mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 07:55:35 +00:00
Tested smeared RHMC Wilson1p1, accepting
This commit is contained in:
parent
e87182cf98
commit
ffb8b3116c
@ -1,73 +1,74 @@
|
||||
/*************************************************************************************
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/lattice/Lattice_ET.h
|
||||
Source file: ./lib/lattice/Lattice_ET.h
|
||||
|
||||
Copyright (C) 2015
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: neo <cossu@post.kek.jp>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_LATTICE_ET_H
|
||||
#define GRID_LATTICE_ET_H
|
||||
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <tuple>
|
||||
#include <typeinfo>
|
||||
#include <vector>
|
||||
|
||||
namespace Grid {
|
||||
|
||||
////////////////////////////////////////////////////
|
||||
// Predicated where support
|
||||
////////////////////////////////////////////////////
|
||||
template<class iobj,class vobj,class robj>
|
||||
inline vobj predicatedWhere(const iobj &predicate,const vobj &iftrue,const robj &iffalse) {
|
||||
////////////////////////////////////////////////////
|
||||
// Predicated where support
|
||||
////////////////////////////////////////////////////
|
||||
template <class iobj, class vobj, class robj>
|
||||
inline vobj predicatedWhere(const iobj &predicate, const vobj &iftrue,
|
||||
const robj &iffalse) {
|
||||
typename std::remove_const<vobj>::type ret;
|
||||
|
||||
typename std::remove_const<vobj>::type ret;
|
||||
typedef typename vobj::scalar_object scalar_object;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
typedef typename vobj::scalar_object scalar_object;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
const int Nsimd = vobj::vector_type::Nsimd();
|
||||
const int words = sizeof(vobj) / sizeof(vector_type);
|
||||
|
||||
const int Nsimd = vobj::vector_type::Nsimd();
|
||||
const int words = sizeof(vobj)/sizeof(vector_type);
|
||||
std::vector<Integer> mask(Nsimd);
|
||||
std::vector<scalar_object> truevals(Nsimd);
|
||||
std::vector<scalar_object> falsevals(Nsimd);
|
||||
|
||||
std::vector<Integer> mask(Nsimd);
|
||||
std::vector<scalar_object> truevals (Nsimd);
|
||||
std::vector<scalar_object> falsevals(Nsimd);
|
||||
extract(iftrue, truevals);
|
||||
extract(iffalse, falsevals);
|
||||
extract<vInteger, Integer>(TensorRemove(predicate), mask);
|
||||
|
||||
extract(iftrue ,truevals);
|
||||
extract(iffalse ,falsevals);
|
||||
extract<vInteger,Integer>(TensorRemove(predicate),mask);
|
||||
|
||||
for(int s=0;s<Nsimd;s++){
|
||||
if (mask[s]) falsevals[s]=truevals[s];
|
||||
}
|
||||
|
||||
merge(ret,falsevals);
|
||||
return ret;
|
||||
for (int s = 0; s < Nsimd; s++) {
|
||||
if (mask[s]) falsevals[s] = truevals[s];
|
||||
}
|
||||
|
||||
merge(ret, falsevals);
|
||||
return ret;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////
|
||||
// recursive evaluation of expressions; Could
|
||||
// switch to generic approach with variadics, a la
|
||||
@ -75,311 +76,342 @@ namespace Grid {
|
||||
// from tuple is hideous; C++14 introduces std::make_index_sequence for this
|
||||
////////////////////////////////////////////
|
||||
|
||||
// leaf eval of lattice ; should enable if protect using traits
|
||||
|
||||
//leaf eval of lattice ; should enable if protect using traits
|
||||
template <typename T>
|
||||
using is_lattice = std::is_base_of<LatticeBase, T>;
|
||||
|
||||
template <typename T> using is_lattice = std::is_base_of<LatticeBase,T >;
|
||||
template <typename T>
|
||||
using is_lattice_expr = std::is_base_of<LatticeExpressionBase, T>;
|
||||
|
||||
template <typename T> using is_lattice_expr = std::is_base_of<LatticeExpressionBase,T >;
|
||||
|
||||
template<class sobj>
|
||||
inline sobj eval(const unsigned int ss, const sobj &arg)
|
||||
{
|
||||
template <class sobj>
|
||||
inline sobj eval(const unsigned int ss, const sobj &arg) {
|
||||
return arg;
|
||||
}
|
||||
template<class lobj>
|
||||
inline const lobj &eval(const unsigned int ss, const Lattice<lobj> &arg)
|
||||
{
|
||||
return arg._odata[ss];
|
||||
template <class lobj>
|
||||
inline const lobj &eval(const unsigned int ss, const Lattice<lobj> &arg) {
|
||||
return arg._odata[ss];
|
||||
}
|
||||
|
||||
// handle nodes in syntax tree
|
||||
template <typename Op, typename T1>
|
||||
auto inline eval(const unsigned int ss, const LatticeUnaryExpression<Op,T1 > &expr) // eval one operand
|
||||
-> decltype(expr.first.func(eval(ss,std::get<0>(expr.second))))
|
||||
{
|
||||
return expr.first.func(eval(ss,std::get<0>(expr.second)));
|
||||
auto inline eval(
|
||||
const unsigned int ss,
|
||||
const LatticeUnaryExpression<Op, T1> &expr) // eval one operand
|
||||
-> decltype(expr.first.func(eval(ss, std::get<0>(expr.second)))) {
|
||||
return expr.first.func(eval(ss, std::get<0>(expr.second)));
|
||||
}
|
||||
|
||||
template <typename Op, typename T1, typename T2>
|
||||
auto inline eval(const unsigned int ss, const LatticeBinaryExpression<Op,T1,T2> &expr) // eval two operands
|
||||
-> decltype(expr.first.func(eval(ss,std::get<0>(expr.second)),eval(ss,std::get<1>(expr.second))))
|
||||
{
|
||||
return expr.first.func(eval(ss,std::get<0>(expr.second)),eval(ss,std::get<1>(expr.second)));
|
||||
auto inline eval(
|
||||
const unsigned int ss,
|
||||
const LatticeBinaryExpression<Op, T1, T2> &expr) // eval two operands
|
||||
-> decltype(expr.first.func(eval(ss, std::get<0>(expr.second)),
|
||||
eval(ss, std::get<1>(expr.second)))) {
|
||||
return expr.first.func(eval(ss, std::get<0>(expr.second)),
|
||||
eval(ss, std::get<1>(expr.second)));
|
||||
}
|
||||
|
||||
template <typename Op, typename T1, typename T2, typename T3>
|
||||
auto inline eval(const unsigned int ss, const LatticeTrinaryExpression<Op,T1,T2,T3 > &expr) // eval three operands
|
||||
-> decltype(expr.first.func(eval(ss,std::get<0>(expr.second)),eval(ss,std::get<1>(expr.second)),eval(ss,std::get<2>(expr.second))))
|
||||
{
|
||||
return expr.first.func(eval(ss,std::get<0>(expr.second)),eval(ss,std::get<1>(expr.second)),eval(ss,std::get<2>(expr.second)) );
|
||||
auto inline eval(const unsigned int ss,
|
||||
const LatticeTrinaryExpression<Op, T1, T2, T3>
|
||||
&expr) // eval three operands
|
||||
-> decltype(expr.first.func(eval(ss, std::get<0>(expr.second)),
|
||||
eval(ss, std::get<1>(expr.second)),
|
||||
eval(ss, std::get<2>(expr.second)))) {
|
||||
return expr.first.func(eval(ss, std::get<0>(expr.second)),
|
||||
eval(ss, std::get<1>(expr.second)),
|
||||
eval(ss, std::get<2>(expr.second)));
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// Obtain the grid from an expression, ensuring conformable. This must follow a tree recursion
|
||||
// Obtain the grid from an expression, ensuring conformable. This must follow a
|
||||
// tree recursion
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
template<class T1, typename std::enable_if<is_lattice<T1>::value, T1>::type * =nullptr >
|
||||
inline void GridFromExpression(GridBase * &grid,const T1& lat) // Lattice leaf
|
||||
{
|
||||
if ( grid ) {
|
||||
conformable(grid,lat._grid);
|
||||
}
|
||||
grid=lat._grid;
|
||||
}
|
||||
template<class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr >
|
||||
inline void GridFromExpression(GridBase * &grid,const T1& notlat) // non-lattice leaf
|
||||
template <class T1,
|
||||
typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
|
||||
inline void GridFromExpression(GridBase *&grid, const T1 &lat) // Lattice leaf
|
||||
{
|
||||
if (grid) {
|
||||
conformable(grid, lat._grid);
|
||||
}
|
||||
grid = lat._grid;
|
||||
}
|
||||
template <class T1,
|
||||
typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
|
||||
inline void GridFromExpression(GridBase *&grid,
|
||||
const T1 ¬lat) // non-lattice leaf
|
||||
{}
|
||||
template <typename Op, typename T1>
|
||||
inline void GridFromExpression(GridBase * &grid,const LatticeUnaryExpression<Op,T1 > &expr)
|
||||
{
|
||||
GridFromExpression(grid,std::get<0>(expr.second));// recurse
|
||||
inline void GridFromExpression(GridBase *&grid,
|
||||
const LatticeUnaryExpression<Op, T1> &expr) {
|
||||
GridFromExpression(grid, std::get<0>(expr.second)); // recurse
|
||||
}
|
||||
|
||||
template <typename Op, typename T1, typename T2>
|
||||
inline void GridFromExpression(GridBase * &grid,const LatticeBinaryExpression<Op,T1,T2> &expr)
|
||||
{
|
||||
GridFromExpression(grid,std::get<0>(expr.second));// recurse
|
||||
GridFromExpression(grid,std::get<1>(expr.second));
|
||||
inline void GridFromExpression(
|
||||
