp;
VdagV.MpcDeriv (tmp,Y,MpvMfMpvPhi_k[k]); dSdU=dSdU+ak*tmp;
VdagV.Mpc(MpvPhi_k[k],Y);
VdagV.MpcDagDeriv(tmp,MpvMfMpvPhi_k[k],Y); dSdU=dSdU+ak*tmp;
VdagV.MpcDeriv (tmp,Y,MpvMfMpvPhi_k[k]); dSdU=dSdU+ak*tmp;
VdagV.Mpc(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
VdagV.MpcDeriv (tmp,Y, MpvPhi_k[k]); dSdU=dSdU+ak*tmp;
VdagV.MpcDagDeriv(tmp,MpvPhi_k[k], Y); dSdU=dSdU+ak*tmp;
VdagV.Mpc(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
VdagV.MpcDeriv (tmp,Y, MpvPhi_k[k]); dSdU=dSdU+ak*tmp;
VdagV.MpcDagDeriv(tmp,MpvPhi_k[k], Y); dSdU=dSdU+ak*tmp;
}
}
//dSdU = Ta(dSdU);
//dSdU = Ta(dSdU);
};
};
};
};
}
}
NAMESPACE_END(Grid);
#endif

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -23,190 +23,199 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PSEUDOFERMION_ONE_FLAVOUR_RATIONAL_H
#define QCD_PSEUDOFERMION_ONE_FLAVOUR_RATIONAL_H
NAMESPACE_BEGIN(Grid);
namespace Grid{
namespace QCD{
///////////////////////////////////////
// One flavour rational
///////////////////////////////////////
///////////////////////////////////////
// One flavour rational
///////////////////////////////////////
// S_f = chi^dag * N(M^dag*M)/D(M^dag*M) * chi
//
// Here, M is some operator
// N and D makeup the rat. poly
//
// S_f = chi^dag * N(M^dag*M)/D(M^dag*M) * chi
//
// Here, M is some operator
// N and D makeup the rat. poly
//
template<class Impl>
class OneFlavourRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
template<class Impl>
class OneFlavourRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
typedef OneFlavourRationalParams Params;
Params param;
typedef OneFlavourRationalParams Params;
Params param;
MultiShiftFunction PowerHalf ;
MultiShiftFunction PowerNegHalf;
MultiShiftFunction PowerQuarter;
MultiShiftFunction PowerNegQuarter;
MultiShiftFunction PowerHalf ;
MultiShiftFunction PowerNegHalf;
MultiShiftFunction PowerQuarter;
MultiShiftFunction PowerNegQuarter;
private:
private:
FermionOperator<Impl> & FermOp;// the basic operator
FermionOperator<Impl> & FermOp;// the basic operator
// NOT using "Nroots"; IroIro is -- perhaps later, but this wasn't good for us historically
// and hasenbusch works better
// NOT using "Nroots"; IroIro is -- perhaps later, but this wasn't good for us historically
// and hasenbusch works better
FermionField Phi; // the pseudo fermion field for this trajectory
FermionField Phi; // the pseudo fermion field for this trajectory
public:
public:
OneFlavourRationalPseudoFermionAction(FermionOperator<Impl> &Op,
Params & p
) : FermOp(Op), Phi(Op.FermionGrid()), param(p)
{
AlgRemez remez(param.lo,param.hi,param.precision);
OneFlavourRationalPseudoFermionAction(FermionOperator<Impl> &Op,
Params & p
) : FermOp(Op), Phi(Op.FermionGrid()), param(p)
{
AlgRemez remez(param.lo,param.hi,param.precision);
// MdagM^(+- 1/2)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
remez.generateApprox(param.degree,1,2);
PowerHalf.Init(remez,param.tolerance,false);
PowerNegHalf.Init(remez,param.tolerance,true);
// MdagM^(+- 1/2)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
remez.generateApprox(param.degree,1,2);
PowerHalf.Init(remez,param.tolerance,false);
PowerNegHalf.Init(remez,param.tolerance,true);
// MdagM^(+- 1/4)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
remez.generateApprox(param.degree,1,4);
PowerQuarter.Init(remez,param.tolerance,false);
PowerNegQuarter.Init(remez,param.tolerance,true);
};
// MdagM^(+- 1/4)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
remez.generateApprox(param.degree,1,4);
PowerQuarter.Init(remez,param.tolerance,false);
PowerNegQuarter.Init(remez,param.tolerance,true);
};
virtual std::string action_name(){return "OneFlavourRationalPseudoFermionAction";}
virtual std::string action_name(){return "OneFlavourRationalPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
return sstream.str();
}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
// P(phi) = e^{- phi^dag (MdagM)^-1/2 phi}
// = e^{- phi^dag (MdagM)^-1/4 (MdagM)^-1/4 phi}
// Phi = Mdag^{1/4} eta
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2).
