1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 01:05:38 +01:00

Merge branch 'develop' into feature/hirep

This commit is contained in:
Guido Cossu 2016-08-30 18:21:36 +01:00
commit fd5614738d
503 changed files with 84592 additions and 1780 deletions

View File

@ -82,13 +82,14 @@ install:
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then export LDFLAGS='-L/usr/local/lib'; fi - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then export LDFLAGS='-L/usr/local/lib'; fi
script: script:
- ./scripts/reconfigure_script - ./autogen.sh
- mkdir build - mkdir build
- cd build - cd build
- ../configure CXXFLAGS="-msse4.2 -O3 -std=c++11" LIBS="-lmpfr -lgmp" --enable-precision=single --enable-simd=SSE4 --enable-comms=none - ../configure CXXFLAGS="-msse4.2 -O3 -std=c++11" LIBS="-lmpfr -lgmp" --enable-precision=single --enable-simd=SSE4 --enable-comms=none
- make -j4 - make -j1 -C prerequisites
- make -j4
- ./benchmarks/Benchmark_dwf --threads 1 - ./benchmarks/Benchmark_dwf --threads 1
- make clean - echo make clean
- ../configure CXXFLAGS="-msse4.2 -O3 -std=c++11" LIBS="-lmpfr -lgmp" --enable-precision=double --enable-simd=SSE4 --enable-comms=none - ../configure CXXFLAGS="-msse4.2 -O3 -std=c++11" LIBS="-lmpfr -lgmp" --enable-precision=double --enable-simd=SSE4 --enable-comms=none
- make -j4 - make -j4
- ./benchmarks/Benchmark_dwf --threads 1 - ./benchmarks/Benchmark_dwf --threads 1

View File

@ -1,5 +1,6 @@
# additional include paths necessary to compile the C++ library # additional include paths necessary to compile the C++ library
AM_CXXFLAGS = -I$(top_srcdir)/ AM_CXXFLAGS = -I$(top_srcdir)/include/
SUBDIRS = lib tests benchmarks
SUBDIRS = prerequisites lib benchmarks tests
filelist: $(SUBDIRS) filelist: $(SUBDIRS)

4
autogen.sh Executable file
View File

@ -0,0 +1,4 @@
aclocal -I m4
autoheader -f
automake -f --add-missing
autoconf -f

View File

@ -25,7 +25,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/ *************************************************************************************/
/* END LEGAL */ /* END LEGAL */
#include <Grid.h> #include <Grid/Grid.h>
using namespace std; using namespace std;
using namespace Grid; using namespace Grid;
@ -196,5 +196,126 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Benchmarking sequential persistent halo exchange in "<<nmu<<" dimensions"<<std::endl;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L "<<"\t\t"<<" Ls "<<"\t\t"<<"bytes"<<"\t\t"<<"MB/s uni"<<"\t\t"<<"MB/s bidi"<<std::endl;
for(int lat=4;lat<=32;lat+=2){
for(int Ls=1;Ls<=16;Ls*=2){
std::vector<int> latt_size ({lat,lat,lat,lat});
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
std::vector<std::vector<HalfSpinColourVectorD> > xbuf(8,std::vector<HalfSpinColourVectorD>(lat*lat*lat*Ls));
std::vector<std::vector<HalfSpinColourVectorD> > rbuf(8,std::vector<HalfSpinColourVectorD>(lat*lat*lat*Ls));
int ncomm;
int bytes=lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD);
std::vector<CartesianCommunicator::CommsRequest_t> empty;
std::vector<std::vector<CartesianCommunicator::CommsRequest_t> > requests_fwd(Nd,empty);
std::vector<std::vector<CartesianCommunicator::CommsRequest_t> > requests_bwd(Nd,empty);
for(int mu=0;mu<4;mu++){
ncomm=0;
if (mpi_layout[mu]>1 ) {
ncomm++;
int comm_proc;
int xmit_to_rank;
int recv_from_rank;
comm_proc=1;
Grid.ShiftedRanks(mu,comm_proc,xmit_to_rank,recv_from_rank);
Grid.SendToRecvFromInit(requests_fwd[mu],
(void *)&xbuf[mu][0],
xmit_to_rank,
(void *)&rbuf[mu][0],
recv_from_rank,
bytes);
comm_proc = mpi_layout[mu]-1;
Grid.ShiftedRanks(mu,comm_proc,xmit_to_rank,recv_from_rank);
Grid.SendToRecvFromInit(requests_bwd[mu],
(void *)&xbuf[mu+4][0],
xmit_to_rank,
(void *)&rbuf[mu+4][0],
recv_from_rank,
bytes);
}
}
{
double start=usecond();
for(int i=0;i<Nloop;i++){
for(int mu=0;mu<4;mu++){
if (mpi_layout[mu]>1 ) {
Grid.SendToRecvFromBegin(requests_fwd[mu]);
Grid.SendToRecvFromComplete(requests_fwd[mu]);
Grid.SendToRecvFromBegin(requests_bwd[mu]);
Grid.SendToRecvFromComplete(requests_bwd[mu]);
}
}
Grid.Barrier();
}
double stop=usecond();
double dbytes = bytes;
double xbytes = Nloop*dbytes*2.0*ncomm;
double rbytes = xbytes;
double bidibytes = xbytes+rbytes;
double time = stop-start;
std::cout<<GridLogMessage << lat<<"\t\t"<<Ls<<"\t\t"<<bytes<<"\t\t"<<xbytes/time<<"\t\t"<<bidibytes/time<<std::endl;
}
{
double start=usecond();
for(int i=0;i<Nloop;i++){
for(int mu=0;mu<4;mu++){
if (mpi_layout[mu]>1 ) {
Grid.SendToRecvFromBegin(requests_fwd[mu]);
Grid.SendToRecvFromBegin(requests_bwd[mu]);
Grid.SendToRecvFromComplete(requests_fwd[mu]);
Grid.SendToRecvFromComplete(requests_bwd[mu]);
}
}
Grid.Barrier();
}
double stop=usecond();
double dbytes = bytes;
double xbytes = Nloop*dbytes*2.0*ncomm;
double rbytes = xbytes;
double bidibytes = xbytes+rbytes;
double time = stop-start;
std::cout<<GridLogMessage << lat<<"\t\t"<<Ls<<"\t\t"<<bytes<<"\t\t"<<xbytes/time<<"\t\t"<<bidibytes/time<<std::endl;
}
}
}
Grid_finalize(); Grid_finalize();
} }

View File

@ -26,8 +26,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/ *************************************************************************************/
/* END LEGAL */ /* END LEGAL */
#include <Grid.h> #include <Grid/Grid.h>
#include <PerfCount.h>
using namespace std; using namespace std;
using namespace Grid; using namespace Grid;
@ -46,9 +45,9 @@ struct scal {
}; };
bool overlapComms = false; bool overlapComms = false;
typedef WilsonFermion5D<DomainWallRedBlack5dImplR> WilsonFermion5DR; typedef WilsonFermion5D<DomainWallVec5dImplR> WilsonFermion5DR;
typedef WilsonFermion5D<DomainWallRedBlack5dImplF> WilsonFermion5DF; typedef WilsonFermion5D<DomainWallVec5dImplF> WilsonFermion5DF;
typedef WilsonFermion5D<DomainWallRedBlack5dImplD> WilsonFermion5DD; typedef WilsonFermion5D<DomainWallVec5dImplD> WilsonFermion5DD;
int main (int argc, char ** argv) int main (int argc, char ** argv)
@ -71,8 +70,8 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage << "Making s innermost grids"<<std::endl; std::cout << GridLogMessage << "Making s innermost grids"<<std::endl;
GridCartesian * sUGrid = SpaceTimeGrid::makeFourDimDWFGrid(GridDefaultLatt(),GridDefaultMpi()); GridCartesian * sUGrid = SpaceTimeGrid::makeFourDimDWFGrid(GridDefaultLatt(),GridDefaultMpi());
GridRedBlackCartesian * sUrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(sUGrid);
GridCartesian * sFGrid = SpaceTimeGrid::makeFiveDimDWFGrid(Ls,UGrid); GridCartesian * sFGrid = SpaceTimeGrid::makeFiveDimDWFGrid(Ls,UGrid);
std::cout << GridLogMessage << "Making s innermost rb grids"<<std::endl;
GridRedBlackCartesian * sFrbGrid = SpaceTimeGrid::makeFiveDimDWFRedBlackGrid(Ls,UGrid); GridRedBlackCartesian * sFrbGrid = SpaceTimeGrid::makeFiveDimDWFRedBlackGrid(Ls,UGrid);
std::vector<int> seeds4({1,2,3,4}); std::vector<int> seeds4({1,2,3,4});
@ -87,6 +86,16 @@ int main (int argc, char ** argv)
LatticeFermion tmp(FGrid); LatticeFermion tmp(FGrid);
LatticeFermion err(FGrid); LatticeFermion err(FGrid);
/* src=zero;
std::vector<int> origin(5,0);
SpinColourVector f=zero;
for(int sp=0;sp<4;sp++){
for(int co=0;co<3;co++){
f()(sp)(co)=Complex(1.0,0.0);
}}
pokeSite(f,src,origin);
*/
ColourMatrix cm = Complex(1.0,0.0); ColourMatrix cm = Complex(1.0,0.0);
LatticeGaugeField Umu(UGrid); LatticeGaugeField Umu(UGrid);
@ -127,19 +136,16 @@ int main (int argc, char ** argv)
RealD mass=0.1; RealD mass=0.1;
RealD M5 =1.8; RealD M5 =1.8;
typename DomainWallFermionR::ImplParams params;
params.overlapCommsCompute = overlapComms;
RealD NP = UGrid->_Nprocessors; RealD NP = UGrid->_Nprocessors;
for(int doasm=1;doasm<2;doasm++){ for(int doasm=1;doasm<2;doasm++){
QCD::WilsonKernelsStatic::AsmOpt=doasm; QCD::WilsonKernelsStatic::AsmOpt=doasm;
DomainWallFermionR Dw(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,params); DomainWallFermionR Dw(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
std::cout<<GridLogMessage << "Calling Dw"<<std::endl; std::cout<<GridLogMessage << "Calling Dw"<<std::endl;
int ncall =10; int ncall =100;
if (1) { if (1) {
double t0=usecond(); double t0=usecond();
@ -165,11 +171,12 @@ int main (int argc, char ** argv)
if (1) if (1)
{ {
typedef WilsonFermion5D<DomainWallRedBlack5dImplR> WilsonFermion5DR; typedef WilsonFermion5D<DomainWallVec5dImplR> WilsonFermion5DR;
LatticeFermion ssrc(sFGrid); LatticeFermion ssrc(sFGrid);
LatticeFermion sref(sFGrid); LatticeFermion sref(sFGrid);
LatticeFermion sresult(sFGrid); LatticeFermion sresult(sFGrid);
WilsonFermion5DR sDw(1,Umu,*sFGrid,*sFrbGrid,*sUGrid,M5,params);
WilsonFermion5DR sDw(Umu,*sFGrid,*sFrbGrid,*sUGrid,*sUrbGrid,M5);
for(int x=0;x<latt4[0];x++){ for(int x=0;x<latt4[0];x++){
for(int y=0;y<latt4[1];y++){ for(int y=0;y<latt4[1];y++){
@ -181,7 +188,7 @@ int main (int argc, char ** argv)
peekSite(tmp,src,site); peekSite(tmp,src,site);
pokeSite(tmp,ssrc,site); pokeSite(tmp,ssrc,site);
}}}}} }}}}}
std::cout<<"src norms "<< norm2(src)<<" " <<norm2(ssrc)<<std::endl;
double t0=usecond(); double t0=usecond();
for(int i=0;i<ncall;i++){ for(int i=0;i<ncall;i++){
__SSC_START; __SSC_START;
@ -208,6 +215,7 @@ int main (int argc, char ** argv)
} }
} }
std::cout<<"res norms "<< norm2(result)<<" " <<norm2(sresult)<<std::endl;
RealF sum=0; RealF sum=0;
@ -221,9 +229,11 @@ int main (int argc, char ** argv)
peekSite(normal,result,site); peekSite(normal,result,site);
peekSite(simd,sresult,site); peekSite(simd,sresult,site);
sum=sum+norm2(normal-simd); sum=sum+norm2(normal-simd);
// std::cout << "site "<<x<<","<<y<<","<<z<<","<<t<<","<<s<<" "<<norm2(normal-simd)<<std::endl; if (norm2(normal-simd) > 1.0e-6 ) {
// std::cout << "site "<<x<<","<<y<<","<<z<<","<<t<<","<<s<<" "<<normal<<std::endl; std::cout << "site "<<x<<","<<y<<","<<z<<","<<t<<","<<s<<" "<<norm2(normal-simd)<<std::endl;
// std::cout << "site "<<x<<","<<y<<","<<z<<","<<t<<","<<s<<" "<<simd<<std::endl; std::cout << "site "<<x<<","<<y<<","<<z<<","<<t<<","<<s<<" normal "<<normal<<std::endl;
std::cout << "site "<<x<<","<<y<<","<<z<<","<<t<<","<<s<<" simd "<<simd<<std::endl;
}
}}}}} }}}}}
std::cout<<" difference between normal and simd is "<<sum<<std::endl; std::cout<<" difference between normal and simd is "<<sum<<std::endl;
@ -268,9 +278,9 @@ int main (int argc, char ** argv)
pickCheckerboard(Even,ssrc_e,sresult); pickCheckerboard(Even,ssrc_e,sresult);
pickCheckerboard(Odd ,ssrc_o,sresult); pickCheckerboard(Odd ,ssrc_o,sresult);
ssrc_e = ssrc_e - sr_e; ssrc_e = ssrc_e - sr_e;
std::cout<<GridLogMessage << "sE norm diff "<< norm2(ssrc_e)<<std::endl; std::cout<<GridLogMessage << "sE norm diff "<< norm2(ssrc_e)<< " vec nrm"<<norm2(sr_e) <<std::endl;
ssrc_o = ssrc_o - sr_o; ssrc_o = ssrc_o - sr_o;
std::cout<<GridLogMessage << "sO norm diff "<< norm2(ssrc_o)<<std::endl; std::cout<<GridLogMessage << "sO norm diff "<< norm2(ssrc_o)<< " vec nrm"<<norm2(sr_o) <<std::endl;
} }

View File

@ -26,8 +26,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/ *************************************************************************************/
/* END LEGAL */ /* END LEGAL */
#include <Grid.h> #include <Grid/Grid.h>
#include <PerfCount.h>
using namespace std; using namespace std;
using namespace Grid; using namespace Grid;

View File

@ -26,8 +26,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/ *************************************************************************************/
/* END LEGAL */ /* END LEGAL */
#include <Grid.h> #include <Grid/Grid.h>
#include <PerfCount.h>
using namespace std; using namespace std;
using namespace Grid; using namespace Grid;
@ -126,7 +125,6 @@ void benchDw(std::vector<int> & latt4, int Ls, int threads,int report )
ColourMatrix cm = Complex(1.0,0.0); ColourMatrix cm = Complex(1.0,0.0);
LatticeGaugeField Umu5d(FGrid); LatticeGaugeField Umu5d(FGrid);
// replicate across fifth dimension // replicate across fifth dimension
@ -145,11 +143,10 @@ void benchDw(std::vector<int> & latt4, int Ls, int threads,int report )
} }
#ifdef CHECK #ifdef CHECK
if (1) if (1) {
{
ref = zero; ref = zero;
for(int mu=0;mu<Nd;mu++){ for(int mu=0;mu<Nd;mu++){
tmp = U[mu]*Cshift(src,mu+1,1); tmp = U[mu]*Cshift(src,mu+1,1);
ref=ref + tmp - Gamma(Gmu[mu])*tmp; ref=ref + tmp - Gamma(Gmu[mu])*tmp;
@ -193,20 +190,19 @@ void benchDw(std::vector<int> & latt4, int Ls, int threads,int report )
Counter.Report(); Counter.Report();
} }
if ( ! report ) if ( ! report ) {
{ double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu]; double flops=1344*volume*ncall;
double flops=1344*volume*ncall; std::cout <<"\t"<<NP<< "\t"<<flops/(t1-t0)<< "\t";
std::cout <<"\t"<<NP<< "\t"<<flops/(t1-t0)<< "\t"; }
}
#ifdef CHECK #ifdef CHECK
err = ref-result; err = ref-result;
RealD errd = norm2(err); RealD errd = norm2(err);
if ( errd> 1.0e-4 ) { if ( errd> 1.0e-4 ) {
std::cout<<GridLogMessage << "oops !!! norm diff "<< norm2(err)<<std::endl; std::cout<<GridLogMessage << "oops !!! norm diff "<< norm2(err)<<std::endl;
exit(-1); exit(-1);
} }
#endif #endif
LatticeFermion src_e (FrbGrid); LatticeFermion src_e (FrbGrid);
@ -232,10 +228,9 @@ void benchDw(std::vector<int> & latt4, int Ls, int threads,int report )
std::cout<< flops/(t1-t0); std::cout<< flops/(t1-t0);
} }
} }
} }
#undef CHECK_SDW #define CHECK_SDW
void benchsDw(std::vector<int> & latt4, int Ls, int threads, int report ) void benchsDw(std::vector<int> & latt4, int Ls, int threads, int report )
{ {
@ -243,7 +238,9 @@ void benchsDw(std::vector<int> & latt4, int Ls, int threads, int report )
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid); GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid); GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid); GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
GridCartesian * sUGrid = SpaceTimeGrid::makeFourDimDWFGrid(latt4,GridDefaultMpi()); GridCartesian * sUGrid = SpaceTimeGrid::makeFourDimDWFGrid(latt4,GridDefaultMpi());
GridRedBlackCartesian * sUrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(sUGrid);
GridCartesian * sFGrid = SpaceTimeGrid::makeFiveDimDWFGrid(Ls,UGrid); GridCartesian * sFGrid = SpaceTimeGrid::makeFiveDimDWFGrid(Ls,UGrid);
GridRedBlackCartesian * sFrbGrid = SpaceTimeGrid::makeFiveDimDWFRedBlackGrid(Ls,UGrid); GridRedBlackCartesian * sFrbGrid = SpaceTimeGrid::makeFiveDimDWFRedBlackGrid(Ls,UGrid);
@ -277,93 +274,89 @@ void benchsDw(std::vector<int> & latt4, int Ls, int threads, int report )
} }
} }
RealD mass=0.1; RealD mass=0.1;
RealD M5 =1.8; RealD M5 =1.8;
typedef WilsonFermion5D<DomainWallRedBlack5dImplR> WilsonFermion5DR; typedef WilsonFermion5D<DomainWallVec5dImplR> WilsonFermion5DR;
LatticeFermion ssrc(sFGrid); LatticeFermion ssrc(sFGrid);
LatticeFermion sref(sFGrid); LatticeFermion sref(sFGrid);
LatticeFermion sresult(sFGrid); LatticeFermion sresult(sFGrid);
WilsonFermion5DR sDw(1,Umu,*sFGrid,*sFrbGrid,*sUGrid,M5); WilsonFermion5DR sDw(Umu,*sFGrid,*sFrbGrid,*sUGrid,*sUrbGrid,M5);
for(int x=0;x<latt4[0];x++){ for(int x=0;x<latt4[0];x++){
for(int y=0;y<latt4[1];y++){ for(int y=0;y<latt4[1];y++){
for(int z=0;z<latt4[2];z++){ for(int z=0;z<latt4[2];z++){
for(int t=0;t<latt4[3];t++){ for(int t=0;t<latt4[3];t++){
for(int s=0;s<Ls;s++){ for(int s=0;s<Ls;s++){
std::vector<int> site({s,x,y,z,t}); std::vector<int> site({s,x,y,z,t});
SpinColourVector tmp; SpinColourVector tmp;
peekSite(tmp,src,site); peekSite(tmp,src,site);
pokeSite(tmp,ssrc,site); pokeSite(tmp,ssrc,site);
}}}}} }}}}}
double t0=usecond(); double t0=usecond();
sDw.Dhop(ssrc,sresult,0); sDw.Dhop(ssrc,sresult,0);
double t1=usecond(); double t1=usecond();
#ifdef TIMERS_OFF #ifdef TIMERS_OFF
int ncall =10; int ncall =10;
#else #else
int ncall =1+(int) ((5.0*1000*1000)/(t1-t0)); int ncall =1+(int) ((5.0*1000*1000)/(t1-t0));
#endif #endif
PerformanceCounter Counter(8); PerformanceCounter Counter(8);
Counter.Start(); Counter.Start();
t0=usecond(); t0=usecond();
for(int i=0;i<ncall;i++){ for(int i=0;i<ncall;i++){
sDw.Dhop(ssrc,sresult,0); sDw.Dhop(ssrc,sresult,0);
} }
t1=usecond(); t1=usecond();
Counter.Stop(); Counter.Stop();
if ( report ) {
Counter.Report();
} else {
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=1344*volume*ncall;
std::cout<<"\t"<< flops/(t1-t0);
}
if ( report ) { LatticeFermion sr_eo(sFGrid);
Counter.Report(); LatticeFermion serr(sFGrid);
} else {
LatticeFermion ssrc_e (sFrbGrid);
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu]; LatticeFermion ssrc_o (sFrbGrid);
double flops=1344*volume*ncall; LatticeFermion sr_e (sFrbGrid);
std::cout<<"\t"<< flops/(t1-t0); LatticeFermion sr_o (sFrbGrid);
}
LatticeFermion sr_eo(sFGrid);
LatticeFermion serr(sFGrid);
LatticeFermion ssrc_e (sFrbGrid);
LatticeFermion ssrc_o (sFrbGrid);
LatticeFermion sr_e (sFrbGrid);
LatticeFermion sr_o (sFrbGrid);
pickCheckerboard(Even,ssrc_e,ssrc); pickCheckerboard(Even,ssrc_e,ssrc);
pickCheckerboard(Odd,ssrc_o,ssrc); pickCheckerboard(Odd,ssrc_o,ssrc);
setCheckerboard(sr_eo,ssrc_o); setCheckerboard(sr_eo,ssrc_o);
setCheckerboard(sr_eo,ssrc_e); setCheckerboard(sr_eo,ssrc_e);
sr_e = zero;
sr_o = zero;
sr_e = zero;
sr_o = zero;
sDw.DhopEO(ssrc_o,sr_e,DaggerNo);
PerformanceCounter CounterSdw(8);
CounterSdw.Start();
t0=usecond();
for(int i=0;i<ncall;i++){
__SSC_START;
sDw.DhopEO(ssrc_o,sr_e,DaggerNo); sDw.DhopEO(ssrc_o,sr_e,DaggerNo);
PerformanceCounter CounterSdw(8); __SSC_STOP;
CounterSdw.Start(); }
t0=usecond(); t1=usecond();
for(int i=0;i<ncall;i++){ CounterSdw.Stop();
__SSC_START;
sDw.DhopEO(ssrc_o,sr_e,DaggerNo);
__SSC_STOP;
}
t1=usecond();
CounterSdw.Stop();
if ( report ) { if ( report ) {
CounterSdw.Report(); CounterSdw.Report();
} else { } else {
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu]; double flops=(1344.0*volume*ncall)/2;
double flops=(1344.0*volume*ncall)/2; std::cout<<"\t"<< flops/(t1-t0);
std::cout<<"\t"<< flops/(t1-t0); }
}
} }

View File

@ -26,7 +26,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/ *************************************************************************************/
/* END LEGAL */ /* END LEGAL */
#include <Grid.h> #include <Grid/Grid.h>
using namespace std; using namespace std;
using namespace Grid; using namespace Grid;

View File

@ -26,7 +26,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/ *************************************************************************************/
/* END LEGAL */ /* END LEGAL */
#include <Grid.h> #include <Grid/Grid.h>
using namespace std; using namespace std;
using namespace Grid; using namespace Grid;

View File

@ -26,7 +26,7 @@ Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
See the full license in the file "LICENSE" in the top level distribution directory See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/ *************************************************************************************/
/* END LEGAL */ /* END LEGAL */
#include <Grid.h> #include <Grid/Grid.h>
using namespace std; using namespace std;
using namespace Grid; using namespace Grid;

View File

@ -26,7 +26,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/ *************************************************************************************/
/* END LEGAL */ /* END LEGAL */
#include <Grid.h> #include <Grid/Grid.h>
using namespace std; using namespace std;
using namespace Grid; using namespace Grid;

View File

@ -25,8 +25,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/ *************************************************************************************/
/* END LEGAL */ /* END LEGAL */
#include <Grid.h> #include <Grid/Grid.h>
#include <PerfCount.h>
using namespace Grid; using namespace Grid;

View File

@ -1,5 +1,5 @@
# additional include paths necessary to compile the C++ library # additional include paths necessary to compile the C++ library
AM_CXXFLAGS = -I$(top_srcdir)/lib AM_CXXFLAGS = -I$(top_srcdir)/include
AM_LDFLAGS = -L$(top_builddir)/lib AM_LDFLAGS = -L$(top_builddir)/lib
# #

252
configure vendored
View File

@ -626,6 +626,13 @@ ac_subst_vars='am__EXEEXT_FALSE
am__EXEEXT_TRUE am__EXEEXT_TRUE
LTLIBOBJS LTLIBOBJS
LIBOBJS LIBOBJS
enable_latex_docs
enable_html_docs
enable_dot
DOXYGEN_DOC_FALSE
DOXYGEN_DOC_TRUE
DOT
DOXYGEN
USE_LAPACK_LIB_FALSE USE_LAPACK_LIB_FALSE
USE_LAPACK_LIB_TRUE USE_LAPACK_LIB_TRUE
USE_LAPACK_FALSE USE_LAPACK_FALSE
@ -760,6 +767,10 @@ enable_rng
enable_timers enable_timers
enable_chroma enable_chroma
enable_lapack enable_lapack
enable_doxygen
enable_dot
enable_html_docs
enable_latex_docs
' '
ac_precious_vars='build_alias ac_precious_vars='build_alias
host_alias host_alias
@ -1421,6 +1432,11 @@ Optional Features:
--enable-timers=yes|no Enable system dependent high res timers --enable-timers=yes|no Enable system dependent high res timers
--enable-chroma Expect chroma compiled under c++11 --enable-chroma Expect chroma compiled under c++11
--enable-lapack Enable lapack yes/no --enable-lapack Enable lapack yes/no
--enable-doxygen enable documentation generation with doxygen (auto)
--enable-dot use 'dot' to generate graphs in doxygen (auto)
--enable-html-docs enable HTML generation with doxygen (yes)
--enable-latex-docs enable LaTeX documentation generation with doxygen
(no)
Some influential environment variables: Some influential environment variables:
CXX C++ compiler command CXX C++ compiler command
@ -3171,6 +3187,15 @@ END
fi fi
ac_sources="lib"
ac_dests="include/Grid "
while test -n "$ac_sources"; do
set $ac_dests; ac_dest=$1; shift; ac_dests=$*
set $ac_sources; ac_source=$1; shift; ac_sources=$*
ac_config_links_1="$ac_config_links_1 $ac_dest:$ac_source"
done
ac_config_links="$ac_config_links $ac_config_links_1"
ac_config_headers="$ac_config_headers lib/Config.h" ac_config_headers="$ac_config_headers lib/Config.h"
@ -6672,7 +6697,6 @@ else
ac_CHROMA=no ac_CHROMA=no
fi fi
case ${ac_CHROMA} in case ${ac_CHROMA} in
yes) yes)
echo Enabling tests regressing to Chroma echo Enabling tests regressing to Chroma
@ -6737,15 +6761,160 @@ fi
################################################################### ###################################################################
# Checks for doxygen support # Checks for doxygen support
# if present enables the "make doxyfile" command # if present enables the "make doxyfile" command
#echo echo
#echo Checking doxygen support echo Checking doxygen support
#echo ::::::::::::::::::::::::::::::::::::::::::: echo :::::::::::::::::::::::::::::::::::::::::::
#AC_PROG_DOXYGEN
#if test -n "$DOXYGEN" # Check whether --enable-doxygen was given.
#then if test "${enable_doxygen+set}" = set; then :
#AC_CONFIG_FILES([docs/doxy.cfg]) enableval=$enable_doxygen;
#fi fi
# Check whether --enable-dot was given.
if test "${enable_dot+set}" = set; then :
enableval=$enable_dot;
fi
# Check whether --enable-html-docs was given.
if test "${enable_html_docs+set}" = set; then :
enableval=$enable_html_docs;
else
enable_html_docs=yes
fi
# Check whether --enable-latex-docs was given.
if test "${enable_latex_docs+set}" = set; then :
enableval=$enable_latex_docs;
else
enable_latex_docs=no
fi
if test "x$enable_doxygen" = xno; then
enable_doc=no
else
# Extract the first word of "doxygen", so it can be a program name with args.
set dummy doxygen; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_DOXYGEN+:} false; then :
$as_echo_n "(cached) " >&6
else
if test -n "$DOXYGEN"; then
ac_cv_prog_DOXYGEN="$DOXYGEN" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
IFS=$as_save_IFS
test -z "$as_dir" && as_dir=.
for ac_exec_ext in '' $ac_executable_extensions; do
if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
ac_cv_prog_DOXYGEN="doxygen"
$as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
break 2
fi
done
done
IFS=$as_save_IFS
fi
fi
DOXYGEN=$ac_cv_prog_DOXYGEN
if test -n "$DOXYGEN"; then
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $DOXYGEN" >&5
$as_echo "$DOXYGEN" >&6; }
else
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi
if test x$DOXYGEN = x; then
if test "x$enable_doxygen" = xyes; then
as_fn_error $? "could not find doxygen" "$LINENO" 5
fi
enable_doc=no
else
doxy_ver=`doxygen --version`
doxy_major=`expr "$doxy_ver" : '\([0-9]\)\..*'`
doxy_minor=`expr "$doxy_ver" : '[0-9]\.\([0-9]\).*'`
if test $doxy_major -eq "1" -a $doxy_minor -ge "3" ; then
enable_doc=yes
# Extract the first word of "dot", so it can be a program name with args.
set dummy dot; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_DOT+:} false; then :
$as_echo_n "(cached) " >&6
else
if test -n "$DOT"; then
ac_cv_prog_DOT="$DOT" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
IFS=$as_save_IFS
test -z "$as_dir" && as_dir=.
for ac_exec_ext in '' $ac_executable_extensions; do
if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
ac_cv_prog_DOT="dot"
$as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
break 2
fi
done
done
IFS=$as_save_IFS
fi
fi
DOT=$ac_cv_prog_DOT
if test -n "$DOT"; then
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $DOT" >&5
$as_echo "$DOT" >&6; }
else
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi
else
{ $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: doxygen version $doxy_ver too old, doxygen will not be used." >&5
$as_echo "$as_me: WARNING: doxygen version $doxy_ver too old, doxygen will not be used." >&2;}
enable_doc=no
fi
fi
fi
if test x$enable_doc = xyes; then
DOXYGEN_DOC_TRUE=
DOXYGEN_DOC_FALSE='#'
else
DOXYGEN_DOC_TRUE='#'
DOXYGEN_DOC_FALSE=
fi
if test x$DOT = x; then
if test "x$enable_dot" = xyes; then
as_fn_error $? "could not find dot" "$LINENO" 5
fi
enable_dot=no
else
enable_dot=yes
fi
if test -n "$DOXYGEN"
then
ac_config_files="$ac_config_files docs/doxy.cfg"
fi
echo echo
echo Creating configuration files echo Creating configuration files
@ -6756,10 +6925,24 @@ ac_config_files="$ac_config_files lib/Makefile"
ac_config_files="$ac_config_files tests/Makefile" ac_config_files="$ac_config_files tests/Makefile"
ac_config_files="$ac_config_files tests/IO/Makefile"
ac_config_files="$ac_config_files tests/core/Makefile"
ac_config_files="$ac_config_files tests/debug/Makefile"
ac_config_files="$ac_config_files tests/forces/Makefile"
ac_config_files="$ac_config_files tests/hmc/Makefile"
ac_config_files="$ac_config_files tests/solver/Makefile"
ac_config_files="$ac_config_files tests/qdpxx/Makefile" ac_config_files="$ac_config_files tests/qdpxx/Makefile"
ac_config_files="$ac_config_files benchmarks/Makefile" ac_config_files="$ac_config_files benchmarks/Makefile"
ac_config_files="$ac_config_files prerequisites/Makefile"
cat >confcache <<\_ACEOF cat >confcache <<\_ACEOF
# This file is a shell script that caches the results of configure # This file is a shell script that caches the results of configure
# tests run on this system so they can be shared between configure # tests run on this system so they can be shared between configure
@ -6925,6 +7108,10 @@ if test -z "${USE_LAPACK_LIB_TRUE}" && test -z "${USE_LAPACK_LIB_FALSE}"; then
as_fn_error $? "conditional \"USE_LAPACK_LIB\" was never defined. as_fn_error $? "conditional \"USE_LAPACK_LIB\" was never defined.
Usually this means the macro was only invoked conditionally." "$LINENO" 5 Usually this means the macro was only invoked conditionally." "$LINENO" 5
fi fi
if test -z "${DOXYGEN_DOC_TRUE}" && test -z "${DOXYGEN_DOC_FALSE}"; then
as_fn_error $? "conditional \"DOXYGEN_DOC\" was never defined.
Usually this means the macro was only invoked conditionally." "$LINENO" 5
fi
: "${CONFIG_STATUS=./config.status}" : "${CONFIG_STATUS=./config.status}"
ac_write_fail=0 ac_write_fail=0
@ -7349,6 +7536,7 @@ cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
# Files that config.status was made for. # Files that config.status was made for.
config_files="$ac_config_files" config_files="$ac_config_files"
config_headers="$ac_config_headers" config_headers="$ac_config_headers"
config_links="$ac_config_links"
config_commands="$ac_config_commands" config_commands="$ac_config_commands"
_ACEOF _ACEOF
@ -7379,6 +7567,9 @@ $config_files
Configuration headers: Configuration headers:
$config_headers $config_headers
Configuration links:
$config_links
Configuration commands: Configuration commands:
$config_commands $config_commands
@ -7517,13 +7708,22 @@ cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1
for ac_config_target in $ac_config_targets for ac_config_target in $ac_config_targets
do do
case $ac_config_target in case $ac_config_target in
"$ac_config_links_1") CONFIG_LINKS="$CONFIG_LINKS $ac_config_links_1" ;;
"lib/Config.h") CONFIG_HEADERS="$CONFIG_HEADERS lib/Config.h" ;; "lib/Config.h") CONFIG_HEADERS="$CONFIG_HEADERS lib/Config.h" ;;
"depfiles") CONFIG_COMMANDS="$CONFIG_COMMANDS depfiles" ;; "depfiles") CONFIG_COMMANDS="$CONFIG_COMMANDS depfiles" ;;
"docs/doxy.cfg") CONFIG_FILES="$CONFIG_FILES docs/doxy.cfg" ;;
"Makefile") CONFIG_FILES="$CONFIG_FILES Makefile" ;; "Makefile") CONFIG_FILES="$CONFIG_FILES Makefile" ;;
"lib/Makefile") CONFIG_FILES="$CONFIG_FILES lib/Makefile" ;; "lib/Makefile") CONFIG_FILES="$CONFIG_FILES lib/Makefile" ;;
"tests/Makefile") CONFIG_FILES="$CONFIG_FILES tests/Makefile" ;; "tests/Makefile") CONFIG_FILES="$CONFIG_FILES tests/Makefile" ;;
"tests/IO/Makefile") CONFIG_FILES="$CONFIG_FILES tests/IO/Makefile" ;;
"tests/core/Makefile") CONFIG_FILES="$CONFIG_FILES tests/core/Makefile" ;;
"tests/debug/Makefile") CONFIG_FILES="$CONFIG_FILES tests/debug/Makefile" ;;
"tests/forces/Makefile") CONFIG_FILES="$CONFIG_FILES tests/forces/Makefile" ;;
"tests/hmc/Makefile") CONFIG_FILES="$CONFIG_FILES tests/hmc/Makefile" ;;
"tests/solver/Makefile") CONFIG_FILES="$CONFIG_FILES tests/solver/Makefile" ;;
"tests/qdpxx/Makefile") CONFIG_FILES="$CONFIG_FILES tests/qdpxx/Makefile" ;; "tests/qdpxx/Makefile") CONFIG_FILES="$CONFIG_FILES tests/qdpxx/Makefile" ;;
"benchmarks/Makefile") CONFIG_FILES="$CONFIG_FILES benchmarks/Makefile" ;; "benchmarks/Makefile") CONFIG_FILES="$CONFIG_FILES benchmarks/Makefile" ;;
"prerequisites/Makefile") CONFIG_FILES="$CONFIG_FILES prerequisites/Makefile" ;;
*) as_fn_error $? "invalid argument: \`$ac_config_target'" "$LINENO" 5;; *) as_fn_error $? "invalid argument: \`$ac_config_target'" "$LINENO" 5;;
esac esac
@ -7537,6 +7737,7 @@ done
if $ac_need_defaults; then if $ac_need_defaults; then
test "${CONFIG_FILES+set}" = set || CONFIG_FILES=$config_files test "${CONFIG_FILES+set}" = set || CONFIG_FILES=$config_files
test "${CONFIG_HEADERS+set}" = set || CONFIG_HEADERS=$config_headers test "${CONFIG_HEADERS+set}" = set || CONFIG_HEADERS=$config_headers
test "${CONFIG_LINKS+set}" = set || CONFIG_LINKS=$config_links
test "${CONFIG_COMMANDS+set}" = set || CONFIG_COMMANDS=$config_commands test "${CONFIG_COMMANDS+set}" = set || CONFIG_COMMANDS=$config_commands
fi fi
@ -7834,7 +8035,7 @@ cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1
fi # test -n "$CONFIG_HEADERS" fi # test -n "$CONFIG_HEADERS"
eval set X " :F $CONFIG_FILES :H $CONFIG_HEADERS :C $CONFIG_COMMANDS" eval set X " :F $CONFIG_FILES :H $CONFIG_HEADERS :L $CONFIG_LINKS :C $CONFIG_COMMANDS"
shift shift
for ac_tag for ac_tag
do do
@ -8111,7 +8312,38 @@ $as_echo X"$_am_arg" |
} }
s/.*/./; q'`/stamp-h$_am_stamp_count s/.*/./; q'`/stamp-h$_am_stamp_count
;; ;;
:L)
#
# CONFIG_LINK
#
if test "$ac_source" = "$ac_file" && test "$srcdir" = '.'; then
:
else
# Prefer the file from the source tree if names are identical.
if test "$ac_source" = "$ac_file" || test ! -r "$ac_source"; then
ac_source=$srcdir/$ac_source
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: linking $ac_source to $ac_file" >&5
$as_echo "$as_me: linking $ac_source to $ac_file" >&6;}
if test ! -r "$ac_source"; then
as_fn_error $? "$ac_source: file not found" "$LINENO" 5
fi
rm -f "$ac_file"
# Try a relative symlink, then a hard link, then a copy.
case $ac_source in
[\\/$]* | ?:[\\/]* ) ac_rel_source=$ac_source ;;
*) ac_rel_source=$ac_top_build_prefix$ac_source ;;
esac
ln -s "$ac_rel_source" "$ac_file" 2>/dev/null ||
ln "$ac_source" "$ac_file" 2>/dev/null ||
cp -p "$ac_source" "$ac_file" ||
as_fn_error $? "cannot link or copy $ac_source to $ac_file" "$LINENO" 5
fi
;;
:C) { $as_echo "$as_me:${as_lineno-$LINENO}: executing $ac_file commands" >&5 :C) { $as_echo "$as_me:${as_lineno-$LINENO}: executing $ac_file commands" >&5
$as_echo "$as_me: executing $ac_file commands" >&6;} $as_echo "$as_me: executing $ac_file commands" >&6;}
;; ;;

View File

@ -10,6 +10,7 @@ AC_INIT([Grid], [1.0], [paboyle@ph.ed.ac.uk])
AC_CANONICAL_SYSTEM AC_CANONICAL_SYSTEM
AM_INIT_AUTOMAKE(subdir-objects) AM_INIT_AUTOMAKE(subdir-objects)
AC_CONFIG_MACRO_DIR([m4]) AC_CONFIG_MACRO_DIR([m4])
AC_LINK_FILES(lib,include/Grid )
AC_CONFIG_SRCDIR([lib/Grid.h]) AC_CONFIG_SRCDIR([lib/Grid.h])
AC_CONFIG_HEADERS([lib/Config.h]) AC_CONFIG_HEADERS([lib/Config.h])
m4_ifdef([AM_SILENT_RULES], [AM_SILENT_RULES([yes])]) m4_ifdef([AM_SILENT_RULES], [AM_SILENT_RULES([yes])])
@ -231,7 +232,6 @@ esac
# Chroma regression tests # Chroma regression tests
# #
AC_ARG_ENABLE([chroma],[AC_HELP_STRING([--enable-chroma],[Expect chroma compiled under c++11 ])],ac_CHROMA=yes,ac_CHROMA=no) AC_ARG_ENABLE([chroma],[AC_HELP_STRING([--enable-chroma],[Expect chroma compiled under c++11 ])],ac_CHROMA=yes,ac_CHROMA=no)
case ${ac_CHROMA} in case ${ac_CHROMA} in
yes) yes)
echo Enabling tests regressing to Chroma echo Enabling tests regressing to Chroma
@ -269,15 +269,15 @@ AM_CONDITIONAL(USE_LAPACK_LIB,[ test "X${ac_LAPACK}X" != "XyesX" ])
################################################################### ###################################################################
# Checks for doxygen support # Checks for doxygen support
# if present enables the "make doxyfile" command # if present enables the "make doxyfile" command
#echo echo
#echo Checking doxygen support echo Checking doxygen support
#echo ::::::::::::::::::::::::::::::::::::::::::: echo :::::::::::::::::::::::::::::::::::::::::::
#AC_PROG_DOXYGEN AC_PROG_DOXYGEN
#if test -n "$DOXYGEN" if test -n "$DOXYGEN"
#then then
#AC_CONFIG_FILES([docs/doxy.cfg]) AC_CONFIG_FILES([docs/doxy.cfg])
#fi fi
echo echo
echo Creating configuration files echo Creating configuration files
@ -285,8 +285,15 @@ echo :::::::::::::::::::::::::::::::::::::::::::
AC_CONFIG_FILES(Makefile) AC_CONFIG_FILES(Makefile)
AC_CONFIG_FILES(lib/Makefile) AC_CONFIG_FILES(lib/Makefile)
AC_CONFIG_FILES(tests/Makefile) AC_CONFIG_FILES(tests/Makefile)
AC_CONFIG_FILES(tests/IO/Makefile)
AC_CONFIG_FILES(tests/core/Makefile)
AC_CONFIG_FILES(tests/debug/Makefile)
AC_CONFIG_FILES(tests/forces/Makefile)
AC_CONFIG_FILES(tests/hmc/Makefile)
AC_CONFIG_FILES(tests/solver/Makefile)
AC_CONFIG_FILES(tests/qdpxx/Makefile) AC_CONFIG_FILES(tests/qdpxx/Makefile)
AC_CONFIG_FILES(benchmarks/Makefile) AC_CONFIG_FILES(benchmarks/Makefile)
AC_CONFIG_FILES(prerequisites/Makefile)
AC_OUTPUT AC_OUTPUT

1
include/Grid Symbolic link
View File

@ -0,0 +1 @@
../lib

View File

@ -29,28 +29,28 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_ALGORITHMS_H #ifndef GRID_ALGORITHMS_H
#define GRID_ALGORITHMS_H #define GRID_ALGORITHMS_H
#include <algorithms/SparseMatrix.h> #include <Grid/algorithms/SparseMatrix.h>
#include <algorithms/LinearOperator.h> #include <Grid/algorithms/LinearOperator.h>
#include <algorithms/Preconditioner.h> #include <Grid/algorithms/Preconditioner.h>
#include <algorithms/approx/Zolotarev.h> #include <Grid/algorithms/approx/Zolotarev.h>
#include <algorithms/approx/Chebyshev.h> #include <Grid/algorithms/approx/Chebyshev.h>
#include <algorithms/approx/Remez.h> #include <Grid/algorithms/approx/Remez.h>
#include <algorithms/approx/MultiShiftFunction.h> #include <Grid/algorithms/approx/MultiShiftFunction.h>
#include <algorithms/iterative/ConjugateGradient.h> #include <Grid/algorithms/iterative/ConjugateGradient.h>
#include <algorithms/iterative/ConjugateResidual.h> #include <Grid/algorithms/iterative/ConjugateResidual.h>
#include <algorithms/iterative/NormalEquations.h> #include <Grid/algorithms/iterative/NormalEquations.h>
#include <algorithms/iterative/SchurRedBlack.h> #include <Grid/algorithms/iterative/SchurRedBlack.h>
#include <algorithms/iterative/ConjugateGradientMultiShift.h> #include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h>
#include <algorithms/iterative/ConjugateGradientMixedPrec.h> #include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
// Lanczos support // Lanczos support
#include <algorithms/iterative/MatrixUtils.h> #include <Grid/algorithms/iterative/MatrixUtils.h>
#include <algorithms/iterative/ImplicitlyRestartedLanczos.h> #include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
#include <algorithms/CoarsenedMatrix.h> #include <Grid/algorithms/CoarsenedMatrix.h>
// Eigen/lanczos // Eigen/lanczos
// EigCg // EigCg

View File

@ -28,8 +28,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_CARTESIAN_H #ifndef GRID_CARTESIAN_H
#define GRID_CARTESIAN_H #define GRID_CARTESIAN_H
#include <cartesian/Cartesian_base.h> #include <Grid/cartesian/Cartesian_base.h>
#include <cartesian/Cartesian_full.h> #include <Grid/cartesian/Cartesian_full.h>
#include <cartesian/Cartesian_red_black.h> #include <Grid/cartesian/Cartesian_red_black.h>
#endif #endif

View File

@ -28,6 +28,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_COMMUNICATOR_H #ifndef GRID_COMMUNICATOR_H
#define GRID_COMMUNICATOR_H #define GRID_COMMUNICATOR_H
#include <communicator/Communicator_base.h> #include <Grid/communicator/Communicator_base.h>
#endif #endif

View File

@ -28,17 +28,17 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifndef _GRID_CSHIFT_H_ #ifndef _GRID_CSHIFT_H_
#define _GRID_CSHIFT_H_ #define _GRID_CSHIFT_H_
#include <cshift/Cshift_common.h> #include <Grid/cshift/Cshift_common.h>
#ifdef GRID_COMMS_NONE #ifdef GRID_COMMS_NONE
#include <cshift/Cshift_none.h> #include <Grid/cshift/Cshift_none.h>
#endif #endif
#ifdef GRID_COMMS_MPI #ifdef GRID_COMMS_MPI
#include <cshift/Cshift_mpi.h> #include <Grid/cshift/Cshift_mpi.h>
#endif #endif
#ifdef GRID_COMMS_SHMEM #ifdef GRID_COMMS_SHMEM
#include <cshift/Cshift_mpi.h> // uses same implementation of communicator #include <Grid/cshift/Cshift_mpi.h> // uses same implementation of communicator
#endif #endif
#endif #endif

1
lib/Eigen.inc Normal file

File diff suppressed because one or more lines are too long

11
lib/Eigen/Array Normal file
View File

@ -0,0 +1,11 @@
#ifndef EIGEN_ARRAY_MODULE_H
#define EIGEN_ARRAY_MODULE_H
// include Core first to handle Eigen2 support macros
#include "Core"
#ifndef EIGEN2_SUPPORT
#error The Eigen/Array header does no longer exist in Eigen3. All that functionality has moved to Eigen/Core.
#endif
#endif // EIGEN_ARRAY_MODULE_H

19
lib/Eigen/CMakeLists.txt Normal file
View File

@ -0,0 +1,19 @@
include(RegexUtils)
test_escape_string_as_regex()
file(GLOB Eigen_directory_files "*")
escape_string_as_regex(ESCAPED_CMAKE_CURRENT_SOURCE_DIR "${CMAKE_CURRENT_SOURCE_DIR}")
foreach(f ${Eigen_directory_files})
if(NOT f MATCHES "\\.txt" AND NOT f MATCHES "${ESCAPED_CMAKE_CURRENT_SOURCE_DIR}/[.].+" AND NOT f MATCHES "${ESCAPED_CMAKE_CURRENT_SOURCE_DIR}/src")
list(APPEND Eigen_directory_files_to_install ${f})
endif()
endforeach(f ${Eigen_directory_files})
install(FILES
${Eigen_directory_files_to_install}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen COMPONENT Devel
)
add_subdirectory(src)

32
lib/Eigen/Cholesky Normal file
View File

@ -0,0 +1,32 @@
#ifndef EIGEN_CHOLESKY_MODULE_H
#define EIGEN_CHOLESKY_MODULE_H
#include "Core"
#include "src/Core/util/DisableStupidWarnings.h"
/** \defgroup Cholesky_Module Cholesky module
*
*
*
* This module provides two variants of the Cholesky decomposition for selfadjoint (hermitian) matrices.
* Those decompositions are accessible via the following MatrixBase methods:
* - MatrixBase::llt(),
* - MatrixBase::ldlt()
*
* \code
* #include <Eigen/Cholesky>
* \endcode
*/
#include "src/misc/Solve.h"
#include "src/Cholesky/LLT.h"
#include "src/Cholesky/LDLT.h"
#ifdef EIGEN_USE_LAPACKE
#include "src/Cholesky/LLT_MKL.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_CHOLESKY_MODULE_H
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

45
lib/Eigen/CholmodSupport Normal file
View File

@ -0,0 +1,45 @@
#ifndef EIGEN_CHOLMODSUPPORT_MODULE_H
#define EIGEN_CHOLMODSUPPORT_MODULE_H
#include "SparseCore"
#include "src/Core/util/DisableStupidWarnings.h"
extern "C" {
#include <cholmod.h>
}
/** \ingroup Support_modules
* \defgroup CholmodSupport_Module CholmodSupport module
*
* This module provides an interface to the Cholmod library which is part of the <a href="http://www.suitesparse.com">suitesparse</a> package.
* It provides the two following main factorization classes:
* - class CholmodSupernodalLLT: a supernodal LLT Cholesky factorization.
* - class CholmodDecomposiiton: a general L(D)LT Cholesky factorization with automatic or explicit runtime selection of the underlying factorization method (supernodal or simplicial).
*
* For the sake of completeness, this module also propose the two following classes:
* - class CholmodSimplicialLLT
* - class CholmodSimplicialLDLT
* Note that these classes does not bring any particular advantage compared to the built-in
* SimplicialLLT and SimplicialLDLT factorization classes.
*
* \code
* #include <Eigen/CholmodSupport>
* \endcode
*
* In order to use this module, the cholmod headers must be accessible from the include paths, and your binary must be linked to the cholmod library and its dependencies.
* The dependencies depend on how cholmod has been compiled.
* For a cmake based project, you can use our FindCholmod.cmake module to help you in this task.
*
*/
#include "src/misc/Solve.h"
#include "src/misc/SparseSolve.h"
#include "src/CholmodSupport/CholmodSupport.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_CHOLMODSUPPORT_MODULE_H

376
lib/Eigen/Core Normal file
View File

@ -0,0 +1,376 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2007-2011 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CORE_H
#define EIGEN_CORE_H
// first thing Eigen does: stop the compiler from committing suicide
#include "src/Core/util/DisableStupidWarnings.h"
// then include this file where all our macros are defined. It's really important to do it first because
// it's where we do all the alignment settings (platform detection and honoring the user's will if he
// defined e.g. EIGEN_DONT_ALIGN) so it needs to be done before we do anything with vectorization.
#include "src/Core/util/Macros.h"
// Disable the ipa-cp-clone optimization flag with MinGW 6.x or newer (enabled by default with -O3)
// See http://eigen.tuxfamily.org/bz/show_bug.cgi?id=556 for details.
#if defined(__MINGW32__) && EIGEN_GNUC_AT_LEAST(4,6)
#pragma GCC optimize ("-fno-ipa-cp-clone")
#endif
#include <complex>
// this include file manages BLAS and MKL related macros
// and inclusion of their respective header files
#include "src/Core/util/MKL_support.h"
// if alignment is disabled, then disable vectorization. Note: EIGEN_ALIGN is the proper check, it takes into
// account both the user's will (EIGEN_DONT_ALIGN) and our own platform checks
#if !EIGEN_ALIGN
#ifndef EIGEN_DONT_VECTORIZE
#define EIGEN_DONT_VECTORIZE
#endif
#endif
#ifdef _MSC_VER
#include <malloc.h> // for _aligned_malloc -- need it regardless of whether vectorization is enabled
#if (_MSC_VER >= 1500) // 2008 or later
// Remember that usage of defined() in a #define is undefined by the standard.
// a user reported that in 64-bit mode, MSVC doesn't care to define _M_IX86_FP.
#if (defined(_M_IX86_FP) && (_M_IX86_FP >= 2)) || defined(_M_X64)
#define EIGEN_SSE2_ON_MSVC_2008_OR_LATER
#endif
#endif
#else
// Remember that usage of defined() in a #define is undefined by the standard
#if (defined __SSE2__) && ( (!defined __GNUC__) || (defined __INTEL_COMPILER) || EIGEN_GNUC_AT_LEAST(4,2) )
#define EIGEN_SSE2_ON_NON_MSVC_BUT_NOT_OLD_GCC
#endif
#endif
#ifndef EIGEN_DONT_VECTORIZE
#if defined (EIGEN_SSE2_ON_NON_MSVC_BUT_NOT_OLD_GCC) || defined(EIGEN_SSE2_ON_MSVC_2008_OR_LATER)
// Defines symbols for compile-time detection of which instructions are
// used.
// EIGEN_VECTORIZE_YY is defined if and only if the instruction set YY is used
#define EIGEN_VECTORIZE
#define EIGEN_VECTORIZE_SSE
#define EIGEN_VECTORIZE_SSE2
// Detect sse3/ssse3/sse4:
// gcc and icc defines __SSE3__, ...
// there is no way to know about this on msvc. You can define EIGEN_VECTORIZE_SSE* if you
// want to force the use of those instructions with msvc.
#ifdef __SSE3__
#define EIGEN_VECTORIZE_SSE3
#endif
#ifdef __SSSE3__
#define EIGEN_VECTORIZE_SSSE3
#endif
#ifdef __SSE4_1__
#define EIGEN_VECTORIZE_SSE4_1
#endif
#ifdef __SSE4_2__
#define EIGEN_VECTORIZE_SSE4_2
#endif
// include files
// This extern "C" works around a MINGW-w64 compilation issue
// https://sourceforge.net/tracker/index.php?func=detail&aid=3018394&group_id=202880&atid=983354
// In essence, intrin.h is included by windows.h and also declares intrinsics (just as emmintrin.h etc. below do).
// However, intrin.h uses an extern "C" declaration, and g++ thus complains of duplicate declarations
// with conflicting linkage. The linkage for intrinsics doesn't matter, but at that stage the compiler doesn't know;
// so, to avoid compile errors when windows.h is included after Eigen/Core, ensure intrinsics are extern "C" here too.
// notice that since these are C headers, the extern "C" is theoretically needed anyways.
extern "C" {
// In theory we should only include immintrin.h and not the other *mmintrin.h header files directly.
// Doing so triggers some issues with ICC. However old gcc versions seems to not have this file, thus:
#if defined(__INTEL_COMPILER) && __INTEL_COMPILER >= 1110
#include <immintrin.h>
#else
#include <emmintrin.h>
#include <xmmintrin.h>
#ifdef EIGEN_VECTORIZE_SSE3
#include <pmmintrin.h>
#endif
#ifdef EIGEN_VECTORIZE_SSSE3
#include <tmmintrin.h>
#endif
#ifdef EIGEN_VECTORIZE_SSE4_1
#include <smmintrin.h>
#endif
#ifdef EIGEN_VECTORIZE_SSE4_2
#include <nmmintrin.h>
#endif
#endif
} // end extern "C"
#elif defined __ALTIVEC__
#define EIGEN_VECTORIZE
#define EIGEN_VECTORIZE_ALTIVEC
#include <altivec.h>
// We need to #undef all these ugly tokens defined in <altivec.h>
// => use __vector instead of vector
#undef bool
#undef vector
#undef pixel
#elif defined __ARM_NEON
#define EIGEN_VECTORIZE
#define EIGEN_VECTORIZE_NEON
#include <arm_neon.h>
#endif
#endif
#if (defined _OPENMP) && (!defined EIGEN_DONT_PARALLELIZE)
#define EIGEN_HAS_OPENMP
#endif
#ifdef EIGEN_HAS_OPENMP
#include <omp.h>
#endif
// MSVC for windows mobile does not have the errno.h file
#if !(defined(_MSC_VER) && defined(_WIN32_WCE)) && !defined(__ARMCC_VERSION)
#define EIGEN_HAS_ERRNO
#endif
#ifdef EIGEN_HAS_ERRNO
#include <cerrno>
#endif
#include <cstddef>
#include <cstdlib>
#include <cmath>
#include <cassert>
#include <functional>
#include <iosfwd>
#include <cstring>
#include <string>
#include <limits>
#include <climits> // for CHAR_BIT
// for min/max:
#include <algorithm>
// for outputting debug info
#ifdef EIGEN_DEBUG_ASSIGN
#include <iostream>
#endif
// required for __cpuid, needs to be included after cmath
#if defined(_MSC_VER) && (defined(_M_IX86)||defined(_M_X64)) && (!defined(_WIN32_WCE))
#include <intrin.h>
#endif
#if defined(_CPPUNWIND) || defined(__EXCEPTIONS)
#define EIGEN_EXCEPTIONS
#endif
#ifdef EIGEN_EXCEPTIONS
#include <new>
#endif
/** \brief Namespace containing all symbols from the %Eigen library. */
namespace Eigen {
inline static const char *SimdInstructionSetsInUse(void) {
#if defined(EIGEN_VECTORIZE_SSE4_2)
return "SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2";
#elif defined(EIGEN_VECTORIZE_SSE4_1)
return "SSE, SSE2, SSE3, SSSE3, SSE4.1";
#elif defined(EIGEN_VECTORIZE_SSSE3)
return "SSE, SSE2, SSE3, SSSE3";
#elif defined(EIGEN_VECTORIZE_SSE3)
return "SSE, SSE2, SSE3";
#elif defined(EIGEN_VECTORIZE_SSE2)
return "SSE, SSE2";
#elif defined(EIGEN_VECTORIZE_ALTIVEC)
return "AltiVec";
#elif defined(EIGEN_VECTORIZE_NEON)
return "ARM NEON";
#else
return "None";
#endif
}
} // end namespace Eigen
#define STAGE10_FULL_EIGEN2_API 10
#define STAGE20_RESOLVE_API_CONFLICTS 20
#define STAGE30_FULL_EIGEN3_API 30
#define STAGE40_FULL_EIGEN3_STRICTNESS 40
#define STAGE99_NO_EIGEN2_SUPPORT 99
#if defined EIGEN2_SUPPORT_STAGE40_FULL_EIGEN3_STRICTNESS
#define EIGEN2_SUPPORT
#define EIGEN2_SUPPORT_STAGE STAGE40_FULL_EIGEN3_STRICTNESS
#elif defined EIGEN2_SUPPORT_STAGE30_FULL_EIGEN3_API
#define EIGEN2_SUPPORT
#define EIGEN2_SUPPORT_STAGE STAGE30_FULL_EIGEN3_API
#elif defined EIGEN2_SUPPORT_STAGE20_RESOLVE_API_CONFLICTS
#define EIGEN2_SUPPORT
#define EIGEN2_SUPPORT_STAGE STAGE20_RESOLVE_API_CONFLICTS
#elif defined EIGEN2_SUPPORT_STAGE10_FULL_EIGEN2_API
#define EIGEN2_SUPPORT
#define EIGEN2_SUPPORT_STAGE STAGE10_FULL_EIGEN2_API
#elif defined EIGEN2_SUPPORT
// default to stage 3, that's what it's always meant
#define EIGEN2_SUPPORT_STAGE30_FULL_EIGEN3_API
#define EIGEN2_SUPPORT_STAGE STAGE30_FULL_EIGEN3_API
#else
#define EIGEN2_SUPPORT_STAGE STAGE99_NO_EIGEN2_SUPPORT
#endif
#ifdef EIGEN2_SUPPORT
#undef minor
#endif
// we use size_t frequently and we'll never remember to prepend it with std:: everytime just to
// ensure QNX/QCC support
using std::size_t;
// gcc 4.6.0 wants std:: for ptrdiff_t
using std::ptrdiff_t;
/** \defgroup Core_Module Core module
* This is the main module of Eigen providing dense matrix and vector support
* (both fixed and dynamic size) with all the features corresponding to a BLAS library
* and much more...
*
* \code
* #include <Eigen/Core>
* \endcode
*/
#include "src/Core/util/Constants.h"
#include "src/Core/util/ForwardDeclarations.h"
#include "src/Core/util/Meta.h"
#include "src/Core/util/StaticAssert.h"
#include "src/Core/util/XprHelper.h"
#include "src/Core/util/Memory.h"
#include "src/Core/NumTraits.h"
#include "src/Core/MathFunctions.h"
#include "src/Core/GenericPacketMath.h"
#if defined EIGEN_VECTORIZE_SSE
#include "src/Core/arch/SSE/PacketMath.h"
#include "src/Core/arch/SSE/MathFunctions.h"
#include "src/Core/arch/SSE/Complex.h"
#elif defined EIGEN_VECTORIZE_ALTIVEC
#include "src/Core/arch/AltiVec/PacketMath.h"
#include "src/Core/arch/AltiVec/Complex.h"
#elif defined EIGEN_VECTORIZE_NEON
#include "src/Core/arch/NEON/PacketMath.h"
#include "src/Core/arch/NEON/Complex.h"
#endif
#include "src/Core/arch/Default/Settings.h"
#include "src/Core/Functors.h"
#include "src/Core/DenseCoeffsBase.h"
#include "src/Core/DenseBase.h"
#include "src/Core/MatrixBase.h"
#include "src/Core/EigenBase.h"
#ifndef EIGEN_PARSED_BY_DOXYGEN // work around Doxygen bug triggered by Assign.h r814874
// at least confirmed with Doxygen 1.5.5 and 1.5.6
#include "src/Core/Assign.h"
#endif
#include "src/Core/util/BlasUtil.h"
#include "src/Core/DenseStorage.h"
#include "src/Core/NestByValue.h"
#include "src/Core/ForceAlignedAccess.h"
#include "src/Core/ReturnByValue.h"
#include "src/Core/NoAlias.h"
#include "src/Core/PlainObjectBase.h"
#include "src/Core/Matrix.h"
#include "src/Core/Array.h"
#include "src/Core/CwiseBinaryOp.h"
#include "src/Core/CwiseUnaryOp.h"
#include "src/Core/CwiseNullaryOp.h"
#include "src/Core/CwiseUnaryView.h"
#include "src/Core/SelfCwiseBinaryOp.h"
#include "src/Core/Dot.h"
#include "src/Core/StableNorm.h"
#include "src/Core/MapBase.h"
#include "src/Core/Stride.h"
#include "src/Core/Map.h"
#include "src/Core/Block.h"
#include "src/Core/VectorBlock.h"
#include "src/Core/Ref.h"
#include "src/Core/Transpose.h"
#include "src/Core/DiagonalMatrix.h"
#include "src/Core/Diagonal.h"
#include "src/Core/DiagonalProduct.h"
#include "src/Core/PermutationMatrix.h"
#include "src/Core/Transpositions.h"
#include "src/Core/Redux.h"
#include "src/Core/Visitor.h"
#include "src/Core/Fuzzy.h"
#include "src/Core/IO.h"
#include "src/Core/Swap.h"
#include "src/Core/CommaInitializer.h"
#include "src/Core/Flagged.h"
#include "src/Core/ProductBase.h"
#include "src/Core/GeneralProduct.h"
#include "src/Core/TriangularMatrix.h"
#include "src/Core/SelfAdjointView.h"
#include "src/Core/products/GeneralBlockPanelKernel.h"
#include "src/Core/products/Parallelizer.h"
#include "src/Core/products/CoeffBasedProduct.h"
#include "src/Core/products/GeneralMatrixVector.h"
#include "src/Core/products/GeneralMatrixMatrix.h"
#include "src/Core/SolveTriangular.h"
#include "src/Core/products/GeneralMatrixMatrixTriangular.h"
#include "src/Core/products/SelfadjointMatrixVector.h"
#include "src/Core/products/SelfadjointMatrixMatrix.h"
#include "src/Core/products/SelfadjointProduct.h"
#include "src/Core/products/SelfadjointRank2Update.h"
#include "src/Core/products/TriangularMatrixVector.h"
#include "src/Core/products/TriangularMatrixMatrix.h"
#include "src/Core/products/TriangularSolverMatrix.h"
#include "src/Core/products/TriangularSolverVector.h"
#include "src/Core/BandMatrix.h"
#include "src/Core/CoreIterators.h"
#include "src/Core/BooleanRedux.h"
#include "src/Core/Select.h"
#include "src/Core/VectorwiseOp.h"
#include "src/Core/Random.h"
#include "src/Core/Replicate.h"
#include "src/Core/Reverse.h"
#include "src/Core/ArrayBase.h"
#include "src/Core/ArrayWrapper.h"
#ifdef EIGEN_USE_BLAS
#include "src/Core/products/GeneralMatrixMatrix_MKL.h"
#include "src/Core/products/GeneralMatrixVector_MKL.h"
#include "src/Core/products/GeneralMatrixMatrixTriangular_MKL.h"
#include "src/Core/products/SelfadjointMatrixMatrix_MKL.h"
#include "src/Core/products/SelfadjointMatrixVector_MKL.h"
#include "src/Core/products/TriangularMatrixMatrix_MKL.h"
#include "src/Core/products/TriangularMatrixVector_MKL.h"
#include "src/Core/products/TriangularSolverMatrix_MKL.h"
#endif // EIGEN_USE_BLAS
#ifdef EIGEN_USE_MKL_VML
#include "src/Core/Assign_MKL.h"
#endif
#include "src/Core/GlobalFunctions.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#ifdef EIGEN2_SUPPORT
#include "Eigen2Support"
#endif
#endif // EIGEN_CORE_H