GridBase *&grid, const LatticeBinaryExpression<Op, T1, T2> &expr) {
|
||||
GridFromExpression(grid, std::get<0>(expr.second)); // recurse
|
||||
GridFromExpression(grid, std::get<1>(expr.second));
|
||||
}
|
||||
template <typename Op, typename T1, typename T2, typename T3>
|
||||
inline void GridFromExpression( GridBase * &grid,const LatticeTrinaryExpression<Op,T1,T2,T3 > &expr)
|
||||
{
|
||||
GridFromExpression(grid,std::get<0>(expr.second));// recurse
|
||||
GridFromExpression(grid,std::get<1>(expr.second));
|
||||
GridFromExpression(grid,std::get<2>(expr.second));
|
||||
inline void GridFromExpression(
|
||||
GridBase *&grid, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr) {
|
||||
GridFromExpression(grid, std::get<0>(expr.second)); // recurse
|
||||
GridFromExpression(grid, std::get<1>(expr.second));
|
||||
GridFromExpression(grid, std::get<2>(expr.second));
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// Obtain the CB from an expression, ensuring conformable. This must follow a tree recursion
|
||||
// Obtain the CB from an expression, ensuring conformable. This must follow a
|
||||
// tree recursion
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
template<class T1, typename std::enable_if<is_lattice<T1>::value, T1>::type * =nullptr >
|
||||
inline void CBFromExpression(int &cb,const T1& lat) // Lattice leaf
|
||||
template <class T1,
|
||||
typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
|
||||
inline void CBFromExpression(int &cb, const T1 &lat) // Lattice leaf
|
||||
{
|
||||
if ( (cb==Odd) || (cb==Even) ) {
|
||||
assert(cb==lat.checkerboard);
|
||||
}
|
||||
cb=lat.checkerboard;
|
||||
if ((cb == Odd) || (cb == Even)) {
|
||||
assert(cb == lat.checkerboard);
|
||||
}
|
||||
cb = lat.checkerboard;
|
||||
// std::cout<<GridLogMessage<<"Lattice leaf cb "<<cb<<std::endl;
|
||||
}
|
||||
template<class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr >
|
||||
inline void CBFromExpression(int &cb,const T1& notlat) // non-lattice leaf
|
||||
template <class T1,
|
||||
typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
|
||||
inline void CBFromExpression(int &cb, const T1 ¬lat) // non-lattice leaf
|
||||
{
|
||||
// std::cout<<GridLogMessage<<"Non lattice leaf cb"<<cb<<std::endl;
|
||||
}
|
||||
template <typename Op, typename T1>
|
||||
inline void CBFromExpression(int &cb,const LatticeUnaryExpression<Op,T1 > &expr)
|
||||
{
|
||||
CBFromExpression(cb,std::get<0>(expr.second));// recurse
|
||||
inline void CBFromExpression(int &cb,
|
||||
const LatticeUnaryExpression<Op, T1> &expr) {
|
||||
CBFromExpression(cb, std::get<0>(expr.second)); // recurse
|
||||
// std::cout<<GridLogMessage<<"Unary node cb "<<cb<<std::endl;
|
||||
}
|
||||
|
||||
template <typename Op, typename T1, typename T2>
|
||||
inline void CBFromExpression(int &cb,const LatticeBinaryExpression<Op,T1,T2> &expr)
|
||||
{
|
||||
CBFromExpression(cb,std::get<0>(expr.second));// recurse
|
||||
CBFromExpression(cb,std::get<1>(expr.second));
|
||||
inline void CBFromExpression(int &cb,
|
||||
const LatticeBinaryExpression<Op, T1, T2> &expr) {
|
||||
CBFromExpression(cb, std::get<0>(expr.second)); // recurse
|
||||
CBFromExpression(cb, std::get<1>(expr.second));
|
||||
// std::cout<<GridLogMessage<<"Binary node cb "<<cb<<std::endl;
|
||||
}
|
||||
template <typename Op, typename T1, typename T2, typename T3>
|
||||
inline void CBFromExpression( int &cb,const LatticeTrinaryExpression<Op,T1,T2,T3 > &expr)
|
||||
{
|
||||
CBFromExpression(cb,std::get<0>(expr.second));// recurse
|
||||
CBFromExpression(cb,std::get<1>(expr.second));
|
||||
CBFromExpression(cb,std::get<2>(expr.second));
|
||||
inline void CBFromExpression(
|
||||
int &cb, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr) {
|
||||
CBFromExpression(cb, std::get<0>(expr.second)); // recurse
|
||||
CBFromExpression(cb, std::get<1>(expr.second));
|
||||
CBFromExpression(cb, std::get<2>(expr.second));
|
||||
// std::cout<<GridLogMessage<<"Trinary node cb "<<cb<<std::endl;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////
|
||||
// Unary operators and funcs
|
||||
////////////////////////////////////////////
|
||||
#define GridUnopClass(name,ret)\
|
||||
template <class arg> struct name \
|
||||
{ \
|
||||
static auto inline func(const arg a)-> decltype(ret) { return ret; } \
|
||||
};
|
||||
|
||||
GridUnopClass(UnarySub,-a);
|
||||
GridUnopClass(UnaryNot,Not(a));
|
||||
GridUnopClass(UnaryAdj,adj(a));
|
||||
GridUnopClass(UnaryConj,conjugate(a));
|
||||
GridUnopClass(UnaryTrace,trace(a));
|
||||
GridUnopClass(UnaryTranspose,transpose(a));
|
||||
GridUnopClass(UnaryTa,Ta(a));
|
||||
GridUnopClass(UnaryProjectOnGroup,ProjectOnGroup(a));
|
||||
GridUnopClass(UnaryReal,real(a));
|
||||
GridUnopClass(UnaryImag,imag(a));
|
||||
GridUnopClass(UnaryToReal,toReal(a));
|
||||
GridUnopClass(UnaryToComplex,toComplex(a));
|
||||
GridUnopClass(UnaryTimesI,timesI(a));
|
||||
GridUnopClass(UnaryTimesMinusI,timesMinusI(a));
|
||||
GridUnopClass(UnaryAbs,abs(a));
|
||||
GridUnopClass(UnarySqrt,sqrt(a));
|
||||
GridUnopClass(UnaryRsqrt,rsqrt(a));
|
||||
GridUnopClass(UnarySin,sin(a));
|
||||
GridUnopClass(UnaryCos,cos(a));
|
||||
GridUnopClass(UnaryAsin,asin(a));
|
||||
GridUnopClass(UnaryAcos,acos(a));
|
||||
GridUnopClass(UnaryLog,log(a));
|
||||
GridUnopClass(UnaryExp,exp(a));
|
||||
|
||||
#define GridUnopClass(name, ret) \
|
||||
template <class arg> \
|
||||
struct name { \
|
||||
static auto inline func(const arg a) -> decltype(ret) { return ret; } \
|
||||
};
|
||||
|
||||
GridUnopClass(UnarySub, -a);
|
||||
GridUnopClass(UnaryNot, Not(a));
|
||||
GridUnopClass(UnaryAdj, adj(a));
|
||||
GridUnopClass(UnaryConj, conjugate(a));
|
||||
GridUnopClass(UnaryTrace, trace(a));
|
||||
GridUnopClass(UnaryTranspose, transpose(a));
|
||||
GridUnopClass(UnaryTa, Ta(a));
|
||||
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
|
||||
GridUnopClass(UnaryReal, real(a));
|
||||
GridUnopClass(UnaryImag, imag(a));
|
||||
GridUnopClass(UnaryToReal, toReal(a));
|
||||
GridUnopClass(UnaryToComplex, toComplex(a));
|
||||
GridUnopClass(UnaryTimesI, timesI(a));
|
||||
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
|
||||
GridUnopClass(UnaryAbs, abs(a));
|
||||
GridUnopClass(UnarySqrt, sqrt(a));
|
||||
GridUnopClass(UnaryRsqrt, rsqrt(a));
|
||||
GridUnopClass(UnarySin, sin(a));
|
||||
GridUnopClass(UnaryCos, cos(a));
|
||||
GridUnopClass(UnaryAsin, asin(a));
|
||||
GridUnopClass(UnaryAcos, acos(a));
|
||||
GridUnopClass(UnaryLog, log(a));
|
||||
GridUnopClass(UnaryExp, exp(a));
|
||||
|
||||
////////////////////////////////////////////
|
||||
// Binary operators
|
||||
////////////////////////////////////////////
|
||||
#define GridBinOpClass(name,combination)\
|
||||
template <class left,class right>\
|
||||
struct name\
|
||||
{\
|
||||
static auto inline func(const left &lhs,const right &rhs)-> decltype(combination) const \
|
||||
{\
|
||||
return combination;\
|
||||
}\
|
||||
}
|
||||
GridBinOpClass(BinaryAdd,lhs+rhs);
|
||||
GridBinOpClass(BinarySub,lhs-rhs);
|
||||
GridBinOpClass(BinaryMul,lhs*rhs);
|
||||
#define GridBinOpClass(name, combination) \
|
||||
template <class left, class right> \
|
||||
struct name { \
|
||||
static auto inline func(const left &lhs, const right &rhs) \
|
||||
-> decltype(combination) const { \
|
||||
return combination; \
|
||||
} \
|
||||
}
|
||||
GridBinOpClass(BinaryAdd, lhs + rhs);
|
||||
GridBinOpClass(BinarySub, lhs - rhs);
|
||||
GridBinOpClass(BinaryMul, lhs *rhs);
|
||||
|
||||
GridBinOpClass(BinaryAnd ,lhs&rhs);
|
||||
GridBinOpClass(BinaryOr ,lhs|rhs);
|
||||
GridBinOpClass(BinaryAndAnd,lhs&&rhs);
|
||||
GridBinOpClass(BinaryOrOr ,lhs||rhs);
|
||||
GridBinOpClass(BinaryAnd, lhs &rhs);
|
||||
GridBinOpClass(BinaryOr, lhs | rhs);
|
||||
GridBinOpClass(BinaryAndAnd, lhs &&rhs);
|
||||
GridBinOpClass(BinaryOrOr, lhs || rhs);
|
||||
|
||||
////////////////////////////////////////////////////
|
||||
// Trinary conditional op
|
||||
////////////////////////////////////////////////////
|
||||
#define GridTrinOpClass(name,combination)\
|
||||
template <class predicate,class left, class right> \
|
||||
struct name\
|
||||
{\
|
||||
static auto inline func(const predicate &pred,const left &lhs,const right &rhs)-> decltype(combination) const \
|
||||
{\
|
||||
return combination;\
|
||||
}\
|
||||
}
|
||||
#define GridTrinOpClass(name, combination) \
|
||||
template <class predicate, class left, class right> \
|
||||
struct name { \
|
||||
static auto inline func(const predicate &pred, const left &lhs, \
|
||||
const right &rhs) -> decltype(combination) const { \
