1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00

Tested smeared RHMC Wilson1p1, accepting

This commit is contained in:
Guido Cossu 2016-07-07 11:49:36 +01:00
parent e87182cf98
commit ffb8b3116c
4 changed files with 754 additions and 694 deletions

View File

@ -1,73 +1,74 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_ET.h
Source file: ./lib/lattice/Lattice_ET.h
Copyright (C) 2015
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_ET_H
#define GRID_LATTICE_ET_H
#include <iostream>
#include <vector>
#include <tuple>
#include <typeinfo>
#include <vector>
namespace Grid {
////////////////////////////////////////////////////
// Predicated where support
////////////////////////////////////////////////////
template<class iobj,class vobj,class robj>
inline vobj predicatedWhere(const iobj &predicate,const vobj &iftrue,const robj &iffalse) {
////////////////////////////////////////////////////
// Predicated where support
////////////////////////////////////////////////////
template <class iobj, class vobj, class robj>
inline vobj predicatedWhere(const iobj &predicate, const vobj &iftrue,
const robj &iffalse) {
typename std::remove_const<vobj>::type ret;
typename std::remove_const<vobj>::type ret;
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
const int Nsimd = vobj::vector_type::Nsimd();
const int words = sizeof(vobj) / sizeof(vector_type);
const int Nsimd = vobj::vector_type::Nsimd();
const int words = sizeof(vobj)/sizeof(vector_type);
std::vector<Integer> mask(Nsimd);
std::vector<scalar_object> truevals(Nsimd);
std::vector<scalar_object> falsevals(Nsimd);
std::vector<Integer> mask(Nsimd);
std::vector<scalar_object> truevals (Nsimd);
std::vector<scalar_object> falsevals(Nsimd);
extract(iftrue, truevals);
extract(iffalse, falsevals);
extract<vInteger, Integer>(TensorRemove(predicate), mask);
extract(iftrue ,truevals);
extract(iffalse ,falsevals);
extract<vInteger,Integer>(TensorRemove(predicate),mask);
for(int s=0;s<Nsimd;s++){
if (mask[s]) falsevals[s]=truevals[s];
}
merge(ret,falsevals);
return ret;
for (int s = 0; s < Nsimd; s++) {
if (mask[s]) falsevals[s] = truevals[s];
}
merge(ret, falsevals);
return ret;
}
////////////////////////////////////////////
// recursive evaluation of expressions; Could
// switch to generic approach with variadics, a la
@ -75,311 +76,342 @@ namespace Grid {
// from tuple is hideous; C++14 introduces std::make_index_sequence for this
////////////////////////////////////////////
// leaf eval of lattice ; should enable if protect using traits
//leaf eval of lattice ; should enable if protect using traits
template <typename T>
using is_lattice = std::is_base_of<LatticeBase, T>;
template <typename T> using is_lattice = std::is_base_of<LatticeBase,T >;
template <typename T>
using is_lattice_expr = std::is_base_of<LatticeExpressionBase, T>;
template <typename T> using is_lattice_expr = std::is_base_of<LatticeExpressionBase,T >;
template<class sobj>
inline sobj eval(const unsigned int ss, const sobj &arg)
{
template <class sobj>
inline sobj eval(const unsigned int ss, const sobj &arg) {
return arg;
}
template<class lobj>
inline const lobj &eval(const unsigned int ss, const Lattice<lobj> &arg)
{
return arg._odata[ss];
template <class lobj>
inline const lobj &eval(const unsigned int ss, const Lattice<lobj> &arg) {
return arg._odata[ss];
}
// handle nodes in syntax tree
template <typename Op, typename T1>
auto inline eval(const unsigned int ss, const LatticeUnaryExpression<Op,T1 > &expr) // eval one operand
-> decltype(expr.first.func(eval(ss,std::get<0>(expr.second))))
{
return expr.first.func(eval(ss,std::get<0>(expr.second)));
auto inline eval(
const unsigned int ss,
const LatticeUnaryExpression<Op, T1> &expr) // eval one operand
-> decltype(expr.first.func(eval(ss, std::get<0>(expr.second)))) {
return expr.first.func(eval(ss, std::get<0>(expr.second)));
}
template <typename Op, typename T1, typename T2>
auto inline eval(const unsigned int ss, const LatticeBinaryExpression<Op,T1,T2> &expr) // eval two operands
-> decltype(expr.first.func(eval(ss,std::get<0>(expr.second)),eval(ss,std::get<1>(expr.second))))
{
return expr.first.func(eval(ss,std::get<0>(expr.second)),eval(ss,std::get<1>(expr.second)));
auto inline eval(
const unsigned int ss,
const LatticeBinaryExpression<Op, T1, T2> &expr) // eval two operands
-> decltype(expr.first.func(eval(ss, std::get<0>(expr.second)),
eval(ss, std::get<1>(expr.second)))) {
return expr.first.func(eval(ss, std::get<0>(expr.second)),
eval(ss, std::get<1>(expr.second)));
}
template <typename Op, typename T1, typename T2, typename T3>
auto inline eval(const unsigned int ss, const LatticeTrinaryExpression<Op,T1,T2,T3 > &expr) // eval three operands
-> decltype(expr.first.func(eval(ss,std::get<0>(expr.second)),eval(ss,std::get<1>(expr.second)),eval(ss,std::get<2>(expr.second))))
{
return expr.first.func(eval(ss,std::get<0>(expr.second)),eval(ss,std::get<1>(expr.second)),eval(ss,std::get<2>(expr.second)) );
auto inline eval(const unsigned int ss,
const LatticeTrinaryExpression<Op, T1, T2, T3>
&expr) // eval three operands
-> decltype(expr.first.func(eval(ss, std::get<0>(expr.second)),
eval(ss, std::get<1>(expr.second)),
eval(ss, std::get<2>(expr.second)))) {
return expr.first.func(eval(ss, std::get<0>(expr.second)),
eval(ss, std::get<1>(expr.second)),
eval(ss, std::get<2>(expr.second)));
}
//////////////////////////////////////////////////////////////////////////
// Obtain the grid from an expression, ensuring conformable. This must follow a tree recursion
// Obtain the grid from an expression, ensuring conformable. This must follow a
// tree recursion
//////////////////////////////////////////////////////////////////////////
template<class T1, typename std::enable_if<is_lattice<T1>::value, T1>::type * =nullptr >
inline void GridFromExpression(GridBase * &grid,const T1& lat) // Lattice leaf
{
if ( grid ) {
conformable(grid,lat._grid);
}
grid=lat._grid;
}
template<class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr >
inline void GridFromExpression(GridBase * &grid,const T1& notlat) // non-lattice leaf
template <class T1,
typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
inline void GridFromExpression(GridBase *&grid, const T1 &lat) // Lattice leaf
{
if (grid) {
conformable(grid, lat._grid);
}
grid = lat._grid;
}
template <class T1,
typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
inline void GridFromExpression(GridBase *&grid,
const T1 &notlat) // non-lattice leaf
{}
template <typename Op, typename T1>
inline void GridFromExpression(GridBase * &grid,const LatticeUnaryExpression<Op,T1 > &expr)
{
GridFromExpression(grid,std::get<0>(expr.second));// recurse
inline void GridFromExpression(GridBase *&grid,
const LatticeUnaryExpression<Op, T1> &expr) {
GridFromExpression(grid, std::get<0>(expr.second)); // recurse
}