7
lib/Eigen/Dense Normal file
View File

@ -0,0 +1,7 @@
#include "Core"
#include "LU"
#include "Cholesky"
#include "QR"
#include "SVD"
#include "Geometry"
#include "Eigenvalues"

2
lib/Eigen/Eigen Normal file
View File

@ -0,0 +1,2 @@
#include "Dense"
//#include "Sparse"

95
lib/Eigen/Eigen2Support Normal file
View File

@ -0,0 +1,95 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN2SUPPORT_H
#define EIGEN2SUPPORT_H
#if (!defined(EIGEN2_SUPPORT)) || (!defined(EIGEN_CORE_H))
#error Eigen2 support must be enabled by defining EIGEN2_SUPPORT before including any Eigen header
#endif
#ifndef EIGEN_NO_EIGEN2_DEPRECATED_WARNING
#if defined(__GNUC__) || defined(__INTEL_COMPILER) || defined(__clang__)
#warning "Eigen2 support is deprecated in Eigen 3.2.x and it will be removed in Eigen 3.3. (Define EIGEN_NO_EIGEN2_DEPRECATED_WARNING to disable this warning)"
#else
#pragma message ("Eigen2 support is deprecated in Eigen 3.2.x and it will be removed in Eigen 3.3. (Define EIGEN_NO_EIGEN2_DEPRECATED_WARNING to disable this warning)")
#endif
#endif // EIGEN_NO_EIGEN2_DEPRECATED_WARNING
#include "src/Core/util/DisableStupidWarnings.h"
/** \ingroup Support_modules
* \defgroup Eigen2Support_Module Eigen2 support module
*
* \warning Eigen2 support is deprecated in Eigen 3.2.x and it will be removed in Eigen 3.3.
*
* This module provides a couple of deprecated functions improving the compatibility with Eigen2.
*
* To use it, define EIGEN2_SUPPORT before including any Eigen header
* \code
* #define EIGEN2_SUPPORT
* \endcode
*
*/
#include "src/Eigen2Support/Macros.h"
#include "src/Eigen2Support/Memory.h"
#include "src/Eigen2Support/Meta.h"
#include "src/Eigen2Support/Lazy.h"
#include "src/Eigen2Support/Cwise.h"
#include "src/Eigen2Support/CwiseOperators.h"
#include "src/Eigen2Support/TriangularSolver.h"
#include "src/Eigen2Support/Block.h"
#include "src/Eigen2Support/VectorBlock.h"
#include "src/Eigen2Support/Minor.h"
#include "src/Eigen2Support/MathFunctions.h"
#include "src/Core/util/ReenableStupidWarnings.h"
// Eigen2 used to include iostream
#include<iostream>
#define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \
using Eigen::Matrix##SizeSuffix##TypeSuffix; \
using Eigen::Vector##SizeSuffix##TypeSuffix; \
using Eigen::RowVector##SizeSuffix##TypeSuffix;
#define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(TypeSuffix) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \
#define EIGEN_USING_MATRIX_TYPEDEFS \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(i) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(f) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(d) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cf) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cd)
#define USING_PART_OF_NAMESPACE_EIGEN \
EIGEN_USING_MATRIX_TYPEDEFS \
using Eigen::Matrix; \
using Eigen::MatrixBase; \
using Eigen::ei_random; \
using Eigen::ei_real; \
using Eigen::ei_imag; \
using Eigen::ei_conj; \
using Eigen::ei_abs; \
using Eigen::ei_abs2; \
using Eigen::ei_sqrt; \
using Eigen::ei_exp; \
using Eigen::ei_log; \
using Eigen::ei_sin; \
using Eigen::ei_cos;
#endif // EIGEN2SUPPORT_H

48
lib/Eigen/Eigenvalues Normal file
View File

@ -0,0 +1,48 @@
#ifndef EIGEN_EIGENVALUES_MODULE_H
#define EIGEN_EIGENVALUES_MODULE_H
#include "Core"
#include "src/Core/util/DisableStupidWarnings.h"
#include "Cholesky"
#include "Jacobi"
#include "Householder"
#include "LU"
#include "Geometry"
/** \defgroup Eigenvalues_Module Eigenvalues module
*
*
*
* This module mainly provides various eigenvalue solvers.
* This module also provides some MatrixBase methods, including:
* - MatrixBase::eigenvalues(),
* - MatrixBase::operatorNorm()
*
* \code
* #include <Eigen/Eigenvalues>
* \endcode
*/
#include "src/Eigenvalues/Tridiagonalization.h"
#include "src/Eigenvalues/RealSchur.h"
#include "src/Eigenvalues/EigenSolver.h"
#include "src/Eigenvalues/SelfAdjointEigenSolver.h"
#include "src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h"
#include "src/Eigenvalues/HessenbergDecomposition.h"
#include "src/Eigenvalues/ComplexSchur.h"
#include "src/Eigenvalues/ComplexEigenSolver.h"
#include "src/Eigenvalues/RealQZ.h"
#include "src/Eigenvalues/GeneralizedEigenSolver.h"
#include "src/Eigenvalues/MatrixBaseEigenvalues.h"
#ifdef EIGEN_USE_LAPACKE
#include "src/Eigenvalues/RealSchur_MKL.h"
#include "src/Eigenvalues/ComplexSchur_MKL.h"
#include "src/Eigenvalues/SelfAdjointEigenSolver_MKL.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_EIGENVALUES_MODULE_H
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

63
lib/Eigen/Geometry Normal file
View File

@ -0,0 +1,63 @@
#ifndef EIGEN_GEOMETRY_MODULE_H
#define EIGEN_GEOMETRY_MODULE_H
#include "Core"
#include "src/Core/util/DisableStupidWarnings.h"
#include "SVD"
#include "LU"
#include <limits>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
/** \defgroup Geometry_Module Geometry module
*
*
*
* This module provides support for:
* - fixed-size homogeneous transformations
* - translation, scaling, 2D and 3D rotations
* - quaternions
* - \ref MatrixBase::cross() "cross product"
* - \ref MatrixBase::unitOrthogonal() "orthognal vector generation"
* - some linear components: parametrized-lines and hyperplanes
*
* \code
* #include <Eigen/Geometry>
* \endcode
*/
#include "src/Geometry/OrthoMethods.h"
#include "src/Geometry/EulerAngles.h"
#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
#include "src/Geometry/Homogeneous.h"
#include "src/Geometry/RotationBase.h"
#include "src/Geometry/Rotation2D.h"
#include "src/Geometry/Quaternion.h"
#include "src/Geometry/AngleAxis.h"
#include "src/Geometry/Transform.h"
#include "src/Geometry/Translation.h"
#include "src/Geometry/Scaling.h"
#include "src/Geometry/Hyperplane.h"
#include "src/Geometry/ParametrizedLine.h"
#include "src/Geometry/AlignedBox.h"
#include "src/Geometry/Umeyama.h"
#if defined EIGEN_VECTORIZE_SSE
#include "src/Geometry/arch/Geometry_SSE.h"
#endif
#endif
#ifdef EIGEN2_SUPPORT
#include "src/Eigen2Support/Geometry/All.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_GEOMETRY_MODULE_H
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

23
lib/Eigen/Householder Normal file
View File

@ -0,0 +1,23 @@
#ifndef EIGEN_HOUSEHOLDER_MODULE_H
#define EIGEN_HOUSEHOLDER_MODULE_H
#include "Core"
#include "src/Core/util/DisableStupidWarnings.h"
/** \defgroup Householder_Module Householder module
* This module provides Householder transformations.
*
* \code
* #include <Eigen/Householder>
* \endcode
*/
#include "src/Householder/Householder.h"
#include "src/Householder/HouseholderSequence.h"
#include "src/Householder/BlockHouseholder.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_HOUSEHOLDER_MODULE_H
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

View File

@ -0,0 +1,40 @@
#ifndef EIGEN_ITERATIVELINEARSOLVERS_MODULE_H
#define EIGEN_ITERATIVELINEARSOLVERS_MODULE_H
#include "SparseCore"
#include "OrderingMethods"
#include "src/Core/util/DisableStupidWarnings.h"
/**
* \defgroup IterativeLinearSolvers_Module IterativeLinearSolvers module
*
* This module currently provides iterative methods to solve problems of the form \c A \c x = \c b, where \c A is a squared matrix, usually very large and sparse.
* Those solvers are accessible via the following classes:
* - ConjugateGradient for selfadjoint (hermitian) matrices,
* - BiCGSTAB for general square matrices.
*
* These iterative solvers are associated with some preconditioners:
* - IdentityPreconditioner - not really useful
* - DiagonalPreconditioner - also called JAcobi preconditioner, work very well on diagonal dominant matrices.
* - IncompleteILUT - incomplete LU factorization with dual thresholding
*
* Such problems can also be solved using the direct sparse decomposition modules: SparseCholesky, CholmodSupport, UmfPackSupport, SuperLUSupport.
*
* \code
* #include <Eigen/IterativeLinearSolvers>
* \endcode
*/
#include "src/misc/Solve.h"
#include "src/misc/SparseSolve.h"
#include "src/IterativeLinearSolvers/IterativeSolverBase.h"
#include "src/IterativeLinearSolvers/BasicPreconditioners.h"
#include "src/IterativeLinearSolvers/ConjugateGradient.h"
#include "src/IterativeLinearSolvers/BiCGSTAB.h"
#include "src/IterativeLinearSolvers/IncompleteLUT.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_ITERATIVELINEARSOLVERS_MODULE_H

26
lib/Eigen/Jacobi Normal file
View File

@ -0,0 +1,26 @@
#ifndef EIGEN_JACOBI_MODULE_H
#define EIGEN_JACOBI_MODULE_H
#include "Core"
#include "src/Core/util/DisableStupidWarnings.h"
/** \defgroup Jacobi_Module Jacobi module
* This module provides Jacobi and Givens rotations.
*
* \code
* #include <Eigen/Jacobi>
* \endcode
*
* In addition to listed classes, it defines the two following MatrixBase methods to apply a Jacobi or Givens rotation:
* - MatrixBase::applyOnTheLeft()
* - MatrixBase::applyOnTheRight().
*/
#include "src/Jacobi/Jacobi.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_JACOBI_MODULE_H
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

41
lib/Eigen/LU Normal file
View File

@ -0,0 +1,41 @@
#ifndef EIGEN_LU_MODULE_H
#define EIGEN_LU_MODULE_H
#include "Core"
#include "src/Core/util/DisableStupidWarnings.h"
/** \defgroup LU_Module LU module
* This module includes %LU decomposition and related notions such as matrix inversion and determinant.
* This module defines the following MatrixBase methods:
* - MatrixBase::inverse()
* - MatrixBase::determinant()
*
* \code
* #include <Eigen/LU>
* \endcode
*/
#include "src/misc/Solve.h"
#include "src/misc/Kernel.h"
#include "src/misc/Image.h"
#include "src/LU/FullPivLU.h"
#include "src/LU/PartialPivLU.h"
#ifdef EIGEN_USE_LAPACKE
#include "src/LU/PartialPivLU_MKL.h"
#endif
#include "src/LU/Determinant.h"
#include "src/LU/Inverse.h"
#if defined EIGEN_VECTORIZE_SSE
#include "src/LU/arch/Inverse_SSE.h"
#endif
#ifdef EIGEN2_SUPPORT
#include "src/Eigen2Support/LU.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_LU_MODULE_H
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

32
lib/Eigen/LeastSquares Normal file
View File

@ -0,0 +1,32 @@
#ifndef EIGEN_REGRESSION_MODULE_H
#define EIGEN_REGRESSION_MODULE_H
#ifndef EIGEN2_SUPPORT
#error LeastSquares is only available in Eigen2 support mode (define EIGEN2_SUPPORT)
#endif
// exclude from normal eigen3-only documentation
#ifdef EIGEN2_SUPPORT
#include "Core"
#include "src/Core/util/DisableStupidWarnings.h"
#include "Eigenvalues"
#include "Geometry"
/** \defgroup LeastSquares_Module LeastSquares module
* This module provides linear regression and related features.
*
* \code
* #include <Eigen/LeastSquares>
* \endcode
*/
#include "src/Eigen2Support/LeastSquares.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN2_SUPPORT
#endif // EIGEN_REGRESSION_MODULE_H

28
lib/Eigen/MetisSupport Normal file
View File

@ -0,0 +1,28 @@
#ifndef EIGEN_METISSUPPORT_MODULE_H
#define EIGEN_METISSUPPORT_MODULE_H
#include "SparseCore"
#include "src/Core/util/DisableStupidWarnings.h"
extern "C" {
#include <metis.h>
}
/** \ingroup Support_modules
* \defgroup MetisSupport_Module MetisSupport module
*
* \code
* #include <Eigen/MetisSupport>
* \endcode
* This module defines an interface to the METIS reordering package (http://glaros.dtc.umn.edu/gkhome/views/metis).
* It can be used just as any other built-in method as explained in \link OrderingMethods_Module here. \endlink
*/
#include "src/MetisSupport/MetisSupport.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_METISSUPPORT_MODULE_H

66
lib/Eigen/OrderingMethods Normal file
View File

@ -0,0 +1,66 @@
#ifndef EIGEN_ORDERINGMETHODS_MODULE_H
#define EIGEN_ORDERINGMETHODS_MODULE_H
#include "SparseCore"
#include "src/Core/util/DisableStupidWarnings.h"
/**
* \defgroup OrderingMethods_Module OrderingMethods module
*
* This module is currently for internal use only
*
* It defines various built-in and external ordering methods for sparse matrices.
* They are typically used to reduce the number of elements during
* the sparse matrix decomposition (LLT, LU, QR).
* Precisely, in a preprocessing step, a permutation matrix P is computed using
* those ordering methods and applied to the columns of the matrix.
* Using for instance the sparse Cholesky decomposition, it is expected that
* the nonzeros elements in LLT(A*P) will be much smaller than that in LLT(A).
*
*
* Usage :
* \code
* #include <Eigen/OrderingMethods>
* \endcode
*
* A simple usage is as a template parameter in the sparse decomposition classes :
*
* \code
* SparseLU<MatrixType, COLAMDOrdering<int> > solver;
* \endcode
*
* \code
* SparseQR<MatrixType, COLAMDOrdering<int> > solver;
* \endcode
*
* It is possible as well to call directly a particular ordering method for your own purpose,
* \code
* AMDOrdering<int> ordering;
* PermutationMatrix<Dynamic, Dynamic, int> perm;
* SparseMatrix<double> A;
* //Fill the matrix ...
*
* ordering(A, perm); // Call AMD
* \endcode
*
* \note Some of these methods (like AMD or METIS), need the sparsity pattern
* of the input matrix to be symmetric. When the matrix is structurally unsymmetric,
* Eigen computes internally the pattern of \f$A^T*A\f$ before calling the method.
* If your matrix is already symmetric (at leat in structure), you can avoid that
* by calling the method with a SelfAdjointView type.
*
* \code
* // Call the ordering on the pattern of the lower triangular matrix A
* ordering(A.selfadjointView<Lower>(), perm);
* \endcode
*/
#ifndef EIGEN_MPL2_ONLY
#include "src/OrderingMethods/Amd.h"
#endif
#include "src/OrderingMethods/Ordering.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_ORDERINGMETHODS_MODULE_H

46
lib/Eigen/PaStiXSupport Normal file
View File

@ -0,0 +1,46 @@
#ifndef EIGEN_PASTIXSUPPORT_MODULE_H
#define EIGEN_PASTIXSUPPORT_MODULE_H
#include "SparseCore"
#include "src/Core/util/DisableStupidWarnings.h"
#include <complex.h>
extern "C" {
#include <pastix_nompi.h>
#include <pastix.h>
}
#ifdef complex
#undef complex
#endif
/** \ingroup Support_modules
* \defgroup PaStiXSupport_Module PaStiXSupport module
*
* This module provides an interface to the <a href="http://pastix.gforge.inria.fr/">PaSTiX</a> library.
* PaSTiX is a general \b supernodal, \b parallel and \b opensource sparse solver.
* It provides the two following main factorization classes:
* - class PastixLLT : a supernodal, parallel LLt Cholesky factorization.
* - class PastixLDLT: a supernodal, parallel LDLt Cholesky factorization.
* - class PastixLU : a supernodal, parallel LU factorization (optimized for a symmetric pattern).
*
* \code
* #include <Eigen/PaStiXSupport>
* \endcode
*
* In order to use this module, the PaSTiX headers must be accessible from the include paths, and your binary must be linked to the PaSTiX library and its dependencies.
* The dependencies depend on how PaSTiX has been compiled.
* For a cmake based project, you can use our FindPaSTiX.cmake module to help you in this task.
*
*/
#include "src/misc/Solve.h"
#include "src/misc/SparseSolve.h"
#include "src/PaStiXSupport/PaStiXSupport.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_PASTIXSUPPORT_MODULE_H

30
lib/Eigen/PardisoSupport Normal file
View File

@ -0,0 +1,30 @@
#ifndef EIGEN_PARDISOSUPPORT_MODULE_H
#define EIGEN_PARDISOSUPPORT_MODULE_H
#include "SparseCore"
#include "src/Core/util/DisableStupidWarnings.h"
#include <mkl_pardiso.h>
#include <unsupported/Eigen/SparseExtra>
/** \ingroup Support_modules
* \defgroup PardisoSupport_Module PardisoSupport module
*
* This module brings support for the Intel(R) MKL PARDISO direct sparse solvers.
*
* \code
* #include <Eigen/PardisoSupport>
* \endcode
*
* In order to use this module, the MKL headers must be accessible from the include paths, and your binary must be linked to the MKL library and its dependencies.
* See this \ref TopicUsingIntelMKL "page" for more information on MKL-Eigen integration.
*
*/
#include "src/PardisoSupport/PardisoSupport.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_PARDISOSUPPORT_MODULE_H

45
lib/Eigen/QR Normal file
View File

@ -0,0 +1,45 @@
#ifndef EIGEN_QR_MODULE_H
#define EIGEN_QR_MODULE_H
#include "Core"
#include "src/Core/util/DisableStupidWarnings.h"
#include "Cholesky"
#include "Jacobi"
#include "Householder"
/** \defgroup QR_Module QR module
*
*
*
* This module provides various QR decompositions
* This module also provides some MatrixBase methods, including:
* - MatrixBase::qr(),
*
* \code
* #include <Eigen/QR>
* \endcode
*/
#include "src/misc/Solve.h"
#include "src/QR/HouseholderQR.h"
#include "src/QR/FullPivHouseholderQR.h"
#include "src/QR/ColPivHouseholderQR.h"
#ifdef EIGEN_USE_LAPACKE
#include "src/QR/HouseholderQR_MKL.h"
#include "src/QR/ColPivHouseholderQR_MKL.h"
#endif
#ifdef EIGEN2_SUPPORT
#include "src/Eigen2Support/QR.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"
#ifdef EIGEN2_SUPPORT
#include "Eigenvalues"
#endif
#endif // EIGEN_QR_MODULE_H
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

34
lib/Eigen/QtAlignedMalloc Normal file
View File

@ -0,0 +1,34 @@
#ifndef EIGEN_QTMALLOC_MODULE_H
#define EIGEN_QTMALLOC_MODULE_H
#include "Core"
#if (!EIGEN_MALLOC_ALREADY_ALIGNED)
#include "src/Core/util/DisableStupidWarnings.h"
void *qMalloc(size_t size)
{
return Eigen::internal::aligned_malloc(size);
}
void qFree(void *ptr)
{
Eigen::internal::aligned_free(ptr);
}
void *qRealloc(void *ptr, size_t size)
{
void* newPtr = Eigen::internal::aligned_malloc(size);
memcpy(newPtr, ptr, size);
Eigen::internal::aligned_free(ptr);
return newPtr;
}
#include "src/Core/util/ReenableStupidWarnings.h"
#endif
#endif // EIGEN_QTMALLOC_MODULE_H
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

29
lib/Eigen/SPQRSupport Normal file
View File

@ -0,0 +1,29 @@
#ifndef EIGEN_SPQRSUPPORT_MODULE_H
#define EIGEN_SPQRSUPPORT_MODULE_H
#include "SparseCore"
#include "src/Core/util/DisableStupidWarnings.h"
#include "SuiteSparseQR.hpp"
/** \ingroup Support_modules
* \defgroup SPQRSupport_Module SuiteSparseQR module
*
* This module provides an interface to the SPQR library, which is part of the <a href="http://www.suitesparse.com">suitesparse</a> package.
*
* \code
* #include <Eigen/SPQRSupport>
* \endcode
*
* In order to use this module, the SPQR headers must be accessible from the include paths, and your binary must be linked to the SPQR library and its dependencies (Cholmod, AMD, COLAMD,...).
* For a cmake based project, you can use our FindSPQR.cmake and FindCholmod.Cmake modules
*
*/
#include "src/misc/Solve.h"
#include "src/misc/SparseSolve.h"
#include "src/CholmodSupport/CholmodSupport.h"
#include "src/SPQRSupport/SuiteSparseQRSupport.h"
#endif

37
lib/Eigen/SVD Normal file
View File

@ -0,0 +1,37 @@
#ifndef EIGEN_SVD_MODULE_H
#define EIGEN_SVD_MODULE_H
#include "QR"
#include "Householder"
#include "Jacobi"
#include "src/Core/util/DisableStupidWarnings.h"
/** \defgroup SVD_Module SVD module
*
*
*
* This module provides SVD decomposition for matrices (both real and complex).
* This decomposition is accessible via the following MatrixBase method:
* - MatrixBase::jacobiSvd()
*
* \code
* #include <Eigen/SVD>
* \endcode
*/
#include "src/misc/Solve.h"
#include "src/SVD/JacobiSVD.h"
#if defined(EIGEN_USE_LAPACKE) && !defined(EIGEN_USE_LAPACKE_STRICT)
#include "src/SVD/JacobiSVD_MKL.h"
#endif
#include "src/SVD/UpperBidiagonalization.h"
#ifdef EIGEN2_SUPPORT
#include "src/Eigen2Support/SVD.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_SVD_MODULE_H
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

27
lib/Eigen/Sparse Normal file
View File

@ -0,0 +1,27 @@
#ifndef EIGEN_SPARSE_MODULE_H
#define EIGEN_SPARSE_MODULE_H
/** \defgroup Sparse_Module Sparse meta-module
*
* Meta-module including all related modules:
* - \ref SparseCore_Module
* - \ref OrderingMethods_Module
* - \ref SparseCholesky_Module
* - \ref SparseLU_Module
* - \ref SparseQR_Module
* - \ref IterativeLinearSolvers_Module
*
* \code
* #include <Eigen/Sparse>
* \endcode
*/
#include "SparseCore"
#include "OrderingMethods"
#include "SparseCholesky"
#include "SparseLU"
#include "SparseQR"
#include "IterativeLinearSolvers"
#endif // EIGEN_SPARSE_MODULE_H

47
lib/Eigen/SparseCholesky Normal file
View File

@ -0,0 +1,47 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2013 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSECHOLESKY_MODULE_H
#define EIGEN_SPARSECHOLESKY_MODULE_H
#include "SparseCore"
#include "OrderingMethods"
#include "src/Core/util/DisableStupidWarnings.h"
/**
* \defgroup SparseCholesky_Module SparseCholesky module
*
* This module currently provides two variants of the direct sparse Cholesky decomposition for selfadjoint (hermitian) matrices.
* Those decompositions are accessible via the following classes:
* - SimplicialLLt,
* - SimplicialLDLt
*
* Such problems can also be solved using the ConjugateGradient solver from the IterativeLinearSolvers module.
*
* \code
* #include <Eigen/SparseCholesky>
* \endcode
*/
#ifdef EIGEN_MPL2_ONLY
#error The SparseCholesky module has nothing to offer in MPL2 only mode
#endif
#include "src/misc/Solve.h"
#include "src/misc/SparseSolve.h"
#include "src/SparseCholesky/SimplicialCholesky.h"
#ifndef EIGEN_MPL2_ONLY
#include "src/SparseCholesky/SimplicialCholesky_impl.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_SPARSECHOLESKY_MODULE_H

64
lib/Eigen/SparseCore Normal file
View File

@ -0,0 +1,64 @@
#ifndef EIGEN_SPARSECORE_MODULE_H
#define EIGEN_SPARSECORE_MODULE_H
#include "Core"
#include "src/Core/util/DisableStupidWarnings.h"
#include <vector>
#include <map>
#include <cstdlib>
#include <cstring>
#include <algorithm>
/**
* \defgroup SparseCore_Module SparseCore module
*
* This module provides a sparse matrix representation, and basic associated matrix manipulations
* and operations.
*
* See the \ref TutorialSparse "Sparse tutorial"
*
* \code
* #include <Eigen/SparseCore>
* \endcode
*
* This module depends on: Core.
*/
namespace Eigen {
/** The type used to identify a general sparse storage. */
struct Sparse {};
}
#include "src/SparseCore/SparseUtil.h"
#include "src/SparseCore/SparseMatrixBase.h"
#include "src/SparseCore/CompressedStorage.h"
#include "src/SparseCore/AmbiVector.h"
#include "src/SparseCore/SparseMatrix.h"
#include "src/SparseCore/MappedSparseMatrix.h"
#include "src/SparseCore/SparseVector.h"
#include "src/SparseCore/SparseBlock.h"
#include "src/SparseCore/SparseTranspose.h"
#include "src/SparseCore/SparseCwiseUnaryOp.h"
#include "src/SparseCore/SparseCwiseBinaryOp.h"
#include "src/SparseCore/SparseDot.h"
#include "src/SparseCore/SparsePermutation.h"
#include "src/SparseCore/SparseRedux.h"
#include "src/SparseCore/SparseFuzzy.h"
#include "src/SparseCore/ConservativeSparseSparseProduct.h"
#include "src/SparseCore/SparseSparseProductWithPruning.h"
#include "src/SparseCore/SparseProduct.h"
#include "src/SparseCore/SparseDenseProduct.h"
#include "src/SparseCore/SparseDiagonalProduct.h"
#include "src/SparseCore/SparseTriangularView.h"
#include "src/SparseCore/SparseSelfAdjointView.h"
#include "src/SparseCore/TriangularSolver.h"
#include "src/SparseCore/SparseView.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_SPARSECORE_MODULE_H

49
lib/Eigen/SparseLU Normal file
View File

@ -0,0 +1,49 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSELU_MODULE_H
#define EIGEN_SPARSELU_MODULE_H
#include "SparseCore"
/**
* \defgroup SparseLU_Module SparseLU module
* This module defines a supernodal factorization of general sparse matrices.
* The code is fully optimized for supernode-panel updates with specialized kernels.
* Please, see the documentation of the SparseLU class for more details.
*/
#include "src/misc/Solve.h"
#include "src/misc/SparseSolve.h"
// Ordering interface
#include "OrderingMethods"
#include "src/SparseLU/SparseLU_gemm_kernel.h"
#include "src/SparseLU/SparseLU_Structs.h"
#include "src/SparseLU/SparseLU_SupernodalMatrix.h"
#include "src/SparseLU/SparseLUImpl.h"
#include "src/SparseCore/SparseColEtree.h"
#include "src/SparseLU/SparseLU_Memory.h"
#include "src/SparseLU/SparseLU_heap_relax_snode.h"
#include "src/SparseLU/SparseLU_relax_snode.h"
#include "src/SparseLU/SparseLU_pivotL.h"
#include "src/SparseLU/SparseLU_panel_dfs.h"
#include "src/SparseLU/SparseLU_kernel_bmod.h"
#include "src/SparseLU/SparseLU_panel_bmod.h"
#include "src/SparseLU/SparseLU_column_dfs.h"
#include "src/SparseLU/SparseLU_column_bmod.h"
#include "src/SparseLU/SparseLU_copy_to_ucol.h"
#include "src/SparseLU/SparseLU_pruneL.h"
#include "src/SparseLU/SparseLU_Utils.h"
#include "src/SparseLU/SparseLU.h"
#endif // EIGEN_SPARSELU_MODULE_H

33
lib/Eigen/SparseQR Normal file
View File

@ -0,0 +1,33 @@
#ifndef EIGEN_SPARSEQR_MODULE_H
#define EIGEN_SPARSEQR_MODULE_H
#include "SparseCore"
#include "OrderingMethods"
#include "src/Core/util/DisableStupidWarnings.h"
/** \defgroup SparseQR_Module SparseQR module
* \brief Provides QR decomposition for sparse matrices
*
* This module provides a simplicial version of the left-looking Sparse QR decomposition.
* The columns of the input matrix should be reordered to limit the fill-in during the
* decomposition. Built-in methods (COLAMD, AMD) or external methods (METIS) can be used to this end.
* See the \link OrderingMethods_Module OrderingMethods\endlink module for the list
* of built-in and external ordering methods.
*
* \code
* #include <Eigen/SparseQR>
* \endcode
*
*
*/
#include "src/misc/Solve.h"
#include "src/misc/SparseSolve.h"
#include "OrderingMethods"
#include "src/SparseCore/SparseColEtree.h"
#include "src/SparseQR/SparseQR.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif

27
lib/Eigen/StdDeque Normal file
View File

@ -0,0 +1,27 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Hauke Heibel <hauke.heibel@googlemail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_STDDEQUE_MODULE_H
#define EIGEN_STDDEQUE_MODULE_H
#include "Core"
#include <deque>
#if (defined(_MSC_VER) && defined(_WIN64)) /* MSVC auto aligns in 64 bit builds */
#define EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(...)
#else
#include "src/StlSupport/StdDeque.h"
#endif
#endif // EIGEN_STDDEQUE_MODULE_H

26
lib/Eigen/StdList Normal file
View File

@ -0,0 +1,26 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Hauke Heibel <hauke.heibel@googlemail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_STDLIST_MODULE_H
#define EIGEN_STDLIST_MODULE_H
#include "Core"
#include <list>
#if (defined(_MSC_VER) && defined(_WIN64)) /* MSVC auto aligns in 64 bit builds */
#define EIGEN_DEFINE_STL_LIST_SPECIALIZATION(...)
#else
#include "src/StlSupport/StdList.h"
#endif
#endif // EIGEN_STDLIST_MODULE_H

27
lib/Eigen/StdVector Normal file
View File

@ -0,0 +1,27 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Hauke Heibel <hauke.heibel@googlemail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_STDVECTOR_MODULE_H
#define EIGEN_STDVECTOR_MODULE_H
#include "Core"
#include <vector>
#if (defined(_MSC_VER) && defined(_WIN64)) /* MSVC auto aligns in 64 bit builds */
#define EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION(...)
#else
#include "src/StlSupport/StdVector.h"
#endif
#endif // EIGEN_STDVECTOR_MODULE_H

59
lib/Eigen/SuperLUSupport Normal file
View File

@ -0,0 +1,59 @@
#ifndef EIGEN_SUPERLUSUPPORT_MODULE_H
#define EIGEN_SUPERLUSUPPORT_MODULE_H
#include "SparseCore"
#include "src/Core/util/DisableStupidWarnings.h"
#ifdef EMPTY
#define EIGEN_EMPTY_WAS_ALREADY_DEFINED
#endif
typedef int int_t;
#include <slu_Cnames.h>
#include <supermatrix.h>
#include <slu_util.h>
// slu_util.h defines a preprocessor token named EMPTY which is really polluting,
// so we remove it in favor of a SUPERLU_EMPTY token.
// If EMPTY was already defined then we don't undef it.
#if defined(EIGEN_EMPTY_WAS_ALREADY_DEFINED)
# undef EIGEN_EMPTY_WAS_ALREADY_DEFINED
#elif defined(EMPTY)
# undef EMPTY
#endif
#define SUPERLU_EMPTY (-1)
namespace Eigen { struct SluMatrix; }
/** \ingroup Support_modules
* \defgroup SuperLUSupport_Module SuperLUSupport module
*
* This module provides an interface to the <a href="http://crd-legacy.lbl.gov/~xiaoye/SuperLU/">SuperLU</a> library.
* It provides the following factorization class:
* - class SuperLU: a supernodal sequential LU factorization.
* - class SuperILU: a supernodal sequential incomplete LU factorization (to be used as a preconditioner for iterative methods).
*
* \warning When including this module, you have to use SUPERLU_EMPTY instead of EMPTY which is no longer defined because it is too polluting.
*
* \code
* #include <Eigen/SuperLUSupport>
* \endcode
*
* In order to use this module, the superlu headers must be accessible from the include paths, and your binary must be linked to the superlu library and its dependencies.
* The dependencies depend on how superlu has been compiled.
* For a cmake based project, you can use our FindSuperLU.cmake module to help you in this task.
*
*/
#include "src/misc/Solve.h"
#include "src/misc/SparseSolve.h"
#include "src/SuperLUSupport/SuperLUSupport.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_SUPERLUSUPPORT_MODULE_H

36
lib/Eigen/UmfPackSupport Normal file
View File

@ -0,0 +1,36 @@
#ifndef EIGEN_UMFPACKSUPPORT_MODULE_H
#define EIGEN_UMFPACKSUPPORT_MODULE_H
#include "SparseCore"
#include "src/Core/util/DisableStupidWarnings.h"
extern "C" {
#include <umfpack.h>
}
/** \ingroup Support_modules
* \defgroup UmfPackSupport_Module UmfPackSupport module
*
* This module provides an interface to the UmfPack library which is part of the <a href="http://www.suitesparse.com">suitesparse</a> package.
* It provides the following factorization class:
* - class UmfPackLU: a multifrontal sequential LU factorization.
*
* \code
* #include <Eigen/UmfPackSupport>
* \endcode
*
* In order to use this module, the umfpack headers must be accessible from the include paths, and your binary must be linked to the umfpack library and its dependencies.
* The dependencies depend on how umfpack has been compiled.
* For a cmake based project, you can use our FindUmfPack.cmake module to help you in this task.
*
*/
#include "src/misc/Solve.h"
#include "src/misc/SparseSolve.h"
#include "src/UmfPackSupport/UmfPackSupport.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_UMFPACKSUPPORT_MODULE_H

View File

@ -0,0 +1,7 @@
file(GLOB Eigen_src_subdirectories "*")
escape_string_as_regex(ESCAPED_CMAKE_CURRENT_SOURCE_DIR "${CMAKE_CURRENT_SOURCE_DIR}")
foreach(f ${Eigen_src_subdirectories})
if(NOT f MATCHES "\\.txt" AND NOT f MATCHES "${ESCAPED_CMAKE_CURRENT_SOURCE_DIR}/[.].+" )
add_subdirectory(${f})
endif()
endforeach()

View File

@ -0,0 +1,6 @@
FILE(GLOB Eigen_Cholesky_SRCS "*.h")
INSTALL(FILES
${Eigen_Cholesky_SRCS}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Cholesky COMPONENT Devel
)

View File

@ -0,0 +1,611 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Keir Mierle <mierle@gmail.com>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2011 Timothy E. Holy <tim.holy@gmail.com >
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_LDLT_H
#define EIGEN_LDLT_H
namespace Eigen {
namespace internal {
template<typename MatrixType, int UpLo> struct LDLT_Traits;
// PositiveSemiDef means positive semi-definite and non-zero; same for NegativeSemiDef
enum SignMatrix { PositiveSemiDef, NegativeSemiDef, ZeroSign, Indefinite };
}
/** \ingroup Cholesky_Module
*
* \class LDLT
*
* \brief Robust Cholesky decomposition of a matrix with pivoting
*
* \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition
* \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
* The other triangular part won't be read.
*
* Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite
* matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L
* is lower triangular with a unit diagonal and D is a diagonal matrix.
*
* The decomposition uses pivoting to ensure stability, so that L will have
* zeros in the bottom right rank(A) - n submatrix. Avoiding the square root
* on D also stabilizes the computation.
*
* Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky
* decomposition to determine whether a system of equations has a solution.
*
* \sa MatrixBase::ldlt(), class LLT
*/
template<typename _MatrixType, int _UpLo> class LDLT
{
public:
typedef _MatrixType MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options & ~RowMajorBit, // these are the options for the TmpMatrixType, we need a ColMajor matrix here!
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
UpLo = _UpLo
};
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef typename MatrixType::Index Index;
typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> TmpMatrixType;
typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
typedef internal::LDLT_Traits<MatrixType,UpLo> Traits;
/** \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via LDLT::compute(const MatrixType&).
*/
LDLT()
: m_matrix(),
m_transpositions(),
m_sign(internal::ZeroSign),
m_isInitialized(false)
{}
/** \brief Default Constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem \a size.
* \sa LDLT()
*/
LDLT(Index size)
: m_matrix(size, size),
m_transpositions(size),
m_temporary(size),
m_sign(internal::ZeroSign),
m_isInitialized(false)
{}
/** \brief Constructor with decomposition
*
* This calculates the decomposition for the input \a matrix.
* \sa LDLT(Index size)
*/
LDLT(const MatrixType& matrix)
: m_matrix(matrix.rows(), matrix.cols()),
m_transpositions(matrix.rows()),
m_temporary(matrix.rows()),
m_sign(internal::ZeroSign),
m_isInitialized(false)
{
compute(matrix);
}
/** Clear any existing decomposition
* \sa rankUpdate(w,sigma)
*/
void setZero()
{
m_isInitialized = false;
}
/** \returns a view of the upper triangular matrix U */
inline typename Traits::MatrixU matrixU() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return Traits::getU(m_matrix);
}
/** \returns a view of the lower triangular matrix L */
inline typename Traits::MatrixL matrixL() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return Traits::getL(m_matrix);
}
/** \returns the permutation matrix P as a transposition sequence.
*/
inline const TranspositionType& transpositionsP() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return m_transpositions;
}
/** \returns the coefficients of the diagonal matrix D */
inline Diagonal<const MatrixType> vectorD() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return m_matrix.diagonal();
}
/** \returns true if the matrix is positive (semidefinite) */
inline bool isPositive() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign;
}
#ifdef EIGEN2_SUPPORT
inline bool isPositiveDefinite() const
{
return isPositive();
}
#endif
/** \returns true if the matrix is negative (semidefinite) */
inline bool isNegative(void) const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return m_sign == internal::NegativeSemiDef || m_sign == internal::ZeroSign;
}
/** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A.
*
* This function also supports in-place solves using the syntax <tt>x = decompositionObject.solve(x)</tt> .
*
* \note_about_checking_solutions
*
* More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$
* by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$,
* \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then
* \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the
* least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function
* computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular.
*
* \sa MatrixBase::ldlt()
*/
template<typename Rhs>
inline const internal::solve_retval<LDLT, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
eigen_assert(m_matrix.rows()==b.rows()
&& "LDLT::solve(): invalid number of rows of the right hand side matrix b");
return internal::solve_retval<LDLT, Rhs>(*this, b.derived());
}
#ifdef EIGEN2_SUPPORT
template<typename OtherDerived, typename ResultType>
bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
{
*result = this->solve(b);
return true;
}
#endif
template<typename Derived>
bool solveInPlace(MatrixBase<Derived> &bAndX) const;
LDLT& compute(const MatrixType& matrix);
template <typename Derived>
LDLT& rankUpdate(const MatrixBase<Derived>& w, const RealScalar& alpha=1);
/** \returns the internal LDLT decomposition matrix
*
* TODO: document the storage layout
*/
inline const MatrixType& matrixLDLT() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return m_matrix;
}
MatrixType reconstructedMatrix() const;
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful,
* \c NumericalIssue if the matrix.appears to be negative.
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return Success;
}
protected:
static void check_template_parameters()
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
}
/** \internal
* Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U.
* The strict upper part is used during the decomposition, the strict lower
* part correspond to the coefficients of L (its diagonal is equal to 1 and
* is not stored), and the diagonal entries correspond to D.
*/
MatrixType m_matrix;
TranspositionType m_transpositions;
TmpMatrixType m_temporary;
internal::SignMatrix m_sign;
bool m_isInitialized;
};
namespace internal {
template<int UpLo> struct ldlt_inplace;
template<> struct ldlt_inplace<Lower>
{
template<typename MatrixType, typename TranspositionType, typename Workspace>
static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign)
{
using std::abs;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
eigen_assert(mat.rows()==mat.cols());
const Index size = mat.rows();
if (size <= 1)
{
transpositions.setIdentity();
if (numext::real(mat.coeff(0,0)) > 0) sign = PositiveSemiDef;
else if (numext::real(mat.coeff(0,0)) < 0) sign = NegativeSemiDef;
else sign = ZeroSign;
return true;
}
for (Index k = 0; k < size; ++k)
{
// Find largest diagonal element
Index index_of_biggest_in_corner;
mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
index_of_biggest_in_corner += k;
transpositions.coeffRef(k) = index_of_biggest_in_corner;
if(k != index_of_biggest_in_corner)
{
// apply the transposition while taking care to consider only
// the lower triangular part
Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element
mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k));
mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s));
std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner));
for(int i=k+1;i<index_of_biggest_in_corner;++i)
{
Scalar tmp = mat.coeffRef(i,k);
mat.coeffRef(i,k) = numext::conj(mat.coeffRef(index_of_biggest_in_corner,i));
mat.coeffRef(index_of_biggest_in_corner,i) = numext::conj(tmp);
}
if(NumTraits<Scalar>::IsComplex)
mat.coeffRef(index_of_biggest_in_corner,k) = numext::conj(mat.coeff(index_of_biggest_in_corner,k));
}
// partition the matrix:
// A00 | - | -
// lu = A10 | A11 | -
// A20 | A21 | A22
Index rs = size - k - 1;
Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
if(k>0)
{
temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint();
mat.coeffRef(k,k) -= (A10 * temp.head(k)).value();
if(rs>0)
A21.noalias() -= A20 * temp.head(k);
}
// In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot
// was smaller than the cutoff value. However, soince LDLT is not rank-revealing
// we should only make sure we do not introduce INF or NaN values.
// LAPACK also uses 0 as the cutoff value.
RealScalar realAkk = numext::real(mat.coeffRef(k,k));
if((rs>0) && (abs(realAkk) > RealScalar(0)))
A21 /= realAkk;
if (sign == PositiveSemiDef) {
if (realAkk < 0) sign = Indefinite;
} else if (sign == NegativeSemiDef) {
if (realAkk > 0) sign = Indefinite;
} else if (sign == ZeroSign) {
if (realAkk > 0) sign = PositiveSemiDef;
else if (realAkk < 0) sign = NegativeSemiDef;
}
}
return true;
}
// Reference for the algorithm: Davis and Hager, "Multiple Rank
// Modifications of a Sparse Cholesky Factorization" (Algorithm 1)
// Trivial rearrangements of their computations (Timothy E. Holy)
// allow their algorithm to work for rank-1 updates even if the
// original matrix is not of full rank.
// Here only rank-1 updates are implemented, to reduce the
// requirement for intermediate storage and improve accuracy
template<typename MatrixType, typename WDerived>
static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, const typename MatrixType::RealScalar& sigma=1)
{
using numext::isfinite;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
const Index size = mat.rows();
eigen_assert(mat.cols() == size && w.size()==size);
RealScalar alpha = 1;
// Apply the update
for (Index j = 0; j < size; j++)
{
// Check for termination due to an original decomposition of low-rank
if (!(isfinite)(alpha))
break;
// Update the diagonal terms
RealScalar dj = numext::real(mat.coeff(j,j));
Scalar wj = w.coeff(j);
RealScalar swj2 = sigma*numext::abs2(wj);
RealScalar gamma = dj*alpha + swj2;
mat.coeffRef(j,j) += swj2/alpha;
alpha += swj2/dj;
// Update the terms of L
Index rs = size-j-1;
w.tail(rs) -= wj * mat.col(j).tail(rs);
if(gamma != 0)
mat.col(j).tail(rs) += (sigma*numext::conj(wj)/gamma)*w.tail(rs);
}
return true;
}
template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, const typename MatrixType::RealScalar& sigma=1)
{
// Apply the permutation to the input w
tmp = transpositions * w;
return ldlt_inplace<Lower>::updateInPlace(mat,tmp,sigma);
}
};
template<> struct ldlt_inplace<Upper>
{
template<typename MatrixType, typename TranspositionType, typename Workspace>
static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign)
{
Transpose<MatrixType> matt(mat);
return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign);
}
template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, const typename MatrixType::RealScalar& sigma=1)
{
Transpose<MatrixType> matt(mat);
return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w.conjugate(), sigma);
}
};
template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower>
{
typedef const TriangularView<const MatrixType, UnitLower> MatrixL;
typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU;
static inline MatrixL getL(const MatrixType& m) { return m; }
static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
};
template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper>
{
typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL;
typedef const TriangularView<const MatrixType, UnitUpper> MatrixU;
static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); }
static inline MatrixU getU(const MatrixType& m) { return m; }
};
} // end namespace internal
/** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix
*/
template<typename MatrixType, int _UpLo>
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const MatrixType& a)
{
check_template_parameters();
eigen_assert(a.rows()==a.cols());
const Index size = a.rows();
m_matrix = a;
m_transpositions.resize(size);
m_isInitialized = false;
m_temporary.resize(size);
m_sign = internal::ZeroSign;
internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign);
m_isInitialized = true;
return *this;
}
/** Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T.
* \param w a vector to be incorporated into the decomposition.
* \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1.
* \sa setZero()
*/
template<typename MatrixType, int _UpLo>
template<typename Derived>
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename LDLT<MatrixType,_UpLo>::RealScalar& sigma)
{
const Index size = w.rows();
if (m_isInitialized)
{
eigen_assert(m_matrix.rows()==size);
}
else
{
m_matrix.resize(size,size);
m_matrix.setZero();
m_transpositions.resize(size);
for (Index i = 0; i < size; i++)
m_transpositions.coeffRef(i) = i;
m_temporary.resize(size);
m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef;
m_isInitialized = true;
}
internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma);
return *this;
}
namespace internal {
template<typename _MatrixType, int _UpLo, typename Rhs>
struct solve_retval<LDLT<_MatrixType,_UpLo>, Rhs>
: solve_retval_base<LDLT<_MatrixType,_UpLo>, Rhs>
{
typedef LDLT<_MatrixType,_UpLo> LDLTType;
EIGEN_MAKE_SOLVE_HELPERS(LDLTType,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
eigen_assert(rhs().rows() == dec().matrixLDLT().rows());
// dst = P b
dst = dec().transpositionsP() * rhs();
// dst = L^-1 (P b)
dec().matrixL().solveInPlace(dst);
// dst = D^-1 (L^-1 P b)
// more precisely, use pseudo-inverse of D (see bug 241)
using std::abs;
using std::max;
typedef typename LDLTType::MatrixType MatrixType;
typedef typename LDLTType::RealScalar RealScalar;
const typename Diagonal<const MatrixType>::RealReturnType vectorD(dec().vectorD());
// In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon
// as motivated by LAPACK's xGELSS:
// RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() *NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest());
// However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest
// diagonal element is not well justified and to numerical issues in some cases.
// Moreover, Lapack's xSYTRS routines use 0 for the tolerance.
RealScalar tolerance = RealScalar(1) / NumTraits<RealScalar>::highest();
for (Index i = 0; i < vectorD.size(); ++i) {
if(abs(vectorD(i)) > tolerance)
dst.row(i) /= vectorD(i);
else
dst.row(i).setZero();
}
// dst = L^-T (D^-1 L^-1 P b)
dec().matrixU().solveInPlace(dst);
// dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b
dst = dec().transpositionsP().transpose() * dst;
}
};
}
/** \internal use x = ldlt_object.solve(x);
*
* This is the \em in-place version of solve().
*
* \param bAndX represents both the right-hand side matrix b and result x.
*
* \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
*
* This version avoids a copy when the right hand side matrix b is not
* needed anymore.
*
* \sa LDLT::solve(), MatrixBase::ldlt()
*/
template<typename MatrixType,int _UpLo>
template<typename Derived>
bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
eigen_assert(m_matrix.rows() == bAndX.rows());
bAndX = this->solve(bAndX);
return true;
}
/** \returns the matrix represented by the decomposition,
* i.e., it returns the product: P^T L D L^* P.
* This function is provided for debug purpose. */
template<typename MatrixType, int _UpLo>
MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
const Index size = m_matrix.rows();
MatrixType res(size,size);
// P
res.setIdentity();
res = transpositionsP() * res;
// L^* P
res = matrixU() * res;
// D(L^*P)
res = vectorD().real().asDiagonal() * res;
// L(DL^*P)
res = matrixL() * res;
// P^T (LDL^*P)
res = transpositionsP().transpose() * res;
return res;
}
/** \cholesky_module
* \returns the Cholesky decomposition with full pivoting without square root of \c *this
*/
template<typename MatrixType, unsigned int UpLo>
inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
SelfAdjointView<MatrixType, UpLo>::ldlt() const
{
return LDLT<PlainObject,UpLo>(m_matrix);
}
/** \cholesky_module
* \returns the Cholesky decomposition with full pivoting without square root of \c *this
*/
template<typename Derived>
inline const LDLT<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::ldlt() const
{
return LDLT<PlainObject>(derived());
}
} // end namespace Eigen
#endif // EIGEN_LDLT_H

View File

@ -0,0 +1,498 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_LLT_H
#define EIGEN_LLT_H
namespace Eigen {
namespace internal{
template<typename MatrixType, int UpLo> struct LLT_Traits;
}
/** \ingroup Cholesky_Module
*
* \class LLT
*
* \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features
*
* \param MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition
* \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
* The other triangular part won't be read.
*
* This class performs a LL^T Cholesky decomposition of a symmetric, positive definite
* matrix A such that A = LL^* = U^*U, where L is lower triangular.
*
* While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b,
* for that purpose, we recommend the Cholesky decomposition without square root which is more stable
* and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other
* situations like generalised eigen problems with hermitian matrices.
*
* Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices,
* use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations
* has a solution.
*
* Example: \include LLT_example.cpp
* Output: \verbinclude LLT_example.out
*
* \sa MatrixBase::llt(), class LDLT
*/
/* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH)
* Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
* the strict lower part does not have to store correct values.
*/
template<typename _MatrixType, int _UpLo> class LLT
{
public:
typedef _MatrixType MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef typename MatrixType::Index Index;
enum {
PacketSize = internal::packet_traits<Scalar>::size,
AlignmentMask = int(PacketSize)-1,
UpLo = _UpLo
};
typedef internal::LLT_Traits<MatrixType,UpLo> Traits;
/**
* \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via LLT::compute(const MatrixType&).
*/
LLT() : m_matrix(), m_isInitialized(false) {}
/** \brief Default Constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem \a size.
* \sa LLT()
*/
LLT(Index size) : m_matrix(size, size),
m_isInitialized(false) {}
LLT(const MatrixType& matrix)
: m_matrix(matrix.rows(), matrix.cols()),
m_isInitialized(false)
{
compute(matrix);
}
/** \returns a view of the upper triangular matrix U */
inline typename Traits::MatrixU matrixU() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
return Traits::getU(m_matrix);
}
/** \returns a view of the lower triangular matrix L */
inline typename Traits::MatrixL matrixL() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
return Traits::getL(m_matrix);
}
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
*
* Since this LLT class assumes anyway that the matrix A is invertible, the solution
* theoretically exists and is unique regardless of b.
*
* Example: \include LLT_solve.cpp
* Output: \verbinclude LLT_solve.out
*
* \sa solveInPlace(), MatrixBase::llt()
*/
template<typename Rhs>
inline const internal::solve_retval<LLT, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
eigen_assert(m_matrix.rows()==b.rows()
&& "LLT::solve(): invalid number of rows of the right hand side matrix b");
return internal::solve_retval<LLT, Rhs>(*this, b.derived());
}
#ifdef EIGEN2_SUPPORT
template<typename OtherDerived, typename ResultType>
bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
{
*result = this->solve(b);
return true;
}
bool isPositiveDefinite() const { return true; }
#endif
template<typename Derived>
void solveInPlace(MatrixBase<Derived> &bAndX) const;
LLT& compute(const MatrixType& matrix);
/** \returns the LLT decomposition matrix
*
* TODO: document the storage layout
*/
inline const MatrixType& matrixLLT() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
return m_matrix;
}
MatrixType reconstructedMatrix() const;
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful,
* \c NumericalIssue if the matrix.appears to be negative.
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
return m_info;
}
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
template<typename VectorType>
LLT rankUpdate(const VectorType& vec, const RealScalar& sigma = 1);
protected:
static void check_template_parameters()
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
}
/** \internal
* Used to compute and store L
* The strict upper part is not used and even not initialized.
*/
MatrixType m_matrix;
bool m_isInitialized;
ComputationInfo m_info;
};
namespace internal {
template<typename Scalar, int UpLo> struct llt_inplace;
template<typename MatrixType, typename VectorType>
static typename MatrixType::Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma)
{
using std::sqrt;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
typedef typename MatrixType::ColXpr ColXpr;
typedef typename internal::remove_all<ColXpr>::type ColXprCleaned;
typedef typename ColXprCleaned::SegmentReturnType ColXprSegment;
typedef Matrix<Scalar,Dynamic,1> TempVectorType;
typedef typename TempVectorType::SegmentReturnType TempVecSegment;
Index n = mat.cols();
eigen_assert(mat.rows()==n && vec.size()==n);
TempVectorType temp;
if(sigma>0)
{
// This version is based on Givens rotations.
// It is faster than the other one below, but only works for updates,
// i.e., for sigma > 0
temp = sqrt(sigma) * vec;
for(Index i=0; i<n; ++i)
{
JacobiRotation<Scalar> g;
g.makeGivens(mat(i,i), -temp(i), &mat(i,i));
Index rs = n-i-1;
if(rs>0)
{
ColXprSegment x(mat.col(i).tail(rs));
TempVecSegment y(temp.tail(rs));
apply_rotation_in_the_plane(x, y, g);
}
}
}
else
{
temp = vec;
RealScalar beta = 1;
for(Index j=0; j<n; ++j)
{
RealScalar Ljj = numext::real(mat.coeff(j,j));
RealScalar dj = numext::abs2(Ljj);
Scalar wj = temp.coeff(j);
RealScalar swj2 = sigma*numext::abs2(wj);
RealScalar gamma = dj*beta + swj2;
RealScalar x = dj + swj2/beta;
if (x<=RealScalar(0))
return j;
RealScalar nLjj = sqrt(x);
mat.coeffRef(j,j) = nLjj;
beta += swj2/dj;
// Update the terms of L
Index rs = n-j-1;
if(rs)
{
temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs);
if(gamma != 0)
mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*numext::conj(wj)/gamma)*temp.tail(rs);
}
}
}
return -1;
}
template<typename Scalar> struct llt_inplace<Scalar, Lower>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
template<typename MatrixType>
static typename MatrixType::Index unblocked(MatrixType& mat)
{
using std::sqrt;
typedef typename MatrixType::Index Index;
eigen_assert(mat.rows()==mat.cols());
const Index size = mat.rows();
for(Index k = 0; k < size; ++k)
{
Index rs = size-k-1; // remaining size
Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
RealScalar x = numext::real(mat.coeff(k,k));
if (k>0) x -= A10.squaredNorm();
if (x<=RealScalar(0))
return k;
mat.coeffRef(k,k) = x = sqrt(x);
if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint();
if (rs>0) A21 /= x;
}
return -1;
}
template<typename MatrixType>
static typename MatrixType::Index blocked(MatrixType& m)
{
typedef typename MatrixType::Index Index;
eigen_assert(m.rows()==m.cols());
Index size = m.rows();
if(size<32)
return unblocked(m);
Index blockSize = size/8;
blockSize = (blockSize/16)*16;
blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128));
for (Index k=0; k<size; k+=blockSize)
{
// partition the matrix:
// A00 | - | -
// lu = A10 | A11 | -
// A20 | A21 | A22
Index bs = (std::min)(blockSize, size-k);
Index rs = size - k - bs;
Block<MatrixType,Dynamic,Dynamic> A11(m,k, k, bs,bs);
Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k, rs,bs);
Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs);
Index ret;
if((ret=unblocked(A11))>=0) return k+ret;
if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21);
if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,-1); // bottleneck
}
return -1;
}
template<typename MatrixType, typename VectorType>
static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
{
return Eigen::internal::llt_rank_update_lower(mat, vec, sigma);
}
};
template<typename Scalar> struct llt_inplace<Scalar, Upper>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
template<typename MatrixType>
static EIGEN_STRONG_INLINE typename MatrixType::Index unblocked(MatrixType& mat)
{
Transpose<MatrixType> matt(mat);
return llt_inplace<Scalar, Lower>::unblocked(matt);
}
template<typename MatrixType>
static EIGEN_STRONG_INLINE typename MatrixType::Index blocked(MatrixType& mat)
{
Transpose<MatrixType> matt(mat);
return llt_inplace<Scalar, Lower>::blocked(matt);
}
template<typename MatrixType, typename VectorType>
static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
{
Transpose<MatrixType> matt(mat);
return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma);
}
};
template<typename MatrixType> struct LLT_Traits<MatrixType,Lower>
{
typedef const TriangularView<const MatrixType, Lower> MatrixL;
typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU;
static inline MatrixL getL(const MatrixType& m) { return m; }
static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
static bool inplace_decomposition(MatrixType& m)
{ return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m)==-1; }
};
template<typename MatrixType> struct LLT_Traits<MatrixType,Upper>
{
typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL;
typedef const TriangularView<const MatrixType, Upper> MatrixU;
static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); }
static inline MatrixU getU(const MatrixType& m) { return m; }
static bool inplace_decomposition(MatrixType& m)
{ return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m)==-1; }
};
} // end namespace internal
/** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix
*
* \returns a reference to *this
*
* Example: \include TutorialLinAlgComputeTwice.cpp
* Output: \verbinclude TutorialLinAlgComputeTwice.out
*/
template<typename MatrixType, int _UpLo>
LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const MatrixType& a)
{
check_template_parameters();
eigen_assert(a.rows()==a.cols());
const Index size = a.rows();
m_matrix.resize(size, size);
m_matrix = a;
m_isInitialized = true;
bool ok = Traits::inplace_decomposition(m_matrix);
m_info = ok ? Success : NumericalIssue;
return *this;
}
/** Performs a rank one update (or dowdate) of the current decomposition.
* If A = LL^* before the rank one update,
* then after it we have LL^* = A + sigma * v v^* where \a v must be a vector
* of same dimension.
*/
template<typename _MatrixType, int _UpLo>
template<typename VectorType>
LLT<_MatrixType,_UpLo> LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& sigma)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType);
eigen_assert(v.size()==m_matrix.cols());
eigen_assert(m_isInitialized);
if(internal::llt_inplace<typename MatrixType::Scalar, UpLo>::rankUpdate(m_matrix,v,sigma)>=0)
m_info = NumericalIssue;
else
m_info = Success;
return *this;
}
namespace internal {
template<typename _MatrixType, int UpLo, typename Rhs>
struct solve_retval<LLT<_MatrixType, UpLo>, Rhs>
: solve_retval_base<LLT<_MatrixType, UpLo>, Rhs>
{
typedef LLT<_MatrixType,UpLo> LLTType;
EIGEN_MAKE_SOLVE_HELPERS(LLTType,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
dst = rhs();
dec().solveInPlace(dst);
}
};
}
/** \internal use x = llt_object.solve(x);
*
* This is the \em in-place version of solve().
*
* \param bAndX represents both the right-hand side matrix b and result x.
*
* \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
*
* This version avoids a copy when the right hand side matrix b is not
* needed anymore.
*
* \sa LLT::solve(), MatrixBase::llt()
*/
template<typename MatrixType, int _UpLo>
template<typename Derived>
void LLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
eigen_assert(m_matrix.rows()==bAndX.rows());
matrixL().solveInPlace(bAndX);
matrixU().solveInPlace(bAndX);
}
/** \returns the matrix represented by the decomposition,
* i.e., it returns the product: L L^*.
* This function is provided for debug purpose. */
template<typename MatrixType, int _UpLo>
MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
return matrixL() * matrixL().adjoint().toDenseMatrix();
}
/** \cholesky_module
* \returns the LLT decomposition of \c *this
*/
template<typename Derived>
inline const LLT<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::llt() const
{
return LLT<PlainObject>(derived());
}
/** \cholesky_module
* \returns the LLT decomposition of \c *this
*/
template<typename MatrixType, unsigned int UpLo>
inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
SelfAdjointView<MatrixType, UpLo>::llt() const
{
return LLT<PlainObject,UpLo>(m_matrix);
}
} // end namespace Eigen
#endif // EIGEN_LLT_H