// P(phi) = e^{- phi^dag (MdagM)^-1/2 phi}
// = e^{- phi^dag (MdagM)^-1/4 (MdagM)^-1/4 phi}
// Phi = Mdag^{1/4} eta
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2).
RealD scale = std::sqrt(0.5);
RealD scale = std::sqrt(0.5);
FermionField eta(FermOp.FermionGrid());
FermionField eta(FermOp.FermionGrid());
gaussian(pRNG,eta);
gaussian(pRNG,eta);
FermOp.ImportGauge(U);
FermOp.ImportGauge(U);
// mutishift CG
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerQuarter);
msCG(MdagMOp,eta,Phi);
// mutishift CG
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerQuarter);
msCG(MdagMOp,eta,Phi);
Phi=Phi*scale;
Phi=Phi*scale;
};
};
//////////////////////////////////////////////////////
// S = phi^dag (Mdag M)^-1/2 phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
//////////////////////////////////////////////////////
// S = phi^dag (Mdag M)^-1/2 phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
FermOp.ImportGauge(U);
FermOp.ImportGauge(U);
FermionField Y(FermOp.FermionGrid());
FermionField Y(FermOp.FermionGrid());
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerNegQuarter);
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerNegQuarter);
msCG(MdagMOp,Phi,Y);
msCG(MdagMOp,Phi,Y);
RealD action = norm2(Y);
std::cout << GridLogMessage << "Pseudofermion action FIXME -- is -1/4 solve or -1/2 solve faster??? "<<action<<std::endl;
return action;
};
if ( (rand()%param.BoundsCheckFreq)==0 ) {
FermionField gauss(FermOp.FermionGrid());
gauss = Phi;
HighBoundCheck(MdagMOp,gauss,param.hi);
InverseSqrtBoundsCheck(param.MaxIter,param.tolerance*100,MdagMOp,gauss,PowerNegHalf);
}
//////////////////////////////////////////////////////
// Need
// dS_f/dU = chi^dag d[N/D] chi
//
// N/D is expressed as partial fraction expansion:
//
// a0 + \sum_k ak/(M^dagM + bk)
//
// d[N/D] is then
//
// \sum_k -ak [M^dagM+bk]^{-1} [ dM^dag M + M^dag dM ] [M^dag M + bk]^{-1}
//
// Need
// Mf Phi_k = [MdagM+bk]^{-1} Phi
// Mf Phi = \sum_k ak [MdagM+bk]^{-1} Phi
//
// With these building blocks
//
// dS/dU = \sum_k -ak Mf Phi_k^dag [ dM^dag M + M^dag dM ] Mf Phi_k
// S = innerprodReal(Phi,Mf Phi);
//////////////////////////////////////////////////////
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
const int Npole = PowerNegHalf.poles.size();
RealD action = norm2(Y);
std::cout << GridLogMessage << "Pseudofermion action FIXME -- is -1/4 solve or -1/2 solve faster??? "<<action<<std::endl;
return action;
};
std::vector<FermionField> MPhi_k (Npole,FermOp.FermionGrid());
//////////////////////////////////////////////////////
// Need
// dS_f/dU = chi^dag d[N/D] chi
//
// N/D is expressed as partial fraction expansion:
//
// a0 + \sum_k ak/(M^dagM + bk)
//
// d[N/D] is then
//
// \sum_k -ak [M^dagM+bk]^{-1} [ dM^dag M + M^dag dM ] [M^dag M + bk]^{-1}
//
// Need
// Mf Phi_k = [MdagM+bk]^{-1} Phi
// Mf Phi = \sum_k ak [MdagM+bk]^{-1} Phi
//
// With these building blocks
//
// dS/dU = \sum_k -ak Mf Phi_k^dag [ dM^dag M + M^dag dM ] Mf Phi_k
// S = innerprodReal(Phi,Mf Phi);
//////////////////////////////////////////////////////
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
FermionField X(FermOp.FermionGrid());
FermionField Y(FermOp.FermionGrid());