template <typename Op, typename T1, typename T2>
inline void GridFromExpression(GridBase * &grid,const LatticeBinaryExpression<Op,T1,T2> &expr)
{
GridFromExpression(grid,std::get<0>(expr.second));// recurse
GridFromExpression(grid,std::get<1>(expr.second));
inline void GridFromExpression(
GridBase *&grid, const LatticeBinaryExpression<Op, T1, T2> &expr) {
GridFromExpression(grid, std::get<0>(expr.second)); // recurse
GridFromExpression(grid, std::get<1>(expr.second));
}
template <typename Op, typename T1, typename T2, typename T3>
inline void GridFromExpression( GridBase * &grid,const LatticeTrinaryExpression<Op,T1,T2,T3 > &expr)
{
GridFromExpression(grid,std::get<0>(expr.second));// recurse
GridFromExpression(grid,std::get<1>(expr.second));
GridFromExpression(grid,std::get<2>(expr.second));
inline void GridFromExpression(
GridBase *&grid, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr) {
GridFromExpression(grid, std::get<0>(expr.second)); // recurse
GridFromExpression(grid, std::get<1>(expr.second));
GridFromExpression(grid, std::get<2>(expr.second));
}
//////////////////////////////////////////////////////////////////////////
// Obtain the CB from an expression, ensuring conformable. This must follow a tree recursion
// Obtain the CB from an expression, ensuring conformable. This must follow a
// tree recursion
//////////////////////////////////////////////////////////////////////////
template<class T1, typename std::enable_if<is_lattice<T1>::value, T1>::type * =nullptr >
inline void CBFromExpression(int &cb,const T1& lat) // Lattice leaf
template <class T1,
typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
inline void CBFromExpression(int &cb, const T1 &lat) // Lattice leaf
{
if ( (cb==Odd) || (cb==Even) ) {
assert(cb==lat.checkerboard);
}
cb=lat.checkerboard;
if ((cb == Odd) || (cb == Even)) {
assert(cb == lat.checkerboard);
}
cb = lat.checkerboard;
// std::cout<<GridLogMessage<<"Lattice leaf cb "<<cb<<std::endl;
}
template<class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr >
inline void CBFromExpression(int &cb,const T1& notlat) // non-lattice leaf
template <class T1,
typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
inline void CBFromExpression(int &cb, const T1 &notlat) // non-lattice leaf
{
// std::cout<<GridLogMessage<<"Non lattice leaf cb"<<cb<<std::endl;
}
template <typename Op, typename T1>
inline void CBFromExpression(int &cb,const LatticeUnaryExpression<Op,T1 > &expr)
{
CBFromExpression(cb,std::get<0>(expr.second));// recurse
inline void CBFromExpression(int &cb,
const LatticeUnaryExpression<Op, T1> &expr) {
CBFromExpression(cb, std::get<0>(expr.second)); // recurse
// std::cout<<GridLogMessage<<"Unary node cb "<<cb<<std::endl;
}
template <typename Op, typename T1, typename T2>
inline void CBFromExpression(int &cb,const LatticeBinaryExpression<Op,T1,T2> &expr)
{
CBFromExpression(cb,std::get<0>(expr.second));// recurse
CBFromExpression(cb,std::get<1>(expr.second));
inline void CBFromExpression(int &cb,
const LatticeBinaryExpression<Op, T1, T2> &expr) {
CBFromExpression(cb, std::get<0>(expr.second)); // recurse
CBFromExpression(cb, std::get<1>(expr.second));
// std::cout<<GridLogMessage<<"Binary node cb "<<cb<<std::endl;
}
template <typename Op, typename T1, typename T2, typename T3>
inline void CBFromExpression( int &cb,const LatticeTrinaryExpression<Op,T1,T2,T3 > &expr)
{
CBFromExpression(cb,std::get<0>(expr.second));// recurse
CBFromExpression(cb,std::get<1>(expr.second));
CBFromExpression(cb,std::get<2>(expr.second));
inline void CBFromExpression(
int &cb, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr) {
CBFromExpression(cb, std::get<0>(expr.second)); // recurse
CBFromExpression(cb, std::get<1>(expr.second));
CBFromExpression(cb, std::get<2>(expr.second));
// std::cout<<GridLogMessage<<"Trinary node cb "<<cb<<std::endl;
}
////////////////////////////////////////////
// Unary operators and funcs
////////////////////////////////////////////
#define GridUnopClass(name,ret)\
template <class arg> struct name \
{ \
static auto inline func(const arg a)-> decltype(ret) { return ret; } \
};
GridUnopClass(UnarySub,-a);
GridUnopClass(UnaryNot,Not(a));
GridUnopClass(UnaryAdj,adj(a));
GridUnopClass(UnaryConj,conjugate(a));
GridUnopClass(UnaryTrace,trace(a));
GridUnopClass(UnaryTranspose,transpose(a));
GridUnopClass(UnaryTa,Ta(a));
GridUnopClass(UnaryProjectOnGroup,ProjectOnGroup(a));
GridUnopClass(UnaryReal,real(a));
GridUnopClass(UnaryImag,imag(a));
GridUnopClass(UnaryToReal,toReal(a));
GridUnopClass(UnaryToComplex,toComplex(a));
GridUnopClass(UnaryTimesI,timesI(a));
GridUnopClass(UnaryTimesMinusI,timesMinusI(a));
GridUnopClass(UnaryAbs,abs(a));
GridUnopClass(UnarySqrt,sqrt(a));
GridUnopClass(UnaryRsqrt,rsqrt(a));
GridUnopClass(UnarySin,sin(a));
GridUnopClass(UnaryCos,cos(a));
GridUnopClass(UnaryAsin,asin(a));
GridUnopClass(UnaryAcos,acos(a));
GridUnopClass(UnaryLog,log(a));
GridUnopClass(UnaryExp,exp(a));
#define GridUnopClass(name, ret) \
template <class arg> \
struct name { \
static auto inline func(const arg a) -> decltype(ret) { return ret; } \
};
GridUnopClass(UnarySub, -a);
GridUnopClass(UnaryNot, Not(a));
GridUnopClass(UnaryAdj, adj(a));
GridUnopClass(UnaryConj, conjugate(a));
GridUnopClass(UnaryTrace, trace(a));
GridUnopClass(UnaryTranspose, transpose(a));
GridUnopClass(UnaryTa, Ta(a));
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
GridUnopClass(UnaryReal, real(a));
GridUnopClass(UnaryImag, imag(a));
GridUnopClass(UnaryToReal, toReal(a));
GridUnopClass(UnaryToComplex, toComplex(a));
GridUnopClass(UnaryTimesI, timesI(a));
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
GridUnopClass(UnaryAbs, abs(a));
GridUnopClass(UnarySqrt, sqrt(a));
GridUnopClass(UnaryRsqrt, rsqrt(a));
GridUnopClass(UnarySin, sin(a));
GridUnopClass(UnaryCos, cos(a));
GridUnopClass(UnaryAsin, asin(a));
GridUnopClass(UnaryAcos, acos(a));
GridUnopClass(UnaryLog, log(a));
GridUnopClass(UnaryExp, exp(a));
////////////////////////////////////////////
// Binary operators
////////////////////////////////////////////
#define GridBinOpClass(name,combination)\
template <class left,class right>\
struct name\
{\
static auto inline func(const left &lhs,const right &rhs)-> decltype(combination) const \
{\
return combination;\
}\
}
GridBinOpClass(BinaryAdd,lhs+rhs);
GridBinOpClass(BinarySub,lhs-rhs);
GridBinOpClass(BinaryMul,lhs*rhs);
#define GridBinOpClass(name, combination) \
template <class left, class right> \
struct name { \
static auto inline func(const left &lhs, const right &rhs) \
-> decltype(combination) const { \
return combination; \
} \
}
GridBinOpClass(BinaryAdd, lhs + rhs);
GridBinOpClass(BinarySub, lhs - rhs);
GridBinOpClass(BinaryMul, lhs *rhs);
GridBinOpClass(BinaryAnd ,lhs&rhs);
GridBinOpClass(BinaryOr ,lhs|rhs);
GridBinOpClass(BinaryAndAnd,lhs&&rhs);
GridBinOpClass(BinaryOrOr ,lhs||rhs);
