1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-24 02:32:02 +01:00

Hadrons: moving Hadrons to root directory, build system improvements

This commit is contained in:
2018-08-28 15:00:40 +01:00
parent 5f206df775
commit fb7d021b9d
499 changed files with 429 additions and 846 deletions

View File

@ -0,0 +1,145 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/EvenOddSchurDifferentiable.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_EVEN_ODD_SCHUR_DIFFERENTIABLE_H
#define QCD_EVEN_ODD_SCHUR_DIFFERENTIABLE_H
namespace Grid{
namespace QCD{
// Base even odd HMC on the normal Mee based schur decomposition.
//
// M = (Mee Meo) = (1 0 ) (Mee 0 ) (1 Mee^{-1} Meo)
// (Moe Moo) (Moe Mee^-1 1 ) (0 Moo-Moe Mee^-1 Meo) (0 1 )
//
// Determinant is det of middle factor
// This assumes Mee is indept of U.
//
template<class Impl>
class SchurDifferentiableOperator : public SchurDiagMooeeOperator<FermionOperator<Impl>,typename Impl::FermionField>
{
public:
INHERIT_IMPL_TYPES(Impl);
typedef FermionOperator<Impl> Matrix;
SchurDifferentiableOperator (Matrix &Mat) : SchurDiagMooeeOperator<Matrix,FermionField>(Mat) {};
void MpcDeriv(GaugeField &Force,const FermionField &U,const FermionField &V) {
GridBase *fgrid = this->_Mat.FermionGrid();
GridBase *fcbgrid = this->_Mat.FermionRedBlackGrid();
FermionField tmp1(fcbgrid);
FermionField tmp2(fcbgrid);
conformable(fcbgrid,U._grid);
conformable(fcbgrid,V._grid);
// Assert the checkerboard?? or code for either
assert(U.checkerboard==Odd);
assert(V.checkerboard==U.checkerboard);
// NOTE Guido: WE DO NOT WANT TO USE THE ucbgrid GRID FOR THE FORCE
// it is not conformable with the HMC force field
// Case: Ls vectorised fields
// INHERIT FROM THE Force field instead
GridRedBlackCartesian* forcecb = new GridRedBlackCartesian(Force._grid);
GaugeField ForceO(forcecb);
GaugeField ForceE(forcecb);
// X^dag Der_oe MeeInv Meo Y
// Use Mooee as nontrivial but gauge field indept
this->_Mat.Meooe (V,tmp1); // odd->even -- implicit -0.5 factor to be applied
this->_Mat.MooeeInv(tmp1,tmp2); // even->even
this->_Mat.MoeDeriv(ForceO,U,tmp2,DaggerNo);
// Accumulate X^dag M_oe MeeInv Der_eo Y
this->_Mat.MeooeDag (U,tmp1); // even->odd -- implicit -0.5 factor to be applied
this->_Mat.MooeeInvDag(tmp1,tmp2); // even->even
this->_Mat.MeoDeriv(ForceE,tmp2,V,DaggerNo);
assert(ForceE.checkerboard==Even);
assert(ForceO.checkerboard==Odd);
setCheckerboard(Force,ForceE);
setCheckerboard(Force,ForceO);
Force=-Force;
delete forcecb;
}
void MpcDagDeriv(GaugeField &Force,const FermionField &U,const FermionField &V) {
GridBase *fgrid = this->_Mat.FermionGrid();
GridBase *fcbgrid = this->_Mat.FermionRedBlackGrid();
FermionField tmp1(fcbgrid);
FermionField tmp2(fcbgrid);
conformable(fcbgrid,U._grid);
conformable(fcbgrid,V._grid);
// Assert the checkerboard?? or code for either
assert(V.checkerboard==Odd);
assert(V.checkerboard==V.checkerboard);
// NOTE Guido: WE DO NOT WANT TO USE THE ucbgrid GRID FOR THE FORCE
// it is not conformable with the HMC force field
// INHERIT FROM THE Force field instead
GridRedBlackCartesian* forcecb = new GridRedBlackCartesian(Force._grid);
GaugeField ForceO(forcecb);
GaugeField ForceE(forcecb);
// X^dag Der_oe MeeInv Meo Y
// Use Mooee as nontrivial but gauge field indept
this->_Mat.MeooeDag (V,tmp1); // odd->even -- implicit -0.5 factor to be applied
this->_Mat.MooeeInvDag(tmp1,tmp2); // even->even
this->_Mat.MoeDeriv(ForceO,U,tmp2,DaggerYes);
// Accumulate X^dag M_oe MeeInv Der_eo Y
this->_Mat.Meooe (U,tmp1); // even->odd -- implicit -0.5 factor to be applied
this->_Mat.MooeeInv(tmp1,tmp2); // even->even
this->_Mat.MeoDeriv(ForceE,tmp2,V,DaggerYes);
assert(ForceE.checkerboard==Even);
assert(ForceO.checkerboard==Odd);
setCheckerboard(Force,ForceE);
setCheckerboard(Force,ForceO);
Force=-Force;
delete forcecb;
}
};
}
}
#endif

