preparing to pass integrator, smearing, bc's as policy classes to hmc.
Propose to unify "integrator" and integrator algorithm in a base/derived
way to override step. Want to read through ForceGradient to ensure
that abstraction covers the force gradient case.
to a little figure out what Guido had done & why -- but there is a neat saving of force
evaluations across the nesting time boundary making use of linearity of the leapP in dt.
I cleaned up the printing, reduced the volume of code, in the process sharing printing
between all integrators. Placed an assert that the total integration time for all integrators
must match at end of trajectory.
Have now verified e-dH = 1 for nested integrators in Wilson/Wilson runs with both
Omelyan and with Leapfrog so substantial confidence gained.