|
||||
return combination; \
|
||||
} \
|
||||
}
|
||||
|
||||
GridTrinOpClass(TrinaryWhere,(predicatedWhere<predicate, \
|
||||
typename std::remove_reference<left>::type, \
|
||||
typename std::remove_reference<right>::type> (pred,lhs,rhs)));
|
||||
GridTrinOpClass(
|
||||
TrinaryWhere,
|
||||
(predicatedWhere<predicate, typename std::remove_reference<left>::type,
|
||||
typename std::remove_reference<right>::type>(pred, lhs,
|
||||
rhs)));
|
||||
|
||||
////////////////////////////////////////////
|
||||
// Operator syntactical glue
|
||||
////////////////////////////////////////////
|
||||
|
||||
#define GRID_UNOP(name) name<decltype(eval(0, arg))>
|
||||
#define GRID_BINOP(name) name<decltype(eval(0, lhs)), decltype(eval(0, rhs))>
|
||||
#define GRID_TRINOP(name) name<decltype(eval(0, pred)), decltype(eval(0, lhs)), decltype(eval(0, rhs))>
|
||||
|
||||
#define GRID_DEF_UNOP(op, name)\
|
||||
template <typename T1,\
|
||||
typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value, T1>::type* = nullptr> inline auto op(const T1 &arg) \
|
||||
-> decltype(LatticeUnaryExpression<GRID_UNOP(name),const T1&>(std::make_pair(GRID_UNOP(name)(),std::forward_as_tuple(arg)))) \
|
||||
{ return LatticeUnaryExpression<GRID_UNOP(name), const T1 &>(std::make_pair(GRID_UNOP(name)(),std::forward_as_tuple(arg))); }
|
||||
#define GRID_UNOP(name) name<decltype(eval(0, arg))>
|
||||
#define GRID_BINOP(name) name<decltype(eval(0, lhs)), decltype(eval(0, rhs))>
|
||||
#define GRID_TRINOP(name) \
|
||||
name<decltype(eval(0, pred)), decltype(eval(0, lhs)), decltype(eval(0, rhs))>
|
||||
|
||||
#define GRID_BINOP_LEFT(op, name)\
|
||||
template <typename T1,typename T2,\
|
||||
typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value, T1>::type* = nullptr>\
|
||||
inline auto op(const T1 &lhs,const T2&rhs) \
|
||||
-> decltype(LatticeBinaryExpression<GRID_BINOP(name),const T1&,const T2 &>(std::make_pair(GRID_BINOP(name)(),\
|
||||
std::forward_as_tuple(lhs, rhs)))) \
|
||||
{\
|
||||
return LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>(std::make_pair(GRID_BINOP(name)(),\
|
||||
std::forward_as_tuple(lhs, rhs))); \
|
||||
}
|
||||
#define GRID_DEF_UNOP(op, name) \
|
||||
template <typename T1, \
|
||||
typename std::enable_if<is_lattice<T1>::value || \
|
||||
is_lattice_expr<T1>::value, \
|
||||
T1>::type * = nullptr> \
|
||||
inline auto op(const T1 &arg) \
|
||||
->decltype(LatticeUnaryExpression<GRID_UNOP(name), const T1 &>( \
|
||||
std::make_pair(GRID_UNOP(name)(), std::forward_as_tuple(arg)))) { \
|
||||
return LatticeUnaryExpression<GRID_UNOP(name), const T1 &>( \
|
||||
std::make_pair(GRID_UNOP(name)(), std::forward_as_tuple(arg))); \
|
||||
}
|
||||
|
||||
#define GRID_BINOP_RIGHT(op, name)\
|
||||
template <typename T1,typename T2,\
|
||||
typename std::enable_if<!is_lattice<T1>::value && !is_lattice_expr<T1>::value, T1>::type* = nullptr,\
|
||||
typename std::enable_if< is_lattice<T2>::value || is_lattice_expr<T2>::value, T2>::type* = nullptr> \
|
||||
inline auto op(const T1 &lhs,const T2&rhs) \
|
||||
-> decltype(LatticeBinaryExpression<GRID_BINOP(name),const T1&,const T2 &>(std::make_pair(GRID_BINOP(name)(),\
|
||||
std::forward_as_tuple(lhs, rhs)))) \
|
||||
{\
|
||||
return LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>(std::make_pair(GRID_BINOP(name)(),\
|
||||
std::forward_as_tuple(lhs, rhs))); \
|
||||
}
|
||||
#define GRID_BINOP_LEFT(op, name) \
|
||||
template <typename T1, typename T2, \
|
||||
typename std::enable_if<is_lattice<T1>::value || \
|
||||
is_lattice_expr<T1>::value, \
|
||||
T1>::type * = nullptr> \
|
||||
inline auto op(const T1 &lhs, const T2 &rhs) \
|
||||
->decltype( \
|
||||
LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>( \
|
||||
std::make_pair(GRID_BINOP(name)(), \
|
||||
std::forward_as_tuple(lhs, rhs)))) { \
|
||||
return LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>( \
|
||||
std::make_pair(GRID_BINOP(name)(), std::forward_as_tuple(lhs, rhs))); \
|
||||
}
|
||||
|
||||
#define GRID_DEF_BINOP(op, name)\
|
||||
GRID_BINOP_LEFT(op,name);\
|
||||
GRID_BINOP_RIGHT(op,name);
|
||||
#define GRID_BINOP_RIGHT(op, name) \
|
||||
template <typename T1, typename T2, \
|
||||
typename std::enable_if<!is_lattice<T1>::value && \
|
||||
!is_lattice_expr<T1>::value, \
|
||||
T1>::type * = nullptr, \
|
||||
typename std::enable_if<is_lattice<T2>::value || \
|
||||
is_lattice_expr<T2>::value, \
|
||||
T2>::type * = nullptr> \
|
||||
inline auto op(const T1 &lhs, const T2 &rhs) \
|
||||
->decltype( \
|
||||
LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>( \
|
||||
std::make_pair(GRID_BINOP(name)(), \
|
||||
std::forward_as_tuple(lhs, rhs)))) { \
|
||||
return LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>( \
|
||||
std::make_pair(GRID_BINOP(name)(), std::forward_as_tuple(lhs, rhs))); \
|
||||
}
|
||||
|
||||
#define GRID_DEF_BINOP(op, name) \
|
||||
GRID_BINOP_LEFT(op, name); \
|
||||
GRID_BINOP_RIGHT(op, name);
|
||||
|
||||
#define GRID_DEF_TRINOP(op, name)\
|
||||
template <typename T1,typename T2,typename T3> inline auto op(const T1 &pred,const T2&lhs,const T3 &rhs) \
|
||||
-> decltype(LatticeTrinaryExpression<GRID_TRINOP(name),const T1&,const T2 &,const T3&>(std::make_pair(GRID_TRINOP(name)(),\
|
||||
std::forward_as_tuple(pred,lhs,rhs)))) \
|
||||
{\
|
||||
return LatticeTrinaryExpression<GRID_TRINOP(name), const T1 &, const T2 &,const T3&>(std::make_pair(GRID_TRINOP(name)(), \
|
||||
std::forward_as_tuple(pred,lhs, rhs))); \
|
||||
}
|
||||
#define GRID_DEF_TRINOP(op, name) \
|
||||
template <typename T1, typename T2, typename T3> \
|
||||
inline auto op(const T1 &pred, const T2 &lhs, const T3 &rhs) \
|
||||
->decltype( \
|
||||
LatticeTrinaryExpression<GRID_TRINOP(name), const T1 &, const T2 &, \
|
||||
const T3 &>(std::make_pair( \
|
||||
GRID_TRINOP(name)(), std::forward_as_tuple(pred, lhs, rhs)))) { \
|
||||
return LatticeTrinaryExpression<GRID_TRINOP(name), const T1 &, const T2 &, \
|
||||
const T3 &>(std::make_pair( \
|
||||
GRID_TRINOP(name)(), std::forward_as_tuple(pred, lhs, rhs))); \
|
||||
}
|
||||
////////////////////////
|
||||
//Operator definitions
|
||||
// Operator definitions
|
||||
////////////////////////
|
||||
|
||||
GRID_DEF_UNOP(operator -,UnarySub);
|
||||
GRID_DEF_UNOP(Not,UnaryNot);
|
||||
GRID_DEF_UNOP(operator !,UnaryNot);
|
||||
GRID_DEF_UNOP(adj,UnaryAdj);
|
||||
GRID_DEF_UNOP(conjugate,UnaryConj);
|
||||
GRID_DEF_UNOP(trace,UnaryTrace);
|
||||
GRID_DEF_UNOP(transpose,UnaryTranspose);
|
||||
GRID_DEF_UNOP(Ta,UnaryTa);
|
||||
GRID_DEF_UNOP(ProjectOnGroup,UnaryProjectOnGroup);
|
||||
GRID_DEF_UNOP(real,UnaryReal);
|
||||
GRID_DEF_UNOP(imag,UnaryImag);
|
||||
GRID_DEF_UNOP(toReal,UnaryToReal);
|
||||
GRID_DEF_UNOP(toComplex,UnaryToComplex);
|
||||
GRID_DEF_UNOP(timesI,UnaryTimesI);
|
||||
GRID_DEF_UNOP(timesMinusI,UnaryTimesMinusI);
|
||||
GRID_DEF_UNOP(abs ,UnaryAbs); //abs overloaded in cmath C++98; DON'T do the abs-fabs-dabs-labs thing
|
||||
GRID_DEF_UNOP(sqrt ,UnarySqrt);
|
||||
GRID_DEF_UNOP(rsqrt,UnaryRsqrt);
|
||||
GRID_DEF_UNOP(sin ,UnarySin);
|
||||
GRID_DEF_UNOP(cos ,UnaryCos);
|
||||
GRID_DEF_UNOP(asin ,UnaryAsin);
|
||||
GRID_DEF_UNOP(acos ,UnaryAcos);
|
||||
GRID_DEF_UNOP(log ,UnaryLog);
|
||||
GRID_DEF_UNOP(exp ,UnaryExp);
|
||||
GRID_DEF_UNOP(operator-, UnarySub);
|
||||
GRID_DEF_UNOP(Not, UnaryNot);
|
||||
GRID_DEF_UNOP(operator!, UnaryNot);
|
||||
GRID_DEF_UNOP(adj, UnaryAdj);
|
||||
GRID_DEF_UNOP(conjugate, UnaryConj);
|
||||
GRID_DEF_UNOP(trace, UnaryTrace);
|
||||
GRID_DEF_UNOP(transpose, UnaryTranspose);
|
||||
GRID_DEF_UNOP(Ta, UnaryTa);
|
||||
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
|
||||
GRID_DEF_UNOP(real, UnaryReal);
|
||||
GRID_DEF_UNOP(imag, UnaryImag);
|
||||
GRID_DEF_UNOP(toReal, UnaryToReal);
|
||||
GRID_DEF_UNOP(toComplex, UnaryToComplex);
|
||||
GRID_DEF_UNOP(timesI, UnaryTimesI);
|
||||
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
|
||||
GRID_DEF_UNOP(abs, UnaryAbs); // abs overloaded in cmath C++98; DON'T do the
|
||||
// abs-fabs-dabs-labs thing
|
||||
GRID_DEF_UNOP(sqrt, UnarySqrt);
|
||||
GRID_DEF_UNOP(rsqrt, UnaryRsqrt);
|
||||
GRID_DEF_UNOP(sin, UnarySin);
|
||||
GRID_DEF_UNOP(cos, UnaryCos);
|
||||
GRID_DEF_UNOP(asin, UnaryAsin);
|
||||
GRID_DEF_UNOP(acos, UnaryAcos);
|
||||
GRID_DEF_UNOP(log, UnaryLog);
|
||||
GRID_DEF_UNOP(exp, UnaryExp);
|
||||
|
||||
GRID_DEF_BINOP(operator+,BinaryAdd);
|
||||
GRID_DEF_BINOP(operator-,BinarySub);
|
||||
GRID_DEF_BINOP(operator*,BinaryMul);
|
||||
GRID_DEF_BINOP(operator+, BinaryAdd);