GridBinOpClass(BinaryAnd, lhs &rhs);
GridBinOpClass(BinaryOr, lhs | rhs);
GridBinOpClass(BinaryAndAnd, lhs &&rhs);
GridBinOpClass(BinaryOrOr, lhs || rhs);
////////////////////////////////////////////////////
// Trinary conditional op
////////////////////////////////////////////////////
#define GridTrinOpClass(name,combination)\
template <class predicate,class left, class right> \
struct name\
{\
static auto inline func(const predicate &pred,const left &lhs,const right &rhs)-> decltype(combination) const \
{\
return combination;\
}\
}
#define GridTrinOpClass(name, combination) \
template <class predicate, class left, class right> \
struct name { \
static auto inline func(const predicate &pred, const left &lhs, \
const right &rhs) -> decltype(combination) const { \
return combination; \
} \
}
GridTrinOpClass(TrinaryWhere,(predicatedWhere<predicate, \
typename std::remove_reference<left>::type, \
typename std::remove_reference<right>::type> (pred,lhs,rhs)));
GridTrinOpClass(
TrinaryWhere,
(predicatedWhere<predicate, typename std::remove_reference<left>::type,
typename std::remove_reference<right>::type>(pred, lhs,
rhs)));
////////////////////////////////////////////
// Operator syntactical glue
////////////////////////////////////////////
#define GRID_UNOP(name) name<decltype(eval(0, arg))>
#define GRID_BINOP(name) name<decltype(eval(0, lhs)), decltype(eval(0, rhs))>
#define GRID_TRINOP(name) name<decltype(eval(0, pred)), decltype(eval(0, lhs)), decltype(eval(0, rhs))>
#define GRID_DEF_UNOP(op, name)\
template <typename T1,\
typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value, T1>::type* = nullptr> inline auto op(const T1 &arg) \
-> decltype(LatticeUnaryExpression<GRID_UNOP(name),const T1&>(std::make_pair(GRID_UNOP(name)(),std::forward_as_tuple(arg)))) \
{ return LatticeUnaryExpression<GRID_UNOP(name), const T1 &>(std::make_pair(GRID_UNOP(name)(),std::forward_as_tuple(arg))); }
#define GRID_UNOP(name) name<decltype(eval(0, arg))>
#define GRID_BINOP(name) name<decltype(eval(0, lhs)), decltype(eval(0, rhs))>
#define GRID_TRINOP(name) \
name<decltype(eval(0, pred)), decltype(eval(0, lhs)), decltype(eval(0, rhs))>
#define GRID_BINOP_LEFT(op, name)\
template <typename T1,typename T2,\
typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value, T1>::type* = nullptr>\
inline auto op(const T1 &lhs,const T2&rhs) \
-> decltype(LatticeBinaryExpression<GRID_BINOP(name),const T1&,const T2 &>(std::make_pair(GRID_BINOP(name)(),\
std::forward_as_tuple(lhs, rhs)))) \
{\
return LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>(std::make_pair(GRID_BINOP(name)(),\
std::forward_as_tuple(lhs, rhs))); \
}
#define GRID_DEF_UNOP(op, name) \
template <typename T1, \
typename std::enable_if<is_lattice<T1>::value || \
is_lattice_expr<T1>::value, \
T1>::type * = nullptr> \
inline auto op(const T1 &arg) \
->decltype(LatticeUnaryExpression<GRID_UNOP(name), const T1 &>( \
std::make_pair(GRID_UNOP(name)(), std::forward_as_tuple(arg)))) { \
return LatticeUnaryExpression<GRID_UNOP(name), const T1 &>( \
std::make_pair(GRID_UNOP(name)(), std::forward_as_tuple(arg))); \
}
#define GRID_BINOP_RIGHT(op, name)\
template <typename T1,typename T2,\
typename std::enable_if<!is_lattice<T1>::value && !is_lattice_expr<T1>::value, T1>::type* = nullptr,\
typename std::enable_if< is_lattice<T2>::value || is_lattice_expr<T2>::value, T2>::type* = nullptr> \
inline auto op(const T1 &lhs,const T2&rhs) \
-> decltype(LatticeBinaryExpression<GRID_BINOP(name),const T1&,const T2 &>(std::make_pair(GRID_BINOP(name)(),\
std::forward_as_tuple(lhs, rhs)))) \
{\
return LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>(std::make_pair(GRID_BINOP(name)(),\
std::forward_as_tuple(lhs, rhs))); \
}
#define GRID_BINOP_LEFT(op, name) \
template <typename T1, typename T2, \
typename std::enable_if<is_lattice<T1>::value || \
is_lattice_expr<T1>::value, \
T1>::type * = nullptr> \
inline auto op(const T1 &lhs, const T2 &rhs) \
->decltype( \
LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>( \
std::make_pair(GRID_BINOP(name)(), \
std::forward_as_tuple(lhs, rhs)))) { \
return LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>( \
std::make_pair(GRID_BINOP(name)(), std::forward_as_tuple(lhs, rhs))); \
}
#define GRID_DEF_BINOP(op, name)\
GRID_BINOP_LEFT(op,name);\
GRID_BINOP_RIGHT(op,name);
#define GRID_BINOP_RIGHT(op, name) \
template <typename T1, typename T2, \
typename std::enable_if<!is_lattice<T1>::value && \
!is_lattice_expr<T1>::value, \
T1>::type * = nullptr, \
typename std::enable_if<is_lattice<T2>::value || \
is_lattice_expr<T2>::value, \
T2>::type * = nullptr> \
inline auto op(const T1 &lhs, const T2 &rhs) \
->decltype( \
LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>( \
std::make_pair(GRID_BINOP(name)(), \
std::forward_as_tuple(lhs, rhs)))) { \
return LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>( \
std::make_pair(GRID_BINOP(name)(), std::forward_as_tuple(lhs, rhs))); \
}
#define GRID_DEF_BINOP(op, name) \
GRID_BINOP_LEFT(op, name); \
GRID_BINOP_RIGHT(op, name);
#define GRID_DEF_TRINOP(op, name)\
template <typename T1,typename T2,typename T3> inline auto op(const T1 &pred,const T2&lhs,const T3 &rhs) \
-> decltype(LatticeTrinaryExpression<GRID_TRINOP(name),const T1&,const T2 &,const T3&>(std::make_pair(GRID_TRINOP(name)(),\
std::forward_as_tuple(pred,lhs,rhs)))) \
{\
return LatticeTrinaryExpression<GRID_TRINOP(name), const T1 &, const T2 &,const T3&>(std::make_pair(GRID_TRINOP(name)(), \
std::forward_as_tuple(pred,lhs, rhs))); \
}
#define GRID_DEF_TRINOP(op, name) \
template <typename T1, typename T2, typename T3> \
inline auto op(const T1 &pred, const T2 &lhs, const T3 &rhs) \
->decltype( \
LatticeTrinaryExpression<GRID_TRINOP(name), const T1 &, const T2 &, \
const T3 &>(std::make_pair( \
GRID_TRINOP(name)(), std::forward_as_tuple(pred, lhs, rhs)))) { \
return LatticeTrinaryExpression<GRID_TRINOP(name), const T1 &, const T2 &, \
const T3 &>(std::make_pair( \
GRID_TRINOP(name)(), std::forward_as_tuple(pred, lhs, rhs))); \
}
////////////////////////
//Operator definitions
// Operator definitions
////////////////////////
GRID_DEF_UNOP(operator -,UnarySub);
GRID_DEF_UNOP(Not,UnaryNot);
GRID_DEF_UNOP(operator !,UnaryNot);
GRID_DEF_UNOP(adj,UnaryAdj);
GRID_DEF_UNOP(conjugate,UnaryConj);
GRID_DEF_UNOP(trace,UnaryTrace);
GRID_DEF_UNOP(transpose,UnaryTranspose);
GRID_DEF_UNOP(Ta,UnaryTa);
GRID_DEF_UNOP(ProjectOnGroup,UnaryProjectOnGroup);
GRID_DEF_UNOP(real,UnaryReal);
GRID_DEF_UNOP(imag,UnaryImag);
GRID_DEF_UNOP(toReal,UnaryToReal);
GRID_DEF_UNOP(toComplex,UnaryToComplex);
GRID_DEF_UNOP(timesI,UnaryTimesI);
GRID_DEF_UNOP(timesMinusI,UnaryTimesMinusI);
GRID_DEF_UNOP(abs ,UnaryAbs); //abs overloaded in cmath C++98; DON'T do the abs-fabs-dabs-labs thing
GRID_DEF_UNOP(sqrt ,UnarySqrt);
GRID_DEF_UNOP(rsqrt,UnaryRsqrt);
GRID_DEF_UNOP(sin ,UnarySin);
