1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-11-04 14:04:32 +00:00

Compare commits

...

187 Commits

Author SHA1 Message Date
Peter Boyle
d3ca16c76d Updated 2025-10-27 21:09:02 -04:00
Peter Boyle
d81d00a889 Covariance test of covariant laplacian appears to pass 2025-10-27 19:19:30 -04:00
Peter Boyle
d0ee38d1da Clean up 2025-10-22 21:44:51 -04:00
Peter Boyle
da8dc3da0d More compact 2025-10-22 21:37:40 -04:00
Peter Boyle
21514d8487 Added a free laplacian 2025-10-22 21:31:53 -04:00
Peter Boyle
77b2e9fb61 Name changes 2025-10-22 16:46:15 -04:00
Peter Boyle
a71ba05bd7 Implemented gauge transform via stencil.
Now have ability to do Vertex AND Edge grids
Should now have no barriers to
a) Double Storing links for fermion operators / laplacian
b) Laplace or Wilson operators
2025-10-22 16:27:06 -04:00
Peter Boyle
1e95e64035 Staples work in icoso-plane 2025-10-21 23:27:27 -04:00
Peter Boyle
defcac92ab Somewhat better wrapped support for Icosahedral 2025-10-20 18:09:21 -04:00
Peter Boyle
4869378f1e Now computed some plaquettes.
First cut at stencil
2025-10-20 11:15:17 -04:00
Peter Boyle
c7b74db317 Default dimensions fixed 2025-10-09 14:57:22 -04:00
Peter Boyle
0ce201efbe IcosahedralVerted() checks 2025-10-09 13:35:16 -04:00
Peter Boyle
6d8a3d8bb2 Config 2025-10-09 13:30:16 -04:00
Peter Boyle
7dfd207ebb Need to protect pole operatoins to only take place on IcosahedralVertices mesh 2025-10-08 15:18:31 -04:00
Peter Boyle
3a65a096f2 Nd verbose 2025-10-07 18:49:00 -04:00
Peter Boyle
85b2bd4c93 Beginnings of S2xR 2025-10-07 16:11:06 -04:00
Peter Boyle
35e10a1159 Changes for Nd=3 2025-10-03 12:17:13 -04:00
d418f78352 Making running on Aurora more debuggable 2025-05-23 20:58:16 +00:00
25163998a0 Makes SYCL compiler happy 2025-05-23 20:57:11 +00:00
Peter Boyle
dc546aaa4b Updated config options for BNL cluster 2025-05-13 18:44:47 -04:00
Peter Boyle
5364d580c9 Output chirality, eigenvector density files and python source lego plot 2025-05-13 18:44:47 -04:00
Peter Boyle
2a9a6347e3 Do not require Grid format RNGs and also to the 5Li reporting 2025-05-13 18:44:47 -04:00
Peter Boyle
cfdb56f314 Run measurements at t=0 too 2025-05-13 18:44:46 -04:00
Peter Boyle
b517e88db3 Update README 2025-05-13 16:49:21 -04:00
bb317aba8d Lattice = for sycl 2025-05-13 12:50:58 +00:00
644cc6647e JSON update 2025-05-13 12:50:58 +00:00
72397ce23b SYCL interface change 2025-05-13 12:50:58 +00:00
Peter Boyle
d60a80c098 Fixes and visualisation 2025-04-29 18:04:23 -04:00
Peter Boyle
bb8b6d9d73 Fix 2025-04-29 18:04:04 -04:00
Peter Boyle
677b4cc5b0 Make all tests compile 2025-04-24 20:33:26 -04:00
Peter Boyle
be565ffab6 update mac config command 2025-04-24 14:50:06 -04:00
Peter Boyle
df6120e5f6 CPU compile oops fix 2025-04-24 14:50:06 -04:00
Peter Boyle
21de6f7da8 Merge pull request #477 from lehner/feature/wilson-clover-5d
Feature/wilson clover 5d
2025-04-24 14:44:48 -04:00
Peter Boyle
dbe39f9ce0 Merge pull request #471 from edbennett/fix-wflow
Shave off rough edges in Wilson flow test
2025-04-24 14:40:31 -04:00
Peter Boyle
ab3de50d5e Merge pull request #473 from UCL-ARC/gauge_action_deriv
WilsonGagueAction deriv
2025-04-24 14:39:10 -04:00
Peter Boyle
c545bd2139 Merge pull request #465 from edbennett/allow-nonsu3-compilation
guard against trying to compile SU3-specific code when Nc ≠ 3
2025-04-24 14:35:51 -04:00
Peter Boyle
6a1c64fbdd Merge pull request #470 from paboyle/specflow
Spectral flow, DWF/Mobius kernel measurement
2025-04-24 14:34:33 -04:00
Peter Boyle
b75809ed61 Update README 2025-04-24 14:27:22 -04:00
Peter Boyle
ecaf228e5c Update README 2025-04-24 14:25:32 -04:00
Peter Boyle
6d015ae8fc Visualisation tools 2025-04-24 13:47:34 -04:00
Peter Boyle
233150d93f Bug fix for no accelerator aware MPI, thanks Shuhei for finding it. 2025-04-24 11:40:46 -04:00
Peter Boyle
7af8c77a52 Normalise 2025-04-24 11:37:39 -04:00
Chulwoo Jung
a957e7bfa1 Adding DWF evec Chirality measurement 2025-04-22 22:17:51 +00:00
Chulwoo Jung
cee4c8ce8c Merge branch 'develop' of https://github.com/paboyle/Grid into specflow 2025-04-18 19:55:36 +00:00
Christoph Lehner
96bf814d8c Add checkerboarding to 5D compact clover 2025-04-10 23:05:39 +02:00
Christoph Lehner
7ddc422788 CompactWilsonClover5D 2025-04-10 23:05:29 +02:00
Peter Boyle
e652fc2825 Shared Memory test reenabled on every Grid object creation.
Const improvements in Accelerator.h
2025-04-07 11:51:40 -04:00
Peter Boyle
a49fa3f8d0 ROCM 6.3.1 appears to work 2025-04-07 11:50:59 -04:00
Peter Boyle
cd452a2f91 Slurm update 2025-04-04 18:40:20 -04:00
Peter Boyle
4f89f603ae Changes to add back shared memory test on GPU 2025-04-04 18:40:15 -04:00
Peter Boyle
11dc2c5e1d PVdagM initialise 2025-04-04 18:35:06 -04:00
Peter Boyle
6fec3c15ca Cleaner printing 2025-04-04 18:35:06 -04:00
Peter Boyle
938c47480f Updated compile on frontier.
Unsatisfactory hacsk
2025-04-04 18:35:06 -04:00
Peter Boyle
3811d19298 Fence 2025-04-04 18:35:06 -04:00
Peter Boyle
83a3ab6b6f Barrier -- not sure 100% this was needed 2025-04-04 18:35:05 -04:00
Peter Boyle
d66a9af6a3 No compile fix 2025-04-04 18:35:05 -04:00
Peter Boyle
adc90d3a86 NVLINK GET/PUT on cuda aware mpi 2025-04-04 18:35:05 -04:00
Peter Boyle
ebbd015c5c Deprecate shared memory copy as direction matters on nvidia GPU 2025-04-04 18:35:05 -04:00
Peter Boyle
4ab73b36b2 Deprecate shared memory copy as direction matters on GPU 2025-04-04 18:35:05 -04:00
Peter Boyle
130e07a422 Non hermitian support 2025-04-04 18:35:05 -04:00
Peter Boyle
8f47bb367e Shifted non herm 2025-04-04 18:35:05 -04:00
Peter Boyle
0c3cb60135 Script update 2025-04-04 18:35:05 -04:00
Peter Boyle
9eae8fca5d Size outut 2025-04-04 18:35:05 -04:00
Peter Boyle
882a217074 Example of Useful prerequisite installs with spack 2025-03-26 11:28:53 -04:00
Mashy Green
e465fce201 Merge remote-tracking branch 'upstream/develop' into gauge_action_deriv 2025-03-24 10:12:42 +00:00
Mashy Green
d41542c64b reverted sp2n test wilsonfundfermiongauge to original 2025-03-24 08:29:15 +00:00
Peter Boyle
199818bd6c Merge pull request #475 from lehner/feature-aurora
Sync with GPT on Aurora
2025-03-13 08:55:55 -04:00
Christoph Lehner
fe66c7ca30 verbosity 2025-03-13 12:49:36 +00:00
Christoph Lehner
e9177e4af3 Blas compatibility 2025-03-13 08:48:23 +00:00
Christoph Lehner
d15a6c5933 Merge branch 'develop' of https://github.com/paboyle/Grid into feature-aurora 2025-03-13 07:29:55 +00:00
25ab9325e7 Use hostVector but remove construct resize 2025-03-11 15:02:32 +00:00
19f9378b98 Should work on Aurora nowb 2025-03-11 13:50:43 +00:00
Mashy Green
785bc7a14f Adding staple zeroing fix 2025-03-10 12:29:04 +00:00
Mashy Green
1a1fe85428 Merge remote-tracking branch 'upstream' into gauge_action_deriv 2025-03-10 08:37:36 +00:00
Mashy Green
0000d2e558 Merge branch 'develop' into gauge_action_deriv 2025-03-10 08:35:57 +00:00
Christoph Lehner
9ffd1ed4ce Merged 2025-03-08 15:30:08 +00:00
Peter Boyle
3d014864e2 Makinig LLVM happy 2025-03-06 14:19:25 -05:00
1d22841811 Working on aurora, GPT issue turned up is fixed 2025-03-06 03:20:18 +00:00
Peter Boyle
a1cdda833f Update WorkArounds.txt 2025-03-05 14:04:23 -05:00
Peter Boyle
ad6db92690 Update WorkArounds.txt 2025-03-05 14:00:26 -05:00
Peter Boyle
e8ff9d8e50 Update WorkArounds.txt 2025-03-05 14:00:04 -05:00
Peter Boyle
795769c636 Update WorkArounds.txt 2025-03-05 13:50:41 -05:00
Peter Boyle
267a39d943 Update WorkArounds.txt 2025-03-05 13:49:43 -05:00
Peter Boyle
3624bd3d22 Update WorkArounds.txt 2025-03-05 13:45:09 -05:00
Peter Boyle
bc12dbbb38 Update WorkArounds.txt 2025-03-05 12:48:56 -05:00
Peter Boyle
eb8a008a8f Create WorkArounds.txt 2025-03-05 12:41:59 -05:00
c4d9aa1a21 Config command that makes GPT happier 2025-02-27 20:12:49 +00:00
6ae809ed40 Print not liked on GPT compile 2025-02-27 20:12:49 +00:00
Peter Boyle
311e2aab3f Update Accelerator.h 2025-02-26 11:42:52 -05:00
438dfbdb83 Only throw if there is a pending list entry in CommsComplete 2025-02-25 16:57:27 +00:00
b2ce760cf4 Verbose issue with GPT 2025-02-25 16:55:23 +00:00
Muhammad Asif
b1ba209696 Latest upstream with np-su3 patch and modified Sp_WilsonFunfFermionGauge test to be small (#22)
Co-authored-by: Mashy Green <mashy@me.com>

merging no-su3 patch
2025-02-24 11:38:42 +00:00
Muhammad Asif
cb3e529b1e Merge branch 'paboyle:develop' into develop 2025-02-24 11:29:09 +00:00
Mashy Green
717f647418 added the WilsonFlow patch from upstream PR #471 2025-02-24 08:41:31 +00:00
Mashy Green
98e7418187 Merge remote-tracking branch 'upstream/develop' into gauge_action_deriv 2025-02-24 08:33:05 +00:00
Mashy Green
fe05bf48b1 Improvements to WilsonGaugeAction deriv function (#16)
* patched version + modifications to deriv -> staple in qcd/gauge

* Cleaning up and aligning variable naming between action deriv versions

* Removing the regresion test files that were also in this branch for a clean PR

* Reverting whitespace changes

* Fixing after revering too much!

---------

Co-authored-by: Mashy Green <mashy@me.com>
2025-02-17 18:52:04 +00:00
Mashy Green
d2dd8f54e2 Fixing after revering too much! 2025-02-17 17:32:27 +00:00
Mashy Green
7726ee4b16 Reverting whitespace changes 2025-02-17 17:16:28 +00:00
ba9bbe0221 Bounce MPI through host 2025-02-12 19:34:59 +00:00
4c3dd82d84 CSHIFT with bounce throuhgh Host memory on MPI packets 2025-02-12 19:09:53 +00:00
44e911b5b7 Comment change 2025-02-12 17:37:55 +00:00
a7a16df9d0 GET not put has kinder barrier sequence for NVLINK type access as when
GET is done, I can use it without barrier. Moves a barrier to a nicer
place, overlapped with DtoH DMA
2025-02-12 14:59:28 +00:00
382e0abefd Was issueing a double fence -- the gather also fences 2025-02-12 14:57:28 +00:00
6fdefe5b90 Barrier sequencing if doing "GET" not "PUT" is different.
This is somewhat better timing for Barriers
2025-02-12 14:55:20 +00:00
4788dd8e2e More states in packet progression for GPU non aware MPI 2025-02-12 14:53:57 +00:00
1cc5f221f3 GET not put ordering is better as I know when I've got all MY data 2025-02-12 14:53:05 +00:00
93251bfba0 GET not put for better ordering in the downstream dependent kernels -- I
know when I'm done, so we can move a barrier / handshake between ranks
intranode to a point off critical path
2025-02-12 14:50:21 +00:00
18b79508b8 New line better for pretty print 2025-02-12 14:49:48 +00:00
4de5ed1613 Remove vector view. The std::vector will not inform Memory manager of
deletion and so a stale entry could be left. It is not and should not be
used.
2025-02-12 14:48:46 +00:00
0baaddbe98 Pipeline mode commit on Aurora. 5+ TF/s on 16^3x32 per tile at 384
nodes.
More concurrency/fine grained scheduling is possible.
2025-02-04 19:27:26 +00:00
8729c46169 add clover energy density measurement to default WilsonFlow measurements 2025-02-03 14:27:55 +00:00
09f81fe7c3 don't force energy density measurement to be every wilson flow iteration 2025-02-03 14:27:45 +00:00
1876e5b7c0 correct tests/smearing/WilsonFlow to use non-adaptive flow and use correct interface 2025-02-03 14:27:29 +00:00
Mashy Green
355ec76257 Merge pull request #18 from UCL-ARC/bugfix/nvtx
Bugfix/nvtx
2025-02-03 11:05:42 +00:00
b50fb34e71 Perf on Aurora 2025-02-01 18:39:34 +00:00
de84d730ff Fastest run config on Aurora to date 2025-02-01 18:08:40 +00:00
Peter Boyle
c74d11e3d7 PVdagM MG 2025-02-01 11:04:13 -05:00
Christoph Lehner
84cab5e6e7 no comms and log cleanup 2025-02-01 16:37:21 +01:00
c4fc972fec Merge branch 'feature/deprecate-uvm' into develop 2025-01-31 16:32:36 +00:00
8cf809e231 Best results on Aurora so far 2025-01-31 16:14:45 +00:00
94019a922e Significantly better performance on Aurora without using pipeline mode 2025-01-30 16:36:46 +00:00
Mashy Green
4f17c8d081 Merge branch 'paboyle:develop' into bugfix/nvtx 2025-01-29 13:10:12 +00:00
Mashy Green
aaab753982 Reverting to older version of nvtx for Tursa support 2025-01-29 12:57:38 +00:00
d6b2727f86 Pipeline mode getting better -- 2 nodes @ 10TF/s per node on Aurora 2025-01-29 09:22:21 +00:00
74a4f43946 Optional host buffer bounce for no CUDA aware MPI 2025-01-28 15:22:46 +00:00
1caf8b0f86 Rename 2025-01-28 15:22:37 +00:00
Chulwoo Jung
570b72a47b Bugfix. Sorry! 2025-01-21 15:37:39 -05:00
Chulwoo Jung
a5798a89ed Merge branch 'develop' into specflow 2025-01-21 12:13:24 -05:00
Peter Boyle
3f3661a86f Heading towards PVdagM multigrid 2025-01-17 14:33:35 +00:00
Chulwoo Jung
f7e2f9a401 Checking in spectral flow and DWF/Mobius kernel eigenvalue measurement 2025-01-16 20:47:33 +00:00
Chulwoo Jung
2848a9b558 DWF Kernel lanczos working(?) 2025-01-16 01:29:56 +00:00
Mashy Green
d4868991af Fixed wrong lib for NVTX in configure.ac and updated to nvtx3 2025-01-10 14:53:19 +00:00
Mashy Green
e99d42404e Removing the regresion test files that were also in this branch for a clean PR 2024-12-16 16:31:22 +00:00
Mashy Green
3ba019c747 Cleaning up and aligning variable naming between action deriv versions 2024-12-03 15:23:00 +00:00
Mashy Green
47429218bb patched version + modifications to deriv -> staple in qcd/gauge 2024-11-27 16:29:22 +00:00
8fe429346f Dslash testing for reproduce 2024-11-11 23:11:11 +00:00
Peter Boyle
5a4f9bf2e3 Force the ROCM version 2024-10-29 18:12:31 -04:00
Peter Boyle
b91fc1b6b4 Merge branch 'feature/boosted' into feature/deprecate-uvm
Fixed boosted free field test
2024-10-28 16:53:09 -04:00
Peter Boyle
eafc150034 Test fft asserts 2024-10-23 16:46:26 -04:00
Peter Boyle
2877f1a268 Verbose reduce 2024-10-23 15:14:16 -04:00
Peter Boyle
1e893af775 GPU happy 2024-10-23 14:52:15 -04:00
Peter Boyle
d9f430a575 Happy GPU 2024-10-23 14:51:16 -04:00
Peter Boyle
63abe87f36 Memory manager verbose improvements that were useful to track an error 2024-10-23 14:49:13 -04:00
Peter Boyle
368d649c8a feature/deprecate-uvm happier -- preallocate device resident neigbour table 2024-10-23 14:47:55 -04:00
Peter Boyle
5603464f39 Fix in partial fraction import/export physical and
make the GPU happier on the deprecate-uvm -- don't use static vectors, make member of class
2024-10-23 14:45:58 -04:00
Peter Boyle
655c79f39e Suppress warning on partial override 2024-10-23 14:44:41 -04:00
Peter Boyle
565b231c03 Nvcc happy 2024-10-23 14:44:17 -04:00
Peter Boyle
62a9f180fa NVCC happy 2024-10-23 14:44:04 -04:00
Peter Boyle
5ae77876a8 Meson field and Aslash field on GPU; some compiler warning removed 2024-10-18 19:08:06 -04:00
Peter Boyle
4ed2c2c74f Config command 2024-10-18 13:58:33 -04:00
Peter Boyle
955da582b6 Working on NVCC 2024-10-18 13:58:03 -04:00
Peter Boyle
11b07b950d Vanilla linux compile, assuming spack prerequisites 2024-10-18 13:57:40 -04:00
Peter Boyle
8f70cfeda9 Clean up 2024-10-18 13:56:53 -04:00
Peter Boyle
ce64271048 Remove the copying version 2024-10-18 13:56:24 -04:00
5cc4f3241d Meson field test 2024-10-18 15:42:30 +00:00
Peter Boyle
6815e138b4 Boosted fermion attempt 2024-10-17 18:37:33 +01:00
a78a61d76f Update configure 2024-10-15 14:38:45 +00:00
2eff3f34ed Alternate reduction; default to grids own but make a configure flag
--enable-reduction=grid|mpi
2024-10-15 14:36:06 +00:00
03687c1d62 Final version of test, closer to original again 2024-10-15 14:35:17 +00:00
febfe4e77f Make my own reduction a configure flag 2024-10-15 14:32:35 +00:00
4d1aa134b5 Use normal reduction, configure flag to force deterministic 2024-10-15 14:32:11 +00:00
5ec879860a Odd rounding issue - bears looking into 2024-10-15 14:30:54 +00:00
Peter Boyle
f617468e04 Update Lattice_base.h 2024-10-11 10:39:16 -04:00
b728af903c Fast axpy norm under CFLAG 2024-10-11 03:23:09 +00:00
54f1999030 axpy_norm_fast -- wasn't using the determinstic MPI sum causing issues 2024-10-11 03:22:18 +00:00
fd58f0b669 Return ok 2024-10-11 03:21:21 +00:00
c5c67b706e cl::sycl -> SYCL 2024-10-10 22:04:12 +00:00
be7a543e2c Revert barriers -- these were not the problem 2024-10-10 22:03:29 +00:00
68f112d576 New software moves cl::sycl 2024-10-10 22:03:04 +00:00
ec1395a304 Better flight logging 2024-10-10 22:01:57 +00:00
beb0e474ee Use deterministic own brand reduction 2024-10-10 22:01:24 +00:00
2b5fdcbbc5 New software version 2024-10-10 21:59:02 +00:00
295127d456 Deterministic homebrew reduction 2024-10-10 21:58:26 +00:00
7dcfb13694 New software stack 2024-10-10 21:57:35 +00:00
Peter Boyle
ee4046fe92 Added a dimension ordered column sum based reduction for scalar.
Removes dependence on MPI_Allreduce and allows for work around on
systems where this is bollox.
2024-09-27 09:26:03 -04:00
Peter Boyle
2a9cfeb9ea New files 2024-09-26 14:23:29 -04:00
Peter Boyle
1147b8ea40 Cheby poly setup 2024-09-26 14:20:32 -04:00
Peter Boyle
3f9119b39d Remove vectors used for the power spectrum table in paper 2024-09-26 14:19:41 -04:00
Peter Boyle
35e8225abd Verbose control 2024-09-26 14:18:35 -04:00
Peter Boyle
bdbfbb7a14 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2024-09-26 14:05:45 -04:00
Peter Boyle
f7d4be8d96 Calculate bytes correctly 2024-09-26 14:04:44 -04:00
9fa8bd6438 Configure for AOT on Aurora latest software 2024-09-23 11:25:44 +00:00
02c8178f16 Almost working on Aurora 2024-09-23 09:43:50 +00:00
e637fbacae Verbose remove 2024-09-23 09:42:43 +00:00
8d305df0db guard against trying to compile SU3-specific code when Nc ≠ 3 2024-05-24 14:00:56 +01:00
Peter Boyle
e29b97b3ea Qslash term added 2023-09-14 16:14:03 -04:00
Peter Boyle
ad2b699d2b Better macos 2023-09-14 16:12:21 -04:00
201 changed files with 13223 additions and 3288 deletions

View File

@@ -37,6 +37,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#include <Grid/qcd/QCD.h>
#include <Grid/qcd/spin/Spin.h>
#include <Grid/qcd/gparity/Gparity.h>
#include <Grid/qcd/spin/Pauli.h> // depends on Gparity
#include <Grid/qcd/utils/Utils.h>
#include <Grid/qcd/representations/Representations.h>
NAMESPACE_CHECK(GridQCDCore);

View File

@@ -191,7 +191,7 @@ public:
Lattice<sobj> pgbuf(&pencil_g);
autoView(pgbuf_v , pgbuf, CpuWrite);
std::cout << "CPU view" << std::endl;
//std::cout << "CPU view" << std::endl;
typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
typedef typename FFTW<scalar>::FFTW_plan FFTW_plan;
@@ -215,7 +215,7 @@ public:
else if ( sign == forward ) div = 1.0;
else assert(0);
std::cout << "Making FFTW plan" << std::endl;
//std::cout << GridLogPerformance<<"Making FFTW plan" << std::endl;
FFTW_plan p;
{
FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0];
@@ -229,7 +229,7 @@ public:
}
// Barrel shift and collect global pencil
std::cout << "Making pencil" << std::endl;
//std::cout << GridLogPerformance<<"Making pencil" << std::endl;
Coordinate lcoor(Nd), gcoor(Nd);
result = source;
int pc = processor_coor[dim];
@@ -251,7 +251,7 @@ public:
}
}
std::cout << "Looping orthog" << std::endl;
//std::cout <<GridLogPerformance<< "Looping orthog" << std::endl;
// Loop over orthog coords
int NN=pencil_g.lSites();
GridStopWatch timer;
@@ -274,7 +274,7 @@ public:
usec += timer.useconds();
flops+= flops_call*NN;
std::cout << "Writing back results " << std::endl;
//std::cout <<GridLogPerformance<< "Writing back results " << std::endl;
// writing out result
{
autoView(pgbuf_v,pgbuf,CpuRead);
@@ -291,7 +291,7 @@ public:
}
result = result*div;
std::cout << "Destroying plan " << std::endl;
//std::cout <<GridLogPerformance<< "Destroying plan " << std::endl;
// destroying plan
FFTW<scalar>::fftw_destroy_plan(p);
#endif

View File

@@ -277,6 +277,38 @@ public:
assert(0);
}
};
template<class Matrix,class Field>
class ShiftedNonHermitianLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
RealD shift;
public:
ShiftedNonHermitianLinearOperator(Matrix &Mat,RealD shft): _Mat(Mat),shift(shft){};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
_Mat.Mdiag(in,out);
out = out + shift*in;
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
_Mat.MdirAll(in,out);
};
void Op (const Field &in, Field &out){
_Mat.M(in,out);
out = out + shift * in;
}
void AdjOp (const Field &in, Field &out){
_Mat.Mdag(in,out);
out = out + shift * in;
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
assert(0);
}
void HermOp(const Field &in, Field &out){
assert(0);
}
};
//////////////////////////////////////////////////////////
// Even Odd Schur decomp operators; there are several

View File

@@ -269,7 +269,9 @@ public:
RealD xscale = 2.0/(hi-lo);
RealD mscale = -(hi+lo)/(hi-lo);
Linop.HermOp(T0,y);
grid->Barrier();
axpby(T1,xscale,mscale,y,in);
grid->Barrier();
// sum = .5 c[0] T0 + c[1] T1
// out = ()*T0 + Coeffs[1]*T1;

View File

@@ -55,10 +55,10 @@ NAMESPACE_BEGIN(Grid);
typedef cublasHandle_t gridblasHandle_t;
#endif
#ifdef GRID_SYCL
typedef cl::sycl::queue *gridblasHandle_t;
typedef sycl::queue *gridblasHandle_t;
#endif
#ifdef GRID_ONE_MKL
typedef cl::sycl::queue *gridblasHandle_t;
typedef sycl::queue *gridblasHandle_t;
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
typedef int32_t gridblasHandle_t;
@@ -89,9 +89,9 @@ public:
gridblasHandle = theGridAccelerator;
#endif
#ifdef GRID_ONE_MKL
cl::sycl::gpu_selector selector;
cl::sycl::device selectedDevice { selector };
cl::sycl::property_list q_prop{cl::sycl::property::queue::in_order()};
sycl::gpu_selector selector;
sycl::device selectedDevice { selector };
sycl::property_list q_prop{sycl::property::queue::in_order()};
gridblasHandle =new sycl::queue (selectedDevice,q_prop);
#endif
gridblasInit=1;
@@ -208,8 +208,8 @@ public:
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
assert(OpB!=GridBLAS_OP_T);
//assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
//assert(OpB!=GridBLAS_OP_T);
int lda = m; // m x k column major
int ldb = k; // k x n column major
@@ -367,28 +367,67 @@ public:
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
else
eCmn = alpha * eAmk * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
else
eCmn = alpha * eAmk.adjoint() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
else
eCmn = alpha * eAmk.transpose() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
else
eCmn = alpha * eAmk * eBkn.adjoint() ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
});
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
else
eCmn = alpha * eAmk.adjoint() * eBkn.adjoint() ;
} );
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
else
eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
} );
} else {
assert(0);
@@ -414,8 +453,8 @@ public:
RealD t2=usecond();
int32_t batchCount = Amk.size();
assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
assert(OpB!=GridBLAS_OP_T);
//assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
//assert(OpB!=GridBLAS_OP_T);
int lda = m; // m x k column major
int ldb = k; // k x n column major
@@ -514,28 +553,70 @@ public:
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
else
eCmn = alpha * eAmk * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
else
eCmn = alpha * eAmk.adjoint() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
else
eCmn = alpha * eAmk.transpose() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
else
eCmn = alpha * eAmk * eBkn.adjoint() ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
else
eCmn = alpha * eAmk * eBkn.transpose() ;
});
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
else
eCmn = alpha * eAmk.adjoint() * eBkn.adjoint() ;
} );
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
else
eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
} );
} else {
assert(0);
@@ -661,29 +742,41 @@ public:
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
else
eCmn = alpha * eAmk * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
else
eCmn = alpha * eAmk.transpose() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
else
eCmn = alpha * eAmk * eBkn.transpose() ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
} );
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
else
eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
});
} else {
assert(0);
}
@@ -809,28 +902,40 @@ public:
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
else
eCmn = alpha * eAmk * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
else
eCmn = alpha * eAmk.transpose() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
else
eCmn = alpha * eAmk * eBkn.transpose() ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
else
eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
});
} else {
assert(0);

View File

@@ -144,11 +144,11 @@ public:
acceleratorCopyDeviceToDevice(&BLAS_Y[offset],&y_v[0],sizeof(scalar_object)*vol);
}
RealD t4 = usecond();
std::cout << "MulMatrix alloc took "<< t1-t0<<" us"<<std::endl;
std::cout << "MulMatrix preamble took "<< t2-t1<<" us"<<std::endl;
std::cout << "MulMatrix blas took "<< t3-t2<<" us"<<std::endl;
std::cout << "MulMatrix copy took "<< t4-t3<<" us"<<std::endl;
std::cout << "MulMatrix total "<< t4-t0<<" us"<<std::endl;
std::cout <<GridLogPerformance << "MulMatrix alloc took "<< t1-t0<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "MulMatrix preamble took "<< t2-t1<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "MulMatrix blas took "<< t3-t2<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "MulMatrix copy took "<< t4-t3<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "MulMatrix total "<< t4-t0<<" us"<<std::endl;
}
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y)
@@ -242,16 +242,16 @@ public:
RealD flops = 8.0*M*N*K;
flops = flops/(t4-t3)/1.e3;
bytes = bytes/(t4-t3)/1.e3;
std::cout << "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
std::cout << "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
std::cout << "InnerProductMatrix cp t2 "<< t2-t1<<" us"<<std::endl;
std::cout << "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
std::cout << "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
std::cout << "InnerProductMatrix blas "<< flops<<" GF/s"<<std::endl;
std::cout << "InnerProductMatrix blas "<< bytes<<" GB/s"<<std::endl;
std::cout << "InnerProductMatrix gsum t5 "<< t5-t4<<" us"<<std::endl;
std::cout << "InnerProductMatrix cp t6 "<< t6-t5<<" us"<<std::endl;
std::cout << "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t2 "<< t2-t1<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< flops<<" GF/s"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< bytes<<" GB/s"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix gsum t5 "<< t5-t4<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t6 "<< t6-t5<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
#else
int nrhs;
GridBase *grid;
@@ -358,17 +358,17 @@ public:
flops = flops/(t4-t3)/1.e3;
bytes = bytes/(t4-t3)/1.e3;
xybytes = 4*xybytes/(t2-t1)/1.e3;
std::cout << "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
std::cout << "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
std::cout << "InnerProductMatrix cp t2 "<< t2-t1<<" us "<<xybytes<<" GB/s"<<std::endl;
std::cout << "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
std::cout << "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
std::cout << "InnerProductMatrix blas "<< flops<<" GF/s"<<std::endl;
std::cout << "InnerProductMatrix blas "<< bytes<<" GB/s"<<std::endl;
std::cout << "InnerProductMatrix cp t5 "<< t5-t4<<" us"<<std::endl;
std::cout << "InnerProductMatrix lsum t6l "<< t6l-t5<<" us"<<std::endl;
std::cout << "InnerProductMatrix gsum t6 "<< t6-t6l<<" us"<<std::endl;
std::cout << "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t2 "<< t2-t1<<" us "<<xybytes<<" GB/s"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< flops<<" GF/s"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< bytes<<" GB/s"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t5 "<< t5-t4<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix lsum t6l "<< t6l-t5<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix gsum t6 "<< t6-t6l<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
#endif
}
};

View File

@@ -63,7 +63,12 @@ class TwoLevelCGmrhs
GridStopWatch SmoothTimer;
GridStopWatch InsertTimer;
/*
Field rrr;
Field sss;
Field qqq;
Field zzz;
*/
// more most opertor functions
TwoLevelCGmrhs(RealD tol,
Integer maxit,
@@ -74,6 +79,12 @@ class TwoLevelCGmrhs
MaxIterations(maxit),
_FineLinop(FineLinop),
_Smoother(Smoother)
/*
rrr(fine),
sss(fine),
qqq(fine),
zzz(fine)
*/
{
grid = fine;
};
@@ -81,8 +92,8 @@ class TwoLevelCGmrhs
// Vector case
virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
{
SolveSingleSystem(src,x);
// SolvePrecBlockCG(src,x);
// SolveSingleSystem(src,x);
SolvePrecBlockCG(src,x);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
@@ -657,6 +668,8 @@ public:
CoarseField PleftProjMrhs(this->coarsegridmrhs);
CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
// this->rrr=in[0];
#undef SMOOTHER_BLOCK_SOLVE
#if SMOOTHER_BLOCK_SOLVE
this->SmoothTimer.Start();
@@ -669,6 +682,7 @@ public:
this->SmoothTimer.Stop();
}
#endif
// this->sss=Min[0];
for(int rhs=0;rhs<nrhs;rhs++) {
@@ -705,9 +719,11 @@ public:
this->_Projector.blockPromote(tmp,PleftMss_proj);// tmp= Q[in - A Min]
this->PromoteTimer.Stop();
this->FineTimer.Start();
// this->qqq=tmp[0];
for(int rhs=0;rhs<nrhs;rhs++) {
axpy(out[rhs],1.0,Min[rhs],tmp[rhs]); // Min+tmp
}
// this->zzz=out[0];
this->FineTimer.Stop();
}
};