View File

@ -0,0 +1,102 @@
/*
Copyright (c) 2011, Intel Corporation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
********************************************************************************
* Content : Eigen bindings to Intel(R) MKL
* LLt decomposition based on LAPACKE_?potrf function.
********************************************************************************
*/
#ifndef EIGEN_LLT_MKL_H
#define EIGEN_LLT_MKL_H
#include "Eigen/src/Core/util/MKL_support.h"
#include <iostream>
namespace Eigen {
namespace internal {
template<typename Scalar> struct mkl_llt;
#define EIGEN_MKL_LLT(EIGTYPE, MKLTYPE, MKLPREFIX) \
template<> struct mkl_llt<EIGTYPE> \
{ \
template<typename MatrixType> \
static inline typename MatrixType::Index potrf(MatrixType& m, char uplo) \
{ \
lapack_int matrix_order; \
lapack_int size, lda, info, StorageOrder; \
EIGTYPE* a; \
eigen_assert(m.rows()==m.cols()); \
/* Set up parameters for ?potrf */ \
size = m.rows(); \
StorageOrder = MatrixType::Flags&RowMajorBit?RowMajor:ColMajor; \
matrix_order = StorageOrder==RowMajor ? LAPACK_ROW_MAJOR : LAPACK_COL_MAJOR; \
a = &(m.coeffRef(0,0)); \
lda = m.outerStride(); \
\
info = LAPACKE_##MKLPREFIX##potrf( matrix_order, uplo, size, (MKLTYPE*)a, lda ); \
info = (info==0) ? -1 : info>0 ? info-1 : size; \
return info; \
} \
}; \
template<> struct llt_inplace<EIGTYPE, Lower> \
{ \
template<typename MatrixType> \
static typename MatrixType::Index blocked(MatrixType& m) \
{ \
return mkl_llt<EIGTYPE>::potrf(m, 'L'); \
} \
template<typename MatrixType, typename VectorType> \
static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) \
{ return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); } \
}; \
template<> struct llt_inplace<EIGTYPE, Upper> \
{ \
template<typename MatrixType> \
static typename MatrixType::Index blocked(MatrixType& m) \
{ \
return mkl_llt<EIGTYPE>::potrf(m, 'U'); \
} \
template<typename MatrixType, typename VectorType> \
static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) \
{ \
Transpose<MatrixType> matt(mat); \
return llt_inplace<EIGTYPE, Lower>::rankUpdate(matt, vec.conjugate(), sigma); \
} \
};
EIGEN_MKL_LLT(double, double, d)
EIGEN_MKL_LLT(float, float, s)
EIGEN_MKL_LLT(dcomplex, MKL_Complex16, z)
EIGEN_MKL_LLT(scomplex, MKL_Complex8, c)
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_LLT_MKL_H

View File

@ -0,0 +1,6 @@
FILE(GLOB Eigen_CholmodSupport_SRCS "*.h")
INSTALL(FILES
${Eigen_CholmodSupport_SRCS}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/CholmodSupport COMPONENT Devel
)

View File

@ -0,0 +1,607 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CHOLMODSUPPORT_H
#define EIGEN_CHOLMODSUPPORT_H
namespace Eigen {
namespace internal {
template<typename Scalar, typename CholmodType>
void cholmod_configure_matrix(CholmodType& mat)
{
if (internal::is_same<Scalar,float>::value)
{
mat.xtype = CHOLMOD_REAL;
mat.dtype = CHOLMOD_SINGLE;
}
else if (internal::is_same<Scalar,double>::value)
{
mat.xtype = CHOLMOD_REAL;
mat.dtype = CHOLMOD_DOUBLE;
}
else if (internal::is_same<Scalar,std::complex<float> >::value)
{
mat.xtype = CHOLMOD_COMPLEX;
mat.dtype = CHOLMOD_SINGLE;
}
else if (internal::is_same<Scalar,std::complex<double> >::value)
{
mat.xtype = CHOLMOD_COMPLEX;
mat.dtype = CHOLMOD_DOUBLE;
}
else
{
eigen_assert(false && "Scalar type not supported by CHOLMOD");
}
}
} // namespace internal
/** Wraps the Eigen sparse matrix \a mat into a Cholmod sparse matrix object.
* Note that the data are shared.
*/
template<typename _Scalar, int _Options, typename _Index>
cholmod_sparse viewAsCholmod(SparseMatrix<_Scalar,_Options,_Index>& mat)
{
cholmod_sparse res;
res.nzmax = mat.nonZeros();
res.nrow = mat.rows();;
res.ncol = mat.cols();
res.p = mat.outerIndexPtr();
res.i = mat.innerIndexPtr();
res.x = mat.valuePtr();
res.z = 0;
res.sorted = 1;
if(mat.isCompressed())
{
res.packed = 1;
res.nz = 0;
}
else
{
res.packed = 0;
res.nz = mat.innerNonZeroPtr();
}
res.dtype = 0;
res.stype = -1;
if (internal::is_same<_Index,int>::value)
{
res.itype = CHOLMOD_INT;
}
else if (internal::is_same<_Index,SuiteSparse_long>::value)
{
res.itype = CHOLMOD_LONG;
}
else
{
eigen_assert(false && "Index type not supported yet");
}
// setup res.xtype
internal::cholmod_configure_matrix<_Scalar>(res);
res.stype = 0;
return res;
}
template<typename _Scalar, int _Options, typename _Index>
const cholmod_sparse viewAsCholmod(const SparseMatrix<_Scalar,_Options,_Index>& mat)
{
cholmod_sparse res = viewAsCholmod(mat.const_cast_derived());
return res;
}
/** Returns a view of the Eigen sparse matrix \a mat as Cholmod sparse matrix.
* The data are not copied but shared. */
template<typename _Scalar, int _Options, typename _Index, unsigned int UpLo>
cholmod_sparse viewAsCholmod(const SparseSelfAdjointView<SparseMatrix<_Scalar,_Options,_Index>, UpLo>& mat)
{
cholmod_sparse res = viewAsCholmod(mat.matrix().const_cast_derived());
if(UpLo==Upper) res.stype = 1;
if(UpLo==Lower) res.stype = -1;
return res;
}
/** Returns a view of the Eigen \b dense matrix \a mat as Cholmod dense matrix.
* The data are not copied but shared. */
template<typename Derived>
cholmod_dense viewAsCholmod(MatrixBase<Derived>& mat)
{
EIGEN_STATIC_ASSERT((internal::traits<Derived>::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
typedef typename Derived::Scalar Scalar;
cholmod_dense res;
res.nrow = mat.rows();
res.ncol = mat.cols();
res.nzmax = res.nrow * res.ncol;
res.d = Derived::IsVectorAtCompileTime ? mat.derived().size() : mat.derived().outerStride();
res.x = (void*)(mat.derived().data());
res.z = 0;
internal::cholmod_configure_matrix<Scalar>(res);
return res;
}
/** Returns a view of the Cholmod sparse matrix \a cm as an Eigen sparse matrix.
* The data are not copied but shared. */
template<typename Scalar, int Flags, typename Index>
MappedSparseMatrix<Scalar,Flags,Index> viewAsEigen(cholmod_sparse& cm)
{
return MappedSparseMatrix<Scalar,Flags,Index>
(cm.nrow, cm.ncol, static_cast<Index*>(cm.p)[cm.ncol],
static_cast<Index*>(cm.p), static_cast<Index*>(cm.i),static_cast<Scalar*>(cm.x) );
}
enum CholmodMode {
CholmodAuto, CholmodSimplicialLLt, CholmodSupernodalLLt, CholmodLDLt
};
/** \ingroup CholmodSupport_Module
* \class CholmodBase
* \brief The base class for the direct Cholesky factorization of Cholmod
* \sa class CholmodSupernodalLLT, class CholmodSimplicialLDLT, class CholmodSimplicialLLT
*/
template<typename _MatrixType, int _UpLo, typename Derived>
class CholmodBase : internal::noncopyable
{
public:
typedef _MatrixType MatrixType;
enum { UpLo = _UpLo };
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef MatrixType CholMatrixType;
typedef typename MatrixType::Index Index;
public:
CholmodBase()
: m_cholmodFactor(0), m_info(Success), m_isInitialized(false)
{
m_shiftOffset[0] = m_shiftOffset[1] = RealScalar(0.0);
cholmod_start(&m_cholmod);
}
CholmodBase(const MatrixType& matrix)
: m_cholmodFactor(0), m_info(Success), m_isInitialized(false)
{
m_shiftOffset[0] = m_shiftOffset[1] = RealScalar(0.0);
cholmod_start(&m_cholmod);
compute(matrix);
}
~CholmodBase()
{
if(m_cholmodFactor)
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
cholmod_finish(&m_cholmod);
}
inline Index cols() const { return m_cholmodFactor->n; }
inline Index rows() const { return m_cholmodFactor->n; }
Derived& derived() { return *static_cast<Derived*>(this); }
const Derived& derived() const { return *static_cast<const Derived*>(this); }
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful,
* \c NumericalIssue if the matrix.appears to be negative.
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
return m_info;
}
/** Computes the sparse Cholesky decomposition of \a matrix */
Derived& compute(const MatrixType& matrix)
{
analyzePattern(matrix);
factorize(matrix);
return derived();
}
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
*
* \sa compute()
*/
template<typename Rhs>
inline const internal::solve_retval<CholmodBase, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
eigen_assert(rows()==b.rows()
&& "CholmodDecomposition::solve(): invalid number of rows of the right hand side matrix b");
return internal::solve_retval<CholmodBase, Rhs>(*this, b.derived());
}
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
*
* \sa compute()
*/
template<typename Rhs>
inline const internal::sparse_solve_retval<CholmodBase, Rhs>
solve(const SparseMatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
eigen_assert(rows()==b.rows()
&& "CholmodDecomposition::solve(): invalid number of rows of the right hand side matrix b");
return internal::sparse_solve_retval<CholmodBase, Rhs>(*this, b.derived());
}
/** Performs a symbolic decomposition on the sparsity pattern of \a matrix.
*
* This function is particularly useful when solving for several problems having the same structure.
*
* \sa factorize()
*/
void analyzePattern(const MatrixType& matrix)
{
if(m_cholmodFactor)
{
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
m_cholmodFactor = 0;
}
cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
m_cholmodFactor = cholmod_analyze(&A, &m_cholmod);
this->m_isInitialized = true;
this->m_info = Success;
m_analysisIsOk = true;
m_factorizationIsOk = false;
}
/** Performs a numeric decomposition of \a matrix
*
* The given matrix must have the same sparsity pattern as the matrix on which the symbolic decomposition has been performed.
*
* \sa analyzePattern()
*/
void factorize(const MatrixType& matrix)
{
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
cholmod_factorize_p(&A, m_shiftOffset, 0, 0, m_cholmodFactor, &m_cholmod);
// If the factorization failed, minor is the column at which it did. On success minor == n.
this->m_info = (m_cholmodFactor->minor == m_cholmodFactor->n ? Success : NumericalIssue);
m_factorizationIsOk = true;
}
/** Returns a reference to the Cholmod's configuration structure to get a full control over the performed operations.
* See the Cholmod user guide for details. */
cholmod_common& cholmod() { return m_cholmod; }
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal */
template<typename Rhs,typename Dest>
void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
{
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
const Index size = m_cholmodFactor->n;
EIGEN_UNUSED_VARIABLE(size);
eigen_assert(size==b.rows());
// note: cd stands for Cholmod Dense
Rhs& b_ref(b.const_cast_derived());
cholmod_dense b_cd = viewAsCholmod(b_ref);
cholmod_dense* x_cd = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &b_cd, &m_cholmod);
if(!x_cd)
{
this->m_info = NumericalIssue;
}
// TODO optimize this copy by swapping when possible (be careful with alignment, etc.)
dest = Matrix<Scalar,Dest::RowsAtCompileTime,Dest::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x),b.rows(),b.cols());
cholmod_free_dense(&x_cd, &m_cholmod);
}
/** \internal */
template<typename RhsScalar, int RhsOptions, typename RhsIndex, typename DestScalar, int DestOptions, typename DestIndex>
void _solve(const SparseMatrix<RhsScalar,RhsOptions,RhsIndex> &b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const
{
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
const Index size = m_cholmodFactor->n;
EIGEN_UNUSED_VARIABLE(size);
eigen_assert(size==b.rows());
// note: cs stands for Cholmod Sparse
cholmod_sparse b_cs = viewAsCholmod(b);
cholmod_sparse* x_cs = cholmod_spsolve(CHOLMOD_A, m_cholmodFactor, &b_cs, &m_cholmod);
if(!x_cs)
{
this->m_info = NumericalIssue;
}
// TODO optimize this copy by swapping when possible (be careful with alignment, etc.)
dest = viewAsEigen<DestScalar,DestOptions,DestIndex>(*x_cs);
cholmod_free_sparse(&x_cs, &m_cholmod);
}
#endif // EIGEN_PARSED_BY_DOXYGEN
/** Sets the shift parameter that will be used to adjust the diagonal coefficients during the numerical factorization.
*
* During the numerical factorization, an offset term is added to the diagonal coefficients:\n
* \c d_ii = \a offset + \c d_ii
*
* The default is \a offset=0.
*
* \returns a reference to \c *this.
*/
Derived& setShift(const RealScalar& offset)
{
m_shiftOffset[0] = offset;
return derived();
}
template<typename Stream>
void dumpMemory(Stream& /*s*/)
{}
protected:
mutable cholmod_common m_cholmod;
cholmod_factor* m_cholmodFactor;
RealScalar m_shiftOffset[2];
mutable ComputationInfo m_info;
bool m_isInitialized;
int m_factorizationIsOk;
int m_analysisIsOk;
};
/** \ingroup CholmodSupport_Module
* \class CholmodSimplicialLLT
* \brief A simplicial direct Cholesky (LLT) factorization and solver based on Cholmod
*
* This class allows to solve for A.X = B sparse linear problems via a simplicial LL^T Cholesky factorization
* using the Cholmod library.
* This simplicial variant is equivalent to Eigen's built-in SimplicialLLT class. Therefore, it has little practical interest.
* The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
* X and B can be either dense or sparse.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
*
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
*
* \sa \ref TutorialSparseDirectSolvers, class CholmodSupernodalLLT, class SimplicialLLT
*/
template<typename _MatrixType, int _UpLo = Lower>
class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT<_MatrixType, _UpLo> >
{
typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT> Base;
using Base::m_cholmod;
public:
typedef _MatrixType MatrixType;
CholmodSimplicialLLT() : Base() { init(); }
CholmodSimplicialLLT(const MatrixType& matrix) : Base()
{
init();
Base::compute(matrix);
}
~CholmodSimplicialLLT() {}
protected:
void init()
{
m_cholmod.final_asis = 0;
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
m_cholmod.final_ll = 1;
}
};
/** \ingroup CholmodSupport_Module
* \class CholmodSimplicialLDLT
* \brief A simplicial direct Cholesky (LDLT) factorization and solver based on Cholmod
*
* This class allows to solve for A.X = B sparse linear problems via a simplicial LDL^T Cholesky factorization
* using the Cholmod library.
* This simplicial variant is equivalent to Eigen's built-in SimplicialLDLT class. Therefore, it has little practical interest.
* The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
* X and B can be either dense or sparse.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
*
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
*
* \sa \ref TutorialSparseDirectSolvers, class CholmodSupernodalLLT, class SimplicialLDLT
*/
template<typename _MatrixType, int _UpLo = Lower>
class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT<_MatrixType, _UpLo> >
{
typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT> Base;
using Base::m_cholmod;
public:
typedef _MatrixType MatrixType;
CholmodSimplicialLDLT() : Base() { init(); }
CholmodSimplicialLDLT(const MatrixType& matrix) : Base()
{
init();
Base::compute(matrix);
}
~CholmodSimplicialLDLT() {}
protected:
void init()
{
m_cholmod.final_asis = 1;
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
}
};
/** \ingroup CholmodSupport_Module
* \class CholmodSupernodalLLT
* \brief A supernodal Cholesky (LLT) factorization and solver based on Cholmod
*
* This class allows to solve for A.X = B sparse linear problems via a supernodal LL^T Cholesky factorization
* using the Cholmod library.
* This supernodal variant performs best on dense enough problems, e.g., 3D FEM, or very high order 2D FEM.
* The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
* X and B can be either dense or sparse.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
*
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
*
* \sa \ref TutorialSparseDirectSolvers
*/
template<typename _MatrixType, int _UpLo = Lower>
class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT<_MatrixType, _UpLo> >
{
typedef CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT> Base;
using Base::m_cholmod;
public:
typedef _MatrixType MatrixType;
CholmodSupernodalLLT() : Base() { init(); }
CholmodSupernodalLLT(const MatrixType& matrix) : Base()
{
init();
Base::compute(matrix);
}
~CholmodSupernodalLLT() {}
protected:
void init()
{
m_cholmod.final_asis = 1;
m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
}
};
/** \ingroup CholmodSupport_Module
* \class CholmodDecomposition
* \brief A general Cholesky factorization and solver based on Cholmod
*
* This class allows to solve for A.X = B sparse linear problems via a LL^T or LDL^T Cholesky factorization
* using the Cholmod library. The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
* X and B can be either dense or sparse.
*
* This variant permits to change the underlying Cholesky method at runtime.
* On the other hand, it does not provide access to the result of the factorization.
* The default is to let Cholmod automatically choose between a simplicial and supernodal factorization.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
*
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
*
* \sa \ref TutorialSparseDirectSolvers
*/
template<typename _MatrixType, int _UpLo = Lower>
class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecomposition<_MatrixType, _UpLo> >
{
typedef CholmodBase<_MatrixType, _UpLo, CholmodDecomposition> Base;
using Base::m_cholmod;
public:
typedef _MatrixType MatrixType;
CholmodDecomposition() : Base() { init(); }
CholmodDecomposition(const MatrixType& matrix) : Base()
{
init();
Base::compute(matrix);
}
~CholmodDecomposition() {}
void setMode(CholmodMode mode)
{
switch(mode)
{
case CholmodAuto:
m_cholmod.final_asis = 1;
m_cholmod.supernodal = CHOLMOD_AUTO;
break;
case CholmodSimplicialLLt:
m_cholmod.final_asis = 0;
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
m_cholmod.final_ll = 1;
break;
case CholmodSupernodalLLt:
m_cholmod.final_asis = 1;
m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
break;
case CholmodLDLt:
m_cholmod.final_asis = 1;
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
break;
default:
break;
}
}
protected:
void init()
{
m_cholmod.final_asis = 1;
m_cholmod.supernodal = CHOLMOD_AUTO;
}
};
namespace internal {
template<typename _MatrixType, int _UpLo, typename Derived, typename Rhs>
struct solve_retval<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
: solve_retval_base<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
{
typedef CholmodBase<_MatrixType,_UpLo,Derived> Dec;
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
dec()._solve(rhs(),dst);
}
};
template<typename _MatrixType, int _UpLo, typename Derived, typename Rhs>
struct sparse_solve_retval<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
: sparse_solve_retval_base<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
{
typedef CholmodBase<_MatrixType,_UpLo,Derived> Dec;
EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
dec()._solve(rhs(),dst);
}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_CHOLMODSUPPORT_H

323
lib/Eigen/src/Core/Array.h Normal file
View File

@ -0,0 +1,323 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ARRAY_H
#define EIGEN_ARRAY_H
namespace Eigen {
/** \class Array
* \ingroup Core_Module
*
* \brief General-purpose arrays with easy API for coefficient-wise operations
*
* The %Array class is very similar to the Matrix class. It provides
* general-purpose one- and two-dimensional arrays. The difference between the
* %Array and the %Matrix class is primarily in the API: the API for the
* %Array class provides easy access to coefficient-wise operations, while the
* API for the %Matrix class provides easy access to linear-algebra
* operations.
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_ARRAY_PLUGIN.
*
* \sa \ref TutorialArrayClass, \ref TopicClassHierarchy
*/
namespace internal {
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct traits<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > : traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
{
typedef ArrayXpr XprKind;
typedef ArrayBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > XprBase;
};
}
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
class Array
: public PlainObjectBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
{
public:
typedef PlainObjectBase<Array> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Array)
enum { Options = _Options };
typedef typename Base::PlainObject PlainObject;
protected:
template <typename Derived, typename OtherDerived, bool IsVector>
friend struct internal::conservative_resize_like_impl;
using Base::m_storage;
public:
using Base::base;
using Base::coeff;
using Base::coeffRef;
/**
* The usage of
* using Base::operator=;
* fails on MSVC. Since the code below is working with GCC and MSVC, we skipped
* the usage of 'using'. This should be done only for operator=.
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE Array& operator=(const EigenBase<OtherDerived> &other)
{
return Base::operator=(other);
}
/** Copies the value of the expression \a other into \c *this with automatic resizing.
*
* *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
* it will be initialized.
*
* Note that copying a row-vector into a vector (and conversely) is allowed.
* The resizing, if any, is then done in the appropriate way so that row-vectors
* remain row-vectors and vectors remain vectors.
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE Array& operator=(const ArrayBase<OtherDerived>& other)
{
return Base::_set(other);
}
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
EIGEN_STRONG_INLINE Array& operator=(const Array& other)
{
return Base::_set(other);
}
/** Default constructor.
*
* For fixed-size matrices, does nothing.
*
* For dynamic-size matrices, creates an empty matrix of size 0. Does not allocate any array. Such a matrix
* is called a null matrix. This constructor is the unique way to create null matrices: resizing
* a matrix to 0 is not supported.
*
* \sa resize(Index,Index)
*/
EIGEN_STRONG_INLINE Array() : Base()
{
Base::_check_template_params();
EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
// FIXME is it still needed ??
/** \internal */
Array(internal::constructor_without_unaligned_array_assert)
: Base(internal::constructor_without_unaligned_array_assert())
{
Base::_check_template_params();
EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
}
#endif
#ifdef EIGEN_HAVE_RVALUE_REFERENCES
Array(Array&& other)
: Base(std::move(other))
{
Base::_check_template_params();
if (RowsAtCompileTime!=Dynamic && ColsAtCompileTime!=Dynamic)
Base::_set_noalias(other);
}
Array& operator=(Array&& other)
{
other.swap(*this);
return *this;
}
#endif
/** Constructs a vector or row-vector with given dimension. \only_for_vectors
*
* Note that this is only useful for dynamic-size vectors. For fixed-size vectors,
* it is redundant to pass the dimension here, so it makes more sense to use the default
* constructor Matrix() instead.
*/
EIGEN_STRONG_INLINE explicit Array(Index dim)
: Base(dim, RowsAtCompileTime == 1 ? 1 : dim, ColsAtCompileTime == 1 ? 1 : dim)
{
Base::_check_template_params();
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Array)
eigen_assert(dim >= 0);
eigen_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == dim);
EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename T0, typename T1>
EIGEN_STRONG_INLINE Array(const T0& val0, const T1& val1)
{
Base::_check_template_params();
this->template _init2<T0,T1>(val0, val1);
}
#else
/** constructs an uninitialized matrix with \a rows rows and \a cols columns.
*
* This is useful for dynamic-size matrices. For fixed-size matrices,
* it is redundant to pass these parameters, so one should use the default constructor
* Matrix() instead. */
Array(Index rows, Index cols);
/** constructs an initialized 2D vector with given coefficients */
Array(const Scalar& val0, const Scalar& val1);
#endif
/** constructs an initialized 3D vector with given coefficients */
EIGEN_STRONG_INLINE Array(const Scalar& val0, const Scalar& val1, const Scalar& val2)
{
Base::_check_template_params();
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Array, 3)
m_storage.data()[0] = val0;
m_storage.data()[1] = val1;
m_storage.data()[2] = val2;
}
/** constructs an initialized 4D vector with given coefficients */
EIGEN_STRONG_INLINE Array(const Scalar& val0, const Scalar& val1, const Scalar& val2, const Scalar& val3)
{
Base::_check_template_params();
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Array, 4)
m_storage.data()[0] = val0;
m_storage.data()[1] = val1;
m_storage.data()[2] = val2;
m_storage.data()[3] = val3;
}
explicit Array(const Scalar *data);
/** Constructor copying the value of the expression \a other */
template<typename OtherDerived>
EIGEN_STRONG_INLINE Array(const ArrayBase<OtherDerived>& other)
: Base(other.rows() * other.cols(), other.rows(), other.cols())
{
Base::_check_template_params();
Base::_set_noalias(other);
}
/** Copy constructor */
EIGEN_STRONG_INLINE Array(const Array& other)
: Base(other.rows() * other.cols(), other.rows(), other.cols())
{
Base::_check_template_params();
Base::_set_noalias(other);
}
/** Copy constructor with in-place evaluation */
template<typename OtherDerived>
EIGEN_STRONG_INLINE Array(const ReturnByValue<OtherDerived>& other)
{
Base::_check_template_params();
Base::resize(other.rows(), other.cols());
other.evalTo(*this);
}
/** \sa MatrixBase::operator=(const EigenBase<OtherDerived>&) */
template<typename OtherDerived>
EIGEN_STRONG_INLINE Array(const EigenBase<OtherDerived> &other)
: Base(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols())
{
Base::_check_template_params();
Base::_resize_to_match(other);
*this = other;
}
/** Override MatrixBase::swap() since for dynamic-sized matrices of same type it is enough to swap the
* data pointers.
*/
template<typename OtherDerived>
void swap(ArrayBase<OtherDerived> const & other)
{ this->_swap(other.derived()); }
inline Index innerStride() const { return 1; }
inline Index outerStride() const { return this->innerSize(); }
#ifdef EIGEN_ARRAY_PLUGIN
#include EIGEN_ARRAY_PLUGIN
#endif
private:
template<typename MatrixType, typename OtherDerived, bool SwapPointers>
friend struct internal::matrix_swap_impl;
};
/** \defgroup arraytypedefs Global array typedefs
* \ingroup Core_Module
*
* Eigen defines several typedef shortcuts for most common 1D and 2D array types.
*
* The general patterns are the following:
*
* \c ArrayRowsColsType where \c Rows and \c Cols can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size,
* and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd
* for complex double.
*
* For example, \c Array33d is a fixed-size 3x3 array type of doubles, and \c ArrayXXf is a dynamic-size matrix of floats.
*
* There are also \c ArraySizeType which are self-explanatory. For example, \c Array4cf is
* a fixed-size 1D array of 4 complex floats.
*
* \sa class Array
*/
#define EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \
/** \ingroup arraytypedefs */ \
typedef Array<Type, Size, Size> Array##SizeSuffix##SizeSuffix##TypeSuffix; \
/** \ingroup arraytypedefs */ \
typedef Array<Type, Size, 1> Array##SizeSuffix##TypeSuffix;
#define EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, Size) \
/** \ingroup arraytypedefs */ \
typedef Array<Type, Size, Dynamic> Array##Size##X##TypeSuffix; \
/** \ingroup arraytypedefs */ \
typedef Array<Type, Dynamic, Size> Array##X##Size##TypeSuffix;
#define EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \
EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 2, 2) \
EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 3, 3) \
EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 4, 4) \
EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, Dynamic, X) \
EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 2) \
EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 3) \
EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 4)
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(int, i)
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(float, f)
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(double, d)
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(std::complex<float>, cf)
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(std::complex<double>, cd)
#undef EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES
#undef EIGEN_MAKE_ARRAY_TYPEDEFS
#undef EIGEN_MAKE_ARRAY_TYPEDEFS_LARGE
#define EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \
using Eigen::Matrix##SizeSuffix##TypeSuffix; \
using Eigen::Vector##SizeSuffix##TypeSuffix; \
using Eigen::RowVector##SizeSuffix##TypeSuffix;
#define EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(TypeSuffix) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \
#define EIGEN_USING_ARRAY_TYPEDEFS \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(i) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(f) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(d) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(cf) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(cd)
} // end namespace Eigen
#endif // EIGEN_ARRAY_H

View File

@ -0,0 +1,226 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ARRAYBASE_H
#define EIGEN_ARRAYBASE_H
namespace Eigen {
template<typename ExpressionType> class MatrixWrapper;
/** \class ArrayBase
* \ingroup Core_Module
*
* \brief Base class for all 1D and 2D array, and related expressions
*
* An array is similar to a dense vector or matrix. While matrices are mathematical
* objects with well defined linear algebra operators, an array is just a collection
* of scalar values arranged in a one or two dimensionnal fashion. As the main consequence,
* all operations applied to an array are performed coefficient wise. Furthermore,
* arrays support scalar math functions of the c++ standard library (e.g., std::sin(x)), and convenient
* constructors allowing to easily write generic code working for both scalar values
* and arrays.
*
* This class is the base that is inherited by all array expression types.
*
* \tparam Derived is the derived type, e.g., an array or an expression type.
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_ARRAYBASE_PLUGIN.
*
* \sa class MatrixBase, \ref TopicClassHierarchy
*/
template<typename Derived> class ArrayBase
: public DenseBase<Derived>
{
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** The base class for a given storage type. */
typedef ArrayBase StorageBaseType;
typedef ArrayBase Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Index Index;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef DenseBase<Derived> Base;
using Base::operator*;
using Base::RowsAtCompileTime;
using Base::ColsAtCompileTime;
using Base::SizeAtCompileTime;
using Base::MaxRowsAtCompileTime;
using Base::MaxColsAtCompileTime;
using Base::MaxSizeAtCompileTime;
using Base::IsVectorAtCompileTime;
using Base::Flags;
using Base::CoeffReadCost;
using Base::derived;
using Base::const_cast_derived;
using Base::rows;
using Base::cols;
using Base::size;
using Base::coeff;
using Base::coeffRef;
using Base::lazyAssign;
using Base::operator=;
using Base::operator+=;
using Base::operator-=;
using Base::operator*=;
using Base::operator/=;
typedef typename Base::CoeffReturnType CoeffReturnType;
#endif // not EIGEN_PARSED_BY_DOXYGEN
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal the plain matrix type corresponding to this expression. Note that is not necessarily
* exactly the return type of eval(): in the case of plain matrices, the return type of eval() is a const
* reference to a matrix, not a matrix! It is however guaranteed that the return type of eval() is either
* PlainObject or const PlainObject&.
*/
typedef Array<typename internal::traits<Derived>::Scalar,
internal::traits<Derived>::RowsAtCompileTime,
internal::traits<Derived>::ColsAtCompileTime,
AutoAlign | (internal::traits<Derived>::Flags&RowMajorBit ? RowMajor : ColMajor),
internal::traits<Derived>::MaxRowsAtCompileTime,
internal::traits<Derived>::MaxColsAtCompileTime
> PlainObject;
/** \internal Represents a matrix with all coefficients equal to one another*/
typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Derived> ConstantReturnType;
#endif // not EIGEN_PARSED_BY_DOXYGEN
#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::ArrayBase
# include "../plugins/CommonCwiseUnaryOps.h"
# include "../plugins/MatrixCwiseUnaryOps.h"
# include "../plugins/ArrayCwiseUnaryOps.h"
# include "../plugins/CommonCwiseBinaryOps.h"
# include "../plugins/MatrixCwiseBinaryOps.h"
# include "../plugins/ArrayCwiseBinaryOps.h"
# ifdef EIGEN_ARRAYBASE_PLUGIN
# include EIGEN_ARRAYBASE_PLUGIN
# endif
#undef EIGEN_CURRENT_STORAGE_BASE_CLASS
/** Special case of the template operator=, in order to prevent the compiler
* from generating a default operator= (issue hit with g++ 4.1)
*/
Derived& operator=(const ArrayBase& other)
{
return internal::assign_selector<Derived,Derived>::run(derived(), other.derived());
}
Derived& operator+=(const Scalar& scalar)
{ return *this = derived() + scalar; }
Derived& operator-=(const Scalar& scalar)
{ return *this = derived() - scalar; }
template<typename OtherDerived>
Derived& operator+=(const ArrayBase<OtherDerived>& other);
template<typename OtherDerived>
Derived& operator-=(const ArrayBase<OtherDerived>& other);
template<typename OtherDerived>
Derived& operator*=(const ArrayBase<OtherDerived>& other);
template<typename OtherDerived>
Derived& operator/=(const ArrayBase<OtherDerived>& other);
public:
ArrayBase<Derived>& array() { return *this; }
const ArrayBase<Derived>& array() const { return *this; }
/** \returns an \link Eigen::MatrixBase Matrix \endlink expression of this array
* \sa MatrixBase::array() */
MatrixWrapper<Derived> matrix() { return derived(); }
const MatrixWrapper<const Derived> matrix() const { return derived(); }
// template<typename Dest>
// inline void evalTo(Dest& dst) const { dst = matrix(); }
protected:
ArrayBase() : Base() {}
private:
explicit ArrayBase(Index);
ArrayBase(Index,Index);
template<typename OtherDerived> explicit ArrayBase(const ArrayBase<OtherDerived>&);
protected:
// mixing arrays and matrices is not legal
template<typename OtherDerived> Derived& operator+=(const MatrixBase<OtherDerived>& )
{EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;}
// mixing arrays and matrices is not legal
template<typename OtherDerived> Derived& operator-=(const MatrixBase<OtherDerived>& )
{EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;}
};
/** replaces \c *this by \c *this - \a other.
*
* \returns a reference to \c *this
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
ArrayBase<Derived>::operator-=(const ArrayBase<OtherDerived> &other)
{
SelfCwiseBinaryOp<internal::scalar_difference_op<Scalar>, Derived, OtherDerived> tmp(derived());
tmp = other.derived();
return derived();
}
/** replaces \c *this by \c *this + \a other.
*
* \returns a reference to \c *this
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
ArrayBase<Derived>::operator+=(const ArrayBase<OtherDerived>& other)
{
SelfCwiseBinaryOp<internal::scalar_sum_op<Scalar>, Derived, OtherDerived> tmp(derived());
tmp = other.derived();
return derived();
}
/** replaces \c *this by \c *this * \a other coefficient wise.
*
* \returns a reference to \c *this
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
ArrayBase<Derived>::operator*=(const ArrayBase<OtherDerived>& other)
{
SelfCwiseBinaryOp<internal::scalar_product_op<Scalar>, Derived, OtherDerived> tmp(derived());
tmp = other.derived();
return derived();
}
/** replaces \c *this by \c *this / \a other coefficient wise.
*
* \returns a reference to \c *this
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
ArrayBase<Derived>::operator/=(const ArrayBase<OtherDerived>& other)
{
SelfCwiseBinaryOp<internal::scalar_quotient_op<Scalar>, Derived, OtherDerived> tmp(derived());
tmp = other.derived();
return derived();
}
} // end namespace Eigen
#endif // EIGEN_ARRAYBASE_H

View File

@ -0,0 +1,264 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ARRAYWRAPPER_H
#define EIGEN_ARRAYWRAPPER_H
namespace Eigen {
/** \class ArrayWrapper
* \ingroup Core_Module
*
* \brief Expression of a mathematical vector or matrix as an array object
*
* This class is the return type of MatrixBase::array(), and most of the time
* this is the only way it is use.
*
* \sa MatrixBase::array(), class MatrixWrapper
*/
namespace internal {
template<typename ExpressionType>
struct traits<ArrayWrapper<ExpressionType> >
: public traits<typename remove_all<typename ExpressionType::Nested>::type >
{
typedef ArrayXpr XprKind;
// Let's remove NestByRefBit
enum {
Flags0 = traits<typename remove_all<typename ExpressionType::Nested>::type >::Flags,
Flags = Flags0 & ~NestByRefBit
};
};
}
template<typename ExpressionType>
class ArrayWrapper : public ArrayBase<ArrayWrapper<ExpressionType> >
{
public:
typedef ArrayBase<ArrayWrapper> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(ArrayWrapper)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(ArrayWrapper)
typedef typename internal::conditional<
internal::is_lvalue<ExpressionType>::value,
Scalar,
const Scalar
>::type ScalarWithConstIfNotLvalue;
typedef typename internal::nested<ExpressionType>::type NestedExpressionType;
inline ArrayWrapper(ExpressionType& matrix) : m_expression(matrix) {}
inline Index rows() const { return m_expression.rows(); }
inline Index cols() const { return m_expression.cols(); }
inline Index outerStride() const { return m_expression.outerStride(); }
inline Index innerStride() const { return m_expression.innerStride(); }
inline ScalarWithConstIfNotLvalue* data() { return m_expression.const_cast_derived().data(); }
inline const Scalar* data() const { return m_expression.data(); }
inline CoeffReturnType coeff(Index rowId, Index colId) const
{
return m_expression.coeff(rowId, colId);
}
inline Scalar& coeffRef(Index rowId, Index colId)
{
return m_expression.const_cast_derived().coeffRef(rowId, colId);
}
inline const Scalar& coeffRef(Index rowId, Index colId) const
{
return m_expression.const_cast_derived().coeffRef(rowId, colId);
}
inline CoeffReturnType coeff(Index index) const
{
return m_expression.coeff(index);
}
inline Scalar& coeffRef(Index index)
{
return m_expression.const_cast_derived().coeffRef(index);
}
inline const Scalar& coeffRef(Index index) const
{
return m_expression.const_cast_derived().coeffRef(index);
}
template<int LoadMode>
inline const PacketScalar packet(Index rowId, Index colId) const
{
return m_expression.template packet<LoadMode>(rowId, colId);
}
template<int LoadMode>
inline void writePacket(Index rowId, Index colId, const PacketScalar& val)
{
m_expression.const_cast_derived().template writePacket<LoadMode>(rowId, colId, val);
}
template<int LoadMode>
inline const PacketScalar packet(Index index) const
{
return m_expression.template packet<LoadMode>(index);
}
template<int LoadMode>
inline void writePacket(Index index, const PacketScalar& val)
{
m_expression.const_cast_derived().template writePacket<LoadMode>(index, val);
}
template<typename Dest>
inline void evalTo(Dest& dst) const { dst = m_expression; }
const typename internal::remove_all<NestedExpressionType>::type&
nestedExpression() const
{
return m_expression;
}
/** Forwards the resizing request to the nested expression
* \sa DenseBase::resize(Index) */
void resize(Index newSize) { m_expression.const_cast_derived().resize(newSize); }
/** Forwards the resizing request to the nested expression
* \sa DenseBase::resize(Index,Index)*/
void resize(Index nbRows, Index nbCols) { m_expression.const_cast_derived().resize(nbRows,nbCols); }
protected:
NestedExpressionType m_expression;
};
/** \class MatrixWrapper
* \ingroup Core_Module
*
* \brief Expression of an array as a mathematical vector or matrix
*
* This class is the return type of ArrayBase::matrix(), and most of the time
* this is the only way it is use.
*
* \sa MatrixBase::matrix(), class ArrayWrapper
*/
namespace internal {
template<typename ExpressionType>
struct traits<MatrixWrapper<ExpressionType> >
: public traits<typename remove_all<typename ExpressionType::Nested>::type >
{
typedef MatrixXpr XprKind;
// Let's remove NestByRefBit
enum {
Flags0 = traits<typename remove_all<typename ExpressionType::Nested>::type >::Flags,
Flags = Flags0 & ~NestByRefBit
};
};
}
template<typename ExpressionType>
class MatrixWrapper : public MatrixBase<MatrixWrapper<ExpressionType> >
{
public:
typedef MatrixBase<MatrixWrapper<ExpressionType> > Base;
EIGEN_DENSE_PUBLIC_INTERFACE(MatrixWrapper)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(MatrixWrapper)
typedef typename internal::conditional<
internal::is_lvalue<ExpressionType>::value,
Scalar,
const Scalar
>::type ScalarWithConstIfNotLvalue;
typedef typename internal::nested<ExpressionType>::type NestedExpressionType;
inline MatrixWrapper(ExpressionType& a_matrix) : m_expression(a_matrix) {}
inline Index rows() const { return m_expression.rows(); }
inline Index cols() const { return m_expression.cols(); }
inline Index outerStride() const { return m_expression.outerStride(); }
inline Index innerStride() const { return m_expression.innerStride(); }
inline ScalarWithConstIfNotLvalue* data() { return m_expression.const_cast_derived().data(); }
inline const Scalar* data() const { return m_expression.data(); }
inline CoeffReturnType coeff(Index rowId, Index colId) const
{
return m_expression.coeff(rowId, colId);
}
inline Scalar& coeffRef(Index rowId, Index colId)
{
return m_expression.const_cast_derived().coeffRef(rowId, colId);
}
inline const Scalar& coeffRef(Index rowId, Index colId) const
{
return m_expression.derived().coeffRef(rowId, colId);
}
inline CoeffReturnType coeff(Index index) const
{
return m_expression.coeff(index);
}
inline Scalar& coeffRef(Index index)
{
return m_expression.const_cast_derived().coeffRef(index);
}
inline const Scalar& coeffRef(Index index) const
{
return m_expression.const_cast_derived().coeffRef(index);
}
template<int LoadMode>
inline const PacketScalar packet(Index rowId, Index colId) const
{
return m_expression.template packet<LoadMode>(rowId, colId);
}
template<int LoadMode>
inline void writePacket(Index rowId, Index colId, const PacketScalar& val)
{
m_expression.const_cast_derived().template writePacket<LoadMode>(rowId, colId, val);
}
template<int LoadMode>
inline const PacketScalar packet(Index index) const
{
return m_expression.template packet<LoadMode>(index);
}
template<int LoadMode>
inline void writePacket(Index index, const PacketScalar& val)
{
m_expression.const_cast_derived().template writePacket<LoadMode>(index, val);
}
const typename internal::remove_all<NestedExpressionType>::type&
nestedExpression() const
{
return m_expression;
}
/** Forwards the resizing request to the nested expression
* \sa DenseBase::resize(Index) */
void resize(Index newSize) { m_expression.const_cast_derived().resize(newSize); }
/** Forwards the resizing request to the nested expression
* \sa DenseBase::resize(Index,Index)*/
void resize(Index nbRows, Index nbCols) { m_expression.const_cast_derived().resize(nbRows,nbCols); }
protected:
NestedExpressionType m_expression;
};
} // end namespace Eigen
#endif // EIGEN_ARRAYWRAPPER_H

590
lib/Eigen/src/Core/Assign.h Normal file
View File

@ -0,0 +1,590 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007 Michael Olbrich <michael.olbrich@gmx.net>
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ASSIGN_H
#define EIGEN_ASSIGN_H
namespace Eigen {
namespace internal {
/***************************************************************************
* Part 1 : the logic deciding a strategy for traversal and unrolling *
***************************************************************************/
template <typename Derived, typename OtherDerived>
struct assign_traits
{
public:
enum {
DstIsAligned = Derived::Flags & AlignedBit,
DstHasDirectAccess = Derived::Flags & DirectAccessBit,
SrcIsAligned = OtherDerived::Flags & AlignedBit,
JointAlignment = bool(DstIsAligned) && bool(SrcIsAligned) ? Aligned : Unaligned
};
private:
enum {
InnerSize = int(Derived::IsVectorAtCompileTime) ? int(Derived::SizeAtCompileTime)
: int(Derived::Flags)&RowMajorBit ? int(Derived::ColsAtCompileTime)
: int(Derived::RowsAtCompileTime),
InnerMaxSize = int(Derived::IsVectorAtCompileTime) ? int(Derived::MaxSizeAtCompileTime)
: int(Derived::Flags)&RowMajorBit ? int(Derived::MaxColsAtCompileTime)
: int(Derived::MaxRowsAtCompileTime),
MaxSizeAtCompileTime = Derived::SizeAtCompileTime,
PacketSize = packet_traits<typename Derived::Scalar>::size
};
enum {
StorageOrdersAgree = (int(Derived::IsRowMajor) == int(OtherDerived::IsRowMajor)),
MightVectorize = StorageOrdersAgree
&& (int(Derived::Flags) & int(OtherDerived::Flags) & ActualPacketAccessBit),
MayInnerVectorize = MightVectorize && int(InnerSize)!=Dynamic && int(InnerSize)%int(PacketSize)==0
&& int(DstIsAligned) && int(SrcIsAligned),
MayLinearize = StorageOrdersAgree && (int(Derived::Flags) & int(OtherDerived::Flags) & LinearAccessBit),
MayLinearVectorize = MightVectorize && MayLinearize && DstHasDirectAccess
&& (DstIsAligned || MaxSizeAtCompileTime == Dynamic),
/* If the destination isn't aligned, we have to do runtime checks and we don't unroll,
so it's only good for large enough sizes. */
MaySliceVectorize = MightVectorize && DstHasDirectAccess
&& (int(InnerMaxSize)==Dynamic || int(InnerMaxSize)>=3*PacketSize)
/* slice vectorization can be slow, so we only want it if the slices are big, which is
indicated by InnerMaxSize rather than InnerSize, think of the case of a dynamic block
in a fixed-size matrix */
};
public:
enum {
Traversal = int(MayInnerVectorize) ? int(InnerVectorizedTraversal)
: int(MayLinearVectorize) ? int(LinearVectorizedTraversal)
: int(MaySliceVectorize) ? int(SliceVectorizedTraversal)
: int(MayLinearize) ? int(LinearTraversal)
: int(DefaultTraversal),
Vectorized = int(Traversal) == InnerVectorizedTraversal
|| int(Traversal) == LinearVectorizedTraversal
|| int(Traversal) == SliceVectorizedTraversal
};
private:
enum {
UnrollingLimit = EIGEN_UNROLLING_LIMIT * (Vectorized ? int(PacketSize) : 1),
MayUnrollCompletely = int(Derived::SizeAtCompileTime) != Dynamic
&& int(OtherDerived::CoeffReadCost) != Dynamic
&& int(Derived::SizeAtCompileTime) * int(OtherDerived::CoeffReadCost) <= int(UnrollingLimit),
MayUnrollInner = int(InnerSize) != Dynamic
&& int(OtherDerived::CoeffReadCost) != Dynamic
&& int(InnerSize) * int(OtherDerived::CoeffReadCost) <= int(UnrollingLimit)
};
public:
enum {
Unrolling = (int(Traversal) == int(InnerVectorizedTraversal) || int(Traversal) == int(DefaultTraversal))
? (
int(MayUnrollCompletely) ? int(CompleteUnrolling)
: int(MayUnrollInner) ? int(InnerUnrolling)
: int(NoUnrolling)
)
: int(Traversal) == int(LinearVectorizedTraversal)
? ( bool(MayUnrollCompletely) && bool(DstIsAligned) ? int(CompleteUnrolling) : int(NoUnrolling) )
: int(Traversal) == int(LinearTraversal)
? ( bool(MayUnrollCompletely) ? int(CompleteUnrolling) : int(NoUnrolling) )
: int(NoUnrolling)
};
#ifdef EIGEN_DEBUG_ASSIGN
static void debug()
{
EIGEN_DEBUG_VAR(DstIsAligned)
EIGEN_DEBUG_VAR(SrcIsAligned)
EIGEN_DEBUG_VAR(JointAlignment)
EIGEN_DEBUG_VAR(InnerSize)
EIGEN_DEBUG_VAR(InnerMaxSize)
EIGEN_DEBUG_VAR(PacketSize)
EIGEN_DEBUG_VAR(StorageOrdersAgree)
EIGEN_DEBUG_VAR(MightVectorize)
EIGEN_DEBUG_VAR(MayLinearize)
EIGEN_DEBUG_VAR(MayInnerVectorize)
EIGEN_DEBUG_VAR(MayLinearVectorize)
EIGEN_DEBUG_VAR(MaySliceVectorize)
EIGEN_DEBUG_VAR(Traversal)
EIGEN_DEBUG_VAR(UnrollingLimit)
EIGEN_DEBUG_VAR(MayUnrollCompletely)
EIGEN_DEBUG_VAR(MayUnrollInner)
EIGEN_DEBUG_VAR(Unrolling)
}
#endif
};
/***************************************************************************
* Part 2 : meta-unrollers
***************************************************************************/
/************************
*** Default traversal ***
************************/
template<typename Derived1, typename Derived2, int Index, int Stop>
struct assign_DefaultTraversal_CompleteUnrolling
{
enum {
outer = Index / Derived1::InnerSizeAtCompileTime,
inner = Index % Derived1::InnerSizeAtCompileTime
};
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
{
dst.copyCoeffByOuterInner(outer, inner, src);
assign_DefaultTraversal_CompleteUnrolling<Derived1, Derived2, Index+1, Stop>::run(dst, src);
}
};
template<typename Derived1, typename Derived2, int Stop>
struct assign_DefaultTraversal_CompleteUnrolling<Derived1, Derived2, Stop, Stop>
{
static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &) {}
};
template<typename Derived1, typename Derived2, int Index, int Stop>
struct assign_DefaultTraversal_InnerUnrolling
{
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src, typename Derived1::Index outer)
{
dst.copyCoeffByOuterInner(outer, Index, src);
assign_DefaultTraversal_InnerUnrolling<Derived1, Derived2, Index+1, Stop>::run(dst, src, outer);
}
};
template<typename Derived1, typename Derived2, int Stop>
struct assign_DefaultTraversal_InnerUnrolling<Derived1, Derived2, Stop, Stop>
{
static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &, typename Derived1::Index) {}
};
/***********************
*** Linear traversal ***
***********************/
template<typename Derived1, typename Derived2, int Index, int Stop>
struct assign_LinearTraversal_CompleteUnrolling
{
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
{
dst.copyCoeff(Index, src);
assign_LinearTraversal_CompleteUnrolling<Derived1, Derived2, Index+1, Stop>::run(dst, src);
}
};
template<typename Derived1, typename Derived2, int Stop>
struct assign_LinearTraversal_CompleteUnrolling<Derived1, Derived2, Stop, Stop>
{
static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &) {}
};
/**************************
*** Inner vectorization ***
**************************/
template<typename Derived1, typename Derived2, int Index, int Stop>
struct assign_innervec_CompleteUnrolling
{
enum {
outer = Index / Derived1::InnerSizeAtCompileTime,
inner = Index % Derived1::InnerSizeAtCompileTime,
JointAlignment = assign_traits<Derived1,Derived2>::JointAlignment
};
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
{
dst.template copyPacketByOuterInner<Derived2, Aligned, JointAlignment>(outer, inner, src);
assign_innervec_CompleteUnrolling<Derived1, Derived2,
Index+packet_traits<typename Derived1::Scalar>::size, Stop>::run(dst, src);
}
};
template<typename Derived1, typename Derived2, int Stop>
struct assign_innervec_CompleteUnrolling<Derived1, Derived2, Stop, Stop>
{
static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &) {}
};
template<typename Derived1, typename Derived2, int Index, int Stop>
struct assign_innervec_InnerUnrolling
{
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src, typename Derived1::Index outer)
{
dst.template copyPacketByOuterInner<Derived2, Aligned, Aligned>(outer, Index, src);
assign_innervec_InnerUnrolling<Derived1, Derived2,
Index+packet_traits<typename Derived1::Scalar>::size, Stop>::run(dst, src, outer);
}
};
template<typename Derived1, typename Derived2, int Stop>
struct assign_innervec_InnerUnrolling<Derived1, Derived2, Stop, Stop>
{
static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &, typename Derived1::Index) {}
};
/***************************************************************************
* Part 3 : implementation of all cases
***************************************************************************/
template<typename Derived1, typename Derived2,
int Traversal = assign_traits<Derived1, Derived2>::Traversal,
int Unrolling = assign_traits<Derived1, Derived2>::Unrolling,
int Version = Specialized>
struct assign_impl;
/************************
*** Default traversal ***
************************/
template<typename Derived1, typename Derived2, int Unrolling, int Version>
struct assign_impl<Derived1, Derived2, InvalidTraversal, Unrolling, Version>
{
static inline void run(Derived1 &, const Derived2 &) { }
};
template<typename Derived1, typename Derived2, int Version>
struct assign_impl<Derived1, Derived2, DefaultTraversal, NoUnrolling, Version>
{
typedef typename Derived1::Index Index;
static inline void run(Derived1 &dst, const Derived2 &src)
{
const Index innerSize = dst.innerSize();
const Index outerSize = dst.outerSize();
for(Index outer = 0; outer < outerSize; ++outer)
for(Index inner = 0; inner < innerSize; ++inner)
dst.copyCoeffByOuterInner(outer, inner, src);
}
};
template<typename Derived1, typename Derived2, int Version>
struct assign_impl<Derived1, Derived2, DefaultTraversal, CompleteUnrolling, Version>
{
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
{
assign_DefaultTraversal_CompleteUnrolling<Derived1, Derived2, 0, Derived1::SizeAtCompileTime>
::run(dst, src);
}
};
template<typename Derived1, typename Derived2, int Version>
struct assign_impl<Derived1, Derived2, DefaultTraversal, InnerUnrolling, Version>
{
typedef typename Derived1::Index Index;
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
{
const Index outerSize = dst.outerSize();
for(Index outer = 0; outer < outerSize; ++outer)
assign_DefaultTraversal_InnerUnrolling<Derived1, Derived2, 0, Derived1::InnerSizeAtCompileTime>
::run(dst, src, outer);
}
};
/***********************
*** Linear traversal ***
***********************/
template<typename Derived1, typename Derived2, int Version>
struct assign_impl<Derived1, Derived2, LinearTraversal, NoUnrolling, Version>
{
typedef typename Derived1::Index Index;
static inline void run(Derived1 &dst, const Derived2 &src)
{
const Index size = dst.size();
for(Index i = 0; i < size; ++i)
dst.copyCoeff(i, src);
}
};
template<typename Derived1, typename Derived2, int Version>
struct assign_impl<Derived1, Derived2, LinearTraversal, CompleteUnrolling, Version>
{
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
{
assign_LinearTraversal_CompleteUnrolling<Derived1, Derived2, 0, Derived1::SizeAtCompileTime>
::run(dst, src);
}
};
/**************************
*** Inner vectorization ***
**************************/
template<typename Derived1, typename Derived2, int Version>
struct assign_impl<Derived1, Derived2, InnerVectorizedTraversal, NoUnrolling, Version>
{
typedef typename Derived1::Index Index;
static inline void run(Derived1 &dst, const Derived2 &src)
{
const Index innerSize = dst.innerSize();
const Index outerSize = dst.outerSize();
const Index packetSize = packet_traits<typename Derived1::Scalar>::size;
for(Index outer = 0; outer < outerSize; ++outer)
for(Index inner = 0; inner < innerSize; inner+=packetSize)
dst.template copyPacketByOuterInner<Derived2, Aligned, Aligned>(outer, inner, src);
}
};
template<typename Derived1, typename Derived2, int Version>
struct assign_impl<Derived1, Derived2, InnerVectorizedTraversal, CompleteUnrolling, Version>
{
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
{
assign_innervec_CompleteUnrolling<Derived1, Derived2, 0, Derived1::SizeAtCompileTime>
::run(dst, src);
}
};
template<typename Derived1, typename Derived2, int Version>
struct assign_impl<Derived1, Derived2, InnerVectorizedTraversal, InnerUnrolling, Version>
{
typedef typename Derived1::Index Index;
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
{
const Index outerSize = dst.outerSize();
for(Index outer = 0; outer < outerSize; ++outer)
assign_innervec_InnerUnrolling<Derived1, Derived2, 0, Derived1::InnerSizeAtCompileTime>
::run(dst, src, outer);
}
};
/***************************
*** Linear vectorization ***
***************************/
template <bool IsAligned = false>
struct unaligned_assign_impl
{
template <typename Derived, typename OtherDerived>
static EIGEN_STRONG_INLINE void run(const Derived&, OtherDerived&, typename Derived::Index, typename Derived::Index) {}
};
template <>
struct unaligned_assign_impl<false>
{
// MSVC must not inline this functions. If it does, it fails to optimize the
// packet access path.
#ifdef _MSC_VER
template <typename Derived, typename OtherDerived>
static EIGEN_DONT_INLINE void run(const Derived& src, OtherDerived& dst, typename Derived::Index start, typename Derived::Index end)
#else
template <typename Derived, typename OtherDerived>
static EIGEN_STRONG_INLINE void run(const Derived& src, OtherDerived& dst, typename Derived::Index start, typename Derived::Index end)
#endif
{
for (typename Derived::Index index = start; index < end; ++index)
dst.copyCoeff(index, src);
}
};
template<typename Derived1, typename Derived2, int Version>
struct assign_impl<Derived1, Derived2, LinearVectorizedTraversal, NoUnrolling, Version>
{
typedef typename Derived1::Index Index;
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
{
const Index size = dst.size();
typedef packet_traits<typename Derived1::Scalar> PacketTraits;
enum {
packetSize = PacketTraits::size,
dstAlignment = PacketTraits::AlignedOnScalar ? Aligned : int(assign_traits<Derived1,Derived2>::DstIsAligned) ,
srcAlignment = assign_traits<Derived1,Derived2>::JointAlignment
};
const Index alignedStart = assign_traits<Derived1,Derived2>::DstIsAligned ? 0
: internal::first_aligned(&dst.coeffRef(0), size);
const Index alignedEnd = alignedStart + ((size-alignedStart)/packetSize)*packetSize;
unaligned_assign_impl<assign_traits<Derived1,Derived2>::DstIsAligned!=0>::run(src,dst,0,alignedStart);
for(Index index = alignedStart; index < alignedEnd; index += packetSize)
{
dst.template copyPacket<Derived2, dstAlignment, srcAlignment>(index, src);
}
unaligned_assign_impl<>::run(src,dst,alignedEnd,size);
}
};
template<typename Derived1, typename Derived2, int Version>
struct assign_impl<Derived1, Derived2, LinearVectorizedTraversal, CompleteUnrolling, Version>
{
typedef typename Derived1::Index Index;
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
{
enum { size = Derived1::SizeAtCompileTime,
packetSize = packet_traits<typename Derived1::Scalar>::size,
alignedSize = (size/packetSize)*packetSize };
assign_innervec_CompleteUnrolling<Derived1, Derived2, 0, alignedSize>::run(dst, src);
assign_DefaultTraversal_CompleteUnrolling<Derived1, Derived2, alignedSize, size>::run(dst, src);
}
};
/**************************
*** Slice vectorization ***
***************************/
template<typename Derived1, typename Derived2, int Version>
struct assign_impl<Derived1, Derived2, SliceVectorizedTraversal, NoUnrolling, Version>
{
typedef typename Derived1::Index Index;
static inline void run(Derived1 &dst, const Derived2 &src)
{
typedef typename Derived1::Scalar Scalar;
typedef packet_traits<Scalar> PacketTraits;
enum {
packetSize = PacketTraits::size,
alignable = PacketTraits::AlignedOnScalar,
dstIsAligned = assign_traits<Derived1,Derived2>::DstIsAligned,
dstAlignment = alignable ? Aligned : int(dstIsAligned),
srcAlignment = assign_traits<Derived1,Derived2>::JointAlignment
};
const Scalar *dst_ptr = &dst.coeffRef(0,0);
if((!bool(dstIsAligned)) && (size_t(dst_ptr) % sizeof(Scalar))>0)
{
// the pointer is not aligend-on scalar, so alignment is not possible
return assign_impl<Derived1,Derived2,DefaultTraversal,NoUnrolling>::run(dst, src);
}
const Index packetAlignedMask = packetSize - 1;
const Index innerSize = dst.innerSize();
const Index outerSize = dst.outerSize();
const Index alignedStep = alignable ? (packetSize - dst.outerStride() % packetSize) & packetAlignedMask : 0;
Index alignedStart = ((!alignable) || bool(dstIsAligned)) ? 0 : internal::first_aligned(dst_ptr, innerSize);
for(Index outer = 0; outer < outerSize; ++outer)
{
const Index alignedEnd = alignedStart + ((innerSize-alignedStart) & ~packetAlignedMask);
// do the non-vectorizable part of the assignment
for(Index inner = 0; inner<alignedStart ; ++inner)
dst.copyCoeffByOuterInner(outer, inner, src);
// do the vectorizable part of the assignment
for(Index inner = alignedStart; inner<alignedEnd; inner+=packetSize)
dst.template copyPacketByOuterInner<Derived2, dstAlignment, Unaligned>(outer, inner, src);
// do the non-vectorizable part of the assignment
for(Index inner = alignedEnd; inner<innerSize ; ++inner)
dst.copyCoeffByOuterInner(outer, inner, src);
alignedStart = std::min<Index>((alignedStart+alignedStep)%packetSize, innerSize);
}
}
};
} // end namespace internal
/***************************************************************************
* Part 4 : implementation of DenseBase methods
***************************************************************************/
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>
::lazyAssign(const DenseBase<OtherDerived>& other)
{
enum{
SameType = internal::is_same<typename Derived::Scalar,typename OtherDerived::Scalar>::value
};
EIGEN_STATIC_ASSERT_LVALUE(Derived)
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Derived,OtherDerived)
EIGEN_STATIC_ASSERT(SameType,YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
#ifdef EIGEN_DEBUG_ASSIGN
internal::assign_traits<Derived, OtherDerived>::debug();
#endif
eigen_assert(rows() == other.rows() && cols() == other.cols());
internal::assign_impl<Derived, OtherDerived, int(SameType) ? int(internal::assign_traits<Derived, OtherDerived>::Traversal)
: int(InvalidTraversal)>::run(derived(),other.derived());
#ifndef EIGEN_NO_DEBUG
checkTransposeAliasing(other.derived());
#endif
return derived();
}
namespace internal {
template<typename Derived, typename OtherDerived,
bool EvalBeforeAssigning = (int(internal::traits<OtherDerived>::Flags) & EvalBeforeAssigningBit) != 0,
bool NeedToTranspose = ((int(Derived::RowsAtCompileTime) == 1 && int(OtherDerived::ColsAtCompileTime) == 1)
| // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
// revert to || as soon as not needed anymore.
(int(Derived::ColsAtCompileTime) == 1 && int(OtherDerived::RowsAtCompileTime) == 1))
&& int(Derived::SizeAtCompileTime) != 1>
struct assign_selector;
template<typename Derived, typename OtherDerived>
struct assign_selector<Derived,OtherDerived,false,false> {
static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.derived()); }
template<typename ActualDerived, typename ActualOtherDerived>
static EIGEN_STRONG_INLINE Derived& evalTo(ActualDerived& dst, const ActualOtherDerived& other) { other.evalTo(dst); return dst; }
};
template<typename Derived, typename OtherDerived>
struct assign_selector<Derived,OtherDerived,true,false> {
static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.eval()); }
};
template<typename Derived, typename OtherDerived>
struct assign_selector<Derived,OtherDerived,false,true> {
static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.transpose()); }
template<typename ActualDerived, typename ActualOtherDerived>
static EIGEN_STRONG_INLINE Derived& evalTo(ActualDerived& dst, const ActualOtherDerived& other) { Transpose<ActualDerived> dstTrans(dst); other.evalTo(dstTrans); return dst; }
};
template<typename Derived, typename OtherDerived>
struct assign_selector<Derived,OtherDerived,true,true> {
static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.transpose().eval()); }
};
} // end namespace internal
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::operator=(const DenseBase<OtherDerived>& other)
{
return internal::assign_selector<Derived,OtherDerived>::run(derived(), other.derived());
}
template<typename Derived>
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::operator=(const DenseBase& other)
{
return internal::assign_selector<Derived,Derived>::run(derived(), other.derived());
}
template<typename Derived>
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const MatrixBase& other)
{
return internal::assign_selector<Derived,Derived>::run(derived(), other.derived());
}
template<typename Derived>
template <typename OtherDerived>
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const DenseBase<OtherDerived>& other)
{
return internal::assign_selector<Derived,OtherDerived>::run(derived(), other.derived());
}
template<typename Derived>
template <typename OtherDerived>
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const EigenBase<OtherDerived>& other)
{
return internal::assign_selector<Derived,OtherDerived,false>::evalTo(derived(), other.derived());
}
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const ReturnByValue<OtherDerived>& other)
{
return internal::assign_selector<Derived,OtherDerived,false>::evalTo(derived(), other.derived());
}
} // end namespace Eigen
#endif // EIGEN_ASSIGN_H

