mirror of
https://github.com/paboyle/Grid.git
synced 2025-11-04 14:04:32 +00:00
Compare commits
187 Commits
066544281f
...
feature/S2
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
d3ca16c76d | ||
|
|
d81d00a889 | ||
|
|
d0ee38d1da | ||
|
|
da8dc3da0d | ||
|
|
21514d8487 | ||
|
|
77b2e9fb61 | ||
|
|
a71ba05bd7 | ||
|
|
1e95e64035 | ||
|
|
defcac92ab | ||
|
|
4869378f1e | ||
|
|
c7b74db317 | ||
|
|
0ce201efbe | ||
|
|
6d8a3d8bb2 | ||
|
|
7dfd207ebb | ||
|
|
3a65a096f2 | ||
|
|
85b2bd4c93 | ||
|
|
35e10a1159 | ||
| d418f78352 | |||
| 25163998a0 | |||
|
|
dc546aaa4b | ||
|
|
5364d580c9 | ||
|
|
2a9a6347e3 | ||
|
|
cfdb56f314 | ||
|
|
b517e88db3 | ||
| bb317aba8d | |||
| 644cc6647e | |||
| 72397ce23b | |||
|
|
d60a80c098 | ||
|
|
bb8b6d9d73 | ||
|
|
677b4cc5b0 | ||
|
|
be565ffab6 | ||
|
|
df6120e5f6 | ||
|
|
21de6f7da8 | ||
|
|
dbe39f9ce0 | ||
|
|
ab3de50d5e | ||
|
|
c545bd2139 | ||
|
|
6a1c64fbdd | ||
|
|
b75809ed61 | ||
|
|
ecaf228e5c | ||
|
|
6d015ae8fc | ||
|
|
233150d93f | ||
|
|
7af8c77a52 | ||
|
|
a957e7bfa1 | ||
|
|
cee4c8ce8c | ||
|
|
96bf814d8c | ||
|
|
7ddc422788 | ||
|
|
e652fc2825 | ||
|
|
a49fa3f8d0 | ||
|
|
cd452a2f91 | ||
|
|
4f89f603ae | ||
|
|
11dc2c5e1d | ||
|
|
6fec3c15ca | ||
|
|
938c47480f | ||
|
|
3811d19298 | ||
|
|
83a3ab6b6f | ||
|
|
d66a9af6a3 | ||
|
|
adc90d3a86 | ||
|
|
ebbd015c5c | ||
|
|
4ab73b36b2 | ||
|
|
130e07a422 | ||
|
|
8f47bb367e | ||
|
|
0c3cb60135 | ||
|
|
9eae8fca5d | ||
|
|
882a217074 | ||
|
|
e465fce201 | ||
|
|
d41542c64b | ||
|
|
199818bd6c | ||
|
|
fe66c7ca30 | ||
|
|
e9177e4af3 | ||
|
|
d15a6c5933 | ||
| 25ab9325e7 | |||
| 19f9378b98 | |||
|
|
785bc7a14f | ||
|
|
1a1fe85428 | ||
|
|
0000d2e558 | ||
|
|
9ffd1ed4ce | ||
|
|
3d014864e2 | ||
| 1d22841811 | |||
|
|
a1cdda833f | ||
|
|
ad6db92690 | ||
|
|
e8ff9d8e50 | ||
|
|
795769c636 | ||
|
|
267a39d943 | ||
|
|
3624bd3d22 | ||
|
|
bc12dbbb38 | ||
|
|
eb8a008a8f | ||
| c4d9aa1a21 | |||
| 6ae809ed40 | |||
|
|
311e2aab3f | ||
| 438dfbdb83 | |||
| b2ce760cf4 | |||
|
|
b1ba209696 | ||
|
|
cb3e529b1e | ||
|
|
717f647418 | ||
|
|
98e7418187 | ||
|
|
fe05bf48b1 | ||
|
|
d2dd8f54e2 | ||
|
|
7726ee4b16 | ||
| ba9bbe0221 | |||
| 4c3dd82d84 | |||
| 44e911b5b7 | |||
| a7a16df9d0 | |||
| 382e0abefd | |||
| 6fdefe5b90 | |||
| 4788dd8e2e | |||
| 1cc5f221f3 | |||
| 93251bfba0 | |||
| 18b79508b8 | |||
| 4de5ed1613 | |||
| 0baaddbe98 | |||
| 8729c46169 | |||
| 09f81fe7c3 | |||
| 1876e5b7c0 | |||
|
|
355ec76257 | ||
| b50fb34e71 | |||
| de84d730ff | |||
|
|
c74d11e3d7 | ||
|
|
84cab5e6e7 | ||
| c4fc972fec | |||
| 8cf809e231 | |||
| 94019a922e | |||
|
|
4f17c8d081 | ||
|
|
aaab753982 | ||
| d6b2727f86 | |||
| 74a4f43946 | |||
| 1caf8b0f86 | |||
|
|
570b72a47b | ||
|
|
a5798a89ed | ||
|
|
3f3661a86f | ||
|
|
f7e2f9a401 | ||
|
|
2848a9b558 | ||
|
|
d4868991af | ||
|
|
e99d42404e | ||
|
|
3ba019c747 | ||
|
|
47429218bb | ||
| 8fe429346f | |||
|
|
5a4f9bf2e3 | ||
|
|
b91fc1b6b4 | ||
|
|
eafc150034 | ||
|
|
2877f1a268 | ||
|
|
1e893af775 | ||
|
|
d9f430a575 | ||
|
|
63abe87f36 | ||
|
|
368d649c8a | ||
|
|
5603464f39 | ||
|
|
655c79f39e | ||
|
|
565b231c03 | ||
|
|
62a9f180fa | ||
|
|
5ae77876a8 | ||
|
|
4ed2c2c74f | ||
|
|
955da582b6 | ||
|
|
11b07b950d | ||
|
|
8f70cfeda9 | ||
|
|
ce64271048 | ||
| 5cc4f3241d | |||
|
|
6815e138b4 | ||
| a78a61d76f | |||
| 2eff3f34ed | |||
| 03687c1d62 | |||
| febfe4e77f | |||
| 4d1aa134b5 | |||
| 5ec879860a | |||
|
|
f617468e04 | ||
| b728af903c | |||
| 54f1999030 | |||
| fd58f0b669 | |||
| c5c67b706e | |||
| be7a543e2c | |||
| 68f112d576 | |||
| ec1395a304 | |||
| beb0e474ee | |||
| 2b5fdcbbc5 | |||
| 295127d456 | |||
| 7dcfb13694 | |||
|
|
ee4046fe92 | ||
|
|
2a9cfeb9ea | ||
|
|
1147b8ea40 | ||
|
|
3f9119b39d | ||
|
|
35e8225abd | ||
|
|
bdbfbb7a14 | ||
|
|
f7d4be8d96 | ||
| 9fa8bd6438 | |||
| 02c8178f16 | |||
| e637fbacae | |||
| 8d305df0db | |||
|
|
e29b97b3ea | ||
|
|
ad2b699d2b |
@@ -37,6 +37,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/qcd/QCD.h>
|
||||
#include <Grid/qcd/spin/Spin.h>
|
||||
#include <Grid/qcd/gparity/Gparity.h>
|
||||
#include <Grid/qcd/spin/Pauli.h> // depends on Gparity
|
||||
#include <Grid/qcd/utils/Utils.h>
|
||||
#include <Grid/qcd/representations/Representations.h>
|
||||
NAMESPACE_CHECK(GridQCDCore);
|
||||
|
||||
@@ -191,7 +191,7 @@ public:
|
||||
|
||||
Lattice<sobj> pgbuf(&pencil_g);
|
||||
autoView(pgbuf_v , pgbuf, CpuWrite);
|
||||
std::cout << "CPU view" << std::endl;
|
||||
//std::cout << "CPU view" << std::endl;
|
||||
|
||||
typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
|
||||
typedef typename FFTW<scalar>::FFTW_plan FFTW_plan;
|
||||
@@ -215,7 +215,7 @@ public:
|
||||
else if ( sign == forward ) div = 1.0;
|
||||
else assert(0);
|
||||
|
||||
std::cout << "Making FFTW plan" << std::endl;
|
||||
//std::cout << GridLogPerformance<<"Making FFTW plan" << std::endl;
|
||||
FFTW_plan p;
|
||||
{
|
||||
FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0];
|
||||
@@ -229,7 +229,7 @@ public:
|
||||
}
|
||||
|
||||
// Barrel shift and collect global pencil
|
||||
std::cout << "Making pencil" << std::endl;
|
||||
//std::cout << GridLogPerformance<<"Making pencil" << std::endl;
|
||||
Coordinate lcoor(Nd), gcoor(Nd);
|
||||
result = source;
|
||||
int pc = processor_coor[dim];
|
||||
@@ -251,7 +251,7 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "Looping orthog" << std::endl;
|
||||
//std::cout <<GridLogPerformance<< "Looping orthog" << std::endl;
|
||||
// Loop over orthog coords
|
||||
int NN=pencil_g.lSites();
|
||||
GridStopWatch timer;
|
||||
@@ -274,7 +274,7 @@ public:
|
||||
usec += timer.useconds();
|
||||
flops+= flops_call*NN;
|
||||
|
||||
std::cout << "Writing back results " << std::endl;
|
||||
//std::cout <<GridLogPerformance<< "Writing back results " << std::endl;
|
||||
// writing out result
|
||||
{
|
||||
autoView(pgbuf_v,pgbuf,CpuRead);
|
||||
@@ -291,7 +291,7 @@ public:
|
||||
}
|
||||
result = result*div;
|
||||
|
||||
std::cout << "Destroying plan " << std::endl;
|
||||
//std::cout <<GridLogPerformance<< "Destroying plan " << std::endl;
|
||||
// destroying plan
|
||||
FFTW<scalar>::fftw_destroy_plan(p);
|
||||
#endif
|
||||
|
||||
@@ -277,6 +277,38 @@ public:
|
||||
assert(0);
|
||||
}
|
||||
};
|
||||
template<class Matrix,class Field>
|
||||
class ShiftedNonHermitianLinearOperator : public LinearOperatorBase<Field> {
|
||||
Matrix &_Mat;
|
||||
RealD shift;
|
||||
public:
|
||||
ShiftedNonHermitianLinearOperator(Matrix &Mat,RealD shft): _Mat(Mat),shift(shft){};
|
||||
// Support for coarsening to a multigrid
|
||||
void OpDiag (const Field &in, Field &out) {
|
||||
_Mat.Mdiag(in,out);
|
||||
out = out + shift*in;
|
||||
}
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
||||
_Mat.Mdir(in,out,dir,disp);
|
||||
}
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){
|
||||
_Mat.MdirAll(in,out);
|
||||
};
|
||||
void Op (const Field &in, Field &out){
|
||||
_Mat.M(in,out);
|
||||
out = out + shift * in;
|
||||
}
|
||||
void AdjOp (const Field &in, Field &out){
|
||||
_Mat.Mdag(in,out);
|
||||
out = out + shift * in;
|
||||
}
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
assert(0);
|
||||
}
|
||||
void HermOp(const Field &in, Field &out){
|
||||
assert(0);
|
||||
}
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////////
|
||||
// Even Odd Schur decomp operators; there are several
|
||||
|
||||
@@ -269,7 +269,9 @@ public:
|
||||
RealD xscale = 2.0/(hi-lo);
|
||||
RealD mscale = -(hi+lo)/(hi-lo);
|
||||
Linop.HermOp(T0,y);
|
||||
grid->Barrier();
|
||||
axpby(T1,xscale,mscale,y,in);
|
||||
grid->Barrier();
|
||||
|
||||
// sum = .5 c[0] T0 + c[1] T1
|
||||
// out = ()*T0 + Coeffs[1]*T1;
|
||||
|
||||
@@ -55,10 +55,10 @@ NAMESPACE_BEGIN(Grid);
|
||||
typedef cublasHandle_t gridblasHandle_t;
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
typedef cl::sycl::queue *gridblasHandle_t;
|
||||
typedef sycl::queue *gridblasHandle_t;
|
||||
#endif
|
||||
#ifdef GRID_ONE_MKL
|
||||
typedef cl::sycl::queue *gridblasHandle_t;
|
||||
typedef sycl::queue *gridblasHandle_t;
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
|
||||
typedef int32_t gridblasHandle_t;
|
||||
@@ -89,9 +89,9 @@ public:
|
||||
gridblasHandle = theGridAccelerator;
|
||||
#endif
|
||||
#ifdef GRID_ONE_MKL
|
||||
cl::sycl::gpu_selector selector;
|
||||
cl::sycl::device selectedDevice { selector };
|
||||
cl::sycl::property_list q_prop{cl::sycl::property::queue::in_order()};
|
||||
sycl::gpu_selector selector;
|
||||
sycl::device selectedDevice { selector };
|
||||
sycl::property_list q_prop{sycl::property::queue::in_order()};
|
||||
gridblasHandle =new sycl::queue (selectedDevice,q_prop);
|
||||
#endif
|
||||
gridblasInit=1;
|
||||
@@ -208,8 +208,8 @@ public:
|
||||
assert(Bkn.size()==batchCount);
|
||||
assert(Cmn.size()==batchCount);
|
||||
|
||||
assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
|
||||
assert(OpB!=GridBLAS_OP_T);
|
||||
//assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
|
||||
//assert(OpB!=GridBLAS_OP_T);
|
||||
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
@@ -367,28 +367,67 @@ public:
|
||||
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
|
||||
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
|
||||
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
|
||||
if (std::abs(beta) != 0.0)
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
|
||||
else
|
||||
eCmn = alpha * eAmk * eBkn ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
|
||||
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
|
||||
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
|
||||
if (std::abs(beta) != 0.0)
|
||||
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
|
||||
else
|
||||
eCmn = alpha * eAmk.adjoint() * eBkn ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
|
||||
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
|
||||
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
|
||||
if (std::abs(beta) != 0.0)
|
||||
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
|
||||
else
|
||||
eCmn = alpha * eAmk.transpose() * eBkn ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
|
||||
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
|
||||
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
|
||||
if (std::abs(beta) != 0.0)
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
|
||||
else
|
||||
eCmn = alpha * eAmk * eBkn.adjoint() ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
|
||||
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
|
||||
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
|
||||
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
|
||||
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
|
||||
if (std::abs(beta) != 0.0)
|
||||
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
|
||||
else
|
||||
eCmn = alpha * eAmk.adjoint() * eBkn.adjoint() ;
|
||||
} );
|
||||
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
|
||||
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
|
||||
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
|
||||
if (std::abs(beta) != 0.0)
|
||||
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
|
||||
else
|
||||
eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
|
||||
} );
|
||||
} else {
|
||||
assert(0);
|
||||
@@ -414,8 +453,8 @@ public:
|
||||
RealD t2=usecond();
|
||||
int32_t batchCount = Amk.size();
|
||||
|
||||
assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
|
||||
assert(OpB!=GridBLAS_OP_T);
|
||||
//assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
|
||||
//assert(OpB!=GridBLAS_OP_T);
|
||||
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
@@ -514,28 +553,70 @@ public:
|
||||
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
|
||||
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
|
||||
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
|
||||
if (std::abs(beta) != 0.0)
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
|
||||
else
|
||||
eCmn = alpha * eAmk * eBkn ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
|
||||
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
|
||||
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
|
||||
if (std::abs(beta) != 0.0)
|
||||
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
|
||||
else
|
||||
eCmn = alpha * eAmk.adjoint() * eBkn ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
|
||||
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
|
||||
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
|
||||
if (std::abs(beta) != 0.0)
|
||||
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
|
||||
else
|
||||
eCmn = alpha * eAmk.transpose() * eBkn ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
|
||||
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
|
||||
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
|
||||
if (std::abs(beta) != 0.0)
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
|
||||
else
|
||||
eCmn = alpha * eAmk * eBkn.adjoint() ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
|
||||
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
|
||||
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
|
||||
if (std::abs(beta) != 0.0)
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
|
||||
else
|
||||
eCmn = alpha * eAmk * eBkn.transpose() ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
|
||||
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
|
||||
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
|
||||
if (std::abs(beta) != 0.0)
|
||||
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
|
||||
else
|
||||
eCmn = alpha * eAmk.adjoint() * eBkn.adjoint() ;
|
||||
} );
|
||||
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
|
||||
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
|
||||
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
|
||||
if (std::abs(beta) != 0.0)
|
||||
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
|
||||
else
|
||||
eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
|
||||
} );
|
||||
} else {
|
||||
assert(0);
|
||||
@@ -661,29 +742,41 @@ public:
|
||||
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k);
|
||||
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n);
|
||||
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
|
||||
if (std::abs(beta) != 0.0)
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
|
||||
else
|
||||
eCmn = alpha * eAmk * eBkn ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m);
|
||||
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n);
|
||||
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
|
||||
if (std::abs(beta) != 0.0)
|
||||
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
|
||||
else
|
||||
eCmn = alpha * eAmk.transpose() * eBkn ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k);
|
||||
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k);
|
||||
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
|
||||
if (std::abs(beta) != 0.0)
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
|
||||
else
|
||||
eCmn = alpha * eAmk * eBkn.transpose() ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m);
|
||||
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k);
|
||||
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
|
||||
} );
|
||||
if (std::abs(beta) != 0.0)
|
||||
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
|
||||
else
|
||||
eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
|
||||
});
|
||||
} else {
|
||||
assert(0);
|
||||
}
|
||||
@@ -809,28 +902,40 @@ public:
|
||||
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k);
|
||||
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n);
|
||||
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
|
||||
if (std::abs(beta) != 0.0)
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
|
||||
else
|
||||
eCmn = alpha * eAmk * eBkn ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m);
|
||||
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n);
|
||||
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
|
||||
if (std::abs(beta) != 0.0)
|
||||
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
|
||||
else
|
||||
eCmn = alpha * eAmk.transpose() * eBkn ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k);
|
||||
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k);
|
||||
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
|
||||
if (std::abs(beta) != 0.0)
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
|
||||
else
|
||||
eCmn = alpha * eAmk * eBkn.transpose() ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m);
|
||||
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k);
|
||||
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
|
||||
if (std::abs(beta) != 0.0)
|
||||
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
|
||||
else
|
||||
eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
|
||||
});
|
||||
} else {
|
||||
assert(0);
|
||||
|
||||
@@ -144,11 +144,11 @@ public:
|
||||
acceleratorCopyDeviceToDevice(&BLAS_Y[offset],&y_v[0],sizeof(scalar_object)*vol);
|
||||
}
|
||||
RealD t4 = usecond();
|
||||
std::cout << "MulMatrix alloc took "<< t1-t0<<" us"<<std::endl;
|
||||
std::cout << "MulMatrix preamble took "<< t2-t1<<" us"<<std::endl;
|
||||
std::cout << "MulMatrix blas took "<< t3-t2<<" us"<<std::endl;
|
||||
std::cout << "MulMatrix copy took "<< t4-t3<<" us"<<std::endl;
|
||||
std::cout << "MulMatrix total "<< t4-t0<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance << "MulMatrix alloc took "<< t1-t0<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "MulMatrix preamble took "<< t2-t1<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "MulMatrix blas took "<< t3-t2<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "MulMatrix copy took "<< t4-t3<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "MulMatrix total "<< t4-t0<<" us"<<std::endl;
|
||||
}
|
||||
|
||||
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y)
|
||||
@@ -242,16 +242,16 @@ public:
|
||||
RealD flops = 8.0*M*N*K;
|
||||
flops = flops/(t4-t3)/1.e3;
|
||||
bytes = bytes/(t4-t3)/1.e3;
|
||||
std::cout << "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
|
||||
std::cout << "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
|
||||
std::cout << "InnerProductMatrix cp t2 "<< t2-t1<<" us"<<std::endl;
|
||||
std::cout << "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
|
||||
std::cout << "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
|
||||
std::cout << "InnerProductMatrix blas "<< flops<<" GF/s"<<std::endl;
|
||||
std::cout << "InnerProductMatrix blas "<< bytes<<" GB/s"<<std::endl;
|
||||
std::cout << "InnerProductMatrix gsum t5 "<< t5-t4<<" us"<<std::endl;
|
||||
std::cout << "InnerProductMatrix cp t6 "<< t6-t5<<" us"<<std::endl;
|
||||
std::cout << "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t2 "<< t2-t1<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< flops<<" GF/s"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< bytes<<" GB/s"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix gsum t5 "<< t5-t4<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t6 "<< t6-t5<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
|
||||
#else
|
||||
int nrhs;
|
||||
GridBase *grid;
|
||||
@@ -358,17 +358,17 @@ public:
|
||||
flops = flops/(t4-t3)/1.e3;
|
||||
bytes = bytes/(t4-t3)/1.e3;
|
||||
xybytes = 4*xybytes/(t2-t1)/1.e3;
|
||||
std::cout << "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
|
||||
std::cout << "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
|
||||
std::cout << "InnerProductMatrix cp t2 "<< t2-t1<<" us "<<xybytes<<" GB/s"<<std::endl;
|
||||
std::cout << "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
|
||||
std::cout << "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
|
||||
std::cout << "InnerProductMatrix blas "<< flops<<" GF/s"<<std::endl;
|
||||
std::cout << "InnerProductMatrix blas "<< bytes<<" GB/s"<<std::endl;
|
||||
std::cout << "InnerProductMatrix cp t5 "<< t5-t4<<" us"<<std::endl;
|
||||
std::cout << "InnerProductMatrix lsum t6l "<< t6l-t5<<" us"<<std::endl;
|
||||
std::cout << "InnerProductMatrix gsum t6 "<< t6-t6l<<" us"<<std::endl;
|
||||
std::cout << "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t2 "<< t2-t1<<" us "<<xybytes<<" GB/s"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< flops<<" GF/s"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< bytes<<" GB/s"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t5 "<< t5-t4<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix lsum t6l "<< t6l-t5<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix gsum t6 "<< t6-t6l<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
@@ -63,7 +63,12 @@ class TwoLevelCGmrhs
|
||||
GridStopWatch SmoothTimer;
|
||||
GridStopWatch InsertTimer;
|
||||
|
||||
|
||||
/*
|
||||
Field rrr;
|
||||
Field sss;
|
||||
Field qqq;
|
||||
Field zzz;
|
||||
*/
|
||||
// more most opertor functions
|
||||
TwoLevelCGmrhs(RealD tol,
|
||||
Integer maxit,
|
||||
@@ -74,6 +79,12 @@ class TwoLevelCGmrhs
|
||||
MaxIterations(maxit),
|
||||
_FineLinop(FineLinop),
|
||||
_Smoother(Smoother)
|
||||
/*
|
||||
rrr(fine),
|
||||
sss(fine),
|
||||
qqq(fine),
|
||||
zzz(fine)
|
||||
*/
|
||||
{
|
||||
grid = fine;
|
||||
};
|
||||
@@ -81,8 +92,8 @@ class TwoLevelCGmrhs
|
||||
// Vector case
|
||||
virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
|
||||
{
|
||||
SolveSingleSystem(src,x);
|
||||
// SolvePrecBlockCG(src,x);
|
||||
// SolveSingleSystem(src,x);
|
||||
SolvePrecBlockCG(src,x);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@@ -657,6 +668,8 @@ public:
|
||||
CoarseField PleftProjMrhs(this->coarsegridmrhs);
|
||||
CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
|
||||
|
||||
// this->rrr=in[0];
|
||||
|
||||
#undef SMOOTHER_BLOCK_SOLVE
|
||||
#if SMOOTHER_BLOCK_SOLVE
|
||||
this->SmoothTimer.Start();
|
||||
@@ -669,6 +682,7 @@ public:
|
||||
this->SmoothTimer.Stop();
|
||||
}
|
||||
#endif
|
||||
// this->sss=Min[0];
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
|
||||
@@ -705,9 +719,11 @@ public:
|
||||
this->_Projector.blockPromote(tmp,PleftMss_proj);// tmp= Q[in - A Min]
|
||||
this->PromoteTimer.Stop();
|
||||
this->FineTimer.Start();
|
||||
// this->qqq=tmp[0];
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
axpy(out[rhs],1.0,Min[rhs],tmp[rhs]); // Min+tmp
|
||||
}
|
||||
// this->zzz=out[0];
|
||||
this->FineTimer.Stop();
|
||||
}
|
||||
};
|
||||
|
||||
@@ -116,14 +116,14 @@ NAMESPACE_BEGIN(Grid);
|
||||
//Compute double precision rsd and also new RHS vector.
|
||||
Linop_d.HermOp(sol_d, tmp_d);
|
||||
RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector
|
||||
|
||||
std::cout<<GridLogMessage<<" rsd norm "<<norm<<std::endl;
|
||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " <<outer_iter<<" residual "<< norm<< " target "<< stop<<std::endl;
|
||||
|
||||
if(norm < OuterLoopNormMult * stop){
|
||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration converged on iteration " <<outer_iter <<std::endl;
|
||||
break;
|
||||
}
|
||||
while(norm * inner_tol * inner_tol < stop) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
|
||||
while(norm * inner_tol * inner_tol < stop*1.01) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
|
||||
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(src_f, src_d, pc_wk_dp_to_sp);
|
||||
|
||||
@@ -245,9 +245,10 @@ until convergence
|
||||
_HermOp(src_n,tmp);
|
||||
// std::cout << GridLogMessage<< tmp<<std::endl; exit(0);
|
||||
// std::cout << GridLogIRL << " _HermOp " << norm2(tmp) << std::endl;
|
||||
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
|
||||
// RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
|
||||
RealD vnum = real(innerProduct(tmp,tmp)); // HermOp^2.
|
||||
RealD vden = norm2(src_n);
|
||||
RealD na = vnum/vden;
|
||||
RealD na = std::sqrt(vnum/vden);
|
||||
if (fabs(evalMaxApprox/na - 1.0) < 0.0001)
|
||||
i=_MAX_ITER_IRL_MEVAPP_;
|
||||
evalMaxApprox = na;
|
||||
@@ -255,6 +256,7 @@ until convergence
|
||||
src_n = tmp;
|
||||
}
|
||||
}
|
||||
std::cout << GridLogIRL << " Final evalMaxApprox " << evalMaxApprox << std::endl;
|
||||
|
||||
std::vector<RealD> lme(Nm);
|
||||
std::vector<RealD> lme2(Nm);
|
||||
|
||||
@@ -74,7 +74,7 @@ public:
|
||||
|
||||
void operator() (const Field &src, Field &psi){
|
||||
|
||||
psi=Zero();
|
||||
// psi=Zero();
|
||||
RealD cp, ssq,rsq;
|
||||
ssq=norm2(src);
|
||||
rsq=Tolerance*Tolerance*ssq;
|
||||
|
||||
@@ -30,6 +30,8 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidualNonHermitian.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
inline RealD AggregatePowerLaw(RealD x)
|
||||
@@ -95,7 +97,7 @@ public:
|
||||
|
||||
RealD scale;
|
||||
|
||||
ConjugateGradient<FineField> CG(1.0e-2,100,false);
|
||||
ConjugateGradient<FineField> CG(1.0e-3,400,false);
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
|
||||
@@ -108,7 +110,7 @@ public:
|
||||
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
for(int i=0;i<1;i++){
|
||||
for(int i=0;i<4;i++){
|
||||
|
||||
CG(hermop,noise,subspace[b]);
|
||||
|
||||
@@ -124,6 +126,53 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
virtual void CreateSubspaceGCR(GridParallelRNG &RNG,LinearOperatorBase<FineField> &DiracOp,int nn=nbasis)
|
||||
{
|
||||
RealD scale;
|
||||
|
||||
TrivialPrecon<FineField> simple_fine;
|
||||
PrecGeneralisedConjugateResidualNonHermitian<FineField> GCR(0.001,30,DiracOp,simple_fine,12,12);
|
||||
FineField noise(FineGrid);
|
||||
FineField src(FineGrid);
|
||||
FineField guess(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
|
||||
for(int b=0;b<nn;b++){
|
||||
|
||||
subspace[b] = Zero();
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|Op|n> "<<innerProduct(noise,Mn)<<std::endl;
|
||||
|
||||
for(int i=0;i<2;i++){
|
||||
// void operator() (const Field &src, Field &psi){
|
||||
#if 1
|
||||
std::cout << GridLogMessage << " inverting on noise "<<std::endl;
|
||||
src = noise;
|
||||
guess=Zero();
|
||||
GCR(src,guess);
|
||||
subspace[b] = guess;
|
||||
#else
|
||||
std::cout << GridLogMessage << " inverting on zero "<<std::endl;
|
||||
src=Zero();
|
||||
guess = noise;
|
||||
GCR(src,guess);
|
||||
subspace[b] = guess;
|
||||
#endif
|
||||
noise = subspace[b];
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
}
|
||||
|
||||
DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|Op|f> "<<innerProduct(noise,Mn)<<std::endl;
|
||||
subspace[b] = noise;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
|
||||
// and this is the best I found
|
||||
@@ -160,14 +209,21 @@ public:
|
||||
|
||||
int b =0;
|
||||
{
|
||||
ComplexD ip;
|
||||
// Filter
|
||||
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
|
||||
Cheb(hermop,noise,Mn);
|
||||
// normalise
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
|
||||
hermop.Op(Mn,tmp);
|
||||
ip= innerProduct(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
|
||||
|
||||
hermop.AdjOp(Mn,tmp);
|
||||
ip = innerProduct(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
|
||||
b++;
|
||||
}
|
||||
|
||||
@@ -213,8 +269,18 @@ public:
|
||||
Mn=*Tnp;
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
|
||||
|
||||
ComplexD ip;
|
||||
|
||||
hermop.Op(Mn,tmp);
|
||||
ip= innerProduct(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
|
||||
|
||||
hermop.AdjOp(Mn,tmp);
|
||||
ip = innerProduct(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
|
||||
|
||||
b++;
|
||||
}
|
||||
|
||||
@@ -228,6 +294,70 @@ public:
|
||||
}
|
||||
assert(b==nn);
|
||||
}
|
||||
|
||||
|
||||
virtual void CreateSubspacePolyCheby(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
int nn,
|
||||
double hi,
|
||||
double lo1,
|
||||
int orderfilter,
|
||||
double lo2,
|
||||
int orderstep)
|
||||
{
|
||||
RealD scale;
|
||||
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
|
||||
// New normalised noise
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
std::cout << GridLogMessage<<" CreateSubspacePolyCheby "<<std::endl;
|
||||
// Initial matrix element
|
||||
hermop.Op(noise,Mn);
|
||||
std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
int b =0;
|
||||
{
|
||||
// Filter
|
||||
std::cout << GridLogMessage << "Cheby "<<lo1<<","<<hi<<" "<<orderstep<<std::endl;
|
||||
Chebyshev<FineField> Cheb(lo1,hi,orderfilter);
|
||||
Cheb(hermop,noise,Mn);
|
||||
// normalise
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|n> "<<norm2(Mn)<<std::endl;
|
||||
}
|
||||
|
||||
// Generate a full sequence of Chebyshevs
|
||||
for(int n=1;n<nn;n++){
|
||||
std::cout << GridLogMessage << "Cheby "<<lo2<<","<<hi<<" "<<orderstep<<std::endl;
|
||||
Chebyshev<FineField> Cheb(lo2,hi,orderstep);
|
||||
Cheb(hermop,subspace[n-1],Mn);
|
||||
|
||||
for(int m=0;m<n;m++){
|
||||
ComplexD c = innerProduct(subspace[m],Mn);
|
||||
Mn = Mn - c*subspace[m];
|
||||
}
|
||||
|
||||
// normalise
|
||||
scale = std::pow(norm2(Mn),-0.5);
|
||||
Mn=Mn*scale;
|
||||
|
||||
subspace[n]=Mn;
|
||||
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<n<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
std::cout<<GridLogMessage << "filt ["<<n<<"] <n|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
int nn,
|
||||
double hi,
|
||||
|
||||
@@ -441,8 +441,20 @@ public:
|
||||
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
|
||||
}
|
||||
#else
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Galerkin projection of matrix
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
|
||||
Aggregation<Fobj,CComplex,nbasis> & Subspace)
|
||||
{
|
||||
CoarsenOperator(linop,Subspace,Subspace);
|
||||
}
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Petrov - Galerkin projection of matrix
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
|
||||
Aggregation<Fobj,CComplex,nbasis> & U,
|
||||
Aggregation<Fobj,CComplex,nbasis> & V)
|
||||
{
|
||||
std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
|
||||
GridBase *grid = FineGrid();
|
||||
@@ -458,11 +470,9 @@ public:
|
||||
// Orthogonalise the subblocks over the basis
|
||||
/////////////////////////////////////////////////////////////
|
||||
CoarseScalar InnerProd(CoarseGrid());
|
||||
blockOrthogonalise(InnerProd,Subspace.subspace);
|
||||
blockOrthogonalise(InnerProd,V.subspace);
|
||||
blockOrthogonalise(InnerProd,U.subspace);
|
||||
|
||||
// for(int s=0;s<Subspace.subspace.size();s++){
|
||||
// std::cout << " subspace norm "<<norm2(Subspace.subspace[s])<<std::endl;
|
||||
// }
|
||||
const int npoint = geom.npoint;
|
||||
|
||||
Coordinate clatt = CoarseGrid()->GlobalDimensions();
|
||||
@@ -542,7 +552,7 @@ public:
|
||||
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
|
||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
||||
tphaseBZ-=usecond();
|
||||
phaV = phaF[p]*Subspace.subspace[i];
|
||||
phaV = phaF[p]*V.subspace[i];
|
||||
tphaseBZ+=usecond();
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
@@ -555,7 +565,7 @@ public:
|
||||
// std::cout << i << " " <<p << " MphaV "<<norm2(MphaV)<<" "<<norm2(phaV)<<std::endl;
|
||||
|
||||
tproj-=usecond();
|
||||
blockProject(coarseInner,MphaV,Subspace.subspace);
|
||||
blockProject(coarseInner,MphaV,U.subspace);
|
||||
coarseInner = conjugate(pha[p]) * coarseInner;
|
||||
|
||||
ComputeProj[p] = coarseInner;
|
||||
|
||||
@@ -69,7 +69,7 @@ public:
|
||||
}
|
||||
|
||||
// FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop
|
||||
void construct(pointer __p, const _Tp& __val) { assert(0);};
|
||||
void construct(pointer __p, const _Tp& __val) { };
|
||||
void construct(pointer __p) { };
|
||||
void destroy(pointer __p) { };
|
||||
};
|
||||
@@ -175,10 +175,11 @@ template<typename _Tp> inline bool operator!=(const devAllocator<_Tp>&, const d
|
||||
// Template typedefs
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
template<class T> using hostVector = std::vector<T,alignedAllocator<T> >; // Needs autoview
|
||||
template<class T> using Vector = std::vector<T,uvmAllocator<T> >; //
|
||||
template<class T> using Vector = std::vector<T,uvmAllocator<T> >; // Really want to deprecate
|
||||
template<class T> using uvmVector = std::vector<T,uvmAllocator<T> >; // auto migrating page
|
||||
template<class T> using deviceVector = std::vector<T,devAllocator<T> >; // device vector
|
||||
|
||||
/*
|
||||
template<class T> class vecView
|
||||
{
|
||||
protected:
|
||||
@@ -214,6 +215,7 @@ template<class T> vecView<T> VectorView(Vector<T> &vec,ViewMode _mode)
|
||||
#define autoVecView(v_v,v,mode) \
|
||||
auto v_v = VectorView(v,mode); \
|
||||
ViewCloser<decltype(v_v)> _autoView##v_v(v_v);
|
||||
*/
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
||||
@@ -1,16 +1,15 @@
|
||||
#include <Grid/GridCore.h>
|
||||
#ifndef GRID_UVM
|
||||
|
||||
#warning "Using explicit device memory copies"
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#define MAXLINE 512
|
||||
static char print_buffer [ MAXLINE ];
|
||||
|
||||
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer;
|
||||
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug << print_buffer;
|
||||
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer << std::endl;
|
||||
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug << print_buffer << std::endl;
|
||||
//#define dprintf(...)
|
||||
|
||||
//#define mprintf(...)
