mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-11 03:46:55 +01:00
]Merge branch 'develop' into feature/hirep
This commit is contained in:
@ -495,5 +495,6 @@ namespace QCD {
|
||||
#include <qcd/hmc/integrators/Integrator_algorithm.h>
|
||||
#include <qcd/hmc/HMC.h>
|
||||
|
||||
#include <qcd/smearing/Smearing.h>
|
||||
|
||||
#endif
|
||||
|
@ -35,6 +35,7 @@ template<class GaugeField>
|
||||
class Action {
|
||||
|
||||
public:
|
||||
bool is_smeared = false;
|
||||
// Boundary conditions? // Heatbath?
|
||||
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) = 0;// refresh pseudofermions
|
||||
virtual RealD S (const GaugeField &U) = 0; // evaluate the action
|
||||
|
@ -34,78 +34,75 @@ directory
|
||||
|
||||
namespace Grid {
|
||||
|
||||
namespace QCD {
|
||||
namespace QCD {
|
||||
|
||||
//////////////////////////////////////////////
|
||||
// Template parameter class constructs to package
|
||||
// externally control Fermion implementations
|
||||
// in orthogonal directions
|
||||
//
|
||||
// Ultimately need Impl to always define types where XXX is opaque
|
||||
//
|
||||
// typedef typename XXX Simd;
|
||||
// typedef typename XXX GaugeLinkField;
|
||||
// typedef typename XXX GaugeField;
|
||||
// typedef typename XXX GaugeActField;
|
||||
// typedef typename XXX FermionField;
|
||||
// typedef typename XXX DoubledGaugeField;
|
||||
// typedef typename XXX SiteSpinor;
|
||||
// typedef typename XXX SiteHalfSpinor;
|
||||
// typedef typename XXX Compressor;
|
||||
//
|
||||
// and Methods:
|
||||
// void ImportGauge(GridBase *GaugeGrid,DoubledGaugeField &Uds,const
|
||||
// GaugeField &Umu)
|
||||
// void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const
|
||||
// GaugeField &Umu)
|
||||
// void multLink(SiteHalfSpinor &phi,const SiteDoubledGaugeField &U,const
|
||||
// SiteHalfSpinor &chi,int mu,StencilEntry *SE,StencilImpl &St)
|
||||
// void InsertForce4D(GaugeField &mat,const FermionField &Btilde,const
|
||||
// FermionField &A,int mu)
|
||||
// void InsertForce5D(GaugeField &mat,const FermionField &Btilde,const
|
||||
// FermionField &A,int mu)
|
||||
//
|
||||
//
|
||||
// To acquire the typedefs from "Base" (either a base class or template param)
|
||||
// use:
|
||||
//
|
||||
// INHERIT_GIMPL_TYPES(Base)
|
||||
// INHERIT_FIMPL_TYPES(Base)
|
||||
// INHERIT_IMPL_TYPES(Base)
|
||||
//
|
||||
// The Fermion operators will do the following:
|
||||
//
|
||||
// struct MyOpParams {
|
||||
// RealD mass;
|
||||
// };
|
||||
//
|
||||
//
|
||||
// template<class Impl>
|
||||
// class MyOp : pubic<Impl> {
|
||||
// public:
|
||||
//
|
||||
// INHERIT_ALL_IMPL_TYPES(Impl);
|
||||
//
|
||||
// MyOp(MyOpParams Myparm, ImplParams &ImplParam) : Impl(ImplParam)
|
||||
// {
|
||||
//
|
||||
// };
|
||||
//
|
||||
// }
|
||||
//////////////////////////////////////////////
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Implementation dependent fermion types
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
//////////////////////////////////////////////
|
||||
// Template parameter class constructs to package
|
||||
// externally control Fermion implementations
|
||||
// in orthogonal directions
|
||||
//
|
||||
// Ultimately need Impl to always define types where XXX is opaque
|
||||
//
|
||||
// typedef typename XXX Simd;
|
||||
// typedef typename XXX GaugeLinkField;
|
||||
// typedef typename XXX GaugeField;
|
||||
// typedef typename XXX GaugeActField;
|
||||
// typedef typename XXX FermionField;
|
||||
// typedef typename XXX DoubledGaugeField;
|
||||
// typedef typename XXX SiteSpinor;
|
||||
// typedef typename XXX SiteHalfSpinor;
|
||||
// typedef typename XXX Compressor;
|
||||
//
|
||||
// and Methods:
|
||||
// void ImportGauge(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
|
||||
// void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
|
||||
// void multLink(SiteHalfSpinor &phi,const SiteDoubledGaugeField &U,const SiteHalfSpinor &chi,int mu,StencilEntry *SE,StencilImpl &St)
|
||||
// void InsertForce4D(GaugeField &mat,const FermionField &Btilde,const FermionField &A,int mu)
|
||||
// void InsertForce5D(GaugeField &mat,const FermionField &Btilde,const FermionField &A,int mu)
|
||||
//
|
||||
//
|
||||
// To acquire the typedefs from "Base" (either a base class or template param) use:
|
||||
//
|
||||
// INHERIT_GIMPL_TYPES(Base)
|
||||
// INHERIT_FIMPL_TYPES(Base)
|
||||
// INHERIT_IMPL_TYPES(Base)
|
||||
//
|
||||
// The Fermion operators will do the following:
|
||||
//
|
||||
// struct MyOpParams {
|
||||
// RealD mass;
|
||||
// };
|
||||
//
|
||||
//
|
||||
// template<class Impl>
|
||||
// class MyOp : public<Impl> {
|
||||
// public:
|
||||
//
|
||||
// INHERIT_ALL_IMPL_TYPES(Impl);
|
||||
//
|
||||
// MyOp(MyOpParams Myparm, ImplParams &ImplParam) : Impl(ImplParam)
|
||||
// {
|
||||
//
|
||||
// };
|
||||
//
|
||||
// }
|
||||
//////////////////////////////////////////////
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Implementation dependent fermion types
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#define INHERIT_FIMPL_TYPES(Impl)\
|
||||
typedef typename Impl::FermionField FermionField; \
|
||||
typedef typename Impl::DoubledGaugeField DoubledGaugeField; \
|
||||
typedef typename Impl::SiteSpinor SiteSpinor; \
|
||||
typedef typename Impl::SiteHalfSpinor SiteHalfSpinor; \
|
||||
typedef typename Impl::Compressor Compressor; \
|
||||
typedef typename Impl::StencilImpl StencilImpl; \
|
||||
typedef typename Impl::ImplParams ImplParams;
|
||||
|
||||
#define INHERIT_FIMPL_TYPES(Impl) \
|
||||
typedef typename Impl::FermionField FermionField; \
|
||||
typedef typename Impl::DoubledGaugeField DoubledGaugeField; \
|
||||
typedef typename Impl::SiteSpinor SiteSpinor; \
|
||||
typedef typename Impl::SiteHalfSpinor SiteHalfSpinor; \
|
||||
typedef typename Impl::Compressor Compressor; \
|
||||
typedef typename Impl::StencilImpl StencilImpl; \
|
||||
typedef typename Impl::ImplParams ImplParams;
|
||||
|
||||
#define INHERIT_IMPL_TYPES(Base) \
|
||||
INHERIT_GIMPL_TYPES(Base) \
|
||||
@ -148,17 +145,22 @@ class WilsonImpl
|
||||
|
||||
bool overlapCommsCompute(void) { return Params.overlapCommsCompute; };
|
||||
|
||||
inline void multLink(SiteHalfSpinor &phi, const SiteDoubledGaugeField &U,
|
||||
const SiteHalfSpinor &chi, int mu, StencilEntry *SE,
|
||||
inline void multLink(SiteHalfSpinor &phi,
|
||||
const SiteDoubledGaugeField &U,
|
||||
const SiteHalfSpinor &chi,
|
||||
int mu,
|
||||
StencilEntry *SE,
|
||||
StencilImpl &St) {
|
||||
mult(&phi(), &U(mu), &chi());
|
||||
}
|
||||
|
||||
template <class ref>
|
||||
inline void loadLinkElement(Simd ®, ref &memory) {
|
||||
inline void loadLinkElement(Simd ®,
|
||||
ref &memory) {
|
||||
reg = memory;
|
||||
}
|
||||
inline void DoubleStore(GridBase *GaugeGrid, DoubledGaugeField &Uds,
|
||||
inline void DoubleStore(GridBase *GaugeGrid,
|
||||
DoubledGaugeField &Uds,
|
||||
const GaugeField &Umu) {
|
||||
conformable(Uds._grid, GaugeGrid);
|
||||
conformable(Umu._grid, GaugeGrid);
|
||||
@ -171,15 +173,19 @@ class WilsonImpl
|
||||
}
|
||||
}
|
||||
|
||||
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde,
|
||||
FermionField &A, int mu) {
|
||||
inline void InsertForce4D(GaugeField &mat,
|
||||
FermionField &Btilde,
|
||||
FermionField &A,
|
||||
int mu) {
|
||||
GaugeLinkField link(mat._grid);
|
||||
link = TraceIndex<SpinIndex>(outerProduct(Btilde, A));
|
||||
PokeIndex<LorentzIndex>(mat, link, mu);
|
||||
}
|
||||
|
||||
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde,
|
||||
FermionField Ã, int mu) {
|
||||
inline void InsertForce5D(GaugeField &mat,
|
||||
FermionField &Btilde,
|
||||
FermionField Ã,
|
||||
int mu) {
|
||||
int Ls = Btilde._grid->_fdimensions[0];
|
||||
|
||||
GaugeLinkField tmp(mat._grid);
|
||||
|
@ -1,181 +1,188 @@
|
||||
/*************************************************************************************
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/gauge/GaugeImpl.h
|
||||
Source file: ./lib/qcd/action/gauge/GaugeImpl.h
|
||||
|
||||
Copyright (C) 2015
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_QCD_GAUGE_IMPL_H
|
||||
#define GRID_QCD_GAUGE_IMPL_H
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_QCD_GAUGE_IMPL_H
|
||||
#define GRID_QCD_GAUGE_IMPL_H
|
||||
|
||||
namespace Grid {
|
||||
|
||||
namespace QCD {
|
||||
namespace QCD {
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Implementation dependent gauge types
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Implementation dependent gauge types
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<class Gimpl> class WilsonLoops;
|
||||
template <class Gimpl> class WilsonLoops;
|
||||
|
||||
#define INHERIT_GIMPL_TYPES(GImpl) \
|
||||
typedef typename GImpl::Simd Simd;\
|
||||
typedef typename GImpl::GaugeLinkField GaugeLinkField;\
|
||||
typedef typename GImpl::GaugeField GaugeField;\
|
||||
typedef typename GImpl::SiteGaugeField SiteGaugeField;\
|
||||
typedef typename GImpl::SiteGaugeLink SiteGaugeLink;
|
||||
#define INHERIT_GIMPL_TYPES(GImpl) \
|
||||
typedef typename GImpl::Simd Simd; \
|
||||
typedef typename GImpl::GaugeLinkField GaugeLinkField; \
|
||||
typedef typename GImpl::GaugeField GaugeField; \
|
||||
typedef typename GImpl::SiteGaugeField SiteGaugeField; \
|
||||
typedef typename GImpl::SiteGaugeLink SiteGaugeLink;
|
||||
|
||||
//
|
||||
template <class S, int Nrepresentation = Nc> class GaugeImplTypes {
|
||||
public:
|
||||
typedef S Simd;
|
||||
|
||||
//
|
||||
template<class S,int Nrepresentation=Nc>
|
||||
class GaugeImplTypes {
|
||||
public:
|
||||
|
||||
typedef S Simd;
|
||||
|
||||
template<typename vtype> using iImplGaugeLink = iScalar<iScalar<iMatrix<vtype, Nrepresentation> > >;
|
||||
template<typename vtype> using iImplGaugeField = iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nd >;
|
||||
|
||||
typedef iImplGaugeLink <Simd> SiteGaugeLink;
|
||||
typedef iImplGaugeField <Simd> SiteGaugeField;
|
||||
|
||||
typedef Lattice<SiteGaugeLink> GaugeLinkField; // bit ugly naming; polarised gauge field, lorentz... all ugly
|
||||
typedef Lattice<SiteGaugeField> GaugeField;
|
||||
template <typename vtype>
|
||||
using iImplGaugeLink = iScalar<iScalar<iMatrix<vtype, Nrepresentation>>>;
|
||||
template <typename vtype>
|
||||
using iImplGaugeField = iVector<iScalar<iMatrix<vtype, Nrepresentation>>, Nd>;
|
||||
|
||||
};
|
||||
typedef iImplGaugeLink<Simd> SiteGaugeLink;
|
||||
typedef iImplGaugeField<Simd> SiteGaugeField;
|
||||
|
||||
// Composition with smeared link, bc's etc.. probably need multiple inheritance
|
||||
// Variable precision "S" and variable Nc
|
||||
template<class GimplTypes>
|
||||
class PeriodicGaugeImpl : public GimplTypes {
|
||||
public:
|
||||
typedef Lattice<SiteGaugeLink> GaugeLinkField; // bit ugly naming; polarised
|
||||
// gauge field, lorentz... all
|
||||
// ugly
|
||||
typedef Lattice<SiteGaugeField> GaugeField;
|
||||
|
||||
INHERIT_GIMPL_TYPES(GimplTypes);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Support needed for the assembly of loops including all boundary condition effects such as conjugate bcs
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<class covariant> static inline
|
||||
Lattice<covariant> CovShiftForward (const GaugeLinkField &Link, int mu, const Lattice<covariant> &field) {
|
||||
return PeriodicBC::CovShiftForward(Link,mu,field);
|
||||
}
|
||||
|
||||
template<class covariant> static inline
|
||||
Lattice<covariant> CovShiftBackward(const GaugeLinkField &Link, int mu,const Lattice<covariant> &field) {
|
||||
return PeriodicBC::CovShiftBackward(Link,mu,field);
|
||||
}
|
||||
static inline
|
||||
GaugeLinkField CovShiftIdentityBackward(const GaugeLinkField &Link, int mu) {
|
||||
return Cshift(adj(Link),mu,-1);
|
||||
}
|
||||
static inline
|
||||
GaugeLinkField CovShiftIdentityForward(const GaugeLinkField &Link, int mu) {
|
||||
return Link;
|
||||
}
|
||||
static inline
|
||||
GaugeLinkField ShiftStaple(const GaugeLinkField &Link, int mu) {
|
||||
return Cshift(Link,mu,1);
|
||||
}
|
||||
|
||||
static inline bool isPeriodicGaugeField(void) {
|
||||
return true;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
// Composition with smeared link, bc's etc.. probably need multiple inheritance
|
||||
// Variable precision "S" and variable Nc
|
||||
template<class GimplTypes>
|
||||
class ConjugateGaugeImpl : public GimplTypes {
|
||||
public:
|
||||
|
||||
INHERIT_GIMPL_TYPES(GimplTypes);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Support needed for the assembly of loops including all boundary condition effects such as Gparity.
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class covariant> static
|
||||
Lattice<covariant> CovShiftForward (const GaugeLinkField &Link, int mu, const Lattice<covariant> &field) {
|
||||
return ConjugateBC::CovShiftForward(Link,mu,field);
|
||||
// Move this elsewhere?
|
||||
static inline void AddGaugeLink(GaugeField &U, GaugeLinkField &W,
|
||||
int mu) { // U[mu] += W
|
||||
PARALLEL_FOR_LOOP
|
||||
for (auto ss = 0; ss < U._grid->oSites(); ss++) {
|
||||
U._odata[ss]._internal[mu] =
|
||||
U._odata[ss]._internal[mu] + W._odata[ss]._internal;
|
||||
}
|
||||
|
||||
template<class covariant> static
|
||||
Lattice<covariant> CovShiftBackward(const GaugeLinkField &Link, int mu,const Lattice<covariant> &field) {
|
||||
return ConjugateBC::CovShiftBackward(Link,mu,field);
|
||||
}
|
||||
|
||||
static inline
|
||||
GaugeLinkField CovShiftIdentityBackward(const GaugeLinkField &Link, int mu) {
|
||||
GridBase *grid = Link._grid;
|
||||
int Lmu = grid->GlobalDimensions()[mu]-1;
|
||||
|
||||
Lattice<iScalar<vInteger> > coor(grid); LatticeCoordinate(coor,mu);
|
||||
|
||||
GaugeLinkField tmp (grid);
|
||||
tmp=adj(Link);
|
||||
tmp = where(coor==Lmu,conjugate(tmp),tmp);
|
||||
return Cshift(tmp,mu,-1);// moves towards positive mu
|
||||
}
|
||||
static inline
|
||||
GaugeLinkField CovShiftIdentityForward(const GaugeLinkField &Link, int mu) {
|
||||
return Link;
|
||||
}
|
||||
|
||||
static inline
|
||||
GaugeLinkField ShiftStaple(const GaugeLinkField &Link, int mu) {
|
||||
GridBase *grid = Link._grid;
|
||||
int Lmu = grid->GlobalDimensions()[mu]-1;
|
||||
|
||||
Lattice<iScalar<vInteger> > coor(grid); LatticeCoordinate(coor,mu);
|
||||
|
||||
GaugeLinkField tmp (grid);
|
||||
tmp=Cshift(Link,mu,1);
|
||||
tmp=where(coor==Lmu,conjugate(tmp),tmp);
|
||||
return tmp;
|
||||
}
|
||||
|
||||
static inline bool isPeriodicGaugeField(void) {
|
||||
return false;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
typedef GaugeImplTypes<vComplex,Nc> GimplTypesR;
|
||||
typedef GaugeImplTypes<vComplexF,Nc> GimplTypesF;
|
||||
typedef GaugeImplTypes<vComplexD,Nc> GimplTypesD;
|
||||
|
||||
typedef PeriodicGaugeImpl<GimplTypesR> PeriodicGimplR; // Real.. whichever prec
|
||||
typedef PeriodicGaugeImpl<GimplTypesF> PeriodicGimplF; // Float
|
||||
typedef PeriodicGaugeImpl<GimplTypesD> PeriodicGimplD; // Double
|
||||
|
||||
typedef ConjugateGaugeImpl<GimplTypesR> ConjugateGimplR; // Real.. whichever prec
|
||||
typedef ConjugateGaugeImpl<GimplTypesF> ConjugateGimplF; // Float
|
||||
typedef ConjugateGaugeImpl<GimplTypesD> ConjugateGimplD; // Double
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
// Composition with smeared link, bc's etc.. probably need multiple inheritance
|
||||
// Variable precision "S" and variable Nc
|
||||
template <class GimplTypes> class PeriodicGaugeImpl : public GimplTypes {
|
||||
public:
|
||||
INHERIT_GIMPL_TYPES(GimplTypes);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Support needed for the assembly of loops including all boundary condition
|
||||
// effects such as conjugate bcs
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <class covariant>
|
||||
static inline Lattice<covariant>
|
||||
CovShiftForward(const GaugeLinkField &Link, int mu,
|
||||
const Lattice<covariant> &field) {
|
||||
return PeriodicBC::CovShiftForward(Link, mu, field);
|
||||
}
|
||||
|
||||
template <class covariant>
|
||||
static inline Lattice<covariant>
|
||||
CovShiftBackward(const GaugeLinkField &Link, int mu,
|
||||
const Lattice<covariant> &field) {
|
||||
return PeriodicBC::CovShiftBackward(Link, mu, field);
|
||||
}
|
||||
static inline GaugeLinkField
|
||||
CovShiftIdentityBackward(const GaugeLinkField &Link, int mu) {
|
||||
return Cshift(adj(Link), mu, -1);
|
||||
}
|
||||
static inline GaugeLinkField
|
||||
CovShiftIdentityForward(const GaugeLinkField &Link, int mu) {
|
||||
return Link;
|
||||
}
|
||||
static inline GaugeLinkField ShiftStaple(const GaugeLinkField &Link, int mu) {
|
||||
return Cshift(Link, mu, 1);
|
||||
}
|
||||
|
||||
static inline bool isPeriodicGaugeField(void) { return true; }
|
||||
};
|
||||
|
||||
// Composition with smeared link, bc's etc.. probably need multiple inheritance
|
||||
// Variable precision "S" and variable Nc
|
||||
template <class GimplTypes> class ConjugateGaugeImpl : public GimplTypes {
|
||||
public:
|
||||
INHERIT_GIMPL_TYPES(GimplTypes);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Support needed for the assembly of loops including all boundary condition
|
||||
// effects such as Gparity.
