mirror of
https://github.com/paboyle/Grid.git
synced 2025-04-25 05:05:56 +01:00
block with a single vector case is working with IRBL
This commit is contained in:
parent
5139eaf491
commit
fe406e230d
File diff suppressed because it is too large
Load Diff
835
lib/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h.bak
Normal file
835
lib/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h.bak
Normal file
@ -0,0 +1,835 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Chulwoo Jung
|
||||
Author: Yong-Chull Jang <ypj@quark.phy.bnl.gov>
|
||||
Author: Guido Cossu
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_IRBL_H
|
||||
#define GRID_IRBL_H
|
||||
|
||||
#include <string.h> //memset
|
||||
|
||||
#define clog std::cout << GridLogMessage
|
||||
|
||||
namespace Grid {
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Implicitly restarted block lanczos
|
||||
/////////////////////////////////////////////////////////////
|
||||
template<class Field>
|
||||
class ImplicitlyRestartedBlockLanczos {
|
||||
|
||||
private:
|
||||
|
||||
std::string cname = std::string("ImplicitlyRestartedBlockLanczos");
|
||||
int MaxIter; // Max iterations
|
||||
int Nstop; // Number of evecs checked for convergence
|
||||
int Nu; // Numbeer of vecs in the unit block
|
||||
int Nk; // Number of converged sought
|
||||
int Nm; // total number of vectors
|
||||
int Nblock_k; // Nk/Nu
|
||||
int Nblock_m; // Nm/Nu
|
||||
RealD eresid;
|
||||
IRLdiagonalisation diagonalisation;
|
||||
////////////////////////////////////
|
||||
// Embedded objects
|
||||
////////////////////////////////////
|
||||
SortEigen<Field> _sort;
|
||||
LinearOperatorBase<Field> &_Linop;
|
||||
OperatorFunction<Field> &_poly;
|
||||
|
||||
/////////////////////////
|
||||
// Constructor
|
||||
/////////////////////////
|
||||
public:
|
||||
ImplicitlyRestartedBlockLanczos(LinearOperatorBase<Field> &Linop, // op
|
||||
OperatorFunction<Field> & poly, // polynomial
|
||||
int _Nstop, // really sought vecs
|
||||
int _Nu, // vecs in the unit block
|
||||
int _Nk, // sought vecs
|
||||
int _Nm, // total vecs
|
||||
RealD _eresid, // resid in lmd deficit
|
||||
int _MaxIter, // Max iterations
|
||||
IRLdiagonalisation _diagonalisation = IRLdiagonaliseWithEigen)
|
||||
: _Linop(Linop), _poly(poly),
|
||||
Nstop(_Nstop), Nu(_Nu), Nk(_Nk), Nm(_Nm),
|
||||
Nblock_m(_Nm/_Nu), Nblock_k(_Nk/_Nu),
|
||||
//eresid(_eresid), MaxIter(10),
|
||||
eresid(_eresid), MaxIter(_MaxIter),
|
||||
diagonalisation(_diagonalisation)
|
||||
{ assert( (Nk%Nu==0) && (Nm%Nu==0) ); };
|
||||
|
||||
////////////////////////////////
|
||||
// Helpers
|
||||
////////////////////////////////
|
||||
static RealD normalize(Field& v)
|
||||
{
|
||||
RealD nn = norm2(v);
|
||||
nn = sqrt(nn);
|
||||
v = v * (1.0/nn);
|
||||
return nn;
|
||||
}
|
||||
|
||||
void orthogonalize(Field& w, std::vector<Field>& evec, int k)
|
||||
{
|
||||
typedef typename Field::scalar_type MyComplex;
|
||||
MyComplex ip;
|
||||
|
||||
for(int j=0; j<k; ++j){
|
||||
ip = innerProduct(evec[j],w);
|
||||
w = w - ip * evec[j];
|
||||
}
|
||||
normalize(w);
|
||||
}
|
||||
|
||||
/* Rudy Arthur's thesis pp.137
|
||||
------------------------
|
||||
Require: M > K P = M − K †
|
||||
Compute the factorization AVM = VM HM + fM eM
|
||||
repeat
|
||||
Q=I
|
||||
for i = 1,...,P do
|
||||
QiRi =HM −θiI Q = QQi
|
||||
H M = Q †i H M Q i
|
||||
end for
|
||||
βK =HM(K+1,K) σK =Q(M,K)
|
||||
r=vK+1βK +rσK
|
||||
VK =VM(1:M)Q(1:M,1:K)
|
||||
HK =HM(1:K,1:K)
|
||||
→AVK =VKHK +fKe†K † Extend to an M = K + P step factorization AVM = VMHM + fMeM
|
||||
until convergence
|
||||
*/
|
||||
void calc(std::vector<RealD>& eval,
|
||||
std::vector<Field>& evec,
|
||||
const std::vector<Field>& src, int& Nconv)
|
||||
{
|
||||
std::string fname = std::string(cname+"::calc()");
|
||||
GridBase *grid = evec[0]._grid;
|
||||
assert(grid == src[0]._grid);
|
||||
assert( Nu = src.size() );
|
||||
|
||||
clog << std::string(74,'*') << std::endl;
|
||||
clog << fname + " starting iteration 0 / "<< MaxIter<< std::endl;
|
||||
clog << std::string(74,'*') << std::endl;
|
||||
clog <<" -- seek Nk = "<< Nk <<" vectors"<< std::endl;
|
||||
clog <<" -- accept Nstop = "<< Nstop <<" vectors"<< std::endl;
|
||||
clog <<" -- total Nm = "<< Nm <<" vectors"<< std::endl;
|
||||
clog <<" -- size of eval = "<< eval.size() << std::endl;
|
||||
clog <<" -- size of evec = "<< evec.size() << std::endl;
|
||||
if ( diagonalisation == IRLdiagonaliseWithEigen ) {
|
||||
clog << "Diagonalisation is Eigen "<< std::endl;
|
||||
} else {
|
||||
abort();
|
||||
}
|
||||
clog << std::string(74,'*') << std::endl;
|
||||
|
||||
assert(Nm == evec.size() && Nm == eval.size());
|
||||
|
||||
std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));
|
||||
std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));
|
||||
std::vector<std::vector<ComplexD>> lmd2(Nu,std::vector<ComplexD>(Nm,0.0));
|
||||
std::vector<std::vector<ComplexD>> lme2(Nu,std::vector<ComplexD>(Nm,0.0));
|
||||
std::vector<RealD> eval2(Nm);
|
||||
|
||||
Eigen::MatrixXcd Qt = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||||
Eigen::MatrixXcd Q = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||||
|
||||
std::vector<int> Iconv(Nm);
|
||||
std::vector<Field> B(Nm,grid); // waste of space replicating
|
||||
|
||||
std::vector<Field> f(Nu,grid);
|
||||
std::vector<Field> f_copy(Nu,grid);
|
||||
Field v(grid);
|
||||
|
||||
Nconv = 0;
|
||||
|
||||
RealD beta_k;
|
||||
|
||||
// set initial vector
|
||||
for (int i=0; i<Nu; ++i) {
|
||||
clog << "norm2(src[" << i << "])= "<< norm2(src[i]) << std::endl;
|
||||
evec[i] = src[i];
|
||||
orthogonalize(evec[i],evec,i);
|
||||
clog << "norm2(evec[" << i << "])= "<< norm2(evec[i]) << std::endl;
|
||||
}
|
||||
|
||||
// initial Nblock_k steps
|
||||
for(int b=0; b<Nblock_k; ++b) blockwiseStep(lmd,lme,evec,f,f_copy,b);
|
||||
|
||||
// restarting loop begins
|
||||
int iter;
|
||||
for(iter = 0; iter<MaxIter; ++iter){
|
||||
|
||||
clog <<" **********************"<< std::endl;
|
||||
clog <<" Restart iteration = "<< iter << std::endl;
|
||||
clog <<" **********************"<< std::endl;
|
||||
|
||||
// additional (Nblock_m - Nblock_k) steps
|
||||
for(int b=Nblock_k; b<Nblock_m; ++b) blockwiseStep(lmd,lme,evec,f,f_copy,b);
|
||||
|
||||
for(int k=0; k<Nm; ++k) {
|
||||
clog << "ckpt A1: lme[" << k << "] = " << lme[0][k] << '\n';
|
||||
}
|
||||
for(int k=0; k<Nm; ++k) {
|
||||
clog << "ckpt A2: lmd[" << k << "] = " << lmd[0][k] << '\n';
|
||||
}
|
||||
|
||||
// residual vector
|
||||
#if 1 // ypj[fixme] temporary to check a case when block has one vector
|
||||
for ( int i=0; i<Nu; ++i) f_copy[i] = f[i];
|
||||
for ( int i=0; i<Nu; ++i) {
|
||||
f[i] = f_copy[0]*lme[0][Nm-Nu+i];
|
||||
for ( int j=1; j<Nu; ++j) {
|
||||
f[i] += f_copy[j]*lme[j][Nm-Nu+i];
|
||||
}
|
||||
//clog << "ckpt C (i= " << i << ")" << '\n';
|
||||
//clog << "norm2(f) = " << norm2(f[i]) << std::endl;
|
||||
}
|
||||
#endif
|
||||
|
||||
// getting eigenvalues
|
||||
for(int u=0; u<Nu; ++u){
|
||||
for(int k=0; k<Nm; ++k){
|
||||
lmd2[u][k] = lmd[u][k];
|
||||
lme2[u][k] = lme[u][k];
|
||||
}
|
||||
}
|
||||
Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
|
||||
diagonalize(eval2,lmd2,lme2,Nu,Nm,Nm,Qt,grid);
|
||||
|
||||
//for(int k=0; k<Nm; ++k){
|
||||
// clog << "ckpt D " << '\n';
|
||||
// clog << "eval2 [" << k << "] = " << eval2[k] << std::endl;
|
||||
//}
|
||||
|
||||
// sorting
|
||||
_sort.push(eval2,Nm);
|
||||
|
||||
//for(int k=0; k<Nm; ++k){
