1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-09 23:45:36 +00:00

Compare commits

...

28 Commits

Author SHA1 Message Date
Peter Boyle
ee3b3c4c56 relocate deflation support 2024-02-27 11:52:23 -05:00
Peter Boyle
462d706a63 Move to a blas directory 2024-02-27 11:51:04 -05:00
Peter Boyle
ee0d460c8e Blas based block project & deflate for multiRHS 2024-02-27 11:41:44 -05:00
Peter Boyle
cd15abe9d1 Mrhs prep 2024-02-27 11:41:13 -05:00
Peter Boyle
9f40467e24 Warning squash 2024-02-27 11:40:36 -05:00
Peter Boyle
d0b6593823 More verbose on checksum 2024-02-27 11:40:14 -05:00
Peter Boyle
79fc821d8d reorg headers 2024-02-27 11:39:37 -05:00
Peter Boyle
d7fdb9a7e6 Reorg headers 2024-02-27 11:39:06 -05:00
Peter Boyle
b74de51c18 Reorder headers 2024-02-27 11:38:52 -05:00
Peter Boyle
44b466e072 Make InsertSliceFast the default at some point in future.
Should I do this now?
2024-02-21 14:51:24 -05:00
Peter Boyle
5e5b471bb2 Put/Get and DEviceToDevice 2024-02-21 14:47:06 -05:00
Peter Boyle
9c2565f64e Working and faster version 2024-02-21 14:46:43 -05:00
Peter Boyle
e1d0a7cec3 Batched blas 2024-02-21 14:38:20 -05:00
Peter Boyle
b19ae8f465 Nbasis method for convenience 2024-02-21 14:36:19 -05:00
Peter Boyle
cdff2c8e18 Updated mrhs adef 2024-02-21 14:27:19 -05:00
Peter Boyle
eb702f581b Running on 12 rhs on 18 nodes of frontier 2024-01-22 17:44:15 -05:00
Peter Boyle
3d13fd56c5 Precompute phases, save memory in hermitian 2024-01-22 17:43:35 -05:00
Peter Boyle
6f51b49ef8 Use stderr 2024-01-22 17:41:09 -05:00
Peter Boyle
addc638856 Fast localCopyRegion, blockProjectFast 2024-01-22 17:40:38 -05:00
Peter Boyle
42ae36bc28 WOrking 2024-01-17 16:39:14 -05:00
Peter Boyle
c69f73ff9f Working 2024-01-17 16:38:46 -05:00
Peter Boyle
ca5ae8a2e6 Revert to working. 2024-01-17 16:32:05 -05:00
Peter Boyle
d967eb53de Working for first time 2024-01-17 16:31:12 -05:00
Peter Boyle
839f9f1bbe Don't log memory by default 2024-01-17 16:25:50 -05:00
Peter Boyle
b754a152c6 Flag guard correctly 2024-01-17 16:25:28 -05:00
Peter Boyle
e07cb2b9de Accelerator memory 2024-01-17 16:24:31 -05:00
Peter Boyle
a1f8bbb078 accelerator memory print 2024-01-17 16:24:09 -05:00
Peter Boyle
7909683f3b MultiRHS 2024-01-17 16:21:07 -05:00
18 changed files with 1821 additions and 417 deletions

View File

@ -59,6 +59,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#include <Grid/lattice/Lattice.h> #include <Grid/lattice/Lattice.h>
#include <Grid/cshift/Cshift.h> #include <Grid/cshift/Cshift.h>
#include <Grid/stencil/Stencil.h> #include <Grid/stencil/Stencil.h>
#include <Grid/stencil/GeneralLocalStencil.h>
#include <Grid/parallelIO/BinaryIO.h> #include <Grid/parallelIO/BinaryIO.h>
#include <Grid/algorithms/Algorithms.h> #include <Grid/algorithms/Algorithms.h>
NAMESPACE_CHECK(GridCore) NAMESPACE_CHECK(GridCore)

View File

@ -29,6 +29,9 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_ALGORITHMS_H #ifndef GRID_ALGORITHMS_H
#define GRID_ALGORITHMS_H #define GRID_ALGORITHMS_H
NAMESPACE_CHECK(blas);
#include <Grid/algorithms/blas/BatchedBlas.h>
NAMESPACE_CHECK(algorithms); NAMESPACE_CHECK(algorithms);
#include <Grid/algorithms/SparseMatrix.h> #include <Grid/algorithms/SparseMatrix.h>
#include <Grid/algorithms/LinearOperator.h> #include <Grid/algorithms/LinearOperator.h>
@ -44,7 +47,10 @@ NAMESPACE_CHECK(SparseMatrix);
#include <Grid/algorithms/approx/RemezGeneral.h> #include <Grid/algorithms/approx/RemezGeneral.h>
#include <Grid/algorithms/approx/ZMobius.h> #include <Grid/algorithms/approx/ZMobius.h>
NAMESPACE_CHECK(approx); NAMESPACE_CHECK(approx);
#include <Grid/algorithms/iterative/Deflation.h> #include <Grid/algorithms/deflation/Deflation.h>
#include <Grid/algorithms/deflation/MultiRHSBlockProject.h>
#include <Grid/algorithms/deflation/MultiRHSDeflation.h>
NAMESPACE_CHECK(deflation);
#include <Grid/algorithms/iterative/ConjugateGradient.h> #include <Grid/algorithms/iterative/ConjugateGradient.h>
NAMESPACE_CHECK(ConjGrad); NAMESPACE_CHECK(ConjGrad);
#include <Grid/algorithms/iterative/BiCGSTAB.h> #include <Grid/algorithms/iterative/BiCGSTAB.h>
@ -67,11 +73,10 @@ NAMESPACE_CHECK(BiCGSTAB);
#include <Grid/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h> #include <Grid/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h> #include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
#include <Grid/algorithms/iterative/PowerMethod.h> #include <Grid/algorithms/iterative/PowerMethod.h>
#include <Grid/algorithms/iterative/AdefGeneric.h>
NAMESPACE_CHECK(PowerMethod); NAMESPACE_CHECK(PowerMethod);
#include <Grid/algorithms/multigrid/MultiGrid.h> #include <Grid/algorithms/multigrid/MultiGrid.h>
NAMESPACE_CHECK(multigrid);
NAMESPACE_CHECK(CoarsendMatrix);
#include <Grid/algorithms/FFT.h> #include <Grid/algorithms/FFT.h>
#endif #endif

View File

@ -55,9 +55,12 @@ NAMESPACE_BEGIN(Grid);
typedef int32_t gridblasHandle_t; typedef int32_t gridblasHandle_t;
#endif #endif
enum GridBLASOperation_t { GridBLAS_OP_N, GridBLAS_OP_T, GridBLAS_OP_C } ;
class GridBLAS { class GridBLAS {
public: public:
static gridblasHandle_t gridblasHandle; static gridblasHandle_t gridblasHandle;
static int gridblasInit; static int gridblasInit;
@ -74,6 +77,7 @@ public:
#endif #endif
#ifdef GRID_SYCL #ifdef GRID_SYCL
#endif #endif
gridblasInit=1;
} }
} }
@ -108,37 +112,71 @@ public:
accelerator_barrier(); accelerator_barrier();
#endif #endif
} }
void benchmark(int nbasis, int nrhs, int coarseVol, int nstencil)
void gemmBatched(int m,int n, int k,
ComplexD alpha,
deviceVector<ComplexD*> &Amk, // pointer list to matrices
deviceVector<ComplexD*> &Bkn,
ComplexD beta,
deviceVector<ComplexD*> &Cmn)
{ {
int32_t N_A = nbasis*nbasis*coarseVol*nstencil; gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
int32_t N_B = nbasis*nrhs*coarseVol*nstencil; // One leg of stencil at a time m,n,k,
int32_t N_C = nbasis*nrhs*coarseVol*nstencil; alpha,
deviceVector<ComplexD> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(ComplexD)); Amk,
deviceVector<ComplexD> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(ComplexD)); Bkn,
deviceVector<ComplexD> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(ComplexD)); beta,
ComplexD alpha(1.0); Cmn);
ComplexD beta (1.0); }
for(int i=0;i<10;i++){ void gemmBatched(int m,int n, int k,
RealD t0 = usecond(); ComplexF alpha,
for(int s=0;s<nstencil;s++){ deviceVector<ComplexF*> &Amk, // pointer list to matrices
gemmStridedBatched(nbasis,nrhs,nbasis, deviceVector<ComplexF*> &Bkn,
alpha, ComplexF beta,
&A[0], // m x k deviceVector<ComplexF*> &Cmn)
&B[0], // k x n {
beta, gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
&C[0], // m x n m,n,k,
coarseVol); alpha,
} Amk,
synchronise(); Bkn,
RealD t1 = usecond(); beta,
RealD flops = 8.0*nbasis*nbasis*nrhs*coarseVol*nstencil; Cmn);
RealD bytes = 1.0*sizeof(ComplexD)*(nbasis*nbasis+nbasis*nrhs*3)*coarseVol*nstencil; }
std::cout << " batched Blas call "<<i<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl; void gemmBatched(int m,int n, int k,
std::cout << " batched Blas call "<<i<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl; RealD alpha,
} deviceVector<RealD*> &Amk, // pointer list to matrices
deviceVector<RealD*> &Bkn,
RealD beta,
deviceVector<RealD*> &Cmn)
{
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
m,n,k,
alpha,
Amk,
Bkn,
beta,
Cmn);
}
void gemmBatched(int m,int n, int k,
RealF alpha,
deviceVector<RealF*> &Amk, // pointer list to matrices
deviceVector<RealF*> &Bkn,
RealF beta,
deviceVector<RealF*> &Cmn)
{
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
m,n,k,
alpha,
Amk,
Bkn,
beta,
Cmn);
} }
void gemmBatched(int m,int n, int k, void gemmBatched(GridBLASOperation_t OpA,
GridBLASOperation_t OpB,
int m,int n, int k,
ComplexD alpha, ComplexD alpha,
deviceVector<ComplexD*> &Amk, // pointer list to matrices deviceVector<ComplexD*> &Amk, // pointer list to matrices
deviceVector<ComplexD*> &Bkn, deviceVector<ComplexD*> &Bkn,
@ -147,23 +185,36 @@ public:
{ {
RealD t2=usecond(); RealD t2=usecond();
int32_t batchCount = Amk.size(); int32_t batchCount = Amk.size();
// Use C-row major storage, so transpose calls assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
int lda = m; // m x k column major int lda = m; // m x k column major
int ldb = k; // k x n column major int ldb = k; // k x n column major
int ldc = m; // m x b column major int ldc = m; // m x b column major
if(OpA!=GridBLAS_OP_N)
lda = k;
if(OpB!=GridBLAS_OP_N)
ldb = n;
static deviceVector<ComplexD> alpha_p(1); static deviceVector<ComplexD> alpha_p(1);
static deviceVector<ComplexD> beta_p(1); static deviceVector<ComplexD> beta_p(1);
// can prestore the 1 and the zero on device // can prestore the 1 and the zero on device
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD)); acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD)); acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
RealD t0=usecond(); RealD t0=usecond();
// std::cout << "hipblasZgemmBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl; // std::cout << "ZgemmBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
#ifdef GRID_HIP #ifdef GRID_HIP
hipblasOperation_t hOpA;
hipblasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
auto err = hipblasZgemmBatched(gridblasHandle, auto err = hipblasZgemmBatched(gridblasHandle,
HIPBLAS_OP_N, hOpA,
HIPBLAS_OP_N, hOpB,
m,n,k, m,n,k,
(hipblasDoubleComplex *) &alpha_p[0], (hipblasDoubleComplex *) &alpha_p[0],
(hipblasDoubleComplex **)&Amk[0], lda, (hipblasDoubleComplex **)&Amk[0], lda,
@ -175,9 +226,17 @@ public:
assert(err==HIPBLAS_STATUS_SUCCESS); assert(err==HIPBLAS_STATUS_SUCCESS);
#endif #endif
#ifdef GRID_CUDA #ifdef GRID_CUDA
cublasOperation_t hOpA;
cublasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
auto err = cublasZgemmBatched(gridblasHandle, auto err = cublasZgemmBatched(gridblasHandle,
CUBLAS_OP_N, hOpA,
CUBLAS_OP_N, hOpB,
m,n,k, m,n,k,
(cuDoubleComplex *) &alpha_p[0], (cuDoubleComplex *) &alpha_p[0],
(cuDoubleComplex **)&Amk[0], lda, (cuDoubleComplex **)&Amk[0], lda,
@ -204,15 +263,18 @@ public:
} }
} }
#endif #endif
// synchronise();
RealD t1=usecond(); RealD t1=usecond();
RealD flops = 8.0*m*n*k*batchCount; RealD flops = 8.0*m*n*k*batchCount;
RealD bytes = 1.0*sizeof(ComplexD)*(m*k+k*n+m*n)*batchCount; RealD bytes = 1.0*sizeof(ComplexD)*(m*k+k*n+m*n)*batchCount;
// std::cout <<GridLogPerformance<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl; // std::cout <<GridLogMessage<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl; // std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl; // std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
} }
void gemmBatched(int m,int n, int k, void gemmBatched(GridBLASOperation_t OpA,
GridBLASOperation_t OpB,
int m,int n, int k,
ComplexF alpha, ComplexF alpha,
deviceVector<ComplexF*> &Amk, // pointer list to matrices deviceVector<ComplexF*> &Amk, // pointer list to matrices
deviceVector<ComplexF*> &Bkn, deviceVector<ComplexF*> &Bkn,
@ -221,23 +283,35 @@ public:
{ {
RealD t2=usecond(); RealD t2=usecond();
int32_t batchCount = Amk.size(); int32_t batchCount = Amk.size();
// Use C-row major storage, so transpose calls
int lda = m; // m x k column major int lda = m; // m x k column major
int ldb = k; // k x n column major int ldb = k; // k x n column major
int ldc = m; // m x b column major int ldc = m; // m x b column major
if(OpA!=GridBLAS_OP_N)
lda = k;
if(OpB!=GridBLAS_OP_N)
ldb = n;
static deviceVector<ComplexF> alpha_p(1); static deviceVector<ComplexF> alpha_p(1);
static deviceVector<ComplexF> beta_p(1); static deviceVector<ComplexF> beta_p(1);
// can prestore the 1 and the zero on device // can prestore the 1 and the zero on device
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexF)); acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexF));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexF)); acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexF));
RealD t0=usecond(); RealD t0=usecond();
// std::cout << "hipblasZgemmBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
assert(Bkn.size()==batchCount); assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount); assert(Cmn.size()==batchCount);
#ifdef GRID_HIP #ifdef GRID_HIP
hipblasOperation_t hOpA;
hipblasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
auto err = hipblasCgemmBatched(gridblasHandle, auto err = hipblasCgemmBatched(gridblasHandle,
HIPBLAS_OP_N, hOpA,
HIPBLAS_OP_N, hOpB,
m,n,k, m,n,k,
(hipblasComplex *) &alpha_p[0], (hipblasComplex *) &alpha_p[0],
(hipblasComplex **)&Amk[0], lda, (hipblasComplex **)&Amk[0], lda,
@ -245,13 +319,21 @@ public:
(hipblasComplex *) &beta_p[0], (hipblasComplex *) &beta_p[0],
(hipblasComplex **)&Cmn[0], ldc, (hipblasComplex **)&Cmn[0], ldc,
batchCount); batchCount);
// std::cout << " hipblas return code " <<(int)err<<std::endl;
assert(err==HIPBLAS_STATUS_SUCCESS); assert(err==HIPBLAS_STATUS_SUCCESS);
#endif #endif
#ifdef GRID_CUDA #ifdef GRID_CUDA
cublasOperation_t hOpA;
cublasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
auto err = cublasCgemmBatched(gridblasHandle, auto err = cublasCgemmBatched(gridblasHandle,
CUBLAS_OP_N, hOpA,
CUBLAS_OP_N, hOpB,
m,n,k, m,n,k,
(cuComplex *) &alpha_p[0], (cuComplex *) &alpha_p[0],
(cuComplex **)&Amk[0], lda, (cuComplex **)&Amk[0], lda,
@ -281,16 +363,15 @@ public:
RealD t1=usecond(); RealD t1=usecond();
RealD flops = 8.0*m*n*k*batchCount; RealD flops = 8.0*m*n*k*batchCount;
RealD bytes = 1.0*sizeof(ComplexF)*(m*k+k*n+m*n)*batchCount; RealD bytes = 1.0*sizeof(ComplexF)*(m*k+k*n+m*n)*batchCount;
// std::cout <<GridLogPerformance<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
} }
/////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////
// Single precision real GEMM // Single precision real GEMM
/////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////
void gemmBatched(int m,int n, int k, void gemmBatched(GridBLASOperation_t OpA,
GridBLASOperation_t OpB,
int m,int n, int k,
RealF alpha, RealF alpha,
deviceVector<RealF*> &Amk, // pointer list to matrices deviceVector<RealF*> &Amk, // pointer list to matrices
deviceVector<RealF*> &Bkn, deviceVector<RealF*> &Bkn,
@ -299,23 +380,35 @@ public:
{ {
RealD t2=usecond(); RealD t2=usecond();
int32_t batchCount = Amk.size(); int32_t batchCount = Amk.size();
// Use C-row major storage, so transpose calls
int lda = m; // m x k column major int lda = m; // m x k column major
int ldb = k; // k x n column major int ldb = k; // k x n column major
int ldc = m; // m x b column major int ldc = m; // m x b column major
if(OpA!=GridBLAS_OP_N)
lda = k;
if(OpB!=GridBLAS_OP_N)
ldb = n;
static deviceVector<RealF> alpha_p(1); static deviceVector<RealF> alpha_p(1);
static deviceVector<RealF> beta_p(1); static deviceVector<RealF> beta_p(1);
// can prestore the 1 and the zero on device // can prestore the 1 and the zero on device
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealF)); acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealF));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealF)); acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealF));
RealD t0=usecond(); RealD t0=usecond();
// std::cout << "hipblasZgemmBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
assert(Bkn.size()==batchCount); assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount); assert(Cmn.size()==batchCount);
#ifdef GRID_HIP #ifdef GRID_HIP
hipblasOperation_t hOpA;
hipblasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
auto err = hipblasSgemmBatched(gridblasHandle, auto err = hipblasSgemmBatched(gridblasHandle,
HIPBLAS_OP_N, hOpA,
HIPBLAS_OP_N, hOpB,
m,n,k, m,n,k,
(float *) &alpha_p[0], (float *) &alpha_p[0],
(float **)&Amk[0], lda, (float **)&Amk[0], lda,
@ -326,9 +419,17 @@ public:
assert(err==HIPBLAS_STATUS_SUCCESS); assert(err==HIPBLAS_STATUS_SUCCESS);
#endif #endif
#ifdef GRID_CUDA #ifdef GRID_CUDA
cublasOperation_t hOpA;
cublasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
auto err = cublasSgemmBatched(gridblasHandle, auto err = cublasSgemmBatched(gridblasHandle,
CUBLAS_OP_N, hOpA,
CUBLAS_OP_N, hOpB,
m,n,k, m,n,k,
(float *) &alpha_p[0], (float *) &alpha_p[0],
(float **)&Amk[0], lda, (float **)&Amk[0], lda,
@ -358,9 +459,6 @@ public:
RealD t1=usecond(); RealD t1=usecond();
RealD flops = 2.0*m*n*k*batchCount; RealD flops = 2.0*m*n*k*batchCount;
RealD bytes = 1.0*sizeof(RealF)*(m*k+k*n+m*n)*batchCount; RealD bytes = 1.0*sizeof(RealF)*(m*k+k*n+m*n)*batchCount;
// std::cout <<GridLogPerformance<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
} }
@ -368,7 +466,9 @@ public:
// Double precision real GEMM // Double precision real GEMM
/////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////
void gemmBatched(int m,int n, int k, void gemmBatched(GridBLASOperation_t OpA,
GridBLASOperation_t OpB,
int m,int n, int k,
RealD alpha, RealD alpha,
deviceVector<RealD*> &Amk, // pointer list to matrices deviceVector<RealD*> &Amk, // pointer list to matrices
deviceVector<RealD*> &Bkn, deviceVector<RealD*> &Bkn,
@ -377,20 +477,33 @@ public:
{ {
RealD t2=usecond(); RealD t2=usecond();
int32_t batchCount = Amk.size(); int32_t batchCount = Amk.size();
// Use C-row major storage, so transpose calls
int lda = m; // m x k column major int lda = m; // m x k column major
int ldb = k; // k x n column major int ldb = k; // k x n column major
int ldc = m; // m x b column major int ldc = m; // m x b column major
if(OpA!=GridBLAS_OP_N)
lda = k;
if(OpB!=GridBLAS_OP_N)
ldb = n;
static deviceVector<RealD> alpha_p(1); static deviceVector<RealD> alpha_p(1);
static deviceVector<RealD> beta_p(1); static deviceVector<RealD> beta_p(1);
// can prestore the 1 and the zero on device // can prestore the 1 and the zero on device
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealD)); acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealD));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealD)); acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealD));
RealD t0=usecond(); RealD t0=usecond();
// std::cout << "hipblasZgemmBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
assert(Bkn.size()==batchCount); assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount); assert(Cmn.size()==batchCount);
#ifdef GRID_HIP #ifdef GRID_HIP
hipblasOperation_t hOpA;
hipblasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
auto err = hipblasDgemmBatched(gridblasHandle, auto err = hipblasDgemmBatched(gridblasHandle,
HIPBLAS_OP_N, HIPBLAS_OP_N,
HIPBLAS_OP_N, HIPBLAS_OP_N,
@ -404,9 +517,17 @@ public:
assert(err==HIPBLAS_STATUS_SUCCESS); assert(err==HIPBLAS_STATUS_SUCCESS);
#endif #endif
#ifdef GRID_CUDA #ifdef GRID_CUDA
cublasOperation_t hOpA;
cublasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
auto err = cublasDgemmBatched(gridblasHandle, auto err = cublasDgemmBatched(gridblasHandle,
CUBLAS_OP_N, hOpA,
CUBLAS_OP_N, hOpB,
m,n,k, m,n,k,
(double *) &alpha_p[0], (double *) &alpha_p[0],
(double **)&Amk[0], lda, (double **)&Amk[0], lda,
@ -452,9 +573,6 @@ public:
RealD t1=usecond(); RealD t1=usecond();
RealD flops = 2.0*m*n*k*batchCount; RealD flops = 2.0*m*n*k*batchCount;
RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount; RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount;
// std::cout <<GridLogPerformance<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
} }
@ -529,6 +647,36 @@ public:
#endif #endif
} }
void benchmark(int nbasis, int nrhs, int coarseVol, int nstencil)
{
int32_t N_A = nbasis*nbasis*coarseVol*nstencil;
int32_t N_B = nbasis*nrhs*coarseVol*nstencil; // One leg of stencil at a time
int32_t N_C = nbasis*nrhs*coarseVol*nstencil;
deviceVector<ComplexD> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(ComplexD));
deviceVector<ComplexD> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(ComplexD));
deviceVector<ComplexD> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(ComplexD));
ComplexD alpha(1.0);
ComplexD beta (1.0);
for(int i=0;i<10;i++){
RealD t0 = usecond();
for(int s=0;s<nstencil;s++){
gemmStridedBatched(nbasis,nrhs,nbasis,
alpha,
&A[0], // m x k
&B[0], // k x n
beta,
&C[0], // m x n
coarseVol);
}
synchronise();
RealD t1 = usecond();
RealD flops = 8.0*nbasis*nbasis*nrhs*coarseVol*nstencil;
RealD bytes = 1.0*sizeof(ComplexD)*(nbasis*nbasis+nbasis*nrhs*3)*coarseVol*nstencil;
std::cout << " batched Blas call "<<i<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
std::cout << " batched Blas call "<<i<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
}
}