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template <class covariant>
|
||||
static Lattice<covariant> CovShiftForward(const GaugeLinkField &Link, int mu,
|
||||
const Lattice<covariant> &field) {
|
||||
return ConjugateBC::CovShiftForward(Link, mu, field);
|
||||
}
|
||||
|
||||
template <class covariant>
|
||||
static Lattice<covariant> CovShiftBackward(const GaugeLinkField &Link, int mu,
|
||||
const Lattice<covariant> &field) {
|
||||
return ConjugateBC::CovShiftBackward(Link, mu, field);
|
||||
}
|
||||
|
||||
static inline GaugeLinkField
|
||||
CovShiftIdentityBackward(const GaugeLinkField &Link, int mu) {
|
||||
GridBase *grid = Link._grid;
|
||||
int Lmu = grid->GlobalDimensions()[mu] - 1;
|
||||
|
||||
Lattice<iScalar<vInteger>> coor(grid);
|
||||
LatticeCoordinate(coor, mu);
|
||||
|
||||
GaugeLinkField tmp(grid);
|
||||
tmp = adj(Link);
|
||||
tmp = where(coor == Lmu, conjugate(tmp), tmp);
|
||||
return Cshift(tmp, mu, -1); // moves towards positive mu
|
||||
}
|
||||
static inline GaugeLinkField
|
||||
CovShiftIdentityForward(const GaugeLinkField &Link, int mu) {
|
||||
return Link;
|
||||
}
|
||||
|
||||
static inline GaugeLinkField ShiftStaple(const GaugeLinkField &Link, int mu) {
|
||||
GridBase *grid = Link._grid;
|
||||
int Lmu = grid->GlobalDimensions()[mu] - 1;
|
||||
|
||||
Lattice<iScalar<vInteger>> coor(grid);
|
||||
LatticeCoordinate(coor, mu);
|
||||
|
||||
GaugeLinkField tmp(grid);
|
||||
tmp = Cshift(Link, mu, 1);
|
||||
tmp = where(coor == Lmu, conjugate(tmp), tmp);
|
||||
return tmp;
|
||||
}
|
||||
|
||||
static inline bool isPeriodicGaugeField(void) { return false; }
|
||||
};
|
||||
|
||||
typedef GaugeImplTypes<vComplex, Nc> GimplTypesR;
|
||||
typedef GaugeImplTypes<vComplexF, Nc> GimplTypesF;
|
||||
typedef GaugeImplTypes<vComplexD, Nc> GimplTypesD;
|
||||
|
||||
typedef PeriodicGaugeImpl<GimplTypesR> PeriodicGimplR; // Real.. whichever prec
|
||||
typedef PeriodicGaugeImpl<GimplTypesF> PeriodicGimplF; // Float
|
||||
typedef PeriodicGaugeImpl<GimplTypesD> PeriodicGimplD; // Double
|
||||
|
||||
typedef ConjugateGaugeImpl<GimplTypesR>
|
||||
ConjugateGimplR; // Real.. whichever prec
|
||||
typedef ConjugateGaugeImpl<GimplTypesF> ConjugateGimplF; // Float
|
||||
typedef ConjugateGaugeImpl<GimplTypesD> ConjugateGimplD; // Double
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -1,212 +1,214 @@
|
||||
/*************************************************************************************
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/pseudofermion/OneFlavourEvenOddRational.h
|
||||
Source file: ./lib/qcd/action/pseudofermion/OneFlavourEvenOddRational.h
|
||||
|
||||
Copyright (C) 2015
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_H
|
||||
#define QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_H
|
||||
|
||||
namespace Grid{
|
||||
namespace QCD{
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
///////////////////////////////////////
|
||||
// One flavour rational
|
||||
///////////////////////////////////////
|
||||
///////////////////////////////////////
|
||||
// One flavour rational
|
||||
///////////////////////////////////////
|
||||
|
||||
// S_f = chi^dag * N(Mpc^dag*Mpc)/D(Mpc^dag*Mpc) * chi
|
||||
// S_f = chi^dag * N(Mpc^dag*Mpc)/D(Mpc^dag*Mpc) * chi
|
||||
//
|
||||
// Here, M is some operator
|
||||
// N and D makeup the rat. poly
|
||||
//
|
||||
|
||||
template <class Impl>
|
||||
class OneFlavourEvenOddRationalPseudoFermionAction
|
||||
: public Action<typename Impl::GaugeField> {
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
typedef OneFlavourRationalParams Params;
|
||||
Params param;
|
||||
|
||||
MultiShiftFunction PowerHalf;
|
||||
MultiShiftFunction PowerNegHalf;
|
||||
MultiShiftFunction PowerQuarter;
|
||||
MultiShiftFunction PowerNegQuarter;
|
||||
|
||||
private:
|
||||
FermionOperator<Impl> &FermOp; // the basic operator
|
||||
|
||||
// NOT using "Nroots"; IroIro is -- perhaps later, but this wasn't good for us
|
||||
// historically
|
||||
// and hasenbusch works better
|
||||
|
||||
FermionField PhiEven; // the pseudo fermion field for this trajectory
|
||||
FermionField PhiOdd; // the pseudo fermion field for this trajectory
|
||||
|
||||
public:
|
||||
OneFlavourEvenOddRationalPseudoFermionAction(FermionOperator<Impl> &Op,
|
||||
Params &p)
|
||||
: FermOp(Op),
|
||||
PhiEven(Op.FermionRedBlackGrid()),
|
||||
PhiOdd(Op.FermionRedBlackGrid()),
|
||||
param(p) {
|
||||
AlgRemez remez(param.lo, param.hi, param.precision);
|
||||
|
||||
// MdagM^(+- 1/2)
|
||||
std::cout << GridLogMessage << "Generating degree " << param.degree
|
||||
<< " for x^(1/2)" << std::endl;
|
||||
remez.generateApprox(param.degree, 1, 2);
|
||||
PowerHalf.Init(remez, param.tolerance, false);
|
||||
PowerNegHalf.Init(remez, param.tolerance, true);
|
||||
|
||||
// MdagM^(+- 1/4)
|
||||
std::cout << GridLogMessage << "Generating degree " << param.degree
|
||||
<< " for x^(1/4)" << std::endl;
|
||||
remez.generateApprox(param.degree, 1, 4);
|
||||
PowerQuarter.Init(remez, param.tolerance, false);
|
||||
PowerNegQuarter.Init(remez, param.tolerance, true);
|
||||
};
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridParallelRNG &pRNG) {
|
||||
// P(phi) = e^{- phi^dag (MpcdagMpc)^-1/2 phi}
|
||||
// = e^{- phi^dag (MpcdagMpc)^-1/4 (MpcdagMpc)^-1/4 phi}
|
||||
// Phi = MpcdagMpc^{1/4} eta
|
||||
//
|
||||
// Here, M is some operator
|
||||
// N and D makeup the rat. poly
|
||||
// P(eta) = e^{- eta^dag eta}
|
||||
//
|
||||
|
||||
template<class Impl>
|
||||
class OneFlavourEvenOddRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
//
|
||||
// So eta should be of width sig = 1/sqrt(2).
|
||||
|
||||
typedef OneFlavourRationalParams Params;
|
||||
Params param;
|
||||
RealD scale = std::sqrt(0.5);
|
||||
|
||||
MultiShiftFunction PowerHalf ;
|
||||
MultiShiftFunction PowerNegHalf;
|
||||
MultiShiftFunction PowerQuarter;
|
||||
MultiShiftFunction PowerNegQuarter;
|
||||
FermionField eta(FermOp.FermionGrid());
|
||||
FermionField etaOdd(FermOp.FermionRedBlackGrid());
|
||||
FermionField etaEven(FermOp.FermionRedBlackGrid());
|
||||
|
||||
private:
|
||||
|
||||
FermionOperator<Impl> & FermOp;// the basic operator
|
||||
gaussian(pRNG, eta);
|
||||
eta = eta * scale;
|
||||
|
||||
// NOT using "Nroots"; IroIro is -- perhaps later, but this wasn't good for us historically
|
||||
// and hasenbusch works better
|
||||
pickCheckerboard(Even, etaEven, eta);
|
||||
pickCheckerboard(Odd, etaOdd, eta);
|
||||
|
||||
FermionField PhiEven; // the pseudo fermion field for this trajectory
|
||||
FermionField PhiOdd; // the pseudo fermion field for this trajectory
|
||||
|
||||
FermOp.ImportGauge(U);
|
||||
|
||||
public:
|
||||
// mutishift CG
|
||||
SchurDifferentiableOperator<Impl> Mpc(FermOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter, PowerQuarter);
|
||||
msCG(Mpc, etaOdd, PhiOdd);
|
||||
|
||||
OneFlavourEvenOddRationalPseudoFermionAction(FermionOperator<Impl> &Op,
|
||||
Params & p ) : FermOp(Op),
|
||||
PhiEven(Op.FermionRedBlackGrid()),
|
||||
PhiOdd (Op.FermionRedBlackGrid()),
|
||||
param(p)
|
||||
{
|
||||
AlgRemez remez(param.lo,param.hi,param.precision);
|
||||
//////////////////////////////////////////////////////
|
||||
// FIXME : Clover term not yet..
|
||||
//////////////////////////////////////////////////////
|
||||
|
||||
// MdagM^(+- 1/2)
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,2);
|
||||
PowerHalf.Init(remez,param.tolerance,false);
|
||||
PowerNegHalf.Init(remez,param.tolerance,true);
|
||||
assert(FermOp.ConstEE() == 1);
|
||||
PhiEven = zero;
|
||||
};
|
||||
|
||||
// MdagM^(+- 1/4)
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,4);
|
||||
PowerQuarter.Init(remez,param.tolerance,false);
|
||||
PowerNegQuarter.Init(remez,param.tolerance,true);
|
||||
};
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
|
||||
//////////////////////////////////////////////////////
|
||||
// S = phi^dag (Mdag M)^-1/2 phi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
FermOp.ImportGauge(U);
|
||||
|
||||
// P(phi) = e^{- phi^dag (MpcdagMpc)^-1/2 phi}
|
||||
// = e^{- phi^dag (MpcdagMpc)^-1/4 (MpcdagMpc)^-1/4 phi}
|
||||
// Phi = MpcdagMpc^{1/4} eta
|
||||
//
|
||||
// P(eta) = e^{- eta^dag eta}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
//
|
||||
// So eta should be of width sig = 1/sqrt(2).
|
||||
FermionField Y(FermOp.FermionRedBlackGrid());
|
||||
|
||||
RealD scale = std::sqrt(0.5);
|
||||
SchurDifferentiableOperator<Impl> Mpc(FermOp);
|
||||
|
||||
FermionField eta (FermOp.FermionGrid());
|
||||
FermionField etaOdd (FermOp.FermionRedBlackGrid());
|
||||
FermionField etaEven(FermOp.FermionRedBlackGrid());
|
||||
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,
|
||||
PowerNegQuarter);
|
||||
|
||||
gaussian(pRNG,eta); eta=eta*scale;
|
||||
msCG(Mpc, PhiOdd, Y);
|
||||
|
||||
pickCheckerboard(Even,etaEven,eta);
|
||||
pickCheckerboard(Odd,etaOdd,eta);
|
||||
RealD action = norm2(Y);
|
||||
std::cout << GridLogMessage << "Pseudofermion action FIXME -- is -1/4 "
|
||||
"solve or -1/2 solve faster??? "
|
||||
<< action << std::endl;
|
||||
|
||||
FermOp.ImportGauge(U);
|
||||
return action;
|
||||
};
|
||||
|
||||
// mutishift CG
|
||||
SchurDifferentiableOperator<Impl> Mpc(FermOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerQuarter);
|
||||
msCG(Mpc,etaOdd,PhiOdd);
|
||||
//////////////////////////////////////////////////////
|
||||
// Need
|
||||
// dS_f/dU = chi^dag d[N/D] chi
|
||||
//
|
||||
// N/D is expressed as partial fraction expansion:
|
||||
//
|
||||
// a0 + \sum_k ak/(M^dagM + bk)
|
||||
//
|
||||
// d[N/D] is then
|
||||
//
|
||||
// \sum_k -ak [M^dagM+bk]^{-1} [ dM^dag M + M^dag dM ] [M^dag M +
|
||||
// bk]^{-1}
|
||||
//
|
||||
// Need
|
||||
// Mf Phi_k = [MdagM+bk]^{-1} Phi
|
||||
// Mf Phi = \sum_k ak [MdagM+bk]^{-1} Phi
|
||||
//
|
||||
// With these building blocks
|
||||
//
|
||||
// dS/dU = \sum_k -ak Mf Phi_k^dag [ dM^dag M + M^dag dM ] Mf
|
||||
// Phi_k
|
||||
// S = innerprodReal(Phi,Mf Phi);
|
||||
//////////////////////////////////////////////////////
|
||||
virtual void deriv(const GaugeField &U, GaugeField &dSdU) {
|
||||
const int Npole = PowerNegHalf.poles.size();
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// FIXME : Clover term not yet..