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// For caching copies of data on device
|
||||
@@ -111,7 +110,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
|
||||
///////////////////////////////////////////////////////////
|
||||
assert(AccCache.state!=Empty);
|
||||
|
||||
dprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
|
||||
dprintf("MemoryManager: Discard(%lx) %lx",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
|
||||
assert(AccCache.accLock==0);
|
||||
assert(AccCache.cpuLock==0);
|
||||
assert(AccCache.CpuPtr!=(uint64_t)NULL);
|
||||
@@ -121,7 +120,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
|
||||
DeviceBytes -=AccCache.bytes;
|
||||
LRUremove(AccCache);
|
||||
AccCache.AccPtr=(uint64_t) NULL;
|
||||
dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);
|
||||
dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);
|
||||
}
|
||||
uint64_t CpuPtr = AccCache.CpuPtr;
|
||||
EntryErase(CpuPtr);
|
||||
@@ -141,7 +140,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
assert(AccCache.state!=Empty);
|
||||
|
||||
mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld\n",
|
||||
mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld",
|
||||
(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr,
|
||||
(uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock);
|
||||
if (AccCache.accLock!=0) return;
|
||||
@@ -155,7 +154,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
|
||||
AccCache.AccPtr=(uint64_t)NULL;
|
||||
AccCache.state=CpuDirty; // CPU primary now
|
||||
DeviceBytes -=AccCache.bytes;
|
||||
dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);
|
||||
dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld ",(uint64_t)AccCache.AccPtr,DeviceBytes);
|
||||
}
|
||||
// uint64_t CpuPtr = AccCache.CpuPtr;
|
||||
DeviceEvictions++;
|
||||
@@ -169,7 +168,7 @@ void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
|
||||
assert(AccCache.AccPtr!=(uint64_t)NULL);
|
||||
assert(AccCache.CpuPtr!=(uint64_t)NULL);
|
||||
acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
|
||||
mprintf("MemoryManager: acceleratorCopyFromDevice Flush AccPtr %lx -> CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
|
||||
mprintf("MemoryManager: acceleratorCopyFromDevice Flush size %ld AccPtr %lx -> CpuPtr %lx",(uint64_t)AccCache.bytes,(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
|
||||
DeviceToHostBytes+=AccCache.bytes;
|
||||
DeviceToHostXfer++;
|
||||
AccCache.state=Consistent;
|
||||
@@ -184,7 +183,9 @@ void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
|
||||
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
|
||||
DeviceBytes+=AccCache.bytes;
|
||||
}
|
||||
mprintf("MemoryManager: acceleratorCopyToDevice Clone AccPtr %lx <- CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
|
||||
mprintf("MemoryManager: acceleratorCopyToDevice Clone size %ld AccPtr %lx <- CpuPtr %lx",
|
||||
(uint64_t)AccCache.bytes,
|
||||
(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
|
||||
acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
|
||||
HostToDeviceBytes+=AccCache.bytes;
|
||||
HostToDeviceXfer++;
|
||||
@@ -210,7 +211,7 @@ void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache)
|
||||
void MemoryManager::ViewClose(void* Ptr,ViewMode mode)
|
||||
{
|
||||
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
|
||||
dprintf("AcceleratorViewClose %lx\n",(uint64_t)Ptr);
|
||||
dprintf("AcceleratorViewClose %lx",(uint64_t)Ptr);
|
||||
AcceleratorViewClose((uint64_t)Ptr);
|
||||
} else if( (mode==CpuRead)||(mode==CpuWrite)){
|
||||
CpuViewClose((uint64_t)Ptr);
|
||||
@@ -222,7 +223,7 @@ void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvis
|
||||
{
|
||||
uint64_t CpuPtr = (uint64_t)_CpuPtr;
|
||||
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
|
||||
dprintf("AcceleratorViewOpen %lx\n",(uint64_t)CpuPtr);
|
||||
dprintf("AcceleratorViewOpen %lx",(uint64_t)CpuPtr);
|
||||
return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint);
|
||||
} else if( (mode==CpuRead)||(mode==CpuWrite)){
|
||||
return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint);
|
||||
@@ -233,6 +234,9 @@ void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvis
|
||||
}
|
||||
void MemoryManager::EvictVictims(uint64_t bytes)
|
||||
{
|
||||
if(bytes>=DeviceMaxBytes) {
|
||||
printf("EvictVictims bytes %ld DeviceMaxBytes %ld\n",bytes,DeviceMaxBytes);
|
||||
}
|
||||
assert(bytes<DeviceMaxBytes);
|
||||
while(bytes+DeviceLRUBytes > DeviceMaxBytes){
|
||||
if ( DeviceLRUBytes > 0){
|
||||
@@ -265,7 +269,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
|
||||
assert(AccCache.cpuLock==0); // Programming error
|
||||
|
||||
if(AccCache.state!=Empty) {
|
||||
dprintf("ViewOpen found entry %lx %lx : %ld %ld accLock %ld\n",
|
||||
dprintf("ViewOpen found entry %lx %lx : sizes %ld %ld accLock %ld",
|
||||
(uint64_t)AccCache.CpuPtr,
|
||||
(uint64_t)CpuPtr,
|
||||
(uint64_t)AccCache.bytes,
|
||||
@@ -305,7 +309,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
|
||||
AccCache.state = Consistent; // Empty + AccRead => Consistent
|
||||
}
|
||||
AccCache.accLock= 1;
|
||||
dprintf("Copied Empty entry into device accLock= %d\n",AccCache.accLock);
|
||||
dprintf("Copied Empty entry into device accLock= %d",AccCache.accLock);
|
||||
} else if(AccCache.state==CpuDirty ){
|
||||
if(mode==AcceleratorWriteDiscard) {
|
||||
CpuDiscard(AccCache);
|
||||
@@ -318,21 +322,21 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
|
||||
AccCache.state = Consistent; // CpuDirty + AccRead => Consistent
|
||||
}
|
||||
AccCache.accLock++;
|
||||
dprintf("CpuDirty entry into device ++accLock= %d\n",AccCache.accLock);
|
||||
dprintf("CpuDirty entry into device ++accLock= %d",AccCache.accLock);
|
||||
} else if(AccCache.state==Consistent) {
|
||||
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
|
||||
AccCache.state = AccDirty; // Consistent + AcceleratorWrite=> AccDirty
|
||||
else
|
||||
AccCache.state = Consistent; // Consistent + AccRead => Consistent
|
||||
AccCache.accLock++;
|
||||
dprintf("Consistent entry into device ++accLock= %d\n",AccCache.accLock);
|
||||
dprintf("Consistent entry into device ++accLock= %d",AccCache.accLock);
|
||||
} else if(AccCache.state==AccDirty) {
|
||||
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
|
||||
AccCache.state = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty
|
||||
else
|
||||
AccCache.state = AccDirty; // AccDirty + AccRead => AccDirty
|
||||
AccCache.accLock++;
|
||||
dprintf("AccDirty entry ++accLock= %d\n",AccCache.accLock);
|
||||
dprintf("AccDirty entry ++accLock= %d",AccCache.accLock);
|
||||
} else {
|
||||
assert(0);
|
||||
}
|
||||
@@ -341,7 +345,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
|
||||
// If view is opened on device must remove from LRU
|
||||
if(AccCache.LRU_valid==1){
|
||||
// must possibly remove from LRU as now locked on GPU
|
||||
dprintf("AccCache entry removed from LRU \n");
|
||||
dprintf("AccCache entry removed from LRU ");
|
||||
LRUremove(AccCache);
|
||||
}
|
||||
|
||||
@@ -364,10 +368,10 @@ void MemoryManager::AcceleratorViewClose(uint64_t CpuPtr)
|
||||
AccCache.accLock--;
|
||||
// Move to LRU queue if not locked and close on device
|
||||
if(AccCache.accLock==0) {
|
||||
dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
|
||||
dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
|
||||
LRUinsert(AccCache);
|
||||
} else {
|
||||
dprintf("AccleratorViewClose %lx AccLock decremented to %ld\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
|
||||
dprintf("AccleratorViewClose %lx AccLock decremented to %ld",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
|
||||
}
|
||||
}
|
||||
void MemoryManager::CpuViewClose(uint64_t CpuPtr)
|
||||
|
||||
@@ -31,5 +31,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/cartesian/Cartesian_base.h>
|
||||
#include <Grid/cartesian/Cartesian_full.h>
|
||||
#include <Grid/cartesian/Cartesian_red_black.h>
|
||||
#include <Grid/cartesian/CartesianCrossIcosahedron.h>
|
||||
|
||||
#endif
|
||||
|
||||
235
Grid/cartesian/CartesianCrossIcosahedron.h
Normal file
235
Grid/cartesian/CartesianCrossIcosahedron.h
Normal file
@@ -0,0 +1,235 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/cartesian/CartesianCrossIcosahedron.h
|
||||
|
||||
Copyright (C) 2025
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Grid Support.
|
||||
/////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
enum IcosahedralMeshType {
|
||||
IcosahedralVertices,
|
||||
IcosahedralEdges
|
||||
} ;
|
||||
enum NorthSouth {
|
||||
North = 1,
|
||||
South = 0
|
||||
};
|
||||
|
||||
const int IcosahedralPatches = 10;
|
||||
const int HemiPatches=IcosahedralPatches/2;
|
||||
const int NorthernHemisphere = HemiPatches;
|
||||
const int SouthernHemisphere = 0;
|
||||
|
||||
class GridCartesianCrossIcosahedron: public GridCartesian {
|
||||
|
||||
public:
|
||||
|
||||
IcosahedralMeshType meshType;
|
||||
|
||||
IcosahedralMeshType MeshType(void) { return meshType; };
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////
|
||||
// Constructor takes a parent grid and possibly subdivides communicator.
|
||||
/////////////////////////////////////////////////////////////////////////
|
||||
/*
|
||||
GridCartesian(const Coordinate &dimensions,
|
||||
const Coordinate &simd_layout,
|
||||
const Coordinate &processor_grid,
|
||||
const GridCartesian &parent) : GridBase(processor_grid,parent,dummy)
|
||||
{
|
||||
assert(0); // No subdivision
|
||||
}
|
||||
GridCartesian(const Coordinate &dimensions,
|
||||
const Coordinate &simd_layout,
|
||||
const Coordinate &processor_grid,
|
||||
const GridCartesian &parent,int &split_rank) : GridBase(processor_grid,parent,split_rank)
|
||||
{
|
||||
assert(0); // No subdivision
|
||||
}
|
||||
*/
|
||||
/////////////////////////////////////////////////////////////////////////
|
||||
// Construct from comm world
|
||||
/////////////////////////////////////////////////////////////////////////
|
||||
GridCartesianCrossIcosahedron(const Coordinate &dimensions,
|
||||
const Coordinate &simd_layout,
|
||||
const Coordinate &processor_grid,
|
||||
IcosahedralMeshType _meshType) : GridCartesian(dimensions,simd_layout,processor_grid)
|
||||
{
|
||||
meshType = _meshType;
|
||||
Coordinate S2dimensions=dimensions;
|
||||
Coordinate S2simd =simd_layout;
|
||||
Coordinate S2procs =processor_grid;
|
||||
|
||||
assert(simd_layout[0]==1); // Force simd into perpendicular dimensions
|
||||
assert(simd_layout[1]==1); // to avoid pole storage complexity interacting with SIMD.
|
||||
assert(dimensions[_ndimension-1]==IcosahedralPatches);
|
||||
assert(processor_grid[_ndimension-1]<=2); // Keeps the patches that need a pole on the same node
|
||||
|
||||
// Save a copy of the basic cartesian initialisation volume
|
||||
cartesianOsites = this->_osites;
|
||||
|
||||
// allocate the pole storage if we are seeking vertex domain data
|
||||
if ( meshType == IcosahedralVertices ) {
|
||||
InitPoles();
|
||||
}
|
||||
}
|
||||
|
||||
virtual ~GridCartesianCrossIcosahedron() = default;
|
||||
|
||||
////////////////////////////////////////////////
|
||||
// Use to decide if a given grid is icosahedral
|
||||
////////////////////////////////////////////////
|
||||
int hasNorthPole;
|
||||
int hasSouthPole;
|
||||
int northPoleOsite;
|
||||
int southPoleOsite;
|
||||
int northPoleOsites;
|
||||
int southPoleOsites;
|
||||
int cartesianOsites;
|
||||
|
||||
virtual int isIcosahedral(void) override { return 1;}
|
||||
virtual int isIcosahedralVertex(void) override { return meshType==IcosahedralVertices;}
|
||||
virtual int isIcosahedralEdge (void) override { return meshType==IcosahedralEdges;}
|
||||
virtual int NorthPoleOsite(void) const override { return northPoleOsite; };
|
||||
virtual int NorthPoleOsites(void) const override { return northPoleOsites; };
|
||||
virtual int SouthPoleOsite(void) const override { return southPoleOsite; };
|
||||
virtual int SouthPoleOsites(void) const override { return southPoleOsites; };
|
||||
virtual int ownsNorthPole(void) const override { return hasNorthPole; };
|
||||
virtual int ownsSouthPole(void) const override { return hasSouthPole; };
|
||||
virtual int CartesianOsites(void) const override { return cartesianOsites; };
|
||||
virtual int64_t PoleIdxForOcoor(Coordinate &Coor) override
|
||||
{
|
||||
// Work out the pole_osite. Pick the higher dims
|
||||
Coordinate rdims;
|
||||
Coordinate ocoor;
|
||||
int64_t pole_idx;
|
||||
int Ndm1 = this->Nd()-1;
|
||||
for(int d=2;d<Ndm1;d++){
|
||||
int dd=d-2;
|
||||
rdims.push_back(this->_rdimensions[d]);
|
||||
ocoor.push_back(Coor[d]%this->_rdimensions[d]);
|
||||
}
|
||||
Lexicographic::IndexFromCoor(ocoor,pole_idx,rdims);
|
||||
return pole_idx;
|
||||
}
|
||||
virtual int64_t PoleSiteForOcoor(Coordinate &Coor) override
|
||||
{
|
||||
int Ndm1 = this->Nd()-1;
|
||||
int64_t pole_idx = this->PoleIdxForOcoor(Coor);
|
||||
int64_t pole_osite;
|
||||
if ( Coor[Ndm1] >= HemiPatches ) {
|
||||
pole_osite = pole_idx + this->NorthPoleOsite();
|
||||
} else {
|
||||
pole_osite = pole_idx + this->SouthPoleOsite();
|
||||
}
|
||||
return pole_osite;
|
||||
}
|
||||
|
||||
|
||||
void InitPoles(void)
|
||||
{
|
||||
int Ndm1 = _ndimension-1;
|
||||
///////////////////////
|
||||
// Add the extra pole storage
|
||||
///////////////////////
|
||||
// Vertices = 1x LxLx D1...Dn + 2.D1...Dn
|
||||
// Start after the LxL and don't include the 10 patch dim
|
||||
int OrthogSize = 1;
|
||||
for (int d = 2; d < Ndm1; d++) {
|
||||
OrthogSize *= _gdimensions[d];
|
||||
}
|
||||
_fsites += OrthogSize*2;
|
||||
_gsites += OrthogSize*2;
|
||||
|
||||
// Simd reduced sizes are multiplied up.
|
||||
// If the leading LxL are simd-ized, the vector objects will contain "redundant" lanes
|
||||
// which should contain identical north (south) pole data
|
||||
OrthogSize = 1;
|
||||
for (int d = 2; d < Ndm1; d++) {
|
||||
OrthogSize *= _rdimensions[d];
|
||||
}
|
||||
|
||||
// Grow the local volume to hold pole data
|
||||
// on rank (0,0) in the LxL planes
|
||||
// since SIMD must be placed in the orthogonal directions
|
||||
Coordinate pcoor = this->ThisProcessorCoor();
|
||||
Coordinate pgrid = this->ProcessorGrid();
|
||||
|
||||
const int xdim=0;
|
||||
const int ydim=1;
|
||||
/*
|
||||
*
|
||||
* /\/\/\/\/\
|
||||
* /\/\/\/\/\/
|
||||
* \/\/\/\/\/
|
||||
*
|
||||
* y
|
||||
* /
|
||||
* \x
|
||||
*
|
||||
* Labelling patches as 5 6 7 8 9
|
||||
* 0 1 2 3 4
|
||||
*
|
||||
* Will ban distribution of the patch dimension by more than 2.
|
||||
*
|
||||
* Hence all 5 patches associated with the pole must have the
|
||||
* appropriate "corner" of the patch L^2 located on the SAME rank.
|
||||
*/
|
||||
|
||||
if( (pcoor[xdim]==pgrid[xdim]-1) && (pcoor[ydim]==0) && (pcoor[Ndm1]==0) ){
|
||||
hasSouthPole =1;
|
||||
southPoleOsite=this->_osites;
|
||||
southPoleOsites=OrthogSize;
|
||||
this->_osites += OrthogSize;
|
||||
} else {
|
||||
hasSouthPole =0;
|
||||
southPoleOsites=0;
|
||||
southPoleOsite=0;
|
||||
}
|
||||
if( (pcoor[xdim]==0) && (pcoor[ydim]==pgrid[ydim]-1) && (pcoor[Ndm1]==pgrid[Ndm1]-1) ){
|
||||
hasNorthPole =1;
|
||||
northPoleOsite=this->_osites;
|
||||
northPoleOsites=OrthogSize;
|
||||
this->_osites += OrthogSize;
|
||||
} else {
|
||||
hasNorthPole =0;
|
||||
northPoleOsites=0;
|
||||
northPoleOsite=0;
|
||||
}
|
||||
std::cout << GridLogDebug<<"Icosahedral vertex field volume " << this->_osites<<std::endl;
|
||||
std::cout << GridLogDebug<<"Icosahedral south pole offset " << this->southPoleOsite<<std::endl;
|
||||
std::cout << GridLogDebug<<"Icosahedral north pole offset " << this->northPoleOsite<<std::endl;
|
||||
std::cout << GridLogDebug<<"Icosahedral south pole size " << this->southPoleOsites<<std::endl;
|
||||
std::cout << GridLogDebug<<"Icosahedral north pole size " << this->northPoleOsites<<std::endl;
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
@@ -86,10 +86,25 @@ public:
|
||||
|
||||
public:
|
||||
|
||||
// Icosahedral decisions
|
||||
virtual int isIcosahedral(void) { return 0;}
|
||||
virtual int isIcosahedralVertex(void) { return 0;}
|
||||
virtual int isIcosahedralEdge (void) { return 0;}
|
||||
virtual int ownsNorthPole(void) const { return 0; };
|
||||
virtual int ownsSouthPole(void) const { return 0; };
|
||||
virtual int NorthPoleOsite(void) const { return 0; };
|
||||
virtual int SouthPoleOsite(void) const { return 0; };
|
||||
virtual int NorthPoleOsites(void) const { std::cout << "base osites" <<std::endl;return 0; };
|
||||
virtual int SouthPoleOsites(void) const { std::cout << "base osites" <<std::endl;return 0; };
|
||||
virtual int CartesianOsites(void) const { return this->oSites(); };
|
||||
virtual int64_t PoleIdxForOcoor(Coordinate &Coor) { return 0;};
|
||||
virtual int64_t PoleSiteForOcoor(Coordinate &Coor){ return 0;}
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Checkerboarding interface is virtual and overridden by
|
||||
// GridCartesian / GridRedBlackCartesian
|
||||
////////////////////////////////////////////////////////////////
|
||||
|
||||
virtual int CheckerBoarded(int dim) =0;
|
||||
virtual int CheckerBoard(const Coordinate &site)=0;
|
||||
virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0;
|
||||
@@ -176,6 +191,8 @@ public:
|
||||
}
|
||||
return permute_type;
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Array sizing queries
|
||||
////////////////////////////////////////////////////////////////
|
||||
|
||||
@@ -57,18 +57,29 @@ int CartesianCommunicator::ProcessorCount(void) { return
|
||||
// very VERY rarely (Log, serial RNG) we need world without a grid
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#ifdef USE_GRID_REDUCTION
|
||||
void CartesianCommunicator::GlobalSum(ComplexF &c)
|
||||
{
|
||||
GlobalSumP2P(c);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(ComplexD &c)
|
||||
{
|
||||
GlobalSumP2P(c);
|
||||
}
|
||||
#else
|
||||
void CartesianCommunicator::GlobalSum(ComplexF &c)
|
||||
{
|
||||
GlobalSumVector((float *)&c,2);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSumVector(ComplexF *c,int N)
|
||||
{
|
||||
GlobalSumVector((float *)c,2*N);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(ComplexD &c)
|
||||
{
|
||||
GlobalSumVector((double *)&c,2);
|
||||
}
|
||||
#endif
|
||||
void CartesianCommunicator::GlobalSumVector(ComplexF *c,int N)
|
||||
{
|
||||
GlobalSumVector((float *)c,2*N);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N)
|
||||
{
|
||||
GlobalSumVector((double *)c,2*N);
|
||||
|
||||
@@ -33,6 +33,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
///////////////////////////////////
|
||||
#include <Grid/communicator/SharedMemory.h>
|
||||
|
||||
#define NVLINK_GET
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
extern bool Stencil_force_mpi ;
|
||||
@@ -127,7 +129,36 @@ public:
|
||||
void GlobalSumVector(ComplexD *c,int N);
|
||||
void GlobalXOR(uint32_t &);
|
||||
void GlobalXOR(uint64_t &);
|
||||
|
||||
|
||||
template<class obj> void GlobalSumP2P(obj &o)
|
||||
{
|
||||
std::vector<obj> column;
|
||||
obj accum = o;
|
||||
int source,dest;
|
||||
for(int d=0;d<_ndimension;d++){
|
||||
column.resize(_processors[d]);
|
||||
column[0] = accum;
|
||||
std::vector<MpiCommsRequest_t> list;
|
||||
for(int p=1;p<_processors[d];p++){
|
||||
ShiftedRanks(d,p,source,dest);
|
||||
SendToRecvFromBegin(list,
|
||||
&column[0],
|
||||
dest,
|
||||
&column[p],
|
||||
source,
|
||||
sizeof(obj),d*100+p);
|
||||
|
||||
}
|
||||
if (!list.empty()) // avoid triggering assert in comms == none
|
||||
CommsComplete(list);
|
||||
for(int p=1;p<_processors[d];p++){
|
||||
accum = accum + column[p];
|
||||
}
|
||||
}
|
||||
Broadcast(0,accum);
|
||||
o=accum;
|
||||
}
|
||||
|
||||
template<class obj> void GlobalSum(obj &o){
|
||||
typedef typename obj::scalar_type scalar_type;
|
||||
int words = sizeof(obj)/sizeof(scalar_type);
|
||||
@@ -138,8 +169,8 @@ public:
|
||||
////////////////////////////////////////////////////////////
|
||||
// Face exchange, buffer swap in translational invariant way
|
||||
////////////////////////////////////////////////////////////
|
||||
void CommsComplete(std::vector<CommsRequest_t> &list);
|
||||
void SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void CommsComplete(std::vector<MpiCommsRequest_t> &list);
|
||||
void SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,
|
||||
void *recv,
|
||||
@@ -158,6 +189,17 @@ public:
|
||||
int recv_from_rank,int do_recv,
|
||||
int bytes,int dir);
|
||||
|
||||
double StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int xmit_to_rank,int do_xmit,
|
||||
void *recv,
|
||||
int recv_from_rank,int do_recv,
|
||||
int xbytes,int rbytes,int dir);
|
||||
|
||||
// Could do a PollHtoD and have a CommsMerge dependence
|
||||
void StencilSendToRecvFromPollDtoH (std::vector<CommsRequest_t> &list);
|
||||
void StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list);
|
||||
|
||||
double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int xmit_to_rank,int do_xmit,
|
||||
|
||||
@@ -30,6 +30,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
Grid_MPI_Comm CartesianCommunicator::communicator_world;
|
||||
|
||||
////////////////////////////////////////////
|
||||
@@ -257,15 +258,41 @@ CartesianCommunicator::~CartesianCommunicator()
|
||||
}
|
||||
}
|
||||
}
|
||||
#ifdef USE_GRID_REDUCTION
|
||||
void CartesianCommunicator::GlobalSum(float &f){
|
||||
FlightRecorder::StepLog("GlobalSumP2P");
|
||||
CartesianCommunicator::GlobalSumP2P(f);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(double &d)
|
||||
{
|
||||
FlightRecorder::StepLog("GlobalSumP2P");
|
||||
CartesianCommunicator::GlobalSumP2P(d);
|
||||
}
|
||||
#else
|
||||
void CartesianCommunicator::GlobalSum(float &f){
|
||||
FlightRecorder::StepLog("AllReduce");
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(double &d)
|
||||
{
|
||||
FlightRecorder::StepLog("AllReduce");
|
||||
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
#endif
|
||||
void CartesianCommunicator::GlobalSum(uint32_t &u){
|
||||
FlightRecorder::StepLog("AllReduce");
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(uint64_t &u){
|
||||
FlightRecorder::StepLog("AllReduce");
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSumVector(uint64_t* u,int N){
|
||||
FlightRecorder::StepLog("AllReduceVector");
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,u,N,MPI_UINT64_T,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
@@ -287,27 +314,18 @@ void CartesianCommunicator::GlobalMax(double &d)
|
||||
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(float &f){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSumVector(float *f,int N)
|
||||
{
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(double &d)
|
||||
{
|
||||
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSumVector(double *d,int N)
|
||||
{
|
||||
int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
|
||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,
|
||||
void *recv,
|
||||
@@ -332,7 +350,7 @@ void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &lis
|
||||
assert(ierr==0);
|
||||
list.push_back(xrq);
|
||||
}
|
||||
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list)
|
||||
void CartesianCommunicator::CommsComplete(std::vector<MpiCommsRequest_t> &list)
|
||||
{
|
||||
int nreq=list.size();
|
||||
|
||||
@@ -351,9 +369,7 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
|
||||
int from,
|
||||
int bytes)
|
||||
{
|
||||
std::vector<CommsRequest_t> reqs(0);
|
||||
unsigned long xcrc = crc32(0L, Z_NULL, 0);
|
||||
unsigned long rcrc = crc32(0L, Z_NULL, 0);
|
||||
std::vector<MpiCommsRequest_t> reqs(0);
|
||||
|
||||
int myrank = _processor;
|
||||
int ierr;
|
||||
@@ -369,9 +385,6 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
|
||||
communicator,MPI_STATUS_IGNORE);
|
||||
assert(ierr==0);
|
||||
|
||||
// xcrc = crc32(xcrc,(unsigned char *)xmit,bytes);
|
||||
// rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
|
||||
// printf("proc %d SendToRecvFrom %d bytes xcrc %lx rcrc %lx\n",_processor,bytes,xcrc,rcrc); fflush
|
||||
}
|
||||
// Basic Halo comms primitive
|
||||
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
|
||||
@@ -381,12 +394,287 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
|
||||
int bytes,int dir)
|
||||
{
|
||||
std::vector<CommsRequest_t> list;
|
||||
double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
|
||||
double offbytes = StencilSendToRecvFromPrepare(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
|
||||
offbytes += StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
|
||||
StencilSendToRecvFromComplete(list,dir);
|
||||
return offbytes;
|
||||
}
|
||||
|
||||
#undef NVLINK_GET // Define to use get instead of put DMA
|
||||
|
||||
#ifdef ACCELERATOR_AWARE_MPI
|
||||
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {};
|
||||
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {};
|
||||
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,int dox,
|
||||
void *recv,
|
||||
int from,int dor,
|
||||
int xbytes,int rbytes,int dir)
|
||||
{
|
||||
return 0.0; // Do nothing -- no preparation required
|
||||
}
|
||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,int dox,
|
||||
void *recv,
|
||||
int from,int dor,
|
||||
int xbytes,int rbytes,int dir)
|
||||
{
|
||||
int ncomm =communicator_halo.size();
|
||||
int commdir=dir%ncomm;
|
||||
|
||||
MPI_Request xrq;
|
||||
MPI_Request rrq;
|
||||
|
||||
int ierr;
|
||||
int gdest = ShmRanks[dest];
|
||||
int gfrom = ShmRanks[from];
|
||||
int gme = ShmRanks[_processor];
|
||||
|
||||
assert(dest != _processor);
|
||||
assert(from != _processor);
|
||||
assert(gme == ShmRank);
|
||||
double off_node_bytes=0.0;
|
||||
int tag;
|
||||
|
||||
if ( dor ) {
|
||||
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
|
||||
tag= dir+from*32;
|
||||
ierr=MPI_Irecv(recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
|
||||
assert(ierr==0);
|
||||
list.push_back(rrq);
|
||||
off_node_bytes+=rbytes;
|
||||
}
|
||||
#ifdef NVLINK_GET
|
||||
else {
|
||||
void *shm = (void *) this->ShmBufferTranslate(from,xmit);
|
||||
assert(shm!=NULL);
|
||||
acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
// This is a NVLINK PUT
|
||||
if (dox) {
|
||||
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
|
||||
tag= dir+_processor*32;
|
||||
ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
|
||||
assert(ierr==0);
|
||||
list.push_back(xrq);
|
||||
off_node_bytes+=xbytes;
|
||||
} else {
|
||||
#ifndef NVLINK_GET
|
||||
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
|
||||
assert(shm!=NULL);
|
||||
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
return off_node_bytes;
|
||||
}
|
||||
|
||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
|
||||
{
|
||||
int nreq=list.size();
|
||||
/*finishes Get/Put*/
|
||||
acceleratorCopySynchronise();
|
||||
|
||||
if (nreq==0) return;
|
||||
std::vector<MPI_Status> status(nreq);
|
||||
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
|
||||
assert(ierr==0);
|
||||
list.resize(0);
|
||||
this->StencilBarrier();
|
||||
}
|
||||
|
||||
#else /* NOT ... ACCELERATOR_AWARE_MPI */
|
||||
///////////////////////////////////////////
|
||||
// Pipeline mode through host memory
|
||||
///////////////////////////////////////////
|
||||
/*
|
||||
* In prepare (phase 1):
|
||||
* PHASE 1: (prepare)
|
||||
* - post MPI receive buffers asynch
|
||||
* - post device - host send buffer transfer asynch
|
||||
* PHASE 2: (Begin)
|
||||
* - complete all copies
|
||||
* - post MPI send asynch
|
||||
* - post device - device transfers
|
||||
* PHASE 3: (Complete)
|
||||
* - MPI_waitall
|
||||
* - host-device transfers
|
||||
*
|
||||
*********************************
|
||||
* NB could split this further:
|
||||
*--------------------------------
|
||||
* PHASE 1: (Prepare)
|
||||
* - post MPI receive buffers asynch
|
||||
* - post device - host send buffer transfer asynch
|
||||
* PHASE 2: (BeginInterNode)
|
||||
* - complete all copies
|
||||
* - post MPI send asynch
|
||||
* PHASE 3: (BeginIntraNode)
|
||||
* - post device - device transfers
|
||||
* PHASE 4: (Complete)
|
||||
* - MPI_waitall
|
||||
* - host-device transfers asynch
|
||||
* - (complete all copies)
|
||||
*/
|
||||
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,int dox,
|
||||
void *recv,
|
||||
int from,int dor,
|
||||
int xbytes,int rbytes,int dir)
|
||||
{
|
||||
/*
|
||||
* Bring sequence from Stencil.h down to lower level.
|
||||
* Assume using XeLink is ok
|
||||
*/
|
||||
int ncomm =communicator_halo.size();
|
||||
int commdir=dir%ncomm;
|
||||
|
||||
MPI_Request xrq;
|
||||
MPI_Request rrq;
|
||||
|
||||
int ierr;
|
||||
int gdest = ShmRanks[dest];
|
||||
int gfrom = ShmRanks[from];
|
||||
int gme = ShmRanks[_processor];
|
||||
|
||||
assert(dest != _processor);
|
||||
assert(from != _processor);
|
||||
assert(gme == ShmRank);
|
||||
double off_node_bytes=0.0;
|
||||
int tag;
|
||||
|
||||
void * host_recv = NULL;
|
||||
void * host_xmit = NULL;
|
||||
|
||||
/*
|
||||
* PHASE 1: (Prepare)
|
||||
* - post MPI receive buffers asynch
|
||||
* - post device - host send buffer transfer asynch
|
||||
*/
|
||||
|
||||
if ( dor ) {
|
||||
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
|
||||
tag= dir+from*32;
|
||||
host_recv = this->HostBufferMalloc(rbytes);
|
||||
ierr=MPI_Irecv(host_recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
|
||||
assert(ierr==0);
|
||||
CommsRequest_t srq;
|
||||
srq.PacketType = InterNodeRecv;
|
||||
srq.bytes = rbytes;
|
||||
srq.req = rrq;
|
||||
srq.host_buf = host_recv;
|
||||
srq.device_buf = recv;
|
||||
list.push_back(srq);
|
||||
off_node_bytes+=rbytes;
|
||||
}
|
||||
}
|
||||
|
||||
if (dox) {
|
||||
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
|
||||
|
||||
tag= dir+_processor*32;
|
||||
|
||||
host_xmit = this->HostBufferMalloc(xbytes);
|
||||
CommsRequest_t srq;
|
||||
|
||||
srq.ev = acceleratorCopyFromDeviceAsynch(xmit, host_xmit,xbytes); // Make this Asynch
|
||||
|
||||
// ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
|
||||
// assert(ierr==0);
|
||||
// off_node_bytes+=xbytes;
|
||||
|
||||
srq.PacketType = InterNodeXmit;
|
||||
srq.bytes = xbytes;
|
||||
// srq.req = xrq;
|
||||
srq.host_buf = host_xmit;
|
||||
srq.device_buf = xmit;
|
||||
srq.tag = tag;
|
||||
srq.dest = dest;
|
||||
srq.commdir = commdir;
|
||||
list.push_back(srq);
|
||||
}
|
||||
}
|
||||
|
||||
return off_node_bytes;
|
||||
}
|
||||
/*
|
||||
* In the interest of better pipelining, poll for completion on each DtoH and
|
||||
* start MPI_ISend in the meantime
|
||||
*/
|
||||
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list)
|
||||
{
|
||||
int pending = 0;
|
||||
do {
|
||||
|
||||
pending = 0;
|
||||
|
||||
for(int idx = 0; idx<list.size();idx++){
|
||||
|
||||
if ( list[idx].PacketType==InterNodeRecv ) {
|
||||
|
||||
int flag = 0;
|
||||
MPI_Status status;
|
||||
int ierr = MPI_Test(&list[idx].req,&flag,&status);
|
||||
assert(ierr==0);
|
||||
|
||||
if ( flag ) {
|
||||
// std::cout << " PollIrecv "<<idx<<" flag "<<flag<<std::endl;
|
||||
acceleratorCopyToDeviceAsynch(list[idx].host_buf,list[idx].device_buf,list[idx].bytes);
|
||||
list[idx].PacketType=InterNodeReceiveHtoD;
|
||||
} else {
|
||||
pending ++;
|
||||
}
|
||||
}
|
||||
}
|
||||
// std::cout << " PollIrecv "<<pending<<" pending requests"<<std::endl;
|
||||
} while ( pending );
|
||||
|
||||
}
|
||||
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list)
|
||||
{
|
||||
int pending = 0;
|
||||
do {
|
||||
|
||||
pending = 0;
|
||||
|
||||
for(int idx = 0; idx<list.size();idx++){
|
||||
|
||||
if ( list[idx].PacketType==InterNodeXmit ) {
|
||||
|
||||
if ( acceleratorEventIsComplete(list[idx].ev) ) {
|
||||
|
||||
void *host_xmit = list[idx].host_buf;
|
||||
uint32_t xbytes = list[idx].bytes;
|
||||
int dest = list[idx].dest;
|
||||
int tag = list[idx].tag;
|
||||
int commdir = list[idx].commdir;
|
||||
///////////////////
|
||||
// Send packet
|
||||
///////////////////
|
||||
|
||||
// std::cout << " DtoH is complete for index "<<idx<<" calling MPI_Isend "<<std::endl;
|
||||
|
||||
MPI_Request xrq;
|
||||
int ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
|
||||
assert(ierr==0);
|
||||
|
||||
list[idx].req = xrq; // Update the MPI request in the list
|
||||
|
||||
list[idx].PacketType=InterNodeXmitISend;
|
||||
|
||||
} else {
|
||||
// not done, so return to polling loop
|
||||
pending++;
|
||||
}
|
||||
}
|
||||
}
|
||||
} while (pending);
|
||||
}
|
||||
|
||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,int dox,
|
||||
@@ -411,56 +699,109 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
|
||||
double off_node_bytes=0.0;
|
||||
int tag;
|
||||
|
||||
if ( dor ) {
|
||||
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
|
||||
tag= dir+from*32;
|
||||
ierr=MPI_Irecv(recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
|
||||
assert(ierr==0);
|
||||
list.push_back(rrq);
|
||||
off_node_bytes+=rbytes;
|
||||
}
|
||||
void * host_xmit = NULL;
|
||||
|
||||
////////////////////////////////
|
||||
// Receives already posted
|
||||
// Copies already started
|
||||
////////////////////////////////
|
||||
/*
|
||||
* PHASE 2: (Begin)
|
||||
* - complete all copies
|
||||
* - post MPI send asynch
|
||||
*/
|
||||
#ifdef NVLINK_GET
|
||||
if ( dor ) {
|
||||
|
||||
if ( ! ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) ) {
|
||||
// Intranode
|
||||
void *shm = (void *) this->ShmBufferTranslate(from,xmit);
|
||||
assert(shm!=NULL);
|
||||
acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
CommsRequest_t srq;
|
||||
|
||||
srq.ev = acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
|
||||
|
||||
srq.PacketType = IntraNodeRecv;
|
||||
srq.bytes = xbytes;
|
||||
// srq.req = xrq;
|
||||
srq.host_buf = NULL;
|
||||
srq.device_buf = xmit;
|
||||
srq.tag = -1;
|
||||
srq.dest = dest;
|
||||
srq.commdir = dir;
|
||||
list.push_back(srq);
|
||||
}
|
||||
}
|
||||
#else
|
||||
if (dox) {
|
||||
// rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
|
||||
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
|
||||
tag= dir+_processor*32;
|
||||
ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
|
||||
assert(ierr==0);
|
||||
list.push_back(xrq);
|
||||
off_node_bytes+=xbytes;
|
||||
} else {
|
||||
#ifndef NVLINK_GET
|
||||
|
||||
if ( !( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) ) {
|
||||
// Intranode
|
||||
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
|
||||
assert(shm!=NULL);
|
||||
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
|
||||
#endif
|
||||
|
||||
CommsRequest_t srq;
|
||||
|
||||
srq.ev = acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
|
||||
|
||||
srq.PacketType = IntraNodeXmit;
|
||||
srq.bytes = xbytes;
|
||||
// srq.req = xrq;
|
||||
srq.host_buf = NULL;
|
||||
srq.device_buf = xmit;
|
||||
srq.tag = -1;
|
||||
srq.dest = dest;
|
||||
srq.commdir = dir;
|
||||
list.push_back(srq);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
return off_node_bytes;
|
||||
}
|
||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
|
||||
{
|
||||
int nreq=list.size();
|
||||
acceleratorCopySynchronise(); // Complete all pending copy transfers D2D
|
||||
|
||||
acceleratorCopySynchronise();
|
||||
std::vector<MPI_Status> status;
|
||||
std::vector<MPI_Request> MpiRequests;
|
||||
|
||||
for(int r=0;r<list.size();r++){
|
||||
// Must check each Send buf is clear to reuse
|
||||
if ( list[r].PacketType == InterNodeXmitISend ) MpiRequests.push_back(list[r].req);
|
||||
// if ( list[r].PacketType == InterNodeRecv ) MpiRequests.push_back(list[r].req); // Already "Test" passed
|
||||
}
|
||||
|
||||
if (nreq==0) return;
|
||||
int nreq=MpiRequests.size();
|
||||
|
||||
std::vector<MPI_Status> status(nreq);
|
||||
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
|
||||
assert(ierr==0);
|
||||
list.resize(0);
|
||||
if (nreq>0) {
|
||||
status.resize(MpiRequests.size());
|
||||
int ierr = MPI_Waitall(MpiRequests.size(),&MpiRequests[0],&status[0]); // Sends are guaranteed in order. No harm in not completing.
|
||||
assert(ierr==0);
|
||||
}
|
||||
|
||||
// for(int r=0;r<nreq;r++){
|
||||
// if ( list[r].PacketType==InterNodeRecv ) {
|
||||
// acceleratorCopyToDeviceAsynch(list[r].host_buf,list[r].device_buf,list[r].bytes);
|
||||
// }
|
||||
// }
|
||||
|
||||
|
||||
list.resize(0); // Delete the list
|
||||
this->HostBufferFreeAll(); // Clean up the buffer allocs
|
||||
#ifndef NVLINK_GET
|
||||
this->StencilBarrier(); // if PUT must check our nbrs have filled our receive buffers.
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
////////////////////////////////////////////
|
||||
// END PIPELINE MODE / NO CUDA AWARE MPI
|
||||
////////////////////////////////////////////
|
||||
|
||||
void CartesianCommunicator::StencilBarrier(void)
|
||||
{
|
||||
FlightRecorder::StepLog("NodeBarrier");
|
||||
MPI_Barrier (ShmComm);
|
||||
}
|
||||
//void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
|
||||
@@ -468,11 +809,13 @@ void CartesianCommunicator::StencilBarrier(void)
|
||||
//}
|
||||
void CartesianCommunicator::Barrier(void)
|
||||
{
|
||||
FlightRecorder::StepLog("GridBarrier");
|
||||
int ierr = MPI_Barrier(communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
|
||||
{
|
||||
FlightRecorder::StepLog("Broadcast");
|
||||
int ierr=MPI_Bcast(data,
|
||||
bytes,
|
||||
MPI_BYTE,
|
||||
@@ -491,6 +834,7 @@ void CartesianCommunicator::BarrierWorld(void){
|
||||
}
|
||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
|
||||
{
|
||||
FlightRecorder::StepLog("BroadcastWorld");
|
||||
int ierr= MPI_Bcast(data,
|
||||
bytes,
|
||||
MPI_BYTE,
|
||||
@@ -513,6 +857,7 @@ void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,
|
||||
}
|
||||
void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t bytes)
|
||||
{
|
||||
FlightRecorder::StepLog("AllToAll");
|
||||
// MPI is a pain and uses "int" arguments
|
||||
// 64*64*64*128*16 == 500Million elements of data.
|
||||
// When 24*4 bytes multiples get 50x 10^9 >>> 2x10^9 Y2K bug.
|
||||
|
||||
@@ -91,7 +91,7 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
|
||||
{
|
||||
assert(0);
|
||||
}
|
||||
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ assert(0);}
|
||||
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ assert(list.size()==0);}
|
||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,
|
||||
@@ -132,6 +132,17 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
|
||||
{
|
||||
return 2.0*bytes;
|
||||
}
|
||||
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {};
|
||||
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {};
|
||||
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int xmit_to_rank,int dox,
|
||||
void *recv,
|
||||
int recv_from_rank,int dor,
|
||||
int xbytes,int rbytes, int dir)
|
||||
{
|
||||
return 0.0;
|
||||
}
|
||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int xmit_to_rank,int dox,
|
||||
|
||||
@@ -46,8 +46,40 @@ NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#if defined (GRID_COMMS_MPI3)
|
||||
typedef MPI_Comm Grid_MPI_Comm;
|
||||
typedef MPI_Request MpiCommsRequest_t;
|
||||
#ifdef ACCELERATOR_AWARE_MPI
|
||||
typedef MPI_Request CommsRequest_t;
|
||||
#else
|
||||
/*
|
||||
* Enable state transitions as each packet flows.