View File

@ -0,0 +1,157 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ImplicitlyRestartedLanczos.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_DEFLATION_H
#define GRID_DEFLATION_H
namespace Grid {
template<class Field>
class ZeroGuesser: public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
virtual void operator()(const Field &src, Field &guess) { guess = Zero(); };
};
template<class Field>
class DoNothingGuesser: public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
virtual void operator()(const Field &src, Field &guess) { };
};
template<class Field>
class SourceGuesser: public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
virtual void operator()(const Field &src, Field &guess) { guess = src; };
};
////////////////////////////////
// Fine grid deflation
////////////////////////////////
template<class Field>
class DeflatedGuesser: public LinearFunction<Field> {
private:
const std::vector<Field> &evec;
const std::vector<RealD> &eval;
const unsigned int N;
public:
using LinearFunction<Field>::operator();
DeflatedGuesser(const std::vector<Field> & _evec,const std::vector<RealD> & _eval)
: DeflatedGuesser(_evec, _eval, _evec.size())
{}
DeflatedGuesser(const std::vector<Field> & _evec, const std::vector<RealD> & _eval, const unsigned int _N)
: evec(_evec), eval(_eval), N(_N)
{
assert(evec.size()==eval.size());
assert(N <= evec.size());
}
virtual void operator()(const Field &src,Field &guess) {
guess = Zero();
for (int i=0;i<N;i++) {
const Field& tmp = evec[i];
axpy(guess,TensorRemove(innerProduct(tmp,src)) / eval[i],tmp,guess);
}
guess.Checkerboard() = src.Checkerboard();
}
};
template<class FineField, class CoarseField>
class LocalCoherenceDeflatedGuesser: public LinearFunction<FineField> {
private:
const std::vector<FineField> &subspace;
const std::vector<CoarseField> &evec_coarse;
const std::vector<RealD> &eval_coarse;
public:
using LinearFunction<FineField>::operator();
LocalCoherenceDeflatedGuesser(const std::vector<FineField> &_subspace,
const std::vector<CoarseField> &_evec_coarse,
const std::vector<RealD> &_eval_coarse)
: subspace(_subspace),
evec_coarse(_evec_coarse),
eval_coarse(_eval_coarse)
{
}
void operator()(const FineField &src,FineField &guess) {
int N = (int)evec_coarse.size();
CoarseField src_coarse(evec_coarse[0].Grid());
CoarseField guess_coarse(evec_coarse[0].Grid()); guess_coarse = Zero();
blockProject(src_coarse,src,subspace);
for (int i=0;i<N;i++) {
const CoarseField & tmp = evec_coarse[i];
axpy(guess_coarse,TensorRemove(innerProduct(tmp,src_coarse)) / eval_coarse[i],tmp,guess_coarse);
}
blockPromote(guess_coarse,guess,subspace);
guess.Checkerboard() = src.Checkerboard();
};
void operator()(const std::vector<FineField> &src,std::vector<FineField> &guess) {
int Nevec = (int)evec_coarse.size();
int Nsrc = (int)src.size();
// make temp variables
std::vector<CoarseField> src_coarse(Nsrc,evec_coarse[0].Grid());
std::vector<CoarseField> guess_coarse(Nsrc,evec_coarse[0].Grid());
//Preporcessing
std::cout << GridLogMessage << "Start BlockProject for loop" << std::endl;
for (int j=0;j<Nsrc;j++)
{
guess_coarse[j] = Zero();
std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl;
blockProject(src_coarse[j],src[j],subspace);
}
//deflation set up for eigen vector batchsize 1 and source batch size equal number of sources
std::cout << GridLogMessage << "Start ProjectAccum for loop" << std::endl;
for (int i=0;i<Nevec;i++)
{
std::cout << GridLogMessage << "ProjectAccum Nvec: " << i << std::endl;
const CoarseField & tmp = evec_coarse[i];
for (int j=0;j<Nsrc;j++)
{
axpy(guess_coarse[j],TensorRemove(innerProduct(tmp,src_coarse[j])) / eval_coarse[i],tmp,guess_coarse[j]);
}
}
//postprocessing
std::cout << GridLogMessage << "Start BlockPromote for loop" << std::endl;
for (int j=0;j<Nsrc;j++)
{
std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl;
blockPromote(guess_coarse[j],guess[j],subspace);
guess[j].Checkerboard() = src[j].Checkerboard();
}
};
};
}
#endif