|
||||
//////////////////////////////////////////////////////
|
||||
std::vector<FermionField> MPhi_k(Npole, FermOp.FermionRedBlackGrid());
|
||||
|
||||
assert(FermOp.ConstEE() == 1);
|
||||
PhiEven = zero;
|
||||
|
||||
};
|
||||
FermionField X(FermOp.FermionRedBlackGrid());
|
||||
FermionField Y(FermOp.FermionRedBlackGrid());
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// S = phi^dag (Mdag M)^-1/2 phi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
GaugeField tmp(FermOp.GaugeGrid());
|
||||
|
||||
FermOp.ImportGauge(U);
|
||||
FermOp.ImportGauge(U);
|
||||
|
||||
FermionField Y(FermOp.FermionRedBlackGrid());
|
||||
|
||||
SchurDifferentiableOperator<Impl> Mpc(FermOp);
|
||||
SchurDifferentiableOperator<Impl> Mpc(FermOp);
|
||||
|
||||
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerNegQuarter);
|
||||
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter, PowerNegHalf);
|
||||
|
||||
msCG(Mpc,PhiOdd,Y);
|
||||
msCG(Mpc, PhiOdd, MPhi_k);
|
||||
|
||||
RealD action = norm2(Y);
|
||||
std::cout << GridLogMessage << "Pseudofermion action FIXME -- is -1/4 solve or -1/2 solve faster??? "<<action<<std::endl;
|
||||
dSdU = zero;
|
||||
for (int k = 0; k < Npole; k++) {
|
||||
RealD ak = PowerNegHalf.residues[k];
|
||||
|
||||
return action;
|
||||
};
|
||||
X = MPhi_k[k];
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// Need
|
||||
// dS_f/dU = chi^dag d[N/D] chi
|
||||
//
|
||||
// N/D is expressed as partial fraction expansion:
|
||||
//
|
||||
// a0 + \sum_k ak/(M^dagM + bk)
|
||||
//
|
||||
// d[N/D] is then
|
||||
//
|
||||
// \sum_k -ak [M^dagM+bk]^{-1} [ dM^dag M + M^dag dM ] [M^dag M + bk]^{-1}
|
||||
//
|
||||
// Need
|
||||
// Mf Phi_k = [MdagM+bk]^{-1} Phi
|
||||
// Mf Phi = \sum_k ak [MdagM+bk]^{-1} Phi
|
||||
//
|
||||
// With these building blocks
|
||||
//
|
||||
// dS/dU = \sum_k -ak Mf Phi_k^dag [ dM^dag M + M^dag dM ] Mf Phi_k
|
||||
// S = innerprodReal(Phi,Mf Phi);
|
||||
//////////////////////////////////////////////////////
|
||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
||||
Mpc.Mpc(X, Y);
|
||||
Mpc.MpcDeriv(tmp, Y, X);
|
||||
dSdU = dSdU + ak * tmp;
|
||||
Mpc.MpcDagDeriv(tmp, X, Y);
|
||||
dSdU = dSdU + ak * tmp;
|
||||
}
|
||||
|
||||
const int Npole = PowerNegHalf.poles.size();
|
||||
|
||||
std::vector<FermionField> MPhi_k (Npole,FermOp.FermionRedBlackGrid());
|
||||
|
||||
FermionField X(FermOp.FermionRedBlackGrid());
|
||||
FermionField Y(FermOp.FermionRedBlackGrid());
|
||||
|
||||
GaugeField tmp(FermOp.GaugeGrid());
|
||||
|
||||
FermOp.ImportGauge(U);
|
||||
|
||||
SchurDifferentiableOperator<Impl> Mpc(FermOp);
|
||||
|
||||
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerNegHalf);
|
||||
|
||||
msCG(Mpc,PhiOdd,MPhi_k);
|
||||
|
||||
dSdU = zero;
|
||||
for(int k=0;k<Npole;k++){
|
||||
|
||||
RealD ak = PowerNegHalf.residues[k];
|
||||
|
||||
X = MPhi_k[k];
|
||||
|
||||
Mpc.Mpc(X,Y);
|
||||
Mpc.MpcDeriv (tmp , Y, X ); dSdU=dSdU+ak*tmp;
|
||||
Mpc.MpcDagDeriv(tmp , X, Y ); dSdU=dSdU+ak*tmp;
|
||||
|
||||
}
|
||||
|
||||
dSdU = Ta(dSdU);
|
||||
|
||||
};
|
||||
};
|
||||
}
|
||||
// dSdU = Ta(dSdU);
|
||||
};
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif
|
||||
|
@ -256,7 +256,7 @@ namespace Grid{
|
||||
|
||||
}
|
||||
|
||||
dSdU = Ta(dSdU);
|
||||
//dSdU = Ta(dSdU);
|
||||
|
||||
};
|
||||
};
|
||||
|
@ -186,7 +186,7 @@ namespace Grid{
|
||||
|
||||
}
|
||||
|
||||
dSdU = Ta(dSdU);
|
||||
//dSdU = Ta(dSdU);
|
||||
|
||||
};
|
||||
};
|
||||
|
@ -242,7 +242,7 @@ namespace Grid{
|
||||
|
||||
}
|
||||
|
||||
dSdU = Ta(dSdU);
|
||||
//dSdU = Ta(dSdU);
|
||||
|
||||
};
|
||||
};
|
||||
|
@ -137,7 +137,7 @@ namespace Grid{
|
||||
FermOp.MDeriv(tmp , Y, X,DaggerNo ); dSdU=tmp;
|
||||
FermOp.MDeriv(tmp , X, Y,DaggerYes); dSdU=dSdU+tmp;
|
||||
|
||||
dSdU = Ta(dSdU);
|
||||
//dSdU = Ta(dSdU);
|
||||
|
||||
};
|
||||
|
||||
|
@ -62,118 +62,120 @@ class TwoFlavourEvenOddPseudoFermionAction
|
||||
DerivativeSolver(DS),
|
||||
ActionSolver(AS),
|
||||
PhiEven(Op.FermionRedBlackGrid()),
|
||||
PhiOdd(Op.FermionRedBlackGrid()){};
|
||||
PhiOdd(Op.FermionRedBlackGrid())
|
||||
{};
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////
|
||||
// Push the gauge field in to the dops. Assume any BC's and smearing already applied
|
||||
//////////////////////////////////////////////////////////////////////////////////////
|
||||
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////
|
||||
// Push the gauge field in to the dops. Assume any BC's and smearing already
|
||||
// applied
|
||||
//////////////////////////////////////////////////////////////////////////////////////
|
||||
virtual void refresh(const GaugeField &U, GridParallelRNG &pRNG) {
|
||||
// P(phi) = e^{- phi^dag (MpcdagMpc)^-1 phi}
|
||||
// Phi = McpDag eta
|
||||
// P(eta) = e^{- eta^dag eta}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
// P(phi) = e^{- phi^dag (MpcdagMpc)^-1 phi}
|
||||
// Phi = McpDag eta
|
||||
// P(eta) = e^{- eta^dag eta}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
|
||||
RealD scale = std::sqrt(0.5);
|
||||
RealD scale = std::sqrt(0.5);
|
||||
|
||||
FermionField eta(FermOp.FermionGrid());
|
||||
FermionField etaOdd(FermOp.FermionRedBlackGrid());
|
||||
FermionField etaEven(FermOp.FermionRedBlackGrid());
|
||||
FermionField eta (FermOp.FermionGrid());
|
||||
FermionField etaOdd (FermOp.FermionRedBlackGrid());
|
||||
FermionField etaEven(FermOp.FermionRedBlackGrid());
|
||||
|
||||
gaussian(pRNG, eta);
|
||||
pickCheckerboard(Even, etaEven, eta);
|
||||
pickCheckerboard(Odd, etaOdd, eta);
|
||||
gaussian(pRNG,eta);
|
||||
pickCheckerboard(Even,etaEven,eta);
|
||||
pickCheckerboard(Odd,etaOdd,eta);
|
||||
|
||||
FermOp.ImportGauge(U);
|
||||
SchurDifferentiableOperator<Impl> PCop(FermOp);
|
||||
FermOp.ImportGauge(U);
|
||||
SchurDifferentiableOperator<Impl> PCop(FermOp);
|
||||
|
||||
|
||||
PCop.MpcDag(etaOdd, PhiOdd);
|
||||
PCop.MpcDag(etaOdd,PhiOdd);
|
||||
|
||||
FermOp.MooeeDag(etaEven, PhiEven);
|
||||
FermOp.MooeeDag(etaEven,PhiEven);
|
||||
|
||||
PhiOdd = PhiOdd * scale;
|
||||
PhiEven = PhiEven * scale;
|
||||
};
|
||||
PhiOdd =PhiOdd*scale;
|
||||
PhiEven=PhiEven*scale;
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// S = phi^dag (Mdag M)^-1 phi (odd)
|
||||
// + phi^dag (Mdag M)^-1 phi (even)
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
FermOp.ImportGauge(U);
|
||||
};
|
||||
|
||||
FermionField X(FermOp.FermionRedBlackGrid());
|
||||
FermionField Y(FermOp.FermionRedBlackGrid());
|
||||
//////////////////////////////////////////////////////
|
||||
// S = phi^dag (Mdag M)^-1 phi (odd)
|
||||
// + phi^dag (Mdag M)^-1 phi (even)
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
|
||||
SchurDifferentiableOperator<Impl> PCop(FermOp);
|
||||
FermOp.ImportGauge(U);
|
||||
|
||||
X = zero;
|
||||
ActionSolver(PCop, PhiOdd, X);
|
||||
PCop.Op(X, Y);
|
||||
RealD action = norm2(Y);
|
||||
FermionField X(FermOp.FermionRedBlackGrid());
|
||||
FermionField Y(FermOp.FermionRedBlackGrid());
|
||||
|
||||
SchurDifferentiableOperator<Impl> PCop(FermOp);
|
||||
|
||||
// The EE factorised block; normally can replace with zero if det is
|
||||
// constant (gauge field indept)
|
||||
// Only really clover term that creates this.
|
||||
FermOp.MooeeInvDag(PhiEven, Y);
|
||||
action = action + norm2(Y);
|
||||
X=zero;
|
||||
ActionSolver(PCop,PhiOdd,X);
|
||||
PCop.Op(X,Y);
|
||||
RealD action = norm2(Y);
|
||||
|
||||
std::cout << GridLogMessage << "Pseudofermion EO action " << action
|
||||
<< std::endl;
|
||||
return action;
|
||||
};
|
||||
// The EE factorised block; normally can replace with zero if det is constant (gauge field indept)
|
||||
// Only really clover term that creates this.
|
||||
FermOp.MooeeInvDag(PhiEven,Y);
|
||||
action = action + norm2(Y);
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
//
|
||||
// dS/du = - phi^dag (Mdag M)^-1 [ Mdag dM + dMdag M ] (Mdag M)^-1 phi
|
||||
// = - phi^dag M^-1 dM (MdagM)^-1 phi - phi^dag (MdagM)^-1 dMdag dM
|
||||
// (Mdag)^-1 phi
|
||||
//
|
||||
// = - Ydag dM X - Xdag dMdag Y
|
||||
//
|
||||
//////////////////////////////////////////////////////
|
||||
virtual void deriv(const GaugeField &U, GaugeField &dSdU) {
|
||||
FermOp.ImportGauge(U);
|
||||
std::cout << GridLogMessage << "Pseudofermion EO action "<<action<<std::endl;
|
||||
return action;
|
||||
};
|
||||
|
||||
FermionField X(FermOp.FermionRedBlackGrid());
|
||||
FermionField Y(FermOp.FermionRedBlackGrid());
|
||||
GaugeField tmp(FermOp.GaugeGrid());
|
||||
//////////////////////////////////////////////////////
|
||||
//
|
||||
// dS/du = - phi^dag (Mdag M)^-1 [ Mdag dM + dMdag M ] (Mdag M)^-1 phi
|
||||
// = - phi^dag M^-1 dM (MdagM)^-1 phi - phi^dag (MdagM)^-1 dMdag dM (Mdag)^-1 phi
|
||||
//
|
||||
// = - Ydag dM X - Xdag dMdag Y
|
||||
//
|
||||
//////////////////////////////////////////////////////
|
||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
||||
|
||||
SchurDifferentiableOperator<Impl> Mpc(FermOp);
|
||||
FermOp.ImportGauge(U);
|
||||
|
||||
// Our conventions really make this UdSdU; We do not differentiate wrt Udag
|
||||
// here.
|
||||
// So must take dSdU - adj(dSdU) and left multiply by mom to get dS/dt.
|
||||
FermionField X(FermOp.FermionRedBlackGrid());
|
||||
FermionField Y(FermOp.FermionRedBlackGrid());
|
||||
GaugeField tmp(FermOp.GaugeGrid());
|
||||
|
||||
X = zero;
|
||||
DerivativeSolver(Mpc, PhiOdd, X);
|
||||
Mpc.Mpc(X, Y);
|
||||
Mpc.MpcDeriv(tmp, Y, X);
|
||||
dSdU = tmp;
|
||||
Mpc.MpcDagDeriv(tmp, X, Y);
|
||||
dSdU = dSdU + tmp;
|
||||
SchurDifferentiableOperator<Impl> Mpc(FermOp);
|
||||
|
||||
// Treat the EE case. (MdagM)^-1 = Minv Minvdag
|
||||
// Deriv defaults to zero.
|
||||
// FermOp.MooeeInvDag(PhiOdd,Y);
|
||||
// FermOp.MooeeInv(Y,X);
|
||||
// FermOp.MeeDeriv(tmp , Y, X,DaggerNo ); dSdU=tmp;
|
||||
// FermOp.MeeDeriv(tmp , X, Y,DaggerYes); dSdU=dSdU+tmp;
|
||||
// Our conventions really make this UdSdU; We do not differentiate wrt Udag here.
|
||||
// So must take dSdU - adj(dSdU) and left multiply by mom to get dS/dt.
|
||||
|
||||
assert(FermOp.ConstEE() == 1);
|
||||
X=zero;
|
||||
DerivativeSolver(Mpc,PhiOdd,X);
|
||||
Mpc.Mpc(X,Y);
|
||||
Mpc.MpcDeriv(tmp , Y, X ); dSdU=tmp;
|
||||
Mpc.MpcDagDeriv(tmp , X, Y); dSdU=dSdU+tmp;
|
||||
|
||||
/*
|
||||
FermOp.MooeeInvDag(PhiOdd,Y);
|
||||
FermOp.MooeeInv(Y,X);
|
||||
FermOp.MeeDeriv(tmp , Y, X,DaggerNo ); dSdU=tmp;
|
||||
FermOp.MeeDeriv(tmp , X, Y,DaggerYes); dSdU=dSdU+tmp;
|
||||
*/
|
||||
// Treat the EE case. (MdagM)^-1 = Minv Minvdag
|
||||
// Deriv defaults to zero.
|
||||
// FermOp.MooeeInvDag(PhiOdd,Y);
|
||||
// FermOp.MooeeInv(Y,X);
|
||||
// FermOp.MeeDeriv(tmp , Y, X,DaggerNo ); dSdU=tmp;
|
||||
// FermOp.MeeDeriv(tmp , X, Y,DaggerYes); dSdU=dSdU+tmp;
|
||||
|
||||
dSdU = Ta(dSdU);
|
||||
};
|
||||
};
|
||||
}
|
||||
assert(FermOp.ConstEE() == 1);
|
||||
|
||||
/*
|
||||
FermOp.MooeeInvDag(PhiOdd,Y);
|
||||
FermOp.MooeeInv(Y,X);
|
||||
FermOp.MeeDeriv(tmp , Y, X,DaggerNo ); dSdU=tmp;
|
||||
FermOp.MeeDeriv(tmp , X, Y,DaggerYes); dSdU=dSdU+tmp;
|
||||
*/
|
||||
|
||||
//dSdU = Ta(dSdU);
|
||||
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -188,8 +188,9 @@ namespace Grid{
|
||||
assert(NumOp.ConstEE() == 1);
|
||||
assert(DenOp.ConstEE() == 1);
|
||||
|
||||
dSdU = -Ta(dSdU);
|
||||
|
||||
//dSdU = -Ta(dSdU);
|
||||
dSdU = -dSdU;
|
||||
|
||||
};
|
||||
};
|
||||
}
|
||||
|
@ -155,7 +155,8 @@ namespace Grid{
|
||||
DenOp.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU-force;
|
||||
DenOp.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU-force;
|
||||
|
||||
dSdU = - Ta(dSdU);
|
||||
dSdU *= -1.0;
|
||||
//dSdU = - Ta(dSdU);
|
||||
|
||||
};
|
||||
};
|
||||
|
@ -1,33 +1,34 @@
|
||||
/*************************************************************************************
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/hmc/HMC.h
|
||||
Source file: ./lib/qcd/hmc/HMC.h
|
||||
|
||||
Copyright (C) 2015
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: neo <cossu@post.kek.jp>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
//--------------------------------------------------------------------
|
||||
/*! @file HMC.h
|
||||
* @brief Classes for Hybrid Monte Carlo update
|
||||
@ -41,172 +42,195 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
#include <string>
|
||||
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
namespace Grid{
|
||||
namespace QCD{
|
||||
|
||||
struct HMCparameters {
|
||||
Integer StartTrajectory;
|
||||
Integer Trajectories; /* @brief Number of sweeps in this run */
|
||||
bool MetropolisTest;
|
||||
Integer NoMetropolisUntil;
|
||||
|
||||
struct HMCparameters{
|
||||
HMCparameters() {
|
||||
////////////////////////////// Default values
|
||||
MetropolisTest = true;
|
||||
NoMetropolisUntil = 10;
|
||||
StartTrajectory = 0;
|
||||
Trajectories = 200;
|
||||
/////////////////////////////////
|
||||
}
|
||||
|
||||
Integer StartTrajectory;
|
||||
Integer Trajectories; /* @brief Number of sweeps in this run */
|
||||
bool MetropolisTest;
|
||||
Integer NoMetropolisUntil;
|
||||
void print() const {
|
||||
std::cout << GridLogMessage << "[HMC parameter] Trajectories : " << Trajectories << "\n";
|
||||
std::cout << GridLogMessage << "[HMC parameter] Start trajectory : " << StartTrajectory << "\n";
|
||||
std::cout << GridLogMessage << "[HMC parameter] Metropolis test (on/off): " << MetropolisTest << "\n";
|
||||
std::cout << GridLogMessage << "[HMC parameter] Thermalization trajs : " << NoMetropolisUntil << "\n";
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
HMCparameters(){
|
||||
////////////////////////////// Default values
|
||||
MetropolisTest = true;
|
||||
NoMetropolisUntil = 10;
|
||||
StartTrajectory = 0;
|
||||
Trajectories = 200;
|
||||
/////////////////////////////////
|
||||
}
|
||||
};
|
||||
template <class GaugeField>
|
||||
class HmcObservable {
|
||||
public:
|
||||
virtual void TrajectoryComplete(int traj, GaugeField &U, GridSerialRNG &sRNG,
|
||||
GridParallelRNG &pRNG) = 0;
|
||||
};
|
||||
|
||||
template<class GaugeField>
|
||||
class HmcObservable {
|
||||
public:
|
||||
virtual void TrajectoryComplete (int traj, GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG & pRNG )=0;
|
||||
};
|
||||
template <class Gimpl>
|
||||
class PlaquetteLogger : public HmcObservable<typename Gimpl::GaugeField> {
|
||||
private:
|
||||
std::string Stem;
|
||||
|
||||
template<class Gimpl>
|
||||
class PlaquetteLogger : public HmcObservable<typename Gimpl::GaugeField> {
|
||||
private:
|
||||
std::string Stem;
|
||||
public:
|
||||
INHERIT_GIMPL_TYPES(Gimpl);
|
||||
PlaquetteLogger(std::string cf) {
|
||||
Stem = cf;
|
||||
};
|
||||
public:
|
||||
INHERIT_GIMPL_TYPES(Gimpl);
|
||||
PlaquetteLogger(std::string cf) { Stem = cf; };
|
||||
|
||||
void TrajectoryComplete(int traj, GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG & pRNG )
|
||||
{
|
||||
std::string file; { std::ostringstream os; os << Stem <<"."<< traj; file = os.str(); }
|
||||
std::ofstream of(file);
|
||||
void TrajectoryComplete(int traj, GaugeField &U, GridSerialRNG &sRNG,
|
||||
GridParallelRNG &pRNG) {
|
||||
std::string file;
|
||||
{
|
||||
std::ostringstream os;
|
||||
os << Stem << "." << traj;
|
||||
file = os.str();
|
||||
}
|
||||
std::ofstream of(file);
|
||||
|
||||
RealD peri_plaq = WilsonLoops<PeriodicGimplR>::avgPlaquette(U);
|
||||
RealD peri_rect = WilsonLoops<PeriodicGimplR>::avgRectangle(U);
|
||||
RealD peri_plaq = WilsonLoops<PeriodicGimplR>::avgPlaquette(U);
|
||||
RealD peri_rect = WilsonLoops<PeriodicGimplR>::avgRectangle(U);
|
||||
|
||||
RealD impl_plaq = WilsonLoops<Gimpl>::avgPlaquette(U);
|
||||
RealD impl_rect = WilsonLoops<Gimpl>::avgRectangle(U);
|
||||
RealD impl_plaq = WilsonLoops<Gimpl>::avgPlaquette(U);
|
||||
RealD impl_rect = WilsonLoops<Gimpl>::avgRectangle(U);
|
||||
|
||||
of << traj<<" "<< impl_plaq << " " << impl_rect << " "<< peri_plaq<<" "<<peri_rect<<std::endl;
|
||||
std::cout<< GridLogMessage<< "traj"<<" "<< "plaq " << " " << " rect " << " "<< "peri_plaq" <<" "<<"peri_rect"<<std::endl;
|
||||
std::cout<< GridLogMessage<< traj<<" "<< impl_plaq << " " << impl_rect << " "<< peri_plaq<<" "<<peri_rect<<std::endl;
|
||||
}
|
||||
};
|
||||
of << traj << " " << impl_plaq << " " << impl_rect << " " << peri_plaq
|
||||
<< " " << peri_rect << std::endl;
|
||||
std::cout << GridLogMessage << "traj"
|
||||
<< " "
|
||||
<< "plaq "
|
||||
<< " "
|
||||
<< " rect "
|
||||
<< " "
|
||||
<< "peri_plaq"
|
||||
<< " "
|
||||
<< "peri_rect" << std::endl;
|
||||
std::cout << GridLogMessage << traj << " " << impl_plaq << " " << impl_rect
|
||||
<< " " << peri_plaq << " " << peri_rect << std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
// template <class GaugeField, class Integrator, class Smearer, class Boundary>
|
||||
template <class GaugeField, class IntegratorType>
|
||||
class HybridMonteCarlo {
|
||||
private:
|
||||
// template <class GaugeField, class Integrator, class Smearer, class
|
||||
// Boundary>
|
||||
template <class GaugeField, class IntegratorType>
|
||||
class HybridMonteCarlo {
|
||||
private:
|
||||
const HMCparameters Params;
|
||||
|
||||
const HMCparameters Params;
|
||||
|
||||
GridSerialRNG &sRNG; // Fixme: need a RNG management strategy.
