mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-11-02 21:14:32 +00:00 
			
		
		
		
	Compare commits
	
		
			8 Commits
		
	
	
		
			7019916294
			...
			feature/fe
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 
						 | 
					992431cb41 | ||
| 
						 | 
					f8c70545a0 | ||
| 
						 | 
					4a359fa9e9 | ||
| 
						 | 
					f81b15014a | ||
| 
						 | 
					386e63aeb9 | ||
| 
						 | 
					195b0682e7 | ||
| 
						 | 
					8244b8ee10 | ||
| 
						 | 
					0f706c10ec | 
							
								
								
									
										54
									
								
								.github/ISSUE_TEMPLATE/bug-report.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										54
									
								
								.github/ISSUE_TEMPLATE/bug-report.yml
									
									
									
									
										vendored
									
									
								
							@@ -1,54 +0,0 @@
 | 
			
		||||
name: Bug report
 | 
			
		||||
description: Report a bug.
 | 
			
		||||
title: "<insert title>"
 | 
			
		||||
labels: [bug]
 | 
			
		||||
 | 
			
		||||
body:
 | 
			
		||||
  - type: markdown
 | 
			
		||||
    attributes:
 | 
			
		||||
      value: >
 | 
			
		||||
        Thank you for taking the time to file a bug report.
 | 
			
		||||
        Please check that the code is pointing to the HEAD of develop
 | 
			
		||||
        or any commit in master which is tagged with a version number.
 | 
			
		||||
 | 
			
		||||
  - type: textarea
 | 
			
		||||
    attributes:
 | 
			
		||||
      label: "Describe the issue:"
 | 
			
		||||
      description: >
 | 
			
		||||
        Describe the issue and any previous attempt to solve it.
 | 
			
		||||
    validations:
 | 
			
		||||
      required: true
 | 
			
		||||
 | 
			
		||||
  - type: textarea
 | 
			
		||||
    attributes:
 | 
			
		||||
      label: "Code example:"
 | 
			
		||||
      description: >
 | 
			
		||||
        If relevant, show how to reproduce the issue using a minimal working
 | 
			
		||||
        example.
 | 
			
		||||
      placeholder: |
 | 
			
		||||
        << your code here >>
 | 
			
		||||
      render: shell
 | 
			
		||||
    validations:
 | 
			
		||||
      required: false
 | 
			
		||||
 | 
			
		||||
  - type: textarea
 | 
			
		||||
    attributes:
 | 
			
		||||
      label: "Target platform:"
 | 
			
		||||
      description: >
 | 
			
		||||
        Give a description of the target platform (CPU, network, compiler).
 | 
			
		||||
        Please give the full CPU part description, using for example
 | 
			
		||||
        `cat /proc/cpuinfo | grep 'model name' | uniq` (Linux)
 | 
			
		||||
        or `sysctl machdep.cpu.brand_string` (macOS) and the full output
 | 
			
		||||
        the `--version` option of your compiler.
 | 
			
		||||
    validations:
 | 
			
		||||
      required: true
 | 
			
		||||
 | 
			
		||||
  - type: textarea
 | 
			
		||||
    attributes:
 | 
			
		||||
      label: "Configure options:"
 | 
			
		||||
      description: >
 | 
			
		||||
        Please give the exact configure command used and attach
 | 
			
		||||
        `config.log`, `grid.config.summary` and the output of `make V=1`.
 | 
			
		||||
      render: shell
 | 
			
		||||
    validations:
 | 
			
		||||
      required: true
 | 
			
		||||
@@ -45,7 +45,7 @@ directory
 | 
			
		||||
 //disables nvcc specific warning in json.hpp
 | 
			
		||||
#pragma clang diagnostic ignored "-Wdeprecated-register"
 | 
			
		||||
 | 
			
		||||
#ifdef __NVCC_DIAG_PRAGMA_SUPPORT__
 | 
			
		||||
#if (__CUDACC_VER_MAJOR__ >= 11) && (__CUDACC_VER_MINOR__ >= 5)
 | 
			
		||||
 //disables nvcc specific warning in json.hpp
 | 
			
		||||
#pragma nv_diag_suppress unsigned_compare_with_zero
 | 
			
		||||
#pragma nv_diag_suppress cast_to_qualified_type
 | 
			
		||||
 
 | 
			
		||||
@@ -44,10 +44,9 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#include <Grid/GridStd.h>
 | 
			
		||||
#include <Grid/threads/Pragmas.h>
 | 
			
		||||
#include <Grid/perfmon/Timer.h>
 | 
			
		||||
//#include <Grid/perfmon/PerfCount.h>
 | 
			
		||||
#include <Grid/perfmon/PerfCount.h>
 | 
			
		||||
#include <Grid/util/Util.h>
 | 
			
		||||
#include <Grid/log/Log.h>
 | 
			
		||||
#include <Grid/perfmon/Tracing.h>
 | 
			
		||||
#include <Grid/allocator/Allocator.h>
 | 
			
		||||
#include <Grid/simd/Simd.h>
 | 
			
		||||
#include <Grid/threads/ThreadReduction.h>
 | 
			
		||||
 
 | 
			
		||||
@@ -36,7 +36,6 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
#include <Grid/qcd/QCD.h>
 | 
			
		||||
#include <Grid/qcd/spin/Spin.h>
 | 
			
		||||
#include <Grid/qcd/gparity/Gparity.h>
 | 
			
		||||
#include <Grid/qcd/utils/Utils.h>
 | 
			
		||||
#include <Grid/qcd/representations/Representations.h>
 | 
			
		||||
NAMESPACE_CHECK(GridQCDCore);
 | 
			
		||||
 
 | 
			
		||||
@@ -14,7 +14,7 @@
 | 
			
		||||
/* NVCC save and restore compile environment*/
 | 
			
		||||
#ifdef __NVCC__
 | 
			
		||||
#pragma push
 | 
			
		||||
#ifdef __NVCC_DIAG_PRAGMA_SUPPORT__
 | 
			
		||||
#if (__CUDACC_VER_MAJOR__ >= 11) && (__CUDACC_VER_MINOR__ >= 5)
 | 
			
		||||
#pragma nv_diag_suppress code_is_unreachable
 | 
			
		||||
#else
 | 
			
		||||
#pragma diag_suppress code_is_unreachable
 | 
			
		||||
 
 | 
			
		||||
@@ -66,10 +66,6 @@ if BUILD_FERMION_REPS
 | 
			
		||||
  extra_sources+=$(ADJ_FERMION_FILES)
 | 
			
		||||
  extra_sources+=$(TWOIND_FERMION_FILES)
 | 
			
		||||
endif
 | 
			
		||||
if BUILD_SP
 | 
			
		||||
    extra_sources+=$(SP_FERMION_FILES)
 | 
			
		||||
    extra_sources+=$(SP_TWOIND_FERMION_FILES)
 | 
			
		||||
endif
 | 
			
		||||
 | 
			
		||||
lib_LIBRARIES = libGrid.a
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -54,8 +54,6 @@ NAMESPACE_CHECK(BiCGSTAB);
 | 
			
		||||
#include <Grid/algorithms/iterative/SchurRedBlack.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrecBatched.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/BiCGSTABMixedPrec.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>
 | 
			
		||||
 
 | 
			
		||||
@@ -324,9 +324,9 @@ public:
 | 
			
		||||
  GridBase*        _cbgrid;
 | 
			
		||||
  int hermitian;
 | 
			
		||||
 | 
			
		||||
  CartesianStencil<siteVector,siteVector,DefaultImplParams> Stencil; 
 | 
			
		||||
  CartesianStencil<siteVector,siteVector,DefaultImplParams> StencilEven;
 | 
			
		||||
  CartesianStencil<siteVector,siteVector,DefaultImplParams> StencilOdd;
 | 
			
		||||
  CartesianStencil<siteVector,siteVector,int> Stencil; 
 | 
			
		||||
  CartesianStencil<siteVector,siteVector,int> StencilEven;
 | 
			
		||||
  CartesianStencil<siteVector,siteVector,int> StencilOdd;
 | 
			
		||||
 | 
			
		||||
  std::vector<CoarseMatrix> A;
 | 
			
		||||
  std::vector<CoarseMatrix> Aeven;
 | 
			
		||||
@@ -631,7 +631,7 @@ public:
 | 
			
		||||
    assert(Aself != nullptr);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void DselfInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, CoarseMatrix &a,
 | 
			
		||||
  void DselfInternal(CartesianStencil<siteVector,siteVector,int> &st, CoarseMatrix &a,
 | 
			
		||||
                       const CoarseVector &in, CoarseVector &out, int dag) {
 | 
			
		||||
    int point = geom.npoint-1;
 | 
			
		||||
    autoView( out_v, out, AcceleratorWrite);
 | 
			
		||||
@@ -694,7 +694,7 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void DhopInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, std::vector<CoarseMatrix> &a,
 | 
			
		||||
  void DhopInternal(CartesianStencil<siteVector,siteVector,int> &st, std::vector<CoarseMatrix> &a,
 | 
			
		||||
                    const CoarseVector &in, CoarseVector &out, int dag) {
 | 
			
		||||
    SimpleCompressor<siteVector> compressor;
 | 
			
		||||
 | 
			
		||||
@@ -784,9 +784,9 @@ public:
 | 
			
		||||
    _cbgrid(new GridRedBlackCartesian(&CoarseGrid)),
 | 
			
		||||
    geom(CoarseGrid._ndimension),
 | 
			
		||||
    hermitian(hermitian_),
 | 
			
		||||
    Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements),
 | 
			
		||||
    StencilEven(_cbgrid,geom.npoint,Even,geom.directions,geom.displacements),
 | 
			
		||||
    StencilOdd(_cbgrid,geom.npoint,Odd,geom.directions,geom.displacements),
 | 
			
		||||
    Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements,0),
 | 
			
		||||
    StencilEven(_cbgrid,geom.npoint,Even,geom.directions,geom.displacements,0),
 | 
			
		||||
    StencilOdd(_cbgrid,geom.npoint,Odd,geom.directions,geom.displacements,0),
 | 
			
		||||
    A(geom.npoint,&CoarseGrid),
 | 
			
		||||
    Aeven(geom.npoint,_cbgrid),
 | 
			
		||||
    Aodd(geom.npoint,_cbgrid),
 | 
			
		||||
@@ -804,9 +804,9 @@ public:
 | 
			
		||||
    _cbgrid(&CoarseRBGrid),
 | 
			
		||||
    geom(CoarseGrid._ndimension),
 | 
			
		||||
    hermitian(hermitian_),
 | 
			
		||||
    Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements),
 | 
			
		||||
    StencilEven(&CoarseRBGrid,geom.npoint,Even,geom.directions,geom.displacements),
 | 
			
		||||
    StencilOdd(&CoarseRBGrid,geom.npoint,Odd,geom.directions,geom.displacements),
 | 
			
		||||
    Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements,0),
 | 
			
		||||
    StencilEven(&CoarseRBGrid,geom.npoint,Even,geom.directions,geom.displacements,0),
 | 
			
		||||
    StencilOdd(&CoarseRBGrid,geom.npoint,Odd,geom.directions,geom.displacements,0),
 | 
			
		||||
    A(geom.npoint,&CoarseGrid),
 | 
			
		||||
    Aeven(geom.npoint,&CoarseRBGrid),
 | 
			
		||||
    Aodd(geom.npoint,&CoarseRBGrid),
 | 
			
		||||
 
 | 
			
		||||
@@ -526,7 +526,6 @@ public:
 | 
			
		||||
      (*this)(Linop,in[k],out[k]);
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
  virtual ~OperatorFunction(){};
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field> class LinearFunction {
 | 
			
		||||
@@ -542,7 +541,6 @@ public:
 | 
			
		||||
      (*this)(in[i], out[i]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  virtual ~LinearFunction(){};
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field> class IdentityLinearFunction : public LinearFunction<Field> {
 | 
			
		||||
 
 | 
			
		||||
@@ -258,12 +258,26 @@ public:
 | 
			
		||||
    for(int n=2;n<order;n++){
 | 
			
		||||
 | 
			
		||||
      Linop.HermOp(*Tn,y);
 | 
			
		||||
#if 0
 | 
			
		||||
      auto y_v = y.View();
 | 
			
		||||
      auto Tn_v = Tn->View();
 | 
			
		||||
      auto Tnp_v = Tnp->View();
 | 
			
		||||
      auto Tnm_v = Tnm->View();
 | 
			
		||||
      constexpr int Nsimd = vector_type::Nsimd();
 | 
			
		||||
      accelerator_for(ss, in.Grid()->oSites(), Nsimd, {
 | 
			
		||||
	  coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
 | 
			
		||||
	  coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
 | 
			
		||||
      });
 | 
			
		||||
      if ( Coeffs[n] != 0.0) {
 | 
			
		||||
	axpy(out,Coeffs[n],*Tnp,out);
 | 
			
		||||
      }
 | 
			
		||||
#else
 | 
			
		||||
      axpby(y,xscale,mscale,y,(*Tn));
 | 
			
		||||
      axpby(*Tnp,2.0,-1.0,y,(*Tnm));
 | 
			
		||||
      if ( Coeffs[n] != 0.0) {
 | 
			
		||||
	axpy(out,Coeffs[n],*Tnp,out);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
      // Cycle pointers to avoid copies
 | 
			
		||||
      Field *swizzle = Tnm;
 | 
			
		||||
      Tnm    =Tn;
 | 
			
		||||
 
 | 
			
		||||
@@ -58,7 +58,6 @@ public:
 | 
			
		||||
 | 
			
		||||
  void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
 | 
			
		||||
 | 
			
		||||
    GRID_TRACE("ConjugateGradient");
 | 
			
		||||
    psi.Checkerboard() = src.Checkerboard();
 | 
			
		||||
 | 
			
		||||
    conformable(psi, src);
 | 
			
		||||
@@ -118,13 +117,9 @@ public:
 | 
			
		||||
    GridStopWatch MatrixTimer;
 | 
			
		||||
    GridStopWatch SolverTimer;
 | 
			
		||||
 | 
			
		||||
    RealD usecs = -usecond();
 | 
			
		||||
    SolverTimer.Start();
 | 
			
		||||
    int k;
 | 
			
		||||
    for (k = 1; k <= MaxIterations; k++) {
 | 
			
		||||
 | 
			
		||||
      GridStopWatch IterationTimer;
 | 
			
		||||
      IterationTimer.Start();
 | 
			
		||||
      c = cp;
 | 
			
		||||
 | 
			
		||||
      MatrixTimer.Start();
 | 
			
		||||
@@ -157,41 +152,31 @@ public:
 | 
			
		||||
      LinearCombTimer.Stop();
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      IterationTimer.Stop();
 | 
			
		||||
      if ( (k % 500) == 0 ) {
 | 
			
		||||
	std::cout << GridLogMessage << "ConjugateGradient: Iteration " << k
 | 
			
		||||
      std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k
 | 
			
		||||
                << " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl;
 | 
			
		||||
      } else { 
 | 
			
		||||
	std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k
 | 
			
		||||
		  << " residual " << sqrt(cp/ssq) << " target " << Tolerance << " took " << IterationTimer.Elapsed() << std::endl;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // Stopping condition
 | 
			
		||||
      if (cp <= rsq) {
 | 
			
		||||
	usecs +=usecond();
 | 
			
		||||
        SolverTimer.Stop();
 | 
			
		||||
        Linop.HermOpAndNorm(psi, mmp, d, qq);
 | 
			
		||||
        p = mmp - src;
 | 
			
		||||
	GridBase *grid = src.Grid();
 | 
			
		||||
	RealD DwfFlops = (1452. )*grid->gSites()*4*k
 | 
			
		||||
   	               + (8+4+8+4+4)*12*grid->gSites()*k; // CG linear algebra
 | 
			
		||||
 | 
			
		||||
        RealD srcnorm = std::sqrt(norm2(src));
 | 
			
		||||
        RealD resnorm = std::sqrt(norm2(p));
 | 
			
		||||
        RealD true_residual = resnorm / srcnorm;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k 
 | 
			
		||||
		  << "\tComputed residual " << std::sqrt(cp / ssq)
 | 
			
		||||
		  << "\tTrue residual " << true_residual
 | 
			
		||||
		  << "\tTarget " << Tolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage << "Time breakdown "<<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tInner      " << InnerTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl;
 | 
			
		||||
        std::cout << GridLogIterative << "Time breakdown "<<std::endl;
 | 
			
		||||
	std::cout << GridLogIterative << "\tElapsed    " << SolverTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogIterative << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogIterative << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogIterative << "\tInner      " << InnerTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogIterative << "\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogIterative << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
 | 
			
		||||
 | 
			
		||||
        if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -49,7 +49,6 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
    Integer TotalInnerIterations; //Number of inner CG iterations
 | 
			
		||||
    Integer TotalOuterIterations; //Number of restarts
 | 
			
		||||
    Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
 | 
			
		||||
    RealD TrueResidual;
 | 
			
		||||
 | 
			
		||||
    //Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
 | 
			
		||||
    LinearFunction<FieldF> *guesser;
 | 
			
		||||
@@ -69,7 +68,6 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
  void operator() (const FieldD &src_d_in, FieldD &sol_d){
 | 
			
		||||
    std::cout << GridLogMessage << "MixedPrecisionConjugateGradient: Starting mixed precision CG with outer tolerance " << Tolerance << " and inner tolerance " << InnerTolerance << std::endl;
 | 
			
		||||
    TotalInnerIterations = 0;
 | 
			
		||||
	
 | 
			
		||||
    GridStopWatch TotalTimer;
 | 
			
		||||
@@ -99,7 +97,6 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
    FieldF sol_f(SinglePrecGrid);
 | 
			
		||||
    sol_f.Checkerboard() = cb;
 | 
			
		||||
    
 | 
			
		||||
    std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Starting initial inner CG with tolerance " << inner_tol << std::endl;
 | 
			
		||||
    ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
 | 
			
		||||
    CG_f.ErrorOnNoConverge = false;
 | 
			
		||||
 | 
			
		||||
@@ -109,9 +106,6 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
    
 | 
			
		||||
    Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
 | 
			
		||||
      
 | 
			
		||||
    precisionChangeWorkspace pc_wk_sp_to_dp(DoublePrecGrid, SinglePrecGrid);
 | 
			
		||||
    precisionChangeWorkspace pc_wk_dp_to_sp(SinglePrecGrid, DoublePrecGrid);
 | 
			
		||||
    
 | 
			
		||||
    for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){
 | 
			
		||||
      //Compute double precision rsd and also new RHS vector.
 | 
			
		||||
      Linop_d.HermOp(sol_d, tmp_d);
 | 
			
		||||
@@ -126,7 +120,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
      while(norm * inner_tol * inner_tol < stop) inner_tol *= 2;  // inner_tol = sqrt(stop/norm) ??
 | 
			
		||||
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChange(src_f, src_d, pc_wk_dp_to_sp);
 | 
			
		||||
      precisionChange(src_f, src_d);
 | 
			
		||||
      PrecChangeTimer.Stop();
 | 
			
		||||
      
 | 
			
		||||
      sol_f = Zero();
 | 
			
		||||
@@ -136,7 +130,6 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
	(*guesser)(src_f, sol_f);
 | 
			
		||||
 | 
			
		||||
      //Inner CG
 | 
			
		||||
      std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " << outer_iter << " starting inner CG with tolerance " << inner_tol << std::endl;
 | 
			
		||||
      CG_f.Tolerance = inner_tol;
 | 
			
		||||
      InnerCGtimer.Start();
 | 
			
		||||
      CG_f(Linop_f, src_f, sol_f);
 | 
			
		||||
@@ -145,7 +138,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
      
 | 
			
		||||
      //Convert sol back to double and add to double prec solution
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChange(tmp_d, sol_f, pc_wk_sp_to_dp);
 | 
			
		||||
      precisionChange(tmp_d, sol_f);
 | 
			
		||||
      PrecChangeTimer.Stop();
 | 
			
		||||
      
 | 
			
		||||
      axpy(sol_d, 1.0, tmp_d, sol_d);
 | 
			
		||||
@@ -157,7 +150,6 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
    ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations);
 | 
			
		||||
    CG_d(Linop_d, src_d_in, sol_d);
 | 
			
		||||
    TotalFinalStepIterations = CG_d.IterationsToComplete;
 | 
			
		||||
    TrueResidual = CG_d.TrueResidual;
 | 
			
		||||
 | 
			
		||||
    TotalTimer.Stop();
 | 
			
		||||
    std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;
 | 
			
		||||
 
 | 
			
		||||
@@ -1,213 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/ConjugateGradientMixedPrecBatched.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
    Author: Raoul Hodgson <raoul.hodgson@ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_CONJUGATE_GRADIENT_MIXED_PREC_BATCHED_H
 | 
			
		||||
#define GRID_CONJUGATE_GRADIENT_MIXED_PREC_BATCHED_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
//Mixed precision restarted defect correction CG
 | 
			
		||||
template<class FieldD,class FieldF, 
 | 
			
		||||
  typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
 | 
			
		||||
  typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0> 
 | 
			
		||||
class MixedPrecisionConjugateGradientBatched : public LinearFunction<FieldD> {
 | 
			
		||||
public:
 | 
			
		||||
  using LinearFunction<FieldD>::operator();
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  RealD   InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
 | 
			
		||||
  Integer MaxInnerIterations;
 | 
			
		||||
  Integer MaxOuterIterations;
 | 
			
		||||
  Integer MaxPatchupIterations;
 | 
			
		||||
  GridBase* SinglePrecGrid; //Grid for single-precision fields
 | 
			
		||||
  RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
 | 
			
		||||
  LinearOperatorBase<FieldF> &Linop_f;
 | 
			
		||||
  LinearOperatorBase<FieldD> &Linop_d;
 | 
			
		||||
 | 
			
		||||
  //Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
 | 
			
		||||
  LinearFunction<FieldF> *guesser;
 | 
			
		||||
  bool updateResidual;
 | 
			
		||||
  
 | 
			
		||||
  MixedPrecisionConjugateGradientBatched(RealD tol, 
 | 
			
		||||
          Integer maxinnerit, 
 | 
			
		||||
          Integer maxouterit, 
 | 
			
		||||
          Integer maxpatchit,
 | 
			
		||||
          GridBase* _sp_grid, 
 | 
			
		||||
          LinearOperatorBase<FieldF> &_Linop_f, 
 | 
			
		||||
          LinearOperatorBase<FieldD> &_Linop_d,
 | 
			
		||||
          bool _updateResidual=true) :
 | 
			
		||||
    Linop_f(_Linop_f), Linop_d(_Linop_d),
 | 
			
		||||
    Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit), MaxOuterIterations(maxouterit), MaxPatchupIterations(maxpatchit), SinglePrecGrid(_sp_grid),
 | 
			
		||||
    OuterLoopNormMult(100.), guesser(NULL), updateResidual(_updateResidual) { };
 | 
			
		||||
 | 
			
		||||
  void useGuesser(LinearFunction<FieldF> &g){
 | 
			
		||||
    guesser = &g;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  void operator() (const FieldD &src_d_in, FieldD &sol_d){
 | 
			
		||||
    std::vector<FieldD> srcs_d_in{src_d_in};
 | 
			
		||||
    std::vector<FieldD> sols_d{sol_d};
 | 
			
		||||
 | 
			
		||||
    (*this)(srcs_d_in,sols_d);
 | 
			
		||||
 | 
			
		||||
    sol_d = sols_d[0];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void operator() (const std::vector<FieldD> &src_d_in, std::vector<FieldD> &sol_d){
 | 
			
		||||
    assert(src_d_in.size() == sol_d.size());
 | 
			
		||||
    int NBatch = src_d_in.size();
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "NBatch = " << NBatch << std::endl;
 | 
			
		||||
 | 
			
		||||
    Integer TotalOuterIterations = 0; //Number of restarts
 | 
			
		||||
    std::vector<Integer> TotalInnerIterations(NBatch,0);     //Number of inner CG iterations
 | 
			
		||||
    std::vector<Integer> TotalFinalStepIterations(NBatch,0); //Number of CG iterations in final patch-up step
 | 
			
		||||
  
 | 
			
		||||
    GridStopWatch TotalTimer;
 | 
			
		||||
    TotalTimer.Start();
 | 
			
		||||
 | 
			
		||||
    GridStopWatch InnerCGtimer;
 | 
			
		||||
    GridStopWatch PrecChangeTimer;
 | 
			
		||||
    
 | 
			
		||||
    int cb = src_d_in[0].Checkerboard();
 | 
			
		||||
    
 | 
			
		||||
    std::vector<RealD> src_norm;
 | 
			
		||||
    std::vector<RealD> norm;
 | 
			
		||||
    std::vector<RealD> stop;
 | 
			
		||||
    
 | 
			
		||||
    GridBase* DoublePrecGrid = src_d_in[0].Grid();
 | 
			
		||||
    FieldD tmp_d(DoublePrecGrid);
 | 
			
		||||
    tmp_d.Checkerboard() = cb;
 | 
			
		||||
    
 | 
			
		||||
    FieldD tmp2_d(DoublePrecGrid);
 | 
			
		||||
    tmp2_d.Checkerboard() = cb;
 | 
			
		||||
 | 
			
		||||
    std::vector<FieldD> src_d;
 | 
			
		||||
    std::vector<FieldF> src_f;
 | 
			
		||||
    std::vector<FieldF> sol_f;
 | 
			
		||||
 | 
			
		||||
    for (int i=0; i<NBatch; i++) {
 | 
			
		||||
      sol_d[i].Checkerboard() = cb;
 | 
			
		||||
 | 
			
		||||
      src_norm.push_back(norm2(src_d_in[i]));
 | 
			
		||||
      norm.push_back(0.);
 | 
			
		||||
      stop.push_back(src_norm[i] * Tolerance*Tolerance);
 | 
			
		||||
 | 
			
		||||
      src_d.push_back(src_d_in[i]); //source for next inner iteration, computed from residual during operation
 | 
			
		||||
 | 
			
		||||
      src_f.push_back(SinglePrecGrid);
 | 
			
		||||
      src_f[i].Checkerboard() = cb;
 | 
			
		||||
 | 
			
		||||
      sol_f.push_back(SinglePrecGrid);
 | 
			
		||||
      sol_f[i].Checkerboard() = cb;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    RealD inner_tol = InnerTolerance;
 | 
			
		||||
    
 | 
			
		||||
    ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
 | 
			
		||||
    CG_f.ErrorOnNoConverge = false;
 | 
			
		||||
    
 | 
			
		||||
    Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
 | 
			
		||||
      
 | 
			
		||||
    for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){
 | 
			
		||||
      std::cout << GridLogMessage << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "Outer iteration " << outer_iter << std::endl;
 | 
			
		||||
      
 | 
			
		||||
      bool allConverged = true;
 | 
			
		||||
      
 | 
			
		||||
      for (int i=0; i<NBatch; i++) {
 | 
			
		||||
        //Compute double precision rsd and also new RHS vector.
 | 
			
		||||
        Linop_d.HermOp(sol_d[i], tmp_d);
 | 
			
		||||
        norm[i] = axpy_norm(src_d[i], -1., tmp_d, src_d_in[i]); //src_d is residual vector
 | 
			
		||||
        
 | 
			
		||||
        std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Outer iteration " << outer_iter <<" solve " << i << " residual "<< norm[i] << " target "<< stop[i] <<std::endl;
 | 
			
		||||
 | 
			
		||||
        PrecChangeTimer.Start();
 | 
			
		||||
        precisionChange(src_f[i], src_d[i]);
 | 
			
		||||
        PrecChangeTimer.Stop();
 | 
			
		||||
        
 | 
			
		||||
        sol_f[i] = Zero();
 | 
			
		||||
      
 | 
			
		||||
        if(norm[i] > OuterLoopNormMult * stop[i]) {
 | 
			
		||||
          allConverged = false;
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
      if (allConverged) break;
 | 
			
		||||
 | 
			
		||||
      if (updateResidual) {
 | 
			
		||||
        RealD normMax = *std::max_element(std::begin(norm), std::end(norm));
 | 
			
		||||
        RealD stopMax = *std::max_element(std::begin(stop), std::end(stop));
 | 
			
		||||
        while( normMax * inner_tol * inner_tol < stopMax) inner_tol *= 2;  // inner_tol = sqrt(stop/norm) ??
 | 
			
		||||
        CG_f.Tolerance = inner_tol;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      //Optionally improve inner solver guess (eg using known eigenvectors)
 | 
			
		||||
      if(guesser != NULL) {
 | 
			
		||||
        (*guesser)(src_f, sol_f);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      for (int i=0; i<NBatch; i++) {
 | 
			
		||||
        //Inner CG
 | 
			
		||||
        InnerCGtimer.Start();
 | 
			
		||||
        CG_f(Linop_f, src_f[i], sol_f[i]);
 | 
			
		||||
        InnerCGtimer.Stop();
 | 
			
		||||
        TotalInnerIterations[i] += CG_f.IterationsToComplete;
 | 
			
		||||
        
 | 
			
		||||
        //Convert sol back to double and add to double prec solution
 | 
			
		||||
        PrecChangeTimer.Start();
 | 
			
		||||
        precisionChange(tmp_d, sol_f[i]);
 | 
			
		||||
        PrecChangeTimer.Stop();
 | 
			
		||||
        
 | 
			
		||||
        axpy(sol_d[i], 1.0, tmp_d, sol_d[i]);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    //Final trial CG
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Starting final patch-up double-precision solve"<<std::endl;
 | 
			
		||||
    
 | 
			
		||||
    for (int i=0; i<NBatch; i++) {
 | 
			
		||||
      ConjugateGradient<FieldD> CG_d(Tolerance, MaxPatchupIterations);
 | 
			
		||||
      CG_d(Linop_d, src_d_in[i], sol_d[i]);
 | 
			
		||||
      TotalFinalStepIterations[i] += CG_d.IterationsToComplete;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    TotalTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
    for (int i=0; i<NBatch; i++) {
 | 
			
		||||
      std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: solve " << i << " Inner CG iterations " << TotalInnerIterations[i] << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations[i] << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Total time " << TotalTimer.Elapsed() << " Precision change " << PrecChangeTimer.Elapsed() << " Inner CG total " << InnerCGtimer.Elapsed() << std::endl;
 | 
			
		||||
    
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -44,7 +44,7 @@ public:
 | 
			
		||||
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  //  RealD   Tolerance;
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
 | 
			
		||||
  std::vector<int> IterationsToCompleteShift;  // Iterations for this shift
 | 
			
		||||
@@ -52,7 +52,7 @@ public:
 | 
			
		||||
  MultiShiftFunction shifts;
 | 
			
		||||
  std::vector<RealD> TrueResidualShift;
 | 
			
		||||
 | 
			
		||||
  ConjugateGradientMultiShift(Integer maxit, const MultiShiftFunction &_shifts) : 
 | 
			
		||||
  ConjugateGradientMultiShift(Integer maxit,MultiShiftFunction &_shifts) : 
 | 
			
		||||
    MaxIterations(maxit),
 | 
			
		||||
    shifts(_shifts)
 | 
			
		||||
  { 
 | 
			
		||||
@@ -84,7 +84,6 @@ public:
 | 
			
		||||
 | 
			
		||||
  void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &psi)
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("ConjugateGradientMultiShift");
 | 
			
		||||
  
 | 
			
		||||
    GridBase *grid = src.Grid();
 | 
			
		||||
  
 | 
			
		||||
@@ -184,9 +183,6 @@ public:
 | 
			
		||||
      axpby(psi[s],0.,-bs[s]*alpha[s],src,src);
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    std::cout << GridLogIterative << "ConjugateGradientMultiShift: initial rn (|src|^2) =" << rn << " qq (|MdagM src|^2) =" << qq << " d ( dot(src, [MdagM + m_0]src) ) =" << d << " c=" << c << std::endl;
 | 
			
		||||
    
 | 
			
		||||
  
 | 
			
		||||
  ///////////////////////////////////////
 | 
			
		||||
  // Timers
 | 
			
		||||
  ///////////////////////////////////////
 | 
			
		||||
@@ -325,8 +321,8 @@ public:
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tAXPY     " << AXPYTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tMatrix   " << MatrixTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tAXPY    " << AXPYTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tMarix    " << MatrixTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tShift    " << ShiftTimer.Elapsed()     <<std::endl;
 | 
			
		||||
 | 
			
		||||
      IterationsToComplete = k;	
 | 
			
		||||
 
 | 
			
		||||
@@ -1,373 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
//CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision. 
 | 
			
		||||
//The residual is stored in single precision, but the search directions and solution are stored in double precision. 
 | 
			
		||||
//Every update_freq iterations the residual is corrected in double precision. 
 | 
			
		||||
//For safety the a final regular CG is applied to clean up if necessary
 | 
			
		||||
 | 
			
		||||
//PB Pure single, then double fixup
 | 
			
		||||
 | 
			
		||||
template<class FieldD, class FieldF,
 | 
			
		||||
	 typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
 | 
			
		||||
	 typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0> 
 | 
			
		||||
class ConjugateGradientMultiShiftMixedPrecCleanup : public OperatorMultiFunction<FieldD>,
 | 
			
		||||
					     public OperatorFunction<FieldD>
 | 
			
		||||
{
 | 
			
		||||
public:                                                
 | 
			
		||||
 | 
			
		||||
  using OperatorFunction<FieldD>::operator();
 | 
			
		||||
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  Integer MaxIterationsMshift;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
 | 
			
		||||
  std::vector<int> IterationsToCompleteShift;  // Iterations for this shift
 | 
			
		||||
  int verbose;
 | 
			
		||||
  MultiShiftFunction shifts;
 | 
			
		||||
  std::vector<RealD> TrueResidualShift;
 | 
			
		||||
 | 
			
		||||
  int ReliableUpdateFreq; //number of iterations between reliable updates
 | 
			
		||||
 | 
			
		||||
  GridBase* SinglePrecGrid; //Grid for single-precision fields
 | 
			
		||||
  LinearOperatorBase<FieldF> &Linop_f; //single precision
 | 
			
		||||
 | 
			
		||||
  ConjugateGradientMultiShiftMixedPrecCleanup(Integer maxit, const MultiShiftFunction &_shifts,
 | 
			
		||||
				       GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
 | 
			
		||||
				       int _ReliableUpdateFreq) : 
 | 
			
		||||
    MaxIterationsMshift(maxit),  shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq),
 | 
			
		||||
    MaxIterations(20000)
 | 
			
		||||
  { 
 | 
			
		||||
    verbose=1;
 | 
			
		||||
    IterationsToCompleteShift.resize(_shifts.order);
 | 
			
		||||
    TrueResidualShift.resize(_shifts.order);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi)
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *grid = src.Grid();
 | 
			
		||||
    int nshift = shifts.order;
 | 
			
		||||
    std::vector<FieldD> results(nshift,grid);
 | 
			
		||||
    (*this)(Linop,src,results,psi);
 | 
			
		||||
  }
 | 
			
		||||
  void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi)
 | 
			
		||||
  {
 | 
			
		||||
    int nshift = shifts.order;
 | 
			
		||||
 | 
			
		||||
    (*this)(Linop,src,results);
 | 
			
		||||
  
 | 
			
		||||
    psi = shifts.norm*src;
 | 
			
		||||
    for(int i=0;i<nshift;i++){
 | 
			
		||||
      psi = psi + shifts.residues[i]*results[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d)
 | 
			
		||||
  { 
 | 
			
		||||
    GRID_TRACE("ConjugateGradientMultiShiftMixedPrecCleanup");
 | 
			
		||||
    GridBase *DoublePrecGrid = src_d.Grid();
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Convenience references to the info stored in "MultiShiftFunction"
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    int nshift = shifts.order;
 | 
			
		||||
 | 
			
		||||
    std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
 | 
			
		||||
    std::vector<RealD> &mresidual(shifts.tolerances);
 | 
			
		||||
    std::vector<RealD> alpha(nshift,1.0);
 | 
			
		||||
 | 
			
		||||
    //Double precision search directions
 | 
			
		||||
    FieldD p_d(DoublePrecGrid);
 | 
			
		||||
    std::vector<FieldF> ps_f (nshift, SinglePrecGrid);// Search directions (single precision)
 | 
			
		||||
    std::vector<FieldF> psi_f(nshift, SinglePrecGrid);// solutions (single precision)
 | 
			
		||||
 | 
			
		||||
    FieldD tmp_d(DoublePrecGrid);
 | 
			
		||||
    FieldD r_d(DoublePrecGrid);
 | 
			
		||||
    FieldF r_f(SinglePrecGrid);
 | 
			
		||||
    FieldD mmp_d(DoublePrecGrid);
 | 
			
		||||
 | 
			
		||||
    assert(psi_d.size()==nshift);
 | 
			
		||||
    assert(mass.size()==nshift);
 | 
			
		||||
    assert(mresidual.size()==nshift);
 | 
			
		||||
  
 | 
			
		||||
    // dynamic sized arrays on stack; 2d is a pain with vector
 | 
			
		||||
    RealD  bs[nshift];
 | 
			
		||||
    RealD  rsq[nshift];
 | 
			
		||||
    RealD  rsqf[nshift];
 | 
			
		||||
    RealD  z[nshift][2];
 | 
			
		||||
    int     converged[nshift];
 | 
			
		||||
  
 | 
			
		||||
    const int       primary =0;
 | 
			
		||||
  
 | 
			
		||||
    //Primary shift fields CG iteration
 | 
			
		||||
    RealD a,b,c,d;
 | 
			
		||||
    RealD cp,bp,qq; //prev
 | 
			
		||||
  
 | 
			
		||||
    // Matrix mult fields
 | 
			
		||||
    FieldF p_f(SinglePrecGrid);
 | 
			
		||||
    FieldF mmp_f(SinglePrecGrid);
 | 
			
		||||
 | 
			
		||||
    // Check lightest mass
 | 
			
		||||
    for(int s=0;s<nshift;s++){
 | 
			
		||||
      assert( mass[s]>= mass[primary] );
 | 
			
		||||
      converged[s]=0;
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    // Wire guess to zero
 | 
			
		||||
    // Residuals "r" are src
 | 
			
		||||
    // First search direction "p" is also src
 | 
			
		||||
    cp = norm2(src_d);
 | 
			
		||||
 | 
			
		||||
    // Handle trivial case of zero src.
 | 
			
		||||
    if( cp == 0. ){
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
	psi_d[s] = Zero();
 | 
			
		||||
	psi_f[s] = Zero();
 | 
			
		||||
	IterationsToCompleteShift[s] = 1;
 | 
			
		||||
	TrueResidualShift[s] = 0.;
 | 
			
		||||
      }
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for(int s=0;s<nshift;s++){
 | 
			
		||||
      rsq[s] = cp * mresidual[s] * mresidual[s];
 | 
			
		||||
      rsqf[s] =rsq[s];
 | 
			
		||||
      std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
 | 
			
		||||
      //      ps_d[s] = src_d;
 | 
			
		||||
      precisionChange(ps_f[s],src_d);
 | 
			
		||||
    }
 | 
			
		||||
    // r and p for primary
 | 
			
		||||
    p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
 | 
			
		||||
    r_d = p_d;
 | 
			
		||||
    
 | 
			
		||||
    //MdagM+m[0]
 | 
			
		||||
    precisionChange(p_f,p_d);
 | 
			
		||||
    Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp)
 | 
			
		||||
    precisionChange(tmp_d,mmp_f);
 | 
			
		||||
    Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp)
 | 
			
		||||
    tmp_d = tmp_d - mmp_d;
 | 
			
		||||
    std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
 | 
			
		||||
    //    assert(norm2(tmp_d)< 1.0e-4);
 | 
			
		||||
 | 
			
		||||
    axpy(mmp_d,mass[0],p_d,mmp_d);
 | 
			
		||||
    RealD rn = norm2(p_d);
 | 
			
		||||
    d += rn*mass[0];
 | 
			
		||||
 | 
			
		||||
    b = -cp /d;
 | 
			
		||||
  
 | 
			
		||||
    // Set up the various shift variables
 | 
			
		||||
    int       iz=0;
 | 
			
		||||
    z[0][1-iz] = 1.0;
 | 
			
		||||
    z[0][iz]   = 1.0;
 | 
			
		||||
    bs[0]      = b;
 | 
			
		||||
    for(int s=1;s<nshift;s++){
 | 
			
		||||
      z[s][1-iz] = 1.0;
 | 
			
		||||
      z[s][iz]   = 1.0/( 1.0 - b*(mass[s]-mass[0]));
 | 
			
		||||
      bs[s]      = b*z[s][iz]; 
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    // r += b[0] A.p[0]
 | 
			
		||||
    // c= norm(r)
 | 
			
		||||
    c=axpy_norm(r_d,b,mmp_d,r_d);
 | 
			
		||||
  
 | 
			
		||||
    for(int s=0;s<nshift;s++) {
 | 
			
		||||
      axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
 | 
			
		||||
      precisionChange(psi_f[s],psi_d[s]);
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    // Timers
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer;
 | 
			
		||||
 | 
			
		||||
    SolverTimer.Start();
 | 
			
		||||
  
 | 
			
		||||
    // Iteration loop
 | 
			
		||||
    int k;
 | 
			
		||||
  
 | 
			
		||||
    for (k=1;k<=MaxIterationsMshift;k++){    
 | 
			
		||||
 | 
			
		||||
      a = c /cp;
 | 
			
		||||
      AXPYTimer.Start();
 | 
			
		||||
      axpy(p_d,a,p_d,r_d); 
 | 
			
		||||
      AXPYTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChange(r_f, r_d);
 | 
			
		||||
      PrecChangeTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      AXPYTimer.Start();
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
	if ( ! converged[s] ) { 
 | 
			
		||||
	  if (s==0){
 | 
			
		||||
	    axpy(ps_f[s],a,ps_f[s],r_f);
 | 
			
		||||
	  } else{
 | 
			
		||||
	    RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
 | 
			
		||||
	    axpby(ps_f[s],z[s][iz],as,r_f,ps_f[s]);
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      AXPYTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      cp=c;
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChange(p_f, p_d); //get back single prec search direction for linop
 | 
			
		||||
      PrecChangeTimer.Stop();
 | 
			
		||||
      MatrixTimer.Start();  
 | 
			
		||||
      Linop_f.HermOp(p_f,mmp_f);
 | 
			
		||||
      MatrixTimer.Stop();  
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChange(mmp_d, mmp_f); // From Float to Double
 | 
			
		||||
      PrecChangeTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      d=real(innerProduct(p_d,mmp_d));    
 | 
			
		||||
      axpy(mmp_d,mass[0],p_d,mmp_d);
 | 
			
		||||
      RealD rn = norm2(p_d);
 | 
			
		||||
      d += rn*mass[0];
 | 
			
		||||
    
 | 
			
		||||
      bp=b;
 | 
			
		||||
      b=-cp/d;
 | 
			
		||||
 | 
			
		||||
      // Toggle the recurrence history
 | 
			
		||||
      bs[0] = b;
 | 
			
		||||
      iz = 1-iz;
 | 
			
		||||
      ShiftTimer.Start();
 | 
			
		||||
      for(int s=1;s<nshift;s++){
 | 
			
		||||
	if((!converged[s])){
 | 
			
		||||
	  RealD z0 = z[s][1-iz];
 | 
			
		||||
	  RealD z1 = z[s][iz];
 | 
			
		||||
	  z[s][iz] = z0*z1*bp
 | 
			
		||||
	    / (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b)); 
 | 
			
		||||
	  bs[s] = b*z[s][iz]/z0; // NB sign  rel to Mike
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      ShiftTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      //Update single precision solutions
 | 
			
		||||
      AXPYTimer.Start();
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
	int ss = s;
 | 
			
		||||
	if( (!converged[s]) ) { 
 | 
			
		||||
	  axpy(psi_f[ss],-bs[s]*alpha[s],ps_f[s],psi_f[ss]);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      c = axpy_norm(r_d,b,mmp_d,r_d);
 | 
			
		||||
      AXPYTimer.Stop();
 | 
			
		||||
    
 | 
			
		||||
      // Convergence checks
 | 
			
		||||
      int all_converged = 1;
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
      
 | 
			
		||||
	if ( (!converged[s]) ){
 | 
			
		||||
	  IterationsToCompleteShift[s] = k;
 | 
			
		||||
	
 | 
			
		||||
	  RealD css  = c * z[s][iz]* z[s][iz];
 | 
			
		||||
	
 | 
			
		||||
	  if(css<rsqf[s]){
 | 
			
		||||
	    if ( ! converged[s] )
 | 
			
		||||
	      std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
 | 
			
		||||
	    converged[s]=1;
 | 
			
		||||
	  } else {
 | 
			
		||||
	    all_converged=0;
 | 
			
		||||
	  }
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      if ( all_converged || k == MaxIterationsMshift-1){
 | 
			
		||||
 | 
			
		||||
	SolverTimer.Stop();
 | 
			
		||||
 | 
			
		||||
	for(int s=0;s<nshift;s++){
 | 
			
		||||
	  precisionChange(psi_d[s],psi_f[s]);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	
 | 
			
		||||
	if ( all_converged ){
 | 
			
		||||
	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: All shifts have converged iteration "<<k<<std::endl;
 | 
			
		||||
	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: Checking solutions"<<std::endl;
 | 
			
		||||
	} else {
 | 
			
		||||
	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: Not all shifts have converged iteration "<<k<<std::endl;
 | 
			
		||||
	}
 | 
			
		||||
	
 | 
			
		||||
	// Check answers 
 | 
			
		||||
	for(int s=0; s < nshift; s++) { 
 | 
			
		||||
	  Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq);
 | 
			
		||||
	  axpy(tmp_d,mass[s],psi_d[s],mmp_d);
 | 
			
		||||
	  axpy(r_d,-alpha[s],src_d,tmp_d);
 | 
			
		||||
	  RealD rn = norm2(r_d);
 | 
			
		||||
	  RealD cn = norm2(src_d);
 | 
			
		||||
	  TrueResidualShift[s] = std::sqrt(rn/cn);
 | 
			
		||||
	  std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl;
 | 
			
		||||
 | 
			
		||||
	  //If we have not reached the desired tolerance, do a (mixed precision) CG cleanup
 | 
			
		||||
	  if(rn >= rsq[s]){
 | 
			
		||||
	    CleanupTimer.Start();
 | 
			
		||||
	    std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: performing cleanup step for shift " << s << std::endl;
 | 
			
		||||
 | 
			
		||||
	    //Setup linear operators for final cleanup
 | 
			
		||||
	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]);
 | 
			
		||||
	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]);
 | 
			
		||||
					       
 | 
			
		||||
	    MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d); 
 | 
			
		||||
	    cg(src_d, psi_d[s]);
 | 
			
		||||
	    
 | 
			
		||||
	    TrueResidualShift[s] = cg.TrueResidual;
 | 
			
		||||
	    CleanupTimer.Stop();
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrecCleanup: Time Breakdown for body"<<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tSolver    " << SolverTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tAXPY    " << AXPYTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tMatrix    " << MatrixTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tShift    " << ShiftTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl;
 | 
			
		||||
 | 
			
		||||
	IterationsToComplete = k;	
 | 
			
		||||
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
   
 | 
			
		||||
    }
 | 
			
		||||
    std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -1,416 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
 | 
			
		||||
#define GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
//CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision. 
 | 
			
		||||
//The residual is stored in single precision, but the search directions and solution are stored in double precision. 
 | 
			
		||||
//Every update_freq iterations the residual is corrected in double precision. 
 | 
			
		||||
    
 | 
			
		||||
//For safety the a final regular CG is applied to clean up if necessary
 | 
			
		||||
 | 
			
		||||
//Linop to add shift to input linop, used in cleanup CG
 | 
			
		||||
namespace ConjugateGradientMultiShiftMixedPrecSupport{
 | 
			
		||||
template<typename Field>
 | 
			
		||||
class ShiftedLinop: public LinearOperatorBase<Field>{
 | 
			
		||||
public:
 | 
			
		||||
  LinearOperatorBase<Field> &linop_base;
 | 
			
		||||
  RealD shift;
 | 
			
		||||
 | 
			
		||||
  ShiftedLinop(LinearOperatorBase<Field> &_linop_base, RealD _shift): linop_base(_linop_base), shift(_shift){}
 | 
			
		||||
 | 
			
		||||
  void OpDiag (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp){ assert(0); }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){ assert(0); }
 | 
			
		||||
  
 | 
			
		||||
  void Op     (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void AdjOp  (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
 | 
			
		||||
  void HermOp(const Field &in, Field &out){
 | 
			
		||||
    linop_base.HermOp(in, out);
 | 
			
		||||
    axpy(out, shift, in, out);
 | 
			
		||||
  }    
 | 
			
		||||
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
    HermOp(in,out);
 | 
			
		||||
    ComplexD dot = innerProduct(in,out);
 | 
			
		||||
    n1=real(dot);
 | 
			
		||||
    n2=norm2(out);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class FieldD, class FieldF,
 | 
			
		||||
	 typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
 | 
			
		||||
	 typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0> 
 | 
			
		||||
class ConjugateGradientMultiShiftMixedPrec : public OperatorMultiFunction<FieldD>,
 | 
			
		||||
					     public OperatorFunction<FieldD>
 | 
			
		||||
{
 | 
			
		||||
public:                                                
 | 
			
		||||
 | 
			
		||||
  using OperatorFunction<FieldD>::operator();
 | 
			
		||||
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  Integer MaxIterationsMshift;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
 | 
			
		||||
  std::vector<int> IterationsToCompleteShift;  // Iterations for this shift
 | 
			
		||||
  int verbose;
 | 
			
		||||
  MultiShiftFunction shifts;
 | 
			
		||||
  std::vector<RealD> TrueResidualShift;
 | 
			
		||||
 | 
			
		||||
  int ReliableUpdateFreq; //number of iterations between reliable updates
 | 
			
		||||
 | 
			
		||||
  GridBase* SinglePrecGrid; //Grid for single-precision fields
 | 
			
		||||
  LinearOperatorBase<FieldF> &Linop_f; //single precision
 | 
			
		||||
 | 
			
		||||
  ConjugateGradientMultiShiftMixedPrec(Integer maxit, const MultiShiftFunction &_shifts,
 | 
			
		||||
				       GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
 | 
			
		||||
				       int _ReliableUpdateFreq) : 
 | 
			
		||||
    MaxIterationsMshift(maxit),  shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq),
 | 
			
		||||
    MaxIterations(20000)
 | 
			
		||||
  { 
 | 
			
		||||
    verbose=1;
 | 
			
		||||
    IterationsToCompleteShift.resize(_shifts.order);
 | 
			
		||||
    TrueResidualShift.resize(_shifts.order);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi)
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *grid = src.Grid();
 | 
			
		||||
    int nshift = shifts.order;
 | 
			
		||||
    std::vector<FieldD> results(nshift,grid);
 | 
			
		||||
    (*this)(Linop,src,results,psi);
 | 
			
		||||
  }
 | 
			
		||||
  void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi)
 | 
			
		||||
  {
 | 
			
		||||
    int nshift = shifts.order;
 | 
			
		||||
 | 
			
		||||
    (*this)(Linop,src,results);
 | 
			
		||||
  
 | 
			
		||||
    psi = shifts.norm*src;
 | 
			
		||||
    for(int i=0;i<nshift;i++){
 | 
			
		||||
      psi = psi + shifts.residues[i]*results[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d)
 | 
			
		||||
  { 
 | 
			
		||||
    GRID_TRACE("ConjugateGradientMultiShiftMixedPrec");
 | 
			
		||||
    GridBase *DoublePrecGrid = src_d.Grid();
 | 
			
		||||
 | 
			
		||||
    precisionChangeWorkspace pc_wk_s_to_d(DoublePrecGrid,SinglePrecGrid);
 | 
			
		||||
    precisionChangeWorkspace pc_wk_d_to_s(SinglePrecGrid,DoublePrecGrid);
 | 
			
		||||
    
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Convenience references to the info stored in "MultiShiftFunction"
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    int nshift = shifts.order;
 | 
			
		||||
 | 
			
		||||
    std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
 | 
			
		||||
    std::vector<RealD> &mresidual(shifts.tolerances);
 | 
			
		||||
    std::vector<RealD> alpha(nshift,1.0);
 | 
			
		||||
 | 
			
		||||
    //Double precision search directions
 | 
			
		||||
    FieldD p_d(DoublePrecGrid);
 | 
			
		||||
    std::vector<FieldD> ps_d(nshift, DoublePrecGrid);// Search directions (double precision)
 | 
			