const int Npole = PowerNegHalf.poles.size();
GaugeField tmp(FermOp.GaugeGrid());
std::vector<FermionField> MPhi_k (Npole,FermOp.FermionGrid());
FermOp.ImportGauge(U);
FermionField X(FermOp.FermionGrid());
FermionField Y(FermOp.FermionGrid());
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
GaugeField tmp(FermOp.GaugeGrid());
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerNegHalf);
FermOp.ImportGauge(U);
msCG(MdagMOp,Phi,MPhi_k);
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
dSdU = Zero();
for(int k=0;k<Npole;k++){
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerNegHalf);
RealD ak = PowerNegHalf.residues[k];
msCG(MdagMOp,Phi,MPhi_k);
X = MPhi_k[k];
dSdU = zero;
for(int k=0;k<Npole;k++){
FermOp.M(X,Y);
RealD ak = PowerNegHalf.residues[k];
FermOp.MDeriv(tmp , Y, X,DaggerNo ); dSdU=dSdU+ak*tmp;
FermOp.MDeriv(tmp , X, Y,DaggerYes); dSdU=dSdU+ak*tmp;
X = MPhi_k[k];
}
FermOp.M(X,Y);
//dSdU = Ta(dSdU);
FermOp.MDeriv(tmp , Y, X,DaggerNo ); dSdU=dSdU+ak*tmp;
FermOp.MDeriv(tmp , X, Y,DaggerYes); dSdU=dSdU+ak*tmp;
};
};
}
NAMESPACE_END(Grid);
//dSdU = Ta(dSdU);
};
};
}
}
#endif

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -23,243 +23,253 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PSEUDOFERMION_ONE_FLAVOUR_RATIONAL_RATIO_H
#define QCD_PSEUDOFERMION_ONE_FLAVOUR_RATIONAL_RATIO_H
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////
// One flavour rational
///////////////////////////////////////
namespace Grid{
namespace QCD{
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// Here P/Q \sim R_{1/4} ~ (V^dagV)^{1/4}
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
template<class Impl>
class OneFlavourRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
typedef OneFlavourRationalParams Params;
Params param;
MultiShiftFunction PowerHalf ;
MultiShiftFunction PowerNegHalf;
MultiShiftFunction PowerQuarter;
MultiShiftFunction PowerNegQuarter;
private:
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
FermionField Phi; // the pseudo fermion field for this trajectory
public:
OneFlavourRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
Params & p
) : NumOp(_NumOp), DenOp(_DenOp), Phi(_NumOp.FermionGrid()), param(p)
{
AlgRemez remez(param.lo,param.hi,param.precision);
// MdagM^(+- 1/2)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
remez.generateApprox(param.degree,1,2);
PowerHalf.Init(remez,param.tolerance,false);
PowerNegHalf.Init(remez,param.tolerance,true);
// MdagM^(+- 1/4)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
remez.generateApprox(param.degree,1,4);
PowerQuarter.Init(remez,param.tolerance,false);
PowerNegQuarter.Init(remez,param.tolerance,true);
};
virtual std::string action_name(){return "OneFlavourRatioRationalPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
///////////////////////////////////////
// One flavour rational
///////////////////////////////////////
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// P(phi) = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/2 (VdagV)^1/4 phi}
// = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/4 (MdagM)^-1/4 (VdagV)^1/4 phi}
//
// Phi = (VdagV)^-1/4 Mdag^{1/4} eta
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2).