View File

@ -0,0 +1,224 @@
/*
Copyright (c) 2011, Intel Corporation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
********************************************************************************
* Content : Eigen bindings to Intel(R) MKL
* MKL VML support for coefficient-wise unary Eigen expressions like a=b.sin()
********************************************************************************
*/
#ifndef EIGEN_ASSIGN_VML_H
#define EIGEN_ASSIGN_VML_H
namespace Eigen {
namespace internal {
template<typename Op> struct vml_call
{ enum { IsSupported = 0 }; };
template<typename Dst, typename Src, typename UnaryOp>
class vml_assign_traits
{
private:
enum {
DstHasDirectAccess = Dst::Flags & DirectAccessBit,
SrcHasDirectAccess = Src::Flags & DirectAccessBit,
StorageOrdersAgree = (int(Dst::IsRowMajor) == int(Src::IsRowMajor)),
InnerSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::SizeAtCompileTime)
: int(Dst::Flags)&RowMajorBit ? int(Dst::ColsAtCompileTime)
: int(Dst::RowsAtCompileTime),
InnerMaxSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::MaxSizeAtCompileTime)
: int(Dst::Flags)&RowMajorBit ? int(Dst::MaxColsAtCompileTime)
: int(Dst::MaxRowsAtCompileTime),
MaxSizeAtCompileTime = Dst::SizeAtCompileTime,
MightEnableVml = vml_call<UnaryOp>::IsSupported && StorageOrdersAgree && DstHasDirectAccess && SrcHasDirectAccess
&& Src::InnerStrideAtCompileTime==1 && Dst::InnerStrideAtCompileTime==1,
MightLinearize = MightEnableVml && (int(Dst::Flags) & int(Src::Flags) & LinearAccessBit),
VmlSize = MightLinearize ? MaxSizeAtCompileTime : InnerMaxSize,
LargeEnough = VmlSize==Dynamic || VmlSize>=EIGEN_MKL_VML_THRESHOLD,
MayEnableVml = MightEnableVml && LargeEnough,
MayLinearize = MayEnableVml && MightLinearize
};
public:
enum {
Traversal = MayLinearize ? LinearVectorizedTraversal
: MayEnableVml ? InnerVectorizedTraversal
: DefaultTraversal
};
};
template<typename Derived1, typename Derived2, typename UnaryOp, int Traversal, int Unrolling,
int VmlTraversal = vml_assign_traits<Derived1, Derived2, UnaryOp>::Traversal >
struct vml_assign_impl
: assign_impl<Derived1, Eigen::CwiseUnaryOp<UnaryOp, Derived2>,Traversal,Unrolling,BuiltIn>
{
};
template<typename Derived1, typename Derived2, typename UnaryOp, int Traversal, int Unrolling>
struct vml_assign_impl<Derived1, Derived2, UnaryOp, Traversal, Unrolling, InnerVectorizedTraversal>
{
typedef typename Derived1::Scalar Scalar;
typedef typename Derived1::Index Index;
static inline void run(Derived1& dst, const CwiseUnaryOp<UnaryOp, Derived2>& src)
{
// in case we want to (or have to) skip VML at runtime we can call:
// assign_impl<Derived1,Eigen::CwiseUnaryOp<UnaryOp, Derived2>,Traversal,Unrolling,BuiltIn>::run(dst,src);
const Index innerSize = dst.innerSize();
const Index outerSize = dst.outerSize();
for(Index outer = 0; outer < outerSize; ++outer) {
const Scalar *src_ptr = src.IsRowMajor ? &(src.nestedExpression().coeffRef(outer,0)) :
&(src.nestedExpression().coeffRef(0, outer));
Scalar *dst_ptr = dst.IsRowMajor ? &(dst.coeffRef(outer,0)) : &(dst.coeffRef(0, outer));
vml_call<UnaryOp>::run(src.functor(), innerSize, src_ptr, dst_ptr );
}
}
};
template<typename Derived1, typename Derived2, typename UnaryOp, int Traversal, int Unrolling>
struct vml_assign_impl<Derived1, Derived2, UnaryOp, Traversal, Unrolling, LinearVectorizedTraversal>
{
static inline void run(Derived1& dst, const CwiseUnaryOp<UnaryOp, Derived2>& src)
{
// in case we want to (or have to) skip VML at runtime we can call:
// assign_impl<Derived1,Eigen::CwiseUnaryOp<UnaryOp, Derived2>,Traversal,Unrolling,BuiltIn>::run(dst,src);
vml_call<UnaryOp>::run(src.functor(), dst.size(), src.nestedExpression().data(), dst.data() );
}
};
// Macroses
#define EIGEN_MKL_VML_SPECIALIZE_ASSIGN(TRAVERSAL,UNROLLING) \
template<typename Derived1, typename Derived2, typename UnaryOp> \
struct assign_impl<Derived1, Eigen::CwiseUnaryOp<UnaryOp, Derived2>, TRAVERSAL, UNROLLING, Specialized> { \
static inline void run(Derived1 &dst, const Eigen::CwiseUnaryOp<UnaryOp, Derived2> &src) { \
vml_assign_impl<Derived1,Derived2,UnaryOp,TRAVERSAL,UNROLLING>::run(dst, src); \
} \
};
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(DefaultTraversal,NoUnrolling)
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(DefaultTraversal,CompleteUnrolling)
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(DefaultTraversal,InnerUnrolling)
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(LinearTraversal,NoUnrolling)
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(LinearTraversal,CompleteUnrolling)
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(InnerVectorizedTraversal,NoUnrolling)
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(InnerVectorizedTraversal,CompleteUnrolling)
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(InnerVectorizedTraversal,InnerUnrolling)
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(LinearVectorizedTraversal,CompleteUnrolling)
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(LinearVectorizedTraversal,NoUnrolling)
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(SliceVectorizedTraversal,NoUnrolling)
#if !defined (EIGEN_FAST_MATH) || (EIGEN_FAST_MATH != 1)
#define EIGEN_MKL_VML_MODE VML_HA
#else
#define EIGEN_MKL_VML_MODE VML_LA
#endif
#define EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE) \
template<> struct vml_call< scalar_##EIGENOP##_op<EIGENTYPE> > { \
enum { IsSupported = 1 }; \
static inline void run( const scalar_##EIGENOP##_op<EIGENTYPE>& /*func*/, \
int size, const EIGENTYPE* src, EIGENTYPE* dst) { \
VMLOP(size, (const VMLTYPE*)src, (VMLTYPE*)dst); \
} \
};
#define EIGEN_MKL_VML_DECLARE_UNARY_CALL_LA(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE) \
template<> struct vml_call< scalar_##EIGENOP##_op<EIGENTYPE> > { \
enum { IsSupported = 1 }; \
static inline void run( const scalar_##EIGENOP##_op<EIGENTYPE>& /*func*/, \
int size, const EIGENTYPE* src, EIGENTYPE* dst) { \
MKL_INT64 vmlMode = EIGEN_MKL_VML_MODE; \
VMLOP(size, (const VMLTYPE*)src, (VMLTYPE*)dst, vmlMode); \
} \
};
#define EIGEN_MKL_VML_DECLARE_POW_CALL(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE) \
template<> struct vml_call< scalar_##EIGENOP##_op<EIGENTYPE> > { \
enum { IsSupported = 1 }; \
static inline void run( const scalar_##EIGENOP##_op<EIGENTYPE>& func, \
int size, const EIGENTYPE* src, EIGENTYPE* dst) { \
EIGENTYPE exponent = func.m_exponent; \
MKL_INT64 vmlMode = EIGEN_MKL_VML_MODE; \
VMLOP(&size, (const VMLTYPE*)src, (const VMLTYPE*)&exponent, \
(VMLTYPE*)dst, &vmlMode); \
} \
};
#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(EIGENOP, VMLOP) \
EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, vs##VMLOP, float, float) \
EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, vd##VMLOP, double, double)
#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_COMPLEX(EIGENOP, VMLOP) \
EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, vc##VMLOP, scomplex, MKL_Complex8) \
EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, vz##VMLOP, dcomplex, MKL_Complex16)
#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS(EIGENOP, VMLOP) \
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(EIGENOP, VMLOP) \
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_COMPLEX(EIGENOP, VMLOP)
#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL_LA(EIGENOP, VMLOP) \
EIGEN_MKL_VML_DECLARE_UNARY_CALL_LA(EIGENOP, vms##VMLOP, float, float) \
EIGEN_MKL_VML_DECLARE_UNARY_CALL_LA(EIGENOP, vmd##VMLOP, double, double)
#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_COMPLEX_LA(EIGENOP, VMLOP) \
EIGEN_MKL_VML_DECLARE_UNARY_CALL_LA(EIGENOP, vmc##VMLOP, scomplex, MKL_Complex8) \
EIGEN_MKL_VML_DECLARE_UNARY_CALL_LA(EIGENOP, vmz##VMLOP, dcomplex, MKL_Complex16)
#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(EIGENOP, VMLOP) \
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL_LA(EIGENOP, VMLOP) \
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_COMPLEX_LA(EIGENOP, VMLOP)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(sin, Sin)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(asin, Asin)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(cos, Cos)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(acos, Acos)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(tan, Tan)
//EIGEN_MKL_VML_DECLARE_UNARY_CALLS(abs, Abs)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(exp, Exp)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(log, Ln)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(sqrt, Sqrt)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(square, Sqr)
// The vm*powx functions are not avaibale in the windows version of MKL.
#ifndef _WIN32
EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmspowx_, float, float)
EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmdpowx_, double, double)
EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmcpowx_, scomplex, MKL_Complex8)
EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmzpowx_, dcomplex, MKL_Complex16)
#endif
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_ASSIGN_VML_H

View File

@ -0,0 +1,334 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_BANDMATRIX_H
#define EIGEN_BANDMATRIX_H
namespace Eigen {
namespace internal {
template<typename Derived>
class BandMatrixBase : public EigenBase<Derived>
{
public:
enum {
Flags = internal::traits<Derived>::Flags,
CoeffReadCost = internal::traits<Derived>::CoeffReadCost,
RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime,
MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime,
Supers = internal::traits<Derived>::Supers,
Subs = internal::traits<Derived>::Subs,
Options = internal::traits<Derived>::Options
};
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef Matrix<Scalar,RowsAtCompileTime,ColsAtCompileTime> DenseMatrixType;
typedef typename DenseMatrixType::Index Index;
typedef typename internal::traits<Derived>::CoefficientsType CoefficientsType;
typedef EigenBase<Derived> Base;
protected:
enum {
DataRowsAtCompileTime = ((Supers!=Dynamic) && (Subs!=Dynamic))
? 1 + Supers + Subs
: Dynamic,
SizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime)
};
public:
using Base::derived;
using Base::rows;
using Base::cols;
/** \returns the number of super diagonals */
inline Index supers() const { return derived().supers(); }
/** \returns the number of sub diagonals */
inline Index subs() const { return derived().subs(); }
/** \returns an expression of the underlying coefficient matrix */
inline const CoefficientsType& coeffs() const { return derived().coeffs(); }
/** \returns an expression of the underlying coefficient matrix */
inline CoefficientsType& coeffs() { return derived().coeffs(); }
/** \returns a vector expression of the \a i -th column,
* only the meaningful part is returned.
* \warning the internal storage must be column major. */
inline Block<CoefficientsType,Dynamic,1> col(Index i)
{
EIGEN_STATIC_ASSERT((Options&RowMajor)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
Index start = 0;
Index len = coeffs().rows();
if (i<=supers())
{
start = supers()-i;
len = (std::min)(rows(),std::max<Index>(0,coeffs().rows() - (supers()-i)));
}
else if (i>=rows()-subs())
len = std::max<Index>(0,coeffs().rows() - (i + 1 - rows() + subs()));
return Block<CoefficientsType,Dynamic,1>(coeffs(), start, i, len, 1);
}
/** \returns a vector expression of the main diagonal */
inline Block<CoefficientsType,1,SizeAtCompileTime> diagonal()
{ return Block<CoefficientsType,1,SizeAtCompileTime>(coeffs(),supers(),0,1,(std::min)(rows(),cols())); }
/** \returns a vector expression of the main diagonal (const version) */
inline const Block<const CoefficientsType,1,SizeAtCompileTime> diagonal() const
{ return Block<const CoefficientsType,1,SizeAtCompileTime>(coeffs(),supers(),0,1,(std::min)(rows(),cols())); }
template<int Index> struct DiagonalIntReturnType {
enum {
ReturnOpposite = (Options&SelfAdjoint) && (((Index)>0 && Supers==0) || ((Index)<0 && Subs==0)),
Conjugate = ReturnOpposite && NumTraits<Scalar>::IsComplex,
ActualIndex = ReturnOpposite ? -Index : Index,
DiagonalSize = (RowsAtCompileTime==Dynamic || ColsAtCompileTime==Dynamic)
? Dynamic
: (ActualIndex<0
? EIGEN_SIZE_MIN_PREFER_DYNAMIC(ColsAtCompileTime, RowsAtCompileTime + ActualIndex)
: EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime - ActualIndex))
};
typedef Block<CoefficientsType,1, DiagonalSize> BuildType;
typedef typename internal::conditional<Conjugate,
CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>,BuildType >,
BuildType>::type Type;
};
/** \returns a vector expression of the \a N -th sub or super diagonal */
template<int N> inline typename DiagonalIntReturnType<N>::Type diagonal()
{
return typename DiagonalIntReturnType<N>::BuildType(coeffs(), supers()-N, (std::max)(0,N), 1, diagonalLength(N));
}
/** \returns a vector expression of the \a N -th sub or super diagonal */
template<int N> inline const typename DiagonalIntReturnType<N>::Type diagonal() const
{
return typename DiagonalIntReturnType<N>::BuildType(coeffs(), supers()-N, (std::max)(0,N), 1, diagonalLength(N));
}
/** \returns a vector expression of the \a i -th sub or super diagonal */
inline Block<CoefficientsType,1,Dynamic> diagonal(Index i)
{
eigen_assert((i<0 && -i<=subs()) || (i>=0 && i<=supers()));
return Block<CoefficientsType,1,Dynamic>(coeffs(), supers()-i, std::max<Index>(0,i), 1, diagonalLength(i));
}
/** \returns a vector expression of the \a i -th sub or super diagonal */
inline const Block<const CoefficientsType,1,Dynamic> diagonal(Index i) const
{
eigen_assert((i<0 && -i<=subs()) || (i>=0 && i<=supers()));
return Block<const CoefficientsType,1,Dynamic>(coeffs(), supers()-i, std::max<Index>(0,i), 1, diagonalLength(i));
}
template<typename Dest> inline void evalTo(Dest& dst) const
{
dst.resize(rows(),cols());
dst.setZero();
dst.diagonal() = diagonal();
for (Index i=1; i<=supers();++i)
dst.diagonal(i) = diagonal(i);
for (Index i=1; i<=subs();++i)
dst.diagonal(-i) = diagonal(-i);
}
DenseMatrixType toDenseMatrix() const
{
DenseMatrixType res(rows(),cols());
evalTo(res);
return res;
}
protected:
inline Index diagonalLength(Index i) const
{ return i<0 ? (std::min)(cols(),rows()+i) : (std::min)(rows(),cols()-i); }
};
/**
* \class BandMatrix
* \ingroup Core_Module
*
* \brief Represents a rectangular matrix with a banded storage
*
* \param _Scalar Numeric type, i.e. float, double, int
* \param Rows Number of rows, or \b Dynamic
* \param Cols Number of columns, or \b Dynamic
* \param Supers Number of super diagonal
* \param Subs Number of sub diagonal
* \param _Options A combination of either \b #RowMajor or \b #ColMajor, and of \b #SelfAdjoint
* The former controls \ref TopicStorageOrders "storage order", and defaults to
* column-major. The latter controls whether the matrix represents a selfadjoint
* matrix in which case either Supers of Subs have to be null.
*
* \sa class TridiagonalMatrix
*/
template<typename _Scalar, int _Rows, int _Cols, int _Supers, int _Subs, int _Options>
struct traits<BandMatrix<_Scalar,_Rows,_Cols,_Supers,_Subs,_Options> >
{
typedef _Scalar Scalar;
typedef Dense StorageKind;
typedef DenseIndex Index;
enum {
CoeffReadCost = NumTraits<Scalar>::ReadCost,
RowsAtCompileTime = _Rows,
ColsAtCompileTime = _Cols,
MaxRowsAtCompileTime = _Rows,
MaxColsAtCompileTime = _Cols,
Flags = LvalueBit,
Supers = _Supers,
Subs = _Subs,
Options = _Options,
DataRowsAtCompileTime = ((Supers!=Dynamic) && (Subs!=Dynamic)) ? 1 + Supers + Subs : Dynamic
};
typedef Matrix<Scalar,DataRowsAtCompileTime,ColsAtCompileTime,Options&RowMajor?RowMajor:ColMajor> CoefficientsType;
};
template<typename _Scalar, int Rows, int Cols, int Supers, int Subs, int Options>
class BandMatrix : public BandMatrixBase<BandMatrix<_Scalar,Rows,Cols,Supers,Subs,Options> >
{
public:
typedef typename internal::traits<BandMatrix>::Scalar Scalar;
typedef typename internal::traits<BandMatrix>::Index Index;
typedef typename internal::traits<BandMatrix>::CoefficientsType CoefficientsType;
inline BandMatrix(Index rows=Rows, Index cols=Cols, Index supers=Supers, Index subs=Subs)
: m_coeffs(1+supers+subs,cols),
m_rows(rows), m_supers(supers), m_subs(subs)
{
}
/** \returns the number of columns */
inline Index rows() const { return m_rows.value(); }
/** \returns the number of rows */
inline Index cols() const { return m_coeffs.cols(); }
/** \returns the number of super diagonals */
inline Index supers() const { return m_supers.value(); }
/** \returns the number of sub diagonals */
inline Index subs() const { return m_subs.value(); }
inline const CoefficientsType& coeffs() const { return m_coeffs; }
inline CoefficientsType& coeffs() { return m_coeffs; }
protected:
CoefficientsType m_coeffs;
internal::variable_if_dynamic<Index, Rows> m_rows;
internal::variable_if_dynamic<Index, Supers> m_supers;
internal::variable_if_dynamic<Index, Subs> m_subs;
};
template<typename _CoefficientsType,int _Rows, int _Cols, int _Supers, int _Subs,int _Options>
class BandMatrixWrapper;
template<typename _CoefficientsType,int _Rows, int _Cols, int _Supers, int _Subs,int _Options>
struct traits<BandMatrixWrapper<_CoefficientsType,_Rows,_Cols,_Supers,_Subs,_Options> >
{
typedef typename _CoefficientsType::Scalar Scalar;
typedef typename _CoefficientsType::StorageKind StorageKind;
typedef typename _CoefficientsType::Index Index;
enum {
CoeffReadCost = internal::traits<_CoefficientsType>::CoeffReadCost,
RowsAtCompileTime = _Rows,
ColsAtCompileTime = _Cols,
MaxRowsAtCompileTime = _Rows,
MaxColsAtCompileTime = _Cols,
Flags = LvalueBit,
Supers = _Supers,
Subs = _Subs,
Options = _Options,
DataRowsAtCompileTime = ((Supers!=Dynamic) && (Subs!=Dynamic)) ? 1 + Supers + Subs : Dynamic
};
typedef _CoefficientsType CoefficientsType;
};
template<typename _CoefficientsType,int _Rows, int _Cols, int _Supers, int _Subs,int _Options>
class BandMatrixWrapper : public BandMatrixBase<BandMatrixWrapper<_CoefficientsType,_Rows,_Cols,_Supers,_Subs,_Options> >
{
public:
typedef typename internal::traits<BandMatrixWrapper>::Scalar Scalar;
typedef typename internal::traits<BandMatrixWrapper>::CoefficientsType CoefficientsType;
typedef typename internal::traits<BandMatrixWrapper>::Index Index;
inline BandMatrixWrapper(const CoefficientsType& coeffs, Index rows=_Rows, Index cols=_Cols, Index supers=_Supers, Index subs=_Subs)
: m_coeffs(coeffs),
m_rows(rows), m_supers(supers), m_subs(subs)
{
EIGEN_UNUSED_VARIABLE(cols);
//internal::assert(coeffs.cols()==cols() && (supers()+subs()+1)==coeffs.rows());
}
/** \returns the number of columns */
inline Index rows() const { return m_rows.value(); }
/** \returns the number of rows */
inline Index cols() const { return m_coeffs.cols(); }
/** \returns the number of super diagonals */
inline Index supers() const { return m_supers.value(); }
/** \returns the number of sub diagonals */
inline Index subs() const { return m_subs.value(); }
inline const CoefficientsType& coeffs() const { return m_coeffs; }
protected:
const CoefficientsType& m_coeffs;
internal::variable_if_dynamic<Index, _Rows> m_rows;
internal::variable_if_dynamic<Index, _Supers> m_supers;
internal::variable_if_dynamic<Index, _Subs> m_subs;
};
/**
* \class TridiagonalMatrix
* \ingroup Core_Module
*
* \brief Represents a tridiagonal matrix with a compact banded storage
*
* \param _Scalar Numeric type, i.e. float, double, int
* \param Size Number of rows and cols, or \b Dynamic
* \param _Options Can be 0 or \b SelfAdjoint
*
* \sa class BandMatrix
*/
template<typename Scalar, int Size, int Options>
class TridiagonalMatrix : public BandMatrix<Scalar,Size,Size,Options&SelfAdjoint?0:1,1,Options|RowMajor>
{
typedef BandMatrix<Scalar,Size,Size,Options&SelfAdjoint?0:1,1,Options|RowMajor> Base;
typedef typename Base::Index Index;
public:
TridiagonalMatrix(Index size = Size) : Base(size,size,Options&SelfAdjoint?0:1,1) {}
inline typename Base::template DiagonalIntReturnType<1>::Type super()
{ return Base::template diagonal<1>(); }
inline const typename Base::template DiagonalIntReturnType<1>::Type super() const
{ return Base::template diagonal<1>(); }
inline typename Base::template DiagonalIntReturnType<-1>::Type sub()
{ return Base::template diagonal<-1>(); }
inline const typename Base::template DiagonalIntReturnType<-1>::Type sub() const
{ return Base::template diagonal<-1>(); }
protected:
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_BANDMATRIX_H

406
lib/Eigen/src/Core/Block.h Normal file
View File

@ -0,0 +1,406 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_BLOCK_H
#define EIGEN_BLOCK_H
namespace Eigen {
/** \class Block
* \ingroup Core_Module
*
* \brief Expression of a fixed-size or dynamic-size block
*
* \param XprType the type of the expression in which we are taking a block
* \param BlockRows the number of rows of the block we are taking at compile time (optional)
* \param BlockCols the number of columns of the block we are taking at compile time (optional)
*
* This class represents an expression of either a fixed-size or dynamic-size block. It is the return
* type of DenseBase::block(Index,Index,Index,Index) and DenseBase::block<int,int>(Index,Index) and
* most of the time this is the only way it is used.
*
* However, if you want to directly maniputate block expressions,
* for instance if you want to write a function returning such an expression, you
* will need to use this class.
*
* Here is an example illustrating the dynamic case:
* \include class_Block.cpp
* Output: \verbinclude class_Block.out
*
* \note Even though this expression has dynamic size, in the case where \a XprType
* has fixed size, this expression inherits a fixed maximal size which means that evaluating
* it does not cause a dynamic memory allocation.
*
* Here is an example illustrating the fixed-size case:
* \include class_FixedBlock.cpp
* Output: \verbinclude class_FixedBlock.out
*
* \sa DenseBase::block(Index,Index,Index,Index), DenseBase::block(Index,Index), class VectorBlock
*/
namespace internal {
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel>
struct traits<Block<XprType, BlockRows, BlockCols, InnerPanel> > : traits<XprType>
{
typedef typename traits<XprType>::Scalar Scalar;
typedef typename traits<XprType>::StorageKind StorageKind;
typedef typename traits<XprType>::XprKind XprKind;
typedef typename nested<XprType>::type XprTypeNested;
typedef typename remove_reference<XprTypeNested>::type _XprTypeNested;
enum{
MatrixRows = traits<XprType>::RowsAtCompileTime,
MatrixCols = traits<XprType>::ColsAtCompileTime,
RowsAtCompileTime = MatrixRows == 0 ? 0 : BlockRows,
ColsAtCompileTime = MatrixCols == 0 ? 0 : BlockCols,
MaxRowsAtCompileTime = BlockRows==0 ? 0
: RowsAtCompileTime != Dynamic ? int(RowsAtCompileTime)
: int(traits<XprType>::MaxRowsAtCompileTime),
MaxColsAtCompileTime = BlockCols==0 ? 0
: ColsAtCompileTime != Dynamic ? int(ColsAtCompileTime)
: int(traits<XprType>::MaxColsAtCompileTime),
XprTypeIsRowMajor = (int(traits<XprType>::Flags)&RowMajorBit) != 0,
IsDense = is_same<StorageKind,Dense>::value,
IsRowMajor = (IsDense&&MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
: (IsDense&&MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
: XprTypeIsRowMajor,
HasSameStorageOrderAsXprType = (IsRowMajor == XprTypeIsRowMajor),
InnerSize = IsRowMajor ? int(ColsAtCompileTime) : int(RowsAtCompileTime),
InnerStrideAtCompileTime = HasSameStorageOrderAsXprType
? int(inner_stride_at_compile_time<XprType>::ret)
: int(outer_stride_at_compile_time<XprType>::ret),
OuterStrideAtCompileTime = HasSameStorageOrderAsXprType
? int(outer_stride_at_compile_time<XprType>::ret)
: int(inner_stride_at_compile_time<XprType>::ret),
MaskPacketAccessBit = (InnerSize == Dynamic || (InnerSize % packet_traits<Scalar>::size) == 0)
&& (InnerStrideAtCompileTime == 1)
? PacketAccessBit : 0,
MaskAlignedBit = (InnerPanel && (OuterStrideAtCompileTime!=Dynamic) && (((OuterStrideAtCompileTime * int(sizeof(Scalar))) % 16) == 0)) ? AlignedBit : 0,
FlagsLinearAccessBit = (RowsAtCompileTime == 1 || ColsAtCompileTime == 1 || (InnerPanel && (traits<XprType>::Flags&LinearAccessBit))) ? LinearAccessBit : 0,
FlagsLvalueBit = is_lvalue<XprType>::value ? LvalueBit : 0,
FlagsRowMajorBit = IsRowMajor ? RowMajorBit : 0,
Flags0 = traits<XprType>::Flags & ( (HereditaryBits & ~RowMajorBit) |
DirectAccessBit |
MaskPacketAccessBit |
MaskAlignedBit),
Flags = Flags0 | FlagsLinearAccessBit | FlagsLvalueBit | FlagsRowMajorBit
};
};
template<typename XprType, int BlockRows=Dynamic, int BlockCols=Dynamic, bool InnerPanel = false,
bool HasDirectAccess = internal::has_direct_access<XprType>::ret> class BlockImpl_dense;
} // end namespace internal
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel, typename StorageKind> class BlockImpl;
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel> class Block
: public BlockImpl<XprType, BlockRows, BlockCols, InnerPanel, typename internal::traits<XprType>::StorageKind>
{
typedef BlockImpl<XprType, BlockRows, BlockCols, InnerPanel, typename internal::traits<XprType>::StorageKind> Impl;
public:
//typedef typename Impl::Base Base;
typedef Impl Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(Block)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Block)
/** Column or Row constructor
*/
inline Block(XprType& xpr, Index i) : Impl(xpr,i)
{
eigen_assert( (i>=0) && (
((BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) && i<xpr.rows())
||((BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) && i<xpr.cols())));
}
/** Fixed-size constructor
*/
inline Block(XprType& xpr, Index a_startRow, Index a_startCol)
: Impl(xpr, a_startRow, a_startCol)
{
EIGEN_STATIC_ASSERT(RowsAtCompileTime!=Dynamic && ColsAtCompileTime!=Dynamic,THIS_METHOD_IS_ONLY_FOR_FIXED_SIZE)
eigen_assert(a_startRow >= 0 && BlockRows >= 1 && a_startRow + BlockRows <= xpr.rows()
&& a_startCol >= 0 && BlockCols >= 1 && a_startCol + BlockCols <= xpr.cols());
}
/** Dynamic-size constructor
*/
inline Block(XprType& xpr,
Index a_startRow, Index a_startCol,
Index blockRows, Index blockCols)
: Impl(xpr, a_startRow, a_startCol, blockRows, blockCols)
{
eigen_assert((RowsAtCompileTime==Dynamic || RowsAtCompileTime==blockRows)
&& (ColsAtCompileTime==Dynamic || ColsAtCompileTime==blockCols));
eigen_assert(a_startRow >= 0 && blockRows >= 0 && a_startRow <= xpr.rows() - blockRows
&& a_startCol >= 0 && blockCols >= 0 && a_startCol <= xpr.cols() - blockCols);
}
};
// The generic default implementation for dense block simplu forward to the internal::BlockImpl_dense
// that must be specialized for direct and non-direct access...
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel>
class BlockImpl<XprType, BlockRows, BlockCols, InnerPanel, Dense>
: public internal::BlockImpl_dense<XprType, BlockRows, BlockCols, InnerPanel>
{
typedef internal::BlockImpl_dense<XprType, BlockRows, BlockCols, InnerPanel> Impl;
typedef typename XprType::Index Index;
public:
typedef Impl Base;
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl)
inline BlockImpl(XprType& xpr, Index i) : Impl(xpr,i) {}
inline BlockImpl(XprType& xpr, Index a_startRow, Index a_startCol) : Impl(xpr, a_startRow, a_startCol) {}
inline BlockImpl(XprType& xpr, Index a_startRow, Index a_startCol, Index blockRows, Index blockCols)
: Impl(xpr, a_startRow, a_startCol, blockRows, blockCols) {}
};
namespace internal {
/** \internal Internal implementation of dense Blocks in the general case. */
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel, bool HasDirectAccess> class BlockImpl_dense
: public internal::dense_xpr_base<Block<XprType, BlockRows, BlockCols, InnerPanel> >::type
{
typedef Block<XprType, BlockRows, BlockCols, InnerPanel> BlockType;
public:
typedef typename internal::dense_xpr_base<BlockType>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(BlockType)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl_dense)
class InnerIterator;
/** Column or Row constructor
*/
inline BlockImpl_dense(XprType& xpr, Index i)
: m_xpr(xpr),
// It is a row if and only if BlockRows==1 and BlockCols==XprType::ColsAtCompileTime,
// and it is a column if and only if BlockRows==XprType::RowsAtCompileTime and BlockCols==1,
// all other cases are invalid.
// The case a 1x1 matrix seems ambiguous, but the result is the same anyway.
m_startRow( (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? i : 0),
m_startCol( (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? i : 0),
m_blockRows(BlockRows==1 ? 1 : xpr.rows()),
m_blockCols(BlockCols==1 ? 1 : xpr.cols())
{}
/** Fixed-size constructor
*/
inline BlockImpl_dense(XprType& xpr, Index a_startRow, Index a_startCol)
: m_xpr(xpr), m_startRow(a_startRow), m_startCol(a_startCol),
m_blockRows(BlockRows), m_blockCols(BlockCols)
{}
/** Dynamic-size constructor
*/
inline BlockImpl_dense(XprType& xpr,
Index a_startRow, Index a_startCol,
Index blockRows, Index blockCols)
: m_xpr(xpr), m_startRow(a_startRow), m_startCol(a_startCol),
m_blockRows(blockRows), m_blockCols(blockCols)
{}
inline Index rows() const { return m_blockRows.value(); }
inline Index cols() const { return m_blockCols.value(); }
inline Scalar& coeffRef(Index rowId, Index colId)
{
EIGEN_STATIC_ASSERT_LVALUE(XprType)
return m_xpr.const_cast_derived()
.coeffRef(rowId + m_startRow.value(), colId + m_startCol.value());
}
inline const Scalar& coeffRef(Index rowId, Index colId) const
{
return m_xpr.derived()
.coeffRef(rowId + m_startRow.value(), colId + m_startCol.value());
}
EIGEN_STRONG_INLINE const CoeffReturnType coeff(Index rowId, Index colId) const
{
return m_xpr.coeff(rowId + m_startRow.value(), colId + m_startCol.value());
}
inline Scalar& coeffRef(Index index)
{
EIGEN_STATIC_ASSERT_LVALUE(XprType)
return m_xpr.const_cast_derived()
.coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
}
inline const Scalar& coeffRef(Index index) const
{
return m_xpr.const_cast_derived()
.coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
}
inline const CoeffReturnType coeff(Index index) const
{
return m_xpr
.coeff(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
}
template<int LoadMode>
inline PacketScalar packet(Index rowId, Index colId) const
{
return m_xpr.template packet<Unaligned>
(rowId + m_startRow.value(), colId + m_startCol.value());
}
template<int LoadMode>
inline void writePacket(Index rowId, Index colId, const PacketScalar& val)
{
m_xpr.const_cast_derived().template writePacket<Unaligned>
(rowId + m_startRow.value(), colId + m_startCol.value(), val);
}
template<int LoadMode>
inline PacketScalar packet(Index index) const
{
return m_xpr.template packet<Unaligned>
(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
}
template<int LoadMode>
inline void writePacket(Index index, const PacketScalar& val)
{
m_xpr.const_cast_derived().template writePacket<Unaligned>
(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0), val);
}
#ifdef EIGEN_PARSED_BY_DOXYGEN
/** \sa MapBase::data() */
inline const Scalar* data() const;
inline Index innerStride() const;
inline Index outerStride() const;
#endif
const typename internal::remove_all<typename XprType::Nested>::type& nestedExpression() const
{
return m_xpr;
}
Index startRow() const
{
return m_startRow.value();
}
Index startCol() const
{
return m_startCol.value();
}
protected:
const typename XprType::Nested m_xpr;
const internal::variable_if_dynamic<Index, XprType::RowsAtCompileTime == 1 ? 0 : Dynamic> m_startRow;
const internal::variable_if_dynamic<Index, XprType::ColsAtCompileTime == 1 ? 0 : Dynamic> m_startCol;
const internal::variable_if_dynamic<Index, RowsAtCompileTime> m_blockRows;
const internal::variable_if_dynamic<Index, ColsAtCompileTime> m_blockCols;
};
/** \internal Internal implementation of dense Blocks in the direct access case.*/
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel>
class BlockImpl_dense<XprType,BlockRows,BlockCols, InnerPanel,true>
: public MapBase<Block<XprType, BlockRows, BlockCols, InnerPanel> >
{
typedef Block<XprType, BlockRows, BlockCols, InnerPanel> BlockType;
public:
typedef MapBase<BlockType> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(BlockType)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl_dense)
/** Column or Row constructor
*/
inline BlockImpl_dense(XprType& xpr, Index i)
: Base(internal::const_cast_ptr(&xpr.coeffRef(
(BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? i : 0,
(BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? i : 0)),
BlockRows==1 ? 1 : xpr.rows(),
BlockCols==1 ? 1 : xpr.cols()),
m_xpr(xpr)
{
init();
}
/** Fixed-size constructor
*/
inline BlockImpl_dense(XprType& xpr, Index startRow, Index startCol)
: Base(internal::const_cast_ptr(&xpr.coeffRef(startRow,startCol))), m_xpr(xpr)
{
init();
}
/** Dynamic-size constructor
*/
inline BlockImpl_dense(XprType& xpr,
Index startRow, Index startCol,
Index blockRows, Index blockCols)
: Base(internal::const_cast_ptr(&xpr.coeffRef(startRow,startCol)), blockRows, blockCols),
m_xpr(xpr)
{
init();
}
const typename internal::remove_all<typename XprType::Nested>::type& nestedExpression() const
{
return m_xpr;
}
/** \sa MapBase::innerStride() */
inline Index innerStride() const
{
return internal::traits<BlockType>::HasSameStorageOrderAsXprType
? m_xpr.innerStride()
: m_xpr.outerStride();
}
/** \sa MapBase::outerStride() */
inline Index outerStride() const
{
return m_outerStride;
}
#ifndef __SUNPRO_CC
// FIXME sunstudio is not friendly with the above friend...
// META-FIXME there is no 'friend' keyword around here. Is this obsolete?
protected:
#endif
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal used by allowAligned() */
inline BlockImpl_dense(XprType& xpr, const Scalar* data, Index blockRows, Index blockCols)
: Base(data, blockRows, blockCols), m_xpr(xpr)
{
init();
}
#endif
protected:
void init()
{
m_outerStride = internal::traits<BlockType>::HasSameStorageOrderAsXprType
? m_xpr.outerStride()
: m_xpr.innerStride();
}
typename XprType::Nested m_xpr;
Index m_outerStride;
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_BLOCK_H

View File

@ -0,0 +1,154 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ALLANDANY_H
#define EIGEN_ALLANDANY_H
namespace Eigen {
namespace internal {
template<typename Derived, int UnrollCount>
struct all_unroller
{
enum {
col = (UnrollCount-1) / Derived::RowsAtCompileTime,
row = (UnrollCount-1) % Derived::RowsAtCompileTime
};
static inline bool run(const Derived &mat)
{
return all_unroller<Derived, UnrollCount-1>::run(mat) && mat.coeff(row, col);
}
};
template<typename Derived>
struct all_unroller<Derived, 0>
{
static inline bool run(const Derived &/*mat*/) { return true; }
};
template<typename Derived>
struct all_unroller<Derived, Dynamic>
{
static inline bool run(const Derived &) { return false; }
};
template<typename Derived, int UnrollCount>
struct any_unroller
{
enum {
col = (UnrollCount-1) / Derived::RowsAtCompileTime,
row = (UnrollCount-1) % Derived::RowsAtCompileTime
};
static inline bool run(const Derived &mat)
{
return any_unroller<Derived, UnrollCount-1>::run(mat) || mat.coeff(row, col);
}
};
template<typename Derived>
struct any_unroller<Derived, 0>
{
static inline bool run(const Derived & /*mat*/) { return false; }
};
template<typename Derived>
struct any_unroller<Derived, Dynamic>
{
static inline bool run(const Derived &) { return false; }
};
} // end namespace internal
/** \returns true if all coefficients are true
*
* Example: \include MatrixBase_all.cpp
* Output: \verbinclude MatrixBase_all.out
*
* \sa any(), Cwise::operator<()
*/
template<typename Derived>
inline bool DenseBase<Derived>::all() const
{
enum {
unroll = SizeAtCompileTime != Dynamic
&& CoeffReadCost != Dynamic
&& NumTraits<Scalar>::AddCost != Dynamic
&& SizeAtCompileTime * (CoeffReadCost + NumTraits<Scalar>::AddCost) <= EIGEN_UNROLLING_LIMIT
};
if(unroll)
return internal::all_unroller<Derived, unroll ? int(SizeAtCompileTime) : Dynamic>::run(derived());
else
{
for(Index j = 0; j < cols(); ++j)
for(Index i = 0; i < rows(); ++i)
if (!coeff(i, j)) return false;
return true;
}
}
/** \returns true if at least one coefficient is true
*
* \sa all()
*/
template<typename Derived>
inline bool DenseBase<Derived>::any() const
{
enum {
unroll = SizeAtCompileTime != Dynamic
&& CoeffReadCost != Dynamic
&& NumTraits<Scalar>::AddCost != Dynamic
&& SizeAtCompileTime * (CoeffReadCost + NumTraits<Scalar>::AddCost) <= EIGEN_UNROLLING_LIMIT
};
if(unroll)
return internal::any_unroller<Derived, unroll ? int(SizeAtCompileTime) : Dynamic>::run(derived());
else
{
for(Index j = 0; j < cols(); ++j)
for(Index i = 0; i < rows(); ++i)
if (coeff(i, j)) return true;
return false;
}
}
/** \returns the number of coefficients which evaluate to true
*
* \sa all(), any()
*/
template<typename Derived>
inline typename DenseBase<Derived>::Index DenseBase<Derived>::count() const
{
return derived().template cast<bool>().template cast<Index>().sum();
}
/** \returns true is \c *this contains at least one Not A Number (NaN).
*
* \sa allFinite()
*/
template<typename Derived>
inline bool DenseBase<Derived>::hasNaN() const
{
return !((derived().array()==derived().array()).all());
}
/** \returns true if \c *this contains only finite numbers, i.e., no NaN and no +/-INF values.
*
* \sa hasNaN()
*/
template<typename Derived>
inline bool DenseBase<Derived>::allFinite() const
{
return !((derived()-derived()).hasNaN());
}
} // end namespace Eigen
#endif // EIGEN_ALLANDANY_H

View File

@ -0,0 +1,10 @@
FILE(GLOB Eigen_Core_SRCS "*.h")
INSTALL(FILES
${Eigen_Core_SRCS}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Core COMPONENT Devel
)
ADD_SUBDIRECTORY(products)
ADD_SUBDIRECTORY(util)
ADD_SUBDIRECTORY(arch)

View File

@ -0,0 +1,154 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_COMMAINITIALIZER_H
#define EIGEN_COMMAINITIALIZER_H
namespace Eigen {
/** \class CommaInitializer
* \ingroup Core_Module
*
* \brief Helper class used by the comma initializer operator
*
* This class is internally used to implement the comma initializer feature. It is
* the return type of MatrixBase::operator<<, and most of the time this is the only
* way it is used.
*
* \sa \ref MatrixBaseCommaInitRef "MatrixBase::operator<<", CommaInitializer::finished()
*/
template<typename XprType>
struct CommaInitializer
{
typedef typename XprType::Scalar Scalar;
typedef typename XprType::Index Index;
inline CommaInitializer(XprType& xpr, const Scalar& s)
: m_xpr(xpr), m_row(0), m_col(1), m_currentBlockRows(1)
{
m_xpr.coeffRef(0,0) = s;
}
template<typename OtherDerived>
inline CommaInitializer(XprType& xpr, const DenseBase<OtherDerived>& other)
: m_xpr(xpr), m_row(0), m_col(other.cols()), m_currentBlockRows(other.rows())
{
m_xpr.block(0, 0, other.rows(), other.cols()) = other;
}
/* Copy/Move constructor which transfers ownership. This is crucial in
* absence of return value optimization to avoid assertions during destruction. */
// FIXME in C++11 mode this could be replaced by a proper RValue constructor
inline CommaInitializer(const CommaInitializer& o)
: m_xpr(o.m_xpr), m_row(o.m_row), m_col(o.m_col), m_currentBlockRows(o.m_currentBlockRows) {
// Mark original object as finished. In absence of R-value references we need to const_cast:
const_cast<CommaInitializer&>(o).m_row = m_xpr.rows();
const_cast<CommaInitializer&>(o).m_col = m_xpr.cols();
const_cast<CommaInitializer&>(o).m_currentBlockRows = 0;
}
/* inserts a scalar value in the target matrix */
CommaInitializer& operator,(const Scalar& s)
{
if (m_col==m_xpr.cols())
{
m_row+=m_currentBlockRows;
m_col = 0;
m_currentBlockRows = 1;
eigen_assert(m_row<m_xpr.rows()
&& "Too many rows passed to comma initializer (operator<<)");
}
eigen_assert(m_col<m_xpr.cols()
&& "Too many coefficients passed to comma initializer (operator<<)");
eigen_assert(m_currentBlockRows==1);
m_xpr.coeffRef(m_row, m_col++) = s;
return *this;
}
/* inserts a matrix expression in the target matrix */
template<typename OtherDerived>
CommaInitializer& operator,(const DenseBase<OtherDerived>& other)
{
if(other.cols()==0 || other.rows()==0)
return *this;
if (m_col==m_xpr.cols())
{
m_row+=m_currentBlockRows;
m_col = 0;
m_currentBlockRows = other.rows();
eigen_assert(m_row+m_currentBlockRows<=m_xpr.rows()
&& "Too many rows passed to comma initializer (operator<<)");
}
eigen_assert(m_col<m_xpr.cols()
&& "Too many coefficients passed to comma initializer (operator<<)");
eigen_assert(m_currentBlockRows==other.rows());
if (OtherDerived::SizeAtCompileTime != Dynamic)
m_xpr.template block<OtherDerived::RowsAtCompileTime != Dynamic ? OtherDerived::RowsAtCompileTime : 1,
OtherDerived::ColsAtCompileTime != Dynamic ? OtherDerived::ColsAtCompileTime : 1>
(m_row, m_col) = other;
else
m_xpr.block(m_row, m_col, other.rows(), other.cols()) = other;
m_col += other.cols();
return *this;
}
inline ~CommaInitializer()
{
eigen_assert((m_row+m_currentBlockRows) == m_xpr.rows()
&& m_col == m_xpr.cols()
&& "Too few coefficients passed to comma initializer (operator<<)");
}
/** \returns the built matrix once all its coefficients have been set.
* Calling finished is 100% optional. Its purpose is to write expressions
* like this:
* \code
* quaternion.fromRotationMatrix((Matrix3f() << axis0, axis1, axis2).finished());
* \endcode
*/
inline XprType& finished() { return m_xpr; }
XprType& m_xpr; // target expression
Index m_row; // current row id
Index m_col; // current col id
Index m_currentBlockRows; // current block height
};
/** \anchor MatrixBaseCommaInitRef
* Convenient operator to set the coefficients of a matrix.
*
* The coefficients must be provided in a row major order and exactly match
* the size of the matrix. Otherwise an assertion is raised.
*
* Example: \include MatrixBase_set.cpp
* Output: \verbinclude MatrixBase_set.out
*
* \note According the c++ standard, the argument expressions of this comma initializer are evaluated in arbitrary order.
*
* \sa CommaInitializer::finished(), class CommaInitializer
*/
template<typename Derived>
inline CommaInitializer<Derived> DenseBase<Derived>::operator<< (const Scalar& s)
{
return CommaInitializer<Derived>(*static_cast<Derived*>(this), s);
}
/** \sa operator<<(const Scalar&) */
template<typename Derived>
template<typename OtherDerived>
inline CommaInitializer<Derived>
DenseBase<Derived>::operator<<(const DenseBase<OtherDerived>& other)
{
return CommaInitializer<Derived>(*static_cast<Derived *>(this), other);
}
} // end namespace Eigen
#endif // EIGEN_COMMAINITIALIZER_H

View File

@ -0,0 +1,61 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_COREITERATORS_H
#define EIGEN_COREITERATORS_H
namespace Eigen {
/* This file contains the respective InnerIterator definition of the expressions defined in Eigen/Core
*/
/** \ingroup SparseCore_Module
* \class InnerIterator
* \brief An InnerIterator allows to loop over the element of a sparse (or dense) matrix or expression
*
* todo
*/
// generic version for dense matrix and expressions
template<typename Derived> class DenseBase<Derived>::InnerIterator
{
protected:
typedef typename Derived::Scalar Scalar;
typedef typename Derived::Index Index;
enum { IsRowMajor = (Derived::Flags&RowMajorBit)==RowMajorBit };
public:
EIGEN_STRONG_INLINE InnerIterator(const Derived& expr, Index outer)
: m_expression(expr), m_inner(0), m_outer(outer), m_end(expr.innerSize())
{}
EIGEN_STRONG_INLINE Scalar value() const
{
return (IsRowMajor) ? m_expression.coeff(m_outer, m_inner)
: m_expression.coeff(m_inner, m_outer);
}
EIGEN_STRONG_INLINE InnerIterator& operator++() { m_inner++; return *this; }
EIGEN_STRONG_INLINE Index index() const { return m_inner; }
inline Index row() const { return IsRowMajor ? m_outer : index(); }
inline Index col() const { return IsRowMajor ? index() : m_outer; }
EIGEN_STRONG_INLINE operator bool() const { return m_inner < m_end && m_inner>=0; }
protected:
const Derived& m_expression;
Index m_inner;
const Index m_outer;
const Index m_end;
};
} // end namespace Eigen
#endif // EIGEN_COREITERATORS_H

View File

@ -0,0 +1,230 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CWISE_BINARY_OP_H
#define EIGEN_CWISE_BINARY_OP_H
namespace Eigen {
/** \class CwiseBinaryOp
* \ingroup Core_Module
*
* \brief Generic expression where a coefficient-wise binary operator is applied to two expressions
*
* \param BinaryOp template functor implementing the operator
* \param Lhs the type of the left-hand side
* \param Rhs the type of the right-hand side
*
* This class represents an expression where a coefficient-wise binary operator is applied to two expressions.
* It is the return type of binary operators, by which we mean only those binary operators where
* both the left-hand side and the right-hand side are Eigen expressions.
* For example, the return type of matrix1+matrix2 is a CwiseBinaryOp.
*
* Most of the time, this is the only way that it is used, so you typically don't have to name
* CwiseBinaryOp types explicitly.
*
* \sa MatrixBase::binaryExpr(const MatrixBase<OtherDerived> &,const CustomBinaryOp &) const, class CwiseUnaryOp, class CwiseNullaryOp
*/
namespace internal {
template<typename BinaryOp, typename Lhs, typename Rhs>
struct traits<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
{
// we must not inherit from traits<Lhs> since it has
// the potential to cause problems with MSVC
typedef typename remove_all<Lhs>::type Ancestor;
typedef typename traits<Ancestor>::XprKind XprKind;
enum {
RowsAtCompileTime = traits<Ancestor>::RowsAtCompileTime,
ColsAtCompileTime = traits<Ancestor>::ColsAtCompileTime,
MaxRowsAtCompileTime = traits<Ancestor>::MaxRowsAtCompileTime,
MaxColsAtCompileTime = traits<Ancestor>::MaxColsAtCompileTime
};
// even though we require Lhs and Rhs to have the same scalar type (see CwiseBinaryOp constructor),
// we still want to handle the case when the result type is different.
typedef typename result_of<
BinaryOp(
typename Lhs::Scalar,
typename Rhs::Scalar
)
>::type Scalar;
typedef typename promote_storage_type<typename traits<Lhs>::StorageKind,
typename traits<Rhs>::StorageKind>::ret StorageKind;
typedef typename promote_index_type<typename traits<Lhs>::Index,
typename traits<Rhs>::Index>::type Index;
typedef typename Lhs::Nested LhsNested;
typedef typename Rhs::Nested RhsNested;
typedef typename remove_reference<LhsNested>::type _LhsNested;
typedef typename remove_reference<RhsNested>::type _RhsNested;
enum {
LhsCoeffReadCost = _LhsNested::CoeffReadCost,
RhsCoeffReadCost = _RhsNested::CoeffReadCost,
LhsFlags = _LhsNested::Flags,
RhsFlags = _RhsNested::Flags,
SameType = is_same<typename _LhsNested::Scalar,typename _RhsNested::Scalar>::value,
StorageOrdersAgree = (int(Lhs::Flags)&RowMajorBit)==(int(Rhs::Flags)&RowMajorBit),
Flags0 = (int(LhsFlags) | int(RhsFlags)) & (
HereditaryBits
| (int(LhsFlags) & int(RhsFlags) &
( AlignedBit
| (StorageOrdersAgree ? LinearAccessBit : 0)
| (functor_traits<BinaryOp>::PacketAccess && StorageOrdersAgree && SameType ? PacketAccessBit : 0)
)
)
),
Flags = (Flags0 & ~RowMajorBit) | (LhsFlags & RowMajorBit),
Cost0 = EIGEN_ADD_COST(LhsCoeffReadCost,RhsCoeffReadCost),
CoeffReadCost = EIGEN_ADD_COST(Cost0,functor_traits<BinaryOp>::Cost)
};
};
} // end namespace internal
// we require Lhs and Rhs to have the same scalar type. Currently there is no example of a binary functor
// that would take two operands of different types. If there were such an example, then this check should be
// moved to the BinaryOp functors, on a per-case basis. This would however require a change in the BinaryOp functors, as
// currently they take only one typename Scalar template parameter.
// It is tempting to always allow mixing different types but remember that this is often impossible in the vectorized paths.
// So allowing mixing different types gives very unexpected errors when enabling vectorization, when the user tries to
// add together a float matrix and a double matrix.
#define EIGEN_CHECK_BINARY_COMPATIBILIY(BINOP,LHS,RHS) \
EIGEN_STATIC_ASSERT((internal::functor_is_product_like<BINOP>::ret \
? int(internal::scalar_product_traits<LHS, RHS>::Defined) \
: int(internal::is_same<LHS, RHS>::value)), \
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
template<typename BinaryOp, typename Lhs, typename Rhs, typename StorageKind>
class CwiseBinaryOpImpl;
template<typename BinaryOp, typename Lhs, typename Rhs>
class CwiseBinaryOp : internal::no_assignment_operator,
public CwiseBinaryOpImpl<
BinaryOp, Lhs, Rhs,
typename internal::promote_storage_type<typename internal::traits<Lhs>::StorageKind,
typename internal::traits<Rhs>::StorageKind>::ret>
{
public:
typedef typename CwiseBinaryOpImpl<
BinaryOp, Lhs, Rhs,
typename internal::promote_storage_type<typename internal::traits<Lhs>::StorageKind,
typename internal::traits<Rhs>::StorageKind>::ret>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseBinaryOp)
typedef typename internal::nested<Lhs>::type LhsNested;
typedef typename internal::nested<Rhs>::type RhsNested;
typedef typename internal::remove_reference<LhsNested>::type _LhsNested;
typedef typename internal::remove_reference<RhsNested>::type _RhsNested;
EIGEN_STRONG_INLINE CwiseBinaryOp(const Lhs& aLhs, const Rhs& aRhs, const BinaryOp& func = BinaryOp())
: m_lhs(aLhs), m_rhs(aRhs), m_functor(func)
{
EIGEN_CHECK_BINARY_COMPATIBILIY(BinaryOp,typename Lhs::Scalar,typename Rhs::Scalar);
// require the sizes to match
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Lhs, Rhs)
eigen_assert(aLhs.rows() == aRhs.rows() && aLhs.cols() == aRhs.cols());
}
EIGEN_STRONG_INLINE Index rows() const {
// return the fixed size type if available to enable compile time optimizations
if (internal::traits<typename internal::remove_all<LhsNested>::type>::RowsAtCompileTime==Dynamic)
return m_rhs.rows();
else
return m_lhs.rows();
}
EIGEN_STRONG_INLINE Index cols() const {
// return the fixed size type if available to enable compile time optimizations
if (internal::traits<typename internal::remove_all<LhsNested>::type>::ColsAtCompileTime==Dynamic)
return m_rhs.cols();
else
return m_lhs.cols();
}
/** \returns the left hand side nested expression */
const _LhsNested& lhs() const { return m_lhs; }
/** \returns the right hand side nested expression */
const _RhsNested& rhs() const { return m_rhs; }
/** \returns the functor representing the binary operation */
const BinaryOp& functor() const { return m_functor; }
protected:
LhsNested m_lhs;
RhsNested m_rhs;
const BinaryOp m_functor;
};
template<typename BinaryOp, typename Lhs, typename Rhs>
class CwiseBinaryOpImpl<BinaryOp, Lhs, Rhs, Dense>
: public internal::dense_xpr_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >::type
{
typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> Derived;
public:
typedef typename internal::dense_xpr_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE( Derived )
EIGEN_STRONG_INLINE const Scalar coeff(Index rowId, Index colId) const
{
return derived().functor()(derived().lhs().coeff(rowId, colId),
derived().rhs().coeff(rowId, colId));
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const
{
return derived().functor().packetOp(derived().lhs().template packet<LoadMode>(rowId, colId),
derived().rhs().template packet<LoadMode>(rowId, colId));
}
EIGEN_STRONG_INLINE const Scalar coeff(Index index) const
{
return derived().functor()(derived().lhs().coeff(index),
derived().rhs().coeff(index));
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index index) const
{
return derived().functor().packetOp(derived().lhs().template packet<LoadMode>(index),
derived().rhs().template packet<LoadMode>(index));
}
};
/** replaces \c *this by \c *this - \a other.
*
* \returns a reference to \c *this
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
MatrixBase<Derived>::operator-=(const MatrixBase<OtherDerived> &other)
{
SelfCwiseBinaryOp<internal::scalar_difference_op<Scalar>, Derived, OtherDerived> tmp(derived());
tmp = other.derived();
return derived();
}
/** replaces \c *this by \c *this + \a other.
*
* \returns a reference to \c *this
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
MatrixBase<Derived>::operator+=(const MatrixBase<OtherDerived>& other)
{
SelfCwiseBinaryOp<internal::scalar_sum_op<Scalar>, Derived, OtherDerived> tmp(derived());
tmp = other.derived();
return derived();
}
} // end namespace Eigen
#endif // EIGEN_CWISE_BINARY_OP_H