		||||
 | 
			
		||||
    FieldD tmp_d(DoublePrecGrid);
 | 
			
		||||
    FieldD r_d(DoublePrecGrid);
 | 
			
		||||
    FieldD mmp_d(DoublePrecGrid);
 | 
			
		||||
 | 
			
		||||
    assert(psi_d.size()==nshift);
 | 
			
		||||
    assert(mass.size()==nshift);
 | 
			
		||||
    assert(mresidual.size()==nshift);
 | 
			
		||||
  
 | 
			
		||||
    // dynamic sized arrays on stack; 2d is a pain with vector
 | 
			
		||||
    RealD  bs[nshift];
 | 
			
		||||
    RealD  rsq[nshift];
 | 
			
		||||
    RealD  rsqf[nshift];
 | 
			
		||||
    RealD  z[nshift][2];
 | 
			
		||||
    int     converged[nshift];
 | 
			
		||||
  
 | 
			
		||||
    const int       primary =0;
 | 
			
		||||
  
 | 
			
		||||
    //Primary shift fields CG iteration
 | 
			
		||||
    RealD a,b,c,d;
 | 
			
		||||
    RealD cp,bp,qq; //prev
 | 
			
		||||
  
 | 
			
		||||
    // Matrix mult fields
 | 
			
		||||
    FieldF p_f(SinglePrecGrid);
 | 
			
		||||
    FieldF mmp_f(SinglePrecGrid);
 | 
			
		||||
 | 
			
		||||
    // Check lightest mass
 | 
			
		||||
    for(int s=0;s<nshift;s++){
 | 
			
		||||
      assert( mass[s]>= mass[primary] );
 | 
			
		||||
      converged[s]=0;
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    // Wire guess to zero
 | 
			
		||||
    // Residuals "r" are src
 | 
			
		||||
    // First search direction "p" is also src
 | 
			
		||||
    cp = norm2(src_d);
 | 
			
		||||
 | 
			
		||||
    // Handle trivial case of zero src.
 | 
			
		||||
    if( cp == 0. ){
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
	psi_d[s] = Zero();
 | 
			
		||||
	IterationsToCompleteShift[s] = 1;
 | 
			
		||||
	TrueResidualShift[s] = 0.;
 | 
			
		||||
      }
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for(int s=0;s<nshift;s++){
 | 
			
		||||
      rsq[s] = cp * mresidual[s] * mresidual[s];
 | 
			
		||||
      rsqf[s] =rsq[s];
 | 
			
		||||
      std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
 | 
			
		||||
      ps_d[s] = src_d;
 | 
			
		||||
    }
 | 
			
		||||
    // r and p for primary
 | 
			
		||||
    p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
 | 
			
		||||
    r_d = p_d;
 | 
			
		||||
    
 | 
			
		||||
    //MdagM+m[0]
 | 
			
		||||
    precisionChange(p_f, p_d, pc_wk_d_to_s);
 | 
			
		||||
 | 
			
		||||
    Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp)
 | 
			
		||||
    precisionChange(tmp_d, mmp_f, pc_wk_s_to_d);
 | 
			
		||||
    Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp)
 | 
			
		||||
    tmp_d = tmp_d - mmp_d;
 | 
			
		||||
    std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
 | 
			
		||||
    assert(norm2(tmp_d)< 1.0);
 | 
			
		||||
 | 
			
		||||
    axpy(mmp_d,mass[0],p_d,mmp_d);
 | 
			
		||||
    RealD rn = norm2(p_d);
 | 
			
		||||
    d += rn*mass[0];
 | 
			
		||||
 | 
			
		||||
    b = -cp /d;
 | 
			
		||||
  
 | 
			
		||||
    // Set up the various shift variables
 | 
			
		||||
    int       iz=0;
 | 
			
		||||
    z[0][1-iz] = 1.0;
 | 
			
		||||
    z[0][iz]   = 1.0;
 | 
			
		||||
    bs[0]      = b;
 | 
			
		||||
    for(int s=1;s<nshift;s++){
 | 
			
		||||
      z[s][1-iz] = 1.0;
 | 
			
		||||
      z[s][iz]   = 1.0/( 1.0 - b*(mass[s]-mass[0]));
 | 
			
		||||
      bs[s]      = b*z[s][iz]; 
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    // r += b[0] A.p[0]
 | 
			
		||||
    // c= norm(r)
 | 
			
		||||
    c=axpy_norm(r_d,b,mmp_d,r_d);
 | 
			
		||||
  
 | 
			
		||||
    for(int s=0;s<nshift;s++) {
 | 
			
		||||
      axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    // Timers
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer;
 | 
			
		||||
 | 
			
		||||
    SolverTimer.Start();
 | 
			
		||||
  
 | 
			
		||||
    // Iteration loop
 | 
			
		||||
    int k;
 | 
			
		||||
  
 | 
			
		||||
    for (k=1;k<=MaxIterationsMshift;k++){    
 | 
			
		||||
 | 
			
		||||
      a = c /cp;
 | 
			
		||||
      AXPYTimer.Start();
 | 
			
		||||
      axpy(p_d,a,p_d,r_d); 
 | 
			
		||||
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
	if ( ! converged[s] ) { 
 | 
			
		||||
	  if (s==0){
 | 
			
		||||
	    axpy(ps_d[s],a,ps_d[s],r_d);
 | 
			
		||||
	  } else{
 | 
			
		||||
	    RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
 | 
			
		||||
	    axpby(ps_d[s],z[s][iz],as,r_d,ps_d[s]);
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      AXPYTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChange(p_f, p_d, pc_wk_d_to_s); //get back single prec search direction for linop
 | 
			
		||||
      PrecChangeTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      cp=c;
 | 
			
		||||
      MatrixTimer.Start();  
 | 
			
		||||
      Linop_f.HermOp(p_f,mmp_f);
 | 
			
		||||
      MatrixTimer.Stop();  
 | 
			
		||||
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChange(mmp_d, mmp_f, pc_wk_s_to_d); // From Float to Double
 | 
			
		||||
      PrecChangeTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      AXPYTimer.Start();
 | 
			
		||||
      d=real(innerProduct(p_d,mmp_d));    
 | 
			
		||||
      axpy(mmp_d,mass[0],p_d,mmp_d);
 | 
			
		||||
      AXPYTimer.Stop();
 | 
			
		||||
      RealD rn = norm2(p_d);
 | 
			
		||||
      d += rn*mass[0];
 | 
			
		||||
    
 | 
			
		||||
      bp=b;
 | 
			
		||||
      b=-cp/d;
 | 
			
		||||
 | 
			
		||||
      // Toggle the recurrence history
 | 
			
		||||
      bs[0] = b;
 | 
			
		||||
      iz = 1-iz;
 | 
			
		||||
      ShiftTimer.Start();
 | 
			
		||||
      for(int s=1;s<nshift;s++){
 | 
			
		||||
	if((!converged[s])){
 | 
			
		||||
	  RealD z0 = z[s][1-iz];
 | 
			
		||||
	  RealD z1 = z[s][iz];
 | 
			
		||||
	  z[s][iz] = z0*z1*bp
 | 
			
		||||
	    / (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b)); 
 | 
			
		||||
	  bs[s] = b*z[s][iz]/z0; // NB sign  rel to Mike
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      ShiftTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      //Update double precision solutions
 | 
			
		||||
      AXPYTimer.Start();
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
	int ss = s;
 | 
			
		||||
	if( (!converged[s]) ) { 
 | 
			
		||||
	  axpy(psi_d[ss],-bs[s]*alpha[s],ps_d[s],psi_d[ss]);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      //Perform reliable update if necessary; otherwise update residual from single-prec mmp
 | 
			
		||||
      c = axpy_norm(r_d,b,mmp_d,r_d);
 | 
			
		||||
 | 
			
		||||
      AXPYTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      if(k % ReliableUpdateFreq == 0){
 | 
			
		||||
	RealD c_old = c;
 | 
			
		||||
	//Replace r with true residual
 | 
			
		||||
	MatrixTimer.Start();  
 | 
			
		||||
	Linop_d.HermOp(psi_d[0],mmp_d); 
 | 
			
		||||
	MatrixTimer.Stop();  
 | 
			
		||||
 | 
			
		||||
	AXPYTimer.Start();
 | 
			
		||||
	axpy(mmp_d,mass[0],psi_d[0],mmp_d);
 | 
			
		||||
 | 
			
		||||
	c = axpy_norm(r_d, -1.0, mmp_d, src_d);
 | 
			
		||||
	AXPYTimer.Stop();
 | 
			
		||||
 | 
			
		||||
	std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<< ", replaced |r|^2 = "<<c_old <<" with |r|^2 = "<<c<<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
    
 | 
			
		||||
      // Convergence checks
 | 
			
		||||
      int all_converged = 1;
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
      
 | 
			
		||||
	if ( (!converged[s]) ){
 | 
			
		||||
	  IterationsToCompleteShift[s] = k;
 | 
			
		||||
	
 | 
			
		||||
	  RealD css  = c * z[s][iz]* z[s][iz];
 | 
			
		||||
	
 | 
			
		||||
	  if(css<rsqf[s]){
 | 
			
		||||
	    if ( ! converged[s] )
 | 
			
		||||
	      std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
 | 
			
		||||
	    converged[s]=1;
 | 
			
		||||
	  } else {
 | 
			
		||||
	    all_converged=0;
 | 
			
		||||
	  }
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      if ( all_converged || k == MaxIterationsMshift-1){
 | 
			
		||||
 | 
			
		||||
	SolverTimer.Stop();
 | 
			
		||||
 | 
			
		||||
	if ( all_converged ){
 | 
			
		||||
	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: All shifts have converged iteration "<<k<<std::endl;
 | 
			
		||||
	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Checking solutions"<<std::endl;
 | 
			
		||||
	} else {
 | 
			
		||||
	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Not all shifts have converged iteration "<<k<<std::endl;
 | 
			
		||||
	}
 | 
			
		||||
	
 | 
			
		||||
	// Check answers 
 | 
			
		||||
	for(int s=0; s < nshift; s++) { 
 | 
			
		||||
	  Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq);
 | 
			
		||||
	  axpy(tmp_d,mass[s],psi_d[s],mmp_d);
 | 
			
		||||
	  axpy(r_d,-alpha[s],src_d,tmp_d);
 | 
			
		||||
	  RealD rn = norm2(r_d);
 | 
			
		||||
	  RealD cn = norm2(src_d);
 | 
			
		||||
	  TrueResidualShift[s] = std::sqrt(rn/cn);
 | 
			
		||||
	  std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl;
 | 
			
		||||
 | 
			
		||||
	  //If we have not reached the desired tolerance, do a (mixed precision) CG cleanup
 | 
			
		||||
	  if(rn >= rsq[s]){
 | 
			
		||||
	    CleanupTimer.Start();
 | 
			
		||||
	    std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: performing cleanup step for shift " << s << std::endl;
 | 
			
		||||
 | 
			
		||||
	    //Setup linear operators for final cleanup
 | 
			
		||||
	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]);
 | 
			
		||||
	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]);
 | 
			
		||||
					       
 | 
			
		||||
	    MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d); 
 | 
			
		||||
	    cg(src_d, psi_d[s]);
 | 
			
		||||
	    
 | 
			
		||||
	    TrueResidualShift[s] = cg.TrueResidual;
 | 
			
		||||
	    CleanupTimer.Stop();
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrec: Time Breakdown for body"<<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tSolver    " << SolverTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tAXPY    " << AXPYTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tMatrix    " << MatrixTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tShift    " << ShiftTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl;
 | 
			
		||||
 | 
			
		||||
	IterationsToComplete = k;	
 | 
			
		||||
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
   
 | 
			
		||||
    }
 | 
			
		||||
    std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -48,7 +48,7 @@ public:
 | 
			
		||||
  LinearOperatorBase<FieldF> &Linop_f;
 | 
			
		||||
  LinearOperatorBase<FieldD> &Linop_d;
 | 
			
		||||
  GridBase* SinglePrecGrid;
 | 
			
		||||
  RealD Delta; //reliable update parameter. A reliable update is performed when the residual drops by a factor of Delta relative to its value at the last update
 | 
			
		||||
  RealD Delta; //reliable update parameter
 | 
			
		||||
 | 
			
		||||
  //Optional ability to switch to a different linear operator once the tolerance reaches a certain point. Useful for single/half -> single/single
 | 
			
		||||
  LinearOperatorBase<FieldF> *Linop_fallback;
 | 
			
		||||
@@ -65,9 +65,7 @@ public:
 | 
			
		||||
      ErrorOnNoConverge(err_on_no_conv),
 | 
			
		||||
      DoFinalCleanup(true),
 | 
			
		||||
      Linop_fallback(NULL)
 | 
			
		||||
  {
 | 
			
		||||
    assert(Delta > 0. && Delta < 1. && "Expect  0 < Delta < 1");
 | 
			
		||||
  };
 | 
			
		||||
  {};
 | 
			
		||||
 | 
			
		||||
  void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){
 | 
			
		||||
    Linop_fallback = &_Linop_fallback;
 | 
			
		||||
@@ -75,7 +73,6 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  void operator()(const FieldD &src, FieldD &psi) {
 | 
			
		||||
    GRID_TRACE("ConjugateGradientReliableUpdate");
 | 
			
		||||
    LinearOperatorBase<FieldF> *Linop_f_use = &Linop_f;
 | 
			
		||||
    bool using_fallback = false;
 | 
			
		||||
      
 | 
			
		||||
@@ -118,12 +115,9 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    //Single prec initialization
 | 
			
		||||
    precisionChangeWorkspace pc_wk_sp_to_dp(src.Grid(), SinglePrecGrid);
 | 
			
		||||
    precisionChangeWorkspace pc_wk_dp_to_sp(SinglePrecGrid, src.Grid());
 | 
			
		||||
    
 | 
			
		||||
    FieldF r_f(SinglePrecGrid);
 | 
			
		||||
    r_f.Checkerboard() = r.Checkerboard();
 | 
			
		||||
    precisionChange(r_f, r, pc_wk_dp_to_sp);
 | 
			
		||||
    precisionChange(r_f, r);
 | 
			
		||||
 | 
			
		||||
    FieldF psi_f(r_f);
 | 
			
		||||
    psi_f = Zero();
 | 
			
		||||
@@ -139,7 +133,6 @@ public:
 | 
			
		||||
    GridStopWatch LinalgTimer;
 | 
			
		||||
    GridStopWatch MatrixTimer;
 | 
			
		||||
    GridStopWatch SolverTimer;
 | 
			
		||||
    GridStopWatch PrecChangeTimer;
 | 
			
		||||
 | 
			
		||||
    SolverTimer.Start();
 | 
			
		||||
    int k = 0;
 | 
			
		||||
@@ -179,9 +172,7 @@ public:
 | 
			
		||||
      // Stopping condition
 | 
			
		||||
      if (cp <= rsq) {
 | 
			
		||||
	//Although not written in the paper, I assume that I have to add on the final solution
 | 
			
		||||
	PrecChangeTimer.Start();
 | 
			
		||||
	precisionChange(mmp, psi_f, pc_wk_sp_to_dp);
 | 
			
		||||
	PrecChangeTimer.Stop();
 | 
			
		||||
	precisionChange(mmp, psi_f);
 | 
			
		||||
	psi = psi + mmp;
 | 
			
		||||
	
 | 
			
		||||
	
 | 
			
		||||
@@ -202,9 +193,6 @@ public:
 | 
			
		||||
	std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tPrecChange " << PrecChangeTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tPrecChange avg time " << PrecChangeTimer.Elapsed()/(2*l+1) <<std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	IterationsToComplete = k;	
 | 
			
		||||
	ReliableUpdatesPerformed = l;
 | 
			
		||||
@@ -225,21 +213,14 @@ public:
 | 
			
		||||
      else if(cp < Delta * MaxResidSinceLastRelUp) { //reliable update
 | 
			
		||||
	std::cout << GridLogMessage << "ConjugateGradientReliableUpdate "
 | 
			
		||||
		  << cp << "(residual) < " << Delta << "(Delta) * " << MaxResidSinceLastRelUp << "(MaxResidSinceLastRelUp) on iteration " << k << " : performing reliable update\n";
 | 
			
		||||
	PrecChangeTimer.Start();
 | 
			
		||||
	precisionChange(mmp, psi_f, pc_wk_sp_to_dp);
 | 
			
		||||
	PrecChangeTimer.Stop();
 | 
			
		||||
	precisionChange(mmp, psi_f);
 | 
			
		||||
	psi = psi + mmp;
 | 
			
		||||
 | 
			
		||||
	MatrixTimer.Start();
 | 
			
		||||
	Linop_d.HermOpAndNorm(psi, mmp, d, qq);
 | 
			
		||||
	MatrixTimer.Stop();
 | 
			
		||||
	
 | 
			
		||||
	r = src - mmp;
 | 
			
		||||
 | 
			
		||||
	psi_f = Zero();
 | 
			
		||||
	PrecChangeTimer.Start();
 | 
			
		||||
	precisionChange(r_f, r, pc_wk_dp_to_sp);
 | 
			
		||||
	PrecChangeTimer.Stop();
 | 
			
		||||
	precisionChange(r_f, r);
 | 
			
		||||
	cp = norm2(r);
 | 
			
		||||
	MaxResidSinceLastRelUp = cp;
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							@@ -419,15 +419,14 @@ until convergence
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      if ( Nconv < Nstop ) {
 | 
			
		||||
      if ( Nconv < Nstop )
 | 
			
		||||
	std::cout << GridLogIRL << "Nconv ("<<Nconv<<") < Nstop ("<<Nstop<<")"<<std::endl;
 | 
			
		||||
	std::cout << GridLogIRL << "returning Nstop vectors, the last "<< Nstop-Nconv << "of which might meet convergence criterion only approximately" <<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      eval=eval2;
 | 
			
		||||
      
 | 
			
		||||
      //Keep only converged
 | 
			
		||||
      eval.resize(Nstop);// was Nconv
 | 
			
		||||
      evec.resize(Nstop,grid);// was Nconv
 | 
			
		||||
      eval.resize(Nconv);// Nstop?
 | 
			
		||||
      evec.resize(Nconv,grid);// Nstop?
 | 
			
		||||
      basisSortInPlace(evec,eval,reverse);
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
 
 | 
			
		||||
@@ -44,7 +44,6 @@ public:
 | 
			
		||||
				  int, MinRes);    // Must restart
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
//This class is the input parameter class for some testing programs
 | 
			
		||||
struct LocalCoherenceLanczosParams : Serializable {
 | 
			
		||||
public:
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
 | 
			
		||||
@@ -147,23 +146,15 @@ public:
 | 
			
		||||
  RealD                             _coarse_relax_tol;
 | 
			
		||||
  std::vector<FineField>        &_subspace;
 | 
			
		||||
  
 | 
			
		||||
  int _largestEvalIdxForReport; //The convergence of the LCL is based on the evals of the coarse grid operator, not those of the underlying fine grid operator
 | 
			
		||||
                                //As a result we do not know what the eval range of the fine operator is until the very end, making tuning the Cheby bounds very difficult
 | 
			
		||||
                                //To work around this issue, every restart we separately reconstruct the fine operator eval for the lowest and highest evec and print these
 | 
			
		||||
                                //out alongside the evals of the coarse operator. To do so we need to know the index of the largest eval (i.e. Nstop-1)
 | 
			
		||||
                                //NOTE: If largestEvalIdxForReport=-1 (default) then this is not performed
 | 
			
		||||
  
 | 
			
		||||
  ImplicitlyRestartedLanczosSmoothedTester(LinearFunction<CoarseField>   &Poly,
 | 
			
		||||
					   OperatorFunction<FineField>   &smoother,
 | 
			
		||||
					   LinearOperatorBase<FineField> &Linop,
 | 
			
		||||
					   std::vector<FineField>        &subspace,
 | 
			
		||||
					   RealD coarse_relax_tol=5.0e3,
 | 
			
		||||
					   int largestEvalIdxForReport=-1) 
 | 
			
		||||
					   RealD coarse_relax_tol=5.0e3) 
 | 
			
		||||
    : _smoother(smoother), _Linop(Linop), _Poly(Poly), _subspace(subspace),
 | 
			
		||||
      _coarse_relax_tol(coarse_relax_tol), _largestEvalIdxForReport(largestEvalIdxForReport)
 | 
			
		||||
      _coarse_relax_tol(coarse_relax_tol)  
 | 
			
		||||
  {    };
 | 
			
		||||
 | 
			
		||||
  //evalMaxApprox: approximation of largest eval of the fine Chebyshev operator (suitably wrapped by block projection)
 | 
			
		||||
  int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
 | 
			
		||||
  {
 | 
			
		||||
    CoarseField v(B);
 | 
			
		||||
@@ -186,26 +177,12 @@ public:
 | 
			
		||||
	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
 | 
			
		||||
	     <<std::endl;
 | 
			
		||||
 | 
			
		||||
    if(_largestEvalIdxForReport != -1 && (j==0 || j==_largestEvalIdxForReport)){
 | 
			
		||||
      std::cout<<GridLogIRL << "Estimating true eval of fine grid operator for eval idx " << j << std::endl;
 | 
			
		||||
      RealD tmp_eval;
 | 
			
		||||
      ReconstructEval(j,eresid,B,tmp_eval,1.0); //don't use evalMaxApprox of coarse operator! (cf below)
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    int conv=0;
 | 
			
		||||
    if( (vv<eresid*eresid) ) conv = 1;
 | 
			
		||||
    return conv;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //This function is called at the end of the coarse grid Lanczos. It promotes the coarse eigenvector 'B' to the fine grid,
 | 
			
		||||
  //applies a smoother to the result then computes the computes the *fine grid* eigenvalue (output as 'eval').
 | 
			
		||||
 | 
			
		||||
  //evalMaxApprox should be the approximation of the largest eval of the fine Hermop. However when this function is called by IRL it actually passes the largest eval of the *Chebyshev* operator (as this is the max approx used for the TestConvergence above)
 | 
			
		||||
  //As the largest eval of the Chebyshev is typically several orders of magnitude larger this makes the convergence test pass even when it should not.
 | 
			
		||||
  //We therefore ignore evalMaxApprox here and use a value of 1.0 (note this value is already used by TestCoarse)
 | 
			
		||||
  int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
 | 
			
		||||
  {
 | 
			
		||||
    evalMaxApprox = 1.0; //cf above
 | 
			
		||||
    GridBase *FineGrid = _subspace[0].Grid();    
 | 
			
		||||
    int checkerboard   = _subspace[0].Checkerboard();
 | 
			
		||||
    FineField fB(FineGrid);fB.Checkerboard() =checkerboard;
 | 
			
		||||
@@ -224,13 +201,13 @@ public:
 | 
			
		||||
    eval   = vnum/vden;
 | 
			
		||||
    fv -= eval*fB;
 | 
			
		||||
    RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
 | 
			
		||||
    if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
 | 
			
		||||
 | 
			
		||||
    std::cout.precision(13);
 | 
			
		||||
    std::cout<<GridLogIRL  << "[" << std::setw(3)<<j<<"] "
 | 
			
		||||
	     <<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
 | 
			
		||||
	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv << " target " << eresid*eresid
 | 
			
		||||
	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
 | 
			
		||||
	     <<std::endl;
 | 
			
		||||
    if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
 | 
			
		||||
    if( (vv<eresid*eresid) ) return 1;
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
@@ -308,10 +285,6 @@ public:
 | 
			
		||||
    evals_coarse.resize(0);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  //The block inner product is the inner product on the fine grid locally summed over the blocks
 | 
			
		||||
  //to give a Lattice<Scalar> on the coarse grid. This function orthnormalizes the fine-grid subspace
 | 
			
		||||
  //vectors under the block inner product. This step must be performed after computing the fine grid
 | 
			
		||||
  //eigenvectors and before computing the coarse grid eigenvectors.    
 | 
			
		||||
  void Orthogonalise(void ) {
 | 
			
		||||
    CoarseScalar InnerProd(_CoarseGrid);
 | 
			
		||||
    std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
 | 
			
		||||
@@ -355,8 +328,6 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //While this method serves to check the coarse eigenvectors, it also recomputes the eigenvalues from the smoothed reconstructed eigenvectors
 | 
			
		||||
  //hence the smoother can be tuned after running the coarse Lanczos by using a different smoother here
 | 
			
		||||
  void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax) 
 | 
			
		||||
  {
 | 
			
		||||
    assert(evals_fine.size() == nbasis);
 | 
			
		||||
@@ -405,31 +376,25 @@ public:
 | 
			
		||||
    evals_fine.resize(nbasis);
 | 
			
		||||
    subspace.resize(nbasis,_FineGrid);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //cheby_op: Parameters of the fine grid Chebyshev polynomial used for the Lanczos acceleration
 | 
			
		||||
  //cheby_smooth: Parameters of a separate Chebyshev polynomial used after the Lanczos has completed to smooth out high frequency noise in the reconstructed fine grid eigenvectors prior to computing the eigenvalue
 | 
			
		||||
  //relax: Reconstructed eigenvectors (post smoothing) are naturally not as precise as true eigenvectors. This factor acts as a multiplier on the stopping condition when determining whether the results satisfy the user provided stopping condition
 | 
			
		||||
  void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
 | 
			
		||||
		  int Nstop, int Nk, int Nm,RealD resid, 
 | 
			
		||||
		  RealD MaxIt, RealD betastp, int MinRes)
 | 
			
		||||
  {
 | 
			
		||||
    Chebyshev<FineField>                          Cheby(cheby_op); //Chebyshev of fine operator on fine grid
 | 
			
		||||
    ProjectedHermOp<Fobj,CComplex,nbasis>         Op(_FineOp,subspace); //Fine operator on coarse grid with intermediate fine grid conversion
 | 
			
		||||
    ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace); //Chebyshev of fine operator on coarse grid with intermediate fine grid conversion
 | 
			
		||||
    Chebyshev<FineField>                          Cheby(cheby_op);
 | 
			
		||||
    ProjectedHermOp<Fobj,CComplex,nbasis>         Op(_FineOp,subspace);
 | 
			
		||||
    ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace);
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    Chebyshev<FineField>                                           ChebySmooth(cheby_smooth); //lower order Chebyshev of fine operator on fine grid used to smooth regenerated eigenvectors
 | 
			
		||||
    ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax,Nstop-1); 
 | 
			
		||||
    Chebyshev<FineField>                                           ChebySmooth(cheby_smooth);
 | 
			
		||||
    ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
 | 
			
		||||
 | 
			
		||||
    evals_coarse.resize(Nm);
 | 
			
		||||
    evec_coarse.resize(Nm,_CoarseGrid);
 | 
			
		||||
 | 
			
		||||
    CoarseField src(_CoarseGrid);     src=1.0; 
 | 
			
		||||
 | 
			
		||||
    //Note the "tester" here is also responsible for generating the fine grid eigenvalues which are output into the "evals_coarse" array
 | 
			
		||||
    ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
 | 
			
		||||
    int Nconv=0;
 | 
			
		||||
    IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
 | 
			
		||||
@@ -440,14 +405,6 @@ public:
 | 
			
		||||
      std::cout << i << " Coarse eval = " << evals_coarse[i]  << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Get the fine eigenvector 'i' by reconstruction
 | 
			
		||||
  void getFineEvecEval(FineField &evec, RealD &eval, const int i) const{
 | 
			
		||||
    blockPromote(evec_coarse[i],evec,subspace);  
 | 
			
		||||
    eval = evals_coarse[i];
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
    
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -30,8 +30,6 @@ template<class Field> class PowerMethod
 | 
			
		||||
      RealD vden = norm2(src_n); 
 | 
			
		||||
      RealD na = vnum/vden; 
 | 
			
		||||
      
 | 
			
		||||
      std::cout << GridLogIterative << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
 | 
			
		||||
      
 | 
			
		||||
      if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) { 
 | 
			
		||||
 	evalMaxApprox = na; 
 | 
			
		||||
	std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
 | 
			
		||||
 
 | 
			
		||||
@@ -4,14 +4,11 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
/*Allocation types, saying which pointer cache should be used*/
 | 
			
		||||
#define Cpu      (0)
 | 
			
		||||
#define CpuHuge  (1)
 | 
			
		||||
#define CpuSmall (2)
 | 
			
		||||
#define Acc      (3)
 | 
			
		||||
#define AccHuge  (4)
 | 
			
		||||
#define AccSmall (5)
 | 
			
		||||
#define Shared   (6)
 | 
			
		||||
#define SharedHuge  (7)
 | 
			
		||||
#define SharedSmall (8)
 | 
			
		||||
#define CpuSmall (1)
 | 
			
		||||
#define Acc      (2)
 | 
			
		||||
#define AccSmall (3)
 | 
			
		||||
#define Shared   (4)
 | 
			
		||||
#define SharedSmall (5)
 | 
			
		||||
#undef GRID_MM_VERBOSE 
 | 
			
		||||
uint64_t total_shared;
 | 
			
		||||
uint64_t total_device;
 | 
			
		||||
@@ -38,15 +35,12 @@ void MemoryManager::PrintBytes(void)
 | 
			
		||||
  
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
uint64_t MemoryManager::DeviceCacheBytes() { return CacheBytes[Acc] + CacheBytes[AccHuge] + CacheBytes[AccSmall]; }
 | 
			
		||||
uint64_t MemoryManager::HostCacheBytes()   { return CacheBytes[Cpu] + CacheBytes[CpuHuge] + CacheBytes[CpuSmall]; }
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Data tables for recently freed pooiniter caches
 | 
			
		||||
//////////////////////////////////////////////////////////////////////
 | 
			
		||||
MemoryManager::AllocationCacheEntry MemoryManager::Entries[MemoryManager::NallocType][MemoryManager::NallocCacheMax];
 | 
			
		||||
int MemoryManager::Victim[MemoryManager::NallocType];
 | 
			
		||||
int MemoryManager::Ncache[MemoryManager::NallocType] = { 2, 0, 8, 8, 0, 16, 8, 0, 16 };
 | 
			
		||||
int MemoryManager::Ncache[MemoryManager::NallocType] = { 2, 8, 8, 16, 8, 16 };
 | 
			
		||||
uint64_t MemoryManager::CacheBytes[MemoryManager::NallocType];
 | 
			
		||||
//////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Actual allocation and deallocation utils
 | 
			
		||||
@@ -176,16 +170,6 @@ void MemoryManager::Init(void)
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  str= getenv("GRID_ALLOC_NCACHE_HUGE");
 | 
			
		||||
  if ( str ) {
 | 
			
		||||
    Nc = atoi(str);
 | 
			
		||||
    if ( (Nc>=0) && (Nc < NallocCacheMax)) {
 | 
			
		||||
      Ncache[CpuHuge]=Nc;
 | 
			
		||||
      Ncache[AccHuge]=Nc;
 | 
			
		||||
      Ncache[SharedHuge]=Nc;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  str= getenv("GRID_ALLOC_NCACHE_SMALL");
 | 
			
		||||
  if ( str ) {
 | 
			
		||||
    Nc = atoi(str);
 | 
			
		||||
@@ -206,9 +190,7 @@ void MemoryManager::InitMessage(void) {
 | 
			
		||||
  
 | 
			
		||||
  std::cout << GridLogMessage<< "MemoryManager::Init() setting up"<<std::endl;
 | 
			
		||||
#ifdef ALLOCATION_CACHE
 | 
			
		||||
  std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent host   allocations: SMALL "<<Ncache[CpuSmall]<<" LARGE "<<Ncache[Cpu]<<" HUGE "<<Ncache[CpuHuge]<<std::endl;
 | 
			
		||||
  std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent device allocations: SMALL "<<Ncache[AccSmall]<<" LARGE "<<Ncache[Acc]<<" Huge "<<Ncache[AccHuge]<<std::endl;
 | 
			
		||||
  std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent shared allocations: SMALL "<<Ncache[SharedSmall]<<" LARGE "<<Ncache[Shared]<<" Huge "<<Ncache[SharedHuge]<<std::endl;
 | 
			
		||||
  std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent allocations: SMALL "<<Ncache[CpuSmall]<<" LARGE "<<Ncache[Cpu]<<std::endl;
 | 
			
		||||
#endif
 | 
			
		||||
  
 | 
			
		||||
#ifdef GRID_UVM
 | 
			
		||||
@@ -240,11 +222,8 @@ void MemoryManager::InitMessage(void) {
 | 
			
		||||
void *MemoryManager::Insert(void *ptr,size_t bytes,int type) 
 | 
			
		||||
{
 | 
			
		||||
#ifdef ALLOCATION_CACHE
 | 
			
		||||
  int cache;
 | 
			
		||||
  if      (bytes < GRID_ALLOC_SMALL_LIMIT) cache = type + 2;
 | 
			
		||||
  else if (bytes >= GRID_ALLOC_HUGE_LIMIT) cache = type + 1;
 | 
			
		||||
  else                                     cache = type;
 | 
			
		||||
 | 
			
		||||
  bool small = (bytes < GRID_ALLOC_SMALL_LIMIT);
 | 
			
		||||
  int cache = type + small;
 | 
			
		||||
  return Insert(ptr,bytes,Entries[cache],Ncache[cache],Victim[cache],CacheBytes[cache]);  
 | 
			
		||||
#else
 | 
			
		||||
  return ptr;
 | 
			
		||||
@@ -253,12 +232,11 @@ void *MemoryManager::Insert(void *ptr,size_t bytes,int type)
 | 
			
		||||
 | 
			
		||||
void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim, uint64_t &cacheBytes) 
 | 
			
		||||
{
 | 
			
		||||
  assert(ncache>0);
 | 
			
		||||
#ifdef GRID_OMP
 | 
			
		||||
  assert(omp_in_parallel()==0);
 | 
			
		||||
#endif 
 | 
			
		||||
 | 
			
		||||
  if (ncache == 0) return ptr;
 | 
			
		||||
 | 
			
		||||
  void * ret = NULL;
 | 
			
		||||
  int v = -1;
 | 
			
		||||
 | 
			
		||||
@@ -293,11 +271,8 @@ void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries
 | 
			
		||||
void *MemoryManager::Lookup(size_t bytes,int type)
 | 
			
		||||
{
 | 
			
		||||
#ifdef ALLOCATION_CACHE
 | 
			
		||||
  int cache;
 | 
			
		||||
  if      (bytes < GRID_ALLOC_SMALL_LIMIT) cache = type + 2;
 | 
			
		||||
  else if (bytes >= GRID_ALLOC_HUGE_LIMIT) cache = type + 1;
 | 
			
		||||
  else                                     cache = type;
 | 
			
		||||
 | 
			
		||||
  bool small = (bytes < GRID_ALLOC_SMALL_LIMIT);
 | 
			
		||||
  int cache = type+small;
 | 
			
		||||
  return Lookup(bytes,Entries[cache],Ncache[cache],CacheBytes[cache]);
 | 
			
		||||
#else
 | 
			
		||||
  return NULL;
 | 
			
		||||
@@ -306,6 +281,7 @@ void *MemoryManager::Lookup(size_t bytes,int type)
 | 
			
		||||
 | 
			
		||||
void *MemoryManager::Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t & cacheBytes) 
 | 
			
		||||
{
 | 
			
		||||
  assert(ncache>0);
 | 
			
		||||
#ifdef GRID_OMP
 | 
			
		||||
  assert(omp_in_parallel()==0);
 | 
			
		||||
#endif 
 | 
			
		||||
 
 | 
			
		||||
@@ -35,7 +35,6 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
// Move control to configure.ac and Config.h?
 | 
			
		||||
 | 
			
		||||
#define GRID_ALLOC_SMALL_LIMIT (4096)
 | 
			
		||||
#define GRID_ALLOC_HUGE_LIMIT  (2147483648)
 | 
			
		||||
 | 
			
		||||
#define STRINGIFY(x) #x
 | 
			
		||||
#define TOSTRING(x) STRINGIFY(x)
 | 
			
		||||
@@ -71,21 +70,6 @@ enum ViewMode {
 | 
			
		||||
  CpuWriteDiscard = 0x10 // same for now
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct MemoryStatus {
 | 
			
		||||
  uint64_t     DeviceBytes;
 | 
			
		||||
  uint64_t     DeviceLRUBytes;
 | 
			
		||||
  uint64_t     DeviceMaxBytes;
 | 
			
		||||
  uint64_t     HostToDeviceBytes;
 | 
			
		||||
  uint64_t     DeviceToHostBytes;
 | 
			
		||||
  uint64_t     HostToDeviceXfer;
 | 
			
		||||
  uint64_t     DeviceToHostXfer;
 | 
			
		||||
  uint64_t     DeviceEvictions;
 | 
			
		||||
  uint64_t     DeviceDestroy;
 | 
			
		||||
  uint64_t     DeviceAllocCacheBytes;
 | 
			
		||||
  uint64_t     HostAllocCacheBytes;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class MemoryManager {
 | 
			
		||||
private:
 | 
			
		||||
 | 
			
		||||
@@ -99,7 +83,7 @@ private:
 | 
			
		||||
  } AllocationCacheEntry;
 | 
			
		||||
 | 
			
		||||
  static const int NallocCacheMax=128; 
 | 
			
		||||
  static const int NallocType=9;
 | 
			
		||||
  static const int NallocType=6;
 | 
			
		||||
  static AllocationCacheEntry Entries[NallocType][NallocCacheMax];
 | 
			
		||||
  static int Victim[NallocType];
 | 
			
		||||
  static int Ncache[NallocType];
 | 
			
		||||
@@ -138,25 +122,6 @@ private:
 | 
			
		||||
  static uint64_t     DeviceEvictions;
 | 
			
		||||
  static uint64_t     DeviceDestroy;
 | 
			
		||||
 
 | 
			
		||||
  static uint64_t     DeviceCacheBytes();
 | 
			
		||||
  static uint64_t     HostCacheBytes();
 | 
			
		||||
 | 
			
		||||
  static MemoryStatus GetFootprint(void) {
 | 
			
		||||
    MemoryStatus stat;
 | 
			
		||||
    stat.DeviceBytes       = DeviceBytes;
 | 
			
		||||
    stat.DeviceLRUBytes    = DeviceLRUBytes;
 | 
			
		||||
    stat.DeviceMaxBytes    = DeviceMaxBytes;
 | 
			
		||||
    stat.HostToDeviceBytes = HostToDeviceBytes;
 | 
			
		||||
    stat.DeviceToHostBytes = DeviceToHostBytes;
 | 
			
		||||
    stat.HostToDeviceXfer  = HostToDeviceXfer;
 | 
			
		||||
    stat.DeviceToHostXfer  = DeviceToHostXfer;
 | 
			
		||||
    stat.DeviceEvictions   = DeviceEvictions;
 | 
			
		||||
    stat.DeviceDestroy     = DeviceDestroy;
 | 
			
		||||
    stat.DeviceAllocCacheBytes = DeviceCacheBytes();
 | 
			
		||||
    stat.HostAllocCacheBytes   = HostCacheBytes();
 | 
			
		||||
    return stat;
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
 private:
 | 
			
		||||
#ifndef GRID_UVM
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -144,8 +144,8 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
 | 
			
		||||
  mprintf("MemoryManager: Evict cpu %lx acc %lx cpuLock %ld accLock %ld\n",
 | 
			
		||||
	  (uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr,
 | 
			
		||||
	  (uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock); 
 | 
			
		||||
  if (AccCache.accLock!=0) return;
 | 
			
		||||
  if (AccCache.cpuLock!=0) return;
 | 
			
		||||
  assert(AccCache.accLock==0); // Cannot evict so logic bomb
 | 
			
		||||
  assert(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
			
		||||
  if(AccCache.state==AccDirty) {
 | 
			
		||||
    Flush(AccCache);
 | 
			
		||||
  }
 | 
			
		||||
@@ -519,6 +519,7 @@ void MemoryManager::Audit(std::string s)
 | 
			
		||||
  uint64_t LruBytes1=0;
 | 
			
		||||
  uint64_t LruBytes2=0;
 | 
			
		||||
  uint64_t LruCnt=0;
 | 
			
		||||
  uint64_t LockedBytes=0;
 | 
			
		||||
  
 | 
			
		||||
  std::cout << " Memory Manager::Audit() from "<<s<<std::endl;
 | 
			
		||||
  for(auto it=LRU.begin();it!=LRU.end();it++){
 | 
			
		||||
@@ -531,7 +532,6 @@ void MemoryManager::Audit(std::string s)
 | 
			
		||||
    assert(AccCache.LRU_entry==it);
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << " Memory Manager::Audit() LRU queue matches table entries "<<std::endl;
 | 
			
		||||
 | 
			
		||||
  for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){
 | 
			
		||||
    auto &AccCache = it->second;
 | 
			
		||||
    
 | 
			
		||||
@@ -548,7 +548,6 @@ void MemoryManager::Audit(std::string s)
 | 
			
		||||
    
 | 
			
		||||
    if ( AccCache.cpuLock || AccCache.accLock ) {
 | 
			
		||||
      assert(AccCache.LRU_valid==0);
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogError << s<< "\n\t 0x"<<std::hex<<AccCache.CpuPtr<<std::dec
 | 
			
		||||
		<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
 | 
			
		||||
		<< "\t cpuLock  " << AccCache.cpuLock
 | 
			
		||||
@@ -567,7 +566,6 @@ void MemoryManager::Audit(std::string s)
 | 
			
		||||
  std::cout << " Memory Manager::Audit() device bytes matches sum over table "<<std::endl;
 | 
			
		||||
  assert(LruCnt == LRU.size());
 | 
			
		||||
  std::cout << " Memory Manager::Audit() LRU entry count matches "<<std::endl;
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void MemoryManager::PrintState(void* _CpuPtr)
 | 
			
		||||
 
 | 
			
		||||
@@ -53,11 +53,10 @@ public:
 | 
			
		||||
  // Communicator should know nothing of the physics grid, only processor grid.
 | 
			
		||||
  ////////////////////////////////////////////
 | 
			
		||||
  int              _Nprocessors;     // How many in all
 | 
			
		||||
  int              _processor;       // linear processor rank
 | 
			
		||||
  unsigned long    _ndimension;
 | 
			
		||||
  Coordinate _shm_processors;  // Which dimensions get relayed out over processors lanes.
 | 
			
		||||
  Coordinate _processors;      // Which dimensions get relayed out over processors lanes.
 | 
			
		||||
  int              _processor;       // linear processor rank
 | 
			
		||||
  Coordinate _processor_coor;  // linear processor coordinate
 | 
			
		||||
  unsigned long    _ndimension;
 | 
			
		||||
  static Grid_MPI_Comm      communicator_world;
 | 
			
		||||
  Grid_MPI_Comm             communicator;
 | 
			
		||||
  std::vector<Grid_MPI_Comm> communicator_halo;
 | 
			
		||||
@@ -98,16 +97,14 @@ public:
 | 
			
		||||
  int                      BossRank(void)          ;
 | 
			
		||||
  int                      ThisRank(void)          ;
 | 
			
		||||
  const Coordinate & ThisProcessorCoor(void) ;
 | 
			
		||||
  const Coordinate & ShmGrid(void)  { return _shm_processors; }  ;
 | 
			
		||||
  const Coordinate & ProcessorGrid(void)     ;
 | 
			
		||||
  int                ProcessorCount(void)    ;
 | 
			
		||||
  int                      ProcessorCount(void)    ;
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // very VERY rarely (Log, serial RNG) we need world without a grid
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  static int  RankWorld(void) ;
 | 
			
		||||
  static void BroadcastWorld(int root,void* data, int bytes);
 | 
			
		||||
  static void BarrierWorld(void);
 | 
			
		||||
  
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  // Reduction
 | 
			
		||||
@@ -131,7 +128,7 @@ public:
 | 
			
		||||
  template<class obj> void GlobalSum(obj &o){
 | 
			
		||||
    typedef typename obj::scalar_type scalar_type;
 | 
			
		||||
    int words = sizeof(obj)/sizeof(scalar_type);
 | 
			
		||||
    scalar_type * ptr = (scalar_type *)& o; // Safe alias 
 | 
			
		||||
    scalar_type * ptr = (scalar_type *)& o;
 | 
			
		||||
    GlobalSumVector(ptr,words);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
@@ -145,17 +142,17 @@ public:
 | 
			
		||||
		      int bytes);
 | 
			
		||||
  
 | 
			
		||||
  double StencilSendToRecvFrom(void *xmit,
 | 
			
		||||
			       int xmit_to_rank,int do_xmit,
 | 
			
		||||
			       int xmit_to_rank,
 | 
			
		||||
			       void *recv,
 | 
			
		||||
			       int recv_from_rank,int do_recv,
 | 
			
		||||
			       int recv_from_rank,
 | 
			
		||||
			       int bytes,int dir);
 | 
			
		||||
 | 
			
		||||
  double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
				    void *xmit,
 | 
			
		||||
				    int xmit_to_rank,int do_xmit,
 | 
			
		||||
				    int xmit_to_rank,
 | 
			
		||||
				    void *recv,
 | 
			
		||||
				    int recv_from_rank,int do_recv,
 | 
			
		||||
				    int xbytes,int rbytes,int dir);
 | 
			
		||||
				    int recv_from_rank,
 | 
			
		||||
				    int bytes,int dir);
 | 
			
		||||
  
 | 
			
		||||
  
 | 
			
		||||
  void StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int i);
 | 
			
		||||
 
 | 
			
		||||
@@ -106,7 +106,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
 | 
			
		||||
  // Remap using the shared memory optimising routine
 | 
			
		||||
  // The remap creates a comm which must be freed
 | 
			
		||||
  ////////////////////////////////////////////////////
 | 
			
		||||
  GlobalSharedMemory::OptimalCommunicator    (processors,optimal_comm,_shm_processors);
 | 
			
		||||
  GlobalSharedMemory::OptimalCommunicator    (processors,optimal_comm);
 | 
			
		||||
  InitFromMPICommunicator(processors,optimal_comm);
 | 
			
		||||
  SetCommunicator(optimal_comm);
 | 
			
		||||
  ///////////////////////////////////////////////////
 | 
			
		||||
@@ -124,13 +124,12 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
 | 
			
		||||
  int parent_ndimension = parent._ndimension; assert(_ndimension >= parent._ndimension);
 | 
			
		||||
  Coordinate parent_processor_coor(_ndimension,0);
 | 
			
		||||
  Coordinate parent_processors    (_ndimension,1);
 | 
			
		||||
  Coordinate shm_processors       (_ndimension,1);
 | 
			
		||||
 | 
			
		||||
  // Can make 5d grid from 4d etc...
 | 
			
		||||
  int pad = _ndimension-parent_ndimension;
 | 
			
		||||
  for(int d=0;d<parent_ndimension;d++){
 | 
			
		||||
    parent_processor_coor[pad+d]=parent._processor_coor[d];
 | 
			
		||||
    parent_processors    [pad+d]=parent._processors[d];
 | 
			
		||||
    shm_processors       [pad+d]=parent._shm_processors[d];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -155,7 +154,6 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
 | 
			
		||||
    ccoor[d] = parent_processor_coor[d] % processors[d];
 | 
			
		||||
    scoor[d] = parent_processor_coor[d] / processors[d];
 | 
			
		||||
    ssize[d] = parent_processors[d]     / processors[d];
 | 
			
		||||
    if ( processors[d] < shm_processors[d] ) shm_processors[d] = processors[d]; // subnode splitting.
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // rank within subcomm ; srank is rank of subcomm within blocks of subcomms
 | 
			
		||||
@@ -337,23 +335,23 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
 | 
			
		||||
}
 | 
			
		||||
// Basic Halo comms primitive
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
 | 
			
		||||
						     int dest, int dox,
 | 
			
		||||
						     int dest,
 | 
			
		||||
						     void *recv,
 | 
			
		||||
						     int from, int dor,
 | 
			
		||||
						     int from,
 | 
			
		||||
						     int bytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
  std::vector<CommsRequest_t> list;
 | 
			
		||||
  double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
 | 
			
		||||
  double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,recv,from,bytes,dir);
 | 
			
		||||
  StencilSendToRecvFromComplete(list,dir);
 | 
			
		||||
  return offbytes;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
							 void *xmit,
 | 
			
		||||
							 int dest,int dox,
 | 
			
		||||
							 int dest,
 | 
			
		||||
							 void *recv,
 | 
			
		||||
							 int from,int dor,
 | 
			
		||||
							 int xbytes,int rbytes,int dir)
 | 
			
		||||
							 int from,
 | 
			
		||||
							 int bytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
  int ncomm  =communicator_halo.size();
 | 
			
		||||
  int commdir=dir%ncomm;
 | 
			
		||||
@@ -372,34 +370,39 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
 | 
			
		||||
  double off_node_bytes=0.0;
 | 
			
		||||
  int tag;
 | 
			
		||||
 | 
			
		||||
  if ( dor ) {
 | 
			
		||||
    if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
			
		||||
      tag= dir+from*32;
 | 
			
		||||
      ierr=MPI_Irecv(recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
 | 
			
		||||
      assert(ierr==0);
 | 
			
		||||
      list.push_back(rrq);
 | 
			
		||||
      off_node_bytes+=rbytes;
 | 
			
		||||
    }
 | 
			
		||||
  if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
			
		||||
    tag= dir+from*32;
 | 
			
		||||
    ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
 | 
			
		||||
    assert(ierr==0);
 | 
			
		||||
    list.push_back(rrq);
 | 
			
		||||
    off_node_bytes+=bytes;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if (dox) {
 | 
			
		||||
    if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
			
		||||
      tag= dir+_processor*32;
 | 
			
		||||
      ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
 | 
			
		||||
      assert(ierr==0);
 | 
			
		||||
      list.push_back(xrq);
 | 
			
		||||
      off_node_bytes+=xbytes;
 | 
			
		||||
    } else {
 | 
			
		||||
      void *shm = (void *) this->ShmBufferTranslate(dest,recv);
 | 
			
		||||
      assert(shm!=NULL);
 | 
			
		||||
      acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
 | 
			
		||||
    }
 | 
			
		||||
  if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
			
		||||
    tag= dir+_processor*32;
 | 
			
		||||
    ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
 | 
			
		||||
    assert(ierr==0);
 | 
			
		||||
    list.push_back(xrq);
 | 
			
		||||
    off_node_bytes+=bytes;
 | 
			
		||||
  } else {
 | 
			
		||||
    // TODO : make a OMP loop on CPU, call threaded bcopy
 | 
			
		||||
    void *shm = (void *) this->ShmBufferTranslate(dest,recv);
 | 
			
		||||
    assert(shm!=NULL);
 | 
			
		||||
    //    std::cout <<"acceleratorCopyDeviceToDeviceAsynch"<< std::endl;
 | 
			
		||||
    acceleratorCopyDeviceToDeviceAsynch(xmit,shm,bytes);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //  if ( CommunicatorPolicy == CommunicatorPolicySequential ) {
 | 
			
		||||
  //    this->StencilSendToRecvFromComplete(list,dir);
 | 
			
		||||
  //  }
 | 
			
		||||
 | 
			
		||||
  return off_node_bytes;
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
 | 
			
		||||
{
 | 
			
		||||
  //   std::cout << "Copy Synchronised\n"<<std::endl;
 | 
			
		||||
  acceleratorCopySynchronise();
 | 
			
		||||
 | 
			
		||||
  int nreq=list.size();
 | 
			
		||||
 | 
			
		||||
  if (nreq==0) return;
 | 
			
		||||
@@ -435,10 +438,6 @@ int CartesianCommunicator::RankWorld(void){
 | 
			
		||||
  MPI_Comm_rank(communicator_world,&r);
 | 
			
		||||
  return r;
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::BarrierWorld(void){
 | 
			
		||||
  int ierr = MPI_Barrier(communicator_world);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
 | 
			
		||||
{
 | 
			
		||||
  int ierr= MPI_Bcast(data,
 | 
			
		||||
 
 | 
			
		||||
@@ -45,14 +45,12 @@ void CartesianCommunicator::Init(int *argc, char *** arv)
 | 
			
		||||
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank) 
 | 
			
		||||
  : CartesianCommunicator(processors) 
 | 
			
		||||
{
 | 
			
		||||
  _shm_processors = Coordinate(processors.size(),1);
 | 
			
		||||
  srank=0;
 | 
			
		||||
  SetCommunicator(communicator_world);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
 | 
			
		||||
{
 | 
			
		||||
  _shm_processors = Coordinate(processors.size(),1);
 | 
			
		||||
  _processors = processors;
 | 
			
		||||
  _ndimension = processors.size();  assert(_ndimension>=1);
 | 
			
		||||
  _processor_coor.resize(_ndimension);
 | 
			
		||||
@@ -104,7 +102,6 @@ int  CartesianCommunicator::RankWorld(void){return 0;}
 | 
			
		||||
void CartesianCommunicator::Barrier(void){}
 | 
			
		||||
void CartesianCommunicator::Broadcast(int root,void* data, int bytes) {}
 | 
			
		||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) { }
 | 
			
		||||
void CartesianCommunicator::BarrierWorld(void) { }
 | 
			
		||||
int  CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor) {  return 0;}
 | 
			
		||||
void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor){  coor = _processor_coor; }
 | 
			
		||||
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
 | 
			
		||||
@@ -114,21 +111,21 @@ void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
 | 
			
		||||
						     int xmit_to_rank,int dox,
 | 
			
		||||
						     int xmit_to_rank,
 | 
			
		||||
						     void *recv,
 | 
			
		||||
						     int recv_from_rank,int dor,
 | 
			
		||||
						     int recv_from_rank,
 | 
			
		||||
						     int bytes, int dir)
 | 
			
		||||
{
 | 
			
		||||
  return 2.0*bytes;
 | 
			
		||||
}
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
							 void *xmit,
 | 
			
		||||
							 int xmit_to_rank,int dox,
 | 
			
		||||
							 int xmit_to_rank,
 | 
			
		||||
							 void *recv,
 | 
			
		||||
							 int recv_from_rank,int dor,
 | 
			
		||||
							 int xbytes,int rbytes, int dir)
 | 
			
		||||
							 int recv_from_rank,
 | 
			
		||||
							 int bytes, int dir)
 | 
			
		||||
{
 | 
			
		||||
  return xbytes+rbytes;
 | 
			
		||||
  return 2.0*bytes;
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
 | 
			