|
||||
// clog << "ckpt E " << '\n';
|
||||
// clog << "eval2 [" << k << "] = " << eval2[k] << std::endl;
|
||||
//}
|
||||
|
||||
// Implicitly shifted QR transformations
|
||||
Eigen::MatrixXcd BTDM = Eigen::MatrixXcd::Identity(Nm,Nm);
|
||||
Q = Eigen::MatrixXcd::Identity(Nm,Nm);
|
||||
|
||||
unpackHermitBlockTriDiagMatToEigen(lmd,lme,Nu,Nblock_m,Nm,Nm,BTDM);
|
||||
|
||||
for(int ip=Nk; ip<Nm; ++ip){
|
||||
clog << "ckpt B1: shift[" << ip << "] = " << eval2[ip] << endl;
|
||||
shiftedQRDecompEigen(BTDM,Nm,eval2[ip],Q);
|
||||
}
|
||||
BTDM = Q.adjoint()*(BTDM*Q);
|
||||
for (int i=0; i<Nm; ++i ) {
|
||||
for (int j=i+1; j<Nm; ++j ) {
|
||||
BTDM(i,j) = BTDM(j,i);
|
||||
}
|
||||
//BTDM(i,i) = real(BTDM(i,i));
|
||||
}
|
||||
|
||||
packHermitBlockTriDiagMatfromEigen(lmd,lme,Nu,Nblock_m,Nm,Nm,BTDM);
|
||||
|
||||
//for (int i=0; i<Nm; ++i) {
|
||||
// for (int j=0; j<Nm; ++j) {
|
||||
// clog << "ckpt G1: M[" << i << "," << j << "] = " << BTDM(i,j) << '\n';
|
||||
// }
|
||||
//}
|
||||
//for (int i=0; i<Nm; ++i) {
|
||||
// for (int j=0; j<Nm; ++j) {
|
||||
// clog << "ckpt G2: Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
|
||||
// }
|
||||
//}
|
||||
for (int i=0; i<Nm; ++i) {
|
||||
clog << "ckpt C1: lme[" << i << "] = " << lme[0][i] << '\n';
|
||||
}
|
||||
for (int i=0; i<Nm; ++i) {
|
||||
clog << "ckpt C2: lmd[" << i << "] = " << lmd[0][i] << '\n';
|
||||
}
|
||||
|
||||
for(int i=0; i<Nk+Nu; ++i) B[i] = 0.0;
|
||||
for(int j=0; j<Nk+Nu; ++j){
|
||||
for(int k=0; k<Nm; ++k){
|
||||
B[j].checkerboard = evec[k].checkerboard;
|
||||
B[j] += evec[k]*Q(k,j);
|
||||
}
|
||||
}
|
||||
for(int i=0; i<Nk+Nu; ++i) {
|
||||
evec[i] = B[i];
|
||||
//clog << "ckpt F: norm2_evec[= " << i << "]" << norm2(evec[i]) << std::endl;
|
||||
}
|
||||
|
||||
#if 1 // ypj[fixme] temporary to check a case when block has one vector
|
||||
// Compressed vector f and beta(k2)
|
||||
f[0] *= Q(Nm-1,Nk-1);
|
||||
f[0] += lme[0][Nk-1] * evec[Nk]; // was commented out
|
||||
std::cout<< GridLogMessage<<"ckpt D1: Q[Nm-1,Nk-1] = "<<Q(Nm-1,Nk-1)<<std::endl;
|
||||
beta_k = norm2(f[0]);
|
||||
beta_k = sqrt(beta_k);
|
||||
std::cout<< GridLogMessage<<"ckpt D2: beta(k) = "<<beta_k<<std::endl;
|
||||
|
||||
RealD betar = 1.0/beta_k;
|
||||
evec[Nk] = betar * f[0];
|
||||
lme[0][Nk-1] = beta_k;
|
||||
#endif
|
||||
|
||||
// Convergence test
|
||||
for(int u=0; u<Nu; ++u){
|
||||
for(int k=0; k<Nm; ++k){
|
||||
lmd2[u][k] = lmd[u][k];
|
||||
lme2[u][k] = lme[u][k];
|
||||
}
|
||||
}
|
||||
Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
|
||||
diagonalize(eval2,lmd2,lme2,Nu,Nk,Nm,Qt,grid);
|
||||
|
||||
for(int k = 0; k<Nk; ++k) B[k]=0.0;
|
||||
for(int j = 0; j<Nk; ++j){
|
||||
for(int k = 0; k<Nk; ++k){
|
||||
B[j].checkerboard = evec[k].checkerboard;
|
||||
B[j] += evec[k]*Qt(k,j);
|
||||
}
|
||||
}
|
||||
|
||||
//for (int i=0; i<Nk; ++i) {
|
||||
// for (int j=0; j<Nk; ++j) {
|
||||
// clog << "ckpt H1: R[" << i << "," << j << "] = " << Qt(i,j) << '\n';
|
||||
// }
|
||||
//}
|
||||
//for (int i=0; i<Nk; ++i) {
|
||||
// clog << "ckpt H2: eval2[" << i << "] = " << eval2[i] << '\n';
|
||||
//}
|
||||
|
||||
//for(int j=0; j<Nk; ++j) {
|
||||
// clog << "ckpt I: norm2_B[ " << j << "]" << norm2(B[j]) << std::endl;
|
||||
//}
|
||||
|
||||
Nconv = 0;
|
||||
for(int i=0; i<Nk; ++i){
|
||||
|
||||
_Linop.HermOp(B[i],v);
|
||||
|
||||
RealD vnum = real(innerProduct(B[i],v)); // HermOp.
|
||||
RealD vden = norm2(B[i]);
|
||||
eval2[i] = vnum/vden;
|
||||
v -= eval2[i]*B[i];
|
||||
RealD vv = norm2(v);
|
||||
|
||||
std::cout.precision(13);
|
||||
clog << "[" << std::setw(3)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
|
||||
std::cout << "eval = "<<std::setw(25)<< std::setiosflags(std::ios_base::left)<< eval2[i];
|
||||
std::cout << " |H B[i] - eval[i]B[i]|^2 "<< std::setw(25)<< std::setiosflags(std::ios_base::right)<< vv<< std::endl;
|
||||
|
||||
// change the criteria as evals are supposed to be sorted, all evals smaller(larger) than Nstop should have converged
|
||||
if( (vv<eresid*eresid) && (i == Nconv) ){
|
||||
//if( (vv<eresid*eresid) ){
|
||||
Iconv[Nconv] = i;
|
||||
++Nconv;
|
||||
}
|
||||
|
||||
} // i-loop end
|
||||
|
||||
clog <<" #modes converged: "<<Nconv<<std::endl;
|
||||
|
||||
if( Nconv>=Nstop ){
|
||||
goto converged;
|
||||
}
|
||||
|
||||
} // end of iter loop
|
||||
|
||||
clog <<"**************************************************************************"<< std::endl;
|
||||
std::cout<< GridLogError << fname + " NOT converged.";
|
||||
clog <<"**************************************************************************"<< std::endl;
|
||||
abort();
|
||||
|
||||
converged:
|
||||
// Sorting
|
||||
eval.resize(Nconv);
|
||||
evec.resize(Nconv,grid);
|
||||
for(int i=0; i<Nconv; ++i){
|
||||
eval[i] = eval2[Iconv[i]];
|
||||
evec[i] = B[Iconv[i]];
|
||||
}
|
||||
_sort.push(eval,evec,Nconv);
|
||||
|
||||
clog <<"**************************************************************************"<< std::endl;
|
||||
clog << fname + " CONVERGED ; Summary :\n";
|
||||
clog <<"**************************************************************************"<< std::endl;
|
||||
clog << " -- Iterations = "<< iter << "\n";
|
||||
clog << " -- beta(k) = "<< beta_k << "\n";
|
||||
clog << " -- Nconv = "<< Nconv << "\n";
|
||||
clog <<"**************************************************************************"<< std::endl;
|
||||
}
|
||||
|
||||
private:
|
||||
/* Saad PP. 195
|
||||
1. Choose an initial vector v1 of 2-norm unity. Set β1 ≡ 0, v0 ≡ 0
|
||||
2. For k = 1,2,...,m Do:
|
||||
3. wk:=Avk−βkv_{k−1}
|
||||
4. αk:=(wk,vk) //
|
||||
5. wk:=wk−αkvk // wk orthog vk
|
||||
6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
|
||||
7. vk+1 := wk/βk+1
|
||||
8. EndDo
|
||||
*/
|
||||
void blockwiseStep(std::vector<std::vector<ComplexD>>& lmd,
|
||||
std::vector<std::vector<ComplexD>>& lme,
|
||||
std::vector<Field>& evec,
|
||||
std::vector<Field>& w,
|
||||
std::vector<Field>& w_copy,
|
||||
int b)
|
||||
{
|
||||
const RealD tiny = 1.0e-20;
|
||||
|
||||
int Nu = w.size();
|
||||
int Nm = evec.size();
|
||||
assert( b < Nm/Nu );
|
||||
|
||||
// converts block index to full indicies for an interval [L,R)
|
||||
int L = Nu*b;
|
||||
int R = Nu*(b+1);
|
||||
|
||||
Real beta;
|
||||
|
||||
// 3. wk:=Avk−βkv_{k−1}
|
||||
for (int k=L, u=0; k<R; ++k, ++u) {
|
||||
_poly(_Linop,evec[k],w[u]);
|
||||
}
|
||||
|
||||
if (b>0) {
|
||||
for (int u=0; u<Nu; ++u) {
|
||||
for (int k=L-Nu; k<L; ++k) {
|
||||
w[u] = w[u] - evec[k] * conjugate(lme[u][k]);
|
||||
//clog << "ckpt A (k= " << k+1 << ")" << '\n';
|
||||
//clog << "lme = " << lme[u][k] << '\n';
|
||||
//clog << "lme = " << conjugate(lme[u][k]) << '\n';
|
||||
}
|
||||
//clog << "norm(w) = " << norm2(w[u]) << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
// 4. αk:=(vk,wk)
|
||||
for (int u=0; u<Nu; ++u) {
|
||||
for (int k=L; k<R; ++k) {
|
||||
lmd[u][k] = innerProduct(evec[k],w[u]); // lmd = transpose of alpha
|
||||
}
|
||||
lmd[u][L+u] = real(lmd[u][L+u]); // force diagonal to be real
|
||||
//clog << "ckpt B (k= " << L+u << ")" << '\n';
|
||||
//clog << "lmd = " << lmd[u][L+u] << std::endl;
|
||||
}
|
||||
|
||||
// 5. wk:=wk−αkvk
|
||||
for (int u=0; u<Nu; ++u) {
|
||||
for (int k=L; k<R; ++k) {
|
||||
w[u] = w[u] - evec[k]*lmd[u][k];
|
||||
}
|
||||
w_copy[u] = w[u];
|
||||
}
|
||||
|
||||
// In block version, the steps 6 and 7 in Lanczos construction is
|
||||
// replaced by the QR decomposition of new basis block.