|
||||
GRID_DEF_BINOP(operator-, BinarySub);
|
||||
GRID_DEF_BINOP(operator*, BinaryMul);
|
||||
|
||||
GRID_DEF_BINOP(operator&,BinaryAnd);
|
||||
GRID_DEF_BINOP(operator|,BinaryOr);
|
||||
GRID_DEF_BINOP(operator&&,BinaryAndAnd);
|
||||
GRID_DEF_BINOP(operator||,BinaryOrOr);
|
||||
GRID_DEF_BINOP(operator&, BinaryAnd);
|
||||
GRID_DEF_BINOP(operator|, BinaryOr);
|
||||
GRID_DEF_BINOP(operator&&, BinaryAndAnd);
|
||||
GRID_DEF_BINOP(operator||, BinaryOrOr);
|
||||
|
||||
GRID_DEF_TRINOP(where,TrinaryWhere);
|
||||
GRID_DEF_TRINOP(where, TrinaryWhere);
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Closure convenience to force expression to evaluate
|
||||
/////////////////////////////////////////////////////////////
|
||||
template<class Op,class T1>
|
||||
auto closure(const LatticeUnaryExpression<Op,T1> & expr)
|
||||
-> Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second))))>
|
||||
{
|
||||
Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second))))> ret(expr);
|
||||
template <class Op, class T1>
|
||||
auto closure(const LatticeUnaryExpression<Op, T1> &expr)
|
||||
-> Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second))))> {
|
||||
Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second))))> ret(
|
||||
expr);
|
||||
return ret;
|
||||
}
|
||||
template<class Op,class T1, class T2>
|
||||
auto closure(const LatticeBinaryExpression<Op,T1,T2> & expr)
|
||||
-> Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
|
||||
eval(0,std::get<1>(expr.second))))>
|
||||
{
|
||||
Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
|
||||
eval(0,std::get<1>(expr.second))))> ret(expr);
|
||||
template <class Op, class T1, class T2>
|
||||
auto closure(const LatticeBinaryExpression<Op, T1, T2> &expr)
|
||||
-> Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)),
|
||||
eval(0, std::get<1>(expr.second))))> {
|
||||
Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)),
|
||||
eval(0, std::get<1>(expr.second))))>
|
||||
ret(expr);
|
||||
return ret;
|
||||
}
|
||||
template<class Op,class T1, class T2, class T3>
|
||||
auto closure(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)
|
||||
-> Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
|
||||
eval(0,std::get<1>(expr.second)),
|
||||
eval(0,std::get<2>(expr.second))))>
|
||||
{
|
||||
Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
|
||||
eval(0,std::get<1>(expr.second)),
|
||||
eval(0,std::get<2>(expr.second))))> ret(expr);
|
||||
template <class Op, class T1, class T2, class T3>
|
||||
auto closure(const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
|
||||
-> Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)),
|
||||
eval(0, std::get<1>(expr.second)),
|
||||
eval(0, std::get<2>(expr.second))))> {
|
||||
Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)),
|
||||
eval(0, std::get<1>(expr.second)),
|
||||
eval(0, std::get<2>(expr.second))))>
|
||||
ret(expr);
|
||||
return ret;
|
||||
}
|
||||
|
||||
@ -390,12 +422,11 @@ template<class Op,class T1, class T2, class T3>
|
||||
#undef GRID_DEF_UNOP
|
||||
#undef GRID_DEF_BINOP
|
||||
#undef GRID_DEF_TRINOP
|
||||
|
||||
}
|
||||
|
||||
#if 0
|
||||
using namespace Grid;
|
||||
|
||||
|
||||
int main(int argc,char **argv){
|
||||
|
||||
Lattice<double> v1(16);
|
||||
@ -405,7 +436,7 @@ using namespace Grid;
|
||||
BinaryAdd<double,double> tmp;
|
||||
LatticeBinaryExpression<BinaryAdd<double,double>,Lattice<double> &,Lattice<double> &>
|
||||
expr(std::make_pair(tmp,
|
||||
std::forward_as_tuple(v1,v2)));
|
||||
std::forward_as_tuple(v1,v2)));
|
||||
tmp.func(eval(0,v1),eval(0,v2));
|
||||
|
||||
auto var = v1+v2;
|
||||
|
@ -1,212 +1,214 @@
|
||||
/*************************************************************************************
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/pseudofermion/OneFlavourEvenOddRational.h
|
||||
Source file: ./lib/qcd/action/pseudofermion/OneFlavourEvenOddRational.h
|
||||
|
||||
Copyright (C) 2015
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_H
|
||||
#define QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_H
|
||||
|
||||
namespace Grid{
|
||||
namespace QCD{
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
///////////////////////////////////////
|
||||
// One flavour rational
|
||||
///////////////////////////////////////
|
||||
///////////////////////////////////////
|
||||
// One flavour rational
|
||||
///////////////////////////////////////
|
||||
|
||||
// S_f = chi^dag * N(Mpc^dag*Mpc)/D(Mpc^dag*Mpc) * chi
|
||||
// S_f = chi^dag * N(Mpc^dag*Mpc)/D(Mpc^dag*Mpc) * chi
|
||||
//
|
||||
// Here, M is some operator
|
||||
// N and D makeup the rat. poly
|
||||
//
|
||||
|
||||
template <class Impl>
|
||||
class OneFlavourEvenOddRationalPseudoFermionAction
|
||||
: public Action<typename Impl::GaugeField> {
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
typedef OneFlavourRationalParams Params;
|
||||
Params param;
|
||||
|
||||
MultiShiftFunction PowerHalf;
|
||||
MultiShiftFunction PowerNegHalf;
|
||||
MultiShiftFunction PowerQuarter;
|
||||
MultiShiftFunction PowerNegQuarter;
|
||||
|
||||
private:
|
||||
FermionOperator<Impl> &FermOp; // the basic operator
|
||||
|
||||
// NOT using "Nroots"; IroIro is -- perhaps later, but this wasn't good for us
|
||||
// historically
|
||||
// and hasenbusch works better
|
||||
|
||||
FermionField PhiEven; // the pseudo fermion field for this trajectory
|
||||
FermionField PhiOdd; // the pseudo fermion field for this trajectory
|
||||
|
||||
public:
|
||||
OneFlavourEvenOddRationalPseudoFermionAction(FermionOperator<Impl> &Op,
|
||||
Params &p)
|
||||
: FermOp(Op),
|
||||
PhiEven(Op.FermionRedBlackGrid()),
|
||||
PhiOdd(Op.FermionRedBlackGrid()),
|
||||
param(p) {
|
||||
AlgRemez remez(param.lo, param.hi, param.precision);
|
||||
|
||||
// MdagM^(+- 1/2)
|
||||
std::cout << GridLogMessage << "Generating degree " << param.degree
|
||||
<< " for x^(1/2)" << std::endl;
|
||||
remez.generateApprox(param.degree, 1, 2);
|
||||
PowerHalf.Init(remez, param.tolerance, false);
|
||||
PowerNegHalf.Init(remez, param.tolerance, true);
|
||||
|
||||
// MdagM^(+- 1/4)
|
||||
std::cout << GridLogMessage << "Generating degree " << param.degree
|
||||
<< " for x^(1/4)" << std::endl;
|
||||
remez.generateApprox(param.degree, 1, 4);
|
||||
PowerQuarter.Init(remez, param.tolerance, false);
|
||||
PowerNegQuarter.Init(remez, param.tolerance, true);
|
||||
};
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridParallelRNG &pRNG) {
|
||||
// P(phi) = e^{- phi^dag (MpcdagMpc)^-1/2 phi}
|
||||
// = e^{- phi^dag (MpcdagMpc)^-1/4 (MpcdagMpc)^-1/4 phi}
|
||||
// Phi = MpcdagMpc^{1/4} eta
|
||||
//
|
||||
// Here, M is some operator
|
||||
// N and D makeup the rat. poly
|
||||
// P(eta) = e^{- eta^dag eta}
|
||||
//
|
||||
|
||||
template<class Impl>
|
||||
class OneFlavourEvenOddRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
//
|
||||
// So eta should be of width sig = 1/sqrt(2).
|
||||
|
||||
typedef OneFlavourRationalParams Params;
|
||||
Params param;
|
||||
RealD scale = std::sqrt(0.5);
|
||||
|
||||
MultiShiftFunction PowerHalf ;
|
||||
MultiShiftFunction PowerNegHalf;
|
||||
MultiShiftFunction PowerQuarter;
|
||||
MultiShiftFunction PowerNegQuarter;
|
||||
FermionField eta(FermOp.FermionGrid());
|
||||
FermionField etaOdd(FermOp.FermionRedBlackGrid());
|
||||
FermionField etaEven(FermOp.FermionRedBlackGrid());
|
||||
|
||||
private:
|
||||
|
||||
FermionOperator<Impl> & FermOp;// the basic operator
|
||||
gaussian(pRNG, eta);
|
||||
eta = eta * scale;
|
||||
|
||||
// NOT using "Nroots"; IroIro is -- perhaps later, but this wasn't good for us historically
|
||||
// and hasenbusch works better
|
||||
pickCheckerboard(Even, etaEven, eta);
|
||||
pickCheckerboard(Odd, etaOdd, eta);
|
||||
|
||||
FermionField PhiEven; // the pseudo fermion field for this trajectory
|
||||
FermionField PhiOdd; // the pseudo fermion field for this trajectory
|
||||
|
||||
FermOp.ImportGauge(U);
|
||||
|
||||
public:
|
||||
// mutishift CG
|
||||
SchurDifferentiableOperator<Impl> Mpc(FermOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter, PowerQuarter);
|
||||
msCG(Mpc, etaOdd, PhiOdd);
|
||||
|
||||
OneFlavourEvenOddRationalPseudoFermionAction(FermionOperator<Impl> &Op,
|
||||
Params & p ) : FermOp(Op),
|
||||
PhiEven(Op.FermionRedBlackGrid()),
|
||||
PhiOdd (Op.FermionRedBlackGrid()),
|
||||
param(p)
|
||||
{
|
||||
AlgRemez remez(param.lo,param.hi,param.precision);
|
||||
//////////////////////////////////////////////////////
|
||||
// FIXME : Clover term not yet..
