1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-23 10:12:02 +01:00

Compare commits

..

2 Commits

86 changed files with 11815 additions and 18101 deletions

View File

@ -44,22 +44,14 @@ directory
#ifdef __NVCC__ #ifdef __NVCC__
//disables nvcc specific warning in json.hpp //disables nvcc specific warning in json.hpp
#pragma clang diagnostic ignored "-Wdeprecated-register" #pragma clang diagnostic ignored "-Wdeprecated-register"
#if (__CUDACC_VER_MAJOR__ >= 11) && (__CUDACC_VER_MINOR__ >= 5)
//disables nvcc specific warning in json.hpp
#pragma nv_diag_suppress unsigned_compare_with_zero
#pragma nv_diag_suppress cast_to_qualified_type
//disables nvcc specific warning in many files
#pragma nv_diag_suppress esa_on_defaulted_function_ignored
#pragma nv_diag_suppress extra_semicolon
#else
//disables nvcc specific warning in json.hpp
#pragma diag_suppress unsigned_compare_with_zero #pragma diag_suppress unsigned_compare_with_zero
#pragma diag_suppress cast_to_qualified_type #pragma diag_suppress cast_to_qualified_type
//disables nvcc specific warning in many files //disables nvcc specific warning in many files
#pragma diag_suppress esa_on_defaulted_function_ignored #pragma diag_suppress esa_on_defaulted_function_ignored
#pragma diag_suppress extra_semicolon #pragma diag_suppress extra_semicolon
#endif
//Eigen only
#endif #endif
// Disable vectorisation in Eigen on the Power8/9 and PowerPC // Disable vectorisation in Eigen on the Power8/9 and PowerPC

View File

@ -16,7 +16,6 @@
#include <functional> #include <functional>
#include <stdio.h> #include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#include <strings.h>
#include <stdio.h> #include <stdio.h>
#include <signal.h> #include <signal.h>
#include <ctime> #include <ctime>

View File

@ -14,11 +14,7 @@
/* NVCC save and restore compile environment*/ /* NVCC save and restore compile environment*/
#ifdef __NVCC__ #ifdef __NVCC__
#pragma push #pragma push
#if (__CUDACC_VER_MAJOR__ >= 11) && (__CUDACC_VER_MINOR__ >= 5)
#pragma nv_diag_suppress code_is_unreachable
#else
#pragma diag_suppress code_is_unreachable #pragma diag_suppress code_is_unreachable
#endif
#pragma push_macro("__CUDA_ARCH__") #pragma push_macro("__CUDA_ARCH__")
#pragma push_macro("__NVCC__") #pragma push_macro("__NVCC__")
#pragma push_macro("__CUDACC__") #pragma push_macro("__CUDACC__")

View File

@ -262,7 +262,7 @@ public:
autoView( Tnp_v , (*Tnp), AcceleratorWrite); autoView( Tnp_v , (*Tnp), AcceleratorWrite);
autoView( Tnm_v , (*Tnm), AcceleratorWrite); autoView( Tnm_v , (*Tnm), AcceleratorWrite);
const int Nsimd = CComplex::Nsimd(); const int Nsimd = CComplex::Nsimd();
accelerator_for(ss, FineGrid->oSites(), Nsimd, { accelerator_forNB(ss, FineGrid->oSites(), Nsimd, {
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss)); coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss)); coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
}); });

View File

@ -264,7 +264,7 @@ public:
auto Tnp_v = Tnp->View(); auto Tnp_v = Tnp->View();
auto Tnm_v = Tnm->View(); auto Tnm_v = Tnm->View();
constexpr int Nsimd = vector_type::Nsimd(); constexpr int Nsimd = vector_type::Nsimd();
accelerator_for(ss, in.Grid()->oSites(), Nsimd, { accelerator_forNB(ss, in.Grid()->oSites(), Nsimd, {
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss)); coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss)); coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
}); });

View File

@ -113,43 +113,7 @@ public:
blockPromote(guess_coarse,guess,subspace); blockPromote(guess_coarse,guess,subspace);
guess.Checkerboard() = src.Checkerboard(); guess.Checkerboard() = src.Checkerboard();
}; };
};
void operator()(const std::vector<FineField> &src,std::vector<FineField> &guess) {
int Nevec = (int)evec_coarse.size();
int Nsrc = (int)src.size();
// make temp variables
std::vector<CoarseField> src_coarse(Nsrc,evec_coarse[0].Grid());
std::vector<CoarseField> guess_coarse(Nsrc,evec_coarse[0].Grid());
//Preporcessing
std::cout << GridLogMessage << "Start BlockProject for loop" << std::endl;
for (int j=0;j<Nsrc;j++)
{
guess_coarse[j] = Zero();
std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl;
blockProject(src_coarse[j],src[j],subspace);
}
//deflation set up for eigen vector batchsize 1 and source batch size equal number of sources
std::cout << GridLogMessage << "Start ProjectAccum for loop" << std::endl;
for (int i=0;i<Nevec;i++)
{
std::cout << GridLogMessage << "ProjectAccum Nvec: " << i << std::endl;
const CoarseField & tmp = evec_coarse[i];
for (int j=0;j<Nsrc;j++)
{
axpy(guess_coarse[j],TensorRemove(innerProduct(tmp,src_coarse[j])) / eval_coarse[i],tmp,guess_coarse[j]);
}
}
//postprocessing
std::cout << GridLogMessage << "Start BlockPromote for loop" << std::endl;
for (int j=0;j<Nsrc;j++)
{
std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl;
blockPromote(guess_coarse[j],guess[j],subspace);
guess[j].Checkerboard() = src[j].Checkerboard();
}
};
};

View File

@ -113,6 +113,11 @@ private:
static uint64_t DeviceToHostBytes; static uint64_t DeviceToHostBytes;
static uint64_t HostToDeviceXfer; static uint64_t HostToDeviceXfer;
static uint64_t DeviceToHostXfer; static uint64_t DeviceToHostXfer;
static uint64_t DeviceAccesses;
static uint64_t HostAccesses;
static uint64_t DeviceAccessBytes;
static uint64_t HostAccessBytes;
private: private:
#ifndef GRID_UVM #ifndef GRID_UVM
@ -152,6 +157,7 @@ private:
// static void LRUupdate(AcceleratorViewEntry &AccCache); // static void LRUupdate(AcceleratorViewEntry &AccCache);
static void LRUinsert(AcceleratorViewEntry &AccCache); static void LRUinsert(AcceleratorViewEntry &AccCache);
static void LRUinsertback(AcceleratorViewEntry &AccCache);
static void LRUremove(AcceleratorViewEntry &AccCache); static void LRUremove(AcceleratorViewEntry &AccCache);
// manage entries in the table // manage entries in the table

View File

@ -23,6 +23,11 @@ uint64_t MemoryManager::HostToDeviceBytes;
uint64_t MemoryManager::DeviceToHostBytes; uint64_t MemoryManager::DeviceToHostBytes;
uint64_t MemoryManager::HostToDeviceXfer; uint64_t MemoryManager::HostToDeviceXfer;
uint64_t MemoryManager::DeviceToHostXfer; uint64_t MemoryManager::DeviceToHostXfer;
uint64_t MemoryManager::DeviceAccesses;
uint64_t MemoryManager::HostAccesses;
uint64_t MemoryManager::DeviceAccessBytes;
uint64_t MemoryManager::HostAccessBytes;
//////////////////////////////////// ////////////////////////////////////
// Priority ordering for unlocked entries // Priority ordering for unlocked entries
@ -86,6 +91,14 @@ void MemoryManager::LRUinsert(AcceleratorViewEntry &AccCache)
AccCache.LRU_valid = 1; AccCache.LRU_valid = 1;
DeviceLRUBytes+=AccCache.bytes; DeviceLRUBytes+=AccCache.bytes;
} }
void MemoryManager::LRUinsertback(AcceleratorViewEntry &AccCache)
{
assert(AccCache.LRU_valid==0);
LRU.push_back(AccCache.CpuPtr);
AccCache.LRU_entry = --LRU.end();
AccCache.LRU_valid = 1;
DeviceLRUBytes+=AccCache.bytes;
}
void MemoryManager::LRUremove(AcceleratorViewEntry &AccCache) void MemoryManager::LRUremove(AcceleratorViewEntry &AccCache)
{ {
assert(AccCache.LRU_valid==1); assert(AccCache.LRU_valid==1);
@ -129,6 +142,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
dprintf("MemoryManager: Evict(%llx) %llx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr); dprintf("MemoryManager: Evict(%llx) %llx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
assert(AccCache.accLock==0); assert(AccCache.accLock==0);
assert(AccCache.cpuLock==0); assert(AccCache.cpuLock==0);
if(AccCache.state==AccDirty) { if(AccCache.state==AccDirty) {
Flush(AccCache); Flush(AccCache);
} }
@ -231,6 +245,9 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
EntryCreate(CpuPtr,bytes,mode,hint); EntryCreate(CpuPtr,bytes,mode,hint);
} }
DeviceAccesses++;
DeviceAccessBytes+=bytes;
auto AccCacheIterator = EntryLookup(CpuPtr); auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second; auto & AccCache = AccCacheIterator->second;
if (!AccCache.AccPtr) { if (!AccCache.AccPtr) {
@ -349,6 +366,10 @@ void MemoryManager::CpuViewClose(uint64_t CpuPtr)
assert(AccCache.accLock==0); assert(AccCache.accLock==0);
AccCache.cpuLock--; AccCache.cpuLock--;
if(AccCache.cpuLock==0) {
LRUinsertback(AccCache);
}
} }
/* /*
* Action State StateNext Flush Clone * Action State StateNext Flush Clone
@ -371,6 +392,9 @@ uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,V
EntryCreate(CpuPtr,bytes,mode,transient); EntryCreate(CpuPtr,bytes,mode,transient);
} }
HostAccesses++;
HostAccessBytes+=bytes;
auto AccCacheIterator = EntryLookup(CpuPtr); auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second; auto & AccCache = AccCacheIterator->second;
@ -416,6 +440,12 @@ uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,V
AccCache.transient= transient? EvictNext : 0; AccCache.transient= transient? EvictNext : 0;
// If view is opened on host remove from LRU
// Host close says evict next from device
if(AccCache.LRU_valid==1){
LRUremove(AccCache);
}
return AccCache.CpuPtr; return AccCache.CpuPtr;
} }
void MemoryManager::NotifyDeletion(void *_ptr) void MemoryManager::NotifyDeletion(void *_ptr)

View File

@ -12,6 +12,10 @@ uint64_t MemoryManager::HostToDeviceBytes;
uint64_t MemoryManager::DeviceToHostBytes; uint64_t MemoryManager::DeviceToHostBytes;
uint64_t MemoryManager::HostToDeviceXfer; uint64_t MemoryManager::HostToDeviceXfer;
uint64_t MemoryManager::DeviceToHostXfer; uint64_t MemoryManager::DeviceToHostXfer;
uint64_t MemoryManager::DeviceAccesses;
uint64_t MemoryManager::HostAccesses;
uint64_t MemoryManager::DeviceAccessBytes;
uint64_t MemoryManager::HostAccessBytes;
void MemoryManager::ViewClose(void* AccPtr,ViewMode mode){}; void MemoryManager::ViewClose(void* AccPtr,ViewMode mode){};
void *MemoryManager::ViewOpen(void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint){ return CpuPtr; }; void *MemoryManager::ViewOpen(void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint){ return CpuPtr; };

View File

@ -392,9 +392,9 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,bytes); acceleratorCopyDeviceToDeviceAsynch(xmit,shm,bytes);
} }
// if ( CommunicatorPolicy == CommunicatorPolicySequential ) { if ( CommunicatorPolicy == CommunicatorPolicySequential ) {
// this->StencilSendToRecvFromComplete(list,dir); this->StencilSendToRecvFromComplete(list,dir);
// } }
return off_node_bytes; return off_node_bytes;
} }

File diff suppressed because it is too large Load Diff

View File

@ -142,15 +142,6 @@ inline typename vobj::scalar_objectD sumD(const vobj *arg, Integer osites)
return sumD_cpu(arg,osites); return sumD_cpu(arg,osites);
#endif #endif
} }
template<class vobj>
inline typename vobj::scalar_objectD sumD_large(const vobj *arg, Integer osites)
{
#if defined(GRID_CUDA)||defined(GRID_HIP)
return sumD_gpu_large(arg,osites);
#else
return sumD_cpu(arg,osites);
#endif
}
template<class vobj> template<class vobj>
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg) inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
@ -168,22 +159,6 @@ inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
return ssum; return ssum;
} }
template<class vobj>
inline typename vobj::scalar_object sum_large(const Lattice<vobj> &arg)
{
#if defined(GRID_CUDA)||defined(GRID_HIP)
autoView( arg_v, arg, AcceleratorRead);
Integer osites = arg.Grid()->oSites();
auto ssum= sum_gpu_large(&arg_v[0],osites);
#else
autoView(arg_v, arg, CpuRead);
Integer osites = arg.Grid()->oSites();
auto ssum= sum_cpu(&arg_v[0],osites);
#endif
arg.Grid()->GlobalSum(ssum);
return ssum;
}
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
// Deterministic Reduction operations // Deterministic Reduction operations
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////

View File

@ -23,7 +23,7 @@ unsigned int nextPow2(Iterator x) {
} }
template <class Iterator> template <class Iterator>
int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &threads, Iterator &blocks) { void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &threads, Iterator &blocks) {
int device; int device;
#ifdef GRID_CUDA #ifdef GRID_CUDA
@ -37,13 +37,13 @@ int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &
Iterator sharedMemPerBlock = gpu_props[device].sharedMemPerBlock; Iterator sharedMemPerBlock = gpu_props[device].sharedMemPerBlock;
Iterator maxThreadsPerBlock = gpu_props[device].maxThreadsPerBlock; Iterator maxThreadsPerBlock = gpu_props[device].maxThreadsPerBlock;
Iterator multiProcessorCount = gpu_props[device].multiProcessorCount; Iterator multiProcessorCount = gpu_props[device].multiProcessorCount;
/*
std::cout << GridLogDebug << "GPU has:" << std::endl; std::cout << GridLogDebug << "GPU has:" << std::endl;
std::cout << GridLogDebug << "\twarpSize = " << warpSize << std::endl; std::cout << GridLogDebug << "\twarpSize = " << warpSize << std::endl;
std::cout << GridLogDebug << "\tsharedMemPerBlock = " << sharedMemPerBlock << std::endl; std::cout << GridLogDebug << "\tsharedMemPerBlock = " << sharedMemPerBlock << std::endl;
std::cout << GridLogDebug << "\tmaxThreadsPerBlock = " << maxThreadsPerBlock << std::endl; std::cout << GridLogDebug << "\tmaxThreadsPerBlock = " << maxThreadsPerBlock << std::endl;
std::cout << GridLogDebug << "\tmultiProcessorCount = " << multiProcessorCount << std::endl; std::cout << GridLogDebug << "\tmultiProcessorCount = " << multiProcessorCount << std::endl;
*/
if (warpSize != WARP_SIZE) { if (warpSize != WARP_SIZE) {
std::cout << GridLogError << "The warp size of the GPU in use does not match the warp size set when compiling Grid." << std::endl; std::cout << GridLogError << "The warp size of the GPU in use does not match the warp size set when compiling Grid." << std::endl;
exit(EXIT_FAILURE); exit(EXIT_FAILURE);
@ -53,12 +53,12 @@ int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &
threads = warpSize; threads = warpSize;
if ( threads*sizeofsobj > sharedMemPerBlock ) { if ( threads*sizeofsobj > sharedMemPerBlock ) {
std::cout << GridLogError << "The object is too large for the shared memory." << std::endl; std::cout << GridLogError << "The object is too large for the shared memory." << std::endl;
return 0; exit(EXIT_FAILURE);
} }
while( 2*threads*sizeofsobj < sharedMemPerBlock && 2*threads <= maxThreadsPerBlock ) threads *= 2; while( 2*threads*sizeofsobj < sharedMemPerBlock && 2*threads <= maxThreadsPerBlock ) threads *= 2;
// keep all the streaming multiprocessors busy // keep all the streaming multiprocessors busy
blocks = nextPow2(multiProcessorCount); blocks = nextPow2(multiProcessorCount);
return 1;
} }
template <class sobj, class Iterator> template <class sobj, class Iterator>
@ -198,7 +198,7 @@ __global__ void reduceKernel(const vobj *lat, sobj *buffer, Iterator n) {
// Possibly promote to double and sum // Possibly promote to double and sum
///////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////////
template <class vobj> template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osites) inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
{ {
typedef typename vobj::scalar_objectD sobj; typedef typename vobj::scalar_objectD sobj;
typedef decltype(lat) Iterator; typedef decltype(lat) Iterator;
@ -207,9 +207,7 @@ inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osi
Integer size = osites*nsimd; Integer size = osites*nsimd;
Integer numThreads, numBlocks; Integer numThreads, numBlocks;
int ok = getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks); getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
assert(ok);
Integer smemSize = numThreads * sizeof(sobj); Integer smemSize = numThreads * sizeof(sobj);
Vector<sobj> buffer(numBlocks); Vector<sobj> buffer(numBlocks);
@ -220,54 +218,6 @@ inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osi
auto result = buffer_v[0]; auto result = buffer_v[0];
return result; return result;
} }
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osites)
{
typedef typename vobj::vector_type vector;
typedef typename vobj::scalar_typeD scalarD;
typedef typename vobj::scalar_objectD sobj;
sobj ret;
scalarD *ret_p = (scalarD *)&ret;
const int words = sizeof(vobj)/sizeof(vector);
Vector<vector> buffer(osites);
vector *dat = (vector *)lat;
vector *buf = &buffer[0];
iScalar<vector> *tbuf =(iScalar<vector> *) &buffer[0];
for(int w=0;w<words;w++) {
accelerator_for(ss,osites,1,{
buf[ss] = dat[ss*words+w];
});
ret_p[w] = sumD_gpu_small(tbuf,osites);
}
return ret;
}
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
{
typedef typename vobj::vector_type vector;
typedef typename vobj::scalar_typeD scalarD;
typedef typename vobj::scalar_objectD sobj;
sobj ret;
Integer nsimd= vobj::Nsimd();
Integer size = osites*nsimd;
Integer numThreads, numBlocks;
int ok = getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
if ( ok ) {
ret = sumD_gpu_small(lat,osites);
} else {
ret = sumD_gpu_large(lat,osites);
}
return ret;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////////
// Return as same precision as input performing reduction in double precision though // Return as same precision as input performing reduction in double precision though
///////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////////
@ -280,13 +230,6 @@ inline typename vobj::scalar_object sum_gpu(const vobj *lat, Integer osites)
return result; return result;
} }
template <class vobj>
inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osites)
{
typedef typename vobj::scalar_object sobj;
sobj result;
result = sumD_gpu_large(lat,osites);
return result;
}
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -31,7 +31,6 @@ directory
#include <fstream> #include <fstream>
#include <iomanip> #include <iomanip>
#include <iostream> #include <iostream>
#include <string>
#include <map> #include <map>
#include <pwd.h> #include <pwd.h>
@ -655,8 +654,7 @@ class IldgWriter : public ScidacWriter {
// Fill ILDG header data struct // Fill ILDG header data struct
////////////////////////////////////////////////////// //////////////////////////////////////////////////////
ildgFormat ildgfmt ; ildgFormat ildgfmt ;
const std::string stNC = std::to_string( Nc ) ; ildgfmt.field = std::string("su3gauge");
ildgfmt.field = std::string("su"+stNC+"gauge");
if ( format == std::string("IEEE32BIG") ) { if ( format == std::string("IEEE32BIG") ) {
ildgfmt.precision = 32; ildgfmt.precision = 32;
@ -873,8 +871,7 @@ class IldgReader : public GridLimeReader {
} else { } else {
assert(found_ildgFormat); assert(found_ildgFormat);
const std::string stNC = std::to_string( Nc ) ; assert ( ildgFormat_.field == std::string("su3gauge") );
assert ( ildgFormat_.field == std::string("su"+stNC+"gauge") );
/////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////
// Populate our Grid metadata as best we can // Populate our Grid metadata as best we can
@ -882,7 +879,7 @@ class IldgReader : public GridLimeReader {
std::ostringstream vers; vers << ildgFormat_.version; std::ostringstream vers; vers << ildgFormat_.version;
FieldMetaData_.hdr_version = vers.str(); FieldMetaData_.hdr_version = vers.str();
FieldMetaData_.data_type = std::string("4D_SU"+stNC+"_GAUGE_"+stNC+"x"+stNC); FieldMetaData_.data_type = std::string("4D_SU3_GAUGE_3X3");
FieldMetaData_.nd=4; FieldMetaData_.nd=4;
FieldMetaData_.dimension.resize(4); FieldMetaData_.dimension.resize(4);

View File

@ -6,8 +6,8 @@
Copyright (C) 2015 Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk> Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Jamie Hudspith <renwick.james.hudspth@gmail.com>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
@ -182,8 +182,8 @@ class GaugeStatistics
public: public:
void operator()(Lattice<vLorentzColourMatrixD> & data,FieldMetaData &header) void operator()(Lattice<vLorentzColourMatrixD> & data,FieldMetaData &header)
{ {
header.link_trace = WilsonLoops<Impl>::linkTrace(data); header.link_trace=WilsonLoops<Impl>::linkTrace(data);
header.plaquette = WilsonLoops<Impl>::avgPlaquette(data); header.plaquette =WilsonLoops<Impl>::avgPlaquette(data);
} }
}; };
typedef GaugeStatistics<PeriodicGimplD> PeriodicGaugeStatistics; typedef GaugeStatistics<PeriodicGimplD> PeriodicGaugeStatistics;
@ -203,24 +203,20 @@ template<> inline void PrepareMetaData<vLorentzColourMatrixD>(Lattice<vLorentzCo
////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////
inline void reconstruct3(LorentzColourMatrix & cm) inline void reconstruct3(LorentzColourMatrix & cm)
{ {
assert( Nc < 4 && Nc > 1 ) ; const int x=0;
const int y=1;
const int z=2;
for(int mu=0;mu<Nd;mu++){ for(int mu=0;mu<Nd;mu++){
#if Nc == 2 cm(mu)()(2,x) = adj(cm(mu)()(0,y)*cm(mu)()(1,z)-cm(mu)()(0,z)*cm(mu)()(1,y)); //x= yz-zy
cm(mu)()(1,0) = -adj(cm(mu)()(0,y)) ; cm(mu)()(2,y) = adj(cm(mu)()(0,z)*cm(mu)()(1,x)-cm(mu)()(0,x)*cm(mu)()(1,z)); //y= zx-xz
cm(mu)()(1,1) = adj(cm(mu)()(0,x)) ; cm(mu)()(2,z) = adj(cm(mu)()(0,x)*cm(mu)()(1,y)-cm(mu)()(0,y)*cm(mu)()(1,x)); //z= xy-yx
#else
const int x=0 , y=1 , z=2 ; // a little disinenuous labelling
cm(mu)()(2,x) = adj(cm(mu)()(0,y)*cm(mu)()(1,z)-cm(mu)()(0,z)*cm(mu)()(1,y)); //x= yz-zy
cm(mu)()(2,y) = adj(cm(mu)()(0,z)*cm(mu)()(1,x)-cm(mu)()(0,x)*cm(mu)()(1,z)); //y= zx-xz
cm(mu)()(2,z) = adj(cm(mu)()(0,x)*cm(mu)()(1,y)-cm(mu)()(0,y)*cm(mu)()(1,x)); //z= xy-yx
#endif
} }
} }
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
// Some data types for intermediate storage // Some data types for intermediate storage
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
template<typename vtype> using iLorentzColour2x3 = iVector<iVector<iVector<vtype, Nc>, Nc-1>, Nd >; template<typename vtype> using iLorentzColour2x3 = iVector<iVector<iVector<vtype, Nc>, 2>, Nd >;
typedef iLorentzColour2x3<Complex> LorentzColour2x3; typedef iLorentzColour2x3<Complex> LorentzColour2x3;
typedef iLorentzColour2x3<ComplexF> LorentzColour2x3F; typedef iLorentzColour2x3<ComplexF> LorentzColour2x3F;
@ -282,6 +278,7 @@ struct GaugeSimpleMunger{
template <class fobj, class sobj> template <class fobj, class sobj>
struct GaugeSimpleUnmunger { struct GaugeSimpleUnmunger {
void operator()(sobj &in, fobj &out) { void operator()(sobj &in, fobj &out) {
for (int mu = 0; mu < Nd; mu++) { for (int mu = 0; mu < Nd; mu++) {
for (int i = 0; i < Nc; i++) { for (int i = 0; i < Nc; i++) {
@ -320,8 +317,8 @@ template<class fobj,class sobj>
struct Gauge3x2munger{ struct Gauge3x2munger{
void operator() (fobj &in,sobj &out){ void operator() (fobj &in,sobj &out){
for(int mu=0;mu<Nd;mu++){ for(int mu=0;mu<Nd;mu++){
for(int i=0;i<Nc-1;i++){ for(int i=0;i<2;i++){
for(int j=0;j<Nc;j++){ for(int j=0;j<3;j++){
out(mu)()(i,j) = in(mu)(i)(j); out(mu)()(i,j) = in(mu)(i)(j);
}} }}
} }
@ -333,8 +330,8 @@ template<class fobj,class sobj>
struct Gauge3x2unmunger{ struct Gauge3x2unmunger{
void operator() (sobj &in,fobj &out){ void operator() (sobj &in,fobj &out){
for(int mu=0;mu<Nd;mu++){ for(int mu=0;mu<Nd;mu++){
for(int i=0;i<Nc-1;i++){ for(int i=0;i<2;i++){
for(int j=0;j<Nc;j++){ for(int j=0;j<3;j++){
out(mu)(i)(j) = in(mu)()(i,j); out(mu)(i)(j) = in(mu)()(i,j);
}} }}
} }

View File

@ -9,7 +9,6 @@
Author: Matt Spraggs <matthew.spraggs@gmail.com> Author: Matt Spraggs <matthew.spraggs@gmail.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk> Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk> Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Jamie Hudspith <renwick.james.hudspth@gmail.com>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
@ -31,8 +30,6 @@
#ifndef GRID_NERSC_IO_H #ifndef GRID_NERSC_IO_H
#define GRID_NERSC_IO_H #define GRID_NERSC_IO_H
#include <string>
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
using namespace Grid; using namespace Grid;
@ -148,17 +145,15 @@ public:
std::string format(header.floating_point); std::string format(header.floating_point);
const int ieee32big = (format == std::string("IEEE32BIG")); int ieee32big = (format == std::string("IEEE32BIG"));
const int ieee32 = (format == std::string("IEEE32")); int ieee32 = (format == std::string("IEEE32"));
const int ieee64big = (format == std::string("IEEE64BIG")); int ieee64big = (format == std::string("IEEE64BIG"));
const int ieee64 = (format == std::string("IEEE64") || \ int ieee64 = (format == std::string("IEEE64") || format == std::string("IEEE64LITTLE"));
format == std::string("IEEE64LITTLE"));
uint32_t nersc_csum,scidac_csuma,scidac_csumb; uint32_t nersc_csum,scidac_csuma,scidac_csumb;
// depending on datatype, set up munger; // depending on datatype, set up munger;
// munger is a function of <floating point, Real, data_type> // munger is a function of <floating point, Real, data_type>
const std::string stNC = std::to_string( Nc ) ; if ( header.data_type == std::string("4D_SU3_GAUGE") ) {
if ( header.data_type == std::string("4D_SU"+stNC+"_GAUGE") ) {
if ( ieee32 || ieee32big ) { if ( ieee32 || ieee32big ) {
BinaryIO::readLatticeObject<vLorentzColourMatrixD, LorentzColour2x3F> BinaryIO::readLatticeObject<vLorentzColourMatrixD, LorentzColour2x3F>
(Umu,file,Gauge3x2munger<LorentzColour2x3F,LorentzColourMatrix>(), offset,format, (Umu,file,Gauge3x2munger<LorentzColour2x3F,LorentzColourMatrix>(), offset,format,
@ -169,7 +164,7 @@ public:
(Umu,file,Gauge3x2munger<LorentzColour2x3D,LorentzColourMatrix>(),offset,format, (Umu,file,Gauge3x2munger<LorentzColour2x3D,LorentzColourMatrix>(),offset,format,
nersc_csum,scidac_csuma,scidac_csumb); nersc_csum,scidac_csuma,scidac_csumb);
} }
} else if ( header.data_type == std::string("4D_SU"+stNC+"_GAUGE_"+stNC+"x"+stNC) ) { } else if ( header.data_type == std::string("4D_SU3_GAUGE_3x3") ) {
if ( ieee32 || ieee32big ) { if ( ieee32 || ieee32big ) {
BinaryIO::readLatticeObject<vLorentzColourMatrixD,LorentzColourMatrixF> BinaryIO::readLatticeObject<vLorentzColourMatrixD,LorentzColourMatrixF>
(Umu,file,GaugeSimpleMunger<LorentzColourMatrixF,LorentzColourMatrix>(),offset,format, (Umu,file,GaugeSimpleMunger<LorentzColourMatrixF,LorentzColourMatrix>(),offset,format,
@ -214,29 +209,27 @@ public:
template<class GaugeStats=PeriodicGaugeStatistics> template<class GaugeStats=PeriodicGaugeStatistics>
static inline void writeConfiguration(Lattice<vLorentzColourMatrixD > &Umu, static inline void writeConfiguration(Lattice<vLorentzColourMatrixD > &Umu,
std::string file, std::string file,
std::string ens_label = std::string("DWF"), std::string ens_label = std::string("DWF"))
std::string ens_id = std::string("UKQCD"),
unsigned int sequence_number = 1)
{ {
writeConfiguration(Umu,file,0,1,ens_label,ens_id,sequence_number); writeConfiguration(Umu,file,0,1,ens_label);
} }
template<class GaugeStats=PeriodicGaugeStatistics> template<class GaugeStats=PeriodicGaugeStatistics>
static inline void writeConfiguration(Lattice<vLorentzColourMatrixD > &Umu, static inline void writeConfiguration(Lattice<vLorentzColourMatrixD > &Umu,
std::string file, std::string file,
int two_row, int two_row,
int bits32, int bits32,
std::string ens_label = std::string("DWF"), std::string ens_label = std::string("DWF"))
std::string ens_id = std::string("UKQCD"),
unsigned int sequence_number = 1)
{ {
typedef vLorentzColourMatrixD vobj; typedef vLorentzColourMatrixD vobj;
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;
FieldMetaData header; FieldMetaData header;
header.sequence_number = sequence_number; ///////////////////////////////////////////
header.ensemble_id = ens_id; // Following should become arguments
///////////////////////////////////////////
header.sequence_number = 1;
header.ensemble_id = std::string("UKQCD");
header.ensemble_label = ens_label; header.ensemble_label = ens_label;
header.hdr_version = "1.0" ;
typedef LorentzColourMatrixD fobj3D; typedef LorentzColourMatrixD fobj3D;
typedef LorentzColour2x3D fobj2D; typedef LorentzColour2x3D fobj2D;
@ -250,14 +243,10 @@ public:
uint64_t offset; uint64_t offset;
// Sod it -- always write NcxNc double // Sod it -- always write 3x3 double
header.floating_point = std::string("IEEE64BIG"); header.floating_point = std::string("IEEE64BIG");
const std::string stNC = std::to_string( Nc ) ; header.data_type = std::string("4D_SU3_GAUGE_3x3");
if( two_row ) { GaugeSimpleUnmunger<fobj3D,sobj> munge;
header.data_type = std::string("4D_SU" + stNC + "_GAUGE" );
} else {
header.data_type = std::string("4D_SU" + stNC + "_GAUGE_" + stNC + "x" + stNC );
}
if ( grid->IsBoss() ) { if ( grid->IsBoss() ) {
truncate(file); truncate(file);
offset = writeHeader(header,file); offset = writeHeader(header,file);
@ -265,15 +254,8 @@ public:
grid->Broadcast(0,(void *)&offset,sizeof(offset)); grid->Broadcast(0,(void *)&offset,sizeof(offset));
uint32_t nersc_csum,scidac_csuma,scidac_csumb; uint32_t nersc_csum,scidac_csuma,scidac_csumb;
if( two_row ) { BinaryIO::writeLatticeObject<vobj,fobj3D>(Umu,file,munge,offset,header.floating_point,
Gauge3x2unmunger<fobj2D,sobj> munge; nersc_csum,scidac_csuma,scidac_csumb);
BinaryIO::writeLatticeObject<vobj,fobj2D>(Umu,file,munge,offset,header.floating_point,
nersc_csum,scidac_csuma,scidac_csumb);
} else {
GaugeSimpleUnmunger<fobj3D,sobj> munge;
BinaryIO::writeLatticeObject<vobj,fobj3D>(Umu,file,munge,offset,header.floating_point,
nersc_csum,scidac_csuma,scidac_csumb);
}
header.checksum = nersc_csum; header.checksum = nersc_csum;
if ( grid->IsBoss() ) { if ( grid->IsBoss() ) {
writeHeader(header,file); writeHeader(header,file);
@ -305,7 +287,8 @@ public:
header.plaquette=0.0; header.plaquette=0.0;
MachineCharacteristics(header); MachineCharacteristics(header);
uint64_t offset; uint64_t offset;
#ifdef RNG_RANLUX #ifdef RNG_RANLUX
header.floating_point = std::string("UINT64"); header.floating_point = std::string("UINT64");
header.data_type = std::string("RANLUX48"); header.data_type = std::string("RANLUX48");
@ -345,7 +328,7 @@ public:
GridBase *grid = parallel.Grid(); GridBase *grid = parallel.Grid();
uint64_t offset = readHeader(file,grid,header); uint64_t offset = readHeader(file,grid,header);
FieldMetaData clone(header); FieldMetaData clone(header);

View File

@ -16,12 +16,8 @@
#ifdef __NVCC__ #ifdef __NVCC__
#pragma push #pragma push
#if (__CUDACC_VER_MAJOR__ >= 11) && (__CUDACC_VER_MINOR__ >= 5)
#pragma nv_diag_suppress declared_but_not_referenced // suppress "function was declared but never referenced warning"
#else
#pragma diag_suppress declared_but_not_referenced // suppress "function was declared but never referenced warning" #pragma diag_suppress declared_but_not_referenced // suppress "function was declared but never referenced warning"
#endif #endif
#endif
#include "pugixml.h" #include "pugixml.h"

View File

@ -68,16 +68,9 @@ public:
/////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////
// Support for MADWF tricks // Support for MADWF tricks
/////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////
RealD Mass(void) { return (mass_plus + mass_minus) / 2.0; }; RealD Mass(void) { return mass; };
RealD MassPlus(void) { return mass_plus; };
RealD MassMinus(void) { return mass_minus; };
void SetMass(RealD _mass) { void SetMass(RealD _mass) {
mass_plus=mass_minus=_mass; mass=_mass;
SetCoefficientsInternal(_zolo_hi,_gamma,_b,_c); // Reset coeffs
} ;
void SetMass(RealD _mass_plus, RealD _mass_minus) {
mass_plus=_mass_plus;
mass_minus=_mass_minus;
SetCoefficientsInternal(_zolo_hi,_gamma,_b,_c); // Reset coeffs SetCoefficientsInternal(_zolo_hi,_gamma,_b,_c); // Reset coeffs
} ; } ;
void P(const FermionField &psi, FermionField &chi); void P(const FermionField &psi, FermionField &chi);
@ -115,7 +108,7 @@ public:
void MeooeDag5D (const FermionField &in, FermionField &out); void MeooeDag5D (const FermionField &in, FermionField &out);
// protected: // protected:
RealD mass_plus, mass_minus; RealD mass;
// Save arguments to SetCoefficientsInternal // Save arguments to SetCoefficientsInternal
Vector<Coeff_t> _gamma; Vector<Coeff_t> _gamma;