GRID_DEF_UNOP(cos ,UnaryCos);
GRID_DEF_UNOP(asin ,UnaryAsin);
GRID_DEF_UNOP(acos ,UnaryAcos);
GRID_DEF_UNOP(log ,UnaryLog);
GRID_DEF_UNOP(exp ,UnaryExp);
GRID_DEF_UNOP(operator-, UnarySub);
GRID_DEF_UNOP(Not, UnaryNot);
GRID_DEF_UNOP(operator!, UnaryNot);
GRID_DEF_UNOP(adj, UnaryAdj);
GRID_DEF_UNOP(conjugate, UnaryConj);
GRID_DEF_UNOP(trace, UnaryTrace);
GRID_DEF_UNOP(transpose, UnaryTranspose);
GRID_DEF_UNOP(Ta, UnaryTa);
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
GRID_DEF_UNOP(real, UnaryReal);
GRID_DEF_UNOP(imag, UnaryImag);
GRID_DEF_UNOP(toReal, UnaryToReal);
GRID_DEF_UNOP(toComplex, UnaryToComplex);
GRID_DEF_UNOP(timesI, UnaryTimesI);
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
GRID_DEF_UNOP(abs, UnaryAbs); // abs overloaded in cmath C++98; DON'T do the
// abs-fabs-dabs-labs thing
GRID_DEF_UNOP(sqrt, UnarySqrt);
GRID_DEF_UNOP(rsqrt, UnaryRsqrt);
GRID_DEF_UNOP(sin, UnarySin);
GRID_DEF_UNOP(cos, UnaryCos);
GRID_DEF_UNOP(asin, UnaryAsin);
GRID_DEF_UNOP(acos, UnaryAcos);
GRID_DEF_UNOP(log, UnaryLog);
GRID_DEF_UNOP(exp, UnaryExp);
GRID_DEF_BINOP(operator+,BinaryAdd);
GRID_DEF_BINOP(operator-,BinarySub);
GRID_DEF_BINOP(operator*,BinaryMul);
GRID_DEF_BINOP(operator+, BinaryAdd);
GRID_DEF_BINOP(operator-, BinarySub);
GRID_DEF_BINOP(operator*, BinaryMul);
GRID_DEF_BINOP(operator&,BinaryAnd);
GRID_DEF_BINOP(operator|,BinaryOr);
GRID_DEF_BINOP(operator&&,BinaryAndAnd);
GRID_DEF_BINOP(operator||,BinaryOrOr);
GRID_DEF_BINOP(operator&, BinaryAnd);
GRID_DEF_BINOP(operator|, BinaryOr);
GRID_DEF_BINOP(operator&&, BinaryAndAnd);
GRID_DEF_BINOP(operator||, BinaryOrOr);
GRID_DEF_TRINOP(where,TrinaryWhere);
GRID_DEF_TRINOP(where, TrinaryWhere);
/////////////////////////////////////////////////////////////
// Closure convenience to force expression to evaluate
/////////////////////////////////////////////////////////////
template<class Op,class T1>
auto closure(const LatticeUnaryExpression<Op,T1> & expr)
-> Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second))))>
{
Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second))))> ret(expr);
template <class Op, class T1>
auto closure(const LatticeUnaryExpression<Op, T1> &expr)
-> Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second))))> {
Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second))))> ret(
expr);
return ret;
}
template<class Op,class T1, class T2>
auto closure(const LatticeBinaryExpression<Op,T1,T2> & expr)
-> Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
eval(0,std::get<1>(expr.second))))>
{
Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
eval(0,std::get<1>(expr.second))))> ret(expr);
template <class Op, class T1, class T2>
auto closure(const LatticeBinaryExpression<Op, T1, T2> &expr)
-> Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)),
eval(0, std::get<1>(expr.second))))> {
Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)),
eval(0, std::get<1>(expr.second))))>
ret(expr);
return ret;
}
template<class Op,class T1, class T2, class T3>
auto closure(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)
-> Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
eval(0,std::get<1>(expr.second)),
eval(0,std::get<2>(expr.second))))>
{
Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
eval(0,std::get<1>(expr.second)),
eval(0,std::get<2>(expr.second))))> ret(expr);
template <class Op, class T1, class T2, class T3>
auto closure(const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
-> Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)),
eval(0, std::get<1>(expr.second)),
eval(0, std::get<2>(expr.second))))> {
Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)),
eval(0, std::get<1>(expr.second)),
eval(0, std::get<2>(expr.second))))>
ret(expr);
return ret;
}
@ -390,12 +422,11 @@ template<class Op,class T1, class T2, class T3>
#undef GRID_DEF_UNOP
#undef GRID_DEF_BINOP
#undef GRID_DEF_TRINOP
}
#if 0
using namespace Grid;
int main(int argc,char **argv){
Lattice<double> v1(16);
@ -405,7 +436,7 @@ using namespace Grid;
BinaryAdd<double,double> tmp;
LatticeBinaryExpression<BinaryAdd<double,double>,Lattice<double> &,Lattice<double> &>
expr(std::make_pair(tmp,
std::forward_as_tuple(v1,v2)));
std::forward_as_tuple(v1,v2)));
tmp.func(eval(0,v1),eval(0,v2));
auto var = v1+v2;

View File

@ -1,212 +1,214 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/OneFlavourEvenOddRational.h
Source file: ./lib/qcd/action/pseudofermion/OneFlavourEvenOddRational.h
Copyright (C) 2015
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_H
#define QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_H
namespace Grid{
namespace QCD{
namespace Grid {
namespace QCD {
///////////////////////////////////////
// One flavour rational
///////////////////////////////////////
///////////////////////////////////////
// One flavour rational
///////////////////////////////////////
// S_f = chi^dag * N(Mpc^dag*Mpc)/D(Mpc^dag*Mpc) * chi
// S_f = chi^dag * N(Mpc^dag*Mpc)/D(Mpc^dag*Mpc) * chi
//
// Here, M is some operator
// N and D makeup the rat. poly
//
template <class Impl>
class OneFlavourEvenOddRationalPseudoFermionAction
: public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
typedef OneFlavourRationalParams Params;
Params param;
MultiShiftFunction PowerHalf;
MultiShiftFunction PowerNegHalf;
MultiShiftFunction PowerQuarter;
MultiShiftFunction PowerNegQuarter;
private:
FermionOperator<Impl> &FermOp; // the basic operator
// NOT using "Nroots"; IroIro is -- perhaps later, but this wasn't good for us
// historically
// and hasenbusch works better
FermionField PhiEven; // the pseudo fermion field for this trajectory
FermionField PhiOdd; // the pseudo fermion field for this trajectory
public:
OneFlavourEvenOddRationalPseudoFermionAction(FermionOperator<Impl> &Op,
Params &p)
: FermOp(Op),
PhiEven(Op.FermionRedBlackGrid()),
PhiOdd(Op.FermionRedBlackGrid()),
param(p) {
AlgRemez remez(param.lo, param.hi, param.precision);
// MdagM^(+- 1/2)
std::cout << GridLogMessage << "Generating degree " << param.degree
<< " for x^(1/2)" << std::endl;
remez.generateApprox(param.degree, 1, 2);
PowerHalf.Init(remez, param.tolerance, false);
PowerNegHalf.Init(remez, param.tolerance, true);
// MdagM^(+- 1/4)
std::cout << GridLogMessage << "Generating degree " << param.degree
<< " for x^(1/4)" << std::endl;
remez.generateApprox(param.degree, 1, 4);
PowerQuarter.Init(remez, param.tolerance, false);
PowerNegQuarter.Init(remez, param.tolerance, true);
};
virtual void refresh(const GaugeField &U, GridParallelRNG &pRNG) {
// P(phi) = e^{- phi^dag (MpcdagMpc)^-1/2 phi}
// = e^{- phi^dag (MpcdagMpc)^-1/4 (MpcdagMpc)^-1/4 phi}
// Phi = MpcdagMpc^{1/4} eta
//
// Here, M is some operator
// N and D makeup the rat. poly
// P(eta) = e^{- eta^dag eta}
//
template<class Impl>
class OneFlavourEvenOddRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2).
