1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-21 09:12:03 +01:00

Compare commits

...

5 Commits

Author SHA1 Message Date
be18ffe3b4 Further tuning and lanczos 2023-09-27 16:21:58 -04:00
0d63dce4e2 Timing info 2023-09-27 16:21:14 -04:00
26b30e1551 Flop count and projection to nearest neighbour (keeps redundant flops) 2023-09-27 16:20:11 -04:00
7fc58ac293 Verbose subspace init 2023-09-27 16:19:45 -04:00
3a86cce8c1 Compile 2023-09-27 16:19:18 -04:00
5 changed files with 93 additions and 133 deletions

View File

@ -323,7 +323,7 @@ public:
// New normalised noise
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : nbasis"<<nn<<std::endl;
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : nbasis "<<nn<<std::endl;
for(int b =0;b<nbasis;b++)
@ -333,7 +333,8 @@ public:
noise=noise*scale;
// Initial matrix element
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
hermop.Op(noise,Mn);
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
// Filter
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
Cheb(hermop,noise,Mn);

View File

@ -220,6 +220,30 @@ public:
GridBase * FineGrid(void) { return _FineGrid; }; // this is all the linalg routines need to know
GridCartesian * CoarseGrid(void) { return _CoarseGrid; }; // this is all the linalg routines need to know
void ProjectNearestNeighbour(RealD shift)
{
int Nd = geom.grid->Nd();
int point;
std::cout << "ProjectNearestNeighbour "<<std::endl;
for(int p=0;p<geom.npoint;p++){
int nhops = 0;
for(int s=0;s<Nd;s++){
nhops+=abs(geom.shifts[p][s]);
}
if(nhops>1) {
std::cout << "setting geom "<<p<<" shift "<<geom.shifts[p]<<" to zero "<<std::endl;
_A[p]=Zero();
_Adag[p]=Zero();
}
if(nhops==0) {
std::cout << " Adding IR shift "<<shift<<" to "<<geom.shifts[p]<<std::endl;
_A[p]=_A[p]+shift;
_Adag[p]=_Adag[p]+shift;
}
}
}
GeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridBase *FineGrid, GridCartesian * CoarseGrid)
: geom(_geom),
_FineGrid(FineGrid),
@ -255,12 +279,19 @@ public:
}
void Mult (std::vector<CoarseMatrix> &A,const CoarseVector &in, CoarseVector &out)
{
RealD ttot=0;
RealD tmult=0;
RealD texch=0;
RealD text=0;
ttot=-usecond();
conformable(CoarseGrid(),in.Grid());
conformable(in.Grid(),out.Grid());
out.Checkerboard() = in.Checkerboard();
CoarseVector tin=in;
texch-=usecond();
CoarseVector pin = Cell.Exchange(tin);
texch+=usecond();
CoarseVector pout(pin.Grid());
@ -281,11 +312,15 @@ public:
typedef CComplex calcComplex;
int osites=pin.Grid()->oSites();
int gsites=pin.Grid()->gSites();
RealD flops = 1.0* npoint * nbasis * nbasis * 8 * gsites;
for(int point=0;point<npoint;point++){
conformable(A[point],pin);
}
tmult-=usecond();
accelerator_for(sss, osites*nbasis, 1, {
int ss = sss/nbasis;
int b = sss%nbasis;
@ -313,10 +348,19 @@ public:
}
out_v[ss](b)=res;
});
tmult+=usecond();
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
text-=usecond();
out = Cell.Extract(pout);
text+=usecond();
ttot+=usecond();
std::cout << GridLogMessage<<"Coarse Mult exch "<<texch<<" us"<<std::endl;
std::cout << GridLogMessage<<"Coarse Mult mult "<<tmult<<" us"<<std::endl;
std::cout << GridLogMessage<<"Coarse Mult ext "<<text<<" us"<<std::endl;
std::cout << GridLogMessage<<"Coarse Mult tot "<<ttot<<" us"<<std::endl;
std::cout << GridLogMessage<<"Coarse Kernel flops/s "<< flops/tmult<<" mflop/s"<<std::endl;
std::cout << GridLogMessage<<"Coarse flops/s "<< flops/ttot<<" mflop/s"<<std::endl;
};
void PopulateAdag(void)