		||||
{
 | 
			
		||||
 
 | 
			
		||||
@@ -91,59 +91,6 @@ void *SharedMemory::ShmBufferSelf(void)
 | 
			
		||||
  //std::cerr << "ShmBufferSelf "<<ShmRank<<" "<<std::hex<< ShmCommBufs[ShmRank] <<std::dec<<std::endl;
 | 
			
		||||
  return ShmCommBufs[ShmRank];
 | 
			
		||||
}
 | 
			
		||||
static inline int divides(int a,int b)
 | 
			
		||||
{
 | 
			
		||||
  return ( b == ( (b/a)*a ) );
 | 
			
		||||
}
 | 
			
		||||
void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims)
 | 
			
		||||
{
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Allow user to configure through environment variable
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  char* str = getenv(("GRID_SHM_DIMS_" + std::to_string(ShmDims.size())).c_str());
 | 
			
		||||
  if ( str ) {
 | 
			
		||||
    std::vector<int> IntShmDims;
 | 
			
		||||
    GridCmdOptionIntVector(std::string(str),IntShmDims);
 | 
			
		||||
    assert(IntShmDims.size() == WorldDims.size());
 | 
			
		||||
    long ShmSize = 1;
 | 
			
		||||
    for (int dim=0;dim<WorldDims.size();dim++) {
 | 
			
		||||
      ShmSize *= (ShmDims[dim] = IntShmDims[dim]);
 | 
			
		||||
      assert(divides(ShmDims[dim],WorldDims[dim]));
 | 
			
		||||
    }
 | 
			
		||||
    assert(ShmSize == WorldShmSize);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Powers of 2,3,5 only in prime decomposition for now
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  int ndimension = WorldDims.size();
 | 
			
		||||
  ShmDims=Coordinate(ndimension,1);
 | 
			
		||||
 | 
			
		||||
  std::vector<int> primes({2,3,5});
 | 
			
		||||
 | 
			
		||||
  int dim = 0;
 | 
			
		||||
  int last_dim = ndimension - 1;
 | 
			
		||||
  int AutoShmSize = 1;
 | 
			
		||||
  while(AutoShmSize != WorldShmSize) {
 | 
			
		||||
    int p;
 | 
			
		||||
    for(p=0;p<primes.size();p++) {
 | 
			
		||||
      int prime=primes[p];
 | 
			
		||||
      if ( divides(prime,WorldDims[dim]/ShmDims[dim])
 | 
			
		||||
        && divides(prime,WorldShmSize/AutoShmSize)  ) {
 | 
			
		||||
  AutoShmSize*=prime;
 | 
			
		||||
  ShmDims[dim]*=prime;
 | 
			
		||||
  last_dim = dim;
 | 
			
		||||
  break;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    if (p == primes.size() && last_dim == dim) {
 | 
			
		||||
      std::cerr << "GlobalSharedMemory::GetShmDims failed" << std::endl;
 | 
			
		||||
      exit(EXIT_FAILURE);
 | 
			
		||||
    }
 | 
			
		||||
    dim=(dim+1) %ndimension;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid); 
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -93,10 +93,9 @@ public:
 | 
			
		||||
  // Create an optimal reordered communicator that makes MPI_Cart_create get it right
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  static void Init(Grid_MPI_Comm comm); // Typically MPI_COMM_WORLD
 | 
			
		||||
  // Turns MPI_COMM_WORLD into right layout for Cartesian
 | 
			
		||||
  static void OptimalCommunicator            (const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims); 
 | 
			
		||||
  static void OptimalCommunicatorHypercube   (const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims); 
 | 
			
		||||
  static void OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims); 
 | 
			
		||||
  static void OptimalCommunicator            (const Coordinate &processors,Grid_MPI_Comm & optimal_comm);  // Turns MPI_COMM_WORLD into right layout for Cartesian
 | 
			
		||||
  static void OptimalCommunicatorHypercube   (const Coordinate &processors,Grid_MPI_Comm & optimal_comm);  // Turns MPI_COMM_WORLD into right layout for Cartesian
 | 
			
		||||
  static void OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm);  // Turns MPI_COMM_WORLD into right layout for Cartesian
 | 
			
		||||
  static void GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims);
 | 
			
		||||
  ///////////////////////////////////////////////////
 | 
			
		||||
  // Provide shared memory facilities off comm world
 | 
			
		||||
 
 | 
			
		||||
@@ -27,8 +27,6 @@ Author: Christoph Lehner <christoph@lhnr.de>
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#define Mheader "SharedMemoryMpi: "
 | 
			
		||||
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
#include <pwd.h>
 | 
			
		||||
 | 
			
		||||
@@ -38,120 +36,12 @@ Author: Christoph Lehner <christoph@lhnr.de>
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
#include <hip/hip_runtime_api.h>
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
#define GRID_SYCL_LEVEL_ZERO_IPC
 | 
			
		||||
#include <syscall.h>
 | 
			
		||||
#define SHM_SOCKETS 
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCl
 | 
			
		||||
 | 
			
		||||
#include <sys/socket.h>
 | 
			
		||||
#include <sys/un.h>
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid); 
 | 
			
		||||
 | 
			
		||||
#ifdef SHM_SOCKETS
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Barbaric extra intranode communication route in case we need sockets to pass FDs
 | 
			
		||||
 * Forced by level_zero not being nicely designed
 | 
			
		||||
 */
 | 
			
		||||
static int sock;
 | 
			
		||||
static const char *sock_path_fmt = "/tmp/GridUnixSocket.%d";
 | 
			
		||||
static char sock_path[256];
 | 
			
		||||
class UnixSockets {
 | 
			
		||||
public:
 | 
			
		||||
  static void Open(int rank)
 | 
			
		||||
  {
 | 
			
		||||
    int errnum;
 | 
			
		||||
 | 
			
		||||
    sock = socket(AF_UNIX, SOCK_DGRAM, 0);  assert(sock>0);
 | 
			
		||||
 | 
			
		||||
    struct sockaddr_un sa_un = { 0 };
 | 
			
		||||
    sa_un.sun_family = AF_UNIX;
 | 
			
		||||
    snprintf(sa_un.sun_path, sizeof(sa_un.sun_path),sock_path_fmt,rank);
 | 
			
		||||
    unlink(sa_un.sun_path);
 | 
			
		||||
    if (bind(sock, (struct sockaddr *)&sa_un, sizeof(sa_un))) {
 | 
			
		||||
      perror("bind failure");
 | 
			
		||||
      exit(EXIT_FAILURE);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static int RecvFileDescriptor(void)
 | 
			
		||||
  {
 | 
			
		||||
    int n;
 | 
			
		||||
    int fd;
 | 
			
		||||
    char buf[1];
 | 
			
		||||
    struct iovec iov;
 | 
			
		||||
    struct msghdr msg;
 | 
			
		||||
    struct cmsghdr *cmsg;
 | 
			
		||||
    char cms[CMSG_SPACE(sizeof(int))];
 | 
			
		||||
 | 
			
		||||
    iov.iov_base = buf;
 | 
			
		||||
    iov.iov_len = 1;
 | 
			
		||||
 | 
			
		||||
    memset(&msg, 0, sizeof msg);
 | 
			
		||||
    msg.msg_name = 0;
 | 
			
		||||
    msg.msg_namelen = 0;
 | 
			
		||||
    msg.msg_iov = &iov;
 | 
			
		||||
    msg.msg_iovlen = 1;
 | 
			
		||||
 | 
			
		||||
    msg.msg_control = (caddr_t)cms;
 | 
			
		||||
    msg.msg_controllen = sizeof cms;
 | 
			
		||||
 | 
			
		||||
    if((n=recvmsg(sock, &msg, 0)) < 0) {
 | 
			
		||||
      perror("recvmsg failed");
 | 
			
		||||
      return -1;
 | 
			
		||||
    }
 | 
			
		||||
    if(n == 0){
 | 
			
		||||
      perror("recvmsg returned 0");
 | 
			
		||||
      return -1;
 | 
			
		||||
    }
 | 
			
		||||
    cmsg = CMSG_FIRSTHDR(&msg);
 | 
			
		||||
 | 
			
		||||
    memmove(&fd, CMSG_DATA(cmsg), sizeof(int));
 | 
			
		||||
 | 
			
		||||
    return fd;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void SendFileDescriptor(int fildes,int xmit_to_rank)
 | 
			
		||||
  {
 | 
			
		||||
    struct msghdr msg;
 | 
			
		||||
    struct iovec iov;
 | 
			
		||||
    struct cmsghdr *cmsg = NULL;
 | 
			
		||||
    char ctrl[CMSG_SPACE(sizeof(int))];
 | 
			
		||||
    char data = ' ';
 | 
			
		||||
 | 
			
		||||
    memset(&msg, 0, sizeof(struct msghdr));
 | 
			
		||||
    memset(ctrl, 0, CMSG_SPACE(sizeof(int)));
 | 
			
		||||
    iov.iov_base = &data;
 | 
			
		||||
    iov.iov_len = sizeof(data);
 | 
			
		||||
    
 | 
			
		||||
    sprintf(sock_path,sock_path_fmt,xmit_to_rank);
 | 
			
		||||
    
 | 
			
		||||
    struct sockaddr_un sa_un = { 0 };
 | 
			
		||||
    sa_un.sun_family = AF_UNIX;
 | 
			
		||||
    snprintf(sa_un.sun_path, sizeof(sa_un.sun_path),sock_path_fmt,xmit_to_rank);
 | 
			
		||||
 | 
			
		||||
    msg.msg_name = (void *)&sa_un;
 | 
			
		||||
    msg.msg_namelen = sizeof(sa_un);
 | 
			
		||||
    msg.msg_iov = &iov;
 | 
			
		||||
    msg.msg_iovlen = 1;
 | 
			
		||||
    msg.msg_controllen =  CMSG_SPACE(sizeof(int));
 | 
			
		||||
    msg.msg_control = ctrl;
 | 
			
		||||
 | 
			
		||||
    cmsg = CMSG_FIRSTHDR(&msg);
 | 
			
		||||
    cmsg->cmsg_level = SOL_SOCKET;
 | 
			
		||||
    cmsg->cmsg_type = SCM_RIGHTS;
 | 
			
		||||
    cmsg->cmsg_len = CMSG_LEN(sizeof(int));
 | 
			
		||||
 | 
			
		||||
    *((int *) CMSG_DATA(cmsg)) = fildes;
 | 
			
		||||
 | 
			
		||||
    sendmsg(sock, &msg, 0);
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#define header "SharedMemoryMpi: "
 | 
			
		||||
/*Construct from an MPI communicator*/
 | 
			
		||||
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
 | 
			
		||||
{
 | 
			
		||||
@@ -174,8 +64,8 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
 | 
			
		||||
  MPI_Comm_size(WorldShmComm     ,&WorldShmSize);
 | 
			
		||||
 | 
			
		||||
  if ( WorldRank == 0) {
 | 
			
		||||
    std::cout << Mheader " World communicator of size " <<WorldSize << std::endl;  
 | 
			
		||||
    std::cout << Mheader " Node  communicator of size " <<WorldShmSize << std::endl;
 | 
			
		||||
    std::cout << header " World communicator of size " <<WorldSize << std::endl;  
 | 
			
		||||
    std::cout << header " Node  communicator of size " <<WorldShmSize << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  // WorldShmComm, WorldShmSize, WorldShmRank
 | 
			
		||||
 | 
			
		||||
@@ -262,7 +152,7 @@ int Log2Size(int TwoToPower,int MAXLOG2)
 | 
			
		||||
  }
 | 
			
		||||
  return log2size;
 | 
			
		||||
}
 | 
			
		||||
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
 | 
			
		||||
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
 | 
			
		||||
{
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Look and see if it looks like an HPE 8600 based on hostname conventions
 | 
			
		||||
@@ -275,11 +165,63 @@ void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_M
 | 
			
		||||
  gethostname(name,namelen);
 | 
			
		||||
  int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ;
 | 
			
		||||
 | 
			
		||||
  if(nscan==3 && HPEhypercube ) OptimalCommunicatorHypercube(processors,optimal_comm,SHM);
 | 
			
		||||
  else                          OptimalCommunicatorSharedMemory(processors,optimal_comm,SHM);
 | 
			
		||||
  if(nscan==3 && HPEhypercube ) OptimalCommunicatorHypercube(processors,optimal_comm);
 | 
			
		||||
  else                          OptimalCommunicatorSharedMemory(processors,optimal_comm);
 | 
			
		||||
}
 | 
			
		||||
static inline int divides(int a,int b)
 | 
			
		||||
{
 | 
			
		||||
  return ( b == ( (b/a)*a ) );
 | 
			
		||||
}
 | 
			
		||||
void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims)
 | 
			
		||||
{
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Allow user to configure through environment variable
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  char* str = getenv(("GRID_SHM_DIMS_" + std::to_string(ShmDims.size())).c_str());
 | 
			
		||||
  if ( str ) {
 | 
			
		||||
    std::vector<int> IntShmDims;
 | 
			
		||||
    GridCmdOptionIntVector(std::string(str),IntShmDims);
 | 
			
		||||
    assert(IntShmDims.size() == WorldDims.size());
 | 
			
		||||
    long ShmSize = 1;
 | 
			
		||||
    for (int dim=0;dim<WorldDims.size();dim++) {
 | 
			
		||||
      ShmSize *= (ShmDims[dim] = IntShmDims[dim]);
 | 
			
		||||
      assert(divides(ShmDims[dim],WorldDims[dim]));
 | 
			
		||||
    }
 | 
			
		||||
    assert(ShmSize == WorldShmSize);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Powers of 2,3,5 only in prime decomposition for now
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  int ndimension = WorldDims.size();
 | 
			
		||||
  ShmDims=Coordinate(ndimension,1);
 | 
			
		||||
 | 
			
		||||
  std::vector<int> primes({2,3,5});
 | 
			
		||||
 | 
			
		||||
  int dim = 0;
 | 
			
		||||
  int last_dim = ndimension - 1;
 | 
			
		||||
  int AutoShmSize = 1;
 | 
			
		||||
  while(AutoShmSize != WorldShmSize) {
 | 
			
		||||
    int p;
 | 
			
		||||
    for(p=0;p<primes.size();p++) {
 | 
			
		||||
      int prime=primes[p];
 | 
			
		||||
      if ( divides(prime,WorldDims[dim]/ShmDims[dim])
 | 
			
		||||
        && divides(prime,WorldShmSize/AutoShmSize)  ) {
 | 
			
		||||
	AutoShmSize*=prime;
 | 
			
		||||
	ShmDims[dim]*=prime;
 | 
			
		||||
	last_dim = dim;
 | 
			
		||||
	break;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    if (p == primes.size() && last_dim == dim) {
 | 
			
		||||
      std::cerr << "GlobalSharedMemory::GetShmDims failed" << std::endl;
 | 
			
		||||
      exit(EXIT_FAILURE);
 | 
			
		||||
    }
 | 
			
		||||
    dim=(dim+1) %ndimension;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
 | 
			
		||||
{
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Assert power of two shm_size.
 | 
			
		||||
@@ -352,7 +294,6 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
 | 
			
		||||
  Coordinate HyperCoor(ndimension);
 | 
			
		||||
 | 
			
		||||
  GetShmDims(WorldDims,ShmDims);
 | 
			
		||||
  SHM = ShmDims;
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Establish torus of processes and nodes with sub-blockings
 | 
			
		||||
@@ -400,7 +341,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
 | 
			
		||||
  int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
 | 
			
		||||
void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
 | 
			
		||||
{
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Identify subblock of ranks on node spreading across dims
 | 
			
		||||
@@ -412,8 +353,6 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
 | 
			
		||||
  Coordinate ShmCoor(ndimension);    Coordinate NodeCoor(ndimension);   Coordinate WorldCoor(ndimension);
 | 
			
		||||
 | 
			
		||||
  GetShmDims(WorldDims,ShmDims);
 | 
			
		||||
  SHM=ShmDims;
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Establish torus of processes and nodes with sub-blockings
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -452,7 +391,7 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
 | 
			
		||||
#ifdef GRID_MPI3_SHMGET
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
{
 | 
			
		||||
  std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl;
 | 
			
		||||
  std::cout << header "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl;
 | 
			
		||||
  assert(_ShmSetup==1);
 | 
			
		||||
  assert(_ShmAlloc==0);
 | 
			
		||||
 | 
			
		||||
@@ -537,7 +476,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
    exit(EXIT_FAILURE);  
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::cout << WorldRank << Mheader " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes 
 | 
			
		||||
  std::cout << WorldRank << header " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes 
 | 
			
		||||
	    << "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
 | 
			
		||||
 | 
			
		||||
  SharedMemoryZero(ShmCommBuf,bytes);
 | 
			
		||||
@@ -580,21 +519,16 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
    exit(EXIT_FAILURE);  
 | 
			
		||||
  }
 | 
			
		||||
  if ( WorldRank == 0 ){
 | 
			
		||||
    std::cout << WorldRank << Mheader " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes 
 | 
			
		||||
	      << "bytes at "<< std::hex<< ShmCommBuf << " - "<<(bytes-1+(uint64_t)ShmCommBuf) <<std::dec<<" for comms buffers " <<std::endl;
 | 
			
		||||
    std::cout << WorldRank << header " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes 
 | 
			
		||||
	      << "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  SharedMemoryZero(ShmCommBuf,bytes);
 | 
			
		||||
  std::cout<< "Setting up IPC"<<std::endl;
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Loop over ranks/gpu's on our node
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
#ifdef SHM_SOCKETS
 | 
			
		||||
  UnixSockets::Open(WorldShmRank);
 | 
			
		||||
#endif
 | 
			
		||||
  for(int r=0;r<WorldShmSize;r++){
 | 
			
		||||
 | 
			
		||||
    MPI_Barrier(WorldShmComm);
 | 
			
		||||
 | 
			
		||||
#ifndef GRID_MPI3_SHM_NONE
 | 
			
		||||
    //////////////////////////////////////////////////
 | 
			
		||||
    // If it is me, pass around the IPC access key
 | 
			
		||||
@@ -602,10 +536,10 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
    void * thisBuf = ShmCommBuf;
 | 
			
		||||
    if(!Stencil_force_mpi) {
 | 
			
		||||
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
 | 
			
		||||
    typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t;
 | 
			
		||||
    typedef struct { int fd; pid_t pid ; } clone_mem_t;
 | 
			
		||||
 | 
			
		||||
    auto zeDevice    = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
 | 
			
		||||
    auto zeContext   = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
 | 
			
		||||
    auto zeDevice    = cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_device());
 | 
			
		||||
    auto zeContext   = cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_context());
 | 
			
		||||
      
 | 
			
		||||
    ze_ipc_mem_handle_t ihandle;
 | 
			
		||||
    clone_mem_t handle;
 | 
			
		||||
@@ -613,21 +547,13 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
    if ( r==WorldShmRank ) { 
 | 
			
		||||
      auto err = zeMemGetIpcHandle(zeContext,ShmCommBuf,&ihandle);
 | 
			
		||||
      if ( err != ZE_RESULT_SUCCESS ) {
 | 
			
		||||
	std::cerr << "SharedMemoryMPI.cc zeMemGetIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
 | 
			
		||||
	std::cout << "SharedMemoryMPI.cc zeMemGetIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
 | 
			
		||||
	exit(EXIT_FAILURE);
 | 
			
		||||
      } else {
 | 
			
		||||
	std::cout << "SharedMemoryMPI.cc zeMemGetIpcHandle succeeded for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
      memcpy((void *)&handle.fd,(void *)&ihandle,sizeof(int));
 | 
			
		||||
      handle.pid = getpid();
 | 
			
		||||
      memcpy((void *)&handle.ze,(void *)&ihandle,sizeof(ihandle));
 | 
			
		||||
#ifdef SHM_SOCKETS
 | 
			
		||||
      for(int rr=0;rr<WorldShmSize;rr++){
 | 
			
		||||
	if(rr!=r){
 | 
			
		||||
	  UnixSockets::SendFileDescriptor(handle.fd,rr);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
#endif
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
@@ -655,7 +581,6 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
    // Share this IPC handle across the Shm Comm
 | 
			
		||||
    //////////////////////////////////////////////////
 | 
			
		||||
    { 
 | 
			
		||||
      MPI_Barrier(WorldShmComm);
 | 
			
		||||
      int ierr=MPI_Bcast(&handle,
 | 
			
		||||
			 sizeof(handle),
 | 
			
		||||
			 MPI_BYTE,
 | 
			
		||||
@@ -671,10 +596,6 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
 | 
			
		||||
    if ( r!=WorldShmRank ) {
 | 
			
		||||
      thisBuf = nullptr;
 | 
			
		||||
      int myfd;
 | 
			
		||||
#ifdef SHM_SOCKETS
 | 
			
		||||
      myfd=UnixSockets::RecvFileDescriptor();
 | 
			
		||||
#else
 | 
			
		||||
      std::cout<<"mapping seeking remote pid/fd "
 | 
			
		||||
	       <<handle.pid<<"/"
 | 
			
		||||
	       <<handle.fd<<std::endl;
 | 
			
		||||
@@ -682,22 +603,16 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
      int pidfd = syscall(SYS_pidfd_open,handle.pid,0);
 | 
			
		||||
      std::cout<<"Using IpcHandle pidfd "<<pidfd<<"\n";
 | 
			
		||||
      //      int myfd  = syscall(SYS_pidfd_getfd,pidfd,handle.fd,0);
 | 
			
		||||
      myfd  = syscall(438,pidfd,handle.fd,0);
 | 
			
		||||
      int err_t = errno;
 | 
			
		||||
      if (myfd < 0) {
 | 
			
		||||
        fprintf(stderr,"pidfd_getfd returned %d errno was %d\n", myfd,err_t); fflush(stderr);
 | 
			
		||||
	perror("pidfd_getfd failed ");
 | 
			
		||||
	assert(0);
 | 
			
		||||
      }
 | 
			
		||||
#endif
 | 
			
		||||
      std::cout<<"Using IpcHandle mapped remote pid "<<handle.pid <<" FD "<<handle.fd <<" to myfd "<<myfd<<"\n";
 | 
			
		||||
      memcpy((void *)&ihandle,(void *)&handle.ze,sizeof(ihandle));
 | 
			
		||||
      int myfd  = syscall(438,pidfd,handle.fd,0);
 | 
			
		||||
 | 
			
		||||
      std::cout<<"Using IpcHandle myfd "<<myfd<<"\n";
 | 
			
		||||
      
 | 
			
		||||
      memcpy((void *)&ihandle,(void *)&myfd,sizeof(int));
 | 
			
		||||
 | 
			
		||||
      auto err = zeMemOpenIpcHandle(zeContext,zeDevice,ihandle,0,&thisBuf);
 | 
			
		||||
      if ( err != ZE_RESULT_SUCCESS ) {
 | 
			
		||||
	std::cerr << "SharedMemoryMPI.cc "<<zeContext<<" "<<zeDevice<<std::endl;
 | 
			
		||||
	std::cerr << "SharedMemoryMPI.cc zeMemOpenIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl; 
 | 
			
		||||
	std::cout << "SharedMemoryMPI.cc "<<zeContext<<" "<<zeDevice<<std::endl;
 | 
			
		||||
	std::cout << "SharedMemoryMPI.cc zeMemOpenIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl; 
 | 
			
		||||
	exit(EXIT_FAILURE);
 | 
			
		||||
      } else {
 | 
			
		||||
	std::cout << "SharedMemoryMPI.cc zeMemOpenIpcHandle succeeded for rank "<<r<<std::endl;
 | 
			
		||||
@@ -732,7 +647,6 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
#else
 | 
			
		||||
    WorldShmCommBufs[r] = ShmCommBuf;
 | 
			
		||||
#endif
 | 
			
		||||
    MPI_Barrier(WorldShmComm);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  _ShmAllocBytes=bytes;
 | 
			
		||||
@@ -744,7 +658,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
#ifdef GRID_MPI3_SHMMMAP
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
{
 | 
			
		||||
  std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl;
 | 
			
		||||
  std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl;
 | 
			
		||||
  assert(_ShmSetup==1);
 | 
			
		||||
  assert(_ShmAlloc==0);
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -781,7 +695,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
    assert(((uint64_t)ptr&0x3F)==0);
 | 
			
		||||
    close(fd);
 | 
			
		||||
    WorldShmCommBufs[r] =ptr;
 | 
			
		||||
    //    std::cout << Mheader "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
 | 
			
		||||
    //    std::cout << header "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  _ShmAlloc=1;
 | 
			
		||||
  _ShmAllocBytes  = bytes;
 | 
			
		||||
@@ -791,7 +705,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
#ifdef GRID_MPI3_SHM_NONE
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
{
 | 
			
		||||
  std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl;
 | 
			
		||||
  std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl;
 | 
			
		||||
  assert(_ShmSetup==1);
 | 
			
		||||
  assert(_ShmAlloc==0);
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -838,7 +752,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
{ 
 | 
			
		||||
  std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl;
 | 
			
		||||
  std::cout << header "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl;
 | 
			
		||||
  assert(_ShmSetup==1);
 | 
			
		||||
  assert(_ShmAlloc==0); 
 | 
			
		||||
  MPI_Barrier(WorldShmComm);
 | 
			
		||||
 
 | 
			
		||||
@@ -48,10 +48,9 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
 | 
			
		||||
  _ShmSetup=1;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
 | 
			
		||||
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
 | 
			
		||||
{
 | 
			
		||||
  optimal_comm = WorldComm;
 | 
			
		||||
  SHM = Coordinate(processors.size(),1);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -29,27 +29,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
extern std::vector<std::pair<int,int> > Cshift_table; 
 | 
			
		||||
extern commVector<std::pair<int,int> > Cshift_table_device; 
 | 
			
		||||
extern Vector<std::pair<int,int> > Cshift_table; 
 | 
			
		||||
 | 
			
		||||
inline std::pair<int,int> *MapCshiftTable(void)
 | 
			
		||||
{
 | 
			
		||||
  // GPU version
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT    
 | 
			
		||||
  uint64_t sz=Cshift_table.size();
 | 
			
		||||
  if (Cshift_table_device.size()!=sz )    {
 | 
			
		||||
    Cshift_table_device.resize(sz);
 | 
			
		||||
  }
 | 
			
		||||
  acceleratorCopyToDevice((void *)&Cshift_table[0],
 | 
			
		||||
			  (void *)&Cshift_table_device[0],
 | 
			
		||||
			  sizeof(Cshift_table[0])*sz);
 | 
			
		||||
 | 
			
		||||
  return &Cshift_table_device[0];
 | 
			
		||||
#else 
 | 
			
		||||
  return &Cshift_table[0];
 | 
			
		||||
#endif
 | 
			
		||||
  // CPU version use identify map
 | 
			
		||||
}
 | 
			
		||||
///////////////////////////////////////////////////////////////////
 | 
			
		||||
// Gather for when there is no need to SIMD split 
 | 
			
		||||
///////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -93,7 +74,7 @@ Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dim
 | 
			
		||||
  }
 | 
			
		||||
  {
 | 
			
		||||
    auto buffer_p = & buffer[0];
 | 
			
		||||
    auto table = MapCshiftTable();
 | 
			
		||||
    auto table = &Cshift_table[0];
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT    
 | 
			
		||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
			
		||||
    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
			
		||||
@@ -244,7 +225,7 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<
 | 
			
		||||
  
 | 
			
		||||
  {
 | 
			
		||||
    auto buffer_p = & buffer[0];
 | 
			
		||||
    auto table = MapCshiftTable();
 | 
			
		||||
    auto table = &Cshift_table[0];
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT    
 | 
			
		||||
    autoView( rhs_v, rhs, AcceleratorWrite);
 | 
			
		||||
    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
			
		||||
@@ -359,7 +340,7 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  {
 | 
			
		||||
    auto table = MapCshiftTable();
 | 
			
		||||
    auto table = &Cshift_table[0];
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT    
 | 
			
		||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
			
		||||
    autoView(lhs_v , lhs, AcceleratorWrite);
 | 
			
		||||
@@ -411,7 +392,7 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  {
 | 
			
		||||
    auto table = MapCshiftTable();
 | 
			
		||||
    auto table = &Cshift_table[0];
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT    
 | 
			
		||||
    autoView( rhs_v, rhs, AcceleratorRead);
 | 
			
		||||
    autoView( lhs_v, lhs, AcceleratorWrite);
 | 
			
		||||
 
 | 
			
		||||
@@ -52,8 +52,7 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
 | 
			
		||||
  int comm_dim        = rhs.Grid()->_processors[dimension] >1 ;
 | 
			
		||||
  int splice_dim      = rhs.Grid()->_simd_layout[dimension]>1 && (comm_dim);
 | 
			
		||||
 | 
			
		||||
  RealD t1,t0;
 | 
			
		||||
  t0=usecond();
 | 
			
		||||
 | 
			
		||||
  if ( !comm_dim ) {
 | 
			
		||||
    //std::cout << "CSHIFT: Cshift_local" <<std::endl;
 | 
			
		||||
    Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding
 | 
			
		||||
@@ -64,8 +63,6 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
 | 
			
		||||
    //std::cout << "CSHIFT: Cshift_comms" <<std::endl;
 | 
			
		||||
    Cshift_comms(ret,rhs,dimension,shift);
 | 
			
		||||
  }
 | 
			
		||||
  t1=usecond();
 | 
			
		||||
  //  std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl;
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -130,20 +127,16 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
 | 
			
		||||
    
 | 
			
		||||
  int cb= (cbmask==0x2)? Odd : Even;
 | 
			
		||||
  int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
 | 
			
		||||
  RealD tcopy=0.0;
 | 
			
		||||
  RealD tgather=0.0;
 | 
			
		||||
  RealD tscatter=0.0;
 | 
			
		||||
  RealD tcomms=0.0;
 | 
			
		||||
  uint64_t xbytes=0;
 | 
			
		||||
 | 
			
		||||
  for(int x=0;x<rd;x++){       
 | 
			
		||||
 | 
			
		||||
    int sx        =  (x+sshift)%rd;
 | 
			
		||||
    int comm_proc = ((x+sshift)/rd)%pd;
 | 
			
		||||
    
 | 
			
		||||
    if (comm_proc==0) {
 | 
			
		||||
      tcopy-=usecond();
 | 
			
		||||
 | 
			
		||||
      Copy_plane(ret,rhs,dimension,x,sx,cbmask); 
 | 
			
		||||
      tcopy+=usecond();
 | 
			
		||||
 | 
			
		||||
    } else {
 | 
			
		||||
 | 
			
		||||
      int words = buffer_size;
 | 
			
		||||
@@ -151,39 +144,26 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
 | 
			
		||||
 | 
			
		||||
      int bytes = words * sizeof(vobj);
 | 
			
		||||
 | 
			
		||||
      tgather-=usecond();
 | 
			
		||||
      Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask);
 | 
			
		||||
      tgather+=usecond();
 | 
			
		||||
 | 
			
		||||
      //      int rank           = grid->_processor;
 | 
			
		||||
      int recv_from_rank;
 | 
			
		||||
      int xmit_to_rank;
 | 
			
		||||
      grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
 | 
			
		||||
 | 
			
		||||
      tcomms-=usecond();
 | 
			
		||||
      //      grid->Barrier();
 | 
			
		||||
      grid->Barrier();
 | 
			
		||||
 | 
			
		||||
      grid->SendToRecvFrom((void *)&send_buf[0],
 | 
			
		||||
			   xmit_to_rank,
 | 
			
		||||
			   (void *)&recv_buf[0],
 | 
			
		||||
			   recv_from_rank,
 | 
			
		||||
			   bytes);
 | 
			
		||||
      xbytes+=bytes;
 | 
			
		||||
      //      grid->Barrier();
 | 
			
		||||
      tcomms+=usecond();
 | 
			
		||||
 | 
			
		||||
      tscatter-=usecond();
 | 
			
		||||
      grid->Barrier();
 | 
			
		||||
 | 
			
		||||
      Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask);
 | 
			
		||||
      tscatter+=usecond();
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  /*
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
			
		||||
  */
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
			
		||||
@@ -210,12 +190,6 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
			
		||||
  assert(shift>=0);
 | 
			
		||||
  assert(shift<fd);
 | 
			
		||||
 | 
			
		||||
  RealD tcopy=0.0;
 | 
			
		||||
  RealD tgather=0.0;
 | 
			
		||||
  RealD tscatter=0.0;
 | 
			
		||||
  RealD tcomms=0.0;
 | 
			
		||||
  uint64_t xbytes=0;
 | 
			
		||||
  
 | 
			
		||||
  int permute_type=grid->PermuteType(dimension);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////
 | 
			
		||||
@@ -253,9 +227,7 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
			
		||||
      pointers[i] = &send_buf_extract[i][0];
 | 
			
		||||
    }
 | 
			
		||||
    int sx   = (x+sshift)%rd;
 | 
			
		||||
    tgather-=usecond();
 | 
			
		||||
    Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
 | 
			
		||||
    tgather+=usecond();
 | 
			
		||||
 | 
			
		||||
    for(int i=0;i<Nsimd;i++){
 | 
			
		||||
      
 | 
			
		||||
@@ -280,8 +252,7 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
			
		||||
      if(nbr_proc){
 | 
			
		||||
	grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank); 
 | 
			
		||||
 | 
			
		||||
	tcomms-=usecond();
 | 
			
		||||
	//	grid->Barrier();
 | 
			
		||||
	grid->Barrier();
 | 
			
		||||
 | 
			
		||||
	send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
 | 
			
		||||
	recv_buf_extract_mpi = &recv_buf_extract[i][0];
 | 
			
		||||
@@ -291,9 +262,7 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
			
		||||
			     recv_from_rank,
 | 
			
		||||
			     bytes);
 | 
			
		||||
 | 
			
		||||
	xbytes+=bytes;
 | 
			
		||||
	//	grid->Barrier();
 | 
			
		||||
	tcomms+=usecond();
 | 
			
		||||
	grid->Barrier();
 | 
			
		||||
 | 
			
		||||
	rpointers[i] = &recv_buf_extract[i][0];
 | 
			
		||||
      } else { 
 | 
			
		||||
@@ -301,17 +270,9 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    tscatter-=usecond();
 | 
			
		||||
    Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
 | 
			
		||||
    tscatter+=usecond();
 | 
			
		||||
  }
 | 
			
		||||
  /*
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
			
		||||
  */
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
#else 
 | 
			
		||||
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
			
		||||
@@ -331,11 +292,6 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
 | 
			
		||||
  assert(comm_dim==1);
 | 
			
		||||
  assert(shift>=0);
 | 
			
		||||
  assert(shift<fd);
 | 
			
		||||
  RealD tcopy=0.0;
 | 
			
		||||
  RealD tgather=0.0;
 | 
			
		||||
  RealD tscatter=0.0;
 | 
			
		||||
  RealD tcomms=0.0;
 | 
			
		||||
  uint64_t xbytes=0;
 | 
			
		||||
  
 | 
			
		||||
  int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
 | 
			
		||||
  static cshiftVector<vobj> send_buf_v; send_buf_v.resize(buffer_size);
 | 
			
		||||
@@ -359,9 +315,7 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
 | 
			
		||||
    
 | 
			
		||||
    if (comm_proc==0) {
 | 
			
		||||
 | 
			
		||||
      tcopy-=usecond();
 | 
			
		||||
      Copy_plane(ret,rhs,dimension,x,sx,cbmask); 
 | 
			
		||||
      tcopy+=usecond();
 | 
			
		||||
 | 
			
		||||
    } else {
 | 
			
		||||
 | 
			
		||||
@@ -370,9 +324,7 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
 | 
			
		||||
 | 
			
		||||
      int bytes = words * sizeof(vobj);
 | 
			
		||||
 | 
			
		||||
      tgather-=usecond();
 | 
			
		||||
      Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask);
 | 
			
		||||
      tgather+=usecond();
 | 
			
		||||
 | 
			
		||||
      //      int rank           = grid->_processor;
 | 
			
		||||
      int recv_from_rank;
 | 
			
		||||
@@ -380,8 +332,7 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
 | 
			
		||||
      grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      tcomms-=usecond();
 | 
			
		||||
      //      grid->Barrier();
 | 
			
		||||
      grid->Barrier();
 | 
			
		||||
 | 
			
		||||
      acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes);
 | 
			
		||||
      grid->SendToRecvFrom((void *)&send_buf[0],
 | 
			
		||||
@@ -389,24 +340,13 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
 | 
			
		||||
			   (void *)&recv_buf[0],
 | 
			
		||||
			   recv_from_rank,
 | 
			
		||||
			   bytes);
 | 
			
		||||
      xbytes+=bytes;
 | 
			
		||||
      acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes);
 | 
			
		||||
 | 
			
		||||
      //      grid->Barrier();
 | 
			
		||||
      tcomms+=usecond();
 | 
			
		||||
      grid->Barrier();
 | 
			
		||||
 | 
			
		||||
      tscatter-=usecond();
 | 
			
		||||
      Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask);
 | 
			
		||||
      tscatter+=usecond();
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  /*
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
			
		||||
  */
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
			
		||||
@@ -432,11 +372,6 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
			
		||||
  assert(simd_layout==2);
 | 
			
		||||
  assert(shift>=0);
 | 
			
		||||
  assert(shift<fd);
 | 
			
		||||
  RealD tcopy=0.0;
 | 
			
		||||
  RealD tgather=0.0;
 | 
			
		||||
  RealD tscatter=0.0;
 | 
			
		||||
  RealD tcomms=0.0;
 | 
			
		||||
  uint64_t xbytes=0;
 | 
			
		||||
 | 
			
		||||
  int permute_type=grid->PermuteType(dimension);
 | 
			
		||||
 | 
			
		||||
@@ -479,10 +414,8 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
			
		||||
    for(int i=0;i<Nsimd;i++){       
 | 
			
		||||
      pointers[i] = &send_buf_extract[i][0];
 | 
			
		||||
    }
 | 
			
		||||
    tgather-=usecond();
 | 
			
		||||
    int sx   = (x+sshift)%rd;
 | 
			
		||||
    Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
 | 
			
		||||
    tgather+=usecond();
 | 
			
		||||
 | 
			
		||||
    for(int i=0;i<Nsimd;i++){
 | 
			
		||||
      
 | 
			
		||||
@@ -507,8 +440,7 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
			
		||||
      if(nbr_proc){
 | 
			
		||||
	grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank); 
 | 
			
		||||
 | 
			
		||||
	tcomms-=usecond();
 | 
			
		||||
	//	grid->Barrier();
 | 
			
		||||
	grid->Barrier();
 | 
			
		||||
 | 
			
		||||
	acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes);
 | 
			
		||||
	grid->SendToRecvFrom((void *)send_buf_extract_mpi,
 | 
			
		||||
@@ -517,28 +449,17 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
			
		||||
			     recv_from_rank,
 | 
			
		||||
			     bytes);
 | 
			
		||||
	acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes);
 | 
			
		||||
	xbytes+=bytes;
 | 
			
		||||
 | 
			
		||||
	//	grid->Barrier();
 | 
			
		||||
	tcomms+=usecond();
 | 
			
		||||
	grid->Barrier();
 | 
			
		||||
	rpointers[i] = &recv_buf_extract[i][0];
 | 
			
		||||
      } else { 
 | 
			
		||||
	rpointers[i] = &send_buf_extract[nbr_lane][0];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    tscatter-=usecond();
 | 
			
		||||
    Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
 | 
			
		||||
    tscatter+=usecond();
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  /*
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s"<<std::endl;
 | 
			
		||||
  */
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
NAMESPACE_END(Grid); 
 | 
			
		||||
 
 | 
			
		||||
@@ -1,5 +1,4 @@
 | 
			
		||||
#include <Grid/GridCore.h>       
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
std::vector<std::pair<int,int> > Cshift_table; 
 | 
			
		||||
commVector<std::pair<int,int> > Cshift_table_device; 
 | 
			
		||||
Vector<std::pair<int,int> > Cshift_table; 
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -46,5 +46,3 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#include <Grid/lattice/Lattice_unary.h>
 | 
			
		||||
#include <Grid/lattice/Lattice_transfer.h>
 | 
			
		||||
#include <Grid/lattice/Lattice_basis.h>
 | 
			
		||||
#include <Grid/lattice/Lattice_crc.h>
 | 
			
		||||
#include <Grid/lattice/PaddedCell.h>
 | 
			
		||||
 
 | 
			
		||||
@@ -63,7 +63,7 @@ accelerator_inline vobj predicatedWhere(const iobj &predicate,
 | 
			
		||||
  typename std::remove_const<vobj>::type ret;
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::scalar_object scalar_object;
 | 
			
		||||
  //  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  const int Nsimd = vobj::vector_type::Nsimd();
 | 
			
		||||
@@ -345,9 +345,7 @@ GridUnopClass(UnaryNot, Not(a));
 | 
			
		||||
GridUnopClass(UnaryTrace, trace(a));
 | 
			
		||||
GridUnopClass(UnaryTranspose, transpose(a));
 | 
			
		||||
GridUnopClass(UnaryTa, Ta(a));
 | 
			
		||||
GridUnopClass(UnarySpTa, SpTa(a));
 | 
			
		||||
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
 | 
			
		||||
GridUnopClass(UnaryProjectOnSpGroup, ProjectOnSpGroup(a));
 | 
			
		||||
GridUnopClass(UnaryTimesI, timesI(a));
 | 
			
		||||
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
 | 
			
		||||
GridUnopClass(UnaryAbs, abs(a));
 | 
			
		||||
@@ -458,9 +456,7 @@ GRID_DEF_UNOP(operator!, UnaryNot);
 | 
			
		||||
GRID_DEF_UNOP(trace, UnaryTrace);
 | 
			
		||||
GRID_DEF_UNOP(transpose, UnaryTranspose);
 | 
			
		||||
GRID_DEF_UNOP(Ta, UnaryTa);
 | 
			
		||||
GRID_DEF_UNOP(SpTa, UnarySpTa);
 | 
			
		||||
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
 | 
			
		||||
GRID_DEF_UNOP(ProjectOnSpGroup, UnaryProjectOnSpGroup);
 | 
			
		||||
GRID_DEF_UNOP(timesI, UnaryTimesI);
 | 
			
		||||
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
 | 
			
		||||
GRID_DEF_UNOP(abs, UnaryAbs);  // abs overloaded in cmath C++98; DON'T do the
 | 
			
		||||
 
 | 
			
		||||
@@ -36,7 +36,6 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  GRID_TRACE("mult");
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
  autoView( lhs_v , lhs, AcceleratorRead);
 | 
			
		||||
@@ -54,7 +53,6 @@ void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  GRID_TRACE("mac");
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  conformable(ret,rhs);
 | 
			
		||||
  conformable(lhs,rhs);
 | 
			
		||||
@@ -72,7 +70,6 @@ void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  GRID_TRACE("sub");
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  conformable(ret,rhs);
 | 
			
		||||
  conformable(lhs,rhs);
 | 
			
		||||
@@ -89,7 +86,6 @@ void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
}
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  GRID_TRACE("add");
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  conformable(ret,rhs);
 | 
			
		||||
  conformable(lhs,rhs);
 | 
			
		||||
@@ -110,7 +106,6 @@ void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
			
		||||
  GRID_TRACE("mult");
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  conformable(lhs,ret);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
@@ -124,7 +119,6 @@ void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
			
		||||
  
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
			
		||||
  GRID_TRACE("mac");
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  conformable(ret,lhs);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
@@ -139,7 +133,6 @@ void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
			
		||||
  
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
			
		||||
  GRID_TRACE("sub");
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  conformable(ret,lhs);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
@@ -153,7 +146,6 @@ void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
			
		||||
}
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
			
		||||
  GRID_TRACE("add");
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  conformable(lhs,ret);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
@@ -171,7 +163,6 @@ void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  GRID_TRACE("mult");
 | 
			
		||||
  ret.Checkerboard() = rhs.Checkerboard();
 | 
			
		||||
  conformable(ret,rhs);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
@@ -186,7 +177,6 @@ void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  GRID_TRACE("mac");
 | 
			
		||||
  ret.Checkerboard() = rhs.Checkerboard();
 | 
			
		||||
  conformable(ret,rhs);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
@@ -201,7 +191,6 @@ void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  GRID_TRACE("sub");
 | 
			
		||||
  ret.Checkerboard() = rhs.Checkerboard();
 | 
			
		||||
  conformable(ret,rhs);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
@@ -215,7 +204,6 @@ void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
}
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  GRID_TRACE("add");
 | 
			
		||||
  ret.Checkerboard() = rhs.Checkerboard();
 | 
			
		||||
  conformable(ret,rhs);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
@@ -230,7 +218,6 @@ void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  
 | 
			
		||||
template<class sobj,class vobj> inline
 | 
			
		||||
void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){
 | 
			
		||||
  GRID_TRACE("axpy");
 | 
			
		||||
  ret.Checkerboard() = x.Checkerboard();
 | 
			
		||||
  conformable(ret,x);
 | 
			
		||||
  conformable(x,y);
 | 
			
		||||
@@ -244,7 +231,6 @@ void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &
 | 
			
		||||
}
 | 
			
		||||
template<class sobj,class vobj> inline
 | 
			
		||||
void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y){
 | 
			
		||||
  GRID_TRACE("axpby");
 | 
			
		||||
  ret.Checkerboard() = x.Checkerboard();
 | 
			
		||||
  conformable(ret,x);
 | 
			
		||||
  conformable(x,y);
 | 
			
		||||
@@ -260,52 +246,13 @@ void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice
 | 
			
		||||
template<class sobj,class vobj> inline
 | 
			
		||||
RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
 | 
			
		||||
{
 | 
			
		||||
  GRID_TRACE("axpy_norm");
 | 
			
		||||
    return axpy_norm_fast(ret,a,x,y);
 | 
			
		||||
}
 | 
			
		||||
template<class sobj,class vobj> inline
 | 
			
		||||
RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
 | 
			
		||||
{
 | 
			
		||||
  GRID_TRACE("axpby_norm");
 | 
			
		||||
    return axpby_norm_fast(ret,a,b,x,y);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/// Trace product
 | 
			
		||||
template<class obj> auto traceProduct(const Lattice<obj> &rhs_1,const Lattice<obj> &rhs_2)
 | 
			
		||||
  -> Lattice<decltype(trace(obj()))>
 | 
			
		||||
{
 | 
			
		||||
  typedef decltype(trace(obj())) robj;
 | 
			
		||||
  Lattice<robj> ret_i(rhs_1.Grid());
 | 
			
		||||
  autoView( rhs1 , rhs_1, AcceleratorRead);
 | 
			
		||||
  autoView( rhs2 , rhs_2, AcceleratorRead);
 | 
			
		||||
  autoView( ret , ret_i, AcceleratorWrite);
 | 
			
		||||
  ret.Checkerboard() = rhs_1.Checkerboard();
 | 
			
		||||
  accelerator_for(ss,rhs1.size(),obj::Nsimd(),{
 | 
			
		||||
      coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2(ss)));
 | 
			
		||||
  });
 | 
			
		||||
  return ret_i;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class obj1,class obj2> auto traceProduct(const Lattice<obj1> &rhs_1,const obj2 &rhs2)
 | 
			
		||||
  -> Lattice<decltype(trace(obj1()))>
 | 
			
		||||
{
 | 
			
		||||
  typedef decltype(trace(obj1())) robj;
 | 
			
		||||
  Lattice<robj> ret_i(rhs_1.Grid());
 | 
			
		||||
  autoView( rhs1 , rhs_1, AcceleratorRead);
 | 
			
		||||
  autoView( ret , ret_i, AcceleratorWrite);
 | 
			
		||||
  ret.Checkerboard() = rhs_1.Checkerboard();
 | 
			
		||||
  accelerator_for(ss,rhs1.size(),obj1::Nsimd(),{
 | 
			
		||||
      coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2));
 | 
			
		||||
  });
 | 
			
		||||
  return ret_i;
 | 
			
		||||
}
 | 
			
		||||
template<class obj1,class obj2> auto traceProduct(const obj2 &rhs_2,const Lattice<obj1> &rhs_1)
 | 
			
		||||
  -> Lattice<decltype(trace(obj1()))>
 | 
			
		||||
{
 | 
			
		||||
  return traceProduct(rhs_1,rhs_2);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -117,7 +117,6 @@ public:
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template <typename Op, typename T1> inline Lattice<vobj> & operator=(const LatticeUnaryExpression<Op,T1> &expr)
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("ExpressionTemplateEval");
 | 
			
		||||
    GridBase *egrid(nullptr);
 | 
			
		||||
    GridFromExpression(egrid,expr);
 | 
			
		||||
    assert(egrid!=nullptr);
 | 
			
		||||
@@ -130,7 +129,7 @@ public:
 | 
			
		||||
    
 | 
			
		||||
    auto exprCopy = expr;
 | 
			
		||||
    ExpressionViewOpen(exprCopy);
 | 
			
		||||
    auto me  = View(AcceleratorWriteDiscard);
 | 
			
		||||
    auto me  = View(AcceleratorWrite);
 | 
			
		||||
    accelerator_for(ss,me.size(),vobj::Nsimd(),{
 | 
			
		||||
      auto tmp = eval(ss,exprCopy);
 | 
			
		||||
      coalescedWrite(me[ss],tmp);
 | 
			
		||||
@@ -141,7 +140,6 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
  template <typename Op, typename T1,typename T2> inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr)
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("ExpressionTemplateEval");
 | 
			
		||||
    GridBase *egrid(nullptr);
 | 
			
		||||
    GridFromExpression(egrid,expr);
 | 
			
		||||
    assert(egrid!=nullptr);
 | 
			
		||||
@@ -154,7 +152,7 @@ public:
 | 
			
		||||
 | 
			
		||||
    auto exprCopy = expr;
 | 
			
		||||
    ExpressionViewOpen(exprCopy);
 | 
			
		||||
    auto me  = View(AcceleratorWriteDiscard);
 | 
			
		||||
    auto me  = View(AcceleratorWrite);
 | 
			
		||||
    accelerator_for(ss,me.size(),vobj::Nsimd(),{
 | 
			
		||||
      auto tmp = eval(ss,exprCopy);
 | 
			
		||||
      coalescedWrite(me[ss],tmp);
 | 
			
		||||
@@ -165,7 +163,6 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
  template <typename Op, typename T1,typename T2,typename T3> inline Lattice<vobj> & operator=(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr)
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("ExpressionTemplateEval");
 | 
			
		||||
    GridBase *egrid(nullptr);
 | 
			
		||||
    GridFromExpression(egrid,expr);
 | 
			
		||||
    assert(egrid!=nullptr);
 | 
			
		||||
@@ -177,7 +174,7 @@ public:
 | 
			
		||||
    this->checkerboard=cb;
 | 
			
		||||
    auto exprCopy = expr;
 | 
			
		||||
    ExpressionViewOpen(exprCopy);
 | 
			
		||||
    auto me  = View(AcceleratorWriteDiscard);
 | 
			
		||||
    auto me  = View(AcceleratorWrite);
 | 
			
		||||
    accelerator_for(ss,me.size(),vobj::Nsimd(),{
 | 
			
		||||
      auto tmp = eval(ss,exprCopy);
 | 
			
		||||
      coalescedWrite(me[ss],tmp);
 | 
			
		||||
@@ -248,7 +245,7 @@ public:
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  // user defined constructor
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  Lattice(GridBase *grid,ViewMode mode=AcceleratorWriteDiscard) { 
 | 
			
		||||
  Lattice(GridBase *grid,ViewMode mode=AcceleratorWrite) { 
 | 
			
		||||
    this->_grid = grid;
 | 
			
		||||
    resize(this->_grid->oSites());
 | 
			
		||||
    assert((((uint64_t)&this->_odata[0])&0xF) ==0);
 | 
			
		||||
@@ -291,8 +288,8 @@ public:
 | 
			
		||||
    typename std::enable_if<!std::is_same<robj,vobj>::value,int>::type i=0;
 | 
			
		||||
    conformable(*this,r);
 | 
			
		||||
    this->checkerboard = r.Checkerboard();
 | 
			
		||||
    auto me =   View(AcceleratorWrite);
 | 
			
		||||
    auto him= r.View(AcceleratorRead);
 | 
			
		||||
    auto me =   View(AcceleratorWriteDiscard);
 | 
			
		||||
    accelerator_for(ss,me.size(),vobj::Nsimd(),{
 | 
			
		||||
      coalescedWrite(me[ss],him(ss));
 | 
			
		||||
    });
 | 
			
		||||
@@ -306,8 +303,8 @@ public:
 | 
			
		||||
  inline Lattice<vobj> & operator = (const Lattice<vobj> & r){
 | 
			
		||||
    this->checkerboard = r.Checkerboard();
 | 
			
		||||
    conformable(*this,r);
 | 
			
		||||
    auto me =   View(AcceleratorWrite);
 | 
			
		||||
    auto him= r.View(AcceleratorRead);
 | 
			
		||||
    auto me =   View(AcceleratorWriteDiscard);
 | 
			
		||||
    accelerator_for(ss,me.size(),vobj::Nsimd(),{
 | 
			
		||||
      coalescedWrite(me[ss],him(ss));
 | 
			
		||||
    });
 | 
			
		||||
 
 | 
			
		||||
@@ -1,55 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/lattice/Lattice_crc.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2021
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class vobj> void DumpSliceNorm(std::string s,Lattice<vobj> &f,int mu=-1)
 | 
			