typedef OneFlavourRationalParams Params;
Params param;
RealD scale = std::sqrt(0.5);
MultiShiftFunction PowerHalf ;
MultiShiftFunction PowerNegHalf;
MultiShiftFunction PowerQuarter;
MultiShiftFunction PowerNegQuarter;
FermionField eta(FermOp.FermionGrid());
FermionField etaOdd(FermOp.FermionRedBlackGrid());
FermionField etaEven(FermOp.FermionRedBlackGrid());
private:
FermionOperator<Impl> & FermOp;// the basic operator
gaussian(pRNG, eta);
eta = eta * scale;
// NOT using "Nroots"; IroIro is -- perhaps later, but this wasn't good for us historically
// and hasenbusch works better
pickCheckerboard(Even, etaEven, eta);
pickCheckerboard(Odd, etaOdd, eta);
FermionField PhiEven; // the pseudo fermion field for this trajectory
FermionField PhiOdd; // the pseudo fermion field for this trajectory
FermOp.ImportGauge(U);
public:
// mutishift CG
SchurDifferentiableOperator<Impl> Mpc(FermOp);
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter, PowerQuarter);
msCG(Mpc, etaOdd, PhiOdd);
OneFlavourEvenOddRationalPseudoFermionAction(FermionOperator<Impl> &Op,
Params & p ) : FermOp(Op),
PhiEven(Op.FermionRedBlackGrid()),
PhiOdd (Op.FermionRedBlackGrid()),
param(p)
{
AlgRemez remez(param.lo,param.hi,param.precision);
//////////////////////////////////////////////////////
// FIXME : Clover term not yet..
//////////////////////////////////////////////////////
// MdagM^(+- 1/2)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
remez.generateApprox(param.degree,1,2);
PowerHalf.Init(remez,param.tolerance,false);
PowerNegHalf.Init(remez,param.tolerance,true);
assert(FermOp.ConstEE() == 1);
PhiEven = zero;
};
// MdagM^(+- 1/4)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
remez.generateApprox(param.degree,1,4);
PowerQuarter.Init(remez,param.tolerance,false);
PowerNegQuarter.Init(remez,param.tolerance,true);
};
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
//////////////////////////////////////////////////////
// S = phi^dag (Mdag M)^-1/2 phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
FermOp.ImportGauge(U);
// P(phi) = e^{- phi^dag (MpcdagMpc)^-1/2 phi}
// = e^{- phi^dag (MpcdagMpc)^-1/4 (MpcdagMpc)^-1/4 phi}
// Phi = MpcdagMpc^{1/4} eta
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2).
FermionField Y(FermOp.FermionRedBlackGrid());
RealD scale = std::sqrt(0.5);
SchurDifferentiableOperator<Impl> Mpc(FermOp);
FermionField eta (FermOp.FermionGrid());
FermionField etaOdd (FermOp.FermionRedBlackGrid());
FermionField etaEven(FermOp.FermionRedBlackGrid());
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,
PowerNegQuarter);
gaussian(pRNG,eta); eta=eta*scale;
msCG(Mpc, PhiOdd, Y);
pickCheckerboard(Even,etaEven,eta);
pickCheckerboard(Odd,etaOdd,eta);
RealD action = norm2(Y);
std::cout << GridLogMessage << "Pseudofermion action FIXME -- is -1/4 "
"solve or -1/2 solve faster??? "
<< action << std::endl;
FermOp.ImportGauge(U);
return action;
};
// mutishift CG
SchurDifferentiableOperator<Impl> Mpc(FermOp);
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerQuarter);
msCG(Mpc,etaOdd,PhiOdd);
//////////////////////////////////////////////////////
// Need
// dS_f/dU = chi^dag d[N/D] chi
//
// N/D is expressed as partial fraction expansion:
//
// a0 + \sum_k ak/(M^dagM + bk)
//
// d[N/D] is then
//
// \sum_k -ak [M^dagM+bk]^{-1} [ dM^dag M + M^dag dM ] [M^dag M +
// bk]^{-1}
//
// Need
// Mf Phi_k = [MdagM+bk]^{-1} Phi
// Mf Phi = \sum_k ak [MdagM+bk]^{-1} Phi
//
// With these building blocks
//
// dS/dU = \sum_k -ak Mf Phi_k^dag [ dM^dag M + M^dag dM ] Mf
// Phi_k
// S = innerprodReal(Phi,Mf Phi);
//////////////////////////////////////////////////////
virtual void deriv(const GaugeField &U, GaugeField &dSdU) {
const int Npole = PowerNegHalf.poles.size();
//////////////////////////////////////////////////////
// FIXME : Clover term not yet..
//////////////////////////////////////////////////////
std::vector<FermionField> MPhi_k(Npole, FermOp.FermionRedBlackGrid());
assert(FermOp.ConstEE() == 1);
PhiEven = zero;
};
FermionField X(FermOp.FermionRedBlackGrid());
FermionField Y(FermOp.FermionRedBlackGrid());
//////////////////////////////////////////////////////
// S = phi^dag (Mdag M)^-1/2 phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
GaugeField tmp(FermOp.GaugeGrid());
FermOp.ImportGauge(U);
FermOp.ImportGauge(U);
FermionField Y(FermOp.FermionRedBlackGrid());
SchurDifferentiableOperator<Impl> Mpc(FermOp);
SchurDifferentiableOperator<Impl> Mpc(FermOp);
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerNegQuarter);
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter, PowerNegHalf);
msCG(Mpc,PhiOdd,Y);
msCG(Mpc, PhiOdd, MPhi_k);
RealD action = norm2(Y);
std::cout << GridLogMessage << "Pseudofermion action FIXME -- is -1/4 solve or -1/2 solve faster??? "<<action<<std::endl;
dSdU = zero;
for (int k = 0; k < Npole; k++) {
RealD ak = PowerNegHalf.residues[k];
return action;
};
X = MPhi_k[k];
//////////////////////////////////////////////////////
// Need
// dS_f/dU = chi^dag d[N/D] chi
//
// N/D is expressed as partial fraction expansion:
//
// a0 + \sum_k ak/(M^dagM + bk)
//
// d[N/D] is then
//
// \sum_k -ak [M^dagM+bk]^{-1} [ dM^dag M + M^dag dM ] [M^dag M + bk]^{-1}
//
// Need
// Mf Phi_k = [MdagM+bk]^{-1} Phi
// Mf Phi = \sum_k ak [MdagM+bk]^{-1} Phi
//
// With these building blocks
//
// dS/dU = \sum_k -ak Mf Phi_k^dag [ dM^dag M + M^dag dM ] Mf Phi_k
// S = innerprodReal(Phi,Mf Phi);
//////////////////////////////////////////////////////
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
Mpc.Mpc(X, Y);
Mpc.MpcDeriv(tmp, Y, X);
dSdU = dSdU + ak * tmp;
Mpc.MpcDagDeriv(tmp, X, Y);
dSdU = dSdU + ak * tmp;
}
const int Npole = PowerNegHalf.poles.size();
std::vector<FermionField> MPhi_k (Npole,FermOp.FermionRedBlackGrid());
FermionField X(FermOp.FermionRedBlackGrid());
FermionField Y(FermOp.FermionRedBlackGrid());
GaugeField tmp(FermOp.GaugeGrid());
FermOp.ImportGauge(U);
SchurDifferentiableOperator<Impl> Mpc(FermOp);
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerNegHalf);
msCG(Mpc,PhiOdd,MPhi_k);
dSdU = zero;
for(int k=0;k<Npole;k++){
RealD ak = PowerNegHalf.residues[k];
X = MPhi_k[k];
Mpc.Mpc(X,Y);
Mpc.MpcDeriv (tmp , Y, X ); dSdU=dSdU+ak*tmp;
Mpc.MpcDagDeriv(tmp , X, Y ); dSdU=dSdU+ak*tmp;
}
//dSdU = Ta(dSdU);
};
};
}
// dSdU = Ta(dSdU);
};
};
}
}
#endif

View File

@ -1,31 +1,32 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/tensors/Tensor_class.h
Source file: ./lib/tensors/Tensor_class.h
Copyright (C) 2015
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_MATH_TENSORS_H
#define GRID_MATH_TENSORS_H
@ -38,17 +39,18 @@ namespace Grid {
// It is useful to NOT have any constructors
// so that these classes assert "is_pod<class> == true"
// because then the standard C++ valarray container eliminates fill overhead on new allocation and
// because then the standard C++ valarray container eliminates fill overhead on
// new allocation and
// non-move copying.