View File

@ -84,7 +84,7 @@ class TwoLevelFlexiblePcg : public LinearFunction<Field>
grid = Aggregates.FineGrid;
};
void Inflexible(Field &src,Field &psi)
void Inflexible(const Field &src,Field &psi)
{
Field resid(grid);
RealD f;
@ -104,6 +104,8 @@ class TwoLevelFlexiblePcg : public LinearFunction<Field>
RealD guess = norm2(psi);
double tn;
GridStopWatch HDCGTimer;
HDCGTimer.Start();
//////////////////////////
// x0 = Vstart -- possibly modify guess
//////////////////////////
@ -168,7 +170,8 @@ class TwoLevelFlexiblePcg : public LinearFunction<Field>
// Stopping condition
if ( rn <= rsq ) {
std::cout<<GridLogMessage<<"HDCG: Pcg converged in "<<k<<" iterations"<<std::endl;;
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: Pcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
_FineLinop.HermOp(x,mmp);
axpy(tmp,-1.0,src,mmp);
@ -189,126 +192,9 @@ class TwoLevelFlexiblePcg : public LinearFunction<Field>
return ;
}
// The Pcg routine is common to all, but the various matrices differ from derived
// implementation to derived implmentation
void operator() (const Field &src, Field &psi){
psi.Checkerboard() = src.Checkerboard();
grid = src.Grid();
RealD f;
RealD rtzp,rtz,a,d,b;
RealD rptzp;
RealD tn;
RealD guess = norm2(psi);
RealD ssq = norm2(src);
RealD rsq = ssq*Tolerance*Tolerance;
/////////////////////////////
// Set up history vectors
/////////////////////////////
std::vector<Field> p (mmax,grid);
std::vector<Field> mmp(mmax,grid);
std::vector<RealD> pAp(mmax);
Field x (grid);
Field z (grid);
Field tmp(grid);
Field r (grid);
Field mu (grid);
//////////////////////////
// x0 = Vstart -- possibly modify guess
//////////////////////////
x=Zero();
Vstart(x,src);
// r0 = b -A x0
_FineLinop.HermOp(x,mmp[0]); // Fine operator
axpy (r, -1.0,mmp[0], src); // Recomputes r=src-Ax0
//////////////////////////////////
// Compute z = M1 r
//////////////////////////////////
PcgM1(r,z);
rtzp =real(innerProduct(r,z));
///////////////////////////////////////
// Solve for Mss mu = P A z and set p = z-mu
///////////////////////////////////////
PcgM2(z,p[0]);
for (int k=0;k<=MaxIterations;k++){
int peri_k = k % mmax;
int peri_kp = (k+1) % mmax;
rtz=rtzp;
d= PcgM3(p[peri_k],mmp[peri_k]);
a = rtz/d;
// Memorise this
pAp[peri_k] = d;
std::cout << GridLogMessage << " pCG d "<< d<<std::endl;
axpy(x,a,p[peri_k],x);
// std::cout << GridLogMessage << " pCG x "<< norm2(x)<<std::endl;
RealD rn = axpy_norm(r,-a,mmp[peri_k],r);
std::cout << GridLogMessage << " pCG rn "<< rn<<std::endl;
// Compute z = M x
PcgM1(r,z);
// std::cout << GridLogMessage << " pCG z "<< norm2(z)<<std::endl;
rtzp =real(innerProduct(r,z));
std::cout << GridLogMessage << " pCG rtzp "<<rtzp<<std::endl;
// std::cout << GridLogMessage << " pCG r "<<norm2(r)<<std::endl;
PcgM2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
// std::cout << GridLogMessage << " pCG mu "<<norm2(mu)<<std::endl;
p[peri_kp]=mu;
// std::cout << GridLogMessage << " pCG p[peri_kp] "<<norm2(p[peri_kp])<<std::endl;
// Standard search direction p -> z + b p
b = (rtzp)/rtz;
std::cout << GridLogMessage << " pCG b "<< b<<std::endl;
int northog;
// northog = (peri_kp==0)?1:peri_kp; // This is the fCG(mmax) algorithm
northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
for(int back=0; back < northog; back++){
int peri_back = (k-back)%mmax;
RealD pbApk= real(innerProduct(mmp[peri_back],p[peri_kp]));
RealD beta = -pbApk/pAp[peri_back];
axpy(p[peri_kp],beta,p[peri_back],p[peri_kp]);
}
// std::cout << GridLogMessage << " pCG p[peri_kp] orthog "<< norm2(p[peri_kp])<<std::endl;
RealD rrn=sqrt(rn/ssq);
std::cout<<GridLogMessage<<"TwoLevelfPcg: k= "<<k<<" residual = "<<rrn<<std::endl;
// Stopping condition
if ( rn <= rsq ) {
_FineLinop.HermOp(x,mmp[0]); // Shouldn't this be something else?
axpy(tmp,-1.0,src,mmp[0]);
RealD psinorm = sqrt(norm2(x));
RealD srcnorm = sqrt(norm2(src));
RealD tmpnorm = sqrt(norm2(tmp));
RealD true_residual = tmpnorm/srcnorm;
std::cout<<GridLogMessage<<"TwoLevelfPcg: true residual is "<<true_residual<<std::endl;
std::cout<<GridLogMessage<<"TwoLevelfPcg: target residual was"<<Tolerance<<std::endl;
return;
}
}
// Non-convergence
assert(0);
virtual void operator() (const Field &in, Field &out)
{
this->Inflexible(in,out);
}
public:
@ -322,17 +208,37 @@ class TwoLevelFlexiblePcg : public LinearFunction<Field>
CoarseField PleftProj(coarsegrid);
CoarseField PleftMss_proj(coarsegrid);
GridStopWatch SmootherTimer;
GridStopWatch MatrixTimer;
SmootherTimer.Start();
_Smoother(in,Min);
SmootherTimer.Stop();
MatrixTimer.Start();
_FineLinop.HermOp(Min,out);
MatrixTimer.Stop();
axpy(tmp,-1.0,out,in); // tmp = in - A Min
GridStopWatch ProjTimer;
GridStopWatch CoarseTimer;
GridStopWatch PromTimer;
ProjTimer.Start();
_Aggregates.ProjectToSubspace(PleftProj,tmp);
ProjTimer.Stop();
CoarseTimer.Start();
_CoarseSolver(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
CoarseTimer.Stop();
PromTimer.Start();
_Aggregates.PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]
PromTimer.Stop();
std::cout << GridLogMessage << "PcgM1 breakdown "<<std::endl;
std::cout << GridLogMessage << "\tSmoother " << SmootherTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tProj " << ProjTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tCoarse " << CoarseTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tProm " << PromTimer.Elapsed() <<std::endl;
axpy(out,1.0,Min,tmp); // Min+tmp
}
virtual void PcgM2(const Field & in, Field & out) {

