1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-20 08:46:55 +01:00

Hadrons: moving Hadrons to root directory, build system improvements

This commit is contained in:
2018-08-28 15:00:40 +01:00
parent 5f206df775
commit fb7d021b9d
499 changed files with 429 additions and 846 deletions

View File

@ -0,0 +1,50 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/gauge/Scalar.h
Copyright (C) 2017
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_SCALAR_H
#define GRID_QCD_SCALAR_H
#include <Grid/qcd/action/scalar/ScalarImpl.h>
#include <Grid/qcd/action/scalar/ScalarAction.h>
#include <Grid/qcd/action/scalar/ScalarInteractionAction.h>
namespace Grid {
namespace QCD {
typedef ScalarAction<ScalarImplR> ScalarActionR;
typedef ScalarAction<ScalarImplF> ScalarActionF;
typedef ScalarAction<ScalarImplD> ScalarActionD;
template <int Colours, int Dimensions> using ScalarAdjActionR = ScalarInteractionAction<ScalarNxNAdjImplR<Colours>, Dimensions>;
template <int Colours, int Dimensions> using ScalarAdjActionF = ScalarInteractionAction<ScalarNxNAdjImplF<Colours>, Dimensions>;
template <int Colours, int Dimensions> using ScalarAdjActionD = ScalarInteractionAction<ScalarNxNAdjImplD<Colours>, Dimensions>;
}
}
#endif // GRID_QCD_SCALAR_H

View File

@ -0,0 +1,83 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/gauge/WilsonGaugeAction.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef SCALAR_ACTION_H
#define SCALAR_ACTION_H
namespace Grid {
// FIXME drop the QCD namespace everywhere here
template <class Impl>
class ScalarAction : public QCD::Action<typename Impl::Field> {
public:
INHERIT_FIELD_TYPES(Impl);
private:
RealD mass_square;
RealD lambda;
public:
ScalarAction(RealD ms, RealD l) : mass_square(ms), lambda(l) {}
virtual std::string LogParameters() {
std::stringstream sstream;
sstream << GridLogMessage << "[ScalarAction] lambda : " << lambda << std::endl;
sstream << GridLogMessage << "[ScalarAction] mass_square : " << mass_square << std::endl;
return sstream.str();
}
virtual std::string action_name() {return "ScalarAction";}
virtual void refresh(const Field &U, GridParallelRNG &pRNG) {} // noop as no pseudoferms
virtual RealD S(const Field &p) {
return (mass_square * 0.5 + QCD::Nd) * ScalarObs<Impl>::sumphisquared(p) +
(lambda / 24.) * ScalarObs<Impl>::sumphifourth(p) +
ScalarObs<Impl>::sumphider(p);
};
virtual void deriv(const Field &p,
Field &force) {
Field tmp(p._grid);
Field p2(p._grid);
ScalarObs<Impl>::phisquared(p2, p);
tmp = -(Cshift(p, 0, -1) + Cshift(p, 0, 1));
for (int mu = 1; mu < QCD::Nd; mu++) tmp -= Cshift(p, mu, -1) + Cshift(p, mu, 1);
force =+(mass_square + 2. * QCD::Nd) * p + (lambda / 6.) * p2 * p + tmp;
}
};
} // namespace Grid
#endif // SCALAR_ACTION_H