View File

@@ -116,14 +116,14 @@ NAMESPACE_BEGIN(Grid);
//Compute double precision rsd and also new RHS vector.
Linop_d.HermOp(sol_d, tmp_d);
RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector
std::cout<<GridLogMessage<<" rsd norm "<<norm<<std::endl;
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " <<outer_iter<<" residual "<< norm<< " target "<< stop<<std::endl;
if(norm < OuterLoopNormMult * stop){
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration converged on iteration " <<outer_iter <<std::endl;
break;
}
while(norm * inner_tol * inner_tol < stop) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
while(norm * inner_tol * inner_tol < stop*1.01) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
PrecChangeTimer.Start();
precisionChange(src_f, src_d, pc_wk_dp_to_sp);

View File

@@ -245,9 +245,10 @@ until convergence
_HermOp(src_n,tmp);
// std::cout << GridLogMessage<< tmp<<std::endl; exit(0);
// std::cout << GridLogIRL << " _HermOp " << norm2(tmp) << std::endl;
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
// RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
RealD vnum = real(innerProduct(tmp,tmp)); // HermOp^2.
RealD vden = norm2(src_n);
RealD na = vnum/vden;
RealD na = std::sqrt(vnum/vden);
if (fabs(evalMaxApprox/na - 1.0) < 0.0001)
i=_MAX_ITER_IRL_MEVAPP_;
evalMaxApprox = na;
@@ -255,6 +256,7 @@ until convergence
src_n = tmp;
}
}
std::cout << GridLogIRL << " Final evalMaxApprox " << evalMaxApprox << std::endl;
std::vector<RealD> lme(Nm);
std::vector<RealD> lme2(Nm);

View File

@@ -74,7 +74,7 @@ public:
void operator() (const Field &src, Field &psi){
psi=Zero();
// psi=Zero();
RealD cp, ssq,rsq;
ssq=norm2(src);
rsq=Tolerance*Tolerance*ssq;

View File

@@ -30,6 +30,8 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
/* END LEGAL */
#pragma once
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidualNonHermitian.h>
NAMESPACE_BEGIN(Grid);
inline RealD AggregatePowerLaw(RealD x)
@@ -95,7 +97,7 @@ public:
RealD scale;
ConjugateGradient<FineField> CG(1.0e-2,100,false);
ConjugateGradient<FineField> CG(1.0e-3,400,false);
FineField noise(FineGrid);
FineField Mn(FineGrid);
@@ -108,7 +110,7 @@ public:
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
for(int i=0;i<1;i++){
for(int i=0;i<4;i++){
CG(hermop,noise,subspace[b]);
@@ -124,6 +126,53 @@ public:
}
}
virtual void CreateSubspaceGCR(GridParallelRNG &RNG,LinearOperatorBase<FineField> &DiracOp,int nn=nbasis)
{
RealD scale;
TrivialPrecon<FineField> simple_fine;
PrecGeneralisedConjugateResidualNonHermitian<FineField> GCR(0.001,30,DiracOp,simple_fine,12,12);
FineField noise(FineGrid);
FineField src(FineGrid);
FineField guess(FineGrid);
FineField Mn(FineGrid);
for(int b=0;b<nn;b++){
subspace[b] = Zero();
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|Op|n> "<<innerProduct(noise,Mn)<<std::endl;
for(int i=0;i<2;i++){
// void operator() (const Field &src, Field &psi){
#if 1
std::cout << GridLogMessage << " inverting on noise "<<std::endl;
src = noise;
guess=Zero();
GCR(src,guess);
subspace[b] = guess;
#else
std::cout << GridLogMessage << " inverting on zero "<<std::endl;
src=Zero();
guess = noise;
GCR(src,guess);
subspace[b] = guess;
#endif
noise = subspace[b];
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
}
DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|Op|f> "<<innerProduct(noise,Mn)<<std::endl;
subspace[b] = noise;
}
}
////////////////////////////////////////////////////////////////////////////////////////////////
// World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
// and this is the best I found
@@ -160,14 +209,21 @@ public:
int b =0;
{
ComplexD ip;
// Filter
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
Cheb(hermop,noise,Mn);
// normalise
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
hermop.Op(Mn,tmp);
ip= innerProduct(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
hermop.AdjOp(Mn,tmp);
ip = innerProduct(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
b++;
}
@@ -213,8 +269,18 @@ public:
Mn=*Tnp;
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
ComplexD ip;
hermop.Op(Mn,tmp);
ip= innerProduct(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
hermop.AdjOp(Mn,tmp);
ip = innerProduct(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
b++;
}
@@ -228,6 +294,70 @@ public:
}
assert(b==nn);
}
virtual void CreateSubspacePolyCheby(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
int nn,
double hi,
double lo1,
int orderfilter,
double lo2,
int orderstep)
{
RealD scale;
FineField noise(FineGrid);
FineField Mn(FineGrid);
FineField tmp(FineGrid);
// New normalised noise
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
std::cout << GridLogMessage<<" CreateSubspacePolyCheby "<<std::endl;
// Initial matrix element
hermop.Op(noise,Mn);
std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
int b =0;
{
// Filter
std::cout << GridLogMessage << "Cheby "<<lo1<<","<<hi<<" "<<orderstep<<std::endl;
Chebyshev<FineField> Cheb(lo1,hi,orderfilter);
Cheb(hermop,noise,Mn);
// normalise
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|n> "<<norm2(Mn)<<std::endl;
}
// Generate a full sequence of Chebyshevs
for(int n=1;n<nn;n++){
std::cout << GridLogMessage << "Cheby "<<lo2<<","<<hi<<" "<<orderstep<<std::endl;
Chebyshev<FineField> Cheb(lo2,hi,orderstep);
Cheb(hermop,subspace[n-1],Mn);
for(int m=0;m<n;m++){
ComplexD c = innerProduct(subspace[m],Mn);
Mn = Mn - c*subspace[m];
}
// normalise
scale = std::pow(norm2(Mn),-0.5);
Mn=Mn*scale;
subspace[n]=Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<n<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
std::cout<<GridLogMessage << "filt ["<<n<<"] <n|n> "<<norm2(Mn)<<std::endl;
}
}
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
int nn,
double hi,

View File

@@ -441,8 +441,20 @@ public:
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
}
#else
//////////////////////////////////////////////////////////////////////
// Galerkin projection of matrix
//////////////////////////////////////////////////////////////////////
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & Subspace)
{
CoarsenOperator(linop,Subspace,Subspace);
}
//////////////////////////////////////////////////////////////////////
// Petrov - Galerkin projection of matrix
//////////////////////////////////////////////////////////////////////
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & U,
Aggregation<Fobj,CComplex,nbasis> & V)
{
std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
GridBase *grid = FineGrid();
@@ -458,11 +470,9 @@ public:
// Orthogonalise the subblocks over the basis
/////////////////////////////////////////////////////////////
CoarseScalar InnerProd(CoarseGrid());
blockOrthogonalise(InnerProd,Subspace.subspace);
blockOrthogonalise(InnerProd,V.subspace);
blockOrthogonalise(InnerProd,U.subspace);
// for(int s=0;s<Subspace.subspace.size();s++){
// std::cout << " subspace norm "<<norm2(Subspace.subspace[s])<<std::endl;
// }
const int npoint = geom.npoint;
Coordinate clatt = CoarseGrid()->GlobalDimensions();
@@ -542,7 +552,7 @@ public:
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
tphaseBZ-=usecond();
phaV = phaF[p]*Subspace.subspace[i];
phaV = phaF[p]*V.subspace[i];
tphaseBZ+=usecond();
/////////////////////////////////////////////////////////////////////
@@ -555,7 +565,7 @@ public:
// std::cout << i << " " <<p << " MphaV "<<norm2(MphaV)<<" "<<norm2(phaV)<<std::endl;
tproj-=usecond();
blockProject(coarseInner,MphaV,Subspace.subspace);
blockProject(coarseInner,MphaV,U.subspace);
coarseInner = conjugate(pha[p]) * coarseInner;
ComputeProj[p] = coarseInner;

View File

@@ -69,7 +69,7 @@ public:
}
// FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop
void construct(pointer __p, const _Tp& __val) { assert(0);};
void construct(pointer __p, const _Tp& __val) { };
void construct(pointer __p) { };
void destroy(pointer __p) { };
};
@@ -175,10 +175,11 @@ template<typename _Tp> inline bool operator!=(const devAllocator<_Tp>&, const d
// Template typedefs
////////////////////////////////////////////////////////////////////////////////
template<class T> using hostVector = std::vector<T,alignedAllocator<T> >; // Needs autoview
template<class T> using Vector = std::vector<T,uvmAllocator<T> >; //
template<class T> using Vector = std::vector<T,uvmAllocator<T> >; // Really want to deprecate
template<class T> using uvmVector = std::vector<T,uvmAllocator<T> >; // auto migrating page
template<class T> using deviceVector = std::vector<T,devAllocator<T> >; // device vector
/*
template<class T> class vecView
{
protected:
@@ -214,6 +215,7 @@ template<class T> vecView<T> VectorView(Vector<T> &vec,ViewMode _mode)
#define autoVecView(v_v,v,mode) \
auto v_v = VectorView(v,mode); \
ViewCloser<decltype(v_v)> _autoView##v_v(v_v);
*/
NAMESPACE_END(Grid);

View File

@@ -1,16 +1,15 @@
#include <Grid/GridCore.h>
#ifndef GRID_UVM
#warning "Using explicit device memory copies"
NAMESPACE_BEGIN(Grid);
#define MAXLINE 512
static char print_buffer [ MAXLINE ];
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer;
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug << print_buffer;
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer << std::endl;
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug << print_buffer << std::endl;
//#define dprintf(...)
//#define mprintf(...)
////////////////////////////////////////////////////////////
// For caching copies of data on device
@@ -111,7 +110,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
///////////////////////////////////////////////////////////
assert(AccCache.state!=Empty);
dprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
dprintf("MemoryManager: Discard(%lx) %lx",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
assert(AccCache.accLock==0);
assert(AccCache.cpuLock==0);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
@@ -121,7 +120,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
DeviceBytes -=AccCache.bytes;
LRUremove(AccCache);
AccCache.AccPtr=(uint64_t) NULL;
dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);
dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);
}
uint64_t CpuPtr = AccCache.CpuPtr;
EntryErase(CpuPtr);
@@ -141,7 +140,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
///////////////////////////////////////////////////////////////////////////
assert(AccCache.state!=Empty);
mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld\n",
mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld",
(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr,
(uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock);
if (AccCache.accLock!=0) return;
@@ -155,7 +154,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
AccCache.AccPtr=(uint64_t)NULL;
AccCache.state=CpuDirty; // CPU primary now
DeviceBytes -=AccCache.bytes;
dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);
dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld ",(uint64_t)AccCache.AccPtr,DeviceBytes);
}
// uint64_t CpuPtr = AccCache.CpuPtr;
DeviceEvictions++;
@@ -169,7 +168,7 @@ void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
assert(AccCache.AccPtr!=(uint64_t)NULL);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
mprintf("MemoryManager: acceleratorCopyFromDevice Flush AccPtr %lx -> CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
mprintf("MemoryManager: acceleratorCopyFromDevice Flush size %ld AccPtr %lx -> CpuPtr %lx",(uint64_t)AccCache.bytes,(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
DeviceToHostBytes+=AccCache.bytes;
DeviceToHostXfer++;
AccCache.state=Consistent;
@@ -184,7 +183,9 @@ void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
DeviceBytes+=AccCache.bytes;
}
mprintf("MemoryManager: acceleratorCopyToDevice Clone AccPtr %lx <- CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
mprintf("MemoryManager: acceleratorCopyToDevice Clone size %ld AccPtr %lx <- CpuPtr %lx",
(uint64_t)AccCache.bytes,
(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
HostToDeviceBytes+=AccCache.bytes;
HostToDeviceXfer++;
@@ -210,7 +211,7 @@ void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache)
void MemoryManager::ViewClose(void* Ptr,ViewMode mode)
{
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
dprintf("AcceleratorViewClose %lx\n",(uint64_t)Ptr);
dprintf("AcceleratorViewClose %lx",(uint64_t)Ptr);
AcceleratorViewClose((uint64_t)Ptr);
} else if( (mode==CpuRead)||(mode==CpuWrite)){
CpuViewClose((uint64_t)Ptr);
@@ -222,7 +223,7 @@ void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvis
{
uint64_t CpuPtr = (uint64_t)_CpuPtr;
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
dprintf("AcceleratorViewOpen %lx\n",(uint64_t)CpuPtr);
dprintf("AcceleratorViewOpen %lx",(uint64_t)CpuPtr);
return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint);
} else if( (mode==CpuRead)||(mode==CpuWrite)){
return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint);
@@ -233,6 +234,9 @@ void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvis
}
void MemoryManager::EvictVictims(uint64_t bytes)
{
if(bytes>=DeviceMaxBytes) {
printf("EvictVictims bytes %ld DeviceMaxBytes %ld\n",bytes,DeviceMaxBytes);
}
assert(bytes<DeviceMaxBytes);
while(bytes+DeviceLRUBytes > DeviceMaxBytes){
if ( DeviceLRUBytes > 0){
@@ -265,7 +269,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
assert(AccCache.cpuLock==0); // Programming error
if(AccCache.state!=Empty) {
dprintf("ViewOpen found entry %lx %lx : %ld %ld accLock %ld\n",
dprintf("ViewOpen found entry %lx %lx : sizes %ld %ld accLock %ld",
(uint64_t)AccCache.CpuPtr,
(uint64_t)CpuPtr,
(uint64_t)AccCache.bytes,
@@ -305,7 +309,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
AccCache.state = Consistent; // Empty + AccRead => Consistent
}
AccCache.accLock= 1;
dprintf("Copied Empty entry into device accLock= %d\n",AccCache.accLock);
dprintf("Copied Empty entry into device accLock= %d",AccCache.accLock);
} else if(AccCache.state==CpuDirty ){
if(mode==AcceleratorWriteDiscard) {
CpuDiscard(AccCache);
@@ -318,21 +322,21 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
AccCache.state = Consistent; // CpuDirty + AccRead => Consistent
}
AccCache.accLock++;
dprintf("CpuDirty entry into device ++accLock= %d\n",AccCache.accLock);
dprintf("CpuDirty entry into device ++accLock= %d",AccCache.accLock);
} else if(AccCache.state==Consistent) {
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
AccCache.state = AccDirty; // Consistent + AcceleratorWrite=> AccDirty
else
AccCache.state = Consistent; // Consistent + AccRead => Consistent
AccCache.accLock++;
dprintf("Consistent entry into device ++accLock= %d\n",AccCache.accLock);
dprintf("Consistent entry into device ++accLock= %d",AccCache.accLock);
} else if(AccCache.state==AccDirty) {
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
AccCache.state = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty
else
AccCache.state = AccDirty; // AccDirty + AccRead => AccDirty
AccCache.accLock++;
dprintf("AccDirty entry ++accLock= %d\n",AccCache.accLock);
dprintf("AccDirty entry ++accLock= %d",AccCache.accLock);
} else {
assert(0);
}
@@ -341,7 +345,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
// If view is opened on device must remove from LRU
if(AccCache.LRU_valid==1){
// must possibly remove from LRU as now locked on GPU
dprintf("AccCache entry removed from LRU \n");
dprintf("AccCache entry removed from LRU ");
LRUremove(AccCache);
}
@@ -364,10 +368,10 @@ void MemoryManager::AcceleratorViewClose(uint64_t CpuPtr)
AccCache.accLock--;
// Move to LRU queue if not locked and close on device
if(AccCache.accLock==0) {
dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
LRUinsert(AccCache);
} else {
dprintf("AccleratorViewClose %lx AccLock decremented to %ld\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
dprintf("AccleratorViewClose %lx AccLock decremented to %ld",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
}
}
void MemoryManager::CpuViewClose(uint64_t CpuPtr)

View File

@@ -31,5 +31,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/cartesian/Cartesian_base.h>
#include <Grid/cartesian/Cartesian_full.h>
#include <Grid/cartesian/Cartesian_red_black.h>
#include <Grid/cartesian/CartesianCrossIcosahedron.h>
#endif

View File

@@ -0,0 +1,235 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/cartesian/CartesianCrossIcosahedron.h
Copyright (C) 2025
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////////////////
// Grid Support.
/////////////////////////////////////////////////////////////////////////////////////////
enum IcosahedralMeshType {
IcosahedralVertices,
IcosahedralEdges
} ;
enum NorthSouth {
North = 1,
South = 0
};
const int IcosahedralPatches = 10;
const int HemiPatches=IcosahedralPatches/2;
const int NorthernHemisphere = HemiPatches;
const int SouthernHemisphere = 0;
class GridCartesianCrossIcosahedron: public GridCartesian {
public:
IcosahedralMeshType meshType;
IcosahedralMeshType MeshType(void) { return meshType; };
/////////////////////////////////////////////////////////////////////////
// Constructor takes a parent grid and possibly subdivides communicator.
/////////////////////////////////////////////////////////////////////////
/*
GridCartesian(const Coordinate &dimensions,
const Coordinate &simd_layout,
const Coordinate &processor_grid,
const GridCartesian &parent) : GridBase(processor_grid,parent,dummy)
{
assert(0); // No subdivision
}
GridCartesian(const Coordinate &dimensions,
const Coordinate &simd_layout,
const Coordinate &processor_grid,
const GridCartesian &parent,int &split_rank) : GridBase(processor_grid,parent,split_rank)
{
assert(0); // No subdivision
}
*/
/////////////////////////////////////////////////////////////////////////
// Construct from comm world
/////////////////////////////////////////////////////////////////////////
GridCartesianCrossIcosahedron(const Coordinate &dimensions,
const Coordinate &simd_layout,
const Coordinate &processor_grid,
IcosahedralMeshType _meshType) : GridCartesian(dimensions,simd_layout,processor_grid)
{
meshType = _meshType;
Coordinate S2dimensions=dimensions;
Coordinate S2simd =simd_layout;
Coordinate S2procs =processor_grid;
assert(simd_layout[0]==1); // Force simd into perpendicular dimensions
assert(simd_layout[1]==1); // to avoid pole storage complexity interacting with SIMD.
assert(dimensions[_ndimension-1]==IcosahedralPatches);
assert(processor_grid[_ndimension-1]<=2); // Keeps the patches that need a pole on the same node
// Save a copy of the basic cartesian initialisation volume
cartesianOsites = this->_osites;
// allocate the pole storage if we are seeking vertex domain data
if ( meshType == IcosahedralVertices ) {
InitPoles();
}
}
virtual ~GridCartesianCrossIcosahedron() = default;
////////////////////////////////////////////////
// Use to decide if a given grid is icosahedral
////////////////////////////////////////////////
int hasNorthPole;
int hasSouthPole;
int northPoleOsite;
int southPoleOsite;
int northPoleOsites;
int southPoleOsites;
int cartesianOsites;
virtual int isIcosahedral(void) override { return 1;}
virtual int isIcosahedralVertex(void) override { return meshType==IcosahedralVertices;}
virtual int isIcosahedralEdge (void) override { return meshType==IcosahedralEdges;}
virtual int NorthPoleOsite(void) const override { return northPoleOsite; };
virtual int NorthPoleOsites(void) const override { return northPoleOsites; };
virtual int SouthPoleOsite(void) const override { return southPoleOsite; };
virtual int SouthPoleOsites(void) const override { return southPoleOsites; };
virtual int ownsNorthPole(void) const override { return hasNorthPole; };
virtual int ownsSouthPole(void) const override { return hasSouthPole; };
virtual int CartesianOsites(void) const override { return cartesianOsites; };
virtual int64_t PoleIdxForOcoor(Coordinate &Coor) override
{
// Work out the pole_osite. Pick the higher dims
Coordinate rdims;
Coordinate ocoor;
int64_t pole_idx;
int Ndm1 = this->Nd()-1;
for(int d=2;d<Ndm1;d++){
int dd=d-2;
rdims.push_back(this->_rdimensions[d]);
ocoor.push_back(Coor[d]%this->_rdimensions[d]);
}
Lexicographic::IndexFromCoor(ocoor,pole_idx,rdims);
return pole_idx;
}
virtual int64_t PoleSiteForOcoor(Coordinate &Coor) override
{
int Ndm1 = this->Nd()-1;
int64_t pole_idx = this->PoleIdxForOcoor(Coor);
int64_t pole_osite;
if ( Coor[Ndm1] >= HemiPatches ) {
pole_osite = pole_idx + this->NorthPoleOsite();
} else {
pole_osite = pole_idx + this->SouthPoleOsite();
}
return pole_osite;
}
void InitPoles(void)
{
int Ndm1 = _ndimension-1;
///////////////////////
// Add the extra pole storage
///////////////////////
// Vertices = 1x LxLx D1...Dn + 2.D1...Dn
// Start after the LxL and don't include the 10 patch dim
int OrthogSize = 1;
for (int d = 2; d < Ndm1; d++) {
OrthogSize *= _gdimensions[d];
}
_fsites += OrthogSize*2;
_gsites += OrthogSize*2;
// Simd reduced sizes are multiplied up.
// If the leading LxL are simd-ized, the vector objects will contain "redundant" lanes
// which should contain identical north (south) pole data
OrthogSize = 1;
for (int d = 2; d < Ndm1; d++) {
OrthogSize *= _rdimensions[d];
}
// Grow the local volume to hold pole data
// on rank (0,0) in the LxL planes
// since SIMD must be placed in the orthogonal directions
Coordinate pcoor = this->ThisProcessorCoor();
Coordinate pgrid = this->ProcessorGrid();
const int xdim=0;
const int ydim=1;
/*
*
* /\/\/\/\/\
* /\/\/\/\/\/
* \/\/\/\/\/
*
* y
* /
* \x
*
* Labelling patches as 5 6 7 8 9
* 0 1 2 3 4
*
* Will ban distribution of the patch dimension by more than 2.
*
* Hence all 5 patches associated with the pole must have the
* appropriate "corner" of the patch L^2 located on the SAME rank.
*/
if( (pcoor[xdim]==pgrid[xdim]-1) && (pcoor[ydim]==0) && (pcoor[Ndm1]==0) ){
hasSouthPole =1;
southPoleOsite=this->_osites;
southPoleOsites=OrthogSize;
this->_osites += OrthogSize;
} else {
hasSouthPole =0;
southPoleOsites=0;
southPoleOsite=0;
}
if( (pcoor[xdim]==0) && (pcoor[ydim]==pgrid[ydim]-1) && (pcoor[Ndm1]==pgrid[Ndm1]-1) ){
hasNorthPole =1;
northPoleOsite=this->_osites;
northPoleOsites=OrthogSize;
this->_osites += OrthogSize;
} else {
hasNorthPole =0;
northPoleOsites=0;
northPoleOsite=0;
}
std::cout << GridLogDebug<<"Icosahedral vertex field volume " << this->_osites<<std::endl;
std::cout << GridLogDebug<<"Icosahedral south pole offset " << this->southPoleOsite<<std::endl;
std::cout << GridLogDebug<<"Icosahedral north pole offset " << this->northPoleOsite<<std::endl;
std::cout << GridLogDebug<<"Icosahedral south pole size " << this->southPoleOsites<<std::endl;
std::cout << GridLogDebug<<"Icosahedral north pole size " << this->northPoleOsites<<std::endl;
};
};
NAMESPACE_END(Grid);

View File

@@ -86,10 +86,25 @@ public:
public:
// Icosahedral decisions
virtual int isIcosahedral(void) { return 0;}
virtual int isIcosahedralVertex(void) { return 0;}
virtual int isIcosahedralEdge (void) { return 0;}
virtual int ownsNorthPole(void) const { return 0; };
virtual int ownsSouthPole(void) const { return 0; };
virtual int NorthPoleOsite(void) const { return 0; };
virtual int SouthPoleOsite(void) const { return 0; };
virtual int NorthPoleOsites(void) const { std::cout << "base osites" <<std::endl;return 0; };
virtual int SouthPoleOsites(void) const { std::cout << "base osites" <<std::endl;return 0; };
virtual int CartesianOsites(void) const { return this->oSites(); };
virtual int64_t PoleIdxForOcoor(Coordinate &Coor) { return 0;};
virtual int64_t PoleSiteForOcoor(Coordinate &Coor){ return 0;}
////////////////////////////////////////////////////////////////
// Checkerboarding interface is virtual and overridden by
// GridCartesian / GridRedBlackCartesian
////////////////////////////////////////////////////////////////
virtual int CheckerBoarded(int dim) =0;
virtual int CheckerBoard(const Coordinate &site)=0;
virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0;
@@ -176,6 +191,8 @@ public:
}
return permute_type;
}
////////////////////////////////////////////////////////////////
// Array sizing queries
////////////////////////////////////////////////////////////////

View File

@@ -57,18 +57,29 @@ int CartesianCommunicator::ProcessorCount(void) { return
// very VERY rarely (Log, serial RNG) we need world without a grid
////////////////////////////////////////////////////////////////////////////////
#ifdef USE_GRID_REDUCTION
void CartesianCommunicator::GlobalSum(ComplexF &c)
{
GlobalSumP2P(c);
}
void CartesianCommunicator::GlobalSum(ComplexD &c)
{
GlobalSumP2P(c);
}
#else
void CartesianCommunicator::GlobalSum(ComplexF &c)
{
GlobalSumVector((float *)&c,2);
}
void CartesianCommunicator::GlobalSumVector(ComplexF *c,int N)
{
GlobalSumVector((float *)c,2*N);
}
void CartesianCommunicator::GlobalSum(ComplexD &c)
{
GlobalSumVector((double *)&c,2);
}
#endif
void CartesianCommunicator::GlobalSumVector(ComplexF *c,int N)
{
GlobalSumVector((float *)c,2*N);
}
void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N)
{
GlobalSumVector((double *)c,2*N);

View File

@@ -33,6 +33,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
///////////////////////////////////
#include <Grid/communicator/SharedMemory.h>
#define NVLINK_GET
NAMESPACE_BEGIN(Grid);
extern bool Stencil_force_mpi ;
@@ -127,7 +129,36 @@ public:
void GlobalSumVector(ComplexD *c,int N);
void GlobalXOR(uint32_t &);
void GlobalXOR(uint64_t &);
template<class obj> void GlobalSumP2P(obj &o)
{
std::vector<obj> column;
obj accum = o;
int source,dest;
for(int d=0;d<_ndimension;d++){
column.resize(_processors[d]);
column[0] = accum;
std::vector<MpiCommsRequest_t> list;
for(int p=1;p<_processors[d];p++){
ShiftedRanks(d,p,source,dest);
SendToRecvFromBegin(list,
&column[0],
dest,
&column[p],
source,
sizeof(obj),d*100+p);
}
if (!list.empty()) // avoid triggering assert in comms == none
CommsComplete(list);
for(int p=1;p<_processors[d];p++){
accum = accum + column[p];
}
}
Broadcast(0,accum);
o=accum;
}
template<class obj> void GlobalSum(obj &o){
typedef typename obj::scalar_type scalar_type;
int words = sizeof(obj)/sizeof(scalar_type);
@@ -138,8 +169,8 @@ public:
////////////////////////////////////////////////////////////
// Face exchange, buffer swap in translational invariant way
////////////////////////////////////////////////////////////
void CommsComplete(std::vector<CommsRequest_t> &list);
void SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void CommsComplete(std::vector<MpiCommsRequest_t> &list);
void SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
@@ -158,6 +189,17 @@ public:
int recv_from_rank,int do_recv,
int bytes,int dir);
double StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,int do_xmit,
void *recv,
int recv_from_rank,int do_recv,
int xbytes,int rbytes,int dir);
// Could do a PollHtoD and have a CommsMerge dependence
void StencilSendToRecvFromPollDtoH (std::vector<CommsRequest_t> &list);
void StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list);
double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,int do_xmit,