View File

@ -0,0 +1,512 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: MultiRHSDeflation.h
Copyright (C) 2023
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
/*
MultiRHS block projection
Import basis -> nblock x nbasis x (block x internal)
Import vector of fine lattice objects -> nblock x nrhs x (block x internal)
=> coarse_(nrhs x nbasis )^block = via batched GEMM
//template<class vobj,class CComplex,int nbasis,class VLattice>
//inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
// const VLattice &fineData,
// const VLattice &Basis)
*/
template<class Field>
class MultiRHSBlockProject
{
public:
typedef typename Field::scalar_type scalar;
typedef typename Field::scalar_object scalar_object;
typedef Field Fermion;
int nbasis;
GridBase *coarse_grid;
GridBase *fine_grid;
uint64_t block_vol;
uint64_t fine_vol;
uint64_t coarse_vol;
uint64_t words;
// Row major layout "C" order:
// BLAS_V[coarse_vol][nbasis][block_vol][words]
// BLAS_F[coarse_vol][nrhs][block_vol][words]
// BLAS_C[coarse_vol][nrhs][nbasis]
/*
* in Fortran column major notation (cuBlas order)
*
* Vxb = [v1(x)][..][vn(x)] ... x coarse vol
*
* Fxr = [r1(x)][..][rm(x)] ... x coarse vol
*
* Block project:
* C_br = V^dag F x coarse vol
*
* Block promote:
* F_xr = Vxb Cbr x coarse_vol
*/
deviceVector<scalar> BLAS_V; // words * block_vol * nbasis x coarse_vol
deviceVector<scalar> BLAS_F; // nrhs x fine_vol * words -- the sources
deviceVector<scalar> BLAS_C; // nrhs x coarse_vol * nbasis -- the coarse coeffs
RealD blasNorm2(deviceVector<scalar> &blas)
{
scalar ss(0.0);
std::vector<scalar> tmp(blas.size());
acceleratorCopyFromDevice(&blas[0],&tmp[0],blas.size()*sizeof(scalar));
for(int64_t s=0;s<blas.size();s++){
ss=ss+tmp[s]*adj(tmp[s]);
}
coarse_grid->GlobalSum(ss);
return real(ss);
}
MultiRHSBlockProject(){};
~MultiRHSBlockProject(){ Deallocate(); };
void Deallocate(void)
{
nbasis=0;
coarse_grid=nullptr;
fine_grid=nullptr;
fine_vol=0;
block_vol=0;
coarse_vol=0;
words=0;
BLAS_V.resize(0);
BLAS_F.resize(0);
BLAS_C.resize(0);
}
void Allocate(int _nbasis,GridBase *_fgrid,GridBase *_cgrid)
{
nbasis=_nbasis;
fine_grid=_fgrid;
coarse_grid=_cgrid;
fine_vol = fine_grid->lSites();
coarse_vol = coarse_grid->lSites();
block_vol = fine_vol/coarse_vol;
words = sizeof(scalar_object)/sizeof(scalar);
BLAS_V.resize (fine_vol * words * nbasis );
}
void ImportFineGridVectors(std::vector <Field > &vecs, deviceVector<scalar> &blas)
{
int nvec = vecs.size();
typedef typename Field::vector_object vobj;
std::cout << " BlockProjector importing "<<nvec<< " vectors" <<std::endl;
assert(vecs[0].Grid()==fine_grid);
subdivides(coarse_grid,fine_grid); // require they map
int _ndimension = coarse_grid->_ndimension;
assert(block_vol == fine_grid->oSites() / coarse_grid->oSites());
Coordinate block_r (_ndimension);
for(int d=0 ; d<_ndimension;d++){
block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d];
}
uint64_t sz = blas.size();
acceleratorMemSet(&blas[0],0,blas.size()*sizeof(scalar));
Coordinate fine_rdimensions = fine_grid->_rdimensions;
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
int64_t bv= block_vol;
for(int v=0;v<vecs.size();v++){
// std::cout << " BlockProjector importing vector"<<v<<" "<<norm2(vecs[v])<<std::endl;
autoView( fineData , vecs[v], AcceleratorRead);
auto blasData_p = &blas[0];
auto fineData_p = &fineData[0];
int64_t osites = fine_grid->oSites();
// loop over fine sites
const int Nsimd = vobj::Nsimd();
// std::cout << "sz "<<sz<<std::endl;
// std::cout << "prod "<<Nsimd * coarse_grid->oSites() * block_vol * nvec * words<<std::endl;
assert(sz == Nsimd * coarse_grid->oSites() * block_vol * nvec * words);
uint64_t lwords= words; // local variable for copy in to GPU
accelerator_for(sf,osites,Nsimd,{
#ifdef GRID_SIMT
{
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
#else
for(int lane=0;lane<Nsimd;lane++) {
#endif
// One thread per fine site
Coordinate coor_f(_ndimension);
Coordinate coor_b(_ndimension);
Coordinate coor_c(_ndimension);
// Fine site to fine coor
Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions);
for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d];
for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d];
int sc;// coarse site
int sb;// block site
Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions);
Lexicographic::IndexFromCoor(coor_b,sb,block_r);
scalar_object data = extractLane(lane,fineData[sf]);
// BLAS layout address calculation
// words * block_vol * nbasis x coarse_vol
// coarse oSite x block vole x lanes
int64_t site = (lane*osites + sc*bv)*nvec
+ v*bv
+ sb;
// assert(site*lwords<sz);
scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords];
*ptr = data;
#ifdef GRID_SIMT
}
#else
}
#endif
});
// std::cout << " import fine Blas norm "<<blasNorm2(blas)<<std::endl;
// std::cout << " BlockProjector imported vector"<<v<<std::endl;
}
}
void ExportFineGridVectors(std::vector <Field> &vecs, deviceVector<scalar> &blas)
{
typedef typename Field::vector_object vobj;
int nvec = vecs.size();
assert(vecs[0].Grid()==fine_grid);
subdivides(coarse_grid,fine_grid); // require they map
int _ndimension = coarse_grid->_ndimension;
assert(block_vol == fine_grid->oSites() / coarse_grid->oSites());
Coordinate block_r (_ndimension);
for(int d=0 ; d<_ndimension;d++){
block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d];
}
Coordinate fine_rdimensions = fine_grid->_rdimensions;
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
// std::cout << " export fine Blas norm "<<blasNorm2(blas)<<std::endl;
int64_t bv= block_vol;
for(int v=0;v<vecs.size();v++){
autoView( fineData , vecs[v], AcceleratorWrite);
auto blasData_p = &blas[0];
auto fineData_p = &fineData[0];
int64_t osites = fine_grid->oSites();
uint64_t lwords = words;
// std::cout << " Nsimd is "<<vobj::Nsimd() << std::endl;
// std::cout << " lwords is "<<lwords << std::endl;
// std::cout << " sizeof(scalar_object) is "<<sizeof(scalar_object) << std::endl;
// loop over fine sites
accelerator_for(sf,osites,vobj::Nsimd(),{
#ifdef GRID_SIMT
{
int lane=acceleratorSIMTlane(vobj::Nsimd()); // buffer lane
#else
for(int lane=0;lane<vobj::Nsimd();lane++) {
#endif
// One thread per fine site
Coordinate coor_f(_ndimension);
Coordinate coor_b(_ndimension);
Coordinate coor_c(_ndimension);
Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions);
for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d];
for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d];
int sc;
int sb;
Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions);
Lexicographic::IndexFromCoor(coor_b,sb,block_r);
// BLAS layout address calculation
// words * block_vol * nbasis x coarse_vol
int64_t site = (lane*osites + sc*bv)*nvec
+ v*bv
+ sb;
scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords];
scalar_object data = *ptr;
insertLane(lane,fineData[sf],data);
#ifdef GRID_SIMT
}
#else
}
#endif
});
}
}
template<class vobj>
void ImportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas)
{
int nvec = vecs.size();
typedef typename vobj::scalar_object coarse_scalar_object;
std::cout << " BlockProjector importing coarse grid "<<nvec<< " vectors" <<std::endl;
assert(vecs[0].Grid()==coarse_grid);
int _ndimension = coarse_grid->_ndimension;
uint64_t sz = blas.size();
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
for(int v=0;v<vecs.size();v++){
// std::cout << " BlockProjector importing coarse vector"<<v<<" "<<norm2(vecs[v])<<std::endl;
autoView( coarseData , vecs[v], AcceleratorRead);
auto blasData_p = &blas[0];
auto coarseData_p = &coarseData[0];
int64_t osites = coarse_grid->oSites();
// loop over fine sites
const int Nsimd = vobj::Nsimd();
uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar);
assert(cwords==nbasis);
accelerator_for(sc,osites,Nsimd,{
#ifdef GRID_SIMT
{
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
#else
for(int lane=0;lane<Nsimd;lane++) {
#endif
// C_br per site
int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords;
coarse_scalar_object data = extractLane(lane,coarseData[sc]);
coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site];
*ptr = data;
#ifdef GRID_SIMT
}
#else
}
#endif
});
// std::cout << " import coarsee Blas norm "<<blasNorm2(blas)<<std::endl;
}
}
template<class vobj>
void ExportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas)
{
int nvec = vecs.size();
typedef typename vobj::scalar_object coarse_scalar_object;
std::cout << " BlockProjector importing coarse grid "<<nvec<< " vectors" <<std::endl;
assert(vecs[0].Grid()==coarse_grid);
int _ndimension = coarse_grid->_ndimension;
uint64_t sz = blas.size();
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
// std::cout << " export coarsee Blas norm "<<blasNorm2(blas)<<std::endl;
for(int v=0;v<vecs.size();v++){
// std::cout << " BlockProjector exporting coarse vector"<<v<<std::endl;
autoView( coarseData , vecs[v], AcceleratorWrite);
auto blasData_p = &blas[0];
auto coarseData_p = &coarseData[0];
int64_t osites = coarse_grid->oSites();
// loop over fine sites
const int Nsimd = vobj::Nsimd();
uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar);
assert(cwords==nbasis);
accelerator_for(sc,osites,Nsimd,{
// Wrap in a macro "FOR_ALL_LANES(lane,{ ... });
#ifdef GRID_SIMT
{
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
#else
for(int lane=0;lane<Nsimd;lane++) {
#endif
int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords;
coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site];
coarse_scalar_object data = *ptr;
insertLane(lane,coarseData[sc],data);
#ifdef GRID_SIMT
}
#else
}
#endif
});
}
}
void ImportBasis(std::vector < Field > &vecs)
{
// std::cout << " BlockProjector Import basis size "<<vecs.size()<<std::endl;
ImportFineGridVectors(vecs,BLAS_V);
}
template<class cobj>
void blockProject(std::vector<Field> &fine,std::vector< Lattice<cobj> > & coarse)
{
int nrhs=fine.size();
int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar);
assert(nbasis==_nbasis);
BLAS_F.resize (fine_vol * words * nrhs );
BLAS_C.resize (coarse_vol * nbasis * nrhs );
/////////////////////////////////////////////
// Copy in the multi-rhs sources to same data layout
/////////////////////////////////////////////
// std::cout << "BlockProject import fine"<<std::endl;
ImportFineGridVectors(fine,BLAS_F);
deviceVector<scalar *> Vd(coarse_vol);
deviceVector<scalar *> Fd(coarse_vol);
deviceVector<scalar *> Cd(coarse_vol);
// std::cout << "BlockProject pointers"<<std::endl;
for(int c=0;c<coarse_vol;c++){
// BLAS_V[coarse_vol][nbasis][block_vol][words]
// BLAS_F[coarse_vol][nrhs][block_vol][words]
// BLAS_C[coarse_vol][nrhs][nbasis]
scalar * Vh = & BLAS_V[c*nbasis*block_vol*words];
scalar * Fh = & BLAS_F[c*nrhs*block_vol*words];
scalar * Ch = & BLAS_C[c*nrhs*nbasis];
acceleratorPut(Vd[c],Vh);
acceleratorPut(Fd[c],Fh);
acceleratorPut(Cd[c],Ch);
}
GridBLAS BLAS;
// std::cout << "BlockProject BLAS"<<std::endl;
int64_t vw = block_vol * words;
/////////////////////////////////////////
// C_br = V^dag R
/////////////////////////////////////////
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
nbasis,nrhs,vw,
ComplexD(1.0),
Vd,
Fd,
ComplexD(0.0), // wipe out C
Cd);
BLAS.synchronise();
// std::cout << "BlockProject done"<<std::endl;
ExportCoarseGridVectors(coarse, BLAS_C);
// std::cout << "BlockProject done"<<std::endl;
}
template<class cobj>
void blockPromote(std::vector<Field> &fine,std::vector<Lattice<cobj> > & coarse)
{
int nrhs=fine.size();
int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar);
assert(nbasis==_nbasis);
BLAS_F.resize (fine_vol * words * nrhs );
BLAS_C.resize (coarse_vol * nbasis * nrhs );
ImportCoarseGridVectors(coarse, BLAS_C);
GridBLAS BLAS;
deviceVector<scalar *> Vd(coarse_vol);
deviceVector<scalar *> Fd(coarse_vol);
deviceVector<scalar *> Cd(coarse_vol);
for(int c=0;c<coarse_vol;c++){
// BLAS_V[coarse_vol][nbasis][block_vol][words]
// BLAS_F[coarse_vol][nrhs][block_vol][words]
// BLAS_C[coarse_vol][nrhs][nbasis]
scalar * Vh = & BLAS_V[c*nbasis*block_vol*words];
scalar * Fh = & BLAS_F[c*nrhs*block_vol*words];
scalar * Ch = & BLAS_C[c*nrhs*nbasis];
acceleratorPut(Vd[c],Vh);
acceleratorPut(Fd[c],Fh);
acceleratorPut(Cd[c],Ch);
}
/////////////////////////////////////////
// Block promote:
// F_xr = Vxb Cbr (x coarse_vol)
/////////////////////////////////////////
int64_t vw = block_vol * words;
BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
vw,nrhs,nbasis,
ComplexD(1.0),
Vd,
Cd,
ComplexD(0.0), // wipe out C
Fd);
BLAS.synchronise();
// std::cout << " blas call done"<<std::endl;
ExportFineGridVectors(fine, BLAS_F);
// std::cout << " exported "<<std::endl;
}
};
NAMESPACE_END(Grid);

View File

@ -0,0 +1,234 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: MultiRHSDeflation.h
Copyright (C) 2023
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
/* Need helper object for BLAS accelerated mrhs projection
i) MultiRHS Deflation
Import Evecs -> nev x vol x internal
Import vector of Lattice objects -> nrhs x vol x internal
=> Cij (nrhs x Nev) via GEMM.
=> Guess (nrhs x vol x internal) = C x evecs (via GEMM)
Export
ii) MultiRHS block projection
Import basis -> nblock x nbasis x (block x internal)
Import vector of fine lattice objects -> nblock x nrhs x (block x internal)
=> coarse_(nrhs x nbasis )^block = via batched GEMM
iii) Alternate interface:
Import higher dim Lattice object-> vol x nrhs layout
*/
template<class Field>
class MultiRHSDeflation
{
public:
typedef typename Field::scalar_type scalar;
typedef typename Field::scalar_object scalar_object;
int nev;
std::vector<RealD> eval;
GridBase *grid;
uint64_t vol;
uint64_t words;
deviceVector<scalar> BLAS_E; // nev x vol -- the eigenbasis (up to a 1/sqrt(lambda))
deviceVector<scalar> BLAS_R; // nrhs x vol -- the sources
deviceVector<scalar> BLAS_G; // nrhs x vol -- the guess
deviceVector<scalar> BLAS_C; // nrhs x nev -- the coefficients
MultiRHSDeflation(){};
~MultiRHSDeflation(){ Deallocate(); };
void Deallocate(void)
{
nev=0;
grid=nullptr;
vol=0;
words=0;
BLAS_E.resize(0);
BLAS_R.resize(0);
BLAS_C.resize(0);
BLAS_G.resize(0);
}
void Allocate(int _nev,GridBase *_grid)
{
nev=_nev;
grid=_grid;
vol = grid->lSites();
words = sizeof(scalar_object)/sizeof(scalar);
eval.resize(nev);
BLAS_E.resize (vol * words * nev );
std::cout << GridLogMessage << " Allocate for "<<nev<<" eigenvectors and volume "<<vol<<std::endl;
}
void ImportEigenVector(Field &evec,RealD &_eval, int ev)
{
assert(ev<eval.size());
std::cout << " ev " <<ev<<" eval "<<_eval<< std::endl;
eval[ev] = _eval;
int64_t offset = ev*vol*words;
autoView(v,evec,AcceleratorRead);
acceleratorCopyDeviceToDevice(&v[0],&BLAS_E[offset],sizeof(scalar_object)*vol);
}
void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval)
{
ImportEigenBasis(evec,_eval,0,evec.size());
}
// Could use to import a batch of eigenvectors
void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval, int _ev0, int _nev)
{
assert(_ev0+_nev<=evec.size());
Allocate(_nev,evec[0].Grid());
// Imports a sub-batch of eigenvectors, _ev0, ..., _ev0+_nev-1
for(int e=0;e<nev;e++){
std::cout << "Importing eigenvector "<<e<<" evalue "<<_eval[_ev0+e]<<std::endl;
ImportEigenVector(evec[_ev0+e],_eval[_ev0+e],e);
}
}
void DeflateSources(std::vector<Field> &source,std::vector<Field> & guess)
{
int nrhs = source.size();
assert(source.size()==guess.size());
assert(grid == guess[0].Grid());
conformable(guess[0],source[0]);
int64_t vw = vol * words;
std::cout << GridLogMessage << "MultiRHSDelation for "<<nrhs<<" sources with "<<nev<<" eigenvectors "<<std::endl;
RealD t0 = usecond();
BLAS_R.resize(nrhs * vw); // cost free if size doesn't change
BLAS_G.resize(nrhs * vw); // cost free if size doesn't change
BLAS_C.resize(nev * nrhs);// cost free if size doesn't change
/////////////////////////////////////////////
// Copy in the multi-rhs sources
/////////////////////////////////////////////
// for(int r=0;r<nrhs;r++){
// std::cout << " source["<<r<<"] = "<<norm2(source[r])<<std::endl;
// }
for(int r=0;r<nrhs;r++){
int64_t offset = r*vw;
autoView(v,source[r],AcceleratorRead);
acceleratorCopyDeviceToDevice(&v[0],&BLAS_R[offset],sizeof(scalar_object)*vol);
}
/*
* in Fortran column major notation (cuBlas order)
*
* Exe = [e1(x)][..][en(x)]
*
* Rxr = [r1(x)][..][rm(x)]
*
* C_er = E^dag R
* C_er = C_er / lambda_e
* G_xr = Exe Cer
*/
deviceVector<scalar *> Ed(1);
deviceVector<scalar *> Rd(1);
deviceVector<scalar *> Cd(1);
deviceVector<scalar *> Gd(1);
scalar * Eh = & BLAS_E[0];
scalar * Rh = & BLAS_R[0];
scalar * Ch = & BLAS_C[0];
scalar * Gh = & BLAS_G[0];
acceleratorPut(Ed[0],Eh);
acceleratorPut(Rd[0],Rh);
acceleratorPut(Cd[0],Ch);
acceleratorPut(Gd[0],Gh);
GridBLAS BLAS;
/////////////////////////////////////////
// C_er = E^dag R
/////////////////////////////////////////
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
nev,nrhs,vw,
ComplexD(1.0),
Ed,
Rd,
ComplexD(0.0), // wipe out C
Cd);
BLAS.synchronise();
assert(BLAS_C.size()==nev*nrhs);
std::vector<scalar> HOST_C(BLAS_C.size()); // nrhs . nev -- the coefficients
acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar));
grid->GlobalSumVector(&HOST_C[0],nev*nrhs);
for(int e=0;e<nev;e++){
RealD lam(1.0/eval[e]);
for(int r=0;r<nrhs;r++){
int off = e+nev*r;
HOST_C[off]=HOST_C[off] * lam;
// std::cout << "C["<<e<<"]["<<r<<"] ="<<HOST_C[off]<< " eval[e] "<<eval[e] <<std::endl;
}
}
acceleratorCopyToDevice(&HOST_C[0],&BLAS_C[0],BLAS_C.size()*sizeof(scalar));
/////////////////////////////////////////
// Guess G_xr = Exe Cer
/////////////////////////////////////////
BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
vw,nrhs,nev,
ComplexD(1.0),
Ed, // x . nev
Cd, // nev . nrhs
ComplexD(0.0),
Gd);
BLAS.synchronise();
///////////////////////////////////////
// Copy out the multirhs
///////////////////////////////////////
for(int r=0;r<nrhs;r++){
int64_t offset = r*vw;
autoView(v,guess[r],AcceleratorWrite);
acceleratorCopyDeviceToDevice(&BLAS_G[offset],&v[0],sizeof(scalar_object)*vol);
}
RealD t1 = usecond();
std::cout << GridLogMessage << "MultiRHSDelation for "<<nrhs<<" sources with "<<nev<<" eigenvectors took " << (t1-t0)/1e3 <<" ms"<<std::endl;
}
};
NAMESPACE_END(Grid);

