1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-18 15:57:05 +01:00

Hadrons: moving Hadrons to root directory, build system improvements

This commit is contained in:
2018-08-28 15:00:40 +01:00
parent 5f206df775
commit fb7d021b9d
499 changed files with 429 additions and 846 deletions

33
Grid/lattice/Lattice.h Normal file
View File

@ -0,0 +1,33 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/Lattice.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_H
#define GRID_LATTICE_H
#include <Grid/lattice/Lattice_base.h>
#endif

466
Grid/lattice/Lattice_ET.h Normal file
View File

@ -0,0 +1,466 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_ET.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_ET_H
#define GRID_LATTICE_ET_H
#include <iostream>
#include <tuple>
#include <typeinfo>
#include <vector>
namespace Grid {
////////////////////////////////////////////////////
// Predicated where support
////////////////////////////////////////////////////
template <class iobj, class vobj, class robj>
inline vobj predicatedWhere(const iobj &predicate, const vobj &iftrue,
const robj &iffalse) {
typename std::remove_const<vobj>::type ret;
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
const int Nsimd = vobj::vector_type::Nsimd();
const int words = sizeof(vobj) / sizeof(vector_type);
std::vector<Integer> mask(Nsimd);
std::vector<scalar_object> truevals(Nsimd);
std::vector<scalar_object> falsevals(Nsimd);
extract(iftrue, truevals);
extract(iffalse, falsevals);
extract<vInteger, Integer>(TensorRemove(predicate), mask);
for (int s = 0; s < Nsimd; s++) {
if (mask[s]) falsevals[s] = truevals[s];
}
merge(ret, falsevals);
return ret;
}
////////////////////////////////////////////
// recursive evaluation of expressions; Could
// switch to generic approach with variadics, a la
// Antonin's Lat Sim but the repack to variadic with popped
// from tuple is hideous; C++14 introduces std::make_index_sequence for this
////////////////////////////////////////////
// leaf eval of lattice ; should enable if protect using traits
template <typename T>
using is_lattice = std::is_base_of<LatticeBase, T>;
template <typename T>
using is_lattice_expr = std::is_base_of<LatticeExpressionBase, T>;
template <typename T> using is_lattice_expr = std::is_base_of<LatticeExpressionBase,T >;
//Specialization of getVectorType for lattices
template<typename T>
struct getVectorType<Lattice<T> >{
typedef typename Lattice<T>::vector_object type;
};
template<class sobj>
inline sobj eval(const unsigned int ss, const sobj &arg)
{
return arg;
}
template <class lobj>
inline const lobj &eval(const unsigned int ss, const Lattice<lobj> &arg) {
return arg._odata[ss];
}
// handle nodes in syntax tree
template <typename Op, typename T1>
auto inline eval(
const unsigned int ss,
const LatticeUnaryExpression<Op, T1> &expr) // eval one operand
-> decltype(expr.first.func(eval(ss, std::get<0>(expr.second)))) {
return expr.first.func(eval(ss, std::get<0>(expr.second)));
}
template <typename Op, typename T1, typename T2>
auto inline eval(
const unsigned int ss,
const LatticeBinaryExpression<Op, T1, T2> &expr) // eval two operands
-> decltype(expr.first.func(eval(ss, std::get<0>(expr.second)),
eval(ss, std::get<1>(expr.second)))) {
return expr.first.func(eval(ss, std::get<0>(expr.second)),
eval(ss, std::get<1>(expr.second)));
}
template <typename Op, typename T1, typename T2, typename T3>
auto inline eval(const unsigned int ss,
const LatticeTrinaryExpression<Op, T1, T2, T3>
&expr) // eval three operands
-> decltype(expr.first.func(eval(ss, std::get<0>(expr.second)),
eval(ss, std::get<1>(expr.second)),
eval(ss, std::get<2>(expr.second)))) {
return expr.first.func(eval(ss, std::get<0>(expr.second)),
eval(ss, std::get<1>(expr.second)),
eval(ss, std::get<2>(expr.second)));
}
//////////////////////////////////////////////////////////////////////////
// Obtain the grid from an expression, ensuring conformable. This must follow a
// tree recursion
//////////////////////////////////////////////////////////////////////////
template <class T1,
typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
inline void GridFromExpression(GridBase *&grid, const T1 &lat) // Lattice leaf
{
if (grid) {
conformable(grid, lat._grid);
}
grid = lat._grid;
}
template <class T1,
typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
inline void GridFromExpression(GridBase *&grid,
const T1 &notlat) // non-lattice leaf
{}
template <typename Op, typename T1>
inline void GridFromExpression(GridBase *&grid,
const LatticeUnaryExpression<Op, T1> &expr) {
GridFromExpression(grid, std::get<0>(expr.second)); // recurse
}
template <typename Op, typename T1, typename T2>
inline void GridFromExpression(
GridBase *&grid, const LatticeBinaryExpression<Op, T1, T2> &expr) {
GridFromExpression(grid, std::get<0>(expr.second)); // recurse
GridFromExpression(grid, std::get<1>(expr.second));
}
template <typename Op, typename T1, typename T2, typename T3>
inline void GridFromExpression(
GridBase *&grid, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr) {
GridFromExpression(grid, std::get<0>(expr.second)); // recurse
GridFromExpression(grid, std::get<1>(expr.second));
GridFromExpression(grid, std::get<2>(expr.second));
}
//////////////////////////////////////////////////////////////////////////
// Obtain the CB from an expression, ensuring conformable. This must follow a
// tree recursion
//////////////////////////////////////////////////////////////////////////
template <class T1,
typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
inline void CBFromExpression(int &cb, const T1 &lat) // Lattice leaf
{
if ((cb == Odd) || (cb == Even)) {
assert(cb == lat.checkerboard);
}
cb = lat.checkerboard;
// std::cout<<GridLogMessage<<"Lattice leaf cb "<<cb<<std::endl;
}
template <class T1,
typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
inline void CBFromExpression(int &cb, const T1 &notlat) // non-lattice leaf
{
// std::cout<<GridLogMessage<<"Non lattice leaf cb"<<cb<<std::endl;
}
template <typename Op, typename T1>
inline void CBFromExpression(int &cb,
const LatticeUnaryExpression<Op, T1> &expr) {
CBFromExpression(cb, std::get<0>(expr.second)); // recurse
// std::cout<<GridLogMessage<<"Unary node cb "<<cb<<std::endl;
}
template <typename Op, typename T1, typename T2>
inline void CBFromExpression(int &cb,
const LatticeBinaryExpression<Op, T1, T2> &expr) {
CBFromExpression(cb, std::get<0>(expr.second)); // recurse
CBFromExpression(cb, std::get<1>(expr.second));
// std::cout<<GridLogMessage<<"Binary node cb "<<cb<<std::endl;
}
template <typename Op, typename T1, typename T2, typename T3>
inline void CBFromExpression(
int &cb, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr) {
CBFromExpression(cb, std::get<0>(expr.second)); // recurse
CBFromExpression(cb, std::get<1>(expr.second));
CBFromExpression(cb, std::get<2>(expr.second));
// std::cout<<GridLogMessage<<"Trinary node cb "<<cb<<std::endl;
}
////////////////////////////////////////////
// Unary operators and funcs
////////////////////////////////////////////
#define GridUnopClass(name, ret) \
template <class arg> \
struct name { \
static auto inline func(const arg a) -> decltype(ret) { return ret; } \
};
GridUnopClass(UnarySub, -a);
GridUnopClass(UnaryNot, Not(a));
GridUnopClass(UnaryAdj, adj(a));
GridUnopClass(UnaryConj, conjugate(a));
GridUnopClass(UnaryTrace, trace(a));
GridUnopClass(UnaryTranspose, transpose(a));
GridUnopClass(UnaryTa, Ta(a));
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
GridUnopClass(UnaryReal, real(a));
GridUnopClass(UnaryImag, imag(a));
GridUnopClass(UnaryToReal, toReal(a));
GridUnopClass(UnaryToComplex, toComplex(a));
GridUnopClass(UnaryTimesI, timesI(a));
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
GridUnopClass(UnaryAbs, abs(a));
GridUnopClass(UnarySqrt, sqrt(a));
GridUnopClass(UnaryRsqrt, rsqrt(a));
GridUnopClass(UnarySin, sin(a));
GridUnopClass(UnaryCos, cos(a));
GridUnopClass(UnaryAsin, asin(a));
GridUnopClass(UnaryAcos, acos(a));
GridUnopClass(UnaryLog, log(a));
GridUnopClass(UnaryExp, exp(a));
////////////////////////////////////////////
// Binary operators
////////////////////////////////////////////
#define GridBinOpClass(name, combination) \
template <class left, class right> \
struct name { \
static auto inline func(const left &lhs, const right &rhs) \
-> decltype(combination) const { \
return combination; \
} \
}
GridBinOpClass(BinaryAdd, lhs + rhs);
GridBinOpClass(BinarySub, lhs - rhs);
GridBinOpClass(BinaryMul, lhs *rhs);
GridBinOpClass(BinaryDiv, lhs /rhs);
GridBinOpClass(BinaryAnd, lhs &rhs);
GridBinOpClass(BinaryOr, lhs | rhs);
GridBinOpClass(BinaryAndAnd, lhs &&rhs);
GridBinOpClass(BinaryOrOr, lhs || rhs);
////////////////////////////////////////////////////
// Trinary conditional op
////////////////////////////////////////////////////
#define GridTrinOpClass(name, combination) \
template <class predicate, class left, class right> \
struct name { \
static auto inline func(const predicate &pred, const left &lhs, \
const right &rhs) -> decltype(combination) const { \
return combination; \
} \
}
GridTrinOpClass(
TrinaryWhere,
(predicatedWhere<predicate, typename std::remove_reference<left>::type,
typename std::remove_reference<right>::type>(pred, lhs,
rhs)));
////////////////////////////////////////////
// Operator syntactical glue
////////////////////////////////////////////
#define GRID_UNOP(name) name<decltype(eval(0, arg))>
#define GRID_BINOP(name) name<decltype(eval(0, lhs)), decltype(eval(0, rhs))>
#define GRID_TRINOP(name) \
name<decltype(eval(0, pred)), decltype(eval(0, lhs)), decltype(eval(0, rhs))>
#define GRID_DEF_UNOP(op, name) \
template <typename T1, \
typename std::enable_if<is_lattice<T1>::value || \
is_lattice_expr<T1>::value, \
T1>::type * = nullptr> \
inline auto op(const T1 &arg) \
->decltype(LatticeUnaryExpression<GRID_UNOP(name), const T1 &>( \
std::make_pair(GRID_UNOP(name)(), std::forward_as_tuple(arg)))) { \
return LatticeUnaryExpression<GRID_UNOP(name), const T1 &>( \
std::make_pair(GRID_UNOP(name)(), std::forward_as_tuple(arg))); \
}
#define GRID_BINOP_LEFT(op, name) \
template <typename T1, typename T2, \
typename std::enable_if<is_lattice<T1>::value || \
is_lattice_expr<T1>::value, \
T1>::type * = nullptr> \
inline auto op(const T1 &lhs, const T2 &rhs) \
->decltype( \
LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>( \
std::make_pair(GRID_BINOP(name)(), \
std::forward_as_tuple(lhs, rhs)))) { \
return LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>( \
std::make_pair(GRID_BINOP(name)(), std::forward_as_tuple(lhs, rhs))); \
}
#define GRID_BINOP_RIGHT(op, name) \
template <typename T1, typename T2, \
typename std::enable_if<!is_lattice<T1>::value && \
!is_lattice_expr<T1>::value, \
T1>::type * = nullptr, \
typename std::enable_if<is_lattice<T2>::value || \
is_lattice_expr<T2>::value, \
T2>::type * = nullptr> \
inline auto op(const T1 &lhs, const T2 &rhs) \
->decltype( \
LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>( \
std::make_pair(GRID_BINOP(name)(), \
std::forward_as_tuple(lhs, rhs)))) { \
return LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>( \
std::make_pair(GRID_BINOP(name)(), std::forward_as_tuple(lhs, rhs))); \
}
#define GRID_DEF_BINOP(op, name) \
GRID_BINOP_LEFT(op, name); \
GRID_BINOP_RIGHT(op, name);
#define GRID_DEF_TRINOP(op, name) \
template <typename T1, typename T2, typename T3> \
inline auto op(const T1 &pred, const T2 &lhs, const T3 &rhs) \
->decltype( \
LatticeTrinaryExpression<GRID_TRINOP(name), const T1 &, const T2 &, \
const T3 &>(std::make_pair( \
GRID_TRINOP(name)(), std::forward_as_tuple(pred, lhs, rhs)))) { \
return LatticeTrinaryExpression<GRID_TRINOP(name), const T1 &, const T2 &, \
const T3 &>(std::make_pair( \
GRID_TRINOP(name)(), std::forward_as_tuple(pred, lhs, rhs))); \
}
////////////////////////
// Operator definitions
////////////////////////
GRID_DEF_UNOP(operator-, UnarySub);
GRID_DEF_UNOP(Not, UnaryNot);
GRID_DEF_UNOP(operator!, UnaryNot);
GRID_DEF_UNOP(adj, UnaryAdj);
GRID_DEF_UNOP(conjugate, UnaryConj);
GRID_DEF_UNOP(trace, UnaryTrace);
GRID_DEF_UNOP(transpose, UnaryTranspose);
GRID_DEF_UNOP(Ta, UnaryTa);
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
GRID_DEF_UNOP(real, UnaryReal);
GRID_DEF_UNOP(imag, UnaryImag);
GRID_DEF_UNOP(toReal, UnaryToReal);
GRID_DEF_UNOP(toComplex, UnaryToComplex);
GRID_DEF_UNOP(timesI, UnaryTimesI);
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
GRID_DEF_UNOP(abs, UnaryAbs); // abs overloaded in cmath C++98; DON'T do the
// abs-fabs-dabs-labs thing
GRID_DEF_UNOP(sqrt, UnarySqrt);
GRID_DEF_UNOP(rsqrt, UnaryRsqrt);
GRID_DEF_UNOP(sin, UnarySin);
GRID_DEF_UNOP(cos, UnaryCos);
GRID_DEF_UNOP(asin, UnaryAsin);
GRID_DEF_UNOP(acos, UnaryAcos);
GRID_DEF_UNOP(log, UnaryLog);
GRID_DEF_UNOP(exp, UnaryExp);
GRID_DEF_BINOP(operator+, BinaryAdd);
GRID_DEF_BINOP(operator-, BinarySub);
GRID_DEF_BINOP(operator*, BinaryMul);
GRID_DEF_BINOP(operator/, BinaryDiv);
GRID_DEF_BINOP(operator&, BinaryAnd);
GRID_DEF_BINOP(operator|, BinaryOr);
GRID_DEF_BINOP(operator&&, BinaryAndAnd);
GRID_DEF_BINOP(operator||, BinaryOrOr);
GRID_DEF_TRINOP(where, TrinaryWhere);
/////////////////////////////////////////////////////////////
// Closure convenience to force expression to evaluate
/////////////////////////////////////////////////////////////
template <class Op, class T1>
auto closure(const LatticeUnaryExpression<Op, T1> &expr)
-> Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second))))> {
Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second))))> ret(
expr);
return ret;
}
template <class Op, class T1, class T2>
auto closure(const LatticeBinaryExpression<Op, T1, T2> &expr)
-> Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)),
eval(0, std::get<1>(expr.second))))> {
Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)),
eval(0, std::get<1>(expr.second))))>
ret(expr);
return ret;
}
template <class Op, class T1, class T2, class T3>
auto closure(const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
-> Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)),
eval(0, std::get<1>(expr.second)),
eval(0, std::get<2>(expr.second))))> {
Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)),
eval(0, std::get<1>(expr.second)),
eval(0, std::get<2>(expr.second))))>
ret(expr);
return ret;
}
#undef GRID_UNOP
#undef GRID_BINOP
#undef GRID_TRINOP
#undef GRID_DEF_UNOP
#undef GRID_DEF_BINOP
#undef GRID_DEF_TRINOP
}
#if 0
using namespace Grid;
int main(int argc,char **argv){
Lattice<double> v1(16);
Lattice<double> v2(16);
Lattice<double> v3(16);
BinaryAdd<double,double> tmp;
LatticeBinaryExpression<BinaryAdd<double,double>,Lattice<double> &,Lattice<double> &>
expr(std::make_pair(tmp,
std::forward_as_tuple(v1,v2)));
tmp.func(eval(0,v1),eval(0,v2));
auto var = v1+v2;
std::cout<<GridLogMessage<<typeid(var).name()<<std::endl;
v3=v1+v2;
v3=v1+v2+v1*v2;
};
void testit(Lattice<double> &v1,Lattice<double> &v2,Lattice<double> &v3)
{
v3=v1+v2+v1*v2;
}
#endif
#endif