// Here P/Q \sim R_{1/4} ~ (V^dagV)^{1/4}
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
template<class Impl>
class OneFlavourRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
RealD scale = std::sqrt(0.5);
INHERIT_IMPL_TYPES(Impl);
FermionField tmp(NumOp.FermionGrid());
FermionField eta(NumOp.FermionGrid());
typedef OneFlavourRationalParams Params;
Params param;
gaussian(pRNG,eta);
MultiShiftFunction PowerHalf ;
MultiShiftFunction PowerNegHalf;
MultiShiftFunction PowerQuarter;
MultiShiftFunction PowerNegQuarter;
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
private:
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
FermionField Phi; // the pseudo fermion field for this trajectory
// MdagM^1/4 eta
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerQuarter);
msCG_M(MdagM,eta,tmp);
public:
// VdagV^-1/4 MdagM^1/4 eta
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> VdagV(NumOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerNegQuarter);
msCG_V(VdagV,tmp,Phi);
OneFlavourRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
Params & p
) : NumOp(_NumOp), DenOp(_DenOp), Phi(_NumOp.FermionGrid()), param(p)
{
AlgRemez remez(param.lo,param.hi,param.precision);
Phi=Phi*scale;
// MdagM^(+- 1/2)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
remez.generateApprox(param.degree,1,2);
PowerHalf.Init(remez,param.tolerance,false);
PowerNegHalf.Init(remez,param.tolerance,true);
// MdagM^(+- 1/4)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
remez.generateApprox(param.degree,1,4);
PowerQuarter.Init(remez,param.tolerance,false);
PowerNegQuarter.Init(remez,param.tolerance,true);
};
virtual std::string action_name(){return "OneFlavourRatioRationalPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// P(phi) = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/2 (VdagV)^1/4 phi}
// = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/4 (MdagM)^-1/4 (VdagV)^1/4 phi}
//
// Phi = (VdagV)^-1/4 Mdag^{1/4} eta
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2).
RealD scale = std::sqrt(0.5);
FermionField tmp(NumOp.FermionGrid());
FermionField eta(NumOp.FermionGrid());
gaussian(pRNG,eta);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
// MdagM^1/4 eta
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerQuarter);
msCG_M(MdagM,eta,tmp);
// VdagV^-1/4 MdagM^1/4 eta
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> VdagV(NumOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerNegQuarter);
msCG_V(VdagV,tmp,Phi);
Phi=Phi*scale;
};
};
//////////////////////////////////////////////////////
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
//////////////////////////////////////////////////////
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
FermionField X(NumOp.FermionGrid());
FermionField Y(NumOp.FermionGrid());
FermionField X(NumOp.FermionGrid());
FermionField Y(NumOp.FermionGrid());
// VdagV^1/4 Phi
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> VdagV(NumOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
msCG_V(VdagV,Phi,X);
// VdagV^1/4 Phi
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> VdagV(NumOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
msCG_V(VdagV,Phi,X);
// MdagM^-1/4 VdagV^1/4 Phi
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegQuarter);
msCG_M(MdagM,X,Y);
// MdagM^-1/4 VdagV^1/4 Phi
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegQuarter);
msCG_M(MdagM,X,Y);
// Phidag VdagV^1/4 MdagM^-1/4 MdagM^-1/4 VdagV^1/4 Phi
RealD action = norm2(Y);
// Randomly apply rational bounds checks.
if ( (rand()%param.BoundsCheckFreq)==0 ) {
FermionField gauss(NumOp.FermionGrid());
gauss = Phi;
HighBoundCheck(MdagM,gauss,param.hi);
InverseSqrtBoundsCheck(param.MaxIter,param.tolerance*100,MdagM,gauss,PowerNegHalf);
}
return action;
};
// Phidag VdagV^1/4 MdagM^-1/4 MdagM^-1/4 VdagV^1/4 Phi
RealD action = norm2(Y);
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// Here, M is some 5D operator and V is the Pauli-Villars field
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
//
// Need
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
// + chi^dag P/Q d[N/D] P/Q chi
// + chi^dag P/Q N/D d[P/Q] chi
//
// P/Q is expressed as partial fraction expansion:
//
// a0 + \sum_k ak/(V^dagV + bk)
//
// d[P/Q] is then
//
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
//
// and similar for N/D.
//
// Need
// MpvPhi_k = [Vdag V + bk]^{-1} chi
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
//
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
//
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
//
return action;
};
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// Here, M is some 5D operator and V is the Pauli-Villars field
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
//
// Need
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
// + chi^dag P/Q d[N/D] P/Q chi
// + chi^dag P/Q N/D d[P/Q] chi
//
// P/Q is expressed as partial fraction expansion:
//
// a0 + \sum_k ak/(V^dagV + bk)
//
// d[P/Q] is then
//
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
//
// and similar for N/D.