View File

@ -0,0 +1,864 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CWISE_NULLARY_OP_H
#define EIGEN_CWISE_NULLARY_OP_H
namespace Eigen {
/** \class CwiseNullaryOp
* \ingroup Core_Module
*
* \brief Generic expression of a matrix where all coefficients are defined by a functor
*
* \param NullaryOp template functor implementing the operator
* \param PlainObjectType the underlying plain matrix/array type
*
* This class represents an expression of a generic nullary operator.
* It is the return type of the Ones(), Zero(), Constant(), Identity() and Random() methods,
* and most of the time this is the only way it is used.
*
* However, if you want to write a function returning such an expression, you
* will need to use this class.
*
* \sa class CwiseUnaryOp, class CwiseBinaryOp, DenseBase::NullaryExpr()
*/
namespace internal {
template<typename NullaryOp, typename PlainObjectType>
struct traits<CwiseNullaryOp<NullaryOp, PlainObjectType> > : traits<PlainObjectType>
{
enum {
Flags = (traits<PlainObjectType>::Flags
& ( HereditaryBits
| (functor_has_linear_access<NullaryOp>::ret ? LinearAccessBit : 0)
| (functor_traits<NullaryOp>::PacketAccess ? PacketAccessBit : 0)))
| (functor_traits<NullaryOp>::IsRepeatable ? 0 : EvalBeforeNestingBit),
CoeffReadCost = functor_traits<NullaryOp>::Cost
};
};
}
template<typename NullaryOp, typename PlainObjectType>
class CwiseNullaryOp : internal::no_assignment_operator,
public internal::dense_xpr_base< CwiseNullaryOp<NullaryOp, PlainObjectType> >::type
{
public:
typedef typename internal::dense_xpr_base<CwiseNullaryOp>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(CwiseNullaryOp)
CwiseNullaryOp(Index nbRows, Index nbCols, const NullaryOp& func = NullaryOp())
: m_rows(nbRows), m_cols(nbCols), m_functor(func)
{
eigen_assert(nbRows >= 0
&& (RowsAtCompileTime == Dynamic || RowsAtCompileTime == nbRows)
&& nbCols >= 0
&& (ColsAtCompileTime == Dynamic || ColsAtCompileTime == nbCols));
}
EIGEN_STRONG_INLINE Index rows() const { return m_rows.value(); }
EIGEN_STRONG_INLINE Index cols() const { return m_cols.value(); }
EIGEN_STRONG_INLINE const Scalar coeff(Index rowId, Index colId) const
{
return m_functor(rowId, colId);
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const
{
return m_functor.packetOp(rowId, colId);
}
EIGEN_STRONG_INLINE const Scalar coeff(Index index) const
{
return m_functor(index);
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index index) const
{
return m_functor.packetOp(index);
}
/** \returns the functor representing the nullary operation */
const NullaryOp& functor() const { return m_functor; }
protected:
const internal::variable_if_dynamic<Index, RowsAtCompileTime> m_rows;
const internal::variable_if_dynamic<Index, ColsAtCompileTime> m_cols;
const NullaryOp m_functor;
};
/** \returns an expression of a matrix defined by a custom functor \a func
*
* The parameters \a rows and \a cols are the number of rows and of columns of
* the returned matrix. Must be compatible with this MatrixBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so Zero() should be used
* instead.
*
* The template parameter \a CustomNullaryOp is the type of the functor.
*
* \sa class CwiseNullaryOp
*/
template<typename Derived>
template<typename CustomNullaryOp>
EIGEN_STRONG_INLINE const CwiseNullaryOp<CustomNullaryOp, Derived>
DenseBase<Derived>::NullaryExpr(Index rows, Index cols, const CustomNullaryOp& func)
{
return CwiseNullaryOp<CustomNullaryOp, Derived>(rows, cols, func);
}
/** \returns an expression of a matrix defined by a custom functor \a func
*
* The parameter \a size is the size of the returned vector.
* Must be compatible with this MatrixBase type.
*
* \only_for_vectors
*
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
* it is redundant to pass \a size as argument, so Zero() should be used
* instead.
*
* The template parameter \a CustomNullaryOp is the type of the functor.
*
* \sa class CwiseNullaryOp
*/
template<typename Derived>
template<typename CustomNullaryOp>
EIGEN_STRONG_INLINE const CwiseNullaryOp<CustomNullaryOp, Derived>
DenseBase<Derived>::NullaryExpr(Index size, const CustomNullaryOp& func)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
if(RowsAtCompileTime == 1) return CwiseNullaryOp<CustomNullaryOp, Derived>(1, size, func);
else return CwiseNullaryOp<CustomNullaryOp, Derived>(size, 1, func);
}
/** \returns an expression of a matrix defined by a custom functor \a func
*
* This variant is only for fixed-size DenseBase types. For dynamic-size types, you
* need to use the variants taking size arguments.
*
* The template parameter \a CustomNullaryOp is the type of the functor.
*
* \sa class CwiseNullaryOp
*/
template<typename Derived>
template<typename CustomNullaryOp>
EIGEN_STRONG_INLINE const CwiseNullaryOp<CustomNullaryOp, Derived>
DenseBase<Derived>::NullaryExpr(const CustomNullaryOp& func)
{
return CwiseNullaryOp<CustomNullaryOp, Derived>(RowsAtCompileTime, ColsAtCompileTime, func);
}
/** \returns an expression of a constant matrix of value \a value
*
* The parameters \a nbRows and \a nbCols are the number of rows and of columns of
* the returned matrix. Must be compatible with this DenseBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a nbRows and \a nbCols as arguments, so Zero() should be used
* instead.
*
* The template parameter \a CustomNullaryOp is the type of the functor.
*
* \sa class CwiseNullaryOp
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Constant(Index nbRows, Index nbCols, const Scalar& value)
{
return DenseBase<Derived>::NullaryExpr(nbRows, nbCols, internal::scalar_constant_op<Scalar>(value));
}
/** \returns an expression of a constant matrix of value \a value
*
* The parameter \a size is the size of the returned vector.
* Must be compatible with this DenseBase type.
*
* \only_for_vectors
*
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
* it is redundant to pass \a size as argument, so Zero() should be used
* instead.
*
* The template parameter \a CustomNullaryOp is the type of the functor.
*
* \sa class CwiseNullaryOp
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Constant(Index size, const Scalar& value)
{
return DenseBase<Derived>::NullaryExpr(size, internal::scalar_constant_op<Scalar>(value));
}
/** \returns an expression of a constant matrix of value \a value
*
* This variant is only for fixed-size DenseBase types. For dynamic-size types, you
* need to use the variants taking size arguments.
*
* The template parameter \a CustomNullaryOp is the type of the functor.
*
* \sa class CwiseNullaryOp
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Constant(const Scalar& value)
{
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
return DenseBase<Derived>::NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, internal::scalar_constant_op<Scalar>(value));
}
/**
* \brief Sets a linearly space vector.
*
* The function generates 'size' equally spaced values in the closed interval [low,high].
* This particular version of LinSpaced() uses sequential access, i.e. vector access is
* assumed to be a(0), a(1), ..., a(size). This assumption allows for better vectorization
* and yields faster code than the random access version.
*
* When size is set to 1, a vector of length 1 containing 'high' is returned.
*
* \only_for_vectors
*
* Example: \include DenseBase_LinSpaced_seq.cpp
* Output: \verbinclude DenseBase_LinSpaced_seq.out
*
* \sa setLinSpaced(Index,const Scalar&,const Scalar&), LinSpaced(Index,Scalar,Scalar), CwiseNullaryOp
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::SequentialLinSpacedReturnType
DenseBase<Derived>::LinSpaced(Sequential_t, Index size, const Scalar& low, const Scalar& high)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return DenseBase<Derived>::NullaryExpr(size, internal::linspaced_op<Scalar,false>(low,high,size));
}
/**
* \copydoc DenseBase::LinSpaced(Sequential_t, Index, const Scalar&, const Scalar&)
* Special version for fixed size types which does not require the size parameter.
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::SequentialLinSpacedReturnType
DenseBase<Derived>::LinSpaced(Sequential_t, const Scalar& low, const Scalar& high)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
return DenseBase<Derived>::NullaryExpr(Derived::SizeAtCompileTime, internal::linspaced_op<Scalar,false>(low,high,Derived::SizeAtCompileTime));
}
/**
* \brief Sets a linearly space vector.
*
* The function generates 'size' equally spaced values in the closed interval [low,high].
* When size is set to 1, a vector of length 1 containing 'high' is returned.
*
* \only_for_vectors
*
* Example: \include DenseBase_LinSpaced.cpp
* Output: \verbinclude DenseBase_LinSpaced.out
*
* \sa setLinSpaced(Index,const Scalar&,const Scalar&), LinSpaced(Sequential_t,Index,const Scalar&,const Scalar&,Index), CwiseNullaryOp
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessLinSpacedReturnType
DenseBase<Derived>::LinSpaced(Index size, const Scalar& low, const Scalar& high)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return DenseBase<Derived>::NullaryExpr(size, internal::linspaced_op<Scalar,true>(low,high,size));
}
/**
* \copydoc DenseBase::LinSpaced(Index, const Scalar&, const Scalar&)
* Special version for fixed size types which does not require the size parameter.
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessLinSpacedReturnType
DenseBase<Derived>::LinSpaced(const Scalar& low, const Scalar& high)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
return DenseBase<Derived>::NullaryExpr(Derived::SizeAtCompileTime, internal::linspaced_op<Scalar,true>(low,high,Derived::SizeAtCompileTime));
}
/** \returns true if all coefficients in this matrix are approximately equal to \a val, to within precision \a prec */
template<typename Derived>
bool DenseBase<Derived>::isApproxToConstant
(const Scalar& val, const RealScalar& prec) const
{
for(Index j = 0; j < cols(); ++j)
for(Index i = 0; i < rows(); ++i)
if(!internal::isApprox(this->coeff(i, j), val, prec))
return false;
return true;
}
/** This is just an alias for isApproxToConstant().
*
* \returns true if all coefficients in this matrix are approximately equal to \a value, to within precision \a prec */
template<typename Derived>
bool DenseBase<Derived>::isConstant
(const Scalar& val, const RealScalar& prec) const
{
return isApproxToConstant(val, prec);
}
/** Alias for setConstant(): sets all coefficients in this expression to \a val.
*
* \sa setConstant(), Constant(), class CwiseNullaryOp
*/
template<typename Derived>
EIGEN_STRONG_INLINE void DenseBase<Derived>::fill(const Scalar& val)
{
setConstant(val);
}
/** Sets all coefficients in this expression to \a value.
*
* \sa fill(), setConstant(Index,const Scalar&), setConstant(Index,Index,const Scalar&), setZero(), setOnes(), Constant(), class CwiseNullaryOp, setZero(), setOnes()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setConstant(const Scalar& val)
{
return derived() = Constant(rows(), cols(), val);
}
/** Resizes to the given \a size, and sets all coefficients in this expression to the given \a value.
*
* \only_for_vectors
*
* Example: \include Matrix_setConstant_int.cpp
* Output: \verbinclude Matrix_setConstant_int.out
*
* \sa MatrixBase::setConstant(const Scalar&), setConstant(Index,Index,const Scalar&), class CwiseNullaryOp, MatrixBase::Constant(const Scalar&)
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setConstant(Index size, const Scalar& val)
{
resize(size);
return setConstant(val);
}
/** Resizes to the given size, and sets all coefficients in this expression to the given \a value.
*
* \param nbRows the new number of rows
* \param nbCols the new number of columns
* \param val the value to which all coefficients are set
*
* Example: \include Matrix_setConstant_int_int.cpp
* Output: \verbinclude Matrix_setConstant_int_int.out
*
* \sa MatrixBase::setConstant(const Scalar&), setConstant(Index,const Scalar&), class CwiseNullaryOp, MatrixBase::Constant(const Scalar&)
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setConstant(Index nbRows, Index nbCols, const Scalar& val)
{
resize(nbRows, nbCols);
return setConstant(val);
}
/**
* \brief Sets a linearly space vector.
*
* The function generates 'size' equally spaced values in the closed interval [low,high].
* When size is set to 1, a vector of length 1 containing 'high' is returned.
*
* \only_for_vectors
*
* Example: \include DenseBase_setLinSpaced.cpp
* Output: \verbinclude DenseBase_setLinSpaced.out
*
* \sa CwiseNullaryOp
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setLinSpaced(Index newSize, const Scalar& low, const Scalar& high)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return derived() = Derived::NullaryExpr(newSize, internal::linspaced_op<Scalar,false>(low,high,newSize));
}
/**
* \brief Sets a linearly space vector.
*
* The function fill *this with equally spaced values in the closed interval [low,high].
* When size is set to 1, a vector of length 1 containing 'high' is returned.
*
* \only_for_vectors
*
* \sa setLinSpaced(Index, const Scalar&, const Scalar&), CwiseNullaryOp
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setLinSpaced(const Scalar& low, const Scalar& high)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return setLinSpaced(size(), low, high);
}
// zero:
/** \returns an expression of a zero matrix.
*
* The parameters \a rows and \a cols are the number of rows and of columns of
* the returned matrix. Must be compatible with this MatrixBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so Zero() should be used
* instead.
*
* Example: \include MatrixBase_zero_int_int.cpp
* Output: \verbinclude MatrixBase_zero_int_int.out
*
* \sa Zero(), Zero(Index)
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Zero(Index nbRows, Index nbCols)
{
return Constant(nbRows, nbCols, Scalar(0));
}
/** \returns an expression of a zero vector.
*
* The parameter \a size is the size of the returned vector.
* Must be compatible with this MatrixBase type.
*
* \only_for_vectors
*
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
* it is redundant to pass \a size as argument, so Zero() should be used
* instead.
*
* Example: \include MatrixBase_zero_int.cpp
* Output: \verbinclude MatrixBase_zero_int.out
*
* \sa Zero(), Zero(Index,Index)
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Zero(Index size)
{
return Constant(size, Scalar(0));
}
/** \returns an expression of a fixed-size zero matrix or vector.
*
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
* need to use the variants taking size arguments.
*
* Example: \include MatrixBase_zero.cpp
* Output: \verbinclude MatrixBase_zero.out
*
* \sa Zero(Index), Zero(Index,Index)
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Zero()
{
return Constant(Scalar(0));
}
/** \returns true if *this is approximately equal to the zero matrix,
* within the precision given by \a prec.
*
* Example: \include MatrixBase_isZero.cpp
* Output: \verbinclude MatrixBase_isZero.out
*
* \sa class CwiseNullaryOp, Zero()
*/
template<typename Derived>
bool DenseBase<Derived>::isZero(const RealScalar& prec) const
{
for(Index j = 0; j < cols(); ++j)
for(Index i = 0; i < rows(); ++i)
if(!internal::isMuchSmallerThan(this->coeff(i, j), static_cast<Scalar>(1), prec))
return false;
return true;
}
/** Sets all coefficients in this expression to zero.
*
* Example: \include MatrixBase_setZero.cpp
* Output: \verbinclude MatrixBase_setZero.out
*
* \sa class CwiseNullaryOp, Zero()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setZero()
{
return setConstant(Scalar(0));
}
/** Resizes to the given \a size, and sets all coefficients in this expression to zero.
*
* \only_for_vectors
*
* Example: \include Matrix_setZero_int.cpp
* Output: \verbinclude Matrix_setZero_int.out
*
* \sa DenseBase::setZero(), setZero(Index,Index), class CwiseNullaryOp, DenseBase::Zero()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setZero(Index newSize)
{
resize(newSize);
return setConstant(Scalar(0));
}
/** Resizes to the given size, and sets all coefficients in this expression to zero.
*
* \param nbRows the new number of rows
* \param nbCols the new number of columns
*
* Example: \include Matrix_setZero_int_int.cpp
* Output: \verbinclude Matrix_setZero_int_int.out
*
* \sa DenseBase::setZero(), setZero(Index), class CwiseNullaryOp, DenseBase::Zero()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setZero(Index nbRows, Index nbCols)
{
resize(nbRows, nbCols);
return setConstant(Scalar(0));
}
// ones:
/** \returns an expression of a matrix where all coefficients equal one.
*
* The parameters \a nbRows and \a nbCols are the number of rows and of columns of
* the returned matrix. Must be compatible with this MatrixBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so Ones() should be used
* instead.
*
* Example: \include MatrixBase_ones_int_int.cpp
* Output: \verbinclude MatrixBase_ones_int_int.out
*
* \sa Ones(), Ones(Index), isOnes(), class Ones
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Ones(Index nbRows, Index nbCols)
{
return Constant(nbRows, nbCols, Scalar(1));
}
/** \returns an expression of a vector where all coefficients equal one.
*
* The parameter \a newSize is the size of the returned vector.
* Must be compatible with this MatrixBase type.
*
* \only_for_vectors
*
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
* it is redundant to pass \a size as argument, so Ones() should be used
* instead.
*
* Example: \include MatrixBase_ones_int.cpp
* Output: \verbinclude MatrixBase_ones_int.out
*
* \sa Ones(), Ones(Index,Index), isOnes(), class Ones
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Ones(Index newSize)
{
return Constant(newSize, Scalar(1));
}
/** \returns an expression of a fixed-size matrix or vector where all coefficients equal one.
*
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
* need to use the variants taking size arguments.
*
* Example: \include MatrixBase_ones.cpp
* Output: \verbinclude MatrixBase_ones.out
*
* \sa Ones(Index), Ones(Index,Index), isOnes(), class Ones
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Ones()
{
return Constant(Scalar(1));
}
/** \returns true if *this is approximately equal to the matrix where all coefficients
* are equal to 1, within the precision given by \a prec.
*
* Example: \include MatrixBase_isOnes.cpp
* Output: \verbinclude MatrixBase_isOnes.out
*
* \sa class CwiseNullaryOp, Ones()
*/
template<typename Derived>
bool DenseBase<Derived>::isOnes
(const RealScalar& prec) const
{
return isApproxToConstant(Scalar(1), prec);
}
/** Sets all coefficients in this expression to one.
*
* Example: \include MatrixBase_setOnes.cpp
* Output: \verbinclude MatrixBase_setOnes.out
*
* \sa class CwiseNullaryOp, Ones()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setOnes()
{
return setConstant(Scalar(1));
}
/** Resizes to the given \a newSize, and sets all coefficients in this expression to one.
*
* \only_for_vectors
*
* Example: \include Matrix_setOnes_int.cpp
* Output: \verbinclude Matrix_setOnes_int.out
*
* \sa MatrixBase::setOnes(), setOnes(Index,Index), class CwiseNullaryOp, MatrixBase::Ones()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setOnes(Index newSize)
{
resize(newSize);
return setConstant(Scalar(1));
}
/** Resizes to the given size, and sets all coefficients in this expression to one.
*
* \param nbRows the new number of rows
* \param nbCols the new number of columns
*
* Example: \include Matrix_setOnes_int_int.cpp
* Output: \verbinclude Matrix_setOnes_int_int.out
*
* \sa MatrixBase::setOnes(), setOnes(Index), class CwiseNullaryOp, MatrixBase::Ones()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setOnes(Index nbRows, Index nbCols)
{
resize(nbRows, nbCols);
return setConstant(Scalar(1));
}
// Identity:
/** \returns an expression of the identity matrix (not necessarily square).
*
* The parameters \a nbRows and \a nbCols are the number of rows and of columns of
* the returned matrix. Must be compatible with this MatrixBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so Identity() should be used
* instead.
*
* Example: \include MatrixBase_identity_int_int.cpp
* Output: \verbinclude MatrixBase_identity_int_int.out
*
* \sa Identity(), setIdentity(), isIdentity()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::IdentityReturnType
MatrixBase<Derived>::Identity(Index nbRows, Index nbCols)
{
return DenseBase<Derived>::NullaryExpr(nbRows, nbCols, internal::scalar_identity_op<Scalar>());
}
/** \returns an expression of the identity matrix (not necessarily square).
*
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
* need to use the variant taking size arguments.
*
* Example: \include MatrixBase_identity.cpp
* Output: \verbinclude MatrixBase_identity.out
*
* \sa Identity(Index,Index), setIdentity(), isIdentity()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::IdentityReturnType
MatrixBase<Derived>::Identity()
{
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
return MatrixBase<Derived>::NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, internal::scalar_identity_op<Scalar>());
}
/** \returns true if *this is approximately equal to the identity matrix
* (not necessarily square),
* within the precision given by \a prec.
*
* Example: \include MatrixBase_isIdentity.cpp
* Output: \verbinclude MatrixBase_isIdentity.out
*
* \sa class CwiseNullaryOp, Identity(), Identity(Index,Index), setIdentity()
*/
template<typename Derived>
bool MatrixBase<Derived>::isIdentity
(const RealScalar& prec) const
{
for(Index j = 0; j < cols(); ++j)
{
for(Index i = 0; i < rows(); ++i)
{
if(i == j)
{
if(!internal::isApprox(this->coeff(i, j), static_cast<Scalar>(1), prec))
return false;
}
else
{
if(!internal::isMuchSmallerThan(this->coeff(i, j), static_cast<RealScalar>(1), prec))
return false;
}
}
}
return true;
}
namespace internal {
template<typename Derived, bool Big = (Derived::SizeAtCompileTime>=16)>
struct setIdentity_impl
{
static EIGEN_STRONG_INLINE Derived& run(Derived& m)
{
return m = Derived::Identity(m.rows(), m.cols());
}
};
template<typename Derived>
struct setIdentity_impl<Derived, true>
{
typedef typename Derived::Index Index;
static EIGEN_STRONG_INLINE Derived& run(Derived& m)
{
m.setZero();
const Index size = (std::min)(m.rows(), m.cols());
for(Index i = 0; i < size; ++i) m.coeffRef(i,i) = typename Derived::Scalar(1);
return m;
}
};
} // end namespace internal
/** Writes the identity expression (not necessarily square) into *this.
*
* Example: \include MatrixBase_setIdentity.cpp
* Output: \verbinclude MatrixBase_setIdentity.out
*
* \sa class CwiseNullaryOp, Identity(), Identity(Index,Index), isIdentity()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::setIdentity()
{
return internal::setIdentity_impl<Derived>::run(derived());
}
/** \brief Resizes to the given size, and writes the identity expression (not necessarily square) into *this.
*
* \param nbRows the new number of rows
* \param nbCols the new number of columns
*
* Example: \include Matrix_setIdentity_int_int.cpp
* Output: \verbinclude Matrix_setIdentity_int_int.out
*
* \sa MatrixBase::setIdentity(), class CwiseNullaryOp, MatrixBase::Identity()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::setIdentity(Index nbRows, Index nbCols)
{
derived().resize(nbRows, nbCols);
return setIdentity();
}
/** \returns an expression of the i-th unit (basis) vector.
*
* \only_for_vectors
*
* \sa MatrixBase::Unit(Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::Unit(Index newSize, Index i)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return BasisReturnType(SquareMatrixType::Identity(newSize,newSize), i);
}
/** \returns an expression of the i-th unit (basis) vector.
*
* \only_for_vectors
*
* This variant is for fixed-size vector only.
*
* \sa MatrixBase::Unit(Index,Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::Unit(Index i)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return BasisReturnType(SquareMatrixType::Identity(),i);
}
/** \returns an expression of the X axis unit vector (1{,0}^*)
*
* \only_for_vectors
*
* \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitX()
{ return Derived::Unit(0); }
/** \returns an expression of the Y axis unit vector (0,1{,0}^*)
*
* \only_for_vectors
*
* \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitY()
{ return Derived::Unit(1); }
/** \returns an expression of the Z axis unit vector (0,0,1{,0}^*)
*
* \only_for_vectors
*
* \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitZ()
{ return Derived::Unit(2); }
/** \returns an expression of the W axis unit vector (0,0,0,1)
*
* \only_for_vectors
*
* \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitW()
{ return Derived::Unit(3); }
} // end namespace Eigen
#endif // EIGEN_CWISE_NULLARY_OP_H

View File

@ -0,0 +1,126 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CWISE_UNARY_OP_H
#define EIGEN_CWISE_UNARY_OP_H
namespace Eigen {
/** \class CwiseUnaryOp
* \ingroup Core_Module
*
* \brief Generic expression where a coefficient-wise unary operator is applied to an expression
*
* \param UnaryOp template functor implementing the operator
* \param XprType the type of the expression to which we are applying the unary operator
*
* This class represents an expression where a unary operator is applied to an expression.
* It is the return type of all operations taking exactly 1 input expression, regardless of the
* presence of other inputs such as scalars. For example, the operator* in the expression 3*matrix
* is considered unary, because only the right-hand side is an expression, and its
* return type is a specialization of CwiseUnaryOp.
*
* Most of the time, this is the only way that it is used, so you typically don't have to name
* CwiseUnaryOp types explicitly.
*
* \sa MatrixBase::unaryExpr(const CustomUnaryOp &) const, class CwiseBinaryOp, class CwiseNullaryOp
*/
namespace internal {
template<typename UnaryOp, typename XprType>
struct traits<CwiseUnaryOp<UnaryOp, XprType> >
: traits<XprType>
{
typedef typename result_of<
UnaryOp(typename XprType::Scalar)
>::type Scalar;
typedef typename XprType::Nested XprTypeNested;
typedef typename remove_reference<XprTypeNested>::type _XprTypeNested;
enum {
Flags = _XprTypeNested::Flags & (
HereditaryBits | LinearAccessBit | AlignedBit
| (functor_traits<UnaryOp>::PacketAccess ? PacketAccessBit : 0)),
CoeffReadCost = EIGEN_ADD_COST(_XprTypeNested::CoeffReadCost, functor_traits<UnaryOp>::Cost)
};
};
}
template<typename UnaryOp, typename XprType, typename StorageKind>
class CwiseUnaryOpImpl;
template<typename UnaryOp, typename XprType>
class CwiseUnaryOp : internal::no_assignment_operator,
public CwiseUnaryOpImpl<UnaryOp, XprType, typename internal::traits<XprType>::StorageKind>
{
public:
typedef typename CwiseUnaryOpImpl<UnaryOp, XprType,typename internal::traits<XprType>::StorageKind>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseUnaryOp)
inline CwiseUnaryOp(const XprType& xpr, const UnaryOp& func = UnaryOp())
: m_xpr(xpr), m_functor(func) {}
EIGEN_STRONG_INLINE Index rows() const { return m_xpr.rows(); }
EIGEN_STRONG_INLINE Index cols() const { return m_xpr.cols(); }
/** \returns the functor representing the unary operation */
const UnaryOp& functor() const { return m_functor; }
/** \returns the nested expression */
const typename internal::remove_all<typename XprType::Nested>::type&
nestedExpression() const { return m_xpr; }
/** \returns the nested expression */
typename internal::remove_all<typename XprType::Nested>::type&
nestedExpression() { return m_xpr.const_cast_derived(); }
protected:
typename XprType::Nested m_xpr;
const UnaryOp m_functor;
};
// This is the generic implementation for dense storage.
// It can be used for any expression types implementing the dense concept.
template<typename UnaryOp, typename XprType>
class CwiseUnaryOpImpl<UnaryOp,XprType,Dense>
: public internal::dense_xpr_base<CwiseUnaryOp<UnaryOp, XprType> >::type
{
public:
typedef CwiseUnaryOp<UnaryOp, XprType> Derived;
typedef typename internal::dense_xpr_base<CwiseUnaryOp<UnaryOp, XprType> >::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
EIGEN_STRONG_INLINE const Scalar coeff(Index rowId, Index colId) const
{
return derived().functor()(derived().nestedExpression().coeff(rowId, colId));
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const
{
return derived().functor().packetOp(derived().nestedExpression().template packet<LoadMode>(rowId, colId));
}
EIGEN_STRONG_INLINE const Scalar coeff(Index index) const
{
return derived().functor()(derived().nestedExpression().coeff(index));
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index index) const
{
return derived().functor().packetOp(derived().nestedExpression().template packet<LoadMode>(index));
}
};
} // end namespace Eigen
#endif // EIGEN_CWISE_UNARY_OP_H

View File

@ -0,0 +1,139 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CWISE_UNARY_VIEW_H
#define EIGEN_CWISE_UNARY_VIEW_H
namespace Eigen {
/** \class CwiseUnaryView
* \ingroup Core_Module
*
* \brief Generic lvalue expression of a coefficient-wise unary operator of a matrix or a vector
*
* \param ViewOp template functor implementing the view
* \param MatrixType the type of the matrix we are applying the unary operator
*
* This class represents a lvalue expression of a generic unary view operator of a matrix or a vector.
* It is the return type of real() and imag(), and most of the time this is the only way it is used.
*
* \sa MatrixBase::unaryViewExpr(const CustomUnaryOp &) const, class CwiseUnaryOp
*/
namespace internal {
template<typename ViewOp, typename MatrixType>
struct traits<CwiseUnaryView<ViewOp, MatrixType> >
: traits<MatrixType>
{
typedef typename result_of<
ViewOp(typename traits<MatrixType>::Scalar)
>::type Scalar;
typedef typename MatrixType::Nested MatrixTypeNested;
typedef typename remove_all<MatrixTypeNested>::type _MatrixTypeNested;
enum {
Flags = (traits<_MatrixTypeNested>::Flags & (HereditaryBits | LvalueBit | LinearAccessBit | DirectAccessBit)),
CoeffReadCost = EIGEN_ADD_COST(traits<_MatrixTypeNested>::CoeffReadCost, functor_traits<ViewOp>::Cost),
MatrixTypeInnerStride = inner_stride_at_compile_time<MatrixType>::ret,
// need to cast the sizeof's from size_t to int explicitly, otherwise:
// "error: no integral type can represent all of the enumerator values
InnerStrideAtCompileTime = MatrixTypeInnerStride == Dynamic
? int(Dynamic)
: int(MatrixTypeInnerStride) * int(sizeof(typename traits<MatrixType>::Scalar) / sizeof(Scalar)),
OuterStrideAtCompileTime = outer_stride_at_compile_time<MatrixType>::ret == Dynamic
? int(Dynamic)
: outer_stride_at_compile_time<MatrixType>::ret * int(sizeof(typename traits<MatrixType>::Scalar) / sizeof(Scalar))
};
};
}
template<typename ViewOp, typename MatrixType, typename StorageKind>
class CwiseUnaryViewImpl;
template<typename ViewOp, typename MatrixType>
class CwiseUnaryView : public CwiseUnaryViewImpl<ViewOp, MatrixType, typename internal::traits<MatrixType>::StorageKind>
{
public:
typedef typename CwiseUnaryViewImpl<ViewOp, MatrixType,typename internal::traits<MatrixType>::StorageKind>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseUnaryView)
inline CwiseUnaryView(const MatrixType& mat, const ViewOp& func = ViewOp())
: m_matrix(mat), m_functor(func) {}
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(CwiseUnaryView)
EIGEN_STRONG_INLINE Index rows() const { return m_matrix.rows(); }
EIGEN_STRONG_INLINE Index cols() const { return m_matrix.cols(); }
/** \returns the functor representing unary operation */
const ViewOp& functor() const { return m_functor; }
/** \returns the nested expression */
const typename internal::remove_all<typename MatrixType::Nested>::type&
nestedExpression() const { return m_matrix; }
/** \returns the nested expression */
typename internal::remove_all<typename MatrixType::Nested>::type&
nestedExpression() { return m_matrix.const_cast_derived(); }
protected:
// FIXME changed from MatrixType::Nested because of a weird compilation error with sun CC
typename internal::nested<MatrixType>::type m_matrix;
ViewOp m_functor;
};
template<typename ViewOp, typename MatrixType>
class CwiseUnaryViewImpl<ViewOp,MatrixType,Dense>
: public internal::dense_xpr_base< CwiseUnaryView<ViewOp, MatrixType> >::type
{
public:
typedef CwiseUnaryView<ViewOp, MatrixType> Derived;
typedef typename internal::dense_xpr_base< CwiseUnaryView<ViewOp, MatrixType> >::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(CwiseUnaryViewImpl)
inline Scalar* data() { return &coeffRef(0); }
inline const Scalar* data() const { return &coeff(0); }
inline Index innerStride() const
{
return derived().nestedExpression().innerStride() * sizeof(typename internal::traits<MatrixType>::Scalar) / sizeof(Scalar);
}
inline Index outerStride() const
{
return derived().nestedExpression().outerStride() * sizeof(typename internal::traits<MatrixType>::Scalar) / sizeof(Scalar);
}
EIGEN_STRONG_INLINE CoeffReturnType coeff(Index row, Index col) const
{
return derived().functor()(derived().nestedExpression().coeff(row, col));
}
EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
{
return derived().functor()(derived().nestedExpression().coeff(index));
}
EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col)
{
return derived().functor()(const_cast_derived().nestedExpression().coeffRef(row, col));
}
EIGEN_STRONG_INLINE Scalar& coeffRef(Index index)
{
return derived().functor()(const_cast_derived().nestedExpression().coeffRef(index));
}
};
} // end namespace Eigen
#endif // EIGEN_CWISE_UNARY_VIEW_H

View File

@ -0,0 +1,521 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_DENSEBASE_H
#define EIGEN_DENSEBASE_H
namespace Eigen {
namespace internal {
// The index type defined by EIGEN_DEFAULT_DENSE_INDEX_TYPE must be a signed type.
// This dummy function simply aims at checking that at compile time.
static inline void check_DenseIndex_is_signed() {
EIGEN_STATIC_ASSERT(NumTraits<DenseIndex>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE);
}
} // end namespace internal
/** \class DenseBase
* \ingroup Core_Module
*
* \brief Base class for all dense matrices, vectors, and arrays
*
* This class is the base that is inherited by all dense objects (matrix, vector, arrays,
* and related expression types). The common Eigen API for dense objects is contained in this class.
*
* \tparam Derived is the derived type, e.g., a matrix type or an expression.
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_DENSEBASE_PLUGIN.
*
* \sa \ref TopicClassHierarchy
*/
template<typename Derived> class DenseBase
#ifndef EIGEN_PARSED_BY_DOXYGEN
: public internal::special_scalar_op_base<Derived, typename internal::traits<Derived>::Scalar,
typename NumTraits<typename internal::traits<Derived>::Scalar>::Real,
DenseCoeffsBase<Derived> >
#else
: public DenseCoeffsBase<Derived>
#endif // not EIGEN_PARSED_BY_DOXYGEN
{
public:
class InnerIterator;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
/** \brief The type of indices
* \details To change this, \c \#define the preprocessor symbol \c EIGEN_DEFAULT_DENSE_INDEX_TYPE.
* \sa \ref TopicPreprocessorDirectives.
*/
typedef typename internal::traits<Derived>::Index Index;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef internal::special_scalar_op_base<Derived,Scalar,RealScalar, DenseCoeffsBase<Derived> > Base;
using Base::operator*;
using Base::derived;
using Base::const_cast_derived;
using Base::rows;
using Base::cols;
using Base::size;
using Base::rowIndexByOuterInner;
using Base::colIndexByOuterInner;
using Base::coeff;
using Base::coeffByOuterInner;
using Base::packet;
using Base::packetByOuterInner;
using Base::writePacket;
using Base::writePacketByOuterInner;
using Base::coeffRef;
using Base::coeffRefByOuterInner;
using Base::copyCoeff;
using Base::copyCoeffByOuterInner;
using Base::copyPacket;
using Base::copyPacketByOuterInner;
using Base::operator();
using Base::operator[];
using Base::x;
using Base::y;
using Base::z;
using Base::w;
using Base::stride;
using Base::innerStride;
using Base::outerStride;
using Base::rowStride;
using Base::colStride;
typedef typename Base::CoeffReturnType CoeffReturnType;
enum {
RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
/**< The number of rows at compile-time. This is just a copy of the value provided
* by the \a Derived type. If a value is not known at compile-time,
* it is set to the \a Dynamic constant.
* \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */
ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
/**< The number of columns at compile-time. This is just a copy of the value provided
* by the \a Derived type. If a value is not known at compile-time,
* it is set to the \a Dynamic constant.
* \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */
SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime,
internal::traits<Derived>::ColsAtCompileTime>::ret),
/**< This is equal to the number of coefficients, i.e. the number of
* rows times the number of columns, or to \a Dynamic if this is not
* known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime,
/**< This value is equal to the maximum possible number of rows that this expression
* might have. If this expression might have an arbitrarily high number of rows,
* this value is set to \a Dynamic.
*
* This value is useful to know when evaluating an expression, in order to determine
* whether it is possible to avoid doing a dynamic memory allocation.
*
* \sa RowsAtCompileTime, MaxColsAtCompileTime, MaxSizeAtCompileTime
*/
MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime,
/**< This value is equal to the maximum possible number of columns that this expression
* might have. If this expression might have an arbitrarily high number of columns,
* this value is set to \a Dynamic.
*
* This value is useful to know when evaluating an expression, in order to determine
* whether it is possible to avoid doing a dynamic memory allocation.
*
* \sa ColsAtCompileTime, MaxRowsAtCompileTime, MaxSizeAtCompileTime
*/
MaxSizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::MaxRowsAtCompileTime,
internal::traits<Derived>::MaxColsAtCompileTime>::ret),
/**< This value is equal to the maximum possible number of coefficients that this expression
* might have. If this expression might have an arbitrarily high number of coefficients,
* this value is set to \a Dynamic.
*
* This value is useful to know when evaluating an expression, in order to determine
* whether it is possible to avoid doing a dynamic memory allocation.
*
* \sa SizeAtCompileTime, MaxRowsAtCompileTime, MaxColsAtCompileTime
*/
IsVectorAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime == 1
|| internal::traits<Derived>::MaxColsAtCompileTime == 1,
/**< This is set to true if either the number of rows or the number of
* columns is known at compile-time to be equal to 1. Indeed, in that case,
* we are dealing with a column-vector (if there is only one column) or with
* a row-vector (if there is only one row). */
Flags = internal::traits<Derived>::Flags,
/**< This stores expression \ref flags flags which may or may not be inherited by new expressions
* constructed from this one. See the \ref flags "list of flags".
*/
IsRowMajor = int(Flags) & RowMajorBit, /**< True if this expression has row-major storage order. */
InnerSizeAtCompileTime = int(IsVectorAtCompileTime) ? int(SizeAtCompileTime)
: int(IsRowMajor) ? int(ColsAtCompileTime) : int(RowsAtCompileTime),
CoeffReadCost = internal::traits<Derived>::CoeffReadCost,
/**< This is a rough measure of how expensive it is to read one coefficient from
* this expression.
*/
InnerStrideAtCompileTime = internal::inner_stride_at_compile_time<Derived>::ret,
OuterStrideAtCompileTime = internal::outer_stride_at_compile_time<Derived>::ret
};
enum { ThisConstantIsPrivateInPlainObjectBase };
/** \returns the number of nonzero coefficients which is in practice the number
* of stored coefficients. */
inline Index nonZeros() const { return size(); }
/** \returns the outer size.
*
* \note For a vector, this returns just 1. For a matrix (non-vector), this is the major dimension
* with respect to the \ref TopicStorageOrders "storage order", i.e., the number of columns for a
* column-major matrix, and the number of rows for a row-major matrix. */
Index outerSize() const
{
return IsVectorAtCompileTime ? 1
: int(IsRowMajor) ? this->rows() : this->cols();
}
/** \returns the inner size.
*
* \note For a vector, this is just the size. For a matrix (non-vector), this is the minor dimension
* with respect to the \ref TopicStorageOrders "storage order", i.e., the number of rows for a
* column-major matrix, and the number of columns for a row-major matrix. */
Index innerSize() const
{
return IsVectorAtCompileTime ? this->size()
: int(IsRowMajor) ? this->cols() : this->rows();
}
/** Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are
* Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does
* nothing else.
*/
void resize(Index newSize)
{
EIGEN_ONLY_USED_FOR_DEBUG(newSize);
eigen_assert(newSize == this->size()
&& "DenseBase::resize() does not actually allow to resize.");
}
/** Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are
* Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does
* nothing else.
*/
void resize(Index nbRows, Index nbCols)
{
EIGEN_ONLY_USED_FOR_DEBUG(nbRows);
EIGEN_ONLY_USED_FOR_DEBUG(nbCols);
eigen_assert(nbRows == this->rows() && nbCols == this->cols()
&& "DenseBase::resize() does not actually allow to resize.");
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal Represents a matrix with all coefficients equal to one another*/
typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Derived> ConstantReturnType;
/** \internal Represents a vector with linearly spaced coefficients that allows sequential access only. */
typedef CwiseNullaryOp<internal::linspaced_op<Scalar,false>,Derived> SequentialLinSpacedReturnType;
/** \internal Represents a vector with linearly spaced coefficients that allows random access. */
typedef CwiseNullaryOp<internal::linspaced_op<Scalar,true>,Derived> RandomAccessLinSpacedReturnType;
/** \internal the return type of MatrixBase::eigenvalues() */
typedef Matrix<typename NumTraits<typename internal::traits<Derived>::Scalar>::Real, internal::traits<Derived>::ColsAtCompileTime, 1> EigenvaluesReturnType;
#endif // not EIGEN_PARSED_BY_DOXYGEN
/** Copies \a other into *this. \returns a reference to *this. */
template<typename OtherDerived>
Derived& operator=(const DenseBase<OtherDerived>& other);
/** Special case of the template operator=, in order to prevent the compiler
* from generating a default operator= (issue hit with g++ 4.1)
*/
Derived& operator=(const DenseBase& other);
template<typename OtherDerived>
Derived& operator=(const EigenBase<OtherDerived> &other);
template<typename OtherDerived>
Derived& operator+=(const EigenBase<OtherDerived> &other);
template<typename OtherDerived>
Derived& operator-=(const EigenBase<OtherDerived> &other);
template<typename OtherDerived>
Derived& operator=(const ReturnByValue<OtherDerived>& func);
/** \internal Copies \a other into *this without evaluating other. \returns a reference to *this. */
template<typename OtherDerived>
Derived& lazyAssign(const DenseBase<OtherDerived>& other);
/** \internal Evaluates \a other into *this. \returns a reference to *this. */
template<typename OtherDerived>
Derived& lazyAssign(const ReturnByValue<OtherDerived>& other);
CommaInitializer<Derived> operator<< (const Scalar& s);
template<unsigned int Added,unsigned int Removed>
const Flagged<Derived, Added, Removed> flagged() const;
template<typename OtherDerived>
CommaInitializer<Derived> operator<< (const DenseBase<OtherDerived>& other);
Eigen::Transpose<Derived> transpose();
typedef typename internal::add_const<Transpose<const Derived> >::type ConstTransposeReturnType;
ConstTransposeReturnType transpose() const;
void transposeInPlace();
#ifndef EIGEN_NO_DEBUG
protected:
template<typename OtherDerived>
void checkTransposeAliasing(const OtherDerived& other) const;
public:
#endif
static const ConstantReturnType
Constant(Index rows, Index cols, const Scalar& value);
static const ConstantReturnType
Constant(Index size, const Scalar& value);
static const ConstantReturnType
Constant(const Scalar& value);
static const SequentialLinSpacedReturnType
LinSpaced(Sequential_t, Index size, const Scalar& low, const Scalar& high);
static const RandomAccessLinSpacedReturnType
LinSpaced(Index size, const Scalar& low, const Scalar& high);
static const SequentialLinSpacedReturnType
LinSpaced(Sequential_t, const Scalar& low, const Scalar& high);
static const RandomAccessLinSpacedReturnType
LinSpaced(const Scalar& low, const Scalar& high);
template<typename CustomNullaryOp>
static const CwiseNullaryOp<CustomNullaryOp, Derived>
NullaryExpr(Index rows, Index cols, const CustomNullaryOp& func);
template<typename CustomNullaryOp>
static const CwiseNullaryOp<CustomNullaryOp, Derived>
NullaryExpr(Index size, const CustomNullaryOp& func);
template<typename CustomNullaryOp>
static const CwiseNullaryOp<CustomNullaryOp, Derived>
NullaryExpr(const CustomNullaryOp& func);
static const ConstantReturnType Zero(Index rows, Index cols);
static const ConstantReturnType Zero(Index size);
static const ConstantReturnType Zero();
static const ConstantReturnType Ones(Index rows, Index cols);
static const ConstantReturnType Ones(Index size);
static const ConstantReturnType Ones();
void fill(const Scalar& value);
Derived& setConstant(const Scalar& value);
Derived& setLinSpaced(Index size, const Scalar& low, const Scalar& high);
Derived& setLinSpaced(const Scalar& low, const Scalar& high);
Derived& setZero();
Derived& setOnes();
Derived& setRandom();
template<typename OtherDerived>
bool isApprox(const DenseBase<OtherDerived>& other,
const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
bool isMuchSmallerThan(const RealScalar& other,
const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
template<typename OtherDerived>
bool isMuchSmallerThan(const DenseBase<OtherDerived>& other,
const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
bool isApproxToConstant(const Scalar& value, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
bool isConstant(const Scalar& value, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
bool isZero(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
bool isOnes(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
inline bool hasNaN() const;
inline bool allFinite() const;
inline Derived& operator*=(const Scalar& other);
inline Derived& operator/=(const Scalar& other);
typedef typename internal::add_const_on_value_type<typename internal::eval<Derived>::type>::type EvalReturnType;
/** \returns the matrix or vector obtained by evaluating this expression.
*
* Notice that in the case of a plain matrix or vector (not an expression) this function just returns
* a const reference, in order to avoid a useless copy.
*/
EIGEN_STRONG_INLINE EvalReturnType eval() const
{
// Even though MSVC does not honor strong inlining when the return type
// is a dynamic matrix, we desperately need strong inlining for fixed
// size types on MSVC.
return typename internal::eval<Derived>::type(derived());
}
/** swaps *this with the expression \a other.
*
*/
template<typename OtherDerived>
void swap(const DenseBase<OtherDerived>& other,
int = OtherDerived::ThisConstantIsPrivateInPlainObjectBase)
{
SwapWrapper<Derived>(derived()).lazyAssign(other.derived());
}
/** swaps *this with the matrix or array \a other.
*
*/
template<typename OtherDerived>
void swap(PlainObjectBase<OtherDerived>& other)
{
SwapWrapper<Derived>(derived()).lazyAssign(other.derived());
}
inline const NestByValue<Derived> nestByValue() const;
inline const ForceAlignedAccess<Derived> forceAlignedAccess() const;
inline ForceAlignedAccess<Derived> forceAlignedAccess();
template<bool Enable> inline const typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type forceAlignedAccessIf() const;
template<bool Enable> inline typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type forceAlignedAccessIf();
Scalar sum() const;
Scalar mean() const;
Scalar trace() const;
Scalar prod() const;
typename internal::traits<Derived>::Scalar minCoeff() const;
typename internal::traits<Derived>::Scalar maxCoeff() const;
template<typename IndexType>
typename internal::traits<Derived>::Scalar minCoeff(IndexType* row, IndexType* col) const;
template<typename IndexType>
typename internal::traits<Derived>::Scalar maxCoeff(IndexType* row, IndexType* col) const;
template<typename IndexType>
typename internal::traits<Derived>::Scalar minCoeff(IndexType* index) const;
template<typename IndexType>
typename internal::traits<Derived>::Scalar maxCoeff(IndexType* index) const;
template<typename BinaryOp>
typename internal::result_of<BinaryOp(typename internal::traits<Derived>::Scalar)>::type
redux(const BinaryOp& func) const;
template<typename Visitor>
void visit(Visitor& func) const;
inline const WithFormat<Derived> format(const IOFormat& fmt) const;
/** \returns the unique coefficient of a 1x1 expression */
CoeffReturnType value() const
{
EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
eigen_assert(this->rows() == 1 && this->cols() == 1);
return derived().coeff(0,0);
}
bool all(void) const;
bool any(void) const;
Index count() const;
typedef VectorwiseOp<Derived, Horizontal> RowwiseReturnType;
typedef const VectorwiseOp<const Derived, Horizontal> ConstRowwiseReturnType;
typedef VectorwiseOp<Derived, Vertical> ColwiseReturnType;
typedef const VectorwiseOp<const Derived, Vertical> ConstColwiseReturnType;
ConstRowwiseReturnType rowwise() const;
RowwiseReturnType rowwise();
ConstColwiseReturnType colwise() const;
ColwiseReturnType colwise();
static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random(Index rows, Index cols);
static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random(Index size);
static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random();
template<typename ThenDerived,typename ElseDerived>
const Select<Derived,ThenDerived,ElseDerived>
select(const DenseBase<ThenDerived>& thenMatrix,
const DenseBase<ElseDerived>& elseMatrix) const;
template<typename ThenDerived>
inline const Select<Derived,ThenDerived, typename ThenDerived::ConstantReturnType>
select(const DenseBase<ThenDerived>& thenMatrix, const typename ThenDerived::Scalar& elseScalar) const;
template<typename ElseDerived>
inline const Select<Derived, typename ElseDerived::ConstantReturnType, ElseDerived >
select(const typename ElseDerived::Scalar& thenScalar, const DenseBase<ElseDerived>& elseMatrix) const;
template<int p> RealScalar lpNorm() const;
template<int RowFactor, int ColFactor>
inline const Replicate<Derived,RowFactor,ColFactor> replicate() const;
typedef Replicate<Derived,Dynamic,Dynamic> ReplicateReturnType;
inline const ReplicateReturnType replicate(Index rowFacor,Index colFactor) const;
typedef Reverse<Derived, BothDirections> ReverseReturnType;
typedef const Reverse<const Derived, BothDirections> ConstReverseReturnType;
ReverseReturnType reverse();
ConstReverseReturnType reverse() const;
void reverseInPlace();
#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::DenseBase
# include "../plugins/BlockMethods.h"
# ifdef EIGEN_DENSEBASE_PLUGIN
# include EIGEN_DENSEBASE_PLUGIN
# endif
#undef EIGEN_CURRENT_STORAGE_BASE_CLASS
#ifdef EIGEN2_SUPPORT
Block<Derived> corner(CornerType type, Index cRows, Index cCols);
const Block<Derived> corner(CornerType type, Index cRows, Index cCols) const;
template<int CRows, int CCols>
Block<Derived, CRows, CCols> corner(CornerType type);
template<int CRows, int CCols>
const Block<Derived, CRows, CCols> corner(CornerType type) const;
#endif // EIGEN2_SUPPORT
// disable the use of evalTo for dense objects with a nice compilation error
template<typename Dest> inline void evalTo(Dest& ) const
{
EIGEN_STATIC_ASSERT((internal::is_same<Dest,void>::value),THE_EVAL_EVALTO_FUNCTION_SHOULD_NEVER_BE_CALLED_FOR_DENSE_OBJECTS);
}
protected:
/** Default constructor. Do nothing. */
DenseBase()
{
/* Just checks for self-consistency of the flags.
* Only do it when debugging Eigen, as this borders on paranoiac and could slow compilation down
*/
#ifdef EIGEN_INTERNAL_DEBUGGING
EIGEN_STATIC_ASSERT((EIGEN_IMPLIES(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, int(IsRowMajor))
&& EIGEN_IMPLIES(MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1, int(!IsRowMajor))),
INVALID_STORAGE_ORDER_FOR_THIS_VECTOR_EXPRESSION)
#endif
}
private:
explicit DenseBase(int);
DenseBase(int,int);
template<typename OtherDerived> explicit DenseBase(const DenseBase<OtherDerived>&);
};
} // end namespace Eigen
#endif // EIGEN_DENSEBASE_H

View File

@ -0,0 +1,754 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_DENSECOEFFSBASE_H
#define EIGEN_DENSECOEFFSBASE_H
namespace Eigen {
namespace internal {
template<typename T> struct add_const_on_value_type_if_arithmetic
{
typedef typename conditional<is_arithmetic<T>::value, T, typename add_const_on_value_type<T>::type>::type type;
};
}
/** \brief Base class providing read-only coefficient access to matrices and arrays.
* \ingroup Core_Module
* \tparam Derived Type of the derived class
* \tparam #ReadOnlyAccessors Constant indicating read-only access
*
* This class defines the \c operator() \c const function and friends, which can be used to read specific
* entries of a matrix or array.
*
* \sa DenseCoeffsBase<Derived, WriteAccessors>, DenseCoeffsBase<Derived, DirectAccessors>,
* \ref TopicClassHierarchy
*/
template<typename Derived>
class DenseCoeffsBase<Derived,ReadOnlyAccessors> : public EigenBase<Derived>
{
public:
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Index Index;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
// Explanation for this CoeffReturnType typedef.
// - This is the return type of the coeff() method.
// - The LvalueBit means exactly that we can offer a coeffRef() method, which means exactly that we can get references
// to coeffs, which means exactly that we can have coeff() return a const reference (as opposed to returning a value).
// - The is_artihmetic check is required since "const int", "const double", etc. will cause warnings on some systems
// while the declaration of "const T", where T is a non arithmetic type does not. Always returning "const Scalar&" is
// not possible, since the underlying expressions might not offer a valid address the reference could be referring to.
typedef typename internal::conditional<bool(internal::traits<Derived>::Flags&LvalueBit),
const Scalar&,
typename internal::conditional<internal::is_arithmetic<Scalar>::value, Scalar, const Scalar>::type
>::type CoeffReturnType;
typedef typename internal::add_const_on_value_type_if_arithmetic<
typename internal::packet_traits<Scalar>::type
>::type PacketReturnType;
typedef EigenBase<Derived> Base;
using Base::rows;
using Base::cols;
using Base::size;
using Base::derived;
EIGEN_STRONG_INLINE Index rowIndexByOuterInner(Index outer, Index inner) const
{
return int(Derived::RowsAtCompileTime) == 1 ? 0
: int(Derived::ColsAtCompileTime) == 1 ? inner
: int(Derived::Flags)&RowMajorBit ? outer
: inner;
}
EIGEN_STRONG_INLINE Index colIndexByOuterInner(Index outer, Index inner) const
{
return int(Derived::ColsAtCompileTime) == 1 ? 0
: int(Derived::RowsAtCompileTime) == 1 ? inner
: int(Derived::Flags)&RowMajorBit ? inner
: outer;
}
/** Short version: don't use this function, use
* \link operator()(Index,Index) const \endlink instead.
*
* Long version: this function is similar to
* \link operator()(Index,Index) const \endlink, but without the assertion.
* Use this for limiting the performance cost of debugging code when doing
* repeated coefficient access. Only use this when it is guaranteed that the
* parameters \a row and \a col are in range.
*
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
* function equivalent to \link operator()(Index,Index) const \endlink.
*
* \sa operator()(Index,Index) const, coeffRef(Index,Index), coeff(Index) const
*/
EIGEN_STRONG_INLINE CoeffReturnType coeff(Index row, Index col) const
{
eigen_internal_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
return derived().coeff(row, col);
}
EIGEN_STRONG_INLINE CoeffReturnType coeffByOuterInner(Index outer, Index inner) const
{
return coeff(rowIndexByOuterInner(outer, inner),
colIndexByOuterInner(outer, inner));
}
/** \returns the coefficient at given the given row and column.
*
* \sa operator()(Index,Index), operator[](Index)
*/
EIGEN_STRONG_INLINE CoeffReturnType operator()(Index row, Index col) const
{
eigen_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
return derived().coeff(row, col);
}
/** Short version: don't use this function, use
* \link operator[](Index) const \endlink instead.
*
* Long version: this function is similar to
* \link operator[](Index) const \endlink, but without the assertion.
* Use this for limiting the performance cost of debugging code when doing
* repeated coefficient access. Only use this when it is guaranteed that the
* parameter \a index is in range.
*
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
* function equivalent to \link operator[](Index) const \endlink.
*
* \sa operator[](Index) const, coeffRef(Index), coeff(Index,Index) const
*/
EIGEN_STRONG_INLINE CoeffReturnType
coeff(Index index) const
{
eigen_internal_assert(index >= 0 && index < size());
return derived().coeff(index);
}
/** \returns the coefficient at given index.
*
* This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
*
* \sa operator[](Index), operator()(Index,Index) const, x() const, y() const,
* z() const, w() const
*/
EIGEN_STRONG_INLINE CoeffReturnType
operator[](Index index) const
{
#ifndef EIGEN2_SUPPORT
EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime,
THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD)
#endif
eigen_assert(index >= 0 && index < size());
return derived().coeff(index);
}
/** \returns the coefficient at given index.
*
* This is synonymous to operator[](Index) const.
*
* This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
*
* \sa operator[](Index), operator()(Index,Index) const, x() const, y() const,
* z() const, w() const
*/
EIGEN_STRONG_INLINE CoeffReturnType
operator()(Index index) const
{
eigen_assert(index >= 0 && index < size());
return derived().coeff(index);
}
/** equivalent to operator[](0). */
EIGEN_STRONG_INLINE CoeffReturnType
x() const { return (*this)[0]; }
/** equivalent to operator[](1). */
EIGEN_STRONG_INLINE CoeffReturnType
y() const { return (*this)[1]; }
/** equivalent to operator[](2). */
EIGEN_STRONG_INLINE CoeffReturnType
z() const { return (*this)[2]; }
/** equivalent to operator[](3). */
EIGEN_STRONG_INLINE CoeffReturnType
w() const { return (*this)[3]; }
/** \internal
* \returns the packet of coefficients starting at the given row and column. It is your responsibility
* to ensure that a packet really starts there. This method is only available on expressions having the
* PacketAccessBit.
*
* The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select
* the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
* starting at an address which is a multiple of the packet size.
*/
template<int LoadMode>
EIGEN_STRONG_INLINE PacketReturnType packet(Index row, Index col) const
{
eigen_internal_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
return derived().template packet<LoadMode>(row,col);
}
/** \internal */
template<int LoadMode>
EIGEN_STRONG_INLINE PacketReturnType packetByOuterInner(Index outer, Index inner) const
{
return packet<LoadMode>(rowIndexByOuterInner(outer, inner),
colIndexByOuterInner(outer, inner));
}
/** \internal
* \returns the packet of coefficients starting at the given index. It is your responsibility
* to ensure that a packet really starts there. This method is only available on expressions having the
* PacketAccessBit and the LinearAccessBit.
*
* The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select
* the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
* starting at an address which is a multiple of the packet size.
*/
template<int LoadMode>
EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
{
eigen_internal_assert(index >= 0 && index < size());
return derived().template packet<LoadMode>(index);
}
protected:
// explanation: DenseBase is doing "using ..." on the methods from DenseCoeffsBase.
// But some methods are only available in the DirectAccess case.
// So we add dummy methods here with these names, so that "using... " doesn't fail.
// It's not private so that the child class DenseBase can access them, and it's not public
// either since it's an implementation detail, so has to be protected.
void coeffRef();
void coeffRefByOuterInner();
void writePacket();
void writePacketByOuterInner();
void copyCoeff();
void copyCoeffByOuterInner();
void copyPacket();
void copyPacketByOuterInner();
void stride();
void innerStride();
void outerStride();
void rowStride();
void colStride();
};
/** \brief Base class providing read/write coefficient access to matrices and arrays.
* \ingroup Core_Module
* \tparam Derived Type of the derived class
* \tparam #WriteAccessors Constant indicating read/write access
*
* This class defines the non-const \c operator() function and friends, which can be used to write specific
* entries of a matrix or array. This class inherits DenseCoeffsBase<Derived, ReadOnlyAccessors> which
* defines the const variant for reading specific entries.
*
* \sa DenseCoeffsBase<Derived, DirectAccessors>, \ref TopicClassHierarchy
*/
template<typename Derived>
class DenseCoeffsBase<Derived, WriteAccessors> : public DenseCoeffsBase<Derived, ReadOnlyAccessors>
{
public:
typedef DenseCoeffsBase<Derived, ReadOnlyAccessors> Base;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Index Index;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
using Base::coeff;
using Base::rows;
using Base::cols;
using Base::size;
using Base::derived;
using Base::rowIndexByOuterInner;
using Base::colIndexByOuterInner;
using Base::operator[];
using Base::operator();
using Base::x;
using Base::y;
using Base::z;
using Base::w;
/** Short version: don't use this function, use
* \link operator()(Index,Index) \endlink instead.
*
* Long version: this function is similar to
* \link operator()(Index,Index) \endlink, but without the assertion.
* Use this for limiting the performance cost of debugging code when doing
* repeated coefficient access. Only use this when it is guaranteed that the
* parameters \a row and \a col are in range.
*
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
* function equivalent to \link operator()(Index,Index) \endlink.
*
* \sa operator()(Index,Index), coeff(Index, Index) const, coeffRef(Index)
*/
EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col)
{
eigen_internal_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
return derived().coeffRef(row, col);
}
EIGEN_STRONG_INLINE Scalar&
coeffRefByOuterInner(Index outer, Index inner)
{
return coeffRef(rowIndexByOuterInner(outer, inner),
colIndexByOuterInner(outer, inner));
}
/** \returns a reference to the coefficient at given the given row and column.
*
* \sa operator[](Index)
*/
EIGEN_STRONG_INLINE Scalar&
operator()(Index row, Index col)
{
eigen_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
return derived().coeffRef(row, col);
}
/** Short version: don't use this function, use
* \link operator[](Index) \endlink instead.
*
* Long version: this function is similar to
* \link operator[](Index) \endlink, but without the assertion.
* Use this for limiting the performance cost of debugging code when doing
* repeated coefficient access. Only use this when it is guaranteed that the
* parameters \a row and \a col are in range.
*
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
* function equivalent to \link operator[](Index) \endlink.
*
* \sa operator[](Index), coeff(Index) const, coeffRef(Index,Index)
*/
EIGEN_STRONG_INLINE Scalar&
coeffRef(Index index)
{
eigen_internal_assert(index >= 0 && index < size());
return derived().coeffRef(index);
}
/** \returns a reference to the coefficient at given index.
*
* This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
*
* \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w()
*/
EIGEN_STRONG_INLINE Scalar&
operator[](Index index)
{
#ifndef EIGEN2_SUPPORT
EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime,
THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD)
#endif
eigen_assert(index >= 0 && index < size());
return derived().coeffRef(index);
}
/** \returns a reference to the coefficient at given index.
*
* This is synonymous to operator[](Index).
*
* This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
*
* \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w()
*/
EIGEN_STRONG_INLINE Scalar&
operator()(Index index)
{
eigen_assert(index >= 0 && index < size());
return derived().coeffRef(index);
}
/** equivalent to operator[](0). */
EIGEN_STRONG_INLINE Scalar&
x() { return (*this)[0]; }
/** equivalent to operator[](1). */
EIGEN_STRONG_INLINE Scalar&
y() { return (*this)[1]; }
/** equivalent to operator[](2). */
EIGEN_STRONG_INLINE Scalar&
z() { return (*this)[2]; }
/** equivalent to operator[](3). */
EIGEN_STRONG_INLINE Scalar&
w() { return (*this)[3]; }
/** \internal
* Stores the given packet of coefficients, at the given row and column of this expression. It is your responsibility
* to ensure that a packet really starts there. This method is only available on expressions having the
* PacketAccessBit.
*
* The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select
* the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
* starting at an address which is a multiple of the packet size.
*/
template<int StoreMode>
EIGEN_STRONG_INLINE void writePacket
(Index row, Index col, const typename internal::packet_traits<Scalar>::type& val)
{
eigen_internal_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
derived().template writePacket<StoreMode>(row,col,val);
}
/** \internal */
template<int StoreMode>
EIGEN_STRONG_INLINE void writePacketByOuterInner
(Index outer, Index inner, const typename internal::packet_traits<Scalar>::type& val)
{
writePacket<StoreMode>(rowIndexByOuterInner(outer, inner),
colIndexByOuterInner(outer, inner),
val);
}
/** \internal
* Stores the given packet of coefficients, at the given index in this expression. It is your responsibility
* to ensure that a packet really starts there. This method is only available on expressions having the
* PacketAccessBit and the LinearAccessBit.
*
* The \a LoadMode parameter may have the value \a Aligned or \a Unaligned. Its effect is to select
* the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
* starting at an address which is a multiple of the packet size.
*/
template<int StoreMode>
EIGEN_STRONG_INLINE void writePacket
(Index index, const typename internal::packet_traits<Scalar>::type& val)
{
eigen_internal_assert(index >= 0 && index < size());
derived().template writePacket<StoreMode>(index,val);
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal Copies the coefficient at position (row,col) of other into *this.
*
* This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
* with usual assignments.
*
* Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE void copyCoeff(Index row, Index col, const DenseBase<OtherDerived>& other)
{
eigen_internal_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
derived().coeffRef(row, col) = other.derived().coeff(row, col);
}
/** \internal Copies the coefficient at the given index of other into *this.
*
* This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
* with usual assignments.
*
* Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE void copyCoeff(Index index, const DenseBase<OtherDerived>& other)
{
eigen_internal_assert(index >= 0 && index < size());
derived().coeffRef(index) = other.derived().coeff(index);
}
template<typename OtherDerived>
EIGEN_STRONG_INLINE void copyCoeffByOuterInner(Index outer, Index inner, const DenseBase<OtherDerived>& other)
{
const Index row = rowIndexByOuterInner(outer,inner);
const Index col = colIndexByOuterInner(outer,inner);
// derived() is important here: copyCoeff() may be reimplemented in Derived!
derived().copyCoeff(row, col, other);
}
/** \internal Copies the packet at position (row,col) of other into *this.
*
* This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
* with usual assignments.
*
* Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
*/
template<typename OtherDerived, int StoreMode, int LoadMode>
EIGEN_STRONG_INLINE void copyPacket(Index row, Index col, const DenseBase<OtherDerived>& other)
{
eigen_internal_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
derived().template writePacket<StoreMode>(row, col,
other.derived().template packet<LoadMode>(row, col));
}
/** \internal Copies the packet at the given index of other into *this.
*
* This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
* with usual assignments.
*
* Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
*/
template<typename OtherDerived, int StoreMode, int LoadMode>
EIGEN_STRONG_INLINE void copyPacket(Index index, const DenseBase<OtherDerived>& other)
{
eigen_internal_assert(index >= 0 && index < size());
derived().template writePacket<StoreMode>(index,
other.derived().template packet<LoadMode>(index));
}
/** \internal */
template<typename OtherDerived, int StoreMode, int LoadMode>
EIGEN_STRONG_INLINE void copyPacketByOuterInner(Index outer, Index inner, const DenseBase<OtherDerived>& other)
{
const Index row = rowIndexByOuterInner(outer,inner);
const Index col = colIndexByOuterInner(outer,inner);
// derived() is important here: copyCoeff() may be reimplemented in Derived!
derived().template copyPacket< OtherDerived, StoreMode, LoadMode>(row, col, other);
}
#endif
};
/** \brief Base class providing direct read-only coefficient access to matrices and arrays.
* \ingroup Core_Module
* \tparam Derived Type of the derived class
* \tparam #DirectAccessors Constant indicating direct access
*
* This class defines functions to work with strides which can be used to access entries directly. This class
* inherits DenseCoeffsBase<Derived, ReadOnlyAccessors> which defines functions to access entries read-only using
* \c operator() .
*
* \sa \ref TopicClassHierarchy
*/
template<typename Derived>
class DenseCoeffsBase<Derived, DirectAccessors> : public DenseCoeffsBase<Derived, ReadOnlyAccessors>
{
public:
typedef DenseCoeffsBase<Derived, ReadOnlyAccessors> Base;
typedef typename internal::traits<Derived>::Index Index;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
using Base::rows;
using Base::cols;
using Base::size;
using Base::derived;
/** \returns the pointer increment between two consecutive elements within a slice in the inner direction.
*
* \sa outerStride(), rowStride(), colStride()
*/
inline Index innerStride() const
{
return derived().innerStride();
}
/** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns
* in a column-major matrix).
*
* \sa innerStride(), rowStride(), colStride()
*/
inline Index outerStride() const
{
return derived().outerStride();
}
// FIXME shall we remove it ?
inline Index stride() const
{
return Derived::IsVectorAtCompileTime ? innerStride() : outerStride();
}
/** \returns the pointer increment between two consecutive rows.
*
* \sa innerStride(), outerStride(), colStride()
*/
inline Index rowStride() const
{
return Derived::IsRowMajor ? outerStride() : innerStride();
}
/** \returns the pointer increment between two consecutive columns.
*
* \sa innerStride(), outerStride(), rowStride()
*/
inline Index colStride() const
{
return Derived::IsRowMajor ? innerStride() : outerStride();
}
};
/** \brief Base class providing direct read/write coefficient access to matrices and arrays.
* \ingroup Core_Module
* \tparam Derived Type of the derived class
* \tparam #DirectWriteAccessors Constant indicating direct access
*
* This class defines functions to work with strides which can be used to access entries directly. This class
* inherits DenseCoeffsBase<Derived, WriteAccessors> which defines functions to access entries read/write using
* \c operator().
*
* \sa \ref TopicClassHierarchy
*/
template<typename Derived>
class DenseCoeffsBase<Derived, DirectWriteAccessors>
: public DenseCoeffsBase<Derived, WriteAccessors>
{
public:
typedef DenseCoeffsBase<Derived, WriteAccessors> Base;
typedef typename internal::traits<Derived>::Index Index;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
using Base::rows;
using Base::cols;
using Base::size;
using Base::derived;
/** \returns the pointer increment between two consecutive elements within a slice in the inner direction.
*
* \sa outerStride(), rowStride(), colStride()
*/
inline Index innerStride() const
{
return derived().innerStride();
}
/** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns
* in a column-major matrix).
*
* \sa innerStride(), rowStride(), colStride()
*/
inline Index outerStride() const
{
return derived().outerStride();
}
// FIXME shall we remove it ?
inline Index stride() const
{
return Derived::IsVectorAtCompileTime ? innerStride() : outerStride();
}
/** \returns the pointer increment between two consecutive rows.
*
* \sa innerStride(), outerStride(), colStride()
*/
inline Index rowStride() const
{
return Derived::IsRowMajor ? outerStride() : innerStride();
}
/** \returns the pointer increment between two consecutive columns.
*
* \sa innerStride(), outerStride(), rowStride()
*/
inline Index colStride() const
{
return Derived::IsRowMajor ? innerStride() : outerStride();
}
};
namespace internal {
template<typename Derived, bool JustReturnZero>
struct first_aligned_impl
{
static inline typename Derived::Index run(const Derived&)
{ return 0; }
};
template<typename Derived>
struct first_aligned_impl<Derived, false>
{
static inline typename Derived::Index run(const Derived& m)
{
return internal::first_aligned(&m.const_cast_derived().coeffRef(0,0), m.size());
}
};
/** \internal \returns the index of the first element of the array that is well aligned for vectorization.
*
* There is also the variant first_aligned(const Scalar*, Integer) defined in Memory.h. See it for more
* documentation.
*/
template<typename Derived>
static inline typename Derived::Index first_aligned(const Derived& m)
{
return first_aligned_impl
<Derived, (Derived::Flags & AlignedBit) || !(Derived::Flags & DirectAccessBit)>
::run(m);
}
template<typename Derived, bool HasDirectAccess = has_direct_access<Derived>::ret>
struct inner_stride_at_compile_time
{
enum { ret = traits<Derived>::InnerStrideAtCompileTime };
};
template<typename Derived>
struct inner_stride_at_compile_time<Derived, false>
{
enum { ret = 0 };
};
template<typename Derived, bool HasDirectAccess = has_direct_access<Derived>::ret>
struct outer_stride_at_compile_time
{
enum { ret = traits<Derived>::OuterStrideAtCompileTime };
};
template<typename Derived>
struct outer_stride_at_compile_time<Derived, false>
{
enum { ret = 0 };
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_DENSECOEFFSBASE_H