View File

@ -0,0 +1,263 @@
#ifndef SCALAR_IMPL
#define SCALAR_IMPL
namespace Grid {
//namespace QCD {
template <class S>
class ScalarImplTypes {
public:
typedef S Simd;
template <typename vtype>
using iImplField = iScalar<iScalar<iScalar<vtype> > >;
typedef iImplField<Simd> SiteField;
typedef SiteField SitePropagator;
typedef SiteField SiteComplex;
typedef Lattice<SiteField> Field;
typedef Field ComplexField;
typedef Field FermionField;
typedef Field PropagatorField;
static inline void generate_momenta(Field& P, GridParallelRNG& pRNG){
gaussian(pRNG, P);
}
static inline Field projectForce(Field& P){return P;}
static inline void update_field(Field& P, Field& U, double ep) {
U += P*ep;
}
static inline RealD FieldSquareNorm(Field& U) {
return (- sum(trace(U*U))/2.0);
}
static inline void HotConfiguration(GridParallelRNG &pRNG, Field &U) {
gaussian(pRNG, U);
}
static inline void TepidConfiguration(GridParallelRNG &pRNG, Field &U) {
gaussian(pRNG, U);
}
static inline void ColdConfiguration(GridParallelRNG &pRNG, Field &U) {
U = 1.0;
}
static void MomentumSpacePropagator(Field &out, RealD m)
{
GridBase *grid = out._grid;
Field kmu(grid), one(grid);
const unsigned int nd = grid->_ndimension;
std::vector<int> &l = grid->_fdimensions;
one = Complex(1.0,0.0);
out = m*m;
for(int mu = 0; mu < nd; mu++)
{
Real twoPiL = M_PI*2./l[mu];
LatticeCoordinate(kmu,mu);
kmu = 2.*sin(.5*twoPiL*kmu);
out = out + kmu*kmu;
}
out = one/out;
}
static void FreePropagator(const Field &in, Field &out,
const Field &momKernel)
{
FFT fft((GridCartesian *)in._grid);
Field inFT(in._grid);
fft.FFT_all_dim(inFT, in, FFT::forward);
inFT = inFT*momKernel;
fft.FFT_all_dim(out, inFT, FFT::backward);
}
static void FreePropagator(const Field &in, Field &out, RealD m)
{
Field momKernel(in._grid);
MomentumSpacePropagator(momKernel, m);
FreePropagator(in, out, momKernel);
}
};
#ifdef USE_FFT_ACCELERATION
#ifndef FFT_MASS
#error "USE_FFT_ACCELERATION is defined but not FFT_MASS"
#endif
#endif
template <class S, unsigned int N>
class ScalarAdjMatrixImplTypes {
public:
typedef S Simd;
typedef QCD::SU<N> Group;
template <typename vtype>
using iImplField = iScalar<iScalar<iMatrix<vtype, N>>>;
template <typename vtype>
using iImplComplex = iScalar<iScalar<iScalar<vtype>>>;
typedef iImplField<Simd> SiteField;
typedef SiteField SitePropagator;
typedef iImplComplex<Simd> SiteComplex;
typedef Lattice<SiteField> Field;
typedef Lattice<SiteComplex> ComplexField;
typedef Field FermionField;
typedef Field PropagatorField;
static void MomentaSquare(ComplexField &out)
{
GridBase *grid = out._grid;
const std::vector<int> &l = grid->FullDimensions();
ComplexField kmu(grid);
for (int mu = 0; mu < grid->Nd(); mu++)
{
Real twoPiL = M_PI * 2.0 / l[mu];
LatticeCoordinate(kmu, mu);
kmu = 2.0 * sin(0.5 * twoPiL * kmu);
out += kmu * kmu;
}
}
static void MomentumSpacePropagator(ComplexField &out, RealD m)
{
GridBase *grid = out._grid;
ComplexField one(grid);
one = Complex(1.0, 0.0);
out = m * m;
MomentaSquare(out);
out = one / out;
}
static inline void generate_momenta(Field &P, GridParallelRNG &pRNG)
{
#ifndef USE_FFT_ACCELERATION