View File

@ -1,435 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonCloverFermionImplementation.h
Copyright (C) 2017 - 2022
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
Author: Mattia Bruno <mattia.bruno@cern.ch>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/Grid.h>
#include <Grid/qcd/spin/Dirac.h>
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
////////////////////////////////////////////
// Standard Clover
// (4+m0) + csw * clover_term
// Exp Clover
// (4+m0) * exp(csw/(4+m0) clover_term)
// = (4+m0) + csw * clover_term + ...
////////////////////////////////////////////
NAMESPACE_BEGIN(Grid);
//////////////////////////////////
// Generic Standard Clover
//////////////////////////////////
template<class Impl>
class CloverHelpers: public WilsonCloverHelpers<Impl> {
public:
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
typedef WilsonCloverHelpers<Impl> Helpers;
static void Instantiate(CloverField& CloverTerm, CloverField& CloverTermInv, RealD csw_t, RealD diag_mass) {
GridBase *grid = CloverTerm.Grid();
CloverTerm += diag_mass;
int lvol = grid->lSites();
int DimRep = Impl::Dimension;
{
autoView(CTv,CloverTerm,CpuRead);
autoView(CTIv,CloverTermInv,CpuWrite);
thread_for(site, lvol, {
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
Eigen::MatrixXcd EigenCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
Eigen::MatrixXcd EigenInvCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
typename SiteClover::scalar_object Qx = Zero(), Qxinv = Zero();
peekLocalSite(Qx, CTv, lcoor);
for (int j = 0; j < Ns; j++)
for (int k = 0; k < Ns; k++)
for (int a = 0; a < DimRep; a++)
for (int b = 0; b < DimRep; b++){
auto zz = Qx()(j, k)(a, b);
EigenCloverOp(a + j * DimRep, b + k * DimRep) = std::complex<double>(zz);
}
EigenInvCloverOp = EigenCloverOp.inverse();
for (int j = 0; j < Ns; j++)
for (int k = 0; k < Ns; k++)
for (int a = 0; a < DimRep; a++)
for (int b = 0; b < DimRep; b++)
Qxinv()(j, k)(a, b) = EigenInvCloverOp(a + j * DimRep, b + k * DimRep);
pokeLocalSite(Qxinv, CTIv, lcoor);
});
}
}
static GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu) {
return Helpers::Cmunu(U, lambda, mu, nu);
}
};
//////////////////////////////////
// Generic Exp Clover
//////////////////////////////////
template<class Impl>
class ExpCloverHelpers: public WilsonCloverHelpers<Impl> {
public:
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
template <typename vtype> using iImplClover = iScalar<iMatrix<iMatrix<vtype, Impl::Dimension>, Ns>>;
typedef WilsonCloverHelpers<Impl> Helpers;
// Can this be avoided?
static void IdentityTimesC(const CloverField& in, RealD c) {
int DimRep = Impl::Dimension;
autoView(in_v, in, AcceleratorWrite);
accelerator_for(ss, in.Grid()->oSites(), 1, {
for (int sa=0; sa<Ns; sa++)
for (int ca=0; ca<DimRep; ca++)
in_v[ss]()(sa,sa)(ca,ca) = c;
});
}
static int getNMAX(RealD prec, RealD R) {
/* compute stop condition for exponential */
int NMAX=1;
RealD cond=R*R/2.;
while (cond*std::exp(R)>prec) {
NMAX++;
cond*=R/(double)(NMAX+1);
}
return NMAX;
}
static int getNMAX(Lattice<iImplClover<vComplexD>> &t, RealD R) {return getNMAX(1e-12,R);}
static int getNMAX(Lattice<iImplClover<vComplexF>> &t, RealD R) {return getNMAX(1e-6,R);}
static void Instantiate(CloverField& Clover, CloverField& CloverInv, RealD csw_t, RealD diag_mass) {
GridBase* grid = Clover.Grid();
CloverField ExpClover(grid);
int NMAX = getNMAX(Clover, 3.*csw_t/diag_mass);
Clover *= (1.0/diag_mass);
// Taylor expansion, slow but generic
// Horner scheme: a0 + a1 x + a2 x^2 + .. = a0 + x (a1 + x(...))
// qN = cN
// qn = cn + qn+1 X
std::vector<RealD> cn(NMAX+1);
cn[0] = 1.0;
for (int i=1; i<=NMAX; i++)
cn[i] = cn[i-1] / RealD(i);
ExpClover = Zero();
IdentityTimesC(ExpClover, cn[NMAX]);
for (int i=NMAX-1; i>=0; i--)
ExpClover = ExpClover * Clover + cn[i];
// prepare inverse
CloverInv = (-1.0)*Clover;
Clover = ExpClover * diag_mass;
ExpClover = Zero();
IdentityTimesC(ExpClover, cn[NMAX]);
for (int i=NMAX-1; i>=0; i--)
ExpClover = ExpClover * CloverInv + cn[i];
CloverInv = ExpClover * (1.0/diag_mass);
}
static GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu) {
assert(0);
return lambda;
}
};
//////////////////////////////////
// Compact Standard Clover
//////////////////////////////////
template<class Impl>
class CompactCloverHelpers: public CompactWilsonCloverHelpers<Impl>,
public WilsonCloverHelpers<Impl> {
public:
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
INHERIT_COMPACT_CLOVER_TYPES(Impl);
typedef WilsonCloverHelpers<Impl> Helpers;
typedef CompactWilsonCloverHelpers<Impl> CompactHelpers;
static void MassTerm(CloverField& Clover, RealD diag_mass) {
Clover += diag_mass;
}
static void Exponentiate_Clover(CloverDiagonalField& Diagonal,
CloverTriangleField& Triangle,
RealD csw_t, RealD diag_mass) {
// Do nothing
}
// TODO: implement Cmunu for better performances with compact layout, but don't do it
// here, but rather in WilsonCloverHelpers.h -> CompactWilsonCloverHelpers
static GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu) {
return Helpers::Cmunu(U, lambda, mu, nu);
}
};
//////////////////////////////////
// Compact Exp Clover
//////////////////////////////////
template<class Impl>
class CompactExpCloverHelpers: public CompactWilsonCloverHelpers<Impl> {
public:
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
INHERIT_COMPACT_CLOVER_TYPES(Impl);
template <typename vtype> using iImplClover = iScalar<iMatrix<iMatrix<vtype, Impl::Dimension>, Ns>>;
typedef CompactWilsonCloverHelpers<Impl> CompactHelpers;
static void MassTerm(CloverField& Clover, RealD diag_mass) {
// do nothing!
// mass term is multiplied to exp(Clover) below
}
static int getNMAX(RealD prec, RealD R) {
/* compute stop condition for exponential */
int NMAX=1;
RealD cond=R*R/2.;
while (cond*std::exp(R)>prec) {
NMAX++;
cond*=R/(double)(NMAX+1);
}
return NMAX;
}
static int getNMAX(Lattice<iImplCloverDiagonal<vComplexD>> &t, RealD R) {return getNMAX(1e-12,R);}
static int getNMAX(Lattice<iImplCloverDiagonal<vComplexF>> &t, RealD R) {return getNMAX(1e-6,R);}
static void ExponentiateHermitean6by6(const iMatrix<ComplexD,6> &arg, const RealD& alpha, const std::vector<RealD>& cN, const int Niter, iMatrix<ComplexD,6>& dest){
typedef iMatrix<ComplexD,6> mat;
RealD qn[6];
RealD qnold[6];
RealD p[5];
RealD trA2, trA3, trA4;
mat A2, A3, A4, A5;
A2 = alpha * alpha * arg * arg;
A3 = alpha * arg * A2;
A4 = A2 * A2;
A5 = A2 * A3;
trA2 = toReal( trace(A2) );
trA3 = toReal( trace(A3) );
trA4 = toReal( trace(A4));
p[0] = toReal( trace(A3 * A3)) / 6.0 - 0.125 * trA4 * trA2 - trA3 * trA3 / 18.0 + trA2 * trA2 * trA2/ 48.0;
p[1] = toReal( trace(A5)) / 5.0 - trA3 * trA2 / 6.0;
p[2] = toReal( trace(A4)) / 4.0 - 0.125 * trA2 * trA2;
p[3] = trA3 / 3.0;
p[4] = 0.5 * trA2;
qnold[0] = cN[Niter];
qnold[1] = 0.0;
qnold[2] = 0.0;
qnold[3] = 0.0;
qnold[4] = 0.0;
qnold[5] = 0.0;
for(int i = Niter-1; i >= 0; i--)
{
qn[0] = p[0] * qnold[5] + cN[i];
qn[1] = p[1] * qnold[5] + qnold[0];
qn[2] = p[2] * qnold[5] + qnold[1];
qn[3] = p[3] * qnold[5] + qnold[2];
qn[4] = p[4] * qnold[5] + qnold[3];
qn[5] = qnold[4];
qnold[0] = qn[0];
qnold[1] = qn[1];
qnold[2] = qn[2];
qnold[3] = qn[3];
qnold[4] = qn[4];
qnold[5] = qn[5];
}
mat unit(1.0);
dest = (qn[0] * unit + qn[1] * alpha * arg + qn[2] * A2 + qn[3] * A3 + qn[4] * A4 + qn[5] * A5);
}
static void Exponentiate_Clover(CloverDiagonalField& Diagonal, CloverTriangleField& Triangle, RealD csw_t, RealD diag_mass) {
GridBase* grid = Diagonal.Grid();
int NMAX = getNMAX(Diagonal, 3.*csw_t/diag_mass);
//
// Implementation completely in Daniel's layout
//
// Taylor expansion with Cayley-Hamilton recursion
// underlying Horner scheme as above
std::vector<RealD> cn(NMAX+1);
cn[0] = 1.0;
for (int i=1; i<=NMAX; i++){
cn[i] = cn[i-1] / RealD(i);
}
// Taken over from Daniel's implementation
conformable(Diagonal, Triangle);
long lsites = grid->lSites();
{
typedef typename SiteCloverDiagonal::scalar_object scalar_object_diagonal;
typedef typename SiteCloverTriangle::scalar_object scalar_object_triangle;
typedef iMatrix<ComplexD,6> mat;
autoView(diagonal_v, Diagonal, CpuRead);
autoView(triangle_v, Triangle, CpuRead);
autoView(diagonalExp_v, Diagonal, CpuWrite);
autoView(triangleExp_v, Triangle, CpuWrite);
thread_for(site, lsites, { // NOTE: Not on GPU because of (peek/poke)LocalSite
mat srcCloverOpUL(0.0); // upper left block
mat srcCloverOpLR(0.0); // lower right block
mat ExpCloverOp;
scalar_object_diagonal diagonal_tmp = Zero();
scalar_object_diagonal diagonal_exp_tmp = Zero();
scalar_object_triangle triangle_tmp = Zero();
scalar_object_triangle triangle_exp_tmp = Zero();
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
peekLocalSite(diagonal_tmp, diagonal_v, lcoor);
peekLocalSite(triangle_tmp, triangle_v, lcoor);
int block;
block = 0;
for(int i = 0; i < 6; i++){
for(int j = 0; j < 6; j++){
if (i == j){
srcCloverOpUL(i,j) = static_cast<ComplexD>(TensorRemove(diagonal_tmp()(block)(i)));
}
else{
srcCloverOpUL(i,j) = static_cast<ComplexD>(TensorRemove(CompactHelpers::triangle_elem(triangle_tmp, block, i, j)));
}
}
}
block = 1;
for(int i = 0; i < 6; i++){
for(int j = 0; j < 6; j++){
if (i == j){
srcCloverOpLR(i,j) = static_cast<ComplexD>(TensorRemove(diagonal_tmp()(block)(i)));
}
else{
srcCloverOpLR(i,j) = static_cast<ComplexD>(TensorRemove(CompactHelpers::triangle_elem(triangle_tmp, block, i, j)));
}
}
}
// exp(Clover)
ExponentiateHermitean6by6(srcCloverOpUL,1.0/diag_mass,cn,NMAX,ExpCloverOp);
block = 0;
for(int i = 0; i < 6; i++){
for(int j = 0; j < 6; j++){
if (i == j){
diagonal_exp_tmp()(block)(i) = ExpCloverOp(i,j);
}
else if(i < j){
triangle_exp_tmp()(block)(CompactHelpers::triangle_index(i, j)) = ExpCloverOp(i,j);
}
}
}
ExponentiateHermitean6by6(srcCloverOpLR,1.0/diag_mass,cn,NMAX,ExpCloverOp);
block = 1;
for(int i = 0; i < 6; i++){
for(int j = 0; j < 6; j++){
if (i == j){
diagonal_exp_tmp()(block)(i) = ExpCloverOp(i,j);
}
else if(i < j){
triangle_exp_tmp()(block)(CompactHelpers::triangle_index(i, j)) = ExpCloverOp(i,j);
}
}
}
pokeLocalSite(diagonal_exp_tmp, diagonalExp_v, lcoor);
pokeLocalSite(triangle_exp_tmp, triangleExp_v, lcoor);
});
}
Diagonal *= diag_mass;
Triangle *= diag_mass;
}
static GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu) {
assert(0);
return lambda;
}
};
NAMESPACE_END(Grid);

View File

@ -1,241 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/CompactWilsonCloverFermion.h
Copyright (C) 2020 - 2022
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
Author: Nils Meyer <nils.meyer@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/qcd/action/fermion/WilsonCloverTypes.h>
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
#include <Grid/qcd/action/fermion/CloverHelpers.h>
NAMESPACE_BEGIN(Grid);
// see Grid/qcd/action/fermion/WilsonCloverFermion.h for description
//
// Modifications done here:
//
// Original: clover term = 12x12 matrix per site
//
// But: Only two diagonal 6x6 hermitian blocks are non-zero (also true for original, verified by running)
// Sufficient to store/transfer only the real parts of the diagonal and one triangular part
// 2 * (6 + 15 * 2) = 72 real or 36 complex words to be stored/transfered
//
// Here: Above but diagonal as complex numbers, i.e., need to store/transfer
// 2 * (6 * 2 + 15 * 2) = 84 real or 42 complex words
//
// Words per site and improvement compared to original (combined with the input and output spinors):
//
// - Original: 2*12 + 12*12 = 168 words -> 1.00 x less
// - Minimal: 2*12 + 36 = 60 words -> 2.80 x less
// - Here: 2*12 + 42 = 66 words -> 2.55 x less
//
// These improvements directly translate to wall-clock time
//
// Data layout:
//
// - diagonal and triangle part as separate lattice fields,
// this was faster than as 1 combined field on all tested machines
// - diagonal: as expected
// - triangle: store upper right triangle in row major order
// - graphical:
// 0 1 2 3 4
// 5 6 7 8
// 9 10 11 = upper right triangle indices
// 12 13
// 14
// 0
// 1
// 2
// 3 = diagonal indices
// 4
// 5
// 0
// 1 5
// 2 6 9 = lower left triangle indices
// 3 7 10 12
// 4 8 11 13 14
//
// Impact on total memory consumption:
// - Original: (2 * 1 + 8 * 1/2) 12x12 matrices = 6 12x12 matrices = 864 complex words per site
// - Here: (2 * 1 + 4 * 1/2) diagonal parts = 4 diagonal parts = 24 complex words per site
// + (2 * 1 + 4 * 1/2) triangle parts = 4 triangle parts = 60 complex words per site
// = 84 complex words per site
template<class Impl, class CloverHelpers>
class CompactWilsonCloverFermion : public WilsonFermion<Impl>,
public WilsonCloverHelpers<Impl>,
public CompactWilsonCloverHelpers<Impl> {
/////////////////////////////////////////////
// Sizes
/////////////////////////////////////////////
public:
INHERIT_COMPACT_CLOVER_SIZES(Impl);
/////////////////////////////////////////////
// Type definitions
/////////////////////////////////////////////
public:
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
INHERIT_COMPACT_CLOVER_TYPES(Impl);
typedef WilsonFermion<Impl> WilsonBase;
typedef WilsonCloverHelpers<Impl> Helpers;
typedef CompactWilsonCloverHelpers<Impl> CompactHelpers;
/////////////////////////////////////////////
// Constructors
/////////////////////////////////////////////
public:
CompactWilsonCloverFermion(GaugeField& _Umu,
GridCartesian& Fgrid,
GridRedBlackCartesian& Hgrid,
const RealD _mass,
const RealD _csw_r = 0.0,
const RealD _csw_t = 0.0,
const RealD _cF = 1.0,
const WilsonAnisotropyCoefficients& clover_anisotropy = WilsonAnisotropyCoefficients(),
const ImplParams& impl_p = ImplParams());
/////////////////////////////////////////////
// Member functions (implementing interface)
/////////////////////////////////////////////
public:
virtual void Instantiatable() {};
int ConstEE() override { return 0; };
int isTrivialEE() override { return 0; };
void Dhop(const FermionField& in, FermionField& out, int dag) override;
void DhopOE(const FermionField& in, FermionField& out, int dag) override;
void DhopEO(const FermionField& in, FermionField& out, int dag) override;
void DhopDir(const FermionField& in, FermionField& out, int dir, int disp) override;
void DhopDirAll(const FermionField& in, std::vector<FermionField>& out) /* override */;
void M(const FermionField& in, FermionField& out) override;
void Mdag(const FermionField& in, FermionField& out) override;
void Meooe(const FermionField& in, FermionField& out) override;
void MeooeDag(const FermionField& in, FermionField& out) override;
void Mooee(const FermionField& in, FermionField& out) override;
void MooeeDag(const FermionField& in, FermionField& out) override;
void MooeeInv(const FermionField& in, FermionField& out) override;
void MooeeInvDag(const FermionField& in, FermionField& out) override;
void Mdir(const FermionField& in, FermionField& out, int dir, int disp) override;
void MdirAll(const FermionField& in, std::vector<FermionField>& out) override;
void MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) override;
void MooDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override;
void MeeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override;
/////////////////////////////////////////////
// Member functions (internals)
/////////////////////////////////////////////
void MooeeInternal(const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle);
/////////////////////////////////////////////
// Helpers
/////////////////////////////////////////////
void ImportGauge(const GaugeField& _Umu) override;
/////////////////////////////////////////////
// Helpers
/////////////////////////////////////////////
private:
template<class Field>
const MaskField* getCorrectMaskField(const Field &in) const {
if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) {
return &this->BoundaryMaskOdd;
} else {
return &this->BoundaryMaskEven;
}
} else {
return &this->BoundaryMask;
}
}
template<class Field>
void ApplyBoundaryMask(Field& f) {
const MaskField* m = getCorrectMaskField(f); assert(m != nullptr);
assert(m != nullptr);
CompactHelpers::ApplyBoundaryMask(f, *m);
}
/////////////////////////////////////////////
// Member Data
/////////////////////////////////////////////
public:
RealD csw_r;
RealD csw_t;
RealD cF;
bool open_boundaries;
CloverDiagonalField Diagonal, DiagonalEven, DiagonalOdd;
CloverDiagonalField DiagonalInv, DiagonalInvEven, DiagonalInvOdd;
CloverTriangleField Triangle, TriangleEven, TriangleOdd;
CloverTriangleField TriangleInv, TriangleInvEven, TriangleInvOdd;
FermionField Tmp;
MaskField BoundaryMask, BoundaryMaskEven, BoundaryMaskOdd;
};
NAMESPACE_END(Grid);

View File

@ -53,7 +53,6 @@ NAMESPACE_CHECK(Wilson);
#include <Grid/qcd/action/fermion/WilsonTMFermion.h> // 4d wilson like #include <Grid/qcd/action/fermion/WilsonTMFermion.h> // 4d wilson like
NAMESPACE_CHECK(WilsonTM); NAMESPACE_CHECK(WilsonTM);
#include <Grid/qcd/action/fermion/WilsonCloverFermion.h> // 4d wilson clover fermions #include <Grid/qcd/action/fermion/WilsonCloverFermion.h> // 4d wilson clover fermions
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h> // 4d compact wilson clover fermions
NAMESPACE_CHECK(WilsonClover); NAMESPACE_CHECK(WilsonClover);
#include <Grid/qcd/action/fermion/WilsonFermion5D.h> // 5d base used by all 5d overlap types #include <Grid/qcd/action/fermion/WilsonFermion5D.h> // 5d base used by all 5d overlap types
NAMESPACE_CHECK(Wilson5D); NAMESPACE_CHECK(Wilson5D);
@ -138,52 +137,21 @@ typedef WilsonTMFermion<WilsonImplF> WilsonTMFermionF;
typedef WilsonTMFermion<WilsonImplD> WilsonTMFermionD; typedef WilsonTMFermion<WilsonImplD> WilsonTMFermionD;
// Clover fermions // Clover fermions
template <typename WImpl> using WilsonClover = WilsonCloverFermion<WImpl, CloverHelpers<WImpl>>; typedef WilsonCloverFermion<WilsonImplR> WilsonCloverFermionR;
template <typename WImpl> using WilsonExpClover = WilsonCloverFermion<WImpl, ExpCloverHelpers<WImpl>>; typedef WilsonCloverFermion<WilsonImplF> WilsonCloverFermionF;
typedef WilsonCloverFermion<WilsonImplD> WilsonCloverFermionD;
typedef WilsonClover<WilsonImplR> WilsonCloverFermionR; typedef WilsonCloverFermion<WilsonAdjImplR> WilsonCloverAdjFermionR;
typedef WilsonClover<WilsonImplF> WilsonCloverFermionF; typedef WilsonCloverFermion<WilsonAdjImplF> WilsonCloverAdjFermionF;
typedef WilsonClover<WilsonImplD> WilsonCloverFermionD; typedef WilsonCloverFermion<WilsonAdjImplD> WilsonCloverAdjFermionD;
typedef WilsonExpClover<WilsonImplR> WilsonExpCloverFermionR; typedef WilsonCloverFermion<WilsonTwoIndexSymmetricImplR> WilsonCloverTwoIndexSymmetricFermionR;
typedef WilsonExpClover<WilsonImplF> WilsonExpCloverFermionF; typedef WilsonCloverFermion<WilsonTwoIndexSymmetricImplF> WilsonCloverTwoIndexSymmetricFermionF;
typedef WilsonExpClover<WilsonImplD> WilsonExpCloverFermionD; typedef WilsonCloverFermion<WilsonTwoIndexSymmetricImplD> WilsonCloverTwoIndexSymmetricFermionD;
typedef WilsonClover<WilsonAdjImplR> WilsonCloverAdjFermionR; typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplR> WilsonCloverTwoIndexAntiSymmetricFermionR;
typedef WilsonClover<WilsonAdjImplF> WilsonCloverAdjFermionF; typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonCloverTwoIndexAntiSymmetricFermionF;
typedef WilsonClover<WilsonAdjImplD> WilsonCloverAdjFermionD; typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiSymmetricFermionD;
typedef WilsonClover<WilsonTwoIndexSymmetricImplR> WilsonCloverTwoIndexSymmetricFermionR;
typedef WilsonClover<WilsonTwoIndexSymmetricImplF> WilsonCloverTwoIndexSymmetricFermionF;
typedef WilsonClover<WilsonTwoIndexSymmetricImplD> WilsonCloverTwoIndexSymmetricFermionD;
typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplR> WilsonCloverTwoIndexAntiSymmetricFermionR;
typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplF> WilsonCloverTwoIndexAntiSymmetricFermionF;
typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiSymmetricFermionD;
// Compact Clover fermions
template <typename WImpl> using CompactWilsonClover = CompactWilsonCloverFermion<WImpl, CompactCloverHelpers<WImpl>>;
template <typename WImpl> using CompactWilsonExpClover = CompactWilsonCloverFermion<WImpl, CompactExpCloverHelpers<WImpl>>;
typedef CompactWilsonClover<WilsonImplR> CompactWilsonCloverFermionR;
typedef CompactWilsonClover<WilsonImplF> CompactWilsonCloverFermionF;
typedef CompactWilsonClover<WilsonImplD> CompactWilsonCloverFermionD;
typedef CompactWilsonExpClover<WilsonImplR> CompactWilsonExpCloverFermionR;
typedef CompactWilsonExpClover<WilsonImplF> CompactWilsonExpCloverFermionF;
typedef CompactWilsonExpClover<WilsonImplD> CompactWilsonExpCloverFermionD;
typedef CompactWilsonClover<WilsonAdjImplR> CompactWilsonCloverAdjFermionR;
typedef CompactWilsonClover<WilsonAdjImplF> CompactWilsonCloverAdjFermionF;
typedef CompactWilsonClover<WilsonAdjImplD> CompactWilsonCloverAdjFermionD;
typedef CompactWilsonClover<WilsonTwoIndexSymmetricImplR> CompactWilsonCloverTwoIndexSymmetricFermionR;
typedef CompactWilsonClover<WilsonTwoIndexSymmetricImplF> CompactWilsonCloverTwoIndexSymmetricFermionF;
typedef CompactWilsonClover<WilsonTwoIndexSymmetricImplD> CompactWilsonCloverTwoIndexSymmetricFermionD;
typedef CompactWilsonClover<WilsonTwoIndexAntiSymmetricImplR> CompactWilsonCloverTwoIndexAntiSymmetricFermionR;
typedef CompactWilsonClover<WilsonTwoIndexAntiSymmetricImplF> CompactWilsonCloverTwoIndexAntiSymmetricFermionF;
typedef CompactWilsonClover<WilsonTwoIndexAntiSymmetricImplD> CompactWilsonCloverTwoIndexAntiSymmetricFermionD;
// Domain Wall fermions // Domain Wall fermions
typedef DomainWallFermion<WilsonImplR> DomainWallFermionR; typedef DomainWallFermion<WilsonImplR> DomainWallFermionR;