View File

@ -41,6 +41,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
*/ */
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
template<class Field> template<class Field>
class TwoLevelCG : public LinearFunction<Field> class TwoLevelCG : public LinearFunction<Field>
{ {
@ -69,7 +70,7 @@ class TwoLevelCG : public LinearFunction<Field>
virtual void operator() (const Field &src, Field &x) virtual void operator() (const Field &src, Field &x)
{ {
std::cout << GridLogMessage<<"HDCG: fPcg starting"<<std::endl; std::cout << GridLogMessage<<"HDCG: fPcg starting single RHS"<<std::endl;
RealD f; RealD f;
RealD rtzp,rtz,a,d,b; RealD rtzp,rtz,a,d,b;
RealD rptzp; RealD rptzp;
@ -246,7 +247,7 @@ class TwoLevelCG : public LinearFunction<Field>
///////////////////////////// /////////////////////////////
// Set up history vectors // Set up history vectors
///////////////////////////// /////////////////////////////
int mmax = 2; int mmax = 3;
std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl; std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
src[0].Grid()->Barrier(); src[0].Grid()->Barrier();
std::vector<std::vector<Field> > p(nrhs); for(int r=0;r<nrhs;r++) p[r].resize(mmax,grid); std::vector<std::vector<Field> > p(nrhs); for(int r=0;r<nrhs;r++) p[r].resize(mmax,grid);
@ -278,9 +279,9 @@ class TwoLevelCG : public LinearFunction<Field>
////////////////////////// //////////////////////////
// x0 = Vstart -- possibly modify guess // x0 = Vstart -- possibly modify guess
////////////////////////// //////////////////////////
for(int rhs=0;rhs<nrhs;rhs++){ Vstart(x,src);
Vstart(x[rhs],src[rhs]);
for(int rhs=0;rhs<nrhs;rhs++){
// r0 = b -A x0 // r0 = b -A x0
_FineLinop.HermOp(x[rhs],mmp[rhs][0]); _FineLinop.HermOp(x[rhs],mmp[rhs][0]);
axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]); // Recomputes r=src-Ax0 axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]); // Recomputes r=src-Ax0
@ -324,7 +325,9 @@ class TwoLevelCG : public LinearFunction<Field>
// Compute z = M x (for *all* RHS) // Compute z = M x (for *all* RHS)
PcgM1(r,z); PcgM1(r,z);
std::cout << GridLogMessage<<"HDCG::fPcg M1 complete"<<std::endl;
grid->Barrier();
RealD max_rn=0.0; RealD max_rn=0.0;
for(int rhs=0;rhs<nrhs;rhs++){ for(int rhs=0;rhs<nrhs;rhs++){
@ -397,12 +400,19 @@ class TwoLevelCG : public LinearFunction<Field>
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out) virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out)
{ {
std::cout << "PcgM1 default (cheat) mrhs versoin"<<std::endl; std::cout << "PcgM1 default (cheat) mrhs version"<<std::endl;
for(int rhs=0;rhs<in.size();rhs++){ for(int rhs=0;rhs<in.size();rhs++){
this->PcgM1(in[rhs],out[rhs]); this->PcgM1(in[rhs],out[rhs]);
} }
} }
virtual void PcgM1(Field & in, Field & out) =0; virtual void PcgM1(Field & in, Field & out) =0;
virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src)
{
std::cout << "Vstart default (cheat) mrhs version"<<std::endl;
for(int rhs=0;rhs<x.size();rhs++){
this->Vstart(x[rhs],src[rhs]);
}
}
virtual void Vstart(Field & x,const Field & src)=0; virtual void Vstart(Field & x,const Field & src)=0;
virtual void PcgM2(const Field & in, Field & out) { virtual void PcgM2(const Field & in, Field & out) {
@ -534,76 +544,130 @@ class TwoLevelADEF2mrhs : public TwoLevelADEF2<Field,CoarseField,Aggregation>
public: public:
GridBase *coarsegridmrhs; GridBase *coarsegridmrhs;
LinearFunction<CoarseField> &_CoarseSolverMrhs; LinearFunction<CoarseField> &_CoarseSolverMrhs;
LinearFunction<CoarseField> &_CoarseSolverPreciseMrhs;
LinearFunction<CoarseField> &_CoarseGuesser; LinearFunction<CoarseField> &_CoarseGuesser;
TwoLevelADEF2mrhs(RealD tol, TwoLevelADEF2mrhs(RealD tol,
Integer maxit, Integer maxit,
LinearOperatorBase<Field> &FineLinop, LinearOperatorBase<Field> &FineLinop,
LinearFunction<Field> &Smoother, LinearFunction<Field> &Smoother,
LinearFunction<CoarseField> &CoarseSolver, // LinearFunction<CoarseField> &CoarseSolver,
LinearFunction<CoarseField> &CoarseSolverPrecise, // LinearFunction<CoarseField> &CoarseSolverPrecise,
LinearFunction<CoarseField> &CoarseSolverMrhs, LinearFunction<CoarseField> &CoarseSolverMrhs,
LinearFunction<CoarseField> &CoarseSolverPreciseMrhs,
LinearFunction<CoarseField> &CoarseGuesser, LinearFunction<CoarseField> &CoarseGuesser,
GridBase *rhsgrid, GridBase *rhsgrid,
Aggregation &Aggregates) : Aggregation &Aggregates) :
TwoLevelADEF2<Field,CoarseField,Aggregation>(tol, maxit,FineLinop,Smoother,CoarseSolver,CoarseSolverPrecise,Aggregates), TwoLevelADEF2<Field,CoarseField,Aggregation>(tol, maxit,FineLinop,Smoother,CoarseSolverMrhs,CoarseSolverPreciseMrhs,Aggregates),
_CoarseSolverMrhs(CoarseSolverMrhs), _CoarseSolverMrhs(CoarseSolverMrhs),
_CoarseSolverPreciseMrhs(CoarseSolverPreciseMrhs),
_CoarseGuesser(CoarseGuesser) _CoarseGuesser(CoarseGuesser)
{ {
coarsegridmrhs = rhsgrid; coarsegridmrhs = rhsgrid;
}; };
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out){
int nrhs=in.size(); virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src)
std::cout << " mrhs PcgM1 for "<<nrhs<<" right hand sides"<<std::endl; {
// [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min] int nrhs=x.size();
Field tmp(this->grid); std::cout << GridLogMessage<<"HDCG: fPcg Vstart for "<<nrhs<<" right hand sides" <<std::endl;
std::vector<Field> Min(nrhs,this->grid); ///////////////////////////////////
// Choose x_0 such that
// x_0 = guess + (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
// = [1 - Ass_inv A] Guess + Assinv src
// = P^T guess + Assinv src
// = Vstart [Tang notation]
// This gives:
// W^T (src - A x_0) = src_s - A guess_s - r_s
// = src_s - (A guess)_s - src_s + (A guess)_s
// = 0
///////////////////////////////////
CoarseField PleftProj(this->coarsegrid); CoarseField PleftProj(this->coarsegrid);
CoarseField PleftMss_proj(this->coarsegrid); CoarseField PleftMss_proj(this->coarsegrid);
CoarseField PleftProjMrhs(this->coarsegridmrhs); CoarseField PleftProjMrhs(this->coarsegridmrhs);
CoarseField PleftMss_projMrhs(this->coarsegridmrhs); CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
std::cout << GridLogMessage<<"HDCG: fPcg Vstart Mrhs projecting "<<std::endl;
for(int rhs=0;rhs<nrhs;rhs++) { for(int rhs=0;rhs<nrhs;rhs++) {
this->grid->Barrier(); this->_Aggregates.ProjectToSubspace(PleftProj,src[rhs]); // can optimise later
std::cout << " Calling smoother for "<<rhs<<std::endl; InsertSliceFast(PleftProj,PleftProjMrhs,rhs,0);
this->grid->Barrier();
this->_Smoother(in[rhs],Min[rhs]);
this->grid->Barrier();
std::cout << " smoother done "<<rhs<<std::endl;
this->grid->Barrier();
this->_FineLinop.HermOp(Min[rhs],out[rhs]);
this->grid->Barrier();
std::cout << " Hermop for "<<rhs<<std::endl;
this->grid->Barrier();
axpy(tmp,-1.0,out[rhs],in[rhs]); // tmp = in - A Min
this->grid->Barrier();
std::cout << " axpy "<<rhs<<std::endl;
this->grid->Barrier();
this->_Aggregates.ProjectToSubspace(PleftProj,tmp); // can optimise later
this->grid->Barrier();
std::cout << " project "<<rhs<<std::endl;
this->grid->Barrier();
InsertSlice(PleftProj,PleftProjMrhs,rhs,0);
this->grid->Barrier();
std::cout << " insert rhs "<<rhs<<std::endl;
this->grid->Barrier();
this->_CoarseGuesser(PleftProj,PleftMss_proj); this->_CoarseGuesser(PleftProj,PleftMss_proj);
this->grid->Barrier(); InsertSliceFast(PleftMss_proj,PleftMss_projMrhs,rhs,0);
std::cout << " insert guess "<<rhs<<std::endl; }
this->grid->Barrier();
std::cout << GridLogMessage<<"HDCG: fPcg Vstart Mrhs coarse solve "<<std::endl;
this->_CoarseSolverPreciseMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} r_s
std::cout << GridLogMessage<<"HDCG: fPcg Vstart promote "<<std::endl;
for(int rhs=0;rhs<nrhs;rhs++) {
ExtractSliceFast(PleftMss_proj,PleftMss_projMrhs,rhs,0);
this->_Aggregates.PromoteFromSubspace(PleftMss_proj,x[rhs]);
}
}
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out){
int nrhs=in.size();
std::cout << " mrhs PcgM1 for "<<nrhs<<" right hand sides"<<std::endl;
MemoryManager::Print();
// [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
Field tmp(this->grid);
std::vector<Field> Min(nrhs,this->grid);
std::cout << " mrhs PcgM1 Min "<<std::endl;
CoarseField PleftProj(this->coarsegrid);
CoarseField PleftMss_proj(this->coarsegrid);
CoarseField PleftProjMrhs(this->coarsegridmrhs);
CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
std::cout << " mrhs Coarse ops "<<std::endl;
// Really want the coarse solver
// to do the guessing itself, knowing the eigenvectors.
// The projection to coarse space is in aggregates
// If the Aggregates have a layout change option
// they could formulate as a BLAS routine.
// Put the routines in this object
for(int rhs=0;rhs<nrhs;rhs++) {
std::cout << GridLogMessage<<" Smoother for "<<rhs<<std::endl;
this->_Smoother(in[rhs],Min[rhs]);
std::cout << GridLogMessage<<" HermOp for "<<rhs<<std::endl;
this->_FineLinop.HermOp(Min[rhs],out[rhs]);
axpy(tmp,-1.0,out[rhs],in[rhs]); // tmp = in - A Min
// Was
// this->_Aggregates.ProjectToSubspace(PleftProj,tmp); // can optimise later
// Now:
std::cout << GridLogMessage<<" blockProject for "<<rhs<<std::endl;
blockProjectFast(PleftProj,tmp,this->_Aggregates.subspace);
std::cout << GridLogMessage<<" InsertSlice for "<<rhs<<std::endl;
InsertSlice(PleftProj,PleftProjMrhs,rhs,0);
std::cout << GridLogMessage<<" CoarseGuesser for "<<rhs<<std::endl;
this->_CoarseGuesser(PleftProj,PleftMss_proj);
std::cout << GridLogMessage<<" InsertSlice for "<<rhs<<std::endl;
InsertSlice(PleftMss_proj,PleftMss_projMrhs,rhs,0); InsertSlice(PleftMss_proj,PleftMss_projMrhs,rhs,0);
} }
MemoryManager::Print();
std::cout << " Coarse solve "<<std::endl; std::cout << " Coarse solve "<<std::endl;
this->_CoarseSolverMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} [in - A Min]_s this->_CoarseSolverMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} [in - A Min]_s
std::cout << " Coarse solve done"<<std::endl;
MemoryManager::Print();
for(int rhs=0;rhs<nrhs;rhs++) { for(int rhs=0;rhs<nrhs;rhs++) {
std::cout << GridLogMessage<<" Extract for "<<rhs<<std::endl;
ExtractSlice(PleftMss_proj,PleftMss_projMrhs,rhs,0); ExtractSlice(PleftMss_proj,PleftMss_projMrhs,rhs,0);
std::cout << GridLogMessage<<" Promote for "<<rhs<<std::endl;
this->_Aggregates.PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min] this->_Aggregates.PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]
// std::cout << " add for "<<rhs<<std::endl;
axpy(out[rhs],1.0,Min[rhs],tmp); // Min+tmp axpy(out[rhs],1.0,Min[rhs],tmp); // Min+tmp
} }
MemoryManager::Print();
std::cout << " Extracted "<<std::endl; std::cout << " Extracted "<<std::endl;
} }
}; };

View File

@ -42,6 +42,8 @@ inline RealD AggregatePowerLaw(RealD x)
template<class Fobj,class CComplex,int nbasis> template<class Fobj,class CComplex,int nbasis>
class Aggregation { class Aggregation {
public: public:
constexpr int Nbasis(void) { return nbasis; };
typedef iVector<CComplex,nbasis > siteVector; typedef iVector<CComplex,nbasis > siteVector;
typedef Lattice<siteVector> CoarseVector; typedef Lattice<siteVector> CoarseVector;
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix; typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;