Group::GaussianFundamentalLieAlgebraMatrix(pRNG, P);
#else
Field Pgaussian(P._grid), Pp(P._grid);
ComplexField p2(P._grid); p2 = zero;
RealD M = FFT_MASS;
Group::GaussianFundamentalLieAlgebraMatrix(pRNG, Pgaussian);
FFT theFFT((GridCartesian*)P._grid);
theFFT.FFT_all_dim(Pp, Pgaussian, FFT::forward);
MomentaSquare(p2);
p2 += M * M;
p2 = sqrt(p2);
Pp *= p2;
theFFT.FFT_all_dim(P, Pp, FFT::backward);
#endif //USE_FFT_ACCELERATION
}
static inline Field projectForce(Field& P) {return P;}
static inline void update_field(Field &P, Field &U, double ep)
{
#ifndef USE_FFT_ACCELERATION
double t0=usecond();
U += P * ep;
double t1=usecond();
double total_time = (t1-t0)/1e6;
std::cout << GridLogIntegrator << "Total time for updating field (s) : " << total_time << std::endl;
#else
// FFT transform P(x) -> P(p)
// divide by (M^2+p^2) M external parameter (how to pass?)
// P'(p) = P(p)/(M^2+p^2)
// Transform back -> P'(x)
// U += P'(x)*ep
Field Pp(U._grid), P_FFT(U._grid);
static ComplexField p2(U._grid);
RealD M = FFT_MASS;
FFT theFFT((GridCartesian*)U._grid);
theFFT.FFT_all_dim(Pp, P, FFT::forward);
static bool first_call = true;
if (first_call)
{
// avoid recomputing
MomentumSpacePropagator(p2, M);
first_call = false;
}
Pp *= p2;
theFFT.FFT_all_dim(P_FFT, Pp, FFT::backward);
U += P_FFT * ep;
#endif //USE_FFT_ACCELERATION
}
static inline RealD FieldSquareNorm(Field &U)
{
#ifndef USE_FFT_ACCELERATION
return (TensorRemove(sum(trace(U * U))).real());
#else
// In case of Fourier acceleration we have to:
// compute U(p)*U(p)/(M^2+p^2)) Parseval theorem
// 1 FFT needed U(x) -> U(p)
// M to be passed
FFT theFFT((GridCartesian*)U._grid);
Field Up(U._grid);
theFFT.FFT_all_dim(Up, U, FFT::forward);
RealD M = FFT_MASS;
ComplexField p2(U._grid);
MomentumSpacePropagator(p2, M);
Field Up2 = Up * p2;
// from the definition of the DFT we need to divide by the volume
return (-TensorRemove(sum(trace(adj(Up) * Up2))).real() / U._grid->gSites());
#endif //USE_FFT_ACCELERATION
}
static inline void HotConfiguration(GridParallelRNG &pRNG, Field &U) {
Group::GaussianFundamentalLieAlgebraMatrix(pRNG, U);
}
static inline void TepidConfiguration(GridParallelRNG &pRNG, Field &U) {
Group::GaussianFundamentalLieAlgebraMatrix(pRNG, U, 0.01);
}
static inline void ColdConfiguration(GridParallelRNG &pRNG, Field &U) {
U = zero;
}
};
typedef ScalarImplTypes<vReal> ScalarImplR;
typedef ScalarImplTypes<vRealF> ScalarImplF;
typedef ScalarImplTypes<vRealD> ScalarImplD;
typedef ScalarImplTypes<vComplex> ScalarImplCR;
typedef ScalarImplTypes<vComplexF> ScalarImplCF;
typedef ScalarImplTypes<vComplexD> ScalarImplCD;
// Hardcoding here the size of the matrices
typedef ScalarAdjMatrixImplTypes<vComplex, QCD::Nc> ScalarAdjImplR;
typedef ScalarAdjMatrixImplTypes<vComplexF, QCD::Nc> ScalarAdjImplF;
typedef ScalarAdjMatrixImplTypes<vComplexD, QCD::Nc> ScalarAdjImplD;
template <int Colours > using ScalarNxNAdjImplR = ScalarAdjMatrixImplTypes<vComplex, Colours >;
template <int Colours > using ScalarNxNAdjImplF = ScalarAdjMatrixImplTypes<vComplexF, Colours >;
template <int Colours > using ScalarNxNAdjImplD = ScalarAdjMatrixImplTypes<vComplexD, Colours >;
//}
}
#endif