View File

@ -4,11 +4,10 @@
Source file: ./lib/qcd/action/fermion/WilsonCloverFermion.h Source file: ./lib/qcd/action/fermion/WilsonCloverFermion.h
Copyright (C) 2017 - 2022 Copyright (C) 2017
Author: Guido Cossu <guido.cossu@ed.ac.uk> Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: David Preti <> Author: David Preti <>
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
@ -30,9 +29,7 @@
#pragma once #pragma once
#include <Grid/qcd/action/fermion/WilsonCloverTypes.h> #include <Grid/Grid.h>
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
#include <Grid/qcd/action/fermion/CloverHelpers.h>
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
@ -52,16 +49,19 @@ NAMESPACE_BEGIN(Grid);
// csw_r = csw_t to recover the isotropic version // csw_r = csw_t to recover the isotropic version
////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////
template<class Impl, class CloverHelpers> template <class Impl>
class WilsonCloverFermion : public WilsonFermion<Impl>, class WilsonCloverFermion : public WilsonFermion<Impl>
public WilsonCloverHelpers<Impl>
{ {
public: public:
// Types definitions
INHERIT_IMPL_TYPES(Impl); INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl); template <typename vtype>
using iImplClover = iScalar<iMatrix<iMatrix<vtype, Impl::Dimension>, Ns>>;
typedef iImplClover<Simd> SiteCloverType;
typedef Lattice<SiteCloverType> CloverFieldType;
typedef WilsonFermion<Impl> WilsonBase; public:
typedef WilsonCloverHelpers<Impl> Helpers; typedef WilsonFermion<Impl> WilsonBase;
virtual int ConstEE(void) { return 0; }; virtual int ConstEE(void) { return 0; };
virtual void Instantiatable(void){}; virtual void Instantiatable(void){};
@ -72,7 +72,42 @@ public:
const RealD _csw_r = 0.0, const RealD _csw_r = 0.0,
const RealD _csw_t = 0.0, const RealD _csw_t = 0.0,
const WilsonAnisotropyCoefficients &clover_anisotropy = WilsonAnisotropyCoefficients(), const WilsonAnisotropyCoefficients &clover_anisotropy = WilsonAnisotropyCoefficients(),
const ImplParams &impl_p = ImplParams()); const ImplParams &impl_p = ImplParams()) : WilsonFermion<Impl>(_Umu,
Fgrid,
Hgrid,
_mass, impl_p, clover_anisotropy),
CloverTerm(&Fgrid),
CloverTermInv(&Fgrid),
CloverTermEven(&Hgrid),
CloverTermOdd(&Hgrid),
CloverTermInvEven(&Hgrid),
CloverTermInvOdd(&Hgrid),
CloverTermDagEven(&Hgrid),
CloverTermDagOdd(&Hgrid),
CloverTermInvDagEven(&Hgrid),
CloverTermInvDagOdd(&Hgrid)
{
assert(Nd == 4); // require 4 dimensions
if (clover_anisotropy.isAnisotropic)
{
csw_r = _csw_r * 0.5 / clover_anisotropy.xi_0;
diag_mass = _mass + 1.0 + (Nd - 1) * (clover_anisotropy.nu / clover_anisotropy.xi_0);
}
else
{
csw_r = _csw_r * 0.5;
diag_mass = 4.0 + _mass;
}
csw_t = _csw_t * 0.5;
if (csw_r == 0)
std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_r = 0" << std::endl;
if (csw_t == 0)
std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_t = 0" << std::endl;
ImportGauge(_Umu);
}
virtual void M(const FermionField &in, FermionField &out); virtual void M(const FermionField &in, FermionField &out);
virtual void Mdag(const FermionField &in, FermionField &out); virtual void Mdag(const FermionField &in, FermionField &out);
@ -89,21 +124,250 @@ public:
void ImportGauge(const GaugeField &_Umu); void ImportGauge(const GaugeField &_Umu);
// Derivative parts unpreconditioned pseudofermions // Derivative parts unpreconditioned pseudofermions
void MDeriv(GaugeField &force, const FermionField &X, const FermionField &Y, int dag); void MDeriv(GaugeField &force, const FermionField &X, const FermionField &Y, int dag)
{
conformable(X.Grid(), Y.Grid());
conformable(X.Grid(), force.Grid());
GaugeLinkField force_mu(force.Grid()), lambda(force.Grid());
GaugeField clover_force(force.Grid());
PropagatorField Lambda(force.Grid());
public: // Guido: Here we are hitting some performance issues:
// need to extract the components of the DoubledGaugeField
// for each call
// Possible solution
// Create a vector object to store them? (cons: wasting space)
std::vector<GaugeLinkField> U(Nd, this->Umu.Grid());
Impl::extractLinkField(U, this->Umu);
force = Zero();
// Derivative of the Wilson hopping term
this->DhopDeriv(force, X, Y, dag);
///////////////////////////////////////////////////////////
// Clover term derivative
///////////////////////////////////////////////////////////
Impl::outerProductImpl(Lambda, X, Y);
//std::cout << "Lambda:" << Lambda << std::endl;
Gamma::Algebra sigma[] = {
Gamma::Algebra::SigmaXY,
Gamma::Algebra::SigmaXZ,
Gamma::Algebra::SigmaXT,
Gamma::Algebra::MinusSigmaXY,
Gamma::Algebra::SigmaYZ,
Gamma::Algebra::SigmaYT,
Gamma::Algebra::MinusSigmaXZ,
Gamma::Algebra::MinusSigmaYZ,
Gamma::Algebra::SigmaZT,
Gamma::Algebra::MinusSigmaXT,
Gamma::Algebra::MinusSigmaYT,
Gamma::Algebra::MinusSigmaZT};
/*
sigma_{\mu \nu}=
| 0 sigma[0] sigma[1] sigma[2] |
| sigma[3] 0 sigma[4] sigma[5] |
| sigma[6] sigma[7] 0 sigma[8] |
| sigma[9] sigma[10] sigma[11] 0 |
*/
int count = 0;
clover_force = Zero();
for (int mu = 0; mu < 4; mu++)
{
force_mu = Zero();
for (int nu = 0; nu < 4; nu++)
{
if (mu == nu)
continue;
RealD factor;
if (nu == 4 || mu == 4)
{
factor = 2.0 * csw_t;
}
else
{
factor = 2.0 * csw_r;
}
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
force_mu -= factor*Cmunu(U, lambda, mu, nu); // checked
count++;
}
pokeLorentz(clover_force, U[mu] * force_mu, mu);
}
//clover_force *= csw;
force += clover_force;
}
// Computing C_{\mu \nu}(x) as in Eq.(B.39) in Zbigniew Sroczynski's PhD thesis
GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu)
{
conformable(lambda.Grid(), U[0].Grid());
GaugeLinkField out(lambda.Grid()), tmp(lambda.Grid());
// insertion in upper staple
// please check redundancy of shift operations
// C1+
tmp = lambda * U[nu];
out = Impl::ShiftStaple(Impl::CovShiftForward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
// C2+
tmp = U[mu] * Impl::ShiftStaple(adj(lambda), mu);
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(tmp, mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
// C3+
tmp = U[nu] * Impl::ShiftStaple(adj(lambda), nu);
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(tmp, nu))), mu);
// C4+
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu) * lambda;
// insertion in lower staple
// C1-
out -= Impl::ShiftStaple(lambda, mu) * Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu);
// C2-
tmp = adj(lambda) * U[nu];
out -= Impl::ShiftStaple(Impl::CovShiftBackward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu);
// C3-
tmp = lambda * U[nu];
out -= Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, tmp)), mu);
// C4-
out -= Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu) * lambda;
return out;
}
protected:
// here fixing the 4 dimensions, make it more general? // here fixing the 4 dimensions, make it more general?
RealD csw_r; // Clover coefficient - spatial RealD csw_r; // Clover coefficient - spatial
RealD csw_t; // Clover coefficient - temporal RealD csw_t; // Clover coefficient - temporal
RealD diag_mass; // Mass term RealD diag_mass; // Mass term
CloverField CloverTerm, CloverTermInv; // Clover term CloverFieldType CloverTerm, CloverTermInv; // Clover term
CloverField CloverTermEven, CloverTermOdd; // Clover term EO CloverFieldType CloverTermEven, CloverTermOdd; // Clover term EO
CloverField CloverTermInvEven, CloverTermInvOdd; // Clover term Inv EO CloverFieldType CloverTermInvEven, CloverTermInvOdd; // Clover term Inv EO
CloverField CloverTermDagEven, CloverTermDagOdd; // Clover term Dag EO CloverFieldType CloverTermDagEven, CloverTermDagOdd; // Clover term Dag EO
CloverField CloverTermInvDagEven, CloverTermInvDagOdd; // Clover term Inv Dag EO CloverFieldType CloverTermInvDagEven, CloverTermInvDagOdd; // Clover term Inv Dag EO
};
public:
// eventually these can be compressed into 6x6 blocks instead of the 12x12
// using the DeGrand-Rossi basis for the gamma matrices
CloverFieldType fillCloverYZ(const GaugeLinkField &F)
{
CloverFieldType T(F.Grid());
T = Zero();
autoView(T_v,T,AcceleratorWrite);
autoView(F_v,F,AcceleratorRead);
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
{
T_v[i]()(0, 1) = timesMinusI(F_v[i]()());
T_v[i]()(1, 0) = timesMinusI(F_v[i]()());
T_v[i]()(2, 3) = timesMinusI(F_v[i]()());
T_v[i]()(3, 2) = timesMinusI(F_v[i]()());
});
return T;
}
CloverFieldType fillCloverXZ(const GaugeLinkField &F)
{
CloverFieldType T(F.Grid());
T = Zero();
autoView(T_v, T,AcceleratorWrite);
autoView(F_v, F,AcceleratorRead);
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
{
T_v[i]()(0, 1) = -F_v[i]()();
T_v[i]()(1, 0) = F_v[i]()();
T_v[i]()(2, 3) = -F_v[i]()();
T_v[i]()(3, 2) = F_v[i]()();
});
return T;
}
CloverFieldType fillCloverXY(const GaugeLinkField &F)
{
CloverFieldType T(F.Grid());
T = Zero();
autoView(T_v,T,AcceleratorWrite);
autoView(F_v,F,AcceleratorRead);
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
{
T_v[i]()(0, 0) = timesMinusI(F_v[i]()());
T_v[i]()(1, 1) = timesI(F_v[i]()());
T_v[i]()(2, 2) = timesMinusI(F_v[i]()());
T_v[i]()(3, 3) = timesI(F_v[i]()());
});
return T;
}
CloverFieldType fillCloverXT(const GaugeLinkField &F)
{
CloverFieldType T(F.Grid());
T = Zero();
autoView( T_v , T, AcceleratorWrite);
autoView( F_v , F, AcceleratorRead);
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
{
T_v[i]()(0, 1) = timesI(F_v[i]()());
T_v[i]()(1, 0) = timesI(F_v[i]()());
T_v[i]()(2, 3) = timesMinusI(F_v[i]()());
T_v[i]()(3, 2) = timesMinusI(F_v[i]()());
});
return T;
}
CloverFieldType fillCloverYT(const GaugeLinkField &F)
{
CloverFieldType T(F.Grid());
T = Zero();
autoView( T_v ,T,AcceleratorWrite);
autoView( F_v ,F,AcceleratorRead);
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
{
T_v[i]()(0, 1) = -(F_v[i]()());
T_v[i]()(1, 0) = (F_v[i]()());
T_v[i]()(2, 3) = (F_v[i]()());
T_v[i]()(3, 2) = -(F_v[i]()());
});
return T;
}
CloverFieldType fillCloverZT(const GaugeLinkField &F)
{
CloverFieldType T(F.Grid());
T = Zero();
autoView( T_v , T,AcceleratorWrite);
autoView( F_v , F,AcceleratorRead);
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
{
T_v[i]()(0, 0) = timesI(F_v[i]()());
T_v[i]()(1, 1) = timesMinusI(F_v[i]()());
T_v[i]()(2, 2) = timesMinusI(F_v[i]()());
T_v[i]()(3, 3) = timesI(F_v[i]()());
});
return T;
}
};
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -1,763 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonCloverHelpers.h
Copyright (C) 2021 - 2022
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
// Helper routines that implement common clover functionality
NAMESPACE_BEGIN(Grid);
template<class Impl> class WilsonCloverHelpers {
public:
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
// Computing C_{\mu \nu}(x) as in Eq.(B.39) in Zbigniew Sroczynski's PhD thesis
static GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu)
{
conformable(lambda.Grid(), U[0].Grid());
GaugeLinkField out(lambda.Grid()), tmp(lambda.Grid());
// insertion in upper staple
// please check redundancy of shift operations
// C1+
tmp = lambda * U[nu];
out = Impl::ShiftStaple(Impl::CovShiftForward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
// C2+
tmp = U[mu] * Impl::ShiftStaple(adj(lambda), mu);
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(tmp, mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
// C3+
tmp = U[nu] * Impl::ShiftStaple(adj(lambda), nu);
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(tmp, nu))), mu);
// C4+
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu) * lambda;
// insertion in lower staple
// C1-
out -= Impl::ShiftStaple(lambda, mu) * Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu);
// C2-
tmp = adj(lambda) * U[nu];
out -= Impl::ShiftStaple(Impl::CovShiftBackward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu);
// C3-
tmp = lambda * U[nu];
out -= Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, tmp)), mu);
// C4-
out -= Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu) * lambda;
return out;
}
static CloverField fillCloverYZ(const GaugeLinkField &F)
{
CloverField T(F.Grid());
T = Zero();
autoView(T_v,T,AcceleratorWrite);
autoView(F_v,F,AcceleratorRead);
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
{
coalescedWrite(T_v[i]()(0, 1), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(1, 0), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(2, 3), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(3, 2), coalescedRead(timesMinusI(F_v[i]()())));
});
return T;
}
static CloverField fillCloverXZ(const GaugeLinkField &F)
{
CloverField T(F.Grid());
T = Zero();
autoView(T_v, T,AcceleratorWrite);
autoView(F_v, F,AcceleratorRead);
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
{
coalescedWrite(T_v[i]()(0, 1), coalescedRead(-F_v[i]()()));
coalescedWrite(T_v[i]()(1, 0), coalescedRead(F_v[i]()()));
coalescedWrite(T_v[i]()(2, 3), coalescedRead(-F_v[i]()()));
coalescedWrite(T_v[i]()(3, 2), coalescedRead(F_v[i]()()));
});
return T;
}
static CloverField fillCloverXY(const GaugeLinkField &F)
{
CloverField T(F.Grid());
T = Zero();
autoView(T_v,T,AcceleratorWrite);
autoView(F_v,F,AcceleratorRead);
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
{
coalescedWrite(T_v[i]()(0, 0), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(1, 1), coalescedRead(timesI(F_v[i]()())));
coalescedWrite(T_v[i]()(2, 2), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(3, 3), coalescedRead(timesI(F_v[i]()())));
});
return T;
}
static CloverField fillCloverXT(const GaugeLinkField &F)
{
CloverField T(F.Grid());
T = Zero();
autoView( T_v , T, AcceleratorWrite);
autoView( F_v , F, AcceleratorRead);
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
{
coalescedWrite(T_v[i]()(0, 1), coalescedRead(timesI(F_v[i]()())));
coalescedWrite(T_v[i]()(1, 0), coalescedRead(timesI(F_v[i]()())));
coalescedWrite(T_v[i]()(2, 3), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(3, 2), coalescedRead(timesMinusI(F_v[i]()())));
});
return T;
}
static CloverField fillCloverYT(const GaugeLinkField &F)
{
CloverField T(F.Grid());
T = Zero();
autoView( T_v ,T,AcceleratorWrite);
autoView( F_v ,F,AcceleratorRead);
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
{
coalescedWrite(T_v[i]()(0, 1), coalescedRead(-(F_v[i]()())));
coalescedWrite(T_v[i]()(1, 0), coalescedRead((F_v[i]()())));
coalescedWrite(T_v[i]()(2, 3), coalescedRead((F_v[i]()())));
coalescedWrite(T_v[i]()(3, 2), coalescedRead(-(F_v[i]()())));
});
return T;
}
static CloverField fillCloverZT(const GaugeLinkField &F)
{
CloverField T(F.Grid());
T = Zero();
autoView( T_v , T,AcceleratorWrite);
autoView( F_v , F,AcceleratorRead);
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
{
coalescedWrite(T_v[i]()(0, 0), coalescedRead(timesI(F_v[i]()())));
coalescedWrite(T_v[i]()(1, 1), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(2, 2), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(3, 3), coalescedRead(timesI(F_v[i]()())));
});
return T;
}
template<class _Spinor>
static accelerator_inline void multClover(_Spinor& phi, const SiteClover& C, const _Spinor& chi) {
auto CC = coalescedRead(C);
mult(&phi, &CC, &chi);
}
template<class _SpinorField>
inline void multCloverField(_SpinorField& out, const CloverField& C, const _SpinorField& phi) {
const int Nsimd = SiteSpinor::Nsimd();
autoView(out_v, out, AcceleratorWrite);
autoView(phi_v, phi, AcceleratorRead);
autoView(C_v, C, AcceleratorRead);
typedef decltype(coalescedRead(out_v[0])) calcSpinor;
accelerator_for(sss,out.Grid()->oSites(),Nsimd,{
calcSpinor tmp;
multClover(tmp,C_v[sss],phi_v(sss));
coalescedWrite(out_v[sss],tmp);
});
}
};
////////////////////////////////////////////////////////
template<class Impl> class CompactWilsonCloverHelpers {
public:
INHERIT_COMPACT_CLOVER_SIZES(Impl);
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
INHERIT_COMPACT_CLOVER_TYPES(Impl);
#if 0
static accelerator_inline typename SiteCloverTriangle::vector_type triangle_elem(const SiteCloverTriangle& triangle, int block, int i, int j) {
assert(i != j);
if(i < j) {
return triangle()(block)(triangle_index(i, j));
} else { // i > j
return conjugate(triangle()(block)(triangle_index(i, j)));
}
}
#else
template<typename vobj>
static accelerator_inline vobj triangle_elem(const iImplCloverTriangle<vobj>& triangle, int block, int i, int j) {
assert(i != j);
if(i < j) {
return triangle()(block)(triangle_index(i, j));
} else { // i > j
return conjugate(triangle()(block)(triangle_index(i, j)));
}
}
#endif
static accelerator_inline int triangle_index(int i, int j) {
if(i == j)
return 0;
else if(i < j)
return Nred * (Nred - 1) / 2 - (Nred - i) * (Nred - i - 1) / 2 + j - i - 1;
else // i > j
return Nred * (Nred - 1) / 2 - (Nred - j) * (Nred - j - 1) / 2 + i - j - 1;
}
static void MooeeKernel_gpu(int Nsite,
int Ls,
const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle) {
autoView(diagonal_v, diagonal, AcceleratorRead);
autoView(triangle_v, triangle, AcceleratorRead);
autoView(in_v, in, AcceleratorRead);
autoView(out_v, out, AcceleratorWrite);
typedef decltype(coalescedRead(out_v[0])) CalcSpinor;
const uint64_t NN = Nsite * Ls;
accelerator_for(ss, NN, Simd::Nsimd(), {
int sF = ss;
int sU = ss/Ls;
CalcSpinor res;
CalcSpinor in_t = in_v(sF);
auto diagonal_t = diagonal_v(sU);
auto triangle_t = triangle_v(sU);
for(int block=0; block<Nhs; block++) {
int s_start = block*Nhs;
for(int i=0; i<Nred; i++) {
int si = s_start + i/Nc, ci = i%Nc;
res()(si)(ci) = diagonal_t()(block)(i) * in_t()(si)(ci);
for(int j=0; j<Nred; j++) {
if (j == i) continue;
int sj = s_start + j/Nc, cj = j%Nc;
res()(si)(ci) = res()(si)(ci) + triangle_elem(triangle_t, block, i, j) * in_t()(sj)(cj);
};
};
};
coalescedWrite(out_v[sF], res);
});
}
static void MooeeKernel_cpu(int Nsite,
int Ls,
const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle) {
autoView(diagonal_v, diagonal, CpuRead);
autoView(triangle_v, triangle, CpuRead);
autoView(in_v, in, CpuRead);
autoView(out_v, out, CpuWrite);
typedef SiteSpinor CalcSpinor;
#if defined(A64FX) || defined(A64FXFIXEDSIZE)
#define PREFETCH_CLOVER(BASE) { \
uint64_t base; \
int pf_dist_L1 = 1; \
int pf_dist_L2 = -5; /* -> penalty -> disable */ \
\
if ((pf_dist_L1 >= 0) && (sU + pf_dist_L1 < Nsite)) { \
base = (uint64_t)&diag_t()(pf_dist_L1+BASE)(0); \
svprfd(svptrue_b64(), (int64_t*)(base + 0), SV_PLDL1STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 256), SV_PLDL1STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 512), SV_PLDL1STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 768), SV_PLDL1STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 1024), SV_PLDL1STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 1280), SV_PLDL1STRM); \
} \
\
if ((pf_dist_L2 >= 0) && (sU + pf_dist_L2 < Nsite)) { \
base = (uint64_t)&diag_t()(pf_dist_L2+BASE)(0); \
svprfd(svptrue_b64(), (int64_t*)(base + 0), SV_PLDL2STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 256), SV_PLDL2STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 512), SV_PLDL2STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 768), SV_PLDL2STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 1024), SV_PLDL2STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 1280), SV_PLDL2STRM); \
} \
}
// TODO: Implement/generalize this for other architectures
// I played around a bit on KNL (see below) but didn't bring anything
// #elif defined(AVX512)
// #define PREFETCH_CLOVER(BASE) { \
// uint64_t base; \
// int pf_dist_L1 = 1; \
// int pf_dist_L2 = +4; \
// \
// if ((pf_dist_L1 >= 0) && (sU + pf_dist_L1 < Nsite)) { \
// base = (uint64_t)&diag_t()(pf_dist_L1+BASE)(0); \
// _mm_prefetch((const char*)(base + 0), _MM_HINT_T0); \
// _mm_prefetch((const char*)(base + 64), _MM_HINT_T0); \
// _mm_prefetch((const char*)(base + 128), _MM_HINT_T0); \
// _mm_prefetch((const char*)(base + 192), _MM_HINT_T0); \
// _mm_prefetch((const char*)(base + 256), _MM_HINT_T0); \
// _mm_prefetch((const char*)(base + 320), _MM_HINT_T0); \
// } \
// \
// if ((pf_dist_L2 >= 0) && (sU + pf_dist_L2 < Nsite)) { \
// base = (uint64_t)&diag_t()(pf_dist_L2+BASE)(0); \
// _mm_prefetch((const char*)(base + 0), _MM_HINT_T1); \
// _mm_prefetch((const char*)(base + 64), _MM_HINT_T1); \
// _mm_prefetch((const char*)(base + 128), _MM_HINT_T1); \
// _mm_prefetch((const char*)(base + 192), _MM_HINT_T1); \
// _mm_prefetch((const char*)(base + 256), _MM_HINT_T1); \
// _mm_prefetch((const char*)(base + 320), _MM_HINT_T1); \
// } \
// }
#else
#define PREFETCH_CLOVER(BASE)
#endif
const uint64_t NN = Nsite * Ls;
thread_for(ss, NN, {
int sF = ss;
int sU = ss/Ls;
CalcSpinor res;
CalcSpinor in_t = in_v[sF];
auto diag_t = diagonal_v[sU]; // "diag" instead of "diagonal" here to make code below easier to read
auto triangle_t = triangle_v[sU];
// upper half
PREFETCH_CLOVER(0);
auto in_cc_0_0 = conjugate(in_t()(0)(0)); // Nils: reduces number
auto in_cc_0_1 = conjugate(in_t()(0)(1)); // of conjugates from
auto in_cc_0_2 = conjugate(in_t()(0)(2)); // 30 to 20
auto in_cc_1_0 = conjugate(in_t()(1)(0));
auto in_cc_1_1 = conjugate(in_t()(1)(1));
res()(0)(0) = diag_t()(0)( 0) * in_t()(0)(0)
+ triangle_t()(0)( 0) * in_t()(0)(1)
+ triangle_t()(0)( 1) * in_t()(0)(2)
+ triangle_t()(0)( 2) * in_t()(1)(0)
+ triangle_t()(0)( 3) * in_t()(1)(1)
+ triangle_t()(0)( 4) * in_t()(1)(2);
res()(0)(1) = triangle_t()(0)( 0) * in_cc_0_0;
res()(0)(1) = diag_t()(0)( 1) * in_t()(0)(1)
+ triangle_t()(0)( 5) * in_t()(0)(2)
+ triangle_t()(0)( 6) * in_t()(1)(0)
+ triangle_t()(0)( 7) * in_t()(1)(1)
+ triangle_t()(0)( 8) * in_t()(1)(2)
+ conjugate( res()(0)( 1));
res()(0)(2) = triangle_t()(0)( 1) * in_cc_0_0
+ triangle_t()(0)( 5) * in_cc_0_1;
res()(0)(2) = diag_t()(0)( 2) * in_t()(0)(2)
+ triangle_t()(0)( 9) * in_t()(1)(0)
+ triangle_t()(0)(10) * in_t()(1)(1)
+ triangle_t()(0)(11) * in_t()(1)(2)
+ conjugate( res()(0)( 2));
res()(1)(0) = triangle_t()(0)( 2) * in_cc_0_0
+ triangle_t()(0)( 6) * in_cc_0_1
+ triangle_t()(0)( 9) * in_cc_0_2;
res()(1)(0) = diag_t()(0)( 3) * in_t()(1)(0)
+ triangle_t()(0)(12) * in_t()(1)(1)
+ triangle_t()(0)(13) * in_t()(1)(2)
+ conjugate( res()(1)( 0));
res()(1)(1) = triangle_t()(0)( 3) * in_cc_0_0
+ triangle_t()(0)( 7) * in_cc_0_1
+ triangle_t()(0)(10) * in_cc_0_2
+ triangle_t()(0)(12) * in_cc_1_0;
res()(1)(1) = diag_t()(0)( 4) * in_t()(1)(1)
+ triangle_t()(0)(14) * in_t()(1)(2)
+ conjugate( res()(1)( 1));
res()(1)(2) = triangle_t()(0)( 4) * in_cc_0_0
+ triangle_t()(0)( 8) * in_cc_0_1
+ triangle_t()(0)(11) * in_cc_0_2
+ triangle_t()(0)(13) * in_cc_1_0
+ triangle_t()(0)(14) * in_cc_1_1;
res()(1)(2) = diag_t()(0)( 5) * in_t()(1)(2)
+ conjugate( res()(1)( 2));
vstream(out_v[sF]()(0)(0), res()(0)(0));
vstream(out_v[sF]()(0)(1), res()(0)(1));
vstream(out_v[sF]()(0)(2), res()(0)(2));
vstream(out_v[sF]()(1)(0), res()(1)(0));
vstream(out_v[sF]()(1)(1), res()(1)(1));
vstream(out_v[sF]()(1)(2), res()(1)(2));
// lower half
PREFETCH_CLOVER(1);
auto in_cc_2_0 = conjugate(in_t()(2)(0));
auto in_cc_2_1 = conjugate(in_t()(2)(1));
auto in_cc_2_2 = conjugate(in_t()(2)(2));
auto in_cc_3_0 = conjugate(in_t()(3)(0));
auto in_cc_3_1 = conjugate(in_t()(3)(1));
res()(2)(0) = diag_t()(1)( 0) * in_t()(2)(0)
+ triangle_t()(1)( 0) * in_t()(2)(1)
+ triangle_t()(1)( 1) * in_t()(2)(2)
+ triangle_t()(1)( 2) * in_t()(3)(0)
+ triangle_t()(1)( 3) * in_t()(3)(1)
+ triangle_t()(1)( 4) * in_t()(3)(2);
res()(2)(1) = triangle_t()(1)( 0) * in_cc_2_0;
res()(2)(1) = diag_t()(1)( 1) * in_t()(2)(1)
+ triangle_t()(1)( 5) * in_t()(2)(2)
+ triangle_t()(1)( 6) * in_t()(3)(0)
+ triangle_t()(1)( 7) * in_t()(3)(1)
+ triangle_t()(1)( 8) * in_t()(3)(2)
+ conjugate( res()(2)( 1));
res()(2)(2) = triangle_t()(1)( 1) * in_cc_2_0
+ triangle_t()(1)( 5) * in_cc_2_1;
res()(2)(2) = diag_t()(1)( 2) * in_t()(2)(2)
+ triangle_t()(1)( 9) * in_t()(3)(0)
+ triangle_t()(1)(10) * in_t()(3)(1)
+ triangle_t()(1)(11) * in_t()(3)(2)
+ conjugate( res()(2)( 2));
res()(3)(0) = triangle_t()(1)( 2) * in_cc_2_0
+ triangle_t()(1)( 6) * in_cc_2_1
+ triangle_t()(1)( 9) * in_cc_2_2;
res()(3)(0) = diag_t()(1)( 3) * in_t()(3)(0)
+ triangle_t()(1)(12) * in_t()(3)(1)
+ triangle_t()(1)(13) * in_t()(3)(2)
+ conjugate( res()(3)( 0));
res()(3)(1) = triangle_t()(1)( 3) * in_cc_2_0
+ triangle_t()(1)( 7) * in_cc_2_1
+ triangle_t()(1)(10) * in_cc_2_2
+ triangle_t()(1)(12) * in_cc_3_0;
res()(3)(1) = diag_t()(1)( 4) * in_t()(3)(1)
+ triangle_t()(1)(14) * in_t()(3)(2)
+ conjugate( res()(3)( 1));
res()(3)(2) = triangle_t()(1)( 4) * in_cc_2_0
+ triangle_t()(1)( 8) * in_cc_2_1
+ triangle_t()(1)(11) * in_cc_2_2
+ triangle_t()(1)(13) * in_cc_3_0
+ triangle_t()(1)(14) * in_cc_3_1;
res()(3)(2) = diag_t()(1)( 5) * in_t()(3)(2)
+ conjugate( res()(3)( 2));
vstream(out_v[sF]()(2)(0), res()(2)(0));
vstream(out_v[sF]()(2)(1), res()(2)(1));
vstream(out_v[sF]()(2)(2), res()(2)(2));
vstream(out_v[sF]()(3)(0), res()(3)(0));
vstream(out_v[sF]()(3)(1), res()(3)(1));
vstream(out_v[sF]()(3)(2), res()(3)(2));
});
}
static void MooeeKernel(int Nsite,
int Ls,
const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle) {
#if defined(GRID_CUDA) || defined(GRID_HIP)
MooeeKernel_gpu(Nsite, Ls, in, out, diagonal, triangle);
#else
MooeeKernel_cpu(Nsite, Ls, in, out, diagonal, triangle);
#endif
}
static void Invert(const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle,
CloverDiagonalField& diagonalInv,
CloverTriangleField& triangleInv) {
conformable(diagonal, diagonalInv);
conformable(triangle, triangleInv);
conformable(diagonal, triangle);
diagonalInv.Checkerboard() = diagonal.Checkerboard();
triangleInv.Checkerboard() = triangle.Checkerboard();
GridBase* grid = diagonal.Grid();
long lsites = grid->lSites();
typedef typename SiteCloverDiagonal::scalar_object scalar_object_diagonal;
typedef typename SiteCloverTriangle::scalar_object scalar_object_triangle;
autoView(diagonal_v, diagonal, CpuRead);
autoView(triangle_v, triangle, CpuRead);
autoView(diagonalInv_v, diagonalInv, CpuWrite);
autoView(triangleInv_v, triangleInv, CpuWrite);
thread_for(site, lsites, { // NOTE: Not on GPU because of Eigen & (peek/poke)LocalSite
Eigen::MatrixXcd clover_inv_eigen = Eigen::MatrixXcd::Zero(Ns*Nc, Ns*Nc);
Eigen::MatrixXcd clover_eigen = Eigen::MatrixXcd::Zero(Ns*Nc, Ns*Nc);
scalar_object_diagonal diagonal_tmp = Zero();
scalar_object_diagonal diagonal_inv_tmp = Zero();
scalar_object_triangle triangle_tmp = Zero();
scalar_object_triangle triangle_inv_tmp = Zero();
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
peekLocalSite(diagonal_tmp, diagonal_v, lcoor);
peekLocalSite(triangle_tmp, triangle_v, lcoor);
// TODO: can we save time here by inverting the two 6x6 hermitian matrices separately?
for (long s_row=0;s_row<Ns;s_row++) {
for (long s_col=0;s_col<Ns;s_col++) {
if(abs(s_row - s_col) > 1 || s_row + s_col == 3) continue;
int block = s_row / Nhs;
int s_row_block = s_row % Nhs;
int s_col_block = s_col % Nhs;
for (long c_row=0;c_row<Nc;c_row++) {
for (long c_col=0;c_col<Nc;c_col++) {
int i = s_row_block * Nc + c_row;
int j = s_col_block * Nc + c_col;
if(i == j)
clover_eigen(s_row*Nc+c_row, s_col*Nc+c_col) = static_cast<ComplexD>(TensorRemove(diagonal_tmp()(block)(i)));
else
clover_eigen(s_row*Nc+c_row, s_col*Nc+c_col) = static_cast<ComplexD>(TensorRemove(triangle_elem(triangle_tmp, block, i, j)));
}
}
}
}
clover_inv_eigen = clover_eigen.inverse();
for (long s_row=0;s_row<Ns;s_row++) {
for (long s_col=0;s_col<Ns;s_col++) {
if(abs(s_row - s_col) > 1 || s_row + s_col == 3) continue;
int block = s_row / Nhs;
int s_row_block = s_row % Nhs;
int s_col_block = s_col % Nhs;
for (long c_row=0;c_row<Nc;c_row++) {
for (long c_col=0;c_col<Nc;c_col++) {
int i = s_row_block * Nc + c_row;
int j = s_col_block * Nc + c_col;
if(i == j)
diagonal_inv_tmp()(block)(i) = clover_inv_eigen(s_row*Nc+c_row, s_col*Nc+c_col);
else if(i < j)
triangle_inv_tmp()(block)(triangle_index(i, j)) = clover_inv_eigen(s_row*Nc+c_row, s_col*Nc+c_col);
else
continue;
}
}
}
}
pokeLocalSite(diagonal_inv_tmp, diagonalInv_v, lcoor);
pokeLocalSite(triangle_inv_tmp, triangleInv_v, lcoor);
});
}
static void ConvertLayout(const CloverField& full,
CloverDiagonalField& diagonal,
CloverTriangleField& triangle) {
conformable(full, diagonal);
conformable(full, triangle);
diagonal.Checkerboard() = full.Checkerboard();
triangle.Checkerboard() = full.Checkerboard();
autoView(full_v, full, AcceleratorRead);
autoView(diagonal_v, diagonal, AcceleratorWrite);
autoView(triangle_v, triangle, AcceleratorWrite);
// NOTE: this function cannot be 'private' since nvcc forbids this for kernels
accelerator_for(ss, full.Grid()->oSites(), 1, {
for(int s_row = 0; s_row < Ns; s_row++) {
for(int s_col = 0; s_col < Ns; s_col++) {
if(abs(s_row - s_col) > 1 || s_row + s_col == 3) continue;
int block = s_row / Nhs;
int s_row_block = s_row % Nhs;
int s_col_block = s_col % Nhs;
for(int c_row = 0; c_row < Nc; c_row++) {
for(int c_col = 0; c_col < Nc; c_col++) {
int i = s_row_block * Nc + c_row;
int j = s_col_block * Nc + c_col;
if(i == j)
diagonal_v[ss]()(block)(i) = full_v[ss]()(s_row, s_col)(c_row, c_col);
else if(i < j)
triangle_v[ss]()(block)(triangle_index(i, j)) = full_v[ss]()(s_row, s_col)(c_row, c_col);
else
continue;
}
}
}
}
});
}
static void ConvertLayout(const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle,
CloverField& full) {
conformable(full, diagonal);
conformable(full, triangle);
full.Checkerboard() = diagonal.Checkerboard();
full = Zero();
autoView(diagonal_v, diagonal, AcceleratorRead);
autoView(triangle_v, triangle, AcceleratorRead);
autoView(full_v, full, AcceleratorWrite);
// NOTE: this function cannot be 'private' since nvcc forbids this for kernels
accelerator_for(ss, full.Grid()->oSites(), 1, {
for(int s_row = 0; s_row < Ns; s_row++) {
for(int s_col = 0; s_col < Ns; s_col++) {
if(abs(s_row - s_col) > 1 || s_row + s_col == 3) continue;
int block = s_row / Nhs;
int s_row_block = s_row % Nhs;
int s_col_block = s_col % Nhs;
for(int c_row = 0; c_row < Nc; c_row++) {
for(int c_col = 0; c_col < Nc; c_col++) {
int i = s_row_block * Nc + c_row;
int j = s_col_block * Nc + c_col;
if(i == j)
full_v[ss]()(s_row, s_col)(c_row, c_col) = diagonal_v[ss]()(block)(i);
else
full_v[ss]()(s_row, s_col)(c_row, c_col) = triangle_elem(triangle_v[ss], block, i, j);
}
}
}
}
});
}
static void ModifyBoundaries(CloverDiagonalField& diagonal, CloverTriangleField& triangle, RealD csw_t, RealD cF, RealD diag_mass) {
// Checks/grid
double t0 = usecond();
conformable(diagonal, triangle);
GridBase* grid = diagonal.Grid();
// Determine the boundary coordinates/sites
double t1 = usecond();
int t_dir = Nd - 1;
Lattice<iScalar<vInteger>> t_coor(grid);
LatticeCoordinate(t_coor, t_dir);
int T = grid->GlobalDimensions()[t_dir];
// Set off-diagonal parts at boundary to zero -- OK
double t2 = usecond();
CloverTriangleField zeroTriangle(grid);
zeroTriangle.Checkerboard() = triangle.Checkerboard();
zeroTriangle = Zero();
triangle = where(t_coor == 0, zeroTriangle, triangle);
triangle = where(t_coor == T-1, zeroTriangle, triangle);
// Set diagonal to unity (scaled correctly) -- OK
double t3 = usecond();
CloverDiagonalField tmp(grid);
tmp.Checkerboard() = diagonal.Checkerboard();
tmp = -1.0 * csw_t + diag_mass;
diagonal = where(t_coor == 0, tmp, diagonal);
diagonal = where(t_coor == T-1, tmp, diagonal);
// Correct values next to boundary
double t4 = usecond();
if(cF != 1.0) {
tmp = cF - 1.0;
tmp += diagonal;
diagonal = where(t_coor == 1, tmp, diagonal);
diagonal = where(t_coor == T-2, tmp, diagonal);
}
// Report timings
double t5 = usecond();
#if 0
std::cout << GridLogMessage << "CompactWilsonCloverHelpers::ModifyBoundaries timings:"
<< " checks = " << (t1 - t0) / 1e6
<< ", coordinate = " << (t2 - t1) / 1e6
<< ", off-diag zero = " << (t3 - t2) / 1e6
<< ", diagonal unity = " << (t4 - t3) / 1e6
<< ", near-boundary = " << (t5 - t4) / 1e6
<< ", total = " << (t5 - t0) / 1e6
<< std::endl;
#endif
}
template<class Field, class Mask>
static strong_inline void ApplyBoundaryMask(Field& f, const Mask& m) {
conformable(f, m);
auto grid = f.Grid();
const uint32_t Nsite = grid->oSites();
const uint32_t Nsimd = grid->Nsimd();
autoView(f_v, f, AcceleratorWrite);
autoView(m_v, m, AcceleratorRead);
// NOTE: this function cannot be 'private' since nvcc forbids this for kernels
accelerator_for(ss, Nsite, Nsimd, {
coalescedWrite(f_v[ss], m_v(ss) * f_v(ss));
});
}
template<class MaskField>
static void SetupMasks(MaskField& full, MaskField& even, MaskField& odd) {
assert(even.Grid()->_isCheckerBoarded && even.Checkerboard() == Even);
assert(odd.Grid()->_isCheckerBoarded && odd.Checkerboard() == Odd);
assert(!full.Grid()->_isCheckerBoarded);
GridBase* grid = full.Grid();
int t_dir = Nd-1;
Lattice<iScalar<vInteger>> t_coor(grid);
LatticeCoordinate(t_coor, t_dir);
int T = grid->GlobalDimensions()[t_dir];
MaskField zeroMask(grid); zeroMask = Zero();
full = 1.0;
full = where(t_coor == 0, zeroMask, full);
full = where(t_coor == T-1, zeroMask, full);
pickCheckerboard(Even, even, full);
pickCheckerboard(Odd, odd, full);
}
};
NAMESPACE_END(Grid);

View File

@ -1,90 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonCloverTypes.h
Copyright (C) 2021 - 2022
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template<class Impl>
class WilsonCloverTypes {
public:
INHERIT_IMPL_TYPES(Impl);
template <typename vtype> using iImplClover = iScalar<iMatrix<iMatrix<vtype, Impl::Dimension>, Ns>>;
typedef iImplClover<Simd> SiteClover;
typedef Lattice<SiteClover> CloverField;
};
template<class Impl>
class CompactWilsonCloverTypes {
public:
INHERIT_IMPL_TYPES(Impl);
static constexpr int Nred = Nc * Nhs; // 6
static constexpr int Nblock = Nhs; // 2
static constexpr int Ndiagonal = Nred; // 6
static constexpr int Ntriangle = (Nred - 1) * Nc; // 15
template<typename vtype> using iImplCloverDiagonal = iScalar<iVector<iVector<vtype, Ndiagonal>, Nblock>>;
template<typename vtype> using iImplCloverTriangle = iScalar<iVector<iVector<vtype, Ntriangle>, Nblock>>;
typedef iImplCloverDiagonal<Simd> SiteCloverDiagonal;
typedef iImplCloverTriangle<Simd> SiteCloverTriangle;
typedef iSinglet<Simd> SiteMask;
typedef Lattice<SiteCloverDiagonal> CloverDiagonalField;
typedef Lattice<SiteCloverTriangle> CloverTriangleField;
typedef Lattice<SiteMask> MaskField;
};
#define INHERIT_CLOVER_TYPES(Impl) \
typedef typename WilsonCloverTypes<Impl>::SiteClover SiteClover; \
typedef typename WilsonCloverTypes<Impl>::CloverField CloverField;
#define INHERIT_COMPACT_CLOVER_TYPES(Impl) \
typedef typename CompactWilsonCloverTypes<Impl>::SiteCloverDiagonal SiteCloverDiagonal; \
typedef typename CompactWilsonCloverTypes<Impl>::SiteCloverTriangle SiteCloverTriangle; \
typedef typename CompactWilsonCloverTypes<Impl>::SiteMask SiteMask; \
typedef typename CompactWilsonCloverTypes<Impl>::CloverDiagonalField CloverDiagonalField; \
typedef typename CompactWilsonCloverTypes<Impl>::CloverTriangleField CloverTriangleField; \
typedef typename CompactWilsonCloverTypes<Impl>::MaskField MaskField; \
/* ugly duplication but needed inside functionality classes */ \
template<typename vtype> using iImplCloverDiagonal = \
iScalar<iVector<iVector<vtype, CompactWilsonCloverTypes<Impl>::Ndiagonal>, CompactWilsonCloverTypes<Impl>::Nblock>>; \
template<typename vtype> using iImplCloverTriangle = \
iScalar<iVector<iVector<vtype, CompactWilsonCloverTypes<Impl>::Ntriangle>, CompactWilsonCloverTypes<Impl>::Nblock>>;
#define INHERIT_COMPACT_CLOVER_SIZES(Impl) \
static constexpr int Nred = CompactWilsonCloverTypes<Impl>::Nred; \
static constexpr int Nblock = CompactWilsonCloverTypes<Impl>::Nblock; \
static constexpr int Ndiagonal = CompactWilsonCloverTypes<Impl>::Ndiagonal; \
static constexpr int Ntriangle = CompactWilsonCloverTypes<Impl>::Ntriangle;
NAMESPACE_END(Grid);