View File

@ -0,0 +1,255 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_arith.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_ARITH_H
#define GRID_LATTICE_ARITH_H
namespace Grid {
//////////////////////////////////////////////////////////////////////////////////////////////////////
// avoid copy back routines for mult, mac, sub, add
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class obj1,class obj2,class obj3> strong_inline
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
ret.checkerboard = lhs.checkerboard;
conformable(ret,rhs);
conformable(lhs,rhs);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
mult(&tmp,&lhs._odata[ss],&rhs._odata[ss]);
vstream(ret._odata[ss],tmp);
#else
mult(&ret._odata[ss],&lhs._odata[ss],&rhs._odata[ss]);
#endif
}
}
template<class obj1,class obj2,class obj3> strong_inline
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
ret.checkerboard = lhs.checkerboard;
conformable(ret,rhs);
conformable(lhs,rhs);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
mac(&tmp,&lhs._odata[ss],&rhs._odata[ss]);
vstream(ret._odata[ss],tmp);
#else
mac(&ret._odata[ss],&lhs._odata[ss],&rhs._odata[ss]);
#endif
}
}
template<class obj1,class obj2,class obj3> strong_inline
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
ret.checkerboard = lhs.checkerboard;
conformable(ret,rhs);
conformable(lhs,rhs);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
sub(&tmp,&lhs._odata[ss],&rhs._odata[ss]);
vstream(ret._odata[ss],tmp);
#else
sub(&ret._odata[ss],&lhs._odata[ss],&rhs._odata[ss]);
#endif
}
}
template<class obj1,class obj2,class obj3> strong_inline
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
ret.checkerboard = lhs.checkerboard;
conformable(ret,rhs);
conformable(lhs,rhs);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
add(&tmp,&lhs._odata[ss],&rhs._odata[ss]);
vstream(ret._odata[ss],tmp);
#else
add(&ret._odata[ss],&lhs._odata[ss],&rhs._odata[ss]);
#endif
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////
// avoid copy back routines for mult, mac, sub, add
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class obj1,class obj2,class obj3> strong_inline
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.checkerboard = lhs.checkerboard;
conformable(lhs,ret);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
obj1 tmp;
mult(&tmp,&lhs._odata[ss],&rhs);
vstream(ret._odata[ss],tmp);
}
}
template<class obj1,class obj2,class obj3> strong_inline
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.checkerboard = lhs.checkerboard;
conformable(ret,lhs);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
obj1 tmp;
mac(&tmp,&lhs._odata[ss],&rhs);
vstream(ret._odata[ss],tmp);
}
}
template<class obj1,class obj2,class obj3> strong_inline
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.checkerboard = lhs.checkerboard;
conformable(ret,lhs);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
sub(&tmp,&lhs._odata[ss],&rhs);
vstream(ret._odata[ss],tmp);
#else
sub(&ret._odata[ss],&lhs._odata[ss],&rhs);
#endif
}
}
template<class obj1,class obj2,class obj3> strong_inline
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.checkerboard = lhs.checkerboard;
conformable(lhs,ret);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
add(&tmp,&lhs._odata[ss],&rhs);
vstream(ret._odata[ss],tmp);
#else
add(&ret._odata[ss],&lhs._odata[ss],&rhs);
#endif
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////
// avoid copy back routines for mult, mac, sub, add
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class obj1,class obj2,class obj3> strong_inline
void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
mult(&tmp,&lhs,&rhs._odata[ss]);
vstream(ret._odata[ss],tmp);
#else
mult(&ret._odata[ss],&lhs,&rhs._odata[ss]);
#endif
}
}
template<class obj1,class obj2,class obj3> strong_inline
void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
mac(&tmp,&lhs,&rhs._odata[ss]);
vstream(ret._odata[ss],tmp);
#else
mac(&ret._odata[ss],&lhs,&rhs._odata[ss]);
#endif
}
}
template<class obj1,class obj2,class obj3> strong_inline
void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
sub(&tmp,&lhs,&rhs._odata[ss]);
vstream(ret._odata[ss],tmp);
#else
sub(&ret._odata[ss],&lhs,&rhs._odata[ss]);
#endif
}
}
template<class obj1,class obj2,class obj3> strong_inline
void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
add(&tmp,&lhs,&rhs._odata[ss]);
vstream(ret._odata[ss],tmp);
#else
add(&ret._odata[ss],&lhs,&rhs._odata[ss]);
#endif
}
}
template<class sobj,class vobj> strong_inline
void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){
ret.checkerboard = x.checkerboard;
conformable(ret,x);
conformable(x,y);
parallel_for(int ss=0;ss<x._grid->oSites();ss++){
#ifdef STREAMING_STORES
vobj tmp = a*x._odata[ss]+y._odata[ss];
vstream(ret._odata[ss],tmp);
#else
ret._odata[ss]=a*x._odata[ss]+y._odata[ss];
#endif
}
}
template<class sobj,class vobj> strong_inline
void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y){
ret.checkerboard = x.checkerboard;
conformable(ret,x);
conformable(x,y);
parallel_for(int ss=0;ss<x._grid->oSites();ss++){
#ifdef STREAMING_STORES
vobj tmp = a*x._odata[ss]+b*y._odata[ss];
vstream(ret._odata[ss],tmp);
#else
ret._odata[ss]=a*x._odata[ss]+b*y._odata[ss];
#endif
}
}
template<class sobj,class vobj> strong_inline
RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){
return axpy_norm_fast(ret,a,x,y);
}
template<class sobj,class vobj> strong_inline
RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y){
return axpby_norm_fast(ret,a,b,x,y);
}
}
#endif