|
||||
GridParallelRNG &pRNG; // Fixme: need a RNG management strategy.
|
||||
GaugeField & Ucur;
|
||||
GridSerialRNG &sRNG; // Fixme: need a RNG management strategy.
|
||||
GridParallelRNG &pRNG; // Fixme: need a RNG management strategy.
|
||||
GaugeField &Ucur;
|
||||
|
||||
IntegratorType &TheIntegrator;
|
||||
std::vector<HmcObservable<GaugeField> *> Observables;
|
||||
IntegratorType &TheIntegrator;
|
||||
std::vector<HmcObservable<GaugeField> *> Observables;
|
||||
|
||||
/////////////////////////////////////////////////////////
|
||||
// Metropolis step
|
||||
/////////////////////////////////////////////////////////
|
||||
bool metropolis_test(const RealD DeltaH){
|
||||
/////////////////////////////////////////////////////////
|
||||
// Metropolis step
|
||||
/////////////////////////////////////////////////////////
|
||||
bool metropolis_test(const RealD DeltaH) {
|
||||
RealD rn_test;
|
||||
|
||||
RealD rn_test;
|
||||
RealD prob = std::exp(-DeltaH);
|
||||
|
||||
RealD prob = std::exp(-DeltaH);
|
||||
random(sRNG, rn_test);
|
||||
|
||||
random(sRNG,rn_test);
|
||||
|
||||
std::cout<<GridLogMessage<< "--------------------------------------------\n";
|
||||
std::cout<<GridLogMessage<< "dH = "<<DeltaH << " Random = "<< rn_test <<"\n";
|
||||
std::cout<<GridLogMessage<< "Acc. Probability = " << ((prob<1.0)? prob: 1.0)<< " ";
|
||||
|
||||
if((prob >1.0) || (rn_test <= prob)){ // accepted
|
||||
std::cout<<GridLogMessage <<"-- ACCEPTED\n";
|
||||
return true;
|
||||
} else { // rejected
|
||||
std::cout<<GridLogMessage <<"-- REJECTED\n";
|
||||
return false;
|
||||
}
|
||||
std::cout << GridLogMessage
|
||||
<< "--------------------------------------------------\n";
|
||||
std::cout << GridLogMessage << "exp(-dH) = " << prob
|
||||
<< " Random = " << rn_test << "\n";
|
||||
std::cout << GridLogMessage
|
||||
<< "Acc. Probability = " << ((prob < 1.0) ? prob : 1.0) << "\n";
|
||||
|
||||
if ((prob > 1.0) || (rn_test <= prob)) { // accepted
|
||||
std::cout << GridLogMessage << "Metropolis_test -- ACCEPTED\n";
|
||||
std::cout << GridLogMessage
|
||||
<< "--------------------------------------------------\n";
|
||||
return true;
|
||||
} else { // rejected
|
||||
std::cout << GridLogMessage << "Metropolis_test -- REJECTED\n";
|
||||
std::cout << GridLogMessage
|
||||
<< "--------------------------------------------------\n";
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////
|
||||
// Evolution
|
||||
/////////////////////////////////////////////////////////
|
||||
RealD evolve_step(GaugeField &U) {
|
||||
TheIntegrator.refresh(U, pRNG); // set U and initialize P and phi's
|
||||
|
||||
RealD H0 = TheIntegrator.S(U); // initial state action
|
||||
|
||||
std::streamsize current_precision = std::cout.precision();
|
||||
std::cout.precision(17);
|
||||
std::cout << GridLogMessage << "Total H before trajectory = " << H0 << "\n";
|
||||
std::cout.precision(current_precision);
|
||||
|
||||
TheIntegrator.integrate(U);
|
||||
|
||||
RealD H1 = TheIntegrator.S(U); // updated state action
|
||||
|
||||
std::cout.precision(17);
|
||||
std::cout << GridLogMessage << "Total H after trajectory = " << H1
|
||||
<< " dH = " << H1 - H0 << "\n";
|
||||
std::cout.precision(current_precision);
|
||||
|
||||
return (H1 - H0);
|
||||
}
|
||||
|
||||
public:
|
||||
/////////////////////////////////////////
|
||||
// Constructor
|
||||
/////////////////////////////////////////
|
||||
HybridMonteCarlo(HMCparameters Pams, IntegratorType &_Int,
|
||||
GridSerialRNG &_sRNG, GridParallelRNG &_pRNG, GaugeField &_U)
|
||||
: Params(Pams), TheIntegrator(_Int), sRNG(_sRNG), pRNG(_pRNG), Ucur(_U) {}
|
||||
~HybridMonteCarlo(){};
|
||||
|
||||
void AddObservable(HmcObservable<GaugeField> *obs) {
|
||||
Observables.push_back(obs);
|
||||
}
|
||||
|
||||
void evolve(void) {
|
||||
Real DeltaH;
|
||||
|
||||
GaugeField Ucopy(Ucur._grid);
|
||||
|
||||
Params.print();
|
||||
|
||||
// Actual updates (evolve a copy Ucopy then copy back eventually)
|
||||
for (int traj = Params.StartTrajectory;
|
||||
traj < Params.Trajectories + Params.StartTrajectory; ++traj) {
|
||||
std::cout << GridLogMessage << "-- # Trajectory = " << traj << "\n";
|
||||
Ucopy = Ucur;
|
||||
|
||||
DeltaH = evolve_step(Ucopy);
|
||||
|
||||
bool accept = true;
|
||||
if (traj >= Params.NoMetropolisUntil) {
|
||||
accept = metropolis_test(DeltaH);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////
|
||||
// Evolution
|
||||
/////////////////////////////////////////////////////////
|
||||
RealD evolve_step(GaugeField& U){
|
||||
|
||||
TheIntegrator.refresh(U,pRNG); // set U and initialize P and phi's
|
||||
|
||||
RealD H0 = TheIntegrator.S(U); // initial state action
|
||||
|
||||
std::cout<<GridLogMessage<<"Total H before = "<< H0 << "\n";
|
||||
|
||||
TheIntegrator.integrate(U);
|
||||
|
||||
RealD H1 = TheIntegrator.S(U); // updated state action
|
||||
|
||||
std::cout<<GridLogMessage<<"Total H after = "<< H1 << "\n";
|
||||
|
||||
return (H1-H0);
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
/////////////////////////////////////////
|
||||
// Constructor
|
||||
/////////////////////////////////////////
|
||||
HybridMonteCarlo(HMCparameters Pms, IntegratorType &_Int, GridSerialRNG &_sRNG, GridParallelRNG &_pRNG, GaugeField &_U ) :
|
||||
Params(Pms),
|
||||
TheIntegrator(_Int),
|
||||
sRNG(_sRNG),
|
||||
pRNG(_pRNG),
|
||||
Ucur(_U)
|
||||
{
|
||||
}
|
||||
~HybridMonteCarlo(){};
|
||||
|
||||
void AddObservable(HmcObservable<GaugeField> *obs) {
|
||||
Observables.push_back(obs);
|
||||
if (accept) {
|
||||
Ucur = Ucopy;
|
||||
}
|
||||
|
||||
void evolve(void){
|
||||
|
||||
Real DeltaH;
|
||||
|
||||
GaugeField Ucopy(Ucur._grid);
|
||||
|
||||
// Actual updates (evolve a copy Ucopy then copy back eventually)
|
||||
for(int traj=Params.StartTrajectory; traj < Params.Trajectories+Params.StartTrajectory; ++traj){
|
||||
|
||||
std::cout<<GridLogMessage << "-- # Trajectory = "<< traj << "\n";
|
||||
Ucopy = Ucur;
|
||||
|
||||
DeltaH = evolve_step(Ucopy);
|
||||
|
||||
bool accept = true;
|
||||
if ( traj > Params.NoMetropolisUntil) {
|
||||
accept = metropolis_test(DeltaH);
|
||||
}
|
||||
|
||||
if ( accept ) {
|
||||
Ucur = Ucopy;
|
||||
}
|
||||
|
||||
for(int obs = 0;obs<Observables.size();obs++){
|
||||
Observables[obs]->TrajectoryComplete (traj+1,Ucur,sRNG,pRNG);
|
||||
}
|
||||
|
||||
}
|
||||
for (int obs = 0; obs < Observables.size(); obs++) {
|
||||
Observables[obs]->TrajectoryComplete(traj + 1, Ucur, sRNG, pRNG);
|
||||
}
|
||||
};
|
||||
|
||||
}// QCD
|
||||
}// Grid
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // QCD
|
||||
} // Grid
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
@ -47,7 +47,7 @@ public:
|
||||
GridRedBlackCartesian * UrbGrid ;
|
||||
GridRedBlackCartesian * FrbGrid ;
|
||||
|
||||
virtual void BuildTheAction (int argc, char **argv) = 0;
|
||||
virtual void BuildTheAction (int argc, char **argv) = 0; // necessary?
|
||||
|
||||
|
||||
void Run (int argc, char **argv){
|
||||
@ -81,55 +81,78 @@ public:
|
||||
NumTraj = ivec[0];
|
||||
}
|
||||
|
||||
// Create integrator
|
||||
typedef MinimumNorm2<GaugeField> IntegratorType;// change here to change the algorithm
|
||||
IntegratorParameters MDpar(20);
|
||||
IntegratorType MDynamics(UGrid,MDpar, TheAction);
|
||||
int NumThermalizations = 10;
|
||||
if( GridCmdOptionExists(argv,argv+argc,"--Thermalizations") ){
|
||||
arg= GridCmdOptionPayload(argv,argv+argc,"--Thermalizations");
|
||||
std::vector<int> ivec(0);
|
||||
GridCmdOptionIntVector(arg,ivec);
|
||||
NumThermalizations = ivec[0];
|
||||
}
|
||||
|
||||
|
||||
GridSerialRNG sRNG;
|
||||
GridParallelRNG pRNG(UGrid);
|
||||
LatticeGaugeField U(UGrid); // change this to an extended field (smearing class)
|
||||
|
||||
std::vector<int> SerSeed({1,2,3,4,5});
|
||||
std::vector<int> ParSeed({6,7,8,9,10});
|
||||
|
||||
|
||||
// Create integrator, including the smearing policy
|
||||
// Smearing policy
|
||||
std::cout << GridLogDebug << " Creating the Stout class\n";
|
||||
double rho = 0.1; // smearing parameter, now hardcoded
|
||||
int Nsmear = 1; // number of smearing levels
|
||||
Smear_Stout<Gimpl> Stout(rho);
|
||||
std::cout << GridLogDebug << " Creating the SmearedConfiguration class\n";
|
||||
SmearedConfiguration<Gimpl> SmearingPolicy(UGrid, Nsmear, Stout);
|
||||
std::cout << GridLogDebug << " done\n";
|
||||
//////////////
|
||||
typedef MinimumNorm2<GaugeField, SmearedConfiguration<Gimpl> > IntegratorType;// change here to change the algorithm
|
||||
IntegratorParameters MDpar(20);
|
||||
IntegratorType MDynamics(UGrid, MDpar, TheAction, SmearingPolicy);
|
||||
|
||||
|
||||
// Checkpoint strategy
|
||||
NerscHmcCheckpointer<Gimpl> Checkpoint(std::string("ckpoint_lat"),std::string("ckpoint_rng"),1);
|
||||
PlaquetteLogger<Gimpl> PlaqLog(std::string("plaq"));
|
||||
|
||||
HMCparameters HMCpar;
|
||||
HMCpar.StartTrajectory = StartTraj;
|
||||
HMCpar.Trajectories = NumTraj;
|
||||
HMCpar.StartTrajectory = StartTraj;
|
||||
HMCpar.Trajectories = NumTraj;
|
||||
HMCpar.NoMetropolisUntil = NumThermalizations;
|
||||
|
||||
GridSerialRNG sRNG;
|
||||
GridParallelRNG pRNG(UGrid);
|
||||
LatticeGaugeField U(UGrid);
|
||||
|
||||
std::vector<int> SerSeed({1,2,3,4,5});
|
||||
std::vector<int> ParSeed({6,7,8,9,10});
|
||||
|
||||
if ( StartType == HotStart ) {
|
||||
// Hot start
|
||||
HMCpar.NoMetropolisUntil =10;
|
||||
HMCpar.MetropolisTest = true;
|
||||
sRNG.SeedFixedIntegers(SerSeed);
|
||||
pRNG.SeedFixedIntegers(ParSeed);
|
||||
SU3::HotConfiguration(pRNG, U);
|
||||
} else if ( StartType == ColdStart ) {
|
||||
// Cold start
|
||||
HMCpar.NoMetropolisUntil =10;
|
||||
HMCpar.MetropolisTest = true;
|
||||
sRNG.SeedFixedIntegers(SerSeed);
|
||||
pRNG.SeedFixedIntegers(ParSeed);
|
||||
SU3::ColdConfiguration(pRNG, U);
|
||||
} else if ( StartType == TepidStart ) {
|
||||
// Tepid start
|
||||
HMCpar.NoMetropolisUntil =10;
|
||||
HMCpar.MetropolisTest = true;
|
||||
sRNG.SeedFixedIntegers(SerSeed);
|
||||
pRNG.SeedFixedIntegers(ParSeed);
|
||||
SU3::TepidConfiguration(pRNG, U);
|
||||
} else if ( StartType == CheckpointStart ) {
|
||||
HMCpar.NoMetropolisUntil =10;
|
||||
HMCpar.MetropolisTest = true;
|
||||
// CheckpointRestart
|
||||
Checkpoint.CheckpointRestore(StartTraj, U, sRNG, pRNG);
|
||||
}
|
||||
|
||||
HybridMonteCarlo<GaugeField,IntegratorType> HMC(HMCpar, MDynamics,sRNG,pRNG,U);
|
||||
// Attach the gauge field to the smearing Policy and create the fill the smeared set
|
||||
// notice that the unit configuration is singular in this procedure
|
||||
std::cout << GridLogMessage << "Filling the smeared set\n";
|
||||
SmearingPolicy.set_GaugeField(U);
|
||||
|
||||
HybridMonteCarlo<GaugeField,IntegratorType> HMC(HMCpar, MDynamics,sRNG,pRNG,U);
|
||||
HMC.AddObservable(&Checkpoint);
|
||||
HMC.AddObservable(&PlaqLog);
|
||||
|
||||
|
@ -44,40 +44,40 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
#include <memory>
|
||||
|
||||
namespace Grid{
|
||||
namespace QCD{
|
||||
namespace Grid{
|
||||
namespace QCD{
|
||||
|
||||
struct IntegratorParameters{
|
||||
struct IntegratorParameters{
|
||||
|
||||
int Nexp;
|
||||
int Nexp;
|
||||
int MDsteps; // number of outer steps
|
||||
RealD trajL; // trajectory length
|
||||
RealD stepsize;
|
||||
|
||||
IntegratorParameters(int MDsteps_,
|
||||
RealD trajL_=1.0,
|
||||
int Nexp_=12):
|
||||
Nexp(Nexp_),
|
||||
MDsteps(MDsteps_),
|
||||
trajL(trajL_),
|
||||
stepsize(trajL/MDsteps)
|
||||
{
|
||||
RealD trajL_=1.0,
|
||||
int Nexp_=12):
|
||||
Nexp(Nexp_),
|
||||
MDsteps(MDsteps_),
|
||||
trajL(trajL_),
|
||||
stepsize(trajL/MDsteps)
|
||||
{
|
||||
// empty body constructor
|
||||
};
|
||||
};
|
||||
|
||||
};
|
||||
};
|
||||
|
||||
/*! @brief Class for Molecular Dynamics management */
|
||||
template<class GaugeField>
|
||||
class Integrator {
|
||||
template<class GaugeField, class SmearingPolicy>
|
||||
class Integrator {
|
||||
|
||||
protected:
|
||||
protected:
|
||||
|
||||
typedef IntegratorParameters ParameterType;
|
||||
typedef IntegratorParameters ParameterType;
|
||||
|
||||
IntegratorParameters Params;
|
||||
IntegratorParameters Params;
|
||||
|
||||
const ActionSet<GaugeField> as;
|
||||
const ActionSet<GaugeField> as;
|
||||
|
||||
int levels; //
|
||||
double t_U; // Track time passing on each level and for U and for P
|
||||
@ -85,17 +85,19 @@ namespace Grid{
|
||||
|
||||
GaugeField P;
|
||||
|
||||
SmearingPolicy &Smearer;
|
||||
|
||||
// Should match any legal (SU(n)) gauge field
|
||||
// Need to use this template to match Ncol to pass to SU<N> class
|
||||
template<int Ncol,class vec> void generate_momenta(Lattice< iVector< iScalar< iMatrix<vec,Ncol> >, Nd> > & P,GridParallelRNG& pRNG){
|
||||
typedef Lattice< iScalar< iScalar< iMatrix<vec,Ncol> > > > GaugeLinkField;
|
||||
GaugeLinkField Pmu(P._grid);
|
||||
Pmu = zero;
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
SU<Ncol>::GaussianLieAlgebraMatrix(pRNG, Pmu);
|
||||
PokeIndex<LorentzIndex>(P, Pmu, mu);
|
||||
}
|
||||
typedef Lattice< iScalar< iScalar< iMatrix<vec,Ncol> > > > GaugeLinkField;
|
||||
GaugeLinkField Pmu(P._grid);
|
||||
Pmu = zero;
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
SU<Ncol>::GaussianLieAlgebraMatrix(pRNG, Pmu);
|
||||
PokeIndex<LorentzIndex>(P, Pmu, mu);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//ObserverList observers; // not yet
|
||||
@ -103,110 +105,128 @@ namespace Grid{
|
||||
// void register_observers();
|
||||
// void notify_observers();
|
||||
|
||||
void update_P(GaugeField&U, int level,double ep){
|
||||
t_P[level]+=ep;
|
||||
update_P(P,U,level,ep);
|
||||
void update_P(GaugeField&U, int level, double ep){
|
||||
t_P[level]+=ep;
|
||||
update_P(P,U,level,ep);
|
||||
|
||||
std::cout<<GridLogIntegrator<<"["<<level<<"] P " << " dt "<< ep <<" : t_P "<< t_P[level] <<std::endl;
|
||||
}
|
||||
std::cout<<GridLogIntegrator<<"["<<level<<"] P " << " dt "<< ep <<" : t_P "<< t_P[level] <<std::endl;
|
||||
}
|
||||
|
||||
void update_P(GaugeField &Mom,GaugeField&U, int level,double ep){
|
||||
for(int a=0; a<as[level].actions.size(); ++a){
|
||||
GaugeField force(U._grid);
|
||||
as[level].actions.at(a)->deriv(U,force);
|
||||
Mom = Mom - force*ep;
|
||||
void update_P(GaugeField &Mom,GaugeField&U, int level,double ep){
|
||||
// input U actually not used...
