mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-18 07:47:06 +01:00
Hadrons: moving Hadrons to root directory, build system improvements
This commit is contained in:
260
Hadrons/Modules/MScalar/VPCounterTerms.cc
Normal file
260
Hadrons/Modules/MScalar/VPCounterTerms.cc
Normal file
@ -0,0 +1,260 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: extras/Hadrons/Modules/MScalar/VPCounterTerms.cc
|
||||
|
||||
Copyright (C) 2015-2018
|
||||
|
||||
Author: Antonin Portelli <antonin.portelli@me.com>
|
||||
Author: James Harrison <jch1g10@soton.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Hadrons/Modules/MScalar/VPCounterTerms.hpp>
|
||||
#include <Hadrons/Modules/MScalar/Scalar.hpp>
|
||||
|
||||
using namespace Grid;
|
||||
using namespace Hadrons;
|
||||
using namespace MScalar;
|
||||
|
||||
/******************************************************************************
|
||||
* TVPCounterTerms implementation *
|
||||
******************************************************************************/
|
||||
// constructor /////////////////////////////////////////////////////////////////
|
||||
TVPCounterTerms::TVPCounterTerms(const std::string name)
|
||||
: Module<VPCounterTermsPar>(name)
|
||||
{}
|
||||
|
||||
// dependencies/products ///////////////////////////////////////////////////////
|
||||
std::vector<std::string> TVPCounterTerms::getInput(void)
|
||||
{
|
||||
std::vector<std::string> in = {par().source};
|
||||
|
||||
return in;
|
||||
}
|
||||
|
||||
std::vector<std::string> TVPCounterTerms::getOutput(void)
|
||||
{
|
||||
std::vector<std::string> out;
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
// setup ///////////////////////////////////////////////////////////////////////
|
||||
void TVPCounterTerms::setup(void)
|
||||
{
|
||||
freeMomPropName_ = FREEMOMPROP(par().mass);
|
||||
phaseName_.clear();
|
||||
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
|
||||
{
|
||||
phaseName_.push_back("_shiftphase_" + std::to_string(mu));
|
||||
}
|
||||
GFSrcName_ = getName() + "_DinvSrc";
|
||||
phatsqName_ = getName() + "_pHatSquared";
|
||||
prop0Name_ = getName() + "_freeProp";
|
||||
twoscalarName_ = getName() + "_2scalarProp";
|
||||
psquaredName_ = getName() + "_psquaredProp";
|
||||
if (!par().output.empty())
|
||||
{
|
||||
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
|
||||
{
|
||||
momPhaseName_.push_back("_momentumphase_" + std::to_string(i_p));
|
||||
}
|
||||
}
|
||||
|
||||
envCreateLat(ScalarField, freeMomPropName_);
|
||||
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
|
||||
{
|
||||
envCreateLat(ScalarField, phaseName_[mu]);
|
||||
}
|
||||
envCreateLat(ScalarField, phatsqName_);
|
||||
envCreateLat(ScalarField, GFSrcName_);
|
||||
envCreateLat(ScalarField, prop0Name_);
|
||||
envCreateLat(ScalarField, twoscalarName_);
|
||||
envCreateLat(ScalarField, psquaredName_);
|
||||
if (!par().output.empty())
|
||||
{
|
||||
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
|
||||
{
|
||||
envCacheLat(ScalarField, momPhaseName_[i_p]);
|
||||
}
|
||||
}
|
||||
envTmpLat(ScalarField, "buf");
|
||||
envTmpLat(ScalarField, "tmp_vp");
|
||||
envTmpLat(ScalarField, "vpPhase");
|
||||
}
|
||||
|
||||
// execution ///////////////////////////////////////////////////////////////////
|
||||
void TVPCounterTerms::execute(void)
|
||||
{
|
||||
auto &source = envGet(ScalarField, par().source);
|
||||
Complex ci(0.0,1.0);
|
||||
FFT fft(env().getGrid());
|
||||
envGetTmp(ScalarField, buf);
|
||||
envGetTmp(ScalarField, tmp_vp);
|
||||
|
||||
// Momentum-space free scalar propagator
|
||||
auto &G = envGet(ScalarField, freeMomPropName_);
|
||||
SIMPL::MomentumSpacePropagator(G, par().mass);
|
||||
|
||||
// Phases and hat{p}^2
|
||||
auto &phatsq = envGet(ScalarField, phatsqName_);
|
||||
std::vector<int> &l = env().getGrid()->_fdimensions;
|
||||
|
||||
LOG(Message) << "Calculating shift phases..." << std::endl;
|
||||
phatsq = zero;
|
||||
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
|
||||
{
|
||||
Real twoPiL = M_PI*2./l[mu];
|
||||
auto &phmu = envGet(ScalarField, phaseName_[mu]);
|
||||
|
||||
LatticeCoordinate(buf, mu);
|
||||
phmu = exp(ci*twoPiL*buf);
|
||||
phase_.push_back(&phmu);
|
||||
buf = 2.*sin(.5*twoPiL*buf);
|
||||
phatsq = phatsq + buf*buf;
|
||||
}
|
||||
|
||||
// G*F*src
|
||||
auto &GFSrc = envGet(ScalarField, GFSrcName_);