|
||||
//////////////////////////////////////////////////////
|
||||
|
||||
// MdagM^(+- 1/2)
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,2);
|
||||
PowerHalf.Init(remez,param.tolerance,false);
|
||||
PowerNegHalf.Init(remez,param.tolerance,true);
|
||||
assert(FermOp.ConstEE() == 1);
|
||||
PhiEven = zero;
|
||||
};
|
||||
|
||||
// MdagM^(+- 1/4)
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,4);
|
||||
PowerQuarter.Init(remez,param.tolerance,false);
|
||||
PowerNegQuarter.Init(remez,param.tolerance,true);
|
||||
};
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
|
||||
//////////////////////////////////////////////////////
|
||||
// S = phi^dag (Mdag M)^-1/2 phi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
FermOp.ImportGauge(U);
|
||||
|
||||
// P(phi) = e^{- phi^dag (MpcdagMpc)^-1/2 phi}
|
||||
// = e^{- phi^dag (MpcdagMpc)^-1/4 (MpcdagMpc)^-1/4 phi}
|
||||
// Phi = MpcdagMpc^{1/4} eta
|
||||
//
|
||||
// P(eta) = e^{- eta^dag eta}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
//
|
||||
// So eta should be of width sig = 1/sqrt(2).
|
||||
FermionField Y(FermOp.FermionRedBlackGrid());
|
||||
|
||||
RealD scale = std::sqrt(0.5);
|
||||
SchurDifferentiableOperator<Impl> Mpc(FermOp);
|
||||
|
||||
FermionField eta (FermOp.FermionGrid());
|
||||
FermionField etaOdd (FermOp.FermionRedBlackGrid());
|
||||
FermionField etaEven(FermOp.FermionRedBlackGrid());
|
||||
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,
|
||||
PowerNegQuarter);
|
||||
|
||||
gaussian(pRNG,eta); eta=eta*scale;
|
||||
msCG(Mpc, PhiOdd, Y);
|
||||
|
||||
pickCheckerboard(Even,etaEven,eta);
|
||||
pickCheckerboard(Odd,etaOdd,eta);
|
||||
RealD action = norm2(Y);
|
||||
std::cout << GridLogMessage << "Pseudofermion action FIXME -- is -1/4 "
|
||||
"solve or -1/2 solve faster??? "
|
||||
<< action << std::endl;
|
||||
|
||||
FermOp.ImportGauge(U);
|
||||
return action;
|
||||
};
|
||||
|
||||
// mutishift CG
|
||||
SchurDifferentiableOperator<Impl> Mpc(FermOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerQuarter);
|
||||
msCG(Mpc,etaOdd,PhiOdd);
|
||||
//////////////////////////////////////////////////////
|
||||
// Need
|
||||
// dS_f/dU = chi^dag d[N/D] chi
|
||||
//
|
||||
// N/D is expressed as partial fraction expansion:
|
||||
//
|
||||
// a0 + \sum_k ak/(M^dagM + bk)
|
||||
//
|
||||
// d[N/D] is then
|
||||
//
|
||||
// \sum_k -ak [M^dagM+bk]^{-1} [ dM^dag M + M^dag dM ] [M^dag M +
|
||||
// bk]^{-1}
|
||||
//
|
||||
// Need
|
||||
// Mf Phi_k = [MdagM+bk]^{-1} Phi
|
||||
// Mf Phi = \sum_k ak [MdagM+bk]^{-1} Phi
|
||||
//
|
||||
// With these building blocks
|
||||
//
|
||||
// dS/dU = \sum_k -ak Mf Phi_k^dag [ dM^dag M + M^dag dM ] Mf
|
||||
// Phi_k
|
||||
// S = innerprodReal(Phi,Mf Phi);
|
||||
//////////////////////////////////////////////////////
|
||||
virtual void deriv(const GaugeField &U, GaugeField &dSdU) {
|
||||
const int Npole = PowerNegHalf.poles.size();
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// FIXME : Clover term not yet..
|
||||
//////////////////////////////////////////////////////
|
||||
std::vector<FermionField> MPhi_k(Npole, FermOp.FermionRedBlackGrid());
|
||||
|
||||
assert(FermOp.ConstEE() == 1);
|
||||
PhiEven = zero;
|
||||
|
||||
};
|
||||
FermionField X(FermOp.FermionRedBlackGrid());
|
||||
FermionField Y(FermOp.FermionRedBlackGrid());
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// S = phi^dag (Mdag M)^-1/2 phi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
GaugeField tmp(FermOp.GaugeGrid());
|
||||
|
||||
FermOp.ImportGauge(U);
|
||||
FermOp.ImportGauge(U);
|
||||
|
||||
FermionField Y(FermOp.FermionRedBlackGrid());
|
||||
|
||||
SchurDifferentiableOperator<Impl> Mpc(FermOp);
|
||||
SchurDifferentiableOperator<Impl> Mpc(FermOp);
|
||||
|
||||
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerNegQuarter);
|
||||
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter, PowerNegHalf);
|
||||
|
||||
msCG(Mpc,PhiOdd,Y);
|
||||
msCG(Mpc, PhiOdd, MPhi_k);
|
||||
|
||||
RealD action = norm2(Y);
|
||||
std::cout << GridLogMessage << "Pseudofermion action FIXME -- is -1/4 solve or -1/2 solve faster??? "<<action<<std::endl;
|
||||
dSdU = zero;
|
||||
for (int k = 0; k < Npole; k++) {
|
||||
RealD ak = PowerNegHalf.residues[k];
|
||||
|
||||
return action;
|
||||
};
|
||||
X = MPhi_k[k];
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// Need
|
||||
// dS_f/dU = chi^dag d[N/D] chi
|
||||
//
|
||||
// N/D is expressed as partial fraction expansion:
|
||||
//
|
||||
// a0 + \sum_k ak/(M^dagM + bk)
|
||||
//
|
||||
// d[N/D] is then
|
||||
//
|
||||
// \sum_k -ak [M^dagM+bk]^{-1} [ dM^dag M + M^dag dM ] [M^dag M + bk]^{-1}
|
||||
//
|
||||
// Need
|
||||
// Mf Phi_k = [MdagM+bk]^{-1} Phi
|
||||
// Mf Phi = \sum_k ak [MdagM+bk]^{-1} Phi
|
||||
//
|
||||
// With these building blocks
|
||||
//
|
||||
// dS/dU = \sum_k -ak Mf Phi_k^dag [ dM^dag M + M^dag dM ] Mf Phi_k
|
||||
// S = innerprodReal(Phi,Mf Phi);
|
||||
//////////////////////////////////////////////////////
|
||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
||||
Mpc.Mpc(X, Y);
|
||||
Mpc.MpcDeriv(tmp, Y, X);
|
||||
dSdU = dSdU + ak * tmp;
|
||||
Mpc.MpcDagDeriv(tmp, X, Y);
|
||||
dSdU = dSdU + ak * tmp;
|
||||
}
|
||||
|
||||
const int Npole = PowerNegHalf.poles.size();
|
||||
|
||||
std::vector<FermionField> MPhi_k (Npole,FermOp.FermionRedBlackGrid());
|
||||
|
||||
FermionField X(FermOp.FermionRedBlackGrid());
|
||||
FermionField Y(FermOp.FermionRedBlackGrid());
|
||||
|
||||
GaugeField tmp(FermOp.GaugeGrid());
|
||||
|
||||
FermOp.ImportGauge(U);
|
||||
|
||||
SchurDifferentiableOperator<Impl> Mpc(FermOp);
|
||||
|
||||
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerNegHalf);
|
||||
|
||||
msCG(Mpc,PhiOdd,MPhi_k);
|
||||
|
||||
dSdU = zero;
|
||||
for(int k=0;k<Npole;k++){
|
||||
|
||||
RealD ak = PowerNegHalf.residues[k];
|
||||
|
||||
X = MPhi_k[k];
|
||||
|
||||
Mpc.Mpc(X,Y);
|
||||
Mpc.MpcDeriv (tmp , Y, X ); dSdU=dSdU+ak*tmp;
|
||||
Mpc.MpcDagDeriv(tmp , X, Y ); dSdU=dSdU+ak*tmp;
|
||||
|
||||
}
|
||||
|
||||
//dSdU = Ta(dSdU);
|
||||
|
||||
};
|
||||
};
|
||||
}
|
||||
// dSdU = Ta(dSdU);
|
||||
};
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif
|
||||
|
@ -1,31 +1,32 @@
|
||||
/*************************************************************************************
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/tensors/Tensor_class.h
|
||||
Source file: ./lib/tensors/Tensor_class.h
|
||||
|
||||
Copyright (C) 2015
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_MATH_TENSORS_H
|
||||
#define GRID_MATH_TENSORS_H
|
||||
|
||||
@ -38,17 +39,18 @@ namespace Grid {
|
||||
|
||||
// It is useful to NOT have any constructors
|
||||
// so that these classes assert "is_pod<class> == true"
|
||||
// because then the standard C++ valarray container eliminates fill overhead on new allocation and
|
||||
// because then the standard C++ valarray container eliminates fill overhead on
|
||||
// new allocation and
|
||||
// non-move copying.