|
||||
for(int a=0; a<as[level].actions.size(); ++a){
|
||||
GaugeField force(U._grid);
|
||||
GaugeField& Us = Smearer.get_U(as[level].actions.at(a)->is_smeared);
|
||||
as[level].actions.at(a)->deriv(Us,force); // deriv should NOT include Ta
|
||||
|
||||
std::cout<< GridLogIntegrator << "Smearing (on/off): "<<as[level].actions.at(a)->is_smeared <<std::endl;
|
||||
if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force);
|
||||
force = Ta(force);
|
||||
std::cout<< GridLogIntegrator << "Force average: "<< norm2(force)/(U._grid->gSites()) <<std::endl;
|
||||
Mom -= force*ep;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void update_U(GaugeField&U, double ep){
|
||||
update_U(P,U,ep);
|
||||
void update_U(GaugeField&U, double ep){
|
||||
update_U(P,U,ep);
|
||||
|
||||
t_U+=ep;
|
||||
int fl = levels-1;
|
||||
std::cout<<GridLogIntegrator<<" "<<"["<<fl<<"] U " << " dt "<< ep <<" : t_U "<< t_U <<std::endl;
|
||||
t_U+=ep;
|
||||
int fl = levels-1;
|
||||
std::cout<< GridLogIntegrator <<" "<<"["<<fl<<"] U " << " dt "<< ep <<" : t_U "<< t_U <<std::endl;
|
||||
|
||||
}
|
||||
void update_U(GaugeField &Mom, GaugeField&U, double ep){
|
||||
}
|
||||
void update_U(GaugeField &Mom, GaugeField&U, double ep){
|
||||
//rewrite exponential to deal automatically with the lorentz index?
|
||||
// GaugeLinkField Umu(U._grid);
|
||||
// GaugeLinkField Pmu(U._grid);
|
||||
for (int mu = 0; mu < Nd; mu++){
|
||||
auto Umu=PeekIndex<LorentzIndex>(U, mu);
|
||||
auto Pmu=PeekIndex<LorentzIndex>(Mom, mu);
|
||||
Umu = expMat(Pmu, ep, Params.Nexp)*Umu;
|
||||
ProjectOnGroup(Umu);
|
||||
PokeIndex<LorentzIndex>(U, Umu, mu);
|
||||
for (int mu = 0; mu < Nd; mu++){
|
||||
auto Umu=PeekIndex<LorentzIndex>(U, mu);
|
||||
auto Pmu=PeekIndex<LorentzIndex>(Mom, mu);
|
||||
Umu = expMat(Pmu, ep, Params.Nexp)*Umu;
|
||||
ProjectOnGroup(Umu);
|
||||
PokeIndex<LorentzIndex>(U, Umu, mu);
|
||||
}
|
||||
// Update the smeared fields, can be implemented as observer
|
||||
Smearer.set_GaugeField(U);
|
||||
}
|
||||
}
|
||||
|
||||
virtual void step (GaugeField& U,int level, int first,int last)=0;
|
||||
|
||||
public:
|
||||
virtual void step (GaugeField& U,int level, int first,int last)=0;
|
||||
|
||||
Integrator(GridBase* grid,
|
||||
IntegratorParameters Par,
|
||||
ActionSet<GaugeField> & Aset):
|
||||
Params(Par),
|
||||
as(Aset),
|
||||
P(grid),
|
||||
levels(Aset.size())
|
||||
{
|
||||
t_P.resize(levels,0.0);
|
||||
t_U=0.0;
|
||||
};
|
||||
|
||||
virtual ~Integrator(){}
|
||||
public:
|
||||
|
||||
Integrator(GridBase* grid,
|
||||
IntegratorParameters Par,
|
||||
ActionSet<GaugeField> & Aset,
|
||||
SmearingPolicy &Sm):
|
||||
Params(Par),
|
||||
as(Aset),
|
||||
P(grid),
|
||||
levels(Aset.size()),
|
||||
Smearer(Sm)
|
||||
{
|
||||
t_P.resize(levels,0.0);
|
||||
t_U=0.0;
|
||||
// initialization of smearer delegated outside of Integrator
|
||||
};
|
||||
|
||||
virtual ~Integrator(){}
|
||||
|
||||
//Initialization of momenta and actions
|
||||
void refresh(GaugeField& U,GridParallelRNG &pRNG){
|
||||
std::cout<<GridLogIntegrator<< "Integrator refresh\n";
|
||||
generate_momenta(P,pRNG);
|
||||
for(int level=0; level< as.size(); ++level){
|
||||
for(int actionID=0; actionID<as[level].actions.size(); ++actionID){
|
||||
as[level].actions.at(actionID)->refresh(U, pRNG);
|
||||
}
|
||||
void refresh(GaugeField& U,GridParallelRNG &pRNG){
|
||||
std::cout<<GridLogIntegrator<< "Integrator refresh\n";
|
||||
generate_momenta(P,pRNG);
|
||||
for(int level=0; level< as.size(); ++level){
|
||||
for(int actionID=0; actionID<as[level].actions.size(); ++actionID){
|
||||
// get gauge field from the SmearingPolicy and
|
||||
// based on the boolean is_smeared in actionID
|
||||
GaugeField& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
|
||||
as[level].actions.at(actionID)->refresh(Us, pRNG);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate action
|
||||
RealD S(GaugeField& U){
|
||||
RealD S(GaugeField& U){// here also U not used
|
||||
|
||||
LatticeComplex Hloc(U._grid); Hloc = zero;
|
||||
LatticeComplex Hloc(U._grid); Hloc = zero;
|
||||
// Momenta
|
||||
for (int mu=0; mu <Nd; mu++){
|
||||
auto Pmu = PeekIndex<LorentzIndex>(P, mu);
|
||||
Hloc -= trace(Pmu*Pmu);
|
||||
}
|
||||
Complex Hsum = sum(Hloc);
|
||||
|
||||
RealD H = Hsum.real();
|
||||
RealD Hterm;
|
||||
std::cout<<GridLogMessage << "Momentum action H_p = "<< H << "\n";
|
||||
for (int mu=0; mu <Nd; mu++){
|
||||
auto Pmu = PeekIndex<LorentzIndex>(P, mu);
|
||||
Hloc -= trace(Pmu*Pmu);
|
||||
}
|
||||
Complex Hsum = sum(Hloc);
|
||||
|
||||
RealD H = Hsum.real();
|
||||
RealD Hterm;
|
||||
std::cout<<GridLogMessage << "Momentum action H_p = "<< H << "\n";
|
||||
|
||||
// Actions
|
||||
for(int level=0; level<as.size(); ++level){
|
||||
for(int actionID=0; actionID<as[level].actions.size(); ++actionID){
|
||||
Hterm = as[level].actions.at(actionID)->S(U);
|
||||
std::cout<<GridLogMessage << "Level "<<level<<" term "<<actionID<<" H = "<<Hterm<<std::endl;
|
||||
H += Hterm;
|
||||
}
|
||||
}
|
||||
|
||||
return H;
|
||||
}
|
||||
for(int level=0; level<as.size(); ++level){
|
||||
for(int actionID=0; actionID<as[level].actions.size(); ++actionID){
|
||||
// get gauge field from the SmearingPolicy and
|
||||
// based on the boolean is_smeared in actionID
|
||||
GaugeField& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
|
||||
Hterm = as[level].actions.at(actionID)->S(Us);
|
||||
std::cout<<GridLogMessage << "S Level "<<level<<" term "<<actionID<<" H = "<<Hterm<<std::endl;
|
||||
H += Hterm;
|
||||
}
|
||||
}
|
||||
|
||||
void integrate(GaugeField& U){
|
||||
return H;
|
||||
}
|
||||
|
||||
void integrate(GaugeField& U){
|
||||
|
||||
// reset the clocks
|
||||
t_U=0;
|
||||
for(int level=0; level<as.size(); ++level){
|
||||
t_P[level]=0;
|
||||
}
|
||||
t_U=0;
|
||||
for(int level=0; level<as.size(); ++level){
|
||||
t_P[level]=0;
|
||||
}
|
||||
|
||||
for(int step=0; step< Params.MDsteps; ++step){ // MD step
|
||||
int first_step = (step==0);
|
||||
int last_step = (step==Params.MDsteps-1);
|
||||
this->step(U,0,first_step,last_step);
|
||||
int first_step = (step==0);
|
||||
int last_step = (step==Params.MDsteps-1);
|
||||
this->step(U,0,first_step,last_step);
|
||||
}
|
||||
|
||||
// Check the clocks all match on all levels
|
||||
@ -219,9 +239,9 @@ namespace Grid{
|
||||
assert(fabs(t_U-Params.trajL) < 1.0e-6);
|
||||
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
#endif//INTEGRATOR_INCLUDED
|
||||
|
@ -91,14 +91,17 @@ namespace Grid{
|
||||
* P 1/2 P 1/2
|
||||
*/
|
||||
|
||||
template<class GaugeField> class LeapFrog : public Integrator<GaugeField> {
|
||||
template<class GaugeField, class SmearingPolicy> class LeapFrog :
|
||||
public Integrator<GaugeField, SmearingPolicy> {
|
||||
public:
|
||||
|
||||
typedef LeapFrog<GaugeField> Algorithm;
|
||||
typedef LeapFrog<GaugeField, SmearingPolicy> Algorithm;
|
||||
|
||||
LeapFrog(GridBase* grid,
|
||||
IntegratorParameters Par,
|
||||
ActionSet<GaugeField> & Aset): Integrator<GaugeField>(grid,Par,Aset) {};
|
||||
ActionSet<GaugeField> & Aset,
|
||||
SmearingPolicy & Sm):
|
||||
Integrator<GaugeField, SmearingPolicy>(grid,Par,Aset,Sm) {};
|
||||
|
||||
|
||||
void step (GaugeField& U, int level,int _first, int _last){
|
||||
@ -135,7 +138,8 @@ namespace Grid{
|
||||
}
|
||||
};
|
||||
|
||||
template<class GaugeField> class MinimumNorm2 : public Integrator<GaugeField> {
|
||||
template<class GaugeField, class SmearingPolicy> class MinimumNorm2 :
|
||||
public Integrator<GaugeField, SmearingPolicy> {
|
||||
private:
|
||||
const RealD lambda = 0.1931833275037836;
|
||||
|
||||
@ -143,7 +147,9 @@ namespace Grid{
|
||||
|
||||
MinimumNorm2(GridBase* grid,
|
||||
IntegratorParameters Par,
|
||||
ActionSet<GaugeField> & Aset): Integrator<GaugeField>(grid,Par,Aset) {};
|
||||
ActionSet<GaugeField> & Aset,
|
||||
SmearingPolicy& Sm):
|
||||
Integrator<GaugeField, SmearingPolicy>(grid,Par,Aset,Sm) {};
|
||||
|
||||
void step (GaugeField& U, int level, int _first,int _last){
|
||||
|
||||
@ -191,7 +197,8 @@ namespace Grid{
|
||||
};
|
||||
|
||||
|
||||
template<class GaugeField> class ForceGradient : public Integrator<GaugeField> {
|
||||
template<class GaugeField, class SmearingPolicy> class ForceGradient :
|
||||
public Integrator<GaugeField, SmearingPolicy> {
|
||||
private:
|
||||
const RealD lambda = 1.0/6.0;;
|
||||
const RealD chi = 1.0/72.0;
|
||||
@ -202,7 +209,9 @@ namespace Grid{
|
||||
// Looks like dH scales as dt^4. tested wilson/wilson 2 level.
|
||||
ForceGradient(GridBase* grid,
|
||||
IntegratorParameters Par,
|
||||
ActionSet<GaugeField> & Aset): Integrator<GaugeField>(grid,Par,Aset) {};
|
||||
ActionSet<GaugeField> & Aset,
|
||||
SmearingPolicy &Sm):
|
||||
Integrator<GaugeField, SmearingPolicy>(grid,Par,Aset, Sm) {};
|
||||
|
||||
|
||||
void FG_update_P(GaugeField&U, int level,double fg_dt,double ep){
|
||||
|
130
lib/qcd/smearing/APEsmearing.h
Normal file
130
lib/qcd/smearing/APEsmearing.h
Normal file
@ -0,0 +1,130 @@
|
||||
/*!
|
||||
@brief Declaration of Smear_APE class for APE smearing
|
||||
*/
|
||||
|
||||
#ifndef APE_SMEAR_
|
||||
#define APE_SMEAR_
|
||||
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
|
||||
/*! @brief APE type smearing of link variables. */
|
||||
template <class Gimpl>
|
||||
class Smear_APE: public Smear<Gimpl>{
|
||||
private:
|
||||
const std::vector<double> rho;/*!< Array of weights */
|
||||
|
||||
//This member must be private - we do not want to control from outside
|
||||
std::vector<double> set_rho(const double common_rho) const {
|
||||
std::vector<double> res;
|
||||
|
||||
for(int mn=0; mn<Nd*Nd; ++mn) res.push_back(common_rho);
|
||||
for(int mu=0; mu<Nd; ++mu) res[mu + mu*Nd] = 0.0;
|
||||
return res;
|
||||
}
|
||||
|
||||
public:
|
||||
// Defines the gauge field types
|
||||
INHERIT_GIMPL_TYPES(Gimpl)
|
||||
|
||||
|
||||
// Constructors and destructors
|
||||
Smear_APE(const std::vector<double>& rho_):rho(rho_){} // check vector size
|
||||
Smear_APE(double rho_val):rho(set_rho(rho_val)){}
|
||||
Smear_APE():rho(set_rho(1.0)){}
|
||||
~Smear_APE(){}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
void smear(GaugeField& u_smr, const GaugeField& U)const{
|
||||
GridBase *grid = U._grid;
|
||||
GaugeLinkField Cup(grid), tmp_stpl(grid);
|
||||
WilsonLoops<Gimpl> WL;
|
||||
u_smr = zero;
|
||||
|
||||
for(int mu=0; mu<Nd; ++mu){
|
||||
Cup = zero;
|
||||
for(int nu=0; nu<Nd; ++nu){
|
||||
if (nu != mu) {
|
||||
// get the staple in direction mu, nu
|
||||
WL.Staple(tmp_stpl, U, mu, nu); //nb staple conventions of IroIro and Grid differ by a dagger
|
||||
Cup += tmp_stpl*rho[mu + Nd * nu];
|
||||
}
|
||||
}
|
||||
// save the Cup link-field on the u_smr gauge-field
|
||||
pokeLorentz(u_smr, adj(Cup), mu); // u_smr[mu] = Cup^dag see conventions for Staple
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
void derivative(GaugeField& SigmaTerm,
|
||||
const GaugeField& iLambda,
|
||||
const GaugeField& U)const{
|
||||
|
||||
// Reference
|
||||
// Morningstar, Peardon, Phys.Rev.D69,054501(2004)
|
||||
// Equation 75
|
||||
// Computing Sigma_mu, derivative of S[fat links] with respect to the thin links
|
||||
// Output SigmaTerm
|
||||
|
||||
GridBase *grid = U._grid;
|
||||
|
||||
WilsonLoops<Gimpl> WL;
|
||||
GaugeLinkField staple(grid), u_tmp(grid);
|
||||
GaugeLinkField iLambda_mu(grid), iLambda_nu(grid);
|
||||
GaugeLinkField U_mu(grid), U_nu(grid);
|
||||
GaugeLinkField sh_field(grid), temp_Sigma(grid);
|
||||
Real rho_munu, rho_numu;
|
||||
|
||||
for(int mu = 0; mu < Nd; ++mu){
|
||||
U_mu = peekLorentz( U, mu);
|
||||
iLambda_mu = peekLorentz(iLambda, mu);
|
||||
|
||||
for(int nu = 0; nu < Nd; ++nu){
|
||||
if(nu==mu) continue;
|
||||
U_nu = peekLorentz( U, nu);
|
||||
iLambda_nu = peekLorentz(iLambda, nu);
|
||||
|
||||
rho_munu = rho[mu + Nd * nu];
|
||||
rho_numu = rho[nu + Nd * mu];
|
||||
|
||||
WL.StapleUpper(staple, U, mu, nu);
|
||||
|
||||
temp_Sigma = -rho_numu*staple*iLambda_nu; //ok
|
||||
//-r_numu*U_nu(x+mu)*Udag_mu(x+nu)*Udag_nu(x)*Lambda_nu(x)
|
||||
Gimpl::AddGaugeLink(SigmaTerm, temp_Sigma, mu);
|
||||
|
||||
sh_field = Cshift(iLambda_nu, mu, 1);// general also for Gparity?
|
||||
|
||||
temp_Sigma = rho_numu*sh_field*staple; //ok
|
||||
//r_numu*Lambda_nu(mu)*U_nu(x+mu)*Udag_mu(x+nu)*Udag_nu(x)
|
||||
Gimpl::AddGaugeLink(SigmaTerm, temp_Sigma, mu);
|
||||
|
||||
sh_field = Cshift(iLambda_mu, nu, 1);
|
||||
|
||||
temp_Sigma = -rho_munu*staple*U_nu*sh_field*adj(U_nu); //ok
|
||||
//-r_munu*U_nu(x+mu)*Udag_mu(x+nu)*Lambda_mu(x+nu)*Udag_nu(x)
|
||||
Gimpl::AddGaugeLink(SigmaTerm, temp_Sigma, mu);
|
||||
|
||||
staple = zero;
|
||||
sh_field = Cshift(U_nu, mu, 1);
|
||||
|
||||
temp_Sigma = -rho_munu*adj(sh_field)*adj(U_mu)*iLambda_mu*U_nu;
|
||||
temp_Sigma += rho_numu*adj(sh_field)*adj(U_mu)*iLambda_nu*U_nu;
|
||||
|
||||
u_tmp = adj(U_nu)*iLambda_nu;
|
||||
sh_field = Cshift(u_tmp, mu, 1);
|
||||
temp_Sigma += -rho_numu*sh_field*adj(U_mu)*U_nu;
|
||||
sh_field = Cshift(temp_Sigma, nu, -1);
|
||||
Gimpl::AddGaugeLink(SigmaTerm, sh_field, mu);
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
}// namespace QCD
|
||||
}//namespace Grid
|
||||
#endif
|
17
lib/qcd/smearing/BaseSmearing.h
Normal file
17
lib/qcd/smearing/BaseSmearing.h
Normal file
@ -0,0 +1,17 @@
|
||||
/*
|
||||
@brief Declares base smearing class Smear
|
||||
*/
|
||||
#ifndef BASE_SMEAR_
|
||||
#define BASE_SMEAR_
|
||||
|
||||
template <class Gimpl>
|
||||
class Smear{
|
||||
public:
|
||||
INHERIT_GIMPL_TYPES(Gimpl) // inherits the types for the gauge fields
|
||||
|
||||
virtual ~Smear(){}
|
||||
virtual void smear (GaugeField&,const GaugeField&)const = 0;
|
||||
virtual void derivative(GaugeField&,
|
||||
const GaugeField&,const GaugeField&) const = 0;
|
||||
};
|
||||
#endif
|
262
lib/qcd/smearing/GaugeConfiguration.h
Normal file
262
lib/qcd/smearing/GaugeConfiguration.h
Normal file
@ -0,0 +1,262 @@
|
||||
/*!