|
||||
// It results block version beta and orthonormal block basis.
|
||||
// Here, QR decomposition is done by using Gram-Schmidt
|
||||
for (int u=0; u<Nu; ++u) {
|
||||
for (int k=L; k<R; ++k) {
|
||||
lme[u][k] = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
beta = normalize(w[0]);
|
||||
for (int u=1; u<Nu; ++u) {
|
||||
//orthogonalize(w[u],w_copy,u);
|
||||
orthogonalize(w[u],w,u);
|
||||
}
|
||||
|
||||
for (int u=0; u<Nu; ++u) {
|
||||
for (int v=0; v<Nu; ++v) {
|
||||
lme[u][L+v] = innerProduct(w[u],w_copy[v]);
|
||||
}
|
||||
}
|
||||
lme[0][L] = beta;
|
||||
|
||||
#if 0
|
||||
for (int u=0; u<Nu; ++u) {
|
||||
for (int k=L+u; k<R; ++k) {
|
||||
if (lme[u][k] < tiny) {
|
||||
clog <<" In block "<< b << ",";
|
||||
std::cout <<" beta[" << u << "," << k-L << "] = ";
|
||||
std::cout << lme[u][k] << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
for (int u=0; u<Nu; ++u) {
|
||||
clog << "norm2(w[" << u << "])= "<< norm2(w[u]) << std::endl;
|
||||
for (int k=L+u; k<R; ++k) {
|
||||
clog <<" In block "<< b << ",";
|
||||
std::cout <<" beta[" << u << "," << k-L << "] = ";
|
||||
std::cout << lme[u][k] << std::endl;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
// re-orthogonalization for numerical stability
|
||||
if (b>0) {
|
||||
for (int u=0; u<Nu; ++u) {
|
||||
orthogonalize(w[u],evec,R);
|
||||
}
|
||||
}
|
||||
|
||||
if (b < Nm/Nu-1) {
|
||||
for (int u=0; u<Nu; ++u) {
|
||||
evec[R+u] = w[u];
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
void diagonalize_Eigen(std::vector<RealD>& eval,
|
||||
std::vector<std::vector<ComplexD>>& lmd,
|
||||
std::vector<std::vector<ComplexD>>& lme,
|
||||
int Nu, int Nk, int Nm,
|
||||
Eigen::MatrixXcd & Qt, // Nm x Nm
|
||||
GridBase *grid)
|
||||
{
|
||||
assert( Nk%Nu == 0 && Nm%Nu == 0 );
|
||||
assert( Nk <= Nm );
|
||||
Eigen::MatrixXcd BlockTriDiag = Eigen::MatrixXcd::Zero(Nk,Nk);
|
||||
|
||||
for ( int u=0; u<Nu; ++u ) {
|
||||
for (int k=0; k<Nk; ++k ) {
|
||||
BlockTriDiag(k,u+(k/Nu)*Nu) = lmd[u][k];
|
||||
}
|
||||
}
|
||||
|
||||
for ( int u=0; u<Nu; ++u ) {
|
||||
for (int k=Nu; k<Nk; ++k ) {
|
||||
BlockTriDiag(k-Nu,u+(k/Nu)*Nu) = conjugate(lme[u][k-Nu]);
|
||||
BlockTriDiag(u+(k/Nu)*Nu,k-Nu) = lme[u][k-Nu];
|
||||
}
|
||||
}
|
||||
//std::cout << BlockTriDiag << std::endl;
|
||||
|
||||
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXcd> eigensolver(BlockTriDiag);
|
||||
|
||||
for (int i = 0; i < Nk; i++) {
|
||||
eval[Nk-1-i] = eigensolver.eigenvalues()(i);
|
||||
}
|
||||
for (int i = 0; i < Nk; i++) {
|
||||
for (int j = 0; j < Nk; j++) {
|
||||
Qt(j,Nk-1-i) = eigensolver.eigenvectors()(j,i);
|
||||
//Qt(Nk-1-i,j) = eigensolver.eigenvectors()(i,j);
|
||||
//Qt(i,j) = eigensolver.eigenvectors()(i,j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void diagonalize(std::vector<RealD>& eval,
|
||||
std::vector<std::vector<ComplexD>>& lmd,
|
||||
std::vector<std::vector<ComplexD>>& lme,
|
||||
int Nu, int Nk, int Nm,
|
||||
Eigen::MatrixXcd & Qt,
|
||||
GridBase *grid)
|
||||
{
|
||||
Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
|
||||
if ( diagonalisation == IRLdiagonaliseWithEigen ) {
|
||||
diagonalize_Eigen(eval,lmd,lme,Nu,Nk,Nm,Qt,grid);
|
||||
} else {
|
||||
assert(0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void unpackHermitBlockTriDiagMatToEigen(
|
||||
std::vector<std::vector<ComplexD>>& lmd,
|
||||
std::vector<std::vector<ComplexD>>& lme,
|
||||
int Nu, int Nb, int Nk, int Nm,
|
||||
Eigen::MatrixXcd& M)
|
||||
{
|
||||
//clog << "unpackHermitBlockTriDiagMatToEigen() begin" << '\n';
|
||||
assert( Nk%Nu == 0 && Nm%Nu == 0 );
|
||||
assert( Nk <= Nm );
|
||||
M = Eigen::MatrixXcd::Zero(Nk,Nk);
|
||||
|
||||
// rearrange
|
||||
for ( int u=0; u<Nu; ++u ) {
|
||||
for (int k=0; k<Nk; ++k ) {
|
||||
M(k,u+(k/Nu)*Nu) = lmd[u][k];
|
||||
}
|
||||
}
|
||||
|
||||
for ( int u=0; u<Nu; ++u ) {
|
||||
for (int k=Nu; k<Nk; ++k ) {
|
||||
M(k-Nu,u+(k/Nu)*Nu) = conjugate(lme[u][k-Nu]);
|
||||
M(u+(k/Nu)*Nu,k-Nu) = lme[u][k-Nu];
|
||||
}
|
||||
}
|
||||
//clog << "unpackHermitBlockTriDiagMatToEigen() end" << endl;
|
||||
}
|
||||
|
||||
|
||||
void packHermitBlockTriDiagMatfromEigen(
|
||||
std::vector<std::vector<ComplexD>>& lmd,
|
||||
std::vector<std::vector<ComplexD>>& lme,
|
||||
int Nu, int Nb, int Nk, int Nm,
|
||||
Eigen::MatrixXcd& M)
|
||||
{
|
||||
//clog << "packHermitBlockTriDiagMatfromEigen() begin" << '\n';
|
||||
assert( Nk%Nu == 0 && Nm%Nu == 0 );
|
||||
assert( Nk <= Nm );
|
||||
|
||||
// rearrange
|
||||
for ( int u=0; u<Nu; ++u ) {
|
||||
for (int k=0; k<Nk; ++k ) {
|
||||
lmd[u][k] = M(k,u+(k/Nu)*Nu);
|
||||
}
|
||||
}
|
||||
|
||||
for ( int u=0; u<Nu; ++u ) {
|
||||
for (int k=Nu; k<Nk; ++k ) {
|
||||
lme[u][k-Nu] = M(u+(k/Nu)*Nu,k-Nu);
|
||||
}
|
||||
}
|
||||
//clog << "packHermitBlockTriDiagMatfromEigen() end" << endl;
|
||||
}
|
||||
|
||||
|
||||
// void shiftedQRDecompEigen(Eigen::MatrixXcd& M, int Nm,
|
||||
// RealD Dsh,
|
||||
// Eigen::MatrixXcd& Qprod, int Nk)
|
||||
// {
|
||||
// //clog << "shiftedQRDecompEigen() begin" << '\n';
|
||||
// Eigen::MatrixXcd Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||||
// Eigen::MatrixXcd Q = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||||
//
|
||||
// Mtmp = M;
|
||||
// for (int i=0; i<Nm; ++i ) {
|
||||
// Mtmp(i,i) = M(i,i) - Dsh;
|
||||
// }
|
||||
//
|
||||
// Eigen::HouseholderQR<Eigen::MatrixXcd> QRD(Mtmp);
|
||||
// Q = QRD.householderQ();
|
||||
//
|
||||
// M = Q.adjoint()*(M*Q);
|
||||
//#if 0
|
||||
// Qprod *= Q;
|
||||
//#else
|
||||
// Mtmp = Qprod*Q;
|
||||
//
|
||||
// Eigen::HouseholderQR<Eigen::MatrixXcd> QRD2(Mtmp);
|
||||
// Qprod = QRD2.householderQ();
|
||||
//
|
||||
// Mtmp -= Qprod;
|
||||
// clog << "Frobenius norm ||Qprod(after) - Qprod|| = " << Mtmp.norm() << std::endl;
|
||||
//#endif
|
||||
// //clog << "shiftedQRDecompEigen() end" << endl;
|
||||
// }
|
||||
void shiftedQRDecompEigen(Eigen::MatrixXcd& M, int Nm,
|
||||
RealD Dsh,
|
||||
Eigen::MatrixXcd& Qprod)
|
||||
{
|
||||
//clog << "shiftedQRDecompEigen() begin" << '\n';
|
||||
Eigen::MatrixXcd Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||||
//Eigen::MatrixXcd Qtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||||
|
||||
Mtmp = Qprod.adjoint()*(M*Qprod);
|
||||
for (int i=0; i<Nm; ++i ) {
|
||||
for (int j=i+1; j<Nm; ++j ) {
|
||||
Mtmp(i,j) = Mtmp(j,i);
|
||||
}
|