View File

@ -0,0 +1,208 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/gauge/WilsonGaugeAction.h
Copyright (C) 2015
Author: Guido Cossu <guido,cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef SCALAR_INT_ACTION_H
#define SCALAR_INT_ACTION_H
// Note: this action can completely absorb the ScalarAction for real float fields
// use the scalarObjs to generalise the structure
namespace Grid
{
// FIXME drop the QCD namespace everywhere here
template <class Impl, int Ndim>
class ScalarInteractionAction : public QCD::Action<typename Impl::Field>
{
public:
INHERIT_FIELD_TYPES(Impl);
private:
RealD mass_square;
RealD lambda;
RealD g;
const unsigned int N = Impl::Group::Dimension;
typedef typename Field::vector_object vobj;
typedef CartesianStencil<vobj, vobj> Stencil;
SimpleCompressor<vobj> compressor;
int npoint = 2 * Ndim;
std::vector<int> directions; //
std::vector<int> displacements; //
public:
ScalarInteractionAction(RealD ms, RealD l, RealD gval) : mass_square(ms), lambda(l), g(gval), displacements(2 * Ndim, 0), directions(2 * Ndim, 0)
{
for (int mu = 0; mu < Ndim; mu++)
{
directions[mu] = mu;
directions[mu + Ndim] = mu;
displacements[mu] = 1;
displacements[mu + Ndim] = -1;
}
}
virtual std::string LogParameters()
{
std::stringstream sstream;
sstream << GridLogMessage << "[ScalarAction] lambda : " << lambda << std::endl;
sstream << GridLogMessage << "[ScalarAction] mass_square : " << mass_square << std::endl;
sstream << GridLogMessage << "[ScalarAction] g : " << g << std::endl;
return sstream.str();
}
virtual std::string action_name() { return "ScalarAction"; }
virtual void refresh(const Field &U, GridParallelRNG &pRNG) {}
virtual RealD S(const Field &p)
{
assert(p._grid->Nd() == Ndim);
static Stencil phiStencil(p._grid, npoint, 0, directions, displacements);
phiStencil.HaloExchange(p, compressor);
Field action(p._grid), pshift(p._grid), phisquared(p._grid);
phisquared = p * p;
action = (2.0 * Ndim + mass_square) * phisquared - lambda * phisquared * phisquared;
for (int mu = 0; mu < Ndim; mu++)
{
// pshift = Cshift(p, mu, +1); // not efficient, implement with stencils
parallel_for(int i = 0; i < p._grid->oSites(); i++)
{
int permute_type;
StencilEntry *SE;
vobj temp2;
const vobj *temp, *t_p;
SE = phiStencil.GetEntry(permute_type, mu, i);
t_p = &p._odata[i];
if (SE->_is_local)
{
temp = &p._odata[SE->_offset];
if (SE->_permute)
{
permute(temp2, *temp, permute_type);
action._odata[i] -= temp2 * (*t_p) + (*t_p) * temp2;
}
else
{
action._odata[i] -= (*temp) * (*t_p) + (*t_p) * (*temp);
}
}
else
{
action._odata[i] -= phiStencil.CommBuf()[SE->_offset] * (*t_p) + (*t_p) * phiStencil.CommBuf()[SE->_offset];
}
}
// action -= pshift*p + p*pshift;
}
// NB the trace in the algebra is normalised to 1/2
// minus sign coming from the antihermitian fields
return -(TensorRemove(sum(trace(action)))).real() * N / g;
};
virtual void deriv(const Field &p, Field &force)
{
double t0 = usecond();
assert(p._grid->Nd() == Ndim);
force = (2. * Ndim + mass_square) * p - 2. * lambda * p * p * p;
double interm_t = usecond();
// move this outside
static Stencil phiStencil(p._grid, npoint, 0, directions, displacements);
phiStencil.HaloExchange(p, compressor);
double halo_t = usecond();
int chunk = 128;
//for (int mu = 0; mu < QCD::Nd; mu++) force -= Cshift(p, mu, -1) + Cshift(p, mu, 1);
// inverting the order of the loops slows down the code(! g++ 7)
// cannot try to reduce the number of force writes by factor npoint...
// use cache blocking
for (int point = 0; point < npoint; point++)
{
#pragma omp parallel
{
int permute_type;
StencilEntry *SE;
const vobj *temp;
#pragma omp for schedule(static, chunk)
for (int i = 0; i < p._grid->oSites(); i++)
{
SE = phiStencil.GetEntry(permute_type, point, i);
// prefetch next p?
if (SE->_is_local)
{
temp = &p._odata[SE->_offset];
if (SE->_permute)
{
vobj temp2;
permute(temp2, *temp, permute_type);
force._odata[i] -= temp2;
}
else
{
force._odata[i] -= *temp; // slow part. Dominated by this read/write (BW)
}
}
else
{
force._odata[i] -= phiStencil.CommBuf()[SE->_offset];
}
}
}
}
force *= N / g;
double t1 = usecond();
double total_time = (t1 - t0) / 1e6;
double interm_time = (interm_t - t0) / 1e6;
double halo_time = (halo_t - interm_t) / 1e6;
double stencil_time = (t1 - halo_t) / 1e6;
std::cout << GridLogIntegrator << "Total time for force computation (s) : " << total_time << std::endl;
std::cout << GridLogIntegrator << "Intermediate time for force computation (s): " << interm_time << std::endl;
std::cout << GridLogIntegrator << "Halo time in force computation (s) : " << halo_time << std::endl;
std::cout << GridLogIntegrator << "Stencil time in force computation (s) : " << stencil_time << std::endl;
double flops = p._grid->gSites() * (14 * N * N * N + 18 * N * N + 2);
double flops_no_stencil = p._grid->gSites() * (14 * N * N * N + 6 * N * N + 2);
double Gflops = flops / (total_time * 1e9);
double Gflops_no_stencil = flops_no_stencil / (interm_time * 1e9);
std::cout << GridLogIntegrator << "Flops: " << flops << " - Gflop/s : " << Gflops << std::endl;
std::cout << GridLogIntegrator << "Flops NS: " << flops_no_stencil << " - Gflop/s NS: " << Gflops_no_stencil << std::endl;
}
};
} // namespace Grid
#endif // SCALAR_INT_ACTION_H