View File

@ -177,17 +177,21 @@ int main (int argc, char ** argv)
LittleDiracOperator LittleDiracOp(geom,FrbGrid,Coarse5d);
LittleDiracOp.CoarsenOperatorColoured(FineHermOp,Aggregates);
// Try projecting to one hop only
LittleDiracOperator LittleDiracOpProj(LittleDiracOp);
LittleDiracOpProj.ProjectNearestNeighbour(0.5);
typedef HermitianLinearOperator<LittleDiracOperator,CoarseVector> HermMatrix;
HermMatrix CoarseOp (LittleDiracOp);
//////////////////////////////////////////
// Build a coarse lanczos
//////////////////////////////////////////
Chebyshev<CoarseVector> IRLCheby(0.02,50.0,71); // 1 iter
Chebyshev<CoarseVector> IRLCheby(0.5,60.0,71); // 1 iter
FunctionHermOp<CoarseVector> IRLOpCheby(IRLCheby,CoarseOp);
PlainHermOp<CoarseVector> IRLOp (CoarseOp);
int Nk=64;
int Nm=128;
int Nk=48;
int Nm=64;
int Nstop=Nk;
ImplicitlyRestartedLanczos<CoarseVector> IRL(IRLOpCheby,IRLOp,Nstop,Nk,Nm,1.0e-5,20);
@ -195,6 +199,9 @@ int main (int argc, char ** argv)
std::vector<RealD> eval(Nm);
std::vector<CoarseVector> evec(Nm,Coarse5d);
CoarseVector c_src(Coarse5d); c_src=1.0;
PowerMethod<CoarseVector> cPM; cPM(CoarseOp,c_src);
IRL.calc(eval,evec,c_src,Nconv);
DeflatedGuesser<CoarseVector> DeflCoarseGuesser(evec,eval);
@ -230,7 +237,9 @@ int main (int argc, char ** argv)
// use a limited stencil. Reread BFM code to check on evecs / deflation strategy with prec
//
std::vector<RealD> los({3.0}); // Nbasis 40 == 36,36 iters
std::vector<int> ords({7,8,10}); // Nbasis 40 == 40,38,36 iters (320,342,396 mults)
// std::vector<int> ords({7,8,10}); // Nbasis 40 == 40,38,36 iters (320,342,396 mults)
std::vector<int> ords({7}); // Nbasis 40 == 40 iters (320 mults)
// Standard CG
// result=Zero();

View File

@ -189,7 +189,7 @@ int main (int argc, char ** argv)
typedef GeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LittleDiracOperator;
typedef LittleDiracOperator::CoarseVector CoarseVector;
NextToNearestStencilGeometry5D geom;
NextToNearestStencilGeometry5D geom(Coarse5d);
std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage<<"*******************************************"<<std::endl;