|
||||
fft.FFT_all_dim(GFSrc, source, FFT::forward);
|
||||
GFSrc = G*GFSrc;
|
||||
|
||||
// Position-space free scalar propagator
|
||||
auto &prop0 = envGet(ScalarField, prop0Name_);
|
||||
prop0 = GFSrc;
|
||||
fft.FFT_all_dim(prop0, prop0, FFT::backward);
|
||||
|
||||
// Propagators for counter-terms
|
||||
auto &twoscalarProp = envGet(ScalarField, twoscalarName_);
|
||||
auto &psquaredProp = envGet(ScalarField, psquaredName_);
|
||||
|
||||
twoscalarProp = G*GFSrc;
|
||||
fft.FFT_all_dim(twoscalarProp, twoscalarProp, FFT::backward);
|
||||
|
||||
psquaredProp = G*phatsq*GFSrc;
|
||||
fft.FFT_all_dim(psquaredProp, psquaredProp, FFT::backward);
|
||||
|
||||
// Prepare output data structure if necessary
|
||||
Result outputData;
|
||||
if (!par().output.empty())
|
||||
{
|
||||
outputData.projection.resize(par().outputMom.size());
|
||||
outputData.lattice_size = env().getGrid()->_fdimensions;
|
||||
outputData.mass = par().mass;
|
||||
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
|
||||
{
|
||||
outputData.projection[i_p].momentum = strToVec<int>(par().outputMom[i_p]);
|
||||
outputData.projection[i_p].twoScalar.resize(env().getNd());
|
||||
outputData.projection[i_p].threeScalar.resize(env().getNd());
|
||||
outputData.projection[i_p].pSquaredInsertion.resize(env().getNd());
|
||||
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
|
||||
{
|
||||
outputData.projection[i_p].twoScalar[nu].resize(env().getNd());
|
||||
outputData.projection[i_p].threeScalar[nu].resize(env().getNd());
|
||||
outputData.projection[i_p].pSquaredInsertion[nu].resize(env().getNd());
|
||||
}
|
||||
// Calculate phase factors
|
||||
auto &momph_ip = envGet(ScalarField, momPhaseName_[i_p]);
|
||||
momph_ip = zero;
|
||||
for (unsigned int j = 0; j < env().getNd()-1; ++j)
|
||||
{
|
||||
Real twoPiL = M_PI*2./l[j];
|
||||
LatticeCoordinate(buf, j);
|
||||
buf = outputData.projection[i_p].momentum[j]*twoPiL*buf;
|
||||
momph_ip = momph_ip + buf;
|
||||
}
|
||||
momph_ip = exp(-ci*momph_ip);
|
||||
momPhase_.push_back(&momph_ip);
|
||||
}
|
||||
}
|
||||
|
||||
// Contractions
|
||||
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
|
||||
{
|
||||
buf = adj(Cshift(prop0, nu, -1));
|
||||
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
|
||||
{
|
||||
// Two-scalar loop
|
||||
tmp_vp = buf * Cshift(prop0, mu, 1);
|
||||
tmp_vp -= Cshift(buf, mu, 1) * prop0;
|
||||
tmp_vp = 2.0*real(tmp_vp);
|
||||
// Output if necessary
|
||||
if (!par().output.empty())
|
||||
{
|
||||
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
|
||||
{
|
||||
project(outputData.projection[i_p].twoScalar[mu][nu],
|
||||
tmp_vp, i_p);
|
||||
}
|
||||
}
|
||||
|
||||
// Three-scalar loop (no vertex)
|
||||
tmp_vp = buf * Cshift(twoscalarProp, mu, 1);
|
||||
tmp_vp -= Cshift(buf, mu, 1) * twoscalarProp;
|
||||
tmp_vp = 2.0*real(tmp_vp);
|
||||
// Output if necessary
|
||||
if (!par().output.empty())
|
||||
{
|
||||
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
|
||||
{
|
||||
project(outputData.projection[i_p].threeScalar[mu][nu],
|
||||
tmp_vp, i_p);
|
||||
}
|
||||
}
|
||||
|
||||
// Three-scalar loop (hat{p}^2 insertion)
|
||||
tmp_vp = buf * Cshift(psquaredProp, mu, 1);
|
||||
tmp_vp -= Cshift(buf, mu, 1) * psquaredProp;
|
||||
tmp_vp = 2.0*real(tmp_vp);
|
||||
// Output if necessary
|
||||
if (!par().output.empty())
|
||||
{
|
||||
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
|
||||
{
|
||||
project(outputData.projection[i_p].pSquaredInsertion[mu][nu],
|
||||
tmp_vp, i_p);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// OUTPUT IF NECESSARY
|
||||
if (!par().output.empty())
|
||||
{
|
||||
LOG(Message) << "Saving momentum-projected correlators to '"
|
||||
<< RESULT_FILE_NAME(par().output) << "'..."
|
||||
<< std::endl;
|
||||
saveResult(par().output, "scalar_loops", outputData);
|
||||
}
|
||||
}
|
||||
|
||||
void TVPCounterTerms::project(std::vector<Complex> &projection, const ScalarField &vp, int i_p)
|
||||
{
|
||||
std::vector<TComplex> vecBuf;
|
||||
envGetTmp(ScalarField, vpPhase);
|
||||
|
||||
vpPhase = vp*(*momPhase_[i_p]);
|
||||
sliceSum(vpPhase, vecBuf, Tp);
|
||||
projection.resize(vecBuf.size());
|
||||
for (unsigned int t = 0; t < vecBuf.size(); ++t)
|
||||
{
|
||||
projection[t] = TensorRemove(vecBuf[t]);
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user