View File

@ -0,0 +1,264 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/ExactOneFlavourRatio.h
Copyright (C) 2017
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
/////////////////////////////////////////////////////////////////
// Implementation of exact one flavour algorithm (EOFA) //
// using fermion classes defined in: //
// Grid/qcd/action/fermion/DomainWallEOFAFermion.h (Shamir) //
// Grid/qcd/action/fermion/MobiusEOFAFermion.h (Mobius) //
// arXiv: 1403.1683, 1706.05843 //
/////////////////////////////////////////////////////////////////
#ifndef QCD_PSEUDOFERMION_EXACT_ONE_FLAVOUR_RATIO_H
#define QCD_PSEUDOFERMION_EXACT_ONE_FLAVOUR_RATIO_H
namespace Grid{
namespace QCD{
///////////////////////////////////////////////////////////////
// Exact one flavour implementation of DWF determinant ratio //
///////////////////////////////////////////////////////////////
template<class Impl>
class ExactOneFlavourRatioPseudoFermionAction : public Action<typename Impl::GaugeField>
{
public:
INHERIT_IMPL_TYPES(Impl);
typedef OneFlavourRationalParams Params;
Params param;
MultiShiftFunction PowerNegHalf;
private:
bool use_heatbath_forecasting;
AbstractEOFAFermion<Impl>& Lop; // the basic LH operator
AbstractEOFAFermion<Impl>& Rop; // the basic RH operator
SchurRedBlackDiagMooeeSolve<FermionField> Solver;
FermionField Phi; // the pseudofermion field for this trajectory
public:
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop, AbstractEOFAFermion<Impl>& _Rop,
OperatorFunction<FermionField>& S, Params& p, bool use_fc=false) : Lop(_Lop), Rop(_Rop), Solver(S),
Phi(_Lop.FermionGrid()), param(p), use_heatbath_forecasting(use_fc)
{
AlgRemez remez(param.lo, param.hi, param.precision);
// MdagM^(+- 1/2)
std::cout << GridLogMessage << "Generating degree " << param.degree << " for x^(-1/2)" << std::endl;
remez.generateApprox(param.degree, 1, 2);
PowerNegHalf.Init(remez, param.tolerance, true);
};
virtual std::string action_name() { return "ExactOneFlavourRatioPseudoFermionAction"; }
virtual std::string LogParameters() {
std::stringstream sstream;
sstream << GridLogMessage << "[" << action_name() << "] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] High :" << param.hi << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Tolerance :" << param.tolerance << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Degree :" << param.degree << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Precision :" << param.precision << std::endl;
return sstream.str();
}
// Spin projection
void spProj(const FermionField& in, FermionField& out, int sign, int Ls)
{
if(sign == 1){ for(int s=0; s<Ls; ++s){ axpby_ssp_pplus(out, 0.0, in, 1.0, in, s, s); } }
else{ for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(out, 0.0, in, 1.0, in, s, s); } }
}
// EOFA heatbath: see Eqn. (29) of arXiv:1706.05843
// We generate a Gaussian noise vector \eta, and then compute
// \Phi = M_{\rm EOFA}^{-1/2} * \eta
// using a rational approximation to the inverse square root
virtual void refresh(const GaugeField& U, GridParallelRNG& pRNG)
{
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField eta (Lop.FermionGrid());
FermionField CG_src (Lop.FermionGrid());
FermionField CG_soln (Lop.FermionGrid());
FermionField Forecast_src(Lop.FermionGrid());
std::vector<FermionField> tmp(2, Lop.FermionGrid());
// Use chronological inverter to forecast solutions across poles
std::vector<FermionField> prev_solns;
if(use_heatbath_forecasting){ prev_solns.reserve(param.degree); }
ChronoForecast<AbstractEOFAFermion<Impl>, FermionField> Forecast;
// Seed with Gaussian noise vector (var = 0.5)
RealD scale = std::sqrt(0.5);
gaussian(pRNG,eta);
eta = eta * scale;
printf("Heatbath source vector: <\\eta|\\eta> = %1.15e\n", norm2(eta));
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
RealD N(PowerNegHalf.norm);
for(int k=0; k<param.degree; ++k){ N += PowerNegHalf.residues[k] / ( 1.0 + PowerNegHalf.poles[k] ); }
Phi = eta * N;
// LH terms:
// \Phi = \Phi + k \sum_{k=1}^{N_{p}} P_{-} \Omega_{-}^{\dagger} ( H(mf)
// - \gamma_{l} \Delta_{-}(mf,mb) P_{-} )^{-1} \Omega_{-} P_{-} \eta
RealD gamma_l(0.0);
spProj(eta, tmp[0], -1, Lop.Ls);
Lop.Omega(tmp[0], tmp[1], -1, 0);
G5R5(CG_src, tmp[1]);
tmp[1] = zero;
for(int k=0; k<param.degree; ++k){
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
Lop.RefreshShiftCoefficients(-gamma_l);
if(use_heatbath_forecasting){ // Forecast CG guess using solutions from previous poles
Lop.Mdag(CG_src, Forecast_src);
CG_soln = Forecast(Lop, Forecast_src, prev_solns);
Solver(Lop, CG_src, CG_soln);
prev_solns.push_back(CG_soln);
} else {
CG_soln = zero; // Just use zero as the initial guess
Solver(Lop, CG_src, CG_soln);
}
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = tmp[1] + ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Lop.k ) * tmp[0];
}
Lop.Omega(tmp[1], tmp[0], -1, 1);
spProj(tmp[0], tmp[1], -1, Lop.Ls);
Phi = Phi + tmp[1];
// RH terms:
// \Phi = \Phi - k \sum_{k=1}^{N_{p}} P_{+} \Omega_{+}^{\dagger} ( H(mb)
// + \gamma_{l} \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \eta
spProj(eta, tmp[0], 1, Rop.Ls);
Rop.Omega(tmp[0], tmp[1], 1, 0);
G5R5(CG_src, tmp[1]);
tmp[1] = zero;
if(use_heatbath_forecasting){ prev_solns.clear(); } // empirically, LH solns don't help for RH solves
for(int k=0; k<param.degree; ++k){
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
Rop.RefreshShiftCoefficients(-gamma_l*PowerNegHalf.poles[k]);
if(use_heatbath_forecasting){
Rop.Mdag(CG_src, Forecast_src);
CG_soln = Forecast(Rop, Forecast_src, prev_solns);
Solver(Rop, CG_src, CG_soln);
prev_solns.push_back(CG_soln);
} else {
CG_soln = zero;
Solver(Rop, CG_src, CG_soln);
}
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = tmp[1] - ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Rop.k ) * tmp[0];
}
Rop.Omega(tmp[1], tmp[0], 1, 1);
spProj(tmp[0], tmp[1], 1, Rop.Ls);
Phi = Phi + tmp[1];
// Reset shift coefficients for energy and force evals
Lop.RefreshShiftCoefficients(0.0);
Rop.RefreshShiftCoefficients(-1.0);
};
// EOFA action: see Eqn. (10) of arXiv:1706.05843
virtual RealD S(const GaugeField& U)
{
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField spProj_Phi(Lop.FermionGrid());
std::vector<FermionField> tmp(2, Lop.FermionGrid());
// S = <\Phi|\Phi>
RealD action(norm2(Phi));
// LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi>
spProj(Phi, spProj_Phi, -1, Lop.Ls);
Lop.Omega(spProj_Phi, tmp[0], -1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
Solver(Lop, tmp[1], tmp[0]);
Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
Lop.Omega(tmp[1], tmp[0], -1, 1);
action -= Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
spProj(Phi, spProj_Phi, 1, Rop.Ls);
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
Solver(Rop, tmp[1], tmp[0]);
Rop.Dtilde(tmp[0], tmp[1]);
Rop.Omega(tmp[1], tmp[0], 1, 1);
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
return action;
};
// EOFA pseudofermion force: see Eqns. (34)-(36) of arXiv:1706.05843
virtual void deriv(const GaugeField& U, GaugeField& dSdU)
{
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField spProj_Phi (Lop.FermionGrid());
FermionField Omega_spProj_Phi(Lop.FermionGrid());
FermionField CG_src (Lop.FermionGrid());
FermionField Chi (Lop.FermionGrid());
FermionField g5_R5_Chi (Lop.FermionGrid());
GaugeField force(Lop.GaugeGrid());
// LH: dSdU = k \chi_{L}^{\dagger} \gamma_{5} R_{5} ( \partial_{x,\mu} D_{w} ) \chi_{L}
// \chi_{L} = H(mf)^{-1} \Omega_{-} P_{-} \Phi
spProj(Phi, spProj_Phi, -1, Lop.Ls);
Lop.Omega(spProj_Phi, Omega_spProj_Phi, -1, 0);
G5R5(CG_src, Omega_spProj_Phi);
spProj_Phi = zero;
Solver(Lop, CG_src, spProj_Phi);
Lop.Dtilde(spProj_Phi, Chi);
G5R5(g5_R5_Chi, Chi);
Lop.MDeriv(force, g5_R5_Chi, Chi, DaggerNo);
dSdU = Lop.k * force;
// RH: dSdU = dSdU - k \chi_{R}^{\dagger} \gamma_{5} R_{5} ( \partial_{x,\mu} D_{w} ) \chi_{}
// \chi_{R} = ( H(mb) - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \Phi
spProj(Phi, spProj_Phi, 1, Rop.Ls);
Rop.Omega(spProj_Phi, Omega_spProj_Phi, 1, 0);
G5R5(CG_src, Omega_spProj_Phi);
spProj_Phi = zero;
Solver(Rop, CG_src, spProj_Phi);
Rop.Dtilde(spProj_Phi, Chi);
G5R5(g5_R5_Chi, Chi);
Lop.MDeriv(force, g5_R5_Chi, Chi, DaggerNo);
dSdU = dSdU - Rop.k * force;
};
};
}}
#endif