View File

@@ -30,6 +30,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
Grid_MPI_Comm CartesianCommunicator::communicator_world;
////////////////////////////////////////////
@@ -257,15 +258,41 @@ CartesianCommunicator::~CartesianCommunicator()
}
}
}
#ifdef USE_GRID_REDUCTION
void CartesianCommunicator::GlobalSum(float &f){
FlightRecorder::StepLog("GlobalSumP2P");
CartesianCommunicator::GlobalSumP2P(f);
}
void CartesianCommunicator::GlobalSum(double &d)
{
FlightRecorder::StepLog("GlobalSumP2P");
CartesianCommunicator::GlobalSumP2P(d);
}
#else
void CartesianCommunicator::GlobalSum(float &f){
FlightRecorder::StepLog("AllReduce");
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSum(double &d)
{
FlightRecorder::StepLog("AllReduce");
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
assert(ierr==0);
}
#endif
void CartesianCommunicator::GlobalSum(uint32_t &u){
FlightRecorder::StepLog("AllReduce");
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSum(uint64_t &u){
FlightRecorder::StepLog("AllReduce");
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSumVector(uint64_t* u,int N){
FlightRecorder::StepLog("AllReduceVector");
int ierr=MPI_Allreduce(MPI_IN_PLACE,u,N,MPI_UINT64_T,MPI_SUM,communicator);
assert(ierr==0);
}
@@ -287,27 +314,18 @@ void CartesianCommunicator::GlobalMax(double &d)
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSum(float &f){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSumVector(float *f,int N)
{
int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSum(double &d)
{
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSumVector(double *d,int N)
{
int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void CartesianCommunicator::SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
@@ -332,7 +350,7 @@ void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &lis
assert(ierr==0);
list.push_back(xrq);
}
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list)
void CartesianCommunicator::CommsComplete(std::vector<MpiCommsRequest_t> &list)
{
int nreq=list.size();
@@ -351,9 +369,7 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
int from,
int bytes)
{
std::vector<CommsRequest_t> reqs(0);
unsigned long xcrc = crc32(0L, Z_NULL, 0);
unsigned long rcrc = crc32(0L, Z_NULL, 0);
std::vector<MpiCommsRequest_t> reqs(0);
int myrank = _processor;
int ierr;
@@ -369,9 +385,6 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
communicator,MPI_STATUS_IGNORE);
assert(ierr==0);
// xcrc = crc32(xcrc,(unsigned char *)xmit,bytes);
// rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
// printf("proc %d SendToRecvFrom %d bytes xcrc %lx rcrc %lx\n",_processor,bytes,xcrc,rcrc); fflush
}
// Basic Halo comms primitive
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
@@ -381,12 +394,287 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
int bytes,int dir)
{
std::vector<CommsRequest_t> list;
double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
double offbytes = StencilSendToRecvFromPrepare(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
offbytes += StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
StencilSendToRecvFromComplete(list,dir);
return offbytes;
}
#undef NVLINK_GET // Define to use get instead of put DMA
#ifdef ACCELERATOR_AWARE_MPI
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {};
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {};
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,int dox,
void *recv,
int from,int dor,
int xbytes,int rbytes,int dir)
{
return 0.0; // Do nothing -- no preparation required
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,int dox,
void *recv,
int from,int dor,
int xbytes,int rbytes,int dir)
{
int ncomm =communicator_halo.size();
int commdir=dir%ncomm;
MPI_Request xrq;
MPI_Request rrq;
int ierr;
int gdest = ShmRanks[dest];
int gfrom = ShmRanks[from];
int gme = ShmRanks[_processor];
assert(dest != _processor);
assert(from != _processor);
assert(gme == ShmRank);
double off_node_bytes=0.0;
int tag;
if ( dor ) {
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+from*32;
ierr=MPI_Irecv(recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
assert(ierr==0);
list.push_back(rrq);
off_node_bytes+=rbytes;
}
#ifdef NVLINK_GET
else {
void *shm = (void *) this->ShmBufferTranslate(from,xmit);
assert(shm!=NULL);
acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
}
#endif
}
// This is a NVLINK PUT
if (dox) {
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+_processor*32;
ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
assert(ierr==0);
list.push_back(xrq);
off_node_bytes+=xbytes;
} else {
#ifndef NVLINK_GET
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
assert(shm!=NULL);
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
#endif
}
}
return off_node_bytes;
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
{
int nreq=list.size();
/*finishes Get/Put*/
acceleratorCopySynchronise();
if (nreq==0) return;
std::vector<MPI_Status> status(nreq);
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
assert(ierr==0);
list.resize(0);
this->StencilBarrier();
}
#else /* NOT ... ACCELERATOR_AWARE_MPI */
///////////////////////////////////////////
// Pipeline mode through host memory
///////////////////////////////////////////
/*
* In prepare (phase 1):
* PHASE 1: (prepare)
* - post MPI receive buffers asynch
* - post device - host send buffer transfer asynch
* PHASE 2: (Begin)
* - complete all copies
* - post MPI send asynch
* - post device - device transfers
* PHASE 3: (Complete)
* - MPI_waitall
* - host-device transfers
*
*********************************
* NB could split this further:
*--------------------------------
* PHASE 1: (Prepare)
* - post MPI receive buffers asynch
* - post device - host send buffer transfer asynch
* PHASE 2: (BeginInterNode)
* - complete all copies
* - post MPI send asynch
* PHASE 3: (BeginIntraNode)
* - post device - device transfers
* PHASE 4: (Complete)
* - MPI_waitall
* - host-device transfers asynch
* - (complete all copies)
*/
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,int dox,
void *recv,
int from,int dor,
int xbytes,int rbytes,int dir)
{
/*
* Bring sequence from Stencil.h down to lower level.
* Assume using XeLink is ok
*/
int ncomm =communicator_halo.size();
int commdir=dir%ncomm;
MPI_Request xrq;
MPI_Request rrq;
int ierr;
int gdest = ShmRanks[dest];
int gfrom = ShmRanks[from];
int gme = ShmRanks[_processor];
assert(dest != _processor);
assert(from != _processor);
assert(gme == ShmRank);
double off_node_bytes=0.0;
int tag;
void * host_recv = NULL;
void * host_xmit = NULL;
/*
* PHASE 1: (Prepare)
* - post MPI receive buffers asynch
* - post device - host send buffer transfer asynch
*/
if ( dor ) {
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+from*32;
host_recv = this->HostBufferMalloc(rbytes);
ierr=MPI_Irecv(host_recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
assert(ierr==0);
CommsRequest_t srq;
srq.PacketType = InterNodeRecv;
srq.bytes = rbytes;
srq.req = rrq;
srq.host_buf = host_recv;
srq.device_buf = recv;
list.push_back(srq);
off_node_bytes+=rbytes;
}
}
if (dox) {
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+_processor*32;
host_xmit = this->HostBufferMalloc(xbytes);
CommsRequest_t srq;
srq.ev = acceleratorCopyFromDeviceAsynch(xmit, host_xmit,xbytes); // Make this Asynch
// ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
// assert(ierr==0);
// off_node_bytes+=xbytes;
srq.PacketType = InterNodeXmit;
srq.bytes = xbytes;
// srq.req = xrq;
srq.host_buf = host_xmit;
srq.device_buf = xmit;
srq.tag = tag;
srq.dest = dest;
srq.commdir = commdir;
list.push_back(srq);
}
}
return off_node_bytes;
}
/*
* In the interest of better pipelining, poll for completion on each DtoH and
* start MPI_ISend in the meantime
*/
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list)
{
int pending = 0;
do {
pending = 0;
for(int idx = 0; idx<list.size();idx++){
if ( list[idx].PacketType==InterNodeRecv ) {
int flag = 0;
MPI_Status status;
int ierr = MPI_Test(&list[idx].req,&flag,&status);
assert(ierr==0);
if ( flag ) {
// std::cout << " PollIrecv "<<idx<<" flag "<<flag<<std::endl;
acceleratorCopyToDeviceAsynch(list[idx].host_buf,list[idx].device_buf,list[idx].bytes);
list[idx].PacketType=InterNodeReceiveHtoD;
} else {
pending ++;
}
}
}
// std::cout << " PollIrecv "<<pending<<" pending requests"<<std::endl;
} while ( pending );
}
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list)
{
int pending = 0;
do {
pending = 0;
for(int idx = 0; idx<list.size();idx++){
if ( list[idx].PacketType==InterNodeXmit ) {
if ( acceleratorEventIsComplete(list[idx].ev) ) {
void *host_xmit = list[idx].host_buf;
uint32_t xbytes = list[idx].bytes;
int dest = list[idx].dest;
int tag = list[idx].tag;
int commdir = list[idx].commdir;
///////////////////
// Send packet
///////////////////
// std::cout << " DtoH is complete for index "<<idx<<" calling MPI_Isend "<<std::endl;
MPI_Request xrq;
int ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
assert(ierr==0);
list[idx].req = xrq; // Update the MPI request in the list
list[idx].PacketType=InterNodeXmitISend;
} else {
// not done, so return to polling loop
pending++;
}
}
}
} while (pending);
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,int dox,
@@ -411,56 +699,109 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
double off_node_bytes=0.0;
int tag;
if ( dor ) {
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+from*32;
ierr=MPI_Irecv(recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
assert(ierr==0);
list.push_back(rrq);
off_node_bytes+=rbytes;
}
void * host_xmit = NULL;
////////////////////////////////
// Receives already posted
// Copies already started
////////////////////////////////
/*
* PHASE 2: (Begin)
* - complete all copies
* - post MPI send asynch
*/
#ifdef NVLINK_GET
if ( dor ) {
if ( ! ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) ) {
// Intranode
void *shm = (void *) this->ShmBufferTranslate(from,xmit);
assert(shm!=NULL);
acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
#endif
}
CommsRequest_t srq;
srq.ev = acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
srq.PacketType = IntraNodeRecv;
srq.bytes = xbytes;
// srq.req = xrq;
srq.host_buf = NULL;
srq.device_buf = xmit;
srq.tag = -1;
srq.dest = dest;
srq.commdir = dir;
list.push_back(srq);
}
}
#else
if (dox) {
// rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+_processor*32;
ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
assert(ierr==0);
list.push_back(xrq);
off_node_bytes+=xbytes;
} else {
#ifndef NVLINK_GET
if ( !( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) ) {
// Intranode
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
assert(shm!=NULL);
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
#endif
CommsRequest_t srq;
srq.ev = acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
srq.PacketType = IntraNodeXmit;
srq.bytes = xbytes;
// srq.req = xrq;
srq.host_buf = NULL;
srq.device_buf = xmit;
srq.tag = -1;
srq.dest = dest;
srq.commdir = dir;
list.push_back(srq);
}
}
#endif
return off_node_bytes;
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
{
int nreq=list.size();
acceleratorCopySynchronise(); // Complete all pending copy transfers D2D
acceleratorCopySynchronise();
std::vector<MPI_Status> status;
std::vector<MPI_Request> MpiRequests;
for(int r=0;r<list.size();r++){
// Must check each Send buf is clear to reuse
if ( list[r].PacketType == InterNodeXmitISend ) MpiRequests.push_back(list[r].req);
// if ( list[r].PacketType == InterNodeRecv ) MpiRequests.push_back(list[r].req); // Already "Test" passed
}
if (nreq==0) return;
int nreq=MpiRequests.size();
std::vector<MPI_Status> status(nreq);
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
assert(ierr==0);
list.resize(0);
if (nreq>0) {
status.resize(MpiRequests.size());
int ierr = MPI_Waitall(MpiRequests.size(),&MpiRequests[0],&status[0]); // Sends are guaranteed in order. No harm in not completing.
assert(ierr==0);
}
// for(int r=0;r<nreq;r++){
// if ( list[r].PacketType==InterNodeRecv ) {
// acceleratorCopyToDeviceAsynch(list[r].host_buf,list[r].device_buf,list[r].bytes);
// }
// }
list.resize(0); // Delete the list
this->HostBufferFreeAll(); // Clean up the buffer allocs
#ifndef NVLINK_GET
this->StencilBarrier(); // if PUT must check our nbrs have filled our receive buffers.
#endif
}
#endif
////////////////////////////////////////////
// END PIPELINE MODE / NO CUDA AWARE MPI
////////////////////////////////////////////
void CartesianCommunicator::StencilBarrier(void)
{
FlightRecorder::StepLog("NodeBarrier");
MPI_Barrier (ShmComm);
}
//void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
@@ -468,11 +809,13 @@ void CartesianCommunicator::StencilBarrier(void)
//}
void CartesianCommunicator::Barrier(void)
{
FlightRecorder::StepLog("GridBarrier");
int ierr = MPI_Barrier(communicator);
assert(ierr==0);
}
void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
{
FlightRecorder::StepLog("Broadcast");
int ierr=MPI_Bcast(data,
bytes,
MPI_BYTE,
@@ -491,6 +834,7 @@ void CartesianCommunicator::BarrierWorld(void){
}
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
{
FlightRecorder::StepLog("BroadcastWorld");
int ierr= MPI_Bcast(data,
bytes,
MPI_BYTE,
@@ -513,6 +857,7 @@ void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,
}
void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t bytes)
{
FlightRecorder::StepLog("AllToAll");
// MPI is a pain and uses "int" arguments
// 64*64*64*128*16 == 500Million elements of data.
// When 24*4 bytes multiples get 50x 10^9 >>> 2x10^9 Y2K bug.

View File

@@ -91,7 +91,7 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
{
assert(0);
}
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ assert(0);}
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ assert(list.size()==0);}
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,
@@ -132,6 +132,17 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
{
return 2.0*bytes;
}
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {};
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {};
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,int dox,
void *recv,
int recv_from_rank,int dor,
int xbytes,int rbytes, int dir)
{
return 0.0;
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,int dox,

View File

@@ -46,8 +46,40 @@ NAMESPACE_BEGIN(Grid);
#if defined (GRID_COMMS_MPI3)
typedef MPI_Comm Grid_MPI_Comm;
typedef MPI_Request MpiCommsRequest_t;
#ifdef ACCELERATOR_AWARE_MPI
typedef MPI_Request CommsRequest_t;
#else
/*
* Enable state transitions as each packet flows.
*/
enum PacketType_t {
FaceGather,
InterNodeXmit,
InterNodeRecv,
IntraNodeXmit,
IntraNodeRecv,
InterNodeXmitISend,
InterNodeReceiveHtoD
};
/*
*Package arguments needed for various actions along packet flow
*/
typedef struct {
PacketType_t PacketType;
void *host_buf;
void *device_buf;
int dest;
int tag;
int commdir;
unsigned long bytes;
acceleratorEvent_t ev;
MpiCommsRequest_t req;
} CommsRequest_t;
#endif
#else
typedef int MpiCommsRequest_t;
typedef int CommsRequest_t;
typedef int Grid_MPI_Comm;
#endif
@@ -105,7 +137,7 @@ public:
///////////////////////////////////////////////////
static void SharedMemoryAllocate(uint64_t bytes, int flags);
static void SharedMemoryFree(void);
static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
// static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
static void SharedMemoryZero(void *dest,size_t bytes);
};

View File

@@ -42,6 +42,11 @@ Author: Christoph Lehner <christoph@lhnr.de>
#ifdef ACCELERATOR_AWARE_MPI
#define GRID_SYCL_LEVEL_ZERO_IPC
#define SHM_SOCKETS
#else
#ifdef HAVE_NUMAIF_H
#warning " Using NUMAIF "
#include <numaif.h>
#endif
#endif
#include <syscall.h>
#endif
@@ -537,7 +542,38 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
// Each MPI rank should allocate our own buffer
///////////////////////////////////////////////////////////////////////////////////////////////////////////
#ifndef ACCELERATOR_AWARE_MPI
HostCommBuf= malloc(bytes);
// printf("Host buffer allocate for GPU non-aware MPI\n");
#if 0
HostCommBuf= acceleratorAllocHost(bytes);
#else
HostCommBuf= malloc(bytes); /// CHANGE THIS TO malloc_host
#if 0
#warning "Moving host buffers to specific NUMA domain"
int numa;
char *numa_name=(char *)getenv("MPI_BUF_NUMA");
if(numa_name) {
unsigned long page_size = sysconf(_SC_PAGESIZE);
numa = atoi(numa_name);
unsigned long page_count = bytes/page_size;
std::vector<void *> pages(page_count);
std::vector<int> nodes(page_count,numa);
std::vector<int> status(page_count,-1);
for(unsigned long p=0;p<page_count;p++){
pages[p] =(void *) ((uint64_t) HostCommBuf + p*page_size);
}
int ret = move_pages(0,
page_count,
&pages[0],
&nodes[0],
&status[0],
MPOL_MF_MOVE);
printf("Host buffer move to numa domain %d : move_pages returned %d\n",numa,ret);
if (ret) perror(" move_pages failed for reason:");
}
#endif
acceleratorPin(HostCommBuf,bytes);
#endif
#endif
ShmCommBuf = acceleratorAllocDevice(bytes);
if (ShmCommBuf == (void *)NULL ) {
@@ -569,8 +605,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t;
auto zeDevice = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
auto zeContext = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
auto zeDevice = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
auto zeContext = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
ze_ipc_mem_handle_t ihandle;
clone_mem_t handle;
@@ -880,14 +916,14 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
bzero(dest,bytes);
#endif
}
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
{
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
acceleratorCopyToDevice(src,dest,bytes);
#else
bcopy(src,dest,bytes);
#endif
}
//void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
//{
//#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
// acceleratorCopyToDevice(src,dest,bytes);
//#else
// bcopy(src,dest,bytes);
//#endif
//}
////////////////////////////////////////////////////////
// Global shared functionality finished
// Now move to per communicator functionality
@@ -923,6 +959,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
MPI_Allreduce(MPI_IN_PLACE,&wsr,1,MPI_UINT32_T,MPI_SUM,ShmComm);
ShmCommBufs[r] = GlobalSharedMemory::WorldShmCommBufs[wsr];
// std::cerr << " SetCommunicator rank "<<r<<" comm "<<ShmCommBufs[r] <<std::endl;
}
ShmBufferFreeAll();
@@ -953,7 +990,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
}
#endif
//SharedMemoryTest();
// SharedMemoryTest();
}
//////////////////////////////////////////////////////////////////
// On node barrier
@@ -975,19 +1012,18 @@ void SharedMemory::SharedMemoryTest(void)
check[0]=GlobalSharedMemory::WorldNode;
check[1]=r;
check[2]=magic;
GlobalSharedMemory::SharedMemoryCopy( ShmCommBufs[r], check, 3*sizeof(uint64_t));
acceleratorCopyToDevice(check,ShmCommBufs[r],3*sizeof(uint64_t));
}
}
ShmBarrier();
for(uint64_t r=0;r<ShmSize;r++){
ShmBarrier();
GlobalSharedMemory::SharedMemoryCopy(check,ShmCommBufs[r], 3*sizeof(uint64_t));
ShmBarrier();
acceleratorCopyFromDevice(ShmCommBufs[r],check,3*sizeof(uint64_t));
assert(check[0]==GlobalSharedMemory::WorldNode);
assert(check[1]==r);
assert(check[2]==magic);
ShmBarrier();
}
ShmBarrier();
std::cout << GridLogDebug << " SharedMemoryTest has passed "<<std::endl;
}
void *SharedMemory::ShmBuffer(int rank)

View File

@@ -122,10 +122,10 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
{
acceleratorMemSet(dest,0,bytes);
}
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
{
acceleratorCopyToDevice(src,dest,bytes);
}
//void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
//{
// acceleratorCopyToDevice(src,dest,bytes);
//}
////////////////////////////////////////////////////////
// Global shared functionality finished
// Now move to per communicator functionality

View File

@@ -31,9 +31,11 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
const int Cshift_verbose=0;
template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift)
{
assert(!rhs.Grid()->isIcosahedral());
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
@@ -55,17 +57,17 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
RealD t1,t0;
t0=usecond();
if ( !comm_dim ) {
std::cout << "CSHIFT: Cshift_local" <<std::endl;
// std::cout << "CSHIFT: Cshift_local" <<std::endl;
Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding
} else if ( splice_dim ) {
std::cout << "CSHIFT: Cshift_comms_simd call - splice_dim = " << splice_dim << " shift " << shift << " dimension = " << dimension << std::endl;
// std::cout << "CSHIFT: Cshift_comms_simd call - splice_dim = " << splice_dim << " shift " << shift << " dimension = " << dimension << std::endl;
Cshift_comms_simd(ret,rhs,dimension,shift);
} else {
std::cout << "CSHIFT: Cshift_comms" <<std::endl;
// std::cout << "CSHIFT: Cshift_comms" <<std::endl;
Cshift_comms(ret,rhs,dimension,shift);
}
t1=usecond();
// std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl;
if(Cshift_verbose) std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl;
return ret;
}
@@ -76,12 +78,12 @@ template<class vobj> void Cshift_comms(Lattice<vobj>& ret,const Lattice<vobj> &r
sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
std::cout << "Cshift_comms dim "<<dimension<<"cb "<<rhs.Checkerboard()<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
// std::cout << "Cshift_comms dim "<<dimension<<"cb "<<rhs.Checkerboard()<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
if ( sshift[0] == sshift[1] ) {
std::cout << "Single pass Cshift_comms" <<std::endl;
// std::cout << "Single pass Cshift_comms" <<std::endl;
Cshift_comms(ret,rhs,dimension,shift,0x3);
} else {
std::cout << "Two pass Cshift_comms" <<std::endl;
// std::cout << "Two pass Cshift_comms" <<std::endl;
Cshift_comms(ret,rhs,dimension,shift,0x1);// if checkerboard is unfavourable take two passes
Cshift_comms(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
}
@@ -94,12 +96,12 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob
sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.Checkerboard()<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
// std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.Checkerboard()<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
if ( sshift[0] == sshift[1] ) {
std::cout << "Single pass Cshift_comms" <<std::endl;
// std::cout << "Single pass Cshift_comms" <<std::endl;
Cshift_comms_simd(ret,rhs,dimension,shift,0x3);
} else {
std::cout << "Two pass Cshift_comms" <<std::endl;
// std::cout << "Two pass Cshift_comms" <<std::endl;
Cshift_comms_simd(ret,rhs,dimension,shift,0x1);// if checkerboard is unfavourable take two passes
Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
}
@@ -125,7 +127,11 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
static deviceVector<vobj> send_buf; send_buf.resize(buffer_size);
static deviceVector<vobj> recv_buf; recv_buf.resize(buffer_size);
#ifndef ACCELERATOR_AWARE_MPI
static hostVector<vobj> hsend_buf; hsend_buf.resize(buffer_size);
static hostVector<vobj> hrecv_buf; hrecv_buf.resize(buffer_size);
#endif
int cb= (cbmask==0x2)? Odd : Even;
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
RealD tcopy=0.0;
@@ -156,16 +162,29 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
// int rank = grid->_processor;
int recv_from_rank;
int xmit_to_rank;
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond();
grid->Barrier();
#ifdef ACCELERATOR_AWARE_MPI
grid->SendToRecvFrom((void *)&send_buf[0],
xmit_to_rank,
(void *)&recv_buf[0],
recv_from_rank,
bytes);
#else
// bouncy bouncy
acceleratorCopyFromDevice(&send_buf[0],&hsend_buf[0],bytes);
grid->SendToRecvFrom((void *)&hsend_buf[0],
xmit_to_rank,
(void *)&hrecv_buf[0],
recv_from_rank,
bytes);
acceleratorCopyToDevice(&hrecv_buf[0],&recv_buf[0],bytes);
#endif
xbytes+=bytes;
grid->Barrier();
tcomms+=usecond();
@@ -175,11 +194,13 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
tscatter+=usecond();
}
}
std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
if (Cshift_verbose){
std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
}
}
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
@@ -197,9 +218,9 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
int simd_layout = grid->_simd_layout[dimension];
int comm_dim = grid->_processors[dimension] >1 ;
std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
<< " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout
<< " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
// std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
// << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout
// << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
assert(comm_dim==1);
assert(simd_layout==2);
@@ -224,12 +245,16 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
static std::vector<deviceVector<scalar_object> > recv_buf_extract; recv_buf_extract.resize(Nsimd);
scalar_object * recv_buf_extract_mpi;
scalar_object * send_buf_extract_mpi;
for(int s=0;s<Nsimd;s++){
send_buf_extract[s].resize(buffer_size);
recv_buf_extract[s].resize(buffer_size);
}
#ifndef ACCELERATOR_AWARE_MPI
hostVector<scalar_object> hsend_buf; hsend_buf.resize(buffer_size);
hostVector<scalar_object> hrecv_buf; hrecv_buf.resize(buffer_size);
#endif
int bytes = buffer_size*sizeof(scalar_object);
ExtractPointerArray<scalar_object> pointers(Nsimd); //
@@ -281,11 +306,22 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
recv_buf_extract_mpi = &recv_buf_extract[i][0];
#ifdef ACCELERATOR_AWARE_MPI
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
xmit_to_rank,
(void *)recv_buf_extract_mpi,
recv_from_rank,
bytes);
#else
// bouncy bouncy
acceleratorCopyFromDevice((void *)send_buf_extract_mpi,(void *)&hsend_buf[0],bytes);
grid->SendToRecvFrom((void *)&hsend_buf[0],
xmit_to_rank,
(void *)&hrecv_buf[0],
recv_from_rank,
bytes);
acceleratorCopyToDevice((void *)&hrecv_buf[0],(void *)recv_buf_extract_mpi,bytes);
#endif
xbytes+=bytes;
grid->Barrier();
@@ -301,12 +337,15 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
tscatter+=usecond();
}
std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
if(Cshift_verbose){
std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
}
}
NAMESPACE_END(Grid);
#endif

View File

@@ -30,6 +30,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift)
{
assert(!rhs.Grid()->isIcosahedral());
Lattice<vobj> ret(rhs.Grid());
ret.Checkerboard() = rhs.Grid()->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension);
Cshift_local(ret,rhs,dimension,shift);

View File

@@ -257,17 +257,30 @@ void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice
});
}
#define FAST_AXPY_NORM
template<class sobj,class vobj> inline
RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
{
GRID_TRACE("axpy_norm");
return axpy_norm_fast(ret,a,x,y);
#ifdef FAST_AXPY_NORM
return axpy_norm_fast(ret,a,x,y);
#else
ret = a*x+y;
RealD nn=norm2(ret);
return nn;
#endif
}
template<class sobj,class vobj> inline
RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
{
GRID_TRACE("axpby_norm");
return axpby_norm_fast(ret,a,b,x,y);
#ifdef FAST_AXPY_NORM
return axpby_norm_fast(ret,a,b,x,y);
#else
ret = a*x+b*y;
RealD nn=norm2(ret);
return nn;
#endif
}
/// Trace product

View File

@@ -236,7 +236,7 @@ public:
template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){
vobj vtmp;
vtmp = r;
#if 0
#if 1
deviceVector<vobj> vvtmp(1);
acceleratorPut(vvtmp[0],vtmp);
vobj *vvtmp_p = & vvtmp[0];
@@ -373,14 +373,17 @@ public:
template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
typedef typename vobj::scalar_object sobj;
for(int64_t g=0;g<o.Grid()->_gsites;g++){
uint64_t gsites=1;
uint64_t polesites=0;
for(int d=0;d<o.Grid()->_ndimension;d++) gsites *= o.Grid()->_gdimensions[d];
for(int64_t g=0;g<gsites;g++){
Coordinate gcoor;
o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);
sobj ss;
peekSite(ss,o,gcoor);
stream<<"[";
stream<<"["<< g<<" : ";
for(int d=0;d<gcoor.size();d++){
stream<<gcoor[d];
if(d!=gcoor.size()-1) stream<<",";
@@ -388,6 +391,41 @@ template<class vobj> std::ostream& operator<< (std::ostream& stream, const Latti
stream<<"]\t";
stream<<ss<<std::endl;
}
if ( o.Grid()->isIcosahedralVertex() ) {
uint64_t psites=1;
Coordinate perpdims;
for(int d=2;d<o.Grid()->_ndimension-1;d++){
int pd=o.Grid()->_gdimensions[d];
psites*=pd;
perpdims.push_back(pd);
}
for(uint64_t p=0;p<psites;p++){
sobj ss;
Coordinate orthog;
Lexicographic::CoorFromIndex(orthog,p,perpdims);
peekPole(ss,o,orthog,South);
stream<<"[ SouthPole : ";
for(int d=0;d<orthog.size();d++){
stream<<orthog[d];
if(d!=orthog.size()-1) stream<<",";
}
stream<<"]\t";
stream<<ss<<std::endl;
}
for(uint64_t p=0;p<psites;p++){
sobj ss;
Coordinate orthog;
Lexicographic::CoorFromIndex(orthog,p,perpdims);
peekPole(ss,o,orthog,North);
stream<<"[ NorthPole : ";
for(int d=0;d<orthog.size();d++){
stream<<orthog[d];
if(d!=orthog.size()-1) stream<<",";
}
stream<<"]\t";
stream<<ss<<std::endl;
}
}
return stream;
}

View File

@@ -34,22 +34,86 @@ template<class iobj> inline void LatticeCoordinate(Lattice<iobj> &l,int mu)
typedef typename iobj::scalar_type scalar_type;
typedef typename iobj::vector_type vector_type;
l=Zero();
GridBase *grid = l.Grid();
int Nsimd = grid->iSites();
autoView(l_v, l, CpuWrite);
thread_for( o, grid->oSites(), {
vector_type vI;
Coordinate gcoor;
ExtractBuffer<scalar_type> mergebuf(Nsimd);
for(int i=0;i<grid->iSites();i++){
grid->RankIndexToGlobalCoor(grid->ThisRank(),o,i,gcoor);
mergebuf[i]=(Integer)gcoor[mu];
int cartesian_vol = grid->oSites();
if ( grid->isIcosahedral() ) {
cartesian_vol = cartesian_vol - grid->NorthPoleOsites()-grid->SouthPoleOsites();
}
{
autoView(l_v, l, CpuWrite);
thread_for( o, cartesian_vol, {
vector_type vI;
Coordinate gcoor;
ExtractBuffer<scalar_type> mergebuf(Nsimd);
for(int i=0;i<grid->iSites();i++){
grid->RankIndexToGlobalCoor(grid->ThisRank(),o,i,gcoor);
mergebuf[i]=(Integer)gcoor[mu];
}
merge<vector_type,scalar_type>(vI,mergebuf);
l_v[o]=vI;
});
}
if (grid->isIcosahedralVertex()) {
uint64_t psites=1;
Coordinate perpdims;
typename iobj::scalar_object ss;
for(int d=2;d<grid->_ndimension-1;d++){
int pd=grid->_gdimensions[d];
psites*=pd;
perpdims.push_back(pd);
}
merge<vector_type,scalar_type>(vI,mergebuf);
l_v[o]=vI;
});
for(uint64_t p=0;p<psites;p++){
Coordinate orthog;
Lexicographic::CoorFromIndex(orthog,p,perpdims);
int icoor;
if ( mu>=2 && mu < grid->_ndimension-1) {
icoor = orthog[mu-2];
} else {
icoor = -1;
}
ss=scalar_type(icoor);
pokePole(ss,l,orthog,South);
pokePole(ss,l,orthog,North);
}
}
};
template<class iobj> inline void LatticePole(Lattice<iobj> &l,NorthSouth pole)
{
typedef typename iobj::scalar_object sobj;
typedef typename iobj::scalar_type scalar_type;
typedef typename iobj::vector_type vector_type;
GridBase *grid = l.Grid();
l=Zero();
assert(grid->isIcosahedralVertex());
if (grid->isIcosahedralVertex()) {
uint64_t psites=1;
Coordinate perpdims;
sobj ss;
scalar_type one(1.0);
ss=one;
for(int d=2;d<l.Grid()->_ndimension-1;d++){
int pd=l.Grid()->_gdimensions[d];
psites*=pd;
perpdims.push_back(pd);
}
for(uint64_t p=0;p<psites;p++){
Coordinate orthog;
Lexicographic::CoorFromIndex(orthog,p,perpdims);
pokePole(ss,l,orthog,pole);
}
}
};
NAMESPACE_END(Grid);

View File

@@ -141,7 +141,7 @@ void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
grid->GlobalCoorToRankIndex(rank,odx,idx,site);
ExtractBuffer<sobj> buf(Nsimd);
autoView( l_v , l, CpuWrite);
autoView( l_v , l, CpuRead);
extract(l_v[odx],buf);
s = buf[idx];
@@ -151,6 +151,261 @@ void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
return;
};
// zero for south pole, one for north pole
template<class vobj,class sobj>
void peekPole(sobj &s,const Lattice<vobj> &l,const Coordinate &orthog,NorthSouth isNorth)
{
s=Zero();
GridBase *grid=l.Grid();
assert(grid->isIcosahedral());
assert(grid->isIcosahedralVertex());
int Nsimd = grid->Nsimd();
int rank;
int Ndm1 = grid->_ndimension-1;
Coordinate pgrid = grid->ProcessorGrid();
const int xdim=0;
const int ydim=1;
const int pdim=Ndm1;
int64_t pole_osite;
int64_t pole_isite;
Coordinate rdims;
Coordinate idims;
Coordinate ocoor;
Coordinate icoor;
Coordinate pcoor(grid->_ndimension);
for(int d=2;d<Ndm1;d++){
int dd=d-2;
rdims.push_back(grid->_rdimensions[d]);
idims.push_back(grid->_simd_layout[d]);
icoor.push_back((orthog[dd]%grid->_ldimensions[d])/grid->_rdimensions[d]);
ocoor.push_back(orthog[dd]%grid->_rdimensions[d]);
pcoor[d] = orthog[dd]/grid->_ldimensions[d];
}
Lexicographic::IndexFromCoor(ocoor,pole_osite,rdims);
Lexicographic::IndexFromCoor(icoor,pole_isite,idims);
int64_t osite;
if(isNorth == North){
pcoor[xdim] = 0;
pcoor[ydim] = pgrid[ydim]-1;
pcoor[Ndm1] = pgrid[Ndm1]-1;
osite = pole_osite + grid->NorthPoleOsite();
} else {
pcoor[xdim] = pgrid[xdim]-1;
pcoor[ydim] = 0;
pcoor[Ndm1] = 0;
osite = pole_osite + grid->SouthPoleOsite();
}
rank = grid->RankFromProcessorCoor(pcoor);
if ( rank == grid->ThisRank() ) {
ExtractBuffer<sobj> buf(Nsimd);
autoView( l_v , l, CpuWrite);
extract(l_v[osite],buf);
s = buf[pole_isite];
}
grid->Broadcast(rank,s);
return;
};
template<class vobj,class sobj>
void pokePole(const sobj &s,Lattice<vobj> &l,const Coordinate &orthog,NorthSouth isNorth)
{
GridBase *grid=l.Grid();
assert(grid->isIcosahedral());
assert(grid->isIcosahedralVertex());
grid->Broadcast(grid->BossRank(),s);
int Nsimd = grid->Nsimd();
int rank;
int Ndm1 = grid->_ndimension-1;
Coordinate pgrid = grid->ProcessorGrid();
const int xdim=0;
const int ydim=1;
const int pdim=Ndm1;
int64_t pole_osite;
int64_t pole_isite;
Coordinate rdims;
Coordinate idims;
Coordinate ocoor;
Coordinate icoor;
Coordinate pcoor(grid->_ndimension,0);
for(int d=2;d<Ndm1;d++){
int dd = d-2;
rdims.push_back(grid->_rdimensions[d]);
idims.push_back(grid->_simd_layout[d]);
icoor.push_back((orthog[dd]%grid->_ldimensions[d])/grid->_rdimensions[d]);
ocoor.push_back(orthog[dd]%grid->_rdimensions[d]);
pcoor[d] = orthog[dd]/grid->_ldimensions[d];
int o = orthog[dd];
int r = grid->_rdimensions[d];
int omr = o % r;
}
Lexicographic::IndexFromCoor(ocoor,pole_osite,rdims);
Lexicographic::IndexFromCoor(icoor,pole_isite,idims);
int64_t osite;
if(isNorth ==North){
pcoor[xdim] = 0;
pcoor[ydim] = pgrid[ydim]-1;
pcoor[Ndm1] = pgrid[Ndm1]-1;
osite = pole_osite + grid->NorthPoleOsite();
} else {
pcoor[xdim] = pgrid[xdim]-1;
pcoor[ydim] = 0;
pcoor[Ndm1] = 0;
osite = pole_osite + grid->SouthPoleOsite();
}
rank = grid->RankFromProcessorCoor(pcoor);
// extract-modify-merge cycle is easiest way and this is not perf critical
if ( rank == grid->ThisRank() ) {
ExtractBuffer<sobj> buf(Nsimd);
autoView( l_v , l, CpuWrite);
extract(l_v[osite],buf);
buf[pole_isite] = s;
merge(l_v[osite],buf);
}
return;
};
template<class vobj,class sobj>
void peekLocalPole(sobj &s,const Lattice<vobj> &l,const Coordinate &orthog,NorthSouth isNorth)
{
s=Zero();
GridBase *grid=l.Grid();
assert(grid->isIcosahedral());
assert(grid->isIcosahedralVertex());
int Nsimd = grid->Nsimd();
int rank;
int Ndm1 = grid->_ndimension-1;
Coordinate pgrid = grid->ProcessorGrid();
const int xdim=0;
const int ydim=1;
const int pdim=Ndm1;
int64_t pole_osite;
int64_t pole_isite;
Coordinate rdims;
Coordinate idims;
Coordinate ocoor;
Coordinate icoor;
// Coordinate pcoor(grid->_ndimension);
for(int d=2;d<Ndm1;d++){
int dd=d-2;
rdims.push_back(grid->_rdimensions[d]);
idims.push_back(grid->_simd_layout[d]);
icoor.push_back((orthog[dd]%grid->_ldimensions[d])/grid->_rdimensions[d]);
ocoor.push_back(orthog[dd]%grid->_rdimensions[d]);
// pcoor[d] = orthog[dd]/grid->_ldimensions[d];
}
Lexicographic::IndexFromCoor(ocoor,pole_osite,rdims);
Lexicographic::IndexFromCoor(icoor,pole_isite,idims);
int64_t osite;
if(isNorth == North){
// pcoor[xdim] = 0;
// pcoor[ydim] = pgrid[ydim]-1;
// pcoor[Ndm1] = pgrid[Ndm1]-1;
osite = pole_osite + grid->NorthPoleOsite();
assert(grid->ownsNorthPole());
} else {
// pcoor[xdim] = pgrid[xdim]-1;
// pcoor[ydim] = 0;
// pcoor[Ndm1] = 0;
osite = pole_osite + grid->SouthPoleOsite();
assert(grid->ownsSouthPole());
}
ExtractBuffer<sobj> buf(Nsimd);
autoView( l_v , l, CpuWrite);
extract(l_v[osite],buf);
s = buf[pole_isite];
return;
};
template<class vobj,class sobj>
void pokeLocalPole(const sobj &s,Lattice<vobj> &l,const Coordinate &orthog,NorthSouth isNorth)
{
GridBase *grid=l.Grid();
assert(grid->isIcosahedral());
assert(grid->isIcosahedralVertex());
int Nsimd = grid->Nsimd();
int rank;
int Ndm1 = grid->_ndimension-1;
const int xdim=0;
const int ydim=1;
const int pdim=Ndm1;
int64_t pole_osite;
int64_t pole_isite;
Coordinate rdims;
Coordinate idims;
Coordinate ocoor;
Coordinate icoor;
// Coordinate pcoor(grid->_ndimension,0);
for(int d=2;d<Ndm1;d++){
int dd = d-2;
rdims.push_back(grid->_rdimensions[d]);
idims.push_back(grid->_simd_layout[d]);
icoor.push_back((orthog[dd]%grid->_ldimensions[d])/grid->_rdimensions[d]);
ocoor.push_back(orthog[dd]%grid->_rdimensions[d]);
// pcoor[d] = orthog[dd]/grid->_ldimensions[d];
int o = orthog[dd];
int r = grid->_rdimensions[d];
int omr = o % r;
}
Lexicographic::IndexFromCoor(ocoor,pole_osite,rdims);
Lexicographic::IndexFromCoor(icoor,pole_isite,idims);
int64_t osite;
int insert=0;
if(isNorth ==North){
// pcoor[xdim] = 0;
// pcoor[ydim] = pgrid[ydim]-1;
// pcoor[Ndm1] = pgrid[Ndm1]-1;
osite = pole_osite + grid->NorthPoleOsite();
assert(grid->ownsNorthPole());
} else {
// pcoor[xdim] = pgrid[xdim]-1;
// pcoor[ydim] = 0;
// pcoor[Ndm1] = 0;
osite = pole_osite + grid->SouthPoleOsite();
assert(grid->ownsSouthPole());
}
// extract-modify-merge cycle is easiest way and this is not perf critical
ExtractBuffer<sobj> buf(Nsimd);
autoView( l_v , l, CpuWrite);
extract(l_v[osite],buf);
buf[pole_isite] = s;
merge(l_v[osite],buf);
return;
};
//////////////////////////////////////////////////////////
// Peek a scalar object from the SIMD array
//////////////////////////////////////////////////////////
@@ -179,7 +434,7 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
for(int w=0;w<words;w++){
pt[w] = getlane(vp[w],idx);
}
// std::cout << "peekLocalSite "<<site<<" "<<odx<<","<<idx<<" "<<s<<std::endl;
return;
};
template<class vobj,class sobj>