		||||
{
 | 
			
		||||
  auto ff = localNorm2(f);
 | 
			
		||||
  if ( mu==-1 ) mu = f.Grid()->Nd()-1;
 | 
			
		||||
  typedef typename vobj::tensor_reduced normtype;
 | 
			
		||||
  typedef typename normtype::scalar_object scalar;
 | 
			
		||||
  std::vector<scalar> sff;
 | 
			
		||||
  sliceSum(ff,sff,mu);
 | 
			
		||||
  for(int t=0;t<sff.size();t++){
 | 
			
		||||
    std::cout << s<<" "<<t<<" "<<sff[t]<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> uint32_t crc(Lattice<vobj> & buf)
 | 
			
		||||
{
 | 
			
		||||
  autoView( buf_v , buf, CpuRead);
 | 
			
		||||
  return ::crc32(0L,(unsigned char *)&buf_v[0],(size_t)sizeof(vobj)*buf.oSites());
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#define CRC(U) std::cout << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -32,6 +32,7 @@ template<class vobj>
 | 
			
		||||
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0) 
 | 
			
		||||
{    
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
			
		||||
@@ -81,6 +82,7 @@ template<class vobj>
 | 
			
		||||
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0) 
 | 
			
		||||
{    
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
			
		||||
@@ -128,6 +130,7 @@ template<class vobj>
 | 
			
		||||
static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog) 
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  
 | 
			
		||||
  GridBase *FullGrid  = lhs.Grid();
 | 
			
		||||
 
 | 
			
		||||
@@ -96,6 +96,9 @@ void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){
 | 
			
		||||
 | 
			
		||||
  GridBase *grid=l.Grid();
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  int Nsimd = grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
  assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
 | 
			
		||||
@@ -122,17 +125,14 @@ void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){
 | 
			
		||||
//////////////////////////////////////////////////////////
 | 
			
		||||
// Peek a scalar object from the SIMD array
 | 
			
		||||
//////////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj>
 | 
			
		||||
typename vobj::scalar_object peekSite(const Lattice<vobj> &l,const Coordinate &site){
 | 
			
		||||
  typename vobj::scalar_object s;
 | 
			
		||||
  peekSite(s,l,site);
 | 
			
		||||
  return s;
 | 
			
		||||
}        
 | 
			
		||||
template<class vobj,class sobj>
 | 
			
		||||
void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
 | 
			
		||||
        
 | 
			
		||||
  GridBase *grid=l.Grid();
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  int Nsimd = grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
  assert( l.Checkerboard() == l.Grid()->CheckerBoard(site));
 | 
			
		||||
@@ -173,11 +173,11 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
 | 
			
		||||
  idx= grid->iIndex(site);
 | 
			
		||||
  odx= grid->oIndex(site);
 | 
			
		||||
  
 | 
			
		||||
  const vector_type *vp = (const vector_type *) &l[odx];
 | 
			
		||||
  scalar_type * vp = (scalar_type *)&l[odx];
 | 
			
		||||
  scalar_type * pt = (scalar_type *)&s;
 | 
			
		||||
      
 | 
			
		||||
  for(int w=0;w<words;w++){
 | 
			
		||||
    pt[w] = getlane(vp[w],idx);
 | 
			
		||||
    pt[w] = vp[idx+w*Nsimd];
 | 
			
		||||
  }
 | 
			
		||||
      
 | 
			
		||||
  return;
 | 
			
		||||
@@ -210,10 +210,10 @@ inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site)
 | 
			
		||||
  idx= grid->iIndex(site);
 | 
			
		||||
  odx= grid->oIndex(site);
 | 
			
		||||
 | 
			
		||||
  vector_type * vp = (vector_type *)&l[odx];
 | 
			
		||||
  scalar_type * vp = (scalar_type *)&l[odx];
 | 
			
		||||
  scalar_type * pt = (scalar_type *)&s;
 | 
			
		||||
  for(int w=0;w<words;w++){
 | 
			
		||||
    putlane(vp[w],pt[w],idx);
 | 
			
		||||
    vp[idx+w*Nsimd] = pt[w];
 | 
			
		||||
  }
 | 
			
		||||
  return;
 | 
			
		||||
};
 | 
			
		||||
 
 | 
			
		||||
@@ -94,7 +94,10 @@ inline typename vobj::scalar_objectD sumD_cpu(const vobj *arg, Integer osites)
 | 
			
		||||
  for(int i=0;i<nthread;i++){
 | 
			
		||||
    ssum = ssum+sumarray[i];
 | 
			
		||||
  } 
 | 
			
		||||
  return ssum;
 | 
			
		||||
  
 | 
			
		||||
  typedef typename vobj::scalar_object ssobj;
 | 
			
		||||
  ssobj ret = ssum;
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
/*
 | 
			
		||||
Threaded max, don't use for now
 | 
			
		||||
@@ -153,44 +156,33 @@ inline typename vobj::scalar_objectD sumD_large(const vobj *arg, Integer osites)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline typename vobj::scalar_object rankSum(const Lattice<vobj> &arg)
 | 
			
		||||
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
 | 
			
		||||
{
 | 
			
		||||
  Integer osites = arg.Grid()->oSites();
 | 
			
		||||
#if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL)
 | 
			
		||||
  typename vobj::scalar_object ssum;
 | 
			
		||||
  autoView( arg_v, arg, AcceleratorRead);
 | 
			
		||||
  return sum_gpu(&arg_v[0],osites);
 | 
			
		||||
  ssum= sum_gpu(&arg_v[0],osites);
 | 
			
		||||
#else
 | 
			
		||||
  autoView(arg_v, arg, CpuRead);
 | 
			
		||||
  return sum_cpu(&arg_v[0],osites);
 | 
			
		||||
  auto ssum= sum_cpu(&arg_v[0],osites);
 | 
			
		||||
#endif  
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
 | 
			
		||||
{
 | 
			
		||||
  auto ssum = rankSum(arg);
 | 
			
		||||
  arg.Grid()->GlobalSum(ssum);
 | 
			
		||||
  return ssum;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline typename vobj::scalar_object rankSumLarge(const Lattice<vobj> &arg)
 | 
			
		||||
inline typename vobj::scalar_object sum_large(const Lattice<vobj> &arg)
 | 
			
		||||
{
 | 
			
		||||
#if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL)
 | 
			
		||||
  autoView( arg_v, arg, AcceleratorRead);
 | 
			
		||||
  Integer osites = arg.Grid()->oSites();
 | 
			
		||||
  return sum_gpu_large(&arg_v[0],osites);
 | 
			
		||||
  auto ssum= sum_gpu_large(&arg_v[0],osites);
 | 
			
		||||
#else
 | 
			
		||||
  autoView(arg_v, arg, CpuRead);
 | 
			
		||||
  Integer osites = arg.Grid()->oSites();
 | 
			
		||||
  return sum_cpu(&arg_v[0],osites);
 | 
			
		||||
  auto ssum= sum_cpu(&arg_v[0],osites);
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline typename vobj::scalar_object sum_large(const Lattice<vobj> &arg)
 | 
			
		||||
{
 | 
			
		||||
  auto ssum = rankSumLarge(arg);
 | 
			
		||||
  arg.Grid()->GlobalSum(ssum);
 | 
			
		||||
  return ssum;
 | 
			
		||||
}
 | 
			
		||||
@@ -233,6 +225,7 @@ template<class vobj> inline RealD maxLocalNorm2(const Lattice<vobj> &arg)
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_typeD vector_type;
 | 
			
		||||
  ComplexD  nrm;
 | 
			
		||||
  
 | 
			
		||||
@@ -242,7 +235,6 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
 | 
			
		||||
  const uint64_t sites = grid->oSites();
 | 
			
		||||
  
 | 
			
		||||
  // Might make all code paths go this way.
 | 
			
		||||
#if 0
 | 
			
		||||
  typedef decltype(innerProductD(vobj(),vobj())) inner_t;
 | 
			
		||||
  Vector<inner_t> inner_tmp(sites);
 | 
			
		||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
			
		||||
@@ -251,31 +243,15 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
 | 
			
		||||
    autoView( right_v,right, AcceleratorRead);
 | 
			
		||||
    // This code could read coalesce
 | 
			
		||||
    // GPU - SIMT lane compliance...
 | 
			
		||||
    accelerator_for( ss, sites, nsimd,{
 | 
			
		||||
	auto x_l = left_v(ss);
 | 
			
		||||
	auto y_l = right_v(ss);
 | 
			
		||||
	coalescedWrite(inner_tmp_v[ss],innerProductD(x_l,y_l));
 | 
			
		||||
    accelerator_for( ss, sites, 1,{
 | 
			
		||||
	auto x_l = left_v[ss];
 | 
			
		||||
	auto y_l = right_v[ss];
 | 
			
		||||
	inner_tmp_v[ss]=innerProductD(x_l,y_l);
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
#else
 | 
			
		||||
  typedef decltype(innerProduct(vobj(),vobj())) inner_t;
 | 
			
		||||
  Vector<inner_t> inner_tmp(sites);
 | 
			
		||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
			
		||||
 | 
			
		||||
  {
 | 
			
		||||
    autoView( left_v , left, AcceleratorRead);
 | 
			
		||||
    autoView( right_v,right, AcceleratorRead);
 | 
			
		||||
 | 
			
		||||
    // GPU - SIMT lane compliance...
 | 
			
		||||
    accelerator_for( ss, sites, nsimd,{
 | 
			
		||||
	auto x_l = left_v(ss);
 | 
			
		||||
	auto y_l = right_v(ss);
 | 
			
		||||
	coalescedWrite(inner_tmp_v[ss],innerProduct(x_l,y_l));
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
  // This is in single precision and fails some tests
 | 
			
		||||
  auto anrm = sumD(inner_tmp_v,sites);  
 | 
			
		||||
  auto anrm = sum(inner_tmp_v,sites);  
 | 
			
		||||
  nrm = anrm;
 | 
			
		||||
  return nrm;
 | 
			
		||||
}
 | 
			
		||||
@@ -308,7 +284,8 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
 | 
			
		||||
  conformable(z,x);
 | 
			
		||||
  conformable(x,y);
 | 
			
		||||
 | 
			
		||||
  //  typedef typename vobj::vector_typeD vector_type;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_typeD vector_type;
 | 
			
		||||
  RealD  nrm;
 | 
			
		||||
  
 | 
			
		||||
  GridBase *grid = x.Grid();
 | 
			
		||||
@@ -320,29 +297,17 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
 | 
			
		||||
  autoView( x_v, x, AcceleratorRead);
 | 
			
		||||
  autoView( y_v, y, AcceleratorRead);
 | 
			
		||||
  autoView( z_v, z, AcceleratorWrite);
 | 
			
		||||
#if 0
 | 
			
		||||
 | 
			
		||||
  typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t;
 | 
			
		||||
  Vector<inner_t> inner_tmp(sites);
 | 
			
		||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
			
		||||
 | 
			
		||||
  accelerator_for( ss, sites, nsimd,{
 | 
			
		||||
      auto tmp = a*x_v(ss)+b*y_v(ss);
 | 
			
		||||
      coalescedWrite(inner_tmp_v[ss],innerProductD(tmp,tmp));
 | 
			
		||||
      coalescedWrite(z_v[ss],tmp);
 | 
			
		||||
  accelerator_for( ss, sites, 1,{
 | 
			
		||||
      auto tmp = a*x_v[ss]+b*y_v[ss];
 | 
			
		||||
      inner_tmp_v[ss]=innerProductD(tmp,tmp);
 | 
			
		||||
      z_v[ss]=tmp;
 | 
			
		||||
  });
 | 
			
		||||
  nrm = real(TensorRemove(sum(inner_tmp_v,sites)));
 | 
			
		||||
#else
 | 
			
		||||
  typedef decltype(innerProduct(x_v[0],y_v[0])) inner_t;
 | 
			
		||||
  Vector<inner_t> inner_tmp(sites);
 | 
			
		||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
			
		||||
 | 
			
		||||
  accelerator_for( ss, sites, nsimd,{
 | 
			
		||||
      auto tmp = a*x_v(ss)+b*y_v(ss);
 | 
			
		||||
      coalescedWrite(inner_tmp_v[ss],innerProduct(tmp,tmp));
 | 
			
		||||
      coalescedWrite(z_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
  nrm = real(TensorRemove(sumD(inner_tmp_v,sites)));
 | 
			
		||||
#endif
 | 
			
		||||
  grid->GlobalSum(nrm);
 | 
			
		||||
  return nrm; 
 | 
			
		||||
}
 | 
			
		||||
@@ -352,6 +317,7 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti
 | 
			
		||||
{
 | 
			
		||||
  conformable(left,right);
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_typeD vector_type;
 | 
			
		||||
  Vector<ComplexD> tmp(2);
 | 
			
		||||
 | 
			
		||||
@@ -495,14 +461,6 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
 | 
			
		||||
  int words = fd*sizeof(sobj)/sizeof(scalar_type);
 | 
			
		||||
  grid->GlobalSumVector(ptr, words);
 | 
			
		||||
}
 | 
			
		||||
template<class vobj> inline
 | 
			
		||||
std::vector<typename vobj::scalar_object> 
 | 
			
		||||
sliceSum(const Lattice<vobj> &Data,int orthogdim)
 | 
			
		||||
{
 | 
			
		||||
  std::vector<typename vobj::scalar_object> result;
 | 
			
		||||
  sliceSum(Data,result,orthogdim);
 | 
			
		||||
  return result;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim) 
 | 
			
		||||
@@ -608,7 +566,6 @@ template<class vobj>
 | 
			
		||||
static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice<vobj> &X,const Lattice<vobj> &Y,
 | 
			
		||||
			    int orthogdim,RealD scale=1.0) 
 | 
			
		||||
{    
 | 
			
		||||
  // perhaps easier to just promote A to a field and use regular madd
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
@@ -639,7 +596,8 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice
 | 
			
		||||
    for(int l=0;l<Nsimd;l++){
 | 
			
		||||
      grid->iCoorFromIindex(icoor,l);
 | 
			
		||||
      int ldx =r+icoor[orthogdim]*rd;
 | 
			
		||||
      av.putlane(scalar_type(a[ldx])*zscale,l);
 | 
			
		||||
      scalar_type *as =(scalar_type *)&av;
 | 
			
		||||
      as[l] = scalar_type(a[ldx])*zscale;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    tensor_reduced at; at=av;
 | 
			
		||||
@@ -679,6 +637,7 @@ template<class vobj>
 | 
			
		||||
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0) 
 | 
			
		||||
{    
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
			
		||||
@@ -732,6 +691,7 @@ template<class vobj>
 | 
			
		||||
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0) 
 | 
			
		||||
{    
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
			
		||||
@@ -785,6 +745,7 @@ template<class vobj>
 | 
			
		||||
static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog) 
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  
 | 
			
		||||
  GridBase *FullGrid  = lhs.Grid();
 | 
			
		||||
 
 | 
			
		||||
@@ -30,7 +30,7 @@ int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &
 | 
			
		||||
  cudaGetDevice(&device);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
  auto r=hipGetDevice(&device);
 | 
			
		||||
  hipGetDevice(&device);
 | 
			
		||||
#endif
 | 
			
		||||
  
 | 
			
		||||
  Iterator warpSize            = gpu_props[device].warpSize;
 | 
			
		||||
@@ -211,25 +211,13 @@ inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osi
 | 
			
		||||
  assert(ok);
 | 
			
		||||
 | 
			
		||||
  Integer smemSize = numThreads * sizeof(sobj);
 | 
			
		||||
  // Move out of UVM
 | 
			
		||||
  // Turns out I had messed up the synchronise after move to compute stream
 | 
			
		||||
  // as running this on the default stream fools the synchronise
 | 
			
		||||
#undef UVM_BLOCK_BUFFER  
 | 
			
		||||
#ifndef UVM_BLOCK_BUFFER  
 | 
			
		||||
  commVector<sobj> buffer(numBlocks);
 | 
			
		||||
  sobj *buffer_v = &buffer[0];
 | 
			
		||||
  sobj result;
 | 
			
		||||
  reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
 | 
			
		||||
  accelerator_barrier();
 | 
			
		||||
  acceleratorCopyFromDevice(buffer_v,&result,sizeof(result));
 | 
			
		||||
#else
 | 
			
		||||
 | 
			
		||||
  Vector<sobj> buffer(numBlocks);
 | 
			
		||||
  sobj *buffer_v = &buffer[0];
 | 
			
		||||
  sobj result;
 | 
			
		||||
  reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
 | 
			
		||||
  
 | 
			
		||||
  reduceKernel<<< numBlocks, numThreads, smemSize >>>(lat, buffer_v, size);
 | 
			
		||||
  accelerator_barrier();
 | 
			
		||||
  result = *buffer_v;
 | 
			
		||||
#endif
 | 
			
		||||
  auto result = buffer_v[0];
 | 
			
		||||
  return result;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -262,6 +250,8 @@ inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osi
 | 
			
		||||
template <class vobj>
 | 
			
		||||
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::vector_type  vector;
 | 
			
		||||
  typedef typename vobj::scalar_typeD scalarD;
 | 
			
		||||
  typedef typename vobj::scalar_objectD sobj;
 | 
			
		||||
  sobj ret;
 | 
			
		||||
  
 | 
			
		||||
 
 | 
			
		||||
@@ -152,7 +152,6 @@ public:
 | 
			
		||||
#ifdef RNG_FAST_DISCARD
 | 
			
		||||
  static void Skip(RngEngine &eng,uint64_t site)
 | 
			
		||||
  {
 | 
			
		||||
#if 0
 | 
			
		||||
    /////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Skip by 2^40 elements between successive lattice sites
 | 
			
		||||
    // This goes by 10^12.
 | 
			
		||||
@@ -163,9 +162,9 @@ public:
 | 
			
		||||
    // tens of seconds per trajectory so this is clean in all reasonable cases,
 | 
			
		||||
    // and margin of safety is orders of magnitude.
 | 
			
		||||
    // We could hack Sitmo to skip in the higher order words of state if necessary
 | 
			
		||||
    //
 | 
			
		||||
    // Replace with 2^30 ; avoid problem on large volumes
 | 
			
		||||
    //
 | 
			
		||||
      //
 | 
			
		||||
      // Replace with 2^30 ; avoid problem on large volumes
 | 
			
		||||
      //
 | 
			
		||||
    /////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    //      uint64_t skip = site+1;  //   Old init Skipped then drew.  Checked compat with faster init
 | 
			
		||||
    const int shift = 30;
 | 
			
		||||
@@ -180,9 +179,6 @@ public:
 | 
			
		||||
    assert((skip >> shift)==site); // check for overflow
 | 
			
		||||
 | 
			
		||||
    eng.discard(skip);
 | 
			
		||||
#else
 | 
			
		||||
    eng.discardhi(site);
 | 
			
		||||
#endif
 | 
			
		||||
    //      std::cout << " Engine  " <<site << " state " <<eng<<std::endl;
 | 
			
		||||
  } 
 | 
			
		||||
#endif
 | 
			
		||||
@@ -428,33 +424,9 @@ public:
 | 
			
		||||
    // MT implementation does not implement fast discard even though
 | 
			
		||||
    // in principle this is possible
 | 
			
		||||
    ////////////////////////////////////////////////
 | 
			
		||||
#if 1
 | 
			
		||||
    thread_for( lidx, _grid->lSites(), {
 | 
			
		||||
 | 
			
		||||
	int gidx;
 | 
			
		||||
	int o_idx;
 | 
			
		||||
	int i_idx;
 | 
			
		||||
	int rank;
 | 
			
		||||
	Coordinate pcoor;
 | 
			
		||||
	Coordinate lcoor;
 | 
			
		||||
	Coordinate gcoor;
 | 
			
		||||
	_grid->LocalIndexToLocalCoor(lidx,lcoor);
 | 
			
		||||
	pcoor=_grid->ThisProcessorCoor();
 | 
			
		||||
	_grid->ProcessorCoorLocalCoorToGlobalCoor(pcoor,lcoor,gcoor);
 | 
			
		||||
	_grid->GlobalCoorToGlobalIndex(gcoor,gidx);
 | 
			
		||||
 | 
			
		||||
	_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
 | 
			
		||||
 | 
			
		||||
	assert(rank == _grid->ThisRank() );
 | 
			
		||||
	
 | 
			
		||||
	int l_idx=generator_idx(o_idx,i_idx);
 | 
			
		||||
	_generators[l_idx] = master_engine;
 | 
			
		||||
	Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
 | 
			
		||||
    });
 | 
			
		||||
#else
 | 
			
		||||
    // Everybody loops over global volume.
 | 
			
		||||
    thread_for( gidx, _grid->_gsites, {
 | 
			
		||||
 | 
			
		||||
	// Where is it?
 | 
			
		||||
	int rank;
 | 
			
		||||
	int o_idx;
 | 
			
		||||
@@ -471,7 +443,6 @@ public:
 | 
			
		||||
	  Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
 | 
			
		||||
	}
 | 
			
		||||
    });
 | 
			
		||||
#endif
 | 
			
		||||
#else 
 | 
			
		||||
    ////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Machine and thread decomposition dependent seeding is efficient
 | 
			
		||||
 
 | 
			
		||||
@@ -66,65 +66,6 @@ inline auto TraceIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<
 | 
			
		||||
  return ret;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<int N, class Vec>
 | 
			
		||||
Lattice<iScalar<iScalar<iScalar<Vec> > > > Determinant(const Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=Umu.Grid();
 | 
			
		||||
  auto lvol = grid->lSites();
 | 
			
		||||
  Lattice<iScalar<iScalar<iScalar<Vec> > > > ret(grid);
 | 
			
		||||
  typedef typename Vec::scalar_type scalar;
 | 
			
		||||
  autoView(Umu_v,Umu,CpuRead);
 | 
			
		||||
  autoView(ret_v,ret,CpuWrite);
 | 
			
		||||
  thread_for(site,lvol,{
 | 
			
		||||
    Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
 | 
			
		||||
    Coordinate lcoor;
 | 
			
		||||
    grid->LocalIndexToLocalCoor(site, lcoor);
 | 
			
		||||
    iScalar<iScalar<iMatrix<scalar, N> > > Us;
 | 
			
		||||
    peekLocalSite(Us, Umu_v, lcoor);
 | 
			
		||||
    for(int i=0;i<N;i++){
 | 
			
		||||
      for(int j=0;j<N;j++){
 | 
			
		||||
	scalar tmp= Us()()(i,j);
 | 
			
		||||
	ComplexD ztmp(real(tmp),imag(tmp));
 | 
			
		||||
	EigenU(i,j)=ztmp;
 | 
			
		||||
      }}
 | 
			
		||||
    ComplexD detD  = EigenU.determinant();
 | 
			
		||||
    typename Vec::scalar_type det(detD.real(),detD.imag());
 | 
			
		||||
    pokeLocalSite(det,ret_v,lcoor);
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<int N>
 | 
			
		||||
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > Inverse(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=Umu.Grid();
 | 
			
		||||
  auto lvol = grid->lSites();
 | 
			
		||||
  Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > ret(grid);
 | 
			
		||||
  
 | 
			
		||||
  autoView(Umu_v,Umu,CpuRead);
 | 
			
		||||
  autoView(ret_v,ret,CpuWrite);
 | 
			
		||||
  thread_for(site,lvol,{
 | 
			
		||||
    Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
 | 
			
		||||
    Coordinate lcoor;
 | 
			
		||||
    grid->LocalIndexToLocalCoor(site, lcoor);
 | 
			
		||||
    iScalar<iScalar<iMatrix<ComplexD, N> > > Us;
 | 
			
		||||
    iScalar<iScalar<iMatrix<ComplexD, N> > > Ui;
 | 
			
		||||
    peekLocalSite(Us, Umu_v, lcoor);
 | 
			
		||||
    for(int i=0;i<N;i++){
 | 
			
		||||
      for(int j=0;j<N;j++){
 | 
			
		||||
	EigenU(i,j) = Us()()(i,j);
 | 
			
		||||
      }}
 | 
			
		||||
    Eigen::MatrixXcd EigenUinv = EigenU.inverse();
 | 
			
		||||
    for(int i=0;i<N;i++){
 | 
			
		||||
      for(int j=0;j<N;j++){
 | 
			
		||||
	Ui()()(i,j) = EigenUinv(i,j);
 | 
			
		||||
      }}
 | 
			
		||||
    pokeLocalSite(Ui,ret_v,lcoor);
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -194,11 +194,11 @@ accelerator_inline void convertType(vComplexD2 & out, const ComplexD & in) {
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
accelerator_inline void convertType(vComplexF & out, const vComplexD2 & in) {
 | 
			
		||||
  precisionChange(out,in);
 | 
			
		||||
  out.v = Optimization::PrecisionChange::DtoS(in._internal[0].v,in._internal[1].v);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
accelerator_inline void convertType(vComplexD2 & out, const vComplexF & in) {
 | 
			
		||||
  precisionChange(out,in);
 | 
			
		||||
  Optimization::PrecisionChange::StoD(in.v,out._internal[0].v,out._internal[1].v);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<typename T1,typename T2>
 | 
			
		||||
@@ -288,36 +288,7 @@ inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
			
		||||
    blockZAXPY(fineDataRed,ip,Basis[v],fineDataRed); 
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
template<class vobj,class CComplex,int nbasis,class VLattice>
 | 
			
		||||
inline void batchBlockProject(std::vector<Lattice<iVector<CComplex,nbasis>>> &coarseData,
 | 
			
		||||
                               const std::vector<Lattice<vobj>> &fineData,
 | 
			
		||||
                               const VLattice &Basis)
 | 
			
		||||
{
 | 
			
		||||
  int NBatch = fineData.size();
 | 
			
		||||
  assert(coarseData.size() == NBatch);
 | 
			
		||||
 | 
			
		||||
  GridBase * fine  = fineData[0].Grid();
 | 
			
		||||
  GridBase * coarse= coarseData[0].Grid();
 | 
			
		||||
 | 
			
		||||
  Lattice<iScalar<CComplex>> ip(coarse);
 | 
			
		||||
  std::vector<Lattice<vobj>> fineDataCopy = fineData;
 | 
			
		||||
 | 
			
		||||
  autoView(ip_, ip, AcceleratorWrite);
 | 
			
		||||
  for(int v=0;v<nbasis;v++) {
 | 
			
		||||
    for (int k=0; k<NBatch; k++) {
 | 
			
		||||
      autoView( coarseData_ , coarseData[k], AcceleratorWrite);
 | 
			
		||||
      blockInnerProductD(ip,Basis[v],fineDataCopy[k]); // ip = <basis|fine>
 | 
			
		||||
      accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
 | 
			
		||||
        convertType(coarseData_[sc](v),ip_[sc]);
 | 
			
		||||
      });
 | 
			
		||||
 | 
			
		||||
      // improve numerical stability of projection
 | 
			
		||||
      // |fine> = |fine> - <basis|fine> |basis>
 | 
			
		||||
      ip=-ip;
 | 
			
		||||
      blockZAXPY(fineDataCopy[k],ip,Basis[v],fineDataCopy[k]); 
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj,class vobj2,class CComplex>
 | 
			
		||||
  inline void blockZAXPY(Lattice<vobj> &fineZ,
 | 
			
		||||
@@ -619,26 +590,6 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
template<class vobj,class CComplex,int nbasis,class VLattice>
 | 
			
		||||
inline void batchBlockPromote(const std::vector<Lattice<iVector<CComplex,nbasis>>> &coarseData,
 | 
			
		||||
                               std::vector<Lattice<vobj>> &fineData,
 | 
			
		||||
                               const VLattice &Basis)
 | 
			
		||||
{
 | 
			
		||||
  int NBatch = coarseData.size();
 | 
			
		||||
  assert(fineData.size() == NBatch);
 | 
			
		||||
 | 
			
		||||
  GridBase * fine   = fineData[0].Grid();
 | 
			
		||||
  GridBase * coarse = coarseData[0].Grid();
 | 
			
		||||
  for (int k=0; k<NBatch; k++)
 | 
			
		||||
    fineData[k]=Zero();
 | 
			
		||||
  for (int i=0;i<nbasis;i++) {
 | 
			
		||||
    for (int k=0; k<NBatch; k++) {
 | 
			
		||||
      Lattice<iScalar<CComplex>> ip = PeekIndex<0>(coarseData[k],i);
 | 
			
		||||
      blockZAXPY(fineData[k],ip,Basis[i],fineData[k]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Useful for precision conversion, or indeed anything where an operator= does a conversion on scalars.
 | 
			
		||||
// Simd layouts need not match since we use peek/poke Local
 | 
			
		||||
template<class vobj,class vvobj>
 | 
			
		||||
@@ -697,68 +648,8 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
 | 
			
		||||
  for(int d=0;d<nd;d++){
 | 
			
		||||
    assert(Fg->_processors[d]  == Tg->_processors[d]);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // the above should guarantee that the operations are local
 | 
			
		||||
  
 | 
			
		||||
#if 1
 | 
			
		||||
 | 
			
		||||
  size_t nsite = 1;
 | 
			
		||||
  for(int i=0;i<nd;i++) nsite *= RegionSize[i];
 | 
			
		||||
  
 | 
			
		||||
  size_t tbytes = 4*nsite*sizeof(int);
 | 
			
		||||
  int *table = (int*)malloc(tbytes);
 | 
			
		||||
 
 | 
			
		||||
  thread_for(idx, nsite, {
 | 
			
		||||
      Coordinate from_coor, to_coor;
 | 
			
		||||
      size_t rem = idx;
 | 
			
		||||
      for(int i=0;i<nd;i++){
 | 
			
		||||
	size_t base_i  = rem % RegionSize[i]; rem /= RegionSize[i];
 | 
			
		||||
	from_coor[i] = base_i + FromLowerLeft[i];
 | 
			
		||||
	to_coor[i] = base_i + ToLowerLeft[i];
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      int foidx = Fg->oIndex(from_coor);
 | 
			
		||||
      int fiidx = Fg->iIndex(from_coor);
 | 
			
		||||
      int toidx = Tg->oIndex(to_coor);
 | 
			
		||||
      int tiidx = Tg->iIndex(to_coor);
 | 
			
		||||
      int* tt = table + 4*idx;
 | 
			
		||||
      tt[0] = foidx;
 | 
			
		||||
      tt[1] = fiidx;
 | 
			
		||||
      tt[2] = toidx;
 | 
			
		||||
      tt[3] = tiidx;
 | 
			
		||||
    });
 | 
			
		||||
  
 | 
			
		||||
  int* table_d = (int*)acceleratorAllocDevice(tbytes);
 | 
			
		||||
  acceleratorCopyToDevice(table,table_d,tbytes);
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
 | 
			
		||||
  autoView(from_v,From,AcceleratorRead);
 | 
			
		||||
  autoView(to_v,To,AcceleratorWrite);
 | 
			
		||||
  
 | 
			
		||||
  accelerator_for(idx,nsite,1,{
 | 
			
		||||
      static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
      int* tt = table_d + 4*idx;
 | 
			
		||||
      int from_oidx = *tt++;
 | 
			
		||||
      int from_lane = *tt++;
 | 
			
		||||
      int to_oidx = *tt++;
 | 
			
		||||
      int to_lane = *tt;
 | 
			
		||||
 | 
			
		||||
      const vector_type* from = (const vector_type *)&from_v[from_oidx];
 | 
			
		||||
      vector_type* to = (vector_type *)&to_v[to_oidx];
 | 
			
		||||
      
 | 
			
		||||
      scalar_type stmp;
 | 
			
		||||
      for(int w=0;w<words;w++){
 | 
			
		||||
	stmp = getlane(from[w], from_lane);
 | 
			
		||||
	putlane(to[w], stmp, to_lane);
 | 
			
		||||
      }
 | 
			
		||||
    });
 | 
			
		||||
  
 | 
			
		||||
  acceleratorFreeDevice(table_d);    
 | 
			
		||||
  free(table);
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
#else  
 | 
			
		||||
  Coordinate ldf = Fg->_ldimensions;
 | 
			
		||||
  Coordinate rdf = Fg->_rdimensions;
 | 
			
		||||
  Coordinate isf = Fg->_istride;
 | 
			
		||||
@@ -767,9 +658,9 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
 | 
			
		||||
  Coordinate ist = Tg->_istride;
 | 
			
		||||
  Coordinate ost = Tg->_ostride;
 | 
			
		||||
 | 
			
		||||
  autoView( t_v , To, CpuWrite);
 | 
			
		||||
  autoView( f_v , From, CpuRead);
 | 
			
		||||
  thread_for(idx,Fg->lSites(),{
 | 
			
		||||
  autoView( t_v , To, AcceleratorWrite);
 | 
			
		||||
  autoView( f_v , From, AcceleratorRead);
 | 
			
		||||
  accelerator_for(idx,Fg->lSites(),1,{
 | 
			
		||||
    sobj s;
 | 
			
		||||
    Coordinate Fcoor(nd);
 | 
			
		||||
    Coordinate Tcoor(nd);
 | 
			
		||||
@@ -782,24 +673,17 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
 | 
			
		||||
      Tcoor[d] = ToLowerLeft[d]+ Fcoor[d]-FromLowerLeft[d];
 | 
			
		||||
    }
 | 
			
		||||
    if (in_region) {
 | 
			
		||||
#if 0      
 | 
			
		||||
      Integer idx_f = 0; for(int d=0;d<nd;d++) idx_f+=isf[d]*(Fcoor[d]/rdf[d]); // inner index from
 | 
			
		||||
      Integer idx_t = 0; for(int d=0;d<nd;d++) idx_t+=ist[d]*(Tcoor[d]/rdt[d]); // inner index to
 | 
			
		||||
      Integer odx_f = 0; for(int d=0;d<nd;d++) odx_f+=osf[d]*(Fcoor[d]%rdf[d]); // outer index from
 | 
			
		||||
      Integer odx_t = 0; for(int d=0;d<nd;d++) odx_t+=ost[d]*(Tcoor[d]%rdt[d]); // outer index to
 | 
			
		||||
      Integer idx_f = 0; for(int d=0;d<nd;d++) idx_f+=isf[d]*(Fcoor[d]/rdf[d]);
 | 
			
		||||
      Integer idx_t = 0; for(int d=0;d<nd;d++) idx_t+=ist[d]*(Tcoor[d]/rdt[d]);
 | 
			
		||||
      Integer odx_f = 0; for(int d=0;d<nd;d++) odx_f+=osf[d]*(Fcoor[d]%rdf[d]);
 | 
			
		||||
      Integer odx_t = 0; for(int d=0;d<nd;d++) odx_t+=ost[d]*(Tcoor[d]%rdt[d]);
 | 
			
		||||
      scalar_type * fp = (scalar_type *)&f_v[odx_f];
 | 
			
		||||
      scalar_type * tp = (scalar_type *)&t_v[odx_t];
 | 
			
		||||
      for(int w=0;w<words;w++){
 | 
			
		||||
	tp[w].putlane(fp[w].getlane(idx_f),idx_t);
 | 
			
		||||
	tp[idx_t+w*Nsimd] = fp[idx_f+w*Nsimd];  // FIXME IF RRII layout, type pun no worke
 | 
			
		||||
      }
 | 
			
		||||
#else
 | 
			
		||||
    peekLocalSite(s,f_v,Fcoor);
 | 
			
		||||
    pokeLocalSite(s,t_v,Tcoor);
 | 
			
		||||
#endif
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -892,8 +776,6 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//Insert subvolume orthogonal to direction 'orthog' with slice index 'slice_lo' from 'lowDim' onto slice index 'slice_hi' of higherDim
 | 
			
		||||
//The local dimensions of both 'lowDim' and 'higherDim' orthogonal to 'orthog' should be the same
 | 
			
		||||
template<class vobj>
 | 
			
		||||
void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
 | 
			
		||||
{
 | 
			
		||||
@@ -910,70 +792,11 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
 | 
			
		||||
 | 
			
		||||
  for(int d=0;d<nh;d++){
 | 
			
		||||
    if ( d!=orthog ) {
 | 
			
		||||
      assert(lg->_processors[d]  == hg->_processors[d]);
 | 
			
		||||
      assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
 | 
			
		||||
    }
 | 
			
		||||
    assert(lg->_processors[d]  == hg->_processors[d]);
 | 
			
		||||
    assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
 | 
			
		||||
  }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
#if 1
 | 
			
		||||
  size_t nsite = lg->lSites()/lg->LocalDimensions()[orthog];
 | 
			
		||||
  size_t tbytes = 4*nsite*sizeof(int);
 | 
			
		||||
  int *table = (int*)malloc(tbytes);
 | 
			
		||||
  
 | 
			
		||||
  thread_for(idx,nsite,{
 | 
			
		||||
    Coordinate lcoor(nl);
 | 
			
		||||
    Coordinate hcoor(nh);
 | 
			
		||||
    lcoor[orthog] = slice_lo;
 | 
			
		||||
    hcoor[orthog] = slice_hi;
 | 
			
		||||
    size_t rem = idx;
 | 
			
		||||
    for(int mu=0;mu<nl;mu++){
 | 
			
		||||
      if(mu != orthog){
 | 
			
		||||
	int xmu = rem % lg->LocalDimensions()[mu];  rem /= lg->LocalDimensions()[mu];
 | 
			
		||||
	lcoor[mu] = hcoor[mu] = xmu;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    int loidx = lg->oIndex(lcoor);
 | 
			
		||||
    int liidx = lg->iIndex(lcoor);
 | 
			
		||||
    int hoidx = hg->oIndex(hcoor);
 | 
			
		||||
    int hiidx = hg->iIndex(hcoor);
 | 
			
		||||
    int* tt = table + 4*idx;
 | 
			
		||||
    tt[0] = loidx;
 | 
			
		||||
    tt[1] = liidx;
 | 
			
		||||
    tt[2] = hoidx;
 | 
			
		||||
    tt[3] = hiidx;
 | 
			
		||||
    });
 | 
			
		||||
   
 | 
			
		||||
  int* table_d = (int*)acceleratorAllocDevice(tbytes);
 | 
			
		||||
  acceleratorCopyToDevice(table,table_d,tbytes);
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
 | 
			
		||||
  autoView(lowDim_v,lowDim,AcceleratorRead);
 | 
			
		||||
  autoView(higherDim_v,higherDim,AcceleratorWrite);
 | 
			
		||||
  
 | 
			
		||||
  accelerator_for(idx,nsite,1,{
 | 
			
		||||
      static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
      int* tt = table_d + 4*idx;
 | 
			
		||||
      int from_oidx = *tt++;
 | 
			
		||||
      int from_lane = *tt++;
 | 
			
		||||
      int to_oidx = *tt++;
 | 
			
		||||
      int to_lane = *tt;
 | 
			
		||||
 | 
			
		||||
      const vector_type* from = (const vector_type *)&lowDim_v[from_oidx];
 | 
			
		||||
      vector_type* to = (vector_type *)&higherDim_v[to_oidx];
 | 
			
		||||
      
 | 
			
		||||
      scalar_type stmp;
 | 
			
		||||
      for(int w=0;w<words;w++){
 | 
			
		||||
	stmp = getlane(from[w], from_lane);
 | 
			
		||||
	putlane(to[w], stmp, to_lane);
 | 
			
		||||
      }
 | 
			
		||||
    });
 | 
			
		||||
  
 | 
			
		||||
  acceleratorFreeDevice(table_d);    
 | 
			
		||||
  free(table);
 | 
			
		||||
  
 | 
			
		||||
#else
 | 
			
		||||
  // the above should guarantee that the operations are local
 | 
			
		||||
  autoView(lowDimv,lowDim,CpuRead);
 | 
			
		||||
  autoView(higherDimv,higherDim,CpuWrite);
 | 
			
		||||
@@ -989,7 +812,6 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
 | 
			
		||||
      pokeLocalSite(s,higherDimv,hcoor);
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -1033,7 +855,7 @@ void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine)
 | 
			
		||||
void Replicate(Lattice<vobj> &coarse,Lattice<vobj> & fine)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
 | 
			
		||||
@@ -1258,27 +1080,9 @@ vectorizeFromRevLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out)
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//Very fast precision change. Requires in/out objects to reside on same Grid (e.g. by using double2 for the double-precision field)
 | 
			
		||||
//Convert a Lattice from one precision to another
 | 
			
		||||
template<class VobjOut, class VobjIn>
 | 
			
		||||
void precisionChangeFast(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename VobjOut::vector_type Vout;
 | 
			
		||||
  typedef typename VobjIn::vector_type Vin;
 | 
			
		||||
  const int N = sizeof(VobjOut)/sizeof(Vout);
 | 
			
		||||
  conformable(out.Grid(),in.Grid());
 | 
			
		||||
  out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
  int nsimd = out.Grid()->Nsimd();
 | 
			
		||||
  autoView( out_v  , out, AcceleratorWrite);
 | 
			
		||||
  autoView(  in_v ,   in, AcceleratorRead);
 | 
			
		||||
  accelerator_for(idx,out.Grid()->oSites(),1,{
 | 
			
		||||
      Vout *vout = (Vout *)&out_v[idx];
 | 
			
		||||
      Vin  *vin  = (Vin  *)&in_v[idx];
 | 
			
		||||
      precisionChange(vout,vin,N);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
//Convert a Lattice from one precision to another (original, slow implementation)
 | 
			
		||||
template<class VobjOut, class VobjIn>
 | 
			
		||||
void precisionChangeOrig(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
 | 
			
		||||
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
 | 
			
		||||
{
 | 
			
		||||
  assert(out.Grid()->Nd() == in.Grid()->Nd());
 | 
			
		||||
  for(int d=0;d<out.Grid()->Nd();d++){
 | 
			
		||||
@@ -1293,7 +1097,7 @@ void precisionChangeOrig(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
 | 
			
		||||
 | 
			
		||||
  int ndim = out.Grid()->Nd();
 | 
			
		||||
  int out_nsimd = out_grid->Nsimd();
 | 
			
		||||
  int in_nsimd = in_grid->Nsimd();
 | 
			
		||||
    
 | 
			
		||||
  std::vector<Coordinate > out_icoor(out_nsimd);
 | 
			
		||||
      
 | 
			
		||||
  for(int lane=0; lane < out_nsimd; lane++){
 | 
			
		||||
@@ -1324,128 +1128,6 @@ void precisionChangeOrig(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//The workspace for a precision change operation allowing for the reuse of the mapping to save time on subsequent calls
 | 
			
		||||
class precisionChangeWorkspace{
 | 
			
		||||
  std::pair<Integer,Integer>* fmap_device; //device pointer
 | 
			
		||||
  //maintain grids for checking
 | 
			
		||||
  GridBase* _out_grid;
 | 
			
		||||
  GridBase* _in_grid;
 | 
			
		||||
public:
 | 
			
		||||
  precisionChangeWorkspace(GridBase *out_grid, GridBase *in_grid): _out_grid(out_grid), _in_grid(in_grid){
 | 
			
		||||
    //Build a map between the sites and lanes of the output field and the input field as we cannot use the Grids on the device
 | 
			
		||||
    assert(out_grid->Nd() == in_grid->Nd());
 | 
			
		||||
    for(int d=0;d<out_grid->Nd();d++){
 | 
			
		||||
      assert(out_grid->FullDimensions()[d] == in_grid->FullDimensions()[d]);
 | 
			
		||||
    }
 | 
			
		||||
    int Nsimd_out = out_grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
    std::vector<Coordinate> out_icorrs(out_grid->Nsimd()); //reuse these
 | 
			
		||||
    for(int lane=0; lane < out_grid->Nsimd(); lane++)
 | 
			
		||||
      out_grid->iCoorFromIindex(out_icorrs[lane], lane);
 | 
			
		||||
  
 | 
			
		||||
    std::vector<std::pair<Integer,Integer> > fmap_host(out_grid->lSites()); //lsites = osites*Nsimd
 | 
			
		||||
    thread_for(out_oidx,out_grid->oSites(),{
 | 
			
		||||
	Coordinate out_ocorr; 
 | 
			
		||||
	out_grid->oCoorFromOindex(out_ocorr, out_oidx);
 | 
			
		||||
      
 | 
			
		||||
	Coordinate lcorr; //the local coordinate (common to both in and out as full coordinate)
 | 
			
		||||
	for(int out_lane=0; out_lane < Nsimd_out; out_lane++){
 | 
			
		||||
	  out_grid->InOutCoorToLocalCoor(out_ocorr, out_icorrs[out_lane], lcorr);
 | 
			
		||||
	
 | 
			
		||||
	  //int in_oidx = in_grid->oIndex(lcorr), in_lane = in_grid->iIndex(lcorr);
 | 
			
		||||
	  //Note oIndex and OcorrFromOindex (and same for iIndex) are not inverse for checkerboarded lattice, the former coordinates being defined on the full lattice and the latter on the reduced lattice
 | 
			
		||||
	  //Until this is fixed we need to circumvent the problem locally. Here I will use the coordinates defined on the reduced lattice for simplicity
 | 
			
		||||
	  int in_oidx = 0, in_lane = 0;
 | 
			
		||||
	  for(int d=0;d<in_grid->_ndimension;d++){
 | 
			
		||||
	    in_oidx += in_grid->_ostride[d] * ( lcorr[d] % in_grid->_rdimensions[d] );
 | 
			
		||||
	    in_lane += in_grid->_istride[d] * ( lcorr[d] / in_grid->_rdimensions[d] );
 | 
			
		||||
	  }
 | 
			
		||||
	  fmap_host[out_lane + Nsimd_out*out_oidx] = std::pair<Integer,Integer>( in_oidx, in_lane );
 | 
			
		||||
	}
 | 
			
		||||
      });
 | 
			
		||||
 | 
			
		||||
    //Copy the map to the device (if we had a way to tell if an accelerator is in use we could avoid this copy for CPU-only machines)
 | 
			
		||||
    size_t fmap_bytes = out_grid->lSites() * sizeof(std::pair<Integer,Integer>);
 | 
			
		||||
    fmap_device = (std::pair<Integer,Integer>*)acceleratorAllocDevice(fmap_bytes);
 | 
			
		||||
    acceleratorCopyToDevice(fmap_host.data(), fmap_device, fmap_bytes); 
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Prevent moving or copying
 | 
			
		||||
  precisionChangeWorkspace(const precisionChangeWorkspace &r) = delete;
 | 
			
		||||
  precisionChangeWorkspace(precisionChangeWorkspace &&r) = delete;
 | 
			
		||||
  precisionChangeWorkspace &operator=(const precisionChangeWorkspace &r) = delete;
 | 
			
		||||
  precisionChangeWorkspace &operator=(precisionChangeWorkspace &&r) = delete;
 | 
			
		||||
  
 | 
			
		||||
  std::pair<Integer,Integer> const* getMap() const{ return fmap_device; }
 | 
			
		||||
 | 
			
		||||
  void checkGrids(GridBase* out, GridBase* in) const{
 | 
			
		||||
    conformable(out, _out_grid);
 | 
			
		||||
    conformable(in, _in_grid);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  ~precisionChangeWorkspace(){
 | 
			
		||||
    acceleratorFreeDevice(fmap_device);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//We would like to use precisionChangeFast when possible. However usage of this requires the Grids to be the same (runtime check)
 | 
			
		||||
//*and* the precisionChange(VobjOut::vector_type, VobjIn, int) function to be defined for the types; this requires an extra compile-time check which we do using some SFINAE trickery
 | 
			
		||||
template<class VobjOut, class VobjIn>
 | 
			
		||||
auto _precisionChangeFastWrap(Lattice<VobjOut> &out, const Lattice<VobjIn> &in, int dummy)->decltype( precisionChange( ((typename VobjOut::vector_type*)0), ((typename VobjIn::vector_type*)0), 1), int()){
 | 
			
		||||
  if(out.Grid() == in.Grid()){
 | 
			
		||||
    precisionChangeFast(out,in);
 | 
			
		||||
    return 1;
 | 
			
		||||
  }else{
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
template<class VobjOut, class VobjIn>
 | 
			
		||||
int _precisionChangeFastWrap(Lattice<VobjOut> &out, const Lattice<VobjIn> &in, long dummy){ //note long here is intentional; it means the above is preferred if available
 | 
			
		||||
  return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//Convert a lattice of one precision to another. Much faster than original implementation but requires a pregenerated workspace
 | 
			
		||||
//which contains the mapping data.
 | 
			
		||||
template<class VobjOut, class VobjIn>
 | 
			
		||||
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in, const precisionChangeWorkspace &workspace){
 | 
			
		||||
  if(_precisionChangeFastWrap(out,in,0)) return;
 | 
			
		||||
  
 | 
			
		||||
  static_assert( std::is_same<typename VobjOut::scalar_typeD, typename VobjIn::scalar_typeD>::value == 1, "precisionChange: tensor types must be the same" ); //if tensor types are same the DoublePrecision type must be the same
 | 
			
		||||
 | 
			
		||||
  out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
  constexpr int Nsimd_out = VobjOut::Nsimd();
 | 
			
		||||
 | 
			
		||||
  workspace.checkGrids(out.Grid(),in.Grid());
 | 
			
		||||
  std::pair<Integer,Integer> const* fmap_device = workspace.getMap();
 | 
			
		||||
 | 
			
		||||
  //Do the copy/precision change
 | 
			
		||||
  autoView( out_v , out, AcceleratorWrite);
 | 
			
		||||
  autoView( in_v , in, AcceleratorRead);
 | 
			
		||||
 | 
			
		||||
  accelerator_for(out_oidx, out.Grid()->oSites(), 1,{
 | 
			
		||||
      std::pair<Integer,Integer> const* fmap_osite = fmap_device + out_oidx*Nsimd_out;
 | 
			
		||||
      for(int out_lane=0; out_lane < Nsimd_out; out_lane++){      
 | 
			
		||||
	int in_oidx = fmap_osite[out_lane].first;
 | 
			
		||||
	int in_lane = fmap_osite[out_lane].second;
 | 
			
		||||
	copyLane(out_v[out_oidx], out_lane, in_v[in_oidx], in_lane);
 | 
			
		||||
      }
 | 
			
		||||
    });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//Convert a Lattice from one precision to another. Much faster than original implementation but slower than precisionChangeFast
 | 
			
		||||
//or precisionChange called with pregenerated workspace, as it needs to internally generate the workspace on the host and copy to device
 | 
			
		||||
template<class VobjOut, class VobjIn>
 | 
			
		||||
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in){
 | 
			
		||||
  if(_precisionChangeFastWrap(out,in,0)) return;   
 | 
			
		||||
  precisionChangeWorkspace workspace(out.Grid(), in.Grid());
 | 
			
		||||
  precisionChange(out, in, workspace);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Communicate between grids
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -1,174 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/lattice/PaddedCell.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2019
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle pboyle@bnl.gov
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include<Grid/cshift/Cshift.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
//Allow the user to specify how the C-shift is performed, e.g. to respect the appropriate boundary conditions
 | 
			
		||||
template<typename vobj>
 | 
			
		||||
struct CshiftImplBase{
 | 
			
		||||
  virtual Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const = 0;
 | 
			
		||||
  virtual ~CshiftImplBase(){}
 | 
			
		||||
};
 | 
			
		||||
template<typename vobj>
 | 
			
		||||
struct CshiftImplDefault: public CshiftImplBase<vobj>{
 | 
			
		||||
  Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const override{ return Grid::Cshift(in,dir,shift); }
 | 
			
		||||
};
 | 
			
		||||
template<typename Gimpl>
 | 
			
		||||
struct CshiftImplGauge: public CshiftImplBase<typename Gimpl::GaugeLinkField::vector_object>{
 | 
			
		||||
  typename Gimpl::GaugeLinkField Cshift(const typename Gimpl::GaugeLinkField &in, int dir, int shift) const override{ return Gimpl::CshiftLink(in,dir,shift); }
 | 
			
		||||
};  
 | 
			
		||||
 | 
			
		||||
class PaddedCell {
 | 
			
		||||
public:
 | 
			
		||||
  GridCartesian * unpadded_grid;
 | 
			
		||||
  int dims;
 | 
			
		||||
  int depth;
 | 
			
		||||
  std::vector<GridCartesian *> grids;
 | 
			
		||||
 | 
			
		||||
  ~PaddedCell()
 | 
			
		||||
  {
 | 
			
		||||
    DeleteGrids();
 | 
			
		||||
  }
 | 
			
		||||
  PaddedCell(int _depth,GridCartesian *_grid)
 | 
			
		||||
  {
 | 
			
		||||
    unpadded_grid = _grid;
 | 
			
		||||
    depth=_depth;
 | 
			
		||||
    dims=_grid->Nd();
 | 
			
		||||
    AllocateGrids();
 | 
			
		||||
    Coordinate local     =unpadded_grid->LocalDimensions();
 | 
			
		||||
    for(int d=0;d<dims;d++){
 | 
			
		||||
      assert(local[d]>=depth);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void DeleteGrids(void)
 | 
			
		||||
  {
 | 
			
		||||
    for(int d=0;d<grids.size();d++){
 | 
			
		||||
      delete grids[d];
 | 
			
		||||
    }
 | 
			
		||||
    grids.resize(0);
 | 
			
		||||
  };
 | 
			
		||||
  void AllocateGrids(void)
 | 
			
		||||
  {
 | 
			
		||||
    Coordinate local     =unpadded_grid->LocalDimensions();
 | 
			
		||||
    Coordinate simd      =unpadded_grid->_simd_layout;
 | 
			
		||||
    Coordinate processors=unpadded_grid->_processors;
 | 
			
		||||
    Coordinate plocal    =unpadded_grid->LocalDimensions();
 | 
			
		||||
    Coordinate global(dims);
 | 
			
		||||
 | 
			
		||||
    // expand up one dim at a time
 | 
			
		||||
    for(int d=0;d<dims;d++){
 | 
			
		||||
 | 
			
		||||
      plocal[d] += 2*depth; 
 | 
			
		||||
 | 
			
		||||
      for(int d=0;d<dims;d++){
 | 
			
		||||
	global[d] = plocal[d]*processors[d];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      grids.push_back(new GridCartesian(global,simd,processors));
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  inline Lattice<vobj> Extract(const Lattice<vobj> &in) const
 | 
			
		||||
  {
 | 
			
		||||
    Lattice<vobj> out(unpadded_grid);
 | 
			
		||||
 | 
			
		||||
    Coordinate local     =unpadded_grid->LocalDimensions();
 | 
			
		||||
    Coordinate fll(dims,depth); // depends on the MPI spread
 | 
			
		||||
    Coordinate tll(dims,0); // depends on the MPI spread
 | 
			
		||||
    localCopyRegion(in,out,fll,tll,local);
 | 
			
		||||
    return out;
 | 
			
		||||
  }
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  inline Lattice<vobj> Exchange(const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *old_grid = in.Grid();
 | 
			
		||||
    int dims = old_grid->Nd();
 | 
			
		||||
    Lattice<vobj> tmp = in;
 | 
			
		||||
    for(int d=0;d<dims;d++){
 | 
			
		||||
      tmp = Expand(d,tmp,cshift); // rvalue && assignment
 | 
			
		||||
    }
 | 
			
		||||
    return tmp;
 | 
			
		||||
  }
 | 
			
		||||
  // expand up one dim at a time
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  inline Lattice<vobj> Expand(int dim, const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *old_grid = in.Grid();
 | 
			
		||||
    GridCartesian *new_grid = grids[dim];//These are new grids
 | 
			
		||||
    Lattice<vobj>  padded(new_grid);
 | 
			
		||||
    Lattice<vobj> shifted(old_grid);    
 | 
			
		||||
    Coordinate local     =old_grid->LocalDimensions();
 | 
			
		||||
    Coordinate plocal    =new_grid->LocalDimensions();
 | 
			
		||||
    if(dim==0) conformable(old_grid,unpadded_grid);
 | 
			
		||||
    else       conformable(old_grid,grids[dim-1]);
 | 
			
		||||
 | 
			
		||||
    std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl;
 | 
			
		||||
 | 
			
		||||
    double tins=0, tshift=0;
 | 
			
		||||
    
 | 
			
		||||
    // Middle bit
 | 
			
		||||
    double t = usecond();
 | 
			
		||||
    for(int x=0;x<local[dim];x++){
 | 
			
		||||
      InsertSliceLocal(in,padded,x,depth+x,dim);
 | 
			
		||||
    }
 | 
			
		||||
    tins += usecond() - t;
 | 
			
		||||
    
 | 
			
		||||
    // High bit
 | 
			
		||||
    t = usecond();
 | 
			
		||||
    shifted = cshift.Cshift(in,dim,depth);
 | 
			
		||||
    tshift += usecond() - t;
 | 
			
		||||
 | 
			
		||||
    t=usecond();
 | 
			
		||||
    for(int x=0;x<depth;x++){
 | 
			
		||||
      InsertSliceLocal(shifted,padded,local[dim]-depth+x,depth+local[dim]+x,dim);
 | 
			
		||||
    }
 | 
			
		||||
    tins += usecond() - t;
 | 
			
		||||
    
 | 
			
		||||
    // Low bit
 | 
			
		||||
    t = usecond();
 | 
			
		||||
    shifted = cshift.Cshift(in,dim,-depth);
 | 
			
		||||
    tshift += usecond() - t;
 | 
			
		||||
    
 | 
			
		||||
    t = usecond();
 | 
			
		||||
    for(int x=0;x<depth;x++){
 | 
			
		||||
      InsertSliceLocal(shifted,padded,x,x,dim);
 | 
			
		||||
    }
 | 
			
		||||
    tins += usecond() - t;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogPerformance << "PaddedCell::Expand timings: cshift:" << tshift/1000 << "ms, insert-slice:" << tins/1000 << "ms" << std::endl;
 | 
			
		||||
    
 | 
			
		||||
    return padded;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -42,10 +42,8 @@ using namespace Grid;
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
class NerscIO : public BinaryIO { 
 | 
			
		||||
public:
 | 
			
		||||
  typedef Lattice<vLorentzColourMatrixD> GaugeField;
 | 
			
		||||
 | 
			
		||||
  // Enable/disable exiting if the plaquette in the header does not match the value computed (default true)
 | 
			
		||||
  static bool & exitOnReadPlaquetteMismatch(){ static bool v=true; return v; }
 | 
			
		||||
  typedef Lattice<vLorentzColourMatrixD> GaugeField;
 | 
			
		||||
 | 
			
		||||
  static inline void truncate(std::string file){
 | 
			
		||||
    std::ofstream fout(file,std::ios::out);
 | 
			
		||||
@@ -205,7 +203,7 @@ public:
 | 
			
		||||
      std::cerr << " nersc_csum  " <<std::hex<< nersc_csum << " " << header.checksum<< std::dec<< std::endl;
 | 
			
		||||
      exit(0);
 | 
			
		||||
    }
 | 
			
		||||
    if(exitOnReadPlaquetteMismatch()) assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
 | 
			
		||||
    assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
 | 
			
		||||
    assert(fabs(clone.link_trace-header.link_trace) < 1.0e-6 );
 | 
			
		||||
    assert(nersc_csum == header.checksum );
 | 
			
		||||
      
 | 
			
		||||
 
 | 
			
		||||
@@ -16,7 +16,7 @@
 | 
			
		||||
 | 
			
		||||
#ifdef __NVCC__
 | 
			
		||||
#pragma push
 | 
			
		||||
#ifdef __NVCC_DIAG_PRAGMA_SUPPORT__
 | 
			
		||||
#if (__CUDACC_VER_MAJOR__ >= 11) && (__CUDACC_VER_MINOR__ >= 5)
 | 
			
		||||
#pragma nv_diag_suppress declared_but_not_referenced // suppress "function was declared but never referenced warning"
 | 
			
		||||
#else
 | 
			
		||||
#pragma diag_suppress declared_but_not_referenced // suppress "function was declared but never referenced warning"
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										139
									