|
||||
@file GaugeConfiguration.h
|
||||
|
||||
@brief Declares the GaugeConfiguration class
|
||||
*/
|
||||
#ifndef GAUGE_CONFIG_
|
||||
#define GAUGE_CONFIG_
|
||||
|
||||
namespace Grid {
|
||||
|
||||
namespace QCD {
|
||||
|
||||
/*!
|
||||
@brief Smeared configuration container
|
||||
|
||||
It will behave like a configuration from the point of view of
|
||||
the HMC update and integrators.
|
||||
An "advanced configuration" object that can provide not only the
|
||||
data to store the gauge configuration but also operations to manipulate
|
||||
it, like smearing.
|
||||
|
||||
It stores a list of smeared configurations.
|
||||
*/
|
||||
template <class Gimpl>
|
||||
class SmearedConfiguration {
|
||||
public:
|
||||
INHERIT_GIMPL_TYPES(Gimpl);
|
||||
|
||||
private:
|
||||
const unsigned int smearingLevels;
|
||||
Smear_Stout<Gimpl> StoutSmearing;
|
||||
std::vector<GaugeField> SmearedSet;
|
||||
|
||||
// Member functions
|
||||
//====================================================================
|
||||
void fill_smearedSet(GaugeField& U) {
|
||||
ThinLinks = &U; // attach the smearing routine to the field U
|
||||
|
||||
// check the pointer is not null
|
||||
if (ThinLinks == NULL)
|
||||
std::cout << GridLogError
|
||||
<< "[SmearedConfiguration] Error in ThinLinks pointer\n";
|
||||
|
||||
if (smearingLevels > 0) {
|
||||
std::cout << GridLogDebug
|
||||
<< "[SmearedConfiguration] Filling SmearedSet\n";
|
||||
GaugeField previous_u(ThinLinks->_grid);
|
||||
|
||||
previous_u = *ThinLinks;
|
||||
for (int smearLvl = 0; smearLvl < smearingLevels; ++smearLvl) {
|
||||
StoutSmearing.smear(SmearedSet[smearLvl], previous_u);
|
||||
previous_u = SmearedSet[smearLvl];
|
||||
|
||||
// For debug purposes
|
||||
RealD impl_plaq = WilsonLoops<Gimpl>::avgPlaquette(previous_u);
|
||||
std::cout << GridLogDebug
|
||||
<< "[SmearedConfiguration] Plaq: " << impl_plaq << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
//====================================================================
|
||||
GaugeField AnalyticSmearedForce(const GaugeField& SigmaKPrime,
|
||||
const GaugeField& GaugeK) const {
|
||||
GridBase* grid = GaugeK._grid;
|
||||
GaugeField C(grid), SigmaK(grid), iLambda(grid);
|
||||
GaugeLinkField iLambda_mu(grid);
|
||||
GaugeLinkField iQ(grid), e_iQ(grid);
|
||||
GaugeLinkField SigmaKPrime_mu(grid);
|
||||
GaugeLinkField GaugeKmu(grid), Cmu(grid);
|
||||
|
||||
StoutSmearing.BaseSmear(C, GaugeK);
|
||||
SigmaK = zero;
|
||||
iLambda = zero;
|
||||
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
Cmu = peekLorentz(C, mu);
|
||||
GaugeKmu = peekLorentz(GaugeK, mu);
|
||||
SigmaKPrime_mu = peekLorentz(SigmaKPrime, mu);
|
||||
iQ = Ta(Cmu * adj(GaugeKmu));
|
||||
set_iLambda(iLambda_mu, e_iQ, iQ, SigmaKPrime_mu, GaugeKmu);
|
||||
pokeLorentz(SigmaK, SigmaKPrime_mu * e_iQ + adj(Cmu) * iLambda_mu, mu);
|
||||
pokeLorentz(iLambda, iLambda_mu, mu);
|
||||
}
|
||||
StoutSmearing.derivative(SigmaK, iLambda,
|
||||
GaugeK); // derivative of SmearBase
|
||||
return SigmaK;
|
||||
}
|
||||
|
||||
/*! @brief Returns smeared configuration at level 'Level' */
|
||||
const GaugeField& get_smeared_conf(int Level) const {
|
||||
return SmearedSet[Level];
|
||||
}
|
||||
|
||||
//====================================================================
|
||||
void set_iLambda(GaugeLinkField& iLambda, GaugeLinkField& e_iQ,
|
||||
const GaugeLinkField& iQ, const GaugeLinkField& Sigmap,
|
||||
const GaugeLinkField& GaugeK) const {
|
||||
GridBase* grid = iQ._grid;
|
||||
GaugeLinkField iQ2(grid), iQ3(grid), B1(grid), B2(grid), USigmap(grid);
|
||||
GaugeLinkField unity(grid);
|
||||
unity = 1.0;
|
||||
|
||||
LatticeComplex u(grid), w(grid);
|
||||
LatticeComplex f0(grid), f1(grid), f2(grid);
|
||||
LatticeComplex xi0(grid), xi1(grid), tmp(grid);
|
||||
LatticeComplex u2(grid), w2(grid), cosw(grid);
|
||||
LatticeComplex emiu(grid), e2iu(grid), qt(grid), fden(grid);
|
||||
LatticeComplex r01(grid), r11(grid), r21(grid), r02(grid), r12(grid);
|
||||
LatticeComplex r22(grid), tr1(grid), tr2(grid);
|
||||
LatticeComplex b10(grid), b11(grid), b12(grid), b20(grid), b21(grid),
|
||||
b22(grid);
|
||||
LatticeComplex LatticeUnitComplex(grid);
|
||||
|
||||
LatticeUnitComplex = 1.0;
|
||||
|
||||
// Exponential
|
||||
iQ2 = iQ * iQ;
|
||||
iQ3 = iQ * iQ2;
|
||||
StoutSmearing.set_uw(u, w, iQ2, iQ3);
|
||||
StoutSmearing.set_fj(f0, f1, f2, u, w);
|
||||
e_iQ = f0 * unity + timesMinusI(f1) * iQ - f2 * iQ2;
|
||||
|
||||
// Getting B1, B2, Gamma and Lambda
|
||||
// simplify this part, reduntant calculations in set_fj
|
||||
xi0 = StoutSmearing.func_xi0(w);
|
||||
xi1 = StoutSmearing.func_xi1(w);
|
||||
u2 = u * u;
|
||||
w2 = w * w;
|
||||
cosw = cos(w);
|
||||
|
||||
emiu = cos(u) - timesI(sin(u));
|
||||
e2iu = cos(2.0 * u) + timesI(sin(2.0 * u));
|
||||
|
||||
r01 = (2.0 * u + timesI(2.0 * (u2 - w2))) * e2iu +
|
||||
emiu * ((16.0 * u * cosw + 2.0 * u * (3.0 * u2 + w2) * xi0) +
|
||||
timesI(-8.0 * u2 * cosw + 2.0 * (9.0 * u2 + w2) * xi0));
|
||||
|
||||
r11 = (2.0 * LatticeUnitComplex + timesI(4.0 * u)) * e2iu +
|
||||
emiu * ((-2.0 * cosw + (3.0 * u2 - w2) * xi0) +
|
||||
timesI((2.0 * u * cosw + 6.0 * u * xi0)));
|
||||
|
||||
r21 =
|
||||
2.0 * timesI(e2iu) + emiu * (-3.0 * u * xi0 + timesI(cosw - 3.0 * xi0));
|
||||
|
||||
r02 = -2.0 * e2iu +
|
||||
emiu * (-8.0 * u2 * xi0 +
|
||||
timesI(2.0 * u * (cosw + xi0 + 3.0 * u2 * xi1)));
|
||||
|
||||
r12 = emiu * (2.0 * u * xi0 + timesI(-cosw - xi0 + 3.0 * u2 * xi1));
|
||||
|
||||
r22 = emiu * (xi0 - timesI(3.0 * u * xi1));
|
||||
|
||||
fden = LatticeUnitComplex / (2.0 * (9.0 * u2 - w2) * (9.0 * u2 - w2));
|
||||
|
||||
b10 = 2.0 * u * r01 + (3.0 * u2 - w2) * r02 - (30.0 * u2 + 2.0 * w2) * f0;
|
||||
b11 = 2.0 * u * r11 + (3.0 * u2 - w2) * r12 - (30.0 * u2 + 2.0 * w2) * f1;
|
||||
b12 = 2.0 * u * r21 + (3.0 * u2 - w2) * r22 - (30.0 * u2 + 2.0 * w2) * f2;
|
||||
|
||||
b20 = r01 - (3.0 * u) * r02 - (24.0 * u) * f0;
|
||||
b21 = r11 - (3.0 * u) * r12 - (24.0 * u) * f1;
|
||||
b22 = r21 - (3.0 * u) * r22 - (24.0 * u) * f2;
|
||||
|
||||
b10 *= fden;
|
||||
b11 *= fden;
|
||||
b12 *= fden;
|
||||
b20 *= fden;
|
||||
b21 *= fden;
|
||||
b22 *= fden;
|
||||
|
||||
B1 = b10 * unity + timesMinusI(b11) * iQ - b12 * iQ2;
|
||||
B2 = b20 * unity + timesMinusI(b21) * iQ - b22 * iQ2;
|
||||
USigmap = GaugeK * Sigmap;
|
||||
|
||||
tr1 = trace(USigmap * B1);
|
||||
tr2 = trace(USigmap * B2);
|
||||
|
||||
GaugeLinkField QUS = iQ * USigmap;
|
||||
GaugeLinkField USQ = USigmap * iQ;
|
||||
|
||||
GaugeLinkField iGamma = tr1 * iQ - timesI(tr2) * iQ2 +
|
||||
timesI(f1) * USigmap + f2 * QUS + f2 * USQ;
|
||||
|
||||
iLambda = Ta(iGamma);
|
||||
}
|
||||
|
||||
//====================================================================
|
||||
public:
|
||||
GaugeField*
|
||||
ThinLinks; /*!< @brief Pointer to the thin
|
||||
links configuration */
|
||||
|
||||
/*! @brief Standard constructor */
|
||||
SmearedConfiguration(GridCartesian* UGrid, unsigned int Nsmear,
|
||||
Smear_Stout<Gimpl>& Stout)
|
||||
: smearingLevels(Nsmear), StoutSmearing(Stout), ThinLinks(NULL) {
|
||||
for (unsigned int i = 0; i < smearingLevels; ++i)
|
||||
SmearedSet.push_back(*(new GaugeField(UGrid)));
|
||||
}
|
||||
|
||||
/*! For just thin links */
|
||||
SmearedConfiguration()
|
||||
: smearingLevels(0), StoutSmearing(), SmearedSet(), ThinLinks(NULL) {}
|
||||
|
||||
// attach the smeared routines to the thin links U and fill the smeared set
|
||||
void set_GaugeField(GaugeField& U) { fill_smearedSet(U); }
|
||||
|
||||
//====================================================================
|
||||
void smeared_force(GaugeField& SigmaTilde) const {
|
||||
if (smearingLevels > 0) {
|
||||
GaugeField force = SigmaTilde; // actually = U*SigmaTilde
|
||||
GaugeLinkField tmp_mu(SigmaTilde._grid);
|
||||
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
// to get just SigmaTilde
|
||||
tmp_mu = adj(peekLorentz(SmearedSet[smearingLevels - 1], mu)) *
|
||||
peekLorentz(force, mu);
|
||||
pokeLorentz(force, tmp_mu, mu);
|
||||
}
|
||||
|
||||
for (int ismr = smearingLevels - 1; ismr > 0; --ismr)
|
||||
force = AnalyticSmearedForce(force, get_smeared_conf(ismr - 1));
|
||||
|
||||
force = AnalyticSmearedForce(force, *ThinLinks);
|
||||
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
tmp_mu = peekLorentz(*ThinLinks, mu) * peekLorentz(force, mu);
|
||||
pokeLorentz(SigmaTilde, tmp_mu, mu);
|
||||
}
|
||||
} // if smearingLevels = 0 do nothing
|
||||
}
|
||||
//====================================================================
|
||||
|
||||
GaugeField& get_SmearedU() { return SmearedSet[smearingLevels - 1]; }
|
||||
|
||||
GaugeField& get_U(bool smeared = false) {
|
||||
// get the config, thin links by default
|
||||
if (smeared) {
|
||||
if (smearingLevels) {
|
||||
RealD impl_plaq =
|
||||
WilsonLoops<Gimpl>::avgPlaquette(SmearedSet[smearingLevels - 1]);
|
||||
std::cout << GridLogDebug << "getting Usmr Plaq: " << impl_plaq
|
||||
<< std::endl;
|
||||
return get_SmearedU();
|
||||
|
||||
} else {
|
||||
RealD impl_plaq = WilsonLoops<Gimpl>::avgPlaquette(*ThinLinks);
|
||||
std::cout << GridLogDebug << "getting Thin Plaq: " << impl_plaq
|
||||
<< std::endl;
|
||||
return *ThinLinks;
|
||||
}
|
||||
} else {
|
||||
RealD impl_plaq = WilsonLoops<Gimpl>::avgPlaquette(*ThinLinks);
|
||||
std::cout << GridLogDebug << "getting Thin Plaq: " << impl_plaq
|
||||
<< std::endl;
|
||||
return *ThinLinks;
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
9
lib/qcd/smearing/Smearing.h
Normal file
9
lib/qcd/smearing/Smearing.h
Normal file
@ -0,0 +1,9 @@
|
||||
#ifndef GRID_QCD_SMEARING_H
|
||||
#define GRID_QCD_SMEARING_H
|
||||
|
||||
#include <qcd/smearing/BaseSmearing.h>
|
||||
#include <qcd/smearing/APEsmearing.h>
|
||||
#include <qcd/smearing/StoutSmearing.h>
|
||||
#include <qcd/smearing/GaugeConfiguration.h>
|
||||
|
||||
#endif
|
160
lib/qcd/smearing/StoutSmearing.h
Normal file
160
lib/qcd/smearing/StoutSmearing.h
Normal file
@ -0,0 +1,160 @@
|
||||
/*
|
||||
@file stoutSmear.hpp
|
||||
@brief Declares Stout smearing class
|
||||
*/
|
||||
#ifndef STOUT_SMEAR_
|
||||
#define STOUT_SMEAR_
|
||||
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
/*! @brief Stout smearing of link variable. */
|
||||
template <class Gimpl>
|
||||
class Smear_Stout : public Smear<Gimpl> {
|
||||
private:
|
||||
const Smear<Gimpl>* SmearBase;
|
||||
|
||||
public:
|
||||
INHERIT_GIMPL_TYPES(Gimpl)
|
||||
|
||||
Smear_Stout(Smear<Gimpl>* base) : SmearBase(base) {
|
||||
static_assert(Nc == 3,
|
||||
"Stout smearing currently implemented only for Nc==3");
|
||||
}
|
||||
|
||||
/*! Default constructor */
|
||||
Smear_Stout(double rho = 1.0) : SmearBase(new Smear_APE<Gimpl>(rho)) {
|
||||
static_assert(Nc == 3,
|
||||
"Stout smearing currently implemented only for Nc==3");
|
||||
}
|
||||
|
||||
~Smear_Stout() {} // delete SmearBase...
|
||||
|
||||
void smear(GaugeField& u_smr, const GaugeField& U) const {
|
||||
GaugeField C(U._grid);
|
||||
GaugeLinkField tmp(U._grid), iq_mu(U._grid), Umu(U._grid);
|
||||
|
||||
std::cout << GridLogDebug << "Stout smearing started\n";
|
||||
|
||||
// Smear the configurations
|
||||
SmearBase->smear(C, U);
|
||||
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
tmp = peekLorentz(C, mu);
|
||||
Umu = peekLorentz(U, mu);
|
||||
iq_mu = Ta(
|
||||
tmp *
|
||||
adj(Umu)); // iq_mu = Ta(Omega_mu) to match the signs with the paper
|
||||
exponentiate_iQ(tmp, iq_mu);
|
||||
pokeLorentz(u_smr, tmp * Umu, mu); // u_smr = exp(iQ_mu)*U_mu
|
||||
}
|
||||
std::cout << GridLogDebug << "Stout smearing completed\n";
|
||||
};
|
||||
|
||||
void derivative(GaugeField& SigmaTerm, const GaugeField& iLambda,
|
||||
const GaugeField& Gauge) const {
|
||||
SmearBase->derivative(SigmaTerm, iLambda, Gauge);
|
||||
};
|
||||
|
||||
void BaseSmear(GaugeField& C, const GaugeField& U) const {
|
||||
SmearBase->smear(C, U);
|
||||
};
|
||||
|
||||
void exponentiate_iQ(GaugeLinkField& e_iQ, const GaugeLinkField& iQ) const {
|
||||
// Put this outside
|
||||
// only valid for SU(3) matrices
|
||||
|
||||
// only one Lorentz direction at a time
|
||||
|
||||
// notice that it actually computes
|
||||
// exp ( input matrix )
|
||||
// the i sign is coming from outside
|
||||
// input matrix is anti-hermitian NOT hermitian
|
||||
|
||||
GridBase* grid = iQ._grid;
|
||||
GaugeLinkField unity(grid);
|
||||
unity = 1.0;
|
||||
|
||||
GaugeLinkField iQ2(grid), iQ3(grid);
|
||||
LatticeComplex u(grid), w(grid);
|
||||
LatticeComplex f0(grid), f1(grid), f2(grid);
|
||||
|
||||
iQ2 = iQ * iQ;
|
||||
iQ3 = iQ * iQ2;
|
||||
|
||||
set_uw(u, w, iQ2, iQ3);
|
||||
set_fj(f0, f1, f2, u, w);
|
||||
|
||||
e_iQ = f0 * unity + timesMinusI(f1) * iQ - f2 * iQ2;
|
||||
};
|
||||
|
||||
void set_uw(LatticeComplex& u, LatticeComplex& w, GaugeLinkField& iQ2,
|
||||
GaugeLinkField& iQ3) const {
|
||||
Complex one_over_three = 1.0 / 3.0;
|
||||
Complex one_over_two = 1.0 / 2.0;
|
||||
|
||||
GridBase* grid = u._grid;
|
||||
LatticeComplex c0(grid), c1(grid), tmp(grid), c0max(grid), theta(grid);
|
||||
|
||||
// sign in c0 from the conventions on the Ta
|
||||
c0 = -imag(trace(iQ3)) * one_over_three;
|
||||
c1 = -real(trace(iQ2)) * one_over_two;
|
||||
|
||||
// Cayley Hamilton checks to machine precision, tested
|
||||
tmp = c1 * one_over_three;
|
||||
c0max = 2.0 * pow(tmp, 1.5);
|
||||
|
||||
theta = acos(c0 / c0max) *
|
||||
one_over_three; // divide by three here, now leave as it is
|
||||
u = sqrt(tmp) * cos(theta);
|
||||
w = sqrt(c1) * sin(theta);
|
||||
}
|
||||
|
||||
void set_fj(LatticeComplex& f0, LatticeComplex& f1, LatticeComplex& f2,
|
||||
const LatticeComplex& u, const LatticeComplex& w) const {
|
||||
GridBase* grid = u._grid;
|
||||
LatticeComplex xi0(grid), u2(grid), w2(grid), cosw(grid);
|
||||
LatticeComplex fden(grid);
|
||||
LatticeComplex h0(grid), h1(grid), h2(grid);
|
||||
LatticeComplex e2iu(grid), emiu(grid), ixi0(grid), qt(grid);
|
||||
LatticeComplex unity(grid);
|
||||
unity = 1.0;
|
||||
|
||||
xi0 = func_xi0(w);
|
||||
u2 = u * u;
|
||||
w2 = w * w;
|
||||
cosw = cos(w);
|
||||
|
||||
ixi0 = timesI(xi0);
|
||||
emiu = cos(u) - timesI(sin(u));
|
||||
e2iu = cos(2.0 * u) + timesI(sin(2.0 * u));
|
||||
|
||||
h0 = e2iu * (u2 - w2) +
|
||||
emiu * ((8.0 * u2 * cosw) + (2.0 * u * (3.0 * u2 + w2) * ixi0));
|
||||
h1 = e2iu * (2.0 * u) - emiu * ((2.0 * u * cosw) - (3.0 * u2 - w2) * ixi0);
|
||||
h2 = e2iu - emiu * (cosw + (3.0 * u) * ixi0);
|
||||
|
||||
fden = unity / (9.0 * u2 - w2); // reals
|
||||
f0 = h0 * fden;
|
||||
f1 = h1 * fden;
|
||||
f2 = h2 * fden;
|
||||
}
|
||||
|
||||
LatticeComplex func_xi0(const LatticeComplex& w) const {
|
||||
// Define a function to do the check
|
||||
// if( w < 1e-4 ) std::cout << GridLogWarning<< "[Smear_stout] w too small:
|
||||
// "<< w <<"\n";
|
||||
return sin(w) / w;
|
||||
}
|
||||
|
||||
LatticeComplex func_xi1(const LatticeComplex& w) const {
|
||||
// Define a function to do the check
|
||||
// if( w < 1e-4 ) std::cout << GridLogWarning << "[Smear_stout] w too small:
|
||||
// "<< w <<"\n";
|
||||
return cos(w) / (w * w) - sin(w) / (w * w * w);
|
||||
}
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
@ -43,7 +43,7 @@ public:
|
||||
|
||||
template<typename vtype> using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > > ;
|
||||
template<typename vtype> using iSU2Matrix = iScalar<iScalar<iMatrix<vtype, 2> > > ;
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Types can be accessed as SU<2>::Matrix , SU<2>::vSUnMatrix, SU<2>::LatticeMatrix etc...