View File

@ -0,0 +1,434 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MATRIXSTORAGE_H
#define EIGEN_MATRIXSTORAGE_H
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#define EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN EIGEN_DENSE_STORAGE_CTOR_PLUGIN;
#else
#define EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN
#endif
namespace Eigen {
namespace internal {
struct constructor_without_unaligned_array_assert {};
template<typename T, int Size> void check_static_allocation_size()
{
// if EIGEN_STACK_ALLOCATION_LIMIT is defined to 0, then no limit
#if EIGEN_STACK_ALLOCATION_LIMIT
EIGEN_STATIC_ASSERT(Size * sizeof(T) <= EIGEN_STACK_ALLOCATION_LIMIT, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG);
#endif
}
/** \internal
* Static array. If the MatrixOrArrayOptions require auto-alignment, the array will be automatically aligned:
* to 16 bytes boundary if the total size is a multiple of 16 bytes.
*/
template <typename T, int Size, int MatrixOrArrayOptions,
int Alignment = (MatrixOrArrayOptions&DontAlign) ? 0
: (((Size*sizeof(T))%16)==0) ? 16
: 0 >
struct plain_array
{
T array[Size];
plain_array()
{
check_static_allocation_size<T,Size>();
}
plain_array(constructor_without_unaligned_array_assert)
{
check_static_allocation_size<T,Size>();
}
};
#if defined(EIGEN_DISABLE_UNALIGNED_ARRAY_ASSERT)
#define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask)
#elif EIGEN_GNUC_AT_LEAST(4,7)
// GCC 4.7 is too aggressive in its optimizations and remove the alignement test based on the fact the array is declared to be aligned.
// See this bug report: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=53900
// Hiding the origin of the array pointer behind a function argument seems to do the trick even if the function is inlined:
template<typename PtrType>
EIGEN_ALWAYS_INLINE PtrType eigen_unaligned_array_assert_workaround_gcc47(PtrType array) { return array; }
#define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask) \
eigen_assert((reinterpret_cast<size_t>(eigen_unaligned_array_assert_workaround_gcc47(array)) & sizemask) == 0 \
&& "this assertion is explained here: " \
"http://eigen.tuxfamily.org/dox-devel/group__TopicUnalignedArrayAssert.html" \
" **** READ THIS WEB PAGE !!! ****");
#else
#define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask) \
eigen_assert((reinterpret_cast<size_t>(array) & sizemask) == 0 \
&& "this assertion is explained here: " \
"http://eigen.tuxfamily.org/dox-devel/group__TopicUnalignedArrayAssert.html" \
" **** READ THIS WEB PAGE !!! ****");
#endif
template <typename T, int Size, int MatrixOrArrayOptions>
struct plain_array<T, Size, MatrixOrArrayOptions, 16>
{
EIGEN_USER_ALIGN16 T array[Size];
plain_array()
{
EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(0xf);
check_static_allocation_size<T,Size>();
}
plain_array(constructor_without_unaligned_array_assert)
{
check_static_allocation_size<T,Size>();
}
};
template <typename T, int MatrixOrArrayOptions, int Alignment>
struct plain_array<T, 0, MatrixOrArrayOptions, Alignment>
{
EIGEN_USER_ALIGN16 T array[1];
plain_array() {}
plain_array(constructor_without_unaligned_array_assert) {}
};
} // end namespace internal
/** \internal
*
* \class DenseStorage
* \ingroup Core_Module
*
* \brief Stores the data of a matrix
*
* This class stores the data of fixed-size, dynamic-size or mixed matrices
* in a way as compact as possible.
*
* \sa Matrix
*/
template<typename T, int Size, int _Rows, int _Cols, int _Options> class DenseStorage;
// purely fixed-size matrix
template<typename T, int Size, int _Rows, int _Cols, int _Options> class DenseStorage
{
internal::plain_array<T,Size,_Options> m_data;
public:
DenseStorage() {}
DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()) {}
DenseStorage(const DenseStorage& other) : m_data(other.m_data) {}
DenseStorage& operator=(const DenseStorage& other)
{
if (this != &other) m_data = other.m_data;
return *this;
}
DenseStorage(DenseIndex,DenseIndex,DenseIndex) {}
void swap(DenseStorage& other) { std::swap(m_data,other.m_data); }
static DenseIndex rows(void) {return _Rows;}
static DenseIndex cols(void) {return _Cols;}
void conservativeResize(DenseIndex,DenseIndex,DenseIndex) {}
void resize(DenseIndex,DenseIndex,DenseIndex) {}
const T *data() const { return m_data.array; }
T *data() { return m_data.array; }
};
// null matrix
template<typename T, int _Rows, int _Cols, int _Options> class DenseStorage<T, 0, _Rows, _Cols, _Options>
{
public:
DenseStorage() {}
DenseStorage(internal::constructor_without_unaligned_array_assert) {}
DenseStorage(const DenseStorage&) {}
DenseStorage& operator=(const DenseStorage&) { return *this; }
DenseStorage(DenseIndex,DenseIndex,DenseIndex) {}
void swap(DenseStorage& ) {}
static DenseIndex rows(void) {return _Rows;}
static DenseIndex cols(void) {return _Cols;}
void conservativeResize(DenseIndex,DenseIndex,DenseIndex) {}
void resize(DenseIndex,DenseIndex,DenseIndex) {}
const T *data() const { return 0; }
T *data() { return 0; }
};
// more specializations for null matrices; these are necessary to resolve ambiguities
template<typename T, int _Options> class DenseStorage<T, 0, Dynamic, Dynamic, _Options>
: public DenseStorage<T, 0, 0, 0, _Options> { };
template<typename T, int _Rows, int _Options> class DenseStorage<T, 0, _Rows, Dynamic, _Options>
: public DenseStorage<T, 0, 0, 0, _Options> { };
template<typename T, int _Cols, int _Options> class DenseStorage<T, 0, Dynamic, _Cols, _Options>
: public DenseStorage<T, 0, 0, 0, _Options> { };
// dynamic-size matrix with fixed-size storage
template<typename T, int Size, int _Options> class DenseStorage<T, Size, Dynamic, Dynamic, _Options>
{
internal::plain_array<T,Size,_Options> m_data;
DenseIndex m_rows;
DenseIndex m_cols;
public:
DenseStorage() : m_rows(0), m_cols(0) {}
DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0), m_cols(0) {}
DenseStorage(const DenseStorage& other) : m_data(other.m_data), m_rows(other.m_rows), m_cols(other.m_cols) {}
DenseStorage& operator=(const DenseStorage& other)
{
if (this != &other)
{
m_data = other.m_data;
m_rows = other.m_rows;
m_cols = other.m_cols;
}
return *this;
}
DenseStorage(DenseIndex, DenseIndex nbRows, DenseIndex nbCols) : m_rows(nbRows), m_cols(nbCols) {}
void swap(DenseStorage& other)
{ std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); std::swap(m_cols,other.m_cols); }
DenseIndex rows() const {return m_rows;}
DenseIndex cols() const {return m_cols;}
void conservativeResize(DenseIndex, DenseIndex nbRows, DenseIndex nbCols) { m_rows = nbRows; m_cols = nbCols; }
void resize(DenseIndex, DenseIndex nbRows, DenseIndex nbCols) { m_rows = nbRows; m_cols = nbCols; }
const T *data() const { return m_data.array; }
T *data() { return m_data.array; }
};
// dynamic-size matrix with fixed-size storage and fixed width
template<typename T, int Size, int _Cols, int _Options> class DenseStorage<T, Size, Dynamic, _Cols, _Options>
{
internal::plain_array<T,Size,_Options> m_data;
DenseIndex m_rows;
public:
DenseStorage() : m_rows(0) {}
DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0) {}
DenseStorage(const DenseStorage& other) : m_data(other.m_data), m_rows(other.m_rows) {}
DenseStorage& operator=(const DenseStorage& other)
{
if (this != &other)
{
m_data = other.m_data;
m_rows = other.m_rows;
}
return *this;
}
DenseStorage(DenseIndex, DenseIndex nbRows, DenseIndex) : m_rows(nbRows) {}
void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); }
DenseIndex rows(void) const {return m_rows;}
DenseIndex cols(void) const {return _Cols;}
void conservativeResize(DenseIndex, DenseIndex nbRows, DenseIndex) { m_rows = nbRows; }
void resize(DenseIndex, DenseIndex nbRows, DenseIndex) { m_rows = nbRows; }
const T *data() const { return m_data.array; }
T *data() { return m_data.array; }
};
// dynamic-size matrix with fixed-size storage and fixed height
template<typename T, int Size, int _Rows, int _Options> class DenseStorage<T, Size, _Rows, Dynamic, _Options>
{
internal::plain_array<T,Size,_Options> m_data;
DenseIndex m_cols;
public:
DenseStorage() : m_cols(0) {}
DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()), m_cols(0) {}
DenseStorage(const DenseStorage& other) : m_data(other.m_data), m_cols(other.m_cols) {}
DenseStorage& operator=(const DenseStorage& other)
{
if (this != &other)
{
m_data = other.m_data;
m_cols = other.m_cols;
}
return *this;
}
DenseStorage(DenseIndex, DenseIndex, DenseIndex nbCols) : m_cols(nbCols) {}
void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); }
DenseIndex rows(void) const {return _Rows;}
DenseIndex cols(void) const {return m_cols;}
void conservativeResize(DenseIndex, DenseIndex, DenseIndex nbCols) { m_cols = nbCols; }
void resize(DenseIndex, DenseIndex, DenseIndex nbCols) { m_cols = nbCols; }
const T *data() const { return m_data.array; }
T *data() { return m_data.array; }
};
// purely dynamic matrix.
template<typename T, int _Options> class DenseStorage<T, Dynamic, Dynamic, Dynamic, _Options>
{
T *m_data;
DenseIndex m_rows;
DenseIndex m_cols;
public:
DenseStorage() : m_data(0), m_rows(0), m_cols(0) {}
DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(0), m_rows(0), m_cols(0) {}
DenseStorage(DenseIndex size, DenseIndex nbRows, DenseIndex nbCols)
: m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_rows(nbRows), m_cols(nbCols)
{ EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN }
#ifdef EIGEN_HAVE_RVALUE_REFERENCES
DenseStorage(DenseStorage&& other)
: m_data(std::move(other.m_data))
, m_rows(std::move(other.m_rows))
, m_cols(std::move(other.m_cols))
{
other.m_data = nullptr;
}
DenseStorage& operator=(DenseStorage&& other)
{
using std::swap;
swap(m_data, other.m_data);
swap(m_rows, other.m_rows);
swap(m_cols, other.m_cols);
return *this;
}
#endif
~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, m_rows*m_cols); }
void swap(DenseStorage& other)
{ std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); std::swap(m_cols,other.m_cols); }
DenseIndex rows(void) const {return m_rows;}
DenseIndex cols(void) const {return m_cols;}
void conservativeResize(DenseIndex size, DenseIndex nbRows, DenseIndex nbCols)
{
m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, m_rows*m_cols);
m_rows = nbRows;
m_cols = nbCols;
}
void resize(DenseIndex size, DenseIndex nbRows, DenseIndex nbCols)
{
if(size != m_rows*m_cols)
{
internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, m_rows*m_cols);
if (size)
m_data = internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size);
else
m_data = 0;
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN
}
m_rows = nbRows;
m_cols = nbCols;
}
const T *data() const { return m_data; }
T *data() { return m_data; }
private:
DenseStorage(const DenseStorage&);
DenseStorage& operator=(const DenseStorage&);
};
// matrix with dynamic width and fixed height (so that matrix has dynamic size).
template<typename T, int _Rows, int _Options> class DenseStorage<T, Dynamic, _Rows, Dynamic, _Options>
{
T *m_data;
DenseIndex m_cols;
public:
DenseStorage() : m_data(0), m_cols(0) {}
DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_cols(0) {}
DenseStorage(DenseIndex size, DenseIndex, DenseIndex nbCols) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_cols(nbCols)
{ EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN }
#ifdef EIGEN_HAVE_RVALUE_REFERENCES
DenseStorage(DenseStorage&& other)
: m_data(std::move(other.m_data))
, m_cols(std::move(other.m_cols))
{
other.m_data = nullptr;
}
DenseStorage& operator=(DenseStorage&& other)
{
using std::swap;
swap(m_data, other.m_data);
swap(m_cols, other.m_cols);
return *this;
}
#endif
~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Rows*m_cols); }
void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); }
static DenseIndex rows(void) {return _Rows;}
DenseIndex cols(void) const {return m_cols;}
void conservativeResize(DenseIndex size, DenseIndex, DenseIndex nbCols)
{
m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, _Rows*m_cols);
m_cols = nbCols;
}
EIGEN_STRONG_INLINE void resize(DenseIndex size, DenseIndex, DenseIndex nbCols)
{
if(size != _Rows*m_cols)
{
internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Rows*m_cols);
if (size)
m_data = internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size);
else
m_data = 0;
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN
}
m_cols = nbCols;
}
const T *data() const { return m_data; }
T *data() { return m_data; }
private:
DenseStorage(const DenseStorage&);
DenseStorage& operator=(const DenseStorage&);
};
// matrix with dynamic height and fixed width (so that matrix has dynamic size).
template<typename T, int _Cols, int _Options> class DenseStorage<T, Dynamic, Dynamic, _Cols, _Options>
{
T *m_data;
DenseIndex m_rows;
public:
DenseStorage() : m_data(0), m_rows(0) {}
DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_rows(0) {}
DenseStorage(DenseIndex size, DenseIndex nbRows, DenseIndex) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_rows(nbRows)
{ EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN }
#ifdef EIGEN_HAVE_RVALUE_REFERENCES
DenseStorage(DenseStorage&& other)
: m_data(std::move(other.m_data))
, m_rows(std::move(other.m_rows))
{
other.m_data = nullptr;
}
DenseStorage& operator=(DenseStorage&& other)
{
using std::swap;
swap(m_data, other.m_data);
swap(m_rows, other.m_rows);
return *this;
}
#endif
~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Cols*m_rows); }
void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); }
DenseIndex rows(void) const {return m_rows;}
static DenseIndex cols(void) {return _Cols;}
void conservativeResize(DenseIndex size, DenseIndex nbRows, DenseIndex)
{
m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, m_rows*_Cols);
m_rows = nbRows;
}
EIGEN_STRONG_INLINE void resize(DenseIndex size, DenseIndex nbRows, DenseIndex)
{
if(size != m_rows*_Cols)
{
internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Cols*m_rows);
if (size)
m_data = internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size);
else
m_data = 0;
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN
}
m_rows = nbRows;
}
const T *data() const { return m_data; }
T *data() { return m_data; }
private:
DenseStorage(const DenseStorage&);
DenseStorage& operator=(const DenseStorage&);
};
} // end namespace Eigen
#endif // EIGEN_MATRIX_H

View File

@ -0,0 +1,237 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_DIAGONAL_H
#define EIGEN_DIAGONAL_H
namespace Eigen {
/** \class Diagonal
* \ingroup Core_Module
*
* \brief Expression of a diagonal/subdiagonal/superdiagonal in a matrix
*
* \param MatrixType the type of the object in which we are taking a sub/main/super diagonal
* \param DiagIndex the index of the sub/super diagonal. The default is 0 and it means the main diagonal.
* A positive value means a superdiagonal, a negative value means a subdiagonal.
* You can also use Dynamic so the index can be set at runtime.
*
* The matrix is not required to be square.
*
* This class represents an expression of the main diagonal, or any sub/super diagonal
* of a square matrix. It is the return type of MatrixBase::diagonal() and MatrixBase::diagonal(Index) and most of the
* time this is the only way it is used.
*
* \sa MatrixBase::diagonal(), MatrixBase::diagonal(Index)
*/
namespace internal {
template<typename MatrixType, int DiagIndex>
struct traits<Diagonal<MatrixType,DiagIndex> >
: traits<MatrixType>
{
typedef typename nested<MatrixType>::type MatrixTypeNested;
typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
typedef typename MatrixType::StorageKind StorageKind;
enum {
RowsAtCompileTime = (int(DiagIndex) == DynamicIndex || int(MatrixType::SizeAtCompileTime) == Dynamic) ? Dynamic
: (EIGEN_PLAIN_ENUM_MIN(MatrixType::RowsAtCompileTime - EIGEN_PLAIN_ENUM_MAX(-DiagIndex, 0),
MatrixType::ColsAtCompileTime - EIGEN_PLAIN_ENUM_MAX( DiagIndex, 0))),
ColsAtCompileTime = 1,
MaxRowsAtCompileTime = int(MatrixType::MaxSizeAtCompileTime) == Dynamic ? Dynamic
: DiagIndex == DynamicIndex ? EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::MaxRowsAtCompileTime,
MatrixType::MaxColsAtCompileTime)
: (EIGEN_PLAIN_ENUM_MIN(MatrixType::MaxRowsAtCompileTime - EIGEN_PLAIN_ENUM_MAX(-DiagIndex, 0),
MatrixType::MaxColsAtCompileTime - EIGEN_PLAIN_ENUM_MAX( DiagIndex, 0))),
MaxColsAtCompileTime = 1,
MaskLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0,
Flags = (unsigned int)_MatrixTypeNested::Flags & (HereditaryBits | LinearAccessBit | MaskLvalueBit | DirectAccessBit) & ~RowMajorBit,
CoeffReadCost = _MatrixTypeNested::CoeffReadCost,
MatrixTypeOuterStride = outer_stride_at_compile_time<MatrixType>::ret,
InnerStrideAtCompileTime = MatrixTypeOuterStride == Dynamic ? Dynamic : MatrixTypeOuterStride+1,
OuterStrideAtCompileTime = 0
};
};
}
template<typename MatrixType, int _DiagIndex> class Diagonal
: public internal::dense_xpr_base< Diagonal<MatrixType,_DiagIndex> >::type
{
public:
enum { DiagIndex = _DiagIndex };
typedef typename internal::dense_xpr_base<Diagonal>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Diagonal)
inline Diagonal(MatrixType& matrix, Index a_index = DiagIndex) : m_matrix(matrix), m_index(a_index) {}
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Diagonal)
inline Index rows() const
{ return m_index.value()<0 ? (std::min<Index>)(m_matrix.cols(),m_matrix.rows()+m_index.value()) : (std::min<Index>)(m_matrix.rows(),m_matrix.cols()-m_index.value()); }
inline Index cols() const { return 1; }
inline Index innerStride() const
{
return m_matrix.outerStride() + 1;
}
inline Index outerStride() const
{
return 0;
}
typedef typename internal::conditional<
internal::is_lvalue<MatrixType>::value,
Scalar,
const Scalar
>::type ScalarWithConstIfNotLvalue;
inline ScalarWithConstIfNotLvalue* data() { return &(m_matrix.const_cast_derived().coeffRef(rowOffset(), colOffset())); }
inline const Scalar* data() const { return &(m_matrix.const_cast_derived().coeffRef(rowOffset(), colOffset())); }
inline Scalar& coeffRef(Index row, Index)
{
EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
return m_matrix.const_cast_derived().coeffRef(row+rowOffset(), row+colOffset());
}
inline const Scalar& coeffRef(Index row, Index) const
{
return m_matrix.const_cast_derived().coeffRef(row+rowOffset(), row+colOffset());
}
inline CoeffReturnType coeff(Index row, Index) const
{
return m_matrix.coeff(row+rowOffset(), row+colOffset());
}
inline Scalar& coeffRef(Index idx)
{
EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
return m_matrix.const_cast_derived().coeffRef(idx+rowOffset(), idx+colOffset());
}
inline const Scalar& coeffRef(Index idx) const
{
return m_matrix.const_cast_derived().coeffRef(idx+rowOffset(), idx+colOffset());
}
inline CoeffReturnType coeff(Index idx) const
{
return m_matrix.coeff(idx+rowOffset(), idx+colOffset());
}
const typename internal::remove_all<typename MatrixType::Nested>::type&
nestedExpression() const
{
return m_matrix;
}
int index() const
{
return m_index.value();
}
protected:
typename MatrixType::Nested m_matrix;
const internal::variable_if_dynamicindex<Index, DiagIndex> m_index;
private:
// some compilers may fail to optimize std::max etc in case of compile-time constants...
EIGEN_STRONG_INLINE Index absDiagIndex() const { return m_index.value()>0 ? m_index.value() : -m_index.value(); }
EIGEN_STRONG_INLINE Index rowOffset() const { return m_index.value()>0 ? 0 : -m_index.value(); }
EIGEN_STRONG_INLINE Index colOffset() const { return m_index.value()>0 ? m_index.value() : 0; }
// triger a compile time error is someone try to call packet
template<int LoadMode> typename MatrixType::PacketReturnType packet(Index) const;
template<int LoadMode> typename MatrixType::PacketReturnType packet(Index,Index) const;
};
/** \returns an expression of the main diagonal of the matrix \c *this
*
* \c *this is not required to be square.
*
* Example: \include MatrixBase_diagonal.cpp
* Output: \verbinclude MatrixBase_diagonal.out
*
* \sa class Diagonal */
template<typename Derived>
inline typename MatrixBase<Derived>::DiagonalReturnType
MatrixBase<Derived>::diagonal()
{
return derived();
}
/** This is the const version of diagonal(). */
template<typename Derived>
inline typename MatrixBase<Derived>::ConstDiagonalReturnType
MatrixBase<Derived>::diagonal() const
{
return ConstDiagonalReturnType(derived());
}
/** \returns an expression of the \a DiagIndex-th sub or super diagonal of the matrix \c *this
*
* \c *this is not required to be square.
*
* The template parameter \a DiagIndex represent a super diagonal if \a DiagIndex > 0
* and a sub diagonal otherwise. \a DiagIndex == 0 is equivalent to the main diagonal.
*
* Example: \include MatrixBase_diagonal_int.cpp
* Output: \verbinclude MatrixBase_diagonal_int.out
*
* \sa MatrixBase::diagonal(), class Diagonal */
template<typename Derived>
inline typename MatrixBase<Derived>::DiagonalDynamicIndexReturnType
MatrixBase<Derived>::diagonal(Index index)
{
return DiagonalDynamicIndexReturnType(derived(), index);
}
/** This is the const version of diagonal(Index). */
template<typename Derived>
inline typename MatrixBase<Derived>::ConstDiagonalDynamicIndexReturnType
MatrixBase<Derived>::diagonal(Index index) const
{
return ConstDiagonalDynamicIndexReturnType(derived(), index);
}
/** \returns an expression of the \a DiagIndex-th sub or super diagonal of the matrix \c *this
*
* \c *this is not required to be square.
*
* The template parameter \a DiagIndex represent a super diagonal if \a DiagIndex > 0
* and a sub diagonal otherwise. \a DiagIndex == 0 is equivalent to the main diagonal.
*
* Example: \include MatrixBase_diagonal_template_int.cpp
* Output: \verbinclude MatrixBase_diagonal_template_int.out
*
* \sa MatrixBase::diagonal(), class Diagonal */
template<typename Derived>
template<int Index>
inline typename MatrixBase<Derived>::template DiagonalIndexReturnType<Index>::Type
MatrixBase<Derived>::diagonal()
{
return derived();
}
/** This is the const version of diagonal<int>(). */
template<typename Derived>
template<int Index>
inline typename MatrixBase<Derived>::template ConstDiagonalIndexReturnType<Index>::Type
MatrixBase<Derived>::diagonal() const
{
return derived();
}
} // end namespace Eigen
#endif // EIGEN_DIAGONAL_H

View File

@ -0,0 +1,313 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2007-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_DIAGONALMATRIX_H
#define EIGEN_DIAGONALMATRIX_H
namespace Eigen {
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename Derived>
class DiagonalBase : public EigenBase<Derived>
{
public:
typedef typename internal::traits<Derived>::DiagonalVectorType DiagonalVectorType;
typedef typename DiagonalVectorType::Scalar Scalar;
typedef typename DiagonalVectorType::RealScalar RealScalar;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Index Index;
enum {
RowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
ColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
MaxRowsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime,
MaxColsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime,
IsVectorAtCompileTime = 0,
Flags = 0
};
typedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, 0, MaxRowsAtCompileTime, MaxColsAtCompileTime> DenseMatrixType;
typedef DenseMatrixType DenseType;
typedef DiagonalMatrix<Scalar,DiagonalVectorType::SizeAtCompileTime,DiagonalVectorType::MaxSizeAtCompileTime> PlainObject;
inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
inline Derived& derived() { return *static_cast<Derived*>(this); }
DenseMatrixType toDenseMatrix() const { return derived(); }
template<typename DenseDerived>
void evalTo(MatrixBase<DenseDerived> &other) const;
template<typename DenseDerived>
void addTo(MatrixBase<DenseDerived> &other) const
{ other.diagonal() += diagonal(); }
template<typename DenseDerived>
void subTo(MatrixBase<DenseDerived> &other) const
{ other.diagonal() -= diagonal(); }
inline const DiagonalVectorType& diagonal() const { return derived().diagonal(); }
inline DiagonalVectorType& diagonal() { return derived().diagonal(); }
inline Index rows() const { return diagonal().size(); }
inline Index cols() const { return diagonal().size(); }
/** \returns the diagonal matrix product of \c *this by the matrix \a matrix.
*/
template<typename MatrixDerived>
const DiagonalProduct<MatrixDerived, Derived, OnTheLeft>
operator*(const MatrixBase<MatrixDerived> &matrix) const
{
return DiagonalProduct<MatrixDerived, Derived, OnTheLeft>(matrix.derived(), derived());
}
inline const DiagonalWrapper<const CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const DiagonalVectorType> >
inverse() const
{
return diagonal().cwiseInverse();
}
inline const DiagonalWrapper<const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DiagonalVectorType> >
operator*(const Scalar& scalar) const
{
return diagonal() * scalar;
}
friend inline const DiagonalWrapper<const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DiagonalVectorType> >
operator*(const Scalar& scalar, const DiagonalBase& other)
{
return other.diagonal() * scalar;
}
#ifdef EIGEN2_SUPPORT
template<typename OtherDerived>
bool isApprox(const DiagonalBase<OtherDerived>& other, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) const
{
return diagonal().isApprox(other.diagonal(), precision);
}
template<typename OtherDerived>
bool isApprox(const MatrixBase<OtherDerived>& other, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) const
{
return toDenseMatrix().isApprox(other, precision);
}
#endif
};
template<typename Derived>
template<typename DenseDerived>
void DiagonalBase<Derived>::evalTo(MatrixBase<DenseDerived> &other) const
{
other.setZero();
other.diagonal() = diagonal();
}
#endif
/** \class DiagonalMatrix
* \ingroup Core_Module
*
* \brief Represents a diagonal matrix with its storage
*
* \param _Scalar the type of coefficients
* \param SizeAtCompileTime the dimension of the matrix, or Dynamic
* \param MaxSizeAtCompileTime the dimension of the matrix, or Dynamic. This parameter is optional and defaults
* to SizeAtCompileTime. Most of the time, you do not need to specify it.
*
* \sa class DiagonalWrapper
*/
namespace internal {
template<typename _Scalar, int SizeAtCompileTime, int MaxSizeAtCompileTime>
struct traits<DiagonalMatrix<_Scalar,SizeAtCompileTime,MaxSizeAtCompileTime> >
: traits<Matrix<_Scalar,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
{
typedef Matrix<_Scalar,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1> DiagonalVectorType;
typedef Dense StorageKind;
typedef DenseIndex Index;
enum {
Flags = LvalueBit
};
};
}
template<typename _Scalar, int SizeAtCompileTime, int MaxSizeAtCompileTime>
class DiagonalMatrix
: public DiagonalBase<DiagonalMatrix<_Scalar,SizeAtCompileTime,MaxSizeAtCompileTime> >
{
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef typename internal::traits<DiagonalMatrix>::DiagonalVectorType DiagonalVectorType;
typedef const DiagonalMatrix& Nested;
typedef _Scalar Scalar;
typedef typename internal::traits<DiagonalMatrix>::StorageKind StorageKind;
typedef typename internal::traits<DiagonalMatrix>::Index Index;
#endif
protected:
DiagonalVectorType m_diagonal;
public:
/** const version of diagonal(). */
inline const DiagonalVectorType& diagonal() const { return m_diagonal; }
/** \returns a reference to the stored vector of diagonal coefficients. */
inline DiagonalVectorType& diagonal() { return m_diagonal; }
/** Default constructor without initialization */
inline DiagonalMatrix() {}
/** Constructs a diagonal matrix with given dimension */
inline DiagonalMatrix(Index dim) : m_diagonal(dim) {}
/** 2D constructor. */
inline DiagonalMatrix(const Scalar& x, const Scalar& y) : m_diagonal(x,y) {}
/** 3D constructor. */
inline DiagonalMatrix(const Scalar& x, const Scalar& y, const Scalar& z) : m_diagonal(x,y,z) {}
/** Copy constructor. */
template<typename OtherDerived>
inline DiagonalMatrix(const DiagonalBase<OtherDerived>& other) : m_diagonal(other.diagonal()) {}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** copy constructor. prevent a default copy constructor from hiding the other templated constructor */
inline DiagonalMatrix(const DiagonalMatrix& other) : m_diagonal(other.diagonal()) {}
#endif
/** generic constructor from expression of the diagonal coefficients */
template<typename OtherDerived>
explicit inline DiagonalMatrix(const MatrixBase<OtherDerived>& other) : m_diagonal(other)
{}
/** Copy operator. */
template<typename OtherDerived>
DiagonalMatrix& operator=(const DiagonalBase<OtherDerived>& other)
{
m_diagonal = other.diagonal();
return *this;
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
DiagonalMatrix& operator=(const DiagonalMatrix& other)
{
m_diagonal = other.diagonal();
return *this;
}
#endif
/** Resizes to given size. */
inline void resize(Index size) { m_diagonal.resize(size); }
/** Sets all coefficients to zero. */
inline void setZero() { m_diagonal.setZero(); }
/** Resizes and sets all coefficients to zero. */
inline void setZero(Index size) { m_diagonal.setZero(size); }
/** Sets this matrix to be the identity matrix of the current size. */
inline void setIdentity() { m_diagonal.setOnes(); }
/** Sets this matrix to be the identity matrix of the given size. */
inline void setIdentity(Index size) { m_diagonal.setOnes(size); }
};
/** \class DiagonalWrapper
* \ingroup Core_Module
*
* \brief Expression of a diagonal matrix
*
* \param _DiagonalVectorType the type of the vector of diagonal coefficients
*
* This class is an expression of a diagonal matrix, but not storing its own vector of diagonal coefficients,
* instead wrapping an existing vector expression. It is the return type of MatrixBase::asDiagonal()
* and most of the time this is the only way that it is used.
*
* \sa class DiagonalMatrix, class DiagonalBase, MatrixBase::asDiagonal()
*/
namespace internal {
template<typename _DiagonalVectorType>
struct traits<DiagonalWrapper<_DiagonalVectorType> >
{
typedef _DiagonalVectorType DiagonalVectorType;
typedef typename DiagonalVectorType::Scalar Scalar;
typedef typename DiagonalVectorType::Index Index;
typedef typename DiagonalVectorType::StorageKind StorageKind;
enum {
RowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
ColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
MaxRowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
MaxColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
Flags = traits<DiagonalVectorType>::Flags & LvalueBit
};
};
}
template<typename _DiagonalVectorType>
class DiagonalWrapper
: public DiagonalBase<DiagonalWrapper<_DiagonalVectorType> >, internal::no_assignment_operator
{
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef _DiagonalVectorType DiagonalVectorType;
typedef DiagonalWrapper Nested;
#endif
/** Constructor from expression of diagonal coefficients to wrap. */
inline DiagonalWrapper(DiagonalVectorType& a_diagonal) : m_diagonal(a_diagonal) {}
/** \returns a const reference to the wrapped expression of diagonal coefficients. */
const DiagonalVectorType& diagonal() const { return m_diagonal; }
protected:
typename DiagonalVectorType::Nested m_diagonal;
};
/** \returns a pseudo-expression of a diagonal matrix with *this as vector of diagonal coefficients
*
* \only_for_vectors
*
* Example: \include MatrixBase_asDiagonal.cpp
* Output: \verbinclude MatrixBase_asDiagonal.out
*
* \sa class DiagonalWrapper, class DiagonalMatrix, diagonal(), isDiagonal()
**/
template<typename Derived>
inline const DiagonalWrapper<const Derived>
MatrixBase<Derived>::asDiagonal() const
{
return derived();
}
/** \returns true if *this is approximately equal to a diagonal matrix,
* within the precision given by \a prec.
*
* Example: \include MatrixBase_isDiagonal.cpp
* Output: \verbinclude MatrixBase_isDiagonal.out
*
* \sa asDiagonal()
*/
template<typename Derived>
bool MatrixBase<Derived>::isDiagonal(const RealScalar& prec) const
{
using std::abs;
if(cols() != rows()) return false;
RealScalar maxAbsOnDiagonal = static_cast<RealScalar>(-1);
for(Index j = 0; j < cols(); ++j)
{
RealScalar absOnDiagonal = abs(coeff(j,j));
if(absOnDiagonal > maxAbsOnDiagonal) maxAbsOnDiagonal = absOnDiagonal;
}
for(Index j = 0; j < cols(); ++j)
for(Index i = 0; i < j; ++i)
{
if(!internal::isMuchSmallerThan(coeff(i, j), maxAbsOnDiagonal, prec)) return false;
if(!internal::isMuchSmallerThan(coeff(j, i), maxAbsOnDiagonal, prec)) return false;
}
return true;
}
} // end namespace Eigen
#endif // EIGEN_DIAGONALMATRIX_H

View File

@ -0,0 +1,131 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2007-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_DIAGONALPRODUCT_H
#define EIGEN_DIAGONALPRODUCT_H
namespace Eigen {
namespace internal {
template<typename MatrixType, typename DiagonalType, int ProductOrder>
struct traits<DiagonalProduct<MatrixType, DiagonalType, ProductOrder> >
: traits<MatrixType>
{
typedef typename scalar_product_traits<typename MatrixType::Scalar, typename DiagonalType::Scalar>::ReturnType Scalar;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
_StorageOrder = MatrixType::Flags & RowMajorBit ? RowMajor : ColMajor,
_ScalarAccessOnDiag = !((int(_StorageOrder) == ColMajor && int(ProductOrder) == OnTheLeft)
||(int(_StorageOrder) == RowMajor && int(ProductOrder) == OnTheRight)),
_SameTypes = is_same<typename MatrixType::Scalar, typename DiagonalType::Scalar>::value,
// FIXME currently we need same types, but in the future the next rule should be the one
//_Vectorizable = bool(int(MatrixType::Flags)&PacketAccessBit) && ((!_PacketOnDiag) || (_SameTypes && bool(int(DiagonalType::DiagonalVectorType::Flags)&PacketAccessBit))),
_Vectorizable = bool(int(MatrixType::Flags)&PacketAccessBit) && _SameTypes && (_ScalarAccessOnDiag || (bool(int(DiagonalType::DiagonalVectorType::Flags)&PacketAccessBit))),
_LinearAccessMask = (RowsAtCompileTime==1 || ColsAtCompileTime==1) ? LinearAccessBit : 0,
Flags = ((HereditaryBits|_LinearAccessMask|AlignedBit) & (unsigned int)(MatrixType::Flags)) | (_Vectorizable ? PacketAccessBit : 0),//(int(MatrixType::Flags)&int(DiagonalType::DiagonalVectorType::Flags)&AlignedBit),
Cost0 = EIGEN_ADD_COST(NumTraits<Scalar>::MulCost, MatrixType::CoeffReadCost),
CoeffReadCost = EIGEN_ADD_COST(Cost0,DiagonalType::DiagonalVectorType::CoeffReadCost)
};
};
}
template<typename MatrixType, typename DiagonalType, int ProductOrder>
class DiagonalProduct : internal::no_assignment_operator,
public MatrixBase<DiagonalProduct<MatrixType, DiagonalType, ProductOrder> >
{
public:
typedef MatrixBase<DiagonalProduct> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(DiagonalProduct)
inline DiagonalProduct(const MatrixType& matrix, const DiagonalType& diagonal)
: m_matrix(matrix), m_diagonal(diagonal)
{
eigen_assert(diagonal.diagonal().size() == (ProductOrder == OnTheLeft ? matrix.rows() : matrix.cols()));
}
EIGEN_STRONG_INLINE Index rows() const { return m_matrix.rows(); }
EIGEN_STRONG_INLINE Index cols() const { return m_matrix.cols(); }
EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
{
return m_diagonal.diagonal().coeff(ProductOrder == OnTheLeft ? row : col) * m_matrix.coeff(row, col);
}
EIGEN_STRONG_INLINE const Scalar coeff(Index idx) const
{
enum {
StorageOrder = int(MatrixType::Flags) & RowMajorBit ? RowMajor : ColMajor
};
return coeff(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx);
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index row, Index col) const
{
enum {
StorageOrder = Flags & RowMajorBit ? RowMajor : ColMajor
};
const Index indexInDiagonalVector = ProductOrder == OnTheLeft ? row : col;
return packet_impl<LoadMode>(row,col,indexInDiagonalVector,typename internal::conditional<
((int(StorageOrder) == RowMajor && int(ProductOrder) == OnTheLeft)
||(int(StorageOrder) == ColMajor && int(ProductOrder) == OnTheRight)), internal::true_type, internal::false_type>::type());
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index idx) const
{
enum {
StorageOrder = int(MatrixType::Flags) & RowMajorBit ? RowMajor : ColMajor
};
return packet<LoadMode>(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx);
}
protected:
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet_impl(Index row, Index col, Index id, internal::true_type) const
{
return internal::pmul(m_matrix.template packet<LoadMode>(row, col),
internal::pset1<PacketScalar>(m_diagonal.diagonal().coeff(id)));
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet_impl(Index row, Index col, Index id, internal::false_type) const
{
enum {
InnerSize = (MatrixType::Flags & RowMajorBit) ? MatrixType::ColsAtCompileTime : MatrixType::RowsAtCompileTime,
DiagonalVectorPacketLoadMode = (LoadMode == Aligned && (((InnerSize%16) == 0) || (int(DiagonalType::DiagonalVectorType::Flags)&AlignedBit)==AlignedBit) ? Aligned : Unaligned)
};
return internal::pmul(m_matrix.template packet<LoadMode>(row, col),
m_diagonal.diagonal().template packet<DiagonalVectorPacketLoadMode>(id));
}
typename MatrixType::Nested m_matrix;
typename DiagonalType::Nested m_diagonal;
};
/** \returns the diagonal matrix product of \c *this by the diagonal matrix \a diagonal.
*/
template<typename Derived>
template<typename DiagonalDerived>
inline const DiagonalProduct<Derived, DiagonalDerived, OnTheRight>
MatrixBase<Derived>::operator*(const DiagonalBase<DiagonalDerived> &a_diagonal) const
{
return DiagonalProduct<Derived, DiagonalDerived, OnTheRight>(derived(), a_diagonal.derived());
}
} // end namespace Eigen
#endif // EIGEN_DIAGONALPRODUCT_H

263
lib/Eigen/src/Core/Dot.h Normal file
View File

@ -0,0 +1,263 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008, 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_DOT_H
#define EIGEN_DOT_H
namespace Eigen {
namespace internal {
// helper function for dot(). The problem is that if we put that in the body of dot(), then upon calling dot
// with mismatched types, the compiler emits errors about failing to instantiate cwiseProduct BEFORE
// looking at the static assertions. Thus this is a trick to get better compile errors.
template<typename T, typename U,
// the NeedToTranspose condition here is taken straight from Assign.h
bool NeedToTranspose = T::IsVectorAtCompileTime
&& U::IsVectorAtCompileTime
&& ((int(T::RowsAtCompileTime) == 1 && int(U::ColsAtCompileTime) == 1)
| // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
// revert to || as soon as not needed anymore.
(int(T::ColsAtCompileTime) == 1 && int(U::RowsAtCompileTime) == 1))
>
struct dot_nocheck
{
typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar;
static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
{
return a.template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum();
}
};
template<typename T, typename U>
struct dot_nocheck<T, U, true>
{
typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar;
static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
{
return a.transpose().template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum();
}
};
} // end namespace internal
/** \returns the dot product of *this with other.
*
* \only_for_vectors
*
* \note If the scalar type is complex numbers, then this function returns the hermitian
* (sesquilinear) dot product, conjugate-linear in the first variable and linear in the
* second variable.
*
* \sa squaredNorm(), norm()
*/
template<typename Derived>
template<typename OtherDerived>
typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
typedef internal::scalar_conj_product_op<Scalar,typename OtherDerived::Scalar> func;
EIGEN_CHECK_BINARY_COMPATIBILIY(func,Scalar,typename OtherDerived::Scalar);
eigen_assert(size() == other.size());
return internal::dot_nocheck<Derived,OtherDerived>::run(*this, other);
}
#ifdef EIGEN2_SUPPORT
/** \returns the dot product of *this with other, with the Eigen2 convention that the dot product is linear in the first variable
* (conjugating the second variable). Of course this only makes a difference in the complex case.
*
* This method is only available in EIGEN2_SUPPORT mode.
*
* \only_for_vectors
*
* \sa dot()
*/
template<typename Derived>
template<typename OtherDerived>
typename internal::traits<Derived>::Scalar
MatrixBase<Derived>::eigen2_dot(const MatrixBase<OtherDerived>& other) const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
eigen_assert(size() == other.size());
return internal::dot_nocheck<OtherDerived,Derived>::run(other,*this);
}
#endif
//---------- implementation of L2 norm and related functions ----------
/** \returns, for vectors, the squared \em l2 norm of \c *this, and for matrices the Frobenius norm.
* In both cases, it consists in the sum of the square of all the matrix entries.
* For vectors, this is also equals to the dot product of \c *this with itself.
*
* \sa dot(), norm()
*/
template<typename Derived>
EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::squaredNorm() const
{
return numext::real((*this).cwiseAbs2().sum());
}
/** \returns, for vectors, the \em l2 norm of \c *this, and for matrices the Frobenius norm.
* In both cases, it consists in the square root of the sum of the square of all the matrix entries.
* For vectors, this is also equals to the square root of the dot product of \c *this with itself.
*
* \sa dot(), squaredNorm()
*/
template<typename Derived>
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const
{
using std::sqrt;
return sqrt(squaredNorm());
}
/** \returns an expression of the quotient of *this by its own norm.
*
* \only_for_vectors
*
* \sa norm(), normalize()
*/
template<typename Derived>
inline const typename MatrixBase<Derived>::PlainObject
MatrixBase<Derived>::normalized() const
{
typedef typename internal::nested<Derived>::type Nested;
typedef typename internal::remove_reference<Nested>::type _Nested;
_Nested n(derived());
return n / n.norm();
}
/** Normalizes the vector, i.e. divides it by its own norm.
*
* \only_for_vectors
*
* \sa norm(), normalized()
*/
template<typename Derived>
inline void MatrixBase<Derived>::normalize()
{
*this /= norm();
}
//---------- implementation of other norms ----------
namespace internal {
template<typename Derived, int p>
struct lpNorm_selector
{
typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar;
static inline RealScalar run(const MatrixBase<Derived>& m)
{
using std::pow;
return pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1)/p);
}
};
template<typename Derived>
struct lpNorm_selector<Derived, 1>
{
static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
{
return m.cwiseAbs().sum();
}
};
template<typename Derived>
struct lpNorm_selector<Derived, 2>
{
static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
{
return m.norm();
}
};
template<typename Derived>
struct lpNorm_selector<Derived, Infinity>
{
static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
{
return m.cwiseAbs().maxCoeff();
}
};
} // end namespace internal
/** \returns the \f$ \ell^p \f$ norm of *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values
* of the coefficients of *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^\infty \f$
* norm, that is the maximum of the absolute values of the coefficients of *this.
*
* \sa norm()
*/
template<typename Derived>
template<int p>
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
MatrixBase<Derived>::lpNorm() const
{
return internal::lpNorm_selector<Derived, p>::run(*this);
}
//---------- implementation of isOrthogonal / isUnitary ----------
/** \returns true if *this is approximately orthogonal to \a other,
* within the precision given by \a prec.
*
* Example: \include MatrixBase_isOrthogonal.cpp
* Output: \verbinclude MatrixBase_isOrthogonal.out
*/
template<typename Derived>
template<typename OtherDerived>
bool MatrixBase<Derived>::isOrthogonal
(const MatrixBase<OtherDerived>& other, const RealScalar& prec) const
{
typename internal::nested<Derived,2>::type nested(derived());
typename internal::nested<OtherDerived,2>::type otherNested(other.derived());
return numext::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm();
}
/** \returns true if *this is approximately an unitary matrix,
* within the precision given by \a prec. In the case where the \a Scalar
* type is real numbers, a unitary matrix is an orthogonal matrix, whence the name.
*
* \note This can be used to check whether a family of vectors forms an orthonormal basis.
* Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an
* orthonormal basis.
*
* Example: \include MatrixBase_isUnitary.cpp
* Output: \verbinclude MatrixBase_isUnitary.out
*/
template<typename Derived>
bool MatrixBase<Derived>::isUnitary(const RealScalar& prec) const
{
typename Derived::Nested nested(derived());
for(Index i = 0; i < cols(); ++i)
{
if(!internal::isApprox(nested.col(i).squaredNorm(), static_cast<RealScalar>(1), prec))
return false;
for(Index j = 0; j < i; ++j)
if(!internal::isMuchSmallerThan(nested.col(i).dot(nested.col(j)), static_cast<Scalar>(1), prec))
return false;
}
return true;
}
} // end namespace Eigen
#endif // EIGEN_DOT_H

View File

@ -0,0 +1,131 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_EIGENBASE_H
#define EIGEN_EIGENBASE_H
namespace Eigen {
/** Common base class for all classes T such that MatrixBase has an operator=(T) and a constructor MatrixBase(T).
*
* In other words, an EigenBase object is an object that can be copied into a MatrixBase.
*
* Besides MatrixBase-derived classes, this also includes special matrix classes such as diagonal matrices, etc.
*
* Notice that this class is trivial, it is only used to disambiguate overloaded functions.
*
* \sa \ref TopicClassHierarchy
*/
template<typename Derived> struct EigenBase
{
// typedef typename internal::plain_matrix_type<Derived>::type PlainObject;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Index Index;
/** \returns a reference to the derived object */
Derived& derived() { return *static_cast<Derived*>(this); }
/** \returns a const reference to the derived object */
const Derived& derived() const { return *static_cast<const Derived*>(this); }
inline Derived& const_cast_derived() const
{ return *static_cast<Derived*>(const_cast<EigenBase*>(this)); }
inline const Derived& const_derived() const
{ return *static_cast<const Derived*>(this); }
/** \returns the number of rows. \sa cols(), RowsAtCompileTime */
inline Index rows() const { return derived().rows(); }
/** \returns the number of columns. \sa rows(), ColsAtCompileTime*/
inline Index cols() const { return derived().cols(); }
/** \returns the number of coefficients, which is rows()*cols().
* \sa rows(), cols(), SizeAtCompileTime. */
inline Index size() const { return rows() * cols(); }
/** \internal Don't use it, but do the equivalent: \code dst = *this; \endcode */
template<typename Dest> inline void evalTo(Dest& dst) const
{ derived().evalTo(dst); }
/** \internal Don't use it, but do the equivalent: \code dst += *this; \endcode */
template<typename Dest> inline void addTo(Dest& dst) const
{
// This is the default implementation,
// derived class can reimplement it in a more optimized way.
typename Dest::PlainObject res(rows(),cols());
evalTo(res);
dst += res;
}
/** \internal Don't use it, but do the equivalent: \code dst -= *this; \endcode */
template<typename Dest> inline void subTo(Dest& dst) const
{
// This is the default implementation,
// derived class can reimplement it in a more optimized way.
typename Dest::PlainObject res(rows(),cols());
evalTo(res);
dst -= res;
}
/** \internal Don't use it, but do the equivalent: \code dst.applyOnTheRight(*this); \endcode */
template<typename Dest> inline void applyThisOnTheRight(Dest& dst) const
{
// This is the default implementation,
// derived class can reimplement it in a more optimized way.
dst = dst * this->derived();
}
/** \internal Don't use it, but do the equivalent: \code dst.applyOnTheLeft(*this); \endcode */
template<typename Dest> inline void applyThisOnTheLeft(Dest& dst) const
{
// This is the default implementation,
// derived class can reimplement it in a more optimized way.
dst = this->derived() * dst;
}
};
/***************************************************************************
* Implementation of matrix base methods
***************************************************************************/
/** \brief Copies the generic expression \a other into *this.
*
* \details The expression must provide a (templated) evalTo(Derived& dst) const
* function which does the actual job. In practice, this allows any user to write
* its own special matrix without having to modify MatrixBase
*
* \returns a reference to *this.
*/
template<typename Derived>
template<typename OtherDerived>
Derived& DenseBase<Derived>::operator=(const EigenBase<OtherDerived> &other)
{
other.derived().evalTo(derived());
return derived();
}
template<typename Derived>
template<typename OtherDerived>
Derived& DenseBase<Derived>::operator+=(const EigenBase<OtherDerived> &other)
{
other.derived().addTo(derived());
return derived();
}
template<typename Derived>
template<typename OtherDerived>
Derived& DenseBase<Derived>::operator-=(const EigenBase<OtherDerived> &other)
{
other.derived().subTo(derived());
return derived();
}
} // end namespace Eigen
#endif // EIGEN_EIGENBASE_H

View File

@ -0,0 +1,140 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_FLAGGED_H
#define EIGEN_FLAGGED_H
namespace Eigen {
/** \class Flagged
* \ingroup Core_Module
*
* \brief Expression with modified flags
*
* \param ExpressionType the type of the object of which we are modifying the flags
* \param Added the flags added to the expression
* \param Removed the flags removed from the expression (has priority over Added).
*
* This class represents an expression whose flags have been modified.
* It is the return type of MatrixBase::flagged()
* and most of the time this is the only way it is used.
*
* \sa MatrixBase::flagged()
*/
namespace internal {
template<typename ExpressionType, unsigned int Added, unsigned int Removed>
struct traits<Flagged<ExpressionType, Added, Removed> > : traits<ExpressionType>
{
enum { Flags = (ExpressionType::Flags | Added) & ~Removed };
};
}
template<typename ExpressionType, unsigned int Added, unsigned int Removed> class Flagged
: public MatrixBase<Flagged<ExpressionType, Added, Removed> >
{
public:
typedef MatrixBase<Flagged> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Flagged)
typedef typename internal::conditional<internal::must_nest_by_value<ExpressionType>::ret,
ExpressionType, const ExpressionType&>::type ExpressionTypeNested;
typedef typename ExpressionType::InnerIterator InnerIterator;
inline Flagged(const ExpressionType& matrix) : m_matrix(matrix) {}
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
inline Index outerStride() const { return m_matrix.outerStride(); }
inline Index innerStride() const { return m_matrix.innerStride(); }
inline CoeffReturnType coeff(Index row, Index col) const
{
return m_matrix.coeff(row, col);
}
inline CoeffReturnType coeff(Index index) const
{
return m_matrix.coeff(index);
}
inline const Scalar& coeffRef(Index row, Index col) const
{
return m_matrix.const_cast_derived().coeffRef(row, col);
}
inline const Scalar& coeffRef(Index index) const
{
return m_matrix.const_cast_derived().coeffRef(index);
}
inline Scalar& coeffRef(Index row, Index col)
{
return m_matrix.const_cast_derived().coeffRef(row, col);
}
inline Scalar& coeffRef(Index index)
{
return m_matrix.const_cast_derived().coeffRef(index);
}
template<int LoadMode>
inline const PacketScalar packet(Index row, Index col) const
{
return m_matrix.template packet<LoadMode>(row, col);
}
template<int LoadMode>
inline void writePacket(Index row, Index col, const PacketScalar& x)
{
m_matrix.const_cast_derived().template writePacket<LoadMode>(row, col, x);
}
template<int LoadMode>
inline const PacketScalar packet(Index index) const
{
return m_matrix.template packet<LoadMode>(index);
}
template<int LoadMode>
inline void writePacket(Index index, const PacketScalar& x)
{
m_matrix.const_cast_derived().template writePacket<LoadMode>(index, x);
}
const ExpressionType& _expression() const { return m_matrix; }
template<typename OtherDerived>
typename ExpressionType::PlainObject solveTriangular(const MatrixBase<OtherDerived>& other) const;
template<typename OtherDerived>
void solveTriangularInPlace(const MatrixBase<OtherDerived>& other) const;
protected:
ExpressionTypeNested m_matrix;
};
/** \returns an expression of *this with added and removed flags
*
* This is mostly for internal use.
*
* \sa class Flagged
*/
template<typename Derived>
template<unsigned int Added,unsigned int Removed>
inline const Flagged<Derived, Added, Removed>
DenseBase<Derived>::flagged() const
{
return derived();
}
} // end namespace Eigen
#endif // EIGEN_FLAGGED_H

View File

@ -0,0 +1,146 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_FORCEALIGNEDACCESS_H
#define EIGEN_FORCEALIGNEDACCESS_H
namespace Eigen {
/** \class ForceAlignedAccess
* \ingroup Core_Module
*
* \brief Enforce aligned packet loads and stores regardless of what is requested
*
* \param ExpressionType the type of the object of which we are forcing aligned packet access
*
* This class is the return type of MatrixBase::forceAlignedAccess()
* and most of the time this is the only way it is used.
*
* \sa MatrixBase::forceAlignedAccess()
*/
namespace internal {
template<typename ExpressionType>
struct traits<ForceAlignedAccess<ExpressionType> > : public traits<ExpressionType>
{};
}
template<typename ExpressionType> class ForceAlignedAccess
: public internal::dense_xpr_base< ForceAlignedAccess<ExpressionType> >::type
{
public:
typedef typename internal::dense_xpr_base<ForceAlignedAccess>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(ForceAlignedAccess)
inline ForceAlignedAccess(const ExpressionType& matrix) : m_expression(matrix) {}
inline Index rows() const { return m_expression.rows(); }
inline Index cols() const { return m_expression.cols(); }
inline Index outerStride() const { return m_expression.outerStride(); }
inline Index innerStride() const { return m_expression.innerStride(); }
inline const CoeffReturnType coeff(Index row, Index col) const
{
return m_expression.coeff(row, col);
}
inline Scalar& coeffRef(Index row, Index col)
{
return m_expression.const_cast_derived().coeffRef(row, col);
}
inline const CoeffReturnType coeff(Index index) const
{
return m_expression.coeff(index);
}
inline Scalar& coeffRef(Index index)
{
return m_expression.const_cast_derived().coeffRef(index);
}
template<int LoadMode>
inline const PacketScalar packet(Index row, Index col) const
{
return m_expression.template packet<Aligned>(row, col);
}
template<int LoadMode>
inline void writePacket(Index row, Index col, const PacketScalar& x)
{
m_expression.const_cast_derived().template writePacket<Aligned>(row, col, x);
}
template<int LoadMode>
inline const PacketScalar packet(Index index) const
{
return m_expression.template packet<Aligned>(index);
}
template<int LoadMode>
inline void writePacket(Index index, const PacketScalar& x)
{
m_expression.const_cast_derived().template writePacket<Aligned>(index, x);
}
operator const ExpressionType&() const { return m_expression; }
protected:
const ExpressionType& m_expression;
private:
ForceAlignedAccess& operator=(const ForceAlignedAccess&);
};
/** \returns an expression of *this with forced aligned access
* \sa forceAlignedAccessIf(),class ForceAlignedAccess
*/
template<typename Derived>
inline const ForceAlignedAccess<Derived>
MatrixBase<Derived>::forceAlignedAccess() const
{
return ForceAlignedAccess<Derived>(derived());
}
/** \returns an expression of *this with forced aligned access
* \sa forceAlignedAccessIf(), class ForceAlignedAccess
*/
template<typename Derived>
inline ForceAlignedAccess<Derived>
MatrixBase<Derived>::forceAlignedAccess()
{
return ForceAlignedAccess<Derived>(derived());
}
/** \returns an expression of *this with forced aligned access if \a Enable is true.
* \sa forceAlignedAccess(), class ForceAlignedAccess
*/
template<typename Derived>
template<bool Enable>
inline typename internal::add_const_on_value_type<typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type>::type
MatrixBase<Derived>::forceAlignedAccessIf() const
{
return derived();
}
/** \returns an expression of *this with forced aligned access if \a Enable is true.
* \sa forceAlignedAccess(), class ForceAlignedAccess
*/
template<typename Derived>
template<bool Enable>
inline typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type
MatrixBase<Derived>::forceAlignedAccessIf()
{
return derived();
}
} // end namespace Eigen
#endif // EIGEN_FORCEALIGNEDACCESS_H