//
// However note that doing this eliminates some syntactical sugar such as
// However note that doing this eliminates some syntactical sugar such as
// calling the constructor explicitly or implicitly
//
class GridTensorBase {};
template<class vtype> class iScalar
{
public:
template <class vtype>
class iScalar {
public:
vtype _internal;
typedef vtype element;
@ -60,13 +62,14 @@ public:
typedef iScalar<recurse_scalar_object> scalar_object;
// substitutes a real or complex version with same tensor structure
typedef iScalar<typename GridTypeMapper<vtype>::Complexified > Complexified;
typedef iScalar<typename GridTypeMapper<vtype>::Realified > Realified;
typedef iScalar<typename GridTypeMapper<vtype>::Complexified> Complexified;
typedef iScalar<typename GridTypeMapper<vtype>::Realified> Realified;
enum { TensorLevel = GridTypeMapper<vtype>::TensorLevel + 1};
enum { TensorLevel = GridTypeMapper<vtype>::TensorLevel + 1 };
// Scalar no action
// template<int Level> using tensor_reduce_level = typename iScalar<GridTypeMapper<vtype>::tensor_reduce_level<Level> >;
// template<int Level> using tensor_reduce_level = typename
// iScalar<GridTypeMapper<vtype>::tensor_reduce_level<Level> >;
iScalar() = default;
/*
iScalar(const iScalar<vtype> &copyme)=default;
@ -74,83 +77,106 @@ public:
iScalar<vtype> & operator= (const iScalar<vtype> &copyme) = default;
iScalar<vtype> & operator= (iScalar<vtype> &&copyme) = default;
*/
iScalar(scalar_type s) : _internal(s) {};// recurse down and hit the constructor for vector_type
iScalar(const Zero &z){ *this = zero; };
iScalar(scalar_type s)
: _internal(s){}; // recurse down and hit the constructor for vector_type
iScalar(const Zero &z) { *this = zero; };
iScalar<vtype> & operator= (const Zero &hero){
iScalar<vtype> &operator=(const Zero &hero) {
zeroit(*this);
return *this;
}
friend strong_inline void vstream(iScalar<vtype> &out,const iScalar<vtype> &in){
vstream(out._internal,in._internal);
friend strong_inline void vstream(iScalar<vtype> &out,
const iScalar<vtype> &in) {
vstream(out._internal, in._internal);
}
friend strong_inline void zeroit(iScalar<vtype> &that){
friend strong_inline void zeroit(iScalar<vtype> &that) {
zeroit(that._internal);
}
friend strong_inline void prefetch(iScalar<vtype> &that){
friend strong_inline void prefetch(iScalar<vtype> &that) {
prefetch(that._internal);
}
friend strong_inline void permute(iScalar<vtype> &out,const iScalar<vtype> &in,int permutetype){
permute(out._internal,in._internal,permutetype);
friend strong_inline void permute(iScalar<vtype> &out,
const iScalar<vtype> &in, int permutetype) {
permute(out._internal, in._internal, permutetype);
}
// Unary negation
friend strong_inline iScalar<vtype> operator -(const iScalar<vtype> &r) {
friend strong_inline iScalar<vtype> operator-(const iScalar<vtype> &r) {
iScalar<vtype> ret;
ret._internal= -r._internal;
ret._internal = -r._internal;
return ret;
}
// *=,+=,-= operators inherit from corresponding "*,-,+" behaviour
strong_inline iScalar<vtype> &operator *=(const iScalar<vtype> &r) {
*this = (*this)*r;
strong_inline iScalar<vtype> &operator*=(const iScalar<vtype> &r) {
*this = (*this) * r;
return *this;
}
strong_inline iScalar<vtype> &operator -=(const iScalar<vtype> &r) {
*this = (*this)-r;
strong_inline iScalar<vtype> &operator-=(const iScalar<vtype> &r) {
*this = (*this) - r;
return *this;
}
strong_inline iScalar<vtype> &operator +=(const iScalar<vtype> &r) {
*this = (*this)+r;
strong_inline iScalar<vtype> &operator+=(const iScalar<vtype> &r) {
*this = (*this) + r;
return *this;
}
strong_inline vtype & operator ()(void) {
return _internal;
}
strong_inline const vtype & operator ()(void) const {
return _internal;
}
strong_inline vtype &operator()(void) { return _internal; }
strong_inline const vtype &operator()(void) const { return _internal; }
// Type casts meta programmed, must be pure scalar to match TensorRemove
template<class U=vtype,class V=scalar_type,IfComplex<V> = 0,IfNotSimd<U> = 0> operator ComplexF () const { return(TensorRemove(_internal)); };
template<class U=vtype,class V=scalar_type,IfComplex<V> = 0,IfNotSimd<U> = 0> operator ComplexD () const { return(TensorRemove(_internal)); };
// template<class U=vtype,class V=scalar_type,IfComplex<V> = 0,IfNotSimd<U> = 0> operator RealD () const { return(real(TensorRemove(_internal))); }
template<class U=vtype,class V=scalar_type,IfReal<V> = 0,IfNotSimd<U> = 0> operator RealD () const { return TensorRemove(_internal); }
template<class U=vtype,class V=scalar_type,IfInteger<V> = 0,IfNotSimd<U> = 0> operator Integer () const { return Integer(TensorRemove(_internal)); }
// convert from a something to a scalar via constructor of something arg
template<class T,typename std::enable_if<!isGridTensor<T>::value, T>::type* = nullptr > strong_inline iScalar<vtype> operator = (T arg)
{
_internal = arg;
return *this;
}
template <class U = vtype, class V = scalar_type, IfComplex<V> = 0,
IfNotSimd<U> = 0>
operator ComplexF() const {
return (TensorRemove(_internal));
};
template <class U = vtype, class V = scalar_type, IfComplex<V> = 0,
IfNotSimd<U> = 0>
operator ComplexD() const {
return (TensorRemove(_internal));
};
// template<class U=vtype,class V=scalar_type,IfComplex<V> = 0,IfNotSimd<U> =
// 0> operator RealD () const { return(real(TensorRemove(_internal))); }
template <class U = vtype, class V = scalar_type, IfReal<V> = 0,
IfNotSimd<U> = 0>
operator RealD() const {
return TensorRemove(_internal);
}
template <class U = vtype, class V = scalar_type, IfInteger<V> = 0,
IfNotSimd<U> = 0>
operator Integer() const {
return Integer(TensorRemove(_internal));
}
friend std::ostream& operator<< (std::ostream& stream, const iScalar<vtype> &o){
stream<< "S {"<<o._internal<<"}";
return stream;
};
// convert from a something to a scalar via constructor of something arg
template <class T, typename std::enable_if<!isGridTensor<T>::value, T>::type
* = nullptr>
strong_inline iScalar<vtype> operator=(T arg) {
_internal = arg;
return *this;
}
friend std::ostream &operator<<(std::ostream &stream,
const iScalar<vtype> &o) {
stream << "S {" << o._internal << "}";
return stream;
};
};
///////////////////////////////////////////////////////////
// Allows to turn scalar<scalar<scalar<double>>>> back to double.