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@ -552,15 +552,24 @@ Note that in step D setting B ~ X - A and using B in place of A in step E will g
|
||||
}
|
||||
|
||||
// reunitarise??
|
||||
static void LieRandomize(GridParallelRNG &pRNG,LatticeMatrix &out,double scale=1.0){
|
||||
template<typename LatticeMatrixType>
|
||||
static void LieRandomize(GridParallelRNG &pRNG,LatticeMatrixType &out,double scale=1.0){
|
||||
GridBase *grid = out._grid;
|
||||
|
||||
LatticeComplex ca (grid);
|
||||
LatticeMatrix lie(grid);
|
||||
LatticeMatrix la (grid);
|
||||
Complex ci(0.0,scale);
|
||||
Complex cone(1.0,0.0);
|
||||
Matrix ta;
|
||||
|
||||
typedef typename LatticeMatrixType::vector_type vector_type;
|
||||
typedef typename LatticeMatrixType::scalar_type scalar_type;
|
||||
|
||||
typedef iSinglet<vector_type> vTComplexType;
|
||||
|
||||
typedef Lattice<vTComplexType> LatticeComplexType;
|
||||
typedef typename GridTypeMapper<typename LatticeMatrixType::vector_object>::scalar_object MatrixType;
|
||||
|
||||
LatticeComplexType ca (grid);
|
||||
LatticeMatrixType lie(grid);
|
||||
LatticeMatrixType la (grid);
|
||||
ComplexD ci(0.0,scale);
|
||||
ComplexD cone(1.0,0.0);
|
||||
MatrixType ta;
|
||||
|
||||
lie=zero;
|
||||
for(int a=0;a<generators();a++){
|
||||
@ -596,9 +605,13 @@ Note that in step D setting B ~ X - A and using B in place of A in step E will g
|
||||
|
||||
}
|
||||
|
||||
|
||||
static void HotConfiguration(GridParallelRNG &pRNG,LatticeGaugeField &out){
|
||||
LatticeMatrix Umu(out._grid);
|
||||
template<typename GaugeField>
|
||||
static void HotConfiguration(GridParallelRNG &pRNG,GaugeField &out){
|
||||
typedef typename GaugeField::vector_type vector_type;
|
||||
typedef iSUnMatrix<vector_type> vMatrixType;
|
||||
typedef Lattice<vMatrixType> LatticeMatrixType;
|
||||
|
||||
LatticeMatrixType Umu(out._grid);
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
LieRandomize(pRNG,Umu,1.0);
|
||||
PokeIndex<LorentzIndex>(out,Umu,mu);
|
||||
@ -622,13 +635,15 @@ Note that in step D setting B ~ X - A and using B in place of A in step E will g
|
||||
static void taProj( const LatticeMatrix &in, LatticeMatrix &out){
|
||||
out = Ta(in);
|
||||
}
|
||||
static void taExp( const LatticeMatrix &x, LatticeMatrix &ex){
|
||||
|
||||
LatticeMatrix xn(x._grid);
|
||||
template<typename LatticeMatrixType>
|
||||
static void taExp( const LatticeMatrixType &x, LatticeMatrixType &ex){
|
||||
typedef typename LatticeMatrixType::scalar_type ComplexType;
|
||||
|
||||
LatticeMatrixType xn(x._grid);
|
||||
RealD nfac = 1.0;
|
||||
|
||||
xn = x;
|
||||
ex =xn+Complex(1.0); // 1+x
|
||||
ex =xn+ComplexType(1.0); // 1+x
|
||||
|
||||
// Do a 12th order exponentiation
|
||||
for(int i=2; i <= 12; ++i)
|
||||
|
@ -1,6 +1,6 @@
|
||||
/*************************************************************************************
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/utils/WilsonLoops.h
|
||||
|
||||
@ -25,391 +25,501 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef QCD_UTILS_WILSON_LOOPS_H
|
||||
#define QCD_UTILS_WILSON_LOOPS_H
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
// Common wilson loop observables
|
||||
template<class Gimpl>
|
||||
class WilsonLoops : public Gimpl {
|
||||
template <class Gimpl> class WilsonLoops : public Gimpl {
|
||||
public:
|
||||
|
||||
INHERIT_GIMPL_TYPES(Gimpl);
|
||||
|
||||
typedef typename Gimpl::GaugeLinkField GaugeMat;
|
||||
typedef typename Gimpl::GaugeField GaugeLorentz;
|
||||
typedef typename Gimpl::GaugeField GaugeLorentz;
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// directed plaquette oriented in mu,nu plane
|
||||
//////////////////////////////////////////////////
|
||||
static void dirPlaquette(GaugeMat &plaq,const std::vector<GaugeMat> &U, const int mu, const int nu)
|
||||
{
|
||||
// Annoyingly, must use either scope resolution to find dependent base class,
|
||||
// or this-> ; there is no "this" in a static method. This forces explicit Gimpl scope
|
||||
// resolution throughout the usage in this file, and rather defeats the purpose of deriving
|
||||
static void dirPlaquette(GaugeMat &plaq, const std::vector<GaugeMat> &U,
|
||||
const int mu, const int nu) {
|
||||
// Annoyingly, must use either scope resolution to find dependent base
|
||||
// class,
|
||||
// or this-> ; there is no "this" in a static method. This forces explicit
|
||||
// Gimpl scope
|
||||
// resolution throughout the usage in this file, and rather defeats the
|
||||
// purpose of deriving
|
||||
// from Gimpl.
|
||||
plaq= Gimpl::CovShiftBackward(U[mu],mu,
|
||||
Gimpl::CovShiftBackward(U[nu],nu,
|
||||
Gimpl::CovShiftForward (U[mu],mu,U[nu])));
|
||||
plaq = Gimpl::CovShiftBackward(
|
||||
U[mu], mu, Gimpl::CovShiftBackward(
|
||||
U[nu], nu, Gimpl::CovShiftForward(U[mu], mu, U[nu])));
|
||||
}
|
||||
//////////////////////////////////////////////////
|
||||
// trace of directed plaquette oriented in mu,nu plane
|
||||
//////////////////////////////////////////////////
|
||||
static void traceDirPlaquette(LatticeComplex &plaq, const std::vector<GaugeMat> &U, const int mu, const int nu)
|
||||
{
|
||||
static void traceDirPlaquette(LatticeComplex &plaq,
|
||||
const std::vector<GaugeMat> &U, const int mu,
|
||||
const int nu) {
|
||||
GaugeMat sp(U[0]._grid);
|
||||
dirPlaquette(sp,U,mu,nu);
|
||||
plaq=trace(sp);
|
||||
dirPlaquette(sp, U, mu, nu);
|
||||
plaq = trace(sp);
|
||||
}
|
||||
//////////////////////////////////////////////////
|
||||
// sum over all planes of plaquette
|
||||
//////////////////////////////////////////////////
|
||||
static void sitePlaquette(LatticeComplex &Plaq,const std::vector<GaugeMat> &U)
|
||||
{
|
||||
static void sitePlaquette(LatticeComplex &Plaq,
|
||||
const std::vector<GaugeMat> &U) {
|
||||
LatticeComplex sitePlaq(U[0]._grid);
|
||||
Plaq=zero;
|
||||
for(int mu=1;mu<Nd;mu++){
|
||||
for(int nu=0;nu<mu;nu++){
|
||||
traceDirPlaquette(sitePlaq,U,mu,nu);
|
||||
Plaq = Plaq + sitePlaq;
|
||||
Plaq = zero;
|
||||
for (int mu = 1; mu < Nd; mu++) {
|
||||
for (int nu = 0; nu < mu; nu++) {
|
||||
traceDirPlaquette(sitePlaq, U, mu, nu);
|
||||
Plaq = Plaq + sitePlaq;
|
||||
}
|
||||
}
|
||||
}
|
||||
//////////////////////////////////////////////////
|
||||
// sum over all x,y,z,t and over all planes of plaquette
|
||||
//////////////////////////////////////////////////
|
||||
static RealD sumPlaquette(const GaugeLorentz &Umu){
|
||||
std::vector<GaugeMat> U(Nd,Umu._grid);
|
||||
static RealD sumPlaquette(const GaugeLorentz &Umu) {
|
||||
std::vector<GaugeMat> U(4, Umu._grid);
|
||||
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
U[mu] = PeekIndex<LorentzIndex>(Umu,mu);
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
|
||||
}
|
||||
|
||||
LatticeComplex Plaq(Umu._grid);
|
||||
|
||||
sitePlaquette(Plaq,U);
|
||||
|
||||
|
||||
sitePlaquette(Plaq, U);
|
||||
|
||||
TComplex Tp = sum(Plaq);
|
||||
Complex p = TensorRemove(Tp);
|
||||
Complex p = TensorRemove(Tp);
|
||||
return p.real();
|
||||
}
|
||||
//////////////////////////////////////////////////
|
||||
// average over all x,y,z,t and over all planes of plaquette
|
||||
//////////////////////////////////////////////////
|
||||
static RealD avgPlaquette(const GaugeLorentz &Umu){
|
||||
|
||||
static RealD avgPlaquette(const GaugeLorentz &Umu) {
|
||||
RealD sumplaq = sumPlaquette(Umu);
|
||||
|
||||
double vol = Umu._grid->gSites();
|
||||
|
||||
double faces = (1.0*Nd*(Nd-1))/2.0;
|
||||
|
||||
return sumplaq/vol/faces/Nc; // Nd , Nc dependent... FIXME
|
||||
double faces = (1.0 * Nd * (Nd - 1)) / 2.0;
|
||||
return sumplaq / vol / faces / Nc; // Nd , Nc dependent... FIXME
|
||||
}
|
||||
static RealD linkTrace(const GaugeLorentz &Umu){
|
||||
std::vector<GaugeMat> U(Nd,Umu._grid);
|
||||
|
||||
LatticeComplex Tr(Umu._grid); Tr=zero;
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
U[mu] = PeekIndex<LorentzIndex>(Umu,mu);
|
||||
Tr = Tr+trace(U[mu]);
|
||||
//////////////////////////////////////////////////
|
||||
// average over traced single links
|
||||
//////////////////////////////////////////////////
|
||||
static RealD linkTrace(const GaugeLorentz &Umu) {
|
||||
std::vector<GaugeMat> U(4, Umu._grid);
|
||||
|
||||
LatticeComplex Tr(Umu._grid);
|
||||
Tr = zero;
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
|
||||
Tr = Tr + trace(U[mu]);
|
||||
}
|
||||
|
||||
|
||||
TComplex Tp = sum(Tr);
|
||||
Complex p = TensorRemove(Tp);
|
||||
Complex p = TensorRemove(Tp);
|
||||
|
||||
double vol = Umu._grid->gSites();
|
||||
|
||||
return p.real()/vol/((double)(Nd*(Nd-1)));
|
||||
return p.real() / vol / 4.0 / 3.0;
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// the sum over all staples on each site
|
||||
// the sum over all staples on each site in direction mu,nu
|
||||
//////////////////////////////////////////////////
|
||||
static void Staple(GaugeMat &staple,const GaugeLorentz &Umu,int mu){
|
||||
static void Staple(GaugeMat &staple, const GaugeLorentz &Umu, int mu,
|
||||
int nu) {
|
||||
|
||||
GridBase *grid = Umu._grid;
|
||||
|
||||
std::vector<GaugeMat> U(Nd,grid);
|
||||
for(int d=0;d<Nd;d++){
|
||||
U[d] = PeekIndex<LorentzIndex>(Umu,d);
|
||||
std::vector<GaugeMat> U(4, grid);
|
||||
for (int d = 0; d < Nd; d++) {
|
||||
U[d] = PeekIndex<LorentzIndex>(Umu, d);
|
||||
}
|
||||
staple = zero;
|
||||
GaugeMat tmp(grid);
|
||||
|
||||
|
||||
for(int nu=0;nu<Nd;nu++){
|
||||
|
||||
if(nu != mu) {
|
||||
if (nu != mu) {
|
||||
|
||||
// mu
|
||||
// ^
|
||||
// |__> nu
|
||||
|
||||
// __
|
||||
// __
|
||||
// |
|
||||
// __|
|
||||
//
|
||||
|
||||
staple+=Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftForward (U[nu],nu,
|
||||
Gimpl::CovShiftBackward(U[mu],mu,
|
||||
Gimpl::CovShiftIdentityBackward(U[nu],nu))),mu);
|
||||
staple += Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftForward(
|
||||
U[nu], nu,
|
||||
Gimpl::CovShiftBackward(
|
||||
U[mu], mu, Gimpl::CovShiftIdentityBackward(U[nu], nu))),
|
||||
mu);
|
||||
|
||||
// __
|
||||
// |
|
||||
// |__
|
||||
// __
|
||||
// |
|
||||
// |__
|
||||
//
|
||||
//
|
||||
staple+=Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftBackward(U[nu],nu,
|
||||
Gimpl::CovShiftBackward(U[mu],mu,U[nu])),mu);
|
||||
staple += Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftBackward(U[nu], nu,
|
||||
Gimpl::CovShiftBackward(U[mu], mu, U[nu])),
|
||||
mu);
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// the sum over all staples on each site
|
||||
//////////////////////////////////////////////////
|
||||
static void Staple(GaugeMat &staple, const GaugeLorentz &Umu, int mu) {
|
||||
|
||||
GridBase *grid = Umu._grid;
|
||||
|
||||
std::vector<GaugeMat> U(Nd, grid);
|
||||
for (int d = 0; d < Nd; d++) {
|
||||
U[d] = PeekIndex<LorentzIndex>(Umu, d);
|
||||
}
|
||||
staple = zero;
|
||||
GaugeMat tmp(grid);
|
||||
|
||||
for (int nu = 0; nu < Nd; nu++) {
|
||||
|
||||
if (nu != mu) {
|
||||
|
||||
// mu
|
||||
// ^
|
||||
// |__> nu
|
||||
|
||||
// __
|
||||
// |
|
||||
// __|
|
||||
//
|
||||
|
||||
staple += Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftForward(
|
||||
U[nu], nu,
|
||||
Gimpl::CovShiftBackward(
|
||||
U[mu], mu, Gimpl::CovShiftIdentityBackward(U[nu], nu))),
|
||||
mu);
|
||||
|
||||
// __
|
||||
// |
|
||||
// |__
|
||||
//
|
||||
//
|
||||
staple += Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftBackward(U[nu], nu,
|
||||
Gimpl::CovShiftBackward(U[mu], mu, U[nu])),
|
||||
mu);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// the sum over all staples on each site in direction mu,nu, upper part
|
||||
//////////////////////////////////////////////////
|
||||
static void StapleUpper(GaugeMat &staple, const GaugeLorentz &Umu, int mu,
|
||||
int nu) {
|
||||
|
||||
staple = zero;
|
||||
|
||||
if (nu != mu) {
|
||||
GridBase *grid = Umu._grid;
|
||||
|
||||
std::vector<GaugeMat> U(4, grid);
|
||||
for (int d = 0; d < Nd; d++) {
|
||||
U[d] = PeekIndex<LorentzIndex>(Umu, d);
|
||||
}
|
||||
|
||||
// mu
|
||||
// ^
|
||||
// |__> nu
|
||||
|
||||
// __
|
||||
// |
|
||||
// __|
|
||||
//
|
||||
|
||||
staple += Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftForward(
|
||||
U[nu], nu,
|
||||
Gimpl::CovShiftBackward(
|
||||
U[mu], mu, Gimpl::CovShiftIdentityBackward(U[nu], nu))),
|
||||
mu);
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// Similar to above for rectangle is required
|
||||
//////////////////////////////////////////////////////
|
||||
static void dirRectangle(GaugeMat &rect,const std::vector<GaugeMat> &U, const int mu, const int nu)
|
||||
{
|
||||
rect = Gimpl::CovShiftForward(U[mu],mu,Gimpl::CovShiftForward(U[mu],mu,U[nu]))* // ->->|
|
||||
adj(Gimpl::CovShiftForward(U[nu],nu,Gimpl::CovShiftForward(U[mu],mu,U[mu]))) ;
|
||||
rect = rect +
|
||||
Gimpl::CovShiftForward(U[mu],mu,Gimpl::CovShiftForward(U[nu],nu,U[nu]))* // ->||
|
||||
adj(Gimpl::CovShiftForward(U[nu],nu,Gimpl::CovShiftForward(U[nu],nu,U[mu]))) ;
|
||||
static void dirRectangle(GaugeMat &rect, const std::vector<GaugeMat> &U,
|
||||
const int mu, const int nu) {
|
||||
rect = Gimpl::CovShiftForward(
|
||||
U[mu], mu, Gimpl::CovShiftForward(U[mu], mu, U[nu])) * // ->->|
|
||||
adj(Gimpl::CovShiftForward(
|
||||
U[nu], nu, Gimpl::CovShiftForward(U[mu], mu, U[mu])));
|
||||
rect = rect +
|
||||
Gimpl::CovShiftForward(
|
||||
U[mu], mu, Gimpl::CovShiftForward(U[nu], nu, U[nu])) * // ->||
|
||||
adj(Gimpl::CovShiftForward(
|
||||
U[nu], nu, Gimpl::CovShiftForward(U[nu], nu, U[mu])));
|
||||
}
|
||||
static void traceDirRectangle(LatticeComplex &rect, const std::vector<GaugeMat> &U, const int mu, const int nu)
|
||||
{
|
||||
static void traceDirRectangle(LatticeComplex &rect,
|
||||
const std::vector<GaugeMat> &U, const int mu,
|
||||
const int nu) {
|
||||
GaugeMat sp(U[0]._grid);
|
||||
dirRectangle(sp,U,mu,nu);
|
||||
rect=trace(sp);
|
||||
dirRectangle(sp, U, mu, nu);
|
||||
rect = trace(sp);
|
||||
}
|
||||
static void siteRectangle(LatticeComplex &Rect,const std::vector<GaugeMat> &U)
|
||||
{
|
||||
static void siteRectangle(LatticeComplex &Rect,
|
||||
const std::vector<GaugeMat> &U) {
|
||||
LatticeComplex siteRect(U[0]._grid);
|
||||
Rect=zero;
|
||||
for(int mu=1;mu<Nd;mu++){
|
||||
for(int nu=0;nu<mu;nu++){
|
||||
traceDirRectangle(siteRect,U,mu,nu);
|
||||
Rect = Rect + siteRect;
|
||||
Rect = zero;
|
||||
for (int mu = 1; mu < Nd; mu++) {
|
||||
for (int nu = 0; nu < mu; nu++) {
|
||||
traceDirRectangle(siteRect, U, mu, nu);
|
||||
Rect = Rect + siteRect;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// sum over all x,y,z,t and over all planes of plaquette
|
||||
//////////////////////////////////////////////////
|
||||
static RealD sumRectangle(const GaugeLorentz &Umu){
|
||||
std::vector<GaugeMat> U(Nd,Umu._grid);
|
||||
static RealD sumRectangle(const GaugeLorentz &Umu) {
|
||||
std::vector<GaugeMat> U(Nd, Umu._grid);
|
||||
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
U[mu] = PeekIndex<LorentzIndex>(Umu,mu);
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
|
||||
}
|
||||
|
||||
LatticeComplex Rect(Umu._grid);
|
||||
|
||||
siteRectangle(Rect,U);
|
||||
|
||||
|
||||
siteRectangle(Rect, U);
|
||||
|
||||
TComplex Tp = sum(Rect);
|
||||
Complex p = TensorRemove(Tp);
|
||||
Complex p = TensorRemove(Tp);
|
||||
return p.real();
|
||||
}
|
||||
//////////////////////////////////////////////////
|
||||
// average over all x,y,z,t and over all planes of plaquette
|
||||
//////////////////////////////////////////////////
|
||||
static RealD avgRectangle(const GaugeLorentz &Umu){
|
||||
static RealD avgRectangle(const GaugeLorentz &Umu) {
|
||||
|
||||
RealD sumrect = sumRectangle(Umu);
|
||||
|
||||
|
||||
double vol = Umu._grid->gSites();
|
||||
|
||||
double faces = (1.0*Nd*(Nd-1)); // 2 distinct orientations summed
|
||||
|
||||
return sumrect/vol/faces/Nc; // Nd , Nc dependent... FIXME
|
||||
|
||||
double faces = (1.0 * Nd * (Nd - 1)); // 2 distinct orientations summed
|
||||
|
||||
return sumrect / vol / faces / Nc; // Nd , Nc dependent... FIXME
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// the sum over all staples on each site
|
||||
//////////////////////////////////////////////////
|
||||
static void RectStapleDouble(GaugeMat &U2,const GaugeMat & U,int mu){
|
||||
U2 = U * Cshift(U,mu,1);
|
||||
static void RectStapleDouble(GaugeMat &U2, const GaugeMat &U, int mu) {
|
||||
U2 = U * Cshift(U, mu, 1);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Hop by two optimisation strategy does not work nicely with Gparity. (could do,
|
||||
// Hop by two optimisation strategy does not work nicely with Gparity. (could
|
||||
// do,
|
||||
// but need to track two deep where cross boundary and apply a conjugation).