|
||||
//
|
||||
// However note that doing this eliminates some syntactical sugar such as
|
||||
// However note that doing this eliminates some syntactical sugar such as
|
||||
// calling the constructor explicitly or implicitly
|
||||
//
|
||||
class GridTensorBase {};
|
||||
|
||||
template<class vtype> class iScalar
|
||||
{
|
||||
public:
|
||||
template <class vtype>
|
||||
class iScalar {
|
||||
public:
|
||||
vtype _internal;
|
||||
|
||||
typedef vtype element;
|
||||
@ -60,13 +62,14 @@ public:
|
||||
typedef iScalar<recurse_scalar_object> scalar_object;
|
||||
|
||||
// substitutes a real or complex version with same tensor structure
|
||||
typedef iScalar<typename GridTypeMapper<vtype>::Complexified > Complexified;
|
||||
typedef iScalar<typename GridTypeMapper<vtype>::Realified > Realified;
|
||||
typedef iScalar<typename GridTypeMapper<vtype>::Complexified> Complexified;
|
||||
typedef iScalar<typename GridTypeMapper<vtype>::Realified> Realified;
|
||||
|
||||
enum { TensorLevel = GridTypeMapper<vtype>::TensorLevel + 1};
|
||||
enum { TensorLevel = GridTypeMapper<vtype>::TensorLevel + 1 };
|
||||
|
||||
// Scalar no action
|
||||
// template<int Level> using tensor_reduce_level = typename iScalar<GridTypeMapper<vtype>::tensor_reduce_level<Level> >;
|
||||
// template<int Level> using tensor_reduce_level = typename
|
||||
// iScalar<GridTypeMapper<vtype>::tensor_reduce_level<Level> >;
|
||||
iScalar() = default;
|
||||
/*
|
||||
iScalar(const iScalar<vtype> ©me)=default;
|
||||
@ -74,83 +77,106 @@ public:
|
||||
iScalar<vtype> & operator= (const iScalar<vtype> ©me) = default;
|
||||
iScalar<vtype> & operator= (iScalar<vtype> &©me) = default;
|
||||
*/
|
||||
iScalar(scalar_type s) : _internal(s) {};// recurse down and hit the constructor for vector_type
|
||||
iScalar(const Zero &z){ *this = zero; };
|
||||
iScalar(scalar_type s)
|
||||
: _internal(s){}; // recurse down and hit the constructor for vector_type
|
||||
iScalar(const Zero &z) { *this = zero; };
|
||||
|
||||
iScalar<vtype> & operator= (const Zero &hero){
|
||||
iScalar<vtype> &operator=(const Zero &hero) {
|
||||
zeroit(*this);
|
||||
return *this;
|
||||
}
|
||||
friend strong_inline void vstream(iScalar<vtype> &out,const iScalar<vtype> &in){
|
||||
vstream(out._internal,in._internal);
|
||||
friend strong_inline void vstream(iScalar<vtype> &out,
|
||||
const iScalar<vtype> &in) {
|
||||
vstream(out._internal, in._internal);
|
||||
}
|
||||
friend strong_inline void zeroit(iScalar<vtype> &that){
|
||||
friend strong_inline void zeroit(iScalar<vtype> &that) {
|
||||
zeroit(that._internal);
|
||||
}
|
||||
friend strong_inline void prefetch(iScalar<vtype> &that){
|
||||
friend strong_inline void prefetch(iScalar<vtype> &that) {
|
||||
prefetch(that._internal);
|
||||
}
|
||||
friend strong_inline void permute(iScalar<vtype> &out,const iScalar<vtype> &in,int permutetype){
|
||||
permute(out._internal,in._internal,permutetype);
|
||||
friend strong_inline void permute(iScalar<vtype> &out,
|
||||
const iScalar<vtype> &in, int permutetype) {
|
||||
permute(out._internal, in._internal, permutetype);
|
||||
}
|
||||
|
||||
// Unary negation
|
||||
friend strong_inline iScalar<vtype> operator -(const iScalar<vtype> &r) {
|
||||
friend strong_inline iScalar<vtype> operator-(const iScalar<vtype> &r) {
|
||||
iScalar<vtype> ret;
|
||||
ret._internal= -r._internal;
|
||||
ret._internal = -r._internal;
|
||||
return ret;
|
||||
}
|
||||
// *=,+=,-= operators inherit from corresponding "*,-,+" behaviour
|
||||
strong_inline iScalar<vtype> &operator *=(const iScalar<vtype> &r) {
|
||||
*this = (*this)*r;
|
||||
strong_inline iScalar<vtype> &operator*=(const iScalar<vtype> &r) {
|
||||
*this = (*this) * r;
|
||||
return *this;
|
||||
}
|
||||
strong_inline iScalar<vtype> &operator -=(const iScalar<vtype> &r) {
|
||||
*this = (*this)-r;
|
||||
strong_inline iScalar<vtype> &operator-=(const iScalar<vtype> &r) {
|
||||
*this = (*this) - r;
|
||||
return *this;
|
||||
}
|
||||
strong_inline iScalar<vtype> &operator +=(const iScalar<vtype> &r) {
|
||||
*this = (*this)+r;
|
||||
strong_inline iScalar<vtype> &operator+=(const iScalar<vtype> &r) {
|
||||
*this = (*this) + r;
|
||||
return *this;
|
||||
}
|
||||
strong_inline vtype & operator ()(void) {
|
||||
return _internal;
|
||||
}
|
||||
strong_inline const vtype & operator ()(void) const {
|
||||
return _internal;
|
||||
}
|
||||
strong_inline vtype &operator()(void) { return _internal; }
|
||||
strong_inline const vtype &operator()(void) const { return _internal; }
|
||||
|
||||
// Type casts meta programmed, must be pure scalar to match TensorRemove
|
||||
template<class U=vtype,class V=scalar_type,IfComplex<V> = 0,IfNotSimd<U> = 0> operator ComplexF () const { return(TensorRemove(_internal)); };
|
||||
template<class U=vtype,class V=scalar_type,IfComplex<V> = 0,IfNotSimd<U> = 0> operator ComplexD () const { return(TensorRemove(_internal)); };
|
||||
// template<class U=vtype,class V=scalar_type,IfComplex<V> = 0,IfNotSimd<U> = 0> operator RealD () const { return(real(TensorRemove(_internal))); }
|
||||
template<class U=vtype,class V=scalar_type,IfReal<V> = 0,IfNotSimd<U> = 0> operator RealD () const { return TensorRemove(_internal); }
|
||||
template<class U=vtype,class V=scalar_type,IfInteger<V> = 0,IfNotSimd<U> = 0> operator Integer () const { return Integer(TensorRemove(_internal)); }
|
||||
|
||||
// convert from a something to a scalar via constructor of something arg
|
||||
template<class T,typename std::enable_if<!isGridTensor<T>::value, T>::type* = nullptr > strong_inline iScalar<vtype> operator = (T arg)
|
||||
{
|
||||
_internal = arg;
|
||||
return *this;
|
||||
}
|
||||
template <class U = vtype, class V = scalar_type, IfComplex<V> = 0,
|
||||
IfNotSimd<U> = 0>
|
||||
operator ComplexF() const {
|
||||
return (TensorRemove(_internal));
|
||||
};
|
||||
template <class U = vtype, class V = scalar_type, IfComplex<V> = 0,
|
||||
IfNotSimd<U> = 0>
|
||||
operator ComplexD() const {
|
||||
return (TensorRemove(_internal));
|
||||
};
|
||||
// template<class U=vtype,class V=scalar_type,IfComplex<V> = 0,IfNotSimd<U> =
|
||||
// 0> operator RealD () const { return(real(TensorRemove(_internal))); }
|
||||
template <class U = vtype, class V = scalar_type, IfReal<V> = 0,
|
||||
IfNotSimd<U> = 0>
|
||||
operator RealD() const {
|
||||
return TensorRemove(_internal);
|
||||
}
|
||||
template <class U = vtype, class V = scalar_type, IfInteger<V> = 0,
|
||||
IfNotSimd<U> = 0>
|
||||
operator Integer() const {
|
||||
return Integer(TensorRemove(_internal));
|
||||
}
|
||||
|
||||
friend std::ostream& operator<< (std::ostream& stream, const iScalar<vtype> &o){
|
||||
stream<< "S {"<<o._internal<<"}";
|
||||
return stream;
|
||||
};
|
||||
// convert from a something to a scalar via constructor of something arg
|
||||
template <class T, typename std::enable_if<!isGridTensor<T>::value, T>::type
|
||||
* = nullptr>
|
||||
strong_inline iScalar<vtype> operator=(T arg) {
|
||||
_internal = arg;
|
||||
return *this;
|
||||
}
|
||||
|
||||
friend std::ostream &operator<<(std::ostream &stream,
|
||||
const iScalar<vtype> &o) {
|
||||
stream << "S {" << o._internal << "}";
|
||||
return stream;
|
||||
};
|
||||
};
|
||||
///////////////////////////////////////////////////////////
|
||||
// Allows to turn scalar<scalar<scalar<double>>>> back to double.