View File

@ -47,7 +47,7 @@ CayleyFermion5D<Impl>::CayleyFermion5D(GaugeField &_Umu,
FiveDimRedBlackGrid, FiveDimRedBlackGrid,
FourDimGrid, FourDimGrid,
FourDimRedBlackGrid,_M5,p), FourDimRedBlackGrid,_M5,p),
mass_plus(_mass), mass_minus(_mass) mass(_mass)
{ {
} }
@ -209,8 +209,8 @@ void CayleyFermion5D<Impl>::M5D (const FermionField &psi, FermionField &chi)
{ {
int Ls=this->Ls; int Ls=this->Ls;
Vector<Coeff_t> diag (Ls,1.0); Vector<Coeff_t> diag (Ls,1.0);
Vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1]=mass_minus; Vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1]=mass;
Vector<Coeff_t> lower(Ls,-1.0); lower[0] =mass_plus; Vector<Coeff_t> lower(Ls,-1.0); lower[0] =mass;
M5D(psi,chi,chi,lower,diag,upper); M5D(psi,chi,chi,lower,diag,upper);
} }
template<class Impl> template<class Impl>
@ -220,8 +220,8 @@ void CayleyFermion5D<Impl>::Meooe5D (const FermionField &psi, FermionField &D
Vector<Coeff_t> diag = bs; Vector<Coeff_t> diag = bs;
Vector<Coeff_t> upper= cs; Vector<Coeff_t> upper= cs;
Vector<Coeff_t> lower= cs; Vector<Coeff_t> lower= cs;
upper[Ls-1]=-mass_minus*upper[Ls-1]; upper[Ls-1]=-mass*upper[Ls-1];
lower[0] =-mass_plus*lower[0]; lower[0] =-mass*lower[0];
M5D(psi,psi,Din,lower,diag,upper); M5D(psi,psi,Din,lower,diag,upper);
} }
// FIXME Redunant with the above routine; check this and eliminate // FIXME Redunant with the above routine; check this and eliminate
@ -235,8 +235,8 @@ template<class Impl> void CayleyFermion5D<Impl>::Meo5D (const FermionField &
upper[i]=-ceo[i]; upper[i]=-ceo[i];
lower[i]=-ceo[i]; lower[i]=-ceo[i];
} }
upper[Ls-1]=-mass_minus*upper[Ls-1]; upper[Ls-1]=-mass*upper[Ls-1];
lower[0] =-mass_plus*lower[0]; lower[0] =-mass*lower[0];
M5D(psi,psi,chi,lower,diag,upper); M5D(psi,psi,chi,lower,diag,upper);
} }
template<class Impl> template<class Impl>
@ -250,8 +250,8 @@ void CayleyFermion5D<Impl>::Mooee (const FermionField &psi, FermionField &
upper[i]=-cee[i]; upper[i]=-cee[i];
lower[i]=-cee[i]; lower[i]=-cee[i];
} }
upper[Ls-1]=-mass_minus*upper[Ls-1]; upper[Ls-1]=-mass*upper[Ls-1];
lower[0] =-mass_plus*lower[0]; lower[0] =-mass*lower[0];
M5D(psi,psi,chi,lower,diag,upper); M5D(psi,psi,chi,lower,diag,upper);
} }
template<class Impl> template<class Impl>
@ -266,9 +266,9 @@ void CayleyFermion5D<Impl>::MooeeDag (const FermionField &psi, FermionField &
// Assemble the 5d matrix // Assemble the 5d matrix
if ( s==0 ) { if ( s==0 ) {
upper[s] = -cee[s+1] ; upper[s] = -cee[s+1] ;
lower[s] = mass_minus*cee[Ls-1]; lower[s] = mass*cee[Ls-1];
} else if ( s==(Ls-1)) { } else if ( s==(Ls-1)) {
upper[s] = mass_plus*cee[0]; upper[s] = mass*cee[0];
lower[s] = -cee[s-1]; lower[s] = -cee[s-1];
} else { } else {
upper[s]=-cee[s+1]; upper[s]=-cee[s+1];
@ -291,8 +291,8 @@ void CayleyFermion5D<Impl>::M5Ddag (const FermionField &psi, FermionField &chi)
Vector<Coeff_t> diag(Ls,1.0); Vector<Coeff_t> diag(Ls,1.0);
Vector<Coeff_t> upper(Ls,-1.0); Vector<Coeff_t> upper(Ls,-1.0);
Vector<Coeff_t> lower(Ls,-1.0); Vector<Coeff_t> lower(Ls,-1.0);
upper[Ls-1]=-mass_plus*upper[Ls-1]; upper[Ls-1]=-mass*upper[Ls-1];
lower[0] =-mass_minus*lower[0]; lower[0] =-mass*lower[0];
M5Ddag(psi,chi,chi,lower,diag,upper); M5Ddag(psi,chi,chi,lower,diag,upper);
} }
@ -307,9 +307,9 @@ void CayleyFermion5D<Impl>::MeooeDag5D (const FermionField &psi, FermionField
for (int s=0;s<Ls;s++){ for (int s=0;s<Ls;s++){
if ( s== 0 ) { if ( s== 0 ) {
upper[s] = cs[s+1]; upper[s] = cs[s+1];
lower[s] =-mass_minus*cs[Ls-1]; lower[s] =-mass*cs[Ls-1];
} else if ( s==(Ls-1) ) { } else if ( s==(Ls-1) ) {
upper[s] =-mass_plus*cs[0]; upper[s] =-mass*cs[0];
lower[s] = cs[s-1]; lower[s] = cs[s-1];
} else { } else {
upper[s] = cs[s+1]; upper[s] = cs[s+1];
@ -552,7 +552,7 @@ void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,Vector<Coeff_t
lee[i] =-cee[i+1]/bee[i]; // sub-diag entry on the ith column lee[i] =-cee[i+1]/bee[i]; // sub-diag entry on the ith column
leem[i]=mass_minus*cee[Ls-1]/bee[0]; leem[i]=mass*cee[Ls-1]/bee[0];
for(int j=0;j<i;j++) { for(int j=0;j<i;j++) {
assert(bee[j+1]!=Coeff_t(0.0)); assert(bee[j+1]!=Coeff_t(0.0));
leem[i]*= aee[j]/bee[j+1]; leem[i]*= aee[j]/bee[j+1];
@ -560,7 +560,7 @@ void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,Vector<Coeff_t
uee[i] =-aee[i]/bee[i]; // up-diag entry on the ith row uee[i] =-aee[i]/bee[i]; // up-diag entry on the ith row
ueem[i]=mass_plus; ueem[i]=mass;
for(int j=1;j<=i;j++) ueem[i]*= cee[j]/bee[j]; for(int j=1;j<=i;j++) ueem[i]*= cee[j]/bee[j];
ueem[i]*= aee[0]/bee[0]; ueem[i]*= aee[0]/bee[0];
@ -573,7 +573,7 @@ void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,Vector<Coeff_t
} }
{ {
Coeff_t delta_d=mass_minus*cee[Ls-1]; Coeff_t delta_d=mass*cee[Ls-1];
for(int j=0;j<Ls-1;j++) { for(int j=0;j<Ls-1;j++) {
assert(bee[j] != Coeff_t(0.0)); assert(bee[j] != Coeff_t(0.0));
delta_d *= cee[j]/bee[j]; delta_d *= cee[j]/bee[j];
@ -642,10 +642,6 @@ void CayleyFermion5D<Impl>::ContractConservedCurrent( PropagatorField &q_in_1,
Current curr_type, Current curr_type,
unsigned int mu) unsigned int mu)
{ {
assert(mass_plus == mass_minus);
RealD mass = mass_plus;
#if (!defined(GRID_HIP)) #if (!defined(GRID_HIP))
Gamma::Algebra Gmu [] = { Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX, Gamma::Algebra::GammaX,
@ -781,8 +777,6 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
assert(mu>=0); assert(mu>=0);
assert(mu<Nd); assert(mu<Nd);
assert(mass_plus == mass_minus);
RealD mass = mass_plus;
#if 0 #if 0
int tshift = (mu == Nd-1) ? 1 : 0; int tshift = (mu == Nd-1) ? 1 : 0;

View File

@ -1,373 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/CompactWilsonCloverFermionImplementation.h
Copyright (C) 2017 - 2022
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/qcd/spin/Dirac.h>
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h>
NAMESPACE_BEGIN(Grid);
template<class Impl, class CloverHelpers>
CompactWilsonCloverFermion<Impl, CloverHelpers>::CompactWilsonCloverFermion(GaugeField& _Umu,
GridCartesian& Fgrid,
GridRedBlackCartesian& Hgrid,
const RealD _mass,
const RealD _csw_r,
const RealD _csw_t,
const RealD _cF,
const WilsonAnisotropyCoefficients& clover_anisotropy,
const ImplParams& impl_p)
: WilsonBase(_Umu, Fgrid, Hgrid, _mass, impl_p, clover_anisotropy)
, csw_r(_csw_r)
, csw_t(_csw_t)
, cF(_cF)
, open_boundaries(impl_p.boundary_phases[Nd-1] == 0.0)
, Diagonal(&Fgrid), Triangle(&Fgrid)
, DiagonalEven(&Hgrid), TriangleEven(&Hgrid)
, DiagonalOdd(&Hgrid), TriangleOdd(&Hgrid)
, DiagonalInv(&Fgrid), TriangleInv(&Fgrid)
, DiagonalInvEven(&Hgrid), TriangleInvEven(&Hgrid)
, DiagonalInvOdd(&Hgrid), TriangleInvOdd(&Hgrid)
, Tmp(&Fgrid)
, BoundaryMask(&Fgrid)
, BoundaryMaskEven(&Hgrid), BoundaryMaskOdd(&Hgrid)
{
assert(Nd == 4 && Nc == 3 && Ns == 4 && Impl::Dimension == 3);
csw_r *= 0.5;
csw_t *= 0.5;
if (clover_anisotropy.isAnisotropic)
csw_r /= clover_anisotropy.xi_0;
ImportGauge(_Umu);
if (open_boundaries) {
this->BoundaryMaskEven.Checkerboard() = Even;
this->BoundaryMaskOdd.Checkerboard() = Odd;
CompactHelpers::SetupMasks(this->BoundaryMask, this->BoundaryMaskEven, this->BoundaryMaskOdd);
}
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::Dhop(const FermionField& in, FermionField& out, int dag) {
WilsonBase::Dhop(in, out, dag);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::DhopOE(const FermionField& in, FermionField& out, int dag) {
WilsonBase::DhopOE(in, out, dag);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::DhopEO(const FermionField& in, FermionField& out, int dag) {
WilsonBase::DhopEO(in, out, dag);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::DhopDir(const FermionField& in, FermionField& out, int dir, int disp) {
WilsonBase::DhopDir(in, out, dir, disp);
if(this->open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::DhopDirAll(const FermionField& in, std::vector<FermionField>& out) {
WilsonBase::DhopDirAll(in, out);
if(this->open_boundaries) {
for(auto& o : out) ApplyBoundaryMask(o);
}
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::M(const FermionField& in, FermionField& out) {
out.Checkerboard() = in.Checkerboard();
WilsonBase::Dhop(in, out, DaggerNo); // call base to save applying bc
Mooee(in, Tmp);
axpy(out, 1.0, out, Tmp);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::Mdag(const FermionField& in, FermionField& out) {
out.Checkerboard() = in.Checkerboard();
WilsonBase::Dhop(in, out, DaggerYes); // call base to save applying bc
MooeeDag(in, Tmp);
axpy(out, 1.0, out, Tmp);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::Meooe(const FermionField& in, FermionField& out) {
WilsonBase::Meooe(in, out);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MeooeDag(const FermionField& in, FermionField& out) {
WilsonBase::MeooeDag(in, out);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::Mooee(const FermionField& in, FermionField& out) {
if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) {
MooeeInternal(in, out, DiagonalOdd, TriangleOdd);
} else {
MooeeInternal(in, out, DiagonalEven, TriangleEven);
}
} else {
MooeeInternal(in, out, Diagonal, Triangle);
}
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MooeeDag(const FermionField& in, FermionField& out) {
Mooee(in, out); // blocks are hermitian
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MooeeInv(const FermionField& in, FermionField& out) {
if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) {
MooeeInternal(in, out, DiagonalInvOdd, TriangleInvOdd);
} else {
MooeeInternal(in, out, DiagonalInvEven, TriangleInvEven);
}
} else {
MooeeInternal(in, out, DiagonalInv, TriangleInv);
}
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MooeeInvDag(const FermionField& in, FermionField& out) {
MooeeInv(in, out); // blocks are hermitian
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::Mdir(const FermionField& in, FermionField& out, int dir, int disp) {
DhopDir(in, out, dir, disp);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MdirAll(const FermionField& in, std::vector<FermionField>& out) {
DhopDirAll(in, out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) {
assert(!open_boundaries); // TODO check for changes required for open bc
// NOTE: code copied from original clover term
conformable(X.Grid(), Y.Grid());
conformable(X.Grid(), force.Grid());
GaugeLinkField force_mu(force.Grid()), lambda(force.Grid());
GaugeField clover_force(force.Grid());
PropagatorField Lambda(force.Grid());
// Guido: Here we are hitting some performance issues:
// need to extract the components of the DoubledGaugeField
// for each call
// Possible solution
// Create a vector object to store them? (cons: wasting space)
std::vector<GaugeLinkField> U(Nd, this->Umu.Grid());
Impl::extractLinkField(U, this->Umu);
force = Zero();
// Derivative of the Wilson hopping term
this->DhopDeriv(force, X, Y, dag);
///////////////////////////////////////////////////////////
// Clover term derivative
///////////////////////////////////////////////////////////
Impl::outerProductImpl(Lambda, X, Y);
//std::cout << "Lambda:" << Lambda << std::endl;
Gamma::Algebra sigma[] = {
Gamma::Algebra::SigmaXY,
Gamma::Algebra::SigmaXZ,
Gamma::Algebra::SigmaXT,
Gamma::Algebra::MinusSigmaXY,
Gamma::Algebra::SigmaYZ,
Gamma::Algebra::SigmaYT,
Gamma::Algebra::MinusSigmaXZ,
Gamma::Algebra::MinusSigmaYZ,
Gamma::Algebra::SigmaZT,
Gamma::Algebra::MinusSigmaXT,
Gamma::Algebra::MinusSigmaYT,
Gamma::Algebra::MinusSigmaZT};
/*
sigma_{\mu \nu}=
| 0 sigma[0] sigma[1] sigma[2] |
| sigma[3] 0 sigma[4] sigma[5] |
| sigma[6] sigma[7] 0 sigma[8] |
| sigma[9] sigma[10] sigma[11] 0 |
*/
int count = 0;
clover_force = Zero();
for (int mu = 0; mu < 4; mu++)
{
force_mu = Zero();
for (int nu = 0; nu < 4; nu++)
{
if (mu == nu)
continue;
RealD factor;
if (nu == 4 || mu == 4)
{
factor = 2.0 * csw_t;
}
else
{
factor = 2.0 * csw_r;
}
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
force_mu -= factor*CloverHelpers::Cmunu(U, lambda, mu, nu); // checked
count++;
}
pokeLorentz(clover_force, U[mu] * force_mu, mu);
}
//clover_force *= csw;
force += clover_force;
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MooDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) {
assert(0);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MeeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) {
assert(0);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MooeeInternal(const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle) {
assert(in.Checkerboard() == Odd || in.Checkerboard() == Even);
out.Checkerboard() = in.Checkerboard();
conformable(in, out);
conformable(in, diagonal);
conformable(in, triangle);
CompactHelpers::MooeeKernel(diagonal.oSites(), 1, in, out, diagonal, triangle);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::ImportGauge(const GaugeField& _Umu) {
// NOTE: parts copied from original implementation
// Import gauge into base class
double t0 = usecond();
WilsonBase::ImportGauge(_Umu); // NOTE: called here and in wilson constructor -> performed twice, but can't avoid that
// Initialize temporary variables
double t1 = usecond();
conformable(_Umu.Grid(), this->GaugeGrid());
GridBase* grid = _Umu.Grid();
typename Impl::GaugeLinkField Bx(grid), By(grid), Bz(grid), Ex(grid), Ey(grid), Ez(grid);
CloverField TmpOriginal(grid);
// Compute the field strength terms mu>nu
double t2 = usecond();
WilsonLoops<Impl>::FieldStrength(Bx, _Umu, Zdir, Ydir);
WilsonLoops<Impl>::FieldStrength(By, _Umu, Zdir, Xdir);
WilsonLoops<Impl>::FieldStrength(Bz, _Umu, Ydir, Xdir);
WilsonLoops<Impl>::FieldStrength(Ex, _Umu, Tdir, Xdir);
WilsonLoops<Impl>::FieldStrength(Ey, _Umu, Tdir, Ydir);
WilsonLoops<Impl>::FieldStrength(Ez, _Umu, Tdir, Zdir);
// Compute the Clover Operator acting on Colour and Spin
// multiply here by the clover coefficients for the anisotropy
double t3 = usecond();
TmpOriginal = Helpers::fillCloverYZ(Bx) * csw_r;
TmpOriginal += Helpers::fillCloverXZ(By) * csw_r;
TmpOriginal += Helpers::fillCloverXY(Bz) * csw_r;
TmpOriginal += Helpers::fillCloverXT(Ex) * csw_t;
TmpOriginal += Helpers::fillCloverYT(Ey) * csw_t;
TmpOriginal += Helpers::fillCloverZT(Ez) * csw_t;
// Handle mass term based on clover policy
CloverHelpers::MassTerm(TmpOriginal, this->diag_mass);
// Convert the data layout of the clover term
double t4 = usecond();
CompactHelpers::ConvertLayout(TmpOriginal, Diagonal, Triangle);
// Exponentiate the clover (nothing happens in case of the standard clover)
double t5 = usecond();
CloverHelpers::Exponentiate_Clover(Diagonal, Triangle, csw_t, this->diag_mass);
// Possible modify the boundary values
double t6 = usecond();
if(open_boundaries) CompactHelpers::ModifyBoundaries(Diagonal, Triangle, csw_t, cF, this->diag_mass);
// Invert the Clover term (explicit inversion needed for the improvement in case of open boundary conditions)
double t7 = usecond();
CompactHelpers::Invert(Diagonal, Triangle, DiagonalInv, TriangleInv);
// Fill the remaining clover fields
double t8 = usecond();
pickCheckerboard(Even, DiagonalEven, Diagonal);
pickCheckerboard(Even, TriangleEven, Triangle);
pickCheckerboard(Odd, DiagonalOdd, Diagonal);
pickCheckerboard(Odd, TriangleOdd, Triangle);
pickCheckerboard(Even, DiagonalInvEven, DiagonalInv);
pickCheckerboard(Even, TriangleInvEven, TriangleInv);
pickCheckerboard(Odd, DiagonalInvOdd, DiagonalInv);
pickCheckerboard(Odd, TriangleInvOdd, TriangleInv);
// Report timings
double t9 = usecond();
std::cout << GridLogDebug << "CompactWilsonCloverFermion::ImportGauge timings:" << std::endl;
std::cout << GridLogDebug << "WilsonFermion::Importgauge = " << (t1 - t0) / 1e6 << std::endl;
std::cout << GridLogDebug << "allocations = " << (t2 - t1) / 1e6 << std::endl;
std::cout << GridLogDebug << "field strength = " << (t3 - t2) / 1e6 << std::endl;
std::cout << GridLogDebug << "fill clover = " << (t4 - t3) / 1e6 << std::endl;
std::cout << GridLogDebug << "convert = " << (t5 - t4) / 1e6 << std::endl;
std::cout << GridLogDebug << "exponentiation = " << (t6 - t5) / 1e6 << std::endl;
std::cout << GridLogDebug << "boundaries = " << (t7 - t6) / 1e6 << std::endl;
std::cout << GridLogDebug << "inversions = " << (t8 - t7) / 1e6 << std::endl;
std::cout << GridLogDebug << "pick cbs = " << (t9 - t8) / 1e6 << std::endl;
std::cout << GridLogDebug << "total = " << (t9 - t0) / 1e6 << std::endl;
}
NAMESPACE_END(Grid);

View File

@ -2,13 +2,12 @@
Grid physics library, www.github.com/paboyle/Grid Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonCloverFermionImplementation.h Source file: ./lib/qcd/action/fermion/WilsonCloverFermion.cc
Copyright (C) 2017 - 2022 Copyright (C) 2017
Author: paboyle <paboyle@ph.ed.ac.uk> Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk> Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
@ -34,48 +33,9 @@
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
template<class Impl, class CloverHelpers>
WilsonCloverFermion<Impl, CloverHelpers>::WilsonCloverFermion(GaugeField& _Umu,
GridCartesian& Fgrid,
GridRedBlackCartesian& Hgrid,
const RealD _mass,
const RealD _csw_r,
const RealD _csw_t,
const WilsonAnisotropyCoefficients& clover_anisotropy,
const ImplParams& impl_p)
: WilsonFermion<Impl>(_Umu, Fgrid, Hgrid, _mass, impl_p, clover_anisotropy)
, CloverTerm(&Fgrid)
, CloverTermInv(&Fgrid)
, CloverTermEven(&Hgrid)
, CloverTermOdd(&Hgrid)
, CloverTermInvEven(&Hgrid)
, CloverTermInvOdd(&Hgrid)
, CloverTermDagEven(&Hgrid)
, CloverTermDagOdd(&Hgrid)
, CloverTermInvDagEven(&Hgrid)
, CloverTermInvDagOdd(&Hgrid) {
assert(Nd == 4); // require 4 dimensions
if(clover_anisotropy.isAnisotropic) {
csw_r = _csw_r * 0.5 / clover_anisotropy.xi_0;
diag_mass = _mass + 1.0 + (Nd - 1) * (clover_anisotropy.nu / clover_anisotropy.xi_0);
} else {
csw_r = _csw_r * 0.5;
diag_mass = 4.0 + _mass;
}
csw_t = _csw_t * 0.5;
if(csw_r == 0)
std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_r = 0" << std::endl;
if(csw_t == 0)
std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_t = 0" << std::endl;
ImportGauge(_Umu);
}
// *NOT* EO // *NOT* EO
template<class Impl, class CloverHelpers> template <class Impl>
void WilsonCloverFermion<Impl, CloverHelpers>::M(const FermionField &in, FermionField &out) void WilsonCloverFermion<Impl>::M(const FermionField &in, FermionField &out)
{ {
FermionField temp(out.Grid()); FermionField temp(out.Grid());
@ -89,8 +49,8 @@ void WilsonCloverFermion<Impl, CloverHelpers>::M(const FermionField &in, Fermion
out += temp; out += temp;
} }
template<class Impl, class CloverHelpers> template <class Impl>
void WilsonCloverFermion<Impl, CloverHelpers>::Mdag(const FermionField &in, FermionField &out) void WilsonCloverFermion<Impl>::Mdag(const FermionField &in, FermionField &out)
{ {
FermionField temp(out.Grid()); FermionField temp(out.Grid());
@ -104,16 +64,13 @@ void WilsonCloverFermion<Impl, CloverHelpers>::Mdag(const FermionField &in, Ferm
out += temp; out += temp;
} }
template<class Impl, class CloverHelpers> template <class Impl>
void WilsonCloverFermion<Impl, CloverHelpers>::ImportGauge(const GaugeField &_Umu) void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
{ {
double t0 = usecond();
WilsonFermion<Impl>::ImportGauge(_Umu); WilsonFermion<Impl>::ImportGauge(_Umu);
double t1 = usecond();
GridBase *grid = _Umu.Grid(); GridBase *grid = _Umu.Grid();
typename Impl::GaugeLinkField Bx(grid), By(grid), Bz(grid), Ex(grid), Ey(grid), Ez(grid); typename Impl::GaugeLinkField Bx(grid), By(grid), Bz(grid), Ex(grid), Ey(grid), Ez(grid);
double t2 = usecond();
// Compute the field strength terms mu>nu // Compute the field strength terms mu>nu
WilsonLoops<Impl>::FieldStrength(Bx, _Umu, Zdir, Ydir); WilsonLoops<Impl>::FieldStrength(Bx, _Umu, Zdir, Ydir);
WilsonLoops<Impl>::FieldStrength(By, _Umu, Zdir, Xdir); WilsonLoops<Impl>::FieldStrength(By, _Umu, Zdir, Xdir);
@ -122,20 +79,52 @@ void WilsonCloverFermion<Impl, CloverHelpers>::ImportGauge(const GaugeField &_Um
WilsonLoops<Impl>::FieldStrength(Ey, _Umu, Tdir, Ydir); WilsonLoops<Impl>::FieldStrength(Ey, _Umu, Tdir, Ydir);
WilsonLoops<Impl>::FieldStrength(Ez, _Umu, Tdir, Zdir); WilsonLoops<Impl>::FieldStrength(Ez, _Umu, Tdir, Zdir);
double t3 = usecond();
// Compute the Clover Operator acting on Colour and Spin // Compute the Clover Operator acting on Colour and Spin
// multiply here by the clover coefficients for the anisotropy // multiply here by the clover coefficients for the anisotropy
CloverTerm = Helpers::fillCloverYZ(Bx) * csw_r; CloverTerm = fillCloverYZ(Bx) * csw_r;
CloverTerm += Helpers::fillCloverXZ(By) * csw_r; CloverTerm += fillCloverXZ(By) * csw_r;
CloverTerm += Helpers::fillCloverXY(Bz) * csw_r; CloverTerm += fillCloverXY(Bz) * csw_r;
CloverTerm += Helpers::fillCloverXT(Ex) * csw_t; CloverTerm += fillCloverXT(Ex) * csw_t;
CloverTerm += Helpers::fillCloverYT(Ey) * csw_t; CloverTerm += fillCloverYT(Ey) * csw_t;
CloverTerm += Helpers::fillCloverZT(Ez) * csw_t; CloverTerm += fillCloverZT(Ez) * csw_t;
CloverTerm += diag_mass;
double t4 = usecond();
CloverHelpers::Instantiate(CloverTerm, CloverTermInv, csw_t, this->diag_mass); int lvol = _Umu.Grid()->lSites();
int DimRep = Impl::Dimension;
{
autoView(CTv,CloverTerm,CpuRead);
autoView(CTIv,CloverTermInv,CpuWrite);
thread_for(site, lvol, {
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
Eigen::MatrixXcd EigenCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
Eigen::MatrixXcd EigenInvCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
typename SiteCloverType::scalar_object Qx = Zero(), Qxinv = Zero();
peekLocalSite(Qx, CTv, lcoor);
//if (csw!=0){
for (int j = 0; j < Ns; j++)
for (int k = 0; k < Ns; k++)
for (int a = 0; a < DimRep; a++)
for (int b = 0; b < DimRep; b++){
auto zz = Qx()(j, k)(a, b);
EigenCloverOp(a + j * DimRep, b + k * DimRep) = std::complex<double>(zz);
}
// if (site==0) std::cout << "site =" << site << "\n" << EigenCloverOp << std::endl;
EigenInvCloverOp = EigenCloverOp.inverse();
//std::cout << EigenInvCloverOp << std::endl;
for (int j = 0; j < Ns; j++)
for (int k = 0; k < Ns; k++)
for (int a = 0; a < DimRep; a++)
for (int b = 0; b < DimRep; b++)
Qxinv()(j, k)(a, b) = EigenInvCloverOp(a + j * DimRep, b + k * DimRep);
// if (site==0) std::cout << "site =" << site << "\n" << EigenInvCloverOp << std::endl;
// }
pokeLocalSite(Qxinv, CTIv, lcoor);
});
}
double t5 = usecond();
// Separate the even and odd parts // Separate the even and odd parts
pickCheckerboard(Even, CloverTermEven, CloverTerm); pickCheckerboard(Even, CloverTermEven, CloverTerm);
pickCheckerboard(Odd, CloverTermOdd, CloverTerm); pickCheckerboard(Odd, CloverTermOdd, CloverTerm);
@ -148,47 +137,37 @@ void WilsonCloverFermion<Impl, CloverHelpers>::ImportGauge(const GaugeField &_Um
pickCheckerboard(Even, CloverTermInvDagEven, adj(CloverTermInv)); pickCheckerboard(Even, CloverTermInvDagEven, adj(CloverTermInv));
pickCheckerboard(Odd, CloverTermInvDagOdd, adj(CloverTermInv)); pickCheckerboard(Odd, CloverTermInvDagOdd, adj(CloverTermInv));
double t6 = usecond();
std::cout << GridLogDebug << "WilsonCloverFermion::ImportGauge timings:" << std::endl;
std::cout << GridLogDebug << "WilsonFermion::Importgauge = " << (t1 - t0) / 1e6 << std::endl;
std::cout << GridLogDebug << "allocations = " << (t2 - t1) / 1e6 << std::endl;
std::cout << GridLogDebug << "field strength = " << (t3 - t2) / 1e6 << std::endl;
std::cout << GridLogDebug << "fill clover = " << (t4 - t3) / 1e6 << std::endl;
std::cout << GridLogDebug << "instantiation = " << (t5 - t4) / 1e6 << std::endl;
std::cout << GridLogDebug << "pick cbs = " << (t6 - t5) / 1e6 << std::endl;
std::cout << GridLogDebug << "total = " << (t6 - t0) / 1e6 << std::endl;
} }
template<class Impl, class CloverHelpers> template <class Impl>
void WilsonCloverFermion<Impl, CloverHelpers>::Mooee(const FermionField &in, FermionField &out) void WilsonCloverFermion<Impl>::Mooee(const FermionField &in, FermionField &out)
{ {
this->MooeeInternal(in, out, DaggerNo, InverseNo); this->MooeeInternal(in, out, DaggerNo, InverseNo);
} }
template<class Impl, class CloverHelpers> template <class Impl>
void WilsonCloverFermion<Impl, CloverHelpers>::MooeeDag(const FermionField &in, FermionField &out) void WilsonCloverFermion<Impl>::MooeeDag(const FermionField &in, FermionField &out)
{ {
this->MooeeInternal(in, out, DaggerYes, InverseNo); this->MooeeInternal(in, out, DaggerYes, InverseNo);
} }
template<class Impl, class CloverHelpers> template <class Impl>
void WilsonCloverFermion<Impl, CloverHelpers>::MooeeInv(const FermionField &in, FermionField &out) void WilsonCloverFermion<Impl>::MooeeInv(const FermionField &in, FermionField &out)
{ {
this->MooeeInternal(in, out, DaggerNo, InverseYes); this->MooeeInternal(in, out, DaggerNo, InverseYes);
} }
template<class Impl, class CloverHelpers> template <class Impl>
void WilsonCloverFermion<Impl, CloverHelpers>::MooeeInvDag(const FermionField &in, FermionField &out) void WilsonCloverFermion<Impl>::MooeeInvDag(const FermionField &in, FermionField &out)
{ {
this->MooeeInternal(in, out, DaggerYes, InverseYes); this->MooeeInternal(in, out, DaggerYes, InverseYes);
} }
template<class Impl, class CloverHelpers> template <class Impl>
void WilsonCloverFermion<Impl, CloverHelpers>::MooeeInternal(const FermionField &in, FermionField &out, int dag, int inv) void WilsonCloverFermion<Impl>::MooeeInternal(const FermionField &in, FermionField &out, int dag, int inv)
{ {
out.Checkerboard() = in.Checkerboard(); out.Checkerboard() = in.Checkerboard();
CloverField *Clover; CloverFieldType *Clover;
assert(in.Checkerboard() == Odd || in.Checkerboard() == Even); assert(in.Checkerboard() == Odd || in.Checkerboard() == Even);
if (dag) if (dag)
@ -203,12 +182,12 @@ void WilsonCloverFermion<Impl, CloverHelpers>::MooeeInternal(const FermionField
{ {
Clover = (inv) ? &CloverTermInvDagEven : &CloverTermDagEven; Clover = (inv) ? &CloverTermInvDagEven : &CloverTermDagEven;
} }
Helpers::multCloverField(out, *Clover, in); out = *Clover * in;
} }
else else
{ {
Clover = (inv) ? &CloverTermInv : &CloverTerm; Clover = (inv) ? &CloverTermInv : &CloverTerm;
Helpers::multCloverField(out, *Clover, in); // don't bother with adj, hermitian anyway out = adj(*Clover) * in;
} }
} }
else else
@ -226,109 +205,29 @@ void WilsonCloverFermion<Impl, CloverHelpers>::MooeeInternal(const FermionField
// std::cout << "Calling clover term Even" << std::endl; // std::cout << "Calling clover term Even" << std::endl;
Clover = (inv) ? &CloverTermInvEven : &CloverTermEven; Clover = (inv) ? &CloverTermInvEven : &CloverTermEven;
} }
Helpers::multCloverField(out, *Clover, in); out = *Clover * in;
// std::cout << GridLogMessage << "*Clover.Checkerboard() " << (*Clover).Checkerboard() << std::endl; // std::cout << GridLogMessage << "*Clover.Checkerboard() " << (*Clover).Checkerboard() << std::endl;
} }
else else
{ {
Clover = (inv) ? &CloverTermInv : &CloverTerm; Clover = (inv) ? &CloverTermInv : &CloverTerm;
Helpers::multCloverField(out, *Clover, in); out = *Clover * in;
} }
} }
} // MooeeInternal } // MooeeInternal
// Derivative parts unpreconditioned pseudofermions
template<class Impl, class CloverHelpers>
void WilsonCloverFermion<Impl, CloverHelpers>::MDeriv(GaugeField &force, const FermionField &X, const FermionField &Y, int dag)
{
conformable(X.Grid(), Y.Grid());
conformable(X.Grid(), force.Grid());
GaugeLinkField force_mu(force.Grid()), lambda(force.Grid());
GaugeField clover_force(force.Grid());
PropagatorField Lambda(force.Grid());
// Guido: Here we are hitting some performance issues:
// need to extract the components of the DoubledGaugeField
// for each call
// Possible solution
// Create a vector object to store them? (cons: wasting space)
std::vector<GaugeLinkField> U(Nd, this->Umu.Grid());
Impl::extractLinkField(U, this->Umu);
force = Zero();
// Derivative of the Wilson hopping term
this->DhopDeriv(force, X, Y, dag);
///////////////////////////////////////////////////////////
// Clover term derivative
///////////////////////////////////////////////////////////
Impl::outerProductImpl(Lambda, X, Y);
//std::cout << "Lambda:" << Lambda << std::endl;
Gamma::Algebra sigma[] = {
Gamma::Algebra::SigmaXY,
Gamma::Algebra::SigmaXZ,
Gamma::Algebra::SigmaXT,
Gamma::Algebra::MinusSigmaXY,
Gamma::Algebra::SigmaYZ,
Gamma::Algebra::SigmaYT,
Gamma::Algebra::MinusSigmaXZ,
Gamma::Algebra::MinusSigmaYZ,
Gamma::Algebra::SigmaZT,
Gamma::Algebra::MinusSigmaXT,
Gamma::Algebra::MinusSigmaYT,
Gamma::Algebra::MinusSigmaZT};
/*
sigma_{\mu \nu}=
| 0 sigma[0] sigma[1] sigma[2] |
| sigma[3] 0 sigma[4] sigma[5] |
| sigma[6] sigma[7] 0 sigma[8] |
| sigma[9] sigma[10] sigma[11] 0 |
*/
int count = 0;
clover_force = Zero();
for (int mu = 0; mu < 4; mu++)
{
force_mu = Zero();
for (int nu = 0; nu < 4; nu++)
{
if (mu == nu)
continue;
RealD factor;
if (nu == 4 || mu == 4)
{
factor = 2.0 * csw_t;
}
else
{
factor = 2.0 * csw_r;
}
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
force_mu -= factor*CloverHelpers::Cmunu(U, lambda, mu, nu); // checked
count++;
}
pokeLorentz(clover_force, U[mu] * force_mu, mu);
}
//clover_force *= csw;
force += clover_force;
}
// Derivative parts // Derivative parts
template<class Impl, class CloverHelpers> template <class Impl>
void WilsonCloverFermion<Impl, CloverHelpers>::MooDeriv(GaugeField &mat, const FermionField &X, const FermionField &Y, int dag) void WilsonCloverFermion<Impl>::MooDeriv(GaugeField &mat, const FermionField &X, const FermionField &Y, int dag)
{ {
assert(0); assert(0);
} }
// Derivative parts // Derivative parts
template<class Impl, class CloverHelpers> template <class Impl>
void WilsonCloverFermion<Impl, CloverHelpers>::MeeDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag) void WilsonCloverFermion<Impl>::MeeDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag)
{ {
assert(0); // not implemented yet assert(0); // not implemented yet
} }

View File

@ -4,13 +4,12 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonFermion.cc Source file: ./lib/qcd/action/fermion/WilsonFermion.cc
Copyright (C) 2022 Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk> Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk> Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local> Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk> Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Fabian Joswig <fabian.joswig@ed.ac.uk>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
@ -600,47 +599,11 @@ void WilsonFermion<Impl>::ContractConservedCurrent(PropagatorField &q_in_1,
Current curr_type, Current curr_type,
unsigned int mu) unsigned int mu)
{ {
if(curr_type != Current::Vector)
{
std::cout << GridLogError << "Only the conserved vector current is implemented so far." << std::endl;
exit(1);
}
Gamma g5(Gamma::Algebra::Gamma5); Gamma g5(Gamma::Algebra::Gamma5);
conformable(_grid, q_in_1.Grid()); conformable(_grid, q_in_1.Grid());
conformable(_grid, q_in_2.Grid()); conformable(_grid, q_in_2.Grid());
conformable(_grid, q_out.Grid()); conformable(_grid, q_out.Grid());
auto UGrid= this->GaugeGrid(); assert(0);
PropagatorField tmp_shifted(UGrid);
PropagatorField g5Lg5(UGrid);
PropagatorField R(UGrid);
PropagatorField gmuR(UGrid);
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT,
};
Gamma gmu=Gamma(Gmu[mu]);
g5Lg5=g5*q_in_1*g5;
tmp_shifted=Cshift(q_in_2,mu,1);
Impl::multLinkField(R,this->Umu,tmp_shifted,mu);
gmuR=gmu*R;
q_out=adj(g5Lg5)*R;
q_out-=adj(g5Lg5)*gmuR;
tmp_shifted=Cshift(q_in_1,mu,1);
Impl::multLinkField(g5Lg5,this->Umu,tmp_shifted,mu);
g5Lg5=g5*g5Lg5*g5;
R=q_in_2;
gmuR=gmu*R;
q_out-=adj(g5Lg5)*R;
q_out-=adj(g5Lg5)*gmuR;
} }
@ -654,51 +617,9 @@ void WilsonFermion<Impl>::SeqConservedCurrent(PropagatorField &q_in,
unsigned int tmax, unsigned int tmax,
ComplexField &lattice_cmplx) ComplexField &lattice_cmplx)
{ {
if(curr_type != Current::Vector)
{
std::cout << GridLogError << "Only the conserved vector current is implemented so far." << std::endl;
exit(1);
}
int tshift = (mu == Nd-1) ? 1 : 0;
unsigned int LLt = GridDefaultLatt()[Tp];
conformable(_grid, q_in.Grid()); conformable(_grid, q_in.Grid());
conformable(_grid, q_out.Grid()); conformable(_grid, q_out.Grid());
auto UGrid= this->GaugeGrid(); assert(0);
PropagatorField tmp(UGrid);
PropagatorField Utmp(UGrid);
PropagatorField L(UGrid);
PropagatorField zz (UGrid);
zz=Zero();
LatticeInteger lcoor(UGrid); LatticeCoordinate(lcoor,Nd-1);
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT,
};
Gamma gmu=Gamma(Gmu[mu]);
tmp = Cshift(q_in,mu,1);
Impl::multLinkField(Utmp,this->Umu,tmp,mu);
tmp = ( Utmp*lattice_cmplx - gmu*Utmp*lattice_cmplx ); // Forward hop
tmp = where((lcoor>=tmin),tmp,zz); // Mask the time
q_out = where((lcoor<=tmax),tmp,zz); // Position of current complicated
tmp = q_in *lattice_cmplx;
tmp = Cshift(tmp,mu,-1);
Impl::multLinkField(Utmp,this->Umu,tmp,mu+Nd); // Adjoint link
tmp = -( Utmp + gmu*Utmp );
// Mask the time
if (tmax == LLt - 1 && tshift == 1){ // quick fix to include timeslice 0 if tmax + tshift is over the last timeslice
unsigned int t0 = 0;
tmp = where(((lcoor==t0) || (lcoor>=tmin+tshift)),tmp,zz);
} else {
tmp = where((lcoor>=tmin+tshift),tmp,zz);
}
q_out+= where((lcoor<=tmax+tshift),tmp,zz); // Position of current complicated
} }
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -498,7 +498,6 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
#ifndef GRID_CUDA #ifndef GRID_CUDA
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteDag); return;} if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteDag); return;}
#endif #endif
acceleratorFenceComputeStream();
} else if( interior ) { } else if( interior ) {
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSiteDagInt); return;} if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSiteDagInt); return;}
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteDagInt); return;} if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteDagInt); return;}
@ -506,13 +505,11 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteDagInt); return;} if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteDagInt); return;}
#endif #endif
} else if( exterior ) { } else if( exterior ) {
acceleratorFenceComputeStream();
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSiteDagExt); return;} if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSiteDagExt); return;}
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteDagExt); return;} if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteDagExt); return;}
#ifndef GRID_CUDA #ifndef GRID_CUDA
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteDagExt); return;} if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteDagExt); return;}
#endif #endif
acceleratorFenceComputeStream();
} }
assert(0 && " Kernel optimisation case not covered "); assert(0 && " Kernel optimisation case not covered ");
} }