View File

@ -0,0 +1,228 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/OneFlavourEvenOddRational.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_H
#define QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_H
namespace Grid {
namespace QCD {
///////////////////////////////////////
// One flavour rational
///////////////////////////////////////
// S_f = chi^dag * N(Mpc^dag*Mpc)/D(Mpc^dag*Mpc) * chi
//
// Here, M is some operator
// N and D makeup the rat. poly
//
template <class Impl>
class OneFlavourEvenOddRationalPseudoFermionAction
: public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
typedef OneFlavourRationalParams Params;
Params param;
MultiShiftFunction PowerHalf;
MultiShiftFunction PowerNegHalf;
MultiShiftFunction PowerQuarter;
MultiShiftFunction PowerNegQuarter;
private:
FermionOperator<Impl> &FermOp; // the basic operator
// NOT using "Nroots"; IroIro is -- perhaps later, but this wasn't good for us
// historically
// and hasenbusch works better
FermionField PhiEven; // the pseudo fermion field for this trajectory
FermionField PhiOdd; // the pseudo fermion field for this trajectory
public:
OneFlavourEvenOddRationalPseudoFermionAction(FermionOperator<Impl> &Op,
Params &p)
: FermOp(Op),
PhiEven(Op.FermionRedBlackGrid()),
PhiOdd(Op.FermionRedBlackGrid()),
param(p) {
AlgRemez remez(param.lo, param.hi, param.precision);
// MdagM^(+- 1/2)
std::cout << GridLogMessage << "Generating degree " << param.degree
<< " for x^(1/2)" << std::endl;
remez.generateApprox(param.degree, 1, 2);
PowerHalf.Init(remez, param.tolerance, false);
PowerNegHalf.Init(remez, param.tolerance, true);
// MdagM^(+- 1/4)
std::cout << GridLogMessage << "Generating degree " << param.degree
<< " for x^(1/4)" << std::endl;
remez.generateApprox(param.degree, 1, 4);
PowerQuarter.Init(remez, param.tolerance, false);
PowerNegQuarter.Init(remez, param.tolerance, true);
};
virtual std::string action_name(){return "OneFlavourEvenOddRationalPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridParallelRNG &pRNG) {
// P(phi) = e^{- phi^dag (MpcdagMpc)^-1/2 phi}
// = e^{- phi^dag (MpcdagMpc)^-1/4 (MpcdagMpc)^-1/4 phi}
// Phi = MpcdagMpc^{1/4} eta
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2).
RealD scale = std::sqrt(0.5);
FermionField eta(FermOp.FermionGrid());
FermionField etaOdd(FermOp.FermionRedBlackGrid());
FermionField etaEven(FermOp.FermionRedBlackGrid());
gaussian(pRNG, eta);
eta = eta * scale;
pickCheckerboard(Even, etaEven, eta);
pickCheckerboard(Odd, etaOdd, eta);
FermOp.ImportGauge(U);
// mutishift CG
SchurDifferentiableOperator<Impl> Mpc(FermOp);
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter, PowerQuarter);
msCG(Mpc, etaOdd, PhiOdd);
//////////////////////////////////////////////////////
// FIXME : Clover term not yet..
//////////////////////////////////////////////////////
assert(FermOp.ConstEE() == 1);
PhiEven = zero;
};
//////////////////////////////////////////////////////
// S = phi^dag (Mdag M)^-1/2 phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
FermOp.ImportGauge(U);
FermionField Y(FermOp.FermionRedBlackGrid());
SchurDifferentiableOperator<Impl> Mpc(FermOp);
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,
PowerNegQuarter);
msCG(Mpc, PhiOdd, Y);
RealD action = norm2(Y);
std::cout << GridLogMessage << "Pseudofermion action FIXME -- is -1/4 "
"solve or -1/2 solve faster??? "
<< action << std::endl;
return action;
};
//////////////////////////////////////////////////////
// Need
// dS_f/dU = chi^dag d[N/D] chi
//
// N/D is expressed as partial fraction expansion:
//
// a0 + \sum_k ak/(M^dagM + bk)
//
// d[N/D] is then
//
// \sum_k -ak [M^dagM+bk]^{-1} [ dM^dag M + M^dag dM ] [M^dag M +
// bk]^{-1}
//
// Need
// Mf Phi_k = [MdagM+bk]^{-1} Phi
// Mf Phi = \sum_k ak [MdagM+bk]^{-1} Phi
//
// With these building blocks
//
// dS/dU = \sum_k -ak Mf Phi_k^dag [ dM^dag M + M^dag dM ] Mf
// Phi_k
// S = innerprodReal(Phi,Mf Phi);
//////////////////////////////////////////////////////
virtual void deriv(const GaugeField &U, GaugeField &dSdU) {
const int Npole = PowerNegHalf.poles.size();
std::vector<FermionField> MPhi_k(Npole, FermOp.FermionRedBlackGrid());
FermionField X(FermOp.FermionRedBlackGrid());
FermionField Y(FermOp.FermionRedBlackGrid());
GaugeField tmp(FermOp.GaugeGrid());
FermOp.ImportGauge(U);
SchurDifferentiableOperator<Impl> Mpc(FermOp);
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter, PowerNegHalf);
msCG(Mpc, PhiOdd, MPhi_k);
dSdU = zero;
for (int k = 0; k < Npole; k++) {
RealD ak = PowerNegHalf.residues[k];
X = MPhi_k[k];
Mpc.Mpc(X, Y);
Mpc.MpcDeriv(tmp, Y, X);
dSdU = dSdU + ak * tmp;
Mpc.MpcDagDeriv(tmp, X, Y);
dSdU = dSdU + ak * tmp;
}
// dSdU = Ta(dSdU);
};
};
}
}
#endif