View File

@ -80,7 +80,7 @@ public:
for(int p=0;p<geom.npoint;p++){ for(int p=0;p<geom.npoint;p++){
if ( zero_shift==geom.shifts[p] ) { if ( zero_shift==geom.shifts[p] ) {
_A[p] = _A[p]+shift; _A[p] = _A[p]+shift;
_Adag[p] = _Adag[p]+shift; // _Adag[p] = _Adag[p]+shift;
} }
} }
} }
@ -94,7 +94,7 @@ public:
// Avoids brutal handling of Grid pointers // Avoids brutal handling of Grid pointers
if ( CopyMe.geom.shifts[pp]==geom.shifts[p] ) { if ( CopyMe.geom.shifts[pp]==geom.shifts[p] ) {
_A[p] = CopyMe.Cell.Extract(CopyMe._A[pp]); _A[p] = CopyMe.Cell.Extract(CopyMe._A[pp]);
_Adag[p] = CopyMe.Cell.Extract(CopyMe._Adag[pp]); // _Adag[p] = CopyMe.Cell.Extract(CopyMe._Adag[pp]);
nfound++; nfound++;
} }
} }
@ -115,7 +115,7 @@ public:
int npoint = _geom.npoint; int npoint = _geom.npoint;
} }
_A.resize(geom.npoint,CoarseGrid); _A.resize(geom.npoint,CoarseGrid);
_Adag.resize(geom.npoint,CoarseGrid); // _Adag.resize(geom.npoint,CoarseGrid);
} }
void M (const CoarseVector &in, CoarseVector &out) void M (const CoarseVector &in, CoarseVector &out)
{ {
@ -123,8 +123,10 @@ public:
} }
void Mdag (const CoarseVector &in, CoarseVector &out) void Mdag (const CoarseVector &in, CoarseVector &out)
{ {
if ( hermitian ) M(in,out); assert(hermitian);
else Mult(_Adag,in,out); Mult(_A,in,out);
// if ( hermitian ) M(in,out);
// else Mult(_Adag,in,out);
} }
void Mult (std::vector<CoarseMatrix> &A,const CoarseVector &in, CoarseVector &out) void Mult (std::vector<CoarseMatrix> &A,const CoarseVector &in, CoarseVector &out)
{ {
@ -299,6 +301,145 @@ public:
* *
* Where q_k = delta_k . (2*M_PI/global_nb[mu]) * Where q_k = delta_k . (2*M_PI/global_nb[mu])
*/ */
#if 0
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & Subspace)
{
std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
GridBase *grid = FineGrid();
RealD tproj=0.0;
RealD teigen=0.0;
RealD tmat=0.0;
RealD tphase=0.0;
RealD tinv=0.0;
/////////////////////////////////////////////////////////////
// Orthogonalise the subblocks over the basis
/////////////////////////////////////////////////////////////
CoarseScalar InnerProd(CoarseGrid());
blockOrthogonalise(InnerProd,Subspace.subspace);
const int npoint = geom.npoint;
Coordinate clatt = CoarseGrid()->GlobalDimensions();
int Nd = CoarseGrid()->Nd();
/*
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
* Matrix index i is mapped to this shift via
* geom.shifts[i]
*
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
* = M_{kl} A_ji^{b.b+l}
*
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
*
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
*
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
*/
teigen-=usecond();
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
ComplexD ci(0.0,1.0);
for(int k=0;k<npoint;k++){ // Loop over momenta
for(int l=0;l<npoint;l++){ // Loop over nbr relative
ComplexD phase(0.0,0.0);
for(int mu=0;mu<Nd;mu++){
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
}
phase=exp(phase*ci);
Mkl(k,l) = phase;
}
}
invMkl = Mkl.inverse();
teigen+=usecond();
///////////////////////////////////////////////////////////////////////
// Now compute the matrix elements of linop between the orthonormal
// set of vectors.
///////////////////////////////////////////////////////////////////////
FineField phaV(grid); // Phased block basis vector
FineField MphaV(grid);// Matrix applied
CoarseVector coarseInner(CoarseGrid());
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
std::vector<CoarseVector> FT(npoint,CoarseGrid());
for(int i=0;i<nbasis;i++){// Loop over basis vectors
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
/////////////////////////////////////////////////////
// Stick a phase on every block
/////////////////////////////////////////////////////
tphase-=usecond();
CoarseComplexField coor(CoarseGrid());
CoarseComplexField pha(CoarseGrid()); pha=Zero();
for(int mu=0;mu<Nd;mu++){
LatticeCoordinate(coor,mu);
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
pha = pha + (TwoPiL * geom.shifts[p][mu]) * coor;
}
pha =exp(pha*ci);
phaV=Zero();
blockZAXPY(phaV,pha,Subspace.subspace[i],phaV);
tphase+=usecond();
/////////////////////////////////////////////////////////////////////
// Multiple phased subspace vector by matrix and project to subspace
// Remove local bulk phase to leave relative phases
/////////////////////////////////////////////////////////////////////
tmat-=usecond();
linop.Op(phaV,MphaV);
tmat+=usecond();
tproj-=usecond();
blockProject(coarseInner,MphaV,Subspace.subspace);
coarseInner = conjugate(pha) * coarseInner;
ComputeProj[p] = coarseInner;
tproj+=usecond();
}
tinv-=usecond();
for(int k=0;k<npoint;k++){
FT[k] = Zero();
for(int l=0;l<npoint;l++){
FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
}
int osites=CoarseGrid()->oSites();
autoView( A_v , _A[k], AcceleratorWrite);
autoView( FT_v , FT[k], AcceleratorRead);
accelerator_for(sss, osites, 1, {
for(int j=0;j<nbasis;j++){
A_v[sss](i,j) = FT_v[sss](j);
}
});
}
tinv+=usecond();
}
// Only needed if nonhermitian
if ( ! hermitian ) {
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
// PopulateAdag();
}
// Need to write something to populate Adag from A
ExchangeCoarseLinks();
std::cout << GridLogMessage<<"CoarsenOperator eigen "<<teigen<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator phase "<<tphase<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator mat "<<tmat <<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
}
#else
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop, void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & Subspace) Aggregation<Fobj,CComplex,nbasis> & Subspace)
{ {
@ -409,7 +550,7 @@ public:
tmat+=usecond(); tmat+=usecond();
tproj-=usecond(); tproj-=usecond();
blockProjectFast(coarseInner,MphaV,Subspace.subspace); blockProject(coarseInner,MphaV,Subspace.subspace);
coarseInner = conjugate(pha[p]) * coarseInner; coarseInner = conjugate(pha[p]) * coarseInner;
ComputeProj[p] = coarseInner; ComputeProj[p] = coarseInner;
@ -438,8 +579,8 @@ public:
// Only needed if nonhermitian // Only needed if nonhermitian
if ( ! hermitian ) { if ( ! hermitian ) {
std::cout << GridLogMessage<<"PopulateAdag "<<std::endl; // std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
PopulateAdag(); // PopulateAdag();
} }
// Need to write something to populate Adag from A // Need to write something to populate Adag from A
@ -451,10 +592,11 @@ public:
std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl; std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl; std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
} }
#endif
void ExchangeCoarseLinks(void){ void ExchangeCoarseLinks(void){
for(int p=0;p<geom.npoint;p++){ for(int p=0;p<geom.npoint;p++){
_A[p] = Cell.ExchangePeriodic(_A[p]); _A[p] = Cell.ExchangePeriodic(_A[p]);
_Adag[p]= Cell.ExchangePeriodic(_Adag[p]); // _Adag[p]= Cell.ExchangePeriodic(_Adag[p]);
} }
} }
virtual void Mdiag (const Field &in, Field &out){ assert(0);}; virtual void Mdiag (const Field &in, Field &out){ assert(0);};

View File

@ -27,26 +27,10 @@ Author: Peter Boyle <pboyle@bnl.gov>
/* END LEGAL */ /* END LEGAL */
#pragma once #pragma once
#include <Grid/algorithms/multigrid/BatchedBlas.h>
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
// Move this to accelerator.h
// Also give a copy device.
// Rename acceleratorPut
// Rename acceleratorGet
template<class T> void deviceSet(T& dev,T&host)
{
acceleratorCopyToDevice(&host,&dev,sizeof(T));
}
template<class T> T deviceGet(T& dev)
{
T host;
acceleratorCopyFromDevice(&dev,&host,sizeof(T));
return host;
}
// Fine Object == (per site) type of fine field // Fine Object == (per site) type of fine field
// nbasis == number of deflation vectors // nbasis == number of deflation vectors
template<class Fobj,class CComplex,int nbasis> template<class Fobj,class CComplex,int nbasis>
@ -133,14 +117,12 @@ public:
for(int p=0;p<geom.npoint;p++){ for(int p=0;p<geom.npoint;p++){
for(int ss=0;ss<unpadded_sites;ss++){ for(int ss=0;ss<unpadded_sites;ss++){
ComplexD *ptr = (ComplexD *)&BLAS_A[p][ss]; ComplexD *ptr = (ComplexD *)&BLAS_A[p][ss];
//ComplexD *ptr = (ComplexD *)&BLAS_A[p][0]; std::cout << " A ptr "<<std::hex<<ptr<<std::dec<<" "<<ss<<"/"<<BLAS_A[p].size()<<std::endl; acceleratorPut(BLAS_AP[p][ss],ptr);
deviceSet(BLAS_AP[p][ss],ptr);
} }
} }
for(int ss=0;ss<unpadded_sites;ss++){ for(int ss=0;ss<unpadded_sites;ss++){
ComplexD *ptr = (ComplexD *)&BLAS_C[ss*nrhs]; ComplexD *ptr = (ComplexD *)&BLAS_C[ss*nrhs];
//ComplexD *ptr = (ComplexD *)&BLAS_C[0]; std::cout << " C ptr "<<std::hex<<ptr<<std::dec<<" "<<ss<<"/"<<BLAS_C.size()<<std::endl; acceleratorPut(BLAS_CP[ss],ptr);
deviceSet(BLAS_CP[ss],ptr);
} }
///////////////////////////////////////////////// /////////////////////////////////////////////////
@ -155,19 +137,14 @@ public:
ghost_zone=1; // If general stencil wrapped in any direction, wrap=1 ghost_zone=1; // If general stencil wrapped in any direction, wrap=1
} }
} }
// GeneralStencilEntryReordered tmp;
if( ghost_zone==0) { if( ghost_zone==0) {
for(int32_t point = 0 ; point < geom.npoint; point++){ for(int32_t point = 0 ; point < geom.npoint; point++){
int i=s*orhs*geom.npoint+point; int i=s*orhs*geom.npoint+point;
int32_t nbr = Stencil._entries[i]._offset*CComplex::Nsimd(); // oSite -> lSite int32_t nbr = Stencil._entries[i]._offset*CComplex::Nsimd(); // oSite -> lSite
// std::cout << " B ptr "<< nbr<<"/"<<BLAS_B.size()<<std::endl;
assert(nbr<BLAS_B.size()); assert(nbr<BLAS_B.size());
ComplexD * ptr = (ComplexD *)&BLAS_B[nbr]; ComplexD * ptr = (ComplexD *)&BLAS_B[nbr];
// ComplexD * ptr = (ComplexD *)&BLAS_B[0]; acceleratorPut(BLAS_BP[point][j],ptr); // neighbour indexing in ghost zone volume
// std::cout << " B ptr unpadded "<<std::hex<<ptr<<std::dec<<" "<<s<<"/"<<padded_sites<<std::endl;
// std::cout << " B ptr padded "<<std::hex<<ptr<<std::dec<<" "<<j<<"/"<<unpadded_sites<<std::endl;
deviceSet(BLAS_BP[point][j],ptr); // neighbour indexing in ghost zone volume
// auto tmp = deviceGet(*BLAS_BP[point][j]); // debug trigger SEGV if bad ptr
} }
j++; j++;
} }
@ -236,7 +213,6 @@ public:
#if 0 #if 0
std::vector<typename vobj::scalar_object> tmp; std::vector<typename vobj::scalar_object> tmp;
tmp.resize(in.size()); tmp.resize(in.size());
// std::cout << "BLAStoGrid volume " <<tmp.size()<<" "<< grid.Grid()->lSites()<<std::endl;
assert(in.size()==grid.Grid()->lSites()); assert(in.size()==grid.Grid()->lSites());
acceleratorCopyFromDevice(&in[0],&tmp[0],sizeof(typename vobj::scalar_object)*in.size()); acceleratorCopyFromDevice(&in[0],&tmp[0],sizeof(typename vobj::scalar_object)*in.size());
vectorizeFromLexOrdArray(tmp,grid); vectorizeFromLexOrdArray(tmp,grid);
@ -289,19 +265,10 @@ public:
} }
void CopyMatrix (void) void CopyMatrix (void)
{ {
// Clone "A" to be lexicographic in the physics coords
// Use unvectorisetolexordarray
// Copy to device
for(int p=0;p<geom.npoint;p++){ for(int p=0;p<geom.npoint;p++){
//Unpadded //Unpadded
auto Aup = _Op.Cell.Extract(_Op._A[p]); auto Aup = _Op.Cell.Extract(_Op._A[p]);
// Coordinate coor({0,0,0,0,0});
// auto sval = peekSite(Aup,coor);
// std::cout << "CopyMatrix: p "<<p<<" Aup[0] :"<<sval<<std::endl;
// sval = peekSite(_Op._A[p],coor);
// std::cout << "CopyMatrix: p "<<p<<" _Op._Ap[0] :"<<sval<<std::endl;
GridtoBLAS(Aup,BLAS_A[p]); GridtoBLAS(Aup,BLAS_A[p]);
// std::cout << "Copy Matrix p "<<p<<" "<< deviceGet(BLAS_A[p][0])<<std::endl;
} }
} }
void Mdag(const CoarseVector &in, CoarseVector &out) void Mdag(const CoarseVector &in, CoarseVector &out)
@ -310,7 +277,7 @@ public:
} }
void M (const CoarseVector &in, CoarseVector &out) void M (const CoarseVector &in, CoarseVector &out)
{ {
std::cout << GridLogMessage << "New Mrhs coarse"<<std::endl; // std::cout << GridLogMessage << "New Mrhs coarse"<<std::endl;
conformable(CoarseGrid(),in.Grid()); conformable(CoarseGrid(),in.Grid());
conformable(in.Grid(),out.Grid()); conformable(in.Grid(),out.Grid());
out.Checkerboard() = in.Checkerboard(); out.Checkerboard() = in.Checkerboard();
@ -346,11 +313,8 @@ public:
int64_t nrhs =pin.Grid()->GlobalDimensions()[0]; int64_t nrhs =pin.Grid()->GlobalDimensions()[0];
assert(nrhs>=1); assert(nrhs>=1);
std::cout << GridLogMessage << "New Mrhs GridtoBLAS in sizes "<<in.Grid()->lSites()<<" "<<pin.Grid()->lSites()<<std::endl;
t_GtoB=-usecond(); t_GtoB=-usecond();
GridtoBLAS(pin,BLAS_B); GridtoBLAS(pin,BLAS_B);
// out = Zero();
// GridtoBLAS(out,BLAS_C);
t_GtoB+=usecond(); t_GtoB+=usecond();
GridBLAS BLAS; GridBLAS BLAS;
@ -360,7 +324,7 @@ public:
RealD c = 1.0; RealD c = 1.0;
if (p==0) c = 0.0; if (p==0) c = 0.0;
ComplexD beta(c); ComplexD beta(c);
// std::cout << GridLogMessage << "New Mrhs coarse gemmBatched "<<p<<std::endl;
BLAS.gemmBatched(nbasis,nrhs,nbasis, BLAS.gemmBatched(nbasis,nrhs,nbasis,
ComplexD(1.0), ComplexD(1.0),
BLAS_AP[p], BLAS_AP[p],
@ -370,16 +334,12 @@ public:
} }
BLAS.synchronise(); BLAS.synchronise();
t_mult+=usecond(); t_mult+=usecond();
// std::cout << GridLogMessage << "New Mrhs coarse BLAStoGrid "<<std::endl;
t_BtoG=-usecond(); t_BtoG=-usecond();
BLAStoGrid(out,BLAS_C); BLAStoGrid(out,BLAS_C);
t_BtoG+=usecond(); t_BtoG+=usecond();
t_tot+=usecond(); t_tot+=usecond();
// auto check =deviceGet(BLAS_C[0]);
// std::cout << "C[0] "<<check<<std::endl;
// Coordinate coor({0,0,0,0,0,0});
// peekLocalSite(check,out,coor);
// std::cout << "C[0] "<< check<<std::endl;
std::cout << GridLogMessage << "New Mrhs coarse DONE "<<std::endl; std::cout << GridLogMessage << "New Mrhs coarse DONE "<<std::endl;
std::cout << GridLogMessage<<"Coarse Mult exch "<<t_exch<<" us"<<std::endl; std::cout << GridLogMessage<<"Coarse Mult exch "<<t_exch<<" us"<<std::endl;
std::cout << GridLogMessage<<"Coarse Mult mult "<<t_mult<<" us"<<std::endl; std::cout << GridLogMessage<<"Coarse Mult mult "<<t_mult<<" us"<<std::endl;
@ -391,7 +351,7 @@ public:
std::cout << GridLogMessage<<"Coarse Kernel flop/s "<< flops/t_mult<<" mflop/s"<<std::endl; std::cout << GridLogMessage<<"Coarse Kernel flop/s "<< flops/t_mult<<" mflop/s"<<std::endl;
std::cout << GridLogMessage<<"Coarse Kernel bytes/s "<< bytes/t_mult/1000<<" GB/s"<<std::endl; std::cout << GridLogMessage<<"Coarse Kernel bytes/s "<< bytes/t_mult/1000<<" GB/s"<<std::endl;
std::cout << GridLogMessage<<"Coarse overall flops/s "<< flops/t_tot<<" mflop/s"<<std::endl; std::cout << GridLogMessage<<"Coarse overall flops/s "<< flops/t_tot<<" mflop/s"<<std::endl;
std::cout << GridLogMessage<<"Coarse total bytes "<< bytes/1e6<<" MB"<<std::endl; // std::cout << GridLogMessage<<"Coarse total bytes "<< bytes/1e6<<" MB"<<std::endl;
}; };
virtual void Mdiag (const Field &in, Field &out){ assert(0);}; virtual void Mdiag (const Field &in, Field &out){ assert(0);};
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);}; virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);};

View File

@ -29,7 +29,6 @@ Author: Peter Boyle <pboyle@bnl.gov>
#include <Grid/algorithms/multigrid/Aggregates.h> #include <Grid/algorithms/multigrid/Aggregates.h>
#include <Grid/algorithms/multigrid/Geometry.h> #include <Grid/algorithms/multigrid/Geometry.h>
#include <Grid/algorithms/multigrid/BatchedBlas.h>
#include <Grid/algorithms/multigrid/CoarsenedMatrix.h> #include <Grid/algorithms/multigrid/CoarsenedMatrix.h>
#include <Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h> #include <Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h>
#include <Grid/algorithms/multigrid/GeneralCoarsenedMatrixMultiRHS.h> #include <Grid/algorithms/multigrid/GeneralCoarsenedMatrixMultiRHS.h>