File diff suppressed because it is too large Load Diff

150
lib/Eigen/src/Core/Fuzzy.h Normal file
View File

@ -0,0 +1,150 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_FUZZY_H
#define EIGEN_FUZZY_H
namespace Eigen {
namespace internal
{
template<typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
struct isApprox_selector
{
static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec)
{
using std::min;
typename internal::nested<Derived,2>::type nested(x);
typename internal::nested<OtherDerived,2>::type otherNested(y);
return (nested - otherNested).cwiseAbs2().sum() <= prec * prec * (min)(nested.cwiseAbs2().sum(), otherNested.cwiseAbs2().sum());
}
};
template<typename Derived, typename OtherDerived>
struct isApprox_selector<Derived, OtherDerived, true>
{
static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar&)
{
return x.matrix() == y.matrix();
}
};
template<typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
struct isMuchSmallerThan_object_selector
{
static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec)
{
return x.cwiseAbs2().sum() <= numext::abs2(prec) * y.cwiseAbs2().sum();
}
};
template<typename Derived, typename OtherDerived>
struct isMuchSmallerThan_object_selector<Derived, OtherDerived, true>
{
static bool run(const Derived& x, const OtherDerived&, const typename Derived::RealScalar&)
{
return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix();
}
};
template<typename Derived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
struct isMuchSmallerThan_scalar_selector
{
static bool run(const Derived& x, const typename Derived::RealScalar& y, const typename Derived::RealScalar& prec)
{
return x.cwiseAbs2().sum() <= numext::abs2(prec * y);
}
};
template<typename Derived>
struct isMuchSmallerThan_scalar_selector<Derived, true>
{
static bool run(const Derived& x, const typename Derived::RealScalar&, const typename Derived::RealScalar&)
{
return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix();
}
};
} // end namespace internal
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \note The fuzzy compares are done multiplicatively. Two vectors \f$ v \f$ and \f$ w \f$
* are considered to be approximately equal within precision \f$ p \f$ if
* \f[ \Vert v - w \Vert \leqslant p\,\min(\Vert v\Vert, \Vert w\Vert). \f]
* For matrices, the comparison is done using the Hilbert-Schmidt norm (aka Frobenius norm
* L2 norm).
*
* \note Because of the multiplicativeness of this comparison, one can't use this function
* to check whether \c *this is approximately equal to the zero matrix or vector.
* Indeed, \c isApprox(zero) returns false unless \c *this itself is exactly the zero matrix
* or vector. If you want to test whether \c *this is zero, use internal::isMuchSmallerThan(const
* RealScalar&, RealScalar) instead.
*
* \sa internal::isMuchSmallerThan(const RealScalar&, RealScalar) const
*/
template<typename Derived>
template<typename OtherDerived>
bool DenseBase<Derived>::isApprox(
const DenseBase<OtherDerived>& other,
const RealScalar& prec
) const
{
return internal::isApprox_selector<Derived, OtherDerived>::run(derived(), other.derived(), prec);
}
/** \returns \c true if the norm of \c *this is much smaller than \a other,
* within the precision determined by \a prec.
*
* \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
* considered to be much smaller than \f$ x \f$ within precision \f$ p \f$ if
* \f[ \Vert v \Vert \leqslant p\,\vert x\vert. \f]
*
* For matrices, the comparison is done using the Hilbert-Schmidt norm. For this reason,
* the value of the reference scalar \a other should come from the Hilbert-Schmidt norm
* of a reference matrix of same dimensions.
*
* \sa isApprox(), isMuchSmallerThan(const DenseBase<OtherDerived>&, RealScalar) const
*/
template<typename Derived>
bool DenseBase<Derived>::isMuchSmallerThan(
const typename NumTraits<Scalar>::Real& other,
const RealScalar& prec
) const
{
return internal::isMuchSmallerThan_scalar_selector<Derived>::run(derived(), other, prec);
}
/** \returns \c true if the norm of \c *this is much smaller than the norm of \a other,
* within the precision determined by \a prec.
*
* \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
* considered to be much smaller than a vector \f$ w \f$ within precision \f$ p \f$ if
* \f[ \Vert v \Vert \leqslant p\,\Vert w\Vert. \f]
* For matrices, the comparison is done using the Hilbert-Schmidt norm.
*
* \sa isApprox(), isMuchSmallerThan(const RealScalar&, RealScalar) const
*/
template<typename Derived>
template<typename OtherDerived>
bool DenseBase<Derived>::isMuchSmallerThan(
const DenseBase<OtherDerived>& other,
const RealScalar& prec
) const
{
return internal::isMuchSmallerThan_object_selector<Derived, OtherDerived>::run(derived(), other.derived(), prec);
}
} // end namespace Eigen
#endif // EIGEN_FUZZY_H

View File

@ -0,0 +1,638 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_GENERAL_PRODUCT_H
#define EIGEN_GENERAL_PRODUCT_H
namespace Eigen {
/** \class GeneralProduct
* \ingroup Core_Module
*
* \brief Expression of the product of two general matrices or vectors
*
* \param LhsNested the type used to store the left-hand side
* \param RhsNested the type used to store the right-hand side
* \param ProductMode the type of the product
*
* This class represents an expression of the product of two general matrices.
* We call a general matrix, a dense matrix with full storage. For instance,
* This excludes triangular, selfadjoint, and sparse matrices.
* It is the return type of the operator* between general matrices. Its template
* arguments are determined automatically by ProductReturnType. Therefore,
* GeneralProduct should never be used direclty. To determine the result type of a
* function which involves a matrix product, use ProductReturnType::Type.
*
* \sa ProductReturnType, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
*/
template<typename Lhs, typename Rhs, int ProductType = internal::product_type<Lhs,Rhs>::value>
class GeneralProduct;
enum {
Large = 2,
Small = 3
};
namespace internal {
template<int Rows, int Cols, int Depth> struct product_type_selector;
template<int Size, int MaxSize> struct product_size_category
{
enum { is_large = MaxSize == Dynamic ||
Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD,
value = is_large ? Large
: Size == 1 ? 1
: Small
};
};
template<typename Lhs, typename Rhs> struct product_type
{
typedef typename remove_all<Lhs>::type _Lhs;
typedef typename remove_all<Rhs>::type _Rhs;
enum {
MaxRows = _Lhs::MaxRowsAtCompileTime,
Rows = _Lhs::RowsAtCompileTime,
MaxCols = _Rhs::MaxColsAtCompileTime,
Cols = _Rhs::ColsAtCompileTime,
MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::MaxColsAtCompileTime,
_Rhs::MaxRowsAtCompileTime),
Depth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::ColsAtCompileTime,
_Rhs::RowsAtCompileTime),
LargeThreshold = EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
};
// the splitting into different lines of code here, introducing the _select enums and the typedef below,
// is to work around an internal compiler error with gcc 4.1 and 4.2.
private:
enum {
rows_select = product_size_category<Rows,MaxRows>::value,
cols_select = product_size_category<Cols,MaxCols>::value,
depth_select = product_size_category<Depth,MaxDepth>::value
};
typedef product_type_selector<rows_select, cols_select, depth_select> selector;
public:
enum {
value = selector::ret
};
#ifdef EIGEN_DEBUG_PRODUCT
static void debug()
{
EIGEN_DEBUG_VAR(Rows);
EIGEN_DEBUG_VAR(Cols);
EIGEN_DEBUG_VAR(Depth);
EIGEN_DEBUG_VAR(rows_select);
EIGEN_DEBUG_VAR(cols_select);
EIGEN_DEBUG_VAR(depth_select);
EIGEN_DEBUG_VAR(value);
}
#endif
};
/* The following allows to select the kind of product at compile time
* based on the three dimensions of the product.
* This is a compile time mapping from {1,Small,Large}^3 -> {product types} */
// FIXME I'm not sure the current mapping is the ideal one.
template<int M, int N> struct product_type_selector<M,N,1> { enum { ret = OuterProduct }; };
template<int Depth> struct product_type_selector<1, 1, Depth> { enum { ret = InnerProduct }; };
template<> struct product_type_selector<1, 1, 1> { enum { ret = InnerProduct }; };
template<> struct product_type_selector<Small,1, Small> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<1, Small,Small> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<Small,Small,Small> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<Small, Small, 1> { enum { ret = LazyCoeffBasedProductMode }; };
template<> struct product_type_selector<Small, Large, 1> { enum { ret = LazyCoeffBasedProductMode }; };
template<> struct product_type_selector<Large, Small, 1> { enum { ret = LazyCoeffBasedProductMode }; };
template<> struct product_type_selector<1, Large,Small> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<1, Large,Large> { enum { ret = GemvProduct }; };
template<> struct product_type_selector<1, Small,Large> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<Large,1, Small> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<Large,1, Large> { enum { ret = GemvProduct }; };
template<> struct product_type_selector<Small,1, Large> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<Small,Small,Large> { enum { ret = GemmProduct }; };
template<> struct product_type_selector<Large,Small,Large> { enum { ret = GemmProduct }; };
template<> struct product_type_selector<Small,Large,Large> { enum { ret = GemmProduct }; };
template<> struct product_type_selector<Large,Large,Large> { enum { ret = GemmProduct }; };
template<> struct product_type_selector<Large,Small,Small> { enum { ret = GemmProduct }; };
template<> struct product_type_selector<Small,Large,Small> { enum { ret = GemmProduct }; };
template<> struct product_type_selector<Large,Large,Small> { enum { ret = GemmProduct }; };
} // end namespace internal
/** \class ProductReturnType
* \ingroup Core_Module
*
* \brief Helper class to get the correct and optimized returned type of operator*
*
* \param Lhs the type of the left-hand side
* \param Rhs the type of the right-hand side
* \param ProductMode the type of the product (determined automatically by internal::product_mode)
*
* This class defines the typename Type representing the optimized product expression
* between two matrix expressions. In practice, using ProductReturnType<Lhs,Rhs>::Type
* is the recommended way to define the result type of a function returning an expression
* which involve a matrix product. The class Product should never be
* used directly.
*
* \sa class Product, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
*/
template<typename Lhs, typename Rhs, int ProductType>
struct ProductReturnType
{
// TODO use the nested type to reduce instanciations ????
// typedef typename internal::nested<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
// typedef typename internal::nested<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
typedef GeneralProduct<Lhs/*Nested*/, Rhs/*Nested*/, ProductType> Type;
};
template<typename Lhs, typename Rhs>
struct ProductReturnType<Lhs,Rhs,CoeffBasedProductMode>
{
typedef typename internal::nested<Lhs, Rhs::ColsAtCompileTime, typename internal::plain_matrix_type<Lhs>::type >::type LhsNested;
typedef typename internal::nested<Rhs, Lhs::RowsAtCompileTime, typename internal::plain_matrix_type<Rhs>::type >::type RhsNested;
typedef CoeffBasedProduct<LhsNested, RhsNested, EvalBeforeAssigningBit | EvalBeforeNestingBit> Type;
};
template<typename Lhs, typename Rhs>
struct ProductReturnType<Lhs,Rhs,LazyCoeffBasedProductMode>
{
typedef typename internal::nested<Lhs, Rhs::ColsAtCompileTime, typename internal::plain_matrix_type<Lhs>::type >::type LhsNested;
typedef typename internal::nested<Rhs, Lhs::RowsAtCompileTime, typename internal::plain_matrix_type<Rhs>::type >::type RhsNested;
typedef CoeffBasedProduct<LhsNested, RhsNested, NestByRefBit> Type;
};
// this is a workaround for sun CC
template<typename Lhs, typename Rhs>
struct LazyProductReturnType : public ProductReturnType<Lhs,Rhs,LazyCoeffBasedProductMode>
{};
/***********************************************************************
* Implementation of Inner Vector Vector Product
***********************************************************************/
// FIXME : maybe the "inner product" could return a Scalar
// instead of a 1x1 matrix ??
// Pro: more natural for the user
// Cons: this could be a problem if in a meta unrolled algorithm a matrix-matrix
// product ends up to a row-vector times col-vector product... To tackle this use
// case, we could have a specialization for Block<MatrixType,1,1> with: operator=(Scalar x);
namespace internal {
template<typename Lhs, typename Rhs>
struct traits<GeneralProduct<Lhs,Rhs,InnerProduct> >
: traits<Matrix<typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1> >
{};
}
template<typename Lhs, typename Rhs>
class GeneralProduct<Lhs, Rhs, InnerProduct>
: internal::no_assignment_operator,
public Matrix<typename internal::scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1>
{
typedef Matrix<typename internal::scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1> Base;
public:
GeneralProduct(const Lhs& lhs, const Rhs& rhs)
{
EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
Base::coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum();
}
/** Convertion to scalar */
operator const typename Base::Scalar() const {
return Base::coeff(0,0);
}
};
/***********************************************************************
* Implementation of Outer Vector Vector Product
***********************************************************************/
namespace internal {
// Column major
template<typename ProductType, typename Dest, typename Func>
EIGEN_DONT_INLINE void outer_product_selector_run(const ProductType& prod, Dest& dest, const Func& func, const false_type&)
{
typedef typename Dest::Index Index;
// FIXME make sure lhs is sequentially stored
// FIXME not very good if rhs is real and lhs complex while alpha is real too
const Index cols = dest.cols();
for (Index j=0; j<cols; ++j)
func(dest.col(j), prod.rhs().coeff(0,j) * prod.lhs());
}
// Row major
template<typename ProductType, typename Dest, typename Func>
EIGEN_DONT_INLINE void outer_product_selector_run(const ProductType& prod, Dest& dest, const Func& func, const true_type&) {
typedef typename Dest::Index Index;
// FIXME make sure rhs is sequentially stored
// FIXME not very good if lhs is real and rhs complex while alpha is real too
const Index rows = dest.rows();
for (Index i=0; i<rows; ++i)
func(dest.row(i), prod.lhs().coeff(i,0) * prod.rhs());
}
template<typename Lhs, typename Rhs>
struct traits<GeneralProduct<Lhs,Rhs,OuterProduct> >
: traits<ProductBase<GeneralProduct<Lhs,Rhs,OuterProduct>, Lhs, Rhs> >
{};
}
template<typename Lhs, typename Rhs>
class GeneralProduct<Lhs, Rhs, OuterProduct>
: public ProductBase<GeneralProduct<Lhs,Rhs,OuterProduct>, Lhs, Rhs>
{
template<typename T> struct is_row_major : internal::conditional<(int(T::Flags)&RowMajorBit), internal::true_type, internal::false_type>::type {};
public:
EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
{
EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
}
struct set { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() = src; } };
struct add { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() += src; } };
struct sub { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() -= src; } };
struct adds {
Scalar m_scale;
adds(const Scalar& s) : m_scale(s) {}
template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const {
dst.const_cast_derived() += m_scale * src;
}
};
template<typename Dest>
inline void evalTo(Dest& dest) const {
internal::outer_product_selector_run(*this, dest, set(), is_row_major<Dest>());
}
template<typename Dest>
inline void addTo(Dest& dest) const {
internal::outer_product_selector_run(*this, dest, add(), is_row_major<Dest>());
}
template<typename Dest>
inline void subTo(Dest& dest) const {
internal::outer_product_selector_run(*this, dest, sub(), is_row_major<Dest>());
}
template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
{
internal::outer_product_selector_run(*this, dest, adds(alpha), is_row_major<Dest>());
}
};
/***********************************************************************
* Implementation of General Matrix Vector Product
***********************************************************************/
/* According to the shape/flags of the matrix we have to distinghish 3 different cases:
* 1 - the matrix is col-major, BLAS compatible and M is large => call fast BLAS-like colmajor routine
* 2 - the matrix is row-major, BLAS compatible and N is large => call fast BLAS-like rowmajor routine
* 3 - all other cases are handled using a simple loop along the outer-storage direction.
* Therefore we need a lower level meta selector.
* Furthermore, if the matrix is the rhs, then the product has to be transposed.
*/
namespace internal {
template<typename Lhs, typename Rhs>
struct traits<GeneralProduct<Lhs,Rhs,GemvProduct> >
: traits<ProductBase<GeneralProduct<Lhs,Rhs,GemvProduct>, Lhs, Rhs> >
{};
template<int Side, int StorageOrder, bool BlasCompatible>
struct gemv_selector;
} // end namespace internal
template<typename Lhs, typename Rhs>
class GeneralProduct<Lhs, Rhs, GemvProduct>
: public ProductBase<GeneralProduct<Lhs,Rhs,GemvProduct>, Lhs, Rhs>
{
public:
EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
typedef typename Lhs::Scalar LhsScalar;
typedef typename Rhs::Scalar RhsScalar;
GeneralProduct(const Lhs& a_lhs, const Rhs& a_rhs) : Base(a_lhs,a_rhs)
{
// EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::Scalar, typename Rhs::Scalar>::value),
// YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
}
enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight };
typedef typename internal::conditional<int(Side)==OnTheRight,_LhsNested,_RhsNested>::type MatrixType;
template<typename Dest> void scaleAndAddTo(Dest& dst, const Scalar& alpha) const
{
eigen_assert(m_lhs.rows() == dst.rows() && m_rhs.cols() == dst.cols());
internal::gemv_selector<Side,(int(MatrixType::Flags)&RowMajorBit) ? RowMajor : ColMajor,
bool(internal::blas_traits<MatrixType>::HasUsableDirectAccess)>::run(*this, dst, alpha);
}
};
namespace internal {
// The vector is on the left => transposition
template<int StorageOrder, bool BlasCompatible>
struct gemv_selector<OnTheLeft,StorageOrder,BlasCompatible>
{
template<typename ProductType, typename Dest>
static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
{
Transpose<Dest> destT(dest);
enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor };
gemv_selector<OnTheRight,OtherStorageOrder,BlasCompatible>
::run(GeneralProduct<Transpose<const typename ProductType::_RhsNested>,Transpose<const typename ProductType::_LhsNested>, GemvProduct>
(prod.rhs().transpose(), prod.lhs().transpose()), destT, alpha);
}
};
template<typename Scalar,int Size,int MaxSize,bool Cond> struct gemv_static_vector_if;
template<typename Scalar,int Size,int MaxSize>
struct gemv_static_vector_if<Scalar,Size,MaxSize,false>
{
EIGEN_STRONG_INLINE Scalar* data() { eigen_internal_assert(false && "should never be called"); return 0; }
};
template<typename Scalar,int Size>
struct gemv_static_vector_if<Scalar,Size,Dynamic,true>
{
EIGEN_STRONG_INLINE Scalar* data() { return 0; }
};
template<typename Scalar,int Size,int MaxSize>
struct gemv_static_vector_if<Scalar,Size,MaxSize,true>
{
#if EIGEN_ALIGN_STATICALLY
internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize),0> m_data;
EIGEN_STRONG_INLINE Scalar* data() { return m_data.array; }
#else
// Some architectures cannot align on the stack,
// => let's manually enforce alignment by allocating more data and return the address of the first aligned element.
enum {
ForceAlignment = internal::packet_traits<Scalar>::Vectorizable,
PacketSize = internal::packet_traits<Scalar>::size
};
internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize)+(ForceAlignment?PacketSize:0),0> m_data;
EIGEN_STRONG_INLINE Scalar* data() {
return ForceAlignment
? reinterpret_cast<Scalar*>((reinterpret_cast<size_t>(m_data.array) & ~(size_t(15))) + 16)
: m_data.array;
}
#endif
};
template<> struct gemv_selector<OnTheRight,ColMajor,true>
{
template<typename ProductType, typename Dest>
static inline void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
{
typedef typename ProductType::Index Index;
typedef typename ProductType::LhsScalar LhsScalar;
typedef typename ProductType::RhsScalar RhsScalar;
typedef typename ProductType::Scalar ResScalar;
typedef typename ProductType::RealScalar RealScalar;
typedef typename ProductType::ActualLhsType ActualLhsType;
typedef typename ProductType::ActualRhsType ActualRhsType;
typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;
ActualLhsType actualLhs = LhsBlasTraits::extract(prod.lhs());
ActualRhsType actualRhs = RhsBlasTraits::extract(prod.rhs());
ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
* RhsBlasTraits::extractScalarFactor(prod.rhs());
// make sure Dest is a compile-time vector type (bug 1166)
typedef typename conditional<Dest::IsVectorAtCompileTime, Dest, typename Dest::ColXpr>::type ActualDest;
enum {
// FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
// on, the other hand it is good for the cache to pack the vector anyways...
EvalToDestAtCompileTime = (ActualDest::InnerStrideAtCompileTime==1),
ComplexByReal = (NumTraits<LhsScalar>::IsComplex) && (!NumTraits<RhsScalar>::IsComplex),
MightCannotUseDest = (ActualDest::InnerStrideAtCompileTime!=1) || ComplexByReal
};
gemv_static_vector_if<ResScalar,ActualDest::SizeAtCompileTime,ActualDest::MaxSizeAtCompileTime,MightCannotUseDest> static_dest;
bool alphaIsCompatible = (!ComplexByReal) || (numext::imag(actualAlpha)==RealScalar(0));
bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible;
RhsScalar compatibleAlpha = get_factor<ResScalar,RhsScalar>::run(actualAlpha);
ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
evalToDest ? dest.data() : static_dest.data());
if(!evalToDest)
{
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
int size = dest.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
if(!alphaIsCompatible)
{
MappedDest(actualDestPtr, dest.size()).setZero();
compatibleAlpha = RhsScalar(1);
}
else
MappedDest(actualDestPtr, dest.size()) = dest;
}
general_matrix_vector_product
<Index,LhsScalar,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsBlasTraits::NeedToConjugate>::run(
actualLhs.rows(), actualLhs.cols(),
actualLhs.data(), actualLhs.outerStride(),
actualRhs.data(), actualRhs.innerStride(),
actualDestPtr, 1,
compatibleAlpha);
if (!evalToDest)
{
if(!alphaIsCompatible)
dest += actualAlpha * MappedDest(actualDestPtr, dest.size());
else
dest = MappedDest(actualDestPtr, dest.size());
}
}
};
template<> struct gemv_selector<OnTheRight,RowMajor,true>
{
template<typename ProductType, typename Dest>
static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
{
typedef typename ProductType::LhsScalar LhsScalar;
typedef typename ProductType::RhsScalar RhsScalar;
typedef typename ProductType::Scalar ResScalar;
typedef typename ProductType::Index Index;
typedef typename ProductType::ActualLhsType ActualLhsType;
typedef typename ProductType::ActualRhsType ActualRhsType;
typedef typename ProductType::_ActualRhsType _ActualRhsType;
typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
* RhsBlasTraits::extractScalarFactor(prod.rhs());
enum {
// FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
// on, the other hand it is good for the cache to pack the vector anyways...
DirectlyUseRhs = _ActualRhsType::InnerStrideAtCompileTime==1
};
gemv_static_vector_if<RhsScalar,_ActualRhsType::SizeAtCompileTime,_ActualRhsType::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs;
ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(),
DirectlyUseRhs ? const_cast<RhsScalar*>(actualRhs.data()) : static_rhs.data());
if(!DirectlyUseRhs)
{
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
int size = actualRhs.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
}
general_matrix_vector_product
<Index,LhsScalar,RowMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsBlasTraits::NeedToConjugate>::run(
actualLhs.rows(), actualLhs.cols(),
actualLhs.data(), actualLhs.outerStride(),
actualRhsPtr, 1,
dest.data(), dest.col(0).innerStride(), //NOTE if dest is not a vector at compile-time, then dest.innerStride() might be wrong. (bug 1166)
actualAlpha);
}
};
template<> struct gemv_selector<OnTheRight,ColMajor,false>
{
template<typename ProductType, typename Dest>
static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
{
typedef typename Dest::Index Index;
// TODO makes sure dest is sequentially stored in memory, otherwise use a temp
const Index size = prod.rhs().rows();
for(Index k=0; k<size; ++k)
dest += (alpha*prod.rhs().coeff(k)) * prod.lhs().col(k);
}
};
template<> struct gemv_selector<OnTheRight,RowMajor,false>
{
template<typename ProductType, typename Dest>
static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
{
typedef typename Dest::Index Index;
// TODO makes sure rhs is sequentially stored in memory, otherwise use a temp
const Index rows = prod.rows();
for(Index i=0; i<rows; ++i)
dest.coeffRef(i) += alpha * (prod.lhs().row(i).cwiseProduct(prod.rhs().transpose())).sum();
}
};
} // end namespace internal
/***************************************************************************
* Implementation of matrix base methods
***************************************************************************/
/** \returns the matrix product of \c *this and \a other.
*
* \note If instead of the matrix product you want the coefficient-wise product, see Cwise::operator*().
*
* \sa lazyProduct(), operator*=(const MatrixBase&), Cwise::operator*()
*/
template<typename Derived>
template<typename OtherDerived>
inline const typename ProductReturnType<Derived, OtherDerived>::Type
MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
{
// A note regarding the function declaration: In MSVC, this function will sometimes
// not be inlined since DenseStorage is an unwindable object for dynamic
// matrices and product types are holding a member to store the result.
// Thus it does not help tagging this function with EIGEN_STRONG_INLINE.
enum {
ProductIsValid = Derived::ColsAtCompileTime==Dynamic
|| OtherDerived::RowsAtCompileTime==Dynamic
|| int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
};
// note to the lost user:
// * for a dot product use: v1.dot(v2)
// * for a coeff-wise product use: v1.cwiseProduct(v2)
EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
#ifdef EIGEN_DEBUG_PRODUCT
internal::product_type<Derived,OtherDerived>::debug();
#endif
return typename ProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
}
/** \returns an expression of the matrix product of \c *this and \a other without implicit evaluation.
*
* The returned product will behave like any other expressions: the coefficients of the product will be
* computed once at a time as requested. This might be useful in some extremely rare cases when only
* a small and no coherent fraction of the result's coefficients have to be computed.
*
* \warning This version of the matrix product can be much much slower. So use it only if you know
* what you are doing and that you measured a true speed improvement.
*
* \sa operator*(const MatrixBase&)
*/
template<typename Derived>
template<typename OtherDerived>
const typename LazyProductReturnType<Derived,OtherDerived>::Type
MatrixBase<Derived>::lazyProduct(const MatrixBase<OtherDerived> &other) const
{
enum {
ProductIsValid = Derived::ColsAtCompileTime==Dynamic
|| OtherDerived::RowsAtCompileTime==Dynamic
|| int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
};
// note to the lost user:
// * for a dot product use: v1.dot(v2)
// * for a coeff-wise product use: v1.cwiseProduct(v2)
EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
return typename LazyProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
}
} // end namespace Eigen
#endif // EIGEN_PRODUCT_H

View File

@ -0,0 +1,350 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_GENERIC_PACKET_MATH_H
#define EIGEN_GENERIC_PACKET_MATH_H
namespace Eigen {
namespace internal {
/** \internal
* \file GenericPacketMath.h
*
* Default implementation for types not supported by the vectorization.
* In practice these functions are provided to make easier the writing
* of generic vectorized code.
*/
#ifndef EIGEN_DEBUG_ALIGNED_LOAD
#define EIGEN_DEBUG_ALIGNED_LOAD
#endif
#ifndef EIGEN_DEBUG_UNALIGNED_LOAD
#define EIGEN_DEBUG_UNALIGNED_LOAD
#endif
#ifndef EIGEN_DEBUG_ALIGNED_STORE
#define EIGEN_DEBUG_ALIGNED_STORE
#endif
#ifndef EIGEN_DEBUG_UNALIGNED_STORE
#define EIGEN_DEBUG_UNALIGNED_STORE
#endif
struct default_packet_traits
{
enum {
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasNegate = 1,
HasAbs = 1,
HasAbs2 = 1,
HasMin = 1,
HasMax = 1,
HasConj = 1,
HasSetLinear = 1,
HasDiv = 0,
HasSqrt = 0,
HasExp = 0,
HasLog = 0,
HasPow = 0,
HasSin = 0,
HasCos = 0,
HasTan = 0,
HasASin = 0,
HasACos = 0,
HasATan = 0
};
};
template<typename T> struct packet_traits : default_packet_traits
{
typedef T type;
enum {
Vectorizable = 0,
size = 1,
AlignedOnScalar = 0
};
enum {
HasAdd = 0,
HasSub = 0,
HasMul = 0,
HasNegate = 0,
HasAbs = 0,
HasAbs2 = 0,
HasMin = 0,
HasMax = 0,
HasConj = 0,
HasSetLinear = 0
};
};
/** \internal \returns a + b (coeff-wise) */
template<typename Packet> inline Packet
padd(const Packet& a,
const Packet& b) { return a+b; }
/** \internal \returns a - b (coeff-wise) */
template<typename Packet> inline Packet
psub(const Packet& a,
const Packet& b) { return a-b; }
/** \internal \returns -a (coeff-wise) */
template<typename Packet> inline Packet
pnegate(const Packet& a) { return -a; }
/** \internal \returns conj(a) (coeff-wise) */
template<typename Packet> inline Packet
pconj(const Packet& a) { return numext::conj(a); }
/** \internal \returns a * b (coeff-wise) */
template<typename Packet> inline Packet
pmul(const Packet& a,
const Packet& b) { return a*b; }
/** \internal \returns a / b (coeff-wise) */
template<typename Packet> inline Packet
pdiv(const Packet& a,
const Packet& b) { return a/b; }
/** \internal \returns the min of \a a and \a b (coeff-wise) */
template<typename Packet> inline Packet
pmin(const Packet& a,
const Packet& b) { using std::min; return (min)(a, b); }
/** \internal \returns the max of \a a and \a b (coeff-wise) */
template<typename Packet> inline Packet
pmax(const Packet& a,
const Packet& b) { using std::max; return (max)(a, b); }
/** \internal \returns the absolute value of \a a */
template<typename Packet> inline Packet
pabs(const Packet& a) { using std::abs; return abs(a); }
/** \internal \returns the bitwise and of \a a and \a b */
template<typename Packet> inline Packet
pand(const Packet& a, const Packet& b) { return a & b; }
/** \internal \returns the bitwise or of \a a and \a b */
template<typename Packet> inline Packet
por(const Packet& a, const Packet& b) { return a | b; }
/** \internal \returns the bitwise xor of \a a and \a b */
template<typename Packet> inline Packet
pxor(const Packet& a, const Packet& b) { return a ^ b; }
/** \internal \returns the bitwise andnot of \a a and \a b */
template<typename Packet> inline Packet
pandnot(const Packet& a, const Packet& b) { return a & (!b); }
/** \internal \returns a packet version of \a *from, from must be 16 bytes aligned */
template<typename Packet> inline Packet
pload(const typename unpacket_traits<Packet>::type* from) { return *from; }
/** \internal \returns a packet version of \a *from, (un-aligned load) */
template<typename Packet> inline Packet
ploadu(const typename unpacket_traits<Packet>::type* from) { return *from; }
/** \internal \returns a packet with elements of \a *from duplicated.
* For instance, for a packet of 8 elements, 4 scalar will be read from \a *from and
* duplicated to form: {from[0],from[0],from[1],from[1],,from[2],from[2],,from[3],from[3]}
* Currently, this function is only used for scalar * complex products.
*/
template<typename Packet> inline Packet
ploaddup(const typename unpacket_traits<Packet>::type* from) { return *from; }
/** \internal \returns a packet with constant coefficients \a a, e.g.: (a,a,a,a) */
template<typename Packet> inline Packet
pset1(const typename unpacket_traits<Packet>::type& a) { return a; }
/** \internal \brief Returns a packet with coefficients (a,a+1,...,a+packet_size-1). */
template<typename Scalar> inline typename packet_traits<Scalar>::type
plset(const Scalar& a) { return a; }
/** \internal copy the packet \a from to \a *to, \a to must be 16 bytes aligned */
template<typename Scalar, typename Packet> inline void pstore(Scalar* to, const Packet& from)
{ (*to) = from; }
/** \internal copy the packet \a from to \a *to, (un-aligned store) */
template<typename Scalar, typename Packet> inline void pstoreu(Scalar* to, const Packet& from)
{ (*to) = from; }
/** \internal tries to do cache prefetching of \a addr */
template<typename Scalar> inline void prefetch(const Scalar* addr)
{
#if !defined(_MSC_VER)
__builtin_prefetch(addr);
#endif
}
/** \internal \returns the first element of a packet */
template<typename Packet> inline typename unpacket_traits<Packet>::type pfirst(const Packet& a)
{ return a; }
/** \internal \returns a packet where the element i contains the sum of the packet of \a vec[i] */
template<typename Packet> inline Packet
preduxp(const Packet* vecs) { return vecs[0]; }
/** \internal \returns the sum of the elements of \a a*/
template<typename Packet> inline typename unpacket_traits<Packet>::type predux(const Packet& a)
{ return a; }
/** \internal \returns the product of the elements of \a a*/
template<typename Packet> inline typename unpacket_traits<Packet>::type predux_mul(const Packet& a)
{ return a; }
/** \internal \returns the min of the elements of \a a*/
template<typename Packet> inline typename unpacket_traits<Packet>::type predux_min(const Packet& a)
{ return a; }
/** \internal \returns the max of the elements of \a a*/
template<typename Packet> inline typename unpacket_traits<Packet>::type predux_max(const Packet& a)
{ return a; }
/** \internal \returns the reversed elements of \a a*/
template<typename Packet> inline Packet preverse(const Packet& a)
{ return a; }
/** \internal \returns \a a with real and imaginary part flipped (for complex type only) */
template<typename Packet> inline Packet pcplxflip(const Packet& a)
{
// FIXME: uncomment the following in case we drop the internal imag and real functions.
// using std::imag;
// using std::real;
return Packet(imag(a),real(a));
}
/**************************
* Special math functions
***************************/
/** \internal \returns the sine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet psin(const Packet& a) { using std::sin; return sin(a); }
/** \internal \returns the cosine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pcos(const Packet& a) { using std::cos; return cos(a); }
/** \internal \returns the tan of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet ptan(const Packet& a) { using std::tan; return tan(a); }
/** \internal \returns the arc sine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pasin(const Packet& a) { using std::asin; return asin(a); }
/** \internal \returns the arc cosine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pacos(const Packet& a) { using std::acos; return acos(a); }
/** \internal \returns the exp of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pexp(const Packet& a) { using std::exp; return exp(a); }
/** \internal \returns the log of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet plog(const Packet& a) { using std::log; return log(a); }
/** \internal \returns the square-root of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet psqrt(const Packet& a) { using std::sqrt; return sqrt(a); }
/***************************************************************************
* The following functions might not have to be overwritten for vectorized types
***************************************************************************/
/** \internal copy a packet with constant coeficient \a a (e.g., [a,a,a,a]) to \a *to. \a to must be 16 bytes aligned */
// NOTE: this function must really be templated on the packet type (think about different packet types for the same scalar type)
template<typename Packet>
inline void pstore1(typename unpacket_traits<Packet>::type* to, const typename unpacket_traits<Packet>::type& a)
{
pstore(to, pset1<Packet>(a));
}
/** \internal \returns a * b + c (coeff-wise) */
template<typename Packet> inline Packet
pmadd(const Packet& a,
const Packet& b,
const Packet& c)
{ return padd(pmul(a, b),c); }
/** \internal \returns a packet version of \a *from.
* If LoadMode equals #Aligned, \a from must be 16 bytes aligned */
template<typename Packet, int LoadMode>
inline Packet ploadt(const typename unpacket_traits<Packet>::type* from)
{
if(LoadMode == Aligned)
return pload<Packet>(from);
else
return ploadu<Packet>(from);
}
/** \internal copy the packet \a from to \a *to.
* If StoreMode equals #Aligned, \a to must be 16 bytes aligned */
template<typename Scalar, typename Packet, int LoadMode>
inline void pstoret(Scalar* to, const Packet& from)
{
if(LoadMode == Aligned)
pstore(to, from);
else
pstoreu(to, from);
}
/** \internal default implementation of palign() allowing partial specialization */
template<int Offset,typename PacketType>
struct palign_impl
{
// by default data are aligned, so there is nothing to be done :)
static inline void run(PacketType&, const PacketType&) {}
};
/** \internal update \a first using the concatenation of the packet_size minus \a Offset last elements
* of \a first and \a Offset first elements of \a second.
*
* This function is currently only used to optimize matrix-vector products on unligned matrices.
* It takes 2 packets that represent a contiguous memory array, and returns a packet starting
* at the position \a Offset. For instance, for packets of 4 elements, we have:
* Input:
* - first = {f0,f1,f2,f3}
* - second = {s0,s1,s2,s3}
* Output:
* - if Offset==0 then {f0,f1,f2,f3}
* - if Offset==1 then {f1,f2,f3,s0}
* - if Offset==2 then {f2,f3,s0,s1}
* - if Offset==3 then {f3,s0,s1,s3}
*/
template<int Offset,typename PacketType>
inline void palign(PacketType& first, const PacketType& second)
{
palign_impl<Offset,PacketType>::run(first,second);
}
/***************************************************************************
* Fast complex products (GCC generates a function call which is very slow)
***************************************************************************/
template<> inline std::complex<float> pmul(const std::complex<float>& a, const std::complex<float>& b)
{ return std::complex<float>(real(a)*real(b) - imag(a)*imag(b), imag(a)*real(b) + real(a)*imag(b)); }
template<> inline std::complex<double> pmul(const std::complex<double>& a, const std::complex<double>& b)
{ return std::complex<double>(real(a)*real(b) - imag(a)*imag(b), imag(a)*real(b) + real(a)*imag(b)); }
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_GENERIC_PACKET_MATH_H

View File

@ -0,0 +1,92 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010-2012 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_GLOBAL_FUNCTIONS_H
#define EIGEN_GLOBAL_FUNCTIONS_H
#define EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(NAME,FUNCTOR) \
template<typename Derived> \
inline const Eigen::CwiseUnaryOp<Eigen::internal::FUNCTOR<typename Derived::Scalar>, const Derived> \
NAME(const Eigen::ArrayBase<Derived>& x) { \
return x.derived(); \
}
#define EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(NAME,FUNCTOR) \
\
template<typename Derived> \
struct NAME##_retval<ArrayBase<Derived> > \
{ \
typedef const Eigen::CwiseUnaryOp<Eigen::internal::FUNCTOR<typename Derived::Scalar>, const Derived> type; \
}; \
template<typename Derived> \
struct NAME##_impl<ArrayBase<Derived> > \
{ \
static inline typename NAME##_retval<ArrayBase<Derived> >::type run(const Eigen::ArrayBase<Derived>& x) \
{ \
return x.derived(); \
} \
};
namespace Eigen
{
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(real,scalar_real_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(imag,scalar_imag_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(conj,scalar_conjugate_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sin,scalar_sin_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(cos,scalar_cos_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(asin,scalar_asin_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(acos,scalar_acos_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(tan,scalar_tan_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(exp,scalar_exp_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(log,scalar_log_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(abs,scalar_abs_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sqrt,scalar_sqrt_op)
template<typename Derived>
inline const Eigen::CwiseUnaryOp<Eigen::internal::scalar_pow_op<typename Derived::Scalar>, const Derived>
pow(const Eigen::ArrayBase<Derived>& x, const typename Derived::Scalar& exponent) {
return x.derived().pow(exponent);
}
template<typename Derived>
inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_binary_pow_op<typename Derived::Scalar, typename Derived::Scalar>, const Derived, const Derived>
pow(const Eigen::ArrayBase<Derived>& x, const Eigen::ArrayBase<Derived>& exponents)
{
return Eigen::CwiseBinaryOp<Eigen::internal::scalar_binary_pow_op<typename Derived::Scalar, typename Derived::Scalar>, const Derived, const Derived>(
x.derived(),
exponents.derived()
);
}
/**
* \brief Component-wise division of a scalar by array elements.
**/
template <typename Derived>
inline const Eigen::CwiseUnaryOp<Eigen::internal::scalar_inverse_mult_op<typename Derived::Scalar>, const Derived>
operator/(const typename Derived::Scalar& s, const Eigen::ArrayBase<Derived>& a)
{
return Eigen::CwiseUnaryOp<Eigen::internal::scalar_inverse_mult_op<typename Derived::Scalar>, const Derived>(
a.derived(),
Eigen::internal::scalar_inverse_mult_op<typename Derived::Scalar>(s)
);
}
namespace internal
{
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(real,scalar_real_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(imag,scalar_imag_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(abs2,scalar_abs2_op)
}
}
// TODO: cleanly disable those functions that are not supported on Array (numext::real_ref, internal::random, internal::isApprox...)
#endif // EIGEN_GLOBAL_FUNCTIONS_H

250
lib/Eigen/src/Core/IO.h Normal file
View File

@ -0,0 +1,250 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_IO_H
#define EIGEN_IO_H
namespace Eigen {
enum { DontAlignCols = 1 };
enum { StreamPrecision = -1,
FullPrecision = -2 };
namespace internal {
template<typename Derived>
std::ostream & print_matrix(std::ostream & s, const Derived& _m, const IOFormat& fmt);
}
/** \class IOFormat
* \ingroup Core_Module
*
* \brief Stores a set of parameters controlling the way matrices are printed
*
* List of available parameters:
* - \b precision number of digits for floating point values, or one of the special constants \c StreamPrecision and \c FullPrecision.
* The default is the special value \c StreamPrecision which means to use the
* stream's own precision setting, as set for instance using \c cout.precision(3). The other special value
* \c FullPrecision means that the number of digits will be computed to match the full precision of each floating-point
* type.
* - \b flags an OR-ed combination of flags, the default value is 0, the only currently available flag is \c DontAlignCols which
* allows to disable the alignment of columns, resulting in faster code.
* - \b coeffSeparator string printed between two coefficients of the same row
* - \b rowSeparator string printed between two rows
* - \b rowPrefix string printed at the beginning of each row
* - \b rowSuffix string printed at the end of each row
* - \b matPrefix string printed at the beginning of the matrix
* - \b matSuffix string printed at the end of the matrix
*
* Example: \include IOFormat.cpp
* Output: \verbinclude IOFormat.out
*
* \sa DenseBase::format(), class WithFormat
*/
struct IOFormat
{
/** Default contructor, see class IOFormat for the meaning of the parameters */
IOFormat(int _precision = StreamPrecision, int _flags = 0,
const std::string& _coeffSeparator = " ",
const std::string& _rowSeparator = "\n", const std::string& _rowPrefix="", const std::string& _rowSuffix="",
const std::string& _matPrefix="", const std::string& _matSuffix="")
: matPrefix(_matPrefix), matSuffix(_matSuffix), rowPrefix(_rowPrefix), rowSuffix(_rowSuffix), rowSeparator(_rowSeparator),
rowSpacer(""), coeffSeparator(_coeffSeparator), precision(_precision), flags(_flags)
{
int i = int(matSuffix.length())-1;
while (i>=0 && matSuffix[i]!='\n')
{
rowSpacer += ' ';
i--;
}
}
std::string matPrefix, matSuffix;
std::string rowPrefix, rowSuffix, rowSeparator, rowSpacer;
std::string coeffSeparator;
int precision;
int flags;
};
/** \class WithFormat
* \ingroup Core_Module
*
* \brief Pseudo expression providing matrix output with given format
*
* \param ExpressionType the type of the object on which IO stream operations are performed
*
* This class represents an expression with stream operators controlled by a given IOFormat.
* It is the return type of DenseBase::format()
* and most of the time this is the only way it is used.
*
* See class IOFormat for some examples.
*
* \sa DenseBase::format(), class IOFormat
*/
template<typename ExpressionType>
class WithFormat
{
public:
WithFormat(const ExpressionType& matrix, const IOFormat& format)
: m_matrix(matrix), m_format(format)
{}
friend std::ostream & operator << (std::ostream & s, const WithFormat& wf)
{
return internal::print_matrix(s, wf.m_matrix.eval(), wf.m_format);
}
protected:
const typename ExpressionType::Nested m_matrix;
IOFormat m_format;
};
/** \returns a WithFormat proxy object allowing to print a matrix the with given
* format \a fmt.
*
* See class IOFormat for some examples.
*
* \sa class IOFormat, class WithFormat
*/
template<typename Derived>
inline const WithFormat<Derived>
DenseBase<Derived>::format(const IOFormat& fmt) const
{
return WithFormat<Derived>(derived(), fmt);
}
namespace internal {
template<typename Scalar, bool IsInteger>
struct significant_decimals_default_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
static inline int run()
{
using std::ceil;
using std::log;
return cast<RealScalar,int>(ceil(-log(NumTraits<RealScalar>::epsilon())/log(RealScalar(10))));
}
};
template<typename Scalar>
struct significant_decimals_default_impl<Scalar, true>
{
static inline int run()
{
return 0;
}
};
template<typename Scalar>
struct significant_decimals_impl
: significant_decimals_default_impl<Scalar, NumTraits<Scalar>::IsInteger>
{};
/** \internal
* print the matrix \a _m to the output stream \a s using the output format \a fmt */
template<typename Derived>
std::ostream & print_matrix(std::ostream & s, const Derived& _m, const IOFormat& fmt)
{
if(_m.size() == 0)
{
s << fmt.matPrefix << fmt.matSuffix;
return s;
}
typename Derived::Nested m = _m;
typedef typename Derived::Scalar Scalar;
typedef typename Derived::Index Index;
Index width = 0;
std::streamsize explicit_precision;
if(fmt.precision == StreamPrecision)
{
explicit_precision = 0;
}
else if(fmt.precision == FullPrecision)
{
if (NumTraits<Scalar>::IsInteger)
{
explicit_precision = 0;
}
else
{
explicit_precision = significant_decimals_impl<Scalar>::run();
}
}
else
{
explicit_precision = fmt.precision;
}
std::streamsize old_precision = 0;
if(explicit_precision) old_precision = s.precision(explicit_precision);
bool align_cols = !(fmt.flags & DontAlignCols);
if(align_cols)
{
// compute the largest width
for(Index j = 0; j < m.cols(); ++j)
for(Index i = 0; i < m.rows(); ++i)
{
std::stringstream sstr;
sstr.copyfmt(s);
sstr << m.coeff(i,j);
width = std::max<Index>(width, Index(sstr.str().length()));
}
}
s << fmt.matPrefix;
for(Index i = 0; i < m.rows(); ++i)
{
if (i)
s << fmt.rowSpacer;
s << fmt.rowPrefix;
if(width) s.width(width);
s << m.coeff(i, 0);
for(Index j = 1; j < m.cols(); ++j)
{
s << fmt.coeffSeparator;
if (width) s.width(width);
s << m.coeff(i, j);
}
s << fmt.rowSuffix;
if( i < m.rows() - 1)
s << fmt.rowSeparator;
}
s << fmt.matSuffix;
if(explicit_precision) s.precision(old_precision);
return s;
}
} // end namespace internal
/** \relates DenseBase
*
* Outputs the matrix, to the given stream.
*
* If you wish to print the matrix with a format different than the default, use DenseBase::format().
*
* It is also possible to change the default format by defining EIGEN_DEFAULT_IO_FORMAT before including Eigen headers.
* If not defined, this will automatically be defined to Eigen::IOFormat(), that is the Eigen::IOFormat with default parameters.
*
* \sa DenseBase::format()
*/
template<typename Derived>
std::ostream & operator <<
(std::ostream & s,
const DenseBase<Derived> & m)
{
return internal::print_matrix(s, m.eval(), EIGEN_DEFAULT_IO_FORMAT);
}
} // end namespace Eigen
#endif // EIGEN_IO_H

192
lib/Eigen/src/Core/Map.h Normal file
View File

@ -0,0 +1,192 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MAP_H
#define EIGEN_MAP_H
namespace Eigen {
/** \class Map
* \ingroup Core_Module
*
* \brief A matrix or vector expression mapping an existing array of data.
*
* \tparam PlainObjectType the equivalent matrix type of the mapped data
* \tparam MapOptions specifies whether the pointer is \c #Aligned, or \c #Unaligned.
* The default is \c #Unaligned.
* \tparam StrideType optionally specifies strides. By default, Map assumes the memory layout
* of an ordinary, contiguous array. This can be overridden by specifying strides.
* The type passed here must be a specialization of the Stride template, see examples below.
*
* This class represents a matrix or vector expression mapping an existing array of data.
* It can be used to let Eigen interface without any overhead with non-Eigen data structures,
* such as plain C arrays or structures from other libraries. By default, it assumes that the
* data is laid out contiguously in memory. You can however override this by explicitly specifying
* inner and outer strides.
*
* Here's an example of simply mapping a contiguous array as a \ref TopicStorageOrders "column-major" matrix:
* \include Map_simple.cpp
* Output: \verbinclude Map_simple.out
*
* If you need to map non-contiguous arrays, you can do so by specifying strides:
*
* Here's an example of mapping an array as a vector, specifying an inner stride, that is, the pointer
* increment between two consecutive coefficients. Here, we're specifying the inner stride as a compile-time
* fixed value.
* \include Map_inner_stride.cpp
* Output: \verbinclude Map_inner_stride.out
*
* Here's an example of mapping an array while specifying an outer stride. Here, since we're mapping
* as a column-major matrix, 'outer stride' means the pointer increment between two consecutive columns.
* Here, we're specifying the outer stride as a runtime parameter. Note that here \c OuterStride<> is
* a short version of \c OuterStride<Dynamic> because the default template parameter of OuterStride
* is \c Dynamic
* \include Map_outer_stride.cpp
* Output: \verbinclude Map_outer_stride.out
*
* For more details and for an example of specifying both an inner and an outer stride, see class Stride.
*
* \b Tip: to change the array of data mapped by a Map object, you can use the C++
* placement new syntax:
*
* Example: \include Map_placement_new.cpp
* Output: \verbinclude Map_placement_new.out
*
* This class is the return type of PlainObjectBase::Map() but can also be used directly.
*
* \sa PlainObjectBase::Map(), \ref TopicStorageOrders
*/
namespace internal {
template<typename PlainObjectType, int MapOptions, typename StrideType>
struct traits<Map<PlainObjectType, MapOptions, StrideType> >
: public traits<PlainObjectType>
{
typedef traits<PlainObjectType> TraitsBase;
typedef typename PlainObjectType::Index Index;
typedef typename PlainObjectType::Scalar Scalar;
enum {
InnerStrideAtCompileTime = StrideType::InnerStrideAtCompileTime == 0
? int(PlainObjectType::InnerStrideAtCompileTime)
: int(StrideType::InnerStrideAtCompileTime),
OuterStrideAtCompileTime = StrideType::OuterStrideAtCompileTime == 0
? int(PlainObjectType::OuterStrideAtCompileTime)
: int(StrideType::OuterStrideAtCompileTime),
HasNoInnerStride = InnerStrideAtCompileTime == 1,
HasNoOuterStride = StrideType::OuterStrideAtCompileTime == 0,
HasNoStride = HasNoInnerStride && HasNoOuterStride,
IsAligned = bool(EIGEN_ALIGN) && ((int(MapOptions)&Aligned)==Aligned),
IsDynamicSize = PlainObjectType::SizeAtCompileTime==Dynamic,
KeepsPacketAccess = bool(HasNoInnerStride)
&& ( bool(IsDynamicSize)
|| HasNoOuterStride
|| ( OuterStrideAtCompileTime!=Dynamic
&& ((static_cast<int>(sizeof(Scalar))*OuterStrideAtCompileTime)%16)==0 ) ),
Flags0 = TraitsBase::Flags & (~NestByRefBit),
Flags1 = IsAligned ? (int(Flags0) | AlignedBit) : (int(Flags0) & ~AlignedBit),
Flags2 = (bool(HasNoStride) || bool(PlainObjectType::IsVectorAtCompileTime))
? int(Flags1) : int(Flags1 & ~LinearAccessBit),
Flags3 = is_lvalue<PlainObjectType>::value ? int(Flags2) : (int(Flags2) & ~LvalueBit),
Flags = KeepsPacketAccess ? int(Flags3) : (int(Flags3) & ~PacketAccessBit)
};
private:
enum { Options }; // Expressions don't have Options
};
}
template<typename PlainObjectType, int MapOptions, typename StrideType> class Map
: public MapBase<Map<PlainObjectType, MapOptions, StrideType> >
{
public:
typedef MapBase<Map> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Map)
typedef typename Base::PointerType PointerType;
#if EIGEN2_SUPPORT_STAGE <= STAGE30_FULL_EIGEN3_API
typedef const Scalar* PointerArgType;
inline PointerType cast_to_pointer_type(PointerArgType ptr) { return const_cast<PointerType>(ptr); }
#else
typedef PointerType PointerArgType;
inline PointerType cast_to_pointer_type(PointerArgType ptr) { return ptr; }
#endif
inline Index innerStride() const
{
return StrideType::InnerStrideAtCompileTime != 0 ? m_stride.inner() : 1;
}
inline Index outerStride() const
{
return StrideType::OuterStrideAtCompileTime != 0 ? m_stride.outer()
: IsVectorAtCompileTime ? this->size()
: int(Flags)&RowMajorBit ? this->cols()
: this->rows();
}
/** Constructor in the fixed-size case.
*
* \param dataPtr pointer to the array to map
* \param a_stride optional Stride object, passing the strides.
*/
inline Map(PointerArgType dataPtr, const StrideType& a_stride = StrideType())
: Base(cast_to_pointer_type(dataPtr)), m_stride(a_stride)
{
PlainObjectType::Base::_check_template_params();
}
/** Constructor in the dynamic-size vector case.
*
* \param dataPtr pointer to the array to map
* \param a_size the size of the vector expression
* \param a_stride optional Stride object, passing the strides.
*/
inline Map(PointerArgType dataPtr, Index a_size, const StrideType& a_stride = StrideType())
: Base(cast_to_pointer_type(dataPtr), a_size), m_stride(a_stride)
{
PlainObjectType::Base::_check_template_params();
}
/** Constructor in the dynamic-size matrix case.
*
* \param dataPtr pointer to the array to map
* \param nbRows the number of rows of the matrix expression
* \param nbCols the number of columns of the matrix expression
* \param a_stride optional Stride object, passing the strides.
*/
inline Map(PointerArgType dataPtr, Index nbRows, Index nbCols, const StrideType& a_stride = StrideType())
: Base(cast_to_pointer_type(dataPtr), nbRows, nbCols), m_stride(a_stride)
{
PlainObjectType::Base::_check_template_params();
}
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
protected:
StrideType m_stride;
};
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
inline Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>
::Array(const Scalar *data)
{
this->_set_noalias(Eigen::Map<const Array>(data));
}
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
inline Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>
::Matrix(const Scalar *data)
{
this->_set_noalias(Eigen::Map<const Matrix>(data));
}
} // end namespace Eigen
#endif // EIGEN_MAP_H

View File

@ -0,0 +1,251 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MAPBASE_H
#define EIGEN_MAPBASE_H
#define EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived) \
EIGEN_STATIC_ASSERT((int(internal::traits<Derived>::Flags) & LinearAccessBit) || Derived::IsVectorAtCompileTime, \
YOU_ARE_TRYING_TO_USE_AN_INDEX_BASED_ACCESSOR_ON_AN_EXPRESSION_THAT_DOES_NOT_SUPPORT_THAT)
namespace Eigen {
/** \class MapBase
* \ingroup Core_Module
*
* \brief Base class for Map and Block expression with direct access
*
* \sa class Map, class Block
*/
template<typename Derived> class MapBase<Derived, ReadOnlyAccessors>
: public internal::dense_xpr_base<Derived>::type
{
public:
typedef typename internal::dense_xpr_base<Derived>::type Base;
enum {
RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
SizeAtCompileTime = Base::SizeAtCompileTime
};
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Index Index;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef typename internal::conditional<
bool(internal::is_lvalue<Derived>::value),
Scalar *,
const Scalar *>::type
PointerType;
using Base::derived;
// using Base::RowsAtCompileTime;
// using Base::ColsAtCompileTime;
// using Base::SizeAtCompileTime;
using Base::MaxRowsAtCompileTime;
using Base::MaxColsAtCompileTime;
using Base::MaxSizeAtCompileTime;
using Base::IsVectorAtCompileTime;
using Base::Flags;
using Base::IsRowMajor;
using Base::rows;
using Base::cols;
using Base::size;
using Base::coeff;
using Base::coeffRef;
using Base::lazyAssign;
using Base::eval;
using Base::innerStride;
using Base::outerStride;
using Base::rowStride;
using Base::colStride;
// bug 217 - compile error on ICC 11.1
using Base::operator=;
typedef typename Base::CoeffReturnType CoeffReturnType;
inline Index rows() const { return m_rows.value(); }
inline Index cols() const { return m_cols.value(); }
/** Returns a pointer to the first coefficient of the matrix or vector.
*
* \note When addressing this data, make sure to honor the strides returned by innerStride() and outerStride().
*
* \sa innerStride(), outerStride()
*/
inline const Scalar* data() const { return m_data; }
inline const Scalar& coeff(Index rowId, Index colId) const
{
return m_data[colId * colStride() + rowId * rowStride()];
}
inline const Scalar& coeff(Index index) const
{
EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived)
return m_data[index * innerStride()];
}
inline const Scalar& coeffRef(Index rowId, Index colId) const
{
return this->m_data[colId * colStride() + rowId * rowStride()];
}
inline const Scalar& coeffRef(Index index) const
{
EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived)
return this->m_data[index * innerStride()];
}
template<int LoadMode>
inline PacketScalar packet(Index rowId, Index colId) const
{
return internal::ploadt<PacketScalar, LoadMode>
(m_data + (colId * colStride() + rowId * rowStride()));
}
template<int LoadMode>
inline PacketScalar packet(Index index) const
{
EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived)
return internal::ploadt<PacketScalar, LoadMode>(m_data + index * innerStride());
}
explicit inline MapBase(PointerType dataPtr) : m_data(dataPtr), m_rows(RowsAtCompileTime), m_cols(ColsAtCompileTime)
{
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
checkSanity();
}
inline MapBase(PointerType dataPtr, Index vecSize)
: m_data(dataPtr),
m_rows(RowsAtCompileTime == Dynamic ? vecSize : Index(RowsAtCompileTime)),
m_cols(ColsAtCompileTime == Dynamic ? vecSize : Index(ColsAtCompileTime))
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
eigen_assert(vecSize >= 0);
eigen_assert(dataPtr == 0 || SizeAtCompileTime == Dynamic || SizeAtCompileTime == vecSize);
checkSanity();
}
inline MapBase(PointerType dataPtr, Index nbRows, Index nbCols)
: m_data(dataPtr), m_rows(nbRows), m_cols(nbCols)
{
eigen_assert( (dataPtr == 0)
|| ( nbRows >= 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == nbRows)
&& nbCols >= 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == nbCols)));
checkSanity();
}
#ifdef EIGEN_MAPBASE_PLUGIN
#include EIGEN_MAPBASE_PLUGIN
#endif
protected:
void checkSanity() const
{
EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(internal::traits<Derived>::Flags&PacketAccessBit,
internal::inner_stride_at_compile_time<Derived>::ret==1),
PACKET_ACCESS_REQUIRES_TO_HAVE_INNER_STRIDE_FIXED_TO_1);
eigen_assert(EIGEN_IMPLIES(internal::traits<Derived>::Flags&AlignedBit, (size_t(m_data) % 16) == 0)
&& "input pointer is not aligned on a 16 byte boundary");
}
PointerType m_data;
const internal::variable_if_dynamic<Index, RowsAtCompileTime> m_rows;
const internal::variable_if_dynamic<Index, ColsAtCompileTime> m_cols;
};
template<typename Derived> class MapBase<Derived, WriteAccessors>
: public MapBase<Derived, ReadOnlyAccessors>
{
typedef MapBase<Derived, ReadOnlyAccessors> ReadOnlyMapBase;
public:
typedef MapBase<Derived, ReadOnlyAccessors> Base;
typedef typename Base::Scalar Scalar;
typedef typename Base::PacketScalar PacketScalar;
typedef typename Base::Index Index;
typedef typename Base::PointerType PointerType;
using Base::derived;
using Base::rows;
using Base::cols;
using Base::size;
using Base::coeff;
using Base::coeffRef;
using Base::innerStride;
using Base::outerStride;
using Base::rowStride;
using Base::colStride;
typedef typename internal::conditional<
internal::is_lvalue<Derived>::value,
Scalar,
const Scalar
>::type ScalarWithConstIfNotLvalue;
inline const Scalar* data() const { return this->m_data; }
inline ScalarWithConstIfNotLvalue* data() { return this->m_data; } // no const-cast here so non-const-correct code will give a compile error
inline ScalarWithConstIfNotLvalue& coeffRef(Index row, Index col)
{
return this->m_data[col * colStride() + row * rowStride()];
}
inline ScalarWithConstIfNotLvalue& coeffRef(Index index)
{
EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived)
return this->m_data[index * innerStride()];
}
template<int StoreMode>
inline void writePacket(Index row, Index col, const PacketScalar& val)
{
internal::pstoret<Scalar, PacketScalar, StoreMode>
(this->m_data + (col * colStride() + row * rowStride()), val);
}
template<int StoreMode>
inline void writePacket(Index index, const PacketScalar& val)
{
EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived)
internal::pstoret<Scalar, PacketScalar, StoreMode>
(this->m_data + index * innerStride(), val);
}
explicit inline MapBase(PointerType dataPtr) : Base(dataPtr) {}
inline MapBase(PointerType dataPtr, Index vecSize) : Base(dataPtr, vecSize) {}
inline MapBase(PointerType dataPtr, Index nbRows, Index nbCols) : Base(dataPtr, nbRows, nbCols) {}
Derived& operator=(const MapBase& other)
{
ReadOnlyMapBase::Base::operator=(other);
return derived();
}
// In theory we could simply refer to Base:Base::operator=, but MSVC does not like Base::Base,
// see bugs 821 and 920.
using ReadOnlyMapBase::Base::operator=;
};
#undef EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS
} // end namespace Eigen
#endif // EIGEN_MAPBASE_H