|
||||
///////////////////////////////////////////////////////////
|
||||
template<class T> strong_inline typename std::enable_if<!isGridTensor<T>::value, T>::type TensorRemove(T arg) { return arg;}
|
||||
template<class vtype> strong_inline auto TensorRemove(iScalar<vtype> arg) -> decltype(TensorRemove(arg._internal))
|
||||
{
|
||||
template <class T>
|
||||
strong_inline typename std::enable_if<!isGridTensor<T>::value, T>::type
|
||||
TensorRemove(T arg) {
|
||||
return arg;
|
||||
}
|
||||
template <class vtype>
|
||||
strong_inline auto TensorRemove(iScalar<vtype> arg)
|
||||
-> decltype(TensorRemove(arg._internal)) {
|
||||
return TensorRemove(arg._internal);
|
||||
}
|
||||
|
||||
template<class vtype,int N> class iVector
|
||||
{
|
||||
public:
|
||||
|
||||
template <class vtype, int N>
|
||||
class iVector {
|
||||
public:
|
||||
vtype _internal[N];
|
||||
|
||||
typedef vtype element;
|
||||
@ -159,23 +185,23 @@ public:
|
||||
typedef typename GridTypeMapper<vtype>::tensor_reduced tensor_reduced_v;
|
||||
typedef typename GridTypeMapper<vtype>::scalar_object recurse_scalar_object;
|
||||
typedef iScalar<tensor_reduced_v> tensor_reduced;
|
||||
typedef iVector<recurse_scalar_object,N> scalar_object;
|
||||
typedef iVector<recurse_scalar_object, N> scalar_object;
|
||||
|
||||
// substitutes a real or complex version with same tensor structure
|
||||
typedef iVector<typename GridTypeMapper<vtype>::Complexified,N > Complexified;
|
||||
typedef iVector<typename GridTypeMapper<vtype>::Realified,N > Realified;
|
||||
typedef iVector<typename GridTypeMapper<vtype>::Complexified, N> Complexified;
|
||||
typedef iVector<typename GridTypeMapper<vtype>::Realified, N> Realified;
|
||||
|
||||
template<class T,typename std::enable_if<!isGridTensor<T>::value, T>::type* = nullptr > strong_inline auto operator = (T arg) -> iVector<vtype,N>
|
||||
{
|
||||
zeroit(*this);
|
||||
for(int i=0;i<N;i++)
|
||||
_internal[i] = arg;
|
||||
return *this;
|
||||
}
|
||||
template <class T, typename std::enable_if<!isGridTensor<T>::value, T>::type
|
||||
* = nullptr>
|
||||
strong_inline auto operator=(T arg) -> iVector<vtype, N> {
|
||||
zeroit(*this);
|
||||
for (int i = 0; i < N; i++) _internal[i] = arg;
|
||||
return *this;
|
||||
}
|
||||
|
||||
enum { TensorLevel = GridTypeMapper<vtype>::TensorLevel + 1};
|
||||
iVector(const Zero &z){ *this = zero; };
|
||||
iVector() =default;
|
||||
enum { TensorLevel = GridTypeMapper<vtype>::TensorLevel + 1 };
|
||||
iVector(const Zero &z) { *this = zero; };
|
||||
iVector() = default;
|
||||
/*
|
||||
iVector(const iVector<vtype,N> ©me)=default;
|
||||
iVector(iVector<vtype,N> &©me)=default;
|
||||
@ -183,71 +209,71 @@ public:
|
||||
iVector<vtype,N> & operator= (iVector<vtype,N> &©me) = default;
|
||||
*/
|
||||
|
||||
iVector<vtype,N> & operator= (const Zero &hero){
|
||||
iVector<vtype, N> &operator=(const Zero &hero) {
|
||||
zeroit(*this);
|
||||
return *this;
|
||||
}
|
||||
friend strong_inline void zeroit(iVector<vtype,N> &that){
|
||||
for(int i=0;i<N;i++){
|
||||
friend strong_inline void zeroit(iVector<vtype, N> &that) {
|
||||
for (int i = 0; i < N; i++) {
|
||||
zeroit(that._internal[i]);
|
||||
}
|
||||
}
|
||||
friend strong_inline void prefetch(iVector<vtype,N> &that){
|
||||
for(int i=0;i<N;i++) prefetch(that._internal[i]);
|
||||
friend strong_inline void prefetch(iVector<vtype, N> &that) {
|
||||
for (int i = 0; i < N; i++) prefetch(that._internal[i]);
|
||||
}
|
||||
friend strong_inline void vstream(iVector<vtype,N> &out,const iVector<vtype,N> &in){
|
||||
for(int i=0;i<N;i++){
|
||||
vstream(out._internal[i],in._internal[i]);
|
||||
friend strong_inline void vstream(iVector<vtype, N> &out,
|
||||
const iVector<vtype, N> &in) {
|
||||
for (int i = 0; i < N; i++) {
|
||||
vstream(out._internal[i], in._internal[i]);
|
||||
}
|
||||
}
|
||||
friend strong_inline void permute(iVector<vtype,N> &out,const iVector<vtype,N> &in,int permutetype){
|
||||
for(int i=0;i<N;i++){
|
||||
permute(out._internal[i],in._internal[i],permutetype);
|
||||
friend strong_inline void permute(iVector<vtype, N> &out,
|
||||
const iVector<vtype, N> &in,
|
||||
int permutetype) {
|
||||
for (int i = 0; i < N; i++) {
|
||||
permute(out._internal[i], in._internal[i], permutetype);
|
||||
}
|
||||
}
|
||||
|
||||
// Unary negation
|
||||
friend strong_inline iVector<vtype,N> operator -(const iVector<vtype,N> &r) {
|
||||
iVector<vtype,N> ret;
|
||||
for(int i=0;i<N;i++) ret._internal[i]= -r._internal[i];
|
||||
friend strong_inline iVector<vtype, N> operator-(const iVector<vtype, N> &r) {
|
||||
iVector<vtype, N> ret;
|
||||
for (int i = 0; i < N; i++) ret._internal[i] = -r._internal[i];
|
||||
return ret;
|
||||
}
|
||||
// *=,+=,-= operators inherit from corresponding "*,-,+" behaviour
|
||||
strong_inline iVector<vtype,N> &operator *=(const iScalar<vtype> &r) {
|
||||
*this = (*this)*r;
|
||||
strong_inline iVector<vtype, N> &operator*=(const iScalar<vtype> &r) {
|
||||
*this = (*this) * r;
|
||||
return *this;
|
||||
}
|
||||
strong_inline iVector<vtype,N> &operator -=(const iVector<vtype,N> &r) {
|
||||
*this = (*this)-r;
|
||||
strong_inline iVector<vtype, N> &operator-=(const iVector<vtype, N> &r) {
|
||||
*this = (*this) - r;
|
||||
return *this;
|
||||
}
|
||||
strong_inline iVector<vtype,N> &operator +=(const iVector<vtype,N> &r) {
|
||||
*this = (*this)+r;
|
||||
strong_inline iVector<vtype, N> &operator+=(const iVector<vtype, N> &r) {
|
||||
*this = (*this) + r;
|
||||
return *this;
|
||||
}
|
||||
strong_inline vtype & operator ()(int i) {
|
||||
return _internal[i];
|
||||
}
|
||||
strong_inline const vtype & operator ()(int i) const {
|
||||
return _internal[i];
|
||||
}
|
||||
friend std::ostream& operator<< (std::ostream& stream, const iVector<vtype,N> &o){
|
||||
stream<< "V<"<<N<<">{";
|
||||
for(int i=0;i<N;i++) {
|
||||
stream<<o._internal[i];
|
||||
if (i<N-1) stream<<",";
|
||||
strong_inline vtype &operator()(int i) { return _internal[i]; }
|
||||
strong_inline const vtype &operator()(int i) const { return _internal[i]; }
|
||||
friend std::ostream &operator<<(std::ostream &stream,
|
||||
const iVector<vtype, N> &o) {
|
||||
stream << "V<" << N << ">{";
|
||||
for (int i = 0; i < N; i++) {
|
||||
stream << o._internal[i];
|
||||
if (i < N - 1) stream << ",";
|
||||
}
|
||||
stream<<"}";
|
||||
stream << "}";
|
||||
return stream;
|
||||
};
|
||||
// strong_inline vtype && operator ()(int i) {
|
||||
// return _internal[i];
|
||||
// }
|
||||
};
|
||||
|
||||
template<class vtype,int N> class iMatrix
|
||||
{
|
||||
public:
|
||||
|
||||
template <class vtype, int N>
|
||||
class iMatrix {
|
||||
public:
|
||||
vtype _internal[N][N];
|
||||
|
||||
typedef vtype element;
|
||||
@ -257,29 +283,27 @@ public:
|
||||
typedef typename GridTypeMapper<vtype>::scalar_object recurse_scalar_object;
|
||||
|
||||
// substitutes a real or complex version with same tensor structure
|
||||
typedef iMatrix<typename GridTypeMapper<vtype>::Complexified,N > Complexified;
|
||||
typedef iMatrix<typename GridTypeMapper<vtype>::Realified,N > Realified;
|
||||
typedef iMatrix<typename GridTypeMapper<vtype>::Complexified, N> Complexified;
|
||||
typedef iMatrix<typename GridTypeMapper<vtype>::Realified, N> Realified;
|
||||
|
||||
// Tensure removal
|
||||
typedef iScalar<tensor_reduced_v> tensor_reduced;
|
||||
typedef iMatrix<recurse_scalar_object,N> scalar_object;
|
||||
typedef iMatrix<recurse_scalar_object, N> scalar_object;
|
||||
|
||||
enum { TensorLevel = GridTypeMapper<vtype>::TensorLevel + 1};
|
||||
enum { TensorLevel = GridTypeMapper<vtype>::TensorLevel + 1 };
|
||||
|
||||
iMatrix(const Zero &z) { *this = zero; };
|
||||
iMatrix() = default;
|
||||
|
||||
iMatrix(const Zero &z){ *this = zero; };
|
||||
iMatrix() =default;
|
||||
|
||||
iMatrix& operator=(const iMatrix& rhs){
|
||||
for(int i=0;i<N;i++)
|
||||
for(int j=0;j<N;j++)
|
||||
vstream(_internal[i][j],rhs._internal[i][j]);
|
||||
iMatrix &operator=(const iMatrix &rhs) {
|
||||
for (int i = 0; i < N; i++)
|
||||
for (int j = 0; j < N; j++) vstream(_internal[i][j], rhs._internal[i][j]);
|
||||
return *this;
|
||||
};
|
||||
|
||||
|
||||
};
|
||||
|
||||
iMatrix(scalar_type s) { (*this) = s ;};// recurse down and hit the constructor for vector_type
|
||||
iMatrix(scalar_type s) {
|
||||
(*this) = s;
|
||||
}; // recurse down and hit the constructor for vector_type
|
||||
|
||||
/*
|
||||
iMatrix(const iMatrix<vtype,N> ©me)=default;
|
||||
@ -288,118 +312,118 @@ public:
|
||||
iMatrix<vtype,N> & operator= (iMatrix<vtype,N> &©me) = default;
|
||||
*/
|
||||
|
||||
|
||||
|
||||
iMatrix<vtype,N> & operator= (const Zero &hero){
|
||||
iMatrix<vtype, N> &operator=(const Zero &hero) {
|
||||
zeroit(*this);
|
||||
return *this;
|
||||
}
|
||||
template<class T,typename std::enable_if<!isGridTensor<T>::value, T>::type* = nullptr > strong_inline auto operator = (T arg) -> iMatrix<vtype,N>