||||
}
|
||||
|
||||
for (int i=0; i<Nm; ++i ) {
|
||||
Mtmp(i,i) -= Dsh;
|
||||
//Mtmp(i,i) = real(Mtmp(i,i)-Dsh);
|
||||
}
|
||||
|
||||
Eigen::HouseholderQR<Eigen::MatrixXcd> QRD(Mtmp);
|
||||
//Qtmp = Qprod*QRD.householderQ();
|
||||
|
||||
//Eigen::HouseholderQR<Eigen::MatrixXcd> QRD2(Qtmp);
|
||||
//Qprod = QRD2.householderQ();
|
||||
|
||||
Qprod *= QRD.householderQ();
|
||||
//ComplexD p;
|
||||
//RealD r;
|
||||
|
||||
//r = 0.;
|
||||
//for (int k=0; k<Nm; ++k) r += real(conj(Qprod(k,0))*Qprod(k,0));
|
||||
//r = sqrt(r);
|
||||
//for (int k=0; k<Nm; ++k) Qprod(k,0) /= r;
|
||||
//
|
||||
//for (int i=1; i<Nm; ++i) {
|
||||
// for (int j=0; j<i; ++j) {
|
||||
// p = 0.;
|
||||
// for (int k=0; k<Nm; ++k) {
|
||||
// p += conj(Qprod(k,j))*Qprod(k,i);
|
||||
// }
|
||||
// for (int k=0; k<Nm; ++k) {
|
||||
// Qprod(k,i) -= p*Qprod(k,j);
|
||||
// }
|
||||
// }
|
||||
// r = 0.;
|
||||
// for (int k=0; k<Nm; ++k) r += real(conj(Qprod(k,i))*Qprod(k,i));
|
||||
// r = sqrt(r);
|
||||
// for (int k=0; k<Nm; ++k) Qprod(k,i) /= r;
|
||||
//}
|
||||
|
||||
//clog << "shiftedQRDecompEigen() end" << endl;
|
||||
}
|
||||
|
||||
|
||||
void exampleQRDecompEigen(void)
|
||||
{
|
||||
Eigen::MatrixXd A = Eigen::MatrixXd::Zero(3,3);
|
||||
Eigen::MatrixXd Q = Eigen::MatrixXd::Zero(3,3);
|
||||
Eigen::MatrixXd R = Eigen::MatrixXd::Zero(3,3);
|
||||
Eigen::MatrixXd P = Eigen::MatrixXd::Zero(3,3);
|
||||
|
||||
A(0,0) = 12.0;
|
||||
A(0,1) = -51.0;
|
||||
A(0,2) = 4.0;
|
||||
A(1,0) = 6.0;
|
||||
A(1,1) = 167.0;
|
||||
A(1,2) = -68.0;
|
||||
A(2,0) = -4.0;
|
||||
A(2,1) = 24.0;
|
||||
A(2,2) = -41.0;
|
||||
|
||||
clog << "matrix A before ColPivHouseholder" << std::endl;
|
||||
for ( int i=0; i<3; i++ ) {
|
||||
for ( int j=0; j<3; j++ ) {
|
||||
clog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
|
||||
}
|
||||
}
|
||||
clog << std::endl;
|
||||
|
||||
Eigen::ColPivHouseholderQR<Eigen::MatrixXd> QRD(A);
|
||||
|
||||
clog << "matrix A after ColPivHouseholder" << std::endl;
|
||||
for ( int i=0; i<3; i++ ) {
|
||||
for ( int j=0; j<3; j++ ) {
|
||||
clog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
|
||||
}
|
||||
}
|
||||
clog << std::endl;
|
||||
|
||||
clog << "HouseholderQ with sequence lenth = nonzeroPiviots" << std::endl;
|
||||
Q = QRD.householderQ().setLength(QRD.nonzeroPivots());
|
||||
for ( int i=0; i<3; i++ ) {
|
||||
for ( int j=0; j<3; j++ ) {
|
||||
clog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
|
||||
}
|
||||
}
|
||||
clog << std::endl;
|
||||
|
||||
clog << "HouseholderQ with sequence lenth = 1" << std::endl;
|
||||
Q = QRD.householderQ().setLength(1);
|
||||
for ( int i=0; i<3; i++ ) {
|
||||
for ( int j=0; j<3; j++ ) {
|
||||
clog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
|
||||
}
|
||||
}
|
||||
clog << std::endl;
|
||||
|
||||
clog << "HouseholderQ with sequence lenth = 2" << std::endl;
|
||||
Q = QRD.householderQ().setLength(2);
|
||||
for ( int i=0; i<3; i++ ) {
|
||||
for ( int j=0; j<3; j++ ) {
|
||||
clog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
|
||||
}
|
||||
}
|
||||
clog << std::endl;
|
||||
|
||||
clog << "matrixR" << std::endl;
|
||||
R = QRD.matrixR();
|
||||
for ( int i=0; i<3; i++ ) {
|
||||
for ( int j=0; j<3; j++ ) {
|
||||
clog << "R[" << i << "," << j << "] = " << R(i,j) << '\n';
|
||||
}
|
||||
}
|
||||
clog << std::endl;
|
||||
|
||||
clog << "rank = " << QRD.rank() << std::endl;
|
||||
clog << "threshold = " << QRD.threshold() << std::endl;
|
||||
|
||||
clog << "matrixP" << std::endl;
|
||||
P = QRD.colsPermutation();
|
||||
for ( int i=0; i<3; i++ ) {
|
||||
for ( int j=0; j<3; j++ ) {
|
||||
clog << "P[" << i << "," << j << "] = " << P(i,j) << '\n';
|
||||
}
|
||||
}
|
||||
clog << std::endl;
|
||||
|
||||
|
||||
clog << "QR decomposition without column pivoting" << std::endl;
|
||||
|
||||
A(0,0) = 12.0;
|
||||
A(0,1) = -51.0;
|
||||
A(0,2) = 4.0;
|
||||
A(1,0) = 6.0;
|
||||
A(1,1) = 167.0;
|
||||
A(1,2) = -68.0;
|
||||
A(2,0) = -4.0;
|
||||
A(2,1) = 24.0;
|
||||
A(2,2) = -41.0;
|
||||
|
||||
clog << "matrix A before Householder" << std::endl;
|
||||
for ( int i=0; i<3; i++ ) {
|
||||
for ( int j=0; j<3; j++ ) {
|
||||
clog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
|
||||
}
|
||||
}
|
||||
clog << std::endl;
|
||||
|
||||
Eigen::HouseholderQR<Eigen::MatrixXd> QRDplain(A);
|
||||
|
||||
clog << "HouseholderQ" << std::endl;
|
||||
Q = QRDplain.householderQ();
|
||||
for ( int i=0; i<3; i++ ) {
|
||||
for ( int j=0; j<3; j++ ) {
|
||||
clog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
|
||||
}
|
||||
}
|
||||
clog << std::endl;
|
||||
|
||||
clog << "matrix A after Householder" << std::endl;
|
||||
for ( int i=0; i<3; i++ ) {
|
||||
for ( int j=0; j<3; j++ ) {
|
||||
clog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
|
||||
}
|
||||
}
|
||||
clog << std::endl;
|
||||
}
|
||||
|
||||
};
|
||||
}
|
||||
#undef clog
|
||||
#endif
|
@ -32,6 +32,8 @@ Author: Guido Cossu
|
||||
|
||||
#include <string.h> //memset
|
||||
|
||||
#define clog std::cout << GridLogMessage
|
||||
|
||||
namespace Grid {
|
||||
|
||||
enum IRLdiagonalisation {
|
||||
@ -229,7 +231,16 @@ until convergence
|
||||
|
||||
for(int k=Nk; k<Nm; ++k) step(eval,lme,evec,f,Nm,k);
|
||||
|
||||
for(int k=0; k<Nm; ++k) {
|
||||
clog << "ckpt A1: lme[" << k << "] = " << lme[k] << '\n';
|
||||
}
|
||||
for(int k=0; k<Nm; ++k) {
|
||||
clog << "ckpt A2: lmd[" << k << "] = " << eval[k] << '\n';
|
||||
}
|
||||
|
||||
f *= lme[Nm-1];
|
||||
//clog << "ckpt C " << '\n';
|
||||
//clog << "norm2(f) = " << norm2(f) << std::endl;
|
||||
|
||||
// getting eigenvalues
|
||||
for(int k=0; k<Nm; ++k){
|
||||
@ -238,16 +249,39 @@ until convergence
|
||||
}
|
||||
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
|
||||
diagonalize(eval2,lme2,Nm,Nm,Qt,grid);
|
||||
|
||||
//for(int k=0; k<Nm; ++k){
|
||||
// clog << "ckpt D " << '\n';
|
||||
// clog << "eval2 [" << k << "] = " << eval2[k] << std::endl;
|
||||
//}
|
||||
|
||||
// sorting
|
||||
_sort.push(eval2,Nm);
|
||||
|
||||
//for(int k=0; k<Nm; ++k){
|
||||
// clog << "ckpt E " << '\n';
|
||||
// clog << "eval2 [" << k << "] = " << eval2[k] << std::endl;
|
||||
//}
|
||||
|
||||
// Implicitly shifted QR transformations
|
||||
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
|
||||
for(int ip=k2; ip<Nm; ++ip){
|
||||
// Eigen replacement for qr_decomp ???