|
||||
*/
|
||||
enum PacketType_t {
|
||||
FaceGather,
|
||||
InterNodeXmit,
|
||||
InterNodeRecv,
|
||||
IntraNodeXmit,
|
||||
IntraNodeRecv,
|
||||
InterNodeXmitISend,
|
||||
InterNodeReceiveHtoD
|
||||
};
|
||||
/*
|
||||
*Package arguments needed for various actions along packet flow
|
||||
*/
|
||||
typedef struct {
|
||||
PacketType_t PacketType;
|
||||
void *host_buf;
|
||||
void *device_buf;
|
||||
int dest;
|
||||
int tag;
|
||||
int commdir;
|
||||
unsigned long bytes;
|
||||
acceleratorEvent_t ev;
|
||||
MpiCommsRequest_t req;
|
||||
} CommsRequest_t;
|
||||
#endif
|
||||
|
||||
#else
|
||||
typedef int MpiCommsRequest_t;
|
||||
typedef int CommsRequest_t;
|
||||
typedef int Grid_MPI_Comm;
|
||||
#endif
|
||||
@@ -105,7 +137,7 @@ public:
|
||||
///////////////////////////////////////////////////
|
||||
static void SharedMemoryAllocate(uint64_t bytes, int flags);
|
||||
static void SharedMemoryFree(void);
|
||||
static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
|
||||
// static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
|
||||
static void SharedMemoryZero(void *dest,size_t bytes);
|
||||
|
||||
};
|
||||
|
||||
@@ -42,6 +42,11 @@ Author: Christoph Lehner <christoph@lhnr.de>
|
||||
#ifdef ACCELERATOR_AWARE_MPI
|
||||
#define GRID_SYCL_LEVEL_ZERO_IPC
|
||||
#define SHM_SOCKETS
|
||||
#else
|
||||
#ifdef HAVE_NUMAIF_H
|
||||
#warning " Using NUMAIF "
|
||||
#include <numaif.h>
|
||||
#endif
|
||||
#endif
|
||||
#include <syscall.h>
|
||||
#endif
|
||||
@@ -537,7 +542,38 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
// Each MPI rank should allocate our own buffer
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
HostCommBuf= malloc(bytes);
|
||||
// printf("Host buffer allocate for GPU non-aware MPI\n");
|
||||
#if 0
|
||||
HostCommBuf= acceleratorAllocHost(bytes);
|
||||
#else
|
||||
HostCommBuf= malloc(bytes); /// CHANGE THIS TO malloc_host
|
||||
#if 0
|
||||
#warning "Moving host buffers to specific NUMA domain"
|
||||
int numa;
|
||||
char *numa_name=(char *)getenv("MPI_BUF_NUMA");
|
||||
if(numa_name) {
|
||||
unsigned long page_size = sysconf(_SC_PAGESIZE);
|
||||
numa = atoi(numa_name);
|
||||
unsigned long page_count = bytes/page_size;
|
||||
std::vector<void *> pages(page_count);
|
||||
std::vector<int> nodes(page_count,numa);
|
||||
std::vector<int> status(page_count,-1);
|
||||
for(unsigned long p=0;p<page_count;p++){
|
||||
pages[p] =(void *) ((uint64_t) HostCommBuf + p*page_size);
|
||||
}
|
||||
int ret = move_pages(0,
|
||||
page_count,
|
||||
&pages[0],
|
||||
&nodes[0],
|
||||
&status[0],
|
||||
MPOL_MF_MOVE);
|
||||
printf("Host buffer move to numa domain %d : move_pages returned %d\n",numa,ret);
|
||||
if (ret) perror(" move_pages failed for reason:");
|
||||
}
|
||||
#endif
|
||||
acceleratorPin(HostCommBuf,bytes);
|
||||
#endif
|
||||
|
||||
#endif
|
||||
ShmCommBuf = acceleratorAllocDevice(bytes);
|
||||
if (ShmCommBuf == (void *)NULL ) {
|
||||
@@ -569,8 +605,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
|
||||
typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t;
|
||||
|
||||
auto zeDevice = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
|
||||
auto zeContext = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
|
||||
auto zeDevice = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
|
||||
auto zeContext = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
|
||||
|
||||
ze_ipc_mem_handle_t ihandle;
|
||||
clone_mem_t handle;
|
||||
@@ -880,14 +916,14 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
|
||||
bzero(dest,bytes);
|
||||
#endif
|
||||
}
|
||||
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
|
||||
{
|
||||
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
|
||||
acceleratorCopyToDevice(src,dest,bytes);
|
||||
#else
|
||||
bcopy(src,dest,bytes);
|
||||
#endif
|
||||
}
|
||||
//void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
|
||||
//{
|
||||
//#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
|
||||
// acceleratorCopyToDevice(src,dest,bytes);
|
||||
//#else
|
||||
// bcopy(src,dest,bytes);
|
||||
//#endif
|
||||
//}
|
||||
////////////////////////////////////////////////////////
|
||||
// Global shared functionality finished
|
||||
// Now move to per communicator functionality
|
||||
@@ -923,6 +959,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
|
||||
MPI_Allreduce(MPI_IN_PLACE,&wsr,1,MPI_UINT32_T,MPI_SUM,ShmComm);
|
||||
|
||||
ShmCommBufs[r] = GlobalSharedMemory::WorldShmCommBufs[wsr];
|
||||
// std::cerr << " SetCommunicator rank "<<r<<" comm "<<ShmCommBufs[r] <<std::endl;
|
||||
}
|
||||
ShmBufferFreeAll();
|
||||
|
||||
@@ -953,7 +990,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
|
||||
}
|
||||
#endif
|
||||
|
||||
//SharedMemoryTest();
|
||||
// SharedMemoryTest();
|
||||
}
|
||||
//////////////////////////////////////////////////////////////////
|
||||
// On node barrier
|
||||
@@ -975,19 +1012,18 @@ void SharedMemory::SharedMemoryTest(void)
|
||||
check[0]=GlobalSharedMemory::WorldNode;
|
||||
check[1]=r;
|
||||
check[2]=magic;
|
||||
GlobalSharedMemory::SharedMemoryCopy( ShmCommBufs[r], check, 3*sizeof(uint64_t));
|
||||
acceleratorCopyToDevice(check,ShmCommBufs[r],3*sizeof(uint64_t));
|
||||
}
|
||||
}
|
||||
ShmBarrier();
|
||||
for(uint64_t r=0;r<ShmSize;r++){
|
||||
ShmBarrier();
|
||||
GlobalSharedMemory::SharedMemoryCopy(check,ShmCommBufs[r], 3*sizeof(uint64_t));
|
||||
ShmBarrier();
|
||||
acceleratorCopyFromDevice(ShmCommBufs[r],check,3*sizeof(uint64_t));
|
||||
assert(check[0]==GlobalSharedMemory::WorldNode);
|
||||
assert(check[1]==r);
|
||||
assert(check[2]==magic);
|
||||
ShmBarrier();
|
||||
}
|
||||
ShmBarrier();
|
||||
std::cout << GridLogDebug << " SharedMemoryTest has passed "<<std::endl;
|
||||
}
|
||||
|
||||
void *SharedMemory::ShmBuffer(int rank)
|
||||
|
||||
@@ -122,10 +122,10 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
|
||||
{
|
||||
acceleratorMemSet(dest,0,bytes);
|
||||
}
|
||||
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
|
||||
{
|
||||
acceleratorCopyToDevice(src,dest,bytes);
|
||||
}
|
||||
//void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
|
||||
//{
|
||||
// acceleratorCopyToDevice(src,dest,bytes);
|
||||
//}
|
||||
////////////////////////////////////////////////////////
|
||||
// Global shared functionality finished
|
||||
// Now move to per communicator functionality
|
||||
|
||||
@@ -31,9 +31,11 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
const int Cshift_verbose=0;
|
||||
template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift)
|
||||
{
|
||||
assert(!rhs.Grid()->isIcosahedral());
|
||||
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
|
||||
@@ -55,17 +57,17 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
|
||||
RealD t1,t0;
|
||||
t0=usecond();
|
||||
if ( !comm_dim ) {
|
||||
std::cout << "CSHIFT: Cshift_local" <<std::endl;
|
||||
// std::cout << "CSHIFT: Cshift_local" <<std::endl;
|
||||
Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding
|
||||
} else if ( splice_dim ) {
|
||||
std::cout << "CSHIFT: Cshift_comms_simd call - splice_dim = " << splice_dim << " shift " << shift << " dimension = " << dimension << std::endl;
|
||||
// std::cout << "CSHIFT: Cshift_comms_simd call - splice_dim = " << splice_dim << " shift " << shift << " dimension = " << dimension << std::endl;
|
||||
Cshift_comms_simd(ret,rhs,dimension,shift);
|
||||
} else {
|
||||
std::cout << "CSHIFT: Cshift_comms" <<std::endl;
|
||||
// std::cout << "CSHIFT: Cshift_comms" <<std::endl;
|
||||
Cshift_comms(ret,rhs,dimension,shift);
|
||||
}
|
||||
t1=usecond();
|
||||
// std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl;
|
||||
if(Cshift_verbose) std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl;
|
||||
return ret;
|
||||
}
|
||||
|
||||
@@ -76,12 +78,12 @@ template<class vobj> void Cshift_comms(Lattice<vobj>& ret,const Lattice<vobj> &r
|
||||
sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
|
||||
sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
|
||||
|
||||
std::cout << "Cshift_comms dim "<<dimension<<"cb "<<rhs.Checkerboard()<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
|
||||
// std::cout << "Cshift_comms dim "<<dimension<<"cb "<<rhs.Checkerboard()<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
|
||||
if ( sshift[0] == sshift[1] ) {
|
||||
std::cout << "Single pass Cshift_comms" <<std::endl;
|
||||
// std::cout << "Single pass Cshift_comms" <<std::endl;
|
||||
Cshift_comms(ret,rhs,dimension,shift,0x3);
|
||||
} else {
|
||||
std::cout << "Two pass Cshift_comms" <<std::endl;
|
||||
// std::cout << "Two pass Cshift_comms" <<std::endl;
|
||||
Cshift_comms(ret,rhs,dimension,shift,0x1);// if checkerboard is unfavourable take two passes
|
||||
Cshift_comms(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
|
||||
}
|
||||
@@ -94,12 +96,12 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob
|
||||
sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
|
||||
sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
|
||||
|
||||
std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.Checkerboard()<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
|
||||
// std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.Checkerboard()<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
|
||||
if ( sshift[0] == sshift[1] ) {
|
||||
std::cout << "Single pass Cshift_comms" <<std::endl;
|
||||
// std::cout << "Single pass Cshift_comms" <<std::endl;
|
||||
Cshift_comms_simd(ret,rhs,dimension,shift,0x3);
|
||||
} else {
|
||||
std::cout << "Two pass Cshift_comms" <<std::endl;
|
||||
// std::cout << "Two pass Cshift_comms" <<std::endl;
|
||||
Cshift_comms_simd(ret,rhs,dimension,shift,0x1);// if checkerboard is unfavourable take two passes
|
||||
Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
|
||||
}
|
||||
@@ -125,7 +127,11 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
|
||||
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
|
||||
static deviceVector<vobj> send_buf; send_buf.resize(buffer_size);
|
||||
static deviceVector<vobj> recv_buf; recv_buf.resize(buffer_size);
|
||||
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
static hostVector<vobj> hsend_buf; hsend_buf.resize(buffer_size);
|
||||
static hostVector<vobj> hrecv_buf; hrecv_buf.resize(buffer_size);
|
||||
#endif
|
||||
|
||||
int cb= (cbmask==0x2)? Odd : Even;
|
||||
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
|
||||
RealD tcopy=0.0;
|
||||
@@ -156,16 +162,29 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
|
||||
// int rank = grid->_processor;
|
||||
int recv_from_rank;
|
||||
int xmit_to_rank;
|
||||
|
||||
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
|
||||
|
||||
tcomms-=usecond();
|
||||
grid->Barrier();
|
||||
|
||||
#ifdef ACCELERATOR_AWARE_MPI
|
||||
grid->SendToRecvFrom((void *)&send_buf[0],
|
||||
xmit_to_rank,
|
||||
(void *)&recv_buf[0],
|
||||
recv_from_rank,
|
||||
bytes);
|
||||
#else
|
||||
// bouncy bouncy
|
||||
acceleratorCopyFromDevice(&send_buf[0],&hsend_buf[0],bytes);
|
||||
grid->SendToRecvFrom((void *)&hsend_buf[0],
|
||||
xmit_to_rank,
|
||||
(void *)&hrecv_buf[0],
|
||||
recv_from_rank,
|
||||
bytes);
|
||||
acceleratorCopyToDevice(&hrecv_buf[0],&recv_buf[0],bytes);
|
||||
#endif
|
||||
|
||||
xbytes+=bytes;
|
||||
grid->Barrier();
|
||||
tcomms+=usecond();
|
||||
@@ -175,11 +194,13 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
|
||||
tscatter+=usecond();
|
||||
}
|
||||
}
|
||||
std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
|
||||
if (Cshift_verbose){
|
||||
std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
|
||||
@@ -197,9 +218,9 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
int simd_layout = grid->_simd_layout[dimension];
|
||||
int comm_dim = grid->_processors[dimension] >1 ;
|
||||
|
||||
std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
|
||||
<< " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout
|
||||
<< " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
|
||||
// std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
|
||||
// << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout
|
||||
// << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
|
||||
|
||||
assert(comm_dim==1);
|
||||
assert(simd_layout==2);
|
||||
@@ -224,12 +245,16 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
static std::vector<deviceVector<scalar_object> > recv_buf_extract; recv_buf_extract.resize(Nsimd);
|
||||
scalar_object * recv_buf_extract_mpi;
|
||||
scalar_object * send_buf_extract_mpi;
|
||||
|
||||
|
||||
for(int s=0;s<Nsimd;s++){
|
||||
send_buf_extract[s].resize(buffer_size);
|
||||
recv_buf_extract[s].resize(buffer_size);
|
||||
}
|
||||
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
hostVector<scalar_object> hsend_buf; hsend_buf.resize(buffer_size);
|
||||
hostVector<scalar_object> hrecv_buf; hrecv_buf.resize(buffer_size);
|
||||
#endif
|
||||
|
||||
int bytes = buffer_size*sizeof(scalar_object);
|
||||
|
||||
ExtractPointerArray<scalar_object> pointers(Nsimd); //
|
||||
@@ -281,11 +306,22 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
|
||||
send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
|
||||
recv_buf_extract_mpi = &recv_buf_extract[i][0];
|
||||
#ifdef ACCELERATOR_AWARE_MPI
|
||||
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
|
||||
xmit_to_rank,
|
||||
(void *)recv_buf_extract_mpi,
|
||||
recv_from_rank,
|
||||
bytes);
|
||||
#else
|
||||
// bouncy bouncy
|
||||
acceleratorCopyFromDevice((void *)send_buf_extract_mpi,(void *)&hsend_buf[0],bytes);
|
||||
grid->SendToRecvFrom((void *)&hsend_buf[0],
|
||||
xmit_to_rank,
|
||||
(void *)&hrecv_buf[0],
|
||||
recv_from_rank,
|
||||
bytes);
|
||||
acceleratorCopyToDevice((void *)&hrecv_buf[0],(void *)recv_buf_extract_mpi,bytes);
|
||||
#endif
|
||||
|
||||
xbytes+=bytes;
|
||||
grid->Barrier();
|
||||
@@ -301,12 +337,15 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
|
||||
tscatter+=usecond();
|
||||
}
|
||||
std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
|
||||
if(Cshift_verbose){
|
||||
std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
||||
|
||||
@@ -30,6 +30,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift)
|
||||
{
|
||||
assert(!rhs.Grid()->isIcosahedral());
|
||||
Lattice<vobj> ret(rhs.Grid());
|
||||
ret.Checkerboard() = rhs.Grid()->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension);
|
||||
Cshift_local(ret,rhs,dimension,shift);
|
||||
|
||||
@@ -257,17 +257,30 @@ void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice
|
||||
});
|
||||
}
|
||||
|
||||
#define FAST_AXPY_NORM
|
||||
template<class sobj,class vobj> inline
|
||||
RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
|
||||
{
|
||||
GRID_TRACE("axpy_norm");
|
||||
return axpy_norm_fast(ret,a,x,y);
|
||||
#ifdef FAST_AXPY_NORM
|
||||
return axpy_norm_fast(ret,a,x,y);
|
||||
#else
|
||||
ret = a*x+y;
|
||||
RealD nn=norm2(ret);
|
||||
return nn;
|
||||
#endif
|
||||
}
|
||||
template<class sobj,class vobj> inline
|
||||
RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
|
||||
{
|
||||
GRID_TRACE("axpby_norm");
|
||||
return axpby_norm_fast(ret,a,b,x,y);
|
||||
#ifdef FAST_AXPY_NORM
|
||||
return axpby_norm_fast(ret,a,b,x,y);
|
||||
#else
|
||||
ret = a*x+b*y;
|
||||
RealD nn=norm2(ret);
|
||||
return nn;
|
||||
#endif
|
||||
}
|
||||
|
||||
/// Trace product
|
||||
|
||||
@@ -236,7 +236,7 @@ public:
|
||||
template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){
|
||||
vobj vtmp;
|
||||
vtmp = r;
|
||||
#if 0
|
||||
#if 1
|
||||
deviceVector<vobj> vvtmp(1);
|
||||
acceleratorPut(vvtmp[0],vtmp);
|
||||
vobj *vvtmp_p = & vvtmp[0];
|
||||
@@ -373,14 +373,17 @@ public:
|
||||
|
||||
template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
for(int64_t g=0;g<o.Grid()->_gsites;g++){
|
||||
uint64_t gsites=1;
|
||||
uint64_t polesites=0;
|
||||
for(int d=0;d<o.Grid()->_ndimension;d++) gsites *= o.Grid()->_gdimensions[d];
|
||||
for(int64_t g=0;g<gsites;g++){
|
||||
|
||||
Coordinate gcoor;
|
||||
o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);
|
||||
|
||||
sobj ss;
|
||||
peekSite(ss,o,gcoor);
|
||||
stream<<"[";
|
||||
stream<<"["<< g<<" : ";
|
||||
for(int d=0;d<gcoor.size();d++){
|
||||
stream<<gcoor[d];
|
||||
if(d!=gcoor.size()-1) stream<<",";
|
||||
@@ -388,6 +391,41 @@ template<class vobj> std::ostream& operator<< (std::ostream& stream, const Latti
|
||||
stream<<"]\t";
|
||||
stream<<ss<<std::endl;
|
||||
}
|
||||
if ( o.Grid()->isIcosahedralVertex() ) {
|
||||
uint64_t psites=1;
|
||||
Coordinate perpdims;
|
||||
for(int d=2;d<o.Grid()->_ndimension-1;d++){
|
||||
int pd=o.Grid()->_gdimensions[d];
|
||||
psites*=pd;
|
||||
perpdims.push_back(pd);
|
||||
}
|
||||
for(uint64_t p=0;p<psites;p++){
|
||||
sobj ss;
|
||||
Coordinate orthog;
|
||||
Lexicographic::CoorFromIndex(orthog,p,perpdims);
|
||||
peekPole(ss,o,orthog,South);
|
||||
stream<<"[ SouthPole : ";
|
||||
for(int d=0;d<orthog.size();d++){
|
||||
stream<<orthog[d];
|
||||
if(d!=orthog.size()-1) stream<<",";
|
||||
}
|
||||
stream<<"]\t";
|
||||
stream<<ss<<std::endl;
|
||||
}
|
||||
for(uint64_t p=0;p<psites;p++){
|
||||
sobj ss;
|
||||
Coordinate orthog;
|
||||
Lexicographic::CoorFromIndex(orthog,p,perpdims);
|
||||
peekPole(ss,o,orthog,North);
|
||||
stream<<"[ NorthPole : ";
|
||||
for(int d=0;d<orthog.size();d++){
|
||||
stream<<orthog[d];
|
||||
if(d!=orthog.size()-1) stream<<",";
|
||||
}
|
||||
stream<<"]\t";
|
||||
stream<<ss<<std::endl;
|
||||
}
|
||||
}
|
||||
return stream;
|
||||
}
|
||||
|
||||
|
||||
@@ -34,22 +34,86 @@ template<class iobj> inline void LatticeCoordinate(Lattice<iobj> &l,int mu)
|
||||
typedef typename iobj::scalar_type scalar_type;
|
||||
typedef typename iobj::vector_type vector_type;
|
||||
|
||||
l=Zero();
|
||||
|
||||
GridBase *grid = l.Grid();
|
||||
int Nsimd = grid->iSites();
|
||||
|
||||
autoView(l_v, l, CpuWrite);
|
||||
thread_for( o, grid->oSites(), {
|
||||
vector_type vI;
|
||||
Coordinate gcoor;
|
||||
ExtractBuffer<scalar_type> mergebuf(Nsimd);
|
||||
for(int i=0;i<grid->iSites();i++){
|
||||
grid->RankIndexToGlobalCoor(grid->ThisRank(),o,i,gcoor);
|
||||
mergebuf[i]=(Integer)gcoor[mu];
|
||||
int cartesian_vol = grid->oSites();
|
||||
if ( grid->isIcosahedral() ) {
|
||||
cartesian_vol = cartesian_vol - grid->NorthPoleOsites()-grid->SouthPoleOsites();
|
||||
}
|
||||
{
|
||||
autoView(l_v, l, CpuWrite);
|
||||
thread_for( o, cartesian_vol, {
|
||||
vector_type vI;
|
||||
Coordinate gcoor;
|
||||
ExtractBuffer<scalar_type> mergebuf(Nsimd);
|
||||
for(int i=0;i<grid->iSites();i++){
|
||||
grid->RankIndexToGlobalCoor(grid->ThisRank(),o,i,gcoor);
|
||||
mergebuf[i]=(Integer)gcoor[mu];
|
||||
}
|
||||
merge<vector_type,scalar_type>(vI,mergebuf);
|
||||
l_v[o]=vI;
|
||||
});
|
||||
}
|
||||
|
||||
if (grid->isIcosahedralVertex()) {
|
||||
uint64_t psites=1;
|
||||
Coordinate perpdims;
|
||||
typename iobj::scalar_object ss;
|
||||
for(int d=2;d<grid->_ndimension-1;d++){
|
||||
int pd=grid->_gdimensions[d];
|
||||
psites*=pd;
|
||||
perpdims.push_back(pd);
|
||||
}
|
||||
merge<vector_type,scalar_type>(vI,mergebuf);
|
||||
l_v[o]=vI;
|
||||
});
|
||||
for(uint64_t p=0;p<psites;p++){
|
||||
Coordinate orthog;
|
||||
Lexicographic::CoorFromIndex(orthog,p,perpdims);
|
||||
|
||||
int icoor;
|
||||
if ( mu>=2 && mu < grid->_ndimension-1) {
|
||||
icoor = orthog[mu-2];
|
||||
} else {
|
||||
icoor = -1;
|
||||
}
|
||||
|
||||
ss=scalar_type(icoor);
|
||||
|
||||
pokePole(ss,l,orthog,South);
|
||||
pokePole(ss,l,orthog,North);
|
||||
}
|
||||
}
|
||||
};
|
||||
template<class iobj> inline void LatticePole(Lattice<iobj> &l,NorthSouth pole)
|
||||
{
|
||||
typedef typename iobj::scalar_object sobj;
|
||||
typedef typename iobj::scalar_type scalar_type;
|
||||
typedef typename iobj::vector_type vector_type;
|
||||
|
||||
GridBase *grid = l.Grid();
|
||||
|
||||
l=Zero();
|
||||
|
||||
assert(grid->isIcosahedralVertex());
|
||||
|
||||
if (grid->isIcosahedralVertex()) {
|
||||
uint64_t psites=1;
|
||||
Coordinate perpdims;
|
||||
sobj ss;
|
||||
scalar_type one(1.0);
|
||||
ss=one;
|
||||
for(int d=2;d<l.Grid()->_ndimension-1;d++){
|
||||
int pd=l.Grid()->_gdimensions[d];
|
||||
psites*=pd;
|
||||
perpdims.push_back(pd);
|
||||
}
|
||||
for(uint64_t p=0;p<psites;p++){
|
||||
Coordinate orthog;
|
||||
Lexicographic::CoorFromIndex(orthog,p,perpdims);
|
||||
pokePole(ss,l,orthog,pole);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
||||
@@ -141,7 +141,7 @@ void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
|
||||
grid->GlobalCoorToRankIndex(rank,odx,idx,site);
|
||||
|
||||
ExtractBuffer<sobj> buf(Nsimd);
|
||||
autoView( l_v , l, CpuWrite);
|
||||
autoView( l_v , l, CpuRead);
|
||||
extract(l_v[odx],buf);
|
||||
|
||||
s = buf[idx];
|
||||
@@ -151,6 +151,261 @@ void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
|
||||
return;
|
||||
};
|
||||
|
||||
// zero for south pole, one for north pole
|
||||
template<class vobj,class sobj>
|
||||
void peekPole(sobj &s,const Lattice<vobj> &l,const Coordinate &orthog,NorthSouth isNorth)
|
||||
{
|
||||
s=Zero();
|
||||
|
||||
GridBase *grid=l.Grid();
|
||||
|
||||
assert(grid->isIcosahedral());
|
||||
assert(grid->isIcosahedralVertex());
|
||||
|
||||
int Nsimd = grid->Nsimd();
|
||||
|
||||
int rank;
|
||||
|
||||
int Ndm1 = grid->_ndimension-1;
|
||||
Coordinate pgrid = grid->ProcessorGrid();
|
||||
const int xdim=0;
|
||||
const int ydim=1;
|
||||
const int pdim=Ndm1;
|
||||
|
||||
int64_t pole_osite;
|
||||
int64_t pole_isite;
|
||||
Coordinate rdims;
|
||||
Coordinate idims;
|
||||
Coordinate ocoor;
|
||||
Coordinate icoor;
|
||||
Coordinate pcoor(grid->_ndimension);
|
||||
for(int d=2;d<Ndm1;d++){
|
||||
int dd=d-2;
|
||||
rdims.push_back(grid->_rdimensions[d]);
|
||||
idims.push_back(grid->_simd_layout[d]);
|
||||
icoor.push_back((orthog[dd]%grid->_ldimensions[d])/grid->_rdimensions[d]);
|
||||
ocoor.push_back(orthog[dd]%grid->_rdimensions[d]);
|
||||
pcoor[d] = orthog[dd]/grid->_ldimensions[d];
|
||||
}
|
||||
Lexicographic::IndexFromCoor(ocoor,pole_osite,rdims);
|
||||
Lexicographic::IndexFromCoor(icoor,pole_isite,idims);
|
||||
|
||||
int64_t osite;
|
||||
if(isNorth == North){
|
||||
pcoor[xdim] = 0;
|
||||
pcoor[ydim] = pgrid[ydim]-1;
|
||||
pcoor[Ndm1] = pgrid[Ndm1]-1;
|
||||
osite = pole_osite + grid->NorthPoleOsite();
|
||||
} else {
|
||||
pcoor[xdim] = pgrid[xdim]-1;
|
||||
pcoor[ydim] = 0;
|
||||
pcoor[Ndm1] = 0;
|
||||
osite = pole_osite + grid->SouthPoleOsite();
|
||||
}
|
||||
|
||||
rank = grid->RankFromProcessorCoor(pcoor);
|
||||
|
||||
if ( rank == grid->ThisRank() ) {
|
||||
ExtractBuffer<sobj> buf(Nsimd);
|
||||
autoView( l_v , l, CpuWrite);
|
||||
extract(l_v[osite],buf);
|
||||
s = buf[pole_isite];
|
||||
}
|
||||
grid->Broadcast(rank,s);
|
||||
|
||||
return;
|
||||
};
|
||||
template<class vobj,class sobj>
|
||||
void pokePole(const sobj &s,Lattice<vobj> &l,const Coordinate &orthog,NorthSouth isNorth)
|
||||
{
|
||||
GridBase *grid=l.Grid();
|
||||
|
||||
assert(grid->isIcosahedral());
|
||||
assert(grid->isIcosahedralVertex());
|
||||
|
||||
grid->Broadcast(grid->BossRank(),s);
|
||||
|
||||
int Nsimd = grid->Nsimd();
|
||||
int rank;
|
||||
int Ndm1 = grid->_ndimension-1;
|
||||
Coordinate pgrid = grid->ProcessorGrid();
|
||||
const int xdim=0;
|
||||
const int ydim=1;
|
||||
const int pdim=Ndm1;
|
||||
|
||||
int64_t pole_osite;
|
||||
int64_t pole_isite;
|
||||
Coordinate rdims;
|
||||
Coordinate idims;
|
||||
Coordinate ocoor;
|
||||
Coordinate icoor;
|
||||
Coordinate pcoor(grid->_ndimension,0);
|
||||
for(int d=2;d<Ndm1;d++){
|
||||
int dd = d-2;
|
||||
rdims.push_back(grid->_rdimensions[d]);
|
||||
idims.push_back(grid->_simd_layout[d]);
|
||||
icoor.push_back((orthog[dd]%grid->_ldimensions[d])/grid->_rdimensions[d]);
|
||||
ocoor.push_back(orthog[dd]%grid->_rdimensions[d]);
|
||||
pcoor[d] = orthog[dd]/grid->_ldimensions[d];
|
||||
|
||||
int o = orthog[dd];
|
||||
int r = grid->_rdimensions[d];
|
||||
int omr = o % r;
|
||||
}
|
||||
Lexicographic::IndexFromCoor(ocoor,pole_osite,rdims);
|
||||
Lexicographic::IndexFromCoor(icoor,pole_isite,idims);
|
||||
|
||||
int64_t osite;
|
||||
if(isNorth ==North){
|
||||
pcoor[xdim] = 0;
|
||||
pcoor[ydim] = pgrid[ydim]-1;
|
||||
pcoor[Ndm1] = pgrid[Ndm1]-1;
|
||||
osite = pole_osite + grid->NorthPoleOsite();
|
||||
} else {
|
||||
pcoor[xdim] = pgrid[xdim]-1;
|
||||
pcoor[ydim] = 0;
|
||||
pcoor[Ndm1] = 0;
|
||||
osite = pole_osite + grid->SouthPoleOsite();
|
||||
}
|
||||
|
||||
rank = grid->RankFromProcessorCoor(pcoor);
|
||||
|
||||
// extract-modify-merge cycle is easiest way and this is not perf critical
|
||||
if ( rank == grid->ThisRank() ) {
|
||||
ExtractBuffer<sobj> buf(Nsimd);
|
||||
autoView( l_v , l, CpuWrite);
|
||||
extract(l_v[osite],buf);
|
||||
buf[pole_isite] = s;
|
||||
merge(l_v[osite],buf);
|
||||
}
|
||||
return;
|
||||
};
|
||||
|
||||
|
||||
template<class vobj,class sobj>
|
||||
void peekLocalPole(sobj &s,const Lattice<vobj> &l,const Coordinate &orthog,NorthSouth isNorth)
|
||||
{
|
||||
s=Zero();
|
||||
|
||||
GridBase *grid=l.Grid();
|
||||
|
||||
assert(grid->isIcosahedral());
|
||||
assert(grid->isIcosahedralVertex());
|
||||
|
||||
int Nsimd = grid->Nsimd();
|
||||
|
||||
int rank;
|
||||
|
||||
int Ndm1 = grid->_ndimension-1;
|
||||
Coordinate pgrid = grid->ProcessorGrid();
|
||||
const int xdim=0;
|
||||
const int ydim=1;
|
||||
const int pdim=Ndm1;
|
||||
|
||||
int64_t pole_osite;
|
||||
int64_t pole_isite;
|
||||
Coordinate rdims;
|
||||
Coordinate idims;
|
||||
Coordinate ocoor;
|
||||
Coordinate icoor;
|
||||
// Coordinate pcoor(grid->_ndimension);
|
||||
for(int d=2;d<Ndm1;d++){
|
||||
int dd=d-2;
|
||||
rdims.push_back(grid->_rdimensions[d]);
|
||||
idims.push_back(grid->_simd_layout[d]);
|
||||
icoor.push_back((orthog[dd]%grid->_ldimensions[d])/grid->_rdimensions[d]);
|
||||
ocoor.push_back(orthog[dd]%grid->_rdimensions[d]);
|
||||
// pcoor[d] = orthog[dd]/grid->_ldimensions[d];
|
||||
}
|
||||
Lexicographic::IndexFromCoor(ocoor,pole_osite,rdims);
|
||||
Lexicographic::IndexFromCoor(icoor,pole_isite,idims);
|
||||
|
||||
int64_t osite;
|
||||
if(isNorth == North){
|
||||
// pcoor[xdim] = 0;
|
||||
// pcoor[ydim] = pgrid[ydim]-1;
|
||||
// pcoor[Ndm1] = pgrid[Ndm1]-1;
|
||||
osite = pole_osite + grid->NorthPoleOsite();
|
||||
assert(grid->ownsNorthPole());
|
||||
} else {
|
||||
// pcoor[xdim] = pgrid[xdim]-1;
|
||||
// pcoor[ydim] = 0;
|
||||
// pcoor[Ndm1] = 0;
|
||||
osite = pole_osite + grid->SouthPoleOsite();
|
||||
assert(grid->ownsSouthPole());
|
||||
}
|
||||
|
||||
ExtractBuffer<sobj> buf(Nsimd);
|
||||
autoView( l_v , l, CpuWrite);
|
||||
extract(l_v[osite],buf);
|
||||
s = buf[pole_isite];
|
||||
|
||||
return;
|
||||
};
|
||||
template<class vobj,class sobj>
|
||||
void pokeLocalPole(const sobj &s,Lattice<vobj> &l,const Coordinate &orthog,NorthSouth isNorth)
|
||||
{
|
||||
GridBase *grid=l.Grid();
|
||||
|
||||
assert(grid->isIcosahedral());
|
||||
assert(grid->isIcosahedralVertex());
|
||||
|
||||
int Nsimd = grid->Nsimd();
|
||||
int rank;
|
||||
int Ndm1 = grid->_ndimension-1;
|
||||
|
||||
const int xdim=0;
|
||||
const int ydim=1;
|
||||
const int pdim=Ndm1;
|
||||
|
||||
int64_t pole_osite;
|
||||
int64_t pole_isite;
|
||||
Coordinate rdims;
|
||||
Coordinate idims;
|
||||
Coordinate ocoor;
|
||||
Coordinate icoor;
|
||||
// Coordinate pcoor(grid->_ndimension,0);
|
||||
for(int d=2;d<Ndm1;d++){
|
||||
int dd = d-2;
|
||||
rdims.push_back(grid->_rdimensions[d]);
|
||||
idims.push_back(grid->_simd_layout[d]);
|
||||
icoor.push_back((orthog[dd]%grid->_ldimensions[d])/grid->_rdimensions[d]);
|
||||
ocoor.push_back(orthog[dd]%grid->_rdimensions[d]);
|
||||
// pcoor[d] = orthog[dd]/grid->_ldimensions[d];
|
||||
|
||||
int o = orthog[dd];
|
||||
int r = grid->_rdimensions[d];
|
||||
int omr = o % r;
|
||||
}
|
||||
Lexicographic::IndexFromCoor(ocoor,pole_osite,rdims);
|
||||
Lexicographic::IndexFromCoor(icoor,pole_isite,idims);
|
||||
|
||||
int64_t osite;
|
||||
int insert=0;
|
||||
if(isNorth ==North){
|
||||
// pcoor[xdim] = 0;
|
||||
// pcoor[ydim] = pgrid[ydim]-1;
|
||||
// pcoor[Ndm1] = pgrid[Ndm1]-1;
|
||||
osite = pole_osite + grid->NorthPoleOsite();
|
||||
assert(grid->ownsNorthPole());
|
||||
} else {
|
||||
// pcoor[xdim] = pgrid[xdim]-1;
|
||||
// pcoor[ydim] = 0;
|
||||
// pcoor[Ndm1] = 0;
|
||||
osite = pole_osite + grid->SouthPoleOsite();
|
||||
assert(grid->ownsSouthPole());
|
||||
}
|
||||
|
||||
// extract-modify-merge cycle is easiest way and this is not perf critical
|
||||
ExtractBuffer<sobj> buf(Nsimd);
|
||||
autoView( l_v , l, CpuWrite);
|
||||
extract(l_v[osite],buf);
|
||||
buf[pole_isite] = s;
|
||||
merge(l_v[osite],buf);
|
||||
|
||||
return;
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////////
|
||||
// Peek a scalar object from the SIMD array
|
||||
//////////////////////////////////////////////////////////
|
||||
@@ -179,7 +434,7 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
|
||||
for(int w=0;w<words;w++){
|
||||
pt[w] = getlane(vp[w],idx);
|
||||
}
|
||||
// std::cout << "peekLocalSite "<<site<<" "<<odx<<","<<idx<<" "<<s<<std::endl;
|
||||
|
||||
return;
|
||||
};
|
||||
template<class vobj,class sobj>
|
||||
|
||||
@@ -290,8 +290,10 @@ template<class vobj>
|
||||
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) {
|
||||
GridBase *grid = left.Grid();
|
||||
|
||||
bool ok;
|
||||
#ifdef GRID_SYCL
|
||||
uint64_t csum=0;
|
||||
uint64_t csum2=0;
|
||||
if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone)
|
||||
{
|
||||
// Hack
|
||||
@@ -300,13 +302,33 @@ inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &righ
|
||||
Integer words = left.Grid()->oSites()*sizeof(vobj)/sizeof(uint64_t);
|
||||
uint64_t *base= (uint64_t *)&l_v[0];
|
||||
csum=svm_xor(base,words);
|
||||
ok = FlightRecorder::CsumLog(csum);
|
||||
if ( !ok ) {
|
||||
csum2=svm_xor(base,words);
|
||||
std::cerr<< " Bad CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
|
||||
} else {
|
||||
// csum2=svm_xor(base,words);
|
||||
// std::cerr<< " ok CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
|
||||
}
|
||||
assert(ok);
|
||||
}
|
||||
FlightRecorder::CsumLog(csum);
|
||||
#endif
|
||||
FlightRecorder::StepLog("rank inner product");
|
||||
ComplexD nrm = rankInnerProduct(left,right);
|
||||
// ComplexD nrmck=nrm;
|
||||
RealD local = real(nrm);
|
||||
FlightRecorder::NormLog(real(nrm));
|
||||
ok = FlightRecorder::NormLog(real(nrm));
|
||||
if ( !ok ) {
|
||||
ComplexD nrm2 = rankInnerProduct(left,right);
|
||||
RealD local2 = real(nrm2);
|
||||
std::cerr<< " Bad NORM " << local << " recomputed as "<<local2<<std::endl;
|
||||
assert(ok);
|
||||
}
|
||||
FlightRecorder::StepLog("Start global sum");
|
||||
// grid->GlobalSumP2P(nrm);
|
||||
grid->GlobalSum(nrm);
|
||||
FlightRecorder::StepLog("Finished global sum");
|
||||
// std::cout << " norm "<< nrm << " p2p norm "<<nrmck<<std::endl;
|
||||
FlightRecorder::ReductionLog(local,real(nrm));
|
||||
return nrm;
|
||||
}
|
||||
@@ -353,8 +375,44 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
|
||||
coalescedWrite(inner_tmp_v[ss],innerProduct(tmp,tmp));
|
||||
coalescedWrite(z_v[ss],tmp);
|
||||
});
|
||||
bool ok;
|
||||
#ifdef GRID_SYCL
|
||||
uint64_t csum=0;
|
||||
uint64_t csum2=0;
|
||||
if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone)
|
||||
{
|
||||
// z_v
|
||||
{
|
||||
Integer words = sites*sizeof(vobj)/sizeof(uint64_t);
|
||||
uint64_t *base= (uint64_t *)&z_v[0];
|
||||
csum=svm_xor(base,words);
|
||||
ok = FlightRecorder::CsumLog(csum);
|
||||
if ( !ok ) {
|
||||
csum2=svm_xor(base,words);
|
||||
std::cerr<< " Bad z_v CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
|
||||
}
|
||||
assert(ok);
|
||||
}
|
||||
// inner_v
|
||||
{
|
||||
Integer words = sites*sizeof(inner_t)/sizeof(uint64_t);
|
||||
uint64_t *base= (uint64_t *)&inner_tmp_v[0];
|
||||
csum=svm_xor(base,words);
|
||||
ok = FlightRecorder::CsumLog(csum);
|
||||
if ( !ok ) {
|
||||
csum2=svm_xor(base,words);
|
||||
std::cerr<< " Bad inner_tmp_v CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
|
||||
}
|
||||
assert(ok);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
nrm = real(TensorRemove(sumD(inner_tmp_v,sites)));
|
||||
ok = FlightRecorder::NormLog(real(nrm));
|
||||
assert(ok);
|
||||
RealD local = real(nrm);
|
||||
grid->GlobalSum(nrm);
|
||||
FlightRecorder::ReductionLog(local,real(nrm));
|
||||
return nrm;
|
||||
}
|
||||
|
||||
@@ -498,6 +556,8 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,
|
||||
scalar_type * ptr = (scalar_type *) &result[0];
|
||||
int words = fd*sizeof(sobj)/sizeof(scalar_type);
|
||||
grid->GlobalSumVector(ptr, words);
|
||||
// std::cout << GridLogMessage << " sliceSum local"<<t_sum<<" us, host+mpi "<<t_rest<<std::endl;
|
||||
|
||||
}
|
||||
template<class vobj> inline
|
||||
std::vector<typename vobj::scalar_object>
|
||||
|
||||
@@ -16,11 +16,11 @@ inline typename vobj::scalar_objectD sumD_gpu_tensor(const vobj *lat, Integer os
|
||||
Integer nsimd= vobj::Nsimd();
|
||||
{
|
||||
sycl::buffer<sobj, 1> abuff(&ret, {1});
|
||||
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
|
||||
auto Reduction = cl::sycl::reduction(abuff,cgh,identity,std::plus<>());
|
||||
cgh.parallel_for(cl::sycl::range<1>{osites},
|
||||
theGridAccelerator->submit([&](sycl::handler &cgh) {
|
||||
auto Reduction = sycl::reduction(abuff,cgh,identity,std::plus<>());
|
||||
cgh.parallel_for(sycl::range<1>{osites},
|
||||
Reduction,
|
||||
[=] (cl::sycl::id<1> item, auto &sum) {
|
||||
[=] (sycl::id<1> item, auto &sum) {
|
||||
auto osite = item[0];
|
||||
sum +=Reduce(lat[osite]);
|
||||
});
|
||||
@@ -75,11 +75,11 @@ template<class Word> Word svm_xor(Word *vec,uint64_t L)
|
||||
Word ret = 0;
|
||||
{
|
||||
sycl::buffer<Word, 1> abuff(&ret, {1});
|
||||
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
|
||||
auto Reduction = cl::sycl::reduction(abuff,cgh,identity,std::bit_xor<>());
|
||||
cgh.parallel_for(cl::sycl::range<1>{L},
|
||||
theGridAccelerator->submit([&](sycl::handler &cgh) {
|
||||
auto Reduction = sycl::reduction(abuff,cgh,identity,std::bit_xor<>());
|
||||
cgh.parallel_for(sycl::range<1>{L},
|
||||
Reduction,
|
||||
[=] (cl::sycl::id<1> index, auto &sum) {
|
||||
[=] (sycl::id<1> index, auto &sum) {
|
||||
sum ^=vec[index];
|
||||
});
|
||||
});
|
||||
|
||||
@@ -48,31 +48,45 @@ NAMESPACE_BEGIN(Grid);
|
||||
//////////////////////////////////////////////////////////////
|
||||
inline int RNGfillable(GridBase *coarse,GridBase *fine)
|
||||
{
|
||||
if ( coarse == fine ) return 1;
|
||||
|
||||
int rngdims = coarse->_ndimension;
|
||||
|
||||
// trivially extended in higher dims, with locality guaranteeing RNG state is local to node
|
||||
int lowerdims = fine->_ndimension - coarse->_ndimension;
|
||||
assert(lowerdims >= 0);
|
||||
for(int d=0;d<lowerdims;d++){
|
||||
assert(fine->_simd_layout[d]==1);
|
||||
assert(fine->_processors[d]==1);
|
||||
if ( coarse->isIcosahedral()) assert(coarse->isIcosahedralEdge());
|
||||
|
||||
if ( fine->isIcosahedralVertex() && coarse->isIcosahedralEdge() ) {
|
||||
assert(fine->Nd()==coarse->Nd());
|
||||
for(int d=0;d<fine->Nd();d++){
|
||||
assert(fine->LocalDimensions()[d] == coarse->LocalDimensions()[d]);
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
{
|
||||
|
||||
int rngdims = coarse->_ndimension;
|
||||
|
||||
int multiplicity=1;
|
||||
for(int d=0;d<lowerdims;d++){
|
||||
multiplicity=multiplicity*fine->_rdimensions[d];
|
||||
}
|
||||
// local and global volumes subdivide cleanly after SIMDization
|
||||
for(int d=0;d<rngdims;d++){
|
||||
int fd= d+lowerdims;
|
||||
assert(coarse->_processors[d] == fine->_processors[fd]);
|
||||
assert(coarse->_simd_layout[d] == fine->_simd_layout[fd]);
|
||||
assert(((fine->_rdimensions[fd] / coarse->_rdimensions[d])* coarse->_rdimensions[d])==fine->_rdimensions[fd]);
|
||||
// trivially extended in higher dims, with locality guaranteeing RNG state is local to node
|
||||
int lowerdims = fine->_ndimension - coarse->_ndimension;
|
||||
assert(lowerdims >= 0);
|
||||
for(int d=0;d<lowerdims;d++){
|
||||
assert(fine->_simd_layout[d]==1);
|
||||
assert(fine->_processors[d]==1);
|
||||
}
|
||||
|
||||
multiplicity = multiplicity *fine->_rdimensions[fd] / coarse->_rdimensions[d];
|
||||
int multiplicity=1;
|
||||
for(int d=0;d<lowerdims;d++){
|
||||
multiplicity=multiplicity*fine->_rdimensions[d];
|
||||
}
|
||||
// local and global volumes subdivide cleanly after SIMDization
|
||||
for(int d=0;d<rngdims;d++){
|
||||
int fd= d+lowerdims;
|
||||
assert(coarse->_processors[d] == fine->_processors[fd]);
|
||||
assert(coarse->_simd_layout[d] == fine->_simd_layout[fd]);
|
||||
assert(((fine->_rdimensions[fd] / coarse->_rdimensions[d])* coarse->_rdimensions[d])==fine->_rdimensions[fd]);
|
||||
|
||||
multiplicity = multiplicity *fine->_rdimensions[fd] / coarse->_rdimensions[d];
|
||||
}
|
||||
return multiplicity;
|
||||
}
|
||||
return multiplicity;
|
||||
}
|
||||
|
||||
|
||||
@@ -80,6 +94,19 @@ inline int RNGfillable(GridBase *coarse,GridBase *fine)
|
||||
// this function is necessary for the LS vectorised field
|
||||
inline int RNGfillable_general(GridBase *coarse,GridBase *fine)
|
||||
{
|
||||
|
||||
if ( coarse == fine ) return 1;
|
||||
|
||||
if ( coarse->isIcosahedral()) assert(coarse->isIcosahedralEdge());
|
||||
|
||||
if ( fine->isIcosahedralVertex() && coarse->isIcosahedralEdge() ) {
|
||||
assert(fine->Nd()==coarse->Nd());
|
||||
for(int d=0;d<fine->Nd();d++){
|
||||
assert(fine->LocalDimensions()[d] == coarse->LocalDimensions()[d]);
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
int rngdims = coarse->_ndimension;
|
||||
|
||||
// trivially extended in higher dims, with locality guaranteeing RNG state is local to node
|
||||
@@ -352,12 +379,12 @@ private:
|
||||
public:
|
||||
GridBase *Grid(void) const { return _grid; }
|
||||
int generator_idx(int os,int is) {
|
||||
return is*_grid->oSites()+os;
|
||||
return (is*_grid->CartesianOsites()+os)%_grid->lSites(); // On the pole sites wrap back to normal generators; Icosahedral hack
|
||||
}
|
||||
|
||||
GridParallelRNG(GridBase *grid) : GridRNGbase() {
|
||||
_grid = grid;
|
||||
_vol =_grid->iSites()*_grid->oSites();
|
||||
_vol =_grid->lSites();
|
||||
|
||||
_generators.resize(_vol);
|
||||
_uniform.resize(_vol,std::uniform_real_distribution<RealD>{0,1});
|
||||
@@ -381,7 +408,7 @@ public:
|
||||
|
||||
int multiplicity = RNGfillable_general(_grid, l.Grid()); // l has finer or same grid
|
||||
int Nsimd = _grid->Nsimd(); // guaranteed to be the same for l.Grid() too
|
||||
int osites = _grid->oSites(); // guaranteed to be <= l.Grid()->oSites() by a factor multiplicity
|
||||
int osites = _grid->CartesianOsites(); // guaranteed to be <= l.Grid()->oSites() by a factor multiplicity, except on Icosahedral
|
||||
int words = sizeof(scalar_object) / sizeof(scalar_type);
|
||||
|
||||
autoView(l_v, l, CpuWrite);
|
||||
@@ -402,8 +429,27 @@ public:
|
||||
// merge into SIMD lanes, FIXME suboptimal implementation
|
||||
merge(l_v[sm], buf);
|
||||
}
|
||||
});
|
||||
// });
|
||||
});
|
||||
|
||||
/*
|
||||
* Fill in the poles for an Icosahedral vertex mesh
|
||||
*/
|
||||
if (l.Grid()->isIcosahedralVertex()) {
|
||||
int64_t pole_sites=l.Grid()->NorthPoleOsites()+l.Grid()->SouthPoleOsites();
|
||||
int64_t pole_base =l.Grid()->CartesianOsites();
|
||||
|
||||
ExtractBuffer<scalar_object> buf(Nsimd);
|
||||
for (int m = 0; m < pole_sites; m++) { // Draw from same generator multiplicity times
|
||||
for (int si = 0; si < Nsimd; si++) {
|
||||
int gdx = 0;
|
||||
scalar_type *pointer = (scalar_type *)&buf[si];
|
||||
dist[gdx].reset();
|
||||
for (int idx = 0; idx < words; idx++)
|
||||
fillScalar(pointer[idx], dist[gdx], _generators[gdx]);
|
||||
}
|
||||
merge(l_v[pole_base+m], buf);
|
||||
}
|
||||
}
|
||||
|
||||
_time_counter += usecond()- inner_time_counter;
|
||||
}
|
||||
|
||||
@@ -55,7 +55,7 @@ inline void sliceSumReduction_cub_small(const vobj *Data,
|
||||
d_offsets = static_cast<int*>(acceleratorAllocDevice((rd+1)*sizeof(int)));
|
||||
|
||||
//copy offsets to device
|
||||
acceleratorCopyToDeviceAsync(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream);
|
||||
acceleratorCopyToDeviceAsynch(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream);
|
||||
|
||||
|
||||
gpuError_t gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), zero_init, computeStream);
|
||||
@@ -88,7 +88,7 @@ inline void sliceSumReduction_cub_small(const vobj *Data,
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
acceleratorCopyFromDeviceAsync(d_out,&lvSum[0],rd*sizeof(vobj),computeStream);
|
||||
acceleratorCopyFromDeviceAsynch(d_out,&lvSum[0],rd*sizeof(vobj),computeStream);
|
||||
|
||||
//sync after copy
|
||||
accelerator_barrier();
|
||||
@@ -141,11 +141,11 @@ inline void sliceSumReduction_sycl_small(const vobj *Data,
|
||||
});
|
||||
|
||||
for (int r = 0; r < rd; r++) {
|
||||
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
|
||||
auto Reduction = cl::sycl::reduction(&mysum[r],std::plus<>());
|
||||
cgh.parallel_for(cl::sycl::range<1>{subvol_size},
|
||||
theGridAccelerator->submit([&](sycl::handler &cgh) {
|
||||
auto Reduction = sycl::reduction(&mysum[r],std::plus<>());
|
||||
cgh.parallel_for(sycl::range<1>{subvol_size},
|
||||
Reduction,
|
||||
[=](cl::sycl::id<1> item, auto &sum) {
|
||||
[=](sycl::id<1> item, auto &sum) {
|
||||
auto s = item[0];
|
||||
sum += rb_p[r*subvol_size+s];
|
||||
});
|
||||
|
||||
@@ -466,9 +466,15 @@ public:
|
||||
static deviceVector<vobj> recv_buf;
|
||||
send_buf.resize(buffer_size*2*depth);
|
||||
recv_buf.resize(buffer_size*2*depth);
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
static hostVector<vobj> hsend_buf;
|
||||
static hostVector<vobj> hrecv_buf;
|
||||
hsend_buf.resize(buffer_size*2*depth);
|
||||
hrecv_buf.resize(buffer_size*2*depth);
|
||||
#endif
|
||||
|
||||
std::vector<CommsRequest_t> fwd_req;
|
||||
std::vector<CommsRequest_t> bwd_req;
|
||||
std::vector<MpiCommsRequest_t> fwd_req;
|
||||
std::vector<MpiCommsRequest_t> bwd_req;
|
||||
|
||||
int words = buffer_size;
|
||||
int bytes = words * sizeof(vobj);
|
||||
@@ -495,9 +501,16 @@ public:
|
||||
t_gather+=usecond()-t;
|
||||
|
||||
t=usecond();
|
||||
#ifdef ACCELERATOR_AWARE_MPI
|
||||
grid->SendToRecvFromBegin(fwd_req,
|
||||
(void *)&send_buf[d*buffer_size], xmit_to_rank,
|
||||
(void *)&recv_buf[d*buffer_size], recv_from_rank, bytes, tag);
|
||||
#else
|
||||
acceleratorCopyFromDevice(&send_buf[d*buffer_size],&hsend_buf[d*buffer_size],bytes);
|
||||
grid->SendToRecvFromBegin(fwd_req,
|
||||
(void *)&hsend_buf[d*buffer_size], xmit_to_rank,
|
||||
(void *)&hrecv_buf[d*buffer_size], recv_from_rank, bytes, tag);
|
||||
#endif
|
||||
t_comms+=usecond()-t;
|
||||
}
|
||||
for ( int d=0;d < depth ; d ++ ) {
|
||||
@@ -508,9 +521,16 @@ public:
|
||||
t_gather+= usecond() - t;
|
||||
|
||||
t=usecond();
|
||||
#ifdef ACCELERATOR_AWARE_MPI
|
||||
grid->SendToRecvFromBegin(bwd_req,
|
||||
(void *)&send_buf[(d+depth)*buffer_size], recv_from_rank,
|
||||
(void *)&recv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag);
|
||||
#else
|
||||
acceleratorCopyFromDevice(&send_buf[(d+depth)*buffer_size],&hsend_buf[(d+depth)*buffer_size],bytes);
|
||||
grid->SendToRecvFromBegin(bwd_req,
|
||||
(void *)&hsend_buf[(d+depth)*buffer_size], recv_from_rank,
|
||||
(void *)&hrecv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag);
|
||||
#endif
|
||||
t_comms+=usecond()-t;
|
||||
}
|
||||
|
||||
@@ -533,8 +553,13 @@ public:
|
||||
|
||||
t=usecond();
|
||||
grid->CommsComplete(fwd_req);
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
for ( int d=0;d < depth ; d ++ ) {
|
||||
acceleratorCopyToDevice(&hrecv_buf[d*buffer_size],&recv_buf[d*buffer_size],bytes);
|
||||
}
|
||||
#endif
|
||||
t_comms+= usecond() - t;
|
||||
|
||||
|
||||
t=usecond();
|
||||
for ( int d=0;d < depth ; d ++ ) {
|
||||
ScatterSlice(recv_buf,to,nld-depth+d,dimension,plane*buffer_size); plane++;
|
||||
@@ -543,6 +568,11 @@ public:
|
||||
|
||||
t=usecond();
|
||||
grid->CommsComplete(bwd_req);
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
for ( int d=0;d < depth ; d ++ ) {
|
||||
acceleratorCopyToDevice(&hrecv_buf[(d+depth)*buffer_size],&recv_buf[(d+depth)*buffer_size],bytes);
|
||||
}
|
||||
#endif
|
||||
t_comms+= usecond() - t;
|
||||
|
||||
t=usecond();
|
||||
|
||||
@@ -49,7 +49,7 @@ static constexpr int Tm = 7;
|
||||
|
||||
static constexpr int Nc=Config_Nc;
|
||||
static constexpr int Ns=4;
|
||||
static constexpr int Nd=4;
|
||||
static constexpr int Nd=Config_Nd;
|
||||
static constexpr int Nhs=2; // half spinor
|
||||
static constexpr int Nds=8; // double stored gauge field
|
||||
static constexpr int Ngp=2; // gparity index range
|
||||
@@ -75,6 +75,7 @@ static constexpr int InverseYes=1;
|
||||
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
|
||||
|
||||
const int SpinorIndex = 2;
|
||||
const int PauliIndex = 2; //TensorLevel counts from the bottom!