View File

@ -0,0 +1,768 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MATHFUNCTIONS_H
#define EIGEN_MATHFUNCTIONS_H
namespace Eigen {
namespace internal {
/** \internal \struct global_math_functions_filtering_base
*
* What it does:
* Defines a typedef 'type' as follows:
* - if type T has a member typedef Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl, then
* global_math_functions_filtering_base<T>::type is a typedef for it.
* - otherwise, global_math_functions_filtering_base<T>::type is a typedef for T.
*
* How it's used:
* To allow to defined the global math functions (like sin...) in certain cases, like the Array expressions.
* When you do sin(array1+array2), the object array1+array2 has a complicated expression type, all what you want to know
* is that it inherits ArrayBase. So we implement a partial specialization of sin_impl for ArrayBase<Derived>.
* So we must make sure to use sin_impl<ArrayBase<Derived> > and not sin_impl<Derived>, otherwise our partial specialization
* won't be used. How does sin know that? That's exactly what global_math_functions_filtering_base tells it.
*
* How it's implemented:
* SFINAE in the style of enable_if. Highly susceptible of breaking compilers. With GCC, it sure does work, but if you replace
* the typename dummy by an integer template parameter, it doesn't work anymore!
*/
template<typename T, typename dummy = void>
struct global_math_functions_filtering_base
{
typedef T type;
};
template<typename T> struct always_void { typedef void type; };
template<typename T>
struct global_math_functions_filtering_base
<T,
typename always_void<typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl>::type
>
{
typedef typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl type;
};
#define EIGEN_MATHFUNC_IMPL(func, scalar) Eigen::internal::func##_impl<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>
#define EIGEN_MATHFUNC_RETVAL(func, scalar) typename Eigen::internal::func##_retval<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>::type
/****************************************************************************
* Implementation of real *
****************************************************************************/
template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
struct real_default_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
static inline RealScalar run(const Scalar& x)
{
return x;
}
};
template<typename Scalar>
struct real_default_impl<Scalar,true>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
static inline RealScalar run(const Scalar& x)
{
using std::real;
return real(x);
}
};
template<typename Scalar> struct real_impl : real_default_impl<Scalar> {};
template<typename Scalar>
struct real_retval
{
typedef typename NumTraits<Scalar>::Real type;
};
/****************************************************************************
* Implementation of imag *
****************************************************************************/
template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
struct imag_default_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
static inline RealScalar run(const Scalar&)
{
return RealScalar(0);
}
};
template<typename Scalar>
struct imag_default_impl<Scalar,true>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
static inline RealScalar run(const Scalar& x)
{
using std::imag;
return imag(x);
}
};
template<typename Scalar> struct imag_impl : imag_default_impl<Scalar> {};
template<typename Scalar>
struct imag_retval
{
typedef typename NumTraits<Scalar>::Real type;
};
/****************************************************************************
* Implementation of real_ref *
****************************************************************************/
template<typename Scalar>
struct real_ref_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
static inline RealScalar& run(Scalar& x)
{
return reinterpret_cast<RealScalar*>(&x)[0];
}
static inline const RealScalar& run(const Scalar& x)
{
return reinterpret_cast<const RealScalar*>(&x)[0];
}
};
template<typename Scalar>
struct real_ref_retval
{
typedef typename NumTraits<Scalar>::Real & type;
};
/****************************************************************************
* Implementation of imag_ref *
****************************************************************************/
template<typename Scalar, bool IsComplex>
struct imag_ref_default_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
static inline RealScalar& run(Scalar& x)
{
return reinterpret_cast<RealScalar*>(&x)[1];
}
static inline const RealScalar& run(const Scalar& x)
{
return reinterpret_cast<RealScalar*>(&x)[1];
}
};
template<typename Scalar>
struct imag_ref_default_impl<Scalar, false>
{
static inline Scalar run(Scalar&)
{
return Scalar(0);
}
static inline const Scalar run(const Scalar&)
{
return Scalar(0);
}
};
template<typename Scalar>
struct imag_ref_impl : imag_ref_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};
template<typename Scalar>
struct imag_ref_retval
{
typedef typename NumTraits<Scalar>::Real & type;
};
/****************************************************************************
* Implementation of conj *
****************************************************************************/
template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
struct conj_impl
{
static inline Scalar run(const Scalar& x)
{
return x;
}
};
template<typename Scalar>
struct conj_impl<Scalar,true>
{
static inline Scalar run(const Scalar& x)
{
using std::conj;
return conj(x);
}
};
template<typename Scalar>
struct conj_retval
{
typedef Scalar type;
};
/****************************************************************************
* Implementation of abs2 *
****************************************************************************/
template<typename Scalar>
struct abs2_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
static inline RealScalar run(const Scalar& x)
{
return x*x;
}
};
template<typename RealScalar>
struct abs2_impl<std::complex<RealScalar> >
{
static inline RealScalar run(const std::complex<RealScalar>& x)
{
return real(x)*real(x) + imag(x)*imag(x);
}
};
template<typename Scalar>
struct abs2_retval
{
typedef typename NumTraits<Scalar>::Real type;
};
/****************************************************************************
* Implementation of norm1 *
****************************************************************************/
template<typename Scalar, bool IsComplex>
struct norm1_default_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
static inline RealScalar run(const Scalar& x)
{
using std::abs;
return abs(real(x)) + abs(imag(x));
}
};
template<typename Scalar>
struct norm1_default_impl<Scalar, false>
{
static inline Scalar run(const Scalar& x)
{
using std::abs;
return abs(x);
}
};
template<typename Scalar>
struct norm1_impl : norm1_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};
template<typename Scalar>
struct norm1_retval
{
typedef typename NumTraits<Scalar>::Real type;
};
/****************************************************************************
* Implementation of hypot *
****************************************************************************/
template<typename Scalar>
struct hypot_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
static inline RealScalar run(const Scalar& x, const Scalar& y)
{
using std::max;
using std::min;
using std::abs;
using std::sqrt;
RealScalar _x = abs(x);
RealScalar _y = abs(y);
RealScalar p = (max)(_x, _y);
if(p==RealScalar(0)) return RealScalar(0);
RealScalar q = (min)(_x, _y);
RealScalar qp = q/p;
return p * sqrt(RealScalar(1) + qp*qp);
}
};
template<typename Scalar>
struct hypot_retval
{
typedef typename NumTraits<Scalar>::Real type;
};
/****************************************************************************
* Implementation of cast *
****************************************************************************/
template<typename OldType, typename NewType>
struct cast_impl
{
static inline NewType run(const OldType& x)
{
return static_cast<NewType>(x);
}
};
// here, for once, we're plainly returning NewType: we don't want cast to do weird things.
template<typename OldType, typename NewType>
inline NewType cast(const OldType& x)
{
return cast_impl<OldType, NewType>::run(x);
}
/****************************************************************************
* Implementation of atanh2 *
****************************************************************************/
template<typename Scalar, bool IsInteger>
struct atanh2_default_impl
{
typedef Scalar retval;
typedef typename NumTraits<Scalar>::Real RealScalar;
static inline Scalar run(const Scalar& x, const Scalar& y)
{
using std::abs;
using std::log;
using std::sqrt;
Scalar z = x / y;
if (y == Scalar(0) || abs(z) > sqrt(NumTraits<RealScalar>::epsilon()))
return RealScalar(0.5) * log((y + x) / (y - x));
else
return z + z*z*z / RealScalar(3);
}
};
template<typename Scalar>
struct atanh2_default_impl<Scalar, true>
{
static inline Scalar run(const Scalar&, const Scalar&)
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
return Scalar(0);
}
};
template<typename Scalar>
struct atanh2_impl : atanh2_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};
template<typename Scalar>
struct atanh2_retval
{
typedef Scalar type;
};
/****************************************************************************
* Implementation of pow *
****************************************************************************/
template<typename Scalar, bool IsInteger>
struct pow_default_impl
{
typedef Scalar retval;
static inline Scalar run(const Scalar& x, const Scalar& y)
{
using std::pow;
return pow(x, y);
}
};
template<typename Scalar>
struct pow_default_impl<Scalar, true>
{
static inline Scalar run(Scalar x, Scalar y)
{
Scalar res(1);
eigen_assert(!NumTraits<Scalar>::IsSigned || y >= 0);
if(y & 1) res *= x;
y >>= 1;
while(y)
{
x *= x;
if(y&1) res *= x;
y >>= 1;
}
return res;
}
};
template<typename Scalar>
struct pow_impl : pow_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};
template<typename Scalar>
struct pow_retval
{
typedef Scalar type;
};
/****************************************************************************
* Implementation of random *
****************************************************************************/
template<typename Scalar,
bool IsComplex,
bool IsInteger>
struct random_default_impl {};
template<typename Scalar>
struct random_impl : random_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};
template<typename Scalar>
struct random_retval
{
typedef Scalar type;
};
template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y);
template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random();
template<typename Scalar>
struct random_default_impl<Scalar, false, false>
{
static inline Scalar run(const Scalar& x, const Scalar& y)
{
return x + (y-x) * Scalar(std::rand()) / Scalar(RAND_MAX);
}
static inline Scalar run()
{
return run(Scalar(NumTraits<Scalar>::IsSigned ? -1 : 0), Scalar(1));
}
};
enum {
floor_log2_terminate,
floor_log2_move_up,
floor_log2_move_down,
floor_log2_bogus
};
template<unsigned int n, int lower, int upper> struct floor_log2_selector
{
enum { middle = (lower + upper) / 2,
value = (upper <= lower + 1) ? int(floor_log2_terminate)
: (n < (1 << middle)) ? int(floor_log2_move_down)
: (n==0) ? int(floor_log2_bogus)
: int(floor_log2_move_up)
};
};
template<unsigned int n,
int lower = 0,
int upper = sizeof(unsigned int) * CHAR_BIT - 1,
int selector = floor_log2_selector<n, lower, upper>::value>
struct floor_log2 {};
template<unsigned int n, int lower, int upper>
struct floor_log2<n, lower, upper, floor_log2_move_down>
{
enum { value = floor_log2<n, lower, floor_log2_selector<n, lower, upper>::middle>::value };
};
template<unsigned int n, int lower, int upper>
struct floor_log2<n, lower, upper, floor_log2_move_up>
{
enum { value = floor_log2<n, floor_log2_selector<n, lower, upper>::middle, upper>::value };
};
template<unsigned int n, int lower, int upper>
struct floor_log2<n, lower, upper, floor_log2_terminate>
{
enum { value = (n >= ((unsigned int)(1) << (lower+1))) ? lower+1 : lower };
};
template<unsigned int n, int lower, int upper>
struct floor_log2<n, lower, upper, floor_log2_bogus>
{
// no value, error at compile time
};
template<typename Scalar>
struct random_default_impl<Scalar, false, true>
{
typedef typename NumTraits<Scalar>::NonInteger NonInteger;
static inline Scalar run(const Scalar& x, const Scalar& y)
{
return x + Scalar((NonInteger(y)-x+1) * std::rand() / (RAND_MAX + NonInteger(1)));
}
static inline Scalar run()
{
#ifdef EIGEN_MAKING_DOCS
return run(Scalar(NumTraits<Scalar>::IsSigned ? -10 : 0), Scalar(10));
#else
enum { rand_bits = floor_log2<(unsigned int)(RAND_MAX)+1>::value,
scalar_bits = sizeof(Scalar) * CHAR_BIT,
shift = EIGEN_PLAIN_ENUM_MAX(0, int(rand_bits) - int(scalar_bits)),
offset = NumTraits<Scalar>::IsSigned ? (1 << (EIGEN_PLAIN_ENUM_MIN(rand_bits,scalar_bits)-1)) : 0
};
return Scalar((std::rand() >> shift) - offset);
#endif
}
};
template<typename Scalar>
struct random_default_impl<Scalar, true, false>
{
static inline Scalar run(const Scalar& x, const Scalar& y)
{
return Scalar(random(real(x), real(y)),
random(imag(x), imag(y)));
}
static inline Scalar run()
{
typedef typename NumTraits<Scalar>::Real RealScalar;
return Scalar(random<RealScalar>(), random<RealScalar>());
}
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y)
{
return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(x, y);
}
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random()
{
return EIGEN_MATHFUNC_IMPL(random, Scalar)::run();
}
} // end namespace internal
/****************************************************************************
* Generic math function *
****************************************************************************/
namespace numext {
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x);
}
template<typename Scalar>
inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) >::type real_ref(const Scalar& x)
{
return internal::real_ref_impl<Scalar>::run(x);
}
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) real_ref(Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x);
}
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) imag(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x);
}
template<typename Scalar>
inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) >::type imag_ref(const Scalar& x)
{
return internal::imag_ref_impl<Scalar>::run(x);
}
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) imag_ref(Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x);
}
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x);
}
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x);
}
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) norm1(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x);
}
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar& y)
{
return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y);
}
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(atanh2, Scalar) atanh2(const Scalar& x, const Scalar& y)
{
return EIGEN_MATHFUNC_IMPL(atanh2, Scalar)::run(x, y);
}
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(pow, Scalar) pow(const Scalar& x, const Scalar& y)
{
return EIGEN_MATHFUNC_IMPL(pow, Scalar)::run(x, y);
}
// std::isfinite is non standard, so let's define our own version,
// even though it is not very efficient.
template<typename T> bool (isfinite)(const T& x)
{
return x<NumTraits<T>::highest() && x>NumTraits<T>::lowest();
}
} // end namespace numext
namespace internal {
/****************************************************************************
* Implementation of fuzzy comparisons *
****************************************************************************/
template<typename Scalar,
bool IsComplex,
bool IsInteger>
struct scalar_fuzzy_default_impl {};
template<typename Scalar>
struct scalar_fuzzy_default_impl<Scalar, false, false>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
template<typename OtherScalar>
static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
{
using std::abs;
return abs(x) <= abs(y) * prec;
}
static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
{
using std::min;
using std::abs;
return abs(x - y) <= (min)(abs(x), abs(y)) * prec;
}
static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar& prec)
{
return x <= y || isApprox(x, y, prec);
}
};
template<typename Scalar>
struct scalar_fuzzy_default_impl<Scalar, false, true>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
template<typename OtherScalar>
static inline bool isMuchSmallerThan(const Scalar& x, const Scalar&, const RealScalar&)
{
return x == Scalar(0);
}
static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar&)
{
return x == y;
}
static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar&)
{
return x <= y;
}
};
template<typename Scalar>
struct scalar_fuzzy_default_impl<Scalar, true, false>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
template<typename OtherScalar>
static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
{
return numext::abs2(x) <= numext::abs2(y) * prec * prec;
}
static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
{
using std::min;
return numext::abs2(x - y) <= (min)(numext::abs2(x), numext::abs2(y)) * prec * prec;
}
};
template<typename Scalar>
struct scalar_fuzzy_impl : scalar_fuzzy_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};
template<typename Scalar, typename OtherScalar>
inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y,
const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
{
return scalar_fuzzy_impl<Scalar>::template isMuchSmallerThan<OtherScalar>(x, y, precision);
}
template<typename Scalar>
inline bool isApprox(const Scalar& x, const Scalar& y,
const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
{
return scalar_fuzzy_impl<Scalar>::isApprox(x, y, precision);
}
template<typename Scalar>
inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y,
const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
{
return scalar_fuzzy_impl<Scalar>::isApproxOrLessThan(x, y, precision);
}
/******************************************
*** The special case of the bool type ***
******************************************/
template<> struct random_impl<bool>
{
static inline bool run()
{
return random<int>(0,1)==0 ? false : true;
}
};
template<> struct scalar_fuzzy_impl<bool>
{
typedef bool RealScalar;
template<typename OtherScalar>
static inline bool isMuchSmallerThan(const bool& x, const bool&, const bool&)
{
return !x;
}
static inline bool isApprox(bool x, bool y, bool)
{
return x == y;
}
static inline bool isApproxOrLessThan(const bool& x, const bool& y, const bool&)
{
return (!x) || y;
}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_MATHFUNCTIONS_H

420
lib/Eigen/src/Core/Matrix.h Normal file
View File

@ -0,0 +1,420 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MATRIX_H
#define EIGEN_MATRIX_H
namespace Eigen {
/** \class Matrix
* \ingroup Core_Module
*
* \brief The matrix class, also used for vectors and row-vectors
*
* The %Matrix class is the work-horse for all \em dense (\ref dense "note") matrices and vectors within Eigen.
* Vectors are matrices with one column, and row-vectors are matrices with one row.
*
* The %Matrix class encompasses \em both fixed-size and dynamic-size objects (\ref fixedsize "note").
*
* The first three template parameters are required:
* \tparam _Scalar \anchor matrix_tparam_scalar Numeric type, e.g. float, double, int or std::complex<float>.
* User defined sclar types are supported as well (see \ref user_defined_scalars "here").
* \tparam _Rows Number of rows, or \b Dynamic
* \tparam _Cols Number of columns, or \b Dynamic
*
* The remaining template parameters are optional -- in most cases you don't have to worry about them.
* \tparam _Options \anchor matrix_tparam_options A combination of either \b #RowMajor or \b #ColMajor, and of either
* \b #AutoAlign or \b #DontAlign.
* The former controls \ref TopicStorageOrders "storage order", and defaults to column-major. The latter controls alignment, which is required
* for vectorization. It defaults to aligning matrices except for fixed sizes that aren't a multiple of the packet size.
* \tparam _MaxRows Maximum number of rows. Defaults to \a _Rows (\ref maxrows "note").
* \tparam _MaxCols Maximum number of columns. Defaults to \a _Cols (\ref maxrows "note").
*
* Eigen provides a number of typedefs covering the usual cases. Here are some examples:
*
* \li \c Matrix2d is a 2x2 square matrix of doubles (\c Matrix<double, 2, 2>)
* \li \c Vector4f is a vector of 4 floats (\c Matrix<float, 4, 1>)
* \li \c RowVector3i is a row-vector of 3 ints (\c Matrix<int, 1, 3>)
*
* \li \c MatrixXf is a dynamic-size matrix of floats (\c Matrix<float, Dynamic, Dynamic>)
* \li \c VectorXf is a dynamic-size vector of floats (\c Matrix<float, Dynamic, 1>)
*
* \li \c Matrix2Xf is a partially fixed-size (dynamic-size) matrix of floats (\c Matrix<float, 2, Dynamic>)
* \li \c MatrixX3d is a partially dynamic-size (fixed-size) matrix of double (\c Matrix<double, Dynamic, 3>)
*
* See \link matrixtypedefs this page \endlink for a complete list of predefined \em %Matrix and \em Vector typedefs.
*
* You can access elements of vectors and matrices using normal subscripting:
*
* \code
* Eigen::VectorXd v(10);
* v[0] = 0.1;
* v[1] = 0.2;
* v(0) = 0.3;
* v(1) = 0.4;
*
* Eigen::MatrixXi m(10, 10);
* m(0, 1) = 1;
* m(0, 2) = 2;
* m(0, 3) = 3;
* \endcode
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_MATRIX_PLUGIN.
*
* <i><b>Some notes:</b></i>
*
* <dl>
* <dt><b>\anchor dense Dense versus sparse:</b></dt>
* <dd>This %Matrix class handles dense, not sparse matrices and vectors. For sparse matrices and vectors, see the Sparse module.
*
* Dense matrices and vectors are plain usual arrays of coefficients. All the coefficients are stored, in an ordinary contiguous array.
* This is unlike Sparse matrices and vectors where the coefficients are stored as a list of nonzero coefficients.</dd>
*
* <dt><b>\anchor fixedsize Fixed-size versus dynamic-size:</b></dt>
* <dd>Fixed-size means that the numbers of rows and columns are known are compile-time. In this case, Eigen allocates the array
* of coefficients as a fixed-size array, as a class member. This makes sense for very small matrices, typically up to 4x4, sometimes up
* to 16x16. Larger matrices should be declared as dynamic-size even if one happens to know their size at compile-time.
*
* Dynamic-size means that the numbers of rows or columns are not necessarily known at compile-time. In this case they are runtime
* variables, and the array of coefficients is allocated dynamically on the heap.
*
* Note that \em dense matrices, be they Fixed-size or Dynamic-size, <em>do not</em> expand dynamically in the sense of a std::map.
* If you want this behavior, see the Sparse module.</dd>
*
* <dt><b>\anchor maxrows _MaxRows and _MaxCols:</b></dt>
* <dd>In most cases, one just leaves these parameters to the default values.
* These parameters mean the maximum size of rows and columns that the matrix may have. They are useful in cases
* when the exact numbers of rows and columns are not known are compile-time, but it is known at compile-time that they cannot
* exceed a certain value. This happens when taking dynamic-size blocks inside fixed-size matrices: in this case _MaxRows and _MaxCols
* are the dimensions of the original matrix, while _Rows and _Cols are Dynamic.</dd>
* </dl>
*
* \see MatrixBase for the majority of the API methods for matrices, \ref TopicClassHierarchy,
* \ref TopicStorageOrders
*/
namespace internal {
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
{
typedef _Scalar Scalar;
typedef Dense StorageKind;
typedef DenseIndex Index;
typedef MatrixXpr XprKind;
enum {
RowsAtCompileTime = _Rows,
ColsAtCompileTime = _Cols,
MaxRowsAtCompileTime = _MaxRows,
MaxColsAtCompileTime = _MaxCols,
Flags = compute_matrix_flags<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::ret,
CoeffReadCost = NumTraits<Scalar>::ReadCost,
Options = _Options,
InnerStrideAtCompileTime = 1,
OuterStrideAtCompileTime = (Options&RowMajor) ? ColsAtCompileTime : RowsAtCompileTime
};
};
}
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
class Matrix
: public PlainObjectBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
{
public:
/** \brief Base class typedef.
* \sa PlainObjectBase
*/
typedef PlainObjectBase<Matrix> Base;
enum { Options = _Options };
EIGEN_DENSE_PUBLIC_INTERFACE(Matrix)
typedef typename Base::PlainObject PlainObject;
using Base::base;
using Base::coeffRef;
/**
* \brief Assigns matrices to each other.
*
* \note This is a special case of the templated operator=. Its purpose is
* to prevent a default operator= from hiding the templated operator=.
*
* \callgraph
*/
EIGEN_STRONG_INLINE Matrix& operator=(const Matrix& other)
{
return Base::_set(other);
}
/** \internal
* \brief Copies the value of the expression \a other into \c *this with automatic resizing.
*
* *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
* it will be initialized.
*
* Note that copying a row-vector into a vector (and conversely) is allowed.
* The resizing, if any, is then done in the appropriate way so that row-vectors
* remain row-vectors and vectors remain vectors.
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE Matrix& operator=(const MatrixBase<OtherDerived>& other)
{
return Base::_set(other);
}
/* Here, doxygen failed to copy the brief information when using \copydoc */
/**
* \brief Copies the generic expression \a other into *this.
* \copydetails DenseBase::operator=(const EigenBase<OtherDerived> &other)
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE Matrix& operator=(const EigenBase<OtherDerived> &other)
{
return Base::operator=(other);
}
template<typename OtherDerived>
EIGEN_STRONG_INLINE Matrix& operator=(const ReturnByValue<OtherDerived>& func)
{
return Base::operator=(func);
}
/** \brief Default constructor.
*
* For fixed-size matrices, does nothing.
*
* For dynamic-size matrices, creates an empty matrix of size 0. Does not allocate any array. Such a matrix
* is called a null matrix. This constructor is the unique way to create null matrices: resizing
* a matrix to 0 is not supported.
*
* \sa resize(Index,Index)
*/
EIGEN_STRONG_INLINE Matrix() : Base()
{
Base::_check_template_params();
EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
}
// FIXME is it still needed
Matrix(internal::constructor_without_unaligned_array_assert)
: Base(internal::constructor_without_unaligned_array_assert())
{ Base::_check_template_params(); EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED }
#ifdef EIGEN_HAVE_RVALUE_REFERENCES
Matrix(Matrix&& other)
: Base(std::move(other))
{
Base::_check_template_params();
if (RowsAtCompileTime!=Dynamic && ColsAtCompileTime!=Dynamic)
Base::_set_noalias(other);
}
Matrix& operator=(Matrix&& other)
{
other.swap(*this);
return *this;
}
#endif
/** \brief Constructs a vector or row-vector with given dimension. \only_for_vectors
*
* Note that this is only useful for dynamic-size vectors. For fixed-size vectors,
* it is redundant to pass the dimension here, so it makes more sense to use the default
* constructor Matrix() instead.
*/
EIGEN_STRONG_INLINE explicit Matrix(Index dim)
: Base(dim, RowsAtCompileTime == 1 ? 1 : dim, ColsAtCompileTime == 1 ? 1 : dim)
{
Base::_check_template_params();
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Matrix)
eigen_assert(dim >= 0);
eigen_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == dim);
EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename T0, typename T1>
EIGEN_STRONG_INLINE Matrix(const T0& x, const T1& y)
{
Base::_check_template_params();
Base::template _init2<T0,T1>(x, y);
}
#else
/** \brief Constructs an uninitialized matrix with \a rows rows and \a cols columns.
*
* This is useful for dynamic-size matrices. For fixed-size matrices,
* it is redundant to pass these parameters, so one should use the default constructor
* Matrix() instead. */
Matrix(Index rows, Index cols);
/** \brief Constructs an initialized 2D vector with given coefficients */
Matrix(const Scalar& x, const Scalar& y);
#endif
/** \brief Constructs an initialized 3D vector with given coefficients */
EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z)
{
Base::_check_template_params();
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 3)
m_storage.data()[0] = x;
m_storage.data()[1] = y;
m_storage.data()[2] = z;
}
/** \brief Constructs an initialized 4D vector with given coefficients */
EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z, const Scalar& w)
{
Base::_check_template_params();
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 4)
m_storage.data()[0] = x;
m_storage.data()[1] = y;
m_storage.data()[2] = z;
m_storage.data()[3] = w;
}
explicit Matrix(const Scalar *data);
/** \brief Constructor copying the value of the expression \a other */
template<typename OtherDerived>
EIGEN_STRONG_INLINE Matrix(const MatrixBase<OtherDerived>& other)
: Base(other.rows() * other.cols(), other.rows(), other.cols())
{
// This test resides here, to bring the error messages closer to the user. Normally, these checks
// are performed deeply within the library, thus causing long and scary error traces.
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
Base::_check_template_params();
Base::_set_noalias(other);
}
/** \brief Copy constructor */
EIGEN_STRONG_INLINE Matrix(const Matrix& other)
: Base(other.rows() * other.cols(), other.rows(), other.cols())
{
Base::_check_template_params();
Base::_set_noalias(other);
}
/** \brief Copy constructor with in-place evaluation */
template<typename OtherDerived>
EIGEN_STRONG_INLINE Matrix(const ReturnByValue<OtherDerived>& other)
{
Base::_check_template_params();
Base::resize(other.rows(), other.cols());
other.evalTo(*this);
}
/** \brief Copy constructor for generic expressions.
* \sa MatrixBase::operator=(const EigenBase<OtherDerived>&)
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE Matrix(const EigenBase<OtherDerived> &other)
: Base(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols())
{
Base::_check_template_params();
Base::_resize_to_match(other);
// FIXME/CHECK: isn't *this = other.derived() more efficient. it allows to
// go for pure _set() implementations, right?
*this = other;
}
/** \internal
* \brief Override MatrixBase::swap() since for dynamic-sized matrices
* of same type it is enough to swap the data pointers.
*/
template<typename OtherDerived>
void swap(MatrixBase<OtherDerived> const & other)
{ this->_swap(other.derived()); }
inline Index innerStride() const { return 1; }
inline Index outerStride() const { return this->innerSize(); }
/////////// Geometry module ///////////
template<typename OtherDerived>
explicit Matrix(const RotationBase<OtherDerived,ColsAtCompileTime>& r);
template<typename OtherDerived>
Matrix& operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r);
#ifdef EIGEN2_SUPPORT
template<typename OtherDerived>
explicit Matrix(const eigen2_RotationBase<OtherDerived,ColsAtCompileTime>& r);
template<typename OtherDerived>
Matrix& operator=(const eigen2_RotationBase<OtherDerived,ColsAtCompileTime>& r);
#endif
// allow to extend Matrix outside Eigen
#ifdef EIGEN_MATRIX_PLUGIN
#include EIGEN_MATRIX_PLUGIN
#endif
protected:
template <typename Derived, typename OtherDerived, bool IsVector>
friend struct internal::conservative_resize_like_impl;
using Base::m_storage;
};
/** \defgroup matrixtypedefs Global matrix typedefs
*
* \ingroup Core_Module
*
* Eigen defines several typedef shortcuts for most common matrix and vector types.
*
* The general patterns are the following:
*
* \c MatrixSizeType where \c Size can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size,
* and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd
* for complex double.
*
* For example, \c Matrix3d is a fixed-size 3x3 matrix type of doubles, and \c MatrixXf is a dynamic-size matrix of floats.
*
* There are also \c VectorSizeType and \c RowVectorSizeType which are self-explanatory. For example, \c Vector4cf is
* a fixed-size vector of 4 complex floats.
*
* \sa class Matrix
*/
#define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \
/** \ingroup matrixtypedefs */ \
typedef Matrix<Type, Size, Size> Matrix##SizeSuffix##TypeSuffix; \
/** \ingroup matrixtypedefs */ \
typedef Matrix<Type, Size, 1> Vector##SizeSuffix##TypeSuffix; \
/** \ingroup matrixtypedefs */ \
typedef Matrix<Type, 1, Size> RowVector##SizeSuffix##TypeSuffix;
#define EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, Size) \
/** \ingroup matrixtypedefs */ \
typedef Matrix<Type, Size, Dynamic> Matrix##Size##X##TypeSuffix; \
/** \ingroup matrixtypedefs */ \
typedef Matrix<Type, Dynamic, Size> Matrix##X##Size##TypeSuffix;
#define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X) \
EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 2) \
EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 3) \
EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 4)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int, i)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float, f)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(double, d)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<float>, cf)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<double>, cd)
#undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES
#undef EIGEN_MAKE_TYPEDEFS
#undef EIGEN_MAKE_FIXED_TYPEDEFS
} // end namespace Eigen
#endif // EIGEN_MATRIX_H

View File

@ -0,0 +1,563 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MATRIXBASE_H
#define EIGEN_MATRIXBASE_H
namespace Eigen {
/** \class MatrixBase
* \ingroup Core_Module
*
* \brief Base class for all dense matrices, vectors, and expressions
*
* This class is the base that is inherited by all matrix, vector, and related expression
* types. Most of the Eigen API is contained in this class, and its base classes. Other important
* classes for the Eigen API are Matrix, and VectorwiseOp.
*
* Note that some methods are defined in other modules such as the \ref LU_Module LU module
* for all functions related to matrix inversions.
*
* \tparam Derived is the derived type, e.g. a matrix type, or an expression, etc.
*
* When writing a function taking Eigen objects as argument, if you want your function
* to take as argument any matrix, vector, or expression, just let it take a
* MatrixBase argument. As an example, here is a function printFirstRow which, given
* a matrix, vector, or expression \a x, prints the first row of \a x.
*
* \code
template<typename Derived>
void printFirstRow(const Eigen::MatrixBase<Derived>& x)
{
cout << x.row(0) << endl;
}
* \endcode
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_MATRIXBASE_PLUGIN.
*
* \sa \ref TopicClassHierarchy
*/
template<typename Derived> class MatrixBase
: public DenseBase<Derived>
{
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef MatrixBase StorageBaseType;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Index Index;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef DenseBase<Derived> Base;
using Base::RowsAtCompileTime;
using Base::ColsAtCompileTime;
using Base::SizeAtCompileTime;
using Base::MaxRowsAtCompileTime;
using Base::MaxColsAtCompileTime;
using Base::MaxSizeAtCompileTime;
using Base::IsVectorAtCompileTime;
using Base::Flags;
using Base::CoeffReadCost;
using Base::derived;
using Base::const_cast_derived;
using Base::rows;
using Base::cols;
using Base::size;
using Base::coeff;
using Base::coeffRef;
using Base::lazyAssign;
using Base::eval;
using Base::operator+=;
using Base::operator-=;
using Base::operator*=;
using Base::operator/=;
typedef typename Base::CoeffReturnType CoeffReturnType;
typedef typename Base::ConstTransposeReturnType ConstTransposeReturnType;
typedef typename Base::RowXpr RowXpr;
typedef typename Base::ColXpr ColXpr;
#endif // not EIGEN_PARSED_BY_DOXYGEN
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** type of the equivalent square matrix */
typedef Matrix<Scalar,EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime),
EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime)> SquareMatrixType;
#endif // not EIGEN_PARSED_BY_DOXYGEN
/** \returns the size of the main diagonal, which is min(rows(),cols()).
* \sa rows(), cols(), SizeAtCompileTime. */
inline Index diagonalSize() const { return (std::min)(rows(),cols()); }
/** \brief The plain matrix type corresponding to this expression.
*
* This is not necessarily exactly the return type of eval(). In the case of plain matrices,
* the return type of eval() is a const reference to a matrix, not a matrix! It is however guaranteed
* that the return type of eval() is either PlainObject or const PlainObject&.
*/
typedef Matrix<typename internal::traits<Derived>::Scalar,
internal::traits<Derived>::RowsAtCompileTime,
internal::traits<Derived>::ColsAtCompileTime,
AutoAlign | (internal::traits<Derived>::Flags&RowMajorBit ? RowMajor : ColMajor),
internal::traits<Derived>::MaxRowsAtCompileTime,
internal::traits<Derived>::MaxColsAtCompileTime
> PlainObject;
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal Represents a matrix with all coefficients equal to one another*/
typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Derived> ConstantReturnType;
/** \internal the return type of MatrixBase::adjoint() */
typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, ConstTransposeReturnType>,
ConstTransposeReturnType
>::type AdjointReturnType;
/** \internal Return type of eigenvalues() */
typedef Matrix<std::complex<RealScalar>, internal::traits<Derived>::ColsAtCompileTime, 1, ColMajor> EigenvaluesReturnType;
/** \internal the return type of identity */
typedef CwiseNullaryOp<internal::scalar_identity_op<Scalar>,Derived> IdentityReturnType;
/** \internal the return type of unit vectors */
typedef Block<const CwiseNullaryOp<internal::scalar_identity_op<Scalar>, SquareMatrixType>,
internal::traits<Derived>::RowsAtCompileTime,
internal::traits<Derived>::ColsAtCompileTime> BasisReturnType;
#endif // not EIGEN_PARSED_BY_DOXYGEN
#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::MatrixBase
# include "../plugins/CommonCwiseUnaryOps.h"
# include "../plugins/CommonCwiseBinaryOps.h"
# include "../plugins/MatrixCwiseUnaryOps.h"
# include "../plugins/MatrixCwiseBinaryOps.h"
# ifdef EIGEN_MATRIXBASE_PLUGIN
# include EIGEN_MATRIXBASE_PLUGIN
# endif
#undef EIGEN_CURRENT_STORAGE_BASE_CLASS
/** Special case of the template operator=, in order to prevent the compiler
* from generating a default operator= (issue hit with g++ 4.1)
*/
Derived& operator=(const MatrixBase& other);
// We cannot inherit here via Base::operator= since it is causing
// trouble with MSVC.
template <typename OtherDerived>
Derived& operator=(const DenseBase<OtherDerived>& other);
template <typename OtherDerived>
Derived& operator=(const EigenBase<OtherDerived>& other);
template<typename OtherDerived>
Derived& operator=(const ReturnByValue<OtherDerived>& other);
template<typename ProductDerived, typename Lhs, typename Rhs>
Derived& lazyAssign(const ProductBase<ProductDerived, Lhs,Rhs>& other);
template<typename MatrixPower, typename Lhs, typename Rhs>
Derived& lazyAssign(const MatrixPowerProduct<MatrixPower, Lhs,Rhs>& other);
template<typename OtherDerived>
Derived& operator+=(const MatrixBase<OtherDerived>& other);
template<typename OtherDerived>
Derived& operator-=(const MatrixBase<OtherDerived>& other);
template<typename OtherDerived>
const typename ProductReturnType<Derived,OtherDerived>::Type
operator*(const MatrixBase<OtherDerived> &other) const;
template<typename OtherDerived>
const typename LazyProductReturnType<Derived,OtherDerived>::Type
lazyProduct(const MatrixBase<OtherDerived> &other) const;
template<typename OtherDerived>
Derived& operator*=(const EigenBase<OtherDerived>& other);
template<typename OtherDerived>
void applyOnTheLeft(const EigenBase<OtherDerived>& other);
template<typename OtherDerived>
void applyOnTheRight(const EigenBase<OtherDerived>& other);
template<typename DiagonalDerived>
const DiagonalProduct<Derived, DiagonalDerived, OnTheRight>
operator*(const DiagonalBase<DiagonalDerived> &diagonal) const;
template<typename OtherDerived>
typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
dot(const MatrixBase<OtherDerived>& other) const;
#ifdef EIGEN2_SUPPORT
template<typename OtherDerived>
Scalar eigen2_dot(const MatrixBase<OtherDerived>& other) const;
#endif
RealScalar squaredNorm() const;
RealScalar norm() const;
RealScalar stableNorm() const;
RealScalar blueNorm() const;
RealScalar hypotNorm() const;
const PlainObject normalized() const;
void normalize();
const AdjointReturnType adjoint() const;
void adjointInPlace();
typedef Diagonal<Derived> DiagonalReturnType;
DiagonalReturnType diagonal();
typedef typename internal::add_const<Diagonal<const Derived> >::type ConstDiagonalReturnType;
ConstDiagonalReturnType diagonal() const;
template<int Index> struct DiagonalIndexReturnType { typedef Diagonal<Derived,Index> Type; };
template<int Index> struct ConstDiagonalIndexReturnType { typedef const Diagonal<const Derived,Index> Type; };
template<int Index> typename DiagonalIndexReturnType<Index>::Type diagonal();
template<int Index> typename ConstDiagonalIndexReturnType<Index>::Type diagonal() const;
typedef Diagonal<Derived,DynamicIndex> DiagonalDynamicIndexReturnType;
typedef typename internal::add_const<Diagonal<const Derived,DynamicIndex> >::type ConstDiagonalDynamicIndexReturnType;
DiagonalDynamicIndexReturnType diagonal(Index index);
ConstDiagonalDynamicIndexReturnType diagonal(Index index) const;
#ifdef EIGEN2_SUPPORT
template<unsigned int Mode> typename internal::eigen2_part_return_type<Derived, Mode>::type part();
template<unsigned int Mode> const typename internal::eigen2_part_return_type<Derived, Mode>::type part() const;
// huuuge hack. make Eigen2's matrix.part<Diagonal>() work in eigen3. Problem: Diagonal is now a class template instead
// of an integer constant. Solution: overload the part() method template wrt template parameters list.
template<template<typename T, int N> class U>
const DiagonalWrapper<ConstDiagonalReturnType> part() const
{ return diagonal().asDiagonal(); }
#endif // EIGEN2_SUPPORT
template<unsigned int Mode> struct TriangularViewReturnType { typedef TriangularView<Derived, Mode> Type; };
template<unsigned int Mode> struct ConstTriangularViewReturnType { typedef const TriangularView<const Derived, Mode> Type; };
template<unsigned int Mode> typename TriangularViewReturnType<Mode>::Type triangularView();
template<unsigned int Mode> typename ConstTriangularViewReturnType<Mode>::Type triangularView() const;
template<unsigned int UpLo> struct SelfAdjointViewReturnType { typedef SelfAdjointView<Derived, UpLo> Type; };
template<unsigned int UpLo> struct ConstSelfAdjointViewReturnType { typedef const SelfAdjointView<const Derived, UpLo> Type; };
template<unsigned int UpLo> typename SelfAdjointViewReturnType<UpLo>::Type selfadjointView();
template<unsigned int UpLo> typename ConstSelfAdjointViewReturnType<UpLo>::Type selfadjointView() const;
const SparseView<Derived> sparseView(const Scalar& m_reference = Scalar(0),
const typename NumTraits<Scalar>::Real& m_epsilon = NumTraits<Scalar>::dummy_precision()) const;
static const IdentityReturnType Identity();
static const IdentityReturnType Identity(Index rows, Index cols);
static const BasisReturnType Unit(Index size, Index i);
static const BasisReturnType Unit(Index i);
static const BasisReturnType UnitX();
static const BasisReturnType UnitY();
static const BasisReturnType UnitZ();
static const BasisReturnType UnitW();
const DiagonalWrapper<const Derived> asDiagonal() const;
const PermutationWrapper<const Derived> asPermutation() const;
Derived& setIdentity();
Derived& setIdentity(Index rows, Index cols);
bool isIdentity(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
bool isDiagonal(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
bool isUpperTriangular(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
bool isLowerTriangular(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
template<typename OtherDerived>
bool isOrthogonal(const MatrixBase<OtherDerived>& other,
const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
bool isUnitary(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
/** \returns true if each coefficients of \c *this and \a other are all exactly equal.
* \warning When using floating point scalar values you probably should rather use a
* fuzzy comparison such as isApprox()
* \sa isApprox(), operator!= */
template<typename OtherDerived>
inline bool operator==(const MatrixBase<OtherDerived>& other) const
{ return cwiseEqual(other).all(); }
/** \returns true if at least one pair of coefficients of \c *this and \a other are not exactly equal to each other.
* \warning When using floating point scalar values you probably should rather use a
* fuzzy comparison such as isApprox()
* \sa isApprox(), operator== */
template<typename OtherDerived>
inline bool operator!=(const MatrixBase<OtherDerived>& other) const
{ return cwiseNotEqual(other).any(); }
NoAlias<Derived,Eigen::MatrixBase > noalias();
inline const ForceAlignedAccess<Derived> forceAlignedAccess() const;
inline ForceAlignedAccess<Derived> forceAlignedAccess();
template<bool Enable> inline typename internal::add_const_on_value_type<typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type>::type forceAlignedAccessIf() const;
template<bool Enable> inline typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type forceAlignedAccessIf();
Scalar trace() const;
/////////// Array module ///////////
template<int p> RealScalar lpNorm() const;
MatrixBase<Derived>& matrix() { return *this; }
const MatrixBase<Derived>& matrix() const { return *this; }
/** \returns an \link Eigen::ArrayBase Array \endlink expression of this matrix
* \sa ArrayBase::matrix() */
ArrayWrapper<Derived> array() { return derived(); }
const ArrayWrapper<const Derived> array() const { return derived(); }
/////////// LU module ///////////
const FullPivLU<PlainObject> fullPivLu() const;
const PartialPivLU<PlainObject> partialPivLu() const;
#if EIGEN2_SUPPORT_STAGE < STAGE20_RESOLVE_API_CONFLICTS
const LU<PlainObject> lu() const;
#endif
#ifdef EIGEN2_SUPPORT
const LU<PlainObject> eigen2_lu() const;
#endif
#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
const PartialPivLU<PlainObject> lu() const;
#endif
#ifdef EIGEN2_SUPPORT
template<typename ResultType>
void computeInverse(MatrixBase<ResultType> *result) const {
*result = this->inverse();
}
#endif
const internal::inverse_impl<Derived> inverse() const;
template<typename ResultType>
void computeInverseAndDetWithCheck(
ResultType& inverse,
typename ResultType::Scalar& determinant,
bool& invertible,
const RealScalar& absDeterminantThreshold = NumTraits<Scalar>::dummy_precision()
) const;
template<typename ResultType>
void computeInverseWithCheck(
ResultType& inverse,
bool& invertible,
const RealScalar& absDeterminantThreshold = NumTraits<Scalar>::dummy_precision()
) const;
Scalar determinant() const;
/////////// Cholesky module ///////////
const LLT<PlainObject> llt() const;
const LDLT<PlainObject> ldlt() const;
/////////// QR module ///////////
const HouseholderQR<PlainObject> householderQr() const;
const ColPivHouseholderQR<PlainObject> colPivHouseholderQr() const;
const FullPivHouseholderQR<PlainObject> fullPivHouseholderQr() const;
#ifdef EIGEN2_SUPPORT
const QR<PlainObject> qr() const;
#endif
EigenvaluesReturnType eigenvalues() const;
RealScalar operatorNorm() const;
/////////// SVD module ///////////
JacobiSVD<PlainObject> jacobiSvd(unsigned int computationOptions = 0) const;
#ifdef EIGEN2_SUPPORT
SVD<PlainObject> svd() const;
#endif
/////////// Geometry module ///////////
#ifndef EIGEN_PARSED_BY_DOXYGEN
/// \internal helper struct to form the return type of the cross product
template<typename OtherDerived> struct cross_product_return_type {
typedef typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType Scalar;
typedef Matrix<Scalar,MatrixBase::RowsAtCompileTime,MatrixBase::ColsAtCompileTime> type;
};
#endif // EIGEN_PARSED_BY_DOXYGEN
template<typename OtherDerived>
typename cross_product_return_type<OtherDerived>::type
cross(const MatrixBase<OtherDerived>& other) const;
template<typename OtherDerived>
PlainObject cross3(const MatrixBase<OtherDerived>& other) const;
PlainObject unitOrthogonal(void) const;
Matrix<Scalar,3,1> eulerAngles(Index a0, Index a1, Index a2) const;
#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
ScalarMultipleReturnType operator*(const UniformScaling<Scalar>& s) const;
// put this as separate enum value to work around possible GCC 4.3 bug (?)
enum { HomogeneousReturnTypeDirection = ColsAtCompileTime==1?Vertical:Horizontal };
typedef Homogeneous<Derived, HomogeneousReturnTypeDirection> HomogeneousReturnType;
HomogeneousReturnType homogeneous() const;
#endif
enum {
SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1
};
typedef Block<const Derived,
internal::traits<Derived>::ColsAtCompileTime==1 ? SizeMinusOne : 1,
internal::traits<Derived>::ColsAtCompileTime==1 ? 1 : SizeMinusOne> ConstStartMinusOne;
typedef CwiseUnaryOp<internal::scalar_quotient1_op<typename internal::traits<Derived>::Scalar>,
const ConstStartMinusOne > HNormalizedReturnType;
const HNormalizedReturnType hnormalized() const;
////////// Householder module ///////////
void makeHouseholderInPlace(Scalar& tau, RealScalar& beta);
template<typename EssentialPart>
void makeHouseholder(EssentialPart& essential,
Scalar& tau, RealScalar& beta) const;
template<typename EssentialPart>
void applyHouseholderOnTheLeft(const EssentialPart& essential,
const Scalar& tau,
Scalar* workspace);
template<typename EssentialPart>
void applyHouseholderOnTheRight(const EssentialPart& essential,
const Scalar& tau,
Scalar* workspace);
///////// Jacobi module /////////
template<typename OtherScalar>
void applyOnTheLeft(Index p, Index q, const JacobiRotation<OtherScalar>& j);
template<typename OtherScalar>
void applyOnTheRight(Index p, Index q, const JacobiRotation<OtherScalar>& j);
///////// SparseCore module /////////
template<typename OtherDerived>
EIGEN_STRONG_INLINE const typename SparseMatrixBase<OtherDerived>::template CwiseProductDenseReturnType<Derived>::Type
cwiseProduct(const SparseMatrixBase<OtherDerived> &other) const
{
return other.cwiseProduct(derived());
}
///////// MatrixFunctions module /////////
typedef typename internal::stem_function<Scalar>::type StemFunction;
const MatrixExponentialReturnValue<Derived> exp() const;
const MatrixFunctionReturnValue<Derived> matrixFunction(StemFunction f) const;
const MatrixFunctionReturnValue<Derived> cosh() const;
const MatrixFunctionReturnValue<Derived> sinh() const;
const MatrixFunctionReturnValue<Derived> cos() const;
const MatrixFunctionReturnValue<Derived> sin() const;
const MatrixSquareRootReturnValue<Derived> sqrt() const;
const MatrixLogarithmReturnValue<Derived> log() const;
const MatrixPowerReturnValue<Derived> pow(const RealScalar& p) const;
#ifdef EIGEN2_SUPPORT
template<typename ProductDerived, typename Lhs, typename Rhs>
Derived& operator+=(const Flagged<ProductBase<ProductDerived, Lhs,Rhs>, 0,
EvalBeforeAssigningBit>& other);
template<typename ProductDerived, typename Lhs, typename Rhs>
Derived& operator-=(const Flagged<ProductBase<ProductDerived, Lhs,Rhs>, 0,
EvalBeforeAssigningBit>& other);
/** \deprecated because .lazy() is deprecated
* Overloaded for cache friendly product evaluation */
template<typename OtherDerived>
Derived& lazyAssign(const Flagged<OtherDerived, 0, EvalBeforeAssigningBit>& other)
{ return lazyAssign(other._expression()); }
template<unsigned int Added>
const Flagged<Derived, Added, 0> marked() const;
const Flagged<Derived, 0, EvalBeforeAssigningBit> lazy() const;
inline const Cwise<Derived> cwise() const;
inline Cwise<Derived> cwise();
VectorBlock<Derived> start(Index size);
const VectorBlock<const Derived> start(Index size) const;
VectorBlock<Derived> end(Index size);
const VectorBlock<const Derived> end(Index size) const;
template<int Size> VectorBlock<Derived,Size> start();
template<int Size> const VectorBlock<const Derived,Size> start() const;
template<int Size> VectorBlock<Derived,Size> end();
template<int Size> const VectorBlock<const Derived,Size> end() const;
Minor<Derived> minor(Index row, Index col);
const Minor<Derived> minor(Index row, Index col) const;
#endif
protected:
MatrixBase() : Base() {}
private:
explicit MatrixBase(int);
MatrixBase(int,int);
template<typename OtherDerived> explicit MatrixBase(const MatrixBase<OtherDerived>&);
protected:
// mixing arrays and matrices is not legal
template<typename OtherDerived> Derived& operator+=(const ArrayBase<OtherDerived>& )
{EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;}
// mixing arrays and matrices is not legal
template<typename OtherDerived> Derived& operator-=(const ArrayBase<OtherDerived>& )
{EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;}
};
/***************************************************************************
* Implementation of matrix base methods
***************************************************************************/
/** replaces \c *this by \c *this * \a other.
*
* \returns a reference to \c *this
*
* Example: \include MatrixBase_applyOnTheRight.cpp
* Output: \verbinclude MatrixBase_applyOnTheRight.out
*/
template<typename Derived>
template<typename OtherDerived>
inline Derived&
MatrixBase<Derived>::operator*=(const EigenBase<OtherDerived> &other)
{
other.derived().applyThisOnTheRight(derived());
return derived();
}
/** replaces \c *this by \c *this * \a other. It is equivalent to MatrixBase::operator*=().
*
* Example: \include MatrixBase_applyOnTheRight.cpp
* Output: \verbinclude MatrixBase_applyOnTheRight.out
*/
template<typename Derived>
template<typename OtherDerived>
inline void MatrixBase<Derived>::applyOnTheRight(const EigenBase<OtherDerived> &other)
{
other.derived().applyThisOnTheRight(derived());
}
/** replaces \c *this by \a other * \c *this.
*
* Example: \include MatrixBase_applyOnTheLeft.cpp
* Output: \verbinclude MatrixBase_applyOnTheLeft.out
*/
template<typename Derived>
template<typename OtherDerived>
inline void MatrixBase<Derived>::applyOnTheLeft(const EigenBase<OtherDerived> &other)
{
other.derived().applyThisOnTheLeft(derived());
}
} // end namespace Eigen
#endif // EIGEN_MATRIXBASE_H

View File

@ -0,0 +1,111 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_NESTBYVALUE_H
#define EIGEN_NESTBYVALUE_H
namespace Eigen {
/** \class NestByValue
* \ingroup Core_Module
*
* \brief Expression which must be nested by value
*
* \param ExpressionType the type of the object of which we are requiring nesting-by-value
*
* This class is the return type of MatrixBase::nestByValue()
* and most of the time this is the only way it is used.
*
* \sa MatrixBase::nestByValue()
*/
namespace internal {
template<typename ExpressionType>
struct traits<NestByValue<ExpressionType> > : public traits<ExpressionType>
{};
}
template<typename ExpressionType> class NestByValue
: public internal::dense_xpr_base< NestByValue<ExpressionType> >::type
{
public:
typedef typename internal::dense_xpr_base<NestByValue>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(NestByValue)
inline NestByValue(const ExpressionType& matrix) : m_expression(matrix) {}
inline Index rows() const { return m_expression.rows(); }
inline Index cols() const { return m_expression.cols(); }
inline Index outerStride() const { return m_expression.outerStride(); }
inline Index innerStride() const { return m_expression.innerStride(); }
inline const CoeffReturnType coeff(Index row, Index col) const
{
return m_expression.coeff(row, col);
}
inline Scalar& coeffRef(Index row, Index col)
{
return m_expression.const_cast_derived().coeffRef(row, col);
}
inline const CoeffReturnType coeff(Index index) const
{
return m_expression.coeff(index);
}
inline Scalar& coeffRef(Index index)
{
return m_expression.const_cast_derived().coeffRef(index);
}
template<int LoadMode>
inline const PacketScalar packet(Index row, Index col) const
{
return m_expression.template packet<LoadMode>(row, col);
}
template<int LoadMode>
inline void writePacket(Index row, Index col, const PacketScalar& x)
{
m_expression.const_cast_derived().template writePacket<LoadMode>(row, col, x);
}
template<int LoadMode>
inline const PacketScalar packet(Index index) const
{
return m_expression.template packet<LoadMode>(index);
}
template<int LoadMode>
inline void writePacket(Index index, const PacketScalar& x)
{
m_expression.const_cast_derived().template writePacket<LoadMode>(index, x);
}
operator const ExpressionType&() const { return m_expression; }
protected:
const ExpressionType m_expression;
};
/** \returns an expression of the temporary version of *this.
*/
template<typename Derived>
inline const NestByValue<Derived>
DenseBase<Derived>::nestByValue() const
{
return NestByValue<Derived>(derived());
}
} // end namespace Eigen
#endif // EIGEN_NESTBYVALUE_H

View File

@ -0,0 +1,134 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_NOALIAS_H
#define EIGEN_NOALIAS_H
namespace Eigen {
/** \class NoAlias
* \ingroup Core_Module
*
* \brief Pseudo expression providing an operator = assuming no aliasing
*
* \param ExpressionType the type of the object on which to do the lazy assignment
*
* This class represents an expression with special assignment operators
* assuming no aliasing between the target expression and the source expression.
* More precisely it alloas to bypass the EvalBeforeAssignBit flag of the source expression.
* It is the return type of MatrixBase::noalias()
* and most of the time this is the only way it is used.
*
* \sa MatrixBase::noalias()
*/
template<typename ExpressionType, template <typename> class StorageBase>
class NoAlias
{
typedef typename ExpressionType::Scalar Scalar;
public:
NoAlias(ExpressionType& expression) : m_expression(expression) {}
/** Behaves like MatrixBase::lazyAssign(other)
* \sa MatrixBase::lazyAssign() */
template<typename OtherDerived>
EIGEN_STRONG_INLINE ExpressionType& operator=(const StorageBase<OtherDerived>& other)
{ return internal::assign_selector<ExpressionType,OtherDerived,false>::run(m_expression,other.derived()); }
/** \sa MatrixBase::operator+= */
template<typename OtherDerived>
EIGEN_STRONG_INLINE ExpressionType& operator+=(const StorageBase<OtherDerived>& other)
{
typedef SelfCwiseBinaryOp<internal::scalar_sum_op<Scalar>, ExpressionType, OtherDerived> SelfAdder;
SelfAdder tmp(m_expression);
typedef typename internal::nested<OtherDerived>::type OtherDerivedNested;
typedef typename internal::remove_all<OtherDerivedNested>::type _OtherDerivedNested;
internal::assign_selector<SelfAdder,_OtherDerivedNested,false>::run(tmp,OtherDerivedNested(other.derived()));
return m_expression;
}
/** \sa MatrixBase::operator-= */
template<typename OtherDerived>
EIGEN_STRONG_INLINE ExpressionType& operator-=(const StorageBase<OtherDerived>& other)
{
typedef SelfCwiseBinaryOp<internal::scalar_difference_op<Scalar>, ExpressionType, OtherDerived> SelfAdder;
SelfAdder tmp(m_expression);
typedef typename internal::nested<OtherDerived>::type OtherDerivedNested;
typedef typename internal::remove_all<OtherDerivedNested>::type _OtherDerivedNested;
internal::assign_selector<SelfAdder,_OtherDerivedNested,false>::run(tmp,OtherDerivedNested(other.derived()));
return m_expression;
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename ProductDerived, typename Lhs, typename Rhs>
EIGEN_STRONG_INLINE ExpressionType& operator+=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
{ other.derived().addTo(m_expression); return m_expression; }
template<typename ProductDerived, typename Lhs, typename Rhs>
EIGEN_STRONG_INLINE ExpressionType& operator-=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
{ other.derived().subTo(m_expression); return m_expression; }
template<typename Lhs, typename Rhs, int NestingFlags>
EIGEN_STRONG_INLINE ExpressionType& operator+=(const CoeffBasedProduct<Lhs,Rhs,NestingFlags>& other)
{ return m_expression.derived() += CoeffBasedProduct<Lhs,Rhs,NestByRefBit>(other.lhs(), other.rhs()); }
template<typename Lhs, typename Rhs, int NestingFlags>
EIGEN_STRONG_INLINE ExpressionType& operator-=(const CoeffBasedProduct<Lhs,Rhs,NestingFlags>& other)
{ return m_expression.derived() -= CoeffBasedProduct<Lhs,Rhs,NestByRefBit>(other.lhs(), other.rhs()); }
template<typename OtherDerived>
ExpressionType& operator=(const ReturnByValue<OtherDerived>& func)
{ return m_expression = func; }
#endif
ExpressionType& expression() const
{
return m_expression;
}
protected:
ExpressionType& m_expression;
};
/** \returns a pseudo expression of \c *this with an operator= assuming
* no aliasing between \c *this and the source expression.
*
* More precisely, noalias() allows to bypass the EvalBeforeAssignBit flag.
* Currently, even though several expressions may alias, only product
* expressions have this flag. Therefore, noalias() is only usefull when
* the source expression contains a matrix product.
*
* Here are some examples where noalias is usefull:
* \code
* D.noalias() = A * B;
* D.noalias() += A.transpose() * B;
* D.noalias() -= 2 * A * B.adjoint();
* \endcode
*
* On the other hand the following example will lead to a \b wrong result:
* \code
* A.noalias() = A * B;
* \endcode
* because the result matrix A is also an operand of the matrix product. Therefore,
* there is no alternative than evaluating A * B in a temporary, that is the default
* behavior when you write:
* \code
* A = A * B;
* \endcode
*
* \sa class NoAlias
*/
template<typename Derived>
NoAlias<Derived,MatrixBase> MatrixBase<Derived>::noalias()
{
return derived();
}
} // end namespace Eigen
#endif // EIGEN_NOALIAS_H

View File

@ -0,0 +1,150 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_NUMTRAITS_H
#define EIGEN_NUMTRAITS_H
namespace Eigen {
/** \class NumTraits
* \ingroup Core_Module
*
* \brief Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
*
* \param T the numeric type at hand
*
* This class stores enums, typedefs and static methods giving information about a numeric type.
*
* The provided data consists of:
* \li A typedef \a Real, giving the "real part" type of \a T. If \a T is already real,
* then \a Real is just a typedef to \a T. If \a T is \c std::complex<U> then \a Real
* is a typedef to \a U.
* \li A typedef \a NonInteger, giving the type that should be used for operations producing non-integral values,
* such as quotients, square roots, etc. If \a T is a floating-point type, then this typedef just gives
* \a T again. Note however that many Eigen functions such as internal::sqrt simply refuse to
* take integers. Outside of a few cases, Eigen doesn't do automatic type promotion. Thus, this typedef is
* only intended as a helper for code that needs to explicitly promote types.
* \li A typedef \a Nested giving the type to use to nest a value inside of the expression tree. If you don't know what
* this means, just use \a T here.
* \li An enum value \a IsComplex. It is equal to 1 if \a T is a \c std::complex
* type, and to 0 otherwise.
* \li An enum value \a IsInteger. It is equal to \c 1 if \a T is an integer type such as \c int,
* and to \c 0 otherwise.
* \li Enum values ReadCost, AddCost and MulCost representing a rough estimate of the number of CPU cycles needed
* to by move / add / mul instructions respectively, assuming the data is already stored in CPU registers.
* Stay vague here. No need to do architecture-specific stuff.
* \li An enum value \a IsSigned. It is equal to \c 1 if \a T is a signed type and to 0 if \a T is unsigned.
* \li An enum value \a RequireInitialization. It is equal to \c 1 if the constructor of the numeric type \a T must
* be called, and to 0 if it is safe not to call it. Default is 0 if \a T is an arithmetic type, and 1 otherwise.
* \li An epsilon() function which, unlike std::numeric_limits::epsilon(), returns a \a Real instead of a \a T.
* \li A dummy_precision() function returning a weak epsilon value. It is mainly used as a default
* value by the fuzzy comparison operators.
* \li highest() and lowest() functions returning the highest and lowest possible values respectively.
*/
template<typename T> struct GenericNumTraits
{
enum {
IsInteger = std::numeric_limits<T>::is_integer,
IsSigned = std::numeric_limits<T>::is_signed,
IsComplex = 0,
RequireInitialization = internal::is_arithmetic<T>::value ? 0 : 1,
ReadCost = 1,
AddCost = 1,
MulCost = 1
};
typedef T Real;
typedef typename internal::conditional<
IsInteger,
typename internal::conditional<sizeof(T)<=2, float, double>::type,
T
>::type NonInteger;
typedef T Nested;
static inline Real epsilon() { return std::numeric_limits<T>::epsilon(); }
static inline Real dummy_precision()
{
// make sure to override this for floating-point types
return Real(0);
}
static inline T highest() { return (std::numeric_limits<T>::max)(); }
static inline T lowest() { return IsInteger ? (std::numeric_limits<T>::min)() : (-(std::numeric_limits<T>::max)()); }
#ifdef EIGEN2_SUPPORT
enum {
HasFloatingPoint = !IsInteger
};
typedef NonInteger FloatingPoint;
#endif
};
template<typename T> struct NumTraits : GenericNumTraits<T>
{};
template<> struct NumTraits<float>
: GenericNumTraits<float>
{
static inline float dummy_precision() { return 1e-5f; }
};
template<> struct NumTraits<double> : GenericNumTraits<double>
{
static inline double dummy_precision() { return 1e-12; }
};
template<> struct NumTraits<long double>
: GenericNumTraits<long double>
{
static inline long double dummy_precision() { return 1e-15l; }
};
template<typename _Real> struct NumTraits<std::complex<_Real> >
: GenericNumTraits<std::complex<_Real> >
{
typedef _Real Real;
enum {
IsComplex = 1,
RequireInitialization = NumTraits<_Real>::RequireInitialization,
ReadCost = 2 * NumTraits<_Real>::ReadCost,
AddCost = 2 * NumTraits<Real>::AddCost,
MulCost = 4 * NumTraits<Real>::MulCost + 2 * NumTraits<Real>::AddCost
};
static inline Real epsilon() { return NumTraits<Real>::epsilon(); }
static inline Real dummy_precision() { return NumTraits<Real>::dummy_precision(); }
};
template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
struct NumTraits<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> >
{
typedef Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> ArrayType;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Array<RealScalar, Rows, Cols, Options, MaxRows, MaxCols> Real;
typedef typename NumTraits<Scalar>::NonInteger NonIntegerScalar;
typedef Array<NonIntegerScalar, Rows, Cols, Options, MaxRows, MaxCols> NonInteger;
typedef ArrayType & Nested;
enum {
IsComplex = NumTraits<Scalar>::IsComplex,
IsInteger = NumTraits<Scalar>::IsInteger,
IsSigned = NumTraits<Scalar>::IsSigned,
RequireInitialization = 1,
ReadCost = ArrayType::SizeAtCompileTime==Dynamic ? Dynamic : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::ReadCost,
AddCost = ArrayType::SizeAtCompileTime==Dynamic ? Dynamic : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::AddCost,
MulCost = ArrayType::SizeAtCompileTime==Dynamic ? Dynamic : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::MulCost
};
static inline RealScalar epsilon() { return NumTraits<RealScalar>::epsilon(); }
static inline RealScalar dummy_precision() { return NumTraits<RealScalar>::dummy_precision(); }
};
} // end namespace Eigen
#endif // EIGEN_NUMTRAITS_H

Some files were not shown because too many files have changed in this diff Show More