								
								Grid/qcd/QCD.h
									
									
									
									
									
								
							
							
						
						
									
										139
									
								
								Grid/qcd/QCD.h
									
									
									
									
									
								
							@@ -63,7 +63,6 @@ static constexpr int Ngp=2; // gparity index range
 | 
			
		||||
#define ColourIndex  (2)
 | 
			
		||||
#define SpinIndex    (1)
 | 
			
		||||
#define LorentzIndex (0)
 | 
			
		||||
#define GparityFlavourIndex (0)
 | 
			
		||||
 | 
			
		||||
// Also should make these a named enum type
 | 
			
		||||
static constexpr int DaggerNo=0;
 | 
			
		||||
@@ -88,8 +87,6 @@ template<typename T> struct isCoarsened {
 | 
			
		||||
template <typename T> using IfCoarsened    = Invoke<std::enable_if< isCoarsened<T>::value,int> > ;
 | 
			
		||||
template <typename T> using IfNotCoarsened = Invoke<std::enable_if<!isCoarsened<T>::value,int> > ;
 | 
			
		||||
 | 
			
		||||
const int GparityFlavourTensorIndex = 3; //TensorLevel counts from the bottom!
 | 
			
		||||
 | 
			
		||||
// ChrisK very keen to add extra space for Gparity doubling.
 | 
			
		||||
//
 | 
			
		||||
// Also add domain wall index, in a way where Wilson operator 
 | 
			
		||||
@@ -104,7 +101,6 @@ template<typename vtype> using iSpinMatrix                = iScalar<iMatrix<iSca
 | 
			
		||||
template<typename vtype> using iColourMatrix              = iScalar<iScalar<iMatrix<vtype, Nc> > > ;
 | 
			
		||||
template<typename vtype> using iSpinColourMatrix          = iScalar<iMatrix<iMatrix<vtype, Nc>, Ns> >;
 | 
			
		||||
template<typename vtype> using iLorentzColourMatrix       = iVector<iScalar<iMatrix<vtype, Nc> >, Nd > ;
 | 
			
		||||
template<typename vtype> using iLorentzComplex            = iVector<iScalar<iScalar<vtype> >, Nd > ;
 | 
			
		||||
template<typename vtype> using iDoubleStoredColourMatrix  = iVector<iScalar<iMatrix<vtype, Nc> >, Nds > ;
 | 
			
		||||
template<typename vtype> using iSpinVector                = iScalar<iVector<iScalar<vtype>, Ns> >;
 | 
			
		||||
template<typename vtype> using iColourVector              = iScalar<iScalar<iVector<vtype, Nc> > >;
 | 
			
		||||
@@ -114,10 +110,8 @@ template<typename vtype> using iHalfSpinColourVector      = iScalar<iVector<iVec
 | 
			
		||||
    template<typename vtype> using iSpinColourSpinColourMatrix  = iScalar<iMatrix<iMatrix<iMatrix<iMatrix<vtype, Nc>, Ns>, Nc>, Ns> >;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename vtype> using iGparityFlavourVector                = iVector<iScalar<iScalar<vtype> >, Ngp>;
 | 
			
		||||
template<typename vtype> using iGparitySpinColourVector       = iVector<iVector<iVector<vtype, Nc>, Ns>, Ngp >;
 | 
			
		||||
template<typename vtype> using iGparityHalfSpinColourVector   = iVector<iVector<iVector<vtype, Nc>, Nhs>, Ngp >;
 | 
			
		||||
template<typename vtype> using iGparityFlavourMatrix = iMatrix<iScalar<iScalar<vtype> >, Ngp>;
 | 
			
		||||
 | 
			
		||||
// Spin matrix
 | 
			
		||||
typedef iSpinMatrix<Complex  >          SpinMatrix;
 | 
			
		||||
@@ -127,7 +121,6 @@ typedef iSpinMatrix<ComplexD >          SpinMatrixD;
 | 
			
		||||
typedef iSpinMatrix<vComplex >          vSpinMatrix;
 | 
			
		||||
typedef iSpinMatrix<vComplexF>          vSpinMatrixF;
 | 
			
		||||
typedef iSpinMatrix<vComplexD>          vSpinMatrixD;
 | 
			
		||||
typedef iSpinMatrix<vComplexD2>         vSpinMatrixD2;
 | 
			
		||||
 | 
			
		||||
// Colour Matrix
 | 
			
		||||
typedef iColourMatrix<Complex  >        ColourMatrix;
 | 
			
		||||
@@ -137,7 +130,6 @@ typedef iColourMatrix<ComplexD >        ColourMatrixD;
 | 
			
		||||
typedef iColourMatrix<vComplex >        vColourMatrix;
 | 
			
		||||
typedef iColourMatrix<vComplexF>        vColourMatrixF;
 | 
			
		||||
typedef iColourMatrix<vComplexD>        vColourMatrixD;
 | 
			
		||||
typedef iColourMatrix<vComplexD2>       vColourMatrixD2;
 | 
			
		||||
 | 
			
		||||
// SpinColour matrix
 | 
			
		||||
typedef iSpinColourMatrix<Complex  >    SpinColourMatrix;
 | 
			
		||||
@@ -147,7 +139,6 @@ typedef iSpinColourMatrix<ComplexD >    SpinColourMatrixD;
 | 
			
		||||
typedef iSpinColourMatrix<vComplex >    vSpinColourMatrix;
 | 
			
		||||
typedef iSpinColourMatrix<vComplexF>    vSpinColourMatrixF;
 | 
			
		||||
typedef iSpinColourMatrix<vComplexD>    vSpinColourMatrixD;
 | 
			
		||||
typedef iSpinColourMatrix<vComplexD2>   vSpinColourMatrixD2;
 | 
			
		||||
 | 
			
		||||
// SpinColourSpinColour matrix
 | 
			
		||||
typedef iSpinColourSpinColourMatrix<Complex  >    SpinColourSpinColourMatrix;
 | 
			
		||||
@@ -157,7 +148,6 @@ typedef iSpinColourSpinColourMatrix<ComplexD >    SpinColourSpinColourMatrixD;
 | 
			
		||||
typedef iSpinColourSpinColourMatrix<vComplex >    vSpinColourSpinColourMatrix;
 | 
			
		||||
typedef iSpinColourSpinColourMatrix<vComplexF>    vSpinColourSpinColourMatrixF;
 | 
			
		||||
typedef iSpinColourSpinColourMatrix<vComplexD>    vSpinColourSpinColourMatrixD;
 | 
			
		||||
typedef iSpinColourSpinColourMatrix<vComplexD2>   vSpinColourSpinColourMatrixD2;
 | 
			
		||||
 | 
			
		||||
// SpinColourSpinColour matrix
 | 
			
		||||
typedef iSpinColourSpinColourMatrix<Complex  >    SpinColourSpinColourMatrix;
 | 
			
		||||
@@ -167,47 +157,24 @@ typedef iSpinColourSpinColourMatrix<ComplexD >    SpinColourSpinColourMatrixD;
 | 
			
		||||
typedef iSpinColourSpinColourMatrix<vComplex >    vSpinColourSpinColourMatrix;
 | 
			
		||||
typedef iSpinColourSpinColourMatrix<vComplexF>    vSpinColourSpinColourMatrixF;
 | 
			
		||||
typedef iSpinColourSpinColourMatrix<vComplexD>    vSpinColourSpinColourMatrixD;
 | 
			
		||||
typedef iSpinColourSpinColourMatrix<vComplexD2>   vSpinColourSpinColourMatrixD2;
 | 
			
		||||
 | 
			
		||||
// LorentzColour
 | 
			
		||||
typedef iLorentzColourMatrix<Complex  > LorentzColourMatrix;
 | 
			
		||||
typedef iLorentzColourMatrix<ComplexF > LorentzColourMatrixF;
 | 
			
		||||
typedef iLorentzColourMatrix<ComplexD > LorentzColourMatrixD;
 | 
			
		||||
 | 
			
		||||
typedef iLorentzColourMatrix<vComplex >  vLorentzColourMatrix;
 | 
			
		||||
typedef iLorentzColourMatrix<vComplexF>  vLorentzColourMatrixF;
 | 
			
		||||
typedef iLorentzColourMatrix<vComplexD>  vLorentzColourMatrixD;
 | 
			
		||||
typedef iLorentzColourMatrix<vComplexD2> vLorentzColourMatrixD2;
 | 
			
		||||
 | 
			
		||||
// LorentzComplex
 | 
			
		||||
typedef iLorentzComplex<Complex  > LorentzComplex;
 | 
			
		||||
typedef iLorentzComplex<ComplexF > LorentzComplexF;
 | 
			
		||||
typedef iLorentzComplex<ComplexD > LorentzComplexD;
 | 
			
		||||
 | 
			
		||||
typedef iLorentzComplex<vComplex > vLorentzComplex;
 | 
			
		||||
typedef iLorentzComplex<vComplexF> vLorentzComplexF;
 | 
			
		||||
typedef iLorentzComplex<vComplexD> vLorentzComplexD;
 | 
			
		||||
typedef iLorentzColourMatrix<vComplex > vLorentzColourMatrix;
 | 
			
		||||
typedef iLorentzColourMatrix<vComplexF> vLorentzColourMatrixF;
 | 
			
		||||
typedef iLorentzColourMatrix<vComplexD> vLorentzColourMatrixD;
 | 
			
		||||
 | 
			
		||||
// DoubleStored gauge field
 | 
			
		||||
typedef iDoubleStoredColourMatrix<Complex  > DoubleStoredColourMatrix;
 | 
			
		||||
typedef iDoubleStoredColourMatrix<ComplexF > DoubleStoredColourMatrixF;
 | 
			
		||||
typedef iDoubleStoredColourMatrix<ComplexD > DoubleStoredColourMatrixD;
 | 
			
		||||
 | 
			
		||||
typedef iDoubleStoredColourMatrix<vComplex >  vDoubleStoredColourMatrix;
 | 
			
		||||
typedef iDoubleStoredColourMatrix<vComplexF>  vDoubleStoredColourMatrixF;
 | 
			
		||||
typedef iDoubleStoredColourMatrix<vComplexD>  vDoubleStoredColourMatrixD;
 | 
			
		||||
typedef iDoubleStoredColourMatrix<vComplexD2> vDoubleStoredColourMatrixD2;
 | 
			
		||||
 | 
			
		||||
//G-parity flavour matrix
 | 
			
		||||
typedef iGparityFlavourMatrix<Complex> GparityFlavourMatrix;
 | 
			
		||||
typedef iGparityFlavourMatrix<ComplexF> GparityFlavourMatrixF;
 | 
			
		||||
typedef iGparityFlavourMatrix<ComplexD> GparityFlavourMatrixD;
 | 
			
		||||
 | 
			
		||||
typedef iGparityFlavourMatrix<vComplex>   vGparityFlavourMatrix;
 | 
			
		||||
typedef iGparityFlavourMatrix<vComplexF>  vGparityFlavourMatrixF;
 | 
			
		||||
typedef iGparityFlavourMatrix<vComplexD>  vGparityFlavourMatrixD;
 | 
			
		||||
typedef iGparityFlavourMatrix<vComplexD2> vGparityFlavourMatrixD2;
 | 
			
		||||
 | 
			
		||||
typedef iDoubleStoredColourMatrix<vComplex > vDoubleStoredColourMatrix;
 | 
			
		||||
typedef iDoubleStoredColourMatrix<vComplexF> vDoubleStoredColourMatrixF;
 | 
			
		||||
typedef iDoubleStoredColourMatrix<vComplexD> vDoubleStoredColourMatrixD;
 | 
			
		||||
 | 
			
		||||
// Spin vector
 | 
			
		||||
typedef iSpinVector<Complex >           SpinVector;
 | 
			
		||||
@@ -217,7 +184,6 @@ typedef iSpinVector<ComplexD>           SpinVectorD;
 | 
			
		||||
typedef iSpinVector<vComplex >           vSpinVector;
 | 
			
		||||
typedef iSpinVector<vComplexF>           vSpinVectorF;
 | 
			
		||||
typedef iSpinVector<vComplexD>           vSpinVectorD;
 | 
			
		||||
typedef iSpinVector<vComplexD2>          vSpinVectorD2;
 | 
			
		||||
 | 
			
		||||
// Colour vector
 | 
			
		||||
typedef iColourVector<Complex >         ColourVector;
 | 
			
		||||
@@ -227,7 +193,6 @@ typedef iColourVector<ComplexD>         ColourVectorD;
 | 
			
		||||
typedef iColourVector<vComplex >         vColourVector;
 | 
			
		||||
typedef iColourVector<vComplexF>         vColourVectorF;
 | 
			
		||||
typedef iColourVector<vComplexD>         vColourVectorD;
 | 
			
		||||
typedef iColourVector<vComplexD2>        vColourVectorD2;
 | 
			
		||||
 | 
			
		||||
// SpinColourVector
 | 
			
		||||
typedef iSpinColourVector<Complex >     SpinColourVector;
 | 
			
		||||
@@ -237,7 +202,6 @@ typedef iSpinColourVector<ComplexD>     SpinColourVectorD;
 | 
			
		||||
typedef iSpinColourVector<vComplex >     vSpinColourVector;
 | 
			
		||||
typedef iSpinColourVector<vComplexF>     vSpinColourVectorF;
 | 
			
		||||
typedef iSpinColourVector<vComplexD>     vSpinColourVectorD;
 | 
			
		||||
typedef iSpinColourVector<vComplexD2>    vSpinColourVectorD2;
 | 
			
		||||
 | 
			
		||||
// HalfSpin vector
 | 
			
		||||
typedef iHalfSpinVector<Complex >       HalfSpinVector;
 | 
			
		||||
@@ -247,27 +211,15 @@ typedef iHalfSpinVector<ComplexD>       HalfSpinVectorD;
 | 
			
		||||
typedef iHalfSpinVector<vComplex >       vHalfSpinVector;
 | 
			
		||||
typedef iHalfSpinVector<vComplexF>       vHalfSpinVectorF;
 | 
			
		||||
typedef iHalfSpinVector<vComplexD>       vHalfSpinVectorD;
 | 
			
		||||
typedef iHalfSpinVector<vComplexD2>      vHalfSpinVectorD2;
 | 
			
		||||
 | 
			
		||||
// HalfSpinColour vector
 | 
			
		||||
typedef iHalfSpinColourVector<Complex > HalfSpinColourVector;
 | 
			
		||||
typedef iHalfSpinColourVector<ComplexF> HalfSpinColourVectorF;
 | 
			
		||||
typedef iHalfSpinColourVector<ComplexD> HalfSpinColourVectorD;
 | 
			
		||||
    
 | 
			
		||||
typedef iHalfSpinColourVector<vComplex >  vHalfSpinColourVector;
 | 
			
		||||
typedef iHalfSpinColourVector<vComplexF>  vHalfSpinColourVectorF;
 | 
			
		||||
typedef iHalfSpinColourVector<vComplexD>  vHalfSpinColourVectorD;
 | 
			
		||||
typedef iHalfSpinColourVector<vComplexD2> vHalfSpinColourVectorD2;
 | 
			
		||||
 | 
			
		||||
//G-parity flavour vector
 | 
			
		||||
typedef iGparityFlavourVector<Complex >         GparityFlavourVector;
 | 
			
		||||
typedef iGparityFlavourVector<ComplexF>         GparityFlavourVectorF;
 | 
			
		||||
typedef iGparityFlavourVector<ComplexD>         GparityFlavourVectorD;
 | 
			
		||||
 | 
			
		||||
typedef iGparityFlavourVector<vComplex >         vGparityFlavourVector;
 | 
			
		||||
typedef iGparityFlavourVector<vComplexF>         vGparityFlavourVectorF;
 | 
			
		||||
typedef iGparityFlavourVector<vComplexD>         vGparityFlavourVectorD;
 | 
			
		||||
typedef iGparityFlavourVector<vComplexD2>        vGparityFlavourVectorD2;
 | 
			
		||||
typedef iHalfSpinColourVector<vComplex > vHalfSpinColourVector;
 | 
			
		||||
typedef iHalfSpinColourVector<vComplexF> vHalfSpinColourVectorF;
 | 
			
		||||
typedef iHalfSpinColourVector<vComplexD> vHalfSpinColourVectorD;
 | 
			
		||||
    
 | 
			
		||||
// singlets
 | 
			
		||||
typedef iSinglet<Complex >         TComplex;     // FIXME This is painful. Tensor singlet complex type.
 | 
			
		||||
@@ -277,7 +229,6 @@ typedef iSinglet<ComplexD>         TComplexD;    // FIXME This is painful. Tenso
 | 
			
		||||
typedef iSinglet<vComplex >        vTComplex ;   // what if we don't know the tensor structure
 | 
			
		||||
typedef iSinglet<vComplexF>        vTComplexF;   // what if we don't know the tensor structure
 | 
			
		||||
typedef iSinglet<vComplexD>        vTComplexD;   // what if we don't know the tensor structure
 | 
			
		||||
typedef iSinglet<vComplexD2>       vTComplexD2;   // what if we don't know the tensor structure
 | 
			
		||||
 | 
			
		||||
typedef iSinglet<Real >            TReal;        // Shouldn't need these; can I make it work without?
 | 
			
		||||
typedef iSinglet<RealF>            TRealF;       // Shouldn't need these; can I make it work without?
 | 
			
		||||
@@ -295,62 +246,47 @@ typedef iSinglet<Integer >         TInteger;
 | 
			
		||||
typedef Lattice<vColourMatrix>          LatticeColourMatrix;
 | 
			
		||||
typedef Lattice<vColourMatrixF>         LatticeColourMatrixF;
 | 
			
		||||
typedef Lattice<vColourMatrixD>         LatticeColourMatrixD;
 | 
			
		||||
typedef Lattice<vColourMatrixD2>        LatticeColourMatrixD2;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vSpinMatrix>            LatticeSpinMatrix;
 | 
			
		||||
typedef Lattice<vSpinMatrixF>           LatticeSpinMatrixF;
 | 
			
		||||
typedef Lattice<vSpinMatrixD>           LatticeSpinMatrixD;
 | 
			
		||||
typedef Lattice<vSpinMatrixD2>          LatticeSpinMatrixD2;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vSpinColourMatrix>      LatticeSpinColourMatrix;
 | 
			
		||||
typedef Lattice<vSpinColourMatrixF>     LatticeSpinColourMatrixF;
 | 
			
		||||
typedef Lattice<vSpinColourMatrixD>     LatticeSpinColourMatrixD;
 | 
			
		||||
typedef Lattice<vSpinColourMatrixD2>    LatticeSpinColourMatrixD2;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vSpinColourSpinColourMatrix>      LatticeSpinColourSpinColourMatrix;
 | 
			
		||||
typedef Lattice<vSpinColourSpinColourMatrixF>     LatticeSpinColourSpinColourMatrixF;
 | 
			
		||||
typedef Lattice<vSpinColourSpinColourMatrixD>     LatticeSpinColourSpinColourMatrixD;
 | 
			
		||||
typedef Lattice<vSpinColourSpinColourMatrixD2>    LatticeSpinColourSpinColourMatrixD2;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vLorentzColourMatrix>   LatticeLorentzColourMatrix;
 | 
			
		||||
typedef Lattice<vLorentzColourMatrixF>  LatticeLorentzColourMatrixF;
 | 
			
		||||
typedef Lattice<vLorentzColourMatrixD>  LatticeLorentzColourMatrixD;
 | 
			
		||||
typedef Lattice<vLorentzColourMatrixD2> LatticeLorentzColourMatrixD2;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vLorentzComplex>  LatticeLorentzComplex;
 | 
			
		||||
typedef Lattice<vLorentzComplexF> LatticeLorentzComplexF;
 | 
			
		||||
typedef Lattice<vLorentzComplexD> LatticeLorentzComplexD;
 | 
			
		||||
typedef Lattice<vLorentzColourMatrix>  LatticeLorentzColourMatrix;
 | 
			
		||||
typedef Lattice<vLorentzColourMatrixF> LatticeLorentzColourMatrixF;
 | 
			
		||||
typedef Lattice<vLorentzColourMatrixD> LatticeLorentzColourMatrixD;
 | 
			
		||||
 | 
			
		||||
// DoubleStored gauge field
 | 
			
		||||
typedef Lattice<vDoubleStoredColourMatrix>   LatticeDoubleStoredColourMatrix;
 | 
			
		||||
typedef Lattice<vDoubleStoredColourMatrixF>  LatticeDoubleStoredColourMatrixF;
 | 
			
		||||
typedef Lattice<vDoubleStoredColourMatrixD>  LatticeDoubleStoredColourMatrixD;
 | 
			
		||||
typedef Lattice<vDoubleStoredColourMatrixD2> LatticeDoubleStoredColourMatrixD2;
 | 
			
		||||
typedef Lattice<vDoubleStoredColourMatrix>  LatticeDoubleStoredColourMatrix;
 | 
			
		||||
typedef Lattice<vDoubleStoredColourMatrixF> LatticeDoubleStoredColourMatrixF;
 | 
			
		||||
typedef Lattice<vDoubleStoredColourMatrixD> LatticeDoubleStoredColourMatrixD;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vSpinVector>            LatticeSpinVector;
 | 
			
		||||
typedef Lattice<vSpinVectorF>           LatticeSpinVectorF;
 | 
			
		||||
typedef Lattice<vSpinVectorD>           LatticeSpinVectorD;
 | 
			
		||||
typedef Lattice<vSpinVectorD2>          LatticeSpinVectorD2;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vColourVector>          LatticeColourVector;
 | 
			
		||||
typedef Lattice<vColourVectorF>         LatticeColourVectorF;
 | 
			
		||||
typedef Lattice<vColourVectorD>         LatticeColourVectorD;
 | 
			
		||||
typedef Lattice<vColourVectorD2>        LatticeColourVectorD2;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vSpinColourVector>      LatticeSpinColourVector;
 | 
			
		||||
typedef Lattice<vSpinColourVectorF>     LatticeSpinColourVectorF;
 | 
			
		||||
typedef Lattice<vSpinColourVectorD>     LatticeSpinColourVectorD;
 | 
			
		||||
typedef Lattice<vSpinColourVectorD2>    LatticeSpinColourVectorD2;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vHalfSpinVector>        LatticeHalfSpinVector;
 | 
			
		||||
typedef Lattice<vHalfSpinVectorF>       LatticeHalfSpinVectorF;
 | 
			
		||||
typedef Lattice<vHalfSpinVectorD>       LatticeHalfSpinVectorD;
 | 
			
		||||
typedef Lattice<vHalfSpinVectorD2>      LatticeHalfSpinVectorD2;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vHalfSpinColourVector>   LatticeHalfSpinColourVector;
 | 
			
		||||
typedef Lattice<vHalfSpinColourVectorF>  LatticeHalfSpinColourVectorF;
 | 
			
		||||
typedef Lattice<vHalfSpinColourVectorD>  LatticeHalfSpinColourVectorD;
 | 
			
		||||
typedef Lattice<vHalfSpinColourVectorD2> LatticeHalfSpinColourVectorD2;
 | 
			
		||||
typedef Lattice<vHalfSpinColourVector>  LatticeHalfSpinColourVector;
 | 
			
		||||
typedef Lattice<vHalfSpinColourVectorF> LatticeHalfSpinColourVectorF;
 | 
			
		||||
typedef Lattice<vHalfSpinColourVectorD> LatticeHalfSpinColourVectorD;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vTReal>            LatticeReal;
 | 
			
		||||
typedef Lattice<vTRealF>           LatticeRealF;
 | 
			
		||||
@@ -359,7 +295,6 @@ typedef Lattice<vTRealD>           LatticeRealD;
 | 
			
		||||
typedef Lattice<vTComplex>         LatticeComplex;
 | 
			
		||||
typedef Lattice<vTComplexF>        LatticeComplexF;
 | 
			
		||||
typedef Lattice<vTComplexD>        LatticeComplexD;
 | 
			
		||||
typedef Lattice<vTComplexD2>       LatticeComplexD2;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vTInteger>         LatticeInteger; // Predicates for "where"
 | 
			
		||||
 | 
			
		||||
@@ -367,42 +302,37 @@ typedef Lattice<vTInteger>         LatticeInteger; // Predicates for "where"
 | 
			
		||||
///////////////////////////////////////////
 | 
			
		||||
// Physical names for things
 | 
			
		||||
///////////////////////////////////////////
 | 
			
		||||
typedef LatticeHalfSpinColourVector   LatticeHalfFermion;
 | 
			
		||||
typedef LatticeHalfSpinColourVectorF  LatticeHalfFermionF;
 | 
			
		||||
typedef LatticeHalfSpinColourVectorD  LatticeHalfFermionD;
 | 
			
		||||
typedef LatticeHalfSpinColourVectorD2 LatticeHalfFermionD2;
 | 
			
		||||
typedef LatticeHalfSpinColourVector  LatticeHalfFermion;
 | 
			
		||||
typedef LatticeHalfSpinColourVectorF LatticeHalfFermionF;
 | 
			
		||||
typedef LatticeHalfSpinColourVectorF LatticeHalfFermionD;
 | 
			
		||||
 | 
			
		||||
typedef LatticeSpinColourVector      LatticeFermion;
 | 
			
		||||
typedef LatticeSpinColourVectorF     LatticeFermionF;
 | 
			
		||||
typedef LatticeSpinColourVectorD     LatticeFermionD;
 | 
			
		||||
typedef LatticeSpinColourVectorD2    LatticeFermionD2;
 | 
			
		||||
 | 
			
		||||
typedef LatticeSpinColourMatrix                LatticePropagator;
 | 
			
		||||
typedef LatticeSpinColourMatrixF               LatticePropagatorF;
 | 
			
		||||
typedef LatticeSpinColourMatrixD               LatticePropagatorD;
 | 
			
		||||
typedef LatticeSpinColourMatrixD2              LatticePropagatorD2;
 | 
			
		||||
 | 
			
		||||
typedef LatticeLorentzColourMatrix             LatticeGaugeField;
 | 
			
		||||
typedef LatticeLorentzColourMatrixF            LatticeGaugeFieldF;
 | 
			
		||||
typedef LatticeLorentzColourMatrixD            LatticeGaugeFieldD;
 | 
			
		||||
typedef LatticeLorentzColourMatrixD2           LatticeGaugeFieldD2;
 | 
			
		||||
 | 
			
		||||
typedef LatticeDoubleStoredColourMatrix        LatticeDoubledGaugeField;
 | 
			
		||||
typedef LatticeDoubleStoredColourMatrixF       LatticeDoubledGaugeFieldF;
 | 
			
		||||
typedef LatticeDoubleStoredColourMatrixD       LatticeDoubledGaugeFieldD;
 | 
			
		||||
typedef LatticeDoubleStoredColourMatrixD2      LatticeDoubledGaugeFieldD2;
 | 
			
		||||
 | 
			
		||||
template<class GF> using LorentzScalar = Lattice<iScalar<typename GF::vector_object::element> >;
 | 
			
		||||
 | 
			
		||||
// Uhgg... typing this hurt  ;)
 | 
			
		||||
// (my keyboard got burning hot when I typed this, must be the anti-Fermion)
 | 
			
		||||
typedef Lattice<vColourVector>          LatticeStaggeredFermion;    
 | 
			
		||||
typedef Lattice<vColourVectorF>         LatticeStaggeredFermionF;    
 | 
			
		||||
typedef Lattice<vColourVectorD>         LatticeStaggeredFermionD;    
 | 
			
		||||
typedef Lattice<vColourVectorD2>        LatticeStaggeredFermionD2;    
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vColourMatrix>          LatticeStaggeredPropagator; 
 | 
			
		||||
typedef Lattice<vColourMatrixF>         LatticeStaggeredPropagatorF; 
 | 
			
		||||
typedef Lattice<vColourMatrixD>         LatticeStaggeredPropagatorD; 
 | 
			
		||||
typedef Lattice<vColourMatrixD2>        LatticeStaggeredPropagatorD2; 
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Peek and Poke named after physics attributes
 | 
			
		||||
@@ -521,20 +451,9 @@ template<class vobj> void pokeLorentz(vobj &lhs,const decltype(peekIndex<Lorentz
 | 
			
		||||
// Fermion <-> propagator assignements
 | 
			
		||||
//////////////////////////////////////////////
 | 
			
		||||
//template <class Prop, class Ferm>
 | 
			
		||||
#define FAST_FERM_TO_PROP
 | 
			
		||||
template <class Fimpl>
 | 
			
		||||
void FermToProp(typename Fimpl::PropagatorField &p, const typename Fimpl::FermionField &f, const int s, const int c)
 | 
			
		||||
{
 | 
			
		||||
#ifdef FAST_FERM_TO_PROP
 | 
			
		||||
  autoView(p_v,p,CpuWrite);
 | 
			
		||||
  autoView(f_v,f,CpuRead);
 | 
			
		||||
  thread_for(idx,p_v.oSites(),{
 | 
			
		||||
      for(int ss = 0; ss < Ns; ++ss) {
 | 
			
		||||
      for(int cc = 0; cc < Fimpl::Dimension; ++cc) {
 | 
			
		||||
	p_v[idx]()(ss,s)(cc,c) = f_v[idx]()(ss)(cc); // Propagator sink index is LEFT, suitable for left mult by gauge link (e.g.)
 | 
			
		||||
      }}
 | 
			
		||||
    });
 | 
			
		||||
#else
 | 
			
		||||
  for(int j = 0; j < Ns; ++j)
 | 
			
		||||
    {
 | 
			
		||||
      auto pjs = peekSpin(p, j, s);
 | 
			
		||||
@@ -546,23 +465,12 @@ void FermToProp(typename Fimpl::PropagatorField &p, const typename Fimpl::Fermio
 | 
			
		||||
	}
 | 
			
		||||
      pokeSpin(p, pjs, j, s);
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
    
 | 
			
		||||
//template <class Prop, class Ferm>
 | 
			
		||||
template <class Fimpl>
 | 
			
		||||
void PropToFerm(typename Fimpl::FermionField &f, const typename Fimpl::PropagatorField &p, const int s, const int c)
 | 
			
		||||
{
 | 
			
		||||
#ifdef FAST_FERM_TO_PROP
 | 
			
		||||
  autoView(p_v,p,CpuRead);
 | 
			
		||||
  autoView(f_v,f,CpuWrite);
 | 
			
		||||
  thread_for(idx,p_v.oSites(),{
 | 
			
		||||
      for(int ss = 0; ss < Ns; ++ss) {
 | 
			
		||||
      for(int cc = 0; cc < Fimpl::Dimension; ++cc) {
 | 
			
		||||
	f_v[idx]()(ss)(cc) = p_v[idx]()(ss,s)(cc,c); // LEFT index is copied across for s,c right index
 | 
			
		||||
      }}
 | 
			
		||||
    });
 | 
			
		||||
#else
 | 
			
		||||
  for(int j = 0; j < Ns; ++j)
 | 
			
		||||
    {
 | 
			
		||||
      auto pjs = peekSpin(p, j, s);
 | 
			
		||||
@@ -574,7 +482,6 @@ void PropToFerm(typename Fimpl::FermionField &f, const typename Fimpl::Propagato
 | 
			
		||||
	}
 | 
			
		||||
      pokeSpin(f, fj, j);
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
    
 | 
			
		||||
//////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -34,117 +34,21 @@ directory
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////
 | 
			
		||||
// Smart configuration base class
 | 
			
		||||
///////////////////////////////////
 | 
			
		||||
template< class Field >
 | 
			
		||||
class ConfigurationBase
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  ConfigurationBase() {}
 | 
			
		||||
  virtual ~ConfigurationBase() {}
 | 
			
		||||
  virtual void set_Field(Field& U) =0;
 | 
			
		||||
  virtual void smeared_force(Field&) = 0;
 | 
			
		||||
  virtual Field& get_SmearedU() =0;
 | 
			
		||||
  virtual Field &get_U(bool smeared = false) = 0;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <class GaugeField >
 | 
			
		||||
class Action 
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  bool is_smeared = false;
 | 
			
		||||
  RealD deriv_norm_sum;
 | 
			
		||||
  RealD deriv_max_sum;
 | 
			
		||||
  RealD Fdt_norm_sum;
 | 
			
		||||
  RealD Fdt_max_sum;
 | 
			
		||||
  int   deriv_num;
 | 
			
		||||
  RealD deriv_us;
 | 
			
		||||
  RealD S_us;
 | 
			
		||||
  RealD refresh_us;
 | 
			
		||||
  void  reset_timer(void)        {
 | 
			
		||||
    deriv_us = S_us = refresh_us = 0.0;
 | 
			
		||||
    deriv_norm_sum = deriv_max_sum=0.0;
 | 
			
		||||
    Fdt_max_sum =  Fdt_norm_sum = 0.0;
 | 
			
		||||
    deriv_num=0;
 | 
			
		||||
  }
 | 
			
		||||
  void  deriv_log(RealD nrm, RealD max,RealD Fdt_nrm,RealD Fdt_max) {
 | 
			
		||||
    if ( max > deriv_max_sum ) {
 | 
			
		||||
      deriv_max_sum=max;
 | 
			
		||||
    }
 | 
			
		||||
    deriv_norm_sum+=nrm;
 | 
			
		||||
    if ( Fdt_max > Fdt_max_sum ) {
 | 
			
		||||
      Fdt_max_sum=Fdt_max;
 | 
			
		||||
    }
 | 
			
		||||
    Fdt_norm_sum+=Fdt_nrm; deriv_num++;
 | 
			
		||||
  }
 | 
			
		||||
  RealD deriv_max_average(void)       { return deriv_max_sum; };
 | 
			
		||||
  RealD deriv_norm_average(void)      { return deriv_norm_sum/deriv_num; };
 | 
			
		||||
  RealD Fdt_max_average(void)         { return Fdt_max_sum; };
 | 
			
		||||
  RealD Fdt_norm_average(void)        { return Fdt_norm_sum/deriv_num; };
 | 
			
		||||
  RealD deriv_timer(void)        { return deriv_us; };
 | 
			
		||||
  RealD S_timer(void)            { return S_us; };
 | 
			
		||||
  RealD refresh_timer(void)      { return refresh_us; };
 | 
			
		||||
  void deriv_timer_start(void)   { deriv_us-=usecond(); }
 | 
			
		||||
  void deriv_timer_stop(void)    { deriv_us+=usecond(); }
 | 
			
		||||
  void refresh_timer_start(void) { refresh_us-=usecond(); }
 | 
			
		||||
  void refresh_timer_stop(void)  { refresh_us+=usecond(); }
 | 
			
		||||
  void S_timer_start(void)       { S_us-=usecond(); }
 | 
			
		||||
  void S_timer_stop(void)        { S_us+=usecond(); }
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  // Heatbath?
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) = 0; // refresh pseudofermions
 | 
			
		||||
  virtual RealD S(const GaugeField& U) = 0;                             // evaluate the action
 | 
			
		||||
  virtual RealD Sinitial(const GaugeField& U) { return this->S(U); } ;  // if the refresh computes the action, can cache it. Alternately refreshAndAction() ?
 | 
			
		||||
  virtual void deriv(const GaugeField& U, GaugeField& dSdU) = 0;        // evaluate the action derivative
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  // virtual smeared interface through configuration container
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  virtual void refresh(ConfigurationBase<GaugeField> & U, GridSerialRNG &sRNG, GridParallelRNG& pRNG)
 | 
			
		||||
  {
 | 
			
		||||
    refresh(U.get_U(is_smeared),sRNG,pRNG);
 | 
			
		||||
  }
 | 
			
		||||
  virtual RealD S(ConfigurationBase<GaugeField>& U)
 | 
			
		||||
  {
 | 
			
		||||
    return S(U.get_U(is_smeared));
 | 
			
		||||
  }
 | 
			
		||||
  virtual RealD Sinitial(ConfigurationBase<GaugeField>& U) 
 | 
			
		||||
  {
 | 
			
		||||
    return Sinitial(U.get_U(is_smeared));
 | 
			
		||||
  }
 | 
			
		||||
  virtual void deriv(ConfigurationBase<GaugeField>& U, GaugeField& dSdU)
 | 
			
		||||
  {
 | 
			
		||||
    deriv(U.get_U(is_smeared),dSdU); 
 | 
			
		||||
    if ( is_smeared ) {
 | 
			
		||||
      U.smeared_force(dSdU);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  ///////////////////////////////
 | 
			
		||||
  // Logging
 | 
			
		||||
  ///////////////////////////////
 | 
			
		||||
  virtual std::string action_name()    = 0;                             // return the action name
 | 
			
		||||
  virtual std::string LogParameters()  = 0;                             // prints action parameters
 | 
			
		||||
  virtual ~Action(){}
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <class GaugeField >
 | 
			
		||||
class EmptyAction : public Action <GaugeField>
 | 
			
		||||
{
 | 
			
		||||
  virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) { assert(0);}; // refresh pseudofermions
 | 
			
		||||
  virtual RealD S(const GaugeField& U) { return 0.0;};                             // evaluate the action
 | 
			
		||||
  virtual void deriv(const GaugeField& U, GaugeField& dSdU) { assert(0); };        // evaluate the action derivative
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////
 | 
			
		||||
  // Logging
 | 
			
		||||
  ///////////////////////////////
 | 
			
		||||
  virtual std::string action_name()    { return std::string("Level Force Log"); };
 | 
			
		||||
  virtual std::string LogParameters()  { return std::string("No parameters");};
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif // ACTION_BASE_H
 | 
			
		||||
 
 | 
			
		||||
@@ -30,8 +30,6 @@ directory
 | 
			
		||||
#ifndef QCD_ACTION_CORE
 | 
			
		||||
#define QCD_ACTION_CORE
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/gauge/GaugeImplementations.h>
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/ActionBase.h>
 | 
			
		||||
NAMESPACE_CHECK(ActionBase);
 | 
			
		||||
#include <Grid/qcd/action/ActionSet.h>
 | 
			
		||||
@@ -39,10 +37,6 @@ NAMESPACE_CHECK(ActionSet);
 | 
			
		||||
#include <Grid/qcd/action/ActionParams.h>
 | 
			
		||||
NAMESPACE_CHECK(ActionParams);
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/filters/MomentumFilter.h>
 | 
			
		||||
#include <Grid/qcd/action/filters/DirichletFilter.h>
 | 
			
		||||
#include <Grid/qcd/action/filters/DDHMCFilter.h>
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
// Gauge Actions
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -34,45 +34,27 @@ directory
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// These can move into a params header and be given MacroMagic serialisation
 | 
			
		||||
struct GparityWilsonImplParams {
 | 
			
		||||
  Coordinate twists;
 | 
			
		||||
                     //mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
 | 
			
		||||
  Coordinate dirichlet; // Blocksize of dirichlet BCs
 | 
			
		||||
  int  partialDirichlet;
 | 
			
		||||
  GparityWilsonImplParams() : twists(Nd, 0) {
 | 
			
		||||
    dirichlet.resize(0);
 | 
			
		||||
    partialDirichlet=0;
 | 
			
		||||
  };
 | 
			
		||||
  GparityWilsonImplParams() : twists(Nd, 0) {};
 | 
			
		||||
};
 | 
			
		||||
  
 | 
			
		||||
struct WilsonImplParams {
 | 
			
		||||
  bool overlapCommsCompute;
 | 
			
		||||
  Coordinate dirichlet; // Blocksize of dirichlet BCs
 | 
			
		||||
  int  partialDirichlet;
 | 
			
		||||
  AcceleratorVector<Real,Nd> twist_n_2pi_L;
 | 
			
		||||
  AcceleratorVector<Complex,Nd> boundary_phases;
 | 
			
		||||
  WilsonImplParams()  {
 | 
			
		||||
    dirichlet.resize(0);
 | 
			
		||||
    partialDirichlet=0;
 | 
			
		||||
    boundary_phases.resize(Nd, 1.0);
 | 
			
		||||
      twist_n_2pi_L.resize(Nd, 0.0);
 | 
			
		||||
  };
 | 
			
		||||
  WilsonImplParams(const AcceleratorVector<Complex,Nd> phi) : boundary_phases(phi), overlapCommsCompute(false) {
 | 
			
		||||
    twist_n_2pi_L.resize(Nd, 0.0);
 | 
			
		||||
    partialDirichlet=0;
 | 
			
		||||
    dirichlet.resize(0);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct StaggeredImplParams {
 | 
			
		||||
  Coordinate dirichlet; // Blocksize of dirichlet BCs
 | 
			
		||||
  int  partialDirichlet;
 | 
			
		||||
  StaggeredImplParams()
 | 
			
		||||
  {
 | 
			
		||||
    partialDirichlet=0;
 | 
			
		||||
    dirichlet.resize(0);
 | 
			
		||||
  };
 | 
			
		||||
  StaggeredImplParams()  {};
 | 
			
		||||
};
 | 
			
		||||
  
 | 
			
		||||
  struct OneFlavourRationalParams : Serializable {
 | 
			
		||||
@@ -81,11 +63,9 @@ struct StaggeredImplParams {
 | 
			
		||||
				    RealD, hi, 
 | 
			
		||||
				    int,   MaxIter, 
 | 
			
		||||
				    RealD, tolerance, 
 | 
			
		||||
				    RealD, mdtolerance, 
 | 
			
		||||
				    int,   degree, 
 | 
			
		||||
				    int,   precision,
 | 
			
		||||
				    int,   BoundsCheckFreq,
 | 
			
		||||
				    RealD, BoundsCheckTol);
 | 
			
		||||
				    int,   BoundsCheckFreq);
 | 
			
		||||
    
 | 
			
		||||
  // MaxIter and tolerance, vectors??
 | 
			
		||||
    
 | 
			
		||||
@@ -96,62 +76,16 @@ struct StaggeredImplParams {
 | 
			
		||||
				RealD tol      = 1.0e-8, 
 | 
			
		||||
                           	int _degree    = 10,
 | 
			
		||||
				int _precision = 64,
 | 
			
		||||
				int _BoundsCheckFreq=20,
 | 
			
		||||
				RealD mdtol    = 1.0e-6,
 | 
			
		||||
				double _BoundsCheckTol=1e-6)
 | 
			
		||||
				int _BoundsCheckFreq=20)
 | 
			
		||||
      : lo(_lo),
 | 
			
		||||
	hi(_hi),
 | 
			
		||||
	MaxIter(_maxit),
 | 
			
		||||
	tolerance(tol),
 | 
			
		||||
        mdtolerance(mdtol),
 | 
			
		||||
	degree(_degree),
 | 
			
		||||
        precision(_precision),
 | 
			
		||||
        BoundsCheckFreq(_BoundsCheckFreq),
 | 
			
		||||
        BoundsCheckTol(_BoundsCheckTol){};
 | 
			
		||||
        BoundsCheckFreq(_BoundsCheckFreq){};
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
  /*Action parameters for the generalized rational action
 | 
			
		||||
    The approximation is for (M^dag M)^{1/inv_pow}
 | 
			
		||||
    where inv_pow is the denominator of the fractional power.
 | 
			
		||||
    Default inv_pow=2 for square root, making this equivalent to 
 | 
			
		||||
    the OneFlavourRational action
 | 
			
		||||
  */
 | 
			
		||||
    struct RationalActionParams : Serializable {
 | 
			
		||||
    GRID_SERIALIZABLE_CLASS_MEMBERS(RationalActionParams, 
 | 
			
		||||
				    int, inv_pow, 
 | 
			
		||||
				    RealD, lo, //low eigenvalue bound of rational approx
 | 
			
		||||
				    RealD, hi, //high eigenvalue bound of rational approx
 | 
			
		||||
				    int,   MaxIter,  //maximum iterations in msCG
 | 
			
		||||
				    RealD, action_tolerance,  //msCG tolerance in action evaluation
 | 
			
		||||
				    int,   action_degree, //rational approx tolerance in action evaluation
 | 
			
		||||
				    RealD, md_tolerance,  //msCG tolerance in MD integration
 | 
			
		||||
				    int,   md_degree, //rational approx tolerance in MD integration
 | 
			
		||||
				    int,   precision, //precision of floating point arithmetic
 | 
			
		||||
				    int,   BoundsCheckFreq); //frequency the approximation is tested (with Metropolis degree/tolerance); 0 disables the check
 | 
			
		||||
  // constructor 
 | 
			
		||||
  RationalActionParams(int _inv_pow = 2,
 | 
			
		||||
		       RealD _lo      = 0.0, 
 | 
			
		||||
		       RealD _hi      = 1.0, 
 | 
			
		||||
		       int _maxit     = 1000,
 | 
			
		||||
		       RealD _action_tolerance      = 1.0e-8, 
 | 
			
		||||
		       int _action_degree    = 10,
 | 
			
		||||
		       RealD _md_tolerance      = 1.0e-8, 
 | 
			
		||||
		       int _md_degree    = 10,
 | 
			
		||||
		       int _precision = 64,
 | 
			
		||||
		       int _BoundsCheckFreq=20)
 | 
			
		||||
    : inv_pow(_inv_pow), 
 | 
			
		||||
      lo(_lo),
 | 
			
		||||
      hi(_hi),
 | 
			
		||||
      MaxIter(_maxit),
 | 
			
		||||
      action_tolerance(_action_tolerance),
 | 
			
		||||
      action_degree(_action_degree),
 | 
			
		||||
      md_tolerance(_md_tolerance),
 | 
			
		||||
      md_degree(_md_degree),
 | 
			
		||||
      precision(_precision),
 | 
			
		||||
      BoundsCheckFreq(_BoundsCheckFreq){};
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -71,7 +71,6 @@ public:
 | 
			
		||||
  RealD Mass(void) { return (mass_plus + mass_minus) / 2.0; };
 | 
			
		||||
  RealD MassPlus(void) { return mass_plus; };
 | 
			
		||||
  RealD MassMinus(void) { return mass_minus; };
 | 
			
		||||
 | 
			
		||||
  void  SetMass(RealD _mass) { 
 | 
			
		||||
    mass_plus=mass_minus=_mass; 
 | 
			
		||||
    SetCoefficientsInternal(_zolo_hi,_gamma,_b,_c);  // Reset coeffs
 | 
			
		||||
@@ -183,6 +182,16 @@ public:
 | 
			
		||||
		  GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
			
		||||
		  RealD _mass,RealD _M5,const ImplParams &p= ImplParams());
 | 
			
		||||
 | 
			
		||||
  void CayleyReport(void);
 | 
			
		||||
  void CayleyZeroCounters(void);
 | 
			
		||||
 | 
			
		||||
  double M5Dflops;
 | 
			
		||||
  double M5Dcalls;
 | 
			
		||||
  double M5Dtime;
 | 
			
		||||
 | 
			
		||||
  double MooeeInvFlops;
 | 
			
		||||
  double MooeeInvCalls;
 | 
			
		||||
  double MooeeInvTime;
 | 
			
		||||
 | 
			
		||||
protected:
 | 
			
		||||
  virtual void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c);
 | 
			
		||||
 
 | 
			
		||||
@@ -140,7 +140,6 @@ public:
 | 
			
		||||
    return NMAX;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static int getNMAX(Lattice<iImplClover<vComplexD2>> &t, RealD R) {return getNMAX(1e-12,R);}
 | 
			