|
||||
// Must differentiate this in Gimpl, and use Gimpl::isPeriodicGaugeField to do so .
|
||||
// Must differentiate this in Gimpl, and use Gimpl::isPeriodicGaugeField to do
|
||||
// so .
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
static void RectStapleOptimised(GaugeMat &Stap,std::vector<GaugeMat> &U2,std::vector<GaugeMat> &U,int mu){
|
||||
static void RectStapleOptimised(GaugeMat &Stap, std::vector<GaugeMat> &U2,
|
||||
std::vector<GaugeMat> &U, int mu) {
|
||||
|
||||
Stap = zero;
|
||||
|
||||
GridBase *grid = U[0]._grid;
|
||||
|
||||
GaugeMat Staple2x1 (grid);
|
||||
GaugeMat tmp (grid);
|
||||
GaugeMat Staple2x1(grid);
|
||||
GaugeMat tmp(grid);
|
||||
|
||||
for(int nu=0;nu<Nd;nu++){
|
||||
if ( nu!=mu) {
|
||||
for (int nu = 0; nu < Nd; nu++) {
|
||||
if (nu != mu) {
|
||||
|
||||
// Up staple ___ ___
|
||||
// | |
|
||||
tmp = Cshift(adj(U[nu]),nu,-1);
|
||||
tmp = adj(U2[mu])*tmp;
|
||||
tmp = Cshift(tmp,mu,-2);
|
||||
// Up staple ___ ___
|
||||
// | |
|
||||
tmp = Cshift(adj(U[nu]), nu, -1);
|
||||
tmp = adj(U2[mu]) * tmp;
|
||||
tmp = Cshift(tmp, mu, -2);
|
||||
|
||||
Staple2x1 = Gimpl::CovShiftForward (U[nu],nu,tmp);
|
||||
Staple2x1 = Gimpl::CovShiftForward(U[nu], nu, tmp);
|
||||
|
||||
// Down staple
|
||||
// |___ ___|
|
||||
//
|
||||
tmp = adj(U2[mu]) * U[nu];
|
||||
Staple2x1 += Gimpl::CovShiftBackward(U[nu], nu, Cshift(tmp, mu, -2));
|
||||
|
||||
// Down staple
|
||||
// |___ ___|
|
||||
//
|
||||
tmp = adj(U2[mu])*U[nu];
|
||||
Staple2x1+= Gimpl::CovShiftBackward(U[nu],nu,Cshift(tmp,mu,-2));
|
||||
// ___ ___
|
||||
// | ___|
|
||||
// |___ ___|
|
||||
//
|
||||
|
||||
Stap += Cshift(Gimpl::CovShiftForward(U[mu], mu, Staple2x1), mu, 1);
|
||||
|
||||
// ___ ___
|
||||
// | ___|
|
||||
// |___ ___|
|
||||
//
|
||||
// ___ ___
|
||||
// |___ |
|
||||
// |___ ___|
|
||||
//
|
||||
|
||||
Stap+= Cshift(Gimpl::CovShiftForward (U[mu],mu,Staple2x1),mu,1);
|
||||
// tmp= Staple2x1* Cshift(U[mu],mu,-2);
|
||||
// Stap+= Cshift(tmp,mu,1) ;
|
||||
Stap += Cshift(Staple2x1, mu, 1) * Cshift(U[mu], mu, -1);
|
||||
;
|
||||
|
||||
// ___ ___
|
||||
// |___ |
|
||||
// |___ ___|
|
||||
//
|
||||
// --
|
||||
// | |
|
||||
//
|
||||
// | |
|
||||
|
||||
// tmp= Staple2x1* Cshift(U[mu],mu,-2);
|
||||
// Stap+= Cshift(tmp,mu,1) ;
|
||||
Stap+= Cshift(Staple2x1,mu,1)*Cshift(U[mu],mu,-1); ;
|
||||
tmp = Cshift(adj(U2[nu]), nu, -2);
|
||||
tmp = Gimpl::CovShiftBackward(U[mu], mu, tmp);
|
||||
tmp = U2[nu] * Cshift(tmp, nu, 2);
|
||||
Stap += Cshift(tmp, mu, 1);
|
||||
|
||||
// --
|
||||
// | |
|
||||
//
|
||||
// | |
|
||||
|
||||
tmp = Cshift(adj(U2[nu]),nu,-2);
|
||||
tmp = Gimpl::CovShiftBackward(U[mu],mu,tmp);
|
||||
tmp = U2[nu]*Cshift(tmp,nu,2);
|
||||
Stap+= Cshift(tmp, mu, 1);
|
||||
// | |
|
||||
//
|
||||
// | |
|
||||
// --
|
||||
|
||||
// | |
|
||||
//
|
||||
// | |
|
||||
// --
|
||||
|
||||
tmp = Gimpl::CovShiftBackward(U[mu],mu,U2[nu]);
|
||||
tmp = adj(U2[nu])*tmp;
|
||||
tmp = Cshift(tmp,nu,-2);
|
||||
Stap+=Cshift(tmp, mu, 1);
|
||||
}}
|
||||
|
||||
|
||||
}
|
||||
|
||||
static void RectStaple(GaugeMat &Stap,const GaugeLorentz & Umu,int mu)
|
||||
{
|
||||
RectStapleUnoptimised(Stap,Umu,mu);
|
||||
}
|
||||
static void RectStaple(const GaugeLorentz & Umu,GaugeMat &Stap,
|
||||
std::vector<GaugeMat> &U2,
|
||||
std::vector<GaugeMat> &U, int mu)
|
||||
{
|
||||
if ( Gimpl::isPeriodicGaugeField() ){
|
||||
RectStapleOptimised(Stap,U2,U,mu);
|
||||
} else {
|
||||
RectStapleUnoptimised(Stap,Umu,mu);
|
||||
tmp = Gimpl::CovShiftBackward(U[mu], mu, U2[nu]);
|
||||
tmp = adj(U2[nu]) * tmp;
|
||||
tmp = Cshift(tmp, nu, -2);
|
||||
Stap += Cshift(tmp, mu, 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void RectStapleUnoptimised(GaugeMat &Stap,const GaugeLorentz &Umu,int mu){
|
||||
static void RectStaple(GaugeMat &Stap, const GaugeLorentz &Umu, int mu) {
|
||||
RectStapleUnoptimised(Stap, Umu, mu);
|
||||
}
|
||||
static void RectStaple(const GaugeLorentz &Umu, GaugeMat &Stap,
|
||||
std::vector<GaugeMat> &U2, std::vector<GaugeMat> &U,
|
||||
int mu) {
|
||||
if (Gimpl::isPeriodicGaugeField()) {
|
||||
RectStapleOptimised(Stap, U2, U, mu);
|
||||
} else {
|
||||
RectStapleUnoptimised(Stap, Umu, mu);
|
||||
}
|
||||
}
|
||||
|
||||
static void RectStapleUnoptimised(GaugeMat &Stap, const GaugeLorentz &Umu,
|
||||
int mu) {
|
||||
GridBase *grid = Umu._grid;
|
||||
|
||||
std::vector<GaugeMat> U(Nd,grid);
|
||||
for(int d=0;d<Nd;d++){
|
||||
U[d] = PeekIndex<LorentzIndex>(Umu,d);
|
||||
std::vector<GaugeMat> U(Nd, grid);
|
||||
for (int d = 0; d < Nd; d++) {
|
||||
U[d] = PeekIndex<LorentzIndex>(Umu, d);
|
||||
}
|
||||
|
||||
Stap=zero;
|
||||
Stap = zero;
|
||||
|
||||
for(int nu=0;nu<Nd;nu++){
|
||||
if ( nu!=mu) {
|
||||
// __ ___
|
||||
// | __ |
|
||||
//
|
||||
Stap+= Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftForward (U[mu],mu,
|
||||
Gimpl::CovShiftForward (U[nu],nu,
|
||||
Gimpl::CovShiftBackward(U[mu],mu,
|
||||
Gimpl::CovShiftBackward(U[mu],mu,
|
||||
Gimpl::CovShiftIdentityBackward(U[nu],nu))))) , mu);
|
||||
for (int nu = 0; nu < Nd; nu++) {
|
||||
if (nu != mu) {
|
||||
// __ ___
|
||||
// | __ |
|
||||
//
|
||||
Stap += Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftForward(
|
||||
U[mu], mu,
|
||||
Gimpl::CovShiftForward(
|
||||
U[nu], nu,
|
||||
Gimpl::CovShiftBackward(
|
||||
U[mu], mu,
|
||||
Gimpl::CovShiftBackward(
|
||||
U[mu], mu,
|
||||
Gimpl::CovShiftIdentityBackward(U[nu], nu))))),
|
||||
mu);
|
||||
|
||||
// __
|
||||
// |__ __ |
|
||||
// __
|
||||
// |__ __ |
|
||||
|
||||
Stap+= Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftForward (U[mu],mu,
|
||||
Gimpl::CovShiftBackward(U[nu],nu,
|
||||
Gimpl::CovShiftBackward(U[mu],mu,
|
||||
Gimpl::CovShiftBackward(U[mu],mu, U[nu])))) , mu);
|
||||
Stap += Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftForward(
|
||||
U[mu], mu,
|
||||
Gimpl::CovShiftBackward(
|
||||
U[nu], nu,
|
||||
Gimpl::CovShiftBackward(
|
||||
U[mu], mu, Gimpl::CovShiftBackward(U[mu], mu, U[nu])))),
|
||||
mu);
|
||||
|
||||
// __
|
||||
// |__ __ |
|
||||
// __
|
||||
// |__ __ |
|
||||
|
||||
Stap+= Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftBackward(U[nu],nu,
|
||||
Gimpl::CovShiftBackward(U[mu],mu,
|
||||
Gimpl::CovShiftBackward(U[mu],mu,
|
||||
Gimpl::CovShiftForward(U[nu],nu,U[mu])))) , mu);
|
||||
Stap += Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftBackward(
|
||||
U[nu], nu,
|
||||
Gimpl::CovShiftBackward(
|
||||
U[mu], mu,
|
||||
Gimpl::CovShiftBackward(
|
||||
U[mu], mu, Gimpl::CovShiftForward(U[nu], nu, U[mu])))),
|
||||
mu);
|
||||
|
||||
// __ ___
|
||||
// |__ |
|
||||
// __ ___
|
||||
// |__ |
|
||||
|
||||
Stap+= Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftForward (U[nu],nu,
|
||||
Gimpl::CovShiftBackward(U[mu],mu,
|
||||
Gimpl::CovShiftBackward(U[mu],mu,
|
||||
Gimpl::CovShiftBackward(U[nu],nu,U[mu])))) , mu);
|
||||
Stap += Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftForward(
|
||||
U[nu], nu,
|
||||
Gimpl::CovShiftBackward(
|
||||
U[mu], mu,
|
||||
Gimpl::CovShiftBackward(
|
||||
U[mu], mu, Gimpl::CovShiftBackward(U[nu], nu, U[mu])))),
|
||||
mu);
|
||||
|
||||
// --
|
||||
// | |
|
||||
//
|
||||
// | |
|
||||
|
||||
Stap+= Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftForward(U[nu],nu,
|
||||
Gimpl::CovShiftForward(U[nu],nu,
|
||||
Gimpl::CovShiftBackward(U[mu],mu,
|
||||
Gimpl::CovShiftBackward(U[nu],nu,
|
||||
Gimpl::CovShiftIdentityBackward(U[nu],nu))))) , mu);
|
||||
// --
|
||||
// | |
|
||||
//
|
||||
// | |
|
||||
|
||||
Stap += Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftForward(
|
||||
U[nu], nu,
|
||||
Gimpl::CovShiftForward(
|
||||
U[nu], nu,
|
||||
Gimpl::CovShiftBackward(
|
||||
U[mu], mu,
|
||||
Gimpl::CovShiftBackward(
|
||||
U[nu], nu,
|
||||
Gimpl::CovShiftIdentityBackward(U[nu], nu))))),
|
||||
mu);
|
||||
|
||||
// | |
|
||||
//
|
||||
// | |
|
||||
// --
|
||||
|
||||
Stap+= Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftBackward(U[nu],nu,
|
||||
Gimpl::CovShiftBackward(U[nu],nu,
|
||||
Gimpl::CovShiftBackward(U[mu],mu,
|
||||
Gimpl::CovShiftForward (U[nu],nu,U[nu])))) , mu);
|
||||
}}
|
||||
// | |
|
||||
//
|
||||
// | |
|
||||
// --
|
||||
|
||||
Stap += Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftBackward(
|
||||
U[nu], nu,
|
||||
Gimpl::CovShiftBackward(
|
||||
U[nu], nu,
|
||||
Gimpl::CovShiftBackward(
|
||||
U[mu], mu, Gimpl::CovShiftForward(U[nu], nu, U[nu])))),
|
||||
mu);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
typedef WilsonLoops<PeriodicGimplR> ColourWilsonLoops;
|
||||
typedef WilsonLoops<PeriodicGimplR> U1WilsonLoops;
|
||||
typedef WilsonLoops<PeriodicGimplR> SU2WilsonLoops;
|
||||
typedef WilsonLoops<PeriodicGimplR> SU3WilsonLoops;
|
||||
}
|
||||
}
|
||||
|
||||
typedef WilsonLoops<PeriodicGimplR> ColourWilsonLoops;
|
||||
typedef WilsonLoops<PeriodicGimplR> U1WilsonLoops;
|
||||
typedef WilsonLoops<PeriodicGimplR> SU2WilsonLoops;
|
||||
typedef WilsonLoops<PeriodicGimplR> SU3WilsonLoops;
|
||||
|
||||
}}
|
||||
|
||||
#endif
|
||||
#endif
|
Reference in New Issue
Block a user