|
||||
clog << "ckpt B1: shift[" << ip << "] = " << eval2[ip] << endl;
|
||||
qr_decomp(eval,lme,Nm,Nm,Qt,eval2[ip],k1,Nm);
|
||||
}
|
||||
|
||||
//for (int i=0; i<Nm; ++i) {
|
||||
// for (int j=0; j<Nm; ++j) {
|
||||
// clog << "ckpt G2: Q[" << i << "," << j << "] = " << Qt(j,i) << '\n';
|
||||
// }
|
||||
//}
|
||||
for (int i=0; i<Nm; ++i) {
|
||||
clog << "ckpt C1: lme[" << i << "] = " << lme[i] << '\n';
|
||||
}
|
||||
for (int i=0; i<Nm; ++i) {
|
||||
clog << "ckpt C2: lmd[" << i << "] = " << eval[i] << '\n';
|
||||
}
|
||||
|
||||
for(int i=0; i<(Nk+1); ++i) B[i] = 0.0;
|
||||
|
||||
@ -257,14 +291,18 @@ until convergence
|
||||
B[j] += Qt(j,k) * evec[k];
|
||||
}
|
||||
}
|
||||
for(int j=k1-1; j<k2+1; ++j) evec[j] = B[j];
|
||||
for(int j=k1-1; j<k2+1; ++j) {
|
||||
evec[j] = B[j];
|
||||
//clog << "ckpt F: norm2_evec[ " << j << "]" << norm2(evec[j]) << std::endl;
|
||||
}
|
||||
|
||||
// Compressed vector f and beta(k2)
|
||||
f *= Qt(k2-1,Nm-1);
|
||||
f += lme[k2-1] * evec[k2];
|
||||
f += lme[k2-1] * evec[k2]; // was commented out
|
||||
std::cout<< GridLogMessage<<"ckpt D1: Q[Nm-1,Nk-1] = "<<Qt(Nk-1,Nm-1)<<std::endl;
|
||||
beta_k = norm2(f);
|
||||
beta_k = sqrt(beta_k);
|
||||
std::cout<< GridLogMessage<<" beta(k) = "<<beta_k<<std::endl;
|
||||
std::cout<< GridLogMessage<<"ckpt D2: beta(k) = "<<beta_k<<std::endl;
|
||||
|
||||
RealD betar = 1.0/beta_k;
|
||||
evec[k2] = betar * f;
|
||||
@ -286,6 +324,19 @@ until convergence
|
||||
B[j] += Qt(j,k) * evec[k];
|
||||
}
|
||||
}
|
||||
|
||||
//for (int i=0; i<Nk; ++i) {
|
||||
// for (int j=0; j<Nk; ++j) {
|
||||
// clog << "ckpt H1: R[" << i << "," << j << "] = " << Qt(j,i) << '\n';
|
||||
// }
|
||||
//}
|
||||
//for (int i=0; i<Nk; ++i) {
|
||||
// clog << "ckpt H2: eval2[" << i << "] = " << eval2[i] << '\n';
|
||||
//}
|
||||
|
||||
//for(int j=0; j<Nk; ++j) {
|
||||
// clog << "ckpt I: norm2_B[ " << j << "]" << norm2(B[j]) << std::endl;
|
||||
//}
|
||||
|
||||
Nconv = 0;
|
||||
for(int i=0; i<Nk; ++i){
|
||||
@ -363,10 +414,17 @@ private:
|
||||
|
||||
_poly(_Linop,evec[k],w); // 3. wk:=Avk−βkv_{k−1}
|
||||
|
||||
if(k>0) w -= lme[k-1] * evec[k-1];
|
||||
if(k>0) {
|
||||
w -= lme[k-1] * evec[k-1];
|
||||
//clog << "ckpt A (k= " << k << ")" << '\n';
|
||||
//clog << "lme = " << lme[k-1] << '\n';
|
||||
//clog << "norm(w) = " << norm2(w) << std::endl;
|
||||
}
|
||||
|
||||
ComplexD zalph = innerProduct(evec[k],w); // 4. αk:=(wk,vk)
|
||||
RealD alph = real(zalph);
|
||||
//clog << "ckpt B (k= " << k << ")" << '\n';
|
||||
//clog << "lmd = " << alph << std::endl;
|
||||
|
||||
w = w - alph * evec[k];// 5. wk:=wk−αkvk
|
||||
|
||||
@ -622,4 +680,5 @@ void diagonalize_lapack(std::vector<RealD>& lmd,
|
||||
|
||||
};
|
||||
}
|
||||
#undef clog
|
||||
#endif
|
||||
|
625
lib/algorithms/iterative/ImplicitlyRestartedLanczos.h.bak
Normal file
625
lib/algorithms/iterative/ImplicitlyRestartedLanczos.h.bak
Normal file
@ -0,0 +1,625 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/ImplicitlyRestartedLanczos.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Chulwoo Jung
|
||||
Author: Guido Cossu
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_IRL_H
|
||||
#define GRID_IRL_H
|
||||
|
||||
#include <string.h> //memset
|
||||
|
||||
namespace Grid {
|
||||
|
||||
enum IRLdiagonalisation {
|
||||
IRLdiagonaliseWithDSTEGR,
|
||||
IRLdiagonaliseWithQR,
|
||||
IRLdiagonaliseWithEigen
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Helper class for sorting the evalues AND evectors by Field
|
||||
// Use pointer swizzle on vectors
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field>
|
||||
class SortEigen {
|
||||
private:
|
||||
static bool less_lmd(RealD left,RealD right){
|
||||
return left > right;
|
||||
}
|
||||
static bool less_pair(std::pair<RealD,Field const*>& left,
|
||||
std::pair<RealD,Field const*>& right){
|
||||
return left.first > (right.first);
|
||||
}
|
||||
|
||||
public:
|
||||
void push(std::vector<RealD>& lmd,std::vector<Field>& evec,int N) {
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// PAB: FIXME: VERY VERY VERY wasteful: takes a copy of the entire vector set.