View File

@ -1,44 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/ qcd/action/fermion/instantiation/CompactWilsonCloverFermionInstantiation.cc.master
Copyright (C) 2017 - 2022
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
Author: Mattia Bruno <mattia.bruno@cern.ch>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/qcd/spin/Dirac.h>
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h>
#include <Grid/qcd/action/fermion/implementation/CompactWilsonCloverFermionImplementation.h>
#include <Grid/qcd/action/fermion/CloverHelpers.h>
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class CompactWilsonCloverFermion<IMPLEMENTATION, CompactCloverHelpers<IMPLEMENTATION>>;
template class CompactWilsonCloverFermion<IMPLEMENTATION, CompactExpCloverHelpers<IMPLEMENTATION>>;
NAMESPACE_END(Grid);

View File

@ -1 +0,0 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -1 +0,0 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -8,8 +8,7 @@
Author: paboyle <paboyle@ph.ed.ac.uk> Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk> Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Mattia Bruno <mattia.bruno@cern.ch>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or the Free Software Foundation; either version 2 of the License, or
@ -32,12 +31,10 @@
#include <Grid/qcd/spin/Dirac.h> #include <Grid/qcd/spin/Dirac.h>
#include <Grid/qcd/action/fermion/WilsonCloverFermion.h> #include <Grid/qcd/action/fermion/WilsonCloverFermion.h>
#include <Grid/qcd/action/fermion/implementation/WilsonCloverFermionImplementation.h> #include <Grid/qcd/action/fermion/implementation/WilsonCloverFermionImplementation.h>
#include <Grid/qcd/action/fermion/CloverHelpers.h>
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
#include "impl.h" #include "impl.h"
template class WilsonCloverFermion<IMPLEMENTATION, CloverHelpers<IMPLEMENTATION>>; template class WilsonCloverFermion<IMPLEMENTATION>;
template class WilsonCloverFermion<IMPLEMENTATION, ExpCloverHelpers<IMPLEMENTATION>>;
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -1 +0,0 @@
../CompactWilsonCloverFermionInstantiation.cc.master

View File

@ -1 +0,0 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -1 +0,0 @@
../CompactWilsonCloverFermionInstantiation.cc.master

View File

@ -1 +0,0 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -1 +0,0 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -1 +0,0 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -18,10 +18,6 @@ WILSON_IMPL_LIST=" \
GparityWilsonImplF \ GparityWilsonImplF \
GparityWilsonImplD " GparityWilsonImplD "
COMPACT_WILSON_IMPL_LIST=" \
WilsonImplF \
WilsonImplD "
DWF_IMPL_LIST=" \ DWF_IMPL_LIST=" \
WilsonImplF \ WilsonImplF \
WilsonImplD \ WilsonImplD \
@ -50,17 +46,7 @@ for impl in $WILSON_IMPL_LIST
do do
for f in $CC_LIST for f in $CC_LIST
do do
ln -f -s ../$f.cc.master $impl/$f$impl.cc ln -f -s ../$f.cc.master $impl/$f$impl.cc
done
done
CC_LIST="CompactWilsonCloverFermionInstantiation"
for impl in $COMPACT_WILSON_IMPL_LIST
do
for f in $CC_LIST
do
ln -f -s ../$f.cc.master $impl/$f$impl.cc
done done
done done
@ -77,14 +63,14 @@ for impl in $DWF_IMPL_LIST $GDWF_IMPL_LIST
do do
for f in $CC_LIST for f in $CC_LIST
do do
ln -f -s ../$f.cc.master $impl/$f$impl.cc ln -f -s ../$f.cc.master $impl/$f$impl.cc
done done
done done
# overwrite the .cc file in Gparity directories # overwrite the .cc file in Gparity directories
for impl in $GDWF_IMPL_LIST for impl in $GDWF_IMPL_LIST
do do
ln -f -s ../WilsonKernelsInstantiationGparity.cc.master $impl/WilsonKernelsInstantiation$impl.cc ln -f -s ../WilsonKernelsInstantiationGparity.cc.master $impl/WilsonKernelsInstantiation$impl.cc
done done
@ -98,7 +84,7 @@ for impl in $STAG_IMPL_LIST
do do
for f in $CC_LIST for f in $CC_LIST
do do
ln -f -s ../$f.cc.master $impl/$f$impl.cc ln -f -s ../$f.cc.master $impl/$f$impl.cc
done done
done done

View File

@ -55,12 +55,12 @@ public:
} }
} }
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1,bool err_on_no_converge=true) { static void SteepestDescentGaugeFix(GaugeLorentz &Umu,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
GridBase *grid = Umu.Grid(); GridBase *grid = Umu.Grid();
GaugeMat xform(grid); GaugeMat xform(grid);
SteepestDescentGaugeFix(Umu,xform,alpha,maxiter,Omega_tol,Phi_tol,Fourier,orthog,err_on_no_converge); SteepestDescentGaugeFix(Umu,xform,alpha,maxiter,Omega_tol,Phi_tol,Fourier,orthog);
} }
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,GaugeMat &xform,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1,bool err_on_no_converge=true) { static void SteepestDescentGaugeFix(GaugeLorentz &Umu,GaugeMat &xform,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
GridBase *grid = Umu.Grid(); GridBase *grid = Umu.Grid();
@ -122,8 +122,6 @@ public:
} }
} }
std::cout << GridLogError << "Gauge fixing did not converge in " << maxiter << " iterations." << std::endl;
if (err_on_no_converge) assert(0);
}; };
static Real SteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) { static Real SteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) {
GridBase *grid = U[0].Grid(); GridBase *grid = U[0].Grid();

View File

@ -125,6 +125,7 @@ public:
return sumplaq / vol / faces / Nc; // Nd , Nc dependent... FIXME return sumplaq / vol / faces / Nc; // Nd , Nc dependent... FIXME
} }
////////////////////////////////////////////////// //////////////////////////////////////////////////
// average over all x,y,z the temporal loop // average over all x,y,z the temporal loop
////////////////////////////////////////////////// //////////////////////////////////////////////////
@ -164,7 +165,7 @@ public:
double vol = Umu.Grid()->gSites(); double vol = Umu.Grid()->gSites();
return p.real() / vol / (4.0 * Nc ) ; return p.real() / vol / 4.0 / 3.0;
}; };
////////////////////////////////////////////////// //////////////////////////////////////////////////

View File

@ -26,7 +26,7 @@
*************************************************************************************/ *************************************************************************************/
/* END LEGAL */ /* END LEGAL */
#include <Grid/Grid.h> #include <Grid/Grid.h>
#ifndef GRID_HIP #if (!defined(GRID_CUDA)) && (!defined(GRID_HIP))
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
@ -82,7 +82,7 @@ void JSONWriter::writeDefault(const std::string &s, const std::string &x)
if (s.size()) if (s.size())
ss_ << "\""<< s << "\" : \"" << os.str() << "\" ," ; ss_ << "\""<< s << "\" : \"" << os.str() << "\" ," ;
else else
ss_ << "\""<< os.str() << "\" ," ; ss_ << os.str() << " ," ;
} }
// Reader implementation /////////////////////////////////////////////////////// // Reader implementation ///////////////////////////////////////////////////////

View File

@ -54,7 +54,7 @@ namespace Grid
void pop(void); void pop(void);
template <typename U> template <typename U>
void writeDefault(const std::string &s, const U &x); void writeDefault(const std::string &s, const U &x);
#if defined(GRID_CUDA) || defined(GRID_HIP) #ifdef __NVCC__
void writeDefault(const std::string &s, const Grid::ComplexD &x) void writeDefault(const std::string &s, const Grid::ComplexD &x)
{ {
std::complex<double> z(real(x),imag(x)); std::complex<double> z(real(x),imag(x));
@ -101,7 +101,7 @@ namespace Grid
void readDefault(const std::string &s, std::vector<U> &output); void readDefault(const std::string &s, std::vector<U> &output);
template <typename U, typename P> template <typename U, typename P>
void readDefault(const std::string &s, std::pair<U,P> &output); void readDefault(const std::string &s, std::pair<U,P> &output);
#if defined(GRID_CUDA) || defined(GRID_HIP) #ifdef __NVCC__
void readDefault(const std::string &s, ComplexD &output) void readDefault(const std::string &s, ComplexD &output)
{ {
std::complex<double> z; std::complex<double> z;

View File

@ -36,7 +36,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include "BinaryIO.h" #include "BinaryIO.h"
#include "TextIO.h" #include "TextIO.h"
#include "XmlIO.h" #include "XmlIO.h"
#ifndef GRID_HIP #if (!defined(GRID_CUDA)) && (!defined(GRID_HIP))
#include "JSON_IO.h" #include "JSON_IO.h"
#endif #endif

View File

@ -195,15 +195,12 @@ void acceleratorInit(void)
#ifdef GRID_SYCL #ifdef GRID_SYCL
cl::sycl::queue *theGridAccelerator; cl::sycl::queue *theGridAccelerator;
cl::sycl::queue *theCopyAccelerator;
void acceleratorInit(void) void acceleratorInit(void)
{ {
int nDevices = 1; int nDevices = 1;
cl::sycl::gpu_selector selector; cl::sycl::gpu_selector selector;
cl::sycl::device selectedDevice { selector }; cl::sycl::device selectedDevice { selector };
theGridAccelerator = new sycl::queue (selectedDevice); theGridAccelerator = new sycl::queue (selectedDevice);
// theCopyAccelerator = new sycl::queue (selectedDevice);
theCopyAccelerator = theGridAccelerator; // Should proceed concurrenlty anyway.
#ifdef GRID_SYCL_LEVEL_ZERO_IPC #ifdef GRID_SYCL_LEVEL_ZERO_IPC
zeInit(0); zeInit(0);

View File

@ -247,6 +247,7 @@ inline int acceleratorIsCommunicable(void *ptr)
////////////////////////////////////////////// //////////////////////////////////////////////
// SyCL acceleration // SyCL acceleration
////////////////////////////////////////////// //////////////////////////////////////////////
#ifdef GRID_SYCL #ifdef GRID_SYCL
NAMESPACE_END(Grid); NAMESPACE_END(Grid);
#include <CL/sycl.hpp> #include <CL/sycl.hpp>
@ -261,7 +262,6 @@ NAMESPACE_END(Grid);
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
extern cl::sycl::queue *theGridAccelerator; extern cl::sycl::queue *theGridAccelerator;
extern cl::sycl::queue *theCopyAccelerator;
#ifdef __SYCL_DEVICE_ONLY__ #ifdef __SYCL_DEVICE_ONLY__
#define GRID_SIMT #define GRID_SIMT
@ -289,7 +289,7 @@ accelerator_inline int acceleratorSIMTlane(int Nsimd) {
cgh.parallel_for( \ cgh.parallel_for( \
cl::sycl::nd_range<3>(global,local), \ cl::sycl::nd_range<3>(global,local), \
[=] (cl::sycl::nd_item<3> item) /*mutable*/ \ [=] (cl::sycl::nd_item<3> item) /*mutable*/ \
[[intel::reqd_sub_group_size(16)]] \ [[intel::reqd_sub_group_size(8)]] \
{ \ { \
auto iter1 = item.get_global_id(0); \ auto iter1 = item.get_global_id(0); \
auto iter2 = item.get_global_id(1); \ auto iter2 = item.get_global_id(1); \
@ -298,19 +298,19 @@ accelerator_inline int acceleratorSIMTlane(int Nsimd) {
}); \ }); \
}); });
#define accelerator_barrier(dummy) { printf(" theGridAccelerator::wait()\n"); theGridAccelerator->wait(); } #define accelerator_barrier(dummy) theGridAccelerator->wait();
inline void *acceleratorAllocShared(size_t bytes){ return malloc_shared(bytes,*theGridAccelerator);}; inline void *acceleratorAllocShared(size_t bytes){ return malloc_shared(bytes,*theGridAccelerator);};
inline void *acceleratorAllocDevice(size_t bytes){ return malloc_device(bytes,*theGridAccelerator);}; inline void *acceleratorAllocDevice(size_t bytes){ return malloc_device(bytes,*theGridAccelerator);};
inline void acceleratorFreeShared(void *ptr){free(ptr,*theGridAccelerator);}; inline void acceleratorFreeShared(void *ptr){free(ptr,*theGridAccelerator);};
inline void acceleratorFreeDevice(void *ptr){free(ptr,*theGridAccelerator);}; inline void acceleratorFreeDevice(void *ptr){free(ptr,*theGridAccelerator);};
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) {
inline void acceleratorCopySynchronise(void) { printf(" theCopyAccelerator::wait()\n"); theCopyAccelerator->wait(); } theGridAccelerator->memcpy(to,from,bytes);
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) { theCopyAccelerator->memcpy(to,from,bytes);} }
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { theCopyAccelerator->memcpy(to,from,bytes); theCopyAccelerator->wait();} inline void acceleratorCopySynchronise(void) { theGridAccelerator->wait(); std::cout<<"acceleratorCopySynchronise() wait "<<std::endl; }
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ theCopyAccelerator->memcpy(to,from,bytes); theCopyAccelerator->wait();} inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { theGridAccelerator->memcpy(to,from,bytes); theGridAccelerator->wait();}
inline void acceleratorMemSet(void *base,int value,size_t bytes) { theCopyAccelerator->memset(base,value,bytes); theCopyAccelerator->wait();} inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ theGridAccelerator->memcpy(to,from,bytes); theGridAccelerator->wait();}
inline void acceleratorMemSet(void *base,int value,size_t bytes) { theGridAccelerator->memset(base,value,bytes); theGridAccelerator->wait();}
inline int acceleratorIsCommunicable(void *ptr) inline int acceleratorIsCommunicable(void *ptr)
{ {
#if 0 #if 0
@ -342,7 +342,7 @@ extern hipStream_t copyStream;
/*These routines define mapping from thread grid to loop & vector lane indexing */ /*These routines define mapping from thread grid to loop & vector lane indexing */
accelerator_inline int acceleratorSIMTlane(int Nsimd) { accelerator_inline int acceleratorSIMTlane(int Nsimd) {
#ifdef GRID_SIMT #ifdef GRID_SIMT
return hipThreadIdx_x; return hipThreadIdx_z;
#else #else
return 0; return 0;
#endif #endif
@ -356,41 +356,19 @@ accelerator_inline int acceleratorSIMTlane(int Nsimd) {
{ __VA_ARGS__;} \ { __VA_ARGS__;} \
}; \ }; \
int nt=acceleratorThreads(); \ int nt=acceleratorThreads(); \
dim3 hip_threads(nsimd, nt, 1); \ dim3 hip_threads(nt,1,nsimd); \
dim3 hip_blocks ((num1+nt-1)/nt,num2,1); \ dim3 hip_blocks ((num1+nt-1)/nt,num2,1); \
if(hip_threads.x * hip_threads.y * hip_threads.z <= 64){ \ hipLaunchKernelGGL(LambdaApply,hip_blocks,hip_threads, \
hipLaunchKernelGGL(LambdaApply64,hip_blocks,hip_threads, \ 0,0, \
0,0, \ num1,num2,nsimd,lambda); \
num1,num2,nsimd, lambda); \
} else { \
hipLaunchKernelGGL(LambdaApply,hip_blocks,hip_threads, \
0,0, \
num1,num2,nsimd, lambda); \
} \
} }
template<typename lambda> __global__ template<typename lambda> __global__
__launch_bounds__(64,1)
void LambdaApply64(uint64_t numx, uint64_t numy, uint64_t numz, lambda Lambda)
{
// Following the same scheme as CUDA for now
uint64_t x = threadIdx.y + blockDim.y*blockIdx.x;
uint64_t y = threadIdx.z + blockDim.z*blockIdx.y;
uint64_t z = threadIdx.x;
if ( (x < numx) && (y<numy) && (z<numz) ) {
Lambda(x,y,z);
}
}
template<typename lambda> __global__
__launch_bounds__(1024,1)
void LambdaApply(uint64_t numx, uint64_t numy, uint64_t numz, lambda Lambda) void LambdaApply(uint64_t numx, uint64_t numy, uint64_t numz, lambda Lambda)
{ {
// Following the same scheme as CUDA for now uint64_t x = hipThreadIdx_x + hipBlockDim_x*hipBlockIdx_x;
uint64_t x = threadIdx.y + blockDim.y*blockIdx.x; uint64_t y = hipThreadIdx_y + hipBlockDim_y*hipBlockIdx_y;
uint64_t y = threadIdx.z + blockDim.z*blockIdx.y; uint64_t z = hipThreadIdx_z ;//+ hipBlockDim_z*hipBlockIdx_z;
uint64_t z = threadIdx.x;
if ( (x < numx) && (y<numy) && (z<numz) ) { if ( (x < numx) && (y<numy) && (z<numz) ) {
Lambda(x,y,z); Lambda(x,y,z);
} }
@ -481,10 +459,9 @@ inline void acceleratorCopySynchronise(void) { hipStreamSynchronize(copyStream);
#define accelerator_for2d(iter1, num1, iter2, num2, nsimd, ... ) thread_for2d(iter1,num1,iter2,num2,{ __VA_ARGS__ }); #define accelerator_for2d(iter1, num1, iter2, num2, nsimd, ... ) thread_for2d(iter1,num1,iter2,num2,{ __VA_ARGS__ });
accelerator_inline int acceleratorSIMTlane(int Nsimd) { return 0; } // CUDA specific accelerator_inline int acceleratorSIMTlane(int Nsimd) { return 0; } // CUDA specific
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { memcpy(to,from,bytes);}
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { thread_bcopy(from,to,bytes); } inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ memcpy(to,from,bytes);}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ thread_bcopy(from,to,bytes);} inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) { memcpy(to,from,bytes);}
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) { thread_bcopy(from,to,bytes);}
inline void acceleratorCopySynchronise(void) {}; inline void acceleratorCopySynchronise(void) {};
inline int acceleratorIsCommunicable(void *ptr){ return 1; } inline int acceleratorIsCommunicable(void *ptr){ return 1; }
@ -511,16 +488,7 @@ inline void *acceleratorAllocCpu(size_t bytes){return memalign(GRID_ALLOC_ALIGN,
inline void acceleratorFreeCpu (void *ptr){free(ptr);}; inline void acceleratorFreeCpu (void *ptr){free(ptr);};
#endif #endif
//////////////////////////////////////////////
// Fencing needed ONLY for SYCL
//////////////////////////////////////////////
#ifdef GRID_SYCL
inline void acceleratorFenceComputeStream(void){ accelerator_barrier();};
#else
// Ordering within a stream guaranteed on Nvidia & AMD
inline void acceleratorFenceComputeStream(void){ };
#endif
/////////////////////////////////////////////////// ///////////////////////////////////////////////////
// Synchronise across local threads for divergence resynch // Synchronise across local threads for divergence resynch

View File

@ -72,20 +72,3 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#define thread_region DO_PRAGMA(omp parallel) #define thread_region DO_PRAGMA(omp parallel)
#define thread_critical DO_PRAGMA(omp critical) #define thread_critical DO_PRAGMA(omp critical)
#ifdef GRID_OMP
inline void thread_bcopy(void *from, void *to,size_t bytes)
{
uint64_t *ufrom = (uint64_t *)from;
uint64_t *uto = (uint64_t *)to;
assert(bytes%8==0);
uint64_t words=bytes/8;
thread_for(w,words,{
uto[w] = ufrom[w];
});
}
#else
inline void thread_bcopy(void *from, void *to,size_t bytes)
{
bcopy(from,to,bytes);
}
#endif

View File

@ -167,13 +167,6 @@ void GridCmdOptionInt(std::string &str,int & val)
return; return;
} }
void GridCmdOptionFloat(std::string &str,float & val)
{
std::stringstream ss(str);
ss>>val;
return;
}
void GridParseLayout(char **argv,int argc, void GridParseLayout(char **argv,int argc,
Coordinate &latt_c, Coordinate &latt_c,
@ -534,7 +527,6 @@ void Grid_init(int *argc,char ***argv)
void Grid_finalize(void) void Grid_finalize(void)
{ {
#if defined (GRID_COMMS_MPI) || defined (GRID_COMMS_MPI3) || defined (GRID_COMMS_MPIT) #if defined (GRID_COMMS_MPI) || defined (GRID_COMMS_MPI3) || defined (GRID_COMMS_MPIT)
MPI_Barrier(MPI_COMM_WORLD);
MPI_Finalize(); MPI_Finalize();
Grid_unquiesce_nodes(); Grid_unquiesce_nodes();
#endif #endif

View File

@ -57,7 +57,6 @@ void GridCmdOptionCSL(std::string str,std::vector<std::string> & vec);
template<class VectorInt> template<class VectorInt>
void GridCmdOptionIntVector(const std::string &str,VectorInt & vec); void GridCmdOptionIntVector(const std::string &str,VectorInt & vec);
void GridCmdOptionInt(std::string &str,int & val); void GridCmdOptionInt(std::string &str,int & val);
void GridCmdOptionFloat(std::string &str,float & val);
void GridParseLayout(char **argv,int argc, void GridParseLayout(char **argv,int argc,

View File

@ -148,7 +148,7 @@ If you want to build all the tests at once just use `make tests`.
- `--enable-mkl[=<path>]`: use Intel MKL for FFT (and LAPACK if enabled) routines. A UNIX prefix containing the library can be specified (optional). - `--enable-mkl[=<path>]`: use Intel MKL for FFT (and LAPACK if enabled) routines. A UNIX prefix containing the library can be specified (optional).
- `--enable-numa`: enable NUMA first touch optimisation - `--enable-numa`: enable NUMA first touch optimisation
- `--enable-simd=<code>`: setup Grid for the SIMD target `<code>` (default: `GEN`). A list of possible SIMD targets is detailed in a section below. - `--enable-simd=<code>`: setup Grid for the SIMD target `<code>` (default: `GEN`). A list of possible SIMD targets is detailed in a section below.
- `--enable-gen-simd-width=<size>`: select the size (in bytes) of the generic SIMD vector type (default: 64 bytes). - `--enable-gen-simd-width=<size>`: select the size (in bytes) of the generic SIMD vector type (default: 32 bytes).
- `--enable-comms=<comm>`: Use `<comm>` for message passing (default: `none`). A list of possible SIMD targets is detailed in a section below. - `--enable-comms=<comm>`: Use `<comm>` for message passing (default: `none`). A list of possible SIMD targets is detailed in a section below.
- `--enable-rng={sitmo|ranlux48|mt19937}`: choose the RNG (default: `sitmo `). - `--enable-rng={sitmo|ranlux48|mt19937}`: choose the RNG (default: `sitmo `).
- `--disable-timers`: disable system dependent high-resolution timers. - `--disable-timers`: disable system dependent high-resolution timers.

View File

@ -81,8 +81,8 @@ int main (int argc, char ** argv)
Vector<Coeff_t> diag = Dw.bs; Vector<Coeff_t> diag = Dw.bs;
Vector<Coeff_t> upper= Dw.cs; Vector<Coeff_t> upper= Dw.cs;
Vector<Coeff_t> lower= Dw.cs; Vector<Coeff_t> lower= Dw.cs;
upper[Ls-1]=-Dw.mass_minus*upper[Ls-1]; upper[Ls-1]=-Dw.mass*upper[Ls-1];
lower[0] =-Dw.mass_plus*lower[0]; lower[0] =-Dw.mass*lower[0];
LatticeFermion r_eo(FGrid); LatticeFermion r_eo(FGrid);
LatticeFermion src_e (FrbGrid); LatticeFermion src_e (FrbGrid);

View File

@ -44,13 +44,6 @@ void bench_wilson (
double const volume, double const volume,
int const dag ); int const dag );
void bench_wilson_eo (
LatticeFermion & src,
LatticeFermion & result,
WilsonFermionR & Dw,
double const volume,
int const dag );
int main (int argc, char ** argv) int main (int argc, char ** argv)
{ {
Grid_init(&argc,&argv); Grid_init(&argc,&argv);
@ -117,8 +110,8 @@ int main (int argc, char ** argv)
bench_wilson(src,result,Dw,volume,DaggerYes); bench_wilson(src,result,Dw,volume,DaggerYes);
std::cout << "\t"; std::cout << "\t";
// EO // EO
bench_wilson_eo(src_o,result_e,Dw,volume,DaggerNo); bench_wilson(src,result,Dw,volume,DaggerNo);
bench_wilson_eo(src_o,result_e,Dw,volume,DaggerYes); bench_wilson(src,result,Dw,volume,DaggerYes);
std::cout << std::endl; std::cout << std::endl;
} }
} }

View File

@ -159,7 +159,7 @@ case ${ac_ZMOBIUS} in
esac esac
############### Nc ############### Nc
AC_ARG_ENABLE([Nc], AC_ARG_ENABLE([Nc],
[AC_HELP_STRING([--enable-Nc=2|3|4|5], [enable number of colours])], [AC_HELP_STRING([--enable-Nc=2|3|4], [enable number of colours])],
[ac_Nc=${enable_Nc}], [ac_Nc=3]) [ac_Nc=${enable_Nc}], [ac_Nc=3])
case ${ac_Nc} in case ${ac_Nc} in

View File

@ -1,12 +0,0 @@
../../configure --enable-comms=mpi-auto \
--enable-unified=no \
--enable-shm=nvlink \
--enable-accelerator=hip \
--enable-gen-simd-width=64 \
--enable-simd=GPU \
--disable-fermion-reps \
--disable-gparity \
CXX=hipcc MPICXX=mpicxx \
CXXFLAGS="-fPIC -I/opt/rocm-4.5.0/include/ -std=c++14 -I${MPICH_DIR}/include " \
LDFLAGS=" -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa "
HIPFLAGS = --amdgpu-target=gfx90a

View File

@ -1,30 +0,0 @@
#!/bin/bash
# Begin LSF Directives
#SBATCH -A LGT104
#SBATCH -t 01:00:00
##SBATCH -U openmpThu
##SBATCH -p ecp
#SBATCH -J DWF
#SBATCH -o DWF.%J
#SBATCH -e DWF.%J
#SBATCH -N 1
#SBATCH -n 1
#SBATCH --exclusive
DIR=.
module list
#export MPIR_CVAR_GPU_EAGER_DEVICE_MEM=0
export MPICH_GPU_SUPPORT_ENABLED=1
export MPICH_SMP_SINGLE_COPY_MODE=XPMEM
#export MPICH_SMP_SINGLE_COPY_MODE=NONE
#export MPICH_SMP_SINGLE_COPY_MODE=CMA
export OMP_NUM_THREADS=1
AT=8
echo MPICH_SMP_SINGLE_COPY_MODE $MPICH_SMP_SINGLE_COPY_MODE
PARAMS=" --accelerator-threads ${AT} --grid 24.24.24.24 --shm-mpi 0 --mpi 1.1.1.1"
srun --gpus-per-task 1 -n1 ./benchmarks/Benchmark_dwf_fp32 $PARAMS

View File

@ -1,27 +0,0 @@
#!/bin/bash
# Begin LSF Directives
#SBATCH -A LGT104
#SBATCH -t 01:00:00
##SBATCH -U openmpThu
#SBATCH -J DWF
#SBATCH -o DWF.%J
#SBATCH -e DWF.%J
#SBATCH -N 1
#SBATCH -n 4
#SBATCH --exclusive
DIR=.
module list
export MPIR_CVAR_GPU_EAGER_DEVICE_MEM=0
export MPICH_GPU_SUPPORT_ENABLED=1
#export MPICH_SMP_SINGLE_COPY_MODE=XPMEM
export MPICH_SMP_SINGLE_COPY_MODE=NONE
#export MPICH_SMP_SINGLE_COPY_MODE=CMA
export OMP_NUM_THREADS=4
echo MPICH_SMP_SINGLE_COPY_MODE $MPICH_SMP_SINGLE_COPY_MODE
PARAMS=" --accelerator-threads 8 --grid 32.32.64.64 --mpi 1.1.2.2 --comms-overlap --shm 2048 --shm-mpi 0"
srun --gpus-per-task 1 -n4 ./mpiwrapper.sh ./benchmarks/Benchmark_dwf_fp32 $PARAMS

View File

@ -1,27 +0,0 @@
#!/bin/bash
# Begin LSF Directives
#SBATCH -A LGT104
#SBATCH -t 01:00:00
##SBATCH -U openmpThu
#SBATCH -J DWF
#SBATCH -o DWF.%J
#SBATCH -e DWF.%J
#SBATCH -N 1
#SBATCH -n 8
#SBATCH --exclusive
DIR=.
module list
export MPIR_CVAR_GPU_EAGER_DEVICE_MEM=0
export MPICH_GPU_SUPPORT_ENABLED=1
export MPICH_SMP_SINGLE_COPY_MODE=XPMEM
#export MPICH_SMP_SINGLE_COPY_MODE=NONE
#export MPICH_SMP_SINGLE_COPY_MODE=CMA
export OMP_NUM_THREADS=1
echo MPICH_SMP_SINGLE_COPY_MODE $MPICH_SMP_SINGLE_COPY_MODE
PARAMS=" --accelerator-threads 8 --grid 32.64.64.64 --mpi 1.2.2.2 --comms-overlap --shm 2048 --shm-mpi 0"
srun --gpus-per-task 1 -n8 ./mpiwrapper.sh ./benchmarks/Benchmark_dwf_fp32 $PARAMS

View File

@ -1,12 +0,0 @@
#!/bin/bash
lrank=$SLURM_LOCALID
export ROCR_VISIBLE_DEVICES=$SLURM_LOCALID
echo "`hostname` - $lrank device=$ROCR_VISIBLE_DEVICES binding=$BINDING"
$*

View File

@ -1,5 +0,0 @@
module load PrgEnv-gnu
module load rocm/4.5.0
module load gmp
module load cray-fftw
module load craype-accel-amd-gfx90a

View File

@ -1,62 +0,0 @@
#!/bin/sh
##SBATCH -p PVC-SPR-QZEH
##SBATCH -p PVC-ICX-QZNW
#SBATCH -p QZ1J-ICX-PVC
##SBATCH -p QZ1J-SPR-PVC-2C
source /nfs/site/home/paboylex/ATS/GridNew/Grid/systems/PVC-nightly/setup.sh
export NT=16
export I_MPI_OFFLOAD=1
export I_MPI_OFFLOAD_TOPOLIB=level_zero
export I_MPI_OFFLOAD_DOMAIN_SIZE=-1
# export IGC_EnableLSCFenceUGMBeforeEOT=0
# export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file=False"
export SYCL_DEVICE_FILTER=gpu,level_zero
#export IGC_ShaderDumpEnable=1
#export IGC_DumpToCurrentDir=1
export I_MPI_OFFLOAD_CELL=tile
export EnableImplicitScaling=0
export EnableWalkerPartition=0
export ZE_AFFINITY_MASK=0.0
mpiexec -launcher ssh -n 1 -host localhost ./Benchmark_dwf_fp32 --mpi 1.1.1.1 --grid 32.32.32.32 --accelerator-threads $NT --comms-sequential --shm-mpi 1 --cacheblocking 8.8.8.8
export ZE_AFFINITY_MASK=0
export I_MPI_OFFLOAD_CELL=device
export EnableImplicitScaling=1
export EnableWalkerPartition=1
#mpiexec -launcher ssh -n 2 -host localhost vtune -collect gpu-hotspots -knob gpu-sampling-interval=1 -data-limit=0 -r ./vtune_run4 -- ./wrap.sh ./Benchmark_dwf_fp32 --mpi 2.1.1.1 --grid 64.32.32.32 --accelerator-threads $NT --comms-overlap --shm-mpi 1
#mpiexec -launcher ssh -n 1 -host localhost ./wrap.sh ./Benchmark_dwf_fp32 --mpi 1.1.1.1 --grid 64.32.32.32 --accelerator-threads $NT --comms-overlap --shm-mpi 1
#mpiexec -launcher ssh -n 2 -host localhost ./wrap.sh ./Benchmark_dwf_fp32 --mpi 2.1.1.1 --grid 64.32.32.32 --accelerator-threads $NT --comms-sequential --shm-mpi 1
#mpiexec -launcher ssh -n 2 -host localhost ./wrap.sh ./Benchmark_dwf_fp32 --mpi 2.1.1.1 --grid 64.32.32.32 --accelerator-threads $NT --comms-overlap --shm-mpi 1
#mpiexec -launcher ssh -n 2 -host localhost ./wrap.sh ./Benchmark_dwf_fp32 --mpi 2.1.1.1 --grid 64.32.32.32 --accelerator-threads $NT --comms-sequential --shm-mpi 0
#mpirun -np 2 ./wrap.sh ./Benchmark_dwf_fp32 --mpi 1.1.1.2 --grid 16.32.32.64 --accelerator-threads $NT --comms-sequential --shm-mpi 0
#mpirun -np 2 ./wrap.sh ./Benchmark_dwf_fp32 --mpi 1.1.1.2 --grid 32.32.32.64 --accelerator-threads $NT --comms-sequential --shm-mpi 1

View File

@ -1,26 +0,0 @@
#!/bin/bash
##SBATCH -p PVC-SPR-QZEH
##SBATCH -p PVC-ICX-QZNW
#SBATCH -p QZ1J-ICX-PVC
source /nfs/site/home/paboylex/ATS/GridNew/Grid/systems/PVC-nightly/setup.sh
export NT=16
# export IGC_EnableLSCFenceUGMBeforeEOT=0
# export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file=False"
#export IGC_ShaderDumpEnable=1
#export IGC_DumpToCurrentDir=1
export I_MPI_OFFLOAD=1
export I_MPI_OFFLOAD_TOPOLIB=level_zero
export I_MPI_OFFLOAD_DOMAIN_SIZE=-1
export SYCL_DEVICE_FILTER=gpu,level_zero
export I_MPI_OFFLOAD_CELL=tile
export EnableImplicitScaling=0
export EnableWalkerPartition=0
mpiexec -launcher ssh -n 1 -host localhost ./wrap.sh ./Benchmark_dwf_fp32 --mpi 1.1.1.1 --grid 32.32.32.32 --accelerator-threads $NT --comms-sequential --shm-mpi 1 > 1tile.log
mpiexec -launcher ssh -n 2 -host localhost ./wrap.sh ./Benchmark_dwf_fp32 --mpi 2.1.1.1 --grid 64.32.32.32 --accelerator-threads $NT --comms-sequential --shm-mpi 1 > 2tile.log