View File

@ -474,6 +474,7 @@ void MemoryManager::Print(void)
std::cout << GridLogMessage << DeviceEvictions << " Evictions from device " << std::endl; std::cout << GridLogMessage << DeviceEvictions << " Evictions from device " << std::endl;
std::cout << GridLogMessage << DeviceDestroy << " Destroyed vectors on device " << std::endl; std::cout << GridLogMessage << DeviceDestroy << " Destroyed vectors on device " << std::endl;
std::cout << GridLogMessage << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl; std::cout << GridLogMessage << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl;
acceleratorMem();
std::cout << GridLogMessage << "--------------------------------------------" << std::endl; std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
} }
void MemoryManager::PrintAll(void) void MemoryManager::PrintAll(void)

View File

@ -265,8 +265,8 @@ inline auto localInnerProductD(const Lattice<vobj> &lhs,const Lattice<vobj> &rhs
//////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj,class CComplex,int nbasis,class VLattice> template<class vobj,class CComplex,int nbasis,class VLattice>
inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData, inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
const Lattice<vobj> &fineData, const Lattice<vobj> &fineData,
const VLattice &Basis) const VLattice &Basis)
{ {
GridBase * fine = fineData.Grid(); GridBase * fine = fineData.Grid();
GridBase * coarse= coarseData.Grid(); GridBase * coarse= coarseData.Grid();
@ -300,38 +300,6 @@ inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
// std::cout << GridLogPerformance << " blockProject : conv : "<<t_co<<" us"<<std::endl; // std::cout << GridLogPerformance << " blockProject : conv : "<<t_co<<" us"<<std::endl;
// std::cout << GridLogPerformance << " blockProject : blockZaxpy : "<<t_za<<" us"<<std::endl; // std::cout << GridLogPerformance << " blockProject : blockZaxpy : "<<t_za<<" us"<<std::endl;
} }
template<class vobj,class CComplex,int nbasis,class VLattice>
inline void blockProjectFast(Lattice<iVector<CComplex,nbasis > > &coarseData,
const Lattice<vobj> &fineData,
const VLattice &Basis)
{
GridBase * fine = fineData.Grid();
GridBase * coarse= coarseData.Grid();
Lattice<iScalar<CComplex>> ip(coarse);
Lattice<vobj> fineDataRed = fineData;
autoView( coarseData_ , coarseData, AcceleratorWrite);
autoView( ip_ , ip, AcceleratorWrite);
RealD t_IP=0;
RealD t_co=0;
for(int v=0;v<nbasis;v++) {
t_IP-=usecond();
blockInnerProductD(ip,Basis[v],fineData); // ip = <basis|fine>
t_IP+=usecond();
t_co-=usecond();
accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
convertType(coarseData_[sc](v),ip_[sc]);
});
t_co+=usecond();
}
// std::cout << GridLogPerformance << " blockProjectFast : blockInnerProduct : "<<t_IP<<" us"<<std::endl;
// std::cout << GridLogPerformance << " blockProjectFast : conv : "<<t_co<<" us"<<std::endl;
}
// This only minimises data motion from CPU to GPU // This only minimises data motion from CPU to GPU
// there is chance of better implementation that does a vxk loop of inner products to data share // there is chance of better implementation that does a vxk loop of inner products to data share
// at the GPU thread level // at the GPU thread level
@ -776,9 +744,12 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
typedef typename vobj::scalar_type scalar_type; typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type; typedef typename vobj::vector_type vector_type;
//////////////////////////////////////////////////////////////////////////////////////////////// const int words=sizeof(vobj)/sizeof(vector_type);
// the checks should guarantee that the operations are local
//////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////
// checks should guarantee that the operations are local
//////////////////////////////////////////////////////////////////////////////////////////
GridBase *Fg = From.Grid(); GridBase *Fg = From.Grid();
GridBase *Tg = To.Grid(); GridBase *Tg = To.Grid();
assert(!Fg->_isCheckerBoarded); assert(!Fg->_isCheckerBoarded);
@ -792,12 +763,10 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
for(int d=0;d<nd;d++){ for(int d=0;d<nd;d++){
assert(Fg->_processors[d] == Tg->_processors[d]); assert(Fg->_processors[d] == Tg->_processors[d]);
} }
size_t nsite = 1;
for(int i=0;i<nd;i++) nsite *= RegionSize[i];
//////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////
// do the index calc on the GPU // do the index calc on the GPU
//////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////
Coordinate f_ostride = Fg->_ostride; Coordinate f_ostride = Fg->_ostride;
Coordinate f_istride = Fg->_istride; Coordinate f_istride = Fg->_istride;
Coordinate f_rdimensions = Fg->_rdimensions; Coordinate f_rdimensions = Fg->_rdimensions;
@ -805,15 +774,17 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
Coordinate t_istride = Tg->_istride; Coordinate t_istride = Tg->_istride;
Coordinate t_rdimensions = Tg->_rdimensions; Coordinate t_rdimensions = Tg->_rdimensions;
size_t nsite = 1;
for(int i=0;i<nd;i++) nsite *= RegionSize[i];
typedef typename vobj::vector_type vector_type; typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type; typedef typename vobj::scalar_type scalar_type;
autoView(from_v,From,AcceleratorRead); autoView(from_v,From,AcceleratorRead);
autoView(to_v,To,AcceleratorWrite); autoView(to_v,To,AcceleratorWrite);
const int words=sizeof(vobj)/sizeof(vector_type);
accelerator_for(idx,nsite,1,{ accelerator_for(idx,nsite,1,{
Coordinate from_coor, to_coor, base; Coordinate from_coor, to_coor, base;
Lexicographic::CoorFromIndex(base,idx,RegionSize); Lexicographic::CoorFromIndex(base,idx,RegionSize);
for(int i=0;i<nd;i++){ for(int i=0;i<nd;i++){
@ -833,9 +804,146 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
stmp = getlane(from[w], from_lane); stmp = getlane(from[w], from_lane);
putlane(to[w], stmp, to_lane); putlane(to[w], stmp, to_lane);
} }
}); });
} }
template<class vobj>
void InsertSliceFast(const Lattice<vobj> &From,Lattice<vobj> & To,int slice, int orthog)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
const int words=sizeof(vobj)/sizeof(vector_type);
//////////////////////////////////////////////////////////////////////////////////////////
// checks should guarantee that the operations are local
//////////////////////////////////////////////////////////////////////////////////////////
GridBase *Fg = From.Grid();
GridBase *Tg = To.Grid();
assert(!Fg->_isCheckerBoarded);
assert(!Tg->_isCheckerBoarded);
int Nsimd = Fg->Nsimd();
int nF = Fg->_ndimension;
int nT = Tg->_ndimension;
assert(nF+1 == nT);
///////////////////////////////////////////////////////////
// do the index calc on the GPU
///////////////////////////////////////////////////////////
Coordinate f_ostride = Fg->_ostride;
Coordinate f_istride = Fg->_istride;
Coordinate f_rdimensions = Fg->_rdimensions;
Coordinate t_ostride = Tg->_ostride;
Coordinate t_istride = Tg->_istride;
Coordinate t_rdimensions = Tg->_rdimensions;
Coordinate RegionSize = Fg->_ldimensions;
size_t nsite = 1;
for(int i=0;i<nF;i++) nsite *= RegionSize[i]; // whole volume of lower dim grid
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
autoView(from_v,From,AcceleratorRead);
autoView(to_v,To,AcceleratorWrite);
accelerator_for(idx,nsite,1,{
Coordinate from_coor(nF), to_coor(nT);
Lexicographic::CoorFromIndex(from_coor,idx,RegionSize);
int j=0;
for(int i=0;i<nT;i++){
if ( i!=orthog ) {
to_coor[i] = from_coor[j];
j++;
} else {
to_coor[i] = slice;
}
}
int from_oidx = 0; for(int d=0;d<nF;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
int from_lane = 0; for(int d=0;d<nF;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
int to_oidx = 0; for(int d=0;d<nT;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
int to_lane = 0; for(int d=0;d<nT;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
const vector_type* from = (const vector_type *)&from_v[from_oidx];
vector_type* to = (vector_type *)&to_v[to_oidx];
scalar_type stmp;
for(int w=0;w<words;w++){
stmp = getlane(from[w], from_lane);
putlane(to[w], stmp, to_lane);
}
});
}
template<class vobj>
void ExtractSliceFast(Lattice<vobj> &To,const Lattice<vobj> & From,int slice, int orthog)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
const int words=sizeof(vobj)/sizeof(vector_type);
//////////////////////////////////////////////////////////////////////////////////////////
// checks should guarantee that the operations are local
//////////////////////////////////////////////////////////////////////////////////////////
GridBase *Fg = From.Grid();
GridBase *Tg = To.Grid();
assert(!Fg->_isCheckerBoarded);
assert(!Tg->_isCheckerBoarded);
int Nsimd = Fg->Nsimd();
int nF = Fg->_ndimension;
int nT = Tg->_ndimension;
assert(nT+1 == nF);
///////////////////////////////////////////////////////////
// do the index calc on the GPU
///////////////////////////////////////////////////////////
Coordinate f_ostride = Fg->_ostride;
Coordinate f_istride = Fg->_istride;
Coordinate f_rdimensions = Fg->_rdimensions;
Coordinate t_ostride = Tg->_ostride;
Coordinate t_istride = Tg->_istride;
Coordinate t_rdimensions = Tg->_rdimensions;
Coordinate RegionSize = Tg->_ldimensions;
size_t nsite = 1;
for(int i=0;i<nT;i++) nsite *= RegionSize[i]; // whole volume of lower dim grid
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
autoView(from_v,From,AcceleratorRead);
autoView(to_v,To,AcceleratorWrite);
accelerator_for(idx,nsite,1,{
Coordinate from_coor(nF), to_coor(nT);
Lexicographic::CoorFromIndex(to_coor,idx,RegionSize);
int j=0;
for(int i=0;i<nF;i++){
if ( i!=orthog ) {
from_coor[i] = to_coor[j];
j++;
} else {
from_coor[i] = slice;
}
}
int from_oidx = 0; for(int d=0;d<nF;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
int from_lane = 0; for(int d=0;d<nF;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
int to_oidx = 0; for(int d=0;d<nT;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
int to_lane = 0; for(int d=0;d<nT;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
const vector_type* from = (const vector_type *)&from_v[from_oidx];
vector_type* to = (vector_type *)&to_v[to_oidx];
scalar_type stmp;
for(int w=0;w<words;w++){
stmp = getlane(from[w], from_lane);
putlane(to[w], stmp, to_lane);
}
});
}
template<class vobj> template<class vobj>
void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice, int orthog) void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice, int orthog)
@ -925,9 +1033,7 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
} }
//FIXME: make this run entirely on GPU //Can I implement with local copyregion??
//Insert subvolume orthogonal to direction 'orthog' with slice index 'slice_lo' from 'lowDim' onto slice index 'slice_hi' of higherDim
//The local dimensions of both 'lowDim' and 'higherDim' orthogonal to 'orthog' should be the same
template<class vobj> template<class vobj>
void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog) void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
{ {
@ -948,121 +1054,18 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
assert(lg->_ldimensions[d] == hg->_ldimensions[d]); assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
} }
} }
Coordinate sz = lg->_ldimensions;
#if 1 sz[orthog]=1;
size_t nsite = lg->lSites()/lg->LocalDimensions()[orthog]; Coordinate f_ll(nl,0); f_ll[orthog]=slice_lo;
size_t tbytes = 4*nsite*sizeof(int); Coordinate t_ll(nh,0); t_ll[orthog]=slice_hi;
int *table = (int*)malloc(tbytes); localCopyRegion(lowDim,higherDim,f_ll,t_ll,sz);
thread_for(idx,nsite,{
Coordinate lcoor(nl);
Coordinate hcoor(nh);
lcoor[orthog] = slice_lo;
hcoor[orthog] = slice_hi;
size_t rem = idx;
for(int mu=0;mu<nl;mu++){
if(mu != orthog){
int xmu = rem % lg->LocalDimensions()[mu]; rem /= lg->LocalDimensions()[mu];
lcoor[mu] = hcoor[mu] = xmu;
}
}
int loidx = lg->oIndex(lcoor);
int liidx = lg->iIndex(lcoor);
int hoidx = hg->oIndex(hcoor);
int hiidx = hg->iIndex(hcoor);
int* tt = table + 4*idx;
tt[0] = loidx;
tt[1] = liidx;
tt[2] = hoidx;
tt[3] = hiidx;
});
int* table_d = (int*)acceleratorAllocDevice(tbytes);
acceleratorCopyToDevice(table,table_d,tbytes);
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
autoView(lowDim_v,lowDim,AcceleratorRead);
autoView(higherDim_v,higherDim,AcceleratorWrite);
accelerator_for(idx,nsite,1,{
static const int words=sizeof(vobj)/sizeof(vector_type);
int* tt = table_d + 4*idx;
int from_oidx = *tt++;
int from_lane = *tt++;
int to_oidx = *tt++;
int to_lane = *tt;
const vector_type* from = (const vector_type *)&lowDim_v[from_oidx];
vector_type* to = (vector_type *)&higherDim_v[to_oidx];
scalar_type stmp;
for(int w=0;w<words;w++){
stmp = getlane(from[w], from_lane);
putlane(to[w], stmp, to_lane);
}
});
acceleratorFreeDevice(table_d);
free(table);
#else
// the above should guarantee that the operations are local
autoView(lowDimv,lowDim,CpuRead);
autoView(higherDimv,higherDim,CpuWrite);
thread_for(idx,lg->lSites(),{
sobj s;
Coordinate lcoor(nl);
Coordinate hcoor(nh);
lg->LocalIndexToLocalCoor(idx,lcoor);
if( lcoor[orthog] == slice_lo ) {
hcoor=lcoor;
hcoor[orthog] = slice_hi;
peekLocalSite(s,lowDimv,lcoor);
pokeLocalSite(s,higherDimv,hcoor);
}
});
#endif
} }
template<class vobj> template<class vobj>
void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog) void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
{ {
typedef typename vobj::scalar_object sobj; InsertSliceLocal(higherDim,lowDim,slice_hi,slice_lo,orthog);
GridBase *lg = lowDim.Grid();
GridBase *hg = higherDim.Grid();
int nl = lg->_ndimension;
int nh = hg->_ndimension;
assert(nl == nh);
assert(orthog<nh);
assert(orthog>=0);
for(int d=0;d<nh;d++){
if ( d!=orthog ) {
assert(lg->_processors[d] == hg->_processors[d]);
assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
}
}
// the above should guarantee that the operations are local
autoView(lowDimv,lowDim,CpuWrite);
autoView(higherDimv,higherDim,CpuRead);
thread_for(idx,lg->lSites(),{
sobj s;
Coordinate lcoor(nl);
Coordinate hcoor(nh);
lg->LocalIndexToLocalCoor(idx,lcoor);
if( lcoor[orthog] == slice_lo ) {
hcoor=lcoor;
hcoor[orthog] = slice_hi;
peekLocalSite(s,higherDimv,hcoor);
pokeLocalSite(s,lowDimv,lcoor);
}
});
} }
@ -1775,31 +1778,34 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
} }
////////////////////////////////////////////////////// //////////////////////////////////////////////////////
// MultiRHS interface support for coarse space // Faster but less accurate blockProject
// -- Simplest possible implementation to begin with
////////////////////////////////////////////////////// //////////////////////////////////////////////////////
template<class vobj,class CComplex,int nbasis,class VLattice> template<class vobj,class CComplex,int nbasis,class VLattice>
inline void blockProjectMany(Lattice<iVector<CComplex,nbasis > > &coarseIP, inline void blockProjectFast(Lattice<iVector<CComplex,nbasis > > &coarseData,
Lattice<iVector<CComplex,nbasis > > &coarseTMP, const Lattice<vobj> &fineData,
const VLattice &fineData, // Basis and fineData necessarily same type
const VLattice &Basis) const VLattice &Basis)
{ {
for(int r=0;r<fineData.size();r++){ GridBase * fine = fineData.Grid();
blockProject(coarseTMP,fineData[r],Basis); GridBase * coarse= coarseData.Grid();
InsertSliceLocal(coarseTMP, coarseIP,r,r,0);
} Lattice<iScalar<CComplex> > ip(coarse);
}
template<class vobj,class CComplex,int nbasis,class VLattice> autoView( coarseData_ , coarseData, AcceleratorWrite);
inline void blockPromoteMany(Lattice<iVector<CComplex,nbasis > > &coarseIP, autoView( ip_ , ip, AcceleratorWrite);
Lattice<iVector<CComplex,nbasis > > &coarseTMP, RealD t_IP=0;
const VLattice &fineData, // Basis and fineData necessarily same type RealD t_co=0;
const VLattice &Basis) for(int v=0;v<nbasis;v++) {
{ t_IP-=usecond();
for(int r=0;r<fineData.size();r++){ blockInnerProductD(ip,Basis[v],fineData);
ExtractSliceLocal(coarseTMP, coarseIP,r,r,0); t_IP+=usecond();
blockPromote(coarseTMP,fineData[r],Basis); t_co-=usecond();
accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
convertType(coarseData_[sc](v),ip_[sc]);
});
t_co+=usecond();
} }
} }
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -162,8 +162,14 @@ template<class vobj> void ScidacMetaData(Lattice<vobj> & field,
{ {
uint32_t scidac_checksuma = stoull(scidacChecksum_.suma,0,16); uint32_t scidac_checksuma = stoull(scidacChecksum_.suma,0,16);
uint32_t scidac_checksumb = stoull(scidacChecksum_.sumb,0,16); uint32_t scidac_checksumb = stoull(scidacChecksum_.sumb,0,16);
if ( scidac_csuma !=scidac_checksuma) return 0; std::cout << GridLogMessage << " scidacChecksumVerify computed "<<scidac_csuma<<" expected "<<scidac_checksuma <<std::endl;
if ( scidac_csumb !=scidac_checksumb) return 0; std::cout << GridLogMessage << " scidacChecksumVerify computed "<<scidac_csumb<<" expected "<<scidac_checksumb <<std::endl;
if ( scidac_csuma !=scidac_checksuma) {
return 0;
};
if ( scidac_csumb !=scidac_checksumb) {
return 0;
};
return 1; return 1;
} }