//
// Need
// MpvPhi_k = [Vdag V + bk]^{-1} chi
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
//
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
//
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
//
const int n_f = PowerNegHalf.poles.size();
const int n_pv = PowerQuarter.poles.size();
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionGrid());
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionGrid());
std::vector<FermionField> MfMpvPhi_k (n_f,NumOp.FermionGrid());
const int n_f = PowerNegHalf.poles.size();
const int n_pv = PowerQuarter.poles.size();
FermionField MpvPhi(NumOp.FermionGrid());
FermionField MfMpvPhi(NumOp.FermionGrid());
FermionField MpvMfMpvPhi(NumOp.FermionGrid());
FermionField Y(NumOp.FermionGrid());
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionGrid());
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionGrid());
std::vector<FermionField> MfMpvPhi_k (n_f,NumOp.FermionGrid());
GaugeField tmp(NumOp.GaugeGrid());
FermionField MpvPhi(NumOp.FermionGrid());
FermionField MfMpvPhi(NumOp.FermionGrid());
FermionField MpvMfMpvPhi(NumOp.FermionGrid());
FermionField Y(NumOp.FermionGrid());
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
GaugeField tmp(NumOp.GaugeGrid());
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagM(DenOp);
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> VdagV(NumOp);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegHalf);
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagM(DenOp);
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> VdagV(NumOp);
msCG_V(VdagV,Phi,MpvPhi_k,MpvPhi);
msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
msCG_V(VdagV,MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegHalf);
RealD ak;
msCG_V(VdagV,Phi,MpvPhi_k,MpvPhi);
msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
msCG_V(VdagV,MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
dSdU = Zero();
RealD ak;
// With these building blocks
//
// dS/dU =
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
dSdU = zero;
//(1)
for(int k=0;k<n_f;k++){
ak = PowerNegHalf.residues[k];
DenOp.M(MfMpvPhi_k[k],Y);
DenOp.MDeriv(tmp , MfMpvPhi_k[k], Y,DaggerYes ); dSdU=dSdU+ak*tmp;
DenOp.MDeriv(tmp , Y, MfMpvPhi_k[k], DaggerNo ); dSdU=dSdU+ak*tmp;
}
// With these building blocks
//
// dS/dU =
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
//(1)
for(int k=0;k<n_f;k++){
ak = PowerNegHalf.residues[k];
DenOp.M(MfMpvPhi_k[k],Y);
DenOp.MDeriv(tmp , MfMpvPhi_k[k], Y,DaggerYes ); dSdU=dSdU+ak*tmp;
DenOp.MDeriv(tmp , Y, MfMpvPhi_k[k], DaggerNo ); dSdU=dSdU+ak*tmp;
}
//(2)
//(3)
for(int k=0;k<n_pv;k++){
//(2)
//(3)
for(int k=0;k<n_pv;k++){
ak = PowerQuarter.residues[k];
ak = PowerQuarter.residues[k];
NumOp.M(MpvPhi_k[k],Y);
NumOp.MDeriv(tmp,MpvMfMpvPhi_k[k],Y,DaggerYes); dSdU=dSdU+ak*tmp;
NumOp.MDeriv(tmp,Y,MpvMfMpvPhi_k[k],DaggerNo); dSdU=dSdU+ak*tmp;
NumOp.M(MpvPhi_k[k],Y);
NumOp.MDeriv(tmp,MpvMfMpvPhi_k[k],Y,DaggerYes); dSdU=dSdU+ak*tmp;
NumOp.MDeriv(tmp,Y,MpvMfMpvPhi_k[k],DaggerNo); dSdU=dSdU+ak*tmp;
NumOp.M(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
NumOp.MDeriv(tmp,Y, MpvPhi_k[k], DaggerNo); dSdU=dSdU+ak*tmp;
NumOp.MDeriv(tmp,MpvPhi_k[k], Y,DaggerYes); dSdU=dSdU+ak*tmp;
NumOp.M(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
NumOp.MDeriv(tmp,Y, MpvPhi_k[k], DaggerNo); dSdU=dSdU+ak*tmp;
NumOp.MDeriv(tmp,MpvPhi_k[k], Y,DaggerYes); dSdU=dSdU+ak*tmp;
}
}
//dSdU = Ta(dSdU);
//dSdU = Ta(dSdU);
};
};
};
};
}
}
NAMESPACE_END(Grid);
#endif

View File

@ -29,6 +29,9 @@ directory
#ifndef QCD_PSEUDOFERMION_AGGREGATE_H
#define QCD_PSEUDOFERMION_AGGREGATE_H
// Rational functions
#include <Grid/qcd/action/pseudofermion/Bounds.h>
#include <Grid/qcd/action/pseudofermion/EvenOddSchurDifferentiable.h>
#include <Grid/qcd/action/pseudofermion/TwoFlavour.h>
#include <Grid/qcd/action/pseudofermion/TwoFlavourRatio.h>

View File

@ -84,21 +84,20 @@ public:
// and must multiply by 0.707....