|
||||
{
|
||||
zeroit(*this);
|
||||
for(int i=0;i<N;i++)
|
||||
_internal[i][i] = arg;
|
||||
return *this;
|
||||
template <class T, typename std::enable_if<!isGridTensor<T>::value, T>::type
|
||||
* = nullptr>
|
||||
strong_inline auto operator=(T arg) -> iMatrix<vtype, N> {
|
||||
zeroit(*this);
|
||||
for (int i = 0; i < N; i++) _internal[i][i] = arg;
|
||||
return *this;
|
||||
}
|
||||
|
||||
friend strong_inline void zeroit(iMatrix<vtype, N> &that) {
|
||||
for (int i = 0; i < N; i++) {
|
||||
for (int j = 0; j < N; j++) {
|
||||
zeroit(that._internal[i][j]);
|
||||
}
|
||||
}
|
||||
|
||||
friend strong_inline void zeroit(iMatrix<vtype,N> &that){
|
||||
for(int i=0;i<N;i++){
|
||||
for(int j=0;j<N;j++){
|
||||
zeroit(that._internal[i][j]);
|
||||
}}
|
||||
}
|
||||
friend strong_inline void prefetch(iMatrix<vtype,N> &that){
|
||||
for(int i=0;i<N;i++)
|
||||
for(int j=0;j<N;j++)
|
||||
prefetch(that._internal[i][j]);
|
||||
friend strong_inline void prefetch(iMatrix<vtype, N> &that) {
|
||||
for (int i = 0; i < N; i++)
|
||||
for (int j = 0; j < N; j++) prefetch(that._internal[i][j]);
|
||||
}
|
||||
friend strong_inline void vstream(iMatrix<vtype,N> &out,const iMatrix<vtype,N> &in){
|
||||
for(int i=0;i<N;i++){
|
||||
for(int j=0;j<N;j++){
|
||||
vstream(out._internal[i][j],in._internal[i][j]);
|
||||
}}
|
||||
friend strong_inline void vstream(iMatrix<vtype, N> &out,
|
||||
const iMatrix<vtype, N> &in) {
|
||||
for (int i = 0; i < N; i++) {
|
||||
for (int j = 0; j < N; j++) {
|
||||
vstream(out._internal[i][j], in._internal[i][j]);
|
||||
}
|
||||
}
|
||||
|
||||
friend strong_inline void permute(iMatrix<vtype,N> &out,const iMatrix<vtype,N> &in,int permutetype){
|
||||
for(int i=0;i<N;i++){
|
||||
for(int j=0;j<N;j++){
|
||||
permute(out._internal[i][j],in._internal[i][j],permutetype);
|
||||
}}
|
||||
}
|
||||
|
||||
friend strong_inline void permute(iMatrix<vtype, N> &out,
|
||||
const iMatrix<vtype, N> &in,
|
||||
int permutetype) {
|
||||
for (int i = 0; i < N; i++) {
|
||||
for (int j = 0; j < N; j++) {
|
||||
permute(out._internal[i][j], in._internal[i][j], permutetype);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Unary negation
|
||||
friend strong_inline iMatrix<vtype,N> operator -(const iMatrix<vtype,N> &r) {
|
||||
iMatrix<vtype,N> ret;
|
||||
for(int i=0;i<N;i++){
|
||||
for(int j=0;j<N;j++){
|
||||
ret._internal[i][j]= -r._internal[i][j];
|
||||
}}
|
||||
friend strong_inline iMatrix<vtype, N> operator-(const iMatrix<vtype, N> &r) {
|
||||
iMatrix<vtype, N> ret;
|
||||
for (int i = 0; i < N; i++) {
|
||||
for (int j = 0; j < N; j++) {
|
||||
ret._internal[i][j] = -r._internal[i][j];
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
// *=,+=,-= operators inherit from corresponding "*,-,+" behaviour
|
||||
template<class T>
|
||||
strong_inline iMatrix<vtype,N> &operator *=(const T &r) {
|
||||
*this = (*this)*r;
|
||||
template <class T>
|
||||
strong_inline iMatrix<vtype, N> &operator*=(const T &r) {
|
||||
*this = (*this) * r;
|
||||
return *this;
|
||||
}
|
||||
template<class T>
|
||||
strong_inline iMatrix<vtype,N> &operator -=(const T &r) {
|
||||
*this = (*this)-r;
|
||||
template <class T>
|
||||
strong_inline iMatrix<vtype, N> &operator-=(const T &r) {
|
||||
*this = (*this) - r;
|
||||
return *this;
|
||||
}
|
||||
template<class T>
|
||||
strong_inline iMatrix<vtype,N> &operator +=(const T &r) {
|
||||
*this = (*this)+r;
|
||||
template <class T>
|
||||
strong_inline iMatrix<vtype, N> &operator+=(const T &r) {
|
||||
*this = (*this) + r;
|
||||
return *this;
|
||||
}
|
||||
|
||||
// returns an lvalue reference
|
||||
strong_inline vtype & operator ()(int i,int j) {
|
||||
strong_inline vtype &operator()(int i, int j) { return _internal[i][j]; }
|
||||
strong_inline const vtype &operator()(int i, int j) const {
|
||||
return _internal[i][j];
|
||||
}
|
||||
strong_inline const vtype & operator ()(int i,int j) const {
|
||||
return _internal[i][j];
|
||||
}
|
||||
friend std::ostream& operator<< (std::ostream& stream, const iMatrix<vtype,N> &o){
|
||||
stream<< "M<"<<N<<">{";
|
||||
for(int i=0;i<N;i++) {
|
||||
stream<< "{";
|
||||
for(int j=0;j<N;j++) {
|
||||
stream<<o._internal[i][j];
|
||||
if (i<N-1) stream<<",";
|
||||
friend std::ostream &operator<<(std::ostream &stream,
|
||||
const iMatrix<vtype, N> &o) {
|
||||
stream << "M<" << N << ">{";
|
||||
for (int i = 0; i < N; i++) {
|
||||
stream << "{";
|
||||
for (int j = 0; j < N; j++) {
|
||||
stream << o._internal[i][j];
|
||||
if (i < N - 1) stream << ",";
|
||||
}
|
||||
stream<<"}";
|
||||
if(i!=N-1) stream<<"\n\t\t";
|
||||
stream << "}";
|
||||
if (i != N - 1) stream << "\n\t\t";
|
||||
}
|
||||
stream<<"}";
|
||||
stream << "}";
|
||||
return stream;
|
||||
};
|
||||
|
||||
// strong_inline vtype && operator ()(int i,int j) {
|
||||
// return _internal[i][j];
|
||||
// }
|
||||
|
||||
};
|
||||
|
||||
template<class v> void vprefetch(const iScalar<v> &vv)
|
||||
{
|
||||
template <class v>
|
||||
void vprefetch(const iScalar<v> &vv) {
|
||||
vprefetch(vv._internal);
|
||||
}
|
||||
template<class v,int N> void vprefetch(const iVector<v,N> &vv)
|
||||
{
|
||||
for(int i=0;i<N;i++){
|
||||
template <class v, int N>
|
||||
void vprefetch(const iVector<v, N> &vv) {
|
||||
for (int i = 0; i < N; i++) {
|
||||
vprefetch(vv._internal[i]);
|
||||
}
|
||||
}
|
||||
template<class v,int N> void vprefetch(const iMatrix<v,N> &vv)
|
||||
{
|
||||
for(int i=0;i<N;i++){
|
||||
for(int j=0;j<N;j++){
|
||||
vprefetch(vv._internal[i][j]);
|
||||
}}
|
||||
template <class v, int N>
|
||||
void vprefetch(const iMatrix<v, N> &vv) {
|
||||
for (int i = 0; i < N; i++) {
|
||||
for (int j = 0; j < N; j++) {
|
||||
vprefetch(vv._internal[i][j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
#endif
|
||||
|
@ -1,97 +1,100 @@
|
||||
/*************************************************************************************
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_rhmc_EOWilson1p1.cc
|
||||
Source file: ./tests/Test_rhmc_EOWilson1p1.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include "Grid.h"
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
class HmcRunner : public NerscHmcRunner {
|
||||
public:
|
||||
|
||||
void BuildTheAction (int argc, char **argv)
|
||||
public:
|
||||
void BuildTheAction(int argc, char **argv)
|
||||
|
||||
{
|
||||
typedef WilsonImplR ImplPolicy;
|
||||
typedef WilsonFermionR FermionAction;
|
||||
typedef typename FermionAction::FermionField FermionField;
|
||||
|
||||
UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
|
||||
UGrid = SpaceTimeGrid::makeFourDimGrid(
|
||||
GridDefaultLatt(), GridDefaultSimd(Nd, vComplex::Nsimd()),
|
||||
GridDefaultMpi());
|
||||
UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
|
||||
FGrid = UGrid;
|
||||
|
||||
FGrid = UGrid;
|
||||
FrbGrid = UrbGrid;
|
||||
|
||||
// temporarily need a gauge field
|
||||
LatticeGaugeField U(UGrid);
|
||||
LatticeGaugeField U(UGrid);
|
||||
|
||||
// Gauge action
|
||||
WilsonGaugeActionR Waction(5.6);
|
||||
|
||||
Real mass=-0.77;
|
||||
FermionAction FermOp(U,*FGrid,*FrbGrid,mass);
|
||||
Real mass = -0.77;
|
||||
FermionAction FermOp(U, *FGrid, *FrbGrid, mass);
|
||||
|
||||
// 1+1 flavour
|
||||
OneFlavourRationalParams Params(1.0e-4,64.0,1000,1.0e-6);
|
||||
OneFlavourEvenOddRationalPseudoFermionAction<WilsonImplR> WilsonNf1a(FermOp,Params);
|
||||
OneFlavourEvenOddRationalPseudoFermionAction<WilsonImplR> WilsonNf1b(FermOp,Params);
|
||||
OneFlavourRationalParams Params(1.0e-4, 64.0, 2000, 1.0e-6);
|
||||
OneFlavourEvenOddRationalPseudoFermionAction<WilsonImplR> WilsonNf1a(
|
||||
FermOp, Params);
|
||||
OneFlavourEvenOddRationalPseudoFermionAction<WilsonImplR> WilsonNf1b(
|
||||
FermOp, Params);
|
||||
|
||||
//Collect actions
|
||||
//Smearing on/off
|
||||
WilsonNf1a.is_smeared = true;
|
||||
WilsonNf1b.is_smeared = true;
|
||||
|
||||
// Collect actions
|
||||
ActionLevel<LatticeGaugeField> Level1;
|
||||
Level1.push_back(&WilsonNf1a);
|
||||
Level1.push_back(&WilsonNf1b);
|
||||
Level1.push_back(&Waction);
|
||||
|
||||
|
||||
TheAction.push_back(Level1);
|
||||
|
||||
Run(argc,argv);
|
||||
Run(argc, argv);
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
}}
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
int threads = GridThread::GetThreads();
|
||||
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
|
||||
|
||||
HmcRunner TheHMC;
|
||||
|
||||
TheHMC.BuildTheAction(argc,argv);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
Grid_init(&argc, &argv);
|
||||
|
||||
int threads = GridThread::GetThreads();
|
||||
std::cout << GridLogMessage << "Grid is setup to use " << threads
|
||||
<< " threads" << std::endl;
|
||||
|
||||
HmcRunner TheHMC;
|
||||
|
||||
TheHMC.BuildTheAction(argc, argv);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user