View File

@ -1,14 +0,0 @@
#!/bin/sh
export ZE_AFFINITY_MASK=0.$MPI_LOCALRANKID
echo Ranke $MPI_LOCALRANKID ZE_AFFINITY_MASK is $ZE_AFFINITY_MASK
if [ $MPI_LOCALRANKID = "0" ]
then
# ~psteinbr/build_pti/ze_tracer -c $@
onetrace --chrome-kernel-timeline $@
else
$@
fi

View File

@ -1,15 +0,0 @@
INSTALL=/nfs/site/home/azusayax/install
../../configure \
--enable-simd=GPU \
--enable-gen-simd-width=64 \
--enable-comms=mpi \
--disable-accelerator-cshift \
--disable-gparity \
--disable-fermion-reps \
--enable-shm=nvlink \
--enable-accelerator=sycl \
--enable-unified=yes \
CXX=mpicxx \
LDFLAGS="-fsycl-device-code-split=per_kernel -fsycl-device-lib=all -lze_loader -L$INSTALL/lib" \
CXXFLAGS="-cxx=dpcpp -fsycl-unnamed-lambda -fsycl -no-fma -I$INSTALL/include -Wtautological-constant-compare"

View File

@ -1,11 +0,0 @@
export https_proxy=http://proxy-chain.intel.com:911
export LD_LIBRARY_PATH=/nfs/site/home/azusayax/install/lib:$LD_LIBRARY_PATH
module load intel-release
source /opt/intel/oneapi/PVC_setup.sh
#source /opt/intel/oneapi/ATS_setup.sh
module load intel/mpich/pvc45.3
export PATH=~/ATS/pti-gpu/tools/onetrace/:$PATH
#clsh embargo-ci-neo-022845
#source /opt/intel/vtune_amplifier/amplxe-vars.sh

View File

@ -1 +0,0 @@
CXX=mpicxx-openmpi-mp CXXFLAGS=-I/opt/local/include/ LDFLAGS=-L/opt/local/lib/ ../../configure --enable-simd=GEN --enable-debug --enable-comms=mpi

View File

@ -147,7 +147,7 @@ int main (int argc, char ** argv)
Complex p = TensorRemove(Tp); Complex p = TensorRemove(Tp);
std::cout<<GridLogMessage << "calculated plaquettes " <<p*PlaqScale<<std::endl; std::cout<<GridLogMessage << "calculated plaquettes " <<p*PlaqScale<<std::endl;
Complex LinkTraceScale(1.0/vol/4.0/(Real)Nc); Complex LinkTraceScale(1.0/vol/4.0/3.0);
TComplex Tl = sum(LinkTrace); TComplex Tl = sum(LinkTrace);
Complex l = TensorRemove(Tl); Complex l = TensorRemove(Tl);
std::cout<<GridLogMessage << "calculated link trace " <<l*LinkTraceScale<<std::endl; std::cout<<GridLogMessage << "calculated link trace " <<l*LinkTraceScale<<std::endl;
@ -157,10 +157,8 @@ int main (int argc, char ** argv)
Complex ll= TensorRemove(TcP); Complex ll= TensorRemove(TcP);
std::cout<<GridLogMessage << "coarsened plaquettes sum to " <<ll*PlaqScale<<std::endl; std::cout<<GridLogMessage << "coarsened plaquettes sum to " <<ll*PlaqScale<<std::endl;
const string stNc = to_string( Nc ) ; std::string clone2x3("./ckpoint_clone2x3.4000");
const string stNcM1 = to_string( Nc-1 ) ; std::string clone3x3("./ckpoint_clone3x3.4000");
std::string clone2x3("./ckpoint_clone"+stNcM1+"x"+stNc+".4000");
std::string clone3x3("./ckpoint_clone"+stNc+"x"+stNc+".4000");
NerscIO::writeConfiguration(Umu,clone3x3,0,precision32); NerscIO::writeConfiguration(Umu,clone3x3,0,precision32);
NerscIO::writeConfiguration(Umu,clone2x3,1,precision32); NerscIO::writeConfiguration(Umu,clone2x3,1,precision32);

View File

@ -1,226 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/core/Test_compact_wilson_clover_speedup.cc
Copyright (C) 2020 - 2022
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
Author: Nils Meyer <nils.meyer@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
NAMESPACE_BEGIN(CommandlineHelpers);
static bool checkPresent(int* argc, char*** argv, const std::string& option) {
return GridCmdOptionExists(*argv, *argv + *argc, option);
}
static std::string getContent(int* argc, char*** argv, const std::string& option) {
return GridCmdOptionPayload(*argv, *argv + *argc, option);
}
static int readInt(int* argc, char*** argv, std::string&& option, int defaultValue) {
std::string arg;
int ret = defaultValue;
if(checkPresent(argc, argv, option)) {
arg = getContent(argc, argv, option);
GridCmdOptionInt(arg, ret);
}
return ret;
}
static float readFloat(int* argc, char*** argv, std::string&& option, float defaultValue) {
std::string arg;
float ret = defaultValue;
if(checkPresent(argc, argv, option)) {
arg = getContent(argc, argv, option);
GridCmdOptionFloat(arg, ret);
}
return ret;
}
NAMESPACE_END(CommandlineHelpers);
#define _grid_printf(LOGGER, ...) \
{ \
if((LOGGER).isActive()) { /* this makes it safe to put, e.g., norm2 in the calling code w.r.t. performance */ \
char _printf_buf[1024]; \
std::sprintf(_printf_buf, __VA_ARGS__); \
std::cout << (LOGGER) << _printf_buf; \
fflush(stdout); \
} \
}
#define grid_printf_msg(...) _grid_printf(GridLogMessage, __VA_ARGS__)
template<typename Field>
bool resultsAgree(const Field& ref, const Field& res, const std::string& name) {
RealD checkTolerance = (getPrecision<Field>::value == 2) ? 1e-15 : 1e-7;
Field diff(ref.Grid());
diff = ref - res;
auto absDev = norm2(diff);
auto relDev = absDev / norm2(ref);
std::cout << GridLogMessage
<< "norm2(reference), norm2(" << name << "), abs. deviation, rel. deviation: " << norm2(ref) << " "
<< norm2(res) << " " << absDev << " " << relDev << " -> check "
<< ((relDev < checkTolerance) ? "passed" : "failed") << std::endl;
return relDev <= checkTolerance;
}
template<typename vCoeff_t>
void runBenchmark(int* argc, char*** argv) {
// read from command line
const int nIter = CommandlineHelpers::readInt( argc, argv, "--niter", 1000);
const RealD mass = CommandlineHelpers::readFloat( argc, argv, "--mass", 0.5);
const RealD csw = CommandlineHelpers::readFloat( argc, argv, "--csw", 1.0);
const RealD cF = CommandlineHelpers::readFloat( argc, argv, "--cF", 1.0);
const bool antiPeriodic = CommandlineHelpers::checkPresent(argc, argv, "--antiperiodic");
// precision
static_assert(getPrecision<vCoeff_t>::value == 2 || getPrecision<vCoeff_t>::value == 1, "Incorrect precision"); // double or single
std::string precision = (getPrecision<vCoeff_t>::value == 2 ? "double" : "single");
// setup grids
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vCoeff_t::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
// clang-format on
// setup rng
std::vector<int> seeds({1, 2, 3, 4});
GridParallelRNG pRNG(UGrid);
pRNG.SeedFixedIntegers(seeds);
// type definitions
typedef WilsonImpl<vCoeff_t, FundamentalRepresentation, CoeffReal> WImpl;
typedef WilsonCloverFermion<WImpl, CloverHelpers<WImpl>> WilsonCloverOperator;
typedef CompactWilsonCloverFermion<WImpl, CompactCloverHelpers<WImpl>> CompactWilsonCloverOperator;
typedef typename WilsonCloverOperator::FermionField Fermion;
typedef typename WilsonCloverOperator::GaugeField Gauge;
// setup fields
Fermion src(UGrid); random(pRNG, src);
Fermion ref(UGrid); ref = Zero();
Fermion res(UGrid); res = Zero();
Fermion hop(UGrid); hop = Zero();
Fermion diff(UGrid); diff = Zero();
Gauge Umu(UGrid); SU3::HotConfiguration(pRNG, Umu);
// setup boundary phases
typename WilsonCloverOperator::ImplParams implParams;
std::vector<Complex> boundary_phases(Nd, 1.);
if(antiPeriodic) boundary_phases[Nd-1] = -1.;
implParams.boundary_phases = boundary_phases;
WilsonAnisotropyCoefficients anisParams;
// misc stuff needed for benchmarks
double volume=1.0; for(int mu=0; mu<Nd; mu++) volume*=UGrid->_fdimensions[mu];
// setup fermion operators
WilsonCloverOperator Dwc( Umu, *UGrid, *UrbGrid, mass, csw, csw, anisParams, implParams);
CompactWilsonCloverOperator Dwc_compact(Umu, *UGrid, *UrbGrid, mass, csw, csw, cF, anisParams, implParams);
// now test the conversions
typename CompactWilsonCloverOperator::CloverField tmp_ref(UGrid); tmp_ref = Dwc.CloverTerm;
typename CompactWilsonCloverOperator::CloverField tmp_res(UGrid); tmp_res = Zero();
typename CompactWilsonCloverOperator::CloverField tmp_diff(UGrid); tmp_diff = Zero();
typename CompactWilsonCloverOperator::CloverDiagonalField diagonal(UGrid); diagonal = Zero();
typename CompactWilsonCloverOperator::CloverTriangleField triangle(UGrid); diagonal = Zero();
CompactWilsonCloverOperator::CompactHelpers::ConvertLayout(tmp_ref, diagonal, triangle);
CompactWilsonCloverOperator::CompactHelpers::ConvertLayout(diagonal, triangle, tmp_res);
tmp_diff = tmp_ref - tmp_res;
std::cout << GridLogMessage << "conversion: ref, res, diff, eps"
<< " " << norm2(tmp_ref)
<< " " << norm2(tmp_res)
<< " " << norm2(tmp_diff)
<< " " << norm2(tmp_diff) / norm2(tmp_ref)
<< std::endl;
// performance per site (use minimal values necessary)
double hop_flop_per_site = 1320; // Rich's Talk + what Peter uses
double hop_byte_per_site = (8 * 9 + 9 * 12) * 2 * getPrecision<vCoeff_t>::value * 4;
double clov_flop_per_site = 504; // Rich's Talk and 1412.2629
double clov_byte_per_site = (2 * 18 + 12 + 12) * 2 * getPrecision<vCoeff_t>::value * 4;
double clov_flop_per_site_performed = 1128;
double clov_byte_per_site_performed = (12 * 12 + 12 + 12) * 2 * getPrecision<vCoeff_t>::value * 4;
// total performance numbers
double hop_gflop_total = volume * nIter * hop_flop_per_site / 1e9;
double hop_gbyte_total = volume * nIter * hop_byte_per_site / 1e9;
double clov_gflop_total = volume * nIter * clov_flop_per_site / 1e9;
double clov_gbyte_total = volume * nIter * clov_byte_per_site / 1e9;
double clov_gflop_performed_total = volume * nIter * clov_flop_per_site_performed / 1e9;
double clov_gbyte_performed_total = volume * nIter * clov_byte_per_site_performed / 1e9;
// warmup + measure dhop
for(auto n : {1, 2, 3, 4, 5}) Dwc.Dhop(src, hop, 0);
double t0 = usecond();
for(int n = 0; n < nIter; n++) Dwc.Dhop(src, hop, 0);
double t1 = usecond();
double secs_hop = (t1-t0)/1e6;
grid_printf_msg("Performance(%35s, %s): %2.4f s, %6.0f GFlop/s, %6.0f GByte/s, speedup vs ref = %.2f, fraction of hop = %.2f\n",
"hop", precision.c_str(), secs_hop, hop_gflop_total/secs_hop, hop_gbyte_total/secs_hop, 0.0, secs_hop/secs_hop);
#define BENCH_CLOVER_KERNEL(KERNEL) { \
/* warmup + measure reference clover */ \
for(auto n : {1, 2, 3, 4, 5}) Dwc.KERNEL(src, ref); \
double t2 = usecond(); \
for(int n = 0; n < nIter; n++) Dwc.KERNEL(src, ref); \
double t3 = usecond(); \
double secs_ref = (t3-t2)/1e6; \
grid_printf_msg("Performance(%35s, %s): %2.4f s, %6.0f GFlop/s, %6.0f GByte/s, speedup vs ref = %.2f, fraction of hop = %.2f\n", \
"reference_"#KERNEL, precision.c_str(), secs_ref, clov_gflop_total/secs_ref, clov_gbyte_total/secs_ref, secs_ref/secs_ref, secs_ref/secs_hop); \
grid_printf_msg("Performance(%35s, %s): %2.4f s, %6.0f GFlop/s, %6.0f GByte/s, speedup vs ref = %.2f, fraction of hop = %.2f\n", /* to see how well the ET performs */ \
"reference_"#KERNEL"_performed", precision.c_str(), secs_ref, clov_gflop_performed_total/secs_ref, clov_gbyte_performed_total/secs_ref, secs_ref/secs_ref, secs_ref/secs_hop); \
\
/* warmup + measure compact clover */ \
for(auto n : {1, 2, 3, 4, 5}) Dwc_compact.KERNEL(src, res); \
double t4 = usecond(); \
for(int n = 0; n < nIter; n++) Dwc_compact.KERNEL(src, res); \
double t5 = usecond(); \
double secs_res = (t5-t4)/1e6; \
grid_printf_msg("Performance(%35s, %s): %2.4f s, %6.0f GFlop/s, %6.0f GByte/s, speedup vs ref = %.2f, fraction of hop = %.2f\n", \
"compact_"#KERNEL, precision.c_str(), secs_res, clov_gflop_total/secs_res, clov_gbyte_total/secs_res, secs_ref/secs_res, secs_res/secs_hop); \
assert(resultsAgree(ref, res, #KERNEL)); \
}
BENCH_CLOVER_KERNEL(Mooee);
BENCH_CLOVER_KERNEL(MooeeDag);
BENCH_CLOVER_KERNEL(MooeeInv);
BENCH_CLOVER_KERNEL(MooeeInvDag);
grid_printf_msg("finalize %s\n", precision.c_str());
}
int main(int argc, char** argv) {
Grid_init(&argc, &argv);
runBenchmark<vComplexD>(&argc, &argv);
runBenchmark<vComplexF>(&argc, &argv);
Grid_finalize();
}

View File

@ -9,7 +9,6 @@ Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk> Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk> Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Jamie Hudspith <renwick.james.hudspth@gmail.com>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
@ -43,14 +42,14 @@ directory
using namespace std; using namespace std;
using namespace Grid; using namespace Grid;
; ;
int main(int argc, char** argv) { int main(int argc, char** argv) {
Grid_init(&argc, &argv); Grid_init(&argc, &argv);
std::vector<int> latt({4, 4, 4, 8}); std::vector<int> latt({4, 4, 4, 8});
GridCartesian* grid = SpaceTimeGrid::makeFourDimGrid( GridCartesian* grid = SpaceTimeGrid::makeFourDimGrid(
latt, GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi()); latt, GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian* rbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(grid); GridRedBlackCartesian* rbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(grid);
@ -61,19 +60,15 @@ int main(int argc, char** argv) {
<< std::endl; << std::endl;
SU2::printGenerators(); SU2::printGenerators();
std::cout << "Dimension of adjoint representation: "<< SU2Adjoint::Dimension << std::endl; std::cout << "Dimension of adjoint representation: "<< SU2Adjoint::Dimension << std::endl;
// guard as this code fails to compile for Nc != 3
#if (Nc == 3)
SU2Adjoint::printGenerators(); SU2Adjoint::printGenerators();
SU2::testGenerators(); SU2::testGenerators();
SU2Adjoint::testGenerators(); SU2Adjoint::testGenerators();
std::cout << GridLogMessage << "*********************************************" std::cout << GridLogMessage << "*********************************************"
<< std::endl; << std::endl;
std::cout << GridLogMessage << "* Generators for SU(Nc" << std::endl; std::cout << GridLogMessage << "* Generators for SU(Nc" << std::endl;
std::cout << GridLogMessage << "*********************************************" std::cout << GridLogMessage << "*********************************************"
<< std::endl; << std::endl;
SU3::printGenerators(); SU3::printGenerators();
std::cout << "Dimension of adjoint representation: "<< SU3Adjoint::Dimension << std::endl; std::cout << "Dimension of adjoint representation: "<< SU3Adjoint::Dimension << std::endl;
SU3Adjoint::printGenerators(); SU3Adjoint::printGenerators();
@ -116,10 +111,12 @@ int main(int argc, char** argv) {
// AdjointRepresentation has the predefined number of colours Nc // AdjointRepresentation has the predefined number of colours Nc
// Representations<FundamentalRepresentation, AdjointRepresentation, TwoIndexSymmetricRepresentation> RepresentationTypes(grid); // Representations<FundamentalRepresentation, AdjointRepresentation, TwoIndexSymmetricRepresentation> RepresentationTypes(grid);
LatticeGaugeField U(grid), V(grid); LatticeGaugeField U(grid), V(grid);
SU3::HotConfiguration<LatticeGaugeField>(gridRNG, U); SU3::HotConfiguration<LatticeGaugeField>(gridRNG, U);
SU3::HotConfiguration<LatticeGaugeField>(gridRNG, V); SU3::HotConfiguration<LatticeGaugeField>(gridRNG, V);
// Adjoint representation // Adjoint representation
// Test group structure // Test group structure
// (U_f * V_f)_r = U_r * V_r // (U_f * V_f)_r = U_r * V_r
@ -130,17 +127,17 @@ int main(int argc, char** argv) {
SU3::LatticeMatrix Vmu = peekLorentz(V,mu); SU3::LatticeMatrix Vmu = peekLorentz(V,mu);
pokeLorentz(UV,Umu*Vmu, mu); pokeLorentz(UV,Umu*Vmu, mu);
} }
AdjRep.update_representation(UV); AdjRep.update_representation(UV);
typename AdjointRep<Nc>::LatticeField UVr = AdjRep.U; // (U_f * V_f)_r typename AdjointRep<Nc>::LatticeField UVr = AdjRep.U; // (U_f * V_f)_r
AdjRep.update_representation(U); AdjRep.update_representation(U);
typename AdjointRep<Nc>::LatticeField Ur = AdjRep.U; // U_r typename AdjointRep<Nc>::LatticeField Ur = AdjRep.U; // U_r
AdjRep.update_representation(V); AdjRep.update_representation(V);
typename AdjointRep<Nc>::LatticeField Vr = AdjRep.U; // V_r typename AdjointRep<Nc>::LatticeField Vr = AdjRep.U; // V_r
typename AdjointRep<Nc>::LatticeField UrVr(grid); typename AdjointRep<Nc>::LatticeField UrVr(grid);
UrVr = Zero(); UrVr = Zero();
for (int mu = 0; mu < Nd; mu++) { for (int mu = 0; mu < Nd; mu++) {
@ -148,10 +145,10 @@ int main(int argc, char** argv) {
typename AdjointRep<Nc>::LatticeMatrix Vrmu = peekLorentz(Vr,mu); typename AdjointRep<Nc>::LatticeMatrix Vrmu = peekLorentz(Vr,mu);
pokeLorentz(UrVr,Urmu*Vrmu, mu); pokeLorentz(UrVr,Urmu*Vrmu, mu);
} }
typename AdjointRep<Nc>::LatticeField Diff_check = UVr - UrVr; typename AdjointRep<Nc>::LatticeField Diff_check = UVr - UrVr;
std::cout << GridLogMessage << "Group structure SU("<<Nc<<") check difference (Adjoint representation) : " << norm2(Diff_check) << std::endl; std::cout << GridLogMessage << "Group structure SU("<<Nc<<") check difference (Adjoint representation) : " << norm2(Diff_check) << std::endl;
// Check correspondence of algebra and group transformations // Check correspondence of algebra and group transformations
// Create a random vector // Create a random vector
SU3::LatticeAlgebraVector h_adj(grid); SU3::LatticeAlgebraVector h_adj(grid);
@ -159,31 +156,32 @@ int main(int argc, char** argv) {
random(gridRNG,h_adj); random(gridRNG,h_adj);
h_adj = real(h_adj); h_adj = real(h_adj);
SU_Adjoint<Nc>::AdjointLieAlgebraMatrix(h_adj,Ar); SU_Adjoint<Nc>::AdjointLieAlgebraMatrix(h_adj,Ar);
// Re-extract h_adj // Re-extract h_adj
SU3::LatticeAlgebraVector h_adj2(grid); SU3::LatticeAlgebraVector h_adj2(grid);
SU_Adjoint<Nc>::projectOnAlgebra(h_adj2, Ar); SU_Adjoint<Nc>::projectOnAlgebra(h_adj2, Ar);
SU3::LatticeAlgebraVector h_diff = h_adj - h_adj2; SU3::LatticeAlgebraVector h_diff = h_adj - h_adj2;
std::cout << GridLogMessage << "Projections structure check vector difference (Adjoint representation) : " << norm2(h_diff) << std::endl; std::cout << GridLogMessage << "Projections structure check vector difference (Adjoint representation) : " << norm2(h_diff) << std::endl;
// Exponentiate // Exponentiate
typename AdjointRep<Nc>::LatticeMatrix Uadj(grid); typename AdjointRep<Nc>::LatticeMatrix Uadj(grid);
Uadj = expMat(Ar, 1.0, 16); Uadj = expMat(Ar, 1.0, 16);
typename AdjointRep<Nc>::LatticeMatrix uno(grid); typename AdjointRep<Nc>::LatticeMatrix uno(grid);
uno = 1.0; uno = 1.0;
// Check matrix Uadj, must be real orthogonal // Check matrix Uadj, must be real orthogonal
typename AdjointRep<Nc>::LatticeMatrix Ucheck = Uadj - conjugate(Uadj); typename AdjointRep<Nc>::LatticeMatrix Ucheck = Uadj - conjugate(Uadj);
std::cout << GridLogMessage << "Reality check: " << norm2(Ucheck) std::cout << GridLogMessage << "Reality check: " << norm2(Ucheck)
<< std::endl; << std::endl;
Ucheck = Uadj * adj(Uadj) - uno; Ucheck = Uadj * adj(Uadj) - uno;
std::cout << GridLogMessage << "orthogonality check 1: " << norm2(Ucheck) std::cout << GridLogMessage << "orthogonality check 1: " << norm2(Ucheck)
<< std::endl; << std::endl;
Ucheck = adj(Uadj) * Uadj - uno; Ucheck = adj(Uadj) * Uadj - uno;
std::cout << GridLogMessage << "orthogonality check 2: " << norm2(Ucheck) std::cout << GridLogMessage << "orthogonality check 2: " << norm2(Ucheck)
<< std::endl; << std::endl;
// Construct the fundamental matrix in the group // Construct the fundamental matrix in the group
SU3::LatticeMatrix Af(grid); SU3::LatticeMatrix Af(grid);
SU3::FundamentalLieAlgebraMatrix(h_adj,Af); SU3::FundamentalLieAlgebraMatrix(h_adj,Af);
@ -195,65 +193,72 @@ int main(int argc, char** argv) {
SU3::LatticeMatrix UnitCheck(grid); SU3::LatticeMatrix UnitCheck(grid);
UnitCheck = Ufund * adj(Ufund) - uno_f; UnitCheck = Ufund * adj(Ufund) - uno_f;
std::cout << GridLogMessage << "unitarity check 1: " << norm2(UnitCheck) std::cout << GridLogMessage << "unitarity check 1: " << norm2(UnitCheck)
<< std::endl; << std::endl;
UnitCheck = adj(Ufund) * Ufund - uno_f; UnitCheck = adj(Ufund) * Ufund - uno_f;
std::cout << GridLogMessage << "unitarity check 2: " << norm2(UnitCheck) std::cout << GridLogMessage << "unitarity check 2: " << norm2(UnitCheck)
<< std::endl; << std::endl;
// Tranform to the adjoint representation // Tranform to the adjoint representation
U = Zero(); // fill this with only one direction U = Zero(); // fill this with only one direction
pokeLorentz(U,Ufund,0); // the representation transf acts on full gauge fields pokeLorentz(U,Ufund,0); // the representation transf acts on full gauge fields
AdjRep.update_representation(U); AdjRep.update_representation(U);
Ur = AdjRep.U; // U_r Ur = AdjRep.U; // U_r
typename AdjointRep<Nc>::LatticeMatrix Ur0 = peekLorentz(Ur,0); // this should be the same as Uadj typename AdjointRep<Nc>::LatticeMatrix Ur0 = peekLorentz(Ur,0); // this should be the same as Uadj
typename AdjointRep<Nc>::LatticeMatrix Diff_check_mat = Ur0 - Uadj; typename AdjointRep<Nc>::LatticeMatrix Diff_check_mat = Ur0 - Uadj;
std::cout << GridLogMessage << "Projections structure check group difference : " << norm2(Diff_check_mat) << std::endl; std::cout << GridLogMessage << "Projections structure check group difference : " << norm2(Diff_check_mat) << std::endl;
// TwoIndexRep tests // TwoIndexRep tests
std::cout << GridLogMessage << "*********************************************" std::cout << GridLogMessage << "*********************************************"
<< std::endl; << std::endl;
std::cout << GridLogMessage << "*********************************************" std::cout << GridLogMessage << "*********************************************"
<< std::endl; << std::endl;
std::cout << GridLogMessage << "* eS^{ij} base for SU(2)" << std::endl; std::cout << GridLogMessage << "* eS^{ij} base for SU(2)" << std::endl;
std::cout << GridLogMessage << "*********************************************" std::cout << GridLogMessage << "*********************************************"
<< std::endl; << std::endl;
std::cout << GridLogMessage << "Dimension of Two Index Symmetric representation: "<< SU2TwoIndexSymm::Dimension << std::endl; std::cout << GridLogMessage << "Dimension of Two Index Symmetric representation: "<< SU2TwoIndexSymm::Dimension << std::endl;
SU2TwoIndexSymm::printBase(); SU2TwoIndexSymm::printBase();
std::cout << GridLogMessage << "*********************************************" std::cout << GridLogMessage << "*********************************************"
<< std::endl; << std::endl;
std::cout << GridLogMessage << "Generators of Two Index Symmetric representation: "<< SU2TwoIndexSymm::Dimension << std::endl; std::cout << GridLogMessage << "Generators of Two Index Symmetric representation: "<< SU2TwoIndexSymm::Dimension << std::endl;
SU2TwoIndexSymm::printGenerators(); SU2TwoIndexSymm::printGenerators();
std::cout << GridLogMessage << "Test of Two Index Symmetric Generators: "<< SU2TwoIndexSymm::Dimension << std::endl; std::cout << GridLogMessage << "Test of Two Index Symmetric Generators: "<< SU2TwoIndexSymm::Dimension << std::endl;
SU2TwoIndexSymm::testGenerators(); SU2TwoIndexSymm::testGenerators();
std::cout << GridLogMessage << "*********************************************" std::cout << GridLogMessage << "*********************************************"
<< std::endl; << std::endl;
std::cout << GridLogMessage << "*********************************************" std::cout << GridLogMessage << "*********************************************"
<< std::endl; << std::endl;
std::cout << GridLogMessage << "* eAS^{ij} base for SU(2)" << std::endl; std::cout << GridLogMessage << "* eAS^{ij} base for SU(2)" << std::endl;
std::cout << GridLogMessage << "*********************************************" std::cout << GridLogMessage << "*********************************************"
<< std::endl; << std::endl;
std::cout << GridLogMessage << "Dimension of Two Index anti-Symmetric representation: "<< SU2TwoIndexAntiSymm::Dimension << std::endl; std::cout << GridLogMessage << "Dimension of Two Index anti-Symmetric representation: "<< SU2TwoIndexAntiSymm::Dimension << std::endl;
SU2TwoIndexAntiSymm::printBase(); SU2TwoIndexAntiSymm::printBase();
std::cout << GridLogMessage << "*********************************************" std::cout << GridLogMessage << "*********************************************"
<< std::endl; << std::endl;
std::cout << GridLogMessage << "Dimension of Two Index anti-Symmetric representation: "<< SU2TwoIndexAntiSymm::Dimension << std::endl; std::cout << GridLogMessage << "Dimension of Two Index anti-Symmetric representation: "<< SU2TwoIndexAntiSymm::Dimension << std::endl;
SU2TwoIndexAntiSymm::printGenerators(); SU2TwoIndexAntiSymm::printGenerators();
std::cout << GridLogMessage << "Test of Two Index anti-Symmetric Generators: "<< SU2TwoIndexAntiSymm::Dimension << std::endl; std::cout << GridLogMessage << "Test of Two Index anti-Symmetric Generators: "<< SU2TwoIndexAntiSymm::Dimension << std::endl;
SU2TwoIndexAntiSymm::testGenerators(); SU2TwoIndexAntiSymm::testGenerators();
std::cout << GridLogMessage << "*********************************************" std::cout << GridLogMessage << "*********************************************"
<< std::endl; << std::endl;
std::cout << GridLogMessage << "Test for the Two Index Symmetric projectors" std::cout << GridLogMessage << "Test for the Two Index Symmetric projectors"
<< std::endl; << std::endl;
// Projectors // Projectors
SU3TwoIndexSymm::LatticeTwoIndexMatrix Gauss2(grid); SU3TwoIndexSymm::LatticeTwoIndexMatrix Gauss2(grid);
random(gridRNG,Gauss2); random(gridRNG,Gauss2);
@ -271,13 +276,13 @@ int main(int argc, char** argv) {
SU3::LatticeAlgebraVector diff2 = ha - hb; SU3::LatticeAlgebraVector diff2 = ha - hb;
std::cout << GridLogMessage << "Difference: " << norm2(diff) << std::endl; std::cout << GridLogMessage << "Difference: " << norm2(diff) << std::endl;
std::cout << GridLogMessage << "*********************************************" std::cout << GridLogMessage << "*********************************************"
<< std::endl; << std::endl;
std::cout << GridLogMessage << "*********************************************" std::cout << GridLogMessage << "*********************************************"
<< std::endl; << std::endl;
std::cout << GridLogMessage << "Test for the Two index anti-Symmetric projectors" std::cout << GridLogMessage << "Test for the Two index anti-Symmetric projectors"
<< std::endl; << std::endl;
// Projectors // Projectors
SU3TwoIndexAntiSymm::LatticeTwoIndexMatrix Gauss2a(grid); SU3TwoIndexAntiSymm::LatticeTwoIndexMatrix Gauss2a(grid);
random(gridRNG,Gauss2a); random(gridRNG,Gauss2a);
@ -295,11 +300,11 @@ int main(int argc, char** argv) {
SU3::LatticeAlgebraVector diff2a = ha - hb; SU3::LatticeAlgebraVector diff2a = ha - hb;
std::cout << GridLogMessage << "Difference: " << norm2(diff2a) << std::endl; std::cout << GridLogMessage << "Difference: " << norm2(diff2a) << std::endl;
std::cout << GridLogMessage << "*********************************************" std::cout << GridLogMessage << "*********************************************"
<< std::endl; << std::endl;
std::cout << GridLogMessage << "Two index Symmetric: Checking Group Structure" std::cout << GridLogMessage << "Two index Symmetric: Checking Group Structure"
<< std::endl; << std::endl;
// Testing HMC representation classes // Testing HMC representation classes
TwoIndexRep< Nc, Symmetric > TIndexRep(grid); TwoIndexRep< Nc, Symmetric > TIndexRep(grid);
@ -308,7 +313,7 @@ int main(int argc, char** argv) {
LatticeGaugeField U2(grid), V2(grid); LatticeGaugeField U2(grid), V2(grid);
SU3::HotConfiguration<LatticeGaugeField>(gridRNG, U2); SU3::HotConfiguration<LatticeGaugeField>(gridRNG, U2);
SU3::HotConfiguration<LatticeGaugeField>(gridRNG, V2); SU3::HotConfiguration<LatticeGaugeField>(gridRNG, V2);
LatticeGaugeField UV2(grid); LatticeGaugeField UV2(grid);
UV2 = Zero(); UV2 = Zero();
for (int mu = 0; mu < Nd; mu++) { for (int mu = 0; mu < Nd; mu++) {
@ -316,16 +321,16 @@ int main(int argc, char** argv) {
SU3::LatticeMatrix Vmu2 = peekLorentz(V2,mu); SU3::LatticeMatrix Vmu2 = peekLorentz(V2,mu);
pokeLorentz(UV2,Umu2*Vmu2, mu); pokeLorentz(UV2,Umu2*Vmu2, mu);
} }
TIndexRep.update_representation(UV2); TIndexRep.update_representation(UV2);
typename TwoIndexRep< Nc, Symmetric >::LatticeField UVr2 = TIndexRep.U; // (U_f * V_f)_r typename TwoIndexRep< Nc, Symmetric >::LatticeField UVr2 = TIndexRep.U; // (U_f * V_f)_r
TIndexRep.update_representation(U2); TIndexRep.update_representation(U2);
typename TwoIndexRep< Nc, Symmetric >::LatticeField Ur2 = TIndexRep.U; // U_r typename TwoIndexRep< Nc, Symmetric >::LatticeField Ur2 = TIndexRep.U; // U_r
TIndexRep.update_representation(V2); TIndexRep.update_representation(V2);
typename TwoIndexRep< Nc, Symmetric >::LatticeField Vr2 = TIndexRep.U; // V_r typename TwoIndexRep< Nc, Symmetric >::LatticeField Vr2 = TIndexRep.U; // V_r
typename TwoIndexRep< Nc, Symmetric >::LatticeField Ur2Vr2(grid); typename TwoIndexRep< Nc, Symmetric >::LatticeField Ur2Vr2(grid);
Ur2Vr2 = Zero(); Ur2Vr2 = Zero();
for (int mu = 0; mu < Nd; mu++) { for (int mu = 0; mu < Nd; mu++) {
@ -333,11 +338,11 @@ int main(int argc, char** argv) {
typename TwoIndexRep< Nc, Symmetric >::LatticeMatrix Vrmu2 = peekLorentz(Vr2,mu); typename TwoIndexRep< Nc, Symmetric >::LatticeMatrix Vrmu2 = peekLorentz(Vr2,mu);
pokeLorentz(Ur2Vr2,Urmu2*Vrmu2, mu); pokeLorentz(Ur2Vr2,Urmu2*Vrmu2, mu);
} }
typename TwoIndexRep< Nc, Symmetric >::LatticeField Diff_check2 = UVr2 - Ur2Vr2; typename TwoIndexRep< Nc, Symmetric >::LatticeField Diff_check2 = UVr2 - Ur2Vr2;
std::cout << GridLogMessage << "Group structure SU("<<Nc<<") check difference (Two Index Symmetric): " << norm2(Diff_check2) << std::endl; std::cout << GridLogMessage << "Group structure SU("<<Nc<<") check difference (Two Index Symmetric): " << norm2(Diff_check2) << std::endl;
// Check correspondence of algebra and group transformations // Check correspondence of algebra and group transformations
// Create a random vector // Create a random vector
SU3::LatticeAlgebraVector h_sym(grid); SU3::LatticeAlgebraVector h_sym(grid);
@ -345,31 +350,34 @@ int main(int argc, char** argv) {
random(gridRNG,h_sym); random(gridRNG,h_sym);
h_sym = real(h_sym); h_sym = real(h_sym);
SU_TwoIndex<Nc,Symmetric>::TwoIndexLieAlgebraMatrix(h_sym,Ar_sym); SU_TwoIndex<Nc,Symmetric>::TwoIndexLieAlgebraMatrix(h_sym,Ar_sym);
// Re-extract h_sym // Re-extract h_sym
SU3::LatticeAlgebraVector h_sym2(grid); SU3::LatticeAlgebraVector h_sym2(grid);
SU_TwoIndex< Nc, Symmetric>::projectOnAlgebra(h_sym2, Ar_sym); SU_TwoIndex< Nc, Symmetric>::projectOnAlgebra(h_sym2, Ar_sym);
SU3::LatticeAlgebraVector h_diff_sym = h_sym - h_sym2; SU3::LatticeAlgebraVector h_diff_sym = h_sym - h_sym2;
std::cout << GridLogMessage << "Projections structure check vector difference (Two Index Symmetric): " << norm2(h_diff_sym) << std::endl; std::cout << GridLogMessage << "Projections structure check vector difference (Two Index Symmetric): " << norm2(h_diff_sym) << std::endl;
// Exponentiate // Exponentiate
typename TwoIndexRep< Nc, Symmetric>::LatticeMatrix U2iS(grid); typename TwoIndexRep< Nc, Symmetric>::LatticeMatrix U2iS(grid);
U2iS = expMat(Ar_sym, 1.0, 16); U2iS = expMat(Ar_sym, 1.0, 16);
typename TwoIndexRep< Nc, Symmetric>::LatticeMatrix uno2iS(grid); typename TwoIndexRep< Nc, Symmetric>::LatticeMatrix uno2iS(grid);
uno2iS = 1.0; uno2iS = 1.0;
// Check matrix U2iS, must be real orthogonal // Check matrix U2iS, must be real orthogonal
typename TwoIndexRep< Nc, Symmetric>::LatticeMatrix Ucheck2iS = U2iS - conjugate(U2iS); typename TwoIndexRep< Nc, Symmetric>::LatticeMatrix Ucheck2iS = U2iS - conjugate(U2iS);
std::cout << GridLogMessage << "Reality check: " << norm2(Ucheck2iS) std::cout << GridLogMessage << "Reality check: " << norm2(Ucheck2iS)
<< std::endl; << std::endl;
Ucheck2iS = U2iS * adj(U2iS) - uno2iS; Ucheck2iS = U2iS * adj(U2iS) - uno2iS;
std::cout << GridLogMessage << "orthogonality check 1: " << norm2(Ucheck2iS) std::cout << GridLogMessage << "orthogonality check 1: " << norm2(Ucheck2iS)
<< std::endl; << std::endl;
Ucheck2iS = adj(U2iS) * U2iS - uno2iS; Ucheck2iS = adj(U2iS) * U2iS - uno2iS;
std::cout << GridLogMessage << "orthogonality check 2: " << norm2(Ucheck2iS) std::cout << GridLogMessage << "orthogonality check 2: " << norm2(Ucheck2iS)
<< std::endl; << std::endl;
// Construct the fundamental matrix in the group // Construct the fundamental matrix in the group
SU3::LatticeMatrix Af_sym(grid); SU3::LatticeMatrix Af_sym(grid);
SU3::FundamentalLieAlgebraMatrix(h_sym,Af_sym); SU3::FundamentalLieAlgebraMatrix(h_sym,Af_sym);
@ -378,137 +386,147 @@ int main(int argc, char** argv) {
SU3::LatticeMatrix UnitCheck2(grid); SU3::LatticeMatrix UnitCheck2(grid);
UnitCheck2 = Ufund2 * adj(Ufund2) - uno_f; UnitCheck2 = Ufund2 * adj(Ufund2) - uno_f;
std::cout << GridLogMessage << "unitarity check 1: " << norm2(UnitCheck2) std::cout << GridLogMessage << "unitarity check 1: " << norm2(UnitCheck2)
<< std::endl; << std::endl;
UnitCheck2 = adj(Ufund2) * Ufund2 - uno_f; UnitCheck2 = adj(Ufund2) * Ufund2 - uno_f;
std::cout << GridLogMessage << "unitarity check 2: " << norm2(UnitCheck2) std::cout << GridLogMessage << "unitarity check 2: " << norm2(UnitCheck2)
<< std::endl; << std::endl;
// Tranform to the 2Index Sym representation // Tranform to the 2Index Sym representation
U = Zero(); // fill this with only one direction U = Zero(); // fill this with only one direction
pokeLorentz(U,Ufund2,0); // the representation transf acts on full gauge fields pokeLorentz(U,Ufund2,0); // the representation transf acts on full gauge fields
TIndexRep.update_representation(U); TIndexRep.update_representation(U);
Ur2 = TIndexRep.U; // U_r Ur2 = TIndexRep.U; // U_r
typename TwoIndexRep< Nc, Symmetric>::LatticeMatrix Ur02 = peekLorentz(Ur2,0); // this should be the same as U2iS typename TwoIndexRep< Nc, Symmetric>::LatticeMatrix Ur02 = peekLorentz(Ur2,0); // this should be the same as U2iS
typename TwoIndexRep< Nc, Symmetric>::LatticeMatrix Diff_check_mat2 = Ur02 - U2iS; typename TwoIndexRep< Nc, Symmetric>::LatticeMatrix Diff_check_mat2 = Ur02 - U2iS;
std::cout << GridLogMessage << "Projections structure check group difference (Two Index Symmetric): " << norm2(Diff_check_mat2) << std::endl; std::cout << GridLogMessage << "Projections structure check group difference (Two Index Symmetric): " << norm2(Diff_check_mat2) << std::endl;
if (TwoIndexRep<Nc, AntiSymmetric >::Dimension != 1){ if (TwoIndexRep<Nc, AntiSymmetric >::Dimension != 1){
std::cout << GridLogMessage << "*********************************************" std::cout << GridLogMessage << "*********************************************"
<< std::endl; << std::endl;
std::cout << GridLogMessage << "Two Index anti-Symmetric: Check Group Structure" std::cout << GridLogMessage << "Two Index anti-Symmetric: Check Group Structure"
<< std::endl; << std::endl;
// Testing HMC representation classes // Testing HMC representation classes
TwoIndexRep< Nc, AntiSymmetric > TIndexRepA(grid); TwoIndexRep< Nc, AntiSymmetric > TIndexRepA(grid);
// Test group structure // Test group structure
// (U_f * V_f)_r = U_r * V_r // (U_f * V_f)_r = U_r * V_r
LatticeGaugeField U2A(grid), V2A(grid); LatticeGaugeField U2A(grid), V2A(grid);
SU3::HotConfiguration<LatticeGaugeField>(gridRNG, U2A); SU3::HotConfiguration<LatticeGaugeField>(gridRNG, U2A);
SU3::HotConfiguration<LatticeGaugeField>(gridRNG, V2A); SU3::HotConfiguration<LatticeGaugeField>(gridRNG, V2A);
LatticeGaugeField UV2A(grid); LatticeGaugeField UV2A(grid);
UV2A = Zero(); UV2A = Zero();
for (int mu = 0; mu < Nd; mu++) { for (int mu = 0; mu < Nd; mu++) {
SU3::LatticeMatrix Umu2A = peekLorentz(U2,mu); SU3::LatticeMatrix Umu2A = peekLorentz(U2,mu);
SU3::LatticeMatrix Vmu2A = peekLorentz(V2,mu); SU3::LatticeMatrix Vmu2A = peekLorentz(V2,mu);
pokeLorentz(UV2A,Umu2A*Vmu2A, mu); pokeLorentz(UV2A,Umu2A*Vmu2A, mu);
}
TIndexRep.update_representation(UV2A);
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeField UVr2A = TIndexRepA.U; // (U_f * V_f)_r
TIndexRep.update_representation(U2A);
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeField Ur2A = TIndexRepA.U; // U_r
TIndexRep.update_representation(V2A);
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeField Vr2A = TIndexRepA.U; // V_r
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeField Ur2Vr2A(grid);
Ur2Vr2A = Zero();
for (int mu = 0; mu < Nd; mu++) {
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeMatrix Urmu2A = peekLorentz(Ur2A,mu);
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeMatrix Vrmu2A = peekLorentz(Vr2A,mu);
pokeLorentz(Ur2Vr2A,Urmu2A*Vrmu2A, mu);
}
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeField Diff_check2A = UVr2A - Ur2Vr2A;
std::cout << GridLogMessage << "Group structure SU("<<Nc<<") check difference (Two Index anti-Symmetric): " << norm2(Diff_check2A) << std::endl;
// Check correspondence of algebra and group transformations
// Create a random vector
SU3::LatticeAlgebraVector h_Asym(grid);
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix Ar_Asym(grid);
random(gridRNG,h_Asym);
h_Asym = real(h_Asym);
SU_TwoIndex< Nc, AntiSymmetric>::TwoIndexLieAlgebraMatrix(h_Asym,Ar_Asym);
// Re-extract h_sym
SU3::LatticeAlgebraVector h_Asym2(grid);
SU_TwoIndex< Nc, AntiSymmetric>::projectOnAlgebra(h_Asym2, Ar_Asym);
SU3::LatticeAlgebraVector h_diff_Asym = h_Asym - h_Asym2;
std::cout << GridLogMessage << "Projections structure check vector difference (Two Index anti-Symmetric): " << norm2(h_diff_Asym) << std::endl;
// Exponentiate
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix U2iAS(grid);
U2iAS = expMat(Ar_Asym, 1.0, 16);
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix uno2iAS(grid);
uno2iAS = 1.0;
// Check matrix U2iS, must be real orthogonal
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix Ucheck2iAS = U2iAS - conjugate(U2iAS);
std::cout << GridLogMessage << "Reality check: " << norm2(Ucheck2iAS)
<< std::endl;
Ucheck2iAS = U2iAS * adj(U2iAS) - uno2iAS;
std::cout << GridLogMessage << "orthogonality check 1: " << norm2(Ucheck2iAS)
<< std::endl;
Ucheck2iAS = adj(U2iAS) * U2iAS - uno2iAS;
std::cout << GridLogMessage << "orthogonality check 2: " << norm2(Ucheck2iAS)
<< std::endl;
// Construct the fundamental matrix in the group
SU3::LatticeMatrix Af_Asym(grid);
SU3::FundamentalLieAlgebraMatrix(h_Asym,Af_Asym);
SU3::LatticeMatrix Ufund2A(grid);
Ufund2A = expMat(Af_Asym, 1.0, 16);
SU3::LatticeMatrix UnitCheck2A(grid);
UnitCheck2A = Ufund2A * adj(Ufund2A) - uno_f;
std::cout << GridLogMessage << "unitarity check 1: " << norm2(UnitCheck2A)
<< std::endl;
UnitCheck2A = adj(Ufund2A) * Ufund2A - uno_f;
std::cout << GridLogMessage << "unitarity check 2: " << norm2(UnitCheck2A)
<< std::endl;
// Tranform to the 2Index Sym representation
U = Zero(); // fill this with only one direction
pokeLorentz(U,Ufund2A,0); // the representation transf acts on full gauge fields
TIndexRepA.update_representation(U);
Ur2A = TIndexRepA.U; // U_r
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix Ur02A = peekLorentz(Ur2A,0); // this should be the same as U2iS
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix Diff_check_mat2A = Ur02A - U2iAS;
std::cout << GridLogMessage << "Projections structure check group difference (Two Index anti-Symmetric): " << norm2(Diff_check_mat2A) << std::endl;
} else {
std::cout << GridLogMessage << "Skipping Two Index anti-Symmetric tests "
"because representation is trivial (dim = 1)"
<< std::endl;
} }
TIndexRep.update_representation(UV2A);
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeField UVr2A = TIndexRepA.U; // (U_f * V_f)_r
TIndexRep.update_representation(U2A);
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeField Ur2A = TIndexRepA.U; // U_r
TIndexRep.update_representation(V2A);
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeField Vr2A = TIndexRepA.U; // V_r
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeField Ur2Vr2A(grid);
Ur2Vr2A = Zero();
for (int mu = 0; mu < Nd; mu++) {
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeMatrix Urmu2A = peekLorentz(Ur2A,mu);
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeMatrix Vrmu2A = peekLorentz(Vr2A,mu);
pokeLorentz(Ur2Vr2A,Urmu2A*Vrmu2A, mu);
}
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeField Diff_check2A = UVr2A - Ur2Vr2A;
std::cout << GridLogMessage << "Group structure SU("<<Nc<<") check difference (Two Index anti-Symmetric): " << norm2(Diff_check2A) << std::endl;
// Check correspondence of algebra and group transformations
// Create a random vector
SU3::LatticeAlgebraVector h_Asym(grid);
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix Ar_Asym(grid);
random(gridRNG,h_Asym);
h_Asym = real(h_Asym);
SU_TwoIndex< Nc, AntiSymmetric>::TwoIndexLieAlgebraMatrix(h_Asym,Ar_Asym);
// Re-extract h_sym
SU3::LatticeAlgebraVector h_Asym2(grid);
SU_TwoIndex< Nc, AntiSymmetric>::projectOnAlgebra(h_Asym2, Ar_Asym);
SU3::LatticeAlgebraVector h_diff_Asym = h_Asym - h_Asym2;
std::cout << GridLogMessage << "Projections structure check vector difference (Two Index anti-Symmetric): " << norm2(h_diff_Asym) << std::endl;
// Exponentiate
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix U2iAS(grid);
U2iAS = expMat(Ar_Asym, 1.0, 16);
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix uno2iAS(grid);
uno2iAS = 1.0;
// Check matrix U2iS, must be real orthogonal
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix Ucheck2iAS = U2iAS - conjugate(U2iAS);
std::cout << GridLogMessage << "Reality check: " << norm2(Ucheck2iAS)
<< std::endl;
Ucheck2iAS = U2iAS * adj(U2iAS) - uno2iAS;
std::cout << GridLogMessage << "orthogonality check 1: " << norm2(Ucheck2iAS)
<< std::endl;
Ucheck2iAS = adj(U2iAS) * U2iAS - uno2iAS;
std::cout << GridLogMessage << "orthogonality check 2: " << norm2(Ucheck2iAS)
<< std::endl;
// Construct the fundamental matrix in the group
SU3::LatticeMatrix Af_Asym(grid);
SU3::FundamentalLieAlgebraMatrix(h_Asym,Af_Asym);
SU3::LatticeMatrix Ufund2A(grid);
Ufund2A = expMat(Af_Asym, 1.0, 16);
SU3::LatticeMatrix UnitCheck2A(grid);
UnitCheck2A = Ufund2A * adj(Ufund2A) - uno_f;
std::cout << GridLogMessage << "unitarity check 1: " << norm2(UnitCheck2A)
<< std::endl;
UnitCheck2A = adj(Ufund2A) * Ufund2A - uno_f;
std::cout << GridLogMessage << "unitarity check 2: " << norm2(UnitCheck2A)
<< std::endl;
// Tranform to the 2Index Sym representation
U = Zero(); // fill this with only one direction
pokeLorentz(U,Ufund2A,0); // the representation transf acts on full gauge fields
TIndexRepA.update_representation(U);
Ur2A = TIndexRepA.U; // U_r
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix Ur02A = peekLorentz(Ur2A,0); // this should be the same as U2iS
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix Diff_check_mat2A = Ur02A - U2iAS;
std::cout << GridLogMessage << "Projections structure check group difference (Two Index anti-Symmetric): " << norm2(Diff_check_mat2A) << std::endl;
} else {
std::cout << GridLogMessage << "Skipping Two Index anti-Symmetric tests "
"because representation is trivial (dim = 1)"
<< std::endl;
}
#endif
Grid_finalize(); Grid_finalize();
} }