View File

@@ -290,8 +290,10 @@ template<class vobj>
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) {
GridBase *grid = left.Grid();
bool ok;
#ifdef GRID_SYCL
uint64_t csum=0;
uint64_t csum2=0;
if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone)
{
// Hack
@@ -300,13 +302,33 @@ inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &righ
Integer words = left.Grid()->oSites()*sizeof(vobj)/sizeof(uint64_t);
uint64_t *base= (uint64_t *)&l_v[0];
csum=svm_xor(base,words);
ok = FlightRecorder::CsumLog(csum);
if ( !ok ) {
csum2=svm_xor(base,words);
std::cerr<< " Bad CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
} else {
// csum2=svm_xor(base,words);
// std::cerr<< " ok CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
}
assert(ok);
}
FlightRecorder::CsumLog(csum);
#endif
FlightRecorder::StepLog("rank inner product");
ComplexD nrm = rankInnerProduct(left,right);
// ComplexD nrmck=nrm;
RealD local = real(nrm);
FlightRecorder::NormLog(real(nrm));
ok = FlightRecorder::NormLog(real(nrm));
if ( !ok ) {
ComplexD nrm2 = rankInnerProduct(left,right);
RealD local2 = real(nrm2);
std::cerr<< " Bad NORM " << local << " recomputed as "<<local2<<std::endl;
assert(ok);
}
FlightRecorder::StepLog("Start global sum");
// grid->GlobalSumP2P(nrm);
grid->GlobalSum(nrm);
FlightRecorder::StepLog("Finished global sum");
// std::cout << " norm "<< nrm << " p2p norm "<<nrmck<<std::endl;
FlightRecorder::ReductionLog(local,real(nrm));
return nrm;
}
@@ -353,8 +375,44 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
coalescedWrite(inner_tmp_v[ss],innerProduct(tmp,tmp));
coalescedWrite(z_v[ss],tmp);
});
bool ok;
#ifdef GRID_SYCL
uint64_t csum=0;
uint64_t csum2=0;
if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone)
{
// z_v
{
Integer words = sites*sizeof(vobj)/sizeof(uint64_t);
uint64_t *base= (uint64_t *)&z_v[0];
csum=svm_xor(base,words);
ok = FlightRecorder::CsumLog(csum);
if ( !ok ) {
csum2=svm_xor(base,words);
std::cerr<< " Bad z_v CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
}
assert(ok);
}
// inner_v
{
Integer words = sites*sizeof(inner_t)/sizeof(uint64_t);
uint64_t *base= (uint64_t *)&inner_tmp_v[0];
csum=svm_xor(base,words);
ok = FlightRecorder::CsumLog(csum);
if ( !ok ) {
csum2=svm_xor(base,words);
std::cerr<< " Bad inner_tmp_v CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
}
assert(ok);
}
}
#endif
nrm = real(TensorRemove(sumD(inner_tmp_v,sites)));
ok = FlightRecorder::NormLog(real(nrm));
assert(ok);
RealD local = real(nrm);
grid->GlobalSum(nrm);
FlightRecorder::ReductionLog(local,real(nrm));
return nrm;
}
@@ -498,6 +556,8 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,
scalar_type * ptr = (scalar_type *) &result[0];
int words = fd*sizeof(sobj)/sizeof(scalar_type);
grid->GlobalSumVector(ptr, words);
// std::cout << GridLogMessage << " sliceSum local"<<t_sum<<" us, host+mpi "<<t_rest<<std::endl;
}
template<class vobj> inline
std::vector<typename vobj::scalar_object>

View File

@@ -16,11 +16,11 @@ inline typename vobj::scalar_objectD sumD_gpu_tensor(const vobj *lat, Integer os
Integer nsimd= vobj::Nsimd();
{
sycl::buffer<sobj, 1> abuff(&ret, {1});
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
auto Reduction = cl::sycl::reduction(abuff,cgh,identity,std::plus<>());
cgh.parallel_for(cl::sycl::range<1>{osites},
theGridAccelerator->submit([&](sycl::handler &cgh) {
auto Reduction = sycl::reduction(abuff,cgh,identity,std::plus<>());
cgh.parallel_for(sycl::range<1>{osites},
Reduction,
[=] (cl::sycl::id<1> item, auto &sum) {
[=] (sycl::id<1> item, auto &sum) {
auto osite = item[0];
sum +=Reduce(lat[osite]);
});
@@ -75,11 +75,11 @@ template<class Word> Word svm_xor(Word *vec,uint64_t L)
Word ret = 0;
{
sycl::buffer<Word, 1> abuff(&ret, {1});
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
auto Reduction = cl::sycl::reduction(abuff,cgh,identity,std::bit_xor<>());
cgh.parallel_for(cl::sycl::range<1>{L},
theGridAccelerator->submit([&](sycl::handler &cgh) {
auto Reduction = sycl::reduction(abuff,cgh,identity,std::bit_xor<>());
cgh.parallel_for(sycl::range<1>{L},
Reduction,
[=] (cl::sycl::id<1> index, auto &sum) {
[=] (sycl::id<1> index, auto &sum) {
sum ^=vec[index];
});
});

View File

@@ -48,31 +48,45 @@ NAMESPACE_BEGIN(Grid);
//////////////////////////////////////////////////////////////
inline int RNGfillable(GridBase *coarse,GridBase *fine)
{
if ( coarse == fine ) return 1;
int rngdims = coarse->_ndimension;
// trivially extended in higher dims, with locality guaranteeing RNG state is local to node
int lowerdims = fine->_ndimension - coarse->_ndimension;
assert(lowerdims >= 0);
for(int d=0;d<lowerdims;d++){
assert(fine->_simd_layout[d]==1);
assert(fine->_processors[d]==1);
if ( coarse->isIcosahedral()) assert(coarse->isIcosahedralEdge());
if ( fine->isIcosahedralVertex() && coarse->isIcosahedralEdge() ) {
assert(fine->Nd()==coarse->Nd());
for(int d=0;d<fine->Nd();d++){
assert(fine->LocalDimensions()[d] == coarse->LocalDimensions()[d]);
}
return 1;
}
{
int rngdims = coarse->_ndimension;
int multiplicity=1;
for(int d=0;d<lowerdims;d++){
multiplicity=multiplicity*fine->_rdimensions[d];
}
// local and global volumes subdivide cleanly after SIMDization
for(int d=0;d<rngdims;d++){
int fd= d+lowerdims;
assert(coarse->_processors[d] == fine->_processors[fd]);
assert(coarse->_simd_layout[d] == fine->_simd_layout[fd]);
assert(((fine->_rdimensions[fd] / coarse->_rdimensions[d])* coarse->_rdimensions[d])==fine->_rdimensions[fd]);
// trivially extended in higher dims, with locality guaranteeing RNG state is local to node
int lowerdims = fine->_ndimension - coarse->_ndimension;
assert(lowerdims >= 0);
for(int d=0;d<lowerdims;d++){
assert(fine->_simd_layout[d]==1);
assert(fine->_processors[d]==1);
}
multiplicity = multiplicity *fine->_rdimensions[fd] / coarse->_rdimensions[d];
int multiplicity=1;
for(int d=0;d<lowerdims;d++){
multiplicity=multiplicity*fine->_rdimensions[d];
}
// local and global volumes subdivide cleanly after SIMDization
for(int d=0;d<rngdims;d++){
int fd= d+lowerdims;
assert(coarse->_processors[d] == fine->_processors[fd]);
assert(coarse->_simd_layout[d] == fine->_simd_layout[fd]);
assert(((fine->_rdimensions[fd] / coarse->_rdimensions[d])* coarse->_rdimensions[d])==fine->_rdimensions[fd]);
multiplicity = multiplicity *fine->_rdimensions[fd] / coarse->_rdimensions[d];
}
return multiplicity;
}
return multiplicity;
}
@@ -80,6 +94,19 @@ inline int RNGfillable(GridBase *coarse,GridBase *fine)
// this function is necessary for the LS vectorised field
inline int RNGfillable_general(GridBase *coarse,GridBase *fine)
{
if ( coarse == fine ) return 1;
if ( coarse->isIcosahedral()) assert(coarse->isIcosahedralEdge());
if ( fine->isIcosahedralVertex() && coarse->isIcosahedralEdge() ) {
assert(fine->Nd()==coarse->Nd());
for(int d=0;d<fine->Nd();d++){
assert(fine->LocalDimensions()[d] == coarse->LocalDimensions()[d]);
}
return 1;
}
int rngdims = coarse->_ndimension;
// trivially extended in higher dims, with locality guaranteeing RNG state is local to node
@@ -352,12 +379,12 @@ private:
public:
GridBase *Grid(void) const { return _grid; }
int generator_idx(int os,int is) {
return is*_grid->oSites()+os;
return (is*_grid->CartesianOsites()+os)%_grid->lSites(); // On the pole sites wrap back to normal generators; Icosahedral hack
}
GridParallelRNG(GridBase *grid) : GridRNGbase() {
_grid = grid;
_vol =_grid->iSites()*_grid->oSites();
_vol =_grid->lSites();
_generators.resize(_vol);
_uniform.resize(_vol,std::uniform_real_distribution<RealD>{0,1});
@@ -381,7 +408,7 @@ public:
int multiplicity = RNGfillable_general(_grid, l.Grid()); // l has finer or same grid
int Nsimd = _grid->Nsimd(); // guaranteed to be the same for l.Grid() too
int osites = _grid->oSites(); // guaranteed to be <= l.Grid()->oSites() by a factor multiplicity
int osites = _grid->CartesianOsites(); // guaranteed to be <= l.Grid()->oSites() by a factor multiplicity, except on Icosahedral
int words = sizeof(scalar_object) / sizeof(scalar_type);
autoView(l_v, l, CpuWrite);
@@ -402,8 +429,27 @@ public:
// merge into SIMD lanes, FIXME suboptimal implementation
merge(l_v[sm], buf);
}
});
// });
});
/*
* Fill in the poles for an Icosahedral vertex mesh
*/
if (l.Grid()->isIcosahedralVertex()) {
int64_t pole_sites=l.Grid()->NorthPoleOsites()+l.Grid()->SouthPoleOsites();
int64_t pole_base =l.Grid()->CartesianOsites();
ExtractBuffer<scalar_object> buf(Nsimd);
for (int m = 0; m < pole_sites; m++) { // Draw from same generator multiplicity times
for (int si = 0; si < Nsimd; si++) {
int gdx = 0;
scalar_type *pointer = (scalar_type *)&buf[si];
dist[gdx].reset();
for (int idx = 0; idx < words; idx++)
fillScalar(pointer[idx], dist[gdx], _generators[gdx]);
}
merge(l_v[pole_base+m], buf);
}
}
_time_counter += usecond()- inner_time_counter;
}

View File

@@ -55,7 +55,7 @@ inline void sliceSumReduction_cub_small(const vobj *Data,
d_offsets = static_cast<int*>(acceleratorAllocDevice((rd+1)*sizeof(int)));
//copy offsets to device
acceleratorCopyToDeviceAsync(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream);
acceleratorCopyToDeviceAsynch(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream);
gpuError_t gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), zero_init, computeStream);
@@ -88,7 +88,7 @@ inline void sliceSumReduction_cub_small(const vobj *Data,
exit(EXIT_FAILURE);
}
acceleratorCopyFromDeviceAsync(d_out,&lvSum[0],rd*sizeof(vobj),computeStream);
acceleratorCopyFromDeviceAsynch(d_out,&lvSum[0],rd*sizeof(vobj),computeStream);
//sync after copy
accelerator_barrier();
@@ -141,11 +141,11 @@ inline void sliceSumReduction_sycl_small(const vobj *Data,
});
for (int r = 0; r < rd; r++) {
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
auto Reduction = cl::sycl::reduction(&mysum[r],std::plus<>());
cgh.parallel_for(cl::sycl::range<1>{subvol_size},
theGridAccelerator->submit([&](sycl::handler &cgh) {
auto Reduction = sycl::reduction(&mysum[r],std::plus<>());
cgh.parallel_for(sycl::range<1>{subvol_size},
Reduction,
[=](cl::sycl::id<1> item, auto &sum) {
[=](sycl::id<1> item, auto &sum) {
auto s = item[0];
sum += rb_p[r*subvol_size+s];
});

View File

@@ -466,9 +466,15 @@ public:
static deviceVector<vobj> recv_buf;
send_buf.resize(buffer_size*2*depth);
recv_buf.resize(buffer_size*2*depth);
#ifndef ACCELERATOR_AWARE_MPI
static hostVector<vobj> hsend_buf;
static hostVector<vobj> hrecv_buf;
hsend_buf.resize(buffer_size*2*depth);
hrecv_buf.resize(buffer_size*2*depth);
#endif
std::vector<CommsRequest_t> fwd_req;
std::vector<CommsRequest_t> bwd_req;
std::vector<MpiCommsRequest_t> fwd_req;
std::vector<MpiCommsRequest_t> bwd_req;
int words = buffer_size;
int bytes = words * sizeof(vobj);
@@ -495,9 +501,16 @@ public:
t_gather+=usecond()-t;
t=usecond();
#ifdef ACCELERATOR_AWARE_MPI
grid->SendToRecvFromBegin(fwd_req,
(void *)&send_buf[d*buffer_size], xmit_to_rank,
(void *)&recv_buf[d*buffer_size], recv_from_rank, bytes, tag);
#else
acceleratorCopyFromDevice(&send_buf[d*buffer_size],&hsend_buf[d*buffer_size],bytes);
grid->SendToRecvFromBegin(fwd_req,
(void *)&hsend_buf[d*buffer_size], xmit_to_rank,
(void *)&hrecv_buf[d*buffer_size], recv_from_rank, bytes, tag);
#endif
t_comms+=usecond()-t;
}
for ( int d=0;d < depth ; d ++ ) {
@@ -508,9 +521,16 @@ public:
t_gather+= usecond() - t;
t=usecond();
#ifdef ACCELERATOR_AWARE_MPI
grid->SendToRecvFromBegin(bwd_req,
(void *)&send_buf[(d+depth)*buffer_size], recv_from_rank,
(void *)&recv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag);
#else
acceleratorCopyFromDevice(&send_buf[(d+depth)*buffer_size],&hsend_buf[(d+depth)*buffer_size],bytes);
grid->SendToRecvFromBegin(bwd_req,
(void *)&hsend_buf[(d+depth)*buffer_size], recv_from_rank,
(void *)&hrecv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag);
#endif
t_comms+=usecond()-t;
}
@@ -533,8 +553,13 @@ public:
t=usecond();
grid->CommsComplete(fwd_req);
#ifndef ACCELERATOR_AWARE_MPI
for ( int d=0;d < depth ; d ++ ) {
acceleratorCopyToDevice(&hrecv_buf[d*buffer_size],&recv_buf[d*buffer_size],bytes);
}
#endif
t_comms+= usecond() - t;
t=usecond();
for ( int d=0;d < depth ; d ++ ) {
ScatterSlice(recv_buf,to,nld-depth+d,dimension,plane*buffer_size); plane++;
@@ -543,6 +568,11 @@ public:
t=usecond();
grid->CommsComplete(bwd_req);
#ifndef ACCELERATOR_AWARE_MPI
for ( int d=0;d < depth ; d ++ ) {
acceleratorCopyToDevice(&hrecv_buf[(d+depth)*buffer_size],&recv_buf[(d+depth)*buffer_size],bytes);
}
#endif
t_comms+= usecond() - t;
t=usecond();

View File

@@ -49,7 +49,7 @@ static constexpr int Tm = 7;
static constexpr int Nc=Config_Nc;
static constexpr int Ns=4;
static constexpr int Nd=4;
static constexpr int Nd=Config_Nd;
static constexpr int Nhs=2; // half spinor
static constexpr int Nds=8; // double stored gauge field
static constexpr int Ngp=2; // gparity index range
@@ -75,6 +75,7 @@ static constexpr int InverseYes=1;
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
const int SpinorIndex = 2;
const int PauliIndex = 2; //TensorLevel counts from the bottom!
template<typename T> struct isSpinor {
static constexpr bool value = (SpinorIndex==T::TensorLevel);
};

View File

@@ -98,7 +98,7 @@ public:
virtual RealD S(const GaugeField& U) = 0; // evaluate the action
virtual RealD Sinitial(const GaugeField& U) { return this->S(U); } ; // if the refresh computes the action, can cache it. Alternately refreshAndAction() ?
virtual void deriv(const GaugeField& U, GaugeField& dSdU) = 0; // evaluate the action derivative
/////////////////////////////////////////////////////////////
// virtual smeared interface through configuration container
/////////////////////////////////////////////////////////////
@@ -132,6 +132,10 @@ public:
template <class GaugeField >
class EmptyAction : public Action <GaugeField>
{
using Action<GaugeField>::refresh;
using Action<GaugeField>::Sinitial;
using Action<GaugeField>::deriv;
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) { assert(0);}; // refresh pseudofermions
virtual RealD S(const GaugeField& U) { return 0.0;}; // evaluate the action
virtual void deriv(const GaugeField& U, GaugeField& dSdU) { assert(0); }; // evaluate the action derivative

View File

@@ -55,6 +55,11 @@ public:
RealD alpha; // Mobius scale
RealD k; // EOFA normalization constant
// Device resident
deviceVector<Coeff_t> d_shift_coefficients;
deviceVector<Coeff_t> d_MooeeInv_shift_lc;
deviceVector<Coeff_t> d_MooeeInv_shift_norm;
virtual void Instantiatable(void) = 0;
// EOFA-specific operations
@@ -92,6 +97,11 @@ public:
this->k = this->alpha * (_mq3-_mq2) * std::pow(this->alpha+1.0,2*Ls) /
( std::pow(this->alpha+1.0,Ls) + _mq2*std::pow(this->alpha-1.0,Ls) ) /
( std::pow(this->alpha+1.0,Ls) + _mq3*std::pow(this->alpha-1.0,Ls) );
d_shift_coefficients.resize(Ls);
d_MooeeInv_shift_lc.resize(Ls);
d_MooeeInv_shift_norm.resize(Ls);
};
};

View File

@@ -124,6 +124,11 @@ public:
RealD _b;
RealD _c;
// possible boost
std::vector<ComplexD> qmu;
void set_qmu(std::vector<ComplexD> _qmu) { qmu=_qmu; assert(qmu.size()==Nd);};
void addQmu(const FermionField &in, FermionField &out, int dag);
// Cayley form Moebius (tanh and zolotarev)
std::vector<Coeff_t> omega;
std::vector<Coeff_t> bs; // S dependent coeffs
@@ -143,6 +148,17 @@ public:
std::vector<Coeff_t> ueem;
std::vector<Coeff_t> dee;
// Device memory
deviceVector<Coeff_t> d_diag;
deviceVector<Coeff_t> d_upper;
deviceVector<Coeff_t> d_lower;
deviceVector<Coeff_t> d_lee;
deviceVector<Coeff_t> d_dee;
deviceVector<Coeff_t> d_uee;
deviceVector<Coeff_t> d_leem;
deviceVector<Coeff_t> d_ueem;
// Matrices of 5d ee inverse params
// std::vector<iSinglet<Simd> > MatpInv;
// std::vector<iSinglet<Simd> > MatmInv;

View File

@@ -0,0 +1,196 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/CompactWilsonCloverFermion5D.h
Copyright (C) 2020 - 2025
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
Author: Nils Meyer <nils.meyer@ur.de>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/qcd/action/fermion/WilsonFermion5D.h>
#include <Grid/qcd/action/fermion/WilsonCloverTypes.h>
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
#include <Grid/qcd/action/fermion/CloverHelpers.h>
NAMESPACE_BEGIN(Grid);
// see Grid/qcd/action/fermion/CompactWilsonCloverFermion.h for description
template<class Impl, class CloverHelpers>
class CompactWilsonCloverFermion5D : public WilsonFermion5D<Impl>,
public WilsonCloverHelpers<Impl>,
public CompactWilsonCloverHelpers<Impl> {
/////////////////////////////////////////////
// Sizes
/////////////////////////////////////////////
public:
INHERIT_COMPACT_CLOVER_SIZES(Impl);
/////////////////////////////////////////////
// Type definitions
/////////////////////////////////////////////
public:
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
INHERIT_COMPACT_CLOVER_TYPES(Impl);
typedef WilsonFermion5D<Impl> WilsonBase;
typedef WilsonCloverHelpers<Impl> Helpers;
typedef CompactWilsonCloverHelpers<Impl> CompactHelpers;
/////////////////////////////////////////////
// Constructors
/////////////////////////////////////////////
public:
CompactWilsonCloverFermion5D(GaugeField& _Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
const RealD _mass,
const RealD _csw_r = 0.0,
const RealD _csw_t = 0.0,
const RealD _cF = 1.0,
const ImplParams& impl_p = ImplParams());
/////////////////////////////////////////////
// Member functions (implementing interface)
/////////////////////////////////////////////
public:
virtual void Instantiatable() {};
int ConstEE() override { return 0; };
int isTrivialEE() override { return 0; };
void Dhop(const FermionField& in, FermionField& out, int dag) override;
void DhopOE(const FermionField& in, FermionField& out, int dag) override;
void DhopEO(const FermionField& in, FermionField& out, int dag) override;
void DhopDir(const FermionField& in, FermionField& out, int dir, int disp) override;
void DhopDirAll(const FermionField& in, std::vector<FermionField>& out) /* override */;
void M(const FermionField& in, FermionField& out) override;
void Mdag(const FermionField& in, FermionField& out) override;
void Meooe(const FermionField& in, FermionField& out) override;
void MeooeDag(const FermionField& in, FermionField& out) override;
void Mooee(const FermionField& in, FermionField& out) override;
void MooeeDag(const FermionField& in, FermionField& out) override;
void MooeeInv(const FermionField& in, FermionField& out) override;
void MooeeInvDag(const FermionField& in, FermionField& out) override;
void Mdir(const FermionField& in, FermionField& out, int dir, int disp) override;
void MdirAll(const FermionField& in, std::vector<FermionField>& out) override;
void MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) override;
void MooDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override;
void MeeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override;
/////////////////////////////////////////////
// Member functions (internals)
/////////////////////////////////////////////
void MooeeInternal(const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle);
/////////////////////////////////////////////
// Helpers
/////////////////////////////////////////////
void ImportGauge(const GaugeField& _Umu) override;
/////////////////////////////////////////////
// Helpers
/////////////////////////////////////////////
private:
template<class Field>
const MaskField* getCorrectMaskField(const Field &in) const {
if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) {
return &this->BoundaryMaskOdd;
} else {
return &this->BoundaryMaskEven;
}
} else {
return &this->BoundaryMask;
}
}
template<class Field>
void ApplyBoundaryMask(Field& f) {
const MaskField* m = getCorrectMaskField(f); assert(m != nullptr);
assert(m != nullptr);
CompactHelpers::ApplyBoundaryMask(f, *m);
}
/////////////////////////////////////////////
// Member Data
/////////////////////////////////////////////
public:
RealD csw_r;
RealD csw_t;
RealD cF;
int n_rhs;
bool fixedBoundaries;
CloverDiagonalField Diagonal, DiagonalEven, DiagonalOdd;
CloverDiagonalField DiagonalInv, DiagonalInvEven, DiagonalInvOdd;
CloverTriangleField Triangle, TriangleEven, TriangleOdd;
CloverTriangleField TriangleInv, TriangleInvEven, TriangleInvOdd;
FermionField Tmp;
MaskField BoundaryMask, BoundaryMaskEven, BoundaryMaskOdd;
};
NAMESPACE_END(Grid);

View File

@@ -60,6 +60,50 @@ public:
// virtual void Instantiatable(void)=0;
virtual void Instantiatable(void) =0;
void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary, std::vector<double> twist)
{
std::cout << "Free Propagator for PartialFraction"<<std::endl;
FermionField in_k(in.Grid());
FermionField prop_k(in.Grid());
FFT theFFT((GridCartesian *) in.Grid());
//phase for boundary condition
ComplexField coor(in.Grid());
ComplexField ph(in.Grid()); ph = Zero();
FermionField in_buf(in.Grid()); in_buf = Zero();
typedef typename Simd::scalar_type Scalar;
Scalar ci(0.0,1.0);
assert(twist.size() == Nd);//check that twist is Nd
assert(boundary.size() == Nd);//check that boundary conditions is Nd
int shift = 0;
for(unsigned int nu = 0; nu < Nd; nu++)
{
// Shift coordinate lattice index by 1 to account for 5th dimension.
LatticeCoordinate(coor, nu + shift);
double boundary_phase = ::acos(real(boundary[nu]));
ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu+shift])));
//momenta for propagator shifted by twist+boundary
twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI));
}
in_buf = exp(ci*ph*(-1.0))*in;
theFFT.FFT_all_dim(in_k,in,FFT::forward);
this->MomentumSpacePropagatorHw(prop_k,in_k,mass,twist);
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
//phase for boundary condition
out = out * exp(ci*ph);
};
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
std::vector<Complex> boundary;
for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions
FreePropagator(in,out,mass,boundary,twist);
};
// Efficient support for multigrid coarsening
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp);
virtual void MdirAll(const FermionField &in, std::vector<FermionField> &out);

View File

@@ -123,10 +123,10 @@ public:
GaugeGrid->LocalIndexToLocalCoor(lidx, lcoor);
peekLocalSite(ScalarUmu, Umu_v, lcoor);
for (int mu = 0; mu < 4; mu++) ScalarUds(mu) = ScalarUmu(mu);
for (int mu = 0; mu < Nd; mu++) ScalarUds(mu) = ScalarUmu(mu);
peekLocalSite(ScalarUmu, Uadj_v, lcoor);
for (int mu = 0; mu < 4; mu++) ScalarUds(mu + 4) = ScalarUmu(mu);
for (int mu = 0; mu < Nd; mu++) ScalarUds(mu + Nd) = ScalarUmu(mu);
pokeLocalSite(ScalarUds, Uds_v, lcoor);
});

View File

@@ -55,6 +55,7 @@ NAMESPACE_CHECK(Wilson);
NAMESPACE_CHECK(WilsonTM);
#include <Grid/qcd/action/fermion/WilsonCloverFermion.h> // 4d wilson clover fermions
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h> // 4d compact wilson clover fermions
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion5D.h> // 5d compact wilson clover fermions
NAMESPACE_CHECK(WilsonClover);
#include <Grid/qcd/action/fermion/WilsonFermion5D.h> // 5d base used by all 5d overlap types
NAMESPACE_CHECK(Wilson5D);
@@ -84,6 +85,15 @@ NAMESPACE_CHECK(DomainWall);
#include <Grid/qcd/action/fermion/OverlapWilsonPartialFractionTanhFermion.h>
#include <Grid/qcd/action/fermion/OverlapWilsonPartialFractionZolotarevFermion.h>
NAMESPACE_CHECK(Overlap);
///////////////////////////////////////////////////////////////////////////////
// Two spin wilson fermion based
///////////////////////////////////////////////////////////////////////////////
#include <Grid/qcd/action/fermion/TwoSpinWilsonFermion3plus1D.h>
NAMESPACE_CHECK(TwoSpinWilson);
///////////////////////////////////////////////////////////////////////////////
// G5 herm -- this has to live in QCD since dirac matrix is not in the broader sector of code
///////////////////////////////////////////////////////////////////////////////
@@ -164,12 +174,17 @@ typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiS
// Compact Clover fermions
template <typename WImpl> using CompactWilsonClover = CompactWilsonCloverFermion<WImpl, CompactCloverHelpers<WImpl>>;
template <typename WImpl> using CompactWilsonClover5D = CompactWilsonCloverFermion5D<WImpl, CompactCloverHelpers<WImpl>>;
template <typename WImpl> using CompactWilsonExpClover = CompactWilsonCloverFermion<WImpl, CompactExpCloverHelpers<WImpl>>;
typedef CompactWilsonClover<WilsonImplD2> CompactWilsonCloverFermionD2;
typedef CompactWilsonClover<WilsonImplF> CompactWilsonCloverFermionF;
typedef CompactWilsonClover<WilsonImplD> CompactWilsonCloverFermionD;
typedef CompactWilsonClover5D<WilsonImplD2> CompactWilsonCloverFermion5DD2;
typedef CompactWilsonClover5D<WilsonImplF> CompactWilsonCloverFermion5DF;
typedef CompactWilsonClover5D<WilsonImplD> CompactWilsonCloverFermion5DD;
typedef CompactWilsonExpClover<WilsonImplD2> CompactWilsonExpCloverFermionD2;
typedef CompactWilsonExpClover<WilsonImplF> CompactWilsonExpCloverFermionF;
typedef CompactWilsonExpClover<WilsonImplD> CompactWilsonExpCloverFermionD;

View File

@@ -41,8 +41,9 @@ NAMESPACE_CHECK(Compressor);
NAMESPACE_CHECK(FermionOperatorImpl);
#include <Grid/qcd/action/fermion/FermionOperator.h>
NAMESPACE_CHECK(FermionOperator);
#include <Grid/qcd/action/fermion/WilsonKernels.h> //used by all wilson type fermions
#include <Grid/qcd/action/fermion/WilsonKernels.h> //used by all wilson type fermions
#include <Grid/qcd/action/fermion/StaggeredKernels.h> //used by all wilson type fermions
#include <Grid/qcd/action/fermion/TwoSpinWilsonKernels.h> //used for 3D fermions, pauli in place of Dirac
NAMESPACE_CHECK(Kernels);
#endif

View File

@@ -180,6 +180,12 @@ NAMESPACE_CHECK(ImplGparityWilson);
#include <Grid/qcd/action/fermion/StaggeredImpl.h>
NAMESPACE_CHECK(ImplStaggered);
/////////////////////////////////////////////////////////////////////////////
// Two component spinor Wilson action for 3d / Boston
/////////////////////////////////////////////////////////////////////////////
#include <Grid/qcd/action/fermion/TwoSpinWilsonImpl.h>
NAMESPACE_CHECK(ImplTwoSpinWilson);
/////////////////////////////////////////////////////////////////////////////
// Single flavour one component spinors with colour index. 5d vec
/////////////////////////////////////////////////////////////////////////////

View File

@@ -274,7 +274,7 @@ public:
autoView( Uds_v , Uds, CpuWrite);
autoView( Utmp_v, Utmp, CpuWrite);
thread_foreach(ss,Utmp_v,{
Uds_v[ss](0)(mu+4) = Utmp_v[ss]();
Uds_v[ss](0)(mu+Nd) = Utmp_v[ss]();
});
}
Utmp = Uconj;
@@ -286,7 +286,7 @@ public:
autoView( Uds_v , Uds, CpuWrite);
autoView( Utmp_v, Utmp, CpuWrite);
thread_foreach(ss,Utmp_v,{
Uds_v[ss](1)(mu+4) = Utmp_v[ss]();
Uds_v[ss](1)(mu+Nd) = Utmp_v[ss]();
});
}
}
@@ -320,7 +320,7 @@ public:
}
Uconj = conjugate(*Upoke);
pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu + 4);
pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu + Nd);
}
}

View File

@@ -36,6 +36,8 @@ public:
static const std::vector<int> directions;
static const std::vector<int> displacements;
static const int npoint = 16;
static std::vector<int> MakeDirections(void);
static std::vector<int> MakeDisplacements(void);
};
template <class Impl>

View File

@@ -40,6 +40,8 @@ public:
static const std::vector<int> directions;
static const std::vector<int> displacements;
const int npoint = 16;
static std::vector<int> MakeDirections(void);
static std::vector<int> MakeDisplacements(void);
};
template<class Impl>

View File

@@ -36,6 +36,8 @@ public:
static const std::vector<int> directions;
static const std::vector<int> displacements;
static const int npoint = 8;
static std::vector<int> MakeDirections(void);
static std::vector<int> MakeDisplacements(void);
};
template <class Impl>

View File

@@ -42,7 +42,7 @@ public:
void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
this->MomentumSpacePropagatorHw(out,in,_m,twist);
};
};
// Constructors
OverlapWilsonCayleyTanhFermion(GaugeField &_Umu,

View File

@@ -41,6 +41,10 @@ public:
public:
// Constructors
virtual void Instantiatable(void){};
void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
this->MomentumSpacePropagatorHw(out,in,_m,twist);
};
OverlapWilsonCayleyZolotarevFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid,