|
||||
template<typename T> struct isSpinor {
|
||||
static constexpr bool value = (SpinorIndex==T::TensorLevel);
|
||||
};
|
||||
|
||||
@@ -98,7 +98,7 @@ public:
|
||||
virtual RealD S(const GaugeField& U) = 0; // evaluate the action
|
||||
virtual RealD Sinitial(const GaugeField& U) { return this->S(U); } ; // if the refresh computes the action, can cache it. Alternately refreshAndAction() ?
|
||||
virtual void deriv(const GaugeField& U, GaugeField& dSdU) = 0; // evaluate the action derivative
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// virtual smeared interface through configuration container
|
||||
/////////////////////////////////////////////////////////////
|
||||
@@ -132,6 +132,10 @@ public:
|
||||
template <class GaugeField >
|
||||
class EmptyAction : public Action <GaugeField>
|
||||
{
|
||||
using Action<GaugeField>::refresh;
|
||||
using Action<GaugeField>::Sinitial;
|
||||
using Action<GaugeField>::deriv;
|
||||
|
||||
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) { assert(0);}; // refresh pseudofermions
|
||||
virtual RealD S(const GaugeField& U) { return 0.0;}; // evaluate the action
|
||||
virtual void deriv(const GaugeField& U, GaugeField& dSdU) { assert(0); }; // evaluate the action derivative
|
||||
|
||||
@@ -55,6 +55,11 @@ public:
|
||||
RealD alpha; // Mobius scale
|
||||
RealD k; // EOFA normalization constant
|
||||
|
||||
// Device resident
|
||||
deviceVector<Coeff_t> d_shift_coefficients;
|
||||
deviceVector<Coeff_t> d_MooeeInv_shift_lc;
|
||||
deviceVector<Coeff_t> d_MooeeInv_shift_norm;
|
||||
|
||||
virtual void Instantiatable(void) = 0;
|
||||
|
||||
// EOFA-specific operations
|
||||
@@ -92,6 +97,11 @@ public:
|
||||
this->k = this->alpha * (_mq3-_mq2) * std::pow(this->alpha+1.0,2*Ls) /
|
||||
( std::pow(this->alpha+1.0,Ls) + _mq2*std::pow(this->alpha-1.0,Ls) ) /
|
||||
( std::pow(this->alpha+1.0,Ls) + _mq3*std::pow(this->alpha-1.0,Ls) );
|
||||
|
||||
d_shift_coefficients.resize(Ls);
|
||||
d_MooeeInv_shift_lc.resize(Ls);
|
||||
d_MooeeInv_shift_norm.resize(Ls);
|
||||
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
@@ -124,6 +124,11 @@ public:
|
||||
RealD _b;
|
||||
RealD _c;
|
||||
|
||||
// possible boost
|
||||
std::vector<ComplexD> qmu;
|
||||
void set_qmu(std::vector<ComplexD> _qmu) { qmu=_qmu; assert(qmu.size()==Nd);};
|
||||
void addQmu(const FermionField &in, FermionField &out, int dag);
|
||||
|
||||
// Cayley form Moebius (tanh and zolotarev)
|
||||
std::vector<Coeff_t> omega;
|
||||
std::vector<Coeff_t> bs; // S dependent coeffs
|
||||
@@ -143,6 +148,17 @@ public:
|
||||
std::vector<Coeff_t> ueem;
|
||||
std::vector<Coeff_t> dee;
|
||||
|
||||
// Device memory
|
||||
deviceVector<Coeff_t> d_diag;
|
||||
deviceVector<Coeff_t> d_upper;
|
||||
deviceVector<Coeff_t> d_lower;
|
||||
|
||||
deviceVector<Coeff_t> d_lee;
|
||||
deviceVector<Coeff_t> d_dee;
|
||||
deviceVector<Coeff_t> d_uee;
|
||||
deviceVector<Coeff_t> d_leem;
|
||||
deviceVector<Coeff_t> d_ueem;
|
||||
|
||||
// Matrices of 5d ee inverse params
|
||||
// std::vector<iSinglet<Simd> > MatpInv;
|
||||
// std::vector<iSinglet<Simd> > MatmInv;
|
||||
|
||||
196
Grid/qcd/action/fermion/CompactWilsonCloverFermion5D.h
Normal file
196
Grid/qcd/action/fermion/CompactWilsonCloverFermion5D.h
Normal file
@@ -0,0 +1,196 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/CompactWilsonCloverFermion5D.h
|
||||
|
||||
Copyright (C) 2020 - 2025
|
||||
|
||||
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
|
||||
Author: Nils Meyer <nils.meyer@ur.de>
|
||||
Author: Christoph Lehner <christoph@lhnr.de>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <Grid/qcd/action/fermion/WilsonFermion5D.h>
|
||||
#include <Grid/qcd/action/fermion/WilsonCloverTypes.h>
|
||||
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
|
||||
#include <Grid/qcd/action/fermion/CloverHelpers.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
// see Grid/qcd/action/fermion/CompactWilsonCloverFermion.h for description
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
class CompactWilsonCloverFermion5D : public WilsonFermion5D<Impl>,
|
||||
public WilsonCloverHelpers<Impl>,
|
||||
public CompactWilsonCloverHelpers<Impl> {
|
||||
/////////////////////////////////////////////
|
||||
// Sizes
|
||||
/////////////////////////////////////////////
|
||||
|
||||
public:
|
||||
|
||||
INHERIT_COMPACT_CLOVER_SIZES(Impl);
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Type definitions
|
||||
/////////////////////////////////////////////
|
||||
|
||||
public:
|
||||
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
INHERIT_CLOVER_TYPES(Impl);
|
||||
INHERIT_COMPACT_CLOVER_TYPES(Impl);
|
||||
|
||||
typedef WilsonFermion5D<Impl> WilsonBase;
|
||||
typedef WilsonCloverHelpers<Impl> Helpers;
|
||||
typedef CompactWilsonCloverHelpers<Impl> CompactHelpers;
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Constructors
|
||||
/////////////////////////////////////////////
|
||||
|
||||
public:
|
||||
|
||||
CompactWilsonCloverFermion5D(GaugeField& _Umu,
|
||||
GridCartesian &FiveDimGrid,
|
||||
GridRedBlackCartesian &FiveDimRedBlackGrid,
|
||||
GridCartesian &FourDimGrid,
|
||||
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||
const RealD _mass,
|
||||
const RealD _csw_r = 0.0,
|
||||
const RealD _csw_t = 0.0,
|
||||
const RealD _cF = 1.0,
|
||||
const ImplParams& impl_p = ImplParams());
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Member functions (implementing interface)
|
||||
/////////////////////////////////////////////
|
||||
|
||||
public:
|
||||
|
||||
virtual void Instantiatable() {};
|
||||
int ConstEE() override { return 0; };
|
||||
int isTrivialEE() override { return 0; };
|
||||
|
||||
void Dhop(const FermionField& in, FermionField& out, int dag) override;
|
||||
|
||||
void DhopOE(const FermionField& in, FermionField& out, int dag) override;
|
||||
|
||||
void DhopEO(const FermionField& in, FermionField& out, int dag) override;
|
||||
|
||||
void DhopDir(const FermionField& in, FermionField& out, int dir, int disp) override;
|
||||
|
||||
void DhopDirAll(const FermionField& in, std::vector<FermionField>& out) /* override */;
|
||||
|
||||
void M(const FermionField& in, FermionField& out) override;
|
||||
|
||||
void Mdag(const FermionField& in, FermionField& out) override;
|
||||
|
||||
void Meooe(const FermionField& in, FermionField& out) override;
|
||||
|
||||
void MeooeDag(const FermionField& in, FermionField& out) override;
|
||||
|
||||
void Mooee(const FermionField& in, FermionField& out) override;
|
||||
|
||||
void MooeeDag(const FermionField& in, FermionField& out) override;
|
||||
|
||||
void MooeeInv(const FermionField& in, FermionField& out) override;
|
||||
|
||||
void MooeeInvDag(const FermionField& in, FermionField& out) override;
|
||||
|
||||
void Mdir(const FermionField& in, FermionField& out, int dir, int disp) override;
|
||||
|
||||
void MdirAll(const FermionField& in, std::vector<FermionField>& out) override;
|
||||
|
||||
void MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) override;
|
||||
|
||||
void MooDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override;
|
||||
|
||||
void MeeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override;
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Member functions (internals)
|
||||
/////////////////////////////////////////////
|
||||
|
||||
void MooeeInternal(const FermionField& in,
|
||||
FermionField& out,
|
||||
const CloverDiagonalField& diagonal,
|
||||
const CloverTriangleField& triangle);
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Helpers
|
||||
/////////////////////////////////////////////
|
||||
|
||||
void ImportGauge(const GaugeField& _Umu) override;
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Helpers
|
||||
/////////////////////////////////////////////
|
||||
|
||||
private:
|
||||
|
||||
template<class Field>
|
||||
const MaskField* getCorrectMaskField(const Field &in) const {
|
||||
if(in.Grid()->_isCheckerBoarded) {
|
||||
if(in.Checkerboard() == Odd) {
|
||||
return &this->BoundaryMaskOdd;
|
||||
} else {
|
||||
return &this->BoundaryMaskEven;
|
||||
}
|
||||
} else {
|
||||
return &this->BoundaryMask;
|
||||
}
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
void ApplyBoundaryMask(Field& f) {
|
||||
const MaskField* m = getCorrectMaskField(f); assert(m != nullptr);
|
||||
assert(m != nullptr);
|
||||
CompactHelpers::ApplyBoundaryMask(f, *m);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Member Data
|
||||
/////////////////////////////////////////////
|
||||
|
||||
public:
|
||||
|
||||
RealD csw_r;
|
||||
RealD csw_t;
|
||||
RealD cF;
|
||||
int n_rhs;
|
||||
|
||||
bool fixedBoundaries;
|
||||
|
||||
CloverDiagonalField Diagonal, DiagonalEven, DiagonalOdd;
|
||||
CloverDiagonalField DiagonalInv, DiagonalInvEven, DiagonalInvOdd;
|
||||
|
||||
CloverTriangleField Triangle, TriangleEven, TriangleOdd;
|
||||
CloverTriangleField TriangleInv, TriangleInvEven, TriangleInvOdd;
|
||||
|
||||
FermionField Tmp;
|
||||
|
||||
MaskField BoundaryMask, BoundaryMaskEven, BoundaryMaskOdd;
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
@@ -60,6 +60,50 @@ public:
|
||||
// virtual void Instantiatable(void)=0;
|
||||
virtual void Instantiatable(void) =0;
|
||||
|
||||
void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary, std::vector<double> twist)
|
||||
{
|
||||
std::cout << "Free Propagator for PartialFraction"<<std::endl;
|
||||
FermionField in_k(in.Grid());
|
||||
FermionField prop_k(in.Grid());
|
||||
|
||||
FFT theFFT((GridCartesian *) in.Grid());
|
||||
|
||||
//phase for boundary condition
|
||||
ComplexField coor(in.Grid());
|
||||
ComplexField ph(in.Grid()); ph = Zero();
|
||||
FermionField in_buf(in.Grid()); in_buf = Zero();
|
||||
typedef typename Simd::scalar_type Scalar;
|
||||
Scalar ci(0.0,1.0);
|
||||
assert(twist.size() == Nd);//check that twist is Nd
|
||||
assert(boundary.size() == Nd);//check that boundary conditions is Nd
|
||||
int shift = 0;
|
||||
for(unsigned int nu = 0; nu < Nd; nu++)
|
||||
{
|
||||
// Shift coordinate lattice index by 1 to account for 5th dimension.
|
||||
LatticeCoordinate(coor, nu + shift);
|
||||
double boundary_phase = ::acos(real(boundary[nu]));
|
||||
ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu+shift])));
|
||||
//momenta for propagator shifted by twist+boundary
|
||||
twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI));
|
||||
}
|
||||
in_buf = exp(ci*ph*(-1.0))*in;
|
||||
|
||||
theFFT.FFT_all_dim(in_k,in,FFT::forward);
|
||||
this->MomentumSpacePropagatorHw(prop_k,in_k,mass,twist);
|
||||
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
|
||||
|
||||
//phase for boundary condition
|
||||
out = out * exp(ci*ph);
|
||||
};
|
||||
|
||||
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
|
||||
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
|
||||
std::vector<Complex> boundary;
|
||||
for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions
|
||||
FreePropagator(in,out,mass,boundary,twist);
|
||||
};
|
||||
|
||||
|
||||
// Efficient support for multigrid coarsening
|
||||
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp);
|
||||
virtual void MdirAll(const FermionField &in, std::vector<FermionField> &out);
|
||||
|
||||
@@ -123,10 +123,10 @@ public:
|
||||
GaugeGrid->LocalIndexToLocalCoor(lidx, lcoor);
|
||||
|
||||
peekLocalSite(ScalarUmu, Umu_v, lcoor);
|
||||
for (int mu = 0; mu < 4; mu++) ScalarUds(mu) = ScalarUmu(mu);
|
||||
for (int mu = 0; mu < Nd; mu++) ScalarUds(mu) = ScalarUmu(mu);
|
||||
|
||||
peekLocalSite(ScalarUmu, Uadj_v, lcoor);
|
||||
for (int mu = 0; mu < 4; mu++) ScalarUds(mu + 4) = ScalarUmu(mu);
|
||||
for (int mu = 0; mu < Nd; mu++) ScalarUds(mu + Nd) = ScalarUmu(mu);
|
||||
|
||||
pokeLocalSite(ScalarUds, Uds_v, lcoor);
|
||||
});
|
||||
|
||||
@@ -55,6 +55,7 @@ NAMESPACE_CHECK(Wilson);
|
||||
NAMESPACE_CHECK(WilsonTM);
|
||||
#include <Grid/qcd/action/fermion/WilsonCloverFermion.h> // 4d wilson clover fermions
|
||||
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h> // 4d compact wilson clover fermions
|
||||
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion5D.h> // 5d compact wilson clover fermions
|
||||
NAMESPACE_CHECK(WilsonClover);
|
||||
#include <Grid/qcd/action/fermion/WilsonFermion5D.h> // 5d base used by all 5d overlap types
|
||||
NAMESPACE_CHECK(Wilson5D);
|
||||
@@ -84,6 +85,15 @@ NAMESPACE_CHECK(DomainWall);
|
||||
#include <Grid/qcd/action/fermion/OverlapWilsonPartialFractionTanhFermion.h>
|
||||
#include <Grid/qcd/action/fermion/OverlapWilsonPartialFractionZolotarevFermion.h>
|
||||
NAMESPACE_CHECK(Overlap);
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Two spin wilson fermion based
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#include <Grid/qcd/action/fermion/TwoSpinWilsonFermion3plus1D.h>
|
||||
NAMESPACE_CHECK(TwoSpinWilson);
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// G5 herm -- this has to live in QCD since dirac matrix is not in the broader sector of code
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
@@ -164,12 +174,17 @@ typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiS
|
||||
|
||||
// Compact Clover fermions
|
||||
template <typename WImpl> using CompactWilsonClover = CompactWilsonCloverFermion<WImpl, CompactCloverHelpers<WImpl>>;
|
||||
template <typename WImpl> using CompactWilsonClover5D = CompactWilsonCloverFermion5D<WImpl, CompactCloverHelpers<WImpl>>;
|
||||
template <typename WImpl> using CompactWilsonExpClover = CompactWilsonCloverFermion<WImpl, CompactExpCloverHelpers<WImpl>>;
|
||||
|
||||
typedef CompactWilsonClover<WilsonImplD2> CompactWilsonCloverFermionD2;
|
||||
typedef CompactWilsonClover<WilsonImplF> CompactWilsonCloverFermionF;
|
||||
typedef CompactWilsonClover<WilsonImplD> CompactWilsonCloverFermionD;
|
||||
|
||||
typedef CompactWilsonClover5D<WilsonImplD2> CompactWilsonCloverFermion5DD2;
|
||||
typedef CompactWilsonClover5D<WilsonImplF> CompactWilsonCloverFermion5DF;
|
||||
typedef CompactWilsonClover5D<WilsonImplD> CompactWilsonCloverFermion5DD;
|
||||
|
||||
typedef CompactWilsonExpClover<WilsonImplD2> CompactWilsonExpCloverFermionD2;
|
||||
typedef CompactWilsonExpClover<WilsonImplF> CompactWilsonExpCloverFermionF;
|
||||
typedef CompactWilsonExpClover<WilsonImplD> CompactWilsonExpCloverFermionD;
|
||||
|
||||
@@ -41,8 +41,9 @@ NAMESPACE_CHECK(Compressor);
|
||||
NAMESPACE_CHECK(FermionOperatorImpl);
|
||||
#include <Grid/qcd/action/fermion/FermionOperator.h>
|
||||
NAMESPACE_CHECK(FermionOperator);
|
||||
#include <Grid/qcd/action/fermion/WilsonKernels.h> //used by all wilson type fermions
|
||||
#include <Grid/qcd/action/fermion/WilsonKernels.h> //used by all wilson type fermions
|
||||
#include <Grid/qcd/action/fermion/StaggeredKernels.h> //used by all wilson type fermions
|
||||
#include <Grid/qcd/action/fermion/TwoSpinWilsonKernels.h> //used for 3D fermions, pauli in place of Dirac
|
||||
NAMESPACE_CHECK(Kernels);
|
||||
|
||||
#endif
|
||||
|
||||
@@ -180,6 +180,12 @@ NAMESPACE_CHECK(ImplGparityWilson);
|
||||
#include <Grid/qcd/action/fermion/StaggeredImpl.h>
|
||||
NAMESPACE_CHECK(ImplStaggered);
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Two component spinor Wilson action for 3d / Boston
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
#include <Grid/qcd/action/fermion/TwoSpinWilsonImpl.h>
|
||||
NAMESPACE_CHECK(ImplTwoSpinWilson);
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Single flavour one component spinors with colour index. 5d vec
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@@ -274,7 +274,7 @@ public:
|
||||
autoView( Uds_v , Uds, CpuWrite);
|
||||
autoView( Utmp_v, Utmp, CpuWrite);
|
||||
thread_foreach(ss,Utmp_v,{
|
||||
Uds_v[ss](0)(mu+4) = Utmp_v[ss]();
|
||||
Uds_v[ss](0)(mu+Nd) = Utmp_v[ss]();
|
||||
});
|
||||
}
|
||||
Utmp = Uconj;
|
||||
@@ -286,7 +286,7 @@ public:
|
||||
autoView( Uds_v , Uds, CpuWrite);
|
||||
autoView( Utmp_v, Utmp, CpuWrite);
|
||||
thread_foreach(ss,Utmp_v,{
|
||||
Uds_v[ss](1)(mu+4) = Utmp_v[ss]();
|
||||
Uds_v[ss](1)(mu+Nd) = Utmp_v[ss]();
|
||||
});
|
||||
}
|
||||
}
|
||||
@@ -320,7 +320,7 @@ public:
|
||||
}
|
||||
|
||||
Uconj = conjugate(*Upoke);
|
||||
pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu + 4);
|
||||
pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu + Nd);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -36,6 +36,8 @@ public:
|
||||
static const std::vector<int> directions;
|
||||
static const std::vector<int> displacements;
|
||||
static const int npoint = 16;
|
||||
static std::vector<int> MakeDirections(void);
|
||||
static std::vector<int> MakeDisplacements(void);
|
||||
};
|
||||
|
||||
template <class Impl>
|
||||
|
||||
@@ -40,6 +40,8 @@ public:
|
||||
static const std::vector<int> directions;
|
||||
static const std::vector<int> displacements;
|
||||
const int npoint = 16;
|
||||
static std::vector<int> MakeDirections(void);
|
||||
static std::vector<int> MakeDisplacements(void);
|
||||
};
|
||||
|
||||
template<class Impl>
|
||||
|
||||
@@ -36,6 +36,8 @@ public:
|
||||
static const std::vector<int> directions;
|
||||
static const std::vector<int> displacements;
|
||||
static const int npoint = 8;
|
||||
static std::vector<int> MakeDirections(void);
|
||||
static std::vector<int> MakeDisplacements(void);
|
||||
};
|
||||
|
||||
template <class Impl>
|
||||
|
||||
@@ -42,7 +42,7 @@ public:
|
||||
|
||||
void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
|
||||
this->MomentumSpacePropagatorHw(out,in,_m,twist);
|
||||
};
|
||||
};
|
||||
|
||||
// Constructors
|
||||
OverlapWilsonCayleyTanhFermion(GaugeField &_Umu,
|
||||
|
||||
@@ -41,6 +41,10 @@ public:
|
||||
public:
|
||||
|
||||
// Constructors
|
||||
virtual void Instantiatable(void){};
|
||||
void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
|
||||
this->MomentumSpacePropagatorHw(out,in,_m,twist);
|
||||
};
|
||||
|
||||
OverlapWilsonCayleyZolotarevFermion(GaugeField &_Umu,
|
||||
GridCartesian &FiveDimGrid,
|
||||
|
||||
@@ -41,6 +41,9 @@ public:
|
||||
public:
|
||||
|
||||
virtual void Instantiatable(void){};
|
||||
void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
|
||||
this->MomentumSpacePropagatorHw(out,in,_m,twist);
|
||||
};
|
||||
// Constructors
|
||||
OverlapWilsonContFracTanhFermion(GaugeField &_Umu,
|
||||
GridCartesian &FiveDimGrid,
|
||||
|
||||
@@ -40,6 +40,9 @@ public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
virtual void Instantiatable(void){};
|
||||
void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
|
||||
this->MomentumSpacePropagatorHw(out,in,_m,twist);
|
||||
};
|
||||
// Constructors
|
||||
OverlapWilsonContFracZolotarevFermion(GaugeField &_Umu,
|
||||
GridCartesian &FiveDimGrid,
|
||||
|
||||
@@ -41,6 +41,9 @@ public:
|
||||
public:
|
||||
|
||||
virtual void Instantiatable(void){};
|
||||
void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
|
||||
this->MomentumSpacePropagatorHw(out,in,_m,twist);
|
||||
};
|
||||
// Constructors
|
||||
OverlapWilsonPartialFractionTanhFermion(GaugeField &_Umu,
|
||||
GridCartesian &FiveDimGrid,
|
||||
|
||||
@@ -40,6 +40,11 @@ public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
virtual void Instantiatable(void){};
|
||||
|
||||
void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
|
||||
this->MomentumSpacePropagatorHw(out,in,_m,twist);
|
||||
};
|
||||
|
||||
// Constructors
|
||||
OverlapWilsonPartialFractionZolotarevFermion(GaugeField &_Umu,
|
||||
GridCartesian &FiveDimGrid,
|
||||
|
||||
@@ -39,7 +39,7 @@ class PartialFractionFermion5D : public WilsonFermion5D<Impl>
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
const int part_frac_chroma_convention=1;
|
||||
const int part_frac_chroma_convention=0;
|
||||
|
||||
void Meooe_internal(const FermionField &in, FermionField &out,int dag);
|
||||
void Mooee_internal(const FermionField &in, FermionField &out,int dag);
|
||||
@@ -83,11 +83,70 @@ public:
|
||||
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||
RealD _mass,RealD M5,const ImplParams &p= ImplParams());
|
||||
|
||||
PartialFractionFermion5D(GaugeField &_Umu,
|
||||
GridCartesian &FiveDimGrid,
|
||||
GridRedBlackCartesian &FiveDimRedBlackGrid,
|
||||
GridCartesian &FourDimGrid,
|
||||
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||
RealD _mass,RealD M5,std::vector<RealD> &_qmu,const ImplParams &p= ImplParams());
|
||||
|
||||
void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary, std::vector<double> twist)
|
||||
{
|
||||
std::cout << "Free Propagator for PartialFraction"<<std::endl;
|
||||
FermionField in_k(in.Grid());
|
||||
FermionField prop_k(in.Grid());
|
||||
|
||||
FFT theFFT((GridCartesian *) in.Grid());
|
||||
|
||||
//phase for boundary condition
|
||||
ComplexField coor(in.Grid());
|
||||
ComplexField ph(in.Grid()); ph = Zero();
|
||||
FermionField in_buf(in.Grid()); in_buf = Zero();
|
||||
typedef typename Simd::scalar_type Scalar;
|
||||
Scalar ci(0.0,1.0);
|
||||
assert(twist.size() == Nd);//check that twist is Nd
|
||||
assert(boundary.size() == Nd);//check that boundary conditions is Nd
|
||||
int shift = 0;
|
||||
for(unsigned int nu = 0; nu < Nd; nu++)
|
||||
{
|
||||
// Shift coordinate lattice index by 1 to account for 5th dimension.
|
||||
LatticeCoordinate(coor, nu + shift);
|
||||
double boundary_phase = ::acos(real(boundary[nu]));
|
||||
ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu+shift])));
|
||||
//momenta for propagator shifted by twist+boundary
|
||||
twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI));
|
||||
}
|
||||
in_buf = exp(ci*ph*(-1.0))*in;
|
||||
|
||||
theFFT.FFT_all_dim(in_k,in,FFT::forward);
|
||||
if ( this->qmu.size() ){
|
||||
this->MomentumSpacePropagatorHwQ(prop_k,in_k,mass,twist,this->qmu);
|
||||
} else {
|
||||
this->MomentumSpacePropagatorHw(prop_k,in_k,mass,twist);
|
||||
}
|
||||
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
|
||||
|
||||
//phase for boundary condition
|
||||
out = out * exp(ci*ph);
|
||||
};
|
||||
|
||||
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
|
||||
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
|
||||
std::vector<Complex> boundary;
|
||||
for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions
|
||||
FreePropagator(in,out,mass,boundary,twist);
|
||||
};
|
||||
|
||||
void set_qmu(std::vector<RealD> _qmu) { qmu=_qmu; assert(qmu.size()==Nd);};
|
||||
void addQmu(const FermionField &in, FermionField &out, int dag);
|
||||
|
||||
protected:
|
||||
|
||||
virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale);
|
||||
virtual void SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata);
|
||||
|
||||
std::vector<RealD> qmu;
|
||||
|
||||
// Part frac
|
||||
RealD mass;
|
||||
RealD dw_diag;
|
||||
|
||||
@@ -141,9 +141,9 @@ public:
|
||||
Udag = Udag *phases;
|
||||
|
||||
InsertGaugeField(Uds,U,mu);
|
||||
InsertGaugeField(Uds,Udag,mu+4);
|
||||
InsertGaugeField(Uds,Udag,mu+Nd);
|
||||
// PokeIndex<LorentzIndex>(Uds, U, mu);
|
||||
// PokeIndex<LorentzIndex>(Uds, Udag, mu + 4);
|
||||
// PokeIndex<LorentzIndex>(Uds, Udag, mu + Nd);
|
||||
|
||||
// 3 hop based on thin links. Crazy huh ?
|
||||
U = PeekIndex<LorentzIndex>(Uthin, mu);
|
||||
@@ -156,7 +156,7 @@ public:
|
||||
UUUdag = UUUdag *phases;
|
||||
|
||||
InsertGaugeField(UUUds,UUU,mu);
|
||||
InsertGaugeField(UUUds,UUUdag,mu+4);
|
||||
InsertGaugeField(UUUds,UUUdag,mu+Nd);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
175
Grid/qcd/action/fermion/TwoSpinWilsonFermion3plus1D.h
Normal file
175
Grid/qcd/action/fermion/TwoSpinWilsonFermion3plus1D.h
Normal file
@@ -0,0 +1,175 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/TwoSpinWilsonFermion3plus1D.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma one
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
class TwoSpinWilsonFermion3plus1DStatic {
|
||||
public:
|
||||
// S-direction is INNERMOST and takes no part in the parity.
|
||||
static const std::vector<int> directions;
|
||||
static const std::vector<int> displacements;
|
||||
static constexpr int npoint = 6;
|
||||
static std::vector<int> MakeDirections(void);
|
||||
static std::vector<int> MakeDisplacements(void);
|
||||
};
|
||||
|
||||
template<class Impl>
|
||||
class TwoSpinWilsonFermion3plus1D : public TwoSpinWilsonKernels<Impl>, public TwoSpinWilsonFermion3plus1DStatic
|
||||
{
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
typedef TwoSpinWilsonKernels<Impl> Kernels;
|
||||
|
||||
FermionField _tmp;
|
||||
FermionField &tmp(void) { return _tmp; }
|
||||
|
||||
int Dirichlet;
|
||||
Coordinate Block;
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// Implement the abstract base
|
||||
///////////////////////////////////////////////////////////////
|
||||
GridBase *GaugeGrid(void) { return _ThreeDimGrid ;}
|
||||
GridBase *GaugeRedBlackGrid(void) { return _ThreeDimRedBlackGrid ;}
|
||||
GridBase *FermionGrid(void) { return _FourDimGrid;}
|
||||
GridBase *FermionRedBlackGrid(void) { return _FourDimRedBlackGrid;}
|
||||
|
||||
// full checkerboard operations; leave unimplemented as abstract for now
|
||||
virtual void M (const FermionField &in, FermionField &out){assert(0);};
|
||||
virtual void Mdag (const FermionField &in, FermionField &out){assert(0);};
|
||||
|
||||
// half checkerboard operations; leave unimplemented as abstract for now
|
||||
virtual void Meooe (const FermionField &in, FermionField &out);
|
||||
virtual void Mooee (const FermionField &in, FermionField &out);
|
||||
virtual void MooeeInv (const FermionField &in, FermionField &out);
|
||||
|
||||
virtual void MeooeDag (const FermionField &in, FermionField &out);
|
||||
virtual void MooeeDag (const FermionField &in, FermionField &out);
|
||||
virtual void MooeeInvDag (const FermionField &in, FermionField &out);
|
||||
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp){assert(0);}; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
|
||||
virtual void MdirAll(const FermionField &in, std::vector<FermionField> &out){assert(0);}; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
|
||||
|
||||
// These can be overridden by fancy 5d chiral action
|
||||
virtual void DhopDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
|
||||
virtual void DhopDerivEO(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
|
||||
virtual void DhopDerivOE(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
|
||||
|
||||
// void MomentumSpacePropagatorHt_5d(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
|
||||
void MomentumSpacePropagatorHt(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
|
||||
void MomentumSpacePropagatorHw(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
|
||||
|
||||
// Implement hopping term non-hermitian hopping term; half cb or both
|
||||
// Implement s-diagonal DW
|
||||
void DW (const FermionField &in, FermionField &out,int dag);
|
||||
void Dhop (const FermionField &in, FermionField &out,int dag);
|
||||
void DhopOE(const FermionField &in, FermionField &out,int dag);
|
||||
void DhopEO(const FermionField &in, FermionField &out,int dag);
|
||||
|
||||
void DhopComms (const FermionField &in, FermionField &out);
|
||||
void DhopCalc (const FermionField &in, FermionField &out,uint64_t *ids);
|
||||
|
||||
// add a DhopComm
|
||||
// -- suboptimal interface will presently trigger multiple comms.