View File

@ -122,15 +122,14 @@ int main (int argc, char ** argv)
std::cout << "Determinant defect before projection " <<norm2(detU)<<std::endl; std::cout << "Determinant defect before projection " <<norm2(detU)<<std::endl;
tmp = U*adj(U) - ident; tmp = U*adj(U) - ident;
std::cout << "Unitarity check before projection " << norm2(tmp)<<std::endl; std::cout << "Unitarity check before projection " << norm2(tmp)<<std::endl;
#if (Nc == 3)
ProjectSU3(U); ProjectSU3(U);
detU= Determinant(U) ; detU= Determinant(U) ;
detU= detU -1.0; detU= detU -1.0;
std::cout << "Determinant ProjectSU3 defect " <<norm2(detU)<<std::endl; std::cout << "Determinant ProjectSU3 defect " <<norm2(detU)<<std::endl;
tmp = U*adj(U) - ident; tmp = U*adj(U) - ident;
std::cout << "Unitarity check after projection " << norm2(tmp)<<std::endl; std::cout << "Unitarity check after projection " << norm2(tmp)<<std::endl;
#endif
ProjectSUn(UU); ProjectSUn(UU);
detUU= Determinant(UU); detUU= Determinant(UU);
detUU= detUU -1.0; detUU= detUU -1.0;

View File

@ -2,12 +2,11 @@
Grid physics library, www.github.com/paboyle/Grid Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/core/Test_wilson_clover.cc Source file: ./benchmarks/Benchmark_wilson.cc
Copyright (C) 2015 Copyright (C) 2015
Author: Guido Cossu <guido.cossu@ed.ac.uk> Author: Guido Cossu <guido.cossu@ed.ac.uk>
Fabian Joswig <fabian.joswig@ed.ac.uk>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
@ -68,6 +67,8 @@ int main(int argc, char **argv)
tmp = Zero(); tmp = Zero();
FermionField err(&Grid); FermionField err(&Grid);
err = Zero(); err = Zero();
FermionField err2(&Grid);
err2 = Zero();
FermionField phi(&Grid); FermionField phi(&Grid);
random(pRNG, phi); random(pRNG, phi);
FermionField chi(&Grid); FermionField chi(&Grid);
@ -76,8 +77,6 @@ int main(int argc, char **argv)
SU<Nc>::HotConfiguration(pRNG, Umu); SU<Nc>::HotConfiguration(pRNG, Umu);
std::vector<LatticeColourMatrix> U(4, &Grid); std::vector<LatticeColourMatrix> U(4, &Grid);
double tolerance = 1e-4;
double volume = 1; double volume = 1;
for (int mu = 0; mu < Nd; mu++) for (int mu = 0; mu < Nd; mu++)
{ {
@ -89,7 +88,7 @@ int main(int argc, char **argv)
RealD csw_t = 1.0; RealD csw_t = 1.0;
WilsonCloverFermionR Dwc(Umu, Grid, RBGrid, mass, csw_r, csw_t, anis, params); WilsonCloverFermionR Dwc(Umu, Grid, RBGrid, mass, csw_r, csw_t, anis, params);
CompactWilsonCloverFermionR Dwc_compact(Umu, Grid, RBGrid, mass, csw_r, csw_t, 1.0, anis, params); //Dwc.ImportGauge(Umu); // not necessary, included in the constructor
std::cout << GridLogMessage << "==========================================================" << std::endl; std::cout << GridLogMessage << "==========================================================" << std::endl;
std::cout << GridLogMessage << "= Testing that Deo + Doe = Dunprec " << std::endl; std::cout << GridLogMessage << "= Testing that Deo + Doe = Dunprec " << std::endl;
@ -113,24 +112,7 @@ int main(int argc, char **argv)
setCheckerboard(r_eo, r_e); setCheckerboard(r_eo, r_e);
err = ref - r_eo; err = ref - r_eo;
std::cout << GridLogMessage << "EO norm diff\t" << norm2(err) << " (" << norm2(ref) << " - " << norm2(r_eo) << ")" << std::endl; std::cout << GridLogMessage << "EO norm diff " << norm2(err) << " " << norm2(ref) << " " << norm2(r_eo) << std::endl;
assert(fabs(norm2(err)) < tolerance);
Dwc_compact.Meooe(src_e, r_o);
std::cout << GridLogMessage << "Applied Meo" << std::endl;
Dwc_compact.Meooe(src_o, r_e);
std::cout << GridLogMessage << "Applied Moe" << std::endl;
Dwc_compact.Dhop(src, ref, DaggerNo);
setCheckerboard(r_eo, r_o);
setCheckerboard(r_eo, r_e);
err = ref - r_eo;
std::cout << GridLogMessage << "EO norm diff compact\t" << norm2(err) << " (" << norm2(ref) << " - " << norm2(r_eo) << ")" << std::endl;
assert(fabs(norm2(err)) < tolerance);
std::cout << GridLogMessage << "==============================================================" << std::endl; std::cout << GridLogMessage << "==============================================================" << std::endl;
std::cout << GridLogMessage << "= Test Ddagger is the dagger of D by requiring " << std::endl; std::cout << GridLogMessage << "= Test Ddagger is the dagger of D by requiring " << std::endl;
@ -170,22 +152,6 @@ int main(int argc, char **argv)
std::cout << GridLogMessage << "pDce - conj(cDpo) " << pDce - conj(cDpo) << std::endl; std::cout << GridLogMessage << "pDce - conj(cDpo) " << pDce - conj(cDpo) << std::endl;
std::cout << GridLogMessage << "pDco - conj(cDpe) " << pDco - conj(cDpe) << std::endl; std::cout << GridLogMessage << "pDco - conj(cDpe) " << pDco - conj(cDpe) << std::endl;
Dwc_compact.Meooe(chi_e, dchi_o);
Dwc_compact.Meooe(chi_o, dchi_e);
Dwc_compact.MeooeDag(phi_e, dphi_o);
Dwc_compact.MeooeDag(phi_o, dphi_e);
pDce = innerProduct(phi_e, dchi_e);
pDco = innerProduct(phi_o, dchi_o);
cDpe = innerProduct(chi_e, dphi_e);
cDpo = innerProduct(chi_o, dphi_o);
std::cout << GridLogMessage << "e compact " << pDce << " " << cDpe << std::endl;
std::cout << GridLogMessage << "o compact " << pDco << " " << cDpo << std::endl;
std::cout << GridLogMessage << "pDce - conj(cDpo) compact " << pDce - conj(cDpo) << std::endl;
std::cout << GridLogMessage << "pDco - conj(cDpe) compact " << pDco - conj(cDpe) << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl; std::cout << GridLogMessage << "==============================================================" << std::endl;
std::cout << GridLogMessage << "= Test MeeInv Mee = 1 (if csw!=0) " << std::endl; std::cout << GridLogMessage << "= Test MeeInv Mee = 1 (if csw!=0) " << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl; std::cout << GridLogMessage << "==============================================================" << std::endl;
@ -203,21 +169,7 @@ int main(int argc, char **argv)
setCheckerboard(phi, phi_o); setCheckerboard(phi, phi_o);
err = phi - chi; err = phi - chi;
std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl; std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl;
assert(fabs(norm2(err)) < tolerance);
Dwc_compact.Mooee(chi_e, src_e);
Dwc_compact.MooeeInv(src_e, phi_e);
Dwc_compact.Mooee(chi_o, src_o);
Dwc_compact.MooeeInv(src_o, phi_o);
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
err = phi - chi;
std::cout << GridLogMessage << "norm diff compact " << norm2(err) << std::endl;
assert(fabs(norm2(err)) < tolerance);
std::cout << GridLogMessage << "==============================================================" << std::endl; std::cout << GridLogMessage << "==============================================================" << std::endl;
std::cout << GridLogMessage << "= Test MeeDag MeeInvDag = 1 (if csw!=0) " << std::endl; std::cout << GridLogMessage << "= Test MeeDag MeeInvDag = 1 (if csw!=0) " << std::endl;
@ -236,21 +188,7 @@ int main(int argc, char **argv)
setCheckerboard(phi, phi_o); setCheckerboard(phi, phi_o);
err = phi - chi; err = phi - chi;
std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl; std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl;
assert(fabs(norm2(err)) < tolerance);
Dwc_compact.MooeeDag(chi_e, src_e);
Dwc_compact.MooeeInvDag(src_e, phi_e);
Dwc_compact.MooeeDag(chi_o, src_o);
Dwc_compact.MooeeInvDag(src_o, phi_o);
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
err = phi - chi;
std::cout << GridLogMessage << "norm diff compact " << norm2(err) << std::endl;
assert(fabs(norm2(err)) < tolerance);
std::cout << GridLogMessage << "==============================================================" << std::endl; std::cout << GridLogMessage << "==============================================================" << std::endl;
std::cout << GridLogMessage << "= Test MeeInv MeeDag = 1 (if csw!=0) " << std::endl; std::cout << GridLogMessage << "= Test MeeInv MeeDag = 1 (if csw!=0) " << std::endl;
@ -269,21 +207,7 @@ int main(int argc, char **argv)
setCheckerboard(phi, phi_o); setCheckerboard(phi, phi_o);
err = phi - chi; err = phi - chi;
std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl; std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl;
assert(fabs(norm2(err)) < tolerance);
Dwc_compact.MooeeDag(chi_e, src_e);
Dwc_compact.MooeeInv(src_e, phi_e);
Dwc_compact.MooeeDag(chi_o, src_o);
Dwc_compact.MooeeInv(src_o, phi_o);
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
err = phi - chi;
std::cout << GridLogMessage << "norm diff compact " << norm2(err) << std::endl;
assert(fabs(norm2(err)) < tolerance);
std::cout << GridLogMessage << "================================================================" << std::endl; std::cout << GridLogMessage << "================================================================" << std::endl;
std::cout << GridLogMessage << "= Testing gauge covariance Clover term with EO preconditioning " << std::endl; std::cout << GridLogMessage << "= Testing gauge covariance Clover term with EO preconditioning " << std::endl;
@ -325,7 +249,7 @@ int main(int argc, char **argv)
///////////////// /////////////////
WilsonCloverFermionR Dwc_prime(U_prime, Grid, RBGrid, mass, csw_r, csw_t, anis, params); WilsonCloverFermionR Dwc_prime(U_prime, Grid, RBGrid, mass, csw_r, csw_t, anis, params);
CompactWilsonCloverFermionR Dwc_compact_prime(U_prime, Grid, RBGrid, mass, csw_r, csw_t, 1.0, anis, params); Dwc_prime.ImportGauge(U_prime);
tmp = Omega * src; tmp = Omega * src;
pickCheckerboard(Even, src_e, tmp); pickCheckerboard(Even, src_e, tmp);
@ -338,37 +262,7 @@ int main(int argc, char **argv)
setCheckerboard(phi, phi_o); setCheckerboard(phi, phi_o);
err = chi - adj(Omega) * phi; err = chi - adj(Omega) * phi;
std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl; std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl;
assert(fabs(norm2(err)) < tolerance);
chi = Zero();
phi = Zero();
tmp = Zero();
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd, chi_o, chi);
pickCheckerboard(Even, phi_e, phi);
pickCheckerboard(Odd, phi_o, phi);
Dwc_compact.Mooee(src_e, chi_e);
Dwc_compact.Mooee(src_o, chi_o);
setCheckerboard(chi, chi_e);
setCheckerboard(chi, chi_o);
setCheckerboard(src, src_e);
setCheckerboard(src, src_o);
tmp = Omega * src;
pickCheckerboard(Even, src_e, tmp);
pickCheckerboard(Odd, src_o, tmp);
Dwc_compact_prime.Mooee(src_e, phi_e);
Dwc_compact_prime.Mooee(src_o, phi_o);
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
err = chi - adj(Omega) * phi;
std::cout << GridLogMessage << "norm diff compact " << norm2(err) << std::endl;
assert(fabs(norm2(err)) < tolerance);
std::cout << GridLogMessage << "=================================================================" << std::endl; std::cout << GridLogMessage << "=================================================================" << std::endl;
std::cout << GridLogMessage << "= Testing gauge covariance Clover term w/o EO preconditioning " << std::endl; std::cout << GridLogMessage << "= Testing gauge covariance Clover term w/o EO preconditioning " << std::endl;
@ -378,6 +272,7 @@ int main(int argc, char **argv)
phi = Zero(); phi = Zero();
WilsonFermionR Dw(Umu, Grid, RBGrid, mass, params); WilsonFermionR Dw(Umu, Grid, RBGrid, mass, params);
Dw.ImportGauge(Umu);
Dw.M(src, result); Dw.M(src, result);
Dwc.M(src, chi); Dwc.M(src, chi);
@ -385,24 +280,13 @@ int main(int argc, char **argv)
Dwc_prime.M(Omega * src, phi); Dwc_prime.M(Omega * src, phi);
WilsonFermionR Dw_prime(U_prime, Grid, RBGrid, mass, params); WilsonFermionR Dw_prime(U_prime, Grid, RBGrid, mass, params);
Dw_prime.ImportGauge(U_prime);
Dw_prime.M(Omega * src, result2); Dw_prime.M(Omega * src, result2);
err = result - adj(Omega) * result2;
std::cout << GridLogMessage << "norm diff Wilson " << norm2(err) << std::endl;
assert(fabs(norm2(err)) < tolerance);
err = chi - adj(Omega) * phi; err = chi - adj(Omega) * phi;
std::cout << GridLogMessage << "norm diff WilsonClover " << norm2(err) << std::endl; err2 = result - adj(Omega) * result2;
assert(fabs(norm2(err)) < tolerance); std::cout << GridLogMessage << "norm diff Wilson " << norm2(err) << std::endl;
std::cout << GridLogMessage << "norm diff WilsonClover " << norm2(err2) << std::endl;
chi = Zero();
phi = Zero();
Dwc_compact.M(src, chi);
Dwc_compact_prime.M(Omega * src, phi);
err = chi - adj(Omega) * phi;
std::cout << GridLogMessage << "norm diff CompactWilsonClover " << norm2(err) << std::endl;
assert(fabs(norm2(err)) < tolerance);
std::cout << GridLogMessage << "==========================================================" << std::endl; std::cout << GridLogMessage << "==========================================================" << std::endl;
std::cout << GridLogMessage << "= Testing Mooee(csw=0) Clover to reproduce Mooee Wilson " << std::endl; std::cout << GridLogMessage << "= Testing Mooee(csw=0) Clover to reproduce Mooee Wilson " << std::endl;
@ -412,6 +296,7 @@ int main(int argc, char **argv)
phi = Zero(); phi = Zero();
err = Zero(); err = Zero();
WilsonCloverFermionR Dwc_csw0(Umu, Grid, RBGrid, mass, 0.0, 0.0, anis, params); // <-- Notice: csw=0 WilsonCloverFermionR Dwc_csw0(Umu, Grid, RBGrid, mass, 0.0, 0.0, anis, params); // <-- Notice: csw=0
Dwc_csw0.ImportGauge(Umu);
pickCheckerboard(Even, phi_e, phi); pickCheckerboard(Even, phi_e, phi);
pickCheckerboard(Odd, phi_o, phi); pickCheckerboard(Odd, phi_o, phi);
@ -431,34 +316,7 @@ int main(int argc, char **argv)
setCheckerboard(src, src_o); setCheckerboard(src, src_o);
err = chi - phi; err = chi - phi;
std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl; std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl;
assert(fabs(norm2(err)) < tolerance);
chi = Zero();
phi = Zero();
err = Zero();
CompactWilsonCloverFermionR Dwc_compact_csw0(Umu, Grid, RBGrid, mass, 0.0, 0.0, 1.0, anis, params); // <-- Notice: csw=0
pickCheckerboard(Even, phi_e, phi);
pickCheckerboard(Odd, phi_o, phi);
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd, chi_o, chi);
Dw.Mooee(src_e, chi_e);
Dw.Mooee(src_o, chi_o);
Dwc_compact_csw0.Mooee(src_e, phi_e);
Dwc_compact_csw0.Mooee(src_o, phi_o);
setCheckerboard(chi, chi_e);
setCheckerboard(chi, chi_o);
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
setCheckerboard(src, src_e);
setCheckerboard(src, src_o);
err = chi - phi;
std::cout << GridLogMessage << "norm diff compact " << norm2(err) << std::endl;
assert(fabs(norm2(err)) < tolerance);
std::cout << GridLogMessage << "==========================================================" << std::endl; std::cout << GridLogMessage << "==========================================================" << std::endl;
std::cout << GridLogMessage << "= Testing EO operator is equal to the unprec " << std::endl; std::cout << GridLogMessage << "= Testing EO operator is equal to the unprec " << std::endl;
@ -490,41 +348,9 @@ int main(int argc, char **argv)
setCheckerboard(phi, phi_o); setCheckerboard(phi, phi_o);
err = ref - phi; err = ref - phi;
std::cout << GridLogMessage << "ref (unpreconditioned operator) diff : " << norm2(ref) << std::endl; std::cout << GridLogMessage << "ref (unpreconditioned operator) diff :" << norm2(ref) << std::endl;
std::cout << GridLogMessage << "phi (EO decomposition) diff : " << norm2(phi) << std::endl; std::cout << GridLogMessage << "phi (EO decomposition) diff :" << norm2(phi) << std::endl;
std::cout << GridLogMessage << "norm diff : " << norm2(err) << std::endl; std::cout << GridLogMessage << "norm diff :" << norm2(err) << std::endl;
assert(fabs(norm2(err)) < tolerance);
chi = Zero();
phi = Zero();
err = Zero();
pickCheckerboard(Even, phi_e, phi);
pickCheckerboard(Odd, phi_o, phi);
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd, chi_o, chi);
// M phi = (Mooee src_e + Meooe src_o , Meooe src_e + Mooee src_o)
Dwc_compact.M(src, ref); // Reference result from the unpreconditioned operator
// EO matrix
Dwc_compact.Mooee(src_e, chi_e);
Dwc_compact.Mooee(src_o, chi_o);
Dwc_compact.Meooe(src_o, phi_e);
Dwc_compact.Meooe(src_e, phi_o);
phi_o += chi_o;
phi_e += chi_e;
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
err = ref - phi;
std::cout << GridLogMessage << "ref (unpreconditioned operator) diff compact : " << norm2(ref) << std::endl;
std::cout << GridLogMessage << "phi (EO decomposition) diff compact : " << norm2(phi) << std::endl;
std::cout << GridLogMessage << "norm diff compact : " << norm2(err) << std::endl;
assert(fabs(norm2(err)) < tolerance);
Grid_finalize(); Grid_finalize();
} }