View File

@@ -41,6 +41,9 @@ public:
public:
virtual void Instantiatable(void){};
void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
this->MomentumSpacePropagatorHw(out,in,_m,twist);
};
// Constructors
OverlapWilsonContFracTanhFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid,

View File

@@ -40,6 +40,9 @@ public:
INHERIT_IMPL_TYPES(Impl);
virtual void Instantiatable(void){};
void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
this->MomentumSpacePropagatorHw(out,in,_m,twist);
};
// Constructors
OverlapWilsonContFracZolotarevFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid,

View File

@@ -41,6 +41,9 @@ public:
public:
virtual void Instantiatable(void){};
void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
this->MomentumSpacePropagatorHw(out,in,_m,twist);
};
// Constructors
OverlapWilsonPartialFractionTanhFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid,

View File

@@ -40,6 +40,11 @@ public:
INHERIT_IMPL_TYPES(Impl);
virtual void Instantiatable(void){};
void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
this->MomentumSpacePropagatorHw(out,in,_m,twist);
};
// Constructors
OverlapWilsonPartialFractionZolotarevFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid,

View File

@@ -39,7 +39,7 @@ class PartialFractionFermion5D : public WilsonFermion5D<Impl>
public:
INHERIT_IMPL_TYPES(Impl);
const int part_frac_chroma_convention=1;
const int part_frac_chroma_convention=0;
void Meooe_internal(const FermionField &in, FermionField &out,int dag);
void Mooee_internal(const FermionField &in, FermionField &out,int dag);
@@ -83,11 +83,70 @@ public:
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD M5,const ImplParams &p= ImplParams());
PartialFractionFermion5D(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD M5,std::vector<RealD> &_qmu,const ImplParams &p= ImplParams());
void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary, std::vector<double> twist)
{
std::cout << "Free Propagator for PartialFraction"<<std::endl;
FermionField in_k(in.Grid());
FermionField prop_k(in.Grid());
FFT theFFT((GridCartesian *) in.Grid());
//phase for boundary condition
ComplexField coor(in.Grid());
ComplexField ph(in.Grid()); ph = Zero();
FermionField in_buf(in.Grid()); in_buf = Zero();
typedef typename Simd::scalar_type Scalar;
Scalar ci(0.0,1.0);
assert(twist.size() == Nd);//check that twist is Nd
assert(boundary.size() == Nd);//check that boundary conditions is Nd
int shift = 0;
for(unsigned int nu = 0; nu < Nd; nu++)
{
// Shift coordinate lattice index by 1 to account for 5th dimension.
LatticeCoordinate(coor, nu + shift);
double boundary_phase = ::acos(real(boundary[nu]));
ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu+shift])));
//momenta for propagator shifted by twist+boundary
twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI));
}
in_buf = exp(ci*ph*(-1.0))*in;
theFFT.FFT_all_dim(in_k,in,FFT::forward);
if ( this->qmu.size() ){
this->MomentumSpacePropagatorHwQ(prop_k,in_k,mass,twist,this->qmu);
} else {
this->MomentumSpacePropagatorHw(prop_k,in_k,mass,twist);
}
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
//phase for boundary condition
out = out * exp(ci*ph);
};
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
std::vector<Complex> boundary;
for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions
FreePropagator(in,out,mass,boundary,twist);
};
void set_qmu(std::vector<RealD> _qmu) { qmu=_qmu; assert(qmu.size()==Nd);};
void addQmu(const FermionField &in, FermionField &out, int dag);
protected:
virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale);
virtual void SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata);
std::vector<RealD> qmu;
// Part frac
RealD mass;
RealD dw_diag;

View File

@@ -141,9 +141,9 @@ public:
Udag = Udag *phases;
InsertGaugeField(Uds,U,mu);
InsertGaugeField(Uds,Udag,mu+4);
InsertGaugeField(Uds,Udag,mu+Nd);
// PokeIndex<LorentzIndex>(Uds, U, mu);
// PokeIndex<LorentzIndex>(Uds, Udag, mu + 4);
// PokeIndex<LorentzIndex>(Uds, Udag, mu + Nd);
// 3 hop based on thin links. Crazy huh ?
U = PeekIndex<LorentzIndex>(Uthin, mu);
@@ -156,7 +156,7 @@ public:
UUUdag = UUUdag *phases;
InsertGaugeField(UUUds,UUU,mu);
InsertGaugeField(UUUds,UUUdag,mu+4);
InsertGaugeField(UUUds,UUUdag,mu+Nd);
}
}

View File

@@ -0,0 +1,175 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/TwoSpinWilsonFermion3plus1D.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma one
NAMESPACE_BEGIN(Grid);
class TwoSpinWilsonFermion3plus1DStatic {
public:
// S-direction is INNERMOST and takes no part in the parity.
static const std::vector<int> directions;
static const std::vector<int> displacements;
static constexpr int npoint = 6;
static std::vector<int> MakeDirections(void);
static std::vector<int> MakeDisplacements(void);
};
template<class Impl>
class TwoSpinWilsonFermion3plus1D : public TwoSpinWilsonKernels<Impl>, public TwoSpinWilsonFermion3plus1DStatic
{
public:
INHERIT_IMPL_TYPES(Impl);
typedef TwoSpinWilsonKernels<Impl> Kernels;
FermionField _tmp;
FermionField &tmp(void) { return _tmp; }
int Dirichlet;
Coordinate Block;
///////////////////////////////////////////////////////////////
// Implement the abstract base
///////////////////////////////////////////////////////////////
GridBase *GaugeGrid(void) { return _ThreeDimGrid ;}
GridBase *GaugeRedBlackGrid(void) { return _ThreeDimRedBlackGrid ;}
GridBase *FermionGrid(void) { return _FourDimGrid;}
GridBase *FermionRedBlackGrid(void) { return _FourDimRedBlackGrid;}
// full checkerboard operations; leave unimplemented as abstract for now
virtual void M (const FermionField &in, FermionField &out){assert(0);};
virtual void Mdag (const FermionField &in, FermionField &out){assert(0);};
// half checkerboard operations; leave unimplemented as abstract for now
virtual void Meooe (const FermionField &in, FermionField &out);
virtual void Mooee (const FermionField &in, FermionField &out);
virtual void MooeeInv (const FermionField &in, FermionField &out);
virtual void MeooeDag (const FermionField &in, FermionField &out);
virtual void MooeeDag (const FermionField &in, FermionField &out);
virtual void MooeeInvDag (const FermionField &in, FermionField &out);
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp){assert(0);}; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
virtual void MdirAll(const FermionField &in, std::vector<FermionField> &out){assert(0);}; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
// These can be overridden by fancy 5d chiral action
virtual void DhopDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
virtual void DhopDerivEO(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
virtual void DhopDerivOE(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
// void MomentumSpacePropagatorHt_5d(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
void MomentumSpacePropagatorHt(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
void MomentumSpacePropagatorHw(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
// Implement hopping term non-hermitian hopping term; half cb or both
// Implement s-diagonal DW
void DW (const FermionField &in, FermionField &out,int dag);
void Dhop (const FermionField &in, FermionField &out,int dag);
void DhopOE(const FermionField &in, FermionField &out,int dag);
void DhopEO(const FermionField &in, FermionField &out,int dag);
void DhopComms (const FermionField &in, FermionField &out);
void DhopCalc (const FermionField &in, FermionField &out,uint64_t *ids);
// add a DhopComm
// -- suboptimal interface will presently trigger multiple comms.
void DhopDir(const FermionField &in, FermionField &out,int dir,int disp);
void DhopDirAll(const FermionField &in,std::vector<FermionField> &out);
void DhopDirComms(const FermionField &in);
void DhopDirCalc(const FermionField &in, FermionField &out,int point);
///////////////////////////////////////////////////////////////
// New methods added
///////////////////////////////////////////////////////////////
void DerivInternal(StencilImpl & st,
DoubledGaugeField & U,
GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag);
void DhopInternal(StencilImpl & st,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out,
int dag);
void DhopInternalOverlappedComms(StencilImpl & st,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out,
int dag);
void DhopInternalSerialComms(StencilImpl & st,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out,
int dag);
// Constructors
TwoSpinWilsonFermion3plus1D(GaugeField &_Umu,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
GridCartesian &ThreeDimGrid,
GridRedBlackCartesian &ThreeDimRedBlackGrid,
double _M5,const ImplParams &p= ImplParams());
virtual void DirichletBlock(const Coordinate & block)
{
}
// DoubleStore
void ImportGauge(const GaugeField &_Umu);
///////////////////////////////////////////////////////////////
// Data members require to support the functionality
///////////////////////////////////////////////////////////////
public:
// Add these to the support from Wilson
GridBase *_ThreeDimGrid;
GridBase *_ThreeDimRedBlackGrid;
GridBase *_FourDimGrid;
GridBase *_FourDimRedBlackGrid;
double M5;
int Ls;
//Defines the stencils for even and odd
StencilImpl Stencil;
StencilImpl StencilEven;
StencilImpl StencilOdd;
// Copy of the gauge field , with even and odd subsets
DoubledGaugeField Umu;
DoubledGaugeField UmuEven;
DoubledGaugeField UmuOdd;
};
NAMESPACE_END(Grid);

View File

@@ -0,0 +1,222 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/FermionOperatorImpl.h
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////
// Single flavour four spinors with colour index
/////////////////////////////////////////////////////////////////////////////
template <class S, class Representation = FundamentalRepresentation,class Options = CoeffReal >
class TwoSpinWilsonImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation::Dimension > > {
public:
static const int Dimension = Representation::Dimension;
static const bool isFundamental = Representation::isFundamental;
typedef PeriodicGaugeImpl<GaugeImplTypes<S, Dimension > > Gimpl;
INHERIT_GIMPL_TYPES(Gimpl);
//Necessary?
constexpr bool is_fundamental() const{return Dimension == Nc ? 1 : 0;}
typedef typename Options::_Coeff_t Coeff_t;
template <typename vtype> using iImplSpinor = iScalar<iVector<iVector<vtype, Dimension>, Nhs> >;
template <typename vtype> using iImplPropagator = iScalar<iMatrix<iMatrix<vtype, Dimension>, Nhs> >;
template <typename vtype> using iImplHalfSpinor = iScalar<iVector<iVector<vtype, Dimension>, Nhs> >;
template <typename vtype> using iImplHalfCommSpinor = iScalar<iVector<iVector<vtype, Dimension>, Nhs> >;
template <typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Dimension> >, Nds>;
typedef iImplSpinor<Simd> SiteSpinor;
typedef iImplPropagator<Simd> SitePropagator;
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
typedef iImplHalfCommSpinor<Simd> SiteHalfCommSpinor;
typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField;
typedef Lattice<SiteSpinor> FermionField;
typedef Lattice<SitePropagator> PropagatorField;
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
typedef SimpleCompressor<SiteSpinor> Compressor;
typedef WilsonImplParams ImplParams;
typedef CartesianStencil<SiteSpinor, SiteSpinor, ImplParams> StencilImpl;
typedef const typename StencilImpl::View_type StencilView;
ImplParams Params;
TwoSpinWilsonImpl(const ImplParams &p = ImplParams()) : Params(p){
};
template<class _Spinor>
static accelerator_inline void multLink(_Spinor &phi,
const SiteDoubledGaugeField &U,
const _Spinor &chi,
int mu)
{
auto UU = coalescedRead(U(mu));
mult(&phi(), &UU, &chi());
}
template<class _Spinor>
static accelerator_inline void multLink(_Spinor &phi,
const SiteDoubledGaugeField &U,
const _Spinor &chi,
int mu,
StencilEntry *SE,
StencilView &St)
{
multLink(phi,U,chi,mu);
}
template<class _SpinorField>
inline void multLinkField(_SpinorField & out,
const DoubledGaugeField &Umu,
const _SpinorField & phi,
int mu)
{
const int Nsimd = SiteHalfSpinor::Nsimd();
autoView( out_v, out, AcceleratorWrite);
autoView( phi_v, phi, AcceleratorRead);
autoView( Umu_v, Umu, AcceleratorRead);
typedef decltype(coalescedRead(out_v[0])) calcSpinor;
accelerator_for(sss,out.Grid()->oSites(),Nsimd,{
calcSpinor tmp;
multLink(tmp,Umu_v[sss],phi_v(sss),mu);
coalescedWrite(out_v[sss],tmp);
});
}
template <class ref>
static accelerator_inline void loadLinkElement(Simd &reg, ref &memory)
{
reg = memory;
}
inline void DoubleStore(GridBase *GaugeGrid,
DoubledGaugeField &Uds,
const GaugeField &Umu)
{
typedef typename Simd::scalar_type scalar_type;
conformable(Uds.Grid(), GaugeGrid);
conformable(Umu.Grid(), GaugeGrid);
GaugeLinkField U(GaugeGrid);
GaugeLinkField tmp(GaugeGrid);
Lattice<iScalar<vInteger> > coor(GaugeGrid);
////////////////////////////////////////////////////
// apply any boundary phase or twists
////////////////////////////////////////////////////
for (int mu = 0; mu < Nd; mu++) {
////////// boundary phase /////////////
auto pha = Params.boundary_phases[mu];
scalar_type phase( real(pha),imag(pha) );
int L = GaugeGrid->GlobalDimensions()[mu];
int Lmu = L - 1;
LatticeCoordinate(coor, mu);
U = PeekIndex<LorentzIndex>(Umu, mu);
// apply any twists
RealD theta = Params.twist_n_2pi_L[mu] * 2*M_PI / L;
if ( theta != 0.0) {
scalar_type twphase(::cos(theta),::sin(theta));
U = twphase*U;
std::cout << GridLogMessage << " Twist ["<<mu<<"] "<< Params.twist_n_2pi_L[mu]<< " phase"<<phase <<std::endl;
}
tmp = where(coor == Lmu, phase * U, U);
PokeIndex<LorentzIndex>(Uds, tmp, mu);
U = adj(Cshift(U, mu, -1));
U = where(coor == 0, conjugate(phase) * U, U);
PokeIndex<LorentzIndex>(Uds, U, mu + Nd);
}
}
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A,int mu){
GaugeLinkField link(mat.Grid());
link = TraceIndex<SpinIndex>(outerProduct(Btilde,A));
PokeIndex<LorentzIndex>(mat,link,mu);
}
inline void outerProductImpl(PropagatorField &mat, const FermionField &B, const FermionField &A){
mat = outerProduct(B,A);
}
inline void TraceSpinImpl(GaugeLinkField &mat, PropagatorField&P) {
mat = TraceIndex<SpinIndex>(P);
}
inline void extractLinkField(std::vector<GaugeLinkField> &mat, DoubledGaugeField &Uds)
{
for (int mu = 0; mu < Nd; mu++)
mat[mu] = PeekIndex<LorentzIndex>(Uds, mu);
}
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField &Atilde,int mu)
{
int Ls=Btilde.Grid()->_fdimensions[0];
autoView( mat_v , mat, AcceleratorWrite);
{
const int Nsimd = SiteSpinor::Nsimd();
autoView( Btilde_v , Btilde, AcceleratorRead);
autoView( Atilde_v , Atilde, AcceleratorRead);
accelerator_for(sss,mat.Grid()->oSites(),Nsimd,{
int sU=sss;
typedef decltype(coalescedRead(mat_v[sU](mu)() )) ColorMatrixType;
ColorMatrixType sum;
zeroit(sum);
for(int s=0;s<Ls;s++){
int sF = s+Ls*sU;
for(int spn=0;spn<Ns;spn++){ //sum over spin
auto bb = coalescedRead(Btilde_v[sF]()(spn) ); //color vector
auto aa = coalescedRead(Atilde_v[sF]()(spn) );
auto op = outerProduct(bb,aa);
sum = sum + op;
}
}
coalescedWrite(mat_v[sU](mu)(), sum);
});
}
}
};
typedef TwoSpinWilsonImpl<vComplex, FundamentalRepresentation, CoeffReal > TwoSpinWilsonImplR; // Real.. whichever prec
typedef TwoSpinWilsonImpl<vComplexF, FundamentalRepresentation, CoeffReal > TwoSpinWilsonImplF; // Float
typedef TwoSpinWilsonImpl<vComplexD, FundamentalRepresentation, CoeffReal > TwoSpinWilsonImplD; // Double
typedef TwoSpinWilsonImpl<vComplexD2, FundamentalRepresentation, CoeffReal > TwoSpinWilsonImplD2; // Double
NAMESPACE_END(Grid);

View File

@@ -0,0 +1,84 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.h
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Helper routines that implement Wilson stencil for a single site.
// Common to both the WilsonFermion and WilsonFermion5D
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Impl> class TwoSpinWilsonKernels : public FermionOperator<Impl> {
public:
INHERIT_IMPL_TYPES(Impl);
typedef FermionOperator<Impl> Base;
typedef AcceleratorVector<int,STENCIL_MAX> StencilVector;
public:
static void DhopKernel(StencilImpl &st, DoubledGaugeField &U, SiteSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out,
int interior=1,int exterior=1) ;
static void DhopKernel(StencilImpl &st, DoubledGaugeField &U, SiteSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out,
uint64_t *ids);
static void DhopDagKernel(StencilImpl &st, DoubledGaugeField &U, SiteSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out,
int interior=1,int exterior=1) ;
static void DhopDirAll( StencilImpl &st, DoubledGaugeField &U,SiteSpinor *buf, int Ls,
int Nsite, const FermionField &in, std::vector<FermionField> &out) ;
static void DhopDirKernel(StencilImpl &st, DoubledGaugeField &U,SiteSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out, int dirdisp, int gamma);
private:
static accelerator_inline void DhopDirK(StencilView &st, DoubledGaugeFieldView &U,SiteSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out, int dirdisp, int gamma);
static accelerator_inline void DhopDirXp(StencilView &st,DoubledGaugeFieldView &U,SiteSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirYp(StencilView &st,DoubledGaugeFieldView &U,SiteSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirZp(StencilView &st,DoubledGaugeFieldView &U,SiteSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirXm(StencilView &st,DoubledGaugeFieldView &U,SiteSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirYm(StencilView &st,DoubledGaugeFieldView &U,SiteSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirZm(StencilView &st,DoubledGaugeFieldView &U,SiteSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
public:
TwoSpinWilsonKernels(const ImplParams &p = ImplParams()) : Base(p){};
};
NAMESPACE_END(Grid);

View File

@@ -414,29 +414,6 @@ public:
// surface_list.resize(0);
this->same_node.resize(npoints);
};
/*
void BuildSurfaceList(int Ls,int vol4){
// find same node for SHM
// Here we know the distance is 1 for WilsonStencil
for(int point=0;point<this->_npoints;point++){
this->same_node[point] = this->SameNode(point);
}
for(int site = 0 ;site< vol4;site++){
int local = 1;
for(int point=0;point<this->_npoints;point++){
if( (!this->GetNodeLocal(site*Ls,point)) && (!this->same_node[point]) ){
local = 0;
}
}
if(local == 0) {
surface_list.push_back(site);
}
}
}
*/
template < class compressor>
void HaloExchangeOpt(const Lattice<vobj> &source,compressor &compress)
@@ -507,6 +484,11 @@ public:
this->face_table_computed=1;
assert(this->u_comm_offset==this->_unified_buffer_size);
accelerator_barrier();
#ifdef NVLINK_GET
this->_grid->StencilBarrier(); // He can now get mu local gather, I can get his
// Synch shared memory on a single nodes; could use an asynchronous barrier here and defer check
// Or issue barrier AFTER the DMA is running
#endif
}
};

View File

@@ -38,6 +38,8 @@ public:
static int MortonOrder;
static const std::vector<int> directions;
static const std::vector<int> displacements;
static std::vector<int> MakeDirections(void);
static std::vector<int> MakeDisplacements(void);
static const int npoint = 8;
};

View File

@@ -62,6 +62,8 @@ public:
static const std::vector<int> directions;
static const std::vector<int> displacements;
static constexpr int npoint = 8;
static std::vector<int> MakeDirections(void);
static std::vector<int> MakeDisplacements(void);
};
template<class Impl>
@@ -91,13 +93,13 @@ public:
virtual void Mdag (const FermionField &in, FermionField &out){assert(0);};
// half checkerboard operations; leave unimplemented as abstract for now
virtual void Meooe (const FermionField &in, FermionField &out){assert(0);};
virtual void Mooee (const FermionField &in, FermionField &out){assert(0);};
virtual void MooeeInv (const FermionField &in, FermionField &out){assert(0);};
virtual void Meooe (const FermionField &in, FermionField &out);
virtual void Mooee (const FermionField &in, FermionField &out);
virtual void MooeeInv (const FermionField &in, FermionField &out);
virtual void MeooeDag (const FermionField &in, FermionField &out){assert(0);};
virtual void MooeeDag (const FermionField &in, FermionField &out){assert(0);};
virtual void MooeeInvDag (const FermionField &in, FermionField &out){assert(0);};
virtual void MeooeDag (const FermionField &in, FermionField &out);
virtual void MooeeDag (const FermionField &in, FermionField &out);
virtual void MooeeInvDag (const FermionField &in, FermionField &out);
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp){assert(0);}; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
virtual void MdirAll(const FermionField &in, std::vector<FermionField> &out){assert(0);}; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
@@ -109,6 +111,8 @@ public:
void MomentumSpacePropagatorHt_5d(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
void MomentumSpacePropagatorHt(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
void MomentumSpacePropagatorHw(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
void MomentumSpacePropagatorHwQ(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist,
std::vector<double> qmu) ;
// Implement hopping term non-hermitian hopping term; half cb or both
// Implement s-diagonal DW
@@ -117,6 +121,9 @@ public:
void DhopOE(const FermionField &in, FermionField &out,int dag);
void DhopEO(const FermionField &in, FermionField &out,int dag);
void DhopComms (const FermionField &in, FermionField &out);
void DhopCalc (const FermionField &in, FermionField &out,uint64_t *ids);
// add a DhopComm
// -- suboptimal interface will presently trigger multiple comms.
void DhopDir(const FermionField &in, FermionField &out,int dir,int disp);

View File

@@ -166,7 +166,7 @@ public:
U = adj(Cshift(U, mu, -1));
U = where(coor == 0, conjugate(phase) * U, U);
PokeIndex<LorentzIndex>(Uds, U, mu + 4);
PokeIndex<LorentzIndex>(Uds, U, mu + Nd);
}
}

View File

@@ -57,6 +57,10 @@ public:
int Ls, int Nsite, const FermionField &in, FermionField &out,
int interior=1,int exterior=1) ;
static void DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out,
uint64_t *ids);
static void DhopDagKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out,
int interior=1,int exterior=1) ;

View File

@@ -56,7 +56,7 @@ class WilsonTMFermion5D : public WilsonFermion5D<Impl>
Frbgrid,
Ugrid,
Urbgrid,
4.0,p)
Nd*1.0,p)
{
update(_mass,_mu);
@@ -83,7 +83,7 @@ class WilsonTMFermion5D : public WilsonFermion5D<Impl>
out.Checkerboard() = in.Checkerboard();
//axpibg5x(out,in,a,b); // out = a*in + b*i*G5*in
for (int s=0;s<(int)this->mass.size();s++) {
ComplexD a = 4.0+this->mass[s];
ComplexD a = Nd*1.0+this->mass[s];
ComplexD b(0.0,this->mu[s]);
axpbg5y_ssp(out,a,in,b,in,s,s);
}
@@ -92,7 +92,7 @@ class WilsonTMFermion5D : public WilsonFermion5D<Impl>
virtual void MooeeDag(const FermionField &in, FermionField &out) {
out.Checkerboard() = in.Checkerboard();
for (int s=0;s<(int)this->mass.size();s++) {
ComplexD a = 4.0+this->mass[s];
ComplexD a = Nd*1.0+this->mass[s];
ComplexD b(0.0,-this->mu[s]);
axpbg5y_ssp(out,a,in,b,in,s,s);
}
@@ -101,7 +101,7 @@ class WilsonTMFermion5D : public WilsonFermion5D<Impl>
for (int s=0;s<(int)this->mass.size();s++) {
RealD m = this->mass[s];
RealD tm = this->mu[s];
RealD mtil = 4.0+this->mass[s];
RealD mtil = Nd*1.0+this->mass[s];
RealD sq = mtil*mtil+tm*tm;
ComplexD a = mtil/sq;
ComplexD b(0.0, -tm /sq);
@@ -112,7 +112,7 @@ class WilsonTMFermion5D : public WilsonFermion5D<Impl>
for (int s=0;s<(int)this->mass.size();s++) {
RealD m = this->mass[s];
RealD tm = this->mu[s];
RealD mtil = 4.0+this->mass[s];
RealD mtil = Nd*1.0+this->mass[s];
RealD sq = mtil*mtil+tm*tm;
ComplexD a = mtil/sq;
ComplexD b(0.0,tm /sq);
@@ -126,7 +126,7 @@ class WilsonTMFermion5D : public WilsonFermion5D<Impl>
this->Dhop(in, out, DaggerNo);
FermionField tmp(out.Grid());
for (int s=0;s<(int)this->mass.size();s++) {
ComplexD a = 4.0+this->mass[s];
ComplexD a = Nd*1.0+this->mass[s];
ComplexD b(0.0,this->mu[s]);
axpbg5y_ssp(tmp,a,in,b,in,s,s);
}

View File

@@ -48,7 +48,8 @@ CayleyFermion5D<Impl>::CayleyFermion5D(GaugeField &_Umu,
FourDimGrid,
FourDimRedBlackGrid,_M5,p),
mass_plus(_mass), mass_minus(_mass)
{
{
// qmu defaults to zero size;
}
///////////////////////////////////////////////////////////////
@@ -270,6 +271,34 @@ void CayleyFermion5D<Impl>::MeooeDag5D (const FermionField &psi, FermionField
M5Ddag(psi,psi,Din,lower,diag,upper);
}
template<class Impl>
void CayleyFermion5D<Impl>::addQmu(const FermionField &psi,FermionField &chi, int dag)
{
if ( qmu.size() ) {
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
std::vector<ComplexD> coeff(Nd);
ComplexD ci(0,1);
assert(qmu.size()==Nd);
for(int mu=0;mu<Nd;mu++){
coeff[mu] = ci*qmu[mu];
if ( dag ) coeff[mu] = conjugate(coeff[mu]);
}
chi = chi + Gamma(Gmu[0])*psi*coeff[0];
for(int mu=1;mu<Nd;mu++){
chi = chi + Gamma(Gmu[mu])*psi*coeff[mu];
}
}
}
template<class Impl>
void CayleyFermion5D<Impl>::M (const FermionField &psi, FermionField &chi)
{
@@ -277,8 +306,12 @@ void CayleyFermion5D<Impl>::M (const FermionField &psi, FermionField &chi)
// Assemble Din
Meooe5D(psi,Din);
this->DW(Din,chi,DaggerNo);
// add i q_mu gamma_mu here
addQmu(Din,chi,DaggerNo);
// ((b D_W + D_w hop terms +1) on s-diag
axpby(chi,1.0,1.0,chi,psi);
@@ -295,6 +328,9 @@ void CayleyFermion5D<Impl>::Mdag (const FermionField &psi, FermionField &chi)
FermionField Din(psi.Grid());
// Apply Dw
this->DW(psi,Din,DaggerYes);
// add -i conj(q_mu) gamma_mu here ... if qmu is real, gammm_5 hermitian, otherwise not.
addQmu(psi,Din,DaggerYes);
MeooeDag5D(Din,chi);
@@ -488,7 +524,7 @@ void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,std::vector<Co
leem.resize(Ls);
uee.resize(Ls);
ueem.resize(Ls);
for(int i=0;i<Ls;i++){
dee[i] = bee[i];
@@ -529,6 +565,18 @@ void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,std::vector<Co
dee[Ls-1] += delta_d;
}
//////////////////////////////////////////
// Device buffers
//////////////////////////////////////////
d_diag.resize(Ls);
d_upper.resize(Ls);
d_lower.resize(Ls);
d_dee.resize(Ls);
d_lee.resize(Ls);
d_uee.resize(Ls);
d_leem.resize(Ls);
d_ueem.resize(Ls);
// int inv=1;
// this->MooeeInternalCompute(0,inv,MatpInv,MatmInv);
// this->MooeeInternalCompute(1,inv,MatpInvDag,MatmInvDag);

View File

@@ -57,9 +57,9 @@ CayleyFermion5D<Impl>::M5D(const FermionField &psi_i,
int Ls =this->Ls;
static deviceVector<Coeff_t> d_diag(Ls) ; acceleratorCopyToDevice(&diag[0] ,&d_diag[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_upper(Ls); acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_lower(Ls); acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&diag[0] ,&this->d_diag[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&upper[0],&this->d_upper[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&lower[0],&this->d_lower[0],Ls*sizeof(Coeff_t));
auto pdiag = &d_diag[0];
auto pupper = &d_upper[0];
@@ -99,9 +99,9 @@ CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i,
int Ls=this->Ls;
static deviceVector<Coeff_t> d_diag(Ls) ; acceleratorCopyToDevice(&diag[0] ,&d_diag[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_upper(Ls); acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_lower(Ls); acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&diag[0] ,&this->d_diag[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&upper[0],&this->d_upper[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&lower[0],&this->d_lower[0],Ls*sizeof(Coeff_t));
auto pdiag = &d_diag[0];
auto pupper = &d_upper[0];
@@ -134,11 +134,11 @@ CayleyFermion5D<Impl>::MooeeInv (const FermionField &psi_i, FermionField &chi
int Ls=this->Ls;
static deviceVector<Coeff_t> d_lee(Ls); acceleratorCopyToDevice(&lee[0],&d_lee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_dee(Ls); acceleratorCopyToDevice(&dee[0],&d_dee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_uee(Ls); acceleratorCopyToDevice(&uee[0],&d_uee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_leem(Ls); acceleratorCopyToDevice(&leem[0],&d_leem[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_ueem(Ls); acceleratorCopyToDevice(&ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&lee[0],&d_lee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&dee[0],&d_dee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&uee[0],&d_uee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&leem[0],&d_leem[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t));
auto plee = & d_lee [0];
auto pdee = & d_dee [0];
@@ -196,11 +196,11 @@ CayleyFermion5D<Impl>::MooeeInvDag (const FermionField &psi_i, FermionField &chi
autoView(psi , psi_i,AcceleratorRead);
autoView(chi , chi_i,AcceleratorWrite);
static deviceVector<Coeff_t> d_lee(Ls); acceleratorCopyToDevice(&lee[0],&d_lee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_dee(Ls); acceleratorCopyToDevice(&dee[0],&d_dee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_uee(Ls); acceleratorCopyToDevice(&uee[0],&d_uee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_leem(Ls); acceleratorCopyToDevice(&leem[0],&d_leem[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_ueem(Ls); acceleratorCopyToDevice(&ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&lee[0],&d_lee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&dee[0],&d_dee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&uee[0],&d_uee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&leem[0],&d_leem[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t));
auto plee = & d_lee [0];
auto pdee = & d_dee [0];