375
Grid/lattice/Lattice_base.h Normal file
View File

@ -0,0 +1,375 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_base.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_BASE_H
#define GRID_LATTICE_BASE_H
#define STREAMING_STORES
namespace Grid {
// TODO:
// mac,real,imag
// Functionality:
// -=,+=,*=,()
// add,+,sub,-,mult,mac,*
// adj,conjugate
// real,imag
// transpose,transposeIndex
// trace,traceIndex
// peekIndex
// innerProduct,outerProduct,
// localNorm2
// localInnerProduct
extern int GridCshiftPermuteMap[4][16];
////////////////////////////////////////////////
// Basic expressions used in Expression Template
////////////////////////////////////////////////
class LatticeBase
{
public:
virtual ~LatticeBase(void) = default;
GridBase *_grid;
};
class LatticeExpressionBase {};
template <typename Op, typename T1>
class LatticeUnaryExpression : public std::pair<Op,std::tuple<T1> > , public LatticeExpressionBase {
public:
LatticeUnaryExpression(const std::pair<Op,std::tuple<T1> > &arg): std::pair<Op,std::tuple<T1> >(arg) {};
};
template <typename Op, typename T1, typename T2>
class LatticeBinaryExpression : public std::pair<Op,std::tuple<T1,T2> > , public LatticeExpressionBase {
public:
LatticeBinaryExpression(const std::pair<Op,std::tuple<T1,T2> > &arg): std::pair<Op,std::tuple<T1,T2> >(arg) {};
};
template <typename Op, typename T1, typename T2, typename T3>
class LatticeTrinaryExpression :public std::pair<Op,std::tuple<T1,T2,T3> >, public LatticeExpressionBase {
public:
LatticeTrinaryExpression(const std::pair<Op,std::tuple<T1,T2,T3> > &arg): std::pair<Op,std::tuple<T1,T2,T3> >(arg) {};
};
void inline conformable(GridBase *lhs,GridBase *rhs)
{
assert(lhs == rhs);
}
template<class vobj>
class Lattice : public LatticeBase
{
public:
int checkerboard;
Vector<vobj> _odata;
// to pthread need a computable loop where loop induction is not required
int begin(void) { return 0;};
int end(void) { return _odata.size(); }
vobj & operator[](int i) { return _odata[i]; };
const vobj & operator[](int i) const { return _odata[i]; };
public:
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef vobj vector_object;
////////////////////////////////////////////////////////////////////////////////
// Expression Template closure support
////////////////////////////////////////////////////////////////////////////////
template <typename Op, typename T1> strong_inline Lattice<vobj> & operator=(const LatticeUnaryExpression<Op,T1> &expr)
{
GridBase *egrid(nullptr);
GridFromExpression(egrid,expr);
assert(egrid!=nullptr);
conformable(_grid,egrid);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
checkerboard=cb;
parallel_for(int ss=0;ss<_grid->oSites();ss++){
#ifdef STREAMING_STORES
vobj tmp = eval(ss,expr);
vstream(_odata[ss] ,tmp);
#else
_odata[ss]=eval(ss,expr);
#endif
}
return *this;
}
template <typename Op, typename T1,typename T2> strong_inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr)
{
GridBase *egrid(nullptr);
GridFromExpression(egrid,expr);
assert(egrid!=nullptr);
conformable(_grid,egrid);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
checkerboard=cb;
parallel_for(int ss=0;ss<_grid->oSites();ss++){
#ifdef STREAMING_STORES
vobj tmp = eval(ss,expr);
vstream(_odata[ss] ,tmp);
#else
_odata[ss]=eval(ss,expr);
#endif
}
return *this;
}
template <typename Op, typename T1,typename T2,typename T3> strong_inline Lattice<vobj> & operator=(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr)
{
GridBase *egrid(nullptr);
GridFromExpression(egrid,expr);
assert(egrid!=nullptr);
conformable(_grid,egrid);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
checkerboard=cb;
parallel_for(int ss=0;ss<_grid->oSites();ss++){
#ifdef STREAMING_STORES
//vobj tmp = eval(ss,expr);
vstream(_odata[ss] ,eval(ss,expr));
#else
_odata[ss] = eval(ss,expr);
#endif
}
return *this;
}
//GridFromExpression is tricky to do
template<class Op,class T1>
Lattice(const LatticeUnaryExpression<Op,T1> & expr) {
_grid = nullptr;
GridFromExpression(_grid,expr);
assert(_grid!=nullptr);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
checkerboard=cb;
_odata.resize(_grid->oSites());
parallel_for(int ss=0;ss<_grid->oSites();ss++){
#ifdef STREAMING_STORES
vobj tmp = eval(ss,expr);
vstream(_odata[ss] ,tmp);
#else
_odata[ss]=eval(ss,expr);
#endif
}
};
template<class Op,class T1, class T2>
Lattice(const LatticeBinaryExpression<Op,T1,T2> & expr) {
_grid = nullptr;
GridFromExpression(_grid,expr);
assert(_grid!=nullptr);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
checkerboard=cb;
_odata.resize(_grid->oSites());
parallel_for(int ss=0;ss<_grid->oSites();ss++){
#ifdef STREAMING_STORES
vobj tmp = eval(ss,expr);
vstream(_odata[ss] ,tmp);
#else
_odata[ss]=eval(ss,expr);
#endif
}
};
template<class Op,class T1, class T2, class T3>
Lattice(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr) {
_grid = nullptr;
GridFromExpression(_grid,expr);
assert(_grid!=nullptr);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
checkerboard=cb;
_odata.resize(_grid->oSites());
parallel_for(int ss=0;ss<_grid->oSites();ss++){
vstream(_odata[ss] ,eval(ss,expr));
}
};
//////////////////////////////////////////////////////////////////
// Constructor requires "grid" passed.
// what about a default grid?
//////////////////////////////////////////////////////////////////
Lattice(GridBase *grid) : _odata(grid->oSites()) {
_grid = grid;
// _odata.reserve(_grid->oSites());
// _odata.resize(_grid->oSites());
// std::cout << "Constructing lattice object with Grid pointer "<<_grid<<std::endl;
assert((((uint64_t)&_odata[0])&0xF) ==0);
checkerboard=0;
}
Lattice(const Lattice& r){ // copy constructor
_grid = r._grid;
checkerboard = r.checkerboard;
_odata.resize(_grid->oSites());// essential
parallel_for(int ss=0;ss<_grid->oSites();ss++){
_odata[ss]=r._odata[ss];
}
}
Lattice(Lattice&& r){ // move constructor
_grid = r._grid;
checkerboard = r.checkerboard;
_odata=std::move(r._odata);
}
inline Lattice<vobj> & operator = (Lattice<vobj> && r)
{
_grid = r._grid;
checkerboard = r.checkerboard;
_odata =std::move(r._odata);
return *this;
}
inline Lattice<vobj> & operator = (const Lattice<vobj> & r){
_grid = r._grid;
checkerboard = r.checkerboard;
_odata.resize(_grid->oSites());// essential
parallel_for(int ss=0;ss<_grid->oSites();ss++){
_odata[ss]=r._odata[ss];
}
return *this;
}
template<class robj> strong_inline Lattice<vobj> & operator = (const Lattice<robj> & r){
this->checkerboard = r.checkerboard;
conformable(*this,r);
parallel_for(int ss=0;ss<_grid->oSites();ss++){
this->_odata[ss]=r._odata[ss];
}
return *this;
}
virtual ~Lattice(void) = default;
void reset(GridBase* grid) {
if (_grid != grid) {
_grid = grid;
_odata.resize(grid->oSites());
checkerboard = 0;
}
}
template<class sobj> strong_inline Lattice<vobj> & operator = (const sobj & r){
parallel_for(int ss=0;ss<_grid->oSites();ss++){
this->_odata[ss]=r;
}
return *this;
}
// *=,+=,-= operators inherit behvour from correspond */+/- operation
template<class T> strong_inline Lattice<vobj> &operator *=(const T &r) {
*this = (*this)*r;
return *this;
}
template<class T> strong_inline Lattice<vobj> &operator -=(const T &r) {
*this = (*this)-r;
return *this;
}
template<class T> strong_inline Lattice<vobj> &operator +=(const T &r) {
*this = (*this)+r;
return *this;
}
}; // class Lattice
template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
std::vector<int> gcoor;
typedef typename vobj::scalar_object sobj;
sobj ss;
for(int g=0;g<o._grid->_gsites;g++){
o._grid->GlobalIndexToGlobalCoor(g,gcoor);
peekSite(ss,o,gcoor);
stream<<"[";
for(int d=0;d<gcoor.size();d++){
stream<<gcoor[d];
if(d!=gcoor.size()-1) stream<<",";
}
stream<<"]\t";
stream<<ss<<std::endl;
}
return stream;
}
}
#include "Lattice_conformable.h"
#define GRID_LATTICE_EXPRESSION_TEMPLATES
#ifdef GRID_LATTICE_EXPRESSION_TEMPLATES
#include "Lattice_ET.h"
#else
#include "Lattice_overload.h"
#endif
#include "Lattice_arith.h"
#include "Lattice_trace.h"
#include "Lattice_transpose.h"
#include "Lattice_local.h"
#include "Lattice_reduction.h"
#include "Lattice_peekpoke.h"
#include "Lattice_reality.h"
#include "Lattice_comparison_utils.h"
#include "Lattice_comparison.h"
#include "Lattice_coordinate.h"
#include "Lattice_where.h"
#include "Lattice_rng.h"
#include "Lattice_unary.h"
#include "Lattice_transfer.h"
#endif

View File

@ -0,0 +1,169 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_comparison.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_COMPARISON_H
#define GRID_LATTICE_COMPARISON_H
namespace Grid {
//////////////////////////////////////////////////////////////////////////
// relational operators
//
// Support <,>,<=,>=,==,!=
//
//Query supporting bitwise &, |, ^, !
//Query supporting logical &&, ||,
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
// compare lattice to lattice
//////////////////////////////////////////////////////////////////////////
template<class vfunctor,class lobj,class robj>
inline Lattice<vInteger> LLComparison(vfunctor op,const Lattice<lobj> &lhs,const Lattice<robj> &rhs)
{
Lattice<vInteger> ret(rhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
ret._odata[ss]=op(lhs._odata[ss],rhs._odata[ss]);
}
return ret;
}
//////////////////////////////////////////////////////////////////////////
// compare lattice to scalar
//////////////////////////////////////////////////////////////////////////
template<class vfunctor,class lobj,class robj>
inline Lattice<vInteger> LSComparison(vfunctor op,const Lattice<lobj> &lhs,const robj &rhs)
{
Lattice<vInteger> ret(lhs._grid);
parallel_for(int ss=0;ss<lhs._grid->oSites(); ss++){
ret._odata[ss]=op(lhs._odata[ss],rhs);
}
return ret;
}
//////////////////////////////////////////////////////////////////////////
// compare scalar to lattice
//////////////////////////////////////////////////////////////////////////
template<class vfunctor,class lobj,class robj>
inline Lattice<vInteger> SLComparison(vfunctor op,const lobj &lhs,const Lattice<robj> &rhs)
{
Lattice<vInteger> ret(rhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
ret._odata[ss]=op(lhs._odata[ss],rhs);
}
return ret;
}
//////////////////////////////////////////////////////////////////////////
// Map to functors
//////////////////////////////////////////////////////////////////////////
// Less than
template<class lobj,class robj>
inline Lattice<vInteger> operator < (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vlt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator < (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vlt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator < (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vlt<lobj,robj>(),lhs,rhs);
}
// Less than equal
template<class lobj,class robj>
inline Lattice<vInteger> operator <= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vle<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator <= (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vle<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator <= (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vle<lobj,robj>(),lhs,rhs);
}
// Greater than
template<class lobj,class robj>
inline Lattice<vInteger> operator > (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vgt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator > (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vgt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator > (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vgt<lobj,robj>(),lhs,rhs);
}
// Greater than equal
template<class lobj,class robj>
inline Lattice<vInteger> operator >= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vge<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator >= (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vge<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator >= (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vge<lobj,robj>(),lhs,rhs);
}
// equal
template<class lobj,class robj>
inline Lattice<vInteger> operator == (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(veq<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator == (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(veq<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator == (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(veq<lobj,robj>(),lhs,rhs);
}
// not equal
template<class lobj,class robj>
inline Lattice<vInteger> operator != (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vne<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator != (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vne<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator != (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vne<lobj,robj>(),lhs,rhs);
}
}
#endif