View File

@ -1,253 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_cayley_cg.cc
Copyright (C) 2022
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Fabian Joswig <fabian.joswig@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
template<class What>
void TestConserved(What & Dw,
LatticeGaugeField &Umu,
GridCartesian * UGrid, GridRedBlackCartesian * UrbGrid,
GridParallelRNG *RNG4);
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT,
Gamma::Algebra::Gamma5
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
int threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG4(UGrid);
std::vector<int> seeds4({1,2,3,4}); RNG4.SeedFixedIntegers(seeds4);
LatticeGaugeField Umu(UGrid);
if( argc > 1 && argv[1][0] != '-' )
{
std::cout<<GridLogMessage <<"Loading configuration from "<<argv[1]<<std::endl;
FieldMetaData header;
NerscIO::readConfiguration(Umu, header, argv[1]);
}
else
{
std::cout<<GridLogMessage <<"Using hot configuration"<<std::endl;
SU<Nc>::HotConfiguration(RNG4,Umu);
}
typename WilsonCloverFermionR::ImplParams params;
WilsonAnisotropyCoefficients anis;
RealD mass = 0.1;
RealD csw_r = 1.0;
RealD csw_t = 1.0;
std::cout<<GridLogMessage <<"=================================="<<std::endl;
std::cout<<GridLogMessage <<"WilsonFermion test"<<std::endl;
std::cout<<GridLogMessage <<"=================================="<<std::endl;
WilsonFermionR Dw(Umu,*UGrid,*UrbGrid,mass,params);
TestConserved<WilsonFermionR>(Dw,Umu,UGrid,UrbGrid,&RNG4);
std::cout<<GridLogMessage <<"=================================="<<std::endl;
std::cout<<GridLogMessage <<"WilsonCloverFermion test"<<std::endl;
std::cout<<GridLogMessage <<"=================================="<<std::endl;
WilsonCloverFermionR Dwc(Umu, *UGrid, *UrbGrid, mass, csw_r, csw_t, anis, params);
TestConserved<WilsonCloverFermionR>(Dwc,Umu,UGrid,UrbGrid,&RNG4);
std::cout<<GridLogMessage <<"=================================="<<std::endl;
std::cout<<GridLogMessage <<"CompactWilsonCloverFermion test"<<std::endl;
std::cout<<GridLogMessage <<"=================================="<<std::endl;
CompactWilsonCloverFermionR Dwcc(Umu, *UGrid, *UrbGrid, mass, csw_r, csw_t, 1.0, anis, params);
TestConserved<CompactWilsonCloverFermionR>(Dwcc,Umu,UGrid,UrbGrid,&RNG4);
std::cout<<GridLogMessage <<"=================================="<<std::endl;
std::cout<<GridLogMessage <<"WilsonExpCloverFermion test"<<std::endl;
std::cout<<GridLogMessage <<"=================================="<<std::endl;
WilsonExpCloverFermionR Dewc(Umu, *UGrid, *UrbGrid, mass, csw_r, csw_t, anis, params);
TestConserved<WilsonExpCloverFermionR>(Dewc,Umu,UGrid,UrbGrid,&RNG4);
std::cout<<GridLogMessage <<"=================================="<<std::endl;
std::cout<<GridLogMessage <<"CompactWilsonExpCloverFermion test"<<std::endl;
std::cout<<GridLogMessage <<"=================================="<<std::endl;
CompactWilsonExpCloverFermionR Dewcc(Umu, *UGrid, *UrbGrid, mass, csw_r, csw_t, 1.0, anis, params);
TestConserved<CompactWilsonExpCloverFermionR>(Dewcc,Umu,UGrid,UrbGrid,&RNG4);
Grid_finalize();
}
template<class Action>
void TestConserved(Action & Dw,
LatticeGaugeField &Umu,
GridCartesian * UGrid, GridRedBlackCartesian * UrbGrid,
GridParallelRNG *RNG4)
{
LatticePropagator phys_src(UGrid);
LatticePropagator seqsrc(UGrid);
LatticePropagator prop4(UGrid);
LatticePropagator Vector_mu(UGrid);
LatticeComplex SV (UGrid);
LatticeComplex VV (UGrid);
LatticePropagator seqprop(UGrid);
SpinColourMatrix kronecker; kronecker=1.0;
Coordinate coor({0,0,0,0});
phys_src=Zero();
pokeSite(kronecker,phys_src,coor);
ConjugateGradient<LatticeFermion> CG(1.0e-16,100000);
SchurRedBlackDiagTwoSolve<LatticeFermion> schur(CG);
ZeroGuesser<LatticeFermion> zpg;
for(int s=0;s<Nd;s++){
for(int c=0;c<Nc;c++){
LatticeFermion src4 (UGrid);
PropToFerm<Action>(src4,phys_src,s,c);
LatticeFermion result4(UGrid); result4=Zero();
schur(Dw,src4,result4,zpg);
std::cout<<GridLogMessage<<"spin "<<s<<" color "<<c<<" norm2(sourc4d) "<<norm2(src4)
<<" norm2(result4d) "<<norm2(result4)<<std::endl;
FermToProp<Action>(prop4,result4,s,c);
}
}
auto curr = Current::Vector;
const int mu_J=0;
const int t_J=0;
LatticeComplex ph (UGrid); ph=1.0;
Dw.SeqConservedCurrent(prop4,
seqsrc,
phys_src,
curr,
mu_J,
t_J,
t_J,// whole lattice
ph);
for(int s=0;s<Nd;s++){
for(int c=0;c<Nc;c++){
LatticeFermion src4 (UGrid);
PropToFerm<Action>(src4,seqsrc,s,c);
LatticeFermion result4(UGrid); result4=Zero();
schur(Dw,src4,result4,zpg);
FermToProp<Action>(seqprop,result4,s,c);
}
}
Gamma g5(Gamma::Algebra::Gamma5);
Gamma gT(Gamma::Algebra::GammaT);
std::vector<TComplex> sumSV;
std::vector<TComplex> sumVV;
Dw.ContractConservedCurrent(prop4,prop4,Vector_mu,phys_src,Current::Vector,Tdir);
SV = trace(Vector_mu); // Scalar-Vector conserved current
VV = trace(gT*Vector_mu); // (local) Vector-Vector conserved current
// Spatial sum
sliceSum(SV,sumSV,Tdir);
sliceSum(VV,sumVV,Tdir);
const int Nt{static_cast<int>(sumSV.size())};
std::cout<<GridLogMessage<<"Vector Ward identity by timeslice (~ 0)"<<std::endl;
for(int t=0;t<Nt;t++){
std::cout<<GridLogMessage <<" t "<<t<<" SV "<<real(TensorRemove(sumSV[t]))<<" VV "<<real(TensorRemove(sumVV[t]))<<std::endl;
assert(abs(real(TensorRemove(sumSV[t]))) < 1e-10);
assert(abs(real(TensorRemove(sumVV[t]))) < 1e-2);
}
///////////////////////////////
// 3pt vs 2pt check
///////////////////////////////
{
Gamma::Algebra gA = Gamma::Algebra::Identity;
Gamma g(gA);
LatticePropagator cur(UGrid);
LatticePropagator tmp(UGrid);
LatticeComplex c(UGrid);
SpinColourMatrix qSite;
peekSite(qSite, seqprop, coor);
Complex test_S, test_V, check_S, check_V;
std::vector<TComplex> check_buf;
test_S = trace(qSite*g);
test_V = trace(qSite*g*Gamma::gmu[mu_J]);
Dw.ContractConservedCurrent(prop4,prop4,cur,phys_src,curr,mu_J);
c = trace(cur*g);
sliceSum(c, check_buf, Tp);
check_S = TensorRemove(check_buf[t_J]);
auto gmu=Gamma::gmu[mu_J];
c = trace(cur*g*gmu);
sliceSum(c, check_buf, Tp);
check_V = TensorRemove(check_buf[t_J]);
std::cout<<GridLogMessage << std::setprecision(14)<<"Test S = " << abs(test_S) << std::endl;
std::cout<<GridLogMessage << "Test V = " << abs(test_V) << std::endl;
std::cout<<GridLogMessage << "Check S = " << abs(check_S) << std::endl;
std::cout<<GridLogMessage << "Check V = " << abs(check_V) << std::endl;
// Check difference = 0
check_S = check_S - test_S;
check_V = check_V - test_V;
std::cout<<GridLogMessage << "Consistency check for sequential conserved " <<std::endl;
std::cout<<GridLogMessage << "Diff S = " << abs(check_S) << std::endl;
assert(abs(check_S) < 1e-8);
std::cout<<GridLogMessage << "Diff V = " << abs(check_V) << std::endl;
assert(abs(check_V) < 1e-8);
}
}

View File

@ -1,530 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/core/Test_wilson_exp_clover.cc
Copyright (C) 2022
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Fabian Joswig <fabian.joswig@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
int main(int argc, char **argv)
{
Grid_init(&argc, &argv);
auto latt_size = GridDefaultLatt();
auto simd_layout = GridDefaultSimd(Nd, vComplex::Nsimd());
auto mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size, simd_layout, mpi_layout);
GridRedBlackCartesian RBGrid(&Grid);
int threads = GridThread::GetThreads();
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
std::cout << GridLogMessage << "Grid floating point word size is REALF" << sizeof(RealF) << std::endl;
std::cout << GridLogMessage << "Grid floating point word size is REALD" << sizeof(RealD) << std::endl;
std::cout << GridLogMessage << "Grid floating point word size is REAL" << sizeof(Real) << std::endl;
std::vector<int> seeds({1, 2, 3, 4});
GridParallelRNG pRNG(&Grid);
pRNG.SeedFixedIntegers(seeds);
// pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
typedef typename WilsonExpCloverFermionR::FermionField FermionField;
typename WilsonExpCloverFermionR::ImplParams params;
WilsonAnisotropyCoefficients anis;
FermionField src(&Grid);
random(pRNG, src);
FermionField result(&Grid);
result = Zero();
FermionField result2(&Grid);
result2 = Zero();
FermionField ref(&Grid);
ref = Zero();
FermionField tmp(&Grid);
tmp = Zero();
FermionField err(&Grid);
err = Zero();
FermionField phi(&Grid);
random(pRNG, phi);
FermionField chi(&Grid);
random(pRNG, chi);
LatticeGaugeField Umu(&Grid);
SU<Nc>::HotConfiguration(pRNG, Umu);
std::vector<LatticeColourMatrix> U(4, &Grid);
double tolerance = 1e-4;
double volume = 1;
for (int mu = 0; mu < Nd; mu++)
{
volume = volume * latt_size[mu];
}
RealD mass = 0.1;
RealD csw_r = 1.0;
RealD csw_t = 1.0;
WilsonExpCloverFermionR Dwc(Umu, Grid, RBGrid, mass, csw_r, csw_t, anis, params);
CompactWilsonExpCloverFermionR Dwc_compact(Umu, Grid, RBGrid, mass, csw_r, csw_t, 1.0, anis, params);
std::cout << GridLogMessage << "==========================================================" << std::endl;
std::cout << GridLogMessage << "= Testing that Deo + Doe = Dunprec " << std::endl;
std::cout << GridLogMessage << "==========================================================" << std::endl;
FermionField src_e(&RBGrid);
FermionField src_o(&RBGrid);
FermionField r_e(&RBGrid);
FermionField r_o(&RBGrid);
FermionField r_eo(&Grid);
pickCheckerboard(Even, src_e, src);
pickCheckerboard(Odd, src_o, src);
Dwc.Meooe(src_e, r_o);
std::cout << GridLogMessage << "Applied Meo" << std::endl;
Dwc.Meooe(src_o, r_e);
std::cout << GridLogMessage << "Applied Moe" << std::endl;
Dwc.Dhop(src, ref, DaggerNo);
setCheckerboard(r_eo, r_o);
setCheckerboard(r_eo, r_e);
err = ref - r_eo;
std::cout << GridLogMessage << "EO norm diff\t" << norm2(err) << " (" << norm2(ref) << " - " << norm2(r_eo) << ")" << std::endl;
assert(fabs(norm2(err)) < tolerance);
Dwc_compact.Meooe(src_e, r_o);
std::cout << GridLogMessage << "Applied Meo" << std::endl;
Dwc_compact.Meooe(src_o, r_e);
std::cout << GridLogMessage << "Applied Moe" << std::endl;
Dwc_compact.Dhop(src, ref, DaggerNo);
setCheckerboard(r_eo, r_o);
setCheckerboard(r_eo, r_e);
err = ref - r_eo;
std::cout << GridLogMessage << "EO norm diff compact\t" << norm2(err) << " (" << norm2(ref) << " - " << norm2(r_eo) << ")" << std::endl;
assert(fabs(norm2(err)) < tolerance);
std::cout << GridLogMessage << "==============================================================" << std::endl;
std::cout << GridLogMessage << "= Test Ddagger is the dagger of D by requiring " << std::endl;
std::cout << GridLogMessage << "= < phi | Deo | chi > * = < chi | Deo^dag| phi> " << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
FermionField chi_e(&RBGrid);
FermionField chi_o(&RBGrid);
FermionField dchi_e(&RBGrid);
FermionField dchi_o(&RBGrid);
FermionField phi_e(&RBGrid);
FermionField phi_o(&RBGrid);
FermionField dphi_e(&RBGrid);
FermionField dphi_o(&RBGrid);
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd, chi_o, chi);
pickCheckerboard(Even, phi_e, phi);
pickCheckerboard(Odd, phi_o, phi);
Dwc.Meooe(chi_e, dchi_o);
Dwc.Meooe(chi_o, dchi_e);
Dwc.MeooeDag(phi_e, dphi_o);
Dwc.MeooeDag(phi_o, dphi_e);
ComplexD pDce = innerProduct(phi_e, dchi_e);
ComplexD pDco = innerProduct(phi_o, dchi_o);
ComplexD cDpe = innerProduct(chi_e, dphi_e);
ComplexD cDpo = innerProduct(chi_o, dphi_o);
std::cout << GridLogMessage << "e " << pDce << " " << cDpe << std::endl;
std::cout << GridLogMessage << "o " << pDco << " " << cDpo << std::endl;
std::cout << GridLogMessage << "pDce - conj(cDpo) " << pDce - conj(cDpo) << std::endl;
std::cout << GridLogMessage << "pDco - conj(cDpe) " << pDco - conj(cDpe) << std::endl;
Dwc_compact.Meooe(chi_e, dchi_o);
Dwc_compact.Meooe(chi_o, dchi_e);
Dwc_compact.MeooeDag(phi_e, dphi_o);
Dwc_compact.MeooeDag(phi_o, dphi_e);
pDce = innerProduct(phi_e, dchi_e);
pDco = innerProduct(phi_o, dchi_o);
cDpe = innerProduct(chi_e, dphi_e);
cDpo = innerProduct(chi_o, dphi_o);
std::cout << GridLogMessage << "e compact " << pDce << " " << cDpe << std::endl;
std::cout << GridLogMessage << "o compact " << pDco << " " << cDpo << std::endl;
std::cout << GridLogMessage << "pDce - conj(cDpo) compact " << pDce - conj(cDpo) << std::endl;
std::cout << GridLogMessage << "pDco - conj(cDpe) compact " << pDco - conj(cDpe) << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
std::cout << GridLogMessage << "= Test MeeInv Mee = 1 (if csw!=0) " << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd, chi_o, chi);
Dwc.Mooee(chi_e, src_e);
Dwc.MooeeInv(src_e, phi_e);
Dwc.Mooee(chi_o, src_o);
Dwc.MooeeInv(src_o, phi_o);
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
err = phi - chi;
std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl;
assert(fabs(norm2(err)) < tolerance);
Dwc_compact.Mooee(chi_e, src_e);
Dwc_compact.MooeeInv(src_e, phi_e);
Dwc_compact.Mooee(chi_o, src_o);
Dwc_compact.MooeeInv(src_o, phi_o);
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
err = phi - chi;
std::cout << GridLogMessage << "norm diff compact " << norm2(err) << std::endl;
assert(fabs(norm2(err)) < tolerance);
std::cout << GridLogMessage << "==============================================================" << std::endl;
std::cout << GridLogMessage << "= Test MeeDag MeeInvDag = 1 (if csw!=0) " << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd, chi_o, chi);
Dwc.MooeeDag(chi_e, src_e);
Dwc.MooeeInvDag(src_e, phi_e);
Dwc.MooeeDag(chi_o, src_o);
Dwc.MooeeInvDag(src_o, phi_o);
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
err = phi - chi;
std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl;
assert(fabs(norm2(err)) < tolerance);
Dwc_compact.MooeeDag(chi_e, src_e);
Dwc_compact.MooeeInvDag(src_e, phi_e);
Dwc_compact.MooeeDag(chi_o, src_o);
Dwc_compact.MooeeInvDag(src_o, phi_o);
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
err = phi - chi;
std::cout << GridLogMessage << "norm diff compact " << norm2(err) << std::endl;
assert(fabs(norm2(err)) < tolerance);
std::cout << GridLogMessage << "==============================================================" << std::endl;
std::cout << GridLogMessage << "= Test MeeInv MeeDag = 1 (if csw!=0) " << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd, chi_o, chi);
Dwc.MooeeDag(chi_e, src_e);
Dwc.MooeeInv(src_e, phi_e);
Dwc.MooeeDag(chi_o, src_o);
Dwc.MooeeInv(src_o, phi_o);
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
err = phi - chi;
std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl;
assert(fabs(norm2(err)) < tolerance);
Dwc_compact.MooeeDag(chi_e, src_e);
Dwc_compact.MooeeInv(src_e, phi_e);
Dwc_compact.MooeeDag(chi_o, src_o);
Dwc_compact.MooeeInv(src_o, phi_o);
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
err = phi - chi;
std::cout << GridLogMessage << "norm diff compact " << norm2(err) << std::endl;
assert(fabs(norm2(err)) < tolerance);
std::cout << GridLogMessage << "================================================================" << std::endl;
std::cout << GridLogMessage << "= Testing gauge covariance Clover term with EO preconditioning " << std::endl;
std::cout << GridLogMessage << "================================================================" << std::endl;
chi = Zero();
phi = Zero();
tmp = Zero();
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd, chi_o, chi);
pickCheckerboard(Even, phi_e, phi);
pickCheckerboard(Odd, phi_o, phi);
Dwc.Mooee(src_e, chi_e);
Dwc.Mooee(src_o, chi_o);
setCheckerboard(chi, chi_e);
setCheckerboard(chi, chi_o);
setCheckerboard(src, src_e);
setCheckerboard(src, src_o);
////////////////////// Gauge Transformation
std::vector<int> seeds2({5, 6, 7, 8});
GridParallelRNG pRNG2(&Grid);
pRNG2.SeedFixedIntegers(seeds2);
LatticeColourMatrix Omega(&Grid);
LatticeColourMatrix ShiftedOmega(&Grid);
LatticeGaugeField U_prime(&Grid);
U_prime = Zero();
LatticeColourMatrix U_prime_mu(&Grid);
U_prime_mu = Zero();
SU<Nc>::LieRandomize(pRNG2, Omega, 1.0);
for (int mu = 0; mu < Nd; mu++)
{
U[mu] = peekLorentz(Umu, mu);
ShiftedOmega = Cshift(Omega, mu, 1);
U_prime_mu = Omega * U[mu] * adj(ShiftedOmega);
pokeLorentz(U_prime, U_prime_mu, mu);
}
/////////////////
WilsonExpCloverFermionR Dwc_prime(U_prime, Grid, RBGrid, mass, csw_r, csw_t, anis, params);
CompactWilsonExpCloverFermionR Dwc_compact_prime(U_prime, Grid, RBGrid, mass, csw_r, csw_t, 1.0, anis, params);
tmp = Omega * src;
pickCheckerboard(Even, src_e, tmp);
pickCheckerboard(Odd, src_o, tmp);
Dwc_prime.Mooee(src_e, phi_e);
Dwc_prime.Mooee(src_o, phi_o);
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
err = chi - adj(Omega) * phi;
std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl;
assert(fabs(norm2(err)) < tolerance);
chi = Zero();
phi = Zero();
tmp = Zero();
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd, chi_o, chi);
pickCheckerboard(Even, phi_e, phi);
pickCheckerboard(Odd, phi_o, phi);
Dwc_compact.Mooee(src_e, chi_e);
Dwc_compact.Mooee(src_o, chi_o);
setCheckerboard(chi, chi_e);
setCheckerboard(chi, chi_o);
setCheckerboard(src, src_e);
setCheckerboard(src, src_o);
tmp = Omega * src;
pickCheckerboard(Even, src_e, tmp);
pickCheckerboard(Odd, src_o, tmp);
Dwc_compact_prime.Mooee(src_e, phi_e);
Dwc_compact_prime.Mooee(src_o, phi_o);
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
err = chi - adj(Omega) * phi;
std::cout << GridLogMessage << "norm diff compact " << norm2(err) << std::endl;
assert(fabs(norm2(err)) < tolerance);
std::cout << GridLogMessage << "=================================================================" << std::endl;
std::cout << GridLogMessage << "= Testing gauge covariance Clover term w/o EO preconditioning " << std::endl;
std::cout << GridLogMessage << "================================================================" << std::endl;
chi = Zero();
phi = Zero();
WilsonFermionR Dw(Umu, Grid, RBGrid, mass, params);
Dw.M(src, result);
Dwc.M(src, chi);
Dwc_prime.M(Omega * src, phi);
WilsonFermionR Dw_prime(U_prime, Grid, RBGrid, mass, params);
Dw_prime.M(Omega * src, result2);
err = result - adj(Omega) * result2;
std::cout << GridLogMessage << "norm diff Wilson " << norm2(err) << std::endl;
assert(fabs(norm2(err)) < tolerance);
err = chi - adj(Omega) * phi;
std::cout << GridLogMessage << "norm diff WilsonExpClover " << norm2(err) << std::endl;
assert(fabs(norm2(err)) < tolerance);
chi = Zero();
phi = Zero();
Dwc_compact.M(src, chi);
Dwc_compact_prime.M(Omega * src, phi);
err = chi - adj(Omega) * phi;
std::cout << GridLogMessage << "norm diff CompactWilsonExpClover " << norm2(err) << std::endl;
assert(fabs(norm2(err)) < tolerance);
std::cout << GridLogMessage << "==========================================================" << std::endl;
std::cout << GridLogMessage << "= Testing Mooee(csw=0) Clover to reproduce Mooee Wilson " << std::endl;
std::cout << GridLogMessage << "==========================================================" << std::endl;
chi = Zero();
phi = Zero();
err = Zero();
WilsonExpCloverFermionR Dwc_csw0(Umu, Grid, RBGrid, mass, 0.0, 0.0, anis, params); // <-- Notice: csw=0
pickCheckerboard(Even, phi_e, phi);
pickCheckerboard(Odd, phi_o, phi);
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd, chi_o, chi);
Dw.Mooee(src_e, chi_e);
Dw.Mooee(src_o, chi_o);
Dwc_csw0.Mooee(src_e, phi_e);
Dwc_csw0.Mooee(src_o, phi_o);
setCheckerboard(chi, chi_e);
setCheckerboard(chi, chi_o);
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
setCheckerboard(src, src_e);
setCheckerboard(src, src_o);
err = chi - phi;
std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl;
assert(fabs(norm2(err)) < tolerance);
chi = Zero();
phi = Zero();
err = Zero();
CompactWilsonExpCloverFermionR Dwc_compact_csw0(Umu, Grid, RBGrid, mass, 0.0, 0.0, 1.0, anis, params); // <-- Notice: csw=0
pickCheckerboard(Even, phi_e, phi);
pickCheckerboard(Odd, phi_o, phi);
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd, chi_o, chi);
Dw.Mooee(src_e, chi_e);
Dw.Mooee(src_o, chi_o);
Dwc_compact_csw0.Mooee(src_e, phi_e);
Dwc_compact_csw0.Mooee(src_o, phi_o);
setCheckerboard(chi, chi_e);
setCheckerboard(chi, chi_o);
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
setCheckerboard(src, src_e);
setCheckerboard(src, src_o);
err = chi - phi;
std::cout << GridLogMessage << "norm diff compact " << norm2(err) << std::endl;
assert(fabs(norm2(err)) < tolerance);
std::cout << GridLogMessage << "==========================================================" << std::endl;
std::cout << GridLogMessage << "= Testing EO operator is equal to the unprec " << std::endl;
std::cout << GridLogMessage << "==========================================================" << std::endl;
chi = Zero();
phi = Zero();
err = Zero();
pickCheckerboard(Even, phi_e, phi);
pickCheckerboard(Odd, phi_o, phi);
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd, chi_o, chi);
// M phi = (Mooee src_e + Meooe src_o , Meooe src_e + Mooee src_o)
Dwc.M(src, ref); // Reference result from the unpreconditioned operator
// EO matrix
Dwc.Mooee(src_e, chi_e);
Dwc.Mooee(src_o, chi_o);
Dwc.Meooe(src_o, phi_e);
Dwc.Meooe(src_e, phi_o);
phi_o += chi_o;
phi_e += chi_e;
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
err = ref - phi;
std::cout << GridLogMessage << "ref (unpreconditioned operator) diff : " << norm2(ref) << std::endl;
std::cout << GridLogMessage << "phi (EO decomposition) diff : " << norm2(phi) << std::endl;
std::cout << GridLogMessage << "norm diff : " << norm2(err) << std::endl;
assert(fabs(norm2(err)) < tolerance);
chi = Zero();
phi = Zero();
err = Zero();
pickCheckerboard(Even, phi_e, phi);
pickCheckerboard(Odd, phi_o, phi);
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd, chi_o, chi);
// M phi = (Mooee src_e + Meooe src_o , Meooe src_e + Mooee src_o)
Dwc_compact.M(src, ref); // Reference result from the unpreconditioned operator
// EO matrix
Dwc_compact.Mooee(src_e, chi_e);
Dwc_compact.Mooee(src_o, chi_o);
Dwc_compact.Meooe(src_o, phi_e);
Dwc_compact.Meooe(src_e, phi_o);
phi_o += chi_o;
phi_e += chi_e;
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
err = ref - phi;
std::cout << GridLogMessage << "ref (unpreconditioned operator) diff compact : " << norm2(ref) << std::endl;
std::cout << GridLogMessage << "phi (EO decomposition) diff compact : " << norm2(phi) << std::endl;
std::cout << GridLogMessage << "norm diff compact : " << norm2(err) << std::endl;
assert(fabs(norm2(err)) < tolerance);
Grid_finalize();
}

View File

@ -132,8 +132,8 @@ int main(int argc, char **argv) {
// Checkpointer definition // Checkpointer definition
CheckpointerParameters CPparams(Reader); CheckpointerParameters CPparams(Reader);
TheHMC.Resources.LoadBinaryCheckpointer(CPparams); //TheHMC.Resources.LoadBinaryCheckpointer(CPparams);
//TheHMC.Resources.LoadScidacCheckpointer(CPparams, SPar); this breaks for compilation without lime TheHMC.Resources.LoadScidacCheckpointer(CPparams, SPar);
RNGModuleParameters RNGpar(Reader); RNGModuleParameters RNGpar(Reader);
TheHMC.Resources.SetRNGSeeds(RNGpar); TheHMC.Resources.SetRNGSeeds(RNGpar);

View File

@ -74,10 +74,10 @@ int main(int argc, char **argv) {
// Checkpointer definition // Checkpointer definition
CheckpointerParameters CPparams(Reader); CheckpointerParameters CPparams(Reader);
TheHMC.Resources.LoadNerscCheckpointer(CPparams); //TheHMC.Resources.LoadNerscCheckpointer(CPparams);
// Store metadata in the Scidac checkpointer - obviously breaks without LIME // Store metadata in the Scidac checkpointer
//TheHMC.Resources.LoadScidacCheckpointer(CPparams, WilsonPar); TheHMC.Resources.LoadScidacCheckpointer(CPparams, WilsonPar);
RNGModuleParameters RNGpar(Reader); RNGModuleParameters RNGpar(Reader);
TheHMC.Resources.SetRNGSeeds(RNGpar); TheHMC.Resources.SetRNGSeeds(RNGpar);

View File

@ -37,8 +37,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
using namespace std; using namespace std;
using namespace Grid; using namespace Grid;
#ifdef HAVE_LIME
template<class Fobj,class CComplex,int nbasis> template<class Fobj,class CComplex,int nbasis>
class LocalCoherenceLanczosScidac : public LocalCoherenceLanczos<Fobj,CComplex,nbasis> class LocalCoherenceLanczosScidac : public LocalCoherenceLanczos<Fobj,CComplex,nbasis>
{ {
@ -251,11 +249,3 @@ int main (int argc, char ** argv) {
Grid_finalize(); Grid_finalize();
} }
#else
int main( void )
{
return 0 ;
}
#endif // HAVE_LIME_H

View File

@ -36,8 +36,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
using namespace std; using namespace std;
using namespace Grid; using namespace Grid;
;
#ifdef HAVE_LIME
template<class Fobj,class CComplex,int nbasis> template<class Fobj,class CComplex,int nbasis>
class LocalCoherenceLanczosScidac : public LocalCoherenceLanczos<Fobj,CComplex,nbasis> class LocalCoherenceLanczosScidac : public LocalCoherenceLanczos<Fobj,CComplex,nbasis>
@ -251,11 +250,3 @@ int main (int argc, char ** argv) {
Grid_finalize(); Grid_finalize();
} }
#else
int main( void )
{
return 0 ;
}
#endif

View File

@ -93,16 +93,8 @@ int main(int argc, char** argv) {
// Setup of Dirac Matrix and Operator // // Setup of Dirac Matrix and Operator //
///////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////
LatticeGaugeField Umu(Grid_f); LatticeGaugeField Umu(Grid_f); SU3::HotConfiguration(pRNG_f, Umu);
#if (Nc==2)
SU2::HotConfiguration(pRNG_f, Umu);
#elif (defined Nc==3)
SU3::HotConfiguration(pRNG_f, Umu);
#elif (defined Nc==4)
SU4::HotConfiguration(pRNG_f, Umu);
#elif (defined Nc==5)
SU5::HotConfiguration(pRNG_f, Umu);
#endif
RealD checkTolerance = (getPrecision<LatticeFermion>::value == 1) ? 1e-7 : 1e-15; RealD checkTolerance = (getPrecision<LatticeFermion>::value == 1) ? 1e-7 : 1e-15;
RealD mass = -0.30; RealD mass = -0.30;

View File

@ -34,7 +34,6 @@ using namespace Grid;
int main (int argc, char ** argv) int main (int argc, char ** argv)
{ {
#ifdef HAVE_LIME
typedef typename DomainWallFermionR::FermionField FermionField; typedef typename DomainWallFermionR::FermionField FermionField;
typedef typename DomainWallFermionR::ComplexField ComplexField; typedef typename DomainWallFermionR::ComplexField ComplexField;
typename DomainWallFermionR::ImplParams params; typename DomainWallFermionR::ImplParams params;
@ -238,5 +237,4 @@ int main (int argc, char ** argv)
} }
Grid_finalize(); Grid_finalize();
#endif // HAVE_LIME
} }

View File

@ -71,12 +71,7 @@ int main (int argc, char ** argv)
RealD mass = -0.1; RealD mass = -0.1;
RealD csw_r = 1.0; RealD csw_r = 1.0;
RealD csw_t = 1.0; RealD csw_t = 1.0;
RealD cF = 1.0;
WilsonCloverFermionR Dw(Umu, Grid, RBGrid, mass, csw_r, csw_t); WilsonCloverFermionR Dw(Umu, Grid, RBGrid, mass, csw_r, csw_t);
CompactWilsonCloverFermionR Dw_compact(Umu, Grid, RBGrid, mass, csw_r, csw_t, 0.0);
WilsonExpCloverFermionR Dwe(Umu, Grid, RBGrid, mass, csw_r, csw_t);
CompactWilsonExpCloverFermionR Dwe_compact(Umu, Grid, RBGrid, mass, csw_r, csw_t, 0.0);
// HermitianOperator<WilsonFermion,LatticeFermion> HermOp(Dw); // HermitianOperator<WilsonFermion,LatticeFermion> HermOp(Dw);
// ConjugateGradient<LatticeFermion> CG(1.0e-8,10000); // ConjugateGradient<LatticeFermion> CG(1.0e-8,10000);
@ -85,28 +80,12 @@ int main (int argc, char ** argv)
LatticeFermion src_o(&RBGrid); LatticeFermion src_o(&RBGrid);
LatticeFermion result_o(&RBGrid); LatticeFermion result_o(&RBGrid);
pickCheckerboard(Odd,src_o,src); pickCheckerboard(Odd,src_o,src);
result_o=Zero();
ConjugateGradient<LatticeFermion> CG(1.0e-8,10000);
std::cout << GridLogMessage << "Testing Wilson Clover" << std::endl;
SchurDiagMooeeOperator<WilsonCloverFermionR,LatticeFermion> HermOpEO(Dw); SchurDiagMooeeOperator<WilsonCloverFermionR,LatticeFermion> HermOpEO(Dw);
result_o=Zero(); ConjugateGradient<LatticeFermion> CG(1.0e-8,10000);
CG(HermOpEO,src_o,result_o); CG(HermOpEO,src_o,result_o);
std::cout << GridLogMessage << "Testing Compact Wilson Clover" << std::endl;
SchurDiagMooeeOperator<CompactWilsonCloverFermionR,LatticeFermion> HermOpEO_compact(Dw_compact);
result_o=Zero();
CG(HermOpEO_compact,src_o,result_o);
std::cout << GridLogMessage << "Testing Wilson Exp Clover" << std::endl;
SchurDiagMooeeOperator<WilsonExpCloverFermionR,LatticeFermion> HermOpEO_exp(Dwe);
result_o=Zero();
CG(HermOpEO_exp,src_o,result_o);
std::cout << GridLogMessage << "Testing Compact Wilson Exp Clover" << std::endl;
SchurDiagMooeeOperator<CompactWilsonExpCloverFermionR,LatticeFermion> HermOpEO_exp_compact(Dwe_compact);
result_o=Zero();
CG(HermOpEO_exp_compact,src_o,result_o);
Grid_finalize(); Grid_finalize();
} }

View File

@ -60,36 +60,18 @@ int main (int argc, char ** argv)
LatticeGaugeField Umu(&Grid); SU<Nc>::HotConfiguration(pRNG,Umu); LatticeGaugeField Umu(&Grid); SU<Nc>::HotConfiguration(pRNG,Umu);
LatticeFermion src(&Grid); random(pRNG,src); LatticeFermion src(&Grid); random(pRNG,src);
LatticeFermion result(&Grid); LatticeFermion result(&Grid); result=Zero();
LatticeFermion resid(&Grid); LatticeFermion resid(&Grid);
ConjugateGradient<LatticeFermion> CG(1.0e-8,10000);
SchurRedBlackDiagMooeeSolve<LatticeFermion> SchurSolver(CG);
RealD mass = -0.1; RealD mass = -0.1;
RealD csw_r = 1.0; RealD csw_r = 1.0;
RealD csw_t = 1.0; RealD csw_t = 1.0;
RealD cF = 1.0;
std::cout << GridLogMessage << "Testing Wilson Clover" << std::endl;
WilsonCloverFermionR Dw(Umu, Grid, RBGrid, mass, csw_r, csw_t); WilsonCloverFermionR Dw(Umu, Grid, RBGrid, mass, csw_r, csw_t);
result=Zero();
ConjugateGradient<LatticeFermion> CG(1.0e-8,10000);
SchurRedBlackDiagMooeeSolve<LatticeFermion> SchurSolver(CG);
SchurSolver(Dw,src,result); SchurSolver(Dw,src,result);
std::cout << GridLogMessage << "Testing Compact Wilson Clover" << std::endl;
CompactWilsonCloverFermionR Dw_compact(Umu, Grid, RBGrid, mass, csw_r, csw_t, 0.0);
result=Zero();
SchurSolver(Dw_compact,src,result);
std::cout << GridLogMessage << "Testing Wilson Exp Clover" << std::endl;
WilsonExpCloverFermionR Dwe(Umu, Grid, RBGrid, mass, csw_r, csw_t);
result=Zero();
SchurSolver(Dwe,src,result);
std::cout << GridLogMessage << "Testing Compact Wilson Exp Clover" << std::endl;
CompactWilsonExpCloverFermionR Dwe_compact(Umu, Grid, RBGrid, mass, csw_r, csw_t, 0.0);
result=Zero();
SchurSolver(Dwe_compact,src,result);
Grid_finalize(); Grid_finalize();
} }

View File

@ -59,7 +59,7 @@ int main (int argc, char ** argv)
LatticeFermion src(&Grid); random(pRNG,src); LatticeFermion src(&Grid); random(pRNG,src);
RealD nrm = norm2(src); RealD nrm = norm2(src);
LatticeFermion result(&Grid); LatticeFermion result(&Grid); result=Zero();
LatticeGaugeField Umu(&Grid); SU<Nc>::HotConfiguration(pRNG,Umu); LatticeGaugeField Umu(&Grid); SU<Nc>::HotConfiguration(pRNG,Umu);
double volume=1; double volume=1;
@ -70,34 +70,11 @@ int main (int argc, char ** argv)
RealD mass = -0.1; RealD mass = -0.1;
RealD csw_r = 1.0; RealD csw_r = 1.0;
RealD csw_t = 1.0; RealD csw_t = 1.0;
RealD cF = 1.0;
WilsonCloverFermionR Dw(Umu, Grid, RBGrid, mass, csw_r, csw_t); WilsonCloverFermionR Dw(Umu, Grid, RBGrid, mass, csw_r, csw_t);
CompactWilsonCloverFermionR Dw_compact(Umu, Grid, RBGrid, mass, csw_r, csw_t, 0.0);
WilsonExpCloverFermionR Dwe(Umu, Grid, RBGrid, mass, csw_r, csw_t);
CompactWilsonExpCloverFermionR Dwe_compact(Umu, Grid, RBGrid, mass, csw_r, csw_t, 0.0);
MdagMLinearOperator<WilsonFermionR,LatticeFermion> HermOp(Dw);
ConjugateGradient<LatticeFermion> CG(1.0e-8,10000); ConjugateGradient<LatticeFermion> CG(1.0e-8,10000);
std::cout << GridLogMessage << "Testing Wilson Clover" << std::endl;
MdagMLinearOperator<WilsonCloverFermionR,LatticeFermion> HermOp(Dw);
result=Zero();
CG(HermOp,src,result); CG(HermOp,src,result);
std::cout << GridLogMessage << "Testing Compact Wilson Clover" << std::endl;
MdagMLinearOperator<CompactWilsonCloverFermionR,LatticeFermion> HermOp_compact(Dw_compact);
result=Zero();
CG(HermOp_compact,src,result);
std::cout << GridLogMessage << "Testing Wilson Exp Clover" << std::endl;
MdagMLinearOperator<WilsonExpCloverFermionR,LatticeFermion> HermOp_exp(Dwe);
result=Zero();
CG(HermOp_exp,src,result);
std::cout << GridLogMessage << "Testing Compact Wilson Exp Clover" << std::endl;
MdagMLinearOperator<CompactWilsonExpCloverFermionR,LatticeFermion> HermOp_exp_compact(Dwe_compact);
result=Zero();
CG(HermOp_exp_compact,src,result);
Grid_finalize(); Grid_finalize();
} }