View File

@@ -0,0 +1,376 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/CompactWilsonCloverFermion5DImplementation.h
Copyright (C) 2017 - 2025
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/qcd/spin/Dirac.h>
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion5D.h>
NAMESPACE_BEGIN(Grid);
template<class Impl, class CloverHelpers>
CompactWilsonCloverFermion5D<Impl, CloverHelpers>::CompactWilsonCloverFermion5D(GaugeField& _Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
const RealD _mass,
const RealD _csw_r,
const RealD _csw_t,
const RealD _cF,
const ImplParams& impl_p)
: WilsonBase(_Umu, FiveDimGrid, FiveDimRedBlackGrid, FourDimGrid, FourDimRedBlackGrid, _mass, impl_p)
, csw_r(_csw_r)
, csw_t(_csw_t)
, cF(_cF)
, fixedBoundaries(impl_p.boundary_phases[Nd-1] == 0.0)
, Diagonal(&FourDimGrid), Triangle(&FourDimGrid)
, DiagonalEven(&FourDimRedBlackGrid), TriangleEven(&FourDimRedBlackGrid)
, DiagonalOdd(&FourDimRedBlackGrid), TriangleOdd(&FourDimRedBlackGrid)
, DiagonalInv(&FourDimGrid), TriangleInv(&FourDimGrid)
, DiagonalInvEven(&FourDimRedBlackGrid), TriangleInvEven(&FourDimRedBlackGrid)
, DiagonalInvOdd(&FourDimRedBlackGrid), TriangleInvOdd(&FourDimRedBlackGrid)
, Tmp(&FiveDimGrid)
, BoundaryMask(&FiveDimGrid)
, BoundaryMaskEven(&FiveDimRedBlackGrid), BoundaryMaskOdd(&FiveDimRedBlackGrid)
{
assert(Nd == 4 && Nc == 3 && Ns == 4 && Impl::Dimension == 3);
csw_r *= 0.5;
csw_t *= 0.5;
//if (clover_anisotropy.isAnisotropic)
// csw_r /= clover_anisotropy.xi_0;
ImportGauge(_Umu);
if (fixedBoundaries) {
this->BoundaryMaskEven.Checkerboard() = Even;
this->BoundaryMaskOdd.Checkerboard() = Odd;
CompactHelpers::SetupMasks(this->BoundaryMask, this->BoundaryMaskEven, this->BoundaryMaskOdd);
}
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::Dhop(const FermionField& in, FermionField& out, int dag) {
WilsonBase::Dhop(in, out, dag);
if(fixedBoundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::DhopOE(const FermionField& in, FermionField& out, int dag) {
WilsonBase::DhopOE(in, out, dag);
if(fixedBoundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::DhopEO(const FermionField& in, FermionField& out, int dag) {
WilsonBase::DhopEO(in, out, dag);
if(fixedBoundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::DhopDir(const FermionField& in, FermionField& out, int dir, int disp) {
WilsonBase::DhopDir(in, out, dir, disp);
if(this->fixedBoundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::DhopDirAll(const FermionField& in, std::vector<FermionField>& out) {
WilsonBase::DhopDirAll(in, out);
if(this->fixedBoundaries) {
for(auto& o : out) ApplyBoundaryMask(o);
}
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::M(const FermionField& in, FermionField& out) {
out.Checkerboard() = in.Checkerboard();
WilsonBase::Dhop(in, out, DaggerNo); // call base to save applying bc
Mooee(in, Tmp);
axpy(out, 1.0, out, Tmp);
if(fixedBoundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::Mdag(const FermionField& in, FermionField& out) {
out.Checkerboard() = in.Checkerboard();
WilsonBase::Dhop(in, out, DaggerYes); // call base to save applying bc
MooeeDag(in, Tmp);
axpy(out, 1.0, out, Tmp);
if(fixedBoundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::Meooe(const FermionField& in, FermionField& out) {
WilsonBase::Meooe(in, out);
if(fixedBoundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MeooeDag(const FermionField& in, FermionField& out) {
WilsonBase::MeooeDag(in, out);
if(fixedBoundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::Mooee(const FermionField& in, FermionField& out) {
if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) {
MooeeInternal(in, out, DiagonalOdd, TriangleOdd);
} else {
MooeeInternal(in, out, DiagonalEven, TriangleEven);
}
} else {
MooeeInternal(in, out, Diagonal, Triangle);
}
if(fixedBoundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MooeeDag(const FermionField& in, FermionField& out) {
Mooee(in, out); // blocks are hermitian
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MooeeInv(const FermionField& in, FermionField& out) {
if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) {
MooeeInternal(in, out, DiagonalInvOdd, TriangleInvOdd);
} else {
MooeeInternal(in, out, DiagonalInvEven, TriangleInvEven);
}
} else {
MooeeInternal(in, out, DiagonalInv, TriangleInv);
}
if(fixedBoundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MooeeInvDag(const FermionField& in, FermionField& out) {
MooeeInv(in, out); // blocks are hermitian
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::Mdir(const FermionField& in, FermionField& out, int dir, int disp) {
DhopDir(in, out, dir, disp);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MdirAll(const FermionField& in, std::vector<FermionField>& out) {
DhopDirAll(in, out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) {
assert(!fixedBoundaries); // TODO check for changes required for open bc
// NOTE: code copied from original clover term
conformable(X.Grid(), Y.Grid());
conformable(X.Grid(), force.Grid());
GaugeLinkField force_mu(force.Grid()), lambda(force.Grid());
GaugeField clover_force(force.Grid());
PropagatorField Lambda(force.Grid());
// Guido: Here we are hitting some performance issues:
// need to extract the components of the DoubledGaugeField
// for each call
// Possible solution
// Create a vector object to store them? (cons: wasting space)
std::vector<GaugeLinkField> U(Nd, this->Umu.Grid());
Impl::extractLinkField(U, this->Umu);
force = Zero();
// Derivative of the Wilson hopping term
this->DhopDeriv(force, X, Y, dag);
///////////////////////////////////////////////////////////
// Clover term derivative
///////////////////////////////////////////////////////////
Impl::outerProductImpl(Lambda, X, Y);
//std::cout << "Lambda:" << Lambda << std::endl;
Gamma::Algebra sigma[] = {
Gamma::Algebra::SigmaXY,
Gamma::Algebra::SigmaXZ,
Gamma::Algebra::SigmaXT,
Gamma::Algebra::MinusSigmaXY,
Gamma::Algebra::SigmaYZ,
Gamma::Algebra::SigmaYT,
Gamma::Algebra::MinusSigmaXZ,
Gamma::Algebra::MinusSigmaYZ,
Gamma::Algebra::SigmaZT,
Gamma::Algebra::MinusSigmaXT,
Gamma::Algebra::MinusSigmaYT,
Gamma::Algebra::MinusSigmaZT};
/*
sigma_{\mu \nu}=
| 0 sigma[0] sigma[1] sigma[2] |
| sigma[3] 0 sigma[4] sigma[5] |
| sigma[6] sigma[7] 0 sigma[8] |
| sigma[9] sigma[10] sigma[11] 0 |
*/
int count = 0;
clover_force = Zero();
for (int mu = 0; mu < 4; mu++)
{
force_mu = Zero();
for (int nu = 0; nu < 4; nu++)
{
if (mu == nu)
continue;
RealD factor;
if (nu == 4 || mu == 4)
{
factor = 2.0 * csw_t;
}
else
{
factor = 2.0 * csw_r;
}
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
force_mu -= factor*CloverHelpers::Cmunu(U, lambda, mu, nu); // checked
count++;
}
pokeLorentz(clover_force, U[mu] * force_mu, mu);
}
//clover_force *= csw;
force += clover_force;
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MooDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) {
assert(0);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MeeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) {
assert(0);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MooeeInternal(const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle) {
assert(in.Checkerboard() == Odd || in.Checkerboard() == Even);
out.Checkerboard() = in.Checkerboard();
conformable(in, out);
CompactHelpers::MooeeKernel(diagonal.oSites(), this->Ls, in, out, diagonal, triangle);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::ImportGauge(const GaugeField& _Umu) {
// NOTE: parts copied from original implementation
// Import gauge into base class
double t0 = usecond();
WilsonBase::ImportGauge(_Umu); // NOTE: called here and in wilson constructor -> performed twice, but can't avoid that
// Initialize temporary variables
double t1 = usecond();
conformable(_Umu.Grid(), this->GaugeGrid());
GridBase* grid = _Umu.Grid();
typename Impl::GaugeLinkField Bx(grid), By(grid), Bz(grid), Ex(grid), Ey(grid), Ez(grid);
CloverField TmpOriginal(grid);
CloverField TmpInverse(grid);
// Compute the field strength terms mu>nu
double t2 = usecond();
WilsonLoops<Impl>::FieldStrength(Bx, _Umu, Zdir, Ydir);
WilsonLoops<Impl>::FieldStrength(By, _Umu, Zdir, Xdir);
WilsonLoops<Impl>::FieldStrength(Bz, _Umu, Ydir, Xdir);
WilsonLoops<Impl>::FieldStrength(Ex, _Umu, Tdir, Xdir);
WilsonLoops<Impl>::FieldStrength(Ey, _Umu, Tdir, Ydir);
WilsonLoops<Impl>::FieldStrength(Ez, _Umu, Tdir, Zdir);
// Compute the Clover Operator acting on Colour and Spin
// multiply here by the clover coefficients for the anisotropy
double t3 = usecond();
TmpOriginal = Helpers::fillCloverYZ(Bx) * csw_r;
TmpOriginal += Helpers::fillCloverXZ(By) * csw_r;
TmpOriginal += Helpers::fillCloverXY(Bz) * csw_r;
TmpOriginal += Helpers::fillCloverXT(Ex) * csw_t;
TmpOriginal += Helpers::fillCloverYT(Ey) * csw_t;
TmpOriginal += Helpers::fillCloverZT(Ez) * csw_t;
// Instantiate the clover term
// - In case of the standard clover the mass term is added
// - In case of the exponential clover the clover term is exponentiated
double t4 = usecond();
CloverHelpers::InstantiateClover(TmpOriginal, TmpInverse, csw_t, 4.0 + this->M5 /*this->diag_mass*/);
// Convert the data layout of the clover term
double t5 = usecond();
CompactHelpers::ConvertLayout(TmpOriginal, Diagonal, Triangle);
// Modify the clover term at the temporal boundaries in case of open boundary conditions
double t6 = usecond();
if(fixedBoundaries) CompactHelpers::ModifyBoundaries(Diagonal, Triangle, csw_t, cF, 4.0 + this->M5 /*this->diag_mass*/);
// Invert the Clover term
// In case of the exponential clover with (anti-)periodic boundary conditions exp(-Clover) saved
// in TmpInverse can be used. In all other cases the clover term has to be explictly inverted.
// TODO: For now this inversion is explictly done on the CPU
double t7 = usecond();
CloverHelpers::InvertClover(TmpInverse, Diagonal, Triangle, DiagonalInv, TriangleInv, fixedBoundaries);
// Fill the remaining clover fields
double t8 = usecond();
pickCheckerboard(Even, DiagonalEven, Diagonal);
pickCheckerboard(Even, TriangleEven, Triangle);
pickCheckerboard(Odd, DiagonalOdd, Diagonal);
pickCheckerboard(Odd, TriangleOdd, Triangle);
pickCheckerboard(Even, DiagonalInvEven, DiagonalInv);
pickCheckerboard(Even, TriangleInvEven, TriangleInv);
pickCheckerboard(Odd, DiagonalInvOdd, DiagonalInv);
pickCheckerboard(Odd, TriangleInvOdd, TriangleInv);
// Report timings
double t9 = usecond();
std::cout << GridLogDebug << "CompactWilsonCloverFermion5D::ImportGauge timings:" << std::endl;
std::cout << GridLogDebug << "WilsonFermion::Importgauge = " << (t1 - t0) / 1e6 << std::endl;
std::cout << GridLogDebug << "allocations = " << (t2 - t1) / 1e6 << std::endl;
std::cout << GridLogDebug << "field strength = " << (t3 - t2) / 1e6 << std::endl;
std::cout << GridLogDebug << "fill clover = " << (t4 - t3) / 1e6 << std::endl;
std::cout << GridLogDebug << "instantiate clover = " << (t5 - t4) / 1e6 << std::endl;
std::cout << GridLogDebug << "convert layout = " << (t6 - t5) / 1e6 << std::endl;
std::cout << GridLogDebug << "modify boundaries = " << (t7 - t6) / 1e6 << std::endl;
std::cout << GridLogDebug << "invert clover = " << (t8 - t7) / 1e6 << std::endl;
std::cout << GridLogDebug << "pick cbs = " << (t9 - t8) / 1e6 << std::endl;
std::cout << GridLogDebug << "total = " << (t9 - t0) / 1e6 << std::endl;
}
NAMESPACE_END(Grid);

View File

@@ -42,13 +42,13 @@ template<class Impl>
void ContinuedFractionFermion5D<Impl>::SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata)
{
// How to check Ls matches??
// std::cout<<GridLogMessage << Ls << " Ls"<<std::endl;
// std::cout<<GridLogMessage << zdata->n << " - n"<<std::endl;
// std::cout<<GridLogMessage << zdata->da << " -da "<<std::endl;
// std::cout<<GridLogMessage << zdata->db << " -db"<<std::endl;
// std::cout<<GridLogMessage << zdata->dn << " -dn"<<std::endl;
// std::cout<<GridLogMessage << zdata->dd << " -dd"<<std::endl;
std::cout<<GridLogMessage << zdata->n << " - n"<<std::endl;
std::cout<<GridLogMessage << zdata->da << " -da "<<std::endl;
std::cout<<GridLogMessage << zdata->db << " -db"<<std::endl;
std::cout<<GridLogMessage << zdata->dn << " -dn"<<std::endl;
std::cout<<GridLogMessage << zdata->dd << " -dd"<<std::endl;
int Ls = this->Ls;
std::cout<<GridLogMessage << Ls << " Ls"<<std::endl;
assert(zdata->db==Ls);// Beta has Ls coeffs
R=(1+this->mass)/(1-this->mass);
@@ -320,7 +320,7 @@ ContinuedFractionFermion5D<Impl>::ContinuedFractionFermion5D(
int Ls = this->Ls;
conformable(solution5d.Grid(),this->FermionGrid());
conformable(exported4d.Grid(),this->GaugeGrid());
ExtractSlice(exported4d, solution5d, Ls-1, Ls-1);
ExtractSlice(exported4d, solution5d, Ls-1, 0);
}
template<class Impl>
void ContinuedFractionFermion5D<Impl>::ImportPhysicalFermionSource(const FermionField &input4d,FermionField &imported5d)
@@ -330,7 +330,7 @@ ContinuedFractionFermion5D<Impl>::ContinuedFractionFermion5D(
conformable(input4d.Grid() ,this->GaugeGrid());
FermionField tmp(this->FermionGrid());
tmp=Zero();
InsertSlice(input4d, tmp, Ls-1, Ls-1);
InsertSlice(input4d, tmp, Ls-1, 0);
tmp=Gamma(Gamma::Algebra::Gamma5)*tmp;
this->Dminus(tmp,imported5d);
}

View File

@@ -51,13 +51,13 @@ void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi_i, const FermionFi
autoView( chi , chi_i, AcceleratorWrite);
assert(phi.Checkerboard() == psi.Checkerboard());
static deviceVector<Coeff_t> d_diag(Ls); acceleratorCopyToDevice(&diag[0],&d_diag[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_upper(Ls);acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_lower(Ls);acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t));
auto pdiag = &d_diag[0];
auto pupper = &d_upper[0];
auto plower = &d_lower[0];
auto pdiag = &this->d_diag[0];
auto pupper = &this->d_upper[0];
auto plower = &this->d_lower[0];
acceleratorCopyToDevice(&diag[0],&pdiag[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&upper[0],&pupper[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&lower[0],&plower[0],Ls*sizeof(Coeff_t));
// Flops = 6.0*(Nc*Ns) *Ls*vol
@@ -89,14 +89,14 @@ void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi_i, const Fermio
autoView( phi , phi_i, AcceleratorRead);
autoView( chi , chi_i, AcceleratorWrite);
assert(phi.Checkerboard() == psi.Checkerboard());
static deviceVector<Coeff_t> d_diag(Ls); acceleratorCopyToDevice(&diag[0],&d_diag[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_upper(Ls);acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_lower(Ls);acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t));
auto pdiag = &d_diag[0];
auto pupper = &d_upper[0];
auto plower = &d_lower[0];
auto pdiag = &this->d_diag[0];
auto pupper = &this->d_upper[0];
auto plower = &this->d_lower[0];
acceleratorCopyToDevice(&diag[0] ,&pdiag[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&upper[0],&pupper[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&lower[0],&plower[0],Ls*sizeof(Coeff_t));
// Flops = 6.0*(Nc*Ns) *Ls*vol
@@ -125,18 +125,18 @@ void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi_i, FermionFie
autoView( chi, chi_i, AcceleratorWrite);
int Ls = this->Ls;
static deviceVector<Coeff_t> d_lee(Ls); acceleratorCopyToDevice(&this->lee[0],&d_lee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_dee(Ls); acceleratorCopyToDevice(&this->dee[0],&d_dee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_uee(Ls); acceleratorCopyToDevice(&this->uee[0],&d_uee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_leem(Ls); acceleratorCopyToDevice(&this->leem[0],&d_leem[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_ueem(Ls); acceleratorCopyToDevice(&this->ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t));
auto plee = & d_lee [0];
auto pdee = & d_dee [0];
auto puee = & d_uee [0];
auto pleem = & d_leem[0];
auto pueem = & d_ueem[0];
auto plee = & this->d_lee [0];
auto pdee = & this->d_dee [0];
auto puee = & this->d_uee [0];
auto pleem = & this->d_leem[0];
auto pueem = & this->d_ueem[0];
acceleratorCopyToDevice(&this->lee[0],&plee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->dee[0],&pdee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->uee[0],&puee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->leem[0],&pleem[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->ueem[0],&pueem[0],Ls*sizeof(Coeff_t));
uint64_t nloop=grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{
uint64_t ss=sss*Ls;

View File

@@ -240,7 +240,7 @@ void DomainWallEOFAFermion<Impl>::SetCoefficientsInternal(RealD zolo_hi, std::ve
this->ceo.resize(Ls);
for(int i=0; i<Ls; ++i){
this->bee[i] = 4.0 - this->M5 + 1.0;
this->bee[i] = Nd*1.0 - this->M5 + 1.0;
this->cee[i] = 1.0;
}

View File

@@ -50,14 +50,14 @@ void MobiusEOFAFermion<Impl>::M5D(const FermionField &psi_i, const FermionField
assert(phi.Checkerboard() == psi.Checkerboard());
static deviceVector<Coeff_t> d_diag(Ls); acceleratorCopyToDevice(&diag[0],&d_diag[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_upper(Ls);acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_lower(Ls);acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t));
auto pdiag = &d_diag[0];
auto pupper = &d_upper[0];
auto plower = &d_lower[0];
auto pdiag = &this->d_diag[0];
auto pupper = &this->d_upper[0];
auto plower = &this->d_lower[0];
acceleratorCopyToDevice(&diag[0],&pdiag[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&upper[0],&pupper[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&lower[0],&plower[0],Ls*sizeof(Coeff_t));
// Flops = 6.0*(Nc*Ns) *Ls*vol
int nloop = grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{
@@ -93,15 +93,15 @@ void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField &psi_i, const Fermion
assert(phi.Checkerboard() == psi.Checkerboard());
static deviceVector<Coeff_t> d_diag(Ls); acceleratorCopyToDevice(&diag[0],&d_diag[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_upper(Ls);acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_lower(Ls);acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_shift_coeffs(Ls);acceleratorCopyToDevice(&shift_coeffs[0],&d_shift_coeffs[0],Ls*sizeof(Coeff_t));
auto pdiag = &d_diag[0];
auto pupper = &d_upper[0];
auto plower = &d_lower[0];
auto pshift_coeffs = &d_shift_coeffs[0];
auto pdiag = &this->d_diag[0];
auto pupper = &this->d_upper[0];
auto plower = &this->d_lower[0];
auto pshift_coeffs = &this->d_shift_coefficients[0];
acceleratorCopyToDevice(&diag[0],&pdiag[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&upper[0],&pupper[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&lower[0],&plower[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&shift_coeffs[0],&pshift_coeffs[0],Ls*sizeof(Coeff_t));
// Flops = 6.0*(Nc*Ns) *Ls*vol
int nloop = grid->oSites()/Ls;
@@ -138,14 +138,14 @@ void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField &psi_i, const FermionFie
autoView(chi , chi_i, AcceleratorWrite);
assert(phi.Checkerboard() == psi.Checkerboard());
static deviceVector<Coeff_t> d_diag(Ls); acceleratorCopyToDevice(&diag[0],&d_diag[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_upper(Ls);acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_lower(Ls);acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t));
auto pdiag = &d_diag[0];
auto pupper = &d_upper[0];
auto plower = &d_lower[0];
auto pdiag = &this->d_diag[0];
auto pupper = &this->d_upper[0];
auto plower = &this->d_lower[0];
acceleratorCopyToDevice(&diag[0],&pdiag[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&upper[0],&pupper[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&lower[0],&plower[0],Ls*sizeof(Coeff_t));
// Flops = 6.0*(Nc*Ns) *Ls*vol
int nloop = grid->oSites()/Ls;
@@ -180,16 +180,16 @@ void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField &psi_i, const Ferm
assert(phi.Checkerboard() == psi.Checkerboard());
static deviceVector<Coeff_t> d_diag(Ls); acceleratorCopyToDevice(&diag[0],&d_diag[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_upper(Ls);acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_lower(Ls);acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_shift_coeffs(Ls);acceleratorCopyToDevice(&shift_coeffs[0],&d_shift_coeffs[0],Ls*sizeof(Coeff_t));
auto pdiag = &d_diag[0];
auto pupper = &d_upper[0];
auto plower = &d_lower[0];
auto pshift_coeffs = &d_shift_coeffs[0];
auto pdiag = &this->d_diag[0];
auto pupper = &this->d_upper[0];
auto plower = &this->d_lower[0];
auto pshift_coeffs = &this->d_shift_coefficients[0];
acceleratorCopyToDevice(&diag[0],&pdiag[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&upper[0],&pupper[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&lower[0],&plower[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&shift_coeffs[0],&pshift_coeffs[0],Ls*sizeof(Coeff_t));
// Flops = 6.0*(Nc*Ns) *Ls*vol
auto pm = this->pm;
@@ -230,17 +230,17 @@ void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField &psi_i, FermionField &
autoView(psi , psi_i, AcceleratorRead);
autoView(chi , chi_i, AcceleratorWrite);
static deviceVector<Coeff_t> d_lee(Ls); acceleratorCopyToDevice(&this->lee[0],&d_lee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_dee(Ls); acceleratorCopyToDevice(&this->dee[0],&d_dee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_uee(Ls); acceleratorCopyToDevice(&this->uee[0],&d_uee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_leem(Ls); acceleratorCopyToDevice(&this->leem[0],&d_leem[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_ueem(Ls); acceleratorCopyToDevice(&this->ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t));
auto plee = & this->d_lee [0];
auto pdee = & this->d_dee [0];
auto puee = & this->d_uee [0];
auto pleem = & this->d_leem[0];
auto pueem = & this->d_ueem[0];
auto plee = & d_lee [0];
auto pdee = & d_dee [0];
auto puee = & d_uee [0];
auto pleem = & d_leem[0];
auto pueem = & d_ueem[0];
acceleratorCopyToDevice(&this->lee[0],&plee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->dee[0],&pdee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->uee[0],&puee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->leem[0],&pleem[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->ueem[0],&pueem[0],Ls*sizeof(Coeff_t));
if(this->shift != 0.0){ MooeeInv_shift(psi_i,chi_i); return; }
@@ -293,23 +293,22 @@ void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField &psi_i, FermionF
autoView(chi , chi_i, AcceleratorWrite);
// Move into object and constructor
static deviceVector<Coeff_t> d_lee(Ls); acceleratorCopyToDevice(&this->lee[0],&d_lee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_dee(Ls); acceleratorCopyToDevice(&this->dee[0],&d_dee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_uee(Ls); acceleratorCopyToDevice(&this->uee[0],&d_uee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_leem(Ls); acceleratorCopyToDevice(&this->leem[0],&d_leem[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_ueem(Ls); acceleratorCopyToDevice(&this->ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t));
auto pm = this->pm;
auto plee = & d_lee [0];
auto pdee = & d_dee [0];
auto puee = & d_uee [0];
auto pleem = & d_leem[0];
auto pueem = & d_ueem[0];
auto plee = & this->d_lee [0];
auto pdee = & this->d_dee [0];
auto puee = & this->d_uee [0];
auto pleem = & this->d_leem[0];
auto pueem = & this->d_ueem[0];
auto pMooeeInv_shift_lc = &this->d_MooeeInv_shift_lc[0];
auto pMooeeInv_shift_norm = &this->d_MooeeInv_shift_norm[0];
static deviceVector<Coeff_t> d_MooeeInv_shift_lc(Ls); acceleratorCopyToDevice(&MooeeInv_shift_lc[0],&d_MooeeInv_shift_lc[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_MooeeInv_shift_norm(Ls); acceleratorCopyToDevice(&MooeeInv_shift_norm[0],&d_MooeeInv_shift_norm[0],Ls*sizeof(Coeff_t));
auto pMooeeInv_shift_lc = &d_MooeeInv_shift_lc[0];
auto pMooeeInv_shift_norm = &d_MooeeInv_shift_norm[0];
acceleratorCopyToDevice(&this->lee[0],&plee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->dee[0],&pdee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->uee[0],&puee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->leem[0],&pleem[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->ueem[0],&pueem[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&MooeeInv_shift_lc[0],&pMooeeInv_shift_lc[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&MooeeInv_shift_norm[0],&pMooeeInv_shift_norm[0],Ls*sizeof(Coeff_t));
int nloop = grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{
@@ -367,17 +366,17 @@ void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField &psi_i, FermionFiel
autoView(psi , psi_i, AcceleratorRead);
autoView(chi , chi_i, AcceleratorWrite);
static deviceVector<Coeff_t> d_lee(Ls); acceleratorCopyToDevice(&this->lee[0],&d_lee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_dee(Ls); acceleratorCopyToDevice(&this->dee[0],&d_dee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_uee(Ls); acceleratorCopyToDevice(&this->uee[0],&d_uee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_leem(Ls); acceleratorCopyToDevice(&this->leem[0],&d_leem[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_ueem(Ls); acceleratorCopyToDevice(&this->ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t));
auto plee = &this->d_lee [0];
auto pdee = &this->d_dee [0];
auto puee = &this->d_uee [0];
auto pleem = &this->d_leem[0];
auto pueem = &this->d_ueem[0];
auto plee = & d_lee [0];
auto pdee = & d_dee [0];
auto puee = & d_uee [0];
auto pleem = & d_leem[0];
auto pueem = & d_ueem[0];
acceleratorCopyToDevice(&this->lee[0],&plee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->dee[0],&pdee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->uee[0],&puee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->leem[0],&pleem[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->ueem[0],&pueem[0],Ls*sizeof(Coeff_t));
int nloop = grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{
@@ -426,25 +425,23 @@ void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField &psi_i, Fermi
autoView(chi , chi_i, AcceleratorWrite);
int Ls = this->Ls;
static deviceVector<Coeff_t> d_lee(Ls); acceleratorCopyToDevice(&this->lee[0],&d_lee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_dee(Ls); acceleratorCopyToDevice(&this->dee[0],&d_dee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_uee(Ls); acceleratorCopyToDevice(&this->uee[0],&d_uee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_leem(Ls); acceleratorCopyToDevice(&this->leem[0],&d_leem[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_ueem(Ls); acceleratorCopyToDevice(&this->ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t));
auto pm = this->pm;
auto plee = & d_lee [0];
auto pdee = & d_dee [0];
auto puee = & d_uee [0];
auto pleem = & d_leem[0];
auto pueem = & d_ueem[0];
auto plee = & this->d_lee [0];
auto pdee = & this->d_dee [0];
auto puee = & this->d_uee [0];
auto pleem = & this->d_leem[0];
auto pueem = & this->d_ueem[0];
static deviceVector<Coeff_t> d_MooeeInvDag_shift_lc(Ls);
static deviceVector<Coeff_t> d_MooeeInvDag_shift_norm(Ls);
acceleratorCopyToDevice(&MooeeInvDag_shift_lc[0],&d_MooeeInvDag_shift_lc[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&MooeeInvDag_shift_norm[0],&d_MooeeInvDag_shift_norm[0],Ls*sizeof(Coeff_t));
auto pMooeeInvDag_shift_lc = &d_MooeeInvDag_shift_lc[0];
auto pMooeeInvDag_shift_norm = &d_MooeeInvDag_shift_norm[0];
auto pMooeeInvDag_shift_lc = &this->d_MooeeInv_shift_lc[0];
auto pMooeeInvDag_shift_norm = &this->d_MooeeInv_shift_norm[0];
acceleratorCopyToDevice(&this->lee[0],&plee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->dee[0],&pdee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->uee[0],&puee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->leem[0],&pleem[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->ueem[0],&pueem[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&MooeeInvDag_shift_lc[0],&pMooeeInvDag_shift_lc[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&MooeeInvDag_shift_norm[0],&pMooeeInvDag_shift_norm[0],Ls*sizeof(Coeff_t));
// auto pMooeeInvDag_shift_lc = &MooeeInvDag_shift_lc[0];
// auto pMooeeInvDag_shift_norm = &MooeeInvDag_shift_norm[0];

View File

@@ -237,7 +237,32 @@ void PartialFractionFermion5D<Impl>::M_internal(const FermionField &psi, Fermi
// ( 0 -sqrt(p_i)*amax | 2 R gamma_5 + p0/amax 2H
//
this->DW(psi,D,DaggerNo);
this->DW(psi,D,DaggerNo);
// DW - DW+iqslash
// (g5 Dw)^dag = g5 Dw
// (iqmu g5 gmu)^dag = (-i qmu gmu^dag g5^dag) = i qmu g5 gmu
if ( qmu.size() ) {
std::cout<< "Mat" << "qmu ("<<qmu[0]<<","<<qmu[1]<<","<<qmu[2]<<","<<qmu[3]<<")"<<std::endl;
assert(qmu.size()==Nd);
FermionField qslash_psi(psi.Grid());
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
qslash_psi = qmu[0]*(Gamma(Gmu[0])*psi);
for(int mu=1;mu<Nd;mu++){
qslash_psi = qslash_psi + qmu[mu]*(Gamma(Gmu[mu])*psi);
}
ComplexD ci(0.0,1.0);
qslash_psi = ci*qslash_psi ; // i qslash
D = D + qslash_psi;
}
int nblock=(Ls-1)/2;
for(int b=0;b<nblock;b++){
@@ -255,15 +280,55 @@ void PartialFractionFermion5D<Impl>::M_internal(const FermionField &psi, Fermi
}
{
// The 'conventional' Cayley overlap operator is
//
// Dov = (1+m)/2 + (1-m)/2 g5 sgn Hw
//
//
// With massless limit 1/2(1+g5 sgnHw)
//
// Luscher shows quite neatly that 1+g5 sgn Hw has tree level propagator i qslash +O(a^2)
//
// However, the conventional normalisation has both a leading order factor of 2 in Zq
// at tree level AND a mass dependent (1-m) that are convenient to absorb.
//
// In WilsonFermion5DImplementation.h, the tree level propagator for Hw is
//
// num = -i sin kmu gmu
//
// denom ( sqrt(sk^2 + (2shk^2 - 1)^2
// b_k = sk2 - M5;
//
// w_k = sqrt(sk + b_k*b_k);
//
// denom= ( w_k + b_k + mass*mass) ;
//
// denom= one/denom;
// out = num*denom;
//
// Chroma, and Grid define partial fraction via 4d operator
//
// Dpf = 2/(1-m) x Dov = (1+m)/(1-m) + g5 sgn Hw
//
// Now since:
//
// (1+m)/(1-m) = (1-m)/(1-m) + 2m/(1-m) = 1 + 2m/(1-m)
//
// This corresponds to a modified mass parameter
//
// It has an annoying
//
//
double R=(1+this->mass)/(1-this->mass);
//R g5 psi[Ls] + p[0] H
//R g5 psi[Ls] + p[0] Hw
ag5xpbg5y_ssp(chi,R*scale,psi,p[nblock]*scale/amax,D,Ls-1,Ls-1);
for(int b=0;b<nblock;b++){
int s = 2*b+1;
double pp = p[nblock-1-b];
axpby_ssp(chi,1.0,chi,-sqrt(amax*pp)*scale*sign,psi,Ls-1,s);
}
}
}
@@ -411,17 +476,18 @@ void PartialFractionFermion5D<Impl>::SetCoefficientsZolotarev(RealD zolo_hi,App
int Ls = this->Ls;
conformable(solution5d.Grid(),this->FermionGrid());
conformable(exported4d.Grid(),this->GaugeGrid());
ExtractSlice(exported4d, solution5d, Ls-1, Ls-1);
ExtractSlice(exported4d, solution5d, Ls-1, 0);
}
template<class Impl>
void PartialFractionFermion5D<Impl>::ImportPhysicalFermionSource(const FermionField &input4d,FermionField &imported5d)
{
//void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice, int orthog)
int Ls = this->Ls;
conformable(imported5d.Grid(),this->FermionGrid());
conformable(input4d.Grid() ,this->GaugeGrid());
FermionField tmp(this->FermionGrid());
tmp=Zero();
InsertSlice(input4d, tmp, Ls-1, Ls-1);
InsertSlice(input4d, tmp, Ls-1, 0);
tmp=Gamma(Gamma::Algebra::Gamma5)*tmp;
this->Dminus(tmp,imported5d);
}
@@ -442,7 +508,7 @@ PartialFractionFermion5D<Impl>::PartialFractionFermion5D(GaugeField &_Umu,
{
int Ls = this->Ls;
qmu.resize(0);
assert((Ls&0x1)==1); // Odd Ls required
int nrational=Ls-1;
@@ -460,6 +526,22 @@ PartialFractionFermion5D<Impl>::PartialFractionFermion5D(GaugeField &_Umu,
Approx::zolotarev_free(zdata);
}
template<class Impl>
PartialFractionFermion5D<Impl>::PartialFractionFermion5D(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD M5,
std::vector<RealD> &_qmu,
const ImplParams &p)
: PartialFractionFermion5D<Impl>(_Umu,
FiveDimGrid,FiveDimRedBlackGrid,
FourDimGrid,FourDimRedBlackGrid,
_mass,M5,p)
{
qmu=_qmu;
}
NAMESPACE_END(Grid);