|
||||
void DhopDir(const FermionField &in, FermionField &out,int dir,int disp);
|
||||
void DhopDirAll(const FermionField &in,std::vector<FermionField> &out);
|
||||
void DhopDirComms(const FermionField &in);
|
||||
void DhopDirCalc(const FermionField &in, FermionField &out,int point);
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// New methods added
|
||||
///////////////////////////////////////////////////////////////
|
||||
void DerivInternal(StencilImpl & st,
|
||||
DoubledGaugeField & U,
|
||||
GaugeField &mat,
|
||||
const FermionField &A,
|
||||
const FermionField &B,
|
||||
int dag);
|
||||
|
||||
void DhopInternal(StencilImpl & st,
|
||||
DoubledGaugeField &U,
|
||||
const FermionField &in,
|
||||
FermionField &out,
|
||||
int dag);
|
||||
|
||||
void DhopInternalOverlappedComms(StencilImpl & st,
|
||||
DoubledGaugeField &U,
|
||||
const FermionField &in,
|
||||
FermionField &out,
|
||||
int dag);
|
||||
|
||||
void DhopInternalSerialComms(StencilImpl & st,
|
||||
DoubledGaugeField &U,
|
||||
const FermionField &in,
|
||||
FermionField &out,
|
||||
int dag);
|
||||
|
||||
// Constructors
|
||||
TwoSpinWilsonFermion3plus1D(GaugeField &_Umu,
|
||||
GridCartesian &FourDimGrid,
|
||||
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||
GridCartesian &ThreeDimGrid,
|
||||
GridRedBlackCartesian &ThreeDimRedBlackGrid,
|
||||
double _M5,const ImplParams &p= ImplParams());
|
||||
|
||||
virtual void DirichletBlock(const Coordinate & block)
|
||||
{
|
||||
}
|
||||
|
||||
// DoubleStore
|
||||
void ImportGauge(const GaugeField &_Umu);
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// Data members require to support the functionality
|
||||
///////////////////////////////////////////////////////////////
|
||||
public:
|
||||
|
||||
// Add these to the support from Wilson
|
||||
GridBase *_ThreeDimGrid;
|
||||
GridBase *_ThreeDimRedBlackGrid;
|
||||
GridBase *_FourDimGrid;
|
||||
GridBase *_FourDimRedBlackGrid;
|
||||
|
||||
double M5;
|
||||
int Ls;
|
||||
|
||||
//Defines the stencils for even and odd
|
||||
StencilImpl Stencil;
|
||||
StencilImpl StencilEven;
|
||||
StencilImpl StencilOdd;
|
||||
|
||||
// Copy of the gauge field , with even and odd subsets
|
||||
DoubledGaugeField Umu;
|
||||
DoubledGaugeField UmuEven;
|
||||
DoubledGaugeField UmuOdd;
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
222
Grid/qcd/action/fermion/TwoSpinWilsonImpl.h
Normal file
222
Grid/qcd/action/fermion/TwoSpinWilsonImpl.h
Normal file
@@ -0,0 +1,222 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/FermionOperatorImpl.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Single flavour four spinors with colour index
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
template <class S, class Representation = FundamentalRepresentation,class Options = CoeffReal >
|
||||
class TwoSpinWilsonImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation::Dimension > > {
|
||||
public:
|
||||
|
||||
static const int Dimension = Representation::Dimension;
|
||||
static const bool isFundamental = Representation::isFundamental;
|
||||
|
||||
typedef PeriodicGaugeImpl<GaugeImplTypes<S, Dimension > > Gimpl;
|
||||
INHERIT_GIMPL_TYPES(Gimpl);
|
||||
|
||||
//Necessary?
|
||||
constexpr bool is_fundamental() const{return Dimension == Nc ? 1 : 0;}
|
||||
|
||||
typedef typename Options::_Coeff_t Coeff_t;
|
||||
|
||||
template <typename vtype> using iImplSpinor = iScalar<iVector<iVector<vtype, Dimension>, Nhs> >;
|
||||
template <typename vtype> using iImplPropagator = iScalar<iMatrix<iMatrix<vtype, Dimension>, Nhs> >;
|
||||
template <typename vtype> using iImplHalfSpinor = iScalar<iVector<iVector<vtype, Dimension>, Nhs> >;
|
||||
template <typename vtype> using iImplHalfCommSpinor = iScalar<iVector<iVector<vtype, Dimension>, Nhs> >;
|
||||
template <typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Dimension> >, Nds>;
|
||||
|
||||
typedef iImplSpinor<Simd> SiteSpinor;
|
||||
typedef iImplPropagator<Simd> SitePropagator;
|
||||
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
|
||||
typedef iImplHalfCommSpinor<Simd> SiteHalfCommSpinor;
|
||||
typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField;
|
||||
|
||||
typedef Lattice<SiteSpinor> FermionField;
|
||||
typedef Lattice<SitePropagator> PropagatorField;
|
||||
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
|
||||
|
||||
typedef SimpleCompressor<SiteSpinor> Compressor;
|
||||
typedef WilsonImplParams ImplParams;
|
||||
typedef CartesianStencil<SiteSpinor, SiteSpinor, ImplParams> StencilImpl;
|
||||
typedef const typename StencilImpl::View_type StencilView;
|
||||
|
||||
ImplParams Params;
|
||||
|
||||
TwoSpinWilsonImpl(const ImplParams &p = ImplParams()) : Params(p){
|
||||
};
|
||||
|
||||
template<class _Spinor>
|
||||
static accelerator_inline void multLink(_Spinor &phi,
|
||||
const SiteDoubledGaugeField &U,
|
||||
const _Spinor &chi,
|
||||
int mu)
|
||||
{
|
||||
auto UU = coalescedRead(U(mu));
|
||||
mult(&phi(), &UU, &chi());
|
||||
}
|
||||
template<class _Spinor>
|
||||
static accelerator_inline void multLink(_Spinor &phi,
|
||||
const SiteDoubledGaugeField &U,
|
||||
const _Spinor &chi,
|
||||
int mu,
|
||||
StencilEntry *SE,
|
||||
StencilView &St)
|
||||
{
|
||||
multLink(phi,U,chi,mu);
|
||||
}
|
||||
|
||||
template<class _SpinorField>
|
||||
inline void multLinkField(_SpinorField & out,
|
||||
const DoubledGaugeField &Umu,
|
||||
const _SpinorField & phi,
|
||||
int mu)
|
||||
{
|
||||
const int Nsimd = SiteHalfSpinor::Nsimd();
|
||||
autoView( out_v, out, AcceleratorWrite);
|
||||
autoView( phi_v, phi, AcceleratorRead);
|
||||
autoView( Umu_v, Umu, AcceleratorRead);
|
||||
typedef decltype(coalescedRead(out_v[0])) calcSpinor;
|
||||
accelerator_for(sss,out.Grid()->oSites(),Nsimd,{
|
||||
calcSpinor tmp;
|
||||
multLink(tmp,Umu_v[sss],phi_v(sss),mu);
|
||||
coalescedWrite(out_v[sss],tmp);
|
||||
});
|
||||
}
|
||||
|
||||
template <class ref>
|
||||
static accelerator_inline void loadLinkElement(Simd ®, ref &memory)
|
||||
{
|
||||
reg = memory;
|
||||
}
|
||||
|
||||
inline void DoubleStore(GridBase *GaugeGrid,
|
||||
DoubledGaugeField &Uds,
|
||||
const GaugeField &Umu)
|
||||
{
|
||||
typedef typename Simd::scalar_type scalar_type;
|
||||
|
||||
conformable(Uds.Grid(), GaugeGrid);
|
||||
conformable(Umu.Grid(), GaugeGrid);
|
||||
|
||||
GaugeLinkField U(GaugeGrid);
|
||||
GaugeLinkField tmp(GaugeGrid);
|
||||
|
||||
Lattice<iScalar<vInteger> > coor(GaugeGrid);
|
||||
////////////////////////////////////////////////////
|
||||
// apply any boundary phase or twists
|
||||
////////////////////////////////////////////////////
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
|
||||
////////// boundary phase /////////////
|
||||
auto pha = Params.boundary_phases[mu];
|
||||
scalar_type phase( real(pha),imag(pha) );
|
||||
|
||||
int L = GaugeGrid->GlobalDimensions()[mu];
|
||||
int Lmu = L - 1;
|
||||
|
||||
LatticeCoordinate(coor, mu);
|
||||
|
||||
U = PeekIndex<LorentzIndex>(Umu, mu);
|
||||
|
||||
// apply any twists
|
||||
RealD theta = Params.twist_n_2pi_L[mu] * 2*M_PI / L;
|
||||
if ( theta != 0.0) {
|
||||
scalar_type twphase(::cos(theta),::sin(theta));
|
||||
U = twphase*U;
|
||||
std::cout << GridLogMessage << " Twist ["<<mu<<"] "<< Params.twist_n_2pi_L[mu]<< " phase"<<phase <<std::endl;
|
||||
}
|
||||
|
||||
tmp = where(coor == Lmu, phase * U, U);
|
||||
PokeIndex<LorentzIndex>(Uds, tmp, mu);
|
||||
|
||||
U = adj(Cshift(U, mu, -1));
|
||||
U = where(coor == 0, conjugate(phase) * U, U);
|
||||
PokeIndex<LorentzIndex>(Uds, U, mu + Nd);
|
||||
}
|
||||
}
|
||||
|
||||
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A,int mu){
|
||||
GaugeLinkField link(mat.Grid());
|
||||
link = TraceIndex<SpinIndex>(outerProduct(Btilde,A));
|
||||
PokeIndex<LorentzIndex>(mat,link,mu);
|
||||
}
|
||||
|
||||
inline void outerProductImpl(PropagatorField &mat, const FermionField &B, const FermionField &A){
|
||||
mat = outerProduct(B,A);
|
||||
}
|
||||
|
||||
inline void TraceSpinImpl(GaugeLinkField &mat, PropagatorField&P) {
|
||||
mat = TraceIndex<SpinIndex>(P);
|
||||
}
|
||||
|
||||
inline void extractLinkField(std::vector<GaugeLinkField> &mat, DoubledGaugeField &Uds)
|
||||
{
|
||||
for (int mu = 0; mu < Nd; mu++)
|
||||
mat[mu] = PeekIndex<LorentzIndex>(Uds, mu);
|
||||
}
|
||||
|
||||
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField Ã,int mu)
|
||||
{
|
||||
int Ls=Btilde.Grid()->_fdimensions[0];
|
||||
autoView( mat_v , mat, AcceleratorWrite);
|
||||
{
|
||||
const int Nsimd = SiteSpinor::Nsimd();
|
||||
autoView( Btilde_v , Btilde, AcceleratorRead);
|
||||
autoView( Atilde_v , Atilde, AcceleratorRead);
|
||||
accelerator_for(sss,mat.Grid()->oSites(),Nsimd,{
|
||||
int sU=sss;
|
||||
typedef decltype(coalescedRead(mat_v[sU](mu)() )) ColorMatrixType;
|
||||
ColorMatrixType sum;
|
||||
zeroit(sum);
|
||||
for(int s=0;s<Ls;s++){
|
||||
int sF = s+Ls*sU;
|
||||
for(int spn=0;spn<Ns;spn++){ //sum over spin
|
||||
auto bb = coalescedRead(Btilde_v[sF]()(spn) ); //color vector
|
||||
auto aa = coalescedRead(Atilde_v[sF]()(spn) );
|
||||
auto op = outerProduct(bb,aa);
|
||||
sum = sum + op;
|
||||
}
|
||||
}
|
||||
coalescedWrite(mat_v[sU](mu)(), sum);
|
||||
});
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
typedef TwoSpinWilsonImpl<vComplex, FundamentalRepresentation, CoeffReal > TwoSpinWilsonImplR; // Real.. whichever prec
|
||||
typedef TwoSpinWilsonImpl<vComplexF, FundamentalRepresentation, CoeffReal > TwoSpinWilsonImplF; // Float
|
||||
typedef TwoSpinWilsonImpl<vComplexD, FundamentalRepresentation, CoeffReal > TwoSpinWilsonImplD; // Double
|
||||
typedef TwoSpinWilsonImpl<vComplexD2, FundamentalRepresentation, CoeffReal > TwoSpinWilsonImplD2; // Double
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
84
Grid/qcd/action/fermion/TwoSpinWilsonKernels.h
Normal file
84
Grid/qcd/action/fermion/TwoSpinWilsonKernels.h
Normal file
@@ -0,0 +1,84 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/WilsonKernels.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Helper routines that implement Wilson stencil for a single site.
|
||||
// Common to both the WilsonFermion and WilsonFermion5D
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<class Impl> class TwoSpinWilsonKernels : public FermionOperator<Impl> {
|
||||
public:
|
||||
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
typedef FermionOperator<Impl> Base;
|
||||
typedef AcceleratorVector<int,STENCIL_MAX> StencilVector;
|
||||
public:
|
||||
|
||||
static void DhopKernel(StencilImpl &st, DoubledGaugeField &U, SiteSpinor * buf,
|
||||
int Ls, int Nsite, const FermionField &in, FermionField &out,
|
||||
int interior=1,int exterior=1) ;
|
||||
|
||||
static void DhopKernel(StencilImpl &st, DoubledGaugeField &U, SiteSpinor * buf,
|
||||
int Ls, int Nsite, const FermionField &in, FermionField &out,
|
||||
uint64_t *ids);
|
||||
|
||||
static void DhopDagKernel(StencilImpl &st, DoubledGaugeField &U, SiteSpinor * buf,
|
||||
int Ls, int Nsite, const FermionField &in, FermionField &out,
|
||||
int interior=1,int exterior=1) ;
|
||||
|
||||
static void DhopDirAll( StencilImpl &st, DoubledGaugeField &U,SiteSpinor *buf, int Ls,
|
||||
int Nsite, const FermionField &in, std::vector<FermionField> &out) ;
|
||||
|
||||
static void DhopDirKernel(StencilImpl &st, DoubledGaugeField &U,SiteSpinor * buf,
|
||||
int Ls, int Nsite, const FermionField &in, FermionField &out, int dirdisp, int gamma);
|
||||
|
||||
private:
|
||||
|
||||
static accelerator_inline void DhopDirK(StencilView &st, DoubledGaugeFieldView &U,SiteSpinor * buf,
|
||||
int sF, int sU, const FermionFieldView &in, FermionFieldView &out, int dirdisp, int gamma);
|
||||
|
||||
static accelerator_inline void DhopDirXp(StencilView &st,DoubledGaugeFieldView &U,SiteSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
|
||||
static accelerator_inline void DhopDirYp(StencilView &st,DoubledGaugeFieldView &U,SiteSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
|
||||
static accelerator_inline void DhopDirZp(StencilView &st,DoubledGaugeFieldView &U,SiteSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
|
||||
static accelerator_inline void DhopDirXm(StencilView &st,DoubledGaugeFieldView &U,SiteSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
|
||||
static accelerator_inline void DhopDirYm(StencilView &st,DoubledGaugeFieldView &U,SiteSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
|
||||
static accelerator_inline void DhopDirZm(StencilView &st,DoubledGaugeFieldView &U,SiteSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
|
||||
|
||||
public:
|
||||
TwoSpinWilsonKernels(const ImplParams &p = ImplParams()) : Base(p){};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
||||
@@ -414,29 +414,6 @@ public:
|
||||
// surface_list.resize(0);
|
||||
this->same_node.resize(npoints);
|
||||
};
|
||||
|
||||
/*
|
||||
void BuildSurfaceList(int Ls,int vol4){
|
||||
|
||||
// find same node for SHM
|
||||
// Here we know the distance is 1 for WilsonStencil
|
||||
for(int point=0;point<this->_npoints;point++){
|
||||
this->same_node[point] = this->SameNode(point);
|
||||
}
|
||||
|
||||
for(int site = 0 ;site< vol4;site++){
|
||||
int local = 1;
|
||||
for(int point=0;point<this->_npoints;point++){
|
||||
if( (!this->GetNodeLocal(site*Ls,point)) && (!this->same_node[point]) ){
|
||||
local = 0;
|
||||
}
|
||||
}
|
||||
if(local == 0) {
|
||||
surface_list.push_back(site);
|
||||
}
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
template < class compressor>
|
||||
void HaloExchangeOpt(const Lattice<vobj> &source,compressor &compress)
|
||||
@@ -507,6 +484,11 @@ public:
|
||||
this->face_table_computed=1;
|
||||
assert(this->u_comm_offset==this->_unified_buffer_size);
|
||||
accelerator_barrier();
|
||||
#ifdef NVLINK_GET
|
||||
this->_grid->StencilBarrier(); // He can now get mu local gather, I can get his
|
||||
// Synch shared memory on a single nodes; could use an asynchronous barrier here and defer check
|
||||
// Or issue barrier AFTER the DMA is running
|
||||
#endif
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
@@ -38,6 +38,8 @@ public:
|
||||
static int MortonOrder;
|
||||
static const std::vector<int> directions;
|
||||
static const std::vector<int> displacements;
|
||||
static std::vector<int> MakeDirections(void);
|
||||
static std::vector<int> MakeDisplacements(void);
|
||||
static const int npoint = 8;
|
||||
};
|
||||
|
||||
|
||||
@@ -62,6 +62,8 @@ public:
|
||||
static const std::vector<int> directions;
|
||||
static const std::vector<int> displacements;
|
||||
static constexpr int npoint = 8;
|
||||
static std::vector<int> MakeDirections(void);
|
||||
static std::vector<int> MakeDisplacements(void);
|
||||
};
|
||||
|
||||
template<class Impl>
|
||||
@@ -91,13 +93,13 @@ public:
|
||||
virtual void Mdag (const FermionField &in, FermionField &out){assert(0);};
|
||||
|
||||
// half checkerboard operations; leave unimplemented as abstract for now
|
||||
virtual void Meooe (const FermionField &in, FermionField &out){assert(0);};
|
||||
virtual void Mooee (const FermionField &in, FermionField &out){assert(0);};
|
||||
virtual void MooeeInv (const FermionField &in, FermionField &out){assert(0);};
|
||||
virtual void Meooe (const FermionField &in, FermionField &out);
|
||||
virtual void Mooee (const FermionField &in, FermionField &out);
|
||||
virtual void MooeeInv (const FermionField &in, FermionField &out);
|
||||
|
||||
virtual void MeooeDag (const FermionField &in, FermionField &out){assert(0);};
|
||||
virtual void MooeeDag (const FermionField &in, FermionField &out){assert(0);};
|
||||
virtual void MooeeInvDag (const FermionField &in, FermionField &out){assert(0);};
|
||||
virtual void MeooeDag (const FermionField &in, FermionField &out);
|
||||
virtual void MooeeDag (const FermionField &in, FermionField &out);
|
||||
virtual void MooeeInvDag (const FermionField &in, FermionField &out);
|
||||
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp){assert(0);}; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
|
||||
virtual void MdirAll(const FermionField &in, std::vector<FermionField> &out){assert(0);}; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
|
||||
|
||||
@@ -109,6 +111,8 @@ public:
|
||||
void MomentumSpacePropagatorHt_5d(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
|
||||
void MomentumSpacePropagatorHt(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
|
||||
void MomentumSpacePropagatorHw(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
|
||||
void MomentumSpacePropagatorHwQ(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist,
|
||||
std::vector<double> qmu) ;
|
||||
|
||||
// Implement hopping term non-hermitian hopping term; half cb or both
|
||||
// Implement s-diagonal DW
|
||||
@@ -117,6 +121,9 @@ public:
|
||||
void DhopOE(const FermionField &in, FermionField &out,int dag);
|
||||
void DhopEO(const FermionField &in, FermionField &out,int dag);
|
||||
|
||||
void DhopComms (const FermionField &in, FermionField &out);
|
||||
void DhopCalc (const FermionField &in, FermionField &out,uint64_t *ids);
|
||||
|
||||
// add a DhopComm
|
||||
// -- suboptimal interface will presently trigger multiple comms.
|
||||
void DhopDir(const FermionField &in, FermionField &out,int dir,int disp);
|
||||
|
||||
@@ -166,7 +166,7 @@ public:
|
||||
|
||||
U = adj(Cshift(U, mu, -1));
|
||||
U = where(coor == 0, conjugate(phase) * U, U);
|
||||
PokeIndex<LorentzIndex>(Uds, U, mu + 4);
|
||||
PokeIndex<LorentzIndex>(Uds, U, mu + Nd);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -57,6 +57,10 @@ public:
|
||||
int Ls, int Nsite, const FermionField &in, FermionField &out,
|
||||
int interior=1,int exterior=1) ;
|
||||
|
||||
static void DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
|
||||
int Ls, int Nsite, const FermionField &in, FermionField &out,
|
||||
uint64_t *ids);
|
||||
|
||||
static void DhopDagKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
|
||||
int Ls, int Nsite, const FermionField &in, FermionField &out,
|
||||
int interior=1,int exterior=1) ;
|
||||
|
||||
@@ -56,7 +56,7 @@ class WilsonTMFermion5D : public WilsonFermion5D<Impl>
|
||||
Frbgrid,
|
||||
Ugrid,
|
||||
Urbgrid,
|
||||
4.0,p)
|
||||
Nd*1.0,p)
|
||||
|
||||
{
|
||||
update(_mass,_mu);
|
||||
@@ -83,7 +83,7 @@ class WilsonTMFermion5D : public WilsonFermion5D<Impl>
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
//axpibg5x(out,in,a,b); // out = a*in + b*i*G5*in
|
||||
for (int s=0;s<(int)this->mass.size();s++) {
|
||||
ComplexD a = 4.0+this->mass[s];
|
||||
ComplexD a = Nd*1.0+this->mass[s];
|
||||
ComplexD b(0.0,this->mu[s]);
|
||||
axpbg5y_ssp(out,a,in,b,in,s,s);
|
||||
}
|
||||
@@ -92,7 +92,7 @@ class WilsonTMFermion5D : public WilsonFermion5D<Impl>
|
||||
virtual void MooeeDag(const FermionField &in, FermionField &out) {
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
for (int s=0;s<(int)this->mass.size();s++) {
|
||||
ComplexD a = 4.0+this->mass[s];
|
||||
ComplexD a = Nd*1.0+this->mass[s];
|
||||
ComplexD b(0.0,-this->mu[s]);
|
||||
axpbg5y_ssp(out,a,in,b,in,s,s);
|
||||
}
|
||||
@@ -101,7 +101,7 @@ class WilsonTMFermion5D : public WilsonFermion5D<Impl>
|
||||
for (int s=0;s<(int)this->mass.size();s++) {
|
||||
RealD m = this->mass[s];
|
||||
RealD tm = this->mu[s];
|
||||
RealD mtil = 4.0+this->mass[s];
|
||||
RealD mtil = Nd*1.0+this->mass[s];
|
||||
RealD sq = mtil*mtil+tm*tm;
|
||||
ComplexD a = mtil/sq;
|
||||
ComplexD b(0.0, -tm /sq);
|
||||
@@ -112,7 +112,7 @@ class WilsonTMFermion5D : public WilsonFermion5D<Impl>
|
||||
for (int s=0;s<(int)this->mass.size();s++) {
|
||||
RealD m = this->mass[s];
|
||||
RealD tm = this->mu[s];
|
||||
RealD mtil = 4.0+this->mass[s];
|
||||
RealD mtil = Nd*1.0+this->mass[s];
|
||||
RealD sq = mtil*mtil+tm*tm;
|
||||
ComplexD a = mtil/sq;
|
||||
ComplexD b(0.0,tm /sq);
|
||||
@@ -126,7 +126,7 @@ class WilsonTMFermion5D : public WilsonFermion5D<Impl>
|
||||
this->Dhop(in, out, DaggerNo);
|
||||
FermionField tmp(out.Grid());
|
||||
for (int s=0;s<(int)this->mass.size();s++) {
|
||||
ComplexD a = 4.0+this->mass[s];
|
||||
ComplexD a = Nd*1.0+this->mass[s];
|
||||
ComplexD b(0.0,this->mu[s]);
|
||||
axpbg5y_ssp(tmp,a,in,b,in,s,s);
|
||||
}
|
||||
|
||||
@@ -48,7 +48,8 @@ CayleyFermion5D<Impl>::CayleyFermion5D(GaugeField &_Umu,
|
||||
FourDimGrid,
|
||||
FourDimRedBlackGrid,_M5,p),
|
||||
mass_plus(_mass), mass_minus(_mass)
|
||||
{
|
||||
{
|
||||
// qmu defaults to zero size;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
@@ -270,6 +271,34 @@ void CayleyFermion5D<Impl>::MeooeDag5D (const FermionField &psi, FermionField
|
||||
M5Ddag(psi,psi,Din,lower,diag,upper);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CayleyFermion5D<Impl>::addQmu(const FermionField &psi,FermionField &chi, int dag)
|
||||
{
|
||||
if ( qmu.size() ) {
|
||||
|
||||
Gamma::Algebra Gmu [] = {
|
||||
Gamma::Algebra::GammaX,
|
||||
Gamma::Algebra::GammaY,
|
||||
Gamma::Algebra::GammaZ,
|
||||
Gamma::Algebra::GammaT
|
||||
};
|
||||
std::vector<ComplexD> coeff(Nd);
|
||||
ComplexD ci(0,1);
|
||||
|
||||
assert(qmu.size()==Nd);
|
||||
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
coeff[mu] = ci*qmu[mu];
|
||||
if ( dag ) coeff[mu] = conjugate(coeff[mu]);
|
||||
}
|
||||
|
||||
chi = chi + Gamma(Gmu[0])*psi*coeff[0];
|
||||
for(int mu=1;mu<Nd;mu++){
|
||||
chi = chi + Gamma(Gmu[mu])*psi*coeff[mu];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CayleyFermion5D<Impl>::M (const FermionField &psi, FermionField &chi)
|
||||
{
|
||||
@@ -277,8 +306,12 @@ void CayleyFermion5D<Impl>::M (const FermionField &psi, FermionField &chi)
|
||||
|
||||
// Assemble Din
|
||||
Meooe5D(psi,Din);
|
||||
|
||||
|
||||
this->DW(Din,chi,DaggerNo);
|
||||
|
||||
// add i q_mu gamma_mu here
|
||||
addQmu(Din,chi,DaggerNo);
|
||||
|
||||
// ((b D_W + D_w hop terms +1) on s-diag
|
||||
axpby(chi,1.0,1.0,chi,psi);
|
||||
|
||||
@@ -295,6 +328,9 @@ void CayleyFermion5D<Impl>::Mdag (const FermionField &psi, FermionField &chi)
|
||||
FermionField Din(psi.Grid());
|
||||
// Apply Dw
|
||||
this->DW(psi,Din,DaggerYes);
|
||||
|
||||
// add -i conj(q_mu) gamma_mu here ... if qmu is real, gammm_5 hermitian, otherwise not.
|
||||
addQmu(psi,Din,DaggerYes);
|
||||
|
||||
MeooeDag5D(Din,chi);
|
||||
|
||||
@@ -488,7 +524,7 @@ void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,std::vector<Co
|
||||
leem.resize(Ls);
|
||||
uee.resize(Ls);
|
||||
ueem.resize(Ls);
|
||||
|
||||
|
||||
for(int i=0;i<Ls;i++){
|
||||
|
||||
dee[i] = bee[i];
|
||||
@@ -529,6 +565,18 @@ void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,std::vector<Co
|
||||
dee[Ls-1] += delta_d;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////
|
||||
// Device buffers
|
||||
//////////////////////////////////////////
|
||||
d_diag.resize(Ls);
|
||||
d_upper.resize(Ls);
|
||||
d_lower.resize(Ls);
|
||||
|
||||
d_dee.resize(Ls);
|
||||
d_lee.resize(Ls);
|
||||
d_uee.resize(Ls);
|
||||
d_leem.resize(Ls);
|
||||
d_ueem.resize(Ls);
|
||||
// int inv=1;
|
||||
// this->MooeeInternalCompute(0,inv,MatpInv,MatmInv);
|
||||
// this->MooeeInternalCompute(1,inv,MatpInvDag,MatmInvDag);
|
||||
|
||||
@@ -57,9 +57,9 @@ CayleyFermion5D<Impl>::M5D(const FermionField &psi_i,
|
||||
|
||||
int Ls =this->Ls;
|
||||
|
||||
static deviceVector<Coeff_t> d_diag(Ls) ; acceleratorCopyToDevice(&diag[0] ,&d_diag[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_upper(Ls); acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_lower(Ls); acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&diag[0] ,&this->d_diag[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&upper[0],&this->d_upper[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&lower[0],&this->d_lower[0],Ls*sizeof(Coeff_t));
|
||||
|
||||
auto pdiag = &d_diag[0];
|
||||
auto pupper = &d_upper[0];
|
||||
@@ -99,9 +99,9 @@ CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i,
|
||||
|
||||
int Ls=this->Ls;
|
||||
|
||||
static deviceVector<Coeff_t> d_diag(Ls) ; acceleratorCopyToDevice(&diag[0] ,&d_diag[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_upper(Ls); acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_lower(Ls); acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&diag[0] ,&this->d_diag[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&upper[0],&this->d_upper[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&lower[0],&this->d_lower[0],Ls*sizeof(Coeff_t));
|
||||
|
||||
auto pdiag = &d_diag[0];
|
||||
auto pupper = &d_upper[0];
|
||||
@@ -134,11 +134,11 @@ CayleyFermion5D<Impl>::MooeeInv (const FermionField &psi_i, FermionField &chi
|
||||
|
||||
int Ls=this->Ls;
|
||||
|
||||
static deviceVector<Coeff_t> d_lee(Ls); acceleratorCopyToDevice(&lee[0],&d_lee[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_dee(Ls); acceleratorCopyToDevice(&dee[0],&d_dee[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_uee(Ls); acceleratorCopyToDevice(&uee[0],&d_uee[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_leem(Ls); acceleratorCopyToDevice(&leem[0],&d_leem[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_ueem(Ls); acceleratorCopyToDevice(&ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&lee[0],&d_lee[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&dee[0],&d_dee[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&uee[0],&d_uee[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&leem[0],&d_leem[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t));
|
||||
|
||||
auto plee = & d_lee [0];
|
||||
auto pdee = & d_dee [0];
|
||||
@@ -196,11 +196,11 @@ CayleyFermion5D<Impl>::MooeeInvDag (const FermionField &psi_i, FermionField &chi
|
||||
autoView(psi , psi_i,AcceleratorRead);
|
||||
autoView(chi , chi_i,AcceleratorWrite);
|
||||
|
||||
static deviceVector<Coeff_t> d_lee(Ls); acceleratorCopyToDevice(&lee[0],&d_lee[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_dee(Ls); acceleratorCopyToDevice(&dee[0],&d_dee[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_uee(Ls); acceleratorCopyToDevice(&uee[0],&d_uee[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_leem(Ls); acceleratorCopyToDevice(&leem[0],&d_leem[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_ueem(Ls); acceleratorCopyToDevice(&ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&lee[0],&d_lee[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&dee[0],&d_dee[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&uee[0],&d_uee[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&leem[0],&d_leem[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t));
|
||||
|
||||
auto plee = & d_lee [0];
|
||||
auto pdee = & d_dee [0];
|
||||
|
||||
@@ -0,0 +1,376 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/CompactWilsonCloverFermion5DImplementation.h
|
||||
|
||||
Copyright (C) 2017 - 2025
|
||||
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
|
||||
Author: Christoph Lehner <christoph@lhnr.de>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/qcd/spin/Dirac.h>
|
||||
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion5D.h>
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
template<class Impl, class CloverHelpers>
|
||||
CompactWilsonCloverFermion5D<Impl, CloverHelpers>::CompactWilsonCloverFermion5D(GaugeField& _Umu,
|
||||
GridCartesian &FiveDimGrid,
|
||||
GridRedBlackCartesian &FiveDimRedBlackGrid,
|
||||
GridCartesian &FourDimGrid,
|
||||
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||
const RealD _mass,
|
||||
const RealD _csw_r,
|
||||
const RealD _csw_t,
|
||||
const RealD _cF,
|
||||
const ImplParams& impl_p)
|
||||
: WilsonBase(_Umu, FiveDimGrid, FiveDimRedBlackGrid, FourDimGrid, FourDimRedBlackGrid, _mass, impl_p)
|
||||
, csw_r(_csw_r)
|
||||
, csw_t(_csw_t)
|
||||
, cF(_cF)
|
||||
, fixedBoundaries(impl_p.boundary_phases[Nd-1] == 0.0)
|
||||
, Diagonal(&FourDimGrid), Triangle(&FourDimGrid)
|
||||
, DiagonalEven(&FourDimRedBlackGrid), TriangleEven(&FourDimRedBlackGrid)
|
||||
, DiagonalOdd(&FourDimRedBlackGrid), TriangleOdd(&FourDimRedBlackGrid)
|
||||
, DiagonalInv(&FourDimGrid), TriangleInv(&FourDimGrid)
|
||||
, DiagonalInvEven(&FourDimRedBlackGrid), TriangleInvEven(&FourDimRedBlackGrid)
|
||||
, DiagonalInvOdd(&FourDimRedBlackGrid), TriangleInvOdd(&FourDimRedBlackGrid)
|
||||
, Tmp(&FiveDimGrid)
|
||||
, BoundaryMask(&FiveDimGrid)
|
||||
, BoundaryMaskEven(&FiveDimRedBlackGrid), BoundaryMaskOdd(&FiveDimRedBlackGrid)
|
||||
{
|
||||
assert(Nd == 4 && Nc == 3 && Ns == 4 && Impl::Dimension == 3);
|
||||
|
||||
csw_r *= 0.5;
|
||||
csw_t *= 0.5;
|
||||
//if (clover_anisotropy.isAnisotropic)
|
||||
// csw_r /= clover_anisotropy.xi_0;
|
||||
|
||||
ImportGauge(_Umu);
|
||||
if (fixedBoundaries) {
|
||||
this->BoundaryMaskEven.Checkerboard() = Even;
|
||||
this->BoundaryMaskOdd.Checkerboard() = Odd;
|
||||
CompactHelpers::SetupMasks(this->BoundaryMask, this->BoundaryMaskEven, this->BoundaryMaskOdd);
|
||||
}
|
||||
}
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::Dhop(const FermionField& in, FermionField& out, int dag) {
|
||||
WilsonBase::Dhop(in, out, dag);
|
||||
if(fixedBoundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::DhopOE(const FermionField& in, FermionField& out, int dag) {
|
||||
WilsonBase::DhopOE(in, out, dag);
|
||||
if(fixedBoundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::DhopEO(const FermionField& in, FermionField& out, int dag) {
|
||||
WilsonBase::DhopEO(in, out, dag);
|
||||
if(fixedBoundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::DhopDir(const FermionField& in, FermionField& out, int dir, int disp) {
|
||||
WilsonBase::DhopDir(in, out, dir, disp);
|
||||
if(this->fixedBoundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::DhopDirAll(const FermionField& in, std::vector<FermionField>& out) {
|
||||
WilsonBase::DhopDirAll(in, out);
|
||||
if(this->fixedBoundaries) {
|
||||
for(auto& o : out) ApplyBoundaryMask(o);
|
||||
}
|
||||
}
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::M(const FermionField& in, FermionField& out) {
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
WilsonBase::Dhop(in, out, DaggerNo); // call base to save applying bc
|
||||
Mooee(in, Tmp);
|
||||
axpy(out, 1.0, out, Tmp);
|
||||
if(fixedBoundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::Mdag(const FermionField& in, FermionField& out) {
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
WilsonBase::Dhop(in, out, DaggerYes); // call base to save applying bc
|
||||
MooeeDag(in, Tmp);
|
||||
axpy(out, 1.0, out, Tmp);
|
||||
if(fixedBoundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::Meooe(const FermionField& in, FermionField& out) {
|
||||
WilsonBase::Meooe(in, out);
|
||||
if(fixedBoundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MeooeDag(const FermionField& in, FermionField& out) {
|
||||
WilsonBase::MeooeDag(in, out);
|
||||
if(fixedBoundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::Mooee(const FermionField& in, FermionField& out) {
|
||||
if(in.Grid()->_isCheckerBoarded) {
|
||||
if(in.Checkerboard() == Odd) {
|
||||
MooeeInternal(in, out, DiagonalOdd, TriangleOdd);
|
||||
} else {
|
||||
MooeeInternal(in, out, DiagonalEven, TriangleEven);
|
||||
}
|
||||
} else {
|
||||
MooeeInternal(in, out, Diagonal, Triangle);
|
||||
}
|
||||
if(fixedBoundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MooeeDag(const FermionField& in, FermionField& out) {
|
||||
Mooee(in, out); // blocks are hermitian
|
||||
}
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MooeeInv(const FermionField& in, FermionField& out) {
|
||||
if(in.Grid()->_isCheckerBoarded) {
|
||||
if(in.Checkerboard() == Odd) {
|
||||
MooeeInternal(in, out, DiagonalInvOdd, TriangleInvOdd);
|
||||
} else {
|
||||
MooeeInternal(in, out, DiagonalInvEven, TriangleInvEven);
|
||||
}
|
||||
} else {
|
||||
MooeeInternal(in, out, DiagonalInv, TriangleInv);
|
||||
}
|
||||
if(fixedBoundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MooeeInvDag(const FermionField& in, FermionField& out) {
|
||||
MooeeInv(in, out); // blocks are hermitian
|
||||
}
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::Mdir(const FermionField& in, FermionField& out, int dir, int disp) {
|
||||
DhopDir(in, out, dir, disp);
|
||||
}
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MdirAll(const FermionField& in, std::vector<FermionField>& out) {
|
||||
DhopDirAll(in, out);
|
||||
}
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) {
|
||||
assert(!fixedBoundaries); // TODO check for changes required for open bc
|
||||
|
||||
// NOTE: code copied from original clover term
|
||||
conformable(X.Grid(), Y.Grid());
|
||||
conformable(X.Grid(), force.Grid());
|
||||
GaugeLinkField force_mu(force.Grid()), lambda(force.Grid());
|
||||
GaugeField clover_force(force.Grid());
|
||||
PropagatorField Lambda(force.Grid());
|
||||
|
||||
// Guido: Here we are hitting some performance issues:
|
||||
// need to extract the components of the DoubledGaugeField
|
||||
// for each call
|
||||
// Possible solution
|
||||
// Create a vector object to store them? (cons: wasting space)
|
||||
std::vector<GaugeLinkField> U(Nd, this->Umu.Grid());
|
||||
|
||||
Impl::extractLinkField(U, this->Umu);
|
||||
|
||||
force = Zero();
|
||||
// Derivative of the Wilson hopping term
|
||||
this->DhopDeriv(force, X, Y, dag);
|
||||
|
||||
///////////////////////////////////////////////////////////
|
||||
// Clover term derivative
|
||||
///////////////////////////////////////////////////////////
|
||||
Impl::outerProductImpl(Lambda, X, Y);
|
||||
//std::cout << "Lambda:" << Lambda << std::endl;
|
||||
|
||||
Gamma::Algebra sigma[] = {
|
||||
Gamma::Algebra::SigmaXY,
|
||||
Gamma::Algebra::SigmaXZ,
|
||||
Gamma::Algebra::SigmaXT,
|
||||
Gamma::Algebra::MinusSigmaXY,
|
||||
Gamma::Algebra::SigmaYZ,
|
||||
Gamma::Algebra::SigmaYT,
|
||||
Gamma::Algebra::MinusSigmaXZ,
|
||||
Gamma::Algebra::MinusSigmaYZ,
|
||||
Gamma::Algebra::SigmaZT,
|
||||
Gamma::Algebra::MinusSigmaXT,
|
||||
Gamma::Algebra::MinusSigmaYT,
|
||||
Gamma::Algebra::MinusSigmaZT};
|
||||
|
||||
/*
|
||||
sigma_{\mu \nu}=
|
||||
| 0 sigma[0] sigma[1] sigma[2] |
|
||||
| sigma[3] 0 sigma[4] sigma[5] |
|
||||
| sigma[6] sigma[7] 0 sigma[8] |
|
||||
| sigma[9] sigma[10] sigma[11] 0 |
|
||||
*/
|
||||
|
||||
int count = 0;
|
||||
clover_force = Zero();
|
||||
for (int mu = 0; mu < 4; mu++)
|
||||
{
|
||||
force_mu = Zero();
|
||||
for (int nu = 0; nu < 4; nu++)
|
||||
{
|
||||
if (mu == nu)
|
||||
continue;
|
||||
|
||||
RealD factor;
|
||||
if (nu == 4 || mu == 4)
|
||||
{
|
||||
factor = 2.0 * csw_t;
|
||||
}
|
||||
else
|
||||
{
|
||||
factor = 2.0 * csw_r;
|
||||
}
|
||||
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
|
||||
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
|
||||
force_mu -= factor*CloverHelpers::Cmunu(U, lambda, mu, nu); // checked
|
||||
count++;
|
||||
}
|
||||
|
||||
pokeLorentz(clover_force, U[mu] * force_mu, mu);
|
||||
}
|
||||
//clover_force *= csw;
|
||||
force += clover_force;
|
||||
}
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MooDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) {
|
||||
assert(0);
|
||||
}
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MeeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) {
|
||||
assert(0);
|
||||
}
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MooeeInternal(const FermionField& in,
|
||||
FermionField& out,
|
||||
const CloverDiagonalField& diagonal,
|
||||
const CloverTriangleField& triangle) {
|
||||
assert(in.Checkerboard() == Odd || in.Checkerboard() == Even);
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
conformable(in, out);
|
||||
CompactHelpers::MooeeKernel(diagonal.oSites(), this->Ls, in, out, diagonal, triangle);
|
||||
}
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::ImportGauge(const GaugeField& _Umu) {
|
||||
// NOTE: parts copied from original implementation
|
||||
|
||||
// Import gauge into base class
|
||||
double t0 = usecond();
|
||||
WilsonBase::ImportGauge(_Umu); // NOTE: called here and in wilson constructor -> performed twice, but can't avoid that
|
||||
|
||||
// Initialize temporary variables
|
||||
double t1 = usecond();
|
||||
conformable(_Umu.Grid(), this->GaugeGrid());
|
||||
GridBase* grid = _Umu.Grid();
|
||||
typename Impl::GaugeLinkField Bx(grid), By(grid), Bz(grid), Ex(grid), Ey(grid), Ez(grid);
|
||||
CloverField TmpOriginal(grid);
|
||||
CloverField TmpInverse(grid);
|
||||
|
||||
// Compute the field strength terms mu>nu
|
||||
double t2 = usecond();
|
||||
WilsonLoops<Impl>::FieldStrength(Bx, _Umu, Zdir, Ydir);
|
||||
WilsonLoops<Impl>::FieldStrength(By, _Umu, Zdir, Xdir);
|
||||
WilsonLoops<Impl>::FieldStrength(Bz, _Umu, Ydir, Xdir);
|
||||
WilsonLoops<Impl>::FieldStrength(Ex, _Umu, Tdir, Xdir);
|
||||
WilsonLoops<Impl>::FieldStrength(Ey, _Umu, Tdir, Ydir);
|
||||
WilsonLoops<Impl>::FieldStrength(Ez, _Umu, Tdir, Zdir);
|
||||
|
||||
// Compute the Clover Operator acting on Colour and Spin
|
||||
// multiply here by the clover coefficients for the anisotropy
|
||||
double t3 = usecond();
|
||||
TmpOriginal = Helpers::fillCloverYZ(Bx) * csw_r;
|
||||
TmpOriginal += Helpers::fillCloverXZ(By) * csw_r;
|
||||
TmpOriginal += Helpers::fillCloverXY(Bz) * csw_r;
|
||||
TmpOriginal += Helpers::fillCloverXT(Ex) * csw_t;
|
||||
TmpOriginal += Helpers::fillCloverYT(Ey) * csw_t;
|
||||
TmpOriginal += Helpers::fillCloverZT(Ez) * csw_t;
|
||||
|
||||
// Instantiate the clover term
|
||||
// - In case of the standard clover the mass term is added
|
||||
// - In case of the exponential clover the clover term is exponentiated
|
||||
double t4 = usecond();
|
||||
CloverHelpers::InstantiateClover(TmpOriginal, TmpInverse, csw_t, 4.0 + this->M5 /*this->diag_mass*/);
|
||||
|
||||
// Convert the data layout of the clover term
|
||||
double t5 = usecond();
|
||||
CompactHelpers::ConvertLayout(TmpOriginal, Diagonal, Triangle);
|
||||
|
||||
// Modify the clover term at the temporal boundaries in case of open boundary conditions
|
||||
double t6 = usecond();
|
||||
if(fixedBoundaries) CompactHelpers::ModifyBoundaries(Diagonal, Triangle, csw_t, cF, 4.0 + this->M5 /*this->diag_mass*/);
|
||||
|
||||
// Invert the Clover term
|
||||
// In case of the exponential clover with (anti-)periodic boundary conditions exp(-Clover) saved
|
||||
// in TmpInverse can be used. In all other cases the clover term has to be explictly inverted.