//
// Chroma has this scale factor: two_flavor_monomial_w.h
// CPS uses this factor
// IroIro: does not use this scale. It is absorbed by a change of vars
// in the Phi integral, and thus is only an irrelevant prefactor for
// the partition function.
//
RealD scale = std::sqrt(0.5);
const RealD scale = std::sqrt(0.5);
FermionField eta(FermOp.FermionGrid());
gaussian(pRNG, eta);
gaussian(pRNG, eta); eta = scale *eta;
FermOp.ImportGauge(U);
FermOp.Mdag(eta, Phi);
Phi = Phi * scale;
};
//////////////////////////////////////////////////////

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -24,186 +24,194 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PSEUDOFERMION_TWO_FLAVOUR_EVEN_ODD_RATIO_H
#define QCD_PSEUDOFERMION_TWO_FLAVOUR_EVEN_ODD_RATIO_H
NAMESPACE_BEGIN(Grid);
namespace Grid{
namespace QCD{
///////////////////////////////////////
// Two flavour ratio
///////////////////////////////////////
template<class Impl>
class TwoFlavourEvenOddRatioPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
///////////////////////////////////////
// Two flavour ratio
///////////////////////////////////////
template<class Impl>
class TwoFlavourEvenOddRatioPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
private:
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
private:
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
OperatorFunction<FermionField> &DerivativeSolver;
OperatorFunction<FermionField> &ActionSolver;
OperatorFunction<FermionField> &DerivativeSolver;
OperatorFunction<FermionField> &ActionSolver;
OperatorFunction<FermionField> &HeatbathSolver;
FermionField PhiOdd; // the pseudo fermion field for this trajectory
FermionField PhiEven; // the pseudo fermion field for this trajectory
FermionField PhiOdd; // the pseudo fermion field for this trajectory
FermionField PhiEven; // the pseudo fermion field for this trajectory
public:
TwoFlavourEvenOddRatioPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
OperatorFunction<FermionField> & DS,
OperatorFunction<FermionField> & AS) :
NumOp(_NumOp),
DenOp(_DenOp),
DerivativeSolver(DS),
ActionSolver(AS),
PhiEven(_NumOp.FermionRedBlackGrid()),
PhiOdd(_NumOp.FermionRedBlackGrid())
{
conformable(_NumOp.FermionGrid(), _DenOp.FermionGrid());
conformable(_NumOp.FermionRedBlackGrid(), _DenOp.FermionRedBlackGrid());
conformable(_NumOp.GaugeGrid(), _DenOp.GaugeGrid());
conformable(_NumOp.GaugeRedBlackGrid(), _DenOp.GaugeRedBlackGrid());
};
public:
TwoFlavourEvenOddRatioPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
OperatorFunction<FermionField> & DS,
OperatorFunction<FermionField> & AS ) :
TwoFlavourEvenOddRatioPseudoFermionAction(_NumOp,_DenOp, DS,AS,AS) {};
virtual std::string action_name(){return "TwoFlavourEvenOddRatioPseudoFermionAction";}
TwoFlavourEvenOddRatioPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
OperatorFunction<FermionField> & DS,
OperatorFunction<FermionField> & AS, OperatorFunction<FermionField> & HS) :
NumOp(_NumOp),
DenOp(_DenOp),
DerivativeSolver(DS),
ActionSolver(AS),
HeatbathSolver(HS),
PhiEven(_NumOp.FermionRedBlackGrid()),
PhiOdd(_NumOp.FermionRedBlackGrid())
{
conformable(_NumOp.FermionGrid(), _DenOp.FermionGrid());
conformable(_NumOp.FermionRedBlackGrid(), _DenOp.FermionRedBlackGrid());
conformable(_NumOp.GaugeGrid(), _DenOp.GaugeGrid());
conformable(_NumOp.GaugeRedBlackGrid(), _DenOp.GaugeRedBlackGrid());
};