View File

@@ -0,0 +1,486 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/TwoSpinWilsonFermion2plus1D.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/WilsonFermion5D.h>
#include <Grid/perfmon/PerfCount.h>
NAMESPACE_BEGIN(Grid);
// 5d lattice for DWF.
template<class Impl>
TwoSpinWilsonFermion3plus15D<Impl>::TwoSpinWilsonFermion3plus1D(GaugeField &_Umu,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
GridCartesian &ThreeDimGrid,
GridRedBlackCartesian &ThreeDimRedBlackGrid,
RealD _M5,const ImplParams &p) :
Kernels(p),
_FourDimGrid (&FourDimGrid),
_FourDimRedBlackGrid(&FourDimRedBlackGrid),
_ThreeDimGrid (&ThreeDimGrid),
_ThreeDimRedBlackGrid(&ThreeDimRedBlackGrid),
Stencil (_FourDimGrid,npoint,Even,directions,displacements,p),
StencilEven(_FourDimRedBlackGrid,npoint,Even,directions,displacements,p), // source is Even
StencilOdd (_FourDimRedBlackGrid,npoint,Odd ,directions,displacements,p), // source is Odd
M5(_M5),
Umu(_ThreeDimGrid),
UmuEven(_ThreeDimRedBlackGrid),
UmuOdd (_ThreeDimRedBlackGrid),
_tmp(&FourDimRedBlackGrid),
Dirichlet(0)
{
// some assertions
assert(FourDimGrid._ndimension==Nd+1);
assert(ThreeDimGrid._ndimension==Nd);
assert(ThreeDimRedBlackGrid._ndimension==Nd);
assert(FourDimRedBlackGrid._ndimension==Nd+1);
assert(FourDimRedBlackGrid._checker_dim==1); // Don't checker the s direction
// extent of fifth dim and not spread out
Ls=FourDimGrid._fdimensions[0];
assert(FourDimRedBlackGrid._fdimensions[0]==Ls);
assert(FourDimGrid._processors[0] ==1);
assert(FourDimRedBlackGrid._processors[0] ==1);
// Other dimensions must match the decomposition of the four-D fields
for(int d=0;d<Nd;d++){
assert(FourDimGrid._processors[d+1] ==ThreeDimGrid._processors[d]);
assert(FourDimRedBlackGrid._processors[d+1] ==ThreeDimGrid._processors[d]);
assert(ThreeDimRedBlackGrid._processors[d] ==ThreeDimGrid._processors[d]);
assert(FourDimGrid._fdimensions[d+1] ==ThreeDimGrid._fdimensions[d]);
assert(FourDimRedBlackGrid._fdimensions[d+1]==ThreeDimGrid._fdimensions[d]);
assert(ThreeDimRedBlackGrid._fdimensions[d] ==ThreeDimGrid._fdimensions[d]);
assert(FourDimGrid._simd_layout[d+1] ==ThreeDimGrid._simd_layout[d]);
assert(FourDimRedBlackGrid._simd_layout[d+1]==ThreeDimGrid._simd_layout[d]);
assert(ThreeDimRedBlackGrid._simd_layout[d] ==ThreeDimGrid._simd_layout[d]);
}
if ( p.dirichlet.size() == Nd+1) {
Coordinate block = p.dirichlet;
for(int d=0;d<Nd+1;d++) {
if ( block[d] ){
Dirichlet = 1;
std::cout << GridLogMessage << " WilsonFermion: non-trivial Dirichlet condition "<< block << std::endl;
std::cout << GridLogMessage << " WilsonFermion: partial Dirichlet "<< p.partialDirichlet << std::endl;
Block = block;
}
}
} else {
Coordinate block(Nd+1,0);
Block = block;
}
// Dimension zero of the five-d is the Ls direction
assert(FourDimRedBlackGrid._simd_layout[0]==1);
assert(FourDimGrid._simd_layout[0] ==1);
// Allocate the required comms buffer
ImportGauge(_Umu);
// Build lists of exterior only nodes
int LLs = FourDimGrid._rdimensions[0];
int vol3;
vol3=ThreeDimGrid.oSites();
Stencil.BuildSurfaceList(LLs,vol3);
vol3=ThreeDimRedBlackGrid.oSites();
StencilEven.BuildSurfaceList(LLs,vol3);
StencilOdd.BuildSurfaceList(LLs,vol3);
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::ImportGauge(const GaugeField &_Umu)
{
GaugeField HUmu(_Umu.Grid());
HUmu = _Umu*(-0.5);
Impl::DoubleStore(GaugeGrid(),Umu,HUmu);
pickCheckerboard(Even,UmuEven,Umu);
pickCheckerboard(Odd ,UmuOdd,Umu);
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::DhopDir(const FermionField &in, FermionField &out,int dir5,int disp)
{
int dir = dir5-1; // Maps to the ordering above in "directions" that is passed to stencil
// we drop off the innermost fifth dimension
// assert( (disp==1)||(disp==-1) );
// assert( (dir>=0)&&(dir<4) ); //must do x,y,z or t;
int skip = (disp==1) ? 0 : 1;
int dirdisp = dir+skip*Nd;
int gamma = dir+(1-skip)*Nd;
Compressor compressor(DaggerNo);
Stencil.HaloExchange(in,compressor);
uint64_t Nsite = Umu.Grid()->oSites();
Kernels::DhopDirKernel(Stencil,Umu,Stencil.CommBuf(),Ls,Nsite,in,out,dirdisp,gamma);
};
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::DhopDirAll(const FermionField &in, std::vector<FermionField> &out)
{
Compressor compressor(DaggerNo);
Stencil.HaloExchange(in,compressor);
uint64_t Nsite = Umu.Grid()->oSites();
Kernels::DhopDirAll(Stencil,Umu,Stencil.CommBuf(),Ls,Nsite,in,out);
};
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::DerivInternal(StencilImpl & st,
DoubledGaugeField & U,
GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag)
{
assert((dag==DaggerNo) ||(dag==DaggerYes));
conformable(st.Grid(),A.Grid());
conformable(st.Grid(),B.Grid());
Compressor compressor(dag);
FermionField Btilde(B.Grid());
FermionField Atilde(B.Grid());
st.HaloExchange(B,compressor);
Atilde=A;
int LLs = B.Grid()->_rdimensions[0];
for (int mu = 0; mu < Nd; mu++) {
////////////////////////////////////////////////////////////////////////
// Flip gamma if dag
////////////////////////////////////////////////////////////////////////
int gamma = mu;
if (!dag) gamma += Nd;
////////////////////////
// Call the single hop
////////////////////////
int Usites = U.Grid()->oSites();
Kernels::DhopDirKernel(st, U, st.CommBuf(), Ls, Usites, B, Btilde, mu,gamma);
////////////////////////////
// spin trace outer product
////////////////////////////
Impl::InsertForce5D(mat, Btilde, Atilde, mu);
}
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::DhopDeriv(GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag)
{
conformable(A.Grid(),FermionGrid());
conformable(A.Grid(),B.Grid());
//conformable(GaugeGrid(),mat.Grid());// this is not general! leaving as a comment
mat.Checkerboard() = A.Checkerboard();
// mat.checkerboard = A.checkerboard;
DerivInternal(Stencil,Umu,mat,A,B,dag);
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::DhopDerivEO(GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag)
{
conformable(A.Grid(),FermionRedBlackGrid());
conformable(A.Grid(),B.Grid());
assert(B.Checkerboard()==Odd);
assert(A.Checkerboard()==Even);
mat.Checkerboard() = Even;
DerivInternal(StencilOdd,UmuEven,mat,A,B,dag);
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::DhopDerivOE(GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag)
{
conformable(A.Grid(),FermionRedBlackGrid());
conformable(A.Grid(),B.Grid());
assert(B.Checkerboard()==Even);
assert(A.Checkerboard()==Odd);
mat.Checkerboard() = Odd;
DerivInternal(StencilEven,UmuOdd,mat,A,B,dag);
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::DhopInternal(StencilImpl & st,
DoubledGaugeField & U,
const FermionField &in, FermionField &out,int dag)
{
DhopInternalSerialComms(st,U,in,out,dag);
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::DhopInternalOverlappedComms(StencilImpl & st,
DoubledGaugeField & U,
const FermionField &in, FermionField &out,int dag)
{
GRID_TRACE("DhopInternalOverlappedComms");
Compressor compressor(dag);
int LLs = in.Grid()->_rdimensions[0];
int len = U.Grid()->oSites();
/////////////////////////////
// Start comms // Gather intranode and extra node differentiated??
/////////////////////////////
{
// std::cout << " TwoSpinWilsonFermion3plus1D gather " <<std::endl;
GRID_TRACE("Gather");
st.HaloExchangeOptGather(in,compressor); // Put the barrier in the routine
}
// std::cout << " TwoSpinWilsonFermion3plus1D Communicate Begin " <<std::endl;
std::vector<std::vector<CommsRequest_t> > requests;
#if 1
/////////////////////////////
// Overlap with comms
/////////////////////////////
st.CommunicateBegin(requests);
st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
#endif
/////////////////////////////
// do the compute interior
/////////////////////////////
if (dag == DaggerYes) {
GRID_TRACE("DhopDagInterior");
Kernels::DhopDagKernel(st,U,st.CommBuf(),LLs,U.oSites(),in,out,1,0);
} else {
GRID_TRACE("DhopInterior");
Kernels::DhopKernel (st,U,st.CommBuf(),LLs,U.oSites(),in,out,1,0);
}
//ifdef GRID_ACCELERATED
#if 0
/////////////////////////////
// Overlap with comms -- on GPU the interior kernel call is nonblocking
/////////////////////////////
st.CommunicateBegin(requests);
st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
#endif
/////////////////////////////
// Complete comms
/////////////////////////////
// std::cout << " TwoSpinWilsonFermion3plus1D Comms Complete " <<std::endl;
st.CommunicateComplete(requests);
// traceStop(id);
/////////////////////////////
// do the compute exterior
/////////////////////////////
{
// std::cout << " TwoSpinWilsonFermion3plus1D Comms Merge " <<std::endl;
GRID_TRACE("Merge");
st.CommsMerge(compressor);
}
// std::cout << " TwoSpinWilsonFermion3plus1D Exterior " <<std::endl;
if (dag == DaggerYes) {
GRID_TRACE("DhopDagExterior");
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1);
} else {
GRID_TRACE("DhopExterior");
Kernels::DhopKernel (Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1);
}
// std::cout << " TwoSpinWilsonFermion3plus1D Done " <<std::endl;
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::DhopInternalSerialComms(StencilImpl & st,
DoubledGaugeField & U,
const FermionField &in,
FermionField &out,int dag)
{
GRID_TRACE("DhopInternalSerialComms");
Compressor compressor(dag);
int LLs = in.Grid()->_rdimensions[0];
// std::cout << " TwoSpinWilsonFermion3plus1D Halo exch " <<std::endl;
{
GRID_TRACE("HaloExchange");
st.HaloExchangeOpt(in,compressor);
}
// std::cout << " TwoSpinWilsonFermion3plus1D Dhop " <<std::endl;
if (dag == DaggerYes) {
GRID_TRACE("DhopDag");
Kernels::DhopDagKernel(st,U,st.CommBuf(),LLs,U.oSites(),in,out);
} else {
GRID_TRACE("Dhop");
Kernels::DhopKernel(st,U,st.CommBuf(),LLs,U.oSites(),in,out);
}
// std::cout << " TwoSpinWilsonFermion3plus1D Done " <<std::endl;
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::DhopOE(const FermionField &in, FermionField &out,int dag)
{
conformable(in.Grid(),FermionRedBlackGrid()); // verifies half grid
conformable(in.Grid(),out.Grid()); // drops the cb check
assert(in.Checkerboard()==Even);
out.Checkerboard() = Odd;
DhopInternal(StencilEven,UmuOdd,in,out,dag);
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
{
conformable(in.Grid(),FermionRedBlackGrid()); // verifies half grid
conformable(in.Grid(),out.Grid()); // drops the cb check
assert(in.Checkerboard()==Odd);
out.Checkerboard() = Even;
DhopInternal(StencilOdd,UmuEven,in,out,dag);
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::DhopComms(const FermionField &in, FermionField &out)
{
int dag =0 ;
conformable(in.Grid(),FermionGrid()); // verifies full grid
conformable(in.Grid(),out.Grid());
out.Checkerboard() = in.Checkerboard();
Compressor compressor(dag);
Stencil.HaloExchangeOpt(in,compressor);
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::DhopCalc(const FermionField &in, FermionField &out,uint64_t *ids)
{
conformable(in.Grid(),FermionGrid()); // verifies full grid
conformable(in.Grid(),out.Grid());
out.Checkerboard() = in.Checkerboard();
int LLs = in.Grid()->_rdimensions[0];
Kernels::DhopKernel(Stencil,Umu,Stencil.CommBuf(),LLs,Umu.oSites(),in,out,ids);
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::Dhop(const FermionField &in, FermionField &out,int dag)
{
conformable(in.Grid(),FermionGrid()); // verifies full grid
conformable(in.Grid(),out.Grid());
out.Checkerboard() = in.Checkerboard();
DhopInternal(Stencil,Umu,in,out,dag);
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::DW(const FermionField &in, FermionField &out,int dag)
{
out.Checkerboard()=in.Checkerboard();
Dhop(in,out,dag); // -0.5 is included
axpy(out,Nd*1.0-M5,in,out);
}
template <class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::Meooe(const FermionField &in, FermionField &out)
{
if (in.Checkerboard() == Odd) {
DhopEO(in, out, DaggerNo);
} else {
DhopOE(in, out, DaggerNo);
}
}
template <class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::MeooeDag(const FermionField &in, FermionField &out)
{
if (in.Checkerboard() == Odd) {
DhopEO(in, out, DaggerYes);
} else {
DhopOE(in, out, DaggerYes);
}
}
template <class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::Mooee(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
typename FermionField::scalar_type scal(Nd*1.0 + M5);
out = scal * in;
}
template <class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::MooeeDag(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
Mooee(in, out);
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::MooeeInv(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
out = (1.0/(Nd*1.0 + M5))*in;
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::MooeeInvDag(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
MooeeInv(in,out);
}
NAMESPACE_END(Grid);

View File

@@ -0,0 +1,441 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/TwoSpinWilsonKernels.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/qcd/action/fermion/FermionCore.h>
NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////
// Generic implementation; move to different file?
////////////////////////////////////////////
#define GENERIC_STENCIL_LEG(Dir,spProj,Recon) \
SE = st.GetEntry(ptype, Dir, sF); \
if (SE->_is_local) { \
int perm= SE->_permute; \
auto tmp = coalescedReadPermute(in[SE->_offset],ptype,perm,lane); \
spProj(chi,tmp); \
} else { \
chi = coalescedRead(buf[SE->_offset],lane); \
} \
acceleratorSynchronise(); \
Impl::multLink(Uchi, U[sU], chi, Dir, SE, st); \
Recon(result, Uchi);
#define GENERIC_STENCIL_LEG_INT(Dir,spProj,Recon) \
SE = st.GetEntry(ptype, Dir, sF); \
if (SE->_is_local) { \
int perm= SE->_permute; \
auto tmp = coalescedReadPermute(in[SE->_offset],ptype,perm,lane); \
spProj(chi,tmp); \
Impl::multLink(Uchi, U[sU], chi, Dir, SE, st); \
Recon(result, Uchi); \
} \
acceleratorSynchronise();
#define GENERIC_STENCIL_LEG_EXT(Dir,spProj,Recon) \
SE = st.GetEntry(ptype, Dir, sF); \
if (!SE->_is_local ) { \
auto chi = coalescedRead(buf[SE->_offset],lane); \
Impl::multLink(Uchi, U[sU], chi, Dir, SE, st); \
Recon(result, Uchi); \
nmu++; \
} \
acceleratorSynchronise();
#define GENERIC_DHOPDIR_LEG_BODY(Dir,spProj,Recon) \
if (SE->_is_local ) { \
int perm= SE->_permute; \
auto tmp = coalescedReadPermute(in[SE->_offset],ptype,perm,lane); \
spProj(chi,tmp); \
} else { \
chi = coalescedRead(buf[SE->_offset],lane); \
} \
acceleratorSynchronise(); \
Impl::multLink(Uchi, U[sU], chi, dir, SE, st); \
Recon(result, Uchi);
#define GENERIC_DHOPDIR_LEG(Dir,spProj,Recon) \
if (gamma == Dir) { \
GENERIC_DHOPDIR_LEG_BODY(Dir,spProj,Recon); \
}
////////////////////////////////////////////////////////////////////
// All legs kernels ; comms then compute
////////////////////////////////////////////////////////////////////
template <class Impl> accelerator_inline
void TwoSpinWilsonKernels<Impl>::DhopSiteDag(StencilView &st, DoubledGaugeFieldView &U,
SiteSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out)
{
typedef decltype(coalescedRead(in[0])) calcSpinor;
calcSpinor chi;
calcSpinor Uchi;
calcSpinor result;
StencilEntry *SE;
int ptype;
const int Nsimd = SiteSpinor::Nsimd();
const int lane=acceleratorSIMTlane(Nsimd);
GENERIC_STENCIL_LEG(Xp,pauliProjXp,pauliAssign);
GENERIC_STENCIL_LEG(Yp,pauliProjYp,pauliAdd);
GENERIC_STENCIL_LEG(Zp,pauliProjZp,pauliAdd);
GENERIC_STENCIL_LEG(Xm,pauliProjXm,pauliAdd);
GENERIC_STENCIL_LEG(Ym,pauliProjYm,pauliAdd);
GENERIC_STENCIL_LEG(Zm,pauliProjZm,pauliAdd);
coalescedWrite(out[sF],result,lane);
};
template <class Impl> accelerator_inline
void TwoSpinWilsonKernels<Impl>::GenericDhopSite(StencilView &st, DoubledGaugeFieldView &U,
SiteSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out)
{
typedef decltype(coalescedRead(in[0])) calcSpinor;
calcSpinor chi;
// calcSpinor *chi_p;
calcSpinor Uchi;
calcSpinor result;
StencilEntry *SE;
int ptype;
const int Nsimd = SiteSpinor::Nsimd();
const int lane=acceleratorSIMTlane(Nsimd);
GENERIC_STENCIL_LEG(Xm,pauliProjXp,pauliAssign);
GENERIC_STENCIL_LEG(Ym,pauliProjYp,pauliAdd);
GENERIC_STENCIL_LEG(Zm,pauliProjZp,pauliAdd);
GENERIC_STENCIL_LEG(Xp,pauliProjXm,pauliAdd);
GENERIC_STENCIL_LEG(Yp,pauliProjYm,pauliAdd);
GENERIC_STENCIL_LEG(Zp,pauliProjZm,pauliAdd);
coalescedWrite(out[sF], result,lane);
};
////////////////////////////////////////////////////////////////////
// Interior kernels
////////////////////////////////////////////////////////////////////
template <class Impl> accelerator_inline
void TwoSpinWilsonKernels<Impl>::GenericDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U,
SiteSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out)
{
typedef decltype(coalescedRead(in[0])) calcSpinor;
calcSpinor chi;
// calcSpinor *chi_p;
calcSpinor Uchi;
calcSpinor result;
StencilEntry *SE;
int ptype;
const int Nsimd = SiteSpinor::Nsimd();
const int lane=acceleratorSIMTlane(Nsimd);
result=Zero();
GENERIC_STENCIL_LEG_INT(Xp,pauliProjXp,pauliAdd);
GENERIC_STENCIL_LEG_INT(Yp,pauliProjYp,pauliAdd);
GENERIC_STENCIL_LEG_INT(Zp,pauliProjZp,pauliAdd);
GENERIC_STENCIL_LEG_INT(Xm,pauliProjXm,pauliAdd);
GENERIC_STENCIL_LEG_INT(Ym,pauliProjYm,pauliAdd);
GENERIC_STENCIL_LEG_INT(Zm,pauliProjZm,pauliAdd);
coalescedWrite(out[sF], result,lane);
};
template <class Impl> accelerator_inline
void TwoSpinWilsonKernels<Impl>::GenericDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U,
SiteSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out)
{
typedef decltype(coalescedRead(in[0])) calcSpinor;
const int Nsimd = SiteSpinor::Nsimd();
const int lane=acceleratorSIMTlane(Nsimd);
calcSpinor chi;
// calcSpinor *chi_p;
calcSpinor Uchi;
calcSpinor result;
StencilEntry *SE;
int ptype;
result=Zero();
GENERIC_STENCIL_LEG_INT(Xm,pauliProjXp,pauliAdd);
GENERIC_STENCIL_LEG_INT(Ym,pauliProjYp,pauliAdd);
GENERIC_STENCIL_LEG_INT(Zm,pauliProjZp,pauliAdd);
GENERIC_STENCIL_LEG_INT(Xp,pauliProjXm,pauliAdd);
GENERIC_STENCIL_LEG_INT(Yp,pauliProjYm,pauliAdd);
GENERIC_STENCIL_LEG_INT(Zp,pauliProjZm,pauliAdd);
coalescedWrite(out[sF], result,lane);
};
////////////////////////////////////////////////////////////////////
// Exterior kernels
////////////////////////////////////////////////////////////////////
template <class Impl> accelerator_inline
void TwoSpinWilsonKernels<Impl>::GenericDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U,
SiteSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out)
{
typedef decltype(coalescedRead(in[0])) calcSpinor;
// calcSpinor *chi_p;
calcSpinor Uchi;
calcSpinor result;
StencilEntry *SE;
int ptype;
int nmu=0;
const int Nsimd = SiteSpinor::Nsimd();
const int lane=acceleratorSIMTlane(Nsimd);
result=Zero();
GENERIC_STENCIL_LEG_EXT(Xp,pauliProjXp,pauliAdd);
GENERIC_STENCIL_LEG_EXT(Yp,pauliProjYp,pauliAdd);
GENERIC_STENCIL_LEG_EXT(Zp,pauliProjZp,pauliAdd);
GENERIC_STENCIL_LEG_EXT(Xm,pauliProjXm,pauliAdd);
GENERIC_STENCIL_LEG_EXT(Ym,pauliProjYm,pauliAdd);
GENERIC_STENCIL_LEG_EXT(Zm,pauliProjZm,pauliAdd);
if ( nmu ) {
auto out_t = coalescedRead(out[sF],lane);
out_t = out_t + result;
coalescedWrite(out[sF],out_t,lane);
}
};
template <class Impl> accelerator_inline
void TwoSpinWilsonKernels<Impl>::GenericDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U,
SiteSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out)
{
typedef decltype(coalescedRead(in[0])) calcSpinor;
// calcSpinor *chi_p;
calcSpinor Uchi;
calcSpinor result;
StencilEntry *SE;
int ptype;
int nmu=0;
const int Nsimd = SiteSpinor::Nsimd();
const int lane=acceleratorSIMTlane(Nsimd);
result=Zero();
GENERIC_STENCIL_LEG_EXT(Xm,pauliProjXp,pauliAdd);
GENERIC_STENCIL_LEG_EXT(Ym,pauliProjYp,pauliAdd);
GENERIC_STENCIL_LEG_EXT(Zm,pauliProjZp,pauliAdd);
GENERIC_STENCIL_LEG_EXT(Xp,pauliProjXm,pauliAdd);
GENERIC_STENCIL_LEG_EXT(Yp,pauliProjYm,pauliAdd);
GENERIC_STENCIL_LEG_EXT(Zp,pauliProjZm,pauliAdd);
if ( nmu ) {
auto out_t = coalescedRead(out[sF],lane);
out_t = out_t + result;
coalescedWrite(out[sF],out_t,lane);
}
};
#define DhopDirMacro(Dir,spProj,spRecon) \
template <class Impl> accelerator_inline \
void TwoSpinWilsonKernels<Impl>::DhopDir##Dir(StencilView &st, DoubledGaugeFieldView &U,SiteSpinor *buf, int sF, \
int sU, const FermionFieldView &in, FermionFieldView &out, int dir) \
{ \
typedef decltype(coalescedRead(in[0])) calcSpinor; \
calcSpinor chi; \
calcSpinor result; \
calcSpinor Uchi; \
StencilEntry *SE; \
int ptype; \
const int Nsimd = SiteSpinor::Nsimd(); \
const int lane=acceleratorSIMTlane(Nsimd); \
\
SE = st.GetEntry(ptype, dir, sF); \
GENERIC_DHOPDIR_LEG_BODY(Dir,spProj,spRecon); \
coalescedWrite(out[sF], result,lane); \
}
DhopDirMacro(Xp,pauliProjXp,pauliAssign);
DhopDirMacro(Yp,pauliProjYp,pauliAssign);
DhopDirMacro(Zp,pauliProjZp,pauliAssign);
DhopDirMacro(Xm,pauliProjXm,pauliAssign);
DhopDirMacro(Ym,pauliProjYm,pauliAssign);
DhopDirMacro(Zm,pauliProjZm,pauliAssign);
template <class Impl> accelerator_inline
void TwoSpinWilsonKernels<Impl>::DhopDirK( StencilView &st, DoubledGaugeFieldView &U,SiteSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out, int dir, int gamma)
{
typedef decltype(coalescedRead(in[0])) calcSpinor;
calcSpinor chi;
calcSpinor result;
calcSpinor Uchi;
StencilEntry *SE;
int ptype;
const int Nsimd = SiteSpinor::Nsimd();
const int lane=acceleratorSIMTlane(Nsimd);
SE = st.GetEntry(ptype, dir, sF);
GENERIC_DHOPDIR_LEG(Xp,pauliProjXp,pauliAssign);
GENERIC_DHOPDIR_LEG(Yp,pauliProjYp,pauliAssign);
GENERIC_DHOPDIR_LEG(Zp,pauliProjZp,pauliAssign);
GENERIC_DHOPDIR_LEG(Xm,pauliProjXm,pauliAssign);
GENERIC_DHOPDIR_LEG(Ym,pauliProjYm,pauliAssign);
GENERIC_DHOPDIR_LEG(Zm,pauliProjZm,pauliAssign);
coalescedWrite(out[sF], result,lane);
}
template <class Impl>
void TwoSpinWilsonKernels<Impl>::DhopDirAll( StencilImpl &st, DoubledGaugeField &U,SiteSpinor *buf, int Ls,
int Nsite, const FermionField &in, std::vector<FermionField> &out)
{
autoView(U_v ,U,AcceleratorRead);
autoView(in_v ,in,AcceleratorRead);
autoView(st_v ,st,AcceleratorRead);
autoView(out_Xm,out[0],AcceleratorWrite);
autoView(out_Ym,out[1],AcceleratorWrite);
autoView(out_Zm,out[2],AcceleratorWrite);
autoView(out_Xp,out[4],AcceleratorWrite);
autoView(out_Yp,out[5],AcceleratorWrite);
autoView(out_Zp,out[6],AcceleratorWrite);
auto CBp=st.CommBuf();
accelerator_for(sss,Nsite*Ls,Simd::Nsimd(),{
int sU=sss/Ls;
int sF =sss;
DhopDirXm(st_v,U_v,CBp,sF,sU,in_v,out_Xm,0);
DhopDirYm(st_v,U_v,CBp,sF,sU,in_v,out_Ym,1);
DhopDirZm(st_v,U_v,CBp,sF,sU,in_v,out_Zm,2);
DhopDirXp(st_v,U_v,CBp,sF,sU,in_v,out_Xp,3);
DhopDirYp(st_v,U_v,CBp,sF,sU,in_v,out_Yp,4);
DhopDirZp(st_v,U_v,CBp,sF,sU,in_v,out_Zp,5);
});
}
template <class Impl>
void TwoSpinWilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,SiteSpinor *buf, int Ls,
int Nsite, const FermionField &in, FermionField &out, int dirdisp, int gamma)
{
assert(dirdisp<=5);
assert(dirdisp>=0);
autoView(U_v ,U ,AcceleratorRead);
autoView(in_v ,in ,AcceleratorRead);
autoView(out_v,out,AcceleratorWrite);
autoView(st_v ,st ,AcceleratorRead);
auto CBp=st.CommBuf();
#define LoopBody(Dir) \
case Dir : \
accelerator_for(ss,Nsite,Simd::Nsimd(),{ \
for(int s=0;s<Ls;s++){ \
int sU=ss; \
int sF = s+Ls*sU; \
DhopDir##Dir(st_v,U_v,CBp,sF,sU,in_v,out_v,dirdisp);\
} \
}); \
break;
switch(gamma){
LoopBody(Xp);
LoopBody(Yp);
LoopBody(Zp);
LoopBody(Xm);
LoopBody(Ym);
LoopBody(Zm);
default:
assert(0);
break;
}
#undef LoopBody
}
#define KERNEL_CALLNB(A) \
const uint64_t NN = Nsite*Ls; \
accelerator_forNB( ss, NN, Simd::Nsimd(), { \
int sF = ss; \
int sU = ss/Ls; \
TwoSpinWilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,in_v,out_v); \
});
#define KERNEL_CALL(A) KERNEL_CALLNB(A); accelerator_barrier();
#define KERNEL_CALL_EXT(A) \
const uint64_t sz = st.surface_list.size(); \
auto ptr = &st.surface_list[0]; \
accelerator_forNB( ss, sz, Simd::Nsimd(), { \
int sF = ptr[ss]; \
int sU = sF/Ls; \
TwoSpinWilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,in_v,out_v); \
}); \
accelerator_barrier();
template <class Impl>
void TwoSpinWilsonKernels<Impl>::DhopKernel(StencilImpl &st, DoubledGaugeField &U, SiteSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out,
int interior,int exterior)
{
autoView(U_v , U,AcceleratorRead);
autoView(in_v , in,AcceleratorRead);
autoView(out_v,out,AcceleratorWrite);
autoView(st_v , st,AcceleratorRead);
if( interior && exterior ) {
acceleratorFenceComputeStream();
KERNEL_CALL(GenericDhopSite);
return;
} else if( interior ) {
KERNEL_CALLNB(GenericDhopSiteInt);
return;
} else if( exterior ) {
// // dependent on result of merge
acceleratorFenceComputeStream();
KERNEL_CALL_EXT(GenericDhopSiteExt);
return;
}
assert(0 && " Kernel optimisation case not covered ");
}
template <class Impl>
void TwoSpinWilsonKernels<Impl>::DhopDagKernel(StencilImpl &st, DoubledGaugeField &U, SiteSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out,
int interior,int exterior)
{
autoView(U_v ,U,AcceleratorRead);
autoView(in_v ,in,AcceleratorRead);
autoView(out_v,out,AcceleratorWrite);
autoView(st_v ,st,AcceleratorRead);
if( interior && exterior ) {
acceleratorFenceComputeStream();
KERNEL_CALL(GenericDhopSiteDag);
return;
} else if( interior ) {
KERNEL_CALLNB(GenericDhopSiteDagInt); return;
} else if( exterior ) {
// Dependent on result of merge
acceleratorFenceComputeStream();
KERNEL_CALL_EXT(GenericDhopSiteDagExt); return;
}
assert(0 && " Kernel optimisation case not covered ");
}
#undef KERNEL_CALLNB
#undef KERNEL_CALL
NAMESPACE_END(Grid);

View File

@@ -61,7 +61,7 @@ WilsonCloverFermion<Impl, CloverHelpers>::WilsonCloverFermion(GaugeField&
diag_mass = _mass + 1.0 + (Nd - 1) * (clover_anisotropy.nu / clover_anisotropy.xi_0);
} else {
csw_r = _csw_r * 0.5;
diag_mass = 4.0 + _mass;
diag_mass = Nd*1.0 + _mass;
}
csw_t = _csw_t * 0.5;
@@ -297,9 +297,9 @@ void WilsonCloverFermion<Impl, CloverHelpers>::MDeriv(GaugeField &force, const F
{
if (mu == nu)
continue;
RealD factor;
if (nu == 4 || mu == 4)
if (nu == (Nd-1) || mu == (Nd-1)) // This was a bug - surely mu/nu is NEVER 4 but rather (Nd-1)=3 ??
{
factor = 2.0 * csw_t;
}
@@ -307,9 +307,11 @@ void WilsonCloverFermion<Impl, CloverHelpers>::MDeriv(GaugeField &force, const F
{
factor = 2.0 * csw_r;
}
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
force_mu -= factor*CloverHelpers::Cmunu(U, lambda, mu, nu); // checked
if ( mu < Nd && nu < Nd ) { // Allow to restrict range to Nd=3, but preserve orders of SigmaMuNu in table by counting ALL
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
force_mu -= factor*CloverHelpers::Cmunu(U, lambda, mu, nu); // checked
}
count++;
}