View File

@ -0,0 +1,232 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_comparison_utils.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_COMPARISON_H
#define GRID_COMPARISON_H
namespace Grid {
/////////////////////////////////////////
// This implementation is a bit poor.
//
// Only support relational logical operations (<, > etc)
// on scalar objects. Therefore can strip any tensor structures.
//
// Should guard this with isGridTensor<> enable if?
/////////////////////////////////////////
//
// Generic list of functors
//
template<class lobj,class robj> class veq {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) == (rhs);
}
};
template<class lobj,class robj> class vne {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) != (rhs);
}
};
template<class lobj,class robj> class vlt {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) < (rhs);
}
};
template<class lobj,class robj> class vle {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) <= (rhs);
}
};
template<class lobj,class robj> class vgt {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) > (rhs);
}
};
template<class lobj,class robj> class vge {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) >= (rhs);
}
};
// Generic list of functors
template<class lobj,class robj> class seq {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) == (rhs);
}
};
template<class lobj,class robj> class sne {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) != (rhs);
}
};
template<class lobj,class robj> class slt {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) < (rhs);
}
};
template<class lobj,class robj> class sle {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) <= (rhs);
}
};
template<class lobj,class robj> class sgt {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) > (rhs);
}
};
template<class lobj,class robj> class sge {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) >= (rhs);
}
};
//////////////////////////////////////////////////////////////////////////////////////////////////////
// Integer and real get extra relational functions.
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class sfunctor, class vsimd,IfNotComplex<vsimd> = 0>
inline vInteger Comparison(sfunctor sop,const vsimd & lhs, const vsimd & rhs)
{
typedef typename vsimd::scalar_type scalar;
std::vector<scalar> vlhs(vsimd::Nsimd()); // Use functors to reduce this to single implementation
std::vector<scalar> vrhs(vsimd::Nsimd());
std::vector<Integer> vpred(vsimd::Nsimd());
vInteger ret;
extract<vsimd,scalar>(lhs,vlhs);
extract<vsimd,scalar>(rhs,vrhs);
for(int s=0;s<vsimd::Nsimd();s++){
vpred[s] = sop(vlhs[s],vrhs[s]);
}
merge<vInteger,Integer>(ret,vpred);
return ret;
}
template<class sfunctor, class vsimd,IfNotComplex<vsimd> = 0>
inline vInteger Comparison(sfunctor sop,const vsimd & lhs, const typename vsimd::scalar_type & rhs)
{
typedef typename vsimd::scalar_type scalar;
std::vector<scalar> vlhs(vsimd::Nsimd()); // Use functors to reduce this to single implementation
std::vector<Integer> vpred(vsimd::Nsimd());
vInteger ret;
extract<vsimd,scalar>(lhs,vlhs);
for(int s=0;s<vsimd::Nsimd();s++){
vpred[s] = sop(vlhs[s],rhs);
}
merge<vInteger,Integer>(ret,vpred);
return ret;
}
template<class sfunctor, class vsimd,IfNotComplex<vsimd> = 0>
inline vInteger Comparison(sfunctor sop,const typename vsimd::scalar_type & lhs, const vsimd & rhs)
{
typedef typename vsimd::scalar_type scalar;
std::vector<scalar> vrhs(vsimd::Nsimd()); // Use functors to reduce this to single implementation
std::vector<Integer> vpred(vsimd::Nsimd());
vInteger ret;
extract<vsimd,scalar>(rhs,vrhs);
for(int s=0;s<vsimd::Nsimd();s++){
vpred[s] = sop(lhs,vrhs[s]);
}
merge<vInteger,Integer>(ret,vpred);
return ret;
}
#define DECLARE_RELATIONAL_EQ(op,functor) \
template<class vsimd,IfSimd<vsimd> = 0>\
inline vInteger operator op (const vsimd & lhs, const vsimd & rhs)\
{\
typedef typename vsimd::scalar_type scalar;\
return Comparison(functor<scalar,scalar>(),lhs,rhs);\
}\
template<class vsimd,IfSimd<vsimd> = 0>\
inline vInteger operator op (const vsimd & lhs, const typename vsimd::scalar_type & rhs) \
{\
typedef typename vsimd::scalar_type scalar;\
return Comparison(functor<scalar,scalar>(),lhs,rhs);\
}\
template<class vsimd,IfSimd<vsimd> = 0>\
inline vInteger operator op (const typename vsimd::scalar_type & lhs, const vsimd & rhs) \
{\
typedef typename vsimd::scalar_type scalar;\
return Comparison(functor<scalar,scalar>(),lhs,rhs);\
}\
template<class vsimd>\
inline vInteger operator op(const iScalar<vsimd> &lhs,const typename vsimd::scalar_type &rhs) \
{ \
return lhs._internal op rhs; \
} \
template<class vsimd>\
inline vInteger operator op(const typename vsimd::scalar_type &lhs,const iScalar<vsimd> &rhs) \
{ \
return lhs op rhs._internal; \
} \
#define DECLARE_RELATIONAL(op,functor) \
DECLARE_RELATIONAL_EQ(op,functor) \
template<class vsimd>\
inline vInteger operator op(const iScalar<vsimd> &lhs,const iScalar<vsimd> &rhs)\
{ \
return lhs._internal op rhs._internal; \
}
DECLARE_RELATIONAL(<,slt);
DECLARE_RELATIONAL(<=,sle);
DECLARE_RELATIONAL(>,sgt);
DECLARE_RELATIONAL(>=,sge);
DECLARE_RELATIONAL_EQ(==,seq);
DECLARE_RELATIONAL(!=,sne);
#undef DECLARE_RELATIONAL
}
#endif

View File

@ -0,0 +1,40 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_conformable.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_CONFORMABLE_H
#define GRID_LATTICE_CONFORMABLE_H
namespace Grid {
template<class obj1,class obj2> void conformable(const Lattice<obj1> &lhs,const Lattice<obj2> &rhs)
{
assert(lhs._grid == rhs._grid);
assert(lhs.checkerboard == rhs.checkerboard);
}
}
#endif

View File

@ -0,0 +1,56 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_coordinate.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_COORDINATE_H
#define GRID_LATTICE_COORDINATE_H
namespace Grid {
template<class iobj> inline void LatticeCoordinate(Lattice<iobj> &l,int mu)
{
typedef typename iobj::scalar_type scalar_type;
typedef typename iobj::vector_type vector_type;
GridBase *grid = l._grid;
int Nsimd = grid->iSites();
std::vector<int> gcoor;
std::vector<scalar_type> mergebuf(Nsimd);
vector_type vI;
for(int o=0;o<grid->oSites();o++){
for(int i=0;i<grid->iSites();i++){
grid->RankIndexToGlobalCoor(grid->ThisRank(),o,i,gcoor);
mergebuf[i]=(Integer)gcoor[mu];
}
merge<vector_type,scalar_type>(vI,mergebuf);
l._odata[o]=vI;
}
};
}
#endif

View File

@ -0,0 +1,75 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_local.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_LOCALREDUCTION_H
#define GRID_LATTICE_LOCALREDUCTION_H
///////////////////////////////////////////////
// localInner, localNorm, outerProduct
///////////////////////////////////////////////
namespace Grid {
/////////////////////////////////////////////////////
// Non site, reduced locally reduced routines
/////////////////////////////////////////////////////
// localNorm2,
template<class vobj>
inline auto localNorm2 (const Lattice<vobj> &rhs)-> Lattice<typename vobj::tensor_reduced>
{
Lattice<typename vobj::tensor_reduced> ret(rhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
ret._odata[ss]=innerProduct(rhs._odata[ss],rhs._odata[ss]);
}
return ret;
}
// localInnerProduct
template<class vobj>
inline auto localInnerProduct (const Lattice<vobj> &lhs,const Lattice<vobj> &rhs) -> Lattice<typename vobj::tensor_reduced>
{
Lattice<typename vobj::tensor_reduced> ret(rhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
ret._odata[ss]=innerProduct(lhs._odata[ss],rhs._odata[ss]);
}
return ret;
}
// outerProduct Scalar x Scalar -> Scalar
// Vector x Vector -> Matrix
template<class ll,class rr>
inline auto outerProduct (const Lattice<ll> &lhs,const Lattice<rr> &rhs) -> Lattice<decltype(outerProduct(lhs._odata[0],rhs._odata[0]))>
{
Lattice<decltype(outerProduct(lhs._odata[0],rhs._odata[0]))> ret(rhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
ret._odata[ss]=outerProduct(lhs._odata[ss],rhs._odata[ss]);
}
return ret;
}
}
#endif

View File

@ -0,0 +1,138 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_overload.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_OVERLOAD_H
#define GRID_LATTICE_OVERLOAD_H
namespace Grid {
//////////////////////////////////////////////////////////////////////////////////////////////////////
// unary negation
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj>
inline Lattice<vobj> operator -(const Lattice<vobj> &r)
{
Lattice<vobj> ret(r._grid);
parallel_for(int ss=0;ss<r._grid->oSites();ss++){
vstream(ret._odata[ss], -r._odata[ss]);
}
return ret;
}
/////////////////////////////////////////////////////////////////////////////////////
// Lattice BinOp Lattice,
//NB mult performs conformable check. Do not reapply here for performance.
/////////////////////////////////////////////////////////////////////////////////////
template<class left,class right>
inline auto operator * (const Lattice<left> &lhs,const Lattice<right> &rhs)-> Lattice<decltype(lhs._odata[0]*rhs._odata[0])>
{
Lattice<decltype(lhs._odata[0]*rhs._odata[0])> ret(rhs._grid);
mult(ret,lhs,rhs);
return ret;
}
template<class left,class right>
inline auto operator + (const Lattice<left> &lhs,const Lattice<right> &rhs)-> Lattice<decltype(lhs._odata[0]+rhs._odata[0])>
{
Lattice<decltype(lhs._odata[0]+rhs._odata[0])> ret(rhs._grid);
add(ret,lhs,rhs);
return ret;
}
template<class left,class right>
inline auto operator - (const Lattice<left> &lhs,const Lattice<right> &rhs)-> Lattice<decltype(lhs._odata[0]-rhs._odata[0])>
{
Lattice<decltype(lhs._odata[0]-rhs._odata[0])> ret(rhs._grid);
sub(ret,lhs,rhs);
return ret;
}
// Scalar BinOp Lattice ;generate return type
template<class left,class right>
inline auto operator * (const left &lhs,const Lattice<right> &rhs) -> Lattice<decltype(lhs*rhs._odata[0])>
{
Lattice<decltype(lhs*rhs._odata[0])> ret(rhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
decltype(lhs*rhs._odata[0]) tmp=lhs*rhs._odata[ss];
vstream(ret._odata[ss],tmp);
// ret._odata[ss]=lhs*rhs._odata[ss];
}
return ret;
}
template<class left,class right>
inline auto operator + (const left &lhs,const Lattice<right> &rhs) -> Lattice<decltype(lhs+rhs._odata[0])>
{
Lattice<decltype(lhs+rhs._odata[0])> ret(rhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
decltype(lhs+rhs._odata[0]) tmp =lhs-rhs._odata[ss];
vstream(ret._odata[ss],tmp);
// ret._odata[ss]=lhs+rhs._odata[ss];
}
return ret;
}
template<class left,class right>
inline auto operator - (const left &lhs,const Lattice<right> &rhs) -> Lattice<decltype(lhs-rhs._odata[0])>
{
Lattice<decltype(lhs-rhs._odata[0])> ret(rhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
decltype(lhs-rhs._odata[0]) tmp=lhs-rhs._odata[ss];
vstream(ret._odata[ss],tmp);
}
return ret;
}
template<class left,class right>
inline auto operator * (const Lattice<left> &lhs,const right &rhs) -> Lattice<decltype(lhs._odata[0]*rhs)>
{
Lattice<decltype(lhs._odata[0]*rhs)> ret(lhs._grid);
parallel_for(int ss=0;ss<lhs._grid->oSites(); ss++){
decltype(lhs._odata[0]*rhs) tmp =lhs._odata[ss]*rhs;
vstream(ret._odata[ss],tmp);
// ret._odata[ss]=lhs._odata[ss]*rhs;
}
return ret;
}
template<class left,class right>
inline auto operator + (const Lattice<left> &lhs,const right &rhs) -> Lattice<decltype(lhs._odata[0]+rhs)>
{
Lattice<decltype(lhs._odata[0]+rhs)> ret(lhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
decltype(lhs._odata[0]+rhs) tmp=lhs._odata[ss]+rhs;
vstream(ret._odata[ss],tmp);
// ret._odata[ss]=lhs._odata[ss]+rhs;
}
return ret;
}
template<class left,class right>
inline auto operator - (const Lattice<left> &lhs,const right &rhs) -> Lattice<decltype(lhs._odata[0]-rhs)>
{
Lattice<decltype(lhs._odata[0]-rhs)> ret(lhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
decltype(lhs._odata[0]-rhs) tmp=lhs._odata[ss]-rhs;
vstream(ret._odata[ss],tmp);
// ret._odata[ss]=lhs._odata[ss]-rhs;
}
return ret;
}
}
#endif