View File

@ -120,7 +120,7 @@ hipStream_t computeStream;
void acceleratorInit(void) void acceleratorInit(void)
{ {
int nDevices = 1; int nDevices = 1;
hipGetDeviceCount(&nDevices); auto discard = hipGetDeviceCount(&nDevices);
gpu_props = new hipDeviceProp_t[nDevices]; gpu_props = new hipDeviceProp_t[nDevices];
char * localRankStr = NULL; char * localRankStr = NULL;
@ -147,7 +147,7 @@ void acceleratorInit(void)
#define GPU_PROP_FMT(canMapHostMemory,FMT) printf("AcceleratorHipInit: " #canMapHostMemory ": " FMT" \n",prop.canMapHostMemory); #define GPU_PROP_FMT(canMapHostMemory,FMT) printf("AcceleratorHipInit: " #canMapHostMemory ": " FMT" \n",prop.canMapHostMemory);
#define GPU_PROP(canMapHostMemory) GPU_PROP_FMT(canMapHostMemory,"%d"); #define GPU_PROP(canMapHostMemory) GPU_PROP_FMT(canMapHostMemory,"%d");
hipGetDeviceProperties(&gpu_props[i], i); discard = hipGetDeviceProperties(&gpu_props[i], i);
hipDeviceProp_t prop; hipDeviceProp_t prop;
prop = gpu_props[i]; prop = gpu_props[i];
totalDeviceMem = prop.totalGlobalMem; totalDeviceMem = prop.totalGlobalMem;
@ -184,13 +184,13 @@ void acceleratorInit(void)
} }
int device = rank; int device = rank;
#endif #endif
hipSetDevice(device); discard = hipSetDevice(device);
hipStreamCreate(&copyStream); discard = hipStreamCreate(&copyStream);
hipStreamCreate(&computeStream); discard = hipStreamCreate(&computeStream);
const int len=64; const int len=64;
char busid[len]; char busid[len];
if( rank == world_rank ) { if( rank == world_rank ) {
hipDeviceGetPCIBusId(busid, len, device); discard = hipDeviceGetPCIBusId(busid, len, device);
printf("local rank %d device %d bus id: %s\n", rank, device, busid); printf("local rank %d device %d bus id: %s\n", rank, device, busid);
} }
if ( world_rank == 0 ) printf("AcceleratorHipInit: ================================================\n"); if ( world_rank == 0 ) printf("AcceleratorHipInit: ================================================\n");

View File

@ -117,7 +117,7 @@ accelerator_inline int acceleratorSIMTlane(int Nsimd) {
#endif #endif
} // CUDA specific } // CUDA specific
inline void cuda_mem(void) inline void acceleratorMem(void)
{ {
size_t free_t,total_t,used_t; size_t free_t,total_t,used_t;
cudaMemGetInfo(&free_t,&total_t); cudaMemGetInfo(&free_t,&total_t);
@ -125,6 +125,11 @@ inline void cuda_mem(void)
std::cout << " MemoryManager : GPU used "<<used_t<<" free "<<free_t<< " total "<<total_t<<std::endl; std::cout << " MemoryManager : GPU used "<<used_t<<" free "<<free_t<< " total "<<total_t<<std::endl;
} }
inline void cuda_mem(void)
{
acceleratorMem();
}
#define accelerator_for2dNB( iter1, num1, iter2, num2, nsimd, ... ) \ #define accelerator_for2dNB( iter1, num1, iter2, num2, nsimd, ... ) \
{ \ { \
int nt=acceleratorThreads(); \ int nt=acceleratorThreads(); \
@ -270,6 +275,7 @@ inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes
} }
inline void acceleratorCopySynchronise(void) { cudaStreamSynchronize(copyStream); }; inline void acceleratorCopySynchronise(void) { cudaStreamSynchronize(copyStream); };
inline int acceleratorIsCommunicable(void *ptr) inline int acceleratorIsCommunicable(void *ptr)
{ {
// int uvm=0; // int uvm=0;
@ -305,6 +311,11 @@ NAMESPACE_END(Grid);
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
inline void acceleratorMem(void)
{
std::cout <<" SYCL acceleratorMem not implemented"<<std::endl;
}
extern cl::sycl::queue *theGridAccelerator; extern cl::sycl::queue *theGridAccelerator;
extern cl::sycl::queue *theCopyAccelerator; extern cl::sycl::queue *theCopyAccelerator;
@ -383,6 +394,15 @@ NAMESPACE_BEGIN(Grid);
#define accelerator __host__ __device__ #define accelerator __host__ __device__
#define accelerator_inline __host__ __device__ inline #define accelerator_inline __host__ __device__ inline
inline void acceleratorMem(void)
{
size_t free_t,total_t,used_t;
auto discard = hipMemGetInfo(&free_t,&total_t);
used_t=total_t-free_t;
std::cout << " MemoryManager : GPU used "<<used_t<<" free "<<free_t<< " total "<<total_t<<std::endl;
}
extern hipStream_t copyStream; extern hipStream_t copyStream;
extern hipStream_t computeStream; extern hipStream_t computeStream;
/*These routines define mapping from thread grid to loop & vector lane indexing */ /*These routines define mapping from thread grid to loop & vector lane indexing */
@ -459,7 +479,7 @@ inline void *acceleratorAllocShared(size_t bytes)
auto err = hipMallocManaged((void **)&ptr,bytes); auto err = hipMallocManaged((void **)&ptr,bytes);
if( err != hipSuccess ) { if( err != hipSuccess ) {
ptr = (void *) NULL; ptr = (void *) NULL;
printf(" hipMallocManaged failed for %ld %s \n",bytes,hipGetErrorString(err)); fprintf(stderr," hipMallocManaged failed for %ld %s \n",bytes,hipGetErrorString(err)); fflush(stderr);
} }
return ptr; return ptr;
}; };
@ -471,7 +491,7 @@ inline void *acceleratorAllocDevice(size_t bytes)
auto err = hipMalloc((void **)&ptr,bytes); auto err = hipMalloc((void **)&ptr,bytes);
if( err != hipSuccess ) { if( err != hipSuccess ) {
ptr = (void *) NULL; ptr = (void *) NULL;
printf(" hipMalloc failed for %ld %s \n",bytes,hipGetErrorString(err)); fprintf(stderr," hipMalloc failed for %ld %s \n",bytes,hipGetErrorString(err)); fflush(stderr);
} }
return ptr; return ptr;
}; };
@ -514,6 +534,12 @@ inline void acceleratorCopySynchronise(void) { auto discard=hipStreamSynchronize
#endif #endif
inline void acceleratorCopyDeviceToDevice(void *from,void *to,size_t bytes)
{
acceleratorCopyDeviceToDeviceAsynch(from,to,bytes);
acceleratorCopySynchronise();
}
////////////////////////////////////////////// //////////////////////////////////////////////
// CPU Target - No accelerator just thread instead // CPU Target - No accelerator just thread instead
////////////////////////////////////////////// //////////////////////////////////////////////
@ -523,6 +549,15 @@ inline void acceleratorCopySynchronise(void) { auto discard=hipStreamSynchronize
#undef GRID_SIMT #undef GRID_SIMT
inline void acceleratorMem(void)
{
/*
struct rusage rusage;
getrusage( RUSAGE_SELF, &rusage );
return (size_t)rusage.ru_maxrss;
*/
std::cout <<" system acceleratorMem not implemented"<<std::endl;
}
#define accelerator #define accelerator
#define accelerator_inline strong_inline #define accelerator_inline strong_inline
@ -616,4 +651,17 @@ accelerator_inline void acceleratorFence(void)
return; return;
} }
template<class T> void acceleratorPut(T& dev,T&host)
{
acceleratorCopyToDevice(&host,&dev,sizeof(T));
}
template<class T> T acceleratorGet(T& dev)
{
T host;
acceleratorCopyFromDevice(&dev,&host,sizeof(T));
return host;
}
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -414,7 +414,7 @@ void Grid_init(int *argc,char ***argv)
// Logging // Logging
//////////////////////////////////// ////////////////////////////////////
std::vector<std::string> logstreams; std::vector<std::string> logstreams;
std::string defaultLog("Error,Warning,Message,Memory"); std::string defaultLog("Error,Warning,Message");
GridCmdOptionCSL(defaultLog,logstreams); GridCmdOptionCSL(defaultLog,logstreams);
GridLogConfigure(logstreams); GridLogConfigure(logstreams);