///////////////////////////////////////////////////////////
template<class T> strong_inline typename std::enable_if<!isGridTensor<T>::value, T>::type TensorRemove(T arg) { return arg;}
template<class vtype> strong_inline auto TensorRemove(iScalar<vtype> arg) -> decltype(TensorRemove(arg._internal))
{
template <class T>
strong_inline typename std::enable_if<!isGridTensor<T>::value, T>::type
TensorRemove(T arg) {
return arg;
}
template <class vtype>
strong_inline auto TensorRemove(iScalar<vtype> arg)
-> decltype(TensorRemove(arg._internal)) {
return TensorRemove(arg._internal);
}
template<class vtype,int N> class iVector
{
public:
template <class vtype, int N>
class iVector {
public:
vtype _internal[N];
typedef vtype element;
@ -159,23 +185,23 @@ public:
typedef typename GridTypeMapper<vtype>::tensor_reduced tensor_reduced_v;
typedef typename GridTypeMapper<vtype>::scalar_object recurse_scalar_object;
typedef iScalar<tensor_reduced_v> tensor_reduced;
typedef iVector<recurse_scalar_object,N> scalar_object;
typedef iVector<recurse_scalar_object, N> scalar_object;
// substitutes a real or complex version with same tensor structure
typedef iVector<typename GridTypeMapper<vtype>::Complexified,N > Complexified;
typedef iVector<typename GridTypeMapper<vtype>::Realified,N > Realified;
typedef iVector<typename GridTypeMapper<vtype>::Complexified, N> Complexified;
typedef iVector<typename GridTypeMapper<vtype>::Realified, N> Realified;
template<class T,typename std::enable_if<!isGridTensor<T>::value, T>::type* = nullptr > strong_inline auto operator = (T arg) -> iVector<vtype,N>
{
zeroit(*this);
for(int i=0;i<N;i++)
_internal[i] = arg;
return *this;
}
template <class T, typename std::enable_if<!isGridTensor<T>::value, T>::type
* = nullptr>
strong_inline auto operator=(T arg) -> iVector<vtype, N> {
zeroit(*this);
for (int i = 0; i < N; i++) _internal[i] = arg;
return *this;
}
enum { TensorLevel = GridTypeMapper<vtype>::TensorLevel + 1};
iVector(const Zero &z){ *this = zero; };
iVector() =default;
enum { TensorLevel = GridTypeMapper<vtype>::TensorLevel + 1 };
iVector(const Zero &z) { *this = zero; };
iVector() = default;
/*
iVector(const iVector<vtype,N> &copyme)=default;
iVector(iVector<vtype,N> &&copyme)=default;
@ -183,71 +209,71 @@ public:
iVector<vtype,N> & operator= (iVector<vtype,N> &&copyme) = default;
*/
iVector<vtype,N> & operator= (const Zero &hero){
iVector<vtype, N> &operator=(const Zero &hero) {
zeroit(*this);
return *this;
}
friend strong_inline void zeroit(iVector<vtype,N> &that){
for(int i=0;i<N;i++){
friend strong_inline void zeroit(iVector<vtype, N> &that) {
for (int i = 0; i < N; i++) {
zeroit(that._internal[i]);
}
}
friend strong_inline void prefetch(iVector<vtype,N> &that){
for(int i=0;i<N;i++) prefetch(that._internal[i]);
friend strong_inline void prefetch(iVector<vtype, N> &that) {
for (int i = 0; i < N; i++) prefetch(that._internal[i]);
}
friend strong_inline void vstream(iVector<vtype,N> &out,const iVector<vtype,N> &in){
for(int i=0;i<N;i++){
vstream(out._internal[i],in._internal[i]);
friend strong_inline void vstream(iVector<vtype, N> &out,
const iVector<vtype, N> &in) {
for (int i = 0; i < N; i++) {
vstream(out._internal[i], in._internal[i]);
}
}
friend strong_inline void permute(iVector<vtype,N> &out,const iVector<vtype,N> &in,int permutetype){
for(int i=0;i<N;i++){
permute(out._internal[i],in._internal[i],permutetype);
friend strong_inline void permute(iVector<vtype, N> &out,
const iVector<vtype, N> &in,
int permutetype) {
for (int i = 0; i < N; i++) {
permute(out._internal[i], in._internal[i], permutetype);
}
}
// Unary negation
friend strong_inline iVector<vtype,N> operator -(const iVector<vtype,N> &r) {
iVector<vtype,N> ret;
for(int i=0;i<N;i++) ret._internal[i]= -r._internal[i];
friend strong_inline iVector<vtype, N> operator-(const iVector<vtype, N> &r) {
iVector<vtype, N> ret;
for (int i = 0; i < N; i++) ret._internal[i] = -r._internal[i];
return ret;
}
// *=,+=,-= operators inherit from corresponding "*,-,+" behaviour
strong_inline iVector<vtype,N> &operator *=(const iScalar<vtype> &r) {
*this = (*this)*r;
strong_inline iVector<vtype, N> &operator*=(const iScalar<vtype> &r) {
*this = (*this) * r;
return *this;
}
strong_inline iVector<vtype,N> &operator -=(const iVector<vtype,N> &r) {
*this = (*this)-r;
strong_inline iVector<vtype, N> &operator-=(const iVector<vtype, N> &r) {
*this = (*this) - r;
return *this;
}
strong_inline iVector<vtype,N> &operator +=(const iVector<vtype,N> &r) {
*this = (*this)+r;
strong_inline iVector<vtype, N> &operator+=(const iVector<vtype, N> &r) {
*this = (*this) + r;
return *this;
}
strong_inline vtype & operator ()(int i) {
return _internal[i];
}
strong_inline const vtype & operator ()(int i) const {
return _internal[i];
}
friend std::ostream& operator<< (std::ostream& stream, const iVector<vtype,N> &o){
stream<< "V<"<<N<<">{";
for(int i=0;i<N;i++) {
stream<<o._internal[i];
if (i<N-1) stream<<",";
strong_inline vtype &operator()(int i) { return _internal[i]; }
strong_inline const vtype &operator()(int i) const { return _internal[i]; }
friend std::ostream &operator<<(std::ostream &stream,
const iVector<vtype, N> &o) {
stream << "V<" << N << ">{";
for (int i = 0; i < N; i++) {
stream << o._internal[i];
if (i < N - 1) stream << ",";
}
stream<<"}";
stream << "}";
return stream;
};
// strong_inline vtype && operator ()(int i) {
// return _internal[i];
// }
};
template<class vtype,int N> class iMatrix
{
public:
template <class vtype, int N>
class iMatrix {
public:
vtype _internal[N][N];
typedef vtype element;
@ -257,29 +283,27 @@ public:
typedef typename GridTypeMapper<vtype>::scalar_object recurse_scalar_object;
// substitutes a real or complex version with same tensor structure
typedef iMatrix<typename GridTypeMapper<vtype>::Complexified,N > Complexified;
typedef iMatrix<typename GridTypeMapper<vtype>::Realified,N > Realified;
typedef iMatrix<typename GridTypeMapper<vtype>::Complexified, N> Complexified;
typedef iMatrix<typename GridTypeMapper<vtype>::Realified, N> Realified;
// Tensure removal
typedef iScalar<tensor_reduced_v> tensor_reduced;
typedef iMatrix<recurse_scalar_object,N> scalar_object;
typedef iMatrix<recurse_scalar_object, N> scalar_object;
enum { TensorLevel = GridTypeMapper<vtype>::TensorLevel + 1};
enum { TensorLevel = GridTypeMapper<vtype>::TensorLevel + 1 };
iMatrix(const Zero &z) { *this = zero; };
iMatrix() = default;
iMatrix(const Zero &z){ *this = zero; };
iMatrix() =default;
iMatrix& operator=(const iMatrix& rhs){
for(int i=0;i<N;i++)
for(int j=0;j<N;j++)
vstream(_internal[i][j],rhs._internal[i][j]);
iMatrix &operator=(const iMatrix &rhs) {
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++) vstream(_internal[i][j], rhs._internal[i][j]);
return *this;
};
};
iMatrix(scalar_type s) { (*this) = s ;};// recurse down and hit the constructor for vector_type
iMatrix(scalar_type s) {
(*this) = s;
}; // recurse down and hit the constructor for vector_type
/*
iMatrix(const iMatrix<vtype,N> &copyme)=default;
@ -288,118 +312,118 @@ public:
iMatrix<vtype,N> & operator= (iMatrix<vtype,N> &&copyme) = default;
*/
iMatrix<vtype,N> & operator= (const Zero &hero){