		||||
  static int getNMAX(Lattice<iImplClover<vComplexD>> &t, RealD R) {return getNMAX(1e-12,R);}
 | 
			
		||||
  static int getNMAX(Lattice<iImplClover<vComplexF>> &t, RealD R) {return getNMAX(1e-6,R);}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -1,291 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/action/fermion/DWFSlow.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2022
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
			   /*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template <class Impl>
 | 
			
		||||
class DWFSlowFermion : public FermionOperator<Impl>
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Implement the abstract base
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  GridBase *GaugeGrid(void) { return _grid4; }
 | 
			
		||||
  GridBase *GaugeRedBlackGrid(void) { return _cbgrid4; }
 | 
			
		||||
  GridBase *FermionGrid(void) { return _grid; }
 | 
			
		||||
  GridBase *FermionRedBlackGrid(void) { return _cbgrid; }
 | 
			
		||||
 | 
			
		||||
  FermionField _tmp;
 | 
			
		||||
  FermionField &tmp(void) { return _tmp; }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////
 | 
			
		||||
  // override multiply; cut number routines if pass dagger argument
 | 
			
		||||
  // and also make interface more uniformly consistent
 | 
			
		||||
  //////////////////////////////////////////////////////////////////
 | 
			
		||||
  virtual void  M(const FermionField &in, FermionField &out)
 | 
			
		||||
  {
 | 
			
		||||
    FermionField tmp(_grid);
 | 
			
		||||
    out = (5.0 - M5) * in;
 | 
			
		||||
    Dhop(in,tmp,DaggerNo);
 | 
			
		||||
    out = out + tmp;
 | 
			
		||||
  }
 | 
			
		||||
  virtual void  Mdag(const FermionField &in, FermionField &out)
 | 
			
		||||
  {
 | 
			
		||||
    FermionField tmp(_grid);
 | 
			
		||||
    out = (5.0 - M5) * in;
 | 
			
		||||
    Dhop(in,tmp,DaggerYes);
 | 
			
		||||
    out = out + tmp;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////
 | 
			
		||||
  // half checkerboard operations 5D redblack so just site identiy
 | 
			
		||||
  /////////////////////////////////////////////////////////
 | 
			
		||||
  void Meooe(const FermionField &in, FermionField &out)
 | 
			
		||||
  {
 | 
			
		||||
    if ( in.Checkerboard() == Odd ) {
 | 
			
		||||
      this->DhopEO(in,out,DaggerNo);
 | 
			
		||||
    } else {
 | 
			
		||||
      this->DhopOE(in,out,DaggerNo);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void MeooeDag(const FermionField &in, FermionField &out)
 | 
			
		||||
  {
 | 
			
		||||
    if ( in.Checkerboard() == Odd ) {
 | 
			
		||||
      this->DhopEO(in,out,DaggerYes);
 | 
			
		||||
    } else {
 | 
			
		||||
      this->DhopOE(in,out,DaggerYes);
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  // allow override for twisted mass and clover
 | 
			
		||||
  virtual void Mooee(const FermionField &in, FermionField &out)
 | 
			
		||||
  {
 | 
			
		||||
    out = (5.0 - M5) * in;
 | 
			
		||||
  }
 | 
			
		||||
  virtual void MooeeDag(const FermionField &in, FermionField &out)
 | 
			
		||||
  {
 | 
			
		||||
    out = (5.0 - M5) * in;
 | 
			
		||||
  }
 | 
			
		||||
  virtual void MooeeInv(const FermionField &in, FermionField &out)
 | 
			
		||||
  {
 | 
			
		||||
    out = (1.0/(5.0 - M5)) * in;
 | 
			
		||||
  };
 | 
			
		||||
  virtual void MooeeInvDag(const FermionField &in, FermionField &out)
 | 
			
		||||
  {
 | 
			
		||||
    out = (1.0/(5.0 - M5)) * in;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  virtual void  MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _mass,std::vector<double> twist) {} ;
 | 
			
		||||
 | 
			
		||||
  ////////////////////////
 | 
			
		||||
  // Derivative interface
 | 
			
		||||
  ////////////////////////
 | 
			
		||||
  // Interface calls an internal routine
 | 
			
		||||
  void DhopDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)  { assert(0);};
 | 
			
		||||
  void DhopDerivOE(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){ assert(0);};
 | 
			
		||||
  void DhopDerivEO(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){ assert(0);};
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // non-hermitian hopping term; half cb or both
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  void Dhop(const FermionField &in, FermionField &out, int dag)
 | 
			
		||||
  {
 | 
			
		||||
    FermionField tmp(in.Grid());
 | 
			
		||||
    Dhop5(in,out,MassField,MassField,dag );
 | 
			
		||||
    for(int mu=0;mu<4;mu++){
 | 
			
		||||
      DhopDirU(in,Umu[mu],Umu[mu],tmp,mu,dag );    out = out + tmp;
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
  void DhopOE(const FermionField &in, FermionField &out, int dag)
 | 
			
		||||
  {
 | 
			
		||||
    FermionField tmp(in.Grid());
 | 
			
		||||
    assert(in.Checkerboard()==Even);
 | 
			
		||||
    Dhop5(in,out,MassFieldOdd,MassFieldEven,dag);
 | 
			
		||||
    for(int mu=0;mu<4;mu++){
 | 
			
		||||
      DhopDirU(in,UmuOdd[mu],UmuEven[mu],tmp,mu,dag );    out = out + tmp;
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
  void DhopEO(const FermionField &in, FermionField &out, int dag)
 | 
			
		||||
  {
 | 
			
		||||
    FermionField tmp(in.Grid());
 | 
			
		||||
    assert(in.Checkerboard()==Odd);
 | 
			
		||||
    Dhop5(in,out, MassFieldEven,MassFieldOdd ,dag );  
 | 
			
		||||
    for(int mu=0;mu<4;mu++){
 | 
			
		||||
      DhopDirU(in,UmuEven[mu],UmuOdd[mu],tmp,mu,dag );    out = out + tmp;
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Multigrid assistance; force term uses too
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  void Mdir(const FermionField &in, FermionField &out, int dir, int disp){ assert(0);};
 | 
			
		||||
  void MdirAll(const FermionField &in, std::vector<FermionField> &out)   { assert(0);};
 | 
			
		||||
  void DhopDir(const FermionField &in, FermionField &out, int dir, int disp) { assert(0);};
 | 
			
		||||
  void DhopDirAll(const FermionField &in, std::vector<FermionField> &out)    { assert(0);};
 | 
			
		||||
  void DhopDirCalc(const FermionField &in, FermionField &out, int dirdisp,int gamma, int dag) { assert(0);};
 | 
			
		||||
 | 
			
		||||
  void DhopDirU(const FermionField &in, const GaugeLinkField &U5e, const GaugeLinkField &U5o, FermionField &out, int mu, int dag)
 | 
			
		||||
  {
 | 
			
		||||
    RealD     sgn= 1.0;
 | 
			
		||||
    if (dag ) sgn=-1.0;
 | 
			
		||||
 | 
			
		||||
    Gamma::Algebra Gmu [] = {
 | 
			
		||||
			 Gamma::Algebra::GammaX,
 | 
			
		||||
			 Gamma::Algebra::GammaY,
 | 
			
		||||
			 Gamma::Algebra::GammaZ,
 | 
			
		||||
			 Gamma::Algebra::GammaT
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    //    mass is  1,1,1,1,-m has to multiply the round the world term
 | 
			
		||||
    FermionField tmp (in.Grid());
 | 
			
		||||
    tmp = U5e * Cshift(in,mu+1,1);
 | 
			
		||||
    out = tmp - Gamma(Gmu[mu])*tmp*sgn;
 | 
			
		||||
    
 | 
			
		||||
    tmp = Cshift(adj(U5o)*in,mu+1,-1);
 | 
			
		||||
    out = out + tmp + Gamma(Gmu[mu])*tmp*sgn;
 | 
			
		||||
 | 
			
		||||
    out = -0.5*out;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void Dhop5(const FermionField &in, FermionField &out, ComplexField &massE, ComplexField &massO, int dag)
 | 
			
		||||
  {
 | 
			
		||||
    // Mass term.... must multiple the round world with mass = 1,1,1,1, -m
 | 
			
		||||
    RealD     sgn= 1.0;
 | 
			
		||||
    if (dag ) sgn=-1.0;
 | 
			
		||||
 | 
			
		||||
    Gamma G5(Gamma::Algebra::Gamma5);
 | 
			
		||||
 | 
			
		||||
    FermionField tmp (in.Grid());
 | 
			
		||||
    tmp = massE*Cshift(in,0,1);
 | 
			
		||||
    out = tmp - G5*tmp*sgn;
 | 
			
		||||
    
 | 
			
		||||
    tmp = Cshift(massO*in,0,-1);
 | 
			
		||||
    out = out + tmp + G5*tmp*sgn;
 | 
			
		||||
    out = -0.5*out;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  // Constructor
 | 
			
		||||
  DWFSlowFermion(GaugeField &_Umu, GridCartesian &Fgrid,
 | 
			
		||||
		 GridRedBlackCartesian &Hgrid, RealD _mass, RealD _M5)
 | 
			
		||||
    :
 | 
			
		||||
    _grid(&Fgrid),
 | 
			
		||||
    _cbgrid(&Hgrid),
 | 
			
		||||
    _grid4(_Umu.Grid()),
 | 
			
		||||
    Umu(Nd,&Fgrid),
 | 
			
		||||
    UmuEven(Nd,&Hgrid),
 | 
			
		||||
    UmuOdd(Nd,&Hgrid),
 | 
			
		||||
    MassField(&Fgrid),
 | 
			
		||||
    MassFieldEven(&Hgrid),
 | 
			
		||||
    MassFieldOdd(&Hgrid),
 | 
			
		||||
    M5(_M5),
 | 
			
		||||
    mass(_mass),
 | 
			
		||||
    _tmp(&Hgrid)
 | 
			
		||||
    {
 | 
			
		||||
      Ls=Fgrid._fdimensions[0];
 | 
			
		||||
      ImportGauge(_Umu);
 | 
			
		||||
 | 
			
		||||
      typedef typename FermionField::scalar_type scalar;
 | 
			
		||||
 | 
			
		||||
      Lattice<iScalar<vInteger> > coor(&Fgrid);
 | 
			
		||||
      LatticeCoordinate(coor, 0); // Scoor
 | 
			
		||||
      ComplexField one(&Fgrid);
 | 
			
		||||
      MassField =scalar(-mass);
 | 
			
		||||
      one       =scalar(1.0);
 | 
			
		||||
      MassField =where(coor==Integer(Ls-1),MassField,one);
 | 
			
		||||
      for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
	pickCheckerboard(Even,UmuEven[mu],Umu[mu]);
 | 
			
		||||
	pickCheckerboard(Odd ,UmuOdd[mu],Umu[mu]);
 | 
			
		||||
      }
 | 
			
		||||
      pickCheckerboard(Even,MassFieldEven,MassField);
 | 
			
		||||
      pickCheckerboard(Odd ,MassFieldOdd,MassField);
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
  // DoubleStore impl dependent
 | 
			
		||||
  void ImportGauge(const GaugeField &_Umu4)
 | 
			
		||||
  {
 | 
			
		||||
    GaugeLinkField U4(_grid4);
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      U4 = PeekIndex<LorentzIndex>(_Umu4, mu);
 | 
			
		||||
      for(int s=0;s<this->Ls;s++){
 | 
			
		||||
	InsertSlice(U4,Umu[mu],s,0);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Data members require to support the functionality
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  virtual RealD Mass(void) { return mass; }
 | 
			
		||||
  virtual int   isTrivialEE(void) { return 1; };
 | 
			
		||||
  RealD mass;
 | 
			
		||||
  RealD M5;
 | 
			
		||||
  int Ls;
 | 
			
		||||
 | 
			
		||||
  GridBase *_grid4;
 | 
			
		||||
  GridBase *_grid;
 | 
			
		||||
  GridBase *_cbgrid4;
 | 
			
		||||
  GridBase *_cbgrid;
 | 
			
		||||
 | 
			
		||||
  // Copy of the gauge field , with even and odd subsets
 | 
			
		||||
  std::vector<GaugeLinkField> Umu;
 | 
			
		||||
  std::vector<GaugeLinkField> UmuEven;
 | 
			
		||||
  std::vector<GaugeLinkField> UmuOdd;
 | 
			
		||||
  ComplexField MassField;
 | 
			
		||||
  ComplexField MassFieldEven;
 | 
			
		||||
  ComplexField MassFieldOdd;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Conserved current utilities
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  void ContractConservedCurrent(PropagatorField &q_in_1,
 | 
			
		||||
                                PropagatorField &q_in_2,
 | 
			
		||||
                                PropagatorField &q_out,
 | 
			
		||||
                                PropagatorField &phys_src,
 | 
			
		||||
                                Current curr_type,
 | 
			
		||||
                                unsigned int mu){}
 | 
			
		||||
  void SeqConservedCurrent(PropagatorField &q_in,
 | 
			
		||||
                           PropagatorField &q_out,
 | 
			
		||||
                           PropagatorField &phys_src,
 | 
			
		||||
                           Current curr_type,
 | 
			
		||||
                           unsigned int mu,
 | 
			
		||||
                           unsigned int tmin,
 | 
			
		||||
			   unsigned int tmax,
 | 
			
		||||
			   ComplexField &lattice_cmplx){}
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
typedef DWFSlowFermion<WilsonImplF> DWFSlowFermionF;
 | 
			
		||||
typedef DWFSlowFermion<WilsonImplD> DWFSlowFermionD;
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -47,7 +47,6 @@ Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
// Fermion operators / actions
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
#include <Grid/qcd/action/fermion/DWFSlow.h>       // Slow DWF
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/fermion/WilsonFermion.h>       // 4d wilson like
 | 
			
		||||
NAMESPACE_CHECK(Wilson);
 | 
			
		||||
@@ -113,31 +112,28 @@ NAMESPACE_CHECK(DWFutils);
 | 
			
		||||
// Cayley 5d
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
typedef WilsonFermion<WilsonImplD2> WilsonFermionD2;
 | 
			
		||||
typedef WilsonFermion<WilsonImplR> WilsonFermionR;
 | 
			
		||||
typedef WilsonFermion<WilsonImplF> WilsonFermionF;
 | 
			
		||||
typedef WilsonFermion<WilsonImplD> WilsonFermionD;
 | 
			
		||||
 | 
			
		||||
//typedef WilsonFermion<WilsonImplRL> WilsonFermionRL;
 | 
			
		||||
//typedef WilsonFermion<WilsonImplFH> WilsonFermionFH;
 | 
			
		||||
//typedef WilsonFermion<WilsonImplDF> WilsonFermionDF;
 | 
			
		||||
 | 
			
		||||
typedef WilsonFermion<WilsonAdjImplR> WilsonAdjFermionR;
 | 
			
		||||
typedef WilsonFermion<WilsonAdjImplF> WilsonAdjFermionF;
 | 
			
		||||
typedef WilsonFermion<WilsonAdjImplD> WilsonAdjFermionD;
 | 
			
		||||
 | 
			
		||||
typedef WilsonFermion<WilsonTwoIndexSymmetricImplR> WilsonTwoIndexSymmetricFermionR;
 | 
			
		||||
typedef WilsonFermion<WilsonTwoIndexSymmetricImplF> WilsonTwoIndexSymmetricFermionF;
 | 
			
		||||
typedef WilsonFermion<WilsonTwoIndexSymmetricImplD> WilsonTwoIndexSymmetricFermionD;
 | 
			
		||||
 | 
			
		||||
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplR> WilsonTwoIndexAntiSymmetricFermionR;
 | 
			
		||||
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonTwoIndexAntiSymmetricFermionF;
 | 
			
		||||
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonTwoIndexAntiSymmetricFermionD;
 | 
			
		||||
 | 
			
		||||
// Sp(2n)
 | 
			
		||||
typedef WilsonFermion<SpWilsonImplF> SpWilsonFermionF;
 | 
			
		||||
typedef WilsonFermion<SpWilsonImplD> SpWilsonFermionD;
 | 
			
		||||
 | 
			
		||||
typedef WilsonFermion<SpWilsonTwoIndexAntiSymmetricImplF> SpWilsonTwoIndexAntiSymmetricFermionF;
 | 
			
		||||
typedef WilsonFermion<SpWilsonTwoIndexAntiSymmetricImplD> SpWilsonTwoIndexAntiSymmetricFermionD;
 | 
			
		||||
 | 
			
		||||
typedef WilsonFermion<SpWilsonTwoIndexSymmetricImplF> SpWilsonTwoIndexSymmetricFermionF;
 | 
			
		||||
typedef WilsonFermion<SpWilsonTwoIndexSymmetricImplD> SpWilsonTwoIndexSymmetricFermionD;
 | 
			
		||||
 | 
			
		||||
// Twisted mass fermion
 | 
			
		||||
typedef WilsonTMFermion<WilsonImplD2> WilsonTMFermionD2;
 | 
			
		||||
typedef WilsonTMFermion<WilsonImplR> WilsonTMFermionR;
 | 
			
		||||
typedef WilsonTMFermion<WilsonImplF> WilsonTMFermionF;
 | 
			
		||||
typedef WilsonTMFermion<WilsonImplD> WilsonTMFermionD;
 | 
			
		||||
 | 
			
		||||
@@ -145,20 +141,23 @@ typedef WilsonTMFermion<WilsonImplD> WilsonTMFermionD;
 | 
			
		||||
template <typename WImpl> using WilsonClover = WilsonCloverFermion<WImpl, CloverHelpers<WImpl>>;
 | 
			
		||||
template <typename WImpl> using WilsonExpClover = WilsonCloverFermion<WImpl, ExpCloverHelpers<WImpl>>;
 | 
			
		||||
 | 
			
		||||
typedef WilsonClover<WilsonImplD2> WilsonCloverFermionD2;
 | 
			
		||||
typedef WilsonClover<WilsonImplR> WilsonCloverFermionR;
 | 
			
		||||
typedef WilsonClover<WilsonImplF> WilsonCloverFermionF;
 | 
			
		||||
typedef WilsonClover<WilsonImplD> WilsonCloverFermionD;
 | 
			
		||||
 | 
			
		||||
typedef WilsonExpClover<WilsonImplD2> WilsonExpCloverFermionD2;
 | 
			
		||||
typedef WilsonExpClover<WilsonImplR> WilsonExpCloverFermionR;
 | 
			
		||||
typedef WilsonExpClover<WilsonImplF> WilsonExpCloverFermionF;
 | 
			
		||||
typedef WilsonExpClover<WilsonImplD> WilsonExpCloverFermionD;
 | 
			
		||||
 | 
			
		||||
typedef WilsonClover<WilsonAdjImplR> WilsonCloverAdjFermionR;
 | 
			
		||||
typedef WilsonClover<WilsonAdjImplF> WilsonCloverAdjFermionF;
 | 
			
		||||
typedef WilsonClover<WilsonAdjImplD> WilsonCloverAdjFermionD;
 | 
			
		||||
 | 
			
		||||
typedef WilsonClover<WilsonTwoIndexSymmetricImplR> WilsonCloverTwoIndexSymmetricFermionR;
 | 
			
		||||
typedef WilsonClover<WilsonTwoIndexSymmetricImplF> WilsonCloverTwoIndexSymmetricFermionF;
 | 
			
		||||
typedef WilsonClover<WilsonTwoIndexSymmetricImplD> WilsonCloverTwoIndexSymmetricFermionD;
 | 
			
		||||
 | 
			
		||||
typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplR> WilsonCloverTwoIndexAntiSymmetricFermionR;
 | 
			
		||||
typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplF> WilsonCloverTwoIndexAntiSymmetricFermionF;
 | 
			
		||||
typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiSymmetricFermionD;
 | 
			
		||||
 | 
			
		||||
@@ -166,108 +165,161 @@ typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiS
 | 
			
		||||
template <typename WImpl> using CompactWilsonClover = CompactWilsonCloverFermion<WImpl, CompactCloverHelpers<WImpl>>;
 | 
			
		||||
template <typename WImpl> using CompactWilsonExpClover = CompactWilsonCloverFermion<WImpl, CompactExpCloverHelpers<WImpl>>;
 | 
			
		||||
 | 
			
		||||
typedef CompactWilsonClover<WilsonImplD2> CompactWilsonCloverFermionD2;
 | 
			
		||||
typedef CompactWilsonClover<WilsonImplR> CompactWilsonCloverFermionR;
 | 
			
		||||
typedef CompactWilsonClover<WilsonImplF> CompactWilsonCloverFermionF;
 | 
			
		||||
typedef CompactWilsonClover<WilsonImplD> CompactWilsonCloverFermionD;
 | 
			
		||||
 | 
			
		||||
typedef CompactWilsonExpClover<WilsonImplD2> CompactWilsonExpCloverFermionD2;
 | 
			
		||||
typedef CompactWilsonExpClover<WilsonImplR> CompactWilsonExpCloverFermionR;
 | 
			
		||||
typedef CompactWilsonExpClover<WilsonImplF> CompactWilsonExpCloverFermionF;
 | 
			
		||||
typedef CompactWilsonExpClover<WilsonImplD> CompactWilsonExpCloverFermionD;
 | 
			
		||||
 | 
			
		||||
typedef CompactWilsonClover<WilsonAdjImplR> CompactWilsonCloverAdjFermionR;
 | 
			
		||||
typedef CompactWilsonClover<WilsonAdjImplF> CompactWilsonCloverAdjFermionF;
 | 
			
		||||
typedef CompactWilsonClover<WilsonAdjImplD> CompactWilsonCloverAdjFermionD;
 | 
			
		||||
 | 
			
		||||
typedef CompactWilsonClover<WilsonTwoIndexSymmetricImplR> CompactWilsonCloverTwoIndexSymmetricFermionR;
 | 
			
		||||
typedef CompactWilsonClover<WilsonTwoIndexSymmetricImplF> CompactWilsonCloverTwoIndexSymmetricFermionF;
 | 
			
		||||
typedef CompactWilsonClover<WilsonTwoIndexSymmetricImplD> CompactWilsonCloverTwoIndexSymmetricFermionD;
 | 
			
		||||
 | 
			
		||||
typedef CompactWilsonClover<WilsonTwoIndexAntiSymmetricImplR> CompactWilsonCloverTwoIndexAntiSymmetricFermionR;
 | 
			
		||||
typedef CompactWilsonClover<WilsonTwoIndexAntiSymmetricImplF> CompactWilsonCloverTwoIndexAntiSymmetricFermionF;
 | 
			
		||||
typedef CompactWilsonClover<WilsonTwoIndexAntiSymmetricImplD> CompactWilsonCloverTwoIndexAntiSymmetricFermionD;
 | 
			
		||||
 | 
			
		||||
// Domain Wall fermions
 | 
			
		||||
typedef DomainWallFermion<WilsonImplR> DomainWallFermionR;
 | 
			
		||||
typedef DomainWallFermion<WilsonImplF> DomainWallFermionF;
 | 
			
		||||
typedef DomainWallFermion<WilsonImplD> DomainWallFermionD;
 | 
			
		||||
typedef DomainWallFermion<WilsonImplD2> DomainWallFermionD2;
 | 
			
		||||
 | 
			
		||||
typedef DomainWallEOFAFermion<WilsonImplD2> DomainWallEOFAFermionD2;
 | 
			
		||||
//typedef DomainWallFermion<WilsonImplRL> DomainWallFermionRL;
 | 
			
		||||
//typedef DomainWallFermion<WilsonImplFH> DomainWallFermionFH;
 | 
			
		||||
//typedef DomainWallFermion<WilsonImplDF> DomainWallFermionDF;
 | 
			
		||||
 | 
			
		||||
typedef DomainWallEOFAFermion<WilsonImplR> DomainWallEOFAFermionR;
 | 
			
		||||
typedef DomainWallEOFAFermion<WilsonImplF> DomainWallEOFAFermionF;
 | 
			
		||||
typedef DomainWallEOFAFermion<WilsonImplD> DomainWallEOFAFermionD;
 | 
			
		||||
 | 
			
		||||
typedef MobiusFermion<WilsonImplD2> MobiusFermionD2;
 | 
			
		||||
//typedef DomainWallEOFAFermion<WilsonImplRL> DomainWallEOFAFermionRL;
 | 
			
		||||
//typedef DomainWallEOFAFermion<WilsonImplFH> DomainWallEOFAFermionFH;
 | 
			
		||||
//typedef DomainWallEOFAFermion<WilsonImplDF> DomainWallEOFAFermionDF;
 | 
			
		||||
 | 
			
		||||
typedef MobiusFermion<WilsonImplR> MobiusFermionR;
 | 
			
		||||
typedef MobiusFermion<WilsonImplF> MobiusFermionF;
 | 
			
		||||
typedef MobiusFermion<WilsonImplD> MobiusFermionD;
 | 
			
		||||
 | 
			
		||||
typedef MobiusEOFAFermion<WilsonImplD2> MobiusEOFAFermionD2;
 | 
			
		||||
//typedef MobiusFermion<WilsonImplRL> MobiusFermionRL;
 | 
			
		||||
//typedef MobiusFermion<WilsonImplFH> MobiusFermionFH;
 | 
			
		||||
//typedef MobiusFermion<WilsonImplDF> MobiusFermionDF;
 | 
			
		||||
 | 
			
		||||
typedef MobiusEOFAFermion<WilsonImplR> MobiusEOFAFermionR;
 | 
			
		||||
typedef MobiusEOFAFermion<WilsonImplF> MobiusEOFAFermionF;
 | 
			
		||||
typedef MobiusEOFAFermion<WilsonImplD> MobiusEOFAFermionD;
 | 
			
		||||
 | 
			
		||||
typedef ZMobiusFermion<ZWilsonImplD2> ZMobiusFermionD2;
 | 
			
		||||
//typedef MobiusEOFAFermion<WilsonImplRL> MobiusEOFAFermionRL;
 | 
			
		||||
//typedef MobiusEOFAFermion<WilsonImplFH> MobiusEOFAFermionFH;
 | 
			
		||||
//typedef MobiusEOFAFermion<WilsonImplDF> MobiusEOFAFermionDF;
 | 
			
		||||
 | 
			
		||||
typedef ZMobiusFermion<ZWilsonImplR> ZMobiusFermionR;
 | 
			
		||||
typedef ZMobiusFermion<ZWilsonImplF> ZMobiusFermionF;
 | 
			
		||||
typedef ZMobiusFermion<ZWilsonImplD> ZMobiusFermionD;
 | 
			
		||||
 | 
			
		||||
typedef ScaledShamirFermion<WilsonImplD2> ScaledShamirFermionD2;
 | 
			
		||||
//typedef ZMobiusFermion<ZWilsonImplRL> ZMobiusFermionRL;
 | 
			
		||||
//typedef ZMobiusFermion<ZWilsonImplFH> ZMobiusFermionFH;
 | 
			
		||||
//typedef ZMobiusFermion<ZWilsonImplDF> ZMobiusFermionDF;
 | 
			
		||||
 | 
			
		||||
// Ls vectorised
 | 
			
		||||
typedef ScaledShamirFermion<WilsonImplR> ScaledShamirFermionR;
 | 
			
		||||
typedef ScaledShamirFermion<WilsonImplF> ScaledShamirFermionF;
 | 
			
		||||
typedef ScaledShamirFermion<WilsonImplD> ScaledShamirFermionD;
 | 
			
		||||
 | 
			
		||||
typedef MobiusZolotarevFermion<WilsonImplD2> MobiusZolotarevFermionD2;
 | 
			
		||||
typedef MobiusZolotarevFermion<WilsonImplR> MobiusZolotarevFermionR;
 | 
			
		||||
typedef MobiusZolotarevFermion<WilsonImplF> MobiusZolotarevFermionF;
 | 
			
		||||
typedef MobiusZolotarevFermion<WilsonImplD> MobiusZolotarevFermionD;
 | 
			
		||||
typedef ShamirZolotarevFermion<WilsonImplD2> ShamirZolotarevFermionD2;
 | 
			
		||||
typedef ShamirZolotarevFermion<WilsonImplR> ShamirZolotarevFermionR;
 | 
			
		||||
typedef ShamirZolotarevFermion<WilsonImplF> ShamirZolotarevFermionF;
 | 
			
		||||
typedef ShamirZolotarevFermion<WilsonImplD> ShamirZolotarevFermionD;
 | 
			
		||||
 | 
			
		||||
typedef OverlapWilsonCayleyTanhFermion<WilsonImplD2> OverlapWilsonCayleyTanhFermionD2;
 | 
			
		||||
typedef OverlapWilsonCayleyTanhFermion<WilsonImplR> OverlapWilsonCayleyTanhFermionR;
 | 
			
		||||
typedef OverlapWilsonCayleyTanhFermion<WilsonImplF> OverlapWilsonCayleyTanhFermionF;
 | 
			
		||||
typedef OverlapWilsonCayleyTanhFermion<WilsonImplD> OverlapWilsonCayleyTanhFermionD;
 | 
			
		||||
typedef OverlapWilsonCayleyZolotarevFermion<WilsonImplD2> OverlapWilsonCayleyZolotarevFermionD2;
 | 
			
		||||
typedef OverlapWilsonCayleyZolotarevFermion<WilsonImplR> OverlapWilsonCayleyZolotarevFermionR;
 | 
			
		||||
typedef OverlapWilsonCayleyZolotarevFermion<WilsonImplF> OverlapWilsonCayleyZolotarevFermionF;
 | 
			
		||||
typedef OverlapWilsonCayleyZolotarevFermion<WilsonImplD> OverlapWilsonCayleyZolotarevFermionD;
 | 
			
		||||
 | 
			
		||||
// Continued fraction
 | 
			
		||||
typedef OverlapWilsonContFracTanhFermion<WilsonImplD2> OverlapWilsonContFracTanhFermionD2;
 | 
			
		||||
typedef OverlapWilsonContFracTanhFermion<WilsonImplR> OverlapWilsonContFracTanhFermionR;
 | 
			
		||||
typedef OverlapWilsonContFracTanhFermion<WilsonImplF> OverlapWilsonContFracTanhFermionF;
 | 
			
		||||
typedef OverlapWilsonContFracTanhFermion<WilsonImplD> OverlapWilsonContFracTanhFermionD;
 | 
			
		||||
typedef OverlapWilsonContFracZolotarevFermion<WilsonImplD2> OverlapWilsonContFracZolotarevFermionD2;
 | 
			
		||||
typedef OverlapWilsonContFracZolotarevFermion<WilsonImplR> OverlapWilsonContFracZolotarevFermionR;
 | 
			
		||||
typedef OverlapWilsonContFracZolotarevFermion<WilsonImplF> OverlapWilsonContFracZolotarevFermionF;
 | 
			
		||||
typedef OverlapWilsonContFracZolotarevFermion<WilsonImplD> OverlapWilsonContFracZolotarevFermionD;
 | 
			
		||||
 | 
			
		||||
// Partial fraction
 | 
			
		||||
typedef OverlapWilsonPartialFractionTanhFermion<WilsonImplD2> OverlapWilsonPartialFractionTanhFermionD2;
 | 
			
		||||
typedef OverlapWilsonPartialFractionTanhFermion<WilsonImplR> OverlapWilsonPartialFractionTanhFermionR;
 | 
			
		||||
typedef OverlapWilsonPartialFractionTanhFermion<WilsonImplF> OverlapWilsonPartialFractionTanhFermionF;
 | 
			
		||||
typedef OverlapWilsonPartialFractionTanhFermion<WilsonImplD> OverlapWilsonPartialFractionTanhFermionD;
 | 
			
		||||
 | 
			
		||||
typedef OverlapWilsonPartialFractionZolotarevFermion<WilsonImplD2> OverlapWilsonPartialFractionZolotarevFermionD2;
 | 
			
		||||
typedef OverlapWilsonPartialFractionZolotarevFermion<WilsonImplR> OverlapWilsonPartialFractionZolotarevFermionR;
 | 
			
		||||
typedef OverlapWilsonPartialFractionZolotarevFermion<WilsonImplF> OverlapWilsonPartialFractionZolotarevFermionF;
 | 
			
		||||
typedef OverlapWilsonPartialFractionZolotarevFermion<WilsonImplD> OverlapWilsonPartialFractionZolotarevFermionD;
 | 
			
		||||
 | 
			
		||||
// Gparity cases; partial list until tested
 | 
			
		||||
typedef WilsonFermion<GparityWilsonImplR>     GparityWilsonFermionR;
 | 
			
		||||
typedef WilsonFermion<GparityWilsonImplF>     GparityWilsonFermionF;
 | 
			
		||||
typedef WilsonFermion<GparityWilsonImplD>     GparityWilsonFermionD;
 | 
			
		||||
 | 
			
		||||
//typedef WilsonFermion<GparityWilsonImplRL>     GparityWilsonFermionRL;
 | 
			
		||||
//typedef WilsonFermion<GparityWilsonImplFH>     GparityWilsonFermionFH;
 | 
			
		||||
//typedef WilsonFermion<GparityWilsonImplDF>     GparityWilsonFermionDF;
 | 
			
		||||
 | 
			
		||||
typedef DomainWallFermion<GparityWilsonImplR> GparityDomainWallFermionR;
 | 
			
		||||
typedef DomainWallFermion<GparityWilsonImplF> GparityDomainWallFermionF;
 | 
			
		||||
typedef DomainWallFermion<GparityWilsonImplD> GparityDomainWallFermionD;
 | 
			
		||||
 | 
			
		||||
typedef DomainWallEOFAFermion<GparityWilsonImplR> GparityDomainWallEOFAFermionD2;
 | 
			
		||||
//typedef DomainWallFermion<GparityWilsonImplRL> GparityDomainWallFermionRL;
 | 
			
		||||
//typedef DomainWallFermion<GparityWilsonImplFH> GparityDomainWallFermionFH;
 | 
			
		||||
//typedef DomainWallFermion<GparityWilsonImplDF> GparityDomainWallFermionDF;
 | 
			
		||||
 | 
			
		||||
typedef DomainWallEOFAFermion<GparityWilsonImplR> GparityDomainWallEOFAFermionR;
 | 
			
		||||
typedef DomainWallEOFAFermion<GparityWilsonImplF> GparityDomainWallEOFAFermionF;
 | 
			
		||||
typedef DomainWallEOFAFermion<GparityWilsonImplD> GparityDomainWallEOFAFermionD;
 | 
			
		||||
 | 
			
		||||
typedef WilsonTMFermion<GparityWilsonImplR> GparityWilsonTMFermionD2;
 | 
			
		||||
//typedef DomainWallEOFAFermion<GparityWilsonImplRL> GparityDomainWallEOFAFermionRL;
 | 
			
		||||
//typedef DomainWallEOFAFermion<GparityWilsonImplFH> GparityDomainWallEOFAFermionFH;
 | 
			
		||||
//typedef DomainWallEOFAFermion<GparityWilsonImplDF> GparityDomainWallEOFAFermionDF;
 | 
			
		||||
 | 
			
		||||
typedef WilsonTMFermion<GparityWilsonImplR> GparityWilsonTMFermionR;
 | 
			
		||||
typedef WilsonTMFermion<GparityWilsonImplF> GparityWilsonTMFermionF;
 | 
			
		||||
typedef WilsonTMFermion<GparityWilsonImplD> GparityWilsonTMFermionD;
 | 
			
		||||
 | 
			
		||||
typedef MobiusFermion<GparityWilsonImplR> GparityMobiusFermionD2;
 | 
			
		||||
//typedef WilsonTMFermion<GparityWilsonImplRL> GparityWilsonTMFermionRL;
 | 
			
		||||
//typedef WilsonTMFermion<GparityWilsonImplFH> GparityWilsonTMFermionFH;
 | 
			
		||||
//typedef WilsonTMFermion<GparityWilsonImplDF> GparityWilsonTMFermionDF;
 | 
			
		||||
 | 
			
		||||
typedef MobiusFermion<GparityWilsonImplR> GparityMobiusFermionR;
 | 
			
		||||
typedef MobiusFermion<GparityWilsonImplF> GparityMobiusFermionF;
 | 
			
		||||
typedef MobiusFermion<GparityWilsonImplD> GparityMobiusFermionD;
 | 
			
		||||
 | 
			
		||||
typedef MobiusEOFAFermion<GparityWilsonImplR> GparityMobiusEOFAFermionD2;
 | 
			
		||||
//typedef MobiusFermion<GparityWilsonImplRL> GparityMobiusFermionRL;
 | 
			
		||||
//typedef MobiusFermion<GparityWilsonImplFH> GparityMobiusFermionFH;
 | 
			
		||||
//typedef MobiusFermion<GparityWilsonImplDF> GparityMobiusFermionDF;
 | 
			
		||||
 | 
			
		||||
typedef MobiusEOFAFermion<GparityWilsonImplR> GparityMobiusEOFAFermionR;
 | 
			
		||||
typedef MobiusEOFAFermion<GparityWilsonImplF> GparityMobiusEOFAFermionF;
 | 
			
		||||
typedef MobiusEOFAFermion<GparityWilsonImplD> GparityMobiusEOFAFermionD;
 | 
			
		||||
 | 
			
		||||
//typedef MobiusEOFAFermion<GparityWilsonImplRL> GparityMobiusEOFAFermionRL;
 | 
			
		||||
//typedef MobiusEOFAFermion<GparityWilsonImplFH> GparityMobiusEOFAFermionFH;
 | 
			
		||||
//typedef MobiusEOFAFermion<GparityWilsonImplDF> GparityMobiusEOFAFermionDF;
 | 
			
		||||
 | 
			
		||||
typedef ImprovedStaggeredFermion<StaggeredImplR> ImprovedStaggeredFermionR;
 | 
			
		||||
typedef ImprovedStaggeredFermion<StaggeredImplF> ImprovedStaggeredFermionF;
 | 
			
		||||
typedef ImprovedStaggeredFermion<StaggeredImplD> ImprovedStaggeredFermionD;
 | 
			
		||||
 | 
			
		||||
typedef NaiveStaggeredFermion<StaggeredImplR> NaiveStaggeredFermionR;
 | 
			
		||||
typedef NaiveStaggeredFermion<StaggeredImplF> NaiveStaggeredFermionF;
 | 
			
		||||
typedef NaiveStaggeredFermion<StaggeredImplD> NaiveStaggeredFermionD;
 | 
			
		||||
 | 
			
		||||
typedef ImprovedStaggeredFermion5D<StaggeredImplR> ImprovedStaggeredFermion5DR;
 | 
			
		||||
typedef ImprovedStaggeredFermion5D<StaggeredImplF> ImprovedStaggeredFermion5DF;
 | 
			
		||||
typedef ImprovedStaggeredFermion5D<StaggeredImplD> ImprovedStaggeredFermion5DD;
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -49,8 +49,6 @@ public:
 | 
			
		||||
 | 
			
		||||
  virtual FermionField &tmp(void) = 0;
 | 
			
		||||
 | 
			
		||||
  virtual void DirichletBlock(const Coordinate & _Block) { assert(0); };
 | 
			
		||||
  
 | 
			
		||||
  GridBase * Grid(void)   { return FermionGrid(); };   // this is all the linalg routines need to know
 | 
			
		||||
  GridBase * RedBlackGrid(void) { return FermionRedBlackGrid(); };
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -30,18 +30,6 @@ directory
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
  Policy implementation for G-parity boundary conditions
 | 
			
		||||
 | 
			
		||||
  Rather than treating the gauge field as a flavored field, the Grid implementation of G-parity treats the gauge field as a regular
 | 
			
		||||
  field with complex conjugate boundary conditions. In order to ensure the second flavor interacts with the conjugate links and the first
 | 
			
		||||
  with the regular links we overload the functionality of doubleStore, whose purpose is to store the gauge field and the barrel-shifted gauge field
 | 
			
		||||
  to avoid communicating links when applying the Dirac operator, such that the double-stored field contains also a flavor index which maps to
 | 
			
		||||
  either the link or the conjugate link. This flavored field is then used by multLink to apply the correct link to a spinor.
 | 
			
		||||
 | 
			
		||||
  Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction. 
 | 
			
		||||
  mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
 | 
			
		||||
 */
 | 
			
		||||
template <class S, class Representation = FundamentalRepresentation, class Options=CoeffReal>
 | 
			
		||||
class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Representation::Dimension> > {
 | 
			
		||||
public:
 | 
			
		||||
@@ -125,7 +113,7 @@ public:
 | 
			
		||||
    || ((distance== 1)&&(icoor[direction]==1))
 | 
			
		||||
    || ((distance==-1)&&(icoor[direction]==0));
 | 
			
		||||
 | 
			
		||||
    permute_lane = permute_lane && SE->_around_the_world && St.parameters.twists[mmu] && mmu < Nd-1; //only if we are going around the world in a spatial direction
 | 
			
		||||
    permute_lane = permute_lane && SE->_around_the_world && St.parameters.twists[mmu]; //only if we are going around the world
 | 
			
		||||
 | 
			
		||||
    //Apply the links
 | 
			
		||||
    int f_upper = permute_lane ? 1 : 0;
 | 
			
		||||
@@ -151,10 +139,10 @@ public:
 | 
			
		||||
    assert((distance == 1) || (distance == -1));  // nearest neighbour stencil hard code
 | 
			
		||||
    assert((sl == 1) || (sl == 2));
 | 
			
		||||
 | 
			
		||||
    //If this site is an global boundary site, perform the G-parity flavor twist
 | 
			
		||||
    if ( mmu < Nd-1 && SE->_around_the_world && St.parameters.twists[mmu] ) {
 | 
			
		||||
    if ( SE->_around_the_world && St.parameters.twists[mmu] ) {
 | 
			
		||||
 | 
			
		||||
      if ( sl == 2 ) {
 | 
			
		||||
	//Only do the twist for lanes on the edge of the physical node
 | 
			
		||||
       
 | 
			
		||||
	ExtractBuffer<sobj> vals(Nsimd);
 | 
			
		||||
 | 
			
		||||
	extract(chi,vals);
 | 
			
		||||
@@ -209,19 +197,6 @@ public:
 | 
			
		||||
    reg = memory;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //Poke 'poke_f0' onto flavor 0 and 'poke_f1' onto flavor 1 in direction mu of the doubled gauge field Uds
 | 
			
		||||
  inline void pokeGparityDoubledGaugeField(DoubledGaugeField &Uds, const GaugeLinkField &poke_f0, const GaugeLinkField &poke_f1, const int mu){
 | 
			
		||||
    autoView(poke_f0_v, poke_f0, CpuRead);
 | 
			
		||||
    autoView(poke_f1_v, poke_f1, CpuRead);
 | 
			
		||||
    autoView(Uds_v, Uds, CpuWrite);
 | 
			
		||||
    thread_foreach(ss,poke_f0_v,{
 | 
			
		||||
	Uds_v[ss](0)(mu) = poke_f0_v[ss]();
 | 
			
		||||
	Uds_v[ss](1)(mu) = poke_f1_v[ss]();
 | 
			
		||||
      });
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
  inline void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
 | 
			
		||||
  {
 | 
			
		||||
    conformable(Uds.Grid(),GaugeGrid);
 | 
			
		||||
@@ -233,18 +208,13 @@ public:
 | 
			
		||||
   
 | 
			
		||||
    Lattice<iScalar<vInteger> > coor(GaugeGrid);
 | 
			
		||||
        
 | 
			
		||||
    //Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction. 
 | 
			
		||||
    //mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs        
 | 
			
		||||
    for(int mu=0;mu<Nd-1;mu++){
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
          
 | 
			
		||||
      if( Params.twists[mu] ){
 | 
			
		||||
	LatticeCoordinate(coor,mu);
 | 
			
		||||
      }
 | 
			
		||||
      LatticeCoordinate(coor,mu);
 | 
			
		||||
          
 | 
			
		||||
      U     = PeekIndex<LorentzIndex>(Umu,mu);
 | 
			
		||||
      Uconj = conjugate(U);
 | 
			
		||||
     
 | 
			
		||||
      // Implement the isospin rotation sign on the boundary between f=1 and f=0
 | 
			
		||||
      // This phase could come from a simple bc 1,1,-1,1 ..
 | 
			
		||||
      int neglink = GaugeGrid->GlobalDimensions()[mu]-1;
 | 
			
		||||
      if ( Params.twists[mu] ) { 
 | 
			
		||||
@@ -259,7 +229,7 @@ public:
 | 
			
		||||
	thread_foreach(ss,U_v,{
 | 
			
		||||
	    Uds_v[ss](0)(mu) = U_v[ss]();
 | 
			
		||||
	    Uds_v[ss](1)(mu) = Uconj_v[ss]();
 | 
			
		||||
	});
 | 
			
		||||
	  });
 | 
			
		||||
      }
 | 
			
		||||
          
 | 
			
		||||
      U     = adj(Cshift(U    ,mu,-1));      // correct except for spanning the boundary
 | 
			
		||||
@@ -290,38 +260,6 @@ public:
 | 
			
		||||
        });
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    { //periodic / antiperiodic temporal BCs
 | 
			
		||||
      int mu = Nd-1;
 | 
			
		||||
      int L   = GaugeGrid->GlobalDimensions()[mu];
 | 
			
		||||
      int Lmu = L - 1;
 | 
			
		||||
 | 
			
		||||
      LatticeCoordinate(coor, mu);
 | 
			
		||||
 | 
			
		||||
      U = PeekIndex<LorentzIndex>(Umu, mu); //Get t-directed links
 | 
			
		||||
      
 | 
			
		||||
      GaugeLinkField *Upoke = &U;
 | 
			
		||||
 | 
			
		||||
      if(Params.twists[mu]){ //antiperiodic
 | 
			
		||||
	Utmp =  where(coor == Lmu, -U, U);
 | 
			
		||||
	Upoke = &Utmp;
 | 
			
		||||
      }
 | 
			
		||||
    
 | 
			
		||||
      Uconj = conjugate(*Upoke); //second flavor interacts with conjugate links      
 | 
			
		||||
      pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu);
 | 
			
		||||
 | 
			
		||||
      //Get the barrel-shifted field
 | 
			
		||||
      Utmp = adj(Cshift(U, mu, -1)); //is a forward shift!
 | 
			
		||||
      Upoke = &Utmp;
 | 
			
		||||
 | 
			
		||||
      if(Params.twists[mu]){
 | 
			
		||||
	U = where(coor == 0, -Utmp, Utmp);  //boundary phase
 | 
			
		||||
	Upoke = &U;
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      Uconj = conjugate(*Upoke);
 | 
			
		||||
      pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu + 4);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
      
 | 
			
		||||
  inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A, int mu) {
 | 
			
		||||
@@ -362,47 +300,27 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField Ã, int mu) {
 | 
			
		||||
    int Ls=Btilde.Grid()->_fdimensions[0];
 | 
			
		||||
 | 
			
		||||
    int Ls = Btilde.Grid()->_fdimensions[0];
 | 
			
		||||
        
 | 
			
		||||
    GaugeLinkField tmp(mat.Grid());
 | 
			
		||||
    tmp = Zero();
 | 
			
		||||
    {
 | 
			
		||||
      GridBase *GaugeGrid = mat.Grid();
 | 
			
		||||
      Lattice<iScalar<vInteger> > coor(GaugeGrid);
 | 
			
		||||
 | 
			
		||||
      if( Params.twists[mu] ){
 | 
			
		||||
	LatticeCoordinate(coor,mu);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      autoView( mat_v , mat, AcceleratorWrite);
 | 
			
		||||
      autoView( Btilde_v , Btilde, AcceleratorRead);
 | 
			
		||||
      autoView( Atilde_v , Atilde, AcceleratorRead);
 | 
			
		||||
      accelerator_for(sss,mat.Grid()->oSites(), FermionField::vector_type::Nsimd(),{	  
 | 
			
		||||
  	  int sU=sss;
 | 
			
		||||
  	  typedef decltype(coalescedRead(mat_v[sU](mu)() )) ColorMatrixType;
 | 
			
		||||
  	  ColorMatrixType sum;
 | 
			
		||||
  	  zeroit(sum);
 | 
			
		||||
  	  for(int s=0;s<Ls;s++){
 | 
			
		||||
  	    int sF = s+Ls*sU;
 | 
			
		||||
  	    for(int spn=0;spn<Ns;spn++){ //sum over spin
 | 
			
		||||
	      //Flavor 0
 | 
			
		||||
  	      auto bb = coalescedRead(Btilde_v[sF](0)(spn) ); //color vector
 | 
			
		||||
  	      auto aa = coalescedRead(Atilde_v[sF](0)(spn) );
 | 
			
		||||
  	      sum = sum + outerProduct(bb,aa);
 | 
			
		||||
 | 
			
		||||
  	      //Flavor 1
 | 
			
		||||
  	      bb = coalescedRead(Btilde_v[sF](1)(spn) );
 | 
			
		||||
  	      aa = coalescedRead(Atilde_v[sF](1)(spn) );
 | 
			
		||||
  	      sum = sum + conjugate(outerProduct(bb,aa));
 | 
			
		||||
  	    }
 | 
			
		||||
  	  }	    
 | 
			
		||||
  	  coalescedWrite(mat_v[sU](mu)(), sum);
 | 
			
		||||
  	});
 | 
			
		||||
      autoView( tmp_v , tmp, CpuWrite);
 | 
			
		||||
      autoView( Atilde_v , Atilde, CpuRead);
 | 
			
		||||
      autoView( Btilde_v , Btilde, CpuRead);
 | 
			
		||||
      thread_for(ss,tmp.Grid()->oSites(),{
 | 
			
		||||
	  for (int s = 0; s < Ls; s++) {
 | 
			
		||||
	    int sF = s + Ls * ss;
 | 
			
		||||
	    auto ttmp = traceIndex<SpinIndex>(outerProduct(Btilde_v[sF], Atilde_v[sF]));
 | 
			
		||||
	    tmp_v[ss]() = tmp_v[ss]() + ttmp(0, 0) + conjugate(ttmp(1, 1));
 | 
			
		||||
	  }
 | 
			
		||||
	});
 | 
			
		||||
    }
 | 
			
		||||
    PokeIndex<LorentzIndex>(mat, tmp, mu);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
typedef GparityWilsonImpl<vComplex , FundamentalRepresentation,CoeffReal> GparityWilsonImplR;  // Real.. whichever prec
 | 
			
		||||
 
 | 
			
		||||
@@ -47,6 +47,18 @@ public:
 | 
			
		||||
  FermionField _tmp;
 | 
			
		||||
  FermionField &tmp(void) { return _tmp; }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////
 | 
			
		||||
  // Performance monitoring
 | 
			
		||||
  ////////////////////////////////////////
 | 
			
		||||
  void Report(void);
 | 
			
		||||
  void ZeroCounters(void);
 | 
			
		||||
  double DhopTotalTime;
 | 
			
		||||
  double DhopCalls;
 | 
			
		||||
  double DhopCommTime;
 | 
			
		||||
  double DhopComputeTime;
 | 
			
		||||
  double DhopComputeTime2;
 | 
			
		||||
  double DhopFaceTime;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Implement the abstract base
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -52,6 +52,18 @@ public:
 | 
			
		||||
  FermionField _tmp;
 | 
			
		||||
  FermionField &tmp(void) { return _tmp; }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////
 | 
			
		||||
  // Performance monitoring
 | 
			
		||||
  ////////////////////////////////////////
 | 
			
		||||
  void Report(void);
 | 
			
		||||
  void ZeroCounters(void);
 | 
			
		||||
  double DhopTotalTime;
 | 
			
		||||
  double DhopCalls;
 | 
			
		||||
  double DhopCommTime;
 | 
			
		||||
  double DhopComputeTime;
 | 
			
		||||
  double DhopComputeTime2;
 | 
			
		||||
  double DhopFaceTime;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Implement the abstract base
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -47,6 +47,18 @@ public:
 | 
			
		||||
  FermionField _tmp;
 | 
			
		||||
  FermionField &tmp(void) { return _tmp; }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////
 | 
			
		||||
  // Performance monitoring
 | 
			
		||||
  ////////////////////////////////////////
 | 
			
		||||
  void Report(void);
 | 
			
		||||
  void ZeroCounters(void);
 | 
			
		||||
  double DhopTotalTime;
 | 
			
		||||
  double DhopCalls;
 | 
			
		||||
  double DhopCommTime;
 | 
			
		||||
  double DhopComputeTime;
 | 
			
		||||
  double DhopComputeTime2;
 | 
			
		||||
  double DhopFaceTime;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Implement the abstract base
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -32,218 +32,17 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////////////////
 | 
			