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] has no parameters" << std::endl;
return sstream.str();
}
virtual std::string action_name(){return "TwoFlavourEvenOddRatioPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] has no parameters" << std::endl;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
// P(phi) = e^{- phi^dag Vpc (MpcdagMpc)^-1 Vpcdag phi}
//
// NumOp == V
// DenOp == M
//
// Take phi_o = Vpcdag^{-1} Mpcdag eta_o ; eta_o = Mpcdag^{-1} Vpcdag Phi
//
// P(eta_o) = e^{- eta_o^dag eta_o}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
RealD scale = std::sqrt(0.5);
// P(phi) = e^{- phi^dag Vpc (MpcdagMpc)^-1 Vpcdag phi}
//
// NumOp == V
// DenOp == M
//
// Take phi_o = Vpcdag^{-1} Mpcdag eta_o ; eta_o = Mpcdag^{-1} Vpcdag Phi
//
// P(eta_o) = e^{- eta_o^dag eta_o}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
RealD scale = std::sqrt(0.5);
FermionField eta (NumOp.FermionGrid());
FermionField etaOdd (NumOp.FermionRedBlackGrid());
FermionField etaEven(NumOp.FermionRedBlackGrid());
FermionField tmp (NumOp.FermionRedBlackGrid());
FermionField eta (NumOp.FermionGrid());
FermionField etaOdd (NumOp.FermionRedBlackGrid());
FermionField etaEven(NumOp.FermionRedBlackGrid());
FermionField tmp (NumOp.FermionRedBlackGrid());
gaussian(pRNG,eta);
gaussian(pRNG,eta);
pickCheckerboard(Even,etaEven,eta);
pickCheckerboard(Odd,etaOdd,eta);
pickCheckerboard(Even,etaEven,eta);
pickCheckerboard(Odd,etaOdd,eta);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
SchurDifferentiableOperator<Impl> Mpc(DenOp);
SchurDifferentiableOperator<Impl> Vpc(NumOp);
SchurDifferentiableOperator<Impl> Mpc(DenOp);
SchurDifferentiableOperator<Impl> Vpc(NumOp);
// Odd det factors
Mpc.MpcDag(etaOdd,PhiOdd);
tmp=Zero();
ActionSolver(Vpc,PhiOdd,tmp);
Vpc.Mpc(tmp,PhiOdd);
// Odd det factors
Mpc.MpcDag(etaOdd,PhiOdd);
tmp=zero;
HeatbathSolver(Vpc,PhiOdd,tmp);
Vpc.Mpc(tmp,PhiOdd);
// Even det factors
DenOp.MooeeDag(etaEven,tmp);
NumOp.MooeeInvDag(tmp,PhiEven);
// Even det factors
DenOp.MooeeDag(etaEven,tmp);
NumOp.MooeeInvDag(tmp,PhiEven);
PhiOdd =PhiOdd*scale;
PhiEven=PhiEven*scale;
PhiOdd =PhiOdd*scale;
PhiEven=PhiEven*scale;
};
};
//////////////////////////////////////////////////////
// S = phi^dag V (Mdag M)^-1 Vdag phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
//////////////////////////////////////////////////////
// S = phi^dag V (Mdag M)^-1 Vdag phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
SchurDifferentiableOperator<Impl> Mpc(DenOp);
SchurDifferentiableOperator<Impl> Vpc(NumOp);
SchurDifferentiableOperator<Impl> Mpc(DenOp);
SchurDifferentiableOperator<Impl> Vpc(NumOp);
FermionField X(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
FermionField X(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
Vpc.MpcDag(PhiOdd,Y); // Y= Vdag phi
X=Zero();
ActionSolver(Mpc,Y,X); // X= (MdagM)^-1 Vdag phi
//Mpc.Mpc(X,Y); // Y= Mdag^-1 Vdag phi
// Multiply by Ydag
RealD action = real(innerProduct(Y,X));
Vpc.MpcDag(PhiOdd,Y); // Y= Vdag phi
X=zero;
ActionSolver(Mpc,Y,X); // X= (MdagM)^-1 Vdag phi
//Mpc.Mpc(X,Y); // Y= Mdag^-1 Vdag phi
// Multiply by Ydag
RealD action = real(innerProduct(Y,X));
//RealD action = norm2(Y);
//RealD action = norm2(Y);
// The EE factorised block; normally can replace with Zero() if det is constant (gauge field indept)
// Only really clover term that creates this. Leave the EE portion as a future to do to make most
// rapid progresss on DWF for now.