View File

@ -0,0 +1,281 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/OneFlavourEvenOddRationalRatio.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_RATIO_H
#define QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_RATIO_H
namespace Grid{
namespace QCD{
///////////////////////////////////////
// One flavour rational
///////////////////////////////////////
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// Here P/Q \sim R_{1/4} ~ (V^dagV)^{1/4}
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
template<class Impl>
class OneFlavourEvenOddRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
typedef OneFlavourRationalParams Params;
Params param;
MultiShiftFunction PowerHalf ;
MultiShiftFunction PowerNegHalf;
MultiShiftFunction PowerQuarter;
MultiShiftFunction PowerNegQuarter;
private:
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
FermionField PhiEven; // the pseudo fermion field for this trajectory
FermionField PhiOdd; // the pseudo fermion field for this trajectory
public:
OneFlavourEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
Params & p
) :
NumOp(_NumOp),
DenOp(_DenOp),
PhiOdd (_NumOp.FermionRedBlackGrid()),
PhiEven(_NumOp.FermionRedBlackGrid()),
param(p)
{
AlgRemez remez(param.lo,param.hi,param.precision);
// MdagM^(+- 1/2)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
remez.generateApprox(param.degree,1,2);
PowerHalf.Init(remez,param.tolerance,false);
PowerNegHalf.Init(remez,param.tolerance,true);
// MdagM^(+- 1/4)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
remez.generateApprox(param.degree,1,4);
PowerQuarter.Init(remez,param.tolerance,false);
PowerNegQuarter.Init(remez,param.tolerance,true);
};
virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// P(phi) = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/2 (VdagV)^1/4 phi}
// = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/4 (MdagM)^-1/4 (VdagV)^1/4 phi}
//
// Phi = (VdagV)^-1/4 Mdag^{1/4} eta
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2).
RealD scale = std::sqrt(0.5);
FermionField eta(NumOp.FermionGrid());
FermionField etaOdd (NumOp.FermionRedBlackGrid());
FermionField etaEven(NumOp.FermionRedBlackGrid());
FermionField tmp(NumOp.FermionRedBlackGrid());
gaussian(pRNG,eta); eta=eta*scale;
pickCheckerboard(Even,etaEven,eta);
pickCheckerboard(Odd,etaOdd,eta);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
// MdagM^1/4 eta
SchurDifferentiableOperator<Impl> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerQuarter);
msCG_M(MdagM,etaOdd,tmp);
// VdagV^-1/4 MdagM^1/4 eta
SchurDifferentiableOperator<Impl> VdagV(NumOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerNegQuarter);
msCG_V(VdagV,tmp,PhiOdd);
assert(NumOp.ConstEE() == 1);
assert(DenOp.ConstEE() == 1);
PhiEven = zero;
};
//////////////////////////////////////////////////////
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
FermionField X(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
// VdagV^1/4 Phi
SchurDifferentiableOperator<Impl> VdagV(NumOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
msCG_V(VdagV,PhiOdd,X);
// MdagM^-1/4 VdagV^1/4 Phi
SchurDifferentiableOperator<Impl> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegQuarter);
msCG_M(MdagM,X,Y);
// Phidag VdagV^1/4 MdagM^-1/4 MdagM^-1/4 VdagV^1/4 Phi
RealD action = norm2(Y);
return action;
};
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// Here, M is some 5D operator and V is the Pauli-Villars field
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
//
// Need
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
// + chi^dag P/Q d[N/D] P/Q chi
// + chi^dag P/Q N/D d[P/Q] chi
//
// P/Q is expressed as partial fraction expansion:
//
// a0 + \sum_k ak/(V^dagV + bk)
//
// d[P/Q] is then
//
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
//
// and similar for N/D.
//
// Need
// MpvPhi_k = [Vdag V + bk]^{-1} chi
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
//
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
//
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
//
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
const int n_f = PowerNegHalf.poles.size();
const int n_pv = PowerQuarter.poles.size();
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionRedBlackGrid());
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid());
std::vector<FermionField> MfMpvPhi_k (n_f ,NumOp.FermionRedBlackGrid());
FermionField MpvPhi(NumOp.FermionRedBlackGrid());
FermionField MfMpvPhi(NumOp.FermionRedBlackGrid());
FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
GaugeField tmp(NumOp.GaugeGrid());
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
SchurDifferentiableOperator<Impl> VdagV(NumOp);
SchurDifferentiableOperator<Impl> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegHalf);
msCG_V(VdagV,PhiOdd,MpvPhi_k,MpvPhi);
msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
msCG_V(VdagV,MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
RealD ak;
dSdU = zero;
// With these building blocks
//
// dS/dU =
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
//(1)
for(int k=0;k<n_f;k++){
ak = PowerNegHalf.residues[k];
MdagM.Mpc(MfMpvPhi_k[k],Y);
MdagM.MpcDagDeriv(tmp , MfMpvPhi_k[k], Y ); dSdU=dSdU+ak*tmp;
MdagM.MpcDeriv(tmp , Y, MfMpvPhi_k[k] ); dSdU=dSdU+ak*tmp;
}
//(2)
//(3)
for(int k=0;k<n_pv;k++){
ak = PowerQuarter.residues[k];
VdagV.Mpc(MpvPhi_k[k],Y);
VdagV.MpcDagDeriv(tmp,MpvMfMpvPhi_k[k],Y); dSdU=dSdU+ak*tmp;
VdagV.MpcDeriv (tmp,Y,MpvMfMpvPhi_k[k]); dSdU=dSdU+ak*tmp;
VdagV.Mpc(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
VdagV.MpcDeriv (tmp,Y, MpvPhi_k[k]); dSdU=dSdU+ak*tmp;
VdagV.MpcDagDeriv(tmp,MpvPhi_k[k], Y); dSdU=dSdU+ak*tmp;
}
//dSdU = Ta(dSdU);
};
};
}
}
#endif