|
||||
// : The vector reorder should be done by pointer swizzle somehow
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
std::vector<Field> cpy(lmd.size(),evec[0]._grid);
|
||||
for(int i=0;i<lmd.size();i++) cpy[i] = evec[i];
|
||||
|
||||
std::vector<std::pair<RealD, Field const*> > emod(lmd.size());
|
||||
|
||||
for(int i=0;i<lmd.size();++i) emod[i] = std::pair<RealD,Field const*>(lmd[i],&cpy[i]);
|
||||
|
||||
partial_sort(emod.begin(),emod.begin()+N,emod.end(),less_pair);
|
||||
|
||||
typename std::vector<std::pair<RealD, Field const*> >::iterator it = emod.begin();
|
||||
for(int i=0;i<N;++i){
|
||||
lmd[i]=it->first;
|
||||
evec[i]=*(it->second);
|
||||
++it;
|
||||
}
|
||||
}
|
||||
void push(std::vector<RealD>& lmd,int N) {
|
||||
std::partial_sort(lmd.begin(),lmd.begin()+N,lmd.end(),less_lmd);
|
||||
}
|
||||
bool saturated(RealD lmd, RealD thrs) {
|
||||
return fabs(lmd) > fabs(thrs);
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Implicitly restarted lanczos
|
||||
/////////////////////////////////////////////////////////////
|
||||
template<class Field>
|
||||
class ImplicitlyRestartedLanczos {
|
||||
|
||||
private:
|
||||
|
||||
int MaxIter; // Max iterations
|
||||
int Nstop; // Number of evecs checked for convergence
|
||||
int Nk; // Number of converged sought
|
||||
int Nm; // Nm -- total number of vectors
|
||||
RealD eresid;
|
||||
IRLdiagonalisation diagonalisation;
|
||||
////////////////////////////////////
|
||||
// Embedded objects
|
||||
////////////////////////////////////
|
||||
SortEigen<Field> _sort;
|
||||
LinearOperatorBase<Field> &_Linop;
|
||||
OperatorFunction<Field> &_poly;
|
||||
|
||||
/////////////////////////
|
||||
// Constructor
|
||||
/////////////////////////
|
||||
public:
|
||||
ImplicitlyRestartedLanczos(LinearOperatorBase<Field> &Linop, // op
|
||||
OperatorFunction<Field> & poly, // polynomial
|
||||
int _Nstop, // really sought vecs
|
||||
int _Nk, // sought vecs
|
||||
int _Nm, // total vecs
|
||||
RealD _eresid, // resid in lmd deficit
|
||||
int _MaxIter, // Max iterations
|
||||
IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen ) :
|
||||
_Linop(Linop), _poly(poly),
|
||||
Nstop(_Nstop), Nk(_Nk), Nm(_Nm),
|
||||
eresid(_eresid), MaxIter(_MaxIter),
|
||||
diagonalisation(_diagonalisation)
|
||||
{ };
|
||||
|
||||
////////////////////////////////
|
||||
// Helpers
|
||||
////////////////////////////////
|
||||
static RealD normalise(Field& v)
|
||||
{
|
||||
RealD nn = norm2(v);
|
||||
nn = sqrt(nn);
|
||||
v = v * (1.0/nn);
|
||||
return nn;
|
||||
}
|
||||
|
||||
void orthogonalize(Field& w, std::vector<Field>& evec, int k)
|
||||
{
|
||||
typedef typename Field::scalar_type MyComplex;
|
||||
MyComplex ip;
|
||||
|
||||
for(int j=0; j<k; ++j){
|
||||
ip = innerProduct(evec[j],w);
|
||||
w = w - ip * evec[j];
|
||||
}
|
||||
normalise(w);
|
||||
}
|
||||
|
||||
/* Rudy Arthur's thesis pp.137
|
||||
------------------------
|
||||
Require: M > K P = M − K †
|
||||
Compute the factorization AVM = VM HM + fM eM
|
||||
repeat
|
||||
Q=I
|
||||
for i = 1,...,P do
|
||||
QiRi =HM −θiI Q = QQi
|
||||
H M = Q †i H M Q i
|
||||
end for
|
||||
βK =HM(K+1,K) σK =Q(M,K)
|
||||
r=vK+1βK +rσK
|
||||
VK =VM(1:M)Q(1:M,1:K)
|
||||
HK =HM(1:K,1:K)
|
||||
→AVK =VKHK +fKe†K † Extend to an M = K + P step factorization AVM = VMHM + fMeM
|
||||
until convergence
|
||||
*/
|
||||
void calc(std::vector<RealD>& eval, std::vector<Field>& evec, const Field& src, int& Nconv)
|
||||
{
|
||||
|
||||
GridBase *grid = evec[0]._grid;
|
||||
assert(grid == src._grid);
|
||||
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogMessage <<" ImplicitlyRestartedLanczos::calc() starting iteration 0 / "<< MaxIter<< std::endl;
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogMessage <<" -- seek Nk = " << Nk <<" vectors"<< std::endl;
|
||||
std::cout << GridLogMessage <<" -- accept Nstop = " << Nstop <<" vectors"<< std::endl;
|
||||
std::cout << GridLogMessage <<" -- total Nm = " << Nm <<" vectors"<< std::endl;
|
||||
std::cout << GridLogMessage <<" -- size of eval = " << eval.size() << std::endl;
|
||||
std::cout << GridLogMessage <<" -- size of evec = " << evec.size() << std::endl;
|
||||
if ( diagonalisation == IRLdiagonaliseWithDSTEGR ) {
|
||||
std::cout << GridLogMessage << "Diagonalisation is DSTEGR "<<std::endl;
|
||||
} else if ( diagonalisation == IRLdiagonaliseWithQR ) {
|
||||
std::cout << GridLogMessage << "Diagonalisation is QR "<<std::endl;
|
||||
} else if ( diagonalisation == IRLdiagonaliseWithEigen ) {
|
||||
std::cout << GridLogMessage << "Diagonalisation is Eigen "<<std::endl;
|
||||
}
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
|
||||
assert(Nm == evec.size() && Nm == eval.size());
|
||||
|
||||
std::vector<RealD> lme(Nm);
|
||||
std::vector<RealD> lme2(Nm);
|
||||
std::vector<RealD> eval2(Nm);
|
||||
|
||||
Eigen::MatrixXd Qt = Eigen::MatrixXd::Zero(Nm,Nm);
|
||||
|
||||
std::vector<int> Iconv(Nm);
|
||||
std::vector<Field> B(Nm,grid); // waste of space replicating
|
||||
|
||||
Field f(grid);
|
||||
Field v(grid);
|
||||
|
||||
int k1 = 1;
|
||||
int k2 = Nk;
|
||||
|
||||
Nconv = 0;
|
||||
|
||||
RealD beta_k;
|
||||
|
||||
// Set initial vector
|
||||
evec[0] = src;
|
||||
std::cout << GridLogMessage <<"norm2(src)= " << norm2(src)<<std::endl;
|
||||
|
||||
normalise(evec[0]);
|
||||
std::cout << GridLogMessage <<"norm2(evec[0])= " << norm2(evec[0]) <<std::endl;
|
||||
|
||||
// Initial Nk steps
|
||||
for(int k=0; k<Nk; ++k) step(eval,lme,evec,f,Nm,k);
|
||||
|
||||
// Restarting loop begins
|
||||
int iter;
|
||||
for(iter = 0; iter<MaxIter; ++iter){
|
||||
|
||||
std::cout<< GridLogMessage <<" **********************"<< std::endl;
|
||||
std::cout<< GridLogMessage <<" Restart iteration = "<< iter << std::endl;
|
||||
std::cout<< GridLogMessage <<" **********************"<< std::endl;
|
||||
|
||||
for(int k=Nk; k<Nm; ++k) step(eval,lme,evec,f,Nm,k);
|
||||
|
||||
f *= lme[Nm-1];
|
||||
|
||||
// getting eigenvalues
|
||||
for(int k=0; k<Nm; ++k){
|
||||
eval2[k] = eval[k+k1-1];
|
||||
lme2[k] = lme[k+k1-1];
|
||||
}
|
||||
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
|
||||
diagonalize(eval2,lme2,Nm,Nm,Qt,grid);
|
||||
|
||||
// sorting
|
||||
_sort.push(eval2,Nm);
|
||||
|
||||
// Implicitly shifted QR transformations
|
||||
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
|
||||
for(int ip=k2; ip<Nm; ++ip){
|
||||
// Eigen replacement for qr_decomp ???
|
||||
qr_decomp(eval,lme,Nm,Nm,Qt,eval2[ip],k1,Nm);
|
||||
}
|
||||
|
||||
for(int i=0; i<(Nk+1); ++i) B[i] = 0.0;
|
||||
|
||||
for(int j=k1-1; j<k2+1; ++j){
|
||||
for(int k=0; k<Nm; ++k){
|
||||
B[j].checkerboard = evec[k].checkerboard;
|
||||
B[j] += Qt(j,k) * evec[k];
|
||||
}
|
||||
}
|
||||
for(int j=k1-1; j<k2+1; ++j) evec[j] = B[j];
|
||||
|
||||
// Compressed vector f and beta(k2)
|
||||
f *= Qt(k2-1,Nm-1);
|
||||
f += lme[k2-1] * evec[k2];
|
||||
beta_k = norm2(f);
|
||||
beta_k = sqrt(beta_k);
|
||||
std::cout<< GridLogMessage<<" beta(k) = "<<beta_k<<std::endl;
|
||||
|
||||
RealD betar = 1.0/beta_k;
|
||||
evec[k2] = betar * f;
|
||||
lme[k2-1] = beta_k;
|
||||
|
||||
// Convergence test
|
||||
for(int k=0; k<Nm; ++k){
|
||||
eval2[k] = eval[k];
|
||||
lme2[k] = lme[k];
|
||||
}
|
||||
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
|
||||
diagonalize(eval2,lme2,Nk,Nm,Qt,grid);
|
||||
|
||||
for(int k = 0; k<Nk; ++k) B[k]=0.0;
|
||||
|
||||
for(int j = 0; j<Nk; ++j){
|
||||
for(int k = 0; k<Nk; ++k){
|
||||
B[j].checkerboard = evec[k].checkerboard;
|
||||
B[j] += Qt(j,k) * evec[k];
|
||||
}
|
||||
}
|
||||
|
||||
Nconv = 0;
|
||||
for(int i=0; i<Nk; ++i){
|
||||
|
||||
_Linop.HermOp(B[i],v);
|
||||
|
||||
RealD vnum = real(innerProduct(B[i],v)); // HermOp.