		||||
// Wilson compressor will need FaceGather policies for:
 | 
			
		||||
// Periodic, Dirichlet, and partial Dirichlet for DWF
 | 
			
		||||
///////////////////////////////////////////////////////////////
 | 
			
		||||
const int dwf_compressor_depth=2;
 | 
			
		||||
#define DWF_COMPRESS
 | 
			
		||||
class FaceGatherPartialDWF
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
#ifdef DWF_COMPRESS
 | 
			
		||||
  static int PartialCompressionFactor(GridBase *grid) {return grid->_fdimensions[0]/(2*dwf_compressor_depth);};
 | 
			
		||||
#else
 | 
			
		||||
  static int PartialCompressionFactor(GridBase *grid) { return 1;}
 | 
			
		||||
#endif
 | 
			
		||||
  template<class vobj,class cobj,class compressor>
 | 
			
		||||
  static void Gather_plane_simple (commVector<std::pair<int,int> >& table,
 | 
			
		||||
				   const Lattice<vobj> &rhs,
 | 
			
		||||
				   cobj *buffer,
 | 
			
		||||
				   compressor &compress,
 | 
			
		||||
				   int off,int so,int partial)
 | 
			
		||||
  {
 | 
			
		||||
    //DWF only hack: If a direction that is OFF node we use Partial Dirichlet
 | 
			
		||||
    //  Shrinks local and remote comms buffers
 | 
			
		||||
    GridBase *Grid = rhs.Grid();
 | 
			
		||||
    int Ls = Grid->_rdimensions[0];
 | 
			
		||||
#ifdef DWF_COMPRESS
 | 
			
		||||
    int depth=dwf_compressor_depth;
 | 
			
		||||
#else 
 | 
			
		||||
    int depth=Ls/2;
 | 
			
		||||
#endif
 | 
			
		||||
    std::pair<int,int> *table_v = & table[0];
 | 
			
		||||
    auto rhs_v = rhs.View(AcceleratorRead);
 | 
			
		||||
    int vol=table.size()/Ls;
 | 
			
		||||
    accelerator_forNB( idx,table.size(), vobj::Nsimd(), {
 | 
			
		||||
	Integer i=idx/Ls;
 | 
			
		||||
	Integer s=idx%Ls;
 | 
			
		||||
	Integer sc=depth+s-(Ls-depth);
 | 
			
		||||
	if(s<depth)     compress.Compress(buffer[off+i+s*vol],rhs_v[so+table_v[idx].second]);
 | 
			
		||||
	if(s>=Ls-depth) compress.Compress(buffer[off+i+sc*vol],rhs_v[so+table_v[idx].second]);
 | 
			
		||||
    });
 | 
			
		||||
    rhs_v.ViewClose();
 | 
			
		||||
  }
 | 
			
		||||
  template<class decompressor,class Decompression>
 | 
			
		||||
  static void DecompressFace(decompressor decompress,Decompression &dd)
 | 
			
		||||
  {
 | 
			
		||||
    auto Ls = dd.dims[0];
 | 
			
		||||
#ifdef DWF_COMPRESS
 | 
			
		||||
    int depth=dwf_compressor_depth;
 | 
			
		||||
#else
 | 
			
		||||
    int depth=Ls/2;
 | 
			
		||||
#endif    
 | 
			
		||||
    // Just pass in the Grid
 | 
			
		||||
    auto kp = dd.kernel_p;
 | 
			
		||||
    auto mp = dd.mpi_p;
 | 
			
		||||
    int size= dd.buffer_size;
 | 
			
		||||
    int vol= size/Ls;
 | 
			
		||||
    accelerator_forNB(o,size,1,{
 | 
			
		||||
	int idx=o/Ls;
 | 
			
		||||
	int   s=o%Ls;
 | 
			
		||||
	if ( s < depth ) {
 | 
			
		||||
	  int oo=s*vol+idx;
 | 
			
		||||
	  kp[o]=mp[oo];
 | 
			
		||||
	} else if ( s >= Ls-depth ) {
 | 
			
		||||
	  int sc = depth + s - (Ls-depth);
 | 
			
		||||
	  int oo=sc*vol+idx; 
 | 
			
		||||
	  kp[o]=mp[oo];
 | 
			
		||||
	} else {
 | 
			
		||||
	  kp[o] = Zero();//fill rest with zero if partial dirichlet
 | 
			
		||||
	}
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Need to gather *interior portions* for ALL s-slices in simd directions
 | 
			
		||||
  // Do the gather as need to treat SIMD lanes differently, and insert zeroes on receive side
 | 
			
		||||
  // Reorder the fifth dim to be s=Ls-1 , s=0, s=1,...,Ls-2.
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template<class vobj,class cobj,class compressor>
 | 
			
		||||
  static void Gather_plane_exchange(commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
 | 
			
		||||
				    std::vector<cobj *> pointers,int dimension,int plane,int cbmask,
 | 
			
		||||
				    compressor &compress,int type,int partial)
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *Grid = rhs.Grid();
 | 
			
		||||
    int Ls = Grid->_rdimensions[0];
 | 
			
		||||
#ifdef DWF_COMPRESS
 | 
			
		||||
    int depth=dwf_compressor_depth;
 | 
			
		||||
#else
 | 
			
		||||
    int depth = Ls/2;
 | 
			
		||||
#endif
 | 
			
		||||
    
 | 
			
		||||
    // insertion of zeroes...
 | 
			
		||||
    assert( (table.size()&0x1)==0);
 | 
			
		||||
    int num=table.size()/2;
 | 
			
		||||
    int so  = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
 | 
			
		||||
    
 | 
			
		||||
    auto rhs_v = rhs.View(AcceleratorRead);
 | 
			
		||||
    auto p0=&pointers[0][0];
 | 
			
		||||
    auto p1=&pointers[1][0];
 | 
			
		||||
    auto tp=&table[0];
 | 
			
		||||
    int nnum=num/Ls;
 | 
			
		||||
    accelerator_forNB(j, num, vobj::Nsimd(), {
 | 
			
		||||
	//  Reorders both local and remote comms buffers
 | 
			
		||||
	//  
 | 
			
		||||
	int s  = j % Ls;
 | 
			
		||||
	int sp1 = (s+depth)%Ls;  // peri incremented s slice
 | 
			
		||||
	
 | 
			
		||||
	int hxyz= j/Ls;
 | 
			
		||||
 | 
			
		||||
	int xyz0= hxyz*2; // xyzt part of coor
 | 
			
		||||
	int xyz1= hxyz*2+1;
 | 
			
		||||
	
 | 
			
		||||
	int jj= hxyz + sp1*nnum ; // 0,1,2,3 -> Ls-1 slice , 0-slice, 1-slice ....
 | 
			
		||||
	
 | 
			
		||||
	int kk0= xyz0*Ls + s ; // s=0 goes to s=1
 | 
			
		||||
	int kk1= xyz1*Ls + s ; // s=Ls-1 -> s=0
 | 
			
		||||
	compress.CompressExchange(p0[jj],p1[jj],
 | 
			
		||||
				  rhs_v[so+tp[kk0 ].second], // Same s, consecutive xyz sites
 | 
			
		||||
				  rhs_v[so+tp[kk1 ].second], 
 | 
			
		||||
				  type);
 | 
			
		||||
    });
 | 
			
		||||
    rhs_v.ViewClose();
 | 
			
		||||
  }
 | 
			
		||||
  // Merge routine is for SIMD faces
 | 
			
		||||
  template<class decompressor,class Merger>
 | 
			
		||||
  static void MergeFace(decompressor decompress,Merger &mm)
 | 
			
		||||
  {
 | 
			
		||||
    auto Ls = mm.dims[0];
 | 
			
		||||
#ifdef DWF_COMPRESS
 | 
			
		||||
    int depth=dwf_compressor_depth;
 | 
			
		||||
#else
 | 
			
		||||
    int depth = Ls/2;
 | 
			
		||||
#endif
 | 
			
		||||
    int  num= mm.buffer_size/2; // relate vol and Ls to buffer size
 | 
			
		||||
    auto mp = &mm.mpointer[0];
 | 
			
		||||
    auto vp0= &mm.vpointers[0][0]; // First arg is exchange first
 | 
			
		||||
    auto vp1= &mm.vpointers[1][0];
 | 
			
		||||
    auto type= mm.type;
 | 
			
		||||
    int nnum = num/Ls;
 | 
			
		||||
    accelerator_forNB(o,num,Merger::Nsimd,{
 | 
			
		||||
 | 
			
		||||
	int  s=o%Ls;
 | 
			
		||||
	int hxyz=o/Ls; // xyzt related component
 | 
			
		||||
	int xyz0=hxyz*2;
 | 
			
		||||
	int xyz1=hxyz*2+1;
 | 
			
		||||
 | 
			
		||||
	int sp = (s+depth)%Ls; 
 | 
			
		||||
	int jj= hxyz + sp*nnum ; // 0,1,2,3 -> Ls-1 slice , 0-slice, 1-slice ....
 | 
			
		||||
 | 
			
		||||
	int oo0= s+xyz0*Ls;
 | 
			
		||||
	int oo1= s+xyz1*Ls;
 | 
			
		||||
 | 
			
		||||
	// same ss0, ss1 pair goes to new layout
 | 
			
		||||
	decompress.Exchange(mp[oo0],mp[oo1],vp0[jj],vp1[jj],type);
 | 
			
		||||
      });
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
class FaceGatherDWFMixedBCs
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
#ifdef DWF_COMPRESS
 | 
			
		||||
  static int PartialCompressionFactor(GridBase *grid) {return grid->_fdimensions[0]/(2*dwf_compressor_depth);};
 | 
			
		||||
#else 
 | 
			
		||||
  static int PartialCompressionFactor(GridBase *grid) {return 1;}
 | 
			
		||||
#endif
 | 
			
		||||
  
 | 
			
		||||
  template<class vobj,class cobj,class compressor>
 | 
			
		||||
  static void Gather_plane_simple (commVector<std::pair<int,int> >& table,
 | 
			
		||||
					 const Lattice<vobj> &rhs,
 | 
			
		||||
					 cobj *buffer,
 | 
			
		||||
					 compressor &compress,
 | 
			
		||||
					 int off,int so,int partial)
 | 
			
		||||
  {
 | 
			
		||||
    //    std::cout << " face gather simple DWF partial "<<partial <<std::endl;
 | 
			
		||||
    if(partial) FaceGatherPartialDWF::Gather_plane_simple(table,rhs,buffer,compress,off,so,partial);
 | 
			
		||||
    else        FaceGatherSimple::Gather_plane_simple(table,rhs,buffer,compress,off,so,partial);
 | 
			
		||||
  }
 | 
			
		||||
  template<class vobj,class cobj,class compressor>
 | 
			
		||||
  static void Gather_plane_exchange(commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
 | 
			
		||||
				    std::vector<cobj *> pointers,int dimension,int plane,int cbmask,
 | 
			
		||||
				    compressor &compress,int type,int partial)
 | 
			
		||||
  {
 | 
			
		||||
    //    std::cout << " face gather exch DWF partial "<<partial <<std::endl;
 | 
			
		||||
    if(partial) FaceGatherPartialDWF::Gather_plane_exchange(table,rhs,pointers,dimension, plane,cbmask,compress,type,partial);
 | 
			
		||||
    else        FaceGatherSimple::Gather_plane_exchange    (table,rhs,pointers,dimension, plane,cbmask,compress,type,partial);
 | 
			
		||||
  }
 | 
			
		||||
  template<class decompressor,class Merger>
 | 
			
		||||
  static void MergeFace(decompressor decompress,Merger &mm)
 | 
			
		||||
  {
 | 
			
		||||
    int partial = mm.partial;
 | 
			
		||||
    //    std::cout << " merge DWF partial "<<partial <<std::endl;
 | 
			
		||||
    if ( partial ) FaceGatherPartialDWF::MergeFace(decompress,mm);
 | 
			
		||||
    else           FaceGatherSimple::MergeFace(decompress,mm);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class decompressor,class Decompression>
 | 
			
		||||
  static void DecompressFace(decompressor decompress,Decompression &dd)
 | 
			
		||||
  {
 | 
			
		||||
    int partial = dd.partial;
 | 
			
		||||
    //    std::cout << " decompress DWF partial "<<partial <<std::endl;
 | 
			
		||||
    if ( partial ) FaceGatherPartialDWF::DecompressFace(decompress,dd);
 | 
			
		||||
    else           FaceGatherSimple::DecompressFace(decompress,dd);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// optimised versions supporting half precision too??? Deprecate
 | 
			
		||||
// optimised versions supporting half precision too
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
template<class _HCspinor,class _Hspinor,class _Spinor, class projector,typename SFINAE = void >
 | 
			
		||||
class WilsonCompressorTemplate;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//Could make FaceGather a template param, but then behaviour is runtime not compile time
 | 
			
		||||
template<class _HCspinor,class _Hspinor,class _Spinor, class projector>
 | 
			
		||||
class WilsonCompressorTemplate  : public FaceGatherDWFMixedBCs
 | 
			
		||||
//  : public FaceGatherSimple
 | 
			
		||||
class WilsonCompressorTemplate< _HCspinor, _Hspinor, _Spinor, projector,
 | 
			
		||||
				typename std::enable_if<std::is_same<_HCspinor,_Hspinor>::value>::type >
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  
 | 
			
		||||
@@ -280,19 +79,18 @@ public:
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  /* Exchange includes precision change if mpi data is not same */
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  accelerator_inline void Exchange(SiteHalfSpinor &mp0,
 | 
			
		||||
				   SiteHalfSpinor &mp1,
 | 
			
		||||
				   const SiteHalfSpinor & vp0,
 | 
			
		||||
				   const SiteHalfSpinor & vp1,
 | 
			
		||||
				   Integer type) const {
 | 
			
		||||
  accelerator_inline void Exchange(SiteHalfSpinor *mp,
 | 
			
		||||
				   const SiteHalfSpinor * __restrict__ vp0,
 | 
			
		||||
				   const SiteHalfSpinor * __restrict__ vp1,
 | 
			
		||||
				   Integer type,Integer o) const {
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
    exchangeSIMT(mp0,mp1,vp0,vp1,type);
 | 
			
		||||
    exchangeSIMT(mp[2*o],mp[2*o+1],vp0[o],vp1[o],type);
 | 
			
		||||
#else
 | 
			
		||||
    SiteHalfSpinor tmp1;
 | 
			
		||||
    SiteHalfSpinor tmp2;
 | 
			
		||||
    exchange(tmp1,tmp2,vp0,vp1,type);
 | 
			
		||||
    vstream(mp0,tmp1);
 | 
			
		||||
    vstream(mp1,tmp2);
 | 
			
		||||
    exchange(tmp1,tmp2,vp0[o],vp1[o],type);
 | 
			
		||||
    vstream(mp[2*o  ],tmp1);
 | 
			
		||||
    vstream(mp[2*o+1],tmp2);
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
@@ -300,61 +98,153 @@ public:
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  /* Have a decompression step if mpi data is not same */
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  accelerator_inline void Decompress(SiteHalfSpinor &out,
 | 
			
		||||
				     SiteHalfSpinor &in) const {    
 | 
			
		||||
    out = in;
 | 
			
		||||
  accelerator_inline void Decompress(SiteHalfSpinor * __restrict__ out,
 | 
			
		||||
				     SiteHalfSpinor * __restrict__ in, Integer o) const {    
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  /* Compress Exchange                                 */
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  accelerator_inline void CompressExchange(SiteHalfSpinor &out0,
 | 
			
		||||
					   SiteHalfSpinor &out1,
 | 
			
		||||
					   const SiteSpinor &in0,
 | 
			
		||||
					   const SiteSpinor &in1,
 | 
			
		||||
					   Integer type) const
 | 
			
		||||
  accelerator_inline void CompressExchange(SiteHalfSpinor * __restrict__ out0,
 | 
			
		||||
					   SiteHalfSpinor * __restrict__ out1,
 | 
			
		||||
					   const SiteSpinor * __restrict__ in,
 | 
			
		||||
					   Integer j,Integer k, Integer m,Integer type) const
 | 
			
		||||
  {
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
    typedef SiteSpinor vobj;
 | 
			
		||||
    typedef SiteHalfSpinor hvobj;
 | 
			
		||||
    typedef decltype(coalescedRead(in0))    sobj;
 | 
			
		||||
    typedef decltype(coalescedRead(out0)) hsobj;
 | 
			
		||||
    typedef decltype(coalescedRead(*in))    sobj;
 | 
			
		||||
    typedef decltype(coalescedRead(*out0)) hsobj;
 | 
			
		||||
 | 
			
		||||
    constexpr unsigned int Nsimd = vobj::Nsimd();
 | 
			
		||||
    unsigned int mask = Nsimd >> (type + 1);
 | 
			
		||||
    int lane = acceleratorSIMTlane(Nsimd);
 | 
			
		||||
    int j0 = lane &(~mask); // inner coor zero
 | 
			
		||||
    int j1 = lane |(mask) ; // inner coor one
 | 
			
		||||
    const vobj *vp0 = &in0;
 | 
			
		||||
    const vobj *vp1 = &in1;
 | 
			
		||||
    const vobj *vp = (lane&mask) ? vp1:vp0;
 | 
			
		||||
    auto sa = coalescedRead(*vp,j0);
 | 
			
		||||
    auto sb = coalescedRead(*vp,j1);
 | 
			
		||||
    const vobj *vp0 = &in[k];  // out0[j] = merge low bit of type from in[k] and in[m] 
 | 
			
		||||
    const vobj *vp1 = &in[m];  // out1[j] = merge hi  bit of type from in[k] and in[m]
 | 
			
		||||
    const vobj *vp = (lane&mask) ? vp1:vp0;// if my lane has high bit take vp1, low bit take vp0
 | 
			
		||||
    auto sa = coalescedRead(*vp,j0); // lane to read for out 0, NB 50% read coalescing
 | 
			
		||||
    auto sb = coalescedRead(*vp,j1); // lane to read for out 1
 | 
			
		||||
    hsobj psa, psb;
 | 
			
		||||
    projector::Proj(psa,sa,mu,dag);
 | 
			
		||||
    projector::Proj(psb,sb,mu,dag);
 | 
			
		||||
    coalescedWrite(out0,psa);
 | 
			
		||||
    coalescedWrite(out1,psb);
 | 
			
		||||
    projector::Proj(psa,sa,mu,dag);  // spin project the result0
 | 
			
		||||
    projector::Proj(psb,sb,mu,dag);  // spin project the result1
 | 
			
		||||
    coalescedWrite(out0[j],psa);
 | 
			
		||||
    coalescedWrite(out1[j],psb);
 | 
			
		||||
#else
 | 
			
		||||
    SiteHalfSpinor temp1, temp2;
 | 
			
		||||
    SiteHalfSpinor temp3, temp4;
 | 
			
		||||
    projector::Proj(temp1,in0,mu,dag);
 | 
			
		||||
    projector::Proj(temp2,in1,mu,dag);
 | 
			
		||||
    projector::Proj(temp1,in[k],mu,dag);
 | 
			
		||||
    projector::Proj(temp2,in[m],mu,dag);
 | 
			
		||||
    exchange(temp3,temp4,temp1,temp2,type);
 | 
			
		||||
    vstream(out0,temp3);
 | 
			
		||||
    vstream(out1,temp4);
 | 
			
		||||
    vstream(out0[j],temp3);
 | 
			
		||||
    vstream(out1[j],temp4);
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  /* Pass the info to the stencil */
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  accelerator_inline bool DecompressionStep(void) const {
 | 
			
		||||
    return false;
 | 
			
		||||
  }
 | 
			
		||||
  accelerator_inline bool DecompressionStep(void) const { return false; }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#if 0
 | 
			
		||||
template<class _HCspinor,class _Hspinor,class _Spinor, class projector>
 | 
			
		||||
class WilsonCompressorTemplate< _HCspinor, _Hspinor, _Spinor, projector,
 | 
			
		||||
				typename std::enable_if<!std::is_same<_HCspinor,_Hspinor>::value>::type >
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  
 | 
			
		||||
  int mu,dag;  
 | 
			
		||||
 | 
			
		||||
  void Point(int p) { mu=p; };
 | 
			
		||||
 | 
			
		||||
  WilsonCompressorTemplate(int _dag=0){
 | 
			
		||||
    dag = _dag;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  typedef _Spinor         SiteSpinor;
 | 
			
		||||
  typedef _Hspinor     SiteHalfSpinor;
 | 
			
		||||
  typedef _HCspinor SiteHalfCommSpinor;
 | 
			
		||||
  typedef typename SiteHalfCommSpinor::vector_type vComplexLow;
 | 
			
		||||
  typedef typename SiteHalfSpinor::vector_type     vComplexHigh;
 | 
			
		||||
  constexpr static int Nw=sizeof(SiteHalfSpinor)/sizeof(vComplexHigh);
 | 
			
		||||
 | 
			
		||||
  accelerator_inline int CommDatumSize(void) const {
 | 
			
		||||
    return sizeof(SiteHalfCommSpinor);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  /* Compress includes precision change if mpi data is not same */
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  accelerator_inline void Compress(SiteHalfSpinor &buf,const SiteSpinor &in) const {
 | 
			
		||||
    SiteHalfSpinor hsp;
 | 
			
		||||
    SiteHalfCommSpinor *hbuf = (SiteHalfCommSpinor *)buf;
 | 
			
		||||
    projector::Proj(hsp,in,mu,dag);
 | 
			
		||||
    precisionChange((vComplexLow *)&hbuf[o],(vComplexHigh *)&hsp,Nw);
 | 
			
		||||
  }
 | 
			
		||||
  accelerator_inline void Compress(SiteHalfSpinor &buf,const SiteSpinor &in) const {
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
    typedef decltype(coalescedRead(buf)) sobj;
 | 
			
		||||
    sobj sp;
 | 
			
		||||
    auto sin = coalescedRead(in);
 | 
			
		||||
    projector::Proj(sp,sin,mu,dag);
 | 
			
		||||
    coalescedWrite(buf,sp);
 | 
			
		||||
#else
 | 
			
		||||
    projector::Proj(buf,in,mu,dag);
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  /* Exchange includes precision change if mpi data is not same */
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  accelerator_inline void Exchange(SiteHalfSpinor *mp,
 | 
			
		||||
                       SiteHalfSpinor *vp0,
 | 
			
		||||
                       SiteHalfSpinor *vp1,
 | 
			
		||||
		       Integer type,Integer o) const {
 | 
			
		||||
    SiteHalfSpinor vt0,vt1;
 | 
			
		||||
    SiteHalfCommSpinor *vpp0 = (SiteHalfCommSpinor *)vp0;
 | 
			
		||||
    SiteHalfCommSpinor *vpp1 = (SiteHalfCommSpinor *)vp1;
 | 
			
		||||
    precisionChange((vComplexHigh *)&vt0,(vComplexLow *)&vpp0[o],Nw);
 | 
			
		||||
    precisionChange((vComplexHigh *)&vt1,(vComplexLow *)&vpp1[o],Nw);
 | 
			
		||||
    exchange(mp[2*o],mp[2*o+1],vt0,vt1,type);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  /* Have a decompression step if mpi data is not same */
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  accelerator_inline void Decompress(SiteHalfSpinor *out, SiteHalfSpinor *in, Integer o) const {
 | 
			
		||||
    SiteHalfCommSpinor *hin=(SiteHalfCommSpinor *)in;
 | 
			
		||||
    precisionChange((vComplexHigh *)&out[o],(vComplexLow *)&hin[o],Nw);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  /* Compress Exchange                                 */
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  accelerator_inline void CompressExchange(SiteHalfSpinor *out0,
 | 
			
		||||
			       SiteHalfSpinor *out1,
 | 
			
		||||
			       const SiteSpinor *in,
 | 
			
		||||
			       Integer j,Integer k, Integer m,Integer type) const {
 | 
			
		||||
    SiteHalfSpinor temp1, temp2,temp3,temp4;
 | 
			
		||||
    SiteHalfCommSpinor *hout0 = (SiteHalfCommSpinor *)out0;
 | 
			
		||||
    SiteHalfCommSpinor *hout1 = (SiteHalfCommSpinor *)out1;
 | 
			
		||||
    projector::Proj(temp1,in[k],mu,dag);
 | 
			
		||||
    projector::Proj(temp2,in[m],mu,dag);
 | 
			
		||||
    exchange(temp3,temp4,temp1,temp2,type);
 | 
			
		||||
    precisionChange((vComplexLow *)&hout0[j],(vComplexHigh *)&temp3,Nw);
 | 
			
		||||
    precisionChange((vComplexLow *)&hout1[j],(vComplexHigh *)&temp4,Nw);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  /* Pass the info to the stencil */
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  accelerator_inline bool DecompressionStep(void) const { return true; }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#define DECLARE_PROJ(Projector,Compressor,spProj)			\
 | 
			
		||||
  class Projector {							\
 | 
			
		||||
  public:								\
 | 
			
		||||
@@ -404,7 +294,11 @@ public:
 | 
			
		||||
  typedef typename Base::View_type View_type;
 | 
			
		||||
  typedef typename Base::StencilVector StencilVector;
 | 
			
		||||
 | 
			
		||||
  //  Vector<int> surface_list;
 | 
			
		||||
  void ZeroCountersi(void)  {  }
 | 
			
		||||
  void Reporti(int calls)  {  }
 | 
			
		||||
 | 
			
		||||
  std::vector<int> surface_list;
 | 
			
		||||
 | 
			
		||||
  WilsonStencil(GridBase *grid,
 | 
			
		||||
		int npoints,
 | 
			
		||||
		int checkerboard,
 | 
			
		||||
@@ -412,11 +306,11 @@ public:
 | 
			
		||||
		const std::vector<int> &distances,Parameters p)  
 | 
			
		||||
    : CartesianStencil<vobj,cobj,Parameters> (grid,npoints,checkerboard,directions,distances,p) 
 | 
			
		||||
  { 
 | 
			
		||||
    //    surface_list.resize(0);
 | 
			
		||||
    ZeroCountersi();
 | 
			
		||||
    surface_list.resize(0);
 | 
			
		||||
    this->same_node.resize(npoints);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
  void BuildSurfaceList(int Ls,int vol4){
 | 
			
		||||
 | 
			
		||||
    // find same node for SHM
 | 
			
		||||
@@ -437,7 +331,6 @@ public:
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  */
 | 
			
		||||
 | 
			
		||||
  template < class compressor>
 | 
			
		||||
  void HaloExchangeOpt(const Lattice<vobj> &source,compressor &compress) 
 | 
			
		||||
@@ -484,26 +377,24 @@ public:
 | 
			
		||||
 | 
			
		||||
    int dag = compress.dag;
 | 
			
		||||
    int face_idx=0;
 | 
			
		||||
#define vet_same_node(a,b) \
 | 
			
		||||
      { auto tmp = b;  }
 | 
			
		||||
    if ( dag ) { 
 | 
			
		||||
      vet_same_node(this->same_node[Xp],this->HaloGatherDir(source,XpCompress,Xp,face_idx));
 | 
			
		||||
      vet_same_node(this->same_node[Yp],this->HaloGatherDir(source,YpCompress,Yp,face_idx));
 | 
			
		||||
      vet_same_node(this->same_node[Zp],this->HaloGatherDir(source,ZpCompress,Zp,face_idx));
 | 
			
		||||
      vet_same_node(this->same_node[Tp],this->HaloGatherDir(source,TpCompress,Tp,face_idx));
 | 
			
		||||
      vet_same_node(this->same_node[Xm],this->HaloGatherDir(source,XmCompress,Xm,face_idx));
 | 
			
		||||
      vet_same_node(this->same_node[Ym],this->HaloGatherDir(source,YmCompress,Ym,face_idx));
 | 
			
		||||
      vet_same_node(this->same_node[Zm],this->HaloGatherDir(source,ZmCompress,Zm,face_idx));
 | 
			
		||||
      vet_same_node(this->same_node[Tm],this->HaloGatherDir(source,TmCompress,Tm,face_idx));
 | 
			
		||||
      assert(this->same_node[Xp]==this->HaloGatherDir(source,XpCompress,Xp,face_idx));
 | 
			
		||||
      assert(this->same_node[Yp]==this->HaloGatherDir(source,YpCompress,Yp,face_idx));
 | 
			
		||||
      assert(this->same_node[Zp]==this->HaloGatherDir(source,ZpCompress,Zp,face_idx));
 | 
			
		||||
      assert(this->same_node[Tp]==this->HaloGatherDir(source,TpCompress,Tp,face_idx));
 | 
			
		||||
      assert(this->same_node[Xm]==this->HaloGatherDir(source,XmCompress,Xm,face_idx));
 | 
			
		||||
      assert(this->same_node[Ym]==this->HaloGatherDir(source,YmCompress,Ym,face_idx));
 | 
			
		||||
      assert(this->same_node[Zm]==this->HaloGatherDir(source,ZmCompress,Zm,face_idx));
 | 
			
		||||
      assert(this->same_node[Tm]==this->HaloGatherDir(source,TmCompress,Tm,face_idx));
 | 
			
		||||
    } else {
 | 
			
		||||
      vet_same_node(this->same_node[Xp],this->HaloGatherDir(source,XmCompress,Xp,face_idx));
 | 
			
		||||
      vet_same_node(this->same_node[Yp],this->HaloGatherDir(source,YmCompress,Yp,face_idx));
 | 
			
		||||
      vet_same_node(this->same_node[Zp],this->HaloGatherDir(source,ZmCompress,Zp,face_idx));
 | 
			
		||||
      vet_same_node(this->same_node[Tp],this->HaloGatherDir(source,TmCompress,Tp,face_idx));
 | 
			
		||||
      vet_same_node(this->same_node[Xm],this->HaloGatherDir(source,XpCompress,Xm,face_idx));
 | 
			
		||||
      vet_same_node(this->same_node[Ym],this->HaloGatherDir(source,YpCompress,Ym,face_idx));
 | 
			
		||||
      vet_same_node(this->same_node[Zm],this->HaloGatherDir(source,ZpCompress,Zm,face_idx));
 | 
			
		||||
      vet_same_node(this->same_node[Tm],this->HaloGatherDir(source,TpCompress,Tm,face_idx));
 | 
			
		||||
      assert(this->same_node[Xp]==this->HaloGatherDir(source,XmCompress,Xp,face_idx));
 | 
			
		||||
      assert(this->same_node[Yp]==this->HaloGatherDir(source,YmCompress,Yp,face_idx));
 | 
			
		||||
      assert(this->same_node[Zp]==this->HaloGatherDir(source,ZmCompress,Zp,face_idx));
 | 
			
		||||
      assert(this->same_node[Tp]==this->HaloGatherDir(source,TmCompress,Tp,face_idx));
 | 
			
		||||
      assert(this->same_node[Xm]==this->HaloGatherDir(source,XpCompress,Xm,face_idx));
 | 
			
		||||
      assert(this->same_node[Ym]==this->HaloGatherDir(source,YpCompress,Ym,face_idx));
 | 
			
		||||
      assert(this->same_node[Zm]==this->HaloGatherDir(source,ZpCompress,Zm,face_idx));
 | 
			
		||||
      assert(this->same_node[Tm]==this->HaloGatherDir(source,TpCompress,Tm,face_idx));
 | 
			
		||||
    }
 | 
			
		||||
    this->face_table_computed=1;
 | 
			
		||||
    assert(this->u_comm_offset==this->_unified_buffer_size);
 | 
			
		||||
 
 | 
			
		||||
@@ -74,6 +74,20 @@ public:
 | 
			
		||||
  FermionField _tmp;
 | 
			
		||||
  FermionField &tmp(void) { return _tmp; }
 | 
			
		||||
 | 
			
		||||
  void Report(void);
 | 
			
		||||
  void ZeroCounters(void);
 | 
			
		||||
  double DhopCalls;
 | 
			
		||||
  double DhopCommTime;
 | 
			
		||||
  double DhopComputeTime;
 | 
			
		||||
  double DhopComputeTime2;
 | 
			
		||||
  double DhopFaceTime;
 | 
			
		||||
  double DhopTotalTime;
 | 
			
		||||
 | 
			
		||||
  double DerivCalls;
 | 
			
		||||
  double DerivCommTime;
 | 
			
		||||
  double DerivComputeTime;
 | 
			
		||||
  double DerivDhopComputeTime;
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////
 | 
			
		||||
  // override multiply; cut number routines if pass dagger argument
 | 
			
		||||
  // and also make interface more uniformly consistent
 | 
			
		||||
 
 | 
			
		||||
@@ -75,8 +75,19 @@ public:
 | 
			
		||||
  FermionField _tmp;
 | 
			
		||||
  FermionField &tmp(void) { return _tmp; }
 | 
			
		||||
 | 
			
		||||
  int Dirichlet;
 | 
			
		||||
  Coordinate Block; 
 | 
			
		||||
  void Report(void);
 | 
			
		||||
  void ZeroCounters(void);
 | 
			
		||||
  double DhopCalls;
 | 
			
		||||
  double DhopCommTime;
 | 
			
		||||
  double DhopComputeTime;
 | 
			
		||||
  double DhopComputeTime2;
 | 
			
		||||
  double DhopFaceTime;
 | 
			
		||||
  double DhopTotalTime;
 | 
			
		||||
 | 
			
		||||
  double DerivCalls;
 | 
			
		||||
  double DerivCommTime;
 | 
			
		||||
  double DerivComputeTime;
 | 
			
		||||
  double DerivDhopComputeTime;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Implement the abstract base
 | 
			
		||||
@@ -163,9 +174,6 @@ public:
 | 
			
		||||
		  GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
			
		||||
		  double _M5,const ImplParams &p= ImplParams());
 | 
			
		||||
    
 | 
			
		||||
  virtual void DirichletBlock(const Coordinate & block)
 | 
			
		||||
  {
 | 
			
		||||
  }
 | 
			
		||||
  // Constructors
 | 
			
		||||
  /*
 | 
			
		||||
    WilsonFermion5D(int simd, 
 | 
			
		||||
 
 | 
			
		||||
@@ -242,12 +242,18 @@ public:
 | 
			
		||||
typedef WilsonImpl<vComplex,  FundamentalRepresentation, CoeffReal > WilsonImplR;  // Real.. whichever prec
 | 
			
		||||
typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffReal > WilsonImplF;  // Float
 | 
			
		||||
typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffReal > WilsonImplD;  // Double
 | 
			
		||||
typedef WilsonImpl<vComplexD2, FundamentalRepresentation, CoeffReal > WilsonImplD2;  // Double
 | 
			
		||||
 | 
			
		||||
//typedef WilsonImpl<vComplex,  FundamentalRepresentation, CoeffRealHalfComms > WilsonImplRL;  // Real.. whichever prec
 | 
			
		||||
//typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffRealHalfComms > WilsonImplFH;  // Float
 | 
			
		||||
//typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffRealHalfComms > WilsonImplDF;  // Double
 | 
			
		||||
 | 
			
		||||
typedef WilsonImpl<vComplex,  FundamentalRepresentation, CoeffComplex > ZWilsonImplR; // Real.. whichever prec
 | 
			
		||||
typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffComplex > ZWilsonImplF; // Float
 | 
			
		||||
typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffComplex > ZWilsonImplD; // Double
 | 
			
		||||
typedef WilsonImpl<vComplexD2, FundamentalRepresentation, CoeffComplex > ZWilsonImplD2; // Double
 | 
			
		||||
 | 
			
		||||
//typedef WilsonImpl<vComplex,  FundamentalRepresentation, CoeffComplexHalfComms > ZWilsonImplRL; // Real.. whichever prec
 | 
			
		||||
//typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffComplexHalfComms > ZWilsonImplFH; // Float
 | 
			
		||||
//typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffComplexHalfComms > ZWilsonImplDF; // Double
 | 
			
		||||
 
 | 
			
		||||
typedef WilsonImpl<vComplex,  AdjointRepresentation, CoeffReal > WilsonAdjImplR;   // Real.. whichever prec
 | 
			
		||||
typedef WilsonImpl<vComplexF, AdjointRepresentation, CoeffReal > WilsonAdjImplF;  // Float
 | 
			
		||||
@@ -261,22 +267,6 @@ typedef WilsonImpl<vComplex,  TwoIndexAntiSymmetricRepresentation, CoeffReal > W
 | 
			
		||||
typedef WilsonImpl<vComplexF, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplF;  // Float
 | 
			
		||||
typedef WilsonImpl<vComplexD, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplD;  // Double
 | 
			
		||||
 | 
			
		||||
//sp 2n
 | 
			
		||||
 | 
			
		||||
typedef WilsonImpl<vComplex,  SpFundamentalRepresentation, CoeffReal > SpWilsonImplR;  // Real.. whichever prec
 | 
			
		||||
typedef WilsonImpl<vComplexF, SpFundamentalRepresentation, CoeffReal > SpWilsonImplF;  // Float
 | 
			
		||||
typedef WilsonImpl<vComplexD, SpFundamentalRepresentation, CoeffReal > SpWilsonImplD;  // Double
 | 
			
		||||
 | 
			
		||||
typedef WilsonImpl<vComplex,  SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplR;  // Real.. whichever prec
 | 
			
		||||
typedef WilsonImpl<vComplexF, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplF;  // Float
 | 
			
		||||
typedef WilsonImpl<vComplexD, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplD;  // Double
 | 
			
		||||
 | 
			
		||||
typedef WilsonImpl<vComplex,  SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplR;  // Real.. whichever prec
 | 
			
		||||
typedef WilsonImpl<vComplexF, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplF;  // Float
 | 
			
		||||
typedef WilsonImpl<vComplexD, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplD;  // Double
 | 
			
		||||
 | 
			
		||||
typedef WilsonImpl<vComplex,  SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplR;  // Real.. whichever prec    // adj = 2indx symmetric for Sp(2N)
 | 
			
		||||
typedef WilsonImpl<vComplexF, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplF;  // Float     // adj = 2indx symmetric for Sp(2N)
 | 
			
		||||
typedef WilsonImpl<vComplexD, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplD;  // Double    // adj = 2indx symmetric for Sp(2N)
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -52,6 +52,13 @@ public:
 | 
			
		||||
  typedef AcceleratorVector<int,STENCIL_MAX> StencilVector;   
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
#define SYCL_HACK
 | 
			
		||||
#endif  
 | 
			
		||||
#ifdef SYCL_HACK
 | 
			
		||||
  static void HandDhopSiteSycl(StencilVector st_perm,StencilEntry *st_p, SiteDoubledGaugeField *U,SiteHalfSpinor  *buf,
 | 
			
		||||
			       int ss,int sU,const SiteSpinor *in, SiteSpinor *out);
 | 
			
		||||
#endif
 | 
			
		||||
  
 | 
			
		||||
  static void DhopKernel(int Opt,StencilImpl &st,  DoubledGaugeField &U, SiteHalfSpinor * buf,
 | 
			
		||||
			 int Ls, int Nsite, const FermionField &in, FermionField &out,
 | 
			
		||||
 
 | 
			
		||||
@@ -152,6 +152,58 @@ void CayleyFermion5D<Impl>::DminusDag(const FermionField &psi, FermionField &chi
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl> void CayleyFermion5D<Impl>::CayleyReport(void)
 | 
			
		||||
{
 | 
			
		||||
  this->Report();
 | 
			
		||||
  Coordinate latt = GridDefaultLatt();          
 | 
			
		||||
  RealD volume = this->Ls;  for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
 | 
			
		||||
  RealD NP     = this->_FourDimGrid->_Nprocessors;
 | 
			
		||||
  if ( M5Dcalls > 0 ) {
 | 
			
		||||
    std::cout << GridLogMessage << "#### M5D calls report " << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "CayleyFermion5D Number of M5D Calls     : " << M5Dcalls   << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "CayleyFermion5D ComputeTime/Calls       : " << M5Dtime / M5Dcalls << " us" << std::endl;
 | 
			
		||||
 | 
			
		||||
    // Flops = 10.0*(Nc*Ns) *Ls*vol
 | 
			
		||||
    RealD mflops = 10.0*(Nc*Ns)*volume*M5Dcalls/M5Dtime/2; // 2 for red black counting
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call                : " << mflops << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call per rank       : " << mflops/NP << std::endl;
 | 
			
		||||
 | 
			
		||||
    // Bytes = sizeof(Real) * (Nc*Ns*Nreim) * Ls * vol * (read+write) (/2 for red black counting)
 | 
			
		||||
    // read = 2 ( psi[ss+s+1] and psi[ss+s-1] count as 1 )
 | 
			
		||||
    // write = 1
 | 
			
		||||
    RealD Gbytes = sizeof(Real) * (Nc*Ns*2) * volume * 3 /2. * 1.e-9;
 | 
			
		||||
    std::cout << GridLogMessage << "Average bandwidth (GB/s)                 : " << Gbytes/M5Dtime*M5Dcalls*1.e6 << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if ( MooeeInvCalls > 0 ) {
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "#### MooeeInv calls report " << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "CayleyFermion5D Number of MooeeInv Calls     : " << MooeeInvCalls   << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "CayleyFermion5D ComputeTime/Calls            : " << MooeeInvTime / MooeeInvCalls << " us" << std::endl;
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
    RealD mflops = ( -16.*Nc*Ns+this->Ls*(1.+18.*Nc*Ns) )*volume*MooeeInvCalls/MooeeInvTime/2; // 2 for red black counting
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call                : " << mflops << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call per rank       : " << mflops/NP << std::endl;
 | 
			
		||||
#else
 | 
			
		||||
    // Flops = MADD * Ls *Ls *4dvol * spin/colour/complex
 | 
			
		||||
    RealD mflops = 2.0*24*this->Ls*volume*MooeeInvCalls/MooeeInvTime/2; // 2 for red black counting
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call                : " << mflops << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call per rank       : " << mflops/NP << std::endl;
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
template<class Impl> void CayleyFermion5D<Impl>::CayleyZeroCounters(void)
 | 
			
		||||
{
 | 
			
		||||
  this->ZeroCounters();
 | 
			
		||||
  M5Dflops=0;
 | 
			
		||||
  M5Dcalls=0;
 | 
			
		||||
  M5Dtime=0;
 | 
			
		||||
  MooeeInvFlops=0;
 | 
			
		||||
  MooeeInvCalls=0;
 | 
			
		||||
  MooeeInvTime=0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>  
 | 
			
		||||
void CayleyFermion5D<Impl>::M5D   (const FermionField &psi, FermionField &chi)
 | 
			
		||||
{
 | 
			
		||||
@@ -594,6 +646,7 @@ void CayleyFermion5D<Impl>::ContractConservedCurrent( PropagatorField &q_in_1,
 | 
			
		||||
  assert(mass_plus == mass_minus);
 | 
			
		||||
  RealD mass = mass_plus;
 | 
			
		||||
  
 | 
			
		||||
#if (!defined(GRID_HIP))
 | 
			
		||||
  Gamma::Algebra Gmu [] = {
 | 
			
		||||
    Gamma::Algebra::GammaX,
 | 
			
		||||
    Gamma::Algebra::GammaY,
 | 
			
		||||
@@ -712,7 +765,7 @@ void CayleyFermion5D<Impl>::ContractConservedCurrent( PropagatorField &q_in_1,
 | 
			
		||||
    else          q_out +=     C;
 | 
			
		||||
    
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class Impl>
 | 
			
		||||
@@ -779,6 +832,7 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if (!defined(GRID_HIP))
 | 
			
		||||
  int tshift = (mu == Nd-1) ? 1 : 0;
 | 
			
		||||
  unsigned int LLt    = GridDefaultLatt()[Tp];
 | 
			
		||||
  ////////////////////////////////////////////////
 | 
			
		||||
@@ -898,6 +952,7 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
 | 
			
		||||
 | 
			
		||||
    InsertSlice(L_Q, q_out, s , 0);
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
#undef Pp
 | 
			
		||||
#undef Pm
 | 
			
		||||
@@ -905,6 +960,88 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
 | 
			
		||||
#undef TopRowWithSource
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#if 0
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void CayleyFermion5D<Impl>::MooeeInternalCompute(int dag, int inv,
 | 
			
		||||
						 Vector<iSinglet<Simd> > & Matp,
 | 
			
		||||
						 Vector<iSinglet<Simd> > & Matm)
 | 
			
		||||
{
 | 
			
		||||
  int Ls=this->Ls;
 | 
			
		||||
 | 
			
		||||
  GridBase *grid = this->FermionRedBlackGrid();
 | 
			
		||||
  int LLs = grid->_rdimensions[0];
 | 
			
		||||
 | 
			
		||||
  if ( LLs == Ls ) {
 | 
			
		||||
    return; // Not vectorised in 5th direction
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd Pplus  = Eigen::MatrixXcd::Zero(Ls,Ls);
 | 
			
		||||
  Eigen::MatrixXcd Pminus = Eigen::MatrixXcd::Zero(Ls,Ls);
 | 
			
		||||
  
 | 
			
		||||
  for(int s=0;s<Ls;s++){
 | 
			
		||||
    Pplus(s,s) = bee[s];
 | 
			
		||||
    Pminus(s,s)= bee[s];
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  for(int s=0;s<Ls-1;s++){
 | 
			
		||||
    Pminus(s,s+1) = -cee[s];
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  for(int s=0;s<Ls-1;s++){
 | 
			
		||||
    Pplus(s+1,s) = -cee[s+1];
 | 
			
		||||
  }
 | 
			
		||||
  Pplus (0,Ls-1) = mass*cee[0];
 | 
			
		||||
  Pminus(Ls-1,0) = mass*cee[Ls-1];
 | 
			
		||||
  
 | 
			
		||||
  Eigen::MatrixXcd PplusMat ;
 | 
			
		||||
  Eigen::MatrixXcd PminusMat;
 | 
			
		||||
  
 | 
			
		||||
  if ( inv ) {
 | 
			
		||||
    PplusMat =Pplus.inverse();
 | 
			
		||||
    PminusMat=Pminus.inverse();
 | 
			
		||||
  } else { 
 | 
			
		||||
    PplusMat =Pplus;
 | 
			
		||||
    PminusMat=Pminus;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  if(dag){
 | 
			
		||||
    PplusMat.adjointInPlace();
 | 
			
		||||
    PminusMat.adjointInPlace();
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  typedef typename SiteHalfSpinor::scalar_type scalar_type;
 | 
			
		||||
  const int Nsimd=Simd::Nsimd();
 | 
			
		||||
  Matp.resize(Ls*LLs);
 | 
			
		||||
  Matm.resize(Ls*LLs);
 | 
			
		||||
 | 
			
		||||
  for(int s2=0;s2<Ls;s2++){
 | 
			
		||||
    for(int s1=0;s1<LLs;s1++){
 | 
			
		||||
      int istride = LLs;
 | 
			
		||||
      int ostride = 1;
 | 
			
		||||
      Simd Vp;
 | 
			
		||||
      Simd Vm;
 | 
			
		||||
      scalar_type *sp = (scalar_type *)&Vp;
 | 
			
		||||
      scalar_type *sm = (scalar_type *)&Vm;
 | 
			
		||||
      for(int l=0;l<Nsimd;l++){
 | 
			
		||||
	if ( switcheroo<Coeff_t>::iscomplex() ) {
 | 
			
		||||
	  sp[l] = PplusMat (l*istride+s1*ostride,s2);
 | 
			
		||||
	  sm[l] = PminusMat(l*istride+s1*ostride,s2);
 | 
			
		||||
	} else { 
 | 
			
		||||
	  // if real
 | 
			
		||||
	  scalar_type tmp;
 | 
			
		||||
	  tmp = PplusMat (l*istride+s1*ostride,s2);
 | 
			
		||||
	  sp[l] = scalar_type(tmp.real(),tmp.real());
 | 
			
		||||
	  tmp = PminusMat(l*istride+s1*ostride,s2);
 | 
			
		||||
	  sm[l] = scalar_type(tmp.real(),tmp.real());
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      Matp[LLs*s2+s1] = Vp;
 | 
			
		||||
      Matm[LLs*s2+s1] = Vm;
 | 
			
		||||
    }}
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -63,18 +63,23 @@ CayleyFermion5D<Impl>::M5D(const FermionField &psi_i,
 | 
			
		||||
 | 
			
		||||
  // 10 = 3 complex mult + 2 complex add
 | 
			
		||||
  // Flops = 10.0*(Nc*Ns) *Ls*vol (/2 for red black counting)
 | 
			
		||||
  uint64_t nloop = grid->oSites();
 | 
			
		||||
  M5Dcalls++;
 | 
			
		||||
  M5Dtime-=usecond();
 | 
			
		||||
 | 
			
		||||
  uint64_t nloop = grid->oSites()/Ls;
 | 
			
		||||
  accelerator_for(sss,nloop,Simd::Nsimd(),{
 | 
			
		||||
    uint64_t s = sss%Ls;
 | 
			
		||||
    uint64_t ss= sss-s;
 | 
			
		||||
    uint64_t ss= sss*Ls;
 | 
			
		||||
    typedef decltype(coalescedRead(psi[0])) spinor;
 | 
			
		||||
    spinor tmp1, tmp2;
 | 
			
		||||
    uint64_t idx_u = ss+((s+1)%Ls);
 | 
			
		||||
    uint64_t idx_l = ss+((s+Ls-1)%Ls);
 | 
			
		||||
    spProj5m(tmp1,psi(idx_u));
 | 
			
		||||
    spProj5p(tmp2,psi(idx_l));
 | 
			
		||||
    coalescedWrite(chi[ss+s],pdiag[s]*phi(ss+s)+pupper[s]*tmp1+plower[s]*tmp2);
 | 
			
		||||
    for(int s=0;s<Ls;s++){
 | 
			
		||||
      uint64_t idx_u = ss+((s+1)%Ls);
 | 
			
		||||
      uint64_t idx_l = ss+((s+Ls-1)%Ls);
 | 
			
		||||
      spProj5m(tmp1,psi(idx_u));
 | 
			
		||||
      spProj5p(tmp2,psi(idx_l));
 | 
			
		||||
      coalescedWrite(chi[ss+s],pdiag[s]*phi(ss+s)+pupper[s]*tmp1+plower[s]*tmp2);
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
  M5Dtime+=usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>  
 | 
			
		||||
@@ -100,18 +105,23 @@ CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i,
 | 
			
		||||
  int Ls=this->Ls;
 | 
			
		||||
 | 
			
		||||
  // Flops = 6.0*(Nc*Ns) *Ls*vol
 | 
			
		||||
  uint64_t nloop = grid->oSites();
 | 
			
		||||
  M5Dcalls++;
 | 
			
		||||
  M5Dtime-=usecond();
 | 
			
		||||
 | 
			
		||||
  uint64_t nloop = grid->oSites()/Ls;
 | 
			
		||||
  accelerator_for(sss,nloop,Simd::Nsimd(),{
 | 
			
		||||
    uint64_t s = sss%Ls;
 | 
			
		||||
    uint64_t ss= sss-s;
 | 
			
		||||
    uint64_t ss=sss*Ls;
 | 
			
		||||
    typedef decltype(coalescedRead(psi[0])) spinor;
 | 
			
		||||
    spinor tmp1,tmp2;
 | 
			
		||||
    uint64_t idx_u = ss+((s+1)%Ls);
 | 
			
		||||
    uint64_t idx_l = ss+((s+Ls-1)%Ls);
 | 
			
		||||
    spProj5p(tmp1,psi(idx_u));
 | 
			
		||||
    spProj5m(tmp2,psi(idx_l));
 | 
			
		||||
    coalescedWrite(chi[ss+s],pdiag[s]*phi(ss+s)+pupper[s]*tmp1+plower[s]*tmp2);
 | 
			
		||||
    for(int s=0;s<Ls;s++){
 | 
			
		||||
      uint64_t idx_u = ss+((s+1)%Ls);
 | 
			
		||||
      uint64_t idx_l = ss+((s+Ls-1)%Ls);
 | 
			
		||||
      spProj5p(tmp1,psi(idx_u));
 | 
			
		||||
      spProj5m(tmp2,psi(idx_l));
 | 
			
		||||
      coalescedWrite(chi[ss+s],pdiag[s]*phi(ss+s)+pupper[s]*tmp1+plower[s]*tmp2);
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
  M5Dtime+=usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -132,6 +142,8 @@ CayleyFermion5D<Impl>::MooeeInv    (const FermionField &psi_i, FermionField &chi
 | 
			
		||||
  auto pleem = & leem[0];
 | 
			
		||||
  auto pueem = & ueem[0];
 | 
			
		||||
 | 
			
		||||
  MooeeInvCalls++;
 | 
			
		||||
  MooeeInvTime-=usecond();
 | 
			
		||||
  uint64_t nloop = grid->oSites()/Ls;
 | 
			
		||||
  accelerator_for(sss,nloop,Simd::Nsimd(),{
 | 
			
		||||
    uint64_t ss=sss*Ls;
 | 
			
		||||
@@ -169,6 +181,8 @@ CayleyFermion5D<Impl>::MooeeInv    (const FermionField &psi_i, FermionField &chi
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
  MooeeInvTime+=usecond();
 | 
			
		||||
  
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -190,6 +204,10 @@ CayleyFermion5D<Impl>::MooeeInvDag (const FermionField &psi_i, FermionField &chi
 | 
			