View File

@@ -14,6 +14,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
Author: Vera Guelpers <V.M.Guelpers@soton.ac.uk>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@@ -62,10 +63,10 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
Dirichlet(0)
{
// some assertions
assert(FiveDimGrid._ndimension==5);
assert(FourDimGrid._ndimension==4);
assert(FourDimRedBlackGrid._ndimension==4);
assert(FiveDimRedBlackGrid._ndimension==5);
assert(FiveDimGrid._ndimension==Nd+1);
assert(FourDimGrid._ndimension==Nd);
assert(FourDimRedBlackGrid._ndimension==Nd);
assert(FiveDimRedBlackGrid._ndimension==Nd+1);
assert(FiveDimRedBlackGrid._checker_dim==1); // Don't checker the s direction
// extent of fifth dim and not spread out
@@ -75,7 +76,7 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
assert(FiveDimRedBlackGrid._processors[0] ==1);
// Other dimensions must match the decomposition of the four-D fields
for(int d=0;d<4;d++){
for(int d=0;d<Nd;d++){
assert(FiveDimGrid._processors[d+1] ==FourDimGrid._processors[d]);
assert(FiveDimRedBlackGrid._processors[d+1] ==FourDimGrid._processors[d]);
@@ -92,11 +93,13 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
if ( p.dirichlet.size() == Nd+1) {
Coordinate block = p.dirichlet;
if ( block[0] || block[1] || block[2] || block[3] || block[4] ){
Dirichlet = 1;
std::cout << GridLogMessage << " WilsonFermion: non-trivial Dirichlet condition "<< block << std::endl;
std::cout << GridLogMessage << " WilsonFermion: partial Dirichlet "<< p.partialDirichlet << std::endl;
Block = block;
for(int d=0;d<Nd+1;d++) {
if ( block[d] ){
Dirichlet = 1;
std::cout << GridLogMessage << " WilsonFermion: non-trivial Dirichlet condition "<< block << std::endl;
std::cout << GridLogMessage << " WilsonFermion: partial Dirichlet "<< p.partialDirichlet << std::endl;
Block = block;
}
}
} else {
Coordinate block(Nd+1,0);
@@ -111,7 +114,7 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
assert(FiveDimGrid._simd_layout[0] ==nsimd);
assert(FiveDimRedBlackGrid._simd_layout[0]==nsimd);
for(int d=0;d<4;d++){
for(int d=0;d<Nd;d++){
assert(FourDimGrid._simd_layout[d]==1);
assert(FourDimRedBlackGrid._simd_layout[d]==1);
assert(FiveDimRedBlackGrid._simd_layout[d+1]==1);
@@ -182,8 +185,8 @@ void WilsonFermion5D<Impl>::DhopDir(const FermionField &in, FermionField &out,in
// assert( (dir>=0)&&(dir<4) ); //must do x,y,z or t;
int skip = (disp==1) ? 0 : 1;
int dirdisp = dir+skip*4;
int gamma = dir+(1-skip)*4;
int dirdisp = dir+skip*Nd;
int gamma = dir+(1-skip)*Nd;
Compressor compressor(DaggerNo);
Stencil.HaloExchange(in,compressor);
@@ -325,29 +328,25 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st,
// Start comms // Gather intranode and extra node differentiated??
/////////////////////////////
{
std::cout << " WilsonFermion5D gather " <<std::endl;
// std::cout << " WilsonFermion5D gather " <<std::endl;
GRID_TRACE("Gather");
st.HaloExchangeOptGather(in,compressor); // Put the barrier in the routine
}
std::cout << " WilsonFermion5D Communicate Begin " <<std::endl;
// std::cout << " WilsonFermion5D Communicate Begin " <<std::endl;
std::vector<std::vector<CommsRequest_t> > requests;
auto id=traceStart("Communicate overlapped");
st.CommunicateBegin(requests);
#if 1
/////////////////////////////
// Overlap with comms
/////////////////////////////
{
std::cout << " WilsonFermion5D Comms merge " <<std::endl;
GRID_TRACE("MergeSHM");
st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
}
st.CommunicateBegin(requests);
st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
#endif
/////////////////////////////
// do the compute interior
/////////////////////////////
std::cout << " WilsonFermion5D Interior " <<std::endl;
int Opt = WilsonKernelsStatic::Opt; // Why pass this. Kernels should know
if (dag == DaggerYes) {
GRID_TRACE("DhopDagInterior");
@@ -356,25 +355,35 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st,
GRID_TRACE("DhopInterior");
Kernels::DhopKernel (Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,1,0);
}
//ifdef GRID_ACCELERATED
#if 0
/////////////////////////////
// Overlap with comms -- on GPU the interior kernel call is nonblocking
/////////////////////////////
st.CommunicateBegin(requests);
st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
#endif
/////////////////////////////
// Complete comms
/////////////////////////////
std::cout << " WilsonFermion5D Comms Complete " <<std::endl;
// std::cout << " WilsonFermion5D Comms Complete " <<std::endl;
st.CommunicateComplete(requests);
traceStop(id);
// traceStop(id);
/////////////////////////////
// do the compute exterior
/////////////////////////////
{
std::cout << " WilsonFermion5D Comms Merge " <<std::endl;
// std::cout << " WilsonFermion5D Comms Merge " <<std::endl;
GRID_TRACE("Merge");
st.CommsMerge(compressor);
}
std::cout << " WilsonFermion5D Exterior " <<std::endl;
// std::cout << " WilsonFermion5D Exterior " <<std::endl;
if (dag == DaggerYes) {
GRID_TRACE("DhopDagExterior");
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1);
@@ -382,7 +391,7 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st,
GRID_TRACE("DhopExterior");
Kernels::DhopKernel (Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1);
}
std::cout << " WilsonFermion5D Done " <<std::endl;
// std::cout << " WilsonFermion5D Done " <<std::endl;
}
@@ -397,13 +406,13 @@ void WilsonFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st,
int LLs = in.Grid()->_rdimensions[0];
std::cout << " WilsonFermion5D Halo exch " <<std::endl;
// std::cout << " WilsonFermion5D Halo exch " <<std::endl;
{
GRID_TRACE("HaloExchange");
st.HaloExchangeOpt(in,compressor);
}
std::cout << " WilsonFermion5D Dhop " <<std::endl;
// std::cout << " WilsonFermion5D Dhop " <<std::endl;
int Opt = WilsonKernelsStatic::Opt;
if (dag == DaggerYes) {
GRID_TRACE("DhopDag");
@@ -412,7 +421,7 @@ void WilsonFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st,
GRID_TRACE("Dhop");
Kernels::DhopKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out);
}
std::cout << " WilsonFermion5D Done " <<std::endl;
// std::cout << " WilsonFermion5D Done " <<std::endl;
}
@@ -438,6 +447,29 @@ void WilsonFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int
DhopInternal(StencilOdd,UmuEven,in,out,dag);
}
template<class Impl>
void WilsonFermion5D<Impl>::DhopComms(const FermionField &in, FermionField &out)
{
int dag =0 ;
conformable(in.Grid(),FermionGrid()); // verifies full grid
conformable(in.Grid(),out.Grid());
out.Checkerboard() = in.Checkerboard();
Compressor compressor(dag);
Stencil.HaloExchangeOpt(in,compressor);
}
template<class Impl>
void WilsonFermion5D<Impl>::DhopCalc(const FermionField &in, FermionField &out,uint64_t *ids)
{
conformable(in.Grid(),FermionGrid()); // verifies full grid
conformable(in.Grid(),out.Grid());
out.Checkerboard() = in.Checkerboard();
int LLs = in.Grid()->_rdimensions[0];
int Opt = WilsonKernelsStatic::Opt;
Kernels::DhopKernel(Opt,Stencil,Umu,Stencil.CommBuf(),LLs,Umu.oSites(),in,out,ids);
}
template<class Impl>
void WilsonFermion5D<Impl>::Dhop(const FermionField &in, FermionField &out,int dag)
{
@@ -453,7 +485,55 @@ void WilsonFermion5D<Impl>::DW(const FermionField &in, FermionField &out,int dag
{
out.Checkerboard()=in.Checkerboard();
Dhop(in,out,dag); // -0.5 is included
axpy(out,4.0-M5,in,out);
axpy(out,Nd*1.0-M5,in,out);
}
template <class Impl>
void WilsonFermion5D<Impl>::Meooe(const FermionField &in, FermionField &out)
{
if (in.Checkerboard() == Odd) {
DhopEO(in, out, DaggerNo);
} else {
DhopOE(in, out, DaggerNo);
}
}
template <class Impl>
void WilsonFermion5D<Impl>::MeooeDag(const FermionField &in, FermionField &out)
{
if (in.Checkerboard() == Odd) {
DhopEO(in, out, DaggerYes);
} else {
DhopOE(in, out, DaggerYes);
}
}
template <class Impl>
void WilsonFermion5D<Impl>::Mooee(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
typename FermionField::scalar_type scal(Nd*1.0 + M5);
out = scal * in;
}
template <class Impl>
void WilsonFermion5D<Impl>::MooeeDag(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
Mooee(in, out);
}
template<class Impl>
void WilsonFermion5D<Impl>::MooeeInv(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
out = (1.0/(Nd*1.0 + M5))*in;
}
template<class Impl>
void WilsonFermion5D<Impl>::MooeeInvDag(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
MooeeInv(in,out);
}
template<class Impl>
@@ -557,7 +637,7 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt_5d(FermionField &out,const
A = one / (abs(W) * sinha * 2.0) * one / (sinhaLs * 2.0);
F = eaLs * (one - Wea + (Wema - one) * mass*mass);
F = F + emaLs * (Wema - one + (one - Wea) * mass*mass);
F = F - abs(W) * sinha * 4.0 * mass;
F = F - abs(W) * sinha * (Nd* 1.0) * mass;
Bpp = (A/F) * (ema2Ls - one) * (one - Wema) * (one - mass*mass * one);
Bmm = (A/F) * (one - ea2Ls) * (one - Wea) * (one - mass*mass * one);
@@ -740,6 +820,15 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt(FermionField &out,const Fe
template<class Impl>
void WilsonFermion5D<Impl>::MomentumSpacePropagatorHw(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist)
{
std::vector<double> empty_q(Nd,0.0);
MomentumSpacePropagatorHwQ(out,in,mass,twist,empty_q);
}
template<class Impl>
void WilsonFermion5D<Impl>::MomentumSpacePropagatorHwQ(FermionField &out,const FermionField &in,
RealD mass,
std::vector<double> twist,
std::vector<double> qmu)
{
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
@@ -755,6 +844,7 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHw(FermionField &out,const Fe
typedef typename FermionField::scalar_type ScalComplex;
typedef Lattice<iSinglet<vector_type> > LatComplex;
typedef iSpinMatrix<ScalComplex> SpinMat;
Coordinate latt_size = _grid->_fdimensions;
@@ -772,8 +862,10 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHw(FermionField &out,const Fe
LatComplex kmu(_grid);
ScalComplex ci(0.0,1.0);
std::cout<< "Feynman Rule" << "qmu ("<<qmu[0]<<","<<qmu[1]<<","<<qmu[2]<<","<<qmu[3]<<")"<<std::endl;
for(int mu=0;mu<Nd;mu++) {
LatticeCoordinate(kmu,mu);
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
@@ -782,9 +874,18 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHw(FermionField &out,const Fe
kmu = kmu + TwoPiL * one * twist[mu];//momentum for twisted boundary conditions
sk2 = sk2 + 2.0*sin(kmu*0.5)*sin(kmu*0.5);
sk = sk + sin(kmu)*sin(kmu);
num = num - sin(kmu)*ci*(Gamma(Gmu[mu])*in);
sk = sk + (sin(kmu)+qmu[mu])*(sin(kmu)+qmu[mu]);
// Terms for boosted Fermion
// 1/2 [ -i gamma.(sin p + q ) ]
// [ --------------------- + 1 ]
// [ wq + b ]
//
// wq = sqrt( (sinp+q)^2 + b^2 )
//
num = num - (sin(kmu)+qmu[mu])*ci*(Gamma(Gmu[mu])*in);
}
num = num + mass * in ;

View File

@@ -63,7 +63,7 @@ WilsonFermion<Impl>::WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
if (anisotropyCoeff.isAnisotropic){
diag_mass = mass + 1.0 + (Nd-1)*(anisotropyCoeff.nu / anisotropyCoeff.xi_0);
} else {
diag_mass = 4.0 + mass;
diag_mass = Nd*1.0 + mass;
}
int vol4;
@@ -354,8 +354,8 @@ void WilsonFermion<Impl>::DhopDir(const FermionField &in, FermionField &out, int
Stencil.HaloExchange(in, compressor);
int skip = (disp == 1) ? 0 : 1;
int dirdisp = dir + skip * 4;
int gamma = dir + (1 - skip) * 4;
int dirdisp = dir + skip * Nd;
int gamma = dir + (1 - skip) * Nd;
DhopDirCalc(in, out, dirdisp, gamma, DaggerNo);
};
@@ -370,8 +370,8 @@ void WilsonFermion<Impl>::DhopDirAll(const FermionField &in, std::vector<Fermion
for(int disp=-1;disp<=1;disp+=2){
int skip = (disp == 1) ? 0 : 1;
int dirdisp = dir + skip * 4;
int gamma = dir + (1 - skip) * 4;
int dirdisp = dir + skip * Nd;
int gamma = dir + (1 - skip) * Nd;
DhopDirCalc(in, out[dirdisp], dirdisp, gamma, DaggerNo);
}

View File

@@ -97,7 +97,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
distance = st._distances[DIR]; \
sl = st._simd_layout[direction]; \
inplace_twist = 0; \
if(SE->_around_the_world && st.parameters.twists[DIR % 4]){ \
if(SE->_around_the_world && st.parameters.twists[DIR % Nd]){ \
if(sl == 1){ \
g = (F+1) % 2; \
}else{ \

View File

@@ -63,7 +63,7 @@ accelerator_inline void get_stencil(StencilEntry * mem, StencilEntry &chip)
} else { \
chi = coalescedRead(buf[SE->_offset],lane); \
} \
acceleratorSynchronise(); \
acceleratorSynchronise(); \
Impl::multLink(Uchi, U[sU], chi, Dir, SE, st); \
Recon(result, Uchi);
@@ -411,6 +411,46 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
#undef LoopBody
}
#ifdef GRID_SYCL
extern "C" {
ulong SYCL_EXTERNAL __attribute__((overloadable)) intel_get_cycle_counter( void );
uint SYCL_EXTERNAL __attribute__((overloadable)) intel_get_active_channel_mask( void );
uint SYCL_EXTERNAL __attribute__((overloadable)) intel_get_grf_register( uint reg );
uint SYCL_EXTERNAL __attribute__((overloadable)) intel_get_flag_register( uint flag );
uint SYCL_EXTERNAL __attribute__((overloadable)) intel_get_control_register( uint reg );
uint SYCL_EXTERNAL __attribute__((overloadable)) intel_get_hw_thread_id( void );
uint SYCL_EXTERNAL __attribute__((overloadable)) intel_get_slice_id( void );
uint SYCL_EXTERNAL __attribute__((overloadable)) intel_get_subslice_id( void );
uint SYCL_EXTERNAL __attribute__((overloadable)) intel_get_eu_id( void );
uint SYCL_EXTERNAL __attribute__((overloadable)) intel_get_eu_thread_id( void );
void SYCL_EXTERNAL __attribute__((overloadable)) intel_eu_thread_pause( uint value );
}
#ifdef GRID_SIMT
#define MAKE_ID(A) (intel_get_eu_id()<<16)|(intel_get_slice_id()<<8)|(intel_get_subslice_id())
#else
#define MAKE_ID(A) (0)
#endif
#else
#define MAKE_ID(A) (0)
#endif
#define KERNEL_CALL_ID(A) \
const uint64_t NN = Nsite*Ls; \
accelerator_forNB( ss, NN, Simd::Nsimd(), { \
int sF = ss; \
int sU = ss/Ls; \
WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,in_v,out_v); \
const int Nsimd = SiteHalfSpinor::Nsimd(); \
const int lane=acceleratorSIMTlane(Nsimd); \
int idx=sF*Nsimd+lane; \
uint64_t id = MAKE_ID(); \
ids[idx]=id; \
}); \
accelerator_barrier();
#define KERNEL_CALLNB(A) \
const uint64_t NN = Nsite*Ls; \
@@ -418,7 +458,7 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
int sF = ss; \
int sU = ss/Ls; \
WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,in_v,out_v); \
});
});
#define KERNEL_CALL(A) KERNEL_CALLNB(A); accelerator_barrier();
@@ -451,6 +491,8 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,Ls,1,in_v,out_v); \
});}
template <class Impl>
void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out,
@@ -475,7 +517,7 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteInt); return;}
#endif
} else if( exterior ) {
// dependent on result of merge
// // dependent on result of merge
acceleratorFenceComputeStream();
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL_EXT(GenericDhopSiteExt); return;}
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL_EXT(HandDhopSiteExt); return;}
@@ -485,6 +527,18 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
}
assert(0 && " Kernel optimisation case not covered ");
}
template <class Impl>
void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out,
uint64_t *ids)
{
autoView(U_v , U,AcceleratorRead);
autoView(in_v , in,AcceleratorRead);
autoView(out_v,out,AcceleratorWrite);
autoView(st_v , st,AcceleratorRead);
KERNEL_CALL_ID(GenericDhopSite);
}
template <class Impl>
void WilsonKernels<Impl>::DhopDagKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out,

View File

@@ -0,0 +1,45 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/ qcd/action/fermion/instantiation/CompactWilsonCloverFermionInstantiation5D.cc.master
Copyright (C) 2017 - 2025
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
Author: Mattia Bruno <mattia.bruno@cern.ch>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/qcd/spin/Dirac.h>
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion5D.h>
#include <Grid/qcd/action/fermion/implementation/CompactWilsonCloverFermion5DImplementation.h>
#include <Grid/qcd/action/fermion/CloverHelpers.h>
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class CompactWilsonCloverFermion5D<IMPLEMENTATION, CompactCloverHelpers<IMPLEMENTATION>>;
template class CompactWilsonCloverFermion5D<IMPLEMENTATION, CompactExpCloverHelpers<IMPLEMENTATION>>;
NAMESPACE_END(Grid);

View File

@@ -32,8 +32,30 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
// S-direction is INNERMOST and takes no part in the parity.
const std::vector<int> ImprovedStaggeredFermion5DStatic::directions({1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4});
const std::vector<int> ImprovedStaggeredFermion5DStatic::displacements({1, 1, 1, 1, -1, -1, -1, -1, 3, 3, 3, 3, -3, -3, -3, -3});
const std::vector<int> ImprovedStaggeredFermion5DStatic::directions(ImprovedStaggeredFermion5DStatic::MakeDirections());
const std::vector<int> ImprovedStaggeredFermion5DStatic::displacements(ImprovedStaggeredFermion5DStatic::MakeDisplacements());
std::vector<int> ImprovedStaggeredFermion5DStatic::MakeDirections(void)
{
std::vector<int> directions(4*Nd);
for(int d=0;d<Nd;d++){
directions[d+Nd*0] = d+1;
directions[d+Nd*1] = d+1;
directions[d+Nd*2] = d+1;
directions[d+Nd*3] = d+1;
}
return directions;
}
std::vector<int> ImprovedStaggeredFermion5DStatic::MakeDisplacements(void)
{
std::vector<int> displacements(4*Nd);
for(int d=0;d<Nd;d++){
displacements[d+Nd*0] =+1;
displacements[d+Nd*1] =-1;
displacements[d+Nd*2] =+3;
displacements[d+Nd*3] =-3;
}
return displacements;
}
NAMESPACE_END(Grid);

View File

@@ -32,5 +32,26 @@ NAMESPACE_BEGIN(Grid);
const std::vector<int> ImprovedStaggeredFermionStatic::directions({0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3});
const std::vector<int> ImprovedStaggeredFermionStatic::displacements({1, 1, 1, 1, -1, -1, -1, -1, 3, 3, 3, 3, -3, -3, -3, -3});
std::vector<int> ImprovedStaggeredFermionStatic::MakeDirections(void)
{
std::vector<int> directions(4*Nd);
for(int d=0;d<Nd;d++){
directions[d+Nd*0] = d;
directions[d+Nd*1] = d;
directions[d+Nd*2] = d;
directions[d+Nd*3] = d;
}
return directions;
}
std::vector<int> ImprovedStaggeredFermionStatic::MakeDisplacements(void)
{
std::vector<int> displacements(4*Nd);
for(int d=0;d<Nd;d++){
displacements[d+Nd*0] =+1;
displacements[d+Nd*1] =-1;
displacements[d+Nd*2] =+3;
displacements[d+Nd*3] =-3;
}
return displacements;
}
NAMESPACE_END(Grid);

View File

@@ -30,7 +30,27 @@ directory
NAMESPACE_BEGIN(Grid);
const std::vector<int> NaiveStaggeredFermionStatic::directions({0, 1, 2, 3, 0, 1, 2, 3});
const std::vector<int> NaiveStaggeredFermionStatic::displacements({1, 1, 1, 1, -1, -1, -1, -1});
//const std::vector<int> NaiveStaggeredFermionStatic::directions({0, 1, 2, 3, 0, 1, 2, 3});
//const std::vector<int> NaiveStaggeredFermionStatic::displacements({1, 1, 1, 1, -1, -1, -1, -1});
const std::vector<int> NaiveStaggeredFermionStatic::directions(NaiveStaggeredFermionStatic::MakeDirections());
const std::vector<int> NaiveStaggeredFermionStatic::displacements(NaiveStaggeredFermionStatic::MakeDisplacements());
std::vector<int> NaiveStaggeredFermionStatic::MakeDirections(void)
{
std::vector<int> directions(4*Nd);
for(int d=0;d<Nd;d++){
directions[d+Nd*0] = d;
directions[d+Nd*1] = d;
}
return directions;
}
std::vector<int> NaiveStaggeredFermionStatic::MakeDisplacements(void)
{
std::vector<int> displacements(4*Nd);
for(int d=0;d<Nd;d++){
displacements[d+Nd*0] =+1;
displacements[d+Nd*1] =-1;
}
return displacements;
}
NAMESPACE_END(Grid);

View File

@@ -0,0 +1,61 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/TwoSpinWilsonFermion3plus1D.h>
NAMESPACE_BEGIN(Grid);
// S-direction is INNERMOST and takes no part in the parity.
const std::vector<int> TwoSpinWilsonFermion3plus1DStatic::directions (TwoSpinWilsonFermion3plus1DStatic::MakeDirections());
const std::vector<int> TwoSpinWilsonFermion3plus1DStatic::displacements(TwoSpinWilsonFermion3plus1DStatic::MakeDisplacements());
std::vector<int> TwoSpinWilsonFermion3plus1DStatic::MakeDirections (void)
{
std::vector<int> directions(2*Nd);
for(int d=0;d<Nd;d++){
directions[d] = d+1;
directions[d+Nd] = d+1;
}
return directions;
}
std::vector<int> TwoSpinWilsonFermion3plus1DStatic::MakeDisplacements(void)
{
std::vector<int> displacements(2*Nd);
for(int d=0;d<Nd;d++){
displacements[d] = +1;
displacements[d+Nd] = -1;
}
return displacements;
}
NAMESPACE_END(Grid);

View File

@@ -0,0 +1,40 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/TwoSpinWilsonFermion3plus1DImplementation.h>
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class TwoSpinWilsonFermion3plus1D<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@@ -0,0 +1,40 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/TwoSpinWilsonKernelsImplementation.h>
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class TwoSpinWilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@@ -34,8 +34,28 @@ directory
NAMESPACE_BEGIN(Grid);
// S-direction is INNERMOST and takes no part in the parity.
const std::vector<int> WilsonFermion5DStatic::directions ({1,2,3,4, 1, 2, 3, 4});
const std::vector<int> WilsonFermion5DStatic::displacements({1,1,1,1,-1,-1,-1,-1});
const std::vector<int> WilsonFermion5DStatic::directions (WilsonFermion5DStatic::MakeDirections());
const std::vector<int> WilsonFermion5DStatic::displacements(WilsonFermion5DStatic::MakeDisplacements());
std::vector<int> WilsonFermion5DStatic::MakeDirections (void)
{
std::vector<int> directions(2*Nd);
for(int d=0;d<Nd;d++){
directions[d] = d+1;
directions[d+Nd] = d+1;
}
return directions;
}
std::vector<int> WilsonFermion5DStatic::MakeDisplacements(void)
{
std::vector<int> displacements(2*Nd);
for(int d=0;d<Nd;d++){
displacements[d] = +1;
displacements[d+Nd] = -1;
}
return displacements;
}
NAMESPACE_END(Grid);

View File

@@ -33,9 +33,27 @@ directory
NAMESPACE_BEGIN(Grid);
const std::vector<int> WilsonFermionStatic::directions({0, 1, 2, 3, 0, 1, 2, 3});
const std::vector<int> WilsonFermionStatic::displacements({1, 1, 1, 1, -1, -1, -1, -1});
const std::vector<int> WilsonFermionStatic::directions(WilsonFermionStatic::MakeDirections());
const std::vector<int> WilsonFermionStatic::displacements(WilsonFermionStatic::MakeDisplacements());
int WilsonFermionStatic::HandOptDslash;
std::vector<int> WilsonFermionStatic::MakeDirections (void)
{
std::vector<int> directions(2*Nd);
for(int d=0;d<Nd;d++){
directions[d] = d;
directions[d+Nd] = d;
}
return directions;
}
std::vector<int> WilsonFermionStatic::MakeDisplacements(void)
{
std::vector<int> displacements(2*Nd);
for(int d=0;d<Nd;d++){
displacements[d] = +1;
displacements[d+Nd] = -1;
}
return displacements;
}
NAMESPACE_END(Grid);

View File

@@ -0,0 +1 @@
../CompactWilsonCloverFermion5DInstantiation.cc.master

View File

@@ -0,0 +1 @@
../CompactWilsonCloverFermion5DInstantiation.cc.master

View File

@@ -36,11 +36,16 @@ DWF_IMPL_LIST=" \
ZWilsonImplF \
ZWilsonImplD2 "
TWOSPIN_WILSON_IMPL_LIST=" \
TwoSpinWilsonImplF \
TwoSpinWilsonImplD "
GDWF_IMPL_LIST=" \
GparityWilsonImplF \
GparityWilsonImplD "
IMPL_LIST="$STAG_IMPL_LIST $WILSON_IMPL_LIST $DWF_IMPL_LIST $GDWF_IMPL_LIST"
IMPL_LIST="$STAG_IMPL_LIST $WILSON_IMPL_LIST $DWF_IMPL_LIST $GDWF_IMPL_LIST $TWOSPIN_WILSON_IMPL_LIST"
for impl in $IMPL_LIST
do
@@ -62,7 +67,7 @@ do
done
done
CC_LIST="CompactWilsonCloverFermionInstantiation"
CC_LIST="CompactWilsonCloverFermionInstantiation CompactWilsonCloverFermion5DInstantiation"
for impl in $COMPACT_WILSON_IMPL_LIST
do
@@ -110,7 +115,12 @@ do
done
done
CC_LIST=" \
ImprovedStaggeredFermion5DInstantiation \
StaggeredKernelsInstantiation "
CC_LIST="TwoSpinWilsonFermion3plus1DInstantiation.cc.master TwoSpinWilsonKernelsInstantiation.cc.master"
for impl in $TWOSPIN_WILSON_IMPL_LIST
do
for f in $CC_LIST
do
ln -f -s ../$f.cc.master $impl/$f$impl.cc
done
done

View File

@@ -40,6 +40,11 @@ public:
INHERIT_GIMPL_TYPES(Gimpl);
using Action<GaugeField>::S;
using Action<GaugeField>::Sinitial;
using Action<GaugeField>::deriv;
using Action<GaugeField>::refresh;
private:
RealD c_plaq;
RealD c_rect;
@@ -71,27 +76,27 @@ public:
return action;
};
virtual void deriv(const GaugeField &Umu,GaugeField & dSdU) {
virtual void deriv(const GaugeField &U, GaugeField &dSdU) {
//extend Ta to include Lorentz indexes
RealD factor_p = c_plaq/RealD(Nc)*0.5;
RealD factor_r = c_rect/RealD(Nc)*0.5;
GridBase *grid = Umu.Grid();
GridBase *grid = U.Grid();
std::vector<GaugeLinkField> U (Nd,grid);
std::vector<GaugeLinkField> Umu (Nd,grid);
for(int mu=0;mu<Nd;mu++){
U[mu] = PeekIndex<LorentzIndex>(Umu,mu);
Umu[mu] = PeekIndex<LorentzIndex>(U,mu);
}
std::vector<GaugeLinkField> RectStaple(Nd,grid), Staple(Nd,grid);
WilsonLoops<Gimpl>::StapleAndRectStapleAll(Staple, RectStaple, U, workspace);
WilsonLoops<Gimpl>::StapleAndRectStapleAll(Staple, RectStaple, Umu, workspace);
GaugeLinkField dSdU_mu(grid);
GaugeLinkField staple(grid);
for (int mu=0; mu < Nd; mu++){
dSdU_mu = Ta(U[mu]*Staple[mu])*factor_p;
dSdU_mu = dSdU_mu + Ta(U[mu]*RectStaple[mu])*factor_r;
dSdU_mu = Ta(Umu[mu]*Staple[mu])*factor_p;
dSdU_mu = dSdU_mu + Ta(Umu[mu]*RectStaple[mu])*factor_r;
PokeIndex<LorentzIndex>(dSdU, dSdU_mu, mu);
}

View File

@@ -43,6 +43,11 @@ class WilsonGaugeAction : public Action<typename Gimpl::GaugeField> {
public:
INHERIT_GIMPL_TYPES(Gimpl);
using Action<GaugeField>::S;
using Action<GaugeField>::Sinitial;
using Action<GaugeField>::deriv;
using Action<GaugeField>::refresh;
/////////////////////////// constructors
explicit WilsonGaugeAction(RealD beta_):beta(beta_){};
@@ -68,20 +73,23 @@ public:
// extend Ta to include Lorentz indexes
RealD factor = 0.5 * beta / RealD(Nc);
GridBase *grid = U.Grid();
GaugeLinkField Umu(U.Grid());
GaugeLinkField dSdU_mu(U.Grid());
GaugeLinkField dSdU_mu(grid);
std::vector<GaugeLinkField> Umu(Nd, grid);
for (int mu = 0; mu < Nd; mu++) {
Umu[mu] = PeekIndex<LorentzIndex>(U, mu);
}
Umu = PeekIndex<LorentzIndex>(U, mu);
for (int mu = 0; mu < Nd; mu++) {
// Staple in direction mu
WilsonLoops<Gimpl>::Staple(dSdU_mu, U, mu);
dSdU_mu = Ta(Umu * dSdU_mu) * factor;
WilsonLoops<Gimpl>::Staple(dSdU_mu, Umu, mu);
dSdU_mu = Ta(Umu[mu] * dSdU_mu) * factor;
PokeIndex<LorentzIndex>(dSdU, dSdU_mu, mu);
}
}
private:
RealD beta;
};

View File

@@ -111,8 +111,8 @@ public:
};
void CheckpointRestore(int traj, Field &U, GridSerialRNG &sRNG, GridParallelRNG &pRNG) {
std::string config, rng;
this->build_filenames(traj, Params, config, rng);
std::string config, rng, smr;
this->build_filenames(traj, Params, config, smr, rng);
this->check_filename(rng);
this->check_filename(config);

View File

@@ -75,7 +75,7 @@ public:
GridParallelRNG &pRNG) {
if ((traj % Params.saveInterval) == 0) {
std::string config, rng, smr;
this->build_filenames(traj, Params, config, rng);
this->build_filenames(traj, Params, config, smr, rng);
GridBase *grid = SmartConfig.get_U(false).Grid();
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
BinaryIO::writeRNG(sRNG, pRNG, rng, 0,nersc_csum,scidac_csuma,scidac_csumb);
@@ -102,7 +102,7 @@ public:
if ( Params.saveSmeared ) {
IldgWriter _IldgWriter(grid->IsBoss());
_IldgWriter.open(smr);
_IldgWriter.writeConfiguration<GaugeStats>(SmartConfig.get_U(true), traj, config, config);
_IldgWriter.writeConfiguration<GaugeStats>(SmartConfig.get_U(true), traj, smr, smr);
_IldgWriter.close();
std::cout << GridLogMessage << "Written ILDG Configuration on " << smr
@@ -118,8 +118,8 @@ public:
void CheckpointRestore(int traj, GaugeField &U, GridSerialRNG &sRNG,
GridParallelRNG &pRNG) {
std::string config, rng;
this->build_filenames(traj, Params, config, rng);
std::string config, rng, smr;
this->build_filenames(traj, Params, config, smr, rng);
this->check_filename(rng);
this->check_filename(config);

View File

@@ -107,8 +107,8 @@ class ScidacHmcCheckpointer : public BaseHmcCheckpointer<Implementation> {
void CheckpointRestore(int traj, Field &U, GridSerialRNG &sRNG,
GridParallelRNG &pRNG) {
std::string config, rng;
this->build_filenames(traj, Params, config, rng);
std::string config, rng, smr;
this->build_filenames(traj, Params, config, smr, rng);
this->check_filename(rng);
this->check_filename(config);

View File

@@ -62,15 +62,15 @@ accelerator_inline int stencilIndex(int mu, int nu) {
/*! @brief structure holding the link treatment */
struct SmearingParameters{
SmearingParameters(){}
struct HISQSmearingParameters{
HISQSmearingParameters(){}
Real c_1; // 1 link
Real c_naik; // Naik term
Real c_3; // 3 link
Real c_5; // 5 link
Real c_7; // 7 link
Real c_lp; // 5 link Lepage
SmearingParameters(Real c1, Real cnaik, Real c3, Real c5, Real c7, Real clp)
HISQSmearingParameters(Real c1, Real cnaik, Real c3, Real c5, Real c7, Real clp)
: c_1(c1),
c_naik(cnaik),
c_3(c3),
@@ -86,7 +86,7 @@ class Smear_HISQ : public Gimpl {
private:
GridCartesian* const _grid;
SmearingParameters _linkTreatment;
HISQSmearingParameters _linkTreatment;
public:
@@ -117,7 +117,7 @@ public:
// IN--u_thin
void smear(GF& u_smr, GF& u_naik, GF& u_thin) const {
SmearingParameters lt = this->_linkTreatment;
HISQSmearingParameters lt = this->_linkTreatment;
auto grid = this->_grid;
// Create a padded cell of extra padding depth=1 and fill the padding.

View File

@@ -158,8 +158,8 @@ RealD WilsonFlowBase<Gimpl>::energyDensityCloverleaf(const RealD t, const GaugeF
LatticeComplexD R(U.Grid());
R = Zero();
for(int mu=0;mu<3;mu++){
for(int nu=mu+1;nu<4;nu++){
for(int mu=0;mu<Nd-1;mu++){
for(int nu=mu+1;nu<Nd;nu++){
WilsonLoops<Gimpl>::FieldStrength(F, U, mu, nu);
R = R + trace(F*F);
}
@@ -207,11 +207,14 @@ std::vector<RealD> WilsonFlowBase<Gimpl>::flowMeasureEnergyDensityCloverleaf(con
}
template <class Gimpl>
void WilsonFlowBase<Gimpl>::setDefaultMeasurements(int topq_meas_interval){
addMeasurement(1, [](int step, RealD t, const typename Gimpl::GaugeField &U){
void WilsonFlowBase<Gimpl>::setDefaultMeasurements(int meas_interval){
addMeasurement(meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : " << step << " " << t << " " << energyDensityPlaquette(t,U) << std::endl;
});
addMeasurement(topq_meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){
addMeasurement(meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){
std::cout << GridLogMessage << "[WilsonFlow] Energy density (cloverleaf) : " << step << " " << t << " " << energyDensityCloverleaf(t,U) << std::endl;
});
addMeasurement(meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : " << step << " " << WilsonLoops<Gimpl>::TopologicalCharge(U) << std::endl;
});
}
@@ -249,6 +252,11 @@ void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const{
out = in;
RealD taus = 0.;
// Perform initial t=0 measurements
for(auto const &meas : this->functions)
meas.second(0,taus,out);
for (unsigned int step = 1; step <= Nstep; step++) { //step indicates the number of smearing steps applied at the time of measurement
auto start = std::chrono::high_resolution_clock::now();
evolve_step(out, taus);
@@ -333,6 +341,11 @@ void WilsonFlowAdaptive<Gimpl>::smear(GaugeField& out, const GaugeField& in) con
RealD taus = 0.;
RealD eps = init_epsilon;
unsigned int step = 0;
// Perform initial t=0 measurements
for(auto const &meas : this->functions)
meas.second(step,taus,out);
do{
int step_success = evolve_step_adaptive(out, taus, eps);
step += step_success; //step will not be incremented if the integration step fails

Some files were not shown because too many files have changed in this diff Show More