View File

@ -26,11 +26,6 @@ Author: Peter Boyle <pboyle@bnl.gov>
*************************************************************************************/ *************************************************************************************/
/* END LEGAL */ /* END LEGAL */
#include <Grid/Grid.h> #include <Grid/Grid.h>
#include <Grid/lattice/PaddedCell.h>
#include <Grid/stencil/GeneralLocalStencil.h>
//#include <Grid/algorithms/GeneralCoarsenedMatrix.h>
#include <Grid/algorithms/iterative/AdefGeneric.h>
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
using namespace std; using namespace std;
using namespace Grid; using namespace Grid;
@ -112,6 +107,44 @@ void LoadBasis(aggregation &Agg, std::string file)
RD.close(); RD.close();
#endif #endif
} }
template<class CoarseVector>
void SaveEigenvectors(std::vector<RealD> &eval,
std::vector<CoarseVector> &evec,
std::string evec_file,
std::string eval_file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacWriter WR(evec[0].Grid()->IsBoss());
WR.open(evec_file);
for(int b=0;b<evec.size();b++){
WR.writeScidacFieldRecord(evec[b],record,0,0);
}
WR.close();
XmlWriter WRx(eval_file);
write(WRx,"evals",eval);
#endif
}
template<class CoarseVector>
void LoadEigenvectors(std::vector<RealD> &eval,
std::vector<CoarseVector> &evec,
std::string evec_file,
std::string eval_file)
{
#ifdef HAVE_LIME
XmlReader RDx(eval_file);
read(RDx,"evals",eval);
emptyUserRecord record;
Grid::ScidacReader RD ;
RD.open(evec_file);
assert(evec.size()==eval.size());
for(int k=0;k<eval.size();k++) {
RD.readScidacFieldRecord(evec[k],record);
}
RD.close();
#endif
}
RealD InverseApproximation(RealD x){ RealD InverseApproximation(RealD x){
return 1.0/x; return 1.0/x;
@ -169,6 +202,7 @@ public:
void operator() (const Field &in, Field &out) void operator() (const Field &in, Field &out)
{ {
ConjugateGradient<Field> CG(0.0,iters,false); // non-converge is just fine in a smoother ConjugateGradient<Field> CG(0.0,iters,false); // non-converge is just fine in a smoother
out=Zero();
CG(_SmootherOperator,in,out); CG(_SmootherOperator,in,out);
} }
}; };
@ -182,9 +216,10 @@ int main (int argc, char ** argv)
Grid_init(&argc,&argv); Grid_init(&argc,&argv);
const int Ls=24; const int Ls=24;
// const int nbasis = 62; const int nbasis = 62;
// const int nbasis = 56; // const int nbasis = 56;
const int nbasis = 36; // const int nbasis = 44;
// const int nbasis = 36;
const int cb = 0 ; const int cb = 0 ;
RealD mass=0.00078; RealD mass=0.00078;
RealD M5=1.8; RealD M5=1.8;
@ -236,12 +271,8 @@ int main (int argc, char ** argv)
typedef HermOpAdaptor<LatticeFermionD> HermFineMatrix; typedef HermOpAdaptor<LatticeFermionD> HermFineMatrix;
HermFineMatrix FineHermOp(HermOpEO); HermFineMatrix FineHermOp(HermOpEO);
LatticeFermion result(FrbGrid); result=Zero();
LatticeFermion src(FrbGrid); random(RNG5,src);
// Run power method on FineHermOp // Run power method on FineHermOp
PowerMethod<LatticeFermion> PM; PM(HermOpEO,src); // PowerMethod<LatticeFermion> PM; PM(HermOpEO,src);
//////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////
///////////// Coarse basis and Little Dirac Operator /////// ///////////// Coarse basis and Little Dirac Operator ///////
@ -261,15 +292,22 @@ int main (int argc, char ** argv)
//////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////
LittleDiracOperator LittleDiracOp(geom,FrbGrid,Coarse5d); LittleDiracOperator LittleDiracOp(geom,FrbGrid,Coarse5d);
std::string subspace_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.phys48.rat.scidac.62"); std::string subspace_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.phys48.rat.18node.62");
std::string refine_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Refine.phys48.rat.scidac.62"); std::string refine_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Refine.phys48.rat.18node.62");
std::string ldop_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/LittleDiracOp.phys48.rat.scidac.62"); std::string ldop_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/LittleDiracOp.phys48.rat.18node.62");
std::string evec_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/evecs.scidac");
std::string eval_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/eval.xml");
bool load_agg=true; bool load_agg=true;
bool load_refine=true; bool load_refine=true;
bool load_mat=false; bool load_mat=true;
bool load_evec=false;
MemoryManager::Print(); MemoryManager::Print();
int refine=1;
if ( load_agg ) { if ( load_agg ) {
LoadBasis(Aggregates,subspace_file); if ( !(refine) || (!load_refine) ) {
LoadBasis(Aggregates,subspace_file);
}
} else { } else {
// NBASIS=40 // NBASIS=40
@ -341,7 +379,6 @@ slurm-1482367.out:Grid : Message : 6169.469330 s : HDCG: Pcg converged in 487 it
} }
MemoryManager::Print(); MemoryManager::Print();
int refine=1;
if(refine){ if(refine){
if ( load_refine ) { if ( load_refine ) {
LoadBasis(Aggregates,refine_file); LoadBasis(Aggregates,refine_file);
@ -365,14 +402,41 @@ slurm-1482367.out:Grid : Message : 6169.469330 s : HDCG: Pcg converged in 487 it
CoarseVector c_res(Coarse5d); CoarseVector c_res(Coarse5d);
CoarseVector c_ref(Coarse5d); CoarseVector c_ref(Coarse5d);
if (0){
///////////////////////////////////////////////////
// Test the operator
///////////////////////////////////////////////////
CoarseVector c_proj(Coarse5d);
LatticeFermionD tmp(FrbGrid);
LatticeFermionD prom(FrbGrid);
blockPromote(c_src,prom,Aggregates.subspace);
FineHermOp.HermOp(prom,tmp);
std::cout<<GridLogMessage<<" Calling big dirac op "<<norm2(tmp)<<std::endl;
blockProject(c_proj,tmp,Aggregates.subspace);
std::cout<<GridLogMessage<<" Calling little Dirac Op "<<std::endl;
LittleDiracOp.M(c_src,c_res);
std::cout<<GridLogMessage<<"Little dop : "<<norm2(c_res)<<std::endl;
std::cout<<GridLogMessage<<"Big dop in subspace : "<<norm2(c_proj)<<std::endl;
c_proj = c_proj - c_res;
std::cout<<GridLogMessage<<" ldop error: "<<norm2(c_proj)<<std::endl;
}
// Try projecting to one hop only // Try projecting to one hop only
// LittleDiracOp.ShiftMatrix(1.0e-4); // LittleDiracOp.ShiftMatrix(1.0e-4);
LittleDiracOperator LittleDiracOpProj(geom_nn,FrbGrid,Coarse5d); // LittleDiracOperator LittleDiracOpProj(geom_nn,FrbGrid,Coarse5d);
LittleDiracOpProj.ProjectNearestNeighbour(0.01,LittleDiracOp); // smaller shift 0.02? n // LittleDiracOpProj.ProjectNearestNeighbour(0.01,LittleDiracOp); // smaller shift 0.02? n
typedef HermitianLinearOperator<LittleDiracOperator,CoarseVector> HermMatrix; typedef HermitianLinearOperator<LittleDiracOperator,CoarseVector> HermMatrix;
HermMatrix CoarseOp (LittleDiracOp); HermMatrix CoarseOp (LittleDiracOp);
HermMatrix CoarseOpProj (LittleDiracOpProj); // HermMatrix CoarseOpProj (LittleDiracOpProj);
MemoryManager::Print(); MemoryManager::Print();
////////////////////////////////////////// //////////////////////////////////////////
@ -388,12 +452,12 @@ slurm-1482367.out:Grid : Message : 6169.469330 s : HDCG: Pcg converged in 487 it
// int Nm=160; // int Nm=160;
// Chebyshev<CoarseVector> IRLCheby(0.005,40.0,201); //319 HDCG iters @ 128//160 nk. // Chebyshev<CoarseVector> IRLCheby(0.005,40.0,201); //319 HDCG iters @ 128//160 nk.
Chebyshev<CoarseVector> IRLCheby(0.04,40.0,201); //319 HDCG iters @ 128//160 nk. // Chebyshev<CoarseVector> IRLCheby(0.04,40.0,201);
int Nk=192; int Nk=192;
int Nm=256; int Nm=256;
int Nstop=Nk; int Nstop=Nk;
// Chebyshev<CoarseVector> IRLCheby(0.010,45.0,201); // 1 iter Chebyshev<CoarseVector> IRLCheby(0.005,40.0,201); // 1 iter
FunctionHermOp<CoarseVector> IRLOpCheby(IRLCheby,CoarseOp); FunctionHermOp<CoarseVector> IRLOpCheby(IRLCheby,CoarseOp);
PlainHermOp<CoarseVector> IRLOp (CoarseOp); PlainHermOp<CoarseVector> IRLOp (CoarseOp);
@ -405,14 +469,25 @@ slurm-1482367.out:Grid : Message : 6169.469330 s : HDCG: Pcg converged in 487 it
PowerMethod<CoarseVector> cPM; cPM(CoarseOp,c_src); PowerMethod<CoarseVector> cPM; cPM(CoarseOp,c_src);
IRL.calc(eval,evec,c_src,Nconv); if ( load_evec ) {
eval.resize(Nstop);
evec.resize(Nstop,Coarse5d);
LoadEigenvectors(eval,evec,evec_file,eval_file);
} else {
IRL.calc(eval,evec,c_src,Nconv);
assert(Nstop==eval.size());
SaveEigenvectors(eval,evec,evec_file,eval_file);
}
DeflatedGuesser<CoarseVector> DeflCoarseGuesser(evec,eval); DeflatedGuesser<CoarseVector> DeflCoarseGuesser(evec,eval);
MultiRHSDeflation<CoarseVector> MrhsGuesser;
////////////////////////////////////////// //////////////////////////////////////////
// Build a coarse space solver // Build a coarse space solver
////////////////////////////////////////// //////////////////////////////////////////
int maxit=30000; int maxit=30000;
ConjugateGradient<CoarseVector> CG(1.0e-8,maxit,false); ConjugateGradient<CoarseVector> CG(1.0e-10,maxit,false);
ConjugateGradient<LatticeFermionD> CGfine(1.0e-8,30000,false); ConjugateGradient<LatticeFermionD> CGfine(1.0e-8,30000,false);
ZeroGuesser<CoarseVector> CoarseZeroGuesser; ZeroGuesser<CoarseVector> CoarseZeroGuesser;
@ -427,8 +502,8 @@ slurm-1482367.out:Grid : Message : 6169.469330 s : HDCG: Pcg converged in 487 it
// Deflated (with real op EV's) solve for the projected coarse op // Deflated (with real op EV's) solve for the projected coarse op
// Work towards ADEF1 in the coarse space // Work towards ADEF1 in the coarse space
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
HPDSolver<CoarseVector> HPDSolveProj(CoarseOpProj,CG,DeflCoarseGuesser); // HPDSolver<CoarseVector> HPDSolveProj(CoarseOpProj,CG,DeflCoarseGuesser);
c_res=Zero(); // c_res=Zero();
// HPDSolveProj(c_src,c_res); // HPDSolveProj(c_src,c_res);
// std::cout << GridLogMessage<<"src norm "<<norm2(c_src)<<std::endl; // std::cout << GridLogMessage<<"src norm "<<norm2(c_src)<<std::endl;
// std::cout << GridLogMessage<<"res norm "<<norm2(c_res)<<std::endl; // std::cout << GridLogMessage<<"res norm "<<norm2(c_res)<<std::endl;
@ -438,7 +513,7 @@ slurm-1482367.out:Grid : Message : 6169.469330 s : HDCG: Pcg converged in 487 it
////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////
// Coarse ADEF1 with deflation space // Coarse ADEF1 with deflation space
////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////
ChebyshevSmoother<CoarseVector > CoarseSmoother(1.0,37.,8,CoarseOpProj); // just go to sloppy 0.1 convergence // ChebyshevSmoother<CoarseVector > CoarseSmoother(1.0,37.,8,CoarseOpProj); // just go to sloppy 0.1 convergence
// CoarseSmoother(0.1,37.,8,CoarseOpProj); // // CoarseSmoother(0.1,37.,8,CoarseOpProj); //
// CoarseSmoother(0.5,37.,6,CoarseOpProj); // 8 iter 0.36s // CoarseSmoother(0.5,37.,6,CoarseOpProj); // 8 iter 0.36s
// CoarseSmoother(0.5,37.,12,CoarseOpProj); // 8 iter, 0.55s // CoarseSmoother(0.5,37.,12,CoarseOpProj); // 8 iter, 0.55s
@ -516,9 +591,9 @@ slurm-1482367.out:Grid : Message : 6169.469330 s : HDCG: Pcg converged in 487 it
// mrhs coarse solve // mrhs coarse solve
// Create a higher dim coarse grid // Create a higher dim coarse grid
////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////
ConjugateGradient<CoarseVector> coarseCG(2.0e-2,20000,true); ConjugateGradient<CoarseVector> coarseCG(4.0e-2,20000,true);
const int nrhs=vComplex::Nsimd(); const int nrhs=vComplex::Nsimd()*3;
Coordinate mpi=GridDefaultMpi(); Coordinate mpi=GridDefaultMpi();
Coordinate rhMpi ({1,1,mpi[0],mpi[1],mpi[2],mpi[3]}); Coordinate rhMpi ({1,1,mpi[0],mpi[1],mpi[2],mpi[3]});
@ -531,7 +606,7 @@ slurm-1482367.out:Grid : Message : 6169.469330 s : HDCG: Pcg converged in 487 it
typedef HermitianLinearOperator<MultiGeneralCoarsenedMatrix_t,CoarseVector> MrhsHermMatrix; typedef HermitianLinearOperator<MultiGeneralCoarsenedMatrix_t,CoarseVector> MrhsHermMatrix;
MrhsHermMatrix MrhsCoarseOp (mrhs); MrhsHermMatrix MrhsCoarseOp (mrhs);
MemoryManager::Print(); MemoryManager::Print();
#if 1
{ {
CoarseVector rh_res(CoarseMrhs); CoarseVector rh_res(CoarseMrhs);
CoarseVector rh_guess(CoarseMrhs); CoarseVector rh_guess(CoarseMrhs);
@ -539,19 +614,39 @@ slurm-1482367.out:Grid : Message : 6169.469330 s : HDCG: Pcg converged in 487 it
rh_res= Zero(); rh_res= Zero();
rh_guess= Zero(); rh_guess= Zero();
std::cout << "*************************"<<std::endl;
std::cout << " MrhsGuesser importing"<<std::endl;
std::cout << "*************************"<<std::endl;
MrhsGuesser.ImportEigenBasis(evec,eval);
std::vector<CoarseVector> BlasGuess(nrhs,Coarse5d);
std::vector<CoarseVector> BlasSource(nrhs,Coarse5d);
for(int r=0;r<nrhs;r++){ for(int r=0;r<nrhs;r++){
random(CRNG,c_src); random(CRNG,BlasSource[r]);
}
MrhsGuesser.DeflateSources(BlasSource,BlasGuess);
for(int r=0;r<nrhs;r++){
std::cout << "*************************"<<std::endl;
std::cout << "**** DeflCoarseGuesser &&&&& "<<std::endl;
std::cout << "*************************"<<std::endl;
c_src=BlasSource[r];
DeflCoarseGuesser(c_src,c_res); DeflCoarseGuesser(c_src,c_res);
std::cout << "Deflated guess "<< norm2(c_res)<<std::endl;
std::cout << "Blas deflated guess "<< norm2(BlasGuess[r])<<std::endl;
std::cout << "*************************"<<std::endl;
BlasGuess[r] = BlasGuess[r] - c_res;
std::cout << "Diff " <<norm2(BlasGuess[r])<<std::endl;
std::cout << "*************************"<<std::endl;
InsertSlice(c_res,rh_res,r,0); InsertSlice(c_res,rh_res,r,0);
InsertSlice(c_res,rh_guess,r,0); InsertSlice(c_res,rh_guess,r,0);
InsertSlice(c_src,rh_src,r,0); InsertSlice(c_src,rh_src,r,0);
} }
MemoryManager::Print();
coarseCG(MrhsCoarseOp,rh_src,rh_res); coarseCG(MrhsCoarseOp,rh_src,rh_res);
MemoryManager::Print();
//redo with block CG //redo with block CG ?
for(int r=0;r<nrhs;r++){ for(int r=0;r<nrhs;r++){
std::cout << " compare to single RHS "<<r<<"/"<<nrhs<<std::endl; std::cout << " compare to single RHS "<<r<<"/"<<nrhs<<std::endl;
ExtractSlice(c_src,rh_src,r,0); ExtractSlice(c_src,rh_src,r,0);
@ -566,18 +661,32 @@ slurm-1482367.out:Grid : Message : 6169.469330 s : HDCG: Pcg converged in 487 it
assert(diff < 1.0e-1); assert(diff < 1.0e-1);
} }
} }
MemoryManager::Print(); #endif
////////////////////////////////////// //////////////////////////////////////
// fine solve // fine solve
////////////////////////////////////// //////////////////////////////////////
// std::vector<RealD> los({2.0,2.5}); // Nbasis 40 == 36,36 iters // std::vector<RealD> los({2.0,2.5}); // Nbasis 40 == 36,36 iters
std::vector<RealD> los({2.0}); // Nbasis 40 == 36,36 iters // std::vector<RealD> los({2.0});
// std::vector<RealD> los({2.5});
// std::vector<int> ords({7,8,10}); // Nbasis 40 == 40,38,36 iters (320,342,396 mults) // std::vector<int> ords({7,8,10}); // Nbasis 40 == 40,38,36 iters (320,342,396 mults)
// std::vector<int> ords({7}); // Nbasis 40 == 40 iters (320 mults) // std::vector<int> ords({7}); // Nbasis 40 == 40 iters (320 mults)
std::vector<int> ords({9}); // Nbasis 40 == 40 iters (320 mults) // std::vector<int> ords({9}); // Nbasis 40 == 40 iters (320 mults)
// 148 outer
// std::vector<RealD> los({1.0});
// std::vector<int> ords({24});
// 162 outer
// std::vector<RealD> los({2.5});
// std::vector<int> ords({9});
// ??? outer
std::vector<RealD> los({2.0});
std::vector<int> ords({7});
/* /*
Smoother opt @56 nbasis, 0.04 convergence, 192 evs Smoother opt @56 nbasis, 0.04 convergence, 192 evs
@ -680,31 +789,33 @@ Conclusion: higher order smoother is doing better. Much better. Use a Krylov smo
////////////////////////////////////////// //////////////////////////////////////////
// Build a HDCG solver // Build a HDCG solver
////////////////////////////////////////// //////////////////////////////////////////
/* TwoLevelADEF2<LatticeFermion,CoarseVector,Subspace> TwoLevelADEF2<LatticeFermion,CoarseVector,Subspace>
HDCG(1.0e-8, 700, HDCG(1.0e-8, 700,
FineHermOp, FineHermOp,
CGsmooth, CGsmooth,
HPDSolveSloppy, HPDSolveSloppy,
HPDSolve, HPDSolve,
Aggregates); Aggregates);
result=Zero(); // result=Zero();
*/ // std::cout << "Calling HDCG single RHS"<<std::endl;
// std::cout << "Calling HDCG"<<std::endl;
// HDCG(src,result); // HDCG(src,result);
////////////////////////////////////////// //////////////////////////////////////////
// Build a HDCG mrhs solver // Build a HDCG mrhs solver
////////////////////////////////////////// //////////////////////////////////////////
#if 1
MemoryManager::Print(); MemoryManager::Print();
DoNothingGuesser<CoarseVector> DoNothing; DoNothingGuesser<CoarseVector> DoNothing;
HPDSolver<CoarseVector> HPDSolveMrhs(MrhsCoarseOp,coarseCG,DoNothing); HPDSolver<CoarseVector> HPDSolveMrhs(MrhsCoarseOp,CG,DoNothing);
HPDSolver<CoarseVector> HPDSolveMrhsSloppy(MrhsCoarseOp,CGsloppy,DoNothing);
TwoLevelADEF2mrhs<LatticeFermion,CoarseVector,Subspace> TwoLevelADEF2mrhs<LatticeFermion,CoarseVector,Subspace>
HDCGmrhs(1.0e-8, 700, HDCGmrhs(1.0e-8, 500,
FineHermOp, FineHermOp,
CGsmooth, CGsmooth,
HPDSolveSloppy, // Never used // HPDSolveSloppy, // Never used
HPDSolve, // Used in Vstart // HPDSolve, // Used in Vstart
HPDSolveMrhs, // Used in M1 HPDSolveMrhsSloppy, // Used in M1
HPDSolveMrhs, // Used in Vstart
DeflCoarseGuesser, // single RHS guess used in M1 DeflCoarseGuesser, // single RHS guess used in M1
CoarseMrhs, // Grid needed to Mrhs grid CoarseMrhs, // Grid needed to Mrhs grid
Aggregates); Aggregates);
@ -715,25 +826,33 @@ Conclusion: higher order smoother is doing better. Much better. Use a Krylov smo
MemoryManager::Print(); MemoryManager::Print();
std::vector<LatticeFermionD> src_mrhs(nrhs,FrbGrid); std::vector<LatticeFermionD> src_mrhs(nrhs,FrbGrid);
std::cout << " mRHS source"<<std::endl;
std::vector<LatticeFermionD> res_mrhs(nrhs,FrbGrid); std::vector<LatticeFermionD> res_mrhs(nrhs,FrbGrid);
std::cout << " mRHS result"<<std::endl;
MemoryManager::Print(); MemoryManager::Print();
for(int r=0;r<nrhs;r++){ random(RNG5,src_mrhs[0]);
random(RNG5,src_mrhs[r]); for(int r=0;r<nrhs;r++){
if(r>0)src_mrhs[r]=src_mrhs[0];
res_mrhs[r]=Zero(); res_mrhs[r]=Zero();
std::cout << "Setup mrhs source "<<r<<std::endl; std::cout << "Setup mrhs source "<<r<<std::endl;
} }
std::cout << "Calling the mRHS HDCG"<<std::endl; std::cout << "Calling the mRHS HDCG"<<std::endl;
MemoryManager::Print(); MemoryManager::Print();
HDCGmrhs(src_mrhs,res_mrhs); HDCGmrhs(src_mrhs,res_mrhs);
MemoryManager::Print(); MemoryManager::Print();
#endif
} }
} }
// Standard CG // Standard CG
result=Zero(); #if 1
CGfine(HermOpEO, src, result); {
LatticeFermion result(FrbGrid); result=Zero();
LatticeFermion src(FrbGrid); random(RNG5,src);
result=Zero();
CGfine(HermOpEO, src, result);
}
#endif
Grid_finalize(); Grid_finalize();
return 0; return 0;
} }