View File

@ -0,0 +1,213 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/OneFlavourRational.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PSEUDOFERMION_ONE_FLAVOUR_RATIONAL_H
#define QCD_PSEUDOFERMION_ONE_FLAVOUR_RATIONAL_H
namespace Grid{
namespace QCD{
///////////////////////////////////////
// One flavour rational
///////////////////////////////////////
// S_f = chi^dag * N(M^dag*M)/D(M^dag*M) * chi
//
// Here, M is some operator
// N and D makeup the rat. poly
//
template<class Impl>
class OneFlavourRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
typedef OneFlavourRationalParams Params;
Params param;
MultiShiftFunction PowerHalf ;
MultiShiftFunction PowerNegHalf;
MultiShiftFunction PowerQuarter;
MultiShiftFunction PowerNegQuarter;
private:
FermionOperator<Impl> & FermOp;// the basic operator
// NOT using "Nroots"; IroIro is -- perhaps later, but this wasn't good for us historically
// and hasenbusch works better
FermionField Phi; // the pseudo fermion field for this trajectory
public:
OneFlavourRationalPseudoFermionAction(FermionOperator<Impl> &Op,
Params & p
) : FermOp(Op), Phi(Op.FermionGrid()), param(p)
{
AlgRemez remez(param.lo,param.hi,param.precision);
// MdagM^(+- 1/2)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
remez.generateApprox(param.degree,1,2);
PowerHalf.Init(remez,param.tolerance,false);
PowerNegHalf.Init(remez,param.tolerance,true);
// MdagM^(+- 1/4)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
remez.generateApprox(param.degree,1,4);
PowerQuarter.Init(remez,param.tolerance,false);
PowerNegQuarter.Init(remez,param.tolerance,true);
};
virtual std::string action_name(){return "OneFlavourRationalPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
// P(phi) = e^{- phi^dag (MdagM)^-1/2 phi}
// = e^{- phi^dag (MdagM)^-1/4 (MdagM)^-1/4 phi}
// Phi = Mdag^{1/4} eta
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2).
RealD scale = std::sqrt(0.5);
FermionField eta(FermOp.FermionGrid());
gaussian(pRNG,eta);
FermOp.ImportGauge(U);
// mutishift CG
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerQuarter);
msCG(MdagMOp,eta,Phi);
Phi=Phi*scale;
};
//////////////////////////////////////////////////////
// S = phi^dag (Mdag M)^-1/2 phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
FermOp.ImportGauge(U);
FermionField Y(FermOp.FermionGrid());
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerNegQuarter);
msCG(MdagMOp,Phi,Y);
RealD action = norm2(Y);
std::cout << GridLogMessage << "Pseudofermion action FIXME -- is -1/4 solve or -1/2 solve faster??? "<<action<<std::endl;
return action;
};
//////////////////////////////////////////////////////
// Need
// dS_f/dU = chi^dag d[N/D] chi
//
// N/D is expressed as partial fraction expansion:
//
// a0 + \sum_k ak/(M^dagM + bk)
//
// d[N/D] is then
//
// \sum_k -ak [M^dagM+bk]^{-1} [ dM^dag M + M^dag dM ] [M^dag M + bk]^{-1}
//
// Need
// Mf Phi_k = [MdagM+bk]^{-1} Phi
// Mf Phi = \sum_k ak [MdagM+bk]^{-1} Phi
//
// With these building blocks
//
// dS/dU = \sum_k -ak Mf Phi_k^dag [ dM^dag M + M^dag dM ] Mf Phi_k
// S = innerprodReal(Phi,Mf Phi);
//////////////////////////////////////////////////////
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
const int Npole = PowerNegHalf.poles.size();
std::vector<FermionField> MPhi_k (Npole,FermOp.FermionGrid());
FermionField X(FermOp.FermionGrid());
FermionField Y(FermOp.FermionGrid());
GaugeField tmp(FermOp.GaugeGrid());
FermOp.ImportGauge(U);
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerNegHalf);
msCG(MdagMOp,Phi,MPhi_k);
dSdU = zero;
for(int k=0;k<Npole;k++){
RealD ak = PowerNegHalf.residues[k];
X = MPhi_k[k];
FermOp.M(X,Y);
FermOp.MDeriv(tmp , Y, X,DaggerNo ); dSdU=dSdU+ak*tmp;
FermOp.MDeriv(tmp , X, Y,DaggerYes); dSdU=dSdU+ak*tmp;
}
//dSdU = Ta(dSdU);
};
};
}
}
#endif

View File

@ -0,0 +1,267 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/OneFlavourRationalRatio.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PSEUDOFERMION_ONE_FLAVOUR_RATIONAL_RATIO_H
#define QCD_PSEUDOFERMION_ONE_FLAVOUR_RATIONAL_RATIO_H
namespace Grid{
namespace QCD{
///////////////////////////////////////
// One flavour rational
///////////////////////////////////////
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// Here P/Q \sim R_{1/4} ~ (V^dagV)^{1/4}
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
template<class Impl>
class OneFlavourRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
typedef OneFlavourRationalParams Params;
Params param;
MultiShiftFunction PowerHalf ;
MultiShiftFunction PowerNegHalf;
MultiShiftFunction PowerQuarter;
MultiShiftFunction PowerNegQuarter;
private:
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
FermionField Phi; // the pseudo fermion field for this trajectory
public:
OneFlavourRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
Params & p
) : NumOp(_NumOp), DenOp(_DenOp), Phi(_NumOp.FermionGrid()), param(p)
{
AlgRemez remez(param.lo,param.hi,param.precision);
// MdagM^(+- 1/2)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
remez.generateApprox(param.degree,1,2);
PowerHalf.Init(remez,param.tolerance,false);
PowerNegHalf.Init(remez,param.tolerance,true);
// MdagM^(+- 1/4)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
remez.generateApprox(param.degree,1,4);
PowerQuarter.Init(remez,param.tolerance,false);
PowerNegQuarter.Init(remez,param.tolerance,true);
};
virtual std::string action_name(){return "OneFlavourRatioRationalPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// P(phi) = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/2 (VdagV)^1/4 phi}
// = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/4 (MdagM)^-1/4 (VdagV)^1/4 phi}
//
// Phi = (VdagV)^-1/4 Mdag^{1/4} eta
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2).
RealD scale = std::sqrt(0.5);
FermionField tmp(NumOp.FermionGrid());
FermionField eta(NumOp.FermionGrid());
gaussian(pRNG,eta);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
// MdagM^1/4 eta
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerQuarter);
msCG_M(MdagM,eta,tmp);
// VdagV^-1/4 MdagM^1/4 eta
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> VdagV(NumOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerNegQuarter);
msCG_V(VdagV,tmp,Phi);
Phi=Phi*scale;
};
//////////////////////////////////////////////////////
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
FermionField X(NumOp.FermionGrid());
FermionField Y(NumOp.FermionGrid());
// VdagV^1/4 Phi
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> VdagV(NumOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
msCG_V(VdagV,Phi,X);
// MdagM^-1/4 VdagV^1/4 Phi
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegQuarter);
msCG_M(MdagM,X,Y);
// Phidag VdagV^1/4 MdagM^-1/4 MdagM^-1/4 VdagV^1/4 Phi
RealD action = norm2(Y);
return action;
};
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// Here, M is some 5D operator and V is the Pauli-Villars field
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
//
// Need
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
// + chi^dag P/Q d[N/D] P/Q chi
// + chi^dag P/Q N/D d[P/Q] chi
//
// P/Q is expressed as partial fraction expansion:
//
// a0 + \sum_k ak/(V^dagV + bk)
//
// d[P/Q] is then
//
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
//
// and similar for N/D.
//
// Need
// MpvPhi_k = [Vdag V + bk]^{-1} chi
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
//
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
//
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
//
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
const int n_f = PowerNegHalf.poles.size();
const int n_pv = PowerQuarter.poles.size();
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionGrid());
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionGrid());
std::vector<FermionField> MfMpvPhi_k (n_f,NumOp.FermionGrid());
FermionField MpvPhi(NumOp.FermionGrid());
FermionField MfMpvPhi(NumOp.FermionGrid());
FermionField MpvMfMpvPhi(NumOp.FermionGrid());
FermionField Y(NumOp.FermionGrid());
GaugeField tmp(NumOp.GaugeGrid());
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagM(DenOp);
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> VdagV(NumOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegHalf);
msCG_V(VdagV,Phi,MpvPhi_k,MpvPhi);
msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
msCG_V(VdagV,MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
RealD ak;
dSdU = zero;
// With these building blocks
//
// dS/dU =
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
//(1)
for(int k=0;k<n_f;k++){
ak = PowerNegHalf.residues[k];
DenOp.M(MfMpvPhi_k[k],Y);
DenOp.MDeriv(tmp , MfMpvPhi_k[k], Y,DaggerYes ); dSdU=dSdU+ak*tmp;
DenOp.MDeriv(tmp , Y, MfMpvPhi_k[k], DaggerNo ); dSdU=dSdU+ak*tmp;
}
//(2)
//(3)
for(int k=0;k<n_pv;k++){
ak = PowerQuarter.residues[k];
NumOp.M(MpvPhi_k[k],Y);
NumOp.MDeriv(tmp,MpvMfMpvPhi_k[k],Y,DaggerYes); dSdU=dSdU+ak*tmp;
NumOp.MDeriv(tmp,Y,MpvMfMpvPhi_k[k],DaggerNo); dSdU=dSdU+ak*tmp;
NumOp.M(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
NumOp.MDeriv(tmp,Y, MpvPhi_k[k], DaggerNo); dSdU=dSdU+ak*tmp;
NumOp.MDeriv(tmp,MpvPhi_k[k], Y,DaggerYes); dSdU=dSdU+ak*tmp;
}
//dSdU = Ta(dSdU);
};
};
}
}
#endif