|
||||
// TODO: For now this inversion is explictly done on the CPU
|
||||
double t7 = usecond();
|
||||
CloverHelpers::InvertClover(TmpInverse, Diagonal, Triangle, DiagonalInv, TriangleInv, fixedBoundaries);
|
||||
|
||||
// Fill the remaining clover fields
|
||||
double t8 = usecond();
|
||||
pickCheckerboard(Even, DiagonalEven, Diagonal);
|
||||
pickCheckerboard(Even, TriangleEven, Triangle);
|
||||
pickCheckerboard(Odd, DiagonalOdd, Diagonal);
|
||||
pickCheckerboard(Odd, TriangleOdd, Triangle);
|
||||
pickCheckerboard(Even, DiagonalInvEven, DiagonalInv);
|
||||
pickCheckerboard(Even, TriangleInvEven, TriangleInv);
|
||||
pickCheckerboard(Odd, DiagonalInvOdd, DiagonalInv);
|
||||
pickCheckerboard(Odd, TriangleInvOdd, TriangleInv);
|
||||
|
||||
// Report timings
|
||||
double t9 = usecond();
|
||||
|
||||
std::cout << GridLogDebug << "CompactWilsonCloverFermion5D::ImportGauge timings:" << std::endl;
|
||||
std::cout << GridLogDebug << "WilsonFermion::Importgauge = " << (t1 - t0) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "allocations = " << (t2 - t1) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "field strength = " << (t3 - t2) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "fill clover = " << (t4 - t3) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "instantiate clover = " << (t5 - t4) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "convert layout = " << (t6 - t5) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "modify boundaries = " << (t7 - t6) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "invert clover = " << (t8 - t7) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "pick cbs = " << (t9 - t8) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "total = " << (t9 - t0) / 1e6 << std::endl;
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
@@ -42,13 +42,13 @@ template<class Impl>
|
||||
void ContinuedFractionFermion5D<Impl>::SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata)
|
||||
{
|
||||
// How to check Ls matches??
|
||||
// std::cout<<GridLogMessage << Ls << " Ls"<<std::endl;
|
||||
// std::cout<<GridLogMessage << zdata->n << " - n"<<std::endl;
|
||||
// std::cout<<GridLogMessage << zdata->da << " -da "<<std::endl;
|
||||
// std::cout<<GridLogMessage << zdata->db << " -db"<<std::endl;
|
||||
// std::cout<<GridLogMessage << zdata->dn << " -dn"<<std::endl;
|
||||
// std::cout<<GridLogMessage << zdata->dd << " -dd"<<std::endl;
|
||||
std::cout<<GridLogMessage << zdata->n << " - n"<<std::endl;
|
||||
std::cout<<GridLogMessage << zdata->da << " -da "<<std::endl;
|
||||
std::cout<<GridLogMessage << zdata->db << " -db"<<std::endl;
|
||||
std::cout<<GridLogMessage << zdata->dn << " -dn"<<std::endl;
|
||||
std::cout<<GridLogMessage << zdata->dd << " -dd"<<std::endl;
|
||||
int Ls = this->Ls;
|
||||
std::cout<<GridLogMessage << Ls << " Ls"<<std::endl;
|
||||
assert(zdata->db==Ls);// Beta has Ls coeffs
|
||||
|
||||
R=(1+this->mass)/(1-this->mass);
|
||||
@@ -320,7 +320,7 @@ ContinuedFractionFermion5D<Impl>::ContinuedFractionFermion5D(
|
||||
int Ls = this->Ls;
|
||||
conformable(solution5d.Grid(),this->FermionGrid());
|
||||
conformable(exported4d.Grid(),this->GaugeGrid());
|
||||
ExtractSlice(exported4d, solution5d, Ls-1, Ls-1);
|
||||
ExtractSlice(exported4d, solution5d, Ls-1, 0);
|
||||
}
|
||||
template<class Impl>
|
||||
void ContinuedFractionFermion5D<Impl>::ImportPhysicalFermionSource(const FermionField &input4d,FermionField &imported5d)
|
||||
@@ -330,7 +330,7 @@ ContinuedFractionFermion5D<Impl>::ContinuedFractionFermion5D(
|
||||
conformable(input4d.Grid() ,this->GaugeGrid());
|
||||
FermionField tmp(this->FermionGrid());
|
||||
tmp=Zero();
|
||||
InsertSlice(input4d, tmp, Ls-1, Ls-1);
|
||||
InsertSlice(input4d, tmp, Ls-1, 0);
|
||||
tmp=Gamma(Gamma::Algebra::Gamma5)*tmp;
|
||||
this->Dminus(tmp,imported5d);
|
||||
}
|
||||
|
||||
@@ -51,13 +51,13 @@ void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi_i, const FermionFi
|
||||
autoView( chi , chi_i, AcceleratorWrite);
|
||||
assert(phi.Checkerboard() == psi.Checkerboard());
|
||||
|
||||
static deviceVector<Coeff_t> d_diag(Ls); acceleratorCopyToDevice(&diag[0],&d_diag[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_upper(Ls);acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_lower(Ls);acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t));
|
||||
|
||||
auto pdiag = &d_diag[0];
|
||||
auto pupper = &d_upper[0];
|
||||
auto plower = &d_lower[0];
|
||||
auto pdiag = &this->d_diag[0];
|
||||
auto pupper = &this->d_upper[0];
|
||||
auto plower = &this->d_lower[0];
|
||||
|
||||
acceleratorCopyToDevice(&diag[0],&pdiag[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&upper[0],&pupper[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&lower[0],&plower[0],Ls*sizeof(Coeff_t));
|
||||
|
||||
// Flops = 6.0*(Nc*Ns) *Ls*vol
|
||||
|
||||
@@ -89,14 +89,14 @@ void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi_i, const Fermio
|
||||
autoView( phi , phi_i, AcceleratorRead);
|
||||
autoView( chi , chi_i, AcceleratorWrite);
|
||||
assert(phi.Checkerboard() == psi.Checkerboard());
|
||||
|
||||
static deviceVector<Coeff_t> d_diag(Ls); acceleratorCopyToDevice(&diag[0],&d_diag[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_upper(Ls);acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_lower(Ls);acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t));
|
||||
|
||||
auto pdiag = &d_diag[0];
|
||||
auto pupper = &d_upper[0];
|
||||
auto plower = &d_lower[0];
|
||||
auto pdiag = &this->d_diag[0];
|
||||
auto pupper = &this->d_upper[0];
|
||||
auto plower = &this->d_lower[0];
|
||||
|
||||
acceleratorCopyToDevice(&diag[0] ,&pdiag[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&upper[0],&pupper[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&lower[0],&plower[0],Ls*sizeof(Coeff_t));
|
||||
|
||||
// Flops = 6.0*(Nc*Ns) *Ls*vol
|
||||
|
||||
@@ -125,18 +125,18 @@ void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi_i, FermionFie
|
||||
autoView( chi, chi_i, AcceleratorWrite);
|
||||
int Ls = this->Ls;
|
||||
|
||||
static deviceVector<Coeff_t> d_lee(Ls); acceleratorCopyToDevice(&this->lee[0],&d_lee[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_dee(Ls); acceleratorCopyToDevice(&this->dee[0],&d_dee[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_uee(Ls); acceleratorCopyToDevice(&this->uee[0],&d_uee[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_leem(Ls); acceleratorCopyToDevice(&this->leem[0],&d_leem[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_ueem(Ls); acceleratorCopyToDevice(&this->ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t));
|
||||
|
||||
auto plee = & d_lee [0];
|
||||
auto pdee = & d_dee [0];
|
||||
auto puee = & d_uee [0];
|
||||
auto pleem = & d_leem[0];
|
||||
auto pueem = & d_ueem[0];
|
||||
auto plee = & this->d_lee [0];
|
||||
auto pdee = & this->d_dee [0];
|
||||
auto puee = & this->d_uee [0];
|
||||
auto pleem = & this->d_leem[0];
|
||||
auto pueem = & this->d_ueem[0];
|
||||
|
||||
acceleratorCopyToDevice(&this->lee[0],&plee[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&this->dee[0],&pdee[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&this->uee[0],&puee[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&this->leem[0],&pleem[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&this->ueem[0],&pueem[0],Ls*sizeof(Coeff_t));
|
||||
|
||||
uint64_t nloop=grid->oSites()/Ls;
|
||||
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
||||
uint64_t ss=sss*Ls;
|
||||
|
||||
@@ -240,7 +240,7 @@ void DomainWallEOFAFermion<Impl>::SetCoefficientsInternal(RealD zolo_hi, std::ve
|
||||
this->ceo.resize(Ls);
|
||||
|
||||
for(int i=0; i<Ls; ++i){
|
||||
this->bee[i] = 4.0 - this->M5 + 1.0;
|
||||
this->bee[i] = Nd*1.0 - this->M5 + 1.0;
|
||||
this->cee[i] = 1.0;
|
||||
}
|
||||
|
||||
|
||||
@@ -50,14 +50,14 @@ void MobiusEOFAFermion<Impl>::M5D(const FermionField &psi_i, const FermionField
|
||||
|
||||
assert(phi.Checkerboard() == psi.Checkerboard());
|
||||
|
||||
static deviceVector<Coeff_t> d_diag(Ls); acceleratorCopyToDevice(&diag[0],&d_diag[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_upper(Ls);acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_lower(Ls);acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t));
|
||||
|
||||
auto pdiag = &d_diag[0];
|
||||
auto pupper = &d_upper[0];
|
||||
auto plower = &d_lower[0];
|
||||
auto pdiag = &this->d_diag[0];
|
||||
auto pupper = &this->d_upper[0];
|
||||
auto plower = &this->d_lower[0];
|
||||
|
||||
acceleratorCopyToDevice(&diag[0],&pdiag[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&upper[0],&pupper[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&lower[0],&plower[0],Ls*sizeof(Coeff_t));
|
||||
|
||||
// Flops = 6.0*(Nc*Ns) *Ls*vol
|
||||
int nloop = grid->oSites()/Ls;
|
||||
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
||||
@@ -93,15 +93,15 @@ void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField &psi_i, const Fermion
|
||||
|
||||
assert(phi.Checkerboard() == psi.Checkerboard());
|
||||
|
||||
static deviceVector<Coeff_t> d_diag(Ls); acceleratorCopyToDevice(&diag[0],&d_diag[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_upper(Ls);acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_lower(Ls);acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_shift_coeffs(Ls);acceleratorCopyToDevice(&shift_coeffs[0],&d_shift_coeffs[0],Ls*sizeof(Coeff_t));
|
||||
|
||||
auto pdiag = &d_diag[0];
|
||||
auto pupper = &d_upper[0];
|
||||
auto plower = &d_lower[0];
|
||||
auto pshift_coeffs = &d_shift_coeffs[0];
|
||||
auto pdiag = &this->d_diag[0];
|
||||
auto pupper = &this->d_upper[0];
|
||||
auto plower = &this->d_lower[0];
|
||||
auto pshift_coeffs = &this->d_shift_coefficients[0];
|
||||
|
||||
acceleratorCopyToDevice(&diag[0],&pdiag[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&upper[0],&pupper[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&lower[0],&plower[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&shift_coeffs[0],&pshift_coeffs[0],Ls*sizeof(Coeff_t));
|
||||
|
||||
// Flops = 6.0*(Nc*Ns) *Ls*vol
|
||||
int nloop = grid->oSites()/Ls;
|
||||
@@ -138,14 +138,14 @@ void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField &psi_i, const FermionFie
|
||||
autoView(chi , chi_i, AcceleratorWrite);
|
||||
|
||||
assert(phi.Checkerboard() == psi.Checkerboard());
|
||||
|
||||
static deviceVector<Coeff_t> d_diag(Ls); acceleratorCopyToDevice(&diag[0],&d_diag[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_upper(Ls);acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_lower(Ls);acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t));
|
||||
|
||||
auto pdiag = &d_diag[0];
|
||||
auto pupper = &d_upper[0];
|
||||
auto plower = &d_lower[0];
|
||||
auto pdiag = &this->d_diag[0];
|
||||
auto pupper = &this->d_upper[0];
|
||||
auto plower = &this->d_lower[0];
|
||||
|
||||
acceleratorCopyToDevice(&diag[0],&pdiag[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&upper[0],&pupper[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&lower[0],&plower[0],Ls*sizeof(Coeff_t));
|
||||
|
||||
// Flops = 6.0*(Nc*Ns) *Ls*vol
|
||||
int nloop = grid->oSites()/Ls;
|
||||
@@ -180,16 +180,16 @@ void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField &psi_i, const Ferm
|
||||
|
||||
assert(phi.Checkerboard() == psi.Checkerboard());
|
||||
|
||||
static deviceVector<Coeff_t> d_diag(Ls); acceleratorCopyToDevice(&diag[0],&d_diag[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_upper(Ls);acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_lower(Ls);acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_shift_coeffs(Ls);acceleratorCopyToDevice(&shift_coeffs[0],&d_shift_coeffs[0],Ls*sizeof(Coeff_t));
|
||||
|
||||
auto pdiag = &d_diag[0];
|
||||
auto pupper = &d_upper[0];
|
||||
auto plower = &d_lower[0];
|
||||
auto pshift_coeffs = &d_shift_coeffs[0];
|
||||
auto pdiag = &this->d_diag[0];
|
||||
auto pupper = &this->d_upper[0];
|
||||
auto plower = &this->d_lower[0];
|
||||
auto pshift_coeffs = &this->d_shift_coefficients[0];
|
||||
|
||||
acceleratorCopyToDevice(&diag[0],&pdiag[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&upper[0],&pupper[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&lower[0],&plower[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&shift_coeffs[0],&pshift_coeffs[0],Ls*sizeof(Coeff_t));
|
||||
|
||||
// Flops = 6.0*(Nc*Ns) *Ls*vol
|
||||
auto pm = this->pm;
|
||||
|
||||
@@ -230,17 +230,17 @@ void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField &psi_i, FermionField &
|
||||
autoView(psi , psi_i, AcceleratorRead);
|
||||
autoView(chi , chi_i, AcceleratorWrite);
|
||||
|
||||
static deviceVector<Coeff_t> d_lee(Ls); acceleratorCopyToDevice(&this->lee[0],&d_lee[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_dee(Ls); acceleratorCopyToDevice(&this->dee[0],&d_dee[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_uee(Ls); acceleratorCopyToDevice(&this->uee[0],&d_uee[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_leem(Ls); acceleratorCopyToDevice(&this->leem[0],&d_leem[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_ueem(Ls); acceleratorCopyToDevice(&this->ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t));
|
||||
auto plee = & this->d_lee [0];
|
||||
auto pdee = & this->d_dee [0];
|
||||
auto puee = & this->d_uee [0];
|
||||
auto pleem = & this->d_leem[0];
|
||||
auto pueem = & this->d_ueem[0];
|
||||
|
||||
auto plee = & d_lee [0];
|
||||
auto pdee = & d_dee [0];
|
||||
auto puee = & d_uee [0];
|
||||
auto pleem = & d_leem[0];
|
||||
auto pueem = & d_ueem[0];
|
||||
acceleratorCopyToDevice(&this->lee[0],&plee[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&this->dee[0],&pdee[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&this->uee[0],&puee[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&this->leem[0],&pleem[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&this->ueem[0],&pueem[0],Ls*sizeof(Coeff_t));
|
||||
|
||||
if(this->shift != 0.0){ MooeeInv_shift(psi_i,chi_i); return; }
|
||||
|
||||
@@ -293,23 +293,22 @@ void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField &psi_i, FermionF
|
||||
autoView(chi , chi_i, AcceleratorWrite);
|
||||
|
||||
// Move into object and constructor
|
||||
static deviceVector<Coeff_t> d_lee(Ls); acceleratorCopyToDevice(&this->lee[0],&d_lee[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_dee(Ls); acceleratorCopyToDevice(&this->dee[0],&d_dee[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_uee(Ls); acceleratorCopyToDevice(&this->uee[0],&d_uee[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_leem(Ls); acceleratorCopyToDevice(&this->leem[0],&d_leem[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_ueem(Ls); acceleratorCopyToDevice(&this->ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t));
|
||||
|
||||
auto pm = this->pm;
|
||||
auto plee = & d_lee [0];
|
||||
auto pdee = & d_dee [0];
|
||||
auto puee = & d_uee [0];
|
||||
auto pleem = & d_leem[0];
|
||||
auto pueem = & d_ueem[0];
|
||||
auto plee = & this->d_lee [0];
|
||||
auto pdee = & this->d_dee [0];
|
||||
auto puee = & this->d_uee [0];
|
||||
auto pleem = & this->d_leem[0];
|
||||
auto pueem = & this->d_ueem[0];
|
||||
auto pMooeeInv_shift_lc = &this->d_MooeeInv_shift_lc[0];
|
||||
auto pMooeeInv_shift_norm = &this->d_MooeeInv_shift_norm[0];
|
||||
|
||||
static deviceVector<Coeff_t> d_MooeeInv_shift_lc(Ls); acceleratorCopyToDevice(&MooeeInv_shift_lc[0],&d_MooeeInv_shift_lc[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_MooeeInv_shift_norm(Ls); acceleratorCopyToDevice(&MooeeInv_shift_norm[0],&d_MooeeInv_shift_norm[0],Ls*sizeof(Coeff_t));
|
||||
auto pMooeeInv_shift_lc = &d_MooeeInv_shift_lc[0];
|
||||
auto pMooeeInv_shift_norm = &d_MooeeInv_shift_norm[0];
|
||||
acceleratorCopyToDevice(&this->lee[0],&plee[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&this->dee[0],&pdee[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&this->uee[0],&puee[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&this->leem[0],&pleem[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&this->ueem[0],&pueem[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&MooeeInv_shift_lc[0],&pMooeeInv_shift_lc[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&MooeeInv_shift_norm[0],&pMooeeInv_shift_norm[0],Ls*sizeof(Coeff_t));
|
||||
|
||||
int nloop = grid->oSites()/Ls;
|
||||
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
||||
@@ -367,17 +366,17 @@ void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField &psi_i, FermionFiel
|
||||
autoView(psi , psi_i, AcceleratorRead);
|
||||
autoView(chi , chi_i, AcceleratorWrite);
|
||||
|
||||
static deviceVector<Coeff_t> d_lee(Ls); acceleratorCopyToDevice(&this->lee[0],&d_lee[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_dee(Ls); acceleratorCopyToDevice(&this->dee[0],&d_dee[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_uee(Ls); acceleratorCopyToDevice(&this->uee[0],&d_uee[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_leem(Ls); acceleratorCopyToDevice(&this->leem[0],&d_leem[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_ueem(Ls); acceleratorCopyToDevice(&this->ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t));
|
||||
auto plee = &this->d_lee [0];
|
||||
auto pdee = &this->d_dee [0];
|
||||
auto puee = &this->d_uee [0];
|
||||
auto pleem = &this->d_leem[0];
|
||||
auto pueem = &this->d_ueem[0];
|
||||
|
||||
auto plee = & d_lee [0];
|
||||
auto pdee = & d_dee [0];
|
||||
auto puee = & d_uee [0];
|
||||
auto pleem = & d_leem[0];
|
||||
auto pueem = & d_ueem[0];
|
||||
acceleratorCopyToDevice(&this->lee[0],&plee[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&this->dee[0],&pdee[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&this->uee[0],&puee[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&this->leem[0],&pleem[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&this->ueem[0],&pueem[0],Ls*sizeof(Coeff_t));
|
||||
|
||||
int nloop = grid->oSites()/Ls;
|
||||
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
||||
@@ -426,25 +425,23 @@ void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField &psi_i, Fermi
|
||||
autoView(chi , chi_i, AcceleratorWrite);
|
||||
int Ls = this->Ls;
|
||||
|
||||
static deviceVector<Coeff_t> d_lee(Ls); acceleratorCopyToDevice(&this->lee[0],&d_lee[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_dee(Ls); acceleratorCopyToDevice(&this->dee[0],&d_dee[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_uee(Ls); acceleratorCopyToDevice(&this->uee[0],&d_uee[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_leem(Ls); acceleratorCopyToDevice(&this->leem[0],&d_leem[0],Ls*sizeof(Coeff_t));
|
||||
static deviceVector<Coeff_t> d_ueem(Ls); acceleratorCopyToDevice(&this->ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t));
|
||||
|
||||
auto pm = this->pm;
|
||||
auto plee = & d_lee [0];
|
||||
auto pdee = & d_dee [0];
|
||||
auto puee = & d_uee [0];
|
||||
auto pleem = & d_leem[0];
|
||||
auto pueem = & d_ueem[0];
|
||||
auto plee = & this->d_lee [0];
|
||||
auto pdee = & this->d_dee [0];
|
||||
auto puee = & this->d_uee [0];
|
||||
auto pleem = & this->d_leem[0];
|
||||
auto pueem = & this->d_ueem[0];
|
||||
|
||||
static deviceVector<Coeff_t> d_MooeeInvDag_shift_lc(Ls);
|
||||
static deviceVector<Coeff_t> d_MooeeInvDag_shift_norm(Ls);
|
||||
acceleratorCopyToDevice(&MooeeInvDag_shift_lc[0],&d_MooeeInvDag_shift_lc[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&MooeeInvDag_shift_norm[0],&d_MooeeInvDag_shift_norm[0],Ls*sizeof(Coeff_t));
|
||||
auto pMooeeInvDag_shift_lc = &d_MooeeInvDag_shift_lc[0];
|
||||
auto pMooeeInvDag_shift_norm = &d_MooeeInvDag_shift_norm[0];
|
||||
auto pMooeeInvDag_shift_lc = &this->d_MooeeInv_shift_lc[0];
|
||||
auto pMooeeInvDag_shift_norm = &this->d_MooeeInv_shift_norm[0];
|
||||
|
||||
acceleratorCopyToDevice(&this->lee[0],&plee[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&this->dee[0],&pdee[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&this->uee[0],&puee[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&this->leem[0],&pleem[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&this->ueem[0],&pueem[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&MooeeInvDag_shift_lc[0],&pMooeeInvDag_shift_lc[0],Ls*sizeof(Coeff_t));
|
||||
acceleratorCopyToDevice(&MooeeInvDag_shift_norm[0],&pMooeeInvDag_shift_norm[0],Ls*sizeof(Coeff_t));
|
||||
|
||||
// auto pMooeeInvDag_shift_lc = &MooeeInvDag_shift_lc[0];
|
||||
// auto pMooeeInvDag_shift_norm = &MooeeInvDag_shift_norm[0];
|
||||
|
||||
@@ -237,7 +237,32 @@ void PartialFractionFermion5D<Impl>::M_internal(const FermionField &psi, Fermi
|
||||
// ( 0 -sqrt(p_i)*amax | 2 R gamma_5 + p0/amax 2H
|
||||
//
|
||||
|
||||
this->DW(psi,D,DaggerNo);
|
||||
this->DW(psi,D,DaggerNo);
|
||||
|
||||
// DW - DW+iqslash
|
||||
// (g5 Dw)^dag = g5 Dw
|
||||
// (iqmu g5 gmu)^dag = (-i qmu gmu^dag g5^dag) = i qmu g5 gmu
|
||||
if ( qmu.size() ) {
|
||||
|
||||
std::cout<< "Mat" << "qmu ("<<qmu[0]<<","<<qmu[1]<<","<<qmu[2]<<","<<qmu[3]<<")"<<std::endl;
|
||||
assert(qmu.size()==Nd);
|
||||
|
||||
FermionField qslash_psi(psi.Grid());
|
||||
|
||||
Gamma::Algebra Gmu [] = {
|
||||
Gamma::Algebra::GammaX,
|
||||
Gamma::Algebra::GammaY,
|
||||
Gamma::Algebra::GammaZ,
|
||||
Gamma::Algebra::GammaT
|
||||
};
|
||||
qslash_psi = qmu[0]*(Gamma(Gmu[0])*psi);
|
||||
for(int mu=1;mu<Nd;mu++){
|
||||
qslash_psi = qslash_psi + qmu[mu]*(Gamma(Gmu[mu])*psi);
|
||||
}
|
||||
ComplexD ci(0.0,1.0);
|
||||
qslash_psi = ci*qslash_psi ; // i qslash
|
||||
D = D + qslash_psi;
|
||||
}
|
||||
|
||||
int nblock=(Ls-1)/2;
|
||||
for(int b=0;b<nblock;b++){
|
||||
@@ -255,15 +280,55 @@ void PartialFractionFermion5D<Impl>::M_internal(const FermionField &psi, Fermi
|
||||
}
|
||||
|
||||
{
|
||||
// The 'conventional' Cayley overlap operator is
|
||||
//
|
||||
// Dov = (1+m)/2 + (1-m)/2 g5 sgn Hw
|
||||
//
|
||||
//
|
||||
// With massless limit 1/2(1+g5 sgnHw)
|
||||
//
|
||||
// Luscher shows quite neatly that 1+g5 sgn Hw has tree level propagator i qslash +O(a^2)
|
||||
//
|
||||
// However, the conventional normalisation has both a leading order factor of 2 in Zq
|
||||
// at tree level AND a mass dependent (1-m) that are convenient to absorb.
|
||||
//
|
||||
// In WilsonFermion5DImplementation.h, the tree level propagator for Hw is
|
||||
//
|
||||
// num = -i sin kmu gmu
|
||||
//
|
||||
// denom ( sqrt(sk^2 + (2shk^2 - 1)^2
|
||||
// b_k = sk2 - M5;
|
||||
//
|
||||
// w_k = sqrt(sk + b_k*b_k);
|
||||
//
|
||||
// denom= ( w_k + b_k + mass*mass) ;
|
||||
//
|
||||
// denom= one/denom;
|
||||
// out = num*denom;
|
||||
//
|
||||
// Chroma, and Grid define partial fraction via 4d operator
|
||||
//
|
||||
// Dpf = 2/(1-m) x Dov = (1+m)/(1-m) + g5 sgn Hw
|
||||
//
|
||||
// Now since:
|
||||
//
|
||||
// (1+m)/(1-m) = (1-m)/(1-m) + 2m/(1-m) = 1 + 2m/(1-m)
|
||||
//
|
||||
// This corresponds to a modified mass parameter
|
||||
//
|
||||
// It has an annoying
|
||||
//
|
||||
//
|
||||
double R=(1+this->mass)/(1-this->mass);
|
||||
//R g5 psi[Ls] + p[0] H
|
||||
//R g5 psi[Ls] + p[0] Hw
|
||||
ag5xpbg5y_ssp(chi,R*scale,psi,p[nblock]*scale/amax,D,Ls-1,Ls-1);
|
||||
|
||||
|
||||
for(int b=0;b<nblock;b++){
|
||||
int s = 2*b+1;
|
||||
double pp = p[nblock-1-b];
|
||||
axpby_ssp(chi,1.0,chi,-sqrt(amax*pp)*scale*sign,psi,Ls-1,s);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
@@ -411,17 +476,18 @@ void PartialFractionFermion5D<Impl>::SetCoefficientsZolotarev(RealD zolo_hi,App
|
||||
int Ls = this->Ls;
|
||||
conformable(solution5d.Grid(),this->FermionGrid());
|
||||
conformable(exported4d.Grid(),this->GaugeGrid());
|
||||
ExtractSlice(exported4d, solution5d, Ls-1, Ls-1);
|
||||
ExtractSlice(exported4d, solution5d, Ls-1, 0);
|
||||
}
|
||||
template<class Impl>
|
||||
void PartialFractionFermion5D<Impl>::ImportPhysicalFermionSource(const FermionField &input4d,FermionField &imported5d)
|
||||
{
|
||||
//void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice, int orthog)
|
||||
int Ls = this->Ls;
|
||||
conformable(imported5d.Grid(),this->FermionGrid());
|
||||
conformable(input4d.Grid() ,this->GaugeGrid());
|
||||
FermionField tmp(this->FermionGrid());
|
||||
tmp=Zero();
|
||||
InsertSlice(input4d, tmp, Ls-1, Ls-1);
|
||||
InsertSlice(input4d, tmp, Ls-1, 0);
|
||||
tmp=Gamma(Gamma::Algebra::Gamma5)*tmp;
|
||||
this->Dminus(tmp,imported5d);
|
||||
}
|
||||
@@ -442,7 +508,7 @@ PartialFractionFermion5D<Impl>::PartialFractionFermion5D(GaugeField &_Umu,
|
||||
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
|
||||
qmu.resize(0);
|
||||
assert((Ls&0x1)==1); // Odd Ls required
|
||||
int nrational=Ls-1;
|
||||
|
||||
@@ -460,6 +526,22 @@ PartialFractionFermion5D<Impl>::PartialFractionFermion5D(GaugeField &_Umu,
|
||||
Approx::zolotarev_free(zdata);
|
||||
|
||||
}
|
||||
template<class Impl>
|
||||
PartialFractionFermion5D<Impl>::PartialFractionFermion5D(GaugeField &_Umu,
|
||||
GridCartesian &FiveDimGrid,
|
||||
GridRedBlackCartesian &FiveDimRedBlackGrid,
|
||||
GridCartesian &FourDimGrid,
|
||||
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||
RealD _mass,RealD M5,
|
||||
std::vector<RealD> &_qmu,
|
||||
const ImplParams &p)
|
||||
: PartialFractionFermion5D<Impl>(_Umu,
|
||||
FiveDimGrid,FiveDimRedBlackGrid,
|
||||
FourDimGrid,FourDimRedBlackGrid,
|
||||
_mass,M5,p)
|
||||
{
|
||||
qmu=_qmu;
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
||||
@@ -0,0 +1,486 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/TwoSpinWilsonFermion2plus1D.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/WilsonFermion5D.h>
|
||||
#include <Grid/perfmon/PerfCount.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
// 5d lattice for DWF.
|
||||
template<class Impl>
|
||||
TwoSpinWilsonFermion3plus15D<Impl>::TwoSpinWilsonFermion3plus1D(GaugeField &_Umu,
|
||||
GridCartesian &FourDimGrid,
|
||||
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||
GridCartesian &ThreeDimGrid,
|
||||
GridRedBlackCartesian &ThreeDimRedBlackGrid,
|
||||
RealD _M5,const ImplParams &p) :
|
||||
Kernels(p),
|
||||
_FourDimGrid (&FourDimGrid),
|
||||
_FourDimRedBlackGrid(&FourDimRedBlackGrid),
|
||||
_ThreeDimGrid (&ThreeDimGrid),
|
||||
_ThreeDimRedBlackGrid(&ThreeDimRedBlackGrid),
|
||||
Stencil (_FourDimGrid,npoint,Even,directions,displacements,p),
|
||||
StencilEven(_FourDimRedBlackGrid,npoint,Even,directions,displacements,p), // source is Even
|
||||
StencilOdd (_FourDimRedBlackGrid,npoint,Odd ,directions,displacements,p), // source is Odd
|
||||
M5(_M5),
|
||||
Umu(_ThreeDimGrid),
|
||||
UmuEven(_ThreeDimRedBlackGrid),
|
||||
UmuOdd (_ThreeDimRedBlackGrid),
|
||||
_tmp(&FourDimRedBlackGrid),
|
||||
Dirichlet(0)
|
||||
{
|
||||
// some assertions
|
||||
assert(FourDimGrid._ndimension==Nd+1);
|
||||
assert(ThreeDimGrid._ndimension==Nd);
|
||||
assert(ThreeDimRedBlackGrid._ndimension==Nd);
|
||||
assert(FourDimRedBlackGrid._ndimension==Nd+1);
|
||||
assert(FourDimRedBlackGrid._checker_dim==1); // Don't checker the s direction
|
||||
|
||||
// extent of fifth dim and not spread out
|
||||
Ls=FourDimGrid._fdimensions[0];
|
||||
assert(FourDimRedBlackGrid._fdimensions[0]==Ls);
|
||||
assert(FourDimGrid._processors[0] ==1);
|
||||
assert(FourDimRedBlackGrid._processors[0] ==1);
|
||||
|
||||
// Other dimensions must match the decomposition of the four-D fields
|
||||
for(int d=0;d<Nd;d++){
|
||||
|
||||
assert(FourDimGrid._processors[d+1] ==ThreeDimGrid._processors[d]);
|
||||
assert(FourDimRedBlackGrid._processors[d+1] ==ThreeDimGrid._processors[d]);
|
||||
assert(ThreeDimRedBlackGrid._processors[d] ==ThreeDimGrid._processors[d]);
|
||||
|
||||
assert(FourDimGrid._fdimensions[d+1] ==ThreeDimGrid._fdimensions[d]);
|
||||
assert(FourDimRedBlackGrid._fdimensions[d+1]==ThreeDimGrid._fdimensions[d]);
|
||||
assert(ThreeDimRedBlackGrid._fdimensions[d] ==ThreeDimGrid._fdimensions[d]);
|
||||
|
||||
assert(FourDimGrid._simd_layout[d+1] ==ThreeDimGrid._simd_layout[d]);
|
||||
assert(FourDimRedBlackGrid._simd_layout[d+1]==ThreeDimGrid._simd_layout[d]);
|
||||
assert(ThreeDimRedBlackGrid._simd_layout[d] ==ThreeDimGrid._simd_layout[d]);
|
||||
}
|
||||
|
||||
if ( p.dirichlet.size() == Nd+1) {
|
||||
Coordinate block = p.dirichlet;
|
||||
for(int d=0;d<Nd+1;d++) {
|
||||
if ( block[d] ){
|
||||
Dirichlet = 1;
|
||||
std::cout << GridLogMessage << " WilsonFermion: non-trivial Dirichlet condition "<< block << std::endl;
|
||||
std::cout << GridLogMessage << " WilsonFermion: partial Dirichlet "<< p.partialDirichlet << std::endl;
|
||||
Block = block;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
Coordinate block(Nd+1,0);
|
||||
Block = block;
|
||||
}
|
||||
|
||||
// Dimension zero of the five-d is the Ls direction
|
||||
assert(FourDimRedBlackGrid._simd_layout[0]==1);
|
||||
assert(FourDimGrid._simd_layout[0] ==1);
|
||||
|
||||
// Allocate the required comms buffer
|
||||
ImportGauge(_Umu);
|
||||
// Build lists of exterior only nodes
|
||||
int LLs = FourDimGrid._rdimensions[0];
|
||||
int vol3;
|
||||
vol3=ThreeDimGrid.oSites();
|
||||
Stencil.BuildSurfaceList(LLs,vol3);
|
||||
|
||||
vol3=ThreeDimRedBlackGrid.oSites();
|
||||
StencilEven.BuildSurfaceList(LLs,vol3);
|
||||
StencilOdd.BuildSurfaceList(LLs,vol3);
|
||||
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void TwoSpinWilsonFermion3plus1D<Impl>::ImportGauge(const GaugeField &_Umu)
|
||||
{
|
||||
GaugeField HUmu(_Umu.Grid());
|
||||
HUmu = _Umu*(-0.5);
|
||||
Impl::DoubleStore(GaugeGrid(),Umu,HUmu);
|
||||
pickCheckerboard(Even,UmuEven,Umu);
|
||||
pickCheckerboard(Odd ,UmuOdd,Umu);
|
||||
}
|
||||
template<class Impl>
|
||||
void TwoSpinWilsonFermion3plus1D<Impl>::DhopDir(const FermionField &in, FermionField &out,int dir5,int disp)
|
||||
{
|
||||
int dir = dir5-1; // Maps to the ordering above in "directions" that is passed to stencil
|
||||
// we drop off the innermost fifth dimension
|
||||
// assert( (disp==1)||(disp==-1) );
|
||||
// assert( (dir>=0)&&(dir<4) ); //must do x,y,z or t;
|
||||
|
||||
int skip = (disp==1) ? 0 : 1;
|
||||
int dirdisp = dir+skip*Nd;
|
||||
int gamma = dir+(1-skip)*Nd;
|
||||
|
||||
Compressor compressor(DaggerNo);
|
||||
Stencil.HaloExchange(in,compressor);
|
||||
|
||||
uint64_t Nsite = Umu.Grid()->oSites();
|
||||
Kernels::DhopDirKernel(Stencil,Umu,Stencil.CommBuf(),Ls,Nsite,in,out,dirdisp,gamma);
|
||||
|
||||
};
|
||||
template<class Impl>
|
||||
void TwoSpinWilsonFermion3plus1D<Impl>::DhopDirAll(const FermionField &in, std::vector<FermionField> &out)
|
||||
{
|
||||
Compressor compressor(DaggerNo);
|
||||
Stencil.HaloExchange(in,compressor);
|
||||
uint64_t Nsite = Umu.Grid()->oSites();
|
||||
Kernels::DhopDirAll(Stencil,Umu,Stencil.CommBuf(),Ls,Nsite,in,out);
|
||||
};
|
||||
|
||||
|
||||
template<class Impl>
|
||||
void TwoSpinWilsonFermion3plus1D<Impl>::DerivInternal(StencilImpl & st,
|
||||
DoubledGaugeField & U,
|
||||
GaugeField &mat,
|
||||
const FermionField &A,
|
||||
const FermionField &B,
|
||||
int dag)
|
||||
{
|
||||
assert((dag==DaggerNo) ||(dag==DaggerYes));
|
||||
|
||||
conformable(st.Grid(),A.Grid());
|
||||
conformable(st.Grid(),B.Grid());
|
||||
|
||||
Compressor compressor(dag);
|
||||
|
||||
FermionField Btilde(B.Grid());
|
||||
FermionField Atilde(B.Grid());
|
||||
|
||||
st.HaloExchange(B,compressor);
|
||||
|
||||
Atilde=A;
|
||||
int LLs = B.Grid()->_rdimensions[0];
|
||||
|
||||
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Flip gamma if dag
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
int gamma = mu;
|
||||
if (!dag) gamma += Nd;
|
||||
|
||||
////////////////////////
|
||||
// Call the single hop
|
||||
////////////////////////
|
||||
|
||||
int Usites = U.Grid()->oSites();
|
||||
|
||||
Kernels::DhopDirKernel(st, U, st.CommBuf(), Ls, Usites, B, Btilde, mu,gamma);
|
||||
|
||||
////////////////////////////
|
||||
// spin trace outer product
|
||||
////////////////////////////
|
||||
Impl::InsertForce5D(mat, Btilde, Atilde, mu);
|
||||
}
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void TwoSpinWilsonFermion3plus1D<Impl>::DhopDeriv(GaugeField &mat,
|
||||
const FermionField &A,
|
||||
const FermionField &B,
|
||||
int dag)
|
||||
{
|
||||
conformable(A.Grid(),FermionGrid());
|
||||
conformable(A.Grid(),B.Grid());
|
||||
|
||||
//conformable(GaugeGrid(),mat.Grid());// this is not general! leaving as a comment
|
||||
|
||||
mat.Checkerboard() = A.Checkerboard();
|
||||
// mat.checkerboard = A.checkerboard;
|
||||
|
||||
DerivInternal(Stencil,Umu,mat,A,B,dag);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void TwoSpinWilsonFermion3plus1D<Impl>::DhopDerivEO(GaugeField &mat,
|
||||
const FermionField &A,
|
||||
const FermionField &B,
|
||||
int dag)
|
||||
{
|
||||
conformable(A.Grid(),FermionRedBlackGrid());
|
||||
conformable(A.Grid(),B.Grid());
|
||||
|
||||
assert(B.Checkerboard()==Odd);
|
||||
assert(A.Checkerboard()==Even);
|
||||
mat.Checkerboard() = Even;
|
||||
|
||||
DerivInternal(StencilOdd,UmuEven,mat,A,B,dag);
|
||||
}
|
||||
|
||||
|
||||
template<class Impl>
|
||||
void TwoSpinWilsonFermion3plus1D<Impl>::DhopDerivOE(GaugeField &mat,
|
||||
const FermionField &A,
|
||||
const FermionField &B,
|
||||
int dag)
|
||||
{
|
||||
conformable(A.Grid(),FermionRedBlackGrid());
|
||||
conformable(A.Grid(),B.Grid());
|
||||
|
||||
assert(B.Checkerboard()==Even);
|
||||
assert(A.Checkerboard()==Odd);
|
||||
mat.Checkerboard() = Odd;
|
||||
|
||||
DerivInternal(StencilEven,UmuOdd,mat,A,B,dag);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void TwoSpinWilsonFermion3plus1D<Impl>::DhopInternal(StencilImpl & st,
|
||||
DoubledGaugeField & U,
|
||||
const FermionField &in, FermionField &out,int dag)
|
||||
{
|
||||
DhopInternalSerialComms(st,U,in,out,dag);
|
||||
}
|
||||
|
||||
|
||||
template<class Impl>
|
||||
void TwoSpinWilsonFermion3plus1D<Impl>::DhopInternalOverlappedComms(StencilImpl & st,
|
||||
DoubledGaugeField & U,
|
||||
const FermionField &in, FermionField &out,int dag)
|
||||
{
|
||||
GRID_TRACE("DhopInternalOverlappedComms");
|
||||
Compressor compressor(dag);
|
||||
|
||||
int LLs = in.Grid()->_rdimensions[0];
|
||||
int len = U.Grid()->oSites();
|
||||
|
||||
/////////////////////////////
|
||||
// Start comms // Gather intranode and extra node differentiated??
