in RedBlack MpcDagMpc, Unprec MdagM and Schur red black solver for
each of.
DomainWallFermion
MobiusFermion
MobiusZolotarevFermion
ScaledShamirFermion
ScaledShamirZolotarevFermion
Tanh/Zolo * (Cayley/PartFrac/ContFrac) * (Mobius/Shamir/Wilson)
Approx Representation Kernel.
All are done with space-time taking part in checkerboarding, Ls uncheckerboarded
Have only so far tested the Domain Wall limit of mobius, and at that only checked
that it
i) Inverts
ii) 5dim DW == Ls copies of 4dim D2
iii) MeeInv Mee == 1
iv) Meo+Mee+Moe+Moo == M unprec.
v) MpcDagMpc is hermitan
vi) Mdag is the adjoint of M between stochastic vectors.
That said, the RB schur solve, RB MpcDagMpc solve, Unprec solve
all converge and the true residual becomes small; so pretty good tests.
Tanh/Zolo * (Cayley/PartFrac/ContFrac) * (Mobius/Shamir/Wilson)
Approx Representation Kernel.
All are done with space-time taking part in checkerboarding, Ls uncheckerboarded
Have only so far tested the Domain Wall limit of mobius, and at that only checked
that it
i) Inverts
ii) 5dim DW == Ls copies of 4dim D2
iii) MeeInv Mee == 1
iv) Meo+Mee+Moe+Moo == M unprec.
v) MpcDagMpc is hermitan
vi) Mdag is the adjoint of M between stochastic vectors.
That said, the RB schur solve, RB MpcDagMpc solve, Unprec solve
all converge and the true residual becomes small; so pretty good tests.
Tanh/Zolo * (Cayley/PartFrac/ContFrac) * (Mobius/Shamir/Wilson)
Approx Representation Kernel.
All are done with space-time taking part in checkerboarding, Ls uncheckerboarded
Have only so far tested the Domain Wall limit of mobius, and at that only checked
that it
i) Inverts
ii) 5dim DW == Ls copies of 4dim D2
iii) MeeInv Mee == 1
iv) Meo+Mee+Moe+Moo == M unprec.
v) MpcDagMpc is hermitan
vi) Mdag is the adjoint of M between stochastic vectors.
That said, the RB schur solve, RB MpcDagMpc solve, Unprec solve
all converge and the true residual becomes small; so pretty good tests.