|
||||
RealD vden = norm2(B[i]);
|
||||
eval2[i] = vnum/vden;
|
||||
v -= eval2[i]*B[i];
|
||||
RealD vv = norm2(v);
|
||||
|
||||
std::cout.precision(13);
|
||||
std::cout << GridLogMessage << "[" << std::setw(3)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
|
||||
std::cout << "eval = "<<std::setw(25)<< std::setiosflags(std::ios_base::left)<< eval2[i];
|
||||
std::cout << " |H B[i] - eval[i]B[i]|^2 "<< std::setw(25)<< std::setiosflags(std::ios_base::right)<< vv<< std::endl;
|
||||
|
||||
// change the criteria as evals are supposed to be sorted, all evals smaller(larger) than Nstop should have converged
|
||||
if((vv<eresid*eresid) && (i == Nconv) ){
|
||||
Iconv[Nconv] = i;
|
||||
++Nconv;
|
||||
}
|
||||
|
||||
} // i-loop end
|
||||
|
||||
std::cout<< GridLogMessage <<" #modes converged: "<<Nconv<<std::endl;
|
||||
|
||||
if( Nconv>=Nstop ){
|
||||
goto converged;
|
||||
}
|
||||
} // end of iter loop
|
||||
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
std::cout<< GridLogError <<" ImplicitlyRestartedLanczos::calc() NOT converged.";
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
abort();
|
||||
|
||||
converged:
|
||||
// Sorting
|
||||
eval.resize(Nconv);
|
||||
evec.resize(Nconv,grid);
|
||||
for(int i=0; i<Nconv; ++i){
|
||||
eval[i] = eval2[Iconv[i]];
|
||||
evec[i] = B[Iconv[i]];
|
||||
}
|
||||
_sort.push(eval,evec,Nconv);
|
||||
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogMessage << "ImplicitlyRestartedLanczos CONVERGED ; Summary :\n";
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogMessage << " -- Iterations = "<< iter << "\n";
|
||||
std::cout << GridLogMessage << " -- beta(k) = "<< beta_k << "\n";
|
||||
std::cout << GridLogMessage << " -- Nconv = "<< Nconv << "\n";
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
}
|
||||
|
||||
private:
|
||||
/* Saad PP. 195
|
||||
1. Choose an initial vector v1 of 2-norm unity. Set β1 ≡ 0, v0 ≡ 0
|
||||
2. For k = 1,2,...,m Do:
|
||||
3. wk:=Avk−βkv_{k−1}
|
||||
4. αk:=(wk,vk) //
|
||||
5. wk:=wk−αkvk // wk orthog vk
|
||||
6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
|
||||
7. vk+1 := wk/βk+1
|
||||
8. EndDo
|
||||
*/
|
||||
void step(std::vector<RealD>& lmd,
|
||||
std::vector<RealD>& lme,
|
||||
std::vector<Field>& evec,
|
||||
Field& w,int Nm,int k)
|
||||
{
|
||||
const RealD tiny = 1.0e-20;
|
||||
assert( k< Nm );
|
||||
|
||||
_poly(_Linop,evec[k],w); // 3. wk:=Avk−βkv_{k−1}
|
||||
|
||||
if(k>0) w -= lme[k-1] * evec[k-1];
|
||||
|
||||
ComplexD zalph = innerProduct(evec[k],w); // 4. αk:=(wk,vk)
|
||||
RealD alph = real(zalph);
|
||||
|
||||
w = w - alph * evec[k];// 5. wk:=wk−αkvk
|
||||
|
||||
RealD beta = normalise(w); // 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
|
||||
// 7. vk+1 := wk/βk+1
|
||||
|
||||
lmd[k] = alph;
|
||||
lme[k] = beta;
|
||||
|
||||
if ( k > 0 ) orthogonalize(w,evec,k); // orthonormalise
|
||||
if ( k < Nm-1) evec[k+1] = w;
|
||||
|
||||
if ( beta < tiny ) std::cout << GridLogMessage << " beta is tiny "<<beta<<std::endl;
|
||||
}
|
||||
|
||||
void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||||
int Nk, int Nm,
|
||||
Eigen::MatrixXd & Qt, // Nm x Nm
|
||||
GridBase *grid)
|
||||
{
|
||||
Eigen::MatrixXd TriDiag = Eigen::MatrixXd::Zero(Nk,Nk);
|
||||
|
||||
for(int i=0;i<Nk;i++) TriDiag(i,i) = lmd[i];
|
||||
for(int i=0;i<Nk-1;i++) TriDiag(i,i+1) = lme[i];
|
||||
for(int i=0;i<Nk-1;i++) TriDiag(i+1,i) = lme[i];
|
||||
|
||||
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> eigensolver(TriDiag);
|
||||
|
||||
for (int i = 0; i < Nk; i++) {
|
||||
lmd[Nk-1-i] = eigensolver.eigenvalues()(i);
|
||||
}
|
||||
for (int i = 0; i < Nk; i++) {
|
||||
for (int j = 0; j < Nk; j++) {
|
||||
Qt(Nk-1-i,j) = eigensolver.eigenvectors()(j,i);
|
||||
}
|
||||
}
|
||||
}
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// File could end here if settle on Eigen ???
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void qr_decomp(std::vector<RealD>& lmd, // Nm
|
||||
std::vector<RealD>& lme, // Nm
|
||||
int Nk, int Nm, // Nk, Nm
|
||||
Eigen::MatrixXd& Qt, // Nm x Nm matrix
|
||||
RealD Dsh, int kmin, int kmax)
|
||||
{
|
||||
int k = kmin-1;
|
||||
RealD x;
|
||||
|
||||
RealD Fden = 1.0/hypot(lmd[k]-Dsh,lme[k]);
|
||||
RealD c = ( lmd[k] -Dsh) *Fden;
|
||||
RealD s = -lme[k] *Fden;
|
||||
|
||||
RealD tmpa1 = lmd[k];
|
||||
RealD tmpa2 = lmd[k+1];
|
||||
RealD tmpb = lme[k];
|
||||
|
||||
lmd[k] = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
|
||||
lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
|
||||
lme[k] = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
|
||||
x =-s*lme[k+1];
|
||||
lme[k+1] = c*lme[k+1];
|
||||
|
||||
for(int i=0; i<Nk; ++i){
|
||||
RealD Qtmp1 = Qt(k,i);
|
||||
RealD Qtmp2 = Qt(k+1,i);
|
||||
Qt(k,i) = c*Qtmp1 - s*Qtmp2;
|
||||
Qt(k+1,i)= s*Qtmp1 + c*Qtmp2;
|
||||
}
|
||||
|
||||
// Givens transformations
|
||||
for(int k = kmin; k < kmax-1; ++k){
|
||||
|
||||
RealD Fden = 1.0/hypot(x,lme[k-1]);
|
||||
RealD c = lme[k-1]*Fden;
|
||||
RealD s = - x*Fden;
|
||||
|
||||
RealD tmpa1 = lmd[k];
|
||||
RealD tmpa2 = lmd[k+1];
|
||||
RealD tmpb = lme[k];
|
||||
|
||||
lmd[k] = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
|
||||
lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
|
||||
lme[k] = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
|
||||
lme[k-1] = c*lme[k-1] -s*x;
|
||||
|
||||
if(k != kmax-2){
|
||||
x = -s*lme[k+1];
|
||||
lme[k+1] = c*lme[k+1];
|
||||
}
|
||||
|
||||
for(int i=0; i<Nk; ++i){
|
||||
RealD Qtmp1 = Qt(k,i);
|
||||
RealD Qtmp2 = Qt(k+1,i);
|
||||
Qt(k,i) = c*Qtmp1 -s*Qtmp2;
|
||||
Qt(k+1,i) = s*Qtmp1 +c*Qtmp2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void diagonalize(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||||
int Nk, int Nm,
|
||||
Eigen::MatrixXd & Qt,
|
||||
GridBase *grid)
|
||||
{
|
||||
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
|
||||
if ( diagonalisation == IRLdiagonaliseWithDSTEGR ) {
|
||||
diagonalize_lapack(lmd,lme,Nk,Nm,Qt,grid);
|
||||
} else if ( diagonalisation == IRLdiagonaliseWithQR ) {
|
||||
diagonalize_QR(lmd,lme,Nk,Nm,Qt,grid);
|
||||
} else if ( diagonalisation == IRLdiagonaliseWithEigen ) {
|
||||
diagonalize_Eigen(lmd,lme,Nk,Nm,Qt,grid);
|
||||
} else {
|
||||
assert(0);
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef USE_LAPACK
|
||||
void LAPACK_dstegr(char *jobz, char *range, int *n, double *d, double *e,
|
||||
double *vl, double *vu, int *il, int *iu, double *abstol,
|
||||
int *m, double *w, double *z, int *ldz, int *isuppz,
|
||||
double *work, int *lwork, int *iwork, int *liwork,