//
NumOp.MooeeDag(PhiEven,X);
DenOp.MooeeInvDag(X,Y);
action = action + norm2(Y);
// The EE factorised block; normally can replace with zero if det is constant (gauge field indept)
// Only really clover term that creates this. Leave the EE portion as a future to do to make most
// rapid progresss on DWF for now.
//
NumOp.MooeeDag(PhiEven,X);
DenOp.MooeeInvDag(X,Y);
action = action + norm2(Y);
return action;
};
return action;
};
//////////////////////////////////////////////////////
// dS/du = phi^dag dV (Mdag M)^-1 V^dag phi
// - phi^dag V (Mdag M)^-1 [ Mdag dM + dMdag M ] (Mdag M)^-1 V^dag phi
// + phi^dag V (Mdag M)^-1 dV^dag phi
//////////////////////////////////////////////////////
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
//////////////////////////////////////////////////////
// dS/du = phi^dag dV (Mdag M)^-1 V^dag phi
// - phi^dag V (Mdag M)^-1 [ Mdag dM + dMdag M ] (Mdag M)^-1 V^dag phi
// + phi^dag V (Mdag M)^-1 dV^dag phi
//////////////////////////////////////////////////////
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
SchurDifferentiableOperator<Impl> Mpc(DenOp);
SchurDifferentiableOperator<Impl> Vpc(NumOp);
SchurDifferentiableOperator<Impl> Mpc(DenOp);
SchurDifferentiableOperator<Impl> Vpc(NumOp);
FermionField X(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
FermionField X(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
// This assignment is necessary to be compliant with the HMC grids
GaugeField force(dSdU.Grid());
// This assignment is necessary to be compliant with the HMC grids
GaugeField force(dSdU._grid);
//Y=Vdag phi
//X = (Mdag M)^-1 V^dag phi
//Y = (Mdag)^-1 V^dag phi
Vpc.MpcDag(PhiOdd,Y); // Y= Vdag phi
X=Zero();
DerivativeSolver(Mpc,Y,X); // X= (MdagM)^-1 Vdag phi
Mpc.Mpc(X,Y); // Y= Mdag^-1 Vdag phi
//Y=Vdag phi
//X = (Mdag M)^-1 V^dag phi
//Y = (Mdag)^-1 V^dag phi
Vpc.MpcDag(PhiOdd,Y); // Y= Vdag phi
X=zero;
DerivativeSolver(Mpc,Y,X); // X= (MdagM)^-1 Vdag phi
Mpc.Mpc(X,Y); // Y= Mdag^-1 Vdag phi
// phi^dag V (Mdag M)^-1 dV^dag phi
Vpc.MpcDagDeriv(force , X, PhiOdd ); dSdU = force;
// phi^dag V (Mdag M)^-1 dV^dag phi
Vpc.MpcDagDeriv(force , X, PhiOdd ); dSdU = force;
// phi^dag dV (Mdag M)^-1 V^dag phi
Vpc.MpcDeriv(force , PhiOdd, X ); dSdU = dSdU+force;
// phi^dag dV (Mdag M)^-1 V^dag phi
Vpc.MpcDeriv(force , PhiOdd, X ); dSdU = dSdU+force;
// - phi^dag V (Mdag M)^-1 Mdag dM (Mdag M)^-1 V^dag phi
// - phi^dag V (Mdag M)^-1 dMdag M (Mdag M)^-1 V^dag phi
Mpc.MpcDeriv(force,Y,X); dSdU = dSdU-force;
Mpc.MpcDagDeriv(force,X,Y); dSdU = dSdU-force;
// - phi^dag V (Mdag M)^-1 Mdag dM (Mdag M)^-1 V^dag phi
// - phi^dag V (Mdag M)^-1 dMdag M (Mdag M)^-1 V^dag phi
Mpc.MpcDeriv(force,Y,X); dSdU = dSdU-force;
Mpc.MpcDagDeriv(force,X,Y); dSdU = dSdU-force;
// FIXME No force contribution from EvenEven assumed here
// Needs a fix for clover.
assert(NumOp.ConstEE() == 1);
assert(DenOp.ConstEE() == 1);
// FIXME No force contribution from EvenEven assumed here
// Needs a fix for clover.
assert(NumOp.ConstEE() == 1);
assert(DenOp.ConstEE() == 1);
dSdU = -dSdU;
dSdU = -dSdU;
};
};
NAMESPACE_END(Grid);
};
};
}
}
#endif