View File

@ -0,0 +1,43 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/PseudoFermion_aggregate.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PSEUDOFERMION_AGGREGATE_H
#define QCD_PSEUDOFERMION_AGGREGATE_H
#include <Grid/qcd/action/pseudofermion/EvenOddSchurDifferentiable.h>
#include <Grid/qcd/action/pseudofermion/TwoFlavour.h>
#include <Grid/qcd/action/pseudofermion/TwoFlavourRatio.h>
#include <Grid/qcd/action/pseudofermion/TwoFlavourEvenOdd.h>
#include <Grid/qcd/action/pseudofermion/TwoFlavourEvenOddRatio.h>
#include <Grid/qcd/action/pseudofermion/OneFlavourRational.h>
#include <Grid/qcd/action/pseudofermion/OneFlavourRationalRatio.h>
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRational.h>
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRationalRatio.h>
#include <Grid/qcd/action/pseudofermion/ExactOneFlavourRatio.h>
#endif

View File

@ -0,0 +1,160 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/TwoFlavour.h
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PSEUDOFERMION_TWO_FLAVOUR_H
#define QCD_PSEUDOFERMION_TWO_FLAVOUR_H
namespace Grid {
namespace QCD {
////////////////////////////////////////////////////////////////////////
// Two flavour pseudofermion action for any dop
////////////////////////////////////////////////////////////////////////
template <class Impl>
class TwoFlavourPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
private:
FermionOperator<Impl> &FermOp; // the basic operator
OperatorFunction<FermionField> &DerivativeSolver;
OperatorFunction<FermionField> &ActionSolver;
FermionField Phi; // the pseudo fermion field for this trajectory
public:
/////////////////////////////////////////////////
// Pass in required objects.
/////////////////////////////////////////////////
TwoFlavourPseudoFermionAction(FermionOperator<Impl> &Op,
OperatorFunction<FermionField> &DS,
OperatorFunction<FermionField> &AS)
: FermOp(Op),
DerivativeSolver(DS),
ActionSolver(AS),
Phi(Op.FermionGrid()){};
virtual std::string action_name(){return "TwoFlavourPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] has no parameters" << std::endl;
return sstream.str();
}
//////////////////////////////////////////////////////////////////////////////////////
// Push the gauge field in to the dops. Assume any BC's and smearing already applied
//////////////////////////////////////////////////////////////////////////////////////
virtual void refresh(const GaugeField &U, GridParallelRNG &pRNG) {
// P(phi) = e^{- phi^dag (MdagM)^-1 phi}
// Phi = Mdag eta
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2).
// and must multiply by 0.707....
//
// Chroma has this scale factor: two_flavor_monomial_w.h
// IroIro: does not use this scale. It is absorbed by a change of vars
// in the Phi integral, and thus is only an irrelevant prefactor for
// the partition function.
//
RealD scale = std::sqrt(0.5);
FermionField eta(FermOp.FermionGrid());
gaussian(pRNG, eta);
FermOp.ImportGauge(U);
FermOp.Mdag(eta, Phi);
Phi = Phi * scale;
};
//////////////////////////////////////////////////////
// S = phi^dag (Mdag M)^-1 phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
FermOp.ImportGauge(U);
FermionField X(FermOp.FermionGrid());
FermionField Y(FermOp.FermionGrid());
MdagMLinearOperator<FermionOperator<Impl>, FermionField> MdagMOp(FermOp);
X = zero;
ActionSolver(MdagMOp, Phi, X);
MdagMOp.Op(X, Y);
RealD action = norm2(Y);
std::cout << GridLogMessage << "Pseudofermion action " << action << std::endl;
return action;
};
//////////////////////////////////////////////////////
// dS/du = - phi^dag (Mdag M)^-1 [ Mdag dM + dMdag M ] (Mdag M)^-1 phi
// = - phi^dag M^-1 dM (MdagM)^-1 phi - phi^dag (MdagM)^-1 dMdag dM
// (Mdag)^-1 phi
//
// = - Ydag dM X - Xdag dMdag Y
//
//
//////////////////////////////////////////////////////
virtual void deriv(const GaugeField &U, GaugeField &dSdU) {
FermOp.ImportGauge(U);
FermionField X(FermOp.FermionGrid());
FermionField Y(FermOp.FermionGrid());
GaugeField tmp(FermOp.GaugeGrid());
MdagMLinearOperator<FermionOperator<Impl>, FermionField> MdagMOp(FermOp);
X = zero;
DerivativeSolver(MdagMOp, Phi, X); // X = (MdagM)^-1 phi
MdagMOp.Op(X, Y); // Y = M X = (Mdag)^-1 phi
// Our conventions really make this UdSdU; We do not differentiate wrt Udag here.
// So must take dSdU - adj(dSdU) and left multiply by mom to get dS/dt.
FermOp.MDeriv(tmp, Y, X, DaggerNo);
dSdU = tmp;
FermOp.MDeriv(tmp, X, Y, DaggerYes);
dSdU = dSdU + tmp;
// not taking here the traceless antihermitian component
};
};
}
}
#endif