View File

@ -0,0 +1,205 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_peekpoke.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_PEEK_H
#define GRID_LATTICE_PEEK_H
///////////////////////////////////////////////
// Peeking and poking around
///////////////////////////////////////////////
namespace Grid {
////////////////////////////////////////////////////////////////////////////////////////////////////
// Peek internal indices of a Lattice object
////////////////////////////////////////////////////////////////////////////////////////////////////
template<int Index,class vobj>
auto PeekIndex(const Lattice<vobj> &lhs,int i) -> Lattice<decltype(peekIndex<Index>(lhs._odata[0],i))>
{
Lattice<decltype(peekIndex<Index>(lhs._odata[0],i))> ret(lhs._grid);
ret.checkerboard=lhs.checkerboard;
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = peekIndex<Index>(lhs._odata[ss],i);
}
return ret;
};
template<int Index,class vobj>
auto PeekIndex(const Lattice<vobj> &lhs,int i,int j) -> Lattice<decltype(peekIndex<Index>(lhs._odata[0],i,j))>
{
Lattice<decltype(peekIndex<Index>(lhs._odata[0],i,j))> ret(lhs._grid);
ret.checkerboard=lhs.checkerboard;
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = peekIndex<Index>(lhs._odata[ss],i,j);
}
return ret;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
// Poke internal indices of a Lattice object
////////////////////////////////////////////////////////////////////////////////////////////////////
template<int Index,class vobj>
void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(lhs._odata[0],0))> & rhs,int i)
{
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
pokeIndex<Index>(lhs._odata[ss],rhs._odata[ss],i);
}
}
template<int Index,class vobj>
void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(lhs._odata[0],0,0))> & rhs,int i,int j)
{
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
pokeIndex<Index>(lhs._odata[ss],rhs._odata[ss],i,j);
}
}
//////////////////////////////////////////////////////
// Poke a scalar object into the SIMD array
//////////////////////////////////////////////////////
template<class vobj,class sobj>
void pokeSite(const sobj &s,Lattice<vobj> &l,const std::vector<int> &site){
GridBase *grid=l._grid;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nsimd = grid->Nsimd();
assert( l.checkerboard== l._grid->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
int rank,odx,idx;
// Optional to broadcast from node 0.
grid->GlobalCoorToRankIndex(rank,odx,idx,site);
grid->Broadcast(grid->BossRank(),s);
std::vector<sobj> buf(Nsimd);
// extract-modify-merge cycle is easiest way and this is not perf critical
if ( rank == grid->ThisRank() ) {
extract(l._odata[odx],buf);
buf[idx] = s;
merge(l._odata[odx],buf);
}
return;
};
//////////////////////////////////////////////////////////
// Peek a scalar object from the SIMD array
//////////////////////////////////////////////////////////
template<class vobj,class sobj>
void peekSite(sobj &s,const Lattice<vobj> &l,const std::vector<int> &site){
GridBase *grid=l._grid;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nsimd = grid->Nsimd();
assert( l.checkerboard == l._grid->CheckerBoard(site));
int rank,odx,idx;
grid->GlobalCoorToRankIndex(rank,odx,idx,site);
std::vector<sobj> buf(Nsimd);
extract(l._odata[odx],buf);
s = buf[idx];
grid->Broadcast(rank,s);
return;
};
//////////////////////////////////////////////////////////
// Peek a scalar object from the SIMD array
//////////////////////////////////////////////////////////
template<class vobj,class sobj>
void peekLocalSite(sobj &s,const Lattice<vobj> &l,std::vector<int> &site){
GridBase *grid = l._grid;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nsimd = grid->Nsimd();
assert( l.checkerboard== l._grid->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
static const int words=sizeof(vobj)/sizeof(vector_type);
int odx,idx;
idx= grid->iIndex(site);
odx= grid->oIndex(site);
scalar_type * vp = (scalar_type *)&l._odata[odx];
scalar_type * pt = (scalar_type *)&s;
for(int w=0;w<words;w++){
pt[w] = vp[idx+w*Nsimd];
}
return;
};
template<class vobj,class sobj>
void pokeLocalSite(const sobj &s,Lattice<vobj> &l,std::vector<int> &site){
GridBase *grid=l._grid;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nsimd = grid->Nsimd();
assert( l.checkerboard== l._grid->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
static const int words=sizeof(vobj)/sizeof(vector_type);
int odx,idx;
idx= grid->iIndex(site);
odx= grid->oIndex(site);
scalar_type * vp = (scalar_type *)&l._odata[odx];
scalar_type * pt = (scalar_type *)&s;
for(int w=0;w<words;w++){
vp[idx+w*Nsimd] = pt[w];
}
return;
};
}
#endif

View File

@ -0,0 +1,57 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_reality.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_REALITY_H
#define GRID_LATTICE_REALITY_H
// FIXME .. this is the sector of the code
// I am most worried about the directions
// The choice of burying complex in the SIMD
// is making the use of "real" and "imag" very cumbersome
namespace Grid {
template<class vobj> inline Lattice<vobj> adj(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs._grid);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = adj(lhs._odata[ss]);
}
return ret;
};
template<class vobj> inline Lattice<vobj> conjugate(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs._grid);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = conjugate(lhs._odata[ss]);
}
return ret;
};
}
#endif