|
||||
/////////////////////////////
|
||||
{
|
||||
// std::cout << " TwoSpinWilsonFermion3plus1D gather " <<std::endl;
|
||||
GRID_TRACE("Gather");
|
||||
st.HaloExchangeOptGather(in,compressor); // Put the barrier in the routine
|
||||
}
|
||||
|
||||
// std::cout << " TwoSpinWilsonFermion3plus1D Communicate Begin " <<std::endl;
|
||||
std::vector<std::vector<CommsRequest_t> > requests;
|
||||
|
||||
#if 1
|
||||
/////////////////////////////
|
||||
// Overlap with comms
|
||||
/////////////////////////////
|
||||
st.CommunicateBegin(requests);
|
||||
st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
|
||||
#endif
|
||||
|
||||
/////////////////////////////
|
||||
// do the compute interior
|
||||
/////////////////////////////
|
||||
if (dag == DaggerYes) {
|
||||
GRID_TRACE("DhopDagInterior");
|
||||
Kernels::DhopDagKernel(st,U,st.CommBuf(),LLs,U.oSites(),in,out,1,0);
|
||||
} else {
|
||||
GRID_TRACE("DhopInterior");
|
||||
Kernels::DhopKernel (st,U,st.CommBuf(),LLs,U.oSites(),in,out,1,0);
|
||||
}
|
||||
|
||||
//ifdef GRID_ACCELERATED
|
||||
#if 0
|
||||
/////////////////////////////
|
||||
// Overlap with comms -- on GPU the interior kernel call is nonblocking
|
||||
/////////////////////////////
|
||||
st.CommunicateBegin(requests);
|
||||
st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
|
||||
#endif
|
||||
|
||||
|
||||
/////////////////////////////
|
||||
// Complete comms
|
||||
/////////////////////////////
|
||||
// std::cout << " TwoSpinWilsonFermion3plus1D Comms Complete " <<std::endl;
|
||||
st.CommunicateComplete(requests);
|
||||
// traceStop(id);
|
||||
|
||||
/////////////////////////////
|
||||
// do the compute exterior
|
||||
/////////////////////////////
|
||||
{
|
||||
// std::cout << " TwoSpinWilsonFermion3plus1D Comms Merge " <<std::endl;
|
||||
GRID_TRACE("Merge");
|
||||
st.CommsMerge(compressor);
|
||||
}
|
||||
|
||||
|
||||
// std::cout << " TwoSpinWilsonFermion3plus1D Exterior " <<std::endl;
|
||||
if (dag == DaggerYes) {
|
||||
GRID_TRACE("DhopDagExterior");
|
||||
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1);
|
||||
} else {
|
||||
GRID_TRACE("DhopExterior");
|
||||
Kernels::DhopKernel (Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1);
|
||||
}
|
||||
// std::cout << " TwoSpinWilsonFermion3plus1D Done " <<std::endl;
|
||||
}
|
||||
|
||||
|
||||
template<class Impl>
|
||||
void TwoSpinWilsonFermion3plus1D<Impl>::DhopInternalSerialComms(StencilImpl & st,
|
||||
DoubledGaugeField & U,
|
||||
const FermionField &in,
|
||||
FermionField &out,int dag)
|
||||
{
|
||||
GRID_TRACE("DhopInternalSerialComms");
|
||||
Compressor compressor(dag);
|
||||
|
||||
int LLs = in.Grid()->_rdimensions[0];
|
||||
|
||||
// std::cout << " TwoSpinWilsonFermion3plus1D Halo exch " <<std::endl;
|
||||
{
|
||||
GRID_TRACE("HaloExchange");
|
||||
st.HaloExchangeOpt(in,compressor);
|
||||
}
|
||||
|
||||
// std::cout << " TwoSpinWilsonFermion3plus1D Dhop " <<std::endl;
|
||||
if (dag == DaggerYes) {
|
||||
GRID_TRACE("DhopDag");
|
||||
Kernels::DhopDagKernel(st,U,st.CommBuf(),LLs,U.oSites(),in,out);
|
||||
} else {
|
||||
GRID_TRACE("Dhop");
|
||||
Kernels::DhopKernel(st,U,st.CommBuf(),LLs,U.oSites(),in,out);
|
||||
}
|
||||
// std::cout << " TwoSpinWilsonFermion3plus1D Done " <<std::endl;
|
||||
}
|
||||
|
||||
|
||||
template<class Impl>
|
||||
void TwoSpinWilsonFermion3plus1D<Impl>::DhopOE(const FermionField &in, FermionField &out,int dag)
|
||||
{
|
||||
conformable(in.Grid(),FermionRedBlackGrid()); // verifies half grid
|
||||
conformable(in.Grid(),out.Grid()); // drops the cb check
|
||||
|
||||
assert(in.Checkerboard()==Even);
|
||||
out.Checkerboard() = Odd;
|
||||
|
||||
DhopInternal(StencilEven,UmuOdd,in,out,dag);
|
||||
}
|
||||
template<class Impl>
|
||||
void TwoSpinWilsonFermion3plus1D<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
|
||||
{
|
||||
conformable(in.Grid(),FermionRedBlackGrid()); // verifies half grid
|
||||
conformable(in.Grid(),out.Grid()); // drops the cb check
|
||||
|
||||
assert(in.Checkerboard()==Odd);
|
||||
out.Checkerboard() = Even;
|
||||
|
||||
DhopInternal(StencilOdd,UmuEven,in,out,dag);
|
||||
}
|
||||
template<class Impl>
|
||||
void TwoSpinWilsonFermion3plus1D<Impl>::DhopComms(const FermionField &in, FermionField &out)
|
||||
{
|
||||
int dag =0 ;
|
||||
conformable(in.Grid(),FermionGrid()); // verifies full grid
|
||||
conformable(in.Grid(),out.Grid());
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
Compressor compressor(dag);
|
||||
Stencil.HaloExchangeOpt(in,compressor);
|
||||
}
|
||||
template<class Impl>
|
||||
void TwoSpinWilsonFermion3plus1D<Impl>::DhopCalc(const FermionField &in, FermionField &out,uint64_t *ids)
|
||||
{
|
||||
conformable(in.Grid(),FermionGrid()); // verifies full grid
|
||||
conformable(in.Grid(),out.Grid());
|
||||
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
|
||||
int LLs = in.Grid()->_rdimensions[0];
|
||||
Kernels::DhopKernel(Stencil,Umu,Stencil.CommBuf(),LLs,Umu.oSites(),in,out,ids);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void TwoSpinWilsonFermion3plus1D<Impl>::Dhop(const FermionField &in, FermionField &out,int dag)
|
||||
{
|
||||
conformable(in.Grid(),FermionGrid()); // verifies full grid
|
||||
conformable(in.Grid(),out.Grid());
|
||||
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
|
||||
DhopInternal(Stencil,Umu,in,out,dag);
|
||||
}
|
||||
template<class Impl>
|
||||
void TwoSpinWilsonFermion3plus1D<Impl>::DW(const FermionField &in, FermionField &out,int dag)
|
||||
{
|
||||
out.Checkerboard()=in.Checkerboard();
|
||||
Dhop(in,out,dag); // -0.5 is included
|
||||
axpy(out,Nd*1.0-M5,in,out);
|
||||
}
|
||||
template <class Impl>
|
||||
void TwoSpinWilsonFermion3plus1D<Impl>::Meooe(const FermionField &in, FermionField &out)
|
||||
{
|
||||
if (in.Checkerboard() == Odd) {
|
||||
DhopEO(in, out, DaggerNo);
|
||||
} else {
|
||||
DhopOE(in, out, DaggerNo);
|
||||
}
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void TwoSpinWilsonFermion3plus1D<Impl>::MeooeDag(const FermionField &in, FermionField &out)
|
||||
{
|
||||
if (in.Checkerboard() == Odd) {
|
||||
DhopEO(in, out, DaggerYes);
|
||||
} else {
|
||||
DhopOE(in, out, DaggerYes);
|
||||
}
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void TwoSpinWilsonFermion3plus1D<Impl>::Mooee(const FermionField &in, FermionField &out)
|
||||
{
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
typename FermionField::scalar_type scal(Nd*1.0 + M5);
|
||||
out = scal * in;
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void TwoSpinWilsonFermion3plus1D<Impl>::MooeeDag(const FermionField &in, FermionField &out)
|
||||
{
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
Mooee(in, out);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void TwoSpinWilsonFermion3plus1D<Impl>::MooeeInv(const FermionField &in, FermionField &out)
|
||||
{
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
out = (1.0/(Nd*1.0 + M5))*in;
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void TwoSpinWilsonFermion3plus1D<Impl>::MooeeInvDag(const FermionField &in, FermionField &out)
|
||||
{
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
MooeeInv(in,out);
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -0,0 +1,441 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/TwoSpinWilsonKernels.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
////////////////////////////////////////////
|
||||
// Generic implementation; move to different file?
|
||||
////////////////////////////////////////////
|
||||
|
||||
#define GENERIC_STENCIL_LEG(Dir,spProj,Recon) \
|
||||
SE = st.GetEntry(ptype, Dir, sF); \
|
||||
if (SE->_is_local) { \
|
||||
int perm= SE->_permute; \
|
||||
auto tmp = coalescedReadPermute(in[SE->_offset],ptype,perm,lane); \
|
||||
spProj(chi,tmp); \
|
||||
} else { \
|
||||
chi = coalescedRead(buf[SE->_offset],lane); \
|
||||
} \
|
||||
acceleratorSynchronise(); \
|
||||
Impl::multLink(Uchi, U[sU], chi, Dir, SE, st); \
|
||||
Recon(result, Uchi);
|
||||
|
||||
#define GENERIC_STENCIL_LEG_INT(Dir,spProj,Recon) \
|
||||
SE = st.GetEntry(ptype, Dir, sF); \
|
||||
if (SE->_is_local) { \
|
||||
int perm= SE->_permute; \
|
||||
auto tmp = coalescedReadPermute(in[SE->_offset],ptype,perm,lane); \
|
||||
spProj(chi,tmp); \
|
||||
Impl::multLink(Uchi, U[sU], chi, Dir, SE, st); \
|
||||
Recon(result, Uchi); \
|
||||
} \
|
||||
acceleratorSynchronise();
|
||||
|
||||
#define GENERIC_STENCIL_LEG_EXT(Dir,spProj,Recon) \
|
||||
SE = st.GetEntry(ptype, Dir, sF); \
|
||||
if (!SE->_is_local ) { \
|
||||
auto chi = coalescedRead(buf[SE->_offset],lane); \
|
||||
Impl::multLink(Uchi, U[sU], chi, Dir, SE, st); \
|
||||
Recon(result, Uchi); \
|
||||
nmu++; \
|
||||
} \
|
||||
acceleratorSynchronise();
|
||||
|
||||
#define GENERIC_DHOPDIR_LEG_BODY(Dir,spProj,Recon) \
|
||||
if (SE->_is_local ) { \
|
||||
int perm= SE->_permute; \
|
||||
auto tmp = coalescedReadPermute(in[SE->_offset],ptype,perm,lane); \
|
||||
spProj(chi,tmp); \
|
||||
} else { \
|
||||
chi = coalescedRead(buf[SE->_offset],lane); \
|
||||
} \
|
||||
acceleratorSynchronise(); \
|
||||
Impl::multLink(Uchi, U[sU], chi, dir, SE, st); \
|
||||
Recon(result, Uchi);
|
||||
|
||||
#define GENERIC_DHOPDIR_LEG(Dir,spProj,Recon) \
|
||||
if (gamma == Dir) { \
|
||||
GENERIC_DHOPDIR_LEG_BODY(Dir,spProj,Recon); \
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// All legs kernels ; comms then compute
|
||||
////////////////////////////////////////////////////////////////////
|
||||
template <class Impl> accelerator_inline
|
||||
void TwoSpinWilsonKernels<Impl>::DhopSiteDag(StencilView &st, DoubledGaugeFieldView &U,
|
||||
SiteSpinor *buf, int sF,
|
||||
int sU, const FermionFieldView &in, FermionFieldView &out)
|
||||
{
|
||||
typedef decltype(coalescedRead(in[0])) calcSpinor;
|
||||
calcSpinor chi;
|
||||
calcSpinor Uchi;
|
||||
calcSpinor result;
|
||||
StencilEntry *SE;
|
||||
int ptype;
|
||||
const int Nsimd = SiteSpinor::Nsimd();
|
||||
const int lane=acceleratorSIMTlane(Nsimd);
|
||||
GENERIC_STENCIL_LEG(Xp,pauliProjXp,pauliAssign);
|
||||
GENERIC_STENCIL_LEG(Yp,pauliProjYp,pauliAdd);
|
||||
GENERIC_STENCIL_LEG(Zp,pauliProjZp,pauliAdd);
|
||||
GENERIC_STENCIL_LEG(Xm,pauliProjXm,pauliAdd);
|
||||
GENERIC_STENCIL_LEG(Ym,pauliProjYm,pauliAdd);
|
||||
GENERIC_STENCIL_LEG(Zm,pauliProjZm,pauliAdd);
|
||||
coalescedWrite(out[sF],result,lane);
|
||||
};
|
||||
|
||||
template <class Impl> accelerator_inline
|
||||
void TwoSpinWilsonKernels<Impl>::GenericDhopSite(StencilView &st, DoubledGaugeFieldView &U,
|
||||
SiteSpinor *buf, int sF,
|
||||
int sU, const FermionFieldView &in, FermionFieldView &out)
|
||||
{
|
||||
typedef decltype(coalescedRead(in[0])) calcSpinor;
|
||||
calcSpinor chi;
|
||||
// calcSpinor *chi_p;
|
||||
calcSpinor Uchi;
|
||||
calcSpinor result;
|
||||
StencilEntry *SE;
|
||||
int ptype;
|
||||
|
||||
const int Nsimd = SiteSpinor::Nsimd();
|
||||
const int lane=acceleratorSIMTlane(Nsimd);
|
||||
GENERIC_STENCIL_LEG(Xm,pauliProjXp,pauliAssign);
|
||||
GENERIC_STENCIL_LEG(Ym,pauliProjYp,pauliAdd);
|
||||
GENERIC_STENCIL_LEG(Zm,pauliProjZp,pauliAdd);
|
||||
GENERIC_STENCIL_LEG(Xp,pauliProjXm,pauliAdd);
|
||||
GENERIC_STENCIL_LEG(Yp,pauliProjYm,pauliAdd);
|
||||
GENERIC_STENCIL_LEG(Zp,pauliProjZm,pauliAdd);
|
||||
coalescedWrite(out[sF], result,lane);
|
||||
};
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// Interior kernels
|
||||
////////////////////////////////////////////////////////////////////
|
||||
template <class Impl> accelerator_inline
|
||||
void TwoSpinWilsonKernels<Impl>::GenericDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U,
|
||||
SiteSpinor *buf, int sF,
|
||||
int sU, const FermionFieldView &in, FermionFieldView &out)
|
||||
{
|
||||
typedef decltype(coalescedRead(in[0])) calcSpinor;
|
||||
calcSpinor chi;
|
||||
// calcSpinor *chi_p;
|
||||
calcSpinor Uchi;
|
||||
calcSpinor result;
|
||||
StencilEntry *SE;
|
||||
int ptype;
|
||||
const int Nsimd = SiteSpinor::Nsimd();
|
||||
const int lane=acceleratorSIMTlane(Nsimd);
|
||||
|
||||
result=Zero();
|
||||
GENERIC_STENCIL_LEG_INT(Xp,pauliProjXp,pauliAdd);
|
||||
GENERIC_STENCIL_LEG_INT(Yp,pauliProjYp,pauliAdd);
|
||||
GENERIC_STENCIL_LEG_INT(Zp,pauliProjZp,pauliAdd);
|
||||
GENERIC_STENCIL_LEG_INT(Xm,pauliProjXm,pauliAdd);
|
||||
GENERIC_STENCIL_LEG_INT(Ym,pauliProjYm,pauliAdd);
|
||||
GENERIC_STENCIL_LEG_INT(Zm,pauliProjZm,pauliAdd);
|
||||
coalescedWrite(out[sF], result,lane);
|
||||
};
|
||||
|
||||
template <class Impl> accelerator_inline
|
||||
void TwoSpinWilsonKernels<Impl>::GenericDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U,
|
||||
SiteSpinor *buf, int sF,
|
||||
int sU, const FermionFieldView &in, FermionFieldView &out)
|
||||
{
|
||||
typedef decltype(coalescedRead(in[0])) calcSpinor;
|
||||
const int Nsimd = SiteSpinor::Nsimd();
|
||||
const int lane=acceleratorSIMTlane(Nsimd);
|
||||
|
||||
calcSpinor chi;
|
||||
// calcSpinor *chi_p;
|
||||
calcSpinor Uchi;
|
||||
calcSpinor result;
|
||||
StencilEntry *SE;
|
||||
int ptype;
|
||||
result=Zero();
|
||||
GENERIC_STENCIL_LEG_INT(Xm,pauliProjXp,pauliAdd);
|
||||
GENERIC_STENCIL_LEG_INT(Ym,pauliProjYp,pauliAdd);
|
||||
GENERIC_STENCIL_LEG_INT(Zm,pauliProjZp,pauliAdd);
|
||||
GENERIC_STENCIL_LEG_INT(Xp,pauliProjXm,pauliAdd);
|
||||
GENERIC_STENCIL_LEG_INT(Yp,pauliProjYm,pauliAdd);
|
||||
GENERIC_STENCIL_LEG_INT(Zp,pauliProjZm,pauliAdd);
|
||||
coalescedWrite(out[sF], result,lane);
|
||||
};
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// Exterior kernels
|
||||
////////////////////////////////////////////////////////////////////
|
||||
template <class Impl> accelerator_inline
|
||||
void TwoSpinWilsonKernels<Impl>::GenericDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U,
|
||||
SiteSpinor *buf, int sF,
|
||||
int sU, const FermionFieldView &in, FermionFieldView &out)
|
||||
{
|
||||
typedef decltype(coalescedRead(in[0])) calcSpinor;
|
||||
// calcSpinor *chi_p;
|
||||
calcSpinor Uchi;
|
||||
calcSpinor result;
|
||||
StencilEntry *SE;
|
||||
int ptype;
|
||||
int nmu=0;
|
||||
const int Nsimd = SiteSpinor::Nsimd();
|
||||
const int lane=acceleratorSIMTlane(Nsimd);
|
||||
result=Zero();
|
||||
GENERIC_STENCIL_LEG_EXT(Xp,pauliProjXp,pauliAdd);
|
||||
GENERIC_STENCIL_LEG_EXT(Yp,pauliProjYp,pauliAdd);
|
||||
GENERIC_STENCIL_LEG_EXT(Zp,pauliProjZp,pauliAdd);
|
||||
GENERIC_STENCIL_LEG_EXT(Xm,pauliProjXm,pauliAdd);
|
||||
GENERIC_STENCIL_LEG_EXT(Ym,pauliProjYm,pauliAdd);
|
||||
GENERIC_STENCIL_LEG_EXT(Zm,pauliProjZm,pauliAdd);
|
||||
if ( nmu ) {
|
||||
auto out_t = coalescedRead(out[sF],lane);
|
||||
out_t = out_t + result;
|
||||
coalescedWrite(out[sF],out_t,lane);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Impl> accelerator_inline
|
||||
void TwoSpinWilsonKernels<Impl>::GenericDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U,
|
||||
SiteSpinor *buf, int sF,
|
||||
int sU, const FermionFieldView &in, FermionFieldView &out)
|
||||
{
|
||||
typedef decltype(coalescedRead(in[0])) calcSpinor;
|
||||
// calcSpinor *chi_p;
|
||||
calcSpinor Uchi;
|
||||
calcSpinor result;
|
||||
StencilEntry *SE;
|
||||
int ptype;
|
||||
int nmu=0;
|
||||
const int Nsimd = SiteSpinor::Nsimd();
|
||||
const int lane=acceleratorSIMTlane(Nsimd);
|
||||
result=Zero();
|
||||
GENERIC_STENCIL_LEG_EXT(Xm,pauliProjXp,pauliAdd);
|
||||
GENERIC_STENCIL_LEG_EXT(Ym,pauliProjYp,pauliAdd);
|
||||
GENERIC_STENCIL_LEG_EXT(Zm,pauliProjZp,pauliAdd);
|
||||
GENERIC_STENCIL_LEG_EXT(Xp,pauliProjXm,pauliAdd);
|
||||
GENERIC_STENCIL_LEG_EXT(Yp,pauliProjYm,pauliAdd);
|
||||
GENERIC_STENCIL_LEG_EXT(Zp,pauliProjZm,pauliAdd);
|
||||
if ( nmu ) {
|
||||
auto out_t = coalescedRead(out[sF],lane);
|
||||
out_t = out_t + result;
|
||||
coalescedWrite(out[sF],out_t,lane);
|
||||
}
|
||||
};
|
||||
|
||||
#define DhopDirMacro(Dir,spProj,spRecon) \
|
||||
template <class Impl> accelerator_inline \
|
||||
void TwoSpinWilsonKernels<Impl>::DhopDir##Dir(StencilView &st, DoubledGaugeFieldView &U,SiteSpinor *buf, int sF, \
|
||||
int sU, const FermionFieldView &in, FermionFieldView &out, int dir) \
|
||||
{ \
|
||||
typedef decltype(coalescedRead(in[0])) calcSpinor; \
|
||||
calcSpinor chi; \
|
||||
calcSpinor result; \
|
||||
calcSpinor Uchi; \
|
||||
StencilEntry *SE; \
|
||||
int ptype; \
|
||||
const int Nsimd = SiteSpinor::Nsimd(); \
|
||||
const int lane=acceleratorSIMTlane(Nsimd); \
|
||||
\
|
||||
SE = st.GetEntry(ptype, dir, sF); \
|
||||
GENERIC_DHOPDIR_LEG_BODY(Dir,spProj,spRecon); \
|
||||
coalescedWrite(out[sF], result,lane); \
|
||||
}
|
||||
|
||||
DhopDirMacro(Xp,pauliProjXp,pauliAssign);
|
||||
DhopDirMacro(Yp,pauliProjYp,pauliAssign);
|
||||
DhopDirMacro(Zp,pauliProjZp,pauliAssign);
|
||||
DhopDirMacro(Xm,pauliProjXm,pauliAssign);
|
||||
DhopDirMacro(Ym,pauliProjYm,pauliAssign);
|
||||
DhopDirMacro(Zm,pauliProjZm,pauliAssign);
|
||||
|
||||
template <class Impl> accelerator_inline
|
||||
void TwoSpinWilsonKernels<Impl>::DhopDirK( StencilView &st, DoubledGaugeFieldView &U,SiteSpinor *buf, int sF,
|
||||
int sU, const FermionFieldView &in, FermionFieldView &out, int dir, int gamma)
|
||||
{
|
||||
typedef decltype(coalescedRead(in[0])) calcSpinor;
|
||||
calcSpinor chi;
|
||||
calcSpinor result;
|
||||
calcSpinor Uchi;
|
||||
StencilEntry *SE;
|
||||
int ptype;
|
||||
const int Nsimd = SiteSpinor::Nsimd();
|
||||
const int lane=acceleratorSIMTlane(Nsimd);
|
||||
|
||||
SE = st.GetEntry(ptype, dir, sF);
|
||||
GENERIC_DHOPDIR_LEG(Xp,pauliProjXp,pauliAssign);
|
||||
GENERIC_DHOPDIR_LEG(Yp,pauliProjYp,pauliAssign);
|
||||
GENERIC_DHOPDIR_LEG(Zp,pauliProjZp,pauliAssign);
|
||||
GENERIC_DHOPDIR_LEG(Xm,pauliProjXm,pauliAssign);
|
||||
GENERIC_DHOPDIR_LEG(Ym,pauliProjYm,pauliAssign);
|
||||
GENERIC_DHOPDIR_LEG(Zm,pauliProjZm,pauliAssign);
|
||||
coalescedWrite(out[sF], result,lane);
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void TwoSpinWilsonKernels<Impl>::DhopDirAll( StencilImpl &st, DoubledGaugeField &U,SiteSpinor *buf, int Ls,
|
||||
int Nsite, const FermionField &in, std::vector<FermionField> &out)
|
||||
{
|
||||
autoView(U_v ,U,AcceleratorRead);
|
||||
autoView(in_v ,in,AcceleratorRead);
|
||||
autoView(st_v ,st,AcceleratorRead);
|
||||
|
||||
autoView(out_Xm,out[0],AcceleratorWrite);
|
||||
autoView(out_Ym,out[1],AcceleratorWrite);
|
||||
autoView(out_Zm,out[2],AcceleratorWrite);
|
||||
autoView(out_Xp,out[4],AcceleratorWrite);
|
||||
autoView(out_Yp,out[5],AcceleratorWrite);
|
||||
autoView(out_Zp,out[6],AcceleratorWrite);
|
||||
auto CBp=st.CommBuf();
|
||||
accelerator_for(sss,Nsite*Ls,Simd::Nsimd(),{
|
||||
int sU=sss/Ls;
|
||||
int sF =sss;
|
||||
DhopDirXm(st_v,U_v,CBp,sF,sU,in_v,out_Xm,0);
|
||||
DhopDirYm(st_v,U_v,CBp,sF,sU,in_v,out_Ym,1);
|
||||
DhopDirZm(st_v,U_v,CBp,sF,sU,in_v,out_Zm,2);
|
||||
DhopDirXp(st_v,U_v,CBp,sF,sU,in_v,out_Xp,3);
|
||||
DhopDirYp(st_v,U_v,CBp,sF,sU,in_v,out_Yp,4);
|
||||
DhopDirZp(st_v,U_v,CBp,sF,sU,in_v,out_Zp,5);
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
template <class Impl>
|
||||
void TwoSpinWilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,SiteSpinor *buf, int Ls,
|
||||
int Nsite, const FermionField &in, FermionField &out, int dirdisp, int gamma)
|
||||
{
|
||||
assert(dirdisp<=5);
|
||||
assert(dirdisp>=0);
|
||||
|
||||
autoView(U_v ,U ,AcceleratorRead);
|
||||
autoView(in_v ,in ,AcceleratorRead);
|
||||
autoView(out_v,out,AcceleratorWrite);
|
||||
autoView(st_v ,st ,AcceleratorRead);
|
||||
auto CBp=st.CommBuf();
|
||||
#define LoopBody(Dir) \
|
||||
case Dir : \
|
||||
accelerator_for(ss,Nsite,Simd::Nsimd(),{ \
|
||||
for(int s=0;s<Ls;s++){ \
|
||||
int sU=ss; \
|
||||
int sF = s+Ls*sU; \
|
||||
DhopDir##Dir(st_v,U_v,CBp,sF,sU,in_v,out_v,dirdisp);\
|
||||
} \
|
||||
}); \
|
||||
break;
|
||||
|
||||
switch(gamma){
|
||||
LoopBody(Xp);
|
||||
LoopBody(Yp);
|
||||
LoopBody(Zp);
|
||||
|
||||
LoopBody(Xm);
|
||||
LoopBody(Ym);
|
||||
LoopBody(Zm);
|
||||
default:
|
||||
assert(0);
|
||||
break;
|
||||
}
|
||||
#undef LoopBody
|
||||
}
|
||||
|
||||
|
||||
#define KERNEL_CALLNB(A) \
|
||||
const uint64_t NN = Nsite*Ls; \
|
||||
accelerator_forNB( ss, NN, Simd::Nsimd(), { \
|
||||
int sF = ss; \
|
||||
int sU = ss/Ls; \
|
||||
TwoSpinWilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,in_v,out_v); \
|
||||
});
|
||||
|
||||
#define KERNEL_CALL(A) KERNEL_CALLNB(A); accelerator_barrier();
|
||||
|
||||
#define KERNEL_CALL_EXT(A) \
|
||||
const uint64_t sz = st.surface_list.size(); \
|
||||
auto ptr = &st.surface_list[0]; \
|
||||
accelerator_forNB( ss, sz, Simd::Nsimd(), { \
|
||||
int sF = ptr[ss]; \
|
||||
int sU = sF/Ls; \
|
||||
TwoSpinWilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,in_v,out_v); \
|
||||
}); \
|
||||
accelerator_barrier();
|
||||
|
||||
|
||||
template <class Impl>
|
||||
void TwoSpinWilsonKernels<Impl>::DhopKernel(StencilImpl &st, DoubledGaugeField &U, SiteSpinor * buf,
|
||||
int Ls, int Nsite, const FermionField &in, FermionField &out,
|
||||
int interior,int exterior)
|
||||
{
|
||||
autoView(U_v , U,AcceleratorRead);
|
||||
autoView(in_v , in,AcceleratorRead);
|
||||
autoView(out_v,out,AcceleratorWrite);
|
||||
autoView(st_v , st,AcceleratorRead);
|
||||
|
||||
if( interior && exterior ) {
|
||||
acceleratorFenceComputeStream();
|
||||
KERNEL_CALL(GenericDhopSite);
|
||||
return;
|
||||
} else if( interior ) {
|
||||
KERNEL_CALLNB(GenericDhopSiteInt);
|
||||
return;
|
||||
} else if( exterior ) {
|
||||
// // dependent on result of merge
|
||||
acceleratorFenceComputeStream();
|
||||
KERNEL_CALL_EXT(GenericDhopSiteExt);
|
||||
return;
|
||||
}
|
||||
assert(0 && " Kernel optimisation case not covered ");
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void TwoSpinWilsonKernels<Impl>::DhopDagKernel(StencilImpl &st, DoubledGaugeField &U, SiteSpinor * buf,
|
||||
int Ls, int Nsite, const FermionField &in, FermionField &out,
|
||||
int interior,int exterior)
|
||||
{
|
||||
autoView(U_v ,U,AcceleratorRead);
|
||||
autoView(in_v ,in,AcceleratorRead);
|
||||
autoView(out_v,out,AcceleratorWrite);
|
||||
autoView(st_v ,st,AcceleratorRead);
|
||||
|
||||
if( interior && exterior ) {
|
||||
acceleratorFenceComputeStream();
|
||||
KERNEL_CALL(GenericDhopSiteDag);
|
||||
return;
|
||||
} else if( interior ) {
|
||||
KERNEL_CALLNB(GenericDhopSiteDagInt); return;
|
||||
} else if( exterior ) {
|
||||
// Dependent on result of merge
|
||||
acceleratorFenceComputeStream();
|
||||
KERNEL_CALL_EXT(GenericDhopSiteDagExt); return;
|
||||
}
|
||||
assert(0 && " Kernel optimisation case not covered ");
|
||||
}
|
||||
|
||||
#undef KERNEL_CALLNB
|
||||
#undef KERNEL_CALL
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
@@ -61,7 +61,7 @@ WilsonCloverFermion<Impl, CloverHelpers>::WilsonCloverFermion(GaugeField&
|
||||
diag_mass = _mass + 1.0 + (Nd - 1) * (clover_anisotropy.nu / clover_anisotropy.xi_0);
|
||||
} else {
|
||||
csw_r = _csw_r * 0.5;
|
||||
diag_mass = 4.0 + _mass;
|
||||
diag_mass = Nd*1.0 + _mass;
|
||||
}
|
||||
csw_t = _csw_t * 0.5;
|
||||
|
||||
@@ -297,9 +297,9 @@ void WilsonCloverFermion<Impl, CloverHelpers>::MDeriv(GaugeField &force, const F
|
||||
{
|
||||
if (mu == nu)
|
||||
continue;
|
||||
|
||||
|
||||
RealD factor;
|
||||
if (nu == 4 || mu == 4)
|
||||
if (nu == (Nd-1) || mu == (Nd-1)) // This was a bug - surely mu/nu is NEVER 4 but rather (Nd-1)=3 ??
|
||||
{
|
||||
factor = 2.0 * csw_t;
|
||||
}
|
||||
@@ -307,9 +307,11 @@ void WilsonCloverFermion<Impl, CloverHelpers>::MDeriv(GaugeField &force, const F
|
||||
{
|
||||
factor = 2.0 * csw_r;
|
||||
}
|
||||
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
|
||||
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
|
||||
force_mu -= factor*CloverHelpers::Cmunu(U, lambda, mu, nu); // checked
|
||||
if ( mu < Nd && nu < Nd ) { // Allow to restrict range to Nd=3, but preserve orders of SigmaMuNu in table by counting ALL
|
||||
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
|
||||
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
|
||||
force_mu -= factor*CloverHelpers::Cmunu(U, lambda, mu, nu); // checked
|
||||
}
|
||||
count++;
|
||||
}
|
||||
|
||||
|
||||
@@ -14,6 +14,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
|
||||
Author: Vera Guelpers <V.M.Guelpers@soton.ac.uk>
|
||||
Author: Christoph Lehner <christoph@lhnr.de>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@@ -62,10 +63,10 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
|
||||
Dirichlet(0)
|
||||
{
|
||||
// some assertions
|
||||
assert(FiveDimGrid._ndimension==5);
|
||||
assert(FourDimGrid._ndimension==4);
|
||||
assert(FourDimRedBlackGrid._ndimension==4);
|
||||
assert(FiveDimRedBlackGrid._ndimension==5);
|
||||
assert(FiveDimGrid._ndimension==Nd+1);
|
||||
assert(FourDimGrid._ndimension==Nd);
|
||||
assert(FourDimRedBlackGrid._ndimension==Nd);
|
||||
assert(FiveDimRedBlackGrid._ndimension==Nd+1);
|
||||
assert(FiveDimRedBlackGrid._checker_dim==1); // Don't checker the s direction
|
||||
|
||||
// extent of fifth dim and not spread out
|
||||
@@ -75,7 +76,7 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
|
||||
assert(FiveDimRedBlackGrid._processors[0] ==1);
|
||||
|
||||
// Other dimensions must match the decomposition of the four-D fields
|
||||
for(int d=0;d<4;d++){
|
||||
for(int d=0;d<Nd;d++){
|
||||
|
||||
assert(FiveDimGrid._processors[d+1] ==FourDimGrid._processors[d]);
|
||||
assert(FiveDimRedBlackGrid._processors[d+1] ==FourDimGrid._processors[d]);
|
||||
@@ -92,11 +93,13 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
|
||||
|
||||
if ( p.dirichlet.size() == Nd+1) {
|
||||
Coordinate block = p.dirichlet;
|
||||
if ( block[0] || block[1] || block[2] || block[3] || block[4] ){
|
||||
Dirichlet = 1;
|
||||
std::cout << GridLogMessage << " WilsonFermion: non-trivial Dirichlet condition "<< block << std::endl;
|
||||
std::cout << GridLogMessage << " WilsonFermion: partial Dirichlet "<< p.partialDirichlet << std::endl;
|
||||
Block = block;
|
||||
for(int d=0;d<Nd+1;d++) {
|
||||
if ( block[d] ){
|
||||
Dirichlet = 1;
|
||||
std::cout << GridLogMessage << " WilsonFermion: non-trivial Dirichlet condition "<< block << std::endl;
|
||||
std::cout << GridLogMessage << " WilsonFermion: partial Dirichlet "<< p.partialDirichlet << std::endl;
|
||||
Block = block;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
Coordinate block(Nd+1,0);
|
||||
@@ -111,7 +114,7 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
|
||||
assert(FiveDimGrid._simd_layout[0] ==nsimd);
|
||||
assert(FiveDimRedBlackGrid._simd_layout[0]==nsimd);
|
||||
|
||||
for(int d=0;d<4;d++){
|
||||
for(int d=0;d<Nd;d++){
|
||||
assert(FourDimGrid._simd_layout[d]==1);
|
||||
assert(FourDimRedBlackGrid._simd_layout[d]==1);
|
||||
assert(FiveDimRedBlackGrid._simd_layout[d+1]==1);
|
||||
@@ -182,8 +185,8 @@ void WilsonFermion5D<Impl>::DhopDir(const FermionField &in, FermionField &out,in
|
||||
// assert( (dir>=0)&&(dir<4) ); //must do x,y,z or t;
|
||||
|
||||
int skip = (disp==1) ? 0 : 1;
|
||||
int dirdisp = dir+skip*4;
|
||||
int gamma = dir+(1-skip)*4;
|
||||
int dirdisp = dir+skip*Nd;
|
||||
int gamma = dir+(1-skip)*Nd;
|
||||
|
||||
Compressor compressor(DaggerNo);
|
||||
Stencil.HaloExchange(in,compressor);
|
||||
@@ -325,29 +328,25 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st,
|
||||
// Start comms // Gather intranode and extra node differentiated??