View File

@ -0,0 +1,189 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/TwoFlavourEvenOdd.h
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PSEUDOFERMION_TWO_FLAVOUR_EVEN_ODD_H
#define QCD_PSEUDOFERMION_TWO_FLAVOUR_EVEN_ODD_H
namespace Grid {
namespace QCD {
////////////////////////////////////////////////////////////////////////
// Two flavour pseudofermion action for any EO prec dop
////////////////////////////////////////////////////////////////////////
template <class Impl>
class TwoFlavourEvenOddPseudoFermionAction
: public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
private:
FermionOperator<Impl> &FermOp; // the basic operator
OperatorFunction<FermionField> &DerivativeSolver;
OperatorFunction<FermionField> &ActionSolver;
FermionField PhiOdd; // the pseudo fermion field for this trajectory
FermionField PhiEven; // the pseudo fermion field for this trajectory
public:
/////////////////////////////////////////////////
// Pass in required objects.
/////////////////////////////////////////////////
TwoFlavourEvenOddPseudoFermionAction(FermionOperator<Impl> &Op,
OperatorFunction<FermionField> &DS,
OperatorFunction<FermionField> &AS)
: FermOp(Op),
DerivativeSolver(DS),
ActionSolver(AS),
PhiEven(Op.FermionRedBlackGrid()),
PhiOdd(Op.FermionRedBlackGrid())
{};
virtual std::string action_name(){return "TwoFlavourEvenOddPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] has no parameters" << std::endl;
return sstream.str();
}
//////////////////////////////////////////////////////////////////////////////////////
// Push the gauge field in to the dops. Assume any BC's and smearing already applied
//////////////////////////////////////////////////////////////////////////////////////
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
// P(phi) = e^{- phi^dag (MpcdagMpc)^-1 phi}
// Phi = McpDag eta
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
RealD scale = std::sqrt(0.5);
FermionField eta (FermOp.FermionGrid());
FermionField etaOdd (FermOp.FermionRedBlackGrid());
FermionField etaEven(FermOp.FermionRedBlackGrid());
gaussian(pRNG,eta);
pickCheckerboard(Even,etaEven,eta);
pickCheckerboard(Odd,etaOdd,eta);
FermOp.ImportGauge(U);
SchurDifferentiableOperator<Impl> PCop(FermOp);
PCop.MpcDag(etaOdd,PhiOdd);
FermOp.MooeeDag(etaEven,PhiEven);
PhiOdd =PhiOdd*scale;
PhiEven=PhiEven*scale;
};
//////////////////////////////////////////////////////
// S = phi^dag (Mdag M)^-1 phi (odd)
// + phi^dag (Mdag M)^-1 phi (even)
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
FermOp.ImportGauge(U);
FermionField X(FermOp.FermionRedBlackGrid());
FermionField Y(FermOp.FermionRedBlackGrid());
SchurDifferentiableOperator<Impl> PCop(FermOp);
X=zero;
ActionSolver(PCop,PhiOdd,X);
PCop.Op(X,Y);
RealD action = norm2(Y);
// The EE factorised block; normally can replace with zero if det is constant (gauge field indept)
// Only really clover term that creates this.
FermOp.MooeeInvDag(PhiEven,Y);
action = action + norm2(Y);
std::cout << GridLogMessage << "Pseudofermion EO action "<<action<<std::endl;
return action;
};
//////////////////////////////////////////////////////
//
// dS/du = - phi^dag (Mdag M)^-1 [ Mdag dM + dMdag M ] (Mdag M)^-1 phi
// = - phi^dag M^-1 dM (MdagM)^-1 phi - phi^dag (MdagM)^-1 dMdag dM (Mdag)^-1 phi
//
// = - Ydag dM X - Xdag dMdag Y
//
//////////////////////////////////////////////////////
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
FermOp.ImportGauge(U);
FermionField X(FermOp.FermionRedBlackGrid());
FermionField Y(FermOp.FermionRedBlackGrid());
GaugeField tmp(FermOp.GaugeGrid());
SchurDifferentiableOperator<Impl> Mpc(FermOp);
// Our conventions really make this UdSdU; We do not differentiate wrt Udag here.
// So must take dSdU - adj(dSdU) and left multiply by mom to get dS/dt.
X=zero;
DerivativeSolver(Mpc,PhiOdd,X);
Mpc.Mpc(X,Y);
Mpc.MpcDeriv(tmp , Y, X ); dSdU=tmp;
Mpc.MpcDagDeriv(tmp , X, Y); dSdU=dSdU+tmp;
// Treat the EE case. (MdagM)^-1 = Minv Minvdag
// Deriv defaults to zero.
// FermOp.MooeeInvDag(PhiOdd,Y);
// FermOp.MooeeInv(Y,X);
// FermOp.MeeDeriv(tmp , Y, X,DaggerNo ); dSdU=tmp;
// FermOp.MeeDeriv(tmp , X, Y,DaggerYes); dSdU=dSdU+tmp;
assert(FermOp.ConstEE() == 1);
/*
FermOp.MooeeInvDag(PhiOdd,Y);
FermOp.MooeeInv(Y,X);
FermOp.MeeDeriv(tmp , Y, X,DaggerNo ); dSdU=tmp;
FermOp.MeeDeriv(tmp , X, Y,DaggerYes); dSdU=dSdU+tmp;
*/
//dSdU = Ta(dSdU);
};
};
}
}
#endif