|
||||
int *info);
|
||||
#endif
|
||||
|
||||
void diagonalize_lapack(std::vector<RealD>& lmd,
|
||||
std::vector<RealD>& lme,
|
||||
int Nk, int Nm,
|
||||
Eigen::MatrixXd& Qt,
|
||||
GridBase *grid)
|
||||
{
|
||||
#ifdef USE_LAPACK
|
||||
const int size = Nm;
|
||||
int NN = Nk;
|
||||
double evals_tmp[NN];
|
||||
double evec_tmp[NN][NN];
|
||||
memset(evec_tmp[0],0,sizeof(double)*NN*NN);
|
||||
double DD[NN];
|
||||
double EE[NN];
|
||||
for (int i = 0; i< NN; i++) {
|
||||
for (int j = i - 1; j <= i + 1; j++) {
|
||||
if ( j < NN && j >= 0 ) {
|
||||
if (i==j) DD[i] = lmd[i];
|
||||
if (i==j) evals_tmp[i] = lmd[i];
|
||||
if (j==(i-1)) EE[j] = lme[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
int evals_found;
|
||||
int lwork = ( (18*NN) > (1+4*NN+NN*NN)? (18*NN):(1+4*NN+NN*NN)) ;
|
||||
int liwork = 3+NN*10 ;
|
||||
int iwork[liwork];
|
||||
double work[lwork];
|
||||
int isuppz[2*NN];
|
||||
char jobz = 'V'; // calculate evals & evecs
|
||||
char range = 'I'; // calculate all evals
|
||||
// char range = 'A'; // calculate all evals
|
||||
char uplo = 'U'; // refer to upper half of original matrix
|
||||
char compz = 'I'; // Compute eigenvectors of tridiagonal matrix
|
||||
int ifail[NN];
|
||||
int info;
|
||||
int total = grid->_Nprocessors;
|
||||
int node = grid->_processor;
|
||||
int interval = (NN/total)+1;
|
||||
double vl = 0.0, vu = 0.0;
|
||||
int il = interval*node+1 , iu = interval*(node+1);
|
||||
if (iu > NN) iu=NN;
|
||||
double tol = 0.0;
|
||||
if (1) {
|
||||
memset(evals_tmp,0,sizeof(double)*NN);
|
||||
if ( il <= NN){
|
||||
LAPACK_dstegr(&jobz, &range, &NN,
|
||||
(double*)DD, (double*)EE,
|
||||
&vl, &vu, &il, &iu, // these four are ignored if second parameteris 'A'
|
||||
&tol, // tolerance
|
||||
&evals_found, evals_tmp, (double*)evec_tmp, &NN,
|
||||
isuppz,
|
||||
work, &lwork, iwork, &liwork,
|
||||
&info);
|
||||
for (int i = iu-1; i>= il-1; i--){
|
||||
evals_tmp[i] = evals_tmp[i - (il-1)];
|
||||
if (il>1) evals_tmp[i-(il-1)]=0.;
|
||||
for (int j = 0; j< NN; j++){
|
||||
evec_tmp[i][j] = evec_tmp[i - (il-1)][j];
|
||||
if (il>1) evec_tmp[i-(il-1)][j]=0.;
|
||||
}
|
||||
}
|
||||
}
|
||||
{
|
||||
grid->GlobalSumVector(evals_tmp,NN);
|
||||
grid->GlobalSumVector((double*)evec_tmp,NN*NN);
|
||||
}
|
||||
}
|
||||
// Safer to sort instead of just reversing it,
|
||||
// but the document of the routine says evals are sorted in increasing order.
|
||||
// qr gives evals in decreasing order.
|
||||
for(int i=0;i<NN;i++){
|
||||
lmd [NN-1-i]=evals_tmp[i];
|
||||
for(int j=0;j<NN;j++){
|
||||
Qt((NN-1-i),j)=evec_tmp[i][j];
|
||||
}
|
||||
}
|
||||
#else
|
||||
assert(0);
|
||||
#endif
|
||||
}
|
||||
|
||||
void diagonalize_QR(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||||
int Nk, int Nm,
|
||||
Eigen::MatrixXd & Qt,
|
||||
GridBase *grid)
|
||||
{
|
||||
int Niter = 100*Nm;
|
||||
int kmin = 1;
|
||||
int kmax = Nk;
|
||||
|
||||
// (this should be more sophisticated)
|
||||
for(int iter=0; iter<Niter; ++iter){
|
||||
|
||||
// determination of 2x2 leading submatrix
|
||||
RealD dsub = lmd[kmax-1]-lmd[kmax-2];
|
||||
RealD dd = sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]);
|
||||
RealD Dsh = 0.5*(lmd[kmax-2]+lmd[kmax-1] +dd*(dsub/fabs(dsub)));
|
||||
// (Dsh: shift)
|
||||
|
||||
// transformation
|
||||
qr_decomp(lmd,lme,Nk,Nm,Qt,Dsh,kmin,kmax); // Nk, Nm
|
||||
|
||||
// Convergence criterion (redef of kmin and kamx)
|
||||
for(int j=kmax-1; j>= kmin; --j){
|
||||
RealD dds = fabs(lmd[j-1])+fabs(lmd[j]);
|
||||
if(fabs(lme[j-1])+dds > dds){
|
||||
kmax = j+1;
|
||||
goto continued;
|
||||
}
|
||||
}
|
||||
Niter = iter;
|
||||
return;
|
||||
|
||||
continued:
|
||||
for(int j=0; j<kmax-1; ++j){
|
||||
RealD dds = fabs(lmd[j])+fabs(lmd[j+1]);
|
||||
if(fabs(lme[j])+dds > dds){
|
||||
kmin = j+1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
std::cout << GridLogError << "[QL method] Error - Too many iteration: "<<Niter<<"\n";
|
||||
abort();
|
||||
}
|
||||
|
||||
};
|
||||
}
|
||||
#endif
|
@ -51,9 +51,9 @@ int main (int argc, char ** argv)
|
||||
std::vector<int> seeds5({5,6,7,8});
|
||||
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
|
||||
//GridParallelRNG RNG5rb(FrbGrid); RNG5.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG5rb(FrbGrid); RNG5.SeedFixedIntegers(seeds5);
|
||||
// ypj [note] why seed RNG5 again? bug? In this case, run with a default seed().
|
||||
GridParallelRNG RNG5rb(FrbGrid); //RNG5rb.SeedFixedIntegers(seeds5);
|
||||
//GridParallelRNG RNG5rb(FrbGrid); //RNG5rb.SeedFixedIntegers(seeds5);
|
||||
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
SU3::HotConfiguration(RNG4, Umu);
|
||||
@ -77,19 +77,19 @@ int main (int argc, char ** argv)
|
||||
SchurDiagTwoOperator<GparityMobiusFermionR,FermionField> HermOp(Ddwf);
|
||||
// SchurDiagMooeeOperator<DomainWallFermionR,LatticeFermion> HermOp(Ddwf);
|
||||
|
||||
const int Nstop = 30;
|
||||
const int Nu = 4;
|
||||
const int Nk = 60;
|
||||
const int Np = 60;
|
||||
const int Nstop = 50;
|
||||
const int Nu = 1;
|
||||
const int Nk = 200;
|
||||
const int Np = 200;
|
||||
const int Nm = Nk+Np;
|
||||
const int MaxIt= 10000;
|
||||
const int MaxIt= 10;
|
||||
RealD resid = 1.0e-8;
|
||||
|
||||
//std::vector<double> Coeffs { 0.,-1.};
|
||||
// ypj [note] this may not be supported by some compilers
|
||||
std::vector<double> Coeffs({ 0.,1.});
|
||||
std::vector<double> Coeffs({ 0.,-1.});
|
||||
Polynomial<FermionField> PolyX(Coeffs);
|
||||
Chebyshev<FermionField> Cheb(0.2,5.,11);
|
||||
Chebyshev<FermionField> Cheb(0.2,5.5,11);
|
||||
// ChebyshevLanczos<LatticeFermion> Cheb(9.,1.,0.,20);
|
||||
// Cheb.csv(std::cout);
|
||||
// exit(-24);
|
||||
|
@ -75,16 +75,16 @@ int main (int argc, char ** argv)
|
||||
SchurDiagTwoOperator<GparityMobiusFermionR,FermionField> HermOp(Ddwf);
|
||||
// SchurDiagMooeeOperator<DomainWallFermionR,LatticeFermion> HermOp(Ddwf);
|
||||
|
||||
const int Nstop = 30;
|
||||
const int Nk = 40;
|
||||
const int Np = 40;
|
||||
const int Nstop = 50;
|
||||
const int Nk = 200;
|
||||
const int Np = 200;
|
||||
const int Nm = Nk+Np;
|
||||
const int MaxIt= 10000;
|
||||
const int MaxIt= 100;
|
||||
RealD resid = 1.0e-8;
|
||||
|
||||
std::vector<double> Coeffs { 0.,-1.};
|
||||
Polynomial<FermionField> PolyX(Coeffs);
|
||||
Chebyshev<FermionField> Cheb(0.2,5.,11);
|
||||
Chebyshev<FermionField> Cheb(0.2,5.5,11);
|
||||
// ChebyshevLanczos<LatticeFermion> Cheb(9.,1.,0.,20);
|
||||
// Cheb.csv(std::cout);
|
||||
// exit(-24);
|
||||
|
Loading…
x
Reference in New Issue
Block a user