View File

@ -0,0 +1,733 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_reduction.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_REDUCTION_H
#define GRID_LATTICE_REDUCTION_H
#include <Grid/Grid_Eigen_Dense.h>
namespace Grid {
#ifdef GRID_WARN_SUBOPTIMAL
#warning "Optimisation alert all these reduction loops are NOT threaded "
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
// Deterministic Reduction operations
////////////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){
auto nrm = innerProduct(arg,arg);
return std::real(nrm);
}
// Double inner product
template<class vobj>
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right)
{
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_typeD vector_type;
GridBase *grid = left._grid;
const int pad = 8;
ComplexD inner;
Vector<ComplexD> sumarray(grid->SumArraySize()*pad);
parallel_for(int thr=0;thr<grid->SumArraySize();thr++){
int nwork, mywork, myoff;
GridThread::GetWork(left._grid->oSites(),thr,mywork,myoff);
decltype(innerProductD(left._odata[0],right._odata[0])) vinner=zero; // private to thread; sub summation
for(int ss=myoff;ss<mywork+myoff; ss++){
vinner = vinner + innerProductD(left._odata[ss],right._odata[ss]);
}
// All threads sum across SIMD; reduce serial work at end
// one write per cacheline with streaming store
ComplexD tmp = Reduce(TensorRemove(vinner)) ;
vstream(sumarray[thr*pad],tmp);
}
inner=0.0;
for(int i=0;i<grid->SumArraySize();i++){
inner = inner+sumarray[i*pad];
}
right._grid->GlobalSum(inner);
return inner;
}
/////////////////////////
// Fast axpby_norm
// z = a x + b y
// return norm z
/////////////////////////
template<class sobj,class vobj> strong_inline RealD
axpy_norm_fast(Lattice<vobj> &z,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
{
sobj one(1.0);
return axpby_norm_fast(z,a,one,x,y);
}
template<class sobj,class vobj> strong_inline RealD
axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
{
const int pad = 8;
z.checkerboard = x.checkerboard;
conformable(z,x);
conformable(x,y);
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_typeD vector_type;
RealD nrm;
GridBase *grid = x._grid;
Vector<RealD> sumarray(grid->SumArraySize()*pad);
parallel_for(int thr=0;thr<grid->SumArraySize();thr++){
int nwork, mywork, myoff;
GridThread::GetWork(x._grid->oSites(),thr,mywork,myoff);
// private to thread; sub summation
decltype(innerProductD(z._odata[0],z._odata[0])) vnrm=zero;
for(int ss=myoff;ss<mywork+myoff; ss++){
vobj tmp = a*x._odata[ss]+b*y._odata[ss];
vnrm = vnrm + innerProductD(tmp,tmp);
vstream(z._odata[ss],tmp);
}
vstream(sumarray[thr*pad],real(Reduce(TensorRemove(vnrm)))) ;
}
nrm = 0.0; // sum across threads; linear in thread count but fast
for(int i=0;i<grid->SumArraySize();i++){
nrm = nrm+sumarray[i*pad];
}
z._grid->GlobalSum(nrm);
return nrm;
}
template<class Op,class T1>
inline auto sum(const LatticeUnaryExpression<Op,T1> & expr)
->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second))))::scalar_object
{
return sum(closure(expr));
}
template<class Op,class T1,class T2>
inline auto sum(const LatticeBinaryExpression<Op,T1,T2> & expr)
->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second)),eval(0,std::get<1>(expr.second))))::scalar_object
{
return sum(closure(expr));
}
template<class Op,class T1,class T2,class T3>
inline auto sum(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)
->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
eval(0,std::get<1>(expr.second)),
eval(0,std::get<2>(expr.second))
))::scalar_object
{
return sum(closure(expr));
}
template<class vobj>
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
{
GridBase *grid=arg._grid;
int Nsimd = grid->Nsimd();
std::vector<vobj,alignedAllocator<vobj> > sumarray(grid->SumArraySize());
for(int i=0;i<grid->SumArraySize();i++){
sumarray[i]=zero;
}
parallel_for(int thr=0;thr<grid->SumArraySize();thr++){
int nwork, mywork, myoff;
GridThread::GetWork(grid->oSites(),thr,mywork,myoff);
vobj vvsum=zero;
for(int ss=myoff;ss<mywork+myoff; ss++){
vvsum = vvsum + arg._odata[ss];
}
sumarray[thr]=vvsum;
}
vobj vsum=zero; // sum across threads
for(int i=0;i<grid->SumArraySize();i++){
vsum = vsum+sumarray[i];
}
typedef typename vobj::scalar_object sobj;
sobj ssum=zero;
std::vector<sobj> buf(Nsimd);
extract(vsum,buf);
for(int i=0;i<Nsimd;i++) ssum = ssum + buf[i];
arg._grid->GlobalSum(ssum);
return ssum;
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
// sliceSum, sliceInnerProduct, sliceAxpy, sliceNorm etc...
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<typename vobj::scalar_object> &result,int orthogdim)
{
///////////////////////////////////////////////////////
// FIXME precision promoted summation
// may be important for correlation functions
// But easily avoided by using double precision fields
///////////////////////////////////////////////////////
typedef typename vobj::scalar_object sobj;
GridBase *grid = Data._grid;
assert(grid!=NULL);
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
assert(orthogdim >= 0);
assert(orthogdim < Nd);
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
std::vector<vobj,alignedAllocator<vobj> > lvSum(rd); // will locally sum vectors first
std::vector<sobj> lsSum(ld,zero); // sum across these down to scalars
std::vector<sobj> extracted(Nsimd); // splitting the SIMD
result.resize(fd); // And then global sum to return the same vector to every node
for(int r=0;r<rd;r++){
lvSum[r]=zero;
}
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
// sum over reduced dimension planes, breaking out orthog dir
// Parallel over orthog direction
parallel_for(int r=0;r<rd;r++){
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
lvSum[r]=lvSum[r]+Data._odata[ss];
}
}
}
// Sum across simd lanes in the plane, breaking out orthog dir.
std::vector<int> icoor(Nd);
for(int rt=0;rt<rd;rt++){
extract(lvSum[rt],extracted);
for(int idx=0;idx<Nsimd;idx++){
grid->iCoorFromIindex(icoor,idx);
int ldx =rt+icoor[orthogdim]*rd;
lsSum[ldx]=lsSum[ldx]+extracted[idx];
}
}
// sum over nodes.
sobj gsum;
for(int t=0;t<fd;t++){
int pt = t/ld; // processor plane
int lt = t%ld;
if ( pt == grid->_processor_coor[orthogdim] ) {
gsum=lsSum[lt];
} else {
gsum=zero;
}
grid->GlobalSum(gsum);
result[t]=gsum;
}
}
template<class vobj>
static void mySliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)
{
// std::cout << GridLogMessage << "Start mySliceInnerProductVector" << std::endl;
typedef typename vobj::scalar_type scalar_type;
std::vector<scalar_type> lsSum;
localSliceInnerProductVector(result, lhs, rhs, lsSum, orthogdim);
globalSliceInnerProductVector(result, lhs, lsSum, orthogdim);
// std::cout << GridLogMessage << "End mySliceInnerProductVector" << std::endl;
}
template <class vobj>
static void localSliceInnerProductVector(std::vector<ComplexD> &result, const Lattice<vobj> &lhs, const Lattice<vobj> &rhs, std::vector<typename vobj::scalar_type> &lsSum, int orthogdim)
{
// std::cout << GridLogMessage << "Start prep" << std::endl;
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
GridBase *grid = lhs._grid;
assert(grid!=NULL);
conformable(grid,rhs._grid);
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
assert(orthogdim >= 0);
assert(orthogdim < Nd);
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
// std::cout << GridLogMessage << "Start alloc" << std::endl;
std::vector<vector_type,alignedAllocator<vector_type> > lvSum(rd); // will locally sum vectors first
lsSum.resize(ld,scalar_type(0.0)); // sum across these down to scalars
std::vector<iScalar<scalar_type>> extracted(Nsimd); // splitting the SIMD
// std::cout << GridLogMessage << "End alloc" << std::endl;
result.resize(fd); // And then global sum to return the same vector to every node for IO to file
for(int r=0;r<rd;r++){
lvSum[r]=zero;
}
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
// std::cout << GridLogMessage << "End prep" << std::endl;
// std::cout << GridLogMessage << "Start parallel inner product, _rd = " << rd << std::endl;
vector_type vv;
parallel_for(int r=0;r<rd;r++)
{
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss = so + n * stride + b;
vv = TensorRemove(innerProduct(lhs._odata[ss], rhs._odata[ss]));
lvSum[r] = lvSum[r] + vv;
}
}
}
// std::cout << GridLogMessage << "End parallel inner product" << std::endl;
// Sum across simd lanes in the plane, breaking out orthog dir.
std::vector<int> icoor(Nd);
for(int rt=0;rt<rd;rt++){
iScalar<vector_type> temp;
temp._internal = lvSum[rt];
extract(temp,extracted);
for(int idx=0;idx<Nsimd;idx++){
grid->iCoorFromIindex(icoor,idx);
int ldx =rt+icoor[orthogdim]*rd;
lsSum[ldx]=lsSum[ldx]+extracted[idx]._internal;
}
}
// std::cout << GridLogMessage << "End sum over simd lanes" << std::endl;
}
template <class vobj>
static void globalSliceInnerProductVector(std::vector<ComplexD> &result, const Lattice<vobj> &lhs, std::vector<typename vobj::scalar_type> &lsSum, int orthogdim)
{
typedef typename vobj::scalar_type scalar_type;
GridBase *grid = lhs._grid;
int fd = result.size();
int ld = lsSum.size();
// sum over nodes.
std::vector<scalar_type> gsum;
gsum.resize(fd, scalar_type(0.0));
// std::cout << GridLogMessage << "Start of gsum[t] creation:" << std::endl;
for(int t=0;t<fd;t++){
int pt = t/ld; // processor plane
int lt = t%ld;
if ( pt == grid->_processor_coor[orthogdim] ) {
gsum[t]=lsSum[lt];
}
}
// std::cout << GridLogMessage << "End of gsum[t] creation:" << std::endl;
// std::cout << GridLogMessage << "Start of GlobalSumVector:" << std::endl;
grid->GlobalSumVector(&gsum[0], fd);
// std::cout << GridLogMessage << "End of GlobalSumVector:" << std::endl;
result = gsum;
}
template<class vobj>
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)
{
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
GridBase *grid = lhs._grid;
assert(grid!=NULL);
conformable(grid,rhs._grid);
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
assert(orthogdim >= 0);
assert(orthogdim < Nd);
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
std::vector<vector_type,alignedAllocator<vector_type> > lvSum(rd); // will locally sum vectors first
std::vector<scalar_type > lsSum(ld,scalar_type(0.0)); // sum across these down to scalars
std::vector<iScalar<scalar_type> > extracted(Nsimd); // splitting the SIMD
result.resize(fd); // And then global sum to return the same vector to every node for IO to file
for(int r=0;r<rd;r++){
lvSum[r]=zero;
}
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
parallel_for(int r=0;r<rd;r++){
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
vector_type vv = TensorRemove(innerProduct(lhs._odata[ss],rhs._odata[ss]));
lvSum[r]=lvSum[r]+vv;
}
}
}
// Sum across simd lanes in the plane, breaking out orthog dir.
std::vector<int> icoor(Nd);
for(int rt=0;rt<rd;rt++){
iScalar<vector_type> temp;
temp._internal = lvSum[rt];
extract(temp,extracted);
for(int idx=0;idx<Nsimd;idx++){
grid->iCoorFromIindex(icoor,idx);
int ldx =rt+icoor[orthogdim]*rd;
lsSum[ldx]=lsSum[ldx]+extracted[idx]._internal;
}
}
// sum over nodes.
scalar_type gsum;
for(int t=0;t<fd;t++){
int pt = t/ld; // processor plane
int lt = t%ld;
if ( pt == grid->_processor_coor[orthogdim] ) {
gsum=lsSum[lt];
} else {
gsum=scalar_type(0.0);
}
grid->GlobalSum(gsum);
result[t]=gsum;
}
}
template<class vobj>
static void sliceNorm (std::vector<RealD> &sn,const Lattice<vobj> &rhs,int Orthog)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nblock = rhs._grid->GlobalDimensions()[Orthog];
std::vector<ComplexD> ip(Nblock);
sn.resize(Nblock);
sliceInnerProductVector(ip,rhs,rhs,Orthog);
for(int ss=0;ss<Nblock;ss++){
sn[ss] = real(ip[ss]);
}
};
template<class vobj>
static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice<vobj> &X,const Lattice<vobj> &Y,
int orthogdim,RealD scale=1.0)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef typename vobj::tensor_reduced tensor_reduced;
scalar_type zscale(scale);
GridBase *grid = X._grid;
int Nsimd =grid->Nsimd();
int Nblock =grid->GlobalDimensions()[orthogdim];
int fd =grid->_fdimensions[orthogdim];
int ld =grid->_ldimensions[orthogdim];
int rd =grid->_rdimensions[orthogdim];
int e1 =grid->_slice_nblock[orthogdim];
int e2 =grid->_slice_block [orthogdim];
int stride =grid->_slice_stride[orthogdim];
std::vector<int> icoor;
for(int r=0;r<rd;r++){
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
vector_type av;
for(int l=0;l<Nsimd;l++){
grid->iCoorFromIindex(icoor,l);
int ldx =r+icoor[orthogdim]*rd;
scalar_type *as =(scalar_type *)&av;
as[l] = scalar_type(a[ldx])*zscale;
}
tensor_reduced at; at=av;
parallel_for_nest2(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
R._odata[ss] = at*X._odata[ss]+Y._odata[ss];
}
}
}
};
/*
inline GridBase *makeSubSliceGrid(const GridBase *BlockSolverGrid,int Orthog)
{
int NN = BlockSolverGrid->_ndimension;
int nsimd = BlockSolverGrid->Nsimd();
std::vector<int> latt_phys(0);
std::vector<int> simd_phys(0);
std::vector<int> mpi_phys(0);
for(int d=0;d<NN;d++){
if( d!=Orthog ) {
latt_phys.push_back(BlockSolverGrid->_fdimensions[d]);
simd_phys.push_back(BlockSolverGrid->_simd_layout[d]);
mpi_phys.push_back(BlockSolverGrid->_processors[d]);
}
}
return (GridBase *)new GridCartesian(latt_phys,simd_phys,mpi_phys);
}
*/
template<class vobj>
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nblock = X._grid->GlobalDimensions()[Orthog];
GridBase *FullGrid = X._grid;
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
// Lattice<vobj> Xslice(SliceGrid);
// Lattice<vobj> Rslice(SliceGrid);
assert( FullGrid->_simd_layout[Orthog]==1);
int nh = FullGrid->_ndimension;
// int nl = SliceGrid->_ndimension;
int nl = nh-1;
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
#pragma omp parallel
{
std::vector<vobj> s_x(Nblock);
#pragma omp for collapse(2)
for(int n=0;n<nblock;n++){
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
s_x[i] = X[o+i*ostride];
}
vobj dot;
for(int i=0;i<Nblock;i++){
dot = Y[o+i*ostride];
for(int j=0;j<Nblock;j++){
dot = dot + s_x[j]*(scale*aa(j,i));
}
R[o+i*ostride]=dot;
}
}}
}
};
template<class vobj>
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nblock = X._grid->GlobalDimensions()[Orthog];
GridBase *FullGrid = X._grid;
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
// Lattice<vobj> Xslice(SliceGrid);
// Lattice<vobj> Rslice(SliceGrid);
assert( FullGrid->_simd_layout[Orthog]==1);
int nh = FullGrid->_ndimension;
// int nl = SliceGrid->_ndimension;
int nl=1;
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
#pragma omp parallel
{
std::vector<vobj> s_x(Nblock);
#pragma omp for collapse(2)
for(int n=0;n<nblock;n++){
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
s_x[i] = X[o+i*ostride];
}
vobj dot;
for(int i=0;i<Nblock;i++){
dot = s_x[0]*(scale*aa(0,i));
for(int j=1;j<Nblock;j++){
dot = dot + s_x[j]*(scale*aa(j,i));
}
R[o+i*ostride]=dot;
}
}}
}
};
template<class vobj>
static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
GridBase *FullGrid = lhs._grid;
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
int Nblock = FullGrid->GlobalDimensions()[Orthog];
// Lattice<vobj> Lslice(SliceGrid);
// Lattice<vobj> Rslice(SliceGrid);
mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
assert( FullGrid->_simd_layout[Orthog]==1);
int nh = FullGrid->_ndimension;
// int nl = SliceGrid->_ndimension;
int nl = nh-1;
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
typedef typename vobj::vector_typeD vector_typeD;
#pragma omp parallel
{
std::vector<vobj> Left(Nblock);
std::vector<vobj> Right(Nblock);
Eigen::MatrixXcd mat_thread = Eigen::MatrixXcd::Zero(Nblock,Nblock);
#pragma omp for collapse(2)
for(int n=0;n<nblock;n++){
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
Left [i] = lhs[o+i*ostride];
Right[i] = rhs[o+i*ostride];
}
for(int i=0;i<Nblock;i++){
for(int j=0;j<Nblock;j++){
auto tmp = innerProduct(Left[i],Right[j]);
auto rtmp = TensorRemove(tmp);
mat_thread(i,j) += Reduce(rtmp);
}}
}}
#pragma omp critical
{
mat += mat_thread;
}
}
for(int i=0;i<Nblock;i++){
for(int j=0;j<Nblock;j++){
ComplexD sum = mat(i,j);
FullGrid->GlobalSum(sum);
mat(i,j)=sum;
}}
return;
}
} /*END NAMESPACE GRID*/
#endif