|
||||
/////////////////////////////
|
||||
{
|
||||
std::cout << " WilsonFermion5D gather " <<std::endl;
|
||||
// std::cout << " WilsonFermion5D gather " <<std::endl;
|
||||
GRID_TRACE("Gather");
|
||||
st.HaloExchangeOptGather(in,compressor); // Put the barrier in the routine
|
||||
}
|
||||
|
||||
std::cout << " WilsonFermion5D Communicate Begin " <<std::endl;
|
||||
// std::cout << " WilsonFermion5D Communicate Begin " <<std::endl;
|
||||
std::vector<std::vector<CommsRequest_t> > requests;
|
||||
auto id=traceStart("Communicate overlapped");
|
||||
st.CommunicateBegin(requests);
|
||||
|
||||
#if 1
|
||||
/////////////////////////////
|
||||
// Overlap with comms
|
||||
/////////////////////////////
|
||||
{
|
||||
std::cout << " WilsonFermion5D Comms merge " <<std::endl;
|
||||
GRID_TRACE("MergeSHM");
|
||||
st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
|
||||
}
|
||||
|
||||
st.CommunicateBegin(requests);
|
||||
st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
|
||||
#endif
|
||||
|
||||
/////////////////////////////
|
||||
// do the compute interior
|
||||
/////////////////////////////
|
||||
std::cout << " WilsonFermion5D Interior " <<std::endl;
|
||||
int Opt = WilsonKernelsStatic::Opt; // Why pass this. Kernels should know
|
||||
if (dag == DaggerYes) {
|
||||
GRID_TRACE("DhopDagInterior");
|
||||
@@ -356,25 +355,35 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st,
|
||||
GRID_TRACE("DhopInterior");
|
||||
Kernels::DhopKernel (Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,1,0);
|
||||
}
|
||||
|
||||
|
||||
//ifdef GRID_ACCELERATED
|
||||
#if 0
|
||||
/////////////////////////////
|
||||
// Overlap with comms -- on GPU the interior kernel call is nonblocking
|
||||
/////////////////////////////
|
||||
st.CommunicateBegin(requests);
|
||||
st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
|
||||
#endif
|
||||
|
||||
|
||||
/////////////////////////////
|
||||
// Complete comms
|
||||
/////////////////////////////
|
||||
std::cout << " WilsonFermion5D Comms Complete " <<std::endl;
|
||||
// std::cout << " WilsonFermion5D Comms Complete " <<std::endl;
|
||||
st.CommunicateComplete(requests);
|
||||
traceStop(id);
|
||||
// traceStop(id);
|
||||
|
||||
/////////////////////////////
|
||||
// do the compute exterior
|
||||
/////////////////////////////
|
||||
{
|
||||
std::cout << " WilsonFermion5D Comms Merge " <<std::endl;
|
||||
// std::cout << " WilsonFermion5D Comms Merge " <<std::endl;
|
||||
GRID_TRACE("Merge");
|
||||
st.CommsMerge(compressor);
|
||||
}
|
||||
|
||||
|
||||
std::cout << " WilsonFermion5D Exterior " <<std::endl;
|
||||
// std::cout << " WilsonFermion5D Exterior " <<std::endl;
|
||||
if (dag == DaggerYes) {
|
||||
GRID_TRACE("DhopDagExterior");
|
||||
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1);
|
||||
@@ -382,7 +391,7 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st,
|
||||
GRID_TRACE("DhopExterior");
|
||||
Kernels::DhopKernel (Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1);
|
||||
}
|
||||
std::cout << " WilsonFermion5D Done " <<std::endl;
|
||||
// std::cout << " WilsonFermion5D Done " <<std::endl;
|
||||
}
|
||||
|
||||
|
||||
@@ -397,13 +406,13 @@ void WilsonFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st,
|
||||
|
||||
int LLs = in.Grid()->_rdimensions[0];
|
||||
|
||||
std::cout << " WilsonFermion5D Halo exch " <<std::endl;
|
||||
// std::cout << " WilsonFermion5D Halo exch " <<std::endl;
|
||||
{
|
||||
GRID_TRACE("HaloExchange");
|
||||
st.HaloExchangeOpt(in,compressor);
|
||||
}
|
||||
|
||||
std::cout << " WilsonFermion5D Dhop " <<std::endl;
|
||||
// std::cout << " WilsonFermion5D Dhop " <<std::endl;
|
||||
int Opt = WilsonKernelsStatic::Opt;
|
||||
if (dag == DaggerYes) {
|
||||
GRID_TRACE("DhopDag");
|
||||
@@ -412,7 +421,7 @@ void WilsonFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st,
|
||||
GRID_TRACE("Dhop");
|
||||
Kernels::DhopKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out);
|
||||
}
|
||||
std::cout << " WilsonFermion5D Done " <<std::endl;
|
||||
// std::cout << " WilsonFermion5D Done " <<std::endl;
|
||||
}
|
||||
|
||||
|
||||
@@ -438,6 +447,29 @@ void WilsonFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int
|
||||
|
||||
DhopInternal(StencilOdd,UmuEven,in,out,dag);
|
||||
}
|
||||
template<class Impl>
|
||||
void WilsonFermion5D<Impl>::DhopComms(const FermionField &in, FermionField &out)
|
||||
{
|
||||
int dag =0 ;
|
||||
conformable(in.Grid(),FermionGrid()); // verifies full grid
|
||||
conformable(in.Grid(),out.Grid());
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
Compressor compressor(dag);
|
||||
Stencil.HaloExchangeOpt(in,compressor);
|
||||
}
|
||||
template<class Impl>
|
||||
void WilsonFermion5D<Impl>::DhopCalc(const FermionField &in, FermionField &out,uint64_t *ids)
|
||||
{
|
||||
conformable(in.Grid(),FermionGrid()); // verifies full grid
|
||||
conformable(in.Grid(),out.Grid());
|
||||
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
|
||||
int LLs = in.Grid()->_rdimensions[0];
|
||||
int Opt = WilsonKernelsStatic::Opt;
|
||||
Kernels::DhopKernel(Opt,Stencil,Umu,Stencil.CommBuf(),LLs,Umu.oSites(),in,out,ids);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void WilsonFermion5D<Impl>::Dhop(const FermionField &in, FermionField &out,int dag)
|
||||
{
|
||||
@@ -453,7 +485,55 @@ void WilsonFermion5D<Impl>::DW(const FermionField &in, FermionField &out,int dag
|
||||
{
|
||||
out.Checkerboard()=in.Checkerboard();
|
||||
Dhop(in,out,dag); // -0.5 is included
|
||||
axpy(out,4.0-M5,in,out);
|
||||
axpy(out,Nd*1.0-M5,in,out);
|
||||
}
|
||||
template <class Impl>
|
||||
void WilsonFermion5D<Impl>::Meooe(const FermionField &in, FermionField &out)
|
||||
{
|
||||
if (in.Checkerboard() == Odd) {
|
||||
DhopEO(in, out, DaggerNo);
|
||||
} else {
|
||||
DhopOE(in, out, DaggerNo);
|
||||
}
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void WilsonFermion5D<Impl>::MeooeDag(const FermionField &in, FermionField &out)
|
||||
{
|
||||
if (in.Checkerboard() == Odd) {
|
||||
DhopEO(in, out, DaggerYes);
|
||||
} else {
|
||||
DhopOE(in, out, DaggerYes);
|
||||
}
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void WilsonFermion5D<Impl>::Mooee(const FermionField &in, FermionField &out)
|
||||
{
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
typename FermionField::scalar_type scal(Nd*1.0 + M5);
|
||||
out = scal * in;
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void WilsonFermion5D<Impl>::MooeeDag(const FermionField &in, FermionField &out)
|
||||
{
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
Mooee(in, out);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void WilsonFermion5D<Impl>::MooeeInv(const FermionField &in, FermionField &out)
|
||||
{
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
out = (1.0/(Nd*1.0 + M5))*in;
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void WilsonFermion5D<Impl>::MooeeInvDag(const FermionField &in, FermionField &out)
|
||||
{
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
MooeeInv(in,out);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
@@ -557,7 +637,7 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt_5d(FermionField &out,const
|
||||
A = one / (abs(W) * sinha * 2.0) * one / (sinhaLs * 2.0);
|
||||
F = eaLs * (one - Wea + (Wema - one) * mass*mass);
|
||||
F = F + emaLs * (Wema - one + (one - Wea) * mass*mass);
|
||||
F = F - abs(W) * sinha * 4.0 * mass;
|
||||
F = F - abs(W) * sinha * (Nd* 1.0) * mass;
|
||||
|
||||
Bpp = (A/F) * (ema2Ls - one) * (one - Wema) * (one - mass*mass * one);
|
||||
Bmm = (A/F) * (one - ea2Ls) * (one - Wea) * (one - mass*mass * one);
|
||||
@@ -740,6 +820,15 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt(FermionField &out,const Fe
|
||||
|
||||
template<class Impl>
|
||||
void WilsonFermion5D<Impl>::MomentumSpacePropagatorHw(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist)
|
||||
{
|
||||
std::vector<double> empty_q(Nd,0.0);
|
||||
MomentumSpacePropagatorHwQ(out,in,mass,twist,empty_q);
|
||||
}
|
||||
template<class Impl>
|
||||
void WilsonFermion5D<Impl>::MomentumSpacePropagatorHwQ(FermionField &out,const FermionField &in,
|
||||
RealD mass,
|
||||
std::vector<double> twist,
|
||||
std::vector<double> qmu)
|
||||
{
|
||||
Gamma::Algebra Gmu [] = {
|
||||
Gamma::Algebra::GammaX,
|
||||
@@ -755,6 +844,7 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHw(FermionField &out,const Fe
|
||||
typedef typename FermionField::scalar_type ScalComplex;
|
||||
|
||||
typedef Lattice<iSinglet<vector_type> > LatComplex;
|
||||
typedef iSpinMatrix<ScalComplex> SpinMat;
|
||||
|
||||
|
||||
Coordinate latt_size = _grid->_fdimensions;
|
||||
@@ -772,8 +862,10 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHw(FermionField &out,const Fe
|
||||
LatComplex kmu(_grid);
|
||||
ScalComplex ci(0.0,1.0);
|
||||
|
||||
std::cout<< "Feynman Rule" << "qmu ("<<qmu[0]<<","<<qmu[1]<<","<<qmu[2]<<","<<qmu[3]<<")"<<std::endl;
|
||||
|
||||
for(int mu=0;mu<Nd;mu++) {
|
||||
|
||||
|
||||
LatticeCoordinate(kmu,mu);
|
||||
|
||||
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
|
||||
@@ -782,9 +874,18 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHw(FermionField &out,const Fe
|
||||
kmu = kmu + TwoPiL * one * twist[mu];//momentum for twisted boundary conditions
|
||||
|
||||
sk2 = sk2 + 2.0*sin(kmu*0.5)*sin(kmu*0.5);
|
||||
sk = sk + sin(kmu)*sin(kmu);
|
||||
|
||||
num = num - sin(kmu)*ci*(Gamma(Gmu[mu])*in);
|
||||
sk = sk + (sin(kmu)+qmu[mu])*(sin(kmu)+qmu[mu]);
|
||||
|
||||
// Terms for boosted Fermion
|
||||
// 1/2 [ -i gamma.(sin p + q ) ]
|
||||
// [ --------------------- + 1 ]
|
||||
// [ wq + b ]
|
||||
//
|
||||
// wq = sqrt( (sinp+q)^2 + b^2 )
|
||||
//
|
||||
|
||||
num = num - (sin(kmu)+qmu[mu])*ci*(Gamma(Gmu[mu])*in);
|
||||
|
||||
}
|
||||
num = num + mass * in ;
|
||||
|
||||
@@ -63,7 +63,7 @@ WilsonFermion<Impl>::WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
|
||||
if (anisotropyCoeff.isAnisotropic){
|
||||
diag_mass = mass + 1.0 + (Nd-1)*(anisotropyCoeff.nu / anisotropyCoeff.xi_0);
|
||||
} else {
|
||||
diag_mass = 4.0 + mass;
|
||||
diag_mass = Nd*1.0 + mass;
|
||||
}
|
||||
|
||||
int vol4;
|
||||
@@ -354,8 +354,8 @@ void WilsonFermion<Impl>::DhopDir(const FermionField &in, FermionField &out, int
|
||||
Stencil.HaloExchange(in, compressor);
|
||||
|
||||
int skip = (disp == 1) ? 0 : 1;
|
||||
int dirdisp = dir + skip * 4;
|
||||
int gamma = dir + (1 - skip) * 4;
|
||||
int dirdisp = dir + skip * Nd;
|
||||
int gamma = dir + (1 - skip) * Nd;
|
||||
|
||||
DhopDirCalc(in, out, dirdisp, gamma, DaggerNo);
|
||||
};
|
||||
@@ -370,8 +370,8 @@ void WilsonFermion<Impl>::DhopDirAll(const FermionField &in, std::vector<Fermion
|
||||
for(int disp=-1;disp<=1;disp+=2){
|
||||
|
||||
int skip = (disp == 1) ? 0 : 1;
|
||||
int dirdisp = dir + skip * 4;
|
||||
int gamma = dir + (1 - skip) * 4;
|
||||
int dirdisp = dir + skip * Nd;
|
||||
int gamma = dir + (1 - skip) * Nd;
|
||||
|
||||
DhopDirCalc(in, out[dirdisp], dirdisp, gamma, DaggerNo);
|
||||
}
|
||||
|
||||
@@ -97,7 +97,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
distance = st._distances[DIR]; \
|
||||
sl = st._simd_layout[direction]; \
|
||||
inplace_twist = 0; \
|
||||
if(SE->_around_the_world && st.parameters.twists[DIR % 4]){ \
|
||||
if(SE->_around_the_world && st.parameters.twists[DIR % Nd]){ \
|
||||
if(sl == 1){ \
|
||||
g = (F+1) % 2; \
|
||||
}else{ \
|
||||
|
||||
@@ -63,7 +63,7 @@ accelerator_inline void get_stencil(StencilEntry * mem, StencilEntry &chip)
|
||||
} else { \
|
||||
chi = coalescedRead(buf[SE->_offset],lane); \
|
||||
} \
|
||||
acceleratorSynchronise(); \
|
||||
acceleratorSynchronise(); \
|
||||
Impl::multLink(Uchi, U[sU], chi, Dir, SE, st); \
|
||||
Recon(result, Uchi);
|
||||
|
||||
@@ -411,6 +411,46 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
|
||||
#undef LoopBody
|
||||
}
|
||||
|
||||
#ifdef GRID_SYCL
|
||||
extern "C" {
|
||||
ulong SYCL_EXTERNAL __attribute__((overloadable)) intel_get_cycle_counter( void );
|
||||
uint SYCL_EXTERNAL __attribute__((overloadable)) intel_get_active_channel_mask( void );
|
||||
uint SYCL_EXTERNAL __attribute__((overloadable)) intel_get_grf_register( uint reg );
|
||||
uint SYCL_EXTERNAL __attribute__((overloadable)) intel_get_flag_register( uint flag );
|
||||
uint SYCL_EXTERNAL __attribute__((overloadable)) intel_get_control_register( uint reg );
|
||||
uint SYCL_EXTERNAL __attribute__((overloadable)) intel_get_hw_thread_id( void );
|
||||
uint SYCL_EXTERNAL __attribute__((overloadable)) intel_get_slice_id( void );
|
||||
uint SYCL_EXTERNAL __attribute__((overloadable)) intel_get_subslice_id( void );
|
||||
uint SYCL_EXTERNAL __attribute__((overloadable)) intel_get_eu_id( void );
|
||||
uint SYCL_EXTERNAL __attribute__((overloadable)) intel_get_eu_thread_id( void );
|
||||
void SYCL_EXTERNAL __attribute__((overloadable)) intel_eu_thread_pause( uint value );
|
||||
}
|
||||
#ifdef GRID_SIMT
|
||||
#define MAKE_ID(A) (intel_get_eu_id()<<16)|(intel_get_slice_id()<<8)|(intel_get_subslice_id())
|
||||
#else
|
||||
#define MAKE_ID(A) (0)
|
||||
#endif
|
||||
|
||||
#else
|
||||
|
||||
#define MAKE_ID(A) (0)
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
#define KERNEL_CALL_ID(A) \
|
||||
const uint64_t NN = Nsite*Ls; \
|
||||
accelerator_forNB( ss, NN, Simd::Nsimd(), { \
|
||||
int sF = ss; \
|
||||
int sU = ss/Ls; \
|
||||
WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,in_v,out_v); \
|
||||
const int Nsimd = SiteHalfSpinor::Nsimd(); \
|
||||
const int lane=acceleratorSIMTlane(Nsimd); \
|
||||
int idx=sF*Nsimd+lane; \
|
||||
uint64_t id = MAKE_ID(); \
|
||||
ids[idx]=id; \
|
||||
}); \
|
||||
accelerator_barrier();
|
||||
|
||||
#define KERNEL_CALLNB(A) \
|
||||
const uint64_t NN = Nsite*Ls; \
|
||||
@@ -418,7 +458,7 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
|
||||
int sF = ss; \
|
||||
int sU = ss/Ls; \
|
||||
WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,in_v,out_v); \
|
||||
});
|
||||
});
|
||||
|
||||
#define KERNEL_CALL(A) KERNEL_CALLNB(A); accelerator_barrier();
|
||||
|
||||
@@ -451,6 +491,8 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
|
||||
WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,Ls,1,in_v,out_v); \
|
||||
});}
|
||||
|
||||
|
||||
|
||||
template <class Impl>
|
||||
void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
|
||||
int Ls, int Nsite, const FermionField &in, FermionField &out,
|
||||
@@ -475,7 +517,7 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
|
||||
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteInt); return;}
|
||||
#endif
|
||||
} else if( exterior ) {
|
||||
// dependent on result of merge
|
||||
// // dependent on result of merge
|
||||
acceleratorFenceComputeStream();
|
||||
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL_EXT(GenericDhopSiteExt); return;}
|
||||
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL_EXT(HandDhopSiteExt); return;}
|
||||
@@ -485,6 +527,18 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
|
||||
}
|
||||
assert(0 && " Kernel optimisation case not covered ");
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
|
||||
int Ls, int Nsite, const FermionField &in, FermionField &out,
|
||||
uint64_t *ids)
|
||||
{
|
||||
autoView(U_v , U,AcceleratorRead);
|
||||
autoView(in_v , in,AcceleratorRead);
|
||||
autoView(out_v,out,AcceleratorWrite);
|
||||
autoView(st_v , st,AcceleratorRead);
|
||||
KERNEL_CALL_ID(GenericDhopSite);
|
||||
}
|
||||
template <class Impl>
|
||||
void WilsonKernels<Impl>::DhopDagKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
|
||||
int Ls, int Nsite, const FermionField &in, FermionField &out,
|
||||
|
||||
@@ -0,0 +1,45 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/ qcd/action/fermion/instantiation/CompactWilsonCloverFermionInstantiation5D.cc.master
|
||||
|
||||
Copyright (C) 2017 - 2025
|
||||
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
|
||||
Author: Mattia Bruno <mattia.bruno@cern.ch>
|
||||
Author: Christoph Lehner <christoph@lhnr.de>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/qcd/spin/Dirac.h>
|
||||
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion5D.h>
|
||||
#include <Grid/qcd/action/fermion/implementation/CompactWilsonCloverFermion5DImplementation.h>
|
||||
#include <Grid/qcd/action/fermion/CloverHelpers.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#include "impl.h"
|
||||
template class CompactWilsonCloverFermion5D<IMPLEMENTATION, CompactCloverHelpers<IMPLEMENTATION>>;
|
||||
template class CompactWilsonCloverFermion5D<IMPLEMENTATION, CompactExpCloverHelpers<IMPLEMENTATION>>;
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
@@ -32,8 +32,30 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
// S-direction is INNERMOST and takes no part in the parity.
|
||||
const std::vector<int> ImprovedStaggeredFermion5DStatic::directions({1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4});
|
||||
const std::vector<int> ImprovedStaggeredFermion5DStatic::displacements({1, 1, 1, 1, -1, -1, -1, -1, 3, 3, 3, 3, -3, -3, -3, -3});
|
||||
const std::vector<int> ImprovedStaggeredFermion5DStatic::directions(ImprovedStaggeredFermion5DStatic::MakeDirections());
|
||||
const std::vector<int> ImprovedStaggeredFermion5DStatic::displacements(ImprovedStaggeredFermion5DStatic::MakeDisplacements());
|
||||
std::vector<int> ImprovedStaggeredFermion5DStatic::MakeDirections(void)
|
||||
{
|
||||
std::vector<int> directions(4*Nd);
|
||||
for(int d=0;d<Nd;d++){
|
||||
directions[d+Nd*0] = d+1;
|
||||
directions[d+Nd*1] = d+1;
|
||||
directions[d+Nd*2] = d+1;
|
||||
directions[d+Nd*3] = d+1;
|
||||
}
|
||||
return directions;
|
||||
}
|
||||
std::vector<int> ImprovedStaggeredFermion5DStatic::MakeDisplacements(void)
|
||||
{
|
||||
std::vector<int> displacements(4*Nd);
|
||||
for(int d=0;d<Nd;d++){
|
||||
displacements[d+Nd*0] =+1;
|
||||
displacements[d+Nd*1] =-1;
|
||||
displacements[d+Nd*2] =+3;
|
||||
displacements[d+Nd*3] =-3;
|
||||
}
|
||||
return displacements;
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
||||
@@ -32,5 +32,26 @@ NAMESPACE_BEGIN(Grid);
|
||||
|
||||
const std::vector<int> ImprovedStaggeredFermionStatic::directions({0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3});
|
||||
const std::vector<int> ImprovedStaggeredFermionStatic::displacements({1, 1, 1, 1, -1, -1, -1, -1, 3, 3, 3, 3, -3, -3, -3, -3});
|
||||
|
||||
std::vector<int> ImprovedStaggeredFermionStatic::MakeDirections(void)
|
||||
{
|
||||
std::vector<int> directions(4*Nd);
|
||||
for(int d=0;d<Nd;d++){
|
||||
directions[d+Nd*0] = d;
|
||||
directions[d+Nd*1] = d;
|
||||
directions[d+Nd*2] = d;
|
||||
directions[d+Nd*3] = d;
|
||||
}
|
||||
return directions;
|
||||
}
|
||||
std::vector<int> ImprovedStaggeredFermionStatic::MakeDisplacements(void)
|
||||
{
|
||||
std::vector<int> displacements(4*Nd);
|
||||
for(int d=0;d<Nd;d++){
|
||||
displacements[d+Nd*0] =+1;
|
||||
displacements[d+Nd*1] =-1;
|
||||
displacements[d+Nd*2] =+3;
|
||||
displacements[d+Nd*3] =-3;
|
||||
}
|
||||
return displacements;
|
||||
}
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
@@ -30,7 +30,27 @@ directory
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
const std::vector<int> NaiveStaggeredFermionStatic::directions({0, 1, 2, 3, 0, 1, 2, 3});
|
||||
const std::vector<int> NaiveStaggeredFermionStatic::displacements({1, 1, 1, 1, -1, -1, -1, -1});
|
||||
//const std::vector<int> NaiveStaggeredFermionStatic::directions({0, 1, 2, 3, 0, 1, 2, 3});
|
||||
//const std::vector<int> NaiveStaggeredFermionStatic::displacements({1, 1, 1, 1, -1, -1, -1, -1});
|
||||
const std::vector<int> NaiveStaggeredFermionStatic::directions(NaiveStaggeredFermionStatic::MakeDirections());
|
||||
const std::vector<int> NaiveStaggeredFermionStatic::displacements(NaiveStaggeredFermionStatic::MakeDisplacements());
|
||||
std::vector<int> NaiveStaggeredFermionStatic::MakeDirections(void)
|
||||
{
|
||||
std::vector<int> directions(4*Nd);
|
||||
for(int d=0;d<Nd;d++){
|
||||
directions[d+Nd*0] = d;
|
||||
directions[d+Nd*1] = d;
|
||||
}
|
||||
return directions;
|
||||
}
|
||||
std::vector<int> NaiveStaggeredFermionStatic::MakeDisplacements(void)
|
||||
{
|
||||
std::vector<int> displacements(4*Nd);
|
||||
for(int d=0;d<Nd;d++){
|
||||
displacements[d+Nd*0] =+1;
|
||||
displacements[d+Nd*1] =-1;
|
||||
}
|
||||
return displacements;
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
@@ -0,0 +1,61 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/TwoSpinWilsonFermion3plus1D.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
// S-direction is INNERMOST and takes no part in the parity.
|
||||
|
||||
const std::vector<int> TwoSpinWilsonFermion3plus1DStatic::directions (TwoSpinWilsonFermion3plus1DStatic::MakeDirections());
|
||||
const std::vector<int> TwoSpinWilsonFermion3plus1DStatic::displacements(TwoSpinWilsonFermion3plus1DStatic::MakeDisplacements());
|
||||
|
||||
std::vector<int> TwoSpinWilsonFermion3plus1DStatic::MakeDirections (void)
|
||||
{
|
||||
std::vector<int> directions(2*Nd);
|
||||
for(int d=0;d<Nd;d++){
|
||||
directions[d] = d+1;
|
||||
directions[d+Nd] = d+1;
|
||||
}
|
||||
return directions;
|
||||
}
|
||||
std::vector<int> TwoSpinWilsonFermion3plus1DStatic::MakeDisplacements(void)
|
||||
{
|
||||
std::vector<int> displacements(2*Nd);
|
||||
for(int d=0;d<Nd;d++){
|
||||
displacements[d] = +1;
|
||||
displacements[d+Nd] = -1;
|
||||
}
|
||||
return displacements;
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
@@ -0,0 +1,40 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/implementation/TwoSpinWilsonFermion3plus1DImplementation.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#include "impl.h"
|
||||
template class TwoSpinWilsonFermion3plus1D<IMPLEMENTATION>;
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
@@ -0,0 +1,40 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
|
||||
|
||||
Copyright (C) 2015, 2020
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/implementation/TwoSpinWilsonKernelsImplementation.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#include "impl.h"
|
||||
template class TwoSpinWilsonKernels<IMPLEMENTATION>;
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
@@ -34,8 +34,28 @@ directory
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
// S-direction is INNERMOST and takes no part in the parity.
|
||||
const std::vector<int> WilsonFermion5DStatic::directions ({1,2,3,4, 1, 2, 3, 4});
|
||||
const std::vector<int> WilsonFermion5DStatic::displacements({1,1,1,1,-1,-1,-1,-1});
|
||||
|
||||
const std::vector<int> WilsonFermion5DStatic::directions (WilsonFermion5DStatic::MakeDirections());
|
||||
const std::vector<int> WilsonFermion5DStatic::displacements(WilsonFermion5DStatic::MakeDisplacements());
|
||||
|
||||
std::vector<int> WilsonFermion5DStatic::MakeDirections (void)
|
||||
{
|
||||
std::vector<int> directions(2*Nd);
|
||||
for(int d=0;d<Nd;d++){
|
||||
directions[d] = d+1;
|
||||
directions[d+Nd] = d+1;
|
||||
}
|
||||
return directions;
|
||||
}
|
||||
std::vector<int> WilsonFermion5DStatic::MakeDisplacements(void)
|
||||
{
|
||||
std::vector<int> displacements(2*Nd);
|
||||
for(int d=0;d<Nd;d++){
|
||||
displacements[d] = +1;
|
||||
displacements[d+Nd] = -1;
|
||||
}
|
||||
return displacements;
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
||||
@@ -33,9 +33,27 @@ directory
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
const std::vector<int> WilsonFermionStatic::directions({0, 1, 2, 3, 0, 1, 2, 3});
|
||||
const std::vector<int> WilsonFermionStatic::displacements({1, 1, 1, 1, -1, -1, -1, -1});
|
||||
const std::vector<int> WilsonFermionStatic::directions(WilsonFermionStatic::MakeDirections());
|
||||
const std::vector<int> WilsonFermionStatic::displacements(WilsonFermionStatic::MakeDisplacements());
|
||||
int WilsonFermionStatic::HandOptDslash;
|
||||
std::vector<int> WilsonFermionStatic::MakeDirections (void)
|
||||
{
|
||||
std::vector<int> directions(2*Nd);
|
||||
for(int d=0;d<Nd;d++){
|
||||
directions[d] = d;
|
||||
directions[d+Nd] = d;
|
||||
}
|
||||
return directions;
|
||||
}
|
||||
std::vector<int> WilsonFermionStatic::MakeDisplacements(void)
|
||||
{
|
||||
std::vector<int> displacements(2*Nd);
|
||||
for(int d=0;d<Nd;d++){
|
||||
displacements[d] = +1;
|
||||
displacements[d+Nd] = -1;
|
||||
}
|
||||
return displacements;
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
||||
@@ -0,0 +1 @@
|
||||
../CompactWilsonCloverFermion5DInstantiation.cc.master
|
||||
@@ -0,0 +1 @@
|
||||
../CompactWilsonCloverFermion5DInstantiation.cc.master
|
||||
@@ -36,11 +36,16 @@ DWF_IMPL_LIST=" \
|
||||
ZWilsonImplF \
|
||||
ZWilsonImplD2 "
|
||||
|
||||
TWOSPIN_WILSON_IMPL_LIST=" \
|
||||
TwoSpinWilsonImplF \
|
||||
TwoSpinWilsonImplD "
|
||||
|
||||
|
||||
GDWF_IMPL_LIST=" \
|
||||
GparityWilsonImplF \
|
||||
GparityWilsonImplD "
|
||||
|
||||
IMPL_LIST="$STAG_IMPL_LIST $WILSON_IMPL_LIST $DWF_IMPL_LIST $GDWF_IMPL_LIST"
|
||||
IMPL_LIST="$STAG_IMPL_LIST $WILSON_IMPL_LIST $DWF_IMPL_LIST $GDWF_IMPL_LIST $TWOSPIN_WILSON_IMPL_LIST"
|
||||
|
||||
for impl in $IMPL_LIST
|
||||
do
|
||||
@@ -62,7 +67,7 @@ do
|
||||
done
|
||||
done
|
||||
|
||||
CC_LIST="CompactWilsonCloverFermionInstantiation"
|
||||
CC_LIST="CompactWilsonCloverFermionInstantiation CompactWilsonCloverFermion5DInstantiation"
|
||||
|
||||
for impl in $COMPACT_WILSON_IMPL_LIST
|
||||
do
|
||||
@@ -110,7 +115,12 @@ do
|
||||
done
|
||||
done
|
||||
|
||||
CC_LIST=" \
|
||||
ImprovedStaggeredFermion5DInstantiation \
|
||||
StaggeredKernelsInstantiation "
|
||||
CC_LIST="TwoSpinWilsonFermion3plus1DInstantiation.cc.master TwoSpinWilsonKernelsInstantiation.cc.master"
|
||||
|
||||
for impl in $TWOSPIN_WILSON_IMPL_LIST
|
||||
do
|
||||
for f in $CC_LIST
|
||||
do
|
||||
ln -f -s ../$f.cc.master $impl/$f$impl.cc
|
||||
done
|
||||
done
|
||||
|
||||
@@ -40,6 +40,11 @@ public:
|
||||
|
||||
INHERIT_GIMPL_TYPES(Gimpl);
|
||||
|
||||
using Action<GaugeField>::S;
|
||||
using Action<GaugeField>::Sinitial;
|
||||
using Action<GaugeField>::deriv;
|
||||
using Action<GaugeField>::refresh;
|
||||
|
||||
private:
|
||||
RealD c_plaq;
|
||||
RealD c_rect;
|
||||
@@ -71,27 +76,27 @@ public:
|
||||
return action;
|
||||
};
|
||||
|
||||
virtual void deriv(const GaugeField &Umu,GaugeField & dSdU) {
|
||||
virtual void deriv(const GaugeField &U, GaugeField &dSdU) {
|
||||
//extend Ta to include Lorentz indexes
|
||||
RealD factor_p = c_plaq/RealD(Nc)*0.5;
|
||||
RealD factor_r = c_rect/RealD(Nc)*0.5;
|
||||
|
||||
GridBase *grid = Umu.Grid();
|
||||
GridBase *grid = U.Grid();
|
||||
|
||||
std::vector<GaugeLinkField> U (Nd,grid);
|
||||
std::vector<GaugeLinkField> Umu (Nd,grid);
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
U[mu] = PeekIndex<LorentzIndex>(Umu,mu);
|
||||
Umu[mu] = PeekIndex<LorentzIndex>(U,mu);
|
||||
}
|
||||
std::vector<GaugeLinkField> RectStaple(Nd,grid), Staple(Nd,grid);
|
||||
WilsonLoops<Gimpl>::StapleAndRectStapleAll(Staple, RectStaple, U, workspace);
|
||||
WilsonLoops<Gimpl>::StapleAndRectStapleAll(Staple, RectStaple, Umu, workspace);
|
||||
|
||||
GaugeLinkField dSdU_mu(grid);
|
||||
GaugeLinkField staple(grid);
|
||||
|
||||
for (int mu=0; mu < Nd; mu++){
|
||||
dSdU_mu = Ta(U[mu]*Staple[mu])*factor_p;
|
||||
dSdU_mu = dSdU_mu + Ta(U[mu]*RectStaple[mu])*factor_r;
|
||||
|
||||
dSdU_mu = Ta(Umu[mu]*Staple[mu])*factor_p;
|
||||
dSdU_mu = dSdU_mu + Ta(Umu[mu]*RectStaple[mu])*factor_r;
|
||||
|
||||
PokeIndex<LorentzIndex>(dSdU, dSdU_mu, mu);
|
||||
}
|
||||
|
||||
|
||||
@@ -43,6 +43,11 @@ class WilsonGaugeAction : public Action<typename Gimpl::GaugeField> {
|
||||
public:
|
||||
INHERIT_GIMPL_TYPES(Gimpl);
|
||||
|
||||
using Action<GaugeField>::S;
|
||||
using Action<GaugeField>::Sinitial;
|
||||
using Action<GaugeField>::deriv;
|
||||
using Action<GaugeField>::refresh;
|
||||
|
||||
/////////////////////////// constructors
|
||||
explicit WilsonGaugeAction(RealD beta_):beta(beta_){};
|
||||
|
||||
@@ -68,20 +73,23 @@ public:
|
||||
// extend Ta to include Lorentz indexes
|
||||
|
||||
RealD factor = 0.5 * beta / RealD(Nc);
|
||||
GridBase *grid = U.Grid();
|
||||
|
||||
GaugeLinkField Umu(U.Grid());
|
||||
GaugeLinkField dSdU_mu(U.Grid());
|
||||
GaugeLinkField dSdU_mu(grid);
|
||||
std::vector<GaugeLinkField> Umu(Nd, grid);
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
Umu[mu] = PeekIndex<LorentzIndex>(U, mu);
|
||||
}
|
||||
|
||||
Umu = PeekIndex<LorentzIndex>(U, mu);
|
||||
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
// Staple in direction mu
|
||||
WilsonLoops<Gimpl>::Staple(dSdU_mu, U, mu);
|
||||
dSdU_mu = Ta(Umu * dSdU_mu) * factor;
|
||||
|
||||
WilsonLoops<Gimpl>::Staple(dSdU_mu, Umu, mu);
|
||||
dSdU_mu = Ta(Umu[mu] * dSdU_mu) * factor;
|
||||
|
||||
PokeIndex<LorentzIndex>(dSdU, dSdU_mu, mu);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
RealD beta;
|
||||
};
|
||||
|
||||
@@ -111,8 +111,8 @@ public:
|
||||
};
|
||||
|
||||
void CheckpointRestore(int traj, Field &U, GridSerialRNG &sRNG, GridParallelRNG &pRNG) {
|
||||
std::string config, rng;
|
||||
this->build_filenames(traj, Params, config, rng);
|
||||
std::string config, rng, smr;
|
||||
this->build_filenames(traj, Params, config, smr, rng);
|
||||
this->check_filename(rng);
|
||||
this->check_filename(config);
|
||||
|
||||
|
||||
@@ -75,7 +75,7 @@ public:
|
||||
GridParallelRNG &pRNG) {
|
||||
if ((traj % Params.saveInterval) == 0) {
|
||||
std::string config, rng, smr;
|
||||
this->build_filenames(traj, Params, config, rng);
|
||||
this->build_filenames(traj, Params, config, smr, rng);
|
||||
GridBase *grid = SmartConfig.get_U(false).Grid();
|
||||
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
|
||||
BinaryIO::writeRNG(sRNG, pRNG, rng, 0,nersc_csum,scidac_csuma,scidac_csumb);
|
||||
@@ -102,7 +102,7 @@ public:
|
||||
if ( Params.saveSmeared ) {
|
||||
IldgWriter _IldgWriter(grid->IsBoss());
|
||||
_IldgWriter.open(smr);
|
||||
_IldgWriter.writeConfiguration<GaugeStats>(SmartConfig.get_U(true), traj, config, config);
|
||||
_IldgWriter.writeConfiguration<GaugeStats>(SmartConfig.get_U(true), traj, smr, smr);
|
||||
_IldgWriter.close();
|
||||
|
||||
std::cout << GridLogMessage << "Written ILDG Configuration on " << smr
|
||||
@@ -118,8 +118,8 @@ public:
|
||||
|
||||
void CheckpointRestore(int traj, GaugeField &U, GridSerialRNG &sRNG,
|
||||
GridParallelRNG &pRNG) {
|
||||
std::string config, rng;
|
||||
this->build_filenames(traj, Params, config, rng);
|
||||
std::string config, rng, smr;
|
||||
this->build_filenames(traj, Params, config, smr, rng);
|
||||
this->check_filename(rng);
|
||||
this->check_filename(config);
|
||||
|
||||
|
||||
@@ -107,8 +107,8 @@ class ScidacHmcCheckpointer : public BaseHmcCheckpointer<Implementation> {
|
||||
|
||||
void CheckpointRestore(int traj, Field &U, GridSerialRNG &sRNG,
|
||||
GridParallelRNG &pRNG) {
|
||||
std::string config, rng;
|
||||
this->build_filenames(traj, Params, config, rng);
|
||||
std::string config, rng, smr;
|
||||
this->build_filenames(traj, Params, config, smr, rng);
|
||||
this->check_filename(rng);
|
||||
this->check_filename(config);
|
||||
|
||||
|
||||
@@ -62,15 +62,15 @@ accelerator_inline int stencilIndex(int mu, int nu) {
|
||||
|
||||
|
||||
/*! @brief structure holding the link treatment */
|
||||
struct SmearingParameters{
|
||||
SmearingParameters(){}
|
||||
struct HISQSmearingParameters{
|
||||
HISQSmearingParameters(){}
|
||||
Real c_1; // 1 link
|
||||
Real c_naik; // Naik term
|
||||
Real c_3; // 3 link
|
||||
Real c_5; // 5 link
|
||||
Real c_7; // 7 link
|
||||
Real c_lp; // 5 link Lepage
|
||||
SmearingParameters(Real c1, Real cnaik, Real c3, Real c5, Real c7, Real clp)
|
||||
HISQSmearingParameters(Real c1, Real cnaik, Real c3, Real c5, Real c7, Real clp)
|
||||
: c_1(c1),
|
||||
c_naik(cnaik),
|
||||
c_3(c3),
|
||||
@@ -86,7 +86,7 @@ class Smear_HISQ : public Gimpl {
|
||||
|
||||
private:
|
||||
GridCartesian* const _grid;
|
||||
SmearingParameters _linkTreatment;
|
||||
HISQSmearingParameters _linkTreatment;
|
||||
|
||||
public:
|
||||
|
||||
@@ -117,7 +117,7 @@ public:
|
||||
// IN--u_thin
|
||||
void smear(GF& u_smr, GF& u_naik, GF& u_thin) const {
|
||||
|
||||
SmearingParameters lt = this->_linkTreatment;
|
||||
HISQSmearingParameters lt = this->_linkTreatment;
|
||||
auto grid = this->_grid;
|
||||
|
||||
// Create a padded cell of extra padding depth=1 and fill the padding.
|
||||
|
||||
@@ -158,8 +158,8 @@ RealD WilsonFlowBase<Gimpl>::energyDensityCloverleaf(const RealD t, const GaugeF
|
||||
LatticeComplexD R(U.Grid());
|
||||
R = Zero();
|
||||
|
||||
for(int mu=0;mu<3;mu++){
|
||||
for(int nu=mu+1;nu<4;nu++){
|
||||
for(int mu=0;mu<Nd-1;mu++){
|
||||
for(int nu=mu+1;nu<Nd;nu++){
|
||||
WilsonLoops<Gimpl>::FieldStrength(F, U, mu, nu);
|
||||
R = R + trace(F*F);
|
||||
}
|
||||
@@ -207,11 +207,14 @@ std::vector<RealD> WilsonFlowBase<Gimpl>::flowMeasureEnergyDensityCloverleaf(con
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
void WilsonFlowBase<Gimpl>::setDefaultMeasurements(int topq_meas_interval){
|
||||
addMeasurement(1, [](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||
void WilsonFlowBase<Gimpl>::setDefaultMeasurements(int meas_interval){
|
||||
addMeasurement(meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : " << step << " " << t << " " << energyDensityPlaquette(t,U) << std::endl;
|
||||
});
|
||||
addMeasurement(topq_meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||
addMeasurement(meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Energy density (cloverleaf) : " << step << " " << t << " " << energyDensityCloverleaf(t,U) << std::endl;
|
||||
});
|
||||
addMeasurement(meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : " << step << " " << WilsonLoops<Gimpl>::TopologicalCharge(U) << std::endl;
|
||||
});
|
||||
}
|
||||
@@ -249,6 +252,11 @@ void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const{
|
||||
|
||||
out = in;
|
||||
RealD taus = 0.;
|
||||
|
||||
// Perform initial t=0 measurements
|
||||
for(auto const &meas : this->functions)
|
||||
meas.second(0,taus,out);
|
||||
|
||||
for (unsigned int step = 1; step <= Nstep; step++) { //step indicates the number of smearing steps applied at the time of measurement
|
||||
auto start = std::chrono::high_resolution_clock::now();
|
||||
evolve_step(out, taus);
|
||||
@@ -333,6 +341,11 @@ void WilsonFlowAdaptive<Gimpl>::smear(GaugeField& out, const GaugeField& in) con
|
||||
RealD taus = 0.;
|
||||
RealD eps = init_epsilon;
|
||||
unsigned int step = 0;
|
||||
|
||||
// Perform initial t=0 measurements
|
||||
for(auto const &meas : this->functions)
|
||||
meas.second(step,taus,out);
|
||||
|
||||
do{
|
||||
int step_success = evolve_step_adaptive(out, taus, eps);
|
||||
step += step_success; //step will not be incremented if the integration step fails
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user