View File

@ -0,0 +1,209 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/TwoFlavourEvenOddRatio.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PSEUDOFERMION_TWO_FLAVOUR_EVEN_ODD_RATIO_H
#define QCD_PSEUDOFERMION_TWO_FLAVOUR_EVEN_ODD_RATIO_H
namespace Grid{
namespace QCD{
///////////////////////////////////////
// Two flavour ratio
///////////////////////////////////////
template<class Impl>
class TwoFlavourEvenOddRatioPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
private:
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
OperatorFunction<FermionField> &DerivativeSolver;
OperatorFunction<FermionField> &ActionSolver;
FermionField PhiOdd; // the pseudo fermion field for this trajectory
FermionField PhiEven; // the pseudo fermion field for this trajectory
public:
TwoFlavourEvenOddRatioPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
OperatorFunction<FermionField> & DS,
OperatorFunction<FermionField> & AS) :
NumOp(_NumOp),
DenOp(_DenOp),
DerivativeSolver(DS),
ActionSolver(AS),
PhiEven(_NumOp.FermionRedBlackGrid()),
PhiOdd(_NumOp.FermionRedBlackGrid())
{
conformable(_NumOp.FermionGrid(), _DenOp.FermionGrid());
conformable(_NumOp.FermionRedBlackGrid(), _DenOp.FermionRedBlackGrid());
conformable(_NumOp.GaugeGrid(), _DenOp.GaugeGrid());
conformable(_NumOp.GaugeRedBlackGrid(), _DenOp.GaugeRedBlackGrid());
};
virtual std::string action_name(){return "TwoFlavourEvenOddRatioPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] has no parameters" << std::endl;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
// P(phi) = e^{- phi^dag Vpc (MpcdagMpc)^-1 Vpcdag phi}
//
// NumOp == V
// DenOp == M
//
// Take phi_o = Vpcdag^{-1} Mpcdag eta_o ; eta_o = Mpcdag^{-1} Vpcdag Phi
//
// P(eta_o) = e^{- eta_o^dag eta_o}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
RealD scale = std::sqrt(0.5);
FermionField eta (NumOp.FermionGrid());
FermionField etaOdd (NumOp.FermionRedBlackGrid());
FermionField etaEven(NumOp.FermionRedBlackGrid());
FermionField tmp (NumOp.FermionRedBlackGrid());
gaussian(pRNG,eta);
pickCheckerboard(Even,etaEven,eta);
pickCheckerboard(Odd,etaOdd,eta);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
SchurDifferentiableOperator<Impl> Mpc(DenOp);
SchurDifferentiableOperator<Impl> Vpc(NumOp);
// Odd det factors
Mpc.MpcDag(etaOdd,PhiOdd);
tmp=zero;
ActionSolver(Vpc,PhiOdd,tmp);
Vpc.Mpc(tmp,PhiOdd);
// Even det factors
DenOp.MooeeDag(etaEven,tmp);
NumOp.MooeeInvDag(tmp,PhiEven);
PhiOdd =PhiOdd*scale;
PhiEven=PhiEven*scale;
};
//////////////////////////////////////////////////////
// S = phi^dag V (Mdag M)^-1 Vdag phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
SchurDifferentiableOperator<Impl> Mpc(DenOp);
SchurDifferentiableOperator<Impl> Vpc(NumOp);
FermionField X(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
Vpc.MpcDag(PhiOdd,Y); // Y= Vdag phi
X=zero;
ActionSolver(Mpc,Y,X); // X= (MdagM)^-1 Vdag phi
//Mpc.Mpc(X,Y); // Y= Mdag^-1 Vdag phi
// Multiply by Ydag
RealD action = real(innerProduct(Y,X));
//RealD action = norm2(Y);
// The EE factorised block; normally can replace with zero if det is constant (gauge field indept)
// Only really clover term that creates this. Leave the EE portion as a future to do to make most
// rapid progresss on DWF for now.
//
NumOp.MooeeDag(PhiEven,X);
DenOp.MooeeInvDag(X,Y);
action = action + norm2(Y);
return action;
};
//////////////////////////////////////////////////////
// dS/du = phi^dag dV (Mdag M)^-1 V^dag phi
// - phi^dag V (Mdag M)^-1 [ Mdag dM + dMdag M ] (Mdag M)^-1 V^dag phi
// + phi^dag V (Mdag M)^-1 dV^dag phi
//////////////////////////////////////////////////////
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
SchurDifferentiableOperator<Impl> Mpc(DenOp);
SchurDifferentiableOperator<Impl> Vpc(NumOp);
FermionField X(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
// This assignment is necessary to be compliant with the HMC grids
GaugeField force(dSdU._grid);
//Y=Vdag phi
//X = (Mdag M)^-1 V^dag phi
//Y = (Mdag)^-1 V^dag phi
Vpc.MpcDag(PhiOdd,Y); // Y= Vdag phi
X=zero;
DerivativeSolver(Mpc,Y,X); // X= (MdagM)^-1 Vdag phi
Mpc.Mpc(X,Y); // Y= Mdag^-1 Vdag phi
// phi^dag V (Mdag M)^-1 dV^dag phi
Vpc.MpcDagDeriv(force , X, PhiOdd ); dSdU = force;
// phi^dag dV (Mdag M)^-1 V^dag phi
Vpc.MpcDeriv(force , PhiOdd, X ); dSdU = dSdU+force;
// - phi^dag V (Mdag M)^-1 Mdag dM (Mdag M)^-1 V^dag phi
// - phi^dag V (Mdag M)^-1 dMdag M (Mdag M)^-1 V^dag phi
Mpc.MpcDeriv(force,Y,X); dSdU = dSdU-force;
Mpc.MpcDagDeriv(force,X,Y); dSdU = dSdU-force;
// FIXME No force contribution from EvenEven assumed here
// Needs a fix for clover.
assert(NumOp.ConstEE() == 1);
assert(DenOp.ConstEE() == 1);
dSdU = -dSdU;
};
};
}
}
#endif

View File

@ -0,0 +1,173 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/TwoFlavourRatio.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PSEUDOFERMION_TWO_FLAVOUR_RATIO_H
#define QCD_PSEUDOFERMION_TWO_FLAVOUR_RATIO_H
namespace Grid{
namespace QCD{
///////////////////////////////////////
// Two flavour ratio
///////////////////////////////////////
template<class Impl>
class TwoFlavourRatioPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
private:
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
OperatorFunction<FermionField> &DerivativeSolver;
OperatorFunction<FermionField> &ActionSolver;
FermionField Phi; // the pseudo fermion field for this trajectory
public:
TwoFlavourRatioPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
OperatorFunction<FermionField> & DS,
OperatorFunction<FermionField> & AS
) : NumOp(_NumOp), DenOp(_DenOp), DerivativeSolver(DS), ActionSolver(AS), Phi(_NumOp.FermionGrid()) {};
virtual std::string action_name(){return "TwoFlavourRatioPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] has no parameters" << std::endl;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
// P(phi) = e^{- phi^dag V (MdagM)^-1 Vdag phi}
//
// NumOp == V
// DenOp == M
//
// Take phi = Vdag^{-1} Mdag eta ; eta = Mdag^{-1} Vdag Phi
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
//
RealD scale = std::sqrt(0.5);
FermionField eta(NumOp.FermionGrid());
FermionField tmp(NumOp.FermionGrid());
gaussian(pRNG,eta);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
// Note: this hard codes normal equations type solvers; alternate implementation needed for
// non-herm style solvers.
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(NumOp);
DenOp.Mdag(eta,Phi); // Mdag eta
tmp = zero;
ActionSolver(MdagMOp,Phi,tmp); // (VdagV)^-1 Mdag eta = V^-1 Vdag^-1 Mdag eta
NumOp.M(tmp,Phi); // Vdag^-1 Mdag eta
Phi=Phi*scale;
};
//////////////////////////////////////////////////////
// S = phi^dag V (Mdag M)^-1 Vdag phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
FermionField X(NumOp.FermionGrid());
FermionField Y(NumOp.FermionGrid());
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(DenOp);
NumOp.Mdag(Phi,Y); // Y= Vdag phi
X=zero;
ActionSolver(MdagMOp,Y,X); // X= (MdagM)^-1 Vdag phi
DenOp.M(X,Y); // Y= Mdag^-1 Vdag phi
RealD action = norm2(Y);
return action;
};
//////////////////////////////////////////////////////
// dS/du = phi^dag dV (Mdag M)^-1 V^dag phi
// - phi^dag V (Mdag M)^-1 [ Mdag dM + dMdag M ] (Mdag M)^-1 V^dag phi
// + phi^dag V (Mdag M)^-1 dV^dag phi
//////////////////////////////////////////////////////
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(DenOp);
FermionField X(NumOp.FermionGrid());
FermionField Y(NumOp.FermionGrid());
GaugeField force(NumOp.GaugeGrid());
//Y=Vdag phi
//X = (Mdag M)^-1 V^dag phi
//Y = (Mdag)^-1 V^dag phi
NumOp.Mdag(Phi,Y); // Y= Vdag phi
X=zero;
DerivativeSolver(MdagMOp,Y,X); // X= (MdagM)^-1 Vdag phi
DenOp.M(X,Y); // Y= Mdag^-1 Vdag phi
// phi^dag V (Mdag M)^-1 dV^dag phi
NumOp.MDeriv(force , X, Phi, DaggerYes ); dSdU=force;
// phi^dag dV (Mdag M)^-1 V^dag phi
NumOp.MDeriv(force , Phi, X ,DaggerNo ); dSdU=dSdU+force;
// - phi^dag V (Mdag M)^-1 Mdag dM (Mdag M)^-1 V^dag phi
// - phi^dag V (Mdag M)^-1 dMdag M (Mdag M)^-1 V^dag phi
DenOp.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU-force;
DenOp.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU-force;
dSdU *= -1.0;
//dSdU = - Ta(dSdU);
};
};
}
}
#endif