520
Grid/lattice/Lattice_rng.h Normal file
View File

@ -0,0 +1,520 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_rng.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_RNG_H
#define GRID_LATTICE_RNG_H
#include <random>
#ifdef RNG_SITMO
#include <Grid/sitmo_rng/sitmo_prng_engine.hpp>
#endif
#if defined(RNG_SITMO)
#define RNG_FAST_DISCARD
#else
#undef RNG_FAST_DISCARD
#endif
namespace Grid {
//////////////////////////////////////////////////////////////
// Allow the RNG state to be less dense than the fine grid
//////////////////////////////////////////////////////////////
inline int RNGfillable(GridBase *coarse,GridBase *fine)
{
int rngdims = coarse->_ndimension;
// trivially extended in higher dims, with locality guaranteeing RNG state is local to node
int lowerdims = fine->_ndimension - coarse->_ndimension;
assert(lowerdims >= 0);
for(int d=0;d<lowerdims;d++){
assert(fine->_simd_layout[d]==1);
assert(fine->_processors[d]==1);
}
int multiplicity=1;
for(int d=0;d<lowerdims;d++){
multiplicity=multiplicity*fine->_rdimensions[d];
}
// local and global volumes subdivide cleanly after SIMDization
for(int d=0;d<rngdims;d++){
int fd= d+lowerdims;
assert(coarse->_processors[d] == fine->_processors[fd]);
assert(coarse->_simd_layout[d] == fine->_simd_layout[fd]);
assert(((fine->_rdimensions[fd] / coarse->_rdimensions[d])* coarse->_rdimensions[d])==fine->_rdimensions[fd]);
multiplicity = multiplicity *fine->_rdimensions[fd] / coarse->_rdimensions[d];
}
return multiplicity;
}
// merge of April 11 2017
// this function is necessary for the LS vectorised field
inline int RNGfillable_general(GridBase *coarse,GridBase *fine)
{
int rngdims = coarse->_ndimension;
// trivially extended in higher dims, with locality guaranteeing RNG state is local to node
int lowerdims = fine->_ndimension - coarse->_ndimension; assert(lowerdims >= 0);
// assumes that the higher dimensions are not using more processors
// all further divisions are local
for(int d=0;d<lowerdims;d++) assert(fine->_processors[d]==1);
for(int d=0;d<rngdims;d++) assert(coarse->_processors[d] == fine->_processors[d+lowerdims]);
// then divide the number of local sites
// check that the total number of sims agree, meanse the iSites are the same
assert(fine->Nsimd() == coarse->Nsimd());
// check that the two grids divide cleanly
assert( (fine->lSites() / coarse->lSites() ) * coarse->lSites() == fine->lSites() );
return fine->lSites() / coarse->lSites();
}
// real scalars are one component
template<class scalar,class distribution,class generator>
void fillScalar(scalar &s,distribution &dist,generator & gen)
{
s=dist(gen);
}
template<class distribution,class generator>
void fillScalar(ComplexF &s,distribution &dist, generator &gen)
{
s=ComplexF(dist(gen),dist(gen));
}
template<class distribution,class generator>
void fillScalar(ComplexD &s,distribution &dist,generator &gen)
{
s=ComplexD(dist(gen),dist(gen));
}
class GridRNGbase {
public:
// One generator per site.
// Uniform and Gaussian distributions from these generators.
#ifdef RNG_RANLUX
typedef std::ranlux48 RngEngine;
typedef uint64_t RngStateType;
static const int RngStateCount = 15;
#endif
#ifdef RNG_MT19937
typedef std::mt19937 RngEngine;
typedef uint32_t RngStateType;
static const int RngStateCount = std::mt19937::state_size;
#endif
#ifdef RNG_SITMO
typedef sitmo::prng_engine RngEngine;
typedef uint64_t RngStateType;
static const int RngStateCount = 13;
#endif
std::vector<RngEngine> _generators;
std::vector<std::uniform_real_distribution<RealD> > _uniform;
std::vector<std::normal_distribution<RealD> > _gaussian;
std::vector<std::discrete_distribution<int32_t> > _bernoulli;
std::vector<std::uniform_int_distribution<uint32_t> > _uid;
///////////////////////
// support for parallel init
///////////////////////
#ifdef RNG_FAST_DISCARD
static void Skip(RngEngine &eng,uint64_t site)
{
/////////////////////////////////////////////////////////////////////////////////////
// Skip by 2^40 elements between successive lattice sites
// This goes by 10^12.
// Consider quenched updating; likely never exceeding rate of 1000 sweeps
// per second on any machine. This gives us of order 10^9 seconds, or 100 years
// skip ahead.
// For HMC unlikely to go at faster than a solve per second, and
// tens of seconds per trajectory so this is clean in all reasonable cases,
// and margin of safety is orders of magnitude.
// We could hack Sitmo to skip in the higher order words of state if necessary
//
// Replace with 2^30 ; avoid problem on large volumes
//
/////////////////////////////////////////////////////////////////////////////////////
// uint64_t skip = site+1; // Old init Skipped then drew. Checked compat with faster init
const int shift = 30;
uint64_t skip = site;
skip = skip<<shift;
assert((skip >> shift)==site); // check for overflow
eng.discard(skip);
// std::cout << " Engine " <<site << " state " <<eng<<std::endl;
}
#endif
static RngEngine Reseed(RngEngine &eng)
{
std::vector<uint32_t> newseed;
std::uniform_int_distribution<uint32_t> uid;
return Reseed(eng,newseed,uid);
}
static RngEngine Reseed(RngEngine &eng,std::vector<uint32_t> & newseed,
std::uniform_int_distribution<uint32_t> &uid)
{
const int reseeds=4;
newseed.resize(reseeds);
for(int i=0;i<reseeds;i++){
newseed[i] = uid(eng);
}
std::seed_seq sseq(newseed.begin(),newseed.end());
return RngEngine(sseq);
}
void GetState(std::vector<RngStateType> & saved,RngEngine &eng) {
saved.resize(RngStateCount);
std::stringstream ss;
ss<<eng;
ss.seekg(0,ss.beg);
for(int i=0;i<RngStateCount;i++){
ss>>saved[i];
}
}
void GetState(std::vector<RngStateType> & saved,int gen) {
GetState(saved,_generators[gen]);
}
void SetState(std::vector<RngStateType> & saved,RngEngine &eng){
assert(saved.size()==RngStateCount);
std::stringstream ss;
for(int i=0;i<RngStateCount;i++){
ss<< saved[i]<<" ";
}
ss.seekg(0,ss.beg);
ss>>eng;
}
void SetState(std::vector<RngStateType> & saved,int gen){
SetState(saved,_generators[gen]);
}
void SetEngine(RngEngine &Eng, int gen){
_generators[gen]=Eng;
}
void GetEngine(RngEngine &Eng, int gen){
Eng=_generators[gen];
}
template<class source> void Seed(source &src, int gen)
{
_generators[gen] = RngEngine(src);
}
};
class GridSerialRNG : public GridRNGbase {
public:
GridSerialRNG() : GridRNGbase() {
_generators.resize(1);
_uniform.resize(1,std::uniform_real_distribution<RealD>{0,1});
_gaussian.resize(1,std::normal_distribution<RealD>(0.0,1.0) );
_bernoulli.resize(1,std::discrete_distribution<int32_t>{1,1});
_uid.resize(1,std::uniform_int_distribution<uint32_t>() );
}
template <class sobj,class distribution> inline void fill(sobj &l,std::vector<distribution> &dist){
typedef typename sobj::scalar_type scalar_type;
int words = sizeof(sobj)/sizeof(scalar_type);
scalar_type *buf = (scalar_type *) & l;
dist[0].reset();
for(int idx=0;idx<words;idx++){
fillScalar(buf[idx],dist[0],_generators[0]);
}
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
};
template <class distribution> inline void fill(ComplexF &l,std::vector<distribution> &dist){
dist[0].reset();
fillScalar(l,dist[0],_generators[0]);
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
}
template <class distribution> inline void fill(ComplexD &l,std::vector<distribution> &dist){
dist[0].reset();
fillScalar(l,dist[0],_generators[0]);
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
}
template <class distribution> inline void fill(RealF &l,std::vector<distribution> &dist){
dist[0].reset();
fillScalar(l,dist[0],_generators[0]);
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
}
template <class distribution> inline void fill(RealD &l,std::vector<distribution> &dist){
dist[0].reset();
fillScalar(l,dist[0],_generators[0]);
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
}
// vector fill
template <class distribution> inline void fill(vComplexF &l,std::vector<distribution> &dist){
RealF *pointer=(RealF *)&l;
dist[0].reset();
for(int i=0;i<2*vComplexF::Nsimd();i++){
fillScalar(pointer[i],dist[0],_generators[0]);
}
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
}
template <class distribution> inline void fill(vComplexD &l,std::vector<distribution> &dist){
RealD *pointer=(RealD *)&l;
dist[0].reset();
for(int i=0;i<2*vComplexD::Nsimd();i++){
fillScalar(pointer[i],dist[0],_generators[0]);
}
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
}
template <class distribution> inline void fill(vRealF &l,std::vector<distribution> &dist){
RealF *pointer=(RealF *)&l;
dist[0].reset();
for(int i=0;i<vRealF::Nsimd();i++){
fillScalar(pointer[i],dist[0],_generators[0]);
}
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
}
template <class distribution> inline void fill(vRealD &l,std::vector<distribution> &dist){
RealD *pointer=(RealD *)&l;
dist[0].reset();
for(int i=0;i<vRealD::Nsimd();i++){
fillScalar(pointer[i],dist[0],_generators[0]);
}
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
}
void SeedFixedIntegers(const std::vector<int> &seeds){
CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size());
std::seed_seq src(seeds.begin(),seeds.end());
Seed(src,0);
}
void SeedUniqueString(const std::string &s){
std::vector<int> seeds;
std::stringstream sha;
seeds = GridChecksum::sha256_seeds(s);
for(int i=0;i<seeds.size();i++) {
sha << std::hex << seeds[i];
}
std::cout << GridLogMessage << "Intialising serial RNG with unique string '"
<< s << "'" << std::endl;
std::cout << GridLogMessage << "Seed SHA256: " << sha.str() << std::endl;
SeedFixedIntegers(seeds);
}
};
class GridParallelRNG : public GridRNGbase {
double _time_counter;
public:
GridBase *_grid;
unsigned int _vol;
int generator_idx(int os,int is) {
return is*_grid->oSites()+os;
}
GridParallelRNG(GridBase *grid) : GridRNGbase() {
_grid = grid;
_vol =_grid->iSites()*_grid->oSites();
_generators.resize(_vol);
_uniform.resize(_vol,std::uniform_real_distribution<RealD>{0,1});
_gaussian.resize(_vol,std::normal_distribution<RealD>(0.0,1.0) );
_bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
_uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
}
template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist){
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
double inner_time_counter = usecond();
int multiplicity = RNGfillable_general(_grid, l._grid); // l has finer or same grid
int Nsimd = _grid->Nsimd(); // guaranteed to be the same for l._grid too
int osites = _grid->oSites(); // guaranteed to be <= l._grid->oSites() by a factor multiplicity
int words = sizeof(scalar_object) / sizeof(scalar_type);
parallel_for(int ss=0;ss<osites;ss++){
std::vector<scalar_object> buf(Nsimd);
for (int m = 0; m < multiplicity; m++) { // Draw from same generator multiplicity times
int sm = multiplicity * ss + m; // Maps the generator site to the fine site
for (int si = 0; si < Nsimd; si++) {
int gdx = generator_idx(ss, si); // index of generator state
scalar_type *pointer = (scalar_type *)&buf[si];
dist[gdx].reset();
for (int idx = 0; idx < words; idx++)
fillScalar(pointer[idx], dist[gdx], _generators[gdx]);
}
// merge into SIMD lanes, FIXME suboptimal implementation
merge(l._odata[sm], buf);
}
}
_time_counter += usecond()- inner_time_counter;
};
void SeedUniqueString(const std::string &s){
std::vector<int> seeds;
std::stringstream sha;
seeds = GridChecksum::sha256_seeds(s);
for(int i=0;i<seeds.size();i++) {
sha << std::hex << seeds[i];
}
std::cout << GridLogMessage << "Intialising parallel RNG with unique string '"
<< s << "'" << std::endl;
std::cout << GridLogMessage << "Seed SHA256: " << sha.str() << std::endl;
SeedFixedIntegers(seeds);
}
void SeedFixedIntegers(const std::vector<int> &seeds){
// Everyone generates the same seed_seq based on input seeds
CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size());
std::seed_seq source(seeds.begin(),seeds.end());
RngEngine master_engine(source);
#ifdef RNG_FAST_DISCARD
////////////////////////////////////////////////
// Skip ahead through a single stream.
// Applicable to SITMO and other has based/crypto RNGs
// Should be applicable to Mersenne Twister, but the C++11
// MT implementation does not implement fast discard even though
// in principle this is possible
////////////////////////////////////////////////
// Everybody loops over global volume.
parallel_for(int gidx=0;gidx<_grid->_gsites;gidx++){
// Where is it?
int rank,o_idx,i_idx;
std::vector<int> gcoor;
_grid->GlobalIndexToGlobalCoor(gidx,gcoor);
_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
// If this is one of mine we take it
if( rank == _grid->ThisRank() ){
int l_idx=generator_idx(o_idx,i_idx);
_generators[l_idx] = master_engine;
Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
}
}
#else
////////////////////////////////////////////////////////////////
// Machine and thread decomposition dependent seeding is efficient
// and maximally parallel; but NOT reproducible from machine to machine.
// Not ideal, but fastest way to reseed all nodes.
////////////////////////////////////////////////////////////////
{
// Obtain one Reseed per processor
int Nproc = _grid->ProcessorCount();
std::vector<RngEngine> seeders(Nproc);
int me= _grid->ThisRank();
for(int p=0;p<Nproc;p++){
seeders[p] = Reseed(master_engine);
}
master_engine = seeders[me];
}
{
// Obtain one reseeded generator per thread
int Nthread = GridThread::GetThreads();
std::vector<RngEngine> seeders(Nthread);
for(int t=0;t<Nthread;t++){
seeders[t] = Reseed(master_engine);
}
parallel_for(int t=0;t<Nthread;t++) {
// set up one per local site in threaded fashion
std::vector<uint32_t> newseeds;
std::uniform_int_distribution<uint32_t> uid;
for(int l=0;l<_grid->lSites();l++) {
if ( (l%Nthread)==t ) {
_generators[l] = Reseed(seeders[t],newseeds,uid);
}
}
}
}
#endif
}
void Report(){
std::cout << GridLogMessage << "Time spent in the fill() routine by GridParallelRNG: "<< _time_counter/1e3 << " ms" << std::endl;
}
////////////////////////////////////////////////////////////////////////
// Support for rigorous test of RNG's
// Return uniform random uint32_t from requested site generator
////////////////////////////////////////////////////////////////////////
uint32_t GlobalU01(int gsite){
uint32_t the_number;
// who
std::vector<int> gcoor;
int rank,o_idx,i_idx;
_grid->GlobalIndexToGlobalCoor(gsite,gcoor);
_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
// draw
int l_idx=generator_idx(o_idx,i_idx);
if( rank == _grid->ThisRank() ){
the_number = _uid[l_idx](_generators[l_idx]);
}
// share & return
_grid->Broadcast(rank,(void *)&the_number,sizeof(the_number));
return the_number;
}
};
template <class vobj> inline void random(GridParallelRNG &rng,Lattice<vobj> &l) { rng.fill(l,rng._uniform); }
template <class vobj> inline void gaussian(GridParallelRNG &rng,Lattice<vobj> &l) { rng.fill(l,rng._gaussian); }
template <class vobj> inline void bernoulli(GridParallelRNG &rng,Lattice<vobj> &l){ rng.fill(l,rng._bernoulli);}
template <class sobj> inline void random(GridSerialRNG &rng,sobj &l) { rng.fill(l,rng._uniform ); }
template <class sobj> inline void gaussian(GridSerialRNG &rng,sobj &l) { rng.fill(l,rng._gaussian ); }
template <class sobj> inline void bernoulli(GridSerialRNG &rng,sobj &l){ rng.fill(l,rng._bernoulli); }
}
#endif