iMatrix<vtype, N> &operator=(const Zero &hero) {
zeroit(*this);
return *this;
}
template<class T,typename std::enable_if<!isGridTensor<T>::value, T>::type* = nullptr > strong_inline auto operator = (T arg) -> iMatrix<vtype,N>
{
zeroit(*this);
for(int i=0;i<N;i++)
_internal[i][i] = arg;
return *this;
template <class T, typename std::enable_if<!isGridTensor<T>::value, T>::type
* = nullptr>
strong_inline auto operator=(T arg) -> iMatrix<vtype, N> {
zeroit(*this);
for (int i = 0; i < N; i++) _internal[i][i] = arg;
return *this;
}
friend strong_inline void zeroit(iMatrix<vtype, N> &that) {
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
zeroit(that._internal[i][j]);
}
}
friend strong_inline void zeroit(iMatrix<vtype,N> &that){
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
zeroit(that._internal[i][j]);
}}
}
friend strong_inline void prefetch(iMatrix<vtype,N> &that){
for(int i=0;i<N;i++)
for(int j=0;j<N;j++)
prefetch(that._internal[i][j]);
friend strong_inline void prefetch(iMatrix<vtype, N> &that) {
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++) prefetch(that._internal[i][j]);
}
friend strong_inline void vstream(iMatrix<vtype,N> &out,const iMatrix<vtype,N> &in){
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
vstream(out._internal[i][j],in._internal[i][j]);
}}
friend strong_inline void vstream(iMatrix<vtype, N> &out,
const iMatrix<vtype, N> &in) {
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
vstream(out._internal[i][j], in._internal[i][j]);
}
}
friend strong_inline void permute(iMatrix<vtype,N> &out,const iMatrix<vtype,N> &in,int permutetype){
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
permute(out._internal[i][j],in._internal[i][j],permutetype);
}}
}
friend strong_inline void permute(iMatrix<vtype, N> &out,
const iMatrix<vtype, N> &in,
int permutetype) {
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
permute(out._internal[i][j], in._internal[i][j], permutetype);
}
}
}
// Unary negation
friend strong_inline iMatrix<vtype,N> operator -(const iMatrix<vtype,N> &r) {
iMatrix<vtype,N> ret;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
ret._internal[i][j]= -r._internal[i][j];
}}
friend strong_inline iMatrix<vtype, N> operator-(const iMatrix<vtype, N> &r) {
iMatrix<vtype, N> ret;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
ret._internal[i][j] = -r._internal[i][j];
}
}
return ret;
}
// *=,+=,-= operators inherit from corresponding "*,-,+" behaviour
template<class T>
strong_inline iMatrix<vtype,N> &operator *=(const T &r) {
*this = (*this)*r;
template <class T>
strong_inline iMatrix<vtype, N> &operator*=(const T &r) {
*this = (*this) * r;
return *this;
}
template<class T>
strong_inline iMatrix<vtype,N> &operator -=(const T &r) {
*this = (*this)-r;
template <class T>
strong_inline iMatrix<vtype, N> &operator-=(const T &r) {
*this = (*this) - r;
return *this;
}
template<class T>
strong_inline iMatrix<vtype,N> &operator +=(const T &r) {
*this = (*this)+r;
template <class T>
strong_inline iMatrix<vtype, N> &operator+=(const T &r) {
*this = (*this) + r;
return *this;
}
// returns an lvalue reference
strong_inline vtype & operator ()(int i,int j) {
strong_inline vtype &operator()(int i, int j) { return _internal[i][j]; }
strong_inline const vtype &operator()(int i, int j) const {
return _internal[i][j];
}
strong_inline const vtype & operator ()(int i,int j) const {
return _internal[i][j];
}
friend std::ostream& operator<< (std::ostream& stream, const iMatrix<vtype,N> &o){
stream<< "M<"<<N<<">{";
for(int i=0;i<N;i++) {
stream<< "{";
for(int j=0;j<N;j++) {
stream<<o._internal[i][j];
if (i<N-1) stream<<",";
friend std::ostream &operator<<(std::ostream &stream,
const iMatrix<vtype, N> &o) {
stream << "M<" << N << ">{";
for (int i = 0; i < N; i++) {
stream << "{";
for (int j = 0; j < N; j++) {
stream << o._internal[i][j];
if (i < N - 1) stream << ",";
}
stream<<"}";
if(i!=N-1) stream<<"\n\t\t";
stream << "}";
if (i != N - 1) stream << "\n\t\t";
}
stream<<"}";
stream << "}";
return stream;
};
// strong_inline vtype && operator ()(int i,int j) {
// return _internal[i][j];
// }
};
template<class v> void vprefetch(const iScalar<v> &vv)
{
template <class v>
void vprefetch(const iScalar<v> &vv) {
vprefetch(vv._internal);
}
template<class v,int N> void vprefetch(const iVector<v,N> &vv)
{
for(int i=0;i<N;i++){
template <class v, int N>
void vprefetch(const iVector<v, N> &vv) {
for (int i = 0; i < N; i++) {
vprefetch(vv._internal[i]);
}
}
template<class v,int N> void vprefetch(const iMatrix<v,N> &vv)
{
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
vprefetch(vv._internal[i][j]);
}}
template <class v, int N>
void vprefetch(const iMatrix<v, N> &vv) {
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
vprefetch(vv._internal[i][j]);
}
}
}
}
#endif

View File

@ -1,97 +1,100 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_rhmc_EOWilson1p1.cc
Source file: ./tests/Test_rhmc_EOWilson1p1.cc
Copyright (C) 2015
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include "Grid.h"
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
namespace Grid {
namespace QCD {
namespace Grid {
namespace QCD {
class HmcRunner : public NerscHmcRunner {
public:
void BuildTheAction (int argc, char **argv)
public:
void BuildTheAction(int argc, char **argv)
{
typedef WilsonImplR ImplPolicy;
typedef WilsonFermionR FermionAction;
typedef typename FermionAction::FermionField FermionField;
UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
UGrid = SpaceTimeGrid::makeFourDimGrid(
GridDefaultLatt(), GridDefaultSimd(Nd, vComplex::Nsimd()),
GridDefaultMpi());
UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
FGrid = UGrid;
FGrid = UGrid;
FrbGrid = UrbGrid;
// temporarily need a gauge field
LatticeGaugeField U(UGrid);
LatticeGaugeField U(UGrid);
// Gauge action
WilsonGaugeActionR Waction(5.6);
Real mass=-0.77;
FermionAction FermOp(U,*FGrid,*FrbGrid,mass);
Real mass = -0.77;
FermionAction FermOp(U, *FGrid, *FrbGrid, mass);
// 1+1 flavour
OneFlavourRationalParams Params(1.0e-4,64.0,1000,1.0e-6);
OneFlavourEvenOddRationalPseudoFermionAction<WilsonImplR> WilsonNf1a(FermOp,Params);
OneFlavourEvenOddRationalPseudoFermionAction<WilsonImplR> WilsonNf1b(FermOp,Params);
OneFlavourRationalParams Params(1.0e-4, 64.0, 2000, 1.0e-6);
OneFlavourEvenOddRationalPseudoFermionAction<WilsonImplR> WilsonNf1a(
FermOp, Params);
OneFlavourEvenOddRationalPseudoFermionAction<WilsonImplR> WilsonNf1b(
FermOp, Params);
//Collect actions
//Smearing on/off
WilsonNf1a.is_smeared = true;
WilsonNf1b.is_smeared = true;
// Collect actions
ActionLevel<LatticeGaugeField> Level1;
Level1.push_back(&WilsonNf1a);
Level1.push_back(&WilsonNf1b);
Level1.push_back(&Waction);
TheAction.push_back(Level1);
Run(argc,argv);
Run(argc, argv);
};
};
}}
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
int threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
HmcRunner TheHMC;
TheHMC.BuildTheAction(argc,argv);
}
}
int main(int argc, char **argv) {
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
std::cout << GridLogMessage << "Grid is setup to use " << threads
<< " threads" << std::endl;
HmcRunner TheHMC;
TheHMC.BuildTheAction(argc, argv);
}