View File

@ -0,0 +1,67 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_trace.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_TRACE_H
#define GRID_LATTICE_TRACE_H
///////////////////////////////////////////////
// Tracing, transposing, peeking, poking
///////////////////////////////////////////////
namespace Grid {
////////////////////////////////////////////////////////////////////////////////////////////////////
// Trace
////////////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj>
inline auto trace(const Lattice<vobj> &lhs)
-> Lattice<decltype(trace(lhs._odata[0]))>
{
Lattice<decltype(trace(lhs._odata[0]))> ret(lhs._grid);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = trace(lhs._odata[ss]);
}
return ret;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
// Trace Index level dependent operation
////////////////////////////////////////////////////////////////////////////////////////////////////
template<int Index,class vobj>
inline auto TraceIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<Index>(lhs._odata[0]))>
{
Lattice<decltype(traceIndex<Index>(lhs._odata[0]))> ret(lhs._grid);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = traceIndex<Index>(lhs._odata[ss]);
}
return ret;
};
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,63 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_transpose.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_TRANSPOSE_H
#define GRID_LATTICE_TRANSPOSE_H
///////////////////////////////////////////////
// Transpose
///////////////////////////////////////////////
namespace Grid {
////////////////////////////////////////////////////////////////////////////////////////////////////
// Transpose
////////////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj>
inline Lattice<vobj> transpose(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs._grid);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = transpose(lhs._odata[ss]);
}
return ret;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
// Index level dependent transpose
////////////////////////////////////////////////////////////////////////////////////////////////////
template<int Index,class vobj>
inline auto TransposeIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(transposeIndex<Index>(lhs._odata[0]))>
{
Lattice<decltype(transposeIndex<Index>(lhs._odata[0]))> ret(lhs._grid);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = transposeIndex<Index>(lhs._odata[ss]);
}
return ret;
};
}
#endif

View File

@ -0,0 +1,84 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_unary.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_UNARY_H
#define GRID_LATTICE_UNARY_H
namespace Grid {
template<class obj> Lattice<obj> pow(const Lattice<obj> &rhs,RealD y){
Lattice<obj> ret(rhs._grid);
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){
ret._odata[ss]=pow(rhs._odata[ss],y);
}
return ret;
}
template<class obj> Lattice<obj> mod(const Lattice<obj> &rhs,Integer y){
Lattice<obj> ret(rhs._grid);
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){
ret._odata[ss]=mod(rhs._odata[ss],y);
}
return ret;
}
template<class obj> Lattice<obj> div(const Lattice<obj> &rhs,Integer y){
Lattice<obj> ret(rhs._grid);
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){
ret._odata[ss]=div(rhs._odata[ss],y);
}
return ret;
}
template<class obj> Lattice<obj> expMat(const Lattice<obj> &rhs, RealD alpha, Integer Nexp = DEFAULT_MAT_EXP){
Lattice<obj> ret(rhs._grid);
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){
ret._odata[ss]=Exponentiate(rhs._odata[ss],alpha, Nexp);
}
return ret;
}
}
#endif

View File

@ -0,0 +1,86 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_where.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_WHERE_H
#define GRID_LATTICE_WHERE_H
namespace Grid {
// Must implement the predicate gating the
// Must be able to reduce the predicate down to a single vInteger per site.
// Must be able to require the type be iScalar x iScalar x ....
// give a GetVtype method in iScalar
// and blow away the tensor structures.
//
template<class vobj,class iobj>
inline void whereWolf(Lattice<vobj> &ret,const Lattice<iobj> &predicate,Lattice<vobj> &iftrue,Lattice<vobj> &iffalse)
{
conformable(iftrue,iffalse);
conformable(iftrue,predicate);
conformable(iftrue,ret);
GridBase *grid=iftrue._grid;
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef typename iobj::vector_type mask_type;
const int Nsimd = grid->Nsimd();
std::vector<Integer> mask(Nsimd);
std::vector<scalar_object> truevals (Nsimd);
std::vector<scalar_object> falsevals(Nsimd);
parallel_for(int ss=0;ss<iftrue._grid->oSites(); ss++){
extract(iftrue._odata[ss] ,truevals);
extract(iffalse._odata[ss] ,falsevals);
extract<vInteger,Integer>(TensorRemove(predicate._odata[ss]),mask);
for(int s=0;s<Nsimd;s++){
if (mask[s]) falsevals[s]=truevals[s];
}
merge(ret._odata[ss],falsevals);
}
}
template<class vobj,class iobj>
inline Lattice<vobj> whereWolf(const Lattice<iobj> &predicate,Lattice<vobj> &iftrue,Lattice<vobj> &iffalse)
{
conformable(iftrue,iffalse);
conformable(iftrue,predicate);
Lattice<vobj> ret(iftrue._grid);
where(ret,predicate,iftrue,iffalse);
return ret;
}
}
#endif