		||||
 | 
			
		||||
  assert(psi.Checkerboard() == psi.Checkerboard());
 | 
			
		||||
 | 
			
		||||
  MooeeInvCalls++;
 | 
			
		||||
  MooeeInvTime-=usecond();
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  uint64_t nloop = grid->oSites()/Ls;
 | 
			
		||||
  accelerator_for(sss,nloop,Simd::Nsimd(),{
 | 
			
		||||
    uint64_t ss=sss*Ls;
 | 
			
		||||
@@ -226,6 +244,7 @@ CayleyFermion5D<Impl>::MooeeInvDag (const FermionField &psi_i, FermionField &chi
 | 
			
		||||
      coalescedWrite(chi[ss+s],res);
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
  MooeeInvTime+=usecond();
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -94,6 +94,10 @@ CayleyFermion5D<Impl>::M5D(const FermionField &psi_i,
 | 
			
		||||
      d_p[ss] = diag[s];
 | 
			
		||||
    }}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  M5Dcalls++;
 | 
			
		||||
  M5Dtime-=usecond();
 | 
			
		||||
 | 
			
		||||
  assert(Nc==3);
 | 
			
		||||
 | 
			
		||||
  thread_loop( (int ss=0;ss<grid->oSites();ss+=LLs),{ // adds LLs
 | 
			
		||||
@@ -194,6 +198,7 @@ CayleyFermion5D<Impl>::M5D(const FermionField &psi_i,
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
  });
 | 
			
		||||
  M5Dtime+=usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>  
 | 
			
		||||
@@ -237,6 +242,8 @@ CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i,
 | 
			
		||||
      d_p[ss] = diag[s];
 | 
			
		||||
    }}
 | 
			
		||||
 | 
			
		||||
  M5Dcalls++;
 | 
			
		||||
  M5Dtime-=usecond();
 | 
			
		||||
  thread_loop( (int ss=0;ss<grid->oSites();ss+=LLs),{ // adds LLs
 | 
			
		||||
#if 0
 | 
			
		||||
    alignas(64) SiteHalfSpinor hp;
 | 
			
		||||
@@ -332,6 +339,7 @@ CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i,
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
  });
 | 
			
		||||
  M5Dtime+=usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -805,6 +813,9 @@ CayleyFermion5D<Impl>::MooeeInternal(const FermionField &psi, FermionField &chi,
 | 
			
		||||
  }
 | 
			
		||||
  assert(_Matp->size()==Ls*LLs);
 | 
			
		||||
 | 
			
		||||
  MooeeInvCalls++;
 | 
			
		||||
  MooeeInvTime-=usecond();
 | 
			
		||||
 | 
			
		||||
  if ( switcheroo<Coeff_t>::iscomplex() ) {
 | 
			
		||||
    thread_loop( (auto site=0;site<vol;site++),{
 | 
			
		||||
      MooeeInternalZAsm(psi,chi,LLs,site,*_Matp,*_Matm);
 | 
			
		||||
@@ -814,7 +825,7 @@ CayleyFermion5D<Impl>::MooeeInternal(const FermionField &psi, FermionField &chi,
 | 
			
		||||
      MooeeInternalAsm(psi,chi,LLs,site,*_Matp,*_Matm);
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  MooeeInvTime+=usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -54,6 +54,8 @@ void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi_i, const FermionFi
 | 
			
		||||
  auto pupper = &upper[0];
 | 
			
		||||
  auto plower = &lower[0];
 | 
			
		||||
  // Flops = 6.0*(Nc*Ns) *Ls*vol
 | 
			
		||||
  this->M5Dcalls++;
 | 
			
		||||
  this->M5Dtime -= usecond();
 | 
			
		||||
  
 | 
			
		||||
  auto nloop=grid->oSites()/Ls;
 | 
			
		||||
  accelerator_for(sss,nloop,Simd::Nsimd(),{
 | 
			
		||||
@@ -69,6 +71,7 @@ void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi_i, const FermionFi
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
  this->M5Dtime += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -88,6 +91,8 @@ void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi_i, const Fermio
 | 
			
		||||
  auto plower = &lower[0];
 | 
			
		||||
 | 
			
		||||
  // Flops = 6.0*(Nc*Ns) *Ls*vol
 | 
			
		||||
  this->M5Dcalls++;
 | 
			
		||||
  this->M5Dtime -= usecond();
 | 
			
		||||
 | 
			
		||||
  auto nloop=grid->oSites()/Ls;
 | 
			
		||||
  accelerator_for(sss,nloop,Simd::Nsimd(),{
 | 
			
		||||
@@ -103,6 +108,7 @@ void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi_i, const Fermio
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
  this->M5Dtime += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -121,6 +127,8 @@ void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi_i, FermionFie
 | 
			
		||||
  auto pleem = & this->leem[0];
 | 
			
		||||
  auto pueem = & this->ueem[0];
 | 
			
		||||
 | 
			
		||||
  this->MooeeInvCalls++;
 | 
			
		||||
  this->MooeeInvTime -= usecond();
 | 
			
		||||
  uint64_t nloop=grid->oSites()/Ls;
 | 
			
		||||
  accelerator_for(sss,nloop,Simd::Nsimd(),{
 | 
			
		||||
    uint64_t ss=sss*Ls;
 | 
			
		||||
@@ -156,6 +164,7 @@ void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi_i, FermionFie
 | 
			
		||||
      coalescedWrite(chi[ss+s],res);
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
  this->MooeeInvTime += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -176,6 +185,8 @@ void DomainWallEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi_i, Fermion
 | 
			
		||||
 | 
			
		||||
  assert(psi.Checkerboard() == psi.Checkerboard());
 | 
			
		||||
 | 
			
		||||
  this->MooeeInvCalls++;
 | 
			
		||||
  this->MooeeInvTime -= usecond();
 | 
			
		||||
  auto nloop = grid->oSites()/Ls;
 | 
			
		||||
  accelerator_for(sss,nloop,Simd::Nsimd(),{
 | 
			
		||||
    uint64_t ss=sss*Ls;
 | 
			
		||||
@@ -212,6 +223,7 @@ void DomainWallEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi_i, Fermion
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
  this->MooeeInvTime += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -298,33 +298,45 @@ void ImprovedStaggeredFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl &
 | 
			
		||||
  int LLs = in.Grid()->_rdimensions[0];
 | 
			
		||||
  int len =  U.Grid()->oSites();
 | 
			
		||||
 | 
			
		||||
  DhopFaceTime-=usecond();
 | 
			
		||||
  st.Prepare();
 | 
			
		||||
  st.HaloGather(in,compressor);
 | 
			
		||||
  DhopFaceTime+=usecond();
 | 
			
		||||
 | 
			
		||||
  DhopCommTime -=usecond();
 | 
			
		||||
  std::vector<std::vector<CommsRequest_t> > requests;
 | 
			
		||||
  st.CommunicateBegin(requests);
 | 
			
		||||
 | 
			
		||||
  //  st.HaloExchangeOptGather(in,compressor); // Wilson compressor
 | 
			
		||||
  DhopFaceTime-=usecond();
 | 
			
		||||
  st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
 | 
			
		||||
  DhopFaceTime+=usecond();
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Remove explicit thread mapping introduced for OPA reasons.
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  DhopComputeTime-=usecond();
 | 
			
		||||
  {
 | 
			
		||||
    int interior=1;
 | 
			
		||||
    int exterior=0;
 | 
			
		||||
    Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
 | 
			
		||||
  }
 | 
			
		||||
  DhopComputeTime+=usecond();
 | 
			
		||||
 | 
			
		||||
  DhopFaceTime-=usecond();
 | 
			
		||||
  st.CommsMerge(compressor);
 | 
			
		||||
  DhopFaceTime+=usecond();
 | 
			
		||||
 | 
			
		||||
  st.CommunicateComplete(requests);
 | 
			
		||||
  DhopCommTime +=usecond();
 | 
			
		||||
 | 
			
		||||
  DhopComputeTime2-=usecond();
 | 
			
		||||
  {
 | 
			
		||||
    int interior=0;
 | 
			
		||||
    int exterior=1;
 | 
			
		||||
    Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
 | 
			
		||||
  }
 | 
			
		||||
  DhopComputeTime2+=usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -335,14 +347,22 @@ void ImprovedStaggeredFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st,
 | 
			
		||||
  Compressor compressor;
 | 
			
		||||
  int LLs = in.Grid()->_rdimensions[0];
 | 
			
		||||
 | 
			
		||||
 //double t1=usecond();
 | 
			
		||||
  DhopTotalTime -= usecond();
 | 
			
		||||
  DhopCommTime -= usecond();
 | 
			
		||||
  st.HaloExchange(in,compressor);
 | 
			
		||||
  DhopCommTime += usecond();
 | 
			
		||||
  
 | 
			
		||||
  DhopComputeTime -= usecond();
 | 
			
		||||
  // Dhop takes the 4d grid from U, and makes a 5d index for fermion
 | 
			
		||||
  {
 | 
			
		||||
    int interior=1;
 | 
			
		||||
    int exterior=1;
 | 
			
		||||
    Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
 | 
			
		||||
  }
 | 
			
		||||
  DhopComputeTime += usecond();
 | 
			
		||||
  DhopTotalTime   += usecond();
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
/*CHANGE END*/
 | 
			
		||||
 | 
			
		||||
@@ -351,6 +371,7 @@ void ImprovedStaggeredFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st,
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void ImprovedStaggeredFermion5D<Impl>::DhopOE(const FermionField &in, FermionField &out,int dag)
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls+=1;
 | 
			
		||||
  conformable(in.Grid(),FermionRedBlackGrid());    // verifies half grid
 | 
			
		||||
  conformable(in.Grid(),out.Grid()); // drops the cb check
 | 
			
		||||
 | 
			
		||||
@@ -362,6 +383,7 @@ void ImprovedStaggeredFermion5D<Impl>::DhopOE(const FermionField &in, FermionFie
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void ImprovedStaggeredFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls+=1;
 | 
			
		||||
  conformable(in.Grid(),FermionRedBlackGrid());    // verifies half grid
 | 
			
		||||
  conformable(in.Grid(),out.Grid()); // drops the cb check
 | 
			
		||||
 | 
			
		||||
@@ -373,6 +395,7 @@ void ImprovedStaggeredFermion5D<Impl>::DhopEO(const FermionField &in, FermionFie
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void ImprovedStaggeredFermion5D<Impl>::Dhop(const FermionField &in, FermionField &out,int dag)
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls+=2;
 | 
			
		||||
  conformable(in.Grid(),FermionGrid()); // verifies full grid
 | 
			
		||||
  conformable(in.Grid(),out.Grid());
 | 
			
		||||
 | 
			
		||||
@@ -381,6 +404,58 @@ void ImprovedStaggeredFermion5D<Impl>::Dhop(const FermionField &in, FermionField
 | 
			
		||||
  DhopInternal(Stencil,Lebesgue,Umu,UUUmu,in,out,dag);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void ImprovedStaggeredFermion5D<Impl>::Report(void) 
 | 
			
		||||
{
 | 
			
		||||
  Coordinate latt = GridDefaultLatt();          
 | 
			
		||||
  RealD volume = Ls;  for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
 | 
			
		||||
  RealD NP = _FourDimGrid->_Nprocessors;
 | 
			
		||||
  RealD NN = _FourDimGrid->NodeCount();
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "#### Dhop calls report " << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "ImprovedStaggeredFermion5D Number of DhopEO Calls   : " 
 | 
			
		||||
	    << DhopCalls   << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "ImprovedStaggeredFermion5D TotalTime   /Calls       : " 
 | 
			
		||||
	    << DhopTotalTime   / DhopCalls << " us" << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "ImprovedStaggeredFermion5D CommTime    /Calls       : " 
 | 
			
		||||
	    << DhopCommTime    / DhopCalls << " us" << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "ImprovedStaggeredFermion5D ComputeTime/Calls        : " 
 | 
			
		||||
	    << DhopComputeTime / DhopCalls << " us" << std::endl;
 | 
			
		||||
 | 
			
		||||
  // Average the compute time
 | 
			
		||||
  _FourDimGrid->GlobalSum(DhopComputeTime);
 | 
			
		||||
  DhopComputeTime/=NP;
 | 
			
		||||
 | 
			
		||||
  RealD mflops = 1154*volume*DhopCalls/DhopComputeTime/2; // 2 for red black counting
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call                : " << mflops << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call per rank       : " << mflops/NP << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call per node       : " << mflops/NN << std::endl;
 | 
			
		||||
  
 | 
			
		||||
  RealD Fullmflops = 1154*volume*DhopCalls/(DhopTotalTime)/2; // 2 for red black counting
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call (full)         : " << Fullmflops << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call per rank (full): " << Fullmflops/NP << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NN << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "ImprovedStaggeredFermion5D Stencil"    <<std::endl;  Stencil.Report();
 | 
			
		||||
  std::cout << GridLogMessage << "ImprovedStaggeredFermion5D StencilEven"<<std::endl;  StencilEven.Report();
 | 
			
		||||
  std::cout << GridLogMessage << "ImprovedStaggeredFermion5D StencilOdd" <<std::endl;  StencilOdd.Report();
 | 
			
		||||
}
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void ImprovedStaggeredFermion5D<Impl>::ZeroCounters(void) 
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls       = 0;
 | 
			
		||||
  DhopTotalTime    = 0;
 | 
			
		||||
  DhopCommTime    = 0;
 | 
			
		||||
  DhopComputeTime = 0;
 | 
			
		||||
  DhopFaceTime    = 0;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  Stencil.ZeroCounters();
 | 
			
		||||
  StencilEven.ZeroCounters();
 | 
			
		||||
  StencilOdd.ZeroCounters();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Implement the general interface. Here we use SAME mass on all slices
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -334,6 +334,7 @@ void ImprovedStaggeredFermion<Impl>::DhopDerivEO(GaugeField &mat, const FermionF
 | 
			
		||||
template <class Impl>
 | 
			
		||||
void ImprovedStaggeredFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int dag) 
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls+=2;
 | 
			
		||||
  conformable(in.Grid(), _grid);  // verifies full grid
 | 
			
		||||
  conformable(in.Grid(), out.Grid());
 | 
			
		||||
 | 
			
		||||
@@ -345,6 +346,7 @@ void ImprovedStaggeredFermion<Impl>::Dhop(const FermionField &in, FermionField &
 | 
			
		||||
template <class Impl>
 | 
			
		||||
void ImprovedStaggeredFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int dag) 
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls+=1;
 | 
			
		||||
  conformable(in.Grid(), _cbgrid);    // verifies half grid
 | 
			
		||||
  conformable(in.Grid(), out.Grid());  // drops the cb check
 | 
			
		||||
 | 
			
		||||
@@ -357,6 +359,7 @@ void ImprovedStaggeredFermion<Impl>::DhopOE(const FermionField &in, FermionField
 | 
			
		||||
template <class Impl>
 | 
			
		||||
void ImprovedStaggeredFermion<Impl>::DhopEO(const FermionField &in, FermionField &out, int dag) 
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls+=1;
 | 
			
		||||
  conformable(in.Grid(), _cbgrid);    // verifies half grid
 | 
			
		||||
  conformable(in.Grid(), out.Grid());  // drops the cb check
 | 
			
		||||
 | 
			
		||||
@@ -415,33 +418,47 @@ void ImprovedStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st
 | 
			
		||||
  Compressor compressor; 
 | 
			
		||||
  int len =  U.Grid()->oSites();
 | 
			
		||||
 | 
			
		||||
  DhopTotalTime   -= usecond();
 | 
			
		||||
 | 
			
		||||
  DhopFaceTime    -= usecond();
 | 
			
		||||
  st.Prepare();
 | 
			
		||||
  st.HaloGather(in,compressor);
 | 
			
		||||
  DhopFaceTime    += usecond();
 | 
			
		||||
 | 
			
		||||
  DhopCommTime -=usecond();
 | 
			
		||||
  std::vector<std::vector<CommsRequest_t> > requests;
 | 
			
		||||
  st.CommunicateBegin(requests);
 | 
			
		||||
 | 
			
		||||
  DhopFaceTime-=usecond();
 | 
			
		||||
  st.CommsMergeSHM(compressor);
 | 
			
		||||
  DhopFaceTime+= usecond();
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Removed explicit thread comms
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  DhopComputeTime    -= usecond();
 | 
			
		||||
  {
 | 
			
		||||
    int interior=1;
 | 
			
		||||
    int exterior=0;
 | 
			
		||||
    Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
 | 
			
		||||
  }
 | 
			
		||||
  DhopComputeTime    += usecond();
 | 
			
		||||
 | 
			
		||||
  st.CommunicateComplete(requests);
 | 
			
		||||
  DhopCommTime +=usecond();
 | 
			
		||||
 | 
			
		||||
  // First to enter, last to leave timing
 | 
			
		||||
  DhopFaceTime    -= usecond();
 | 
			
		||||
  st.CommsMerge(compressor);
 | 
			
		||||
  DhopFaceTime    -= usecond();
 | 
			
		||||
 | 
			
		||||
  DhopComputeTime2    -= usecond();
 | 
			
		||||
  {
 | 
			
		||||
    int interior=0;
 | 
			
		||||
    int exterior=1;
 | 
			
		||||
    Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
 | 
			
		||||
  }
 | 
			
		||||
  DhopComputeTime2    += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -454,16 +471,78 @@ void ImprovedStaggeredFermion<Impl>::DhopInternalSerialComms(StencilImpl &st, Le
 | 
			
		||||
{
 | 
			
		||||
  assert((dag == DaggerNo) || (dag == DaggerYes));
 | 
			
		||||
 | 
			
		||||
  DhopTotalTime   -= usecond();
 | 
			
		||||
 | 
			
		||||
  DhopCommTime    -= usecond();
 | 
			
		||||
  Compressor compressor;
 | 
			
		||||
  st.HaloExchange(in, compressor);
 | 
			
		||||
  DhopCommTime    += usecond();
 | 
			
		||||
 | 
			
		||||
  DhopComputeTime -= usecond();
 | 
			
		||||
  {
 | 
			
		||||
    int interior=1;
 | 
			
		||||
    int exterior=1;
 | 
			
		||||
    Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
 | 
			
		||||
  }
 | 
			
		||||
  DhopComputeTime += usecond();
 | 
			
		||||
  DhopTotalTime   += usecond();
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Reporting
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void ImprovedStaggeredFermion<Impl>::Report(void) 
 | 
			
		||||
{
 | 
			
		||||
  Coordinate latt = _grid->GlobalDimensions();
 | 
			
		||||
  RealD volume = 1;  for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
 | 
			
		||||
  RealD NP = _grid->_Nprocessors;
 | 
			
		||||
  RealD NN = _grid->NodeCount();
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "#### Dhop calls report " << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "ImprovedStaggeredFermion Number of DhopEO Calls   : " 
 | 
			
		||||
	    << DhopCalls   << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "ImprovedStaggeredFermion TotalTime   /Calls       : " 
 | 
			
		||||
	    << DhopTotalTime   / DhopCalls << " us" << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "ImprovedStaggeredFermion CommTime    /Calls       : " 
 | 
			
		||||
	    << DhopCommTime    / DhopCalls << " us" << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "ImprovedStaggeredFermion ComputeTime/Calls        : " 
 | 
			
		||||
	    << DhopComputeTime / DhopCalls << " us" << std::endl;
 | 
			
		||||
 | 
			
		||||
  // Average the compute time
 | 
			
		||||
  _grid->GlobalSum(DhopComputeTime);
 | 
			
		||||
  DhopComputeTime/=NP;
 | 
			
		||||
 | 
			
		||||
  RealD mflops = 1154*volume*DhopCalls/DhopComputeTime/2; // 2 for red black counting
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call                : " << mflops << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call per rank       : " << mflops/NP << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call per node       : " << mflops/NN << std::endl;
 | 
			
		||||
  
 | 
			
		||||
  RealD Fullmflops = 1154*volume*DhopCalls/(DhopTotalTime)/2; // 2 for red black counting
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call (full)         : " << Fullmflops << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call per rank (full): " << Fullmflops/NP << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NN << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "ImprovedStaggeredFermion Stencil"    <<std::endl;  Stencil.Report();
 | 
			
		||||
  std::cout << GridLogMessage << "ImprovedStaggeredFermion StencilEven"<<std::endl;  StencilEven.Report();
 | 
			
		||||
  std::cout << GridLogMessage << "ImprovedStaggeredFermion StencilOdd" <<std::endl;  StencilOdd.Report();
 | 
			
		||||
}
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void ImprovedStaggeredFermion<Impl>::ZeroCounters(void) 
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls       = 0;
 | 
			
		||||
  DhopTotalTime   = 0;
 | 
			
		||||
  DhopCommTime    = 0;
 | 
			
		||||
  DhopComputeTime = 0;
 | 
			
		||||
  DhopFaceTime    = 0;
 | 
			
		||||
 | 
			
		||||
  Stencil.ZeroCounters();
 | 
			
		||||
  StencilEven.ZeroCounters();
 | 
			
		||||
  StencilOdd.ZeroCounters();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////// 
 | 
			
		||||
// Conserved current - not yet implemented.
 | 
			
		||||
////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -55,6 +55,9 @@ void MobiusEOFAFermion<Impl>::M5D(const FermionField &psi_i, const FermionField
 | 
			
		||||
  auto plower = &lower[0];
 | 
			
		||||
 | 
			
		||||
  // Flops = 6.0*(Nc*Ns) *Ls*vol
 | 
			
		||||
  this->M5Dcalls++;
 | 
			
		||||
  this->M5Dtime -= usecond();
 | 
			
		||||
 | 
			
		||||
  int nloop = grid->oSites()/Ls;
 | 
			
		||||
  accelerator_for(sss,nloop,Simd::Nsimd(),{
 | 
			
		||||
    uint64_t ss = sss*Ls;
 | 
			
		||||
@@ -70,6 +73,7 @@ void MobiusEOFAFermion<Impl>::M5D(const FermionField &psi_i, const FermionField
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
  this->M5Dtime += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -95,6 +99,9 @@ void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField &psi_i, const Fermion
 | 
			
		||||
  auto pshift_coeffs = &shift_coeffs[0];
 | 
			
		||||
 | 
			
		||||
  // Flops = 6.0*(Nc*Ns) *Ls*vol
 | 
			
		||||
  this->M5Dcalls++;
 | 
			
		||||
  this->M5Dtime -= usecond();
 | 
			
		||||
 | 
			
		||||
  int nloop = grid->oSites()/Ls;
 | 
			
		||||
  accelerator_for(sss,nloop,Simd::Nsimd(),{
 | 
			
		||||
    uint64_t ss = sss*Ls;
 | 
			
		||||
@@ -115,6 +122,7 @@ void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField &psi_i, const Fermion
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
  this->M5Dtime += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -135,6 +143,9 @@ void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField &psi_i, const FermionFie
 | 
			
		||||
  auto plower = &lower[0];
 | 
			
		||||
 | 
			
		||||
  // Flops = 6.0*(Nc*Ns) *Ls*vol
 | 
			
		||||
  this->M5Dcalls++;
 | 
			
		||||
  this->M5Dtime -= usecond();
 | 
			
		||||
 | 
			
		||||
  int nloop = grid->oSites()/Ls;
 | 
			
		||||
  accelerator_for(sss,nloop,Simd::Nsimd(), {
 | 
			
		||||
    uint64_t ss = sss*Ls;
 | 
			
		||||
@@ -150,6 +161,8 @@ void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField &psi_i, const FermionFie
 | 
			
		||||
      coalescedWrite(chi[ss+s], pdiag[s]*phi(ss+s) + pupper[s]*tmp1 + plower[s]*tmp2);
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
  this->M5Dtime += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -173,6 +186,9 @@ void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField &psi_i, const Ferm
 | 
			
		||||
  auto pshift_coeffs = &shift_coeffs[0];
 | 
			
		||||
 | 
			
		||||
  // Flops = 6.0*(Nc*Ns) *Ls*vol
 | 
			
		||||
  this->M5Dcalls++;
 | 
			
		||||
  this->M5Dtime -= usecond();
 | 
			
		||||
 | 
			
		||||
  auto pm = this->pm;
 | 
			
		||||
 | 
			
		||||
  int nloop = grid->oSites()/Ls;
 | 
			
		||||
@@ -201,6 +217,7 @@ void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField &psi_i, const Ferm
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
  this->M5Dtime += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -220,6 +237,9 @@ void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField &psi_i, FermionField &
 | 
			
		||||
 | 
			
		||||
  if(this->shift != 0.0){ MooeeInv_shift(psi_i,chi_i); return; }
 | 
			
		||||
 | 
			
		||||
  this->MooeeInvCalls++;
 | 
			
		||||
  this->MooeeInvTime -= usecond();
 | 
			
		||||
 | 
			
		||||
  int nloop = grid->oSites()/Ls;
 | 
			
		||||
  accelerator_for(sss,nloop,Simd::Nsimd(),{
 | 
			
		||||
    uint64_t ss=sss*Ls;
 | 
			
		||||
@@ -257,6 +277,7 @@ void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField &psi_i, FermionField &
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
   
 | 
			
		||||
  this->MooeeInvTime += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -276,6 +297,8 @@ void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField &psi_i, FermionF
 | 
			
		||||
  auto pueem= & this->ueem[0];
 | 
			
		||||
  auto pMooeeInv_shift_lc   = &MooeeInv_shift_lc[0];
 | 
			
		||||
  auto pMooeeInv_shift_norm = &MooeeInv_shift_norm[0];
 | 
			
		||||
  this->MooeeInvCalls++;
 | 
			
		||||
  this->MooeeInvTime -= usecond();
 | 
			
		||||
 | 
			
		||||
  int nloop = grid->oSites()/Ls;
 | 
			
		||||
  accelerator_for(sss,nloop,Simd::Nsimd(),{
 | 
			
		||||
@@ -320,6 +343,7 @@ void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField &psi_i, FermionF
 | 
			
		||||
      }
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
  this->MooeeInvTime += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -339,6 +363,9 @@ void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField &psi_i, FermionFiel
 | 
			
		||||
  auto pleem= & this->leem[0];
 | 
			
		||||
  auto pueem= & this->ueem[0];
 | 
			
		||||
 | 
			
		||||
  this->MooeeInvCalls++;
 | 
			
		||||
  this->MooeeInvTime -= usecond();
 | 
			
		||||
 | 
			
		||||
  int nloop = grid->oSites()/Ls;
 | 
			
		||||
  accelerator_for(sss,nloop,Simd::Nsimd(),{
 | 
			
		||||
    uint64_t ss=sss*Ls;
 | 
			
		||||
@@ -375,6 +402,7 @@ void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField &psi_i, FermionFiel
 | 
			
		||||
      coalescedWrite(chi[ss+s],res);
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
  this->MooeeInvTime += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -395,6 +423,9 @@ void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField &psi_i, Fermi
 | 
			
		||||
  auto pMooeeInvDag_shift_lc   = &MooeeInvDag_shift_lc[0];
 | 
			
		||||
  auto pMooeeInvDag_shift_norm = &MooeeInvDag_shift_norm[0];
 | 
			
		||||
 | 
			
		||||
  this->MooeeInvCalls++;
 | 
			
		||||
  this->MooeeInvTime -= usecond();
 | 
			
		||||
 | 
			
		||||
  int nloop = grid->oSites()/Ls;
 | 
			
		||||
  accelerator_for(sss,nloop,Simd::Nsimd(),{
 | 
			
		||||
      uint64_t ss=sss*Ls;
 | 
			
		||||
@@ -438,6 +469,7 @@ void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField &psi_i, Fermi
 | 
			
		||||
      }
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
  this->MooeeInvTime += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -263,6 +263,7 @@ void NaiveStaggeredFermion<Impl>::DhopDerivEO(GaugeField &mat, const FermionFiel
 | 
			
		||||
template <class Impl>
 | 
			
		||||
void NaiveStaggeredFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int dag) 
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls+=2;
 | 
			
		||||
  conformable(in.Grid(), _grid);  // verifies full grid
 | 
			
		||||
  conformable(in.Grid(), out.Grid());
 | 
			
		||||
 | 
			
		||||
@@ -274,6 +275,7 @@ void NaiveStaggeredFermion<Impl>::Dhop(const FermionField &in, FermionField &out
 | 
			
		||||
template <class Impl>
 | 
			
		||||
void NaiveStaggeredFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int dag) 
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls+=1;
 | 
			
		||||
  conformable(in.Grid(), _cbgrid);    // verifies half grid
 | 
			
		||||
  conformable(in.Grid(), out.Grid());  // drops the cb check
 | 
			
		||||
 | 
			
		||||
@@ -286,6 +288,7 @@ void NaiveStaggeredFermion<Impl>::DhopOE(const FermionField &in, FermionField &o
 | 
			
		||||
template <class Impl>
 | 
			
		||||
void NaiveStaggeredFermion<Impl>::DhopEO(const FermionField &in, FermionField &out, int dag) 
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls+=1;
 | 
			
		||||
  conformable(in.Grid(), _cbgrid);    // verifies half grid
 | 
			
		||||
  conformable(in.Grid(), out.Grid());  // drops the cb check
 | 
			
		||||
 | 
			
		||||
@@ -342,33 +345,47 @@ void NaiveStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, L
 | 
			
		||||
  Compressor compressor; 
 | 
			
		||||
  int len =  U.Grid()->oSites();
 | 
			
		||||
 | 
			
		||||
  DhopTotalTime   -= usecond();
 | 
			
		||||
 | 
			
		||||
  DhopFaceTime    -= usecond();
 | 
			
		||||
  st.Prepare();
 | 
			
		||||
  st.HaloGather(in,compressor);
 | 
			
		||||
  DhopFaceTime    += usecond();
 | 
			
		||||
 | 
			
		||||
  DhopCommTime -=usecond();
 | 
			
		||||
  std::vector<std::vector<CommsRequest_t> > requests;
 | 
			
		||||
  st.CommunicateBegin(requests);
 | 
			
		||||
 | 
			
		||||
  DhopFaceTime-=usecond();
 | 
			
		||||
  st.CommsMergeSHM(compressor);
 | 
			
		||||
  DhopFaceTime+= usecond();
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Removed explicit thread comms
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  DhopComputeTime    -= usecond();
 | 
			
		||||
  {
 | 
			
		||||
    int interior=1;
 | 
			
		||||
    int exterior=0;
 | 
			
		||||
    Kernels::DhopNaive(st,lo,U,in,out,dag,interior,exterior);
 | 
			
		||||
  }
 | 
			
		||||
  DhopComputeTime    += usecond();
 | 
			
		||||
 | 
			
		||||
  st.CommunicateComplete(requests);
 | 
			
		||||
  DhopCommTime +=usecond();
 | 
			
		||||
 | 
			
		||||
  // First to enter, last to leave timing
 | 
			
		||||
  DhopFaceTime    -= usecond();
 | 
			
		||||
  st.CommsMerge(compressor);
 | 
			
		||||
  DhopFaceTime    -= usecond();
 | 
			
		||||
 | 
			
		||||
  DhopComputeTime2    -= usecond();
 | 
			
		||||
  {
 | 
			
		||||
    int interior=0;
 | 
			
		||||
    int exterior=1;
 | 
			
		||||
    Kernels::DhopNaive(st,lo,U,in,out,dag,interior,exterior);
 | 
			
		||||
  }
 | 
			
		||||
  DhopComputeTime2    += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class Impl>
 | 
			
		||||
@@ -379,16 +396,78 @@ void NaiveStaggeredFermion<Impl>::DhopInternalSerialComms(StencilImpl &st, Lebes
 | 
			
		||||
{
 | 
			
		||||
  assert((dag == DaggerNo) || (dag == DaggerYes));
 | 
			
		||||
 | 
			
		||||
  DhopTotalTime   -= usecond();
 | 
			
		||||
 | 
			
		||||
  DhopCommTime    -= usecond();
 | 
			
		||||
  Compressor compressor;
 | 
			
		||||
  st.HaloExchange(in, compressor);
 | 
			
		||||
  DhopCommTime    += usecond();
 | 
			
		||||
 | 
			
		||||
  DhopComputeTime -= usecond();
 | 
			
		||||
  {
 | 
			
		||||
    int interior=1;
 | 
			
		||||
    int exterior=1;
 | 
			
		||||
    Kernels::DhopNaive(st,lo,U,in,out,dag,interior,exterior);
 | 
			
		||||
  }
 | 
			
		||||
  DhopComputeTime += usecond();
 | 
			
		||||
  DhopTotalTime   += usecond();
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Reporting
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void NaiveStaggeredFermion<Impl>::Report(void) 
 | 
			
		||||
{
 | 
			
		||||
  Coordinate latt = _grid->GlobalDimensions();
 | 
			
		||||
  RealD volume = 1;  for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
 | 
			
		||||
  RealD NP = _grid->_Nprocessors;
 | 
			
		||||
  RealD NN = _grid->NodeCount();
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "#### Dhop calls report " << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "NaiveStaggeredFermion Number of DhopEO Calls   : " 
 | 
			
		||||
	    << DhopCalls   << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "NaiveStaggeredFermion TotalTime   /Calls       : " 
 | 
			
		||||
	    << DhopTotalTime   / DhopCalls << " us" << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "NaiveStaggeredFermion CommTime    /Calls       : " 
 | 
			
		||||
	    << DhopCommTime    / DhopCalls << " us" << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "NaiveStaggeredFermion ComputeTime/Calls        : " 
 | 
			
		||||
	    << DhopComputeTime / DhopCalls << " us" << std::endl;
 | 
			
		||||
 | 
			
		||||
  // Average the compute time
 | 
			
		||||
  _grid->GlobalSum(DhopComputeTime);
 | 
			
		||||
  DhopComputeTime/=NP;
 | 
			
		||||
 | 
			
		||||
  RealD mflops = 1154*volume*DhopCalls/DhopComputeTime/2; // 2 for red black counting
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call                : " << mflops << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call per rank       : " << mflops/NP << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call per node       : " << mflops/NN << std::endl;
 | 
			
		||||
  
 | 
			
		||||
  RealD Fullmflops = 1154*volume*DhopCalls/(DhopTotalTime)/2; // 2 for red black counting
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call (full)         : " << Fullmflops << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call per rank (full): " << Fullmflops/NP << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NN << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "NaiveStaggeredFermion Stencil"    <<std::endl;  Stencil.Report();
 | 
			
		||||
  std::cout << GridLogMessage << "NaiveStaggeredFermion StencilEven"<<std::endl;  StencilEven.Report();
 | 
			
		||||
  std::cout << GridLogMessage << "NaiveStaggeredFermion StencilOdd" <<std::endl;  StencilOdd.Report();
 | 
			
		||||
}
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void NaiveStaggeredFermion<Impl>::ZeroCounters(void) 
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls       = 0;
 | 
			
		||||
  DhopTotalTime   = 0;
 | 
			
		||||
  DhopCommTime    = 0;
 | 
			
		||||
  DhopComputeTime = 0;
 | 
			
		||||
  DhopFaceTime    = 0;
 | 
			
		||||
 | 
			
		||||
  Stencil.ZeroCounters();
 | 
			
		||||
  StencilEven.ZeroCounters();
 | 
			
		||||
  StencilOdd.ZeroCounters();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////// 
 | 
			
		||||
// Conserved current - not yet implemented.
 | 
			
		||||
////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -60,13 +60,8 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
 | 
			
		||||
  UmuOdd (_FourDimRedBlackGrid),
 | 
			
		||||
  Lebesgue(_FourDimGrid),
 | 
			
		||||
  LebesgueEvenOdd(_FourDimRedBlackGrid),
 | 
			
		||||
  _tmp(&FiveDimRedBlackGrid),
 | 
			
		||||
  Dirichlet(0)
 | 
			
		||||
  _tmp(&FiveDimRedBlackGrid)
 | 
			
		||||
{
 | 
			
		||||
  Stencil.lo     = &Lebesgue;
 | 
			
		||||
  StencilEven.lo = &LebesgueEvenOdd;
 | 
			
		||||
  StencilOdd.lo  = &LebesgueEvenOdd;
 | 
			
		||||
  
 | 
			
		||||
  // some assertions
 | 
			
		||||
  assert(FiveDimGrid._ndimension==5);
 | 
			
		||||
  assert(FourDimGrid._ndimension==4);
 | 
			
		||||
@@ -96,19 +91,6 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
 | 
			
		||||
    assert(FourDimRedBlackGrid._simd_layout[d]  ==FourDimGrid._simd_layout[d]);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if ( p.dirichlet.size() == Nd+1) {
 | 
			
		||||
    Coordinate block = p.dirichlet;
 | 
			
		||||
    if ( block[0] || block[1] || block[2] || block[3] || block[4] ){
 | 
			
		||||
      Dirichlet = 1;
 | 
			
		||||
      std::cout << GridLogMessage << " WilsonFermion: non-trivial Dirichlet condition "<< block << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << " WilsonFermion: partial Dirichlet "<< p.partialDirichlet << std::endl;
 | 
			
		||||
      Block = block;
 | 
			
		||||
    }
 | 
			
		||||
  } else {
 | 
			
		||||
    Coordinate block(Nd+1,0);
 | 
			
		||||
    Block = block;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if (Impl::LsVectorised) { 
 | 
			
		||||
 | 
			
		||||
    int nsimd = Simd::Nsimd();
 | 
			
		||||
@@ -143,38 +125,99 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
 | 
			
		||||
  StencilEven.BuildSurfaceList(LLs,vol4);
 | 
			
		||||
   StencilOdd.BuildSurfaceList(LLs,vol4);
 | 
			
		||||
 | 
			
		||||
   //  std::cout << GridLogMessage << " SurfaceLists "<< Stencil.surface_list.size()
 | 
			
		||||
   //                       <<" " << StencilEven.surface_list.size()<<std::endl;
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
     
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void WilsonFermion5D<Impl>::Report(void)
 | 
			
		||||
{
 | 
			
		||||
  RealD NP     = _FourDimGrid->_Nprocessors;
 | 
			
		||||
  RealD NN     = _FourDimGrid->NodeCount();
 | 
			
		||||
  RealD volume = Ls;  
 | 
			
		||||
  Coordinate latt = _FourDimGrid->GlobalDimensions();
 | 
			
		||||
  for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
 | 
			
		||||
 | 
			
		||||
  if ( DhopCalls > 0 ) {
 | 
			
		||||
    std::cout << GridLogMessage << "#### Dhop calls report " << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D Number of DhopEO Calls   : " << DhopCalls   << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D TotalTime   /Calls        : " << DhopTotalTime   / DhopCalls << " us" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D CommTime    /Calls        : " << DhopCommTime    / DhopCalls << " us" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D FaceTime    /Calls        : " << DhopFaceTime    / DhopCalls << " us" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D ComputeTime1/Calls        : " << DhopComputeTime / DhopCalls << " us" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D ComputeTime2/Calls        : " << DhopComputeTime2/ DhopCalls << " us" << std::endl;
 | 
			
		||||
 | 
			
		||||
    // Average the compute time
 | 
			
		||||
    _FourDimGrid->GlobalSum(DhopComputeTime);
 | 
			
		||||
    DhopComputeTime/=NP;
 | 
			
		||||
    RealD mflops = 1344*volume*DhopCalls/DhopComputeTime/2; // 2 for red black counting
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call                : " << mflops << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call per rank       : " << mflops/NP << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call per node       : " << mflops/NN << std::endl;
 | 
			
		||||
 | 
			
		||||
    RealD Fullmflops = 1344*volume*DhopCalls/(DhopTotalTime)/2; // 2 for red black counting
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call (full)         : " << Fullmflops << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call per rank (full): " << Fullmflops/NP << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NN << std::endl;
 | 
			
		||||
 | 
			
		||||
   }
 | 
			
		||||
 | 
			
		||||
  if ( DerivCalls > 0 ) {
 | 
			
		||||
    std::cout << GridLogMessage << "#### Deriv calls report "<< std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D Number of Deriv Calls    : " <<DerivCalls <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D CommTime/Calls           : " <<DerivCommTime/DerivCalls<<" us" <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D ComputeTime/Calls        : " <<DerivComputeTime/DerivCalls<<" us" <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D Dhop ComputeTime/Calls   : " <<DerivDhopComputeTime/DerivCalls<<" us" <<std::endl;
 | 
			
		||||
    
 | 
			
		||||
    RealD mflops = 144*volume*DerivCalls/DerivDhopComputeTime;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call                : " << mflops << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call per node       : " << mflops/NP << std::endl;
 | 
			
		||||
 | 
			
		||||
    RealD Fullmflops = 144*volume*DerivCalls/(DerivDhopComputeTime+DerivCommTime)/2; // 2 for red black counting
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call (full)         : " << Fullmflops << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NP << std::endl;  }
 | 
			
		||||
 | 
			
		||||
  if (DerivCalls > 0 || DhopCalls > 0){
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D Stencil"    <<std::endl;  Stencil.Report();
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D StencilEven"<<std::endl;  StencilEven.Report();
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D StencilOdd" <<std::endl;  StencilOdd.Report();
 | 
			
		||||
  }
 | 
			
		||||
  if ( DhopCalls > 0){
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D Stencil     Reporti()"    <<std::endl;  Stencil.Reporti(DhopCalls);
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D StencilEven Reporti()"<<std::endl;  StencilEven.Reporti(DhopCalls);
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D StencilOdd  Reporti()" <<std::endl;  StencilOdd.Reporti(DhopCalls);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void WilsonFermion5D<Impl>::ZeroCounters(void) {
 | 
			
		||||
  DhopCalls       = 0;
 | 
			
		||||
  DhopCommTime    = 0;
 | 
			
		||||
  DhopComputeTime = 0;
 | 
			
		||||
  DhopComputeTime2= 0;
 | 
			
		||||
  DhopFaceTime    = 0;
 | 
			
		||||
  DhopTotalTime   = 0;
 | 
			
		||||
 | 
			
		||||
  DerivCalls       = 0;
 | 
			
		||||
  DerivCommTime    = 0;
 | 
			
		||||
  DerivComputeTime = 0;
 | 
			
		||||
  DerivDhopComputeTime = 0;
 | 
			
		||||
 | 
			
		||||
  Stencil.ZeroCounters();
 | 
			
		||||
  StencilEven.ZeroCounters();
 | 
			
		||||
  StencilOdd.ZeroCounters();
 | 
			
		||||
  Stencil.ZeroCountersi();
 | 
			
		||||
  StencilEven.ZeroCountersi();
 | 
			
		||||
  StencilOdd.ZeroCountersi();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void WilsonFermion5D<Impl>::ImportGauge(const GaugeField &_Umu)
 | 
			
		||||
{
 | 
			
		||||
  GaugeField HUmu(_Umu.Grid());
 | 
			
		||||
  HUmu = _Umu*(-0.5);
 | 
			
		||||
  if ( Dirichlet ) {
 | 
			
		||||
 | 
			
		||||
    if ( this->Params.partialDirichlet ) {
 | 
			
		||||
      std::cout << GridLogMessage << " partialDirichlet BCs " <<Block<<std::endl;
 | 
			
		||||
    } else {
 | 
			
		||||
      std::cout << GridLogMessage << " FULL Dirichlet BCs " <<Block<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    std:: cout << GridLogMessage << "Checking block size multiple of rank boundaries for Dirichlet"<<std::endl;
 | 
			
		||||
    for(int d=0;d<Nd;d++) {
 | 
			
		||||
      int GaugeBlock = Block[d+1];
 | 
			
		||||
      int ldim=GaugeGrid()->LocalDimensions()[d];
 | 
			
		||||
      if (GaugeBlock) assert( (GaugeBlock%ldim)==0);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (!this->Params.partialDirichlet) {
 | 
			
		||||
      std::cout << GridLogMessage << " Dirichlet filtering gauge field BCs block " <<Block<<std::endl;
 | 
			
		||||
      Coordinate GaugeBlock(Nd);
 | 
			
		||||
      for(int d=0;d<Nd;d++) GaugeBlock[d] = Block[d+1];
 | 
			
		||||
      DirichletFilter<GaugeField> Filter(GaugeBlock);
 | 
			
		||||
      Filter.applyFilter(HUmu);
 | 
			
		||||
    } else {
 | 
			
		||||
      std::cout << GridLogMessage << " Dirichlet "<< Dirichlet << " NOT filtered gauge field" <<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  Impl::DoubleStore(GaugeGrid(),Umu,HUmu);
 | 
			
		||||
  pickCheckerboard(Even,UmuEven,Umu);
 | 
			
		||||
  pickCheckerboard(Odd ,UmuOdd,Umu);
 | 
			
		||||
@@ -216,6 +259,7 @@ void WilsonFermion5D<Impl>::DerivInternal(StencilImpl & st,
 | 
			
		||||
					  const FermionField &B,
 | 
			
		||||
					  int dag)
 | 
			
		||||
{
 | 
			
		||||
  DerivCalls++;
 | 
			
		||||
  assert((dag==DaggerNo) ||(dag==DaggerYes));
 | 
			
		||||
 | 
			
		||||
  conformable(st.Grid(),A.Grid());
 | 
			
		||||
@@ -226,12 +270,15 @@ void WilsonFermion5D<Impl>::DerivInternal(StencilImpl & st,
 | 
			
		||||
  FermionField Btilde(B.Grid());
 | 
			
		||||
  FermionField Atilde(B.Grid());
 | 
			
		||||
 | 
			
		||||
  DerivCommTime-=usecond();
 | 
			
		||||
  st.HaloExchange(B,compressor);
 | 
			
		||||
  DerivCommTime+=usecond();
 | 
			
		||||
 | 
			
		||||
  Atilde=A;
 | 
			
		||||
  int LLs = B.Grid()->_rdimensions[0];
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  DerivComputeTime-=usecond();
 | 
			
		||||
  for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Flip gamma if dag
 | 
			
		||||
@@ -243,6 +290,8 @@ void WilsonFermion5D<Impl>::DerivInternal(StencilImpl & st,
 | 
			
		||||
    // Call the single hop
 | 
			
		||||
    ////////////////////////
 | 
			
		||||
 | 
			
		||||
    DerivDhopComputeTime -= usecond();
 | 
			
		||||
 | 
			
		||||
    int Usites = U.Grid()->oSites();
 | 
			
		||||
 | 
			
		||||
    Kernels::DhopDirKernel(st, U, st.CommBuf(), Ls, Usites, B, Btilde, mu,gamma);
 | 
			
		||||
@@ -250,8 +299,10 @@ void WilsonFermion5D<Impl>::DerivInternal(StencilImpl & st,
 | 
			
		||||
    ////////////////////////////
 | 
			
		||||
    // spin trace outer product
 | 
			
		||||
    ////////////////////////////
 | 
			
		||||
    DerivDhopComputeTime += usecond();
 | 
			
		||||
    Impl::InsertForce5D(mat, Btilde, Atilde, mu);
 | 
			
		||||
  }
 | 
			
		||||
  DerivComputeTime += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -309,10 +360,12 @@ void WilsonFermion5D<Impl>::DhopInternal(StencilImpl & st, LebesgueOrder &lo,
 | 
			
		||||
                                         DoubledGaugeField & U,
 | 
			
		||||
                                         const FermionField &in, FermionField &out,int dag)
 | 
			
		||||
{
 | 
			
		||||
  DhopTotalTime-=usecond();
 | 
			
		||||
  if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute )
 | 
			
		||||
    DhopInternalOverlappedComms(st,lo,U,in,out,dag);
 | 
			
		||||
  else 
 | 
			
		||||
    DhopInternalSerialComms(st,lo,U,in,out,dag);
 | 
			
		||||
  DhopTotalTime+=usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -321,7 +374,6 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, Lebesg
 | 
			
		||||
							DoubledGaugeField & U,
 | 
			
		||||
							const FermionField &in, FermionField &out,int dag)
 | 
			
		||||
{
 | 
			
		||||
  GRID_TRACE("DhopInternalOverlappedComms");
 | 
			
		||||
  Compressor compressor(dag);
 | 
			
		||||
 | 
			
		||||
  int LLs = in.Grid()->_rdimensions[0];
 | 
			
		||||
@@ -330,57 +382,53 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, Lebesg
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  // Start comms  // Gather intranode and extra node differentiated??
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("Gather");
 | 
			
		||||
    st.HaloExchangeOptGather(in,compressor); // Put the barrier in the routine
 | 
			
		||||
  }
 | 
			
		||||
  DhopFaceTime-=usecond();
 | 
			
		||||
  st.HaloExchangeOptGather(in,compressor);
 | 
			
		||||
  DhopFaceTime+=usecond();
 | 
			
		||||
 | 
			
		||||
  DhopCommTime -=usecond();
 | 
			
		||||
  std::vector<std::vector<CommsRequest_t> > requests;
 | 
			
		||||
  auto id=traceStart("Communicate overlapped");
 | 
			
		||||
  st.CommunicateBegin(requests);
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  // Overlap with comms
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("MergeSHM");
 | 
			
		||||
    st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
 | 
			
		||||
  }
 | 
			
		||||
  DhopFaceTime-=usecond();
 | 
			
		||||
  st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
 | 
			
		||||
  DhopFaceTime+=usecond();
 | 
			
		||||
      
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  // do the compute interior
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  int Opt = WilsonKernelsStatic::Opt; // Why pass this. Kernels should know
 | 
			
		||||
  DhopComputeTime-=usecond();
 | 
			
		||||
  if (dag == DaggerYes) {
 | 
			
		||||
    GRID_TRACE("DhopDagInterior");
 | 
			
		||||
    Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,1,0);
 | 
			
		||||
  } else {
 | 
			
		||||
    GRID_TRACE("DhopInterior");
 | 
			
		||||
    Kernels::DhopKernel   (Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,1,0);
 | 
			
		||||
  }
 | 
			
		||||
  DhopComputeTime+=usecond();
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  // Complete comms
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  st.CommunicateComplete(requests);
 | 
			
		||||
  traceStop(id);
 | 
			
		||||
  DhopCommTime   +=usecond();
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  // do the compute exterior
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("Merge");
 | 
			
		||||
    st.CommsMerge(compressor);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  DhopFaceTime-=usecond();
 | 
			
		||||
  st.CommsMerge(compressor);
 | 
			
		||||
  DhopFaceTime+=usecond();
 | 
			
		||||
 | 
			
		||||
  DhopComputeTime2-=usecond();
 | 
			
		||||
  if (dag == DaggerYes) {
 | 
			
		||||
    GRID_TRACE("DhopDagExterior");
 | 
			
		||||
    Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1);
 | 
			
		||||
  } else {
 | 
			
		||||
    GRID_TRACE("DhopExterior");
 | 
			
		||||
    Kernels::DhopKernel   (Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1);
 | 
			
		||||
  }
 | 
			
		||||
  DhopComputeTime2+=usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -390,30 +438,29 @@ void WilsonFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st, LebesgueOr
 | 
			
		||||
						    const FermionField &in, 
 | 
			
		||||
						    FermionField &out,int dag)
 | 
			
		||||
{
 | 
			
		||||
  GRID_TRACE("DhopInternalSerialComms");
 | 
			
		||||
  Compressor compressor(dag);
 | 
			
		||||
 | 
			
		||||
  int LLs = in.Grid()->_rdimensions[0];
 | 
			
		||||
  
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("HaloExchange");
 | 
			
		||||
    st.HaloExchangeOpt(in,compressor);
 | 
			
		||||
  }
 | 
			
		||||
  DhopCommTime-=usecond();
 | 
			
		||||
  st.HaloExchangeOpt(in,compressor);
 | 
			
		||||
  DhopCommTime+=usecond();
 | 
			
		||||
  
 | 
			
		||||
  DhopComputeTime-=usecond();
 | 
			
		||||
  int Opt = WilsonKernelsStatic::Opt;
 | 
			
		||||
  if (dag == DaggerYes) {
 | 
			
		||||
    GRID_TRACE("DhopDag");
 | 
			
		||||
    Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out);
 | 
			
		||||
  } else {
 | 
			
		||||
    GRID_TRACE("Dhop");
 | 
			
		||||
    Kernels::DhopKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out);
 | 
			
		||||
  }
 | 
			
		||||
  DhopComputeTime+=usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void WilsonFermion5D<Impl>::DhopOE(const FermionField &in, FermionField &out,int dag)
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls++;
 | 
			
		||||
  conformable(in.Grid(),FermionRedBlackGrid());    // verifies half grid
 | 
			
		||||
  conformable(in.Grid(),out.Grid()); // drops the cb check
 | 
			
		||||
 | 
			
		||||
@@ -425,6 +472,7 @@ void WilsonFermion5D<Impl>::DhopOE(const FermionField &in, FermionField &out,int
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void WilsonFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls++;
 | 
			
		||||
  conformable(in.Grid(),FermionRedBlackGrid());    // verifies half grid
 | 
			
		||||
  conformable(in.Grid(),out.Grid()); // drops the cb check
 | 
			
		||||
 | 
			
		||||
@@ -436,6 +484,7 @@ void WilsonFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void WilsonFermion5D<Impl>::Dhop(const FermionField &in, FermionField &out,int dag)
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls+=2;
 | 
			
		||||
  conformable(in.Grid(),FermionGrid()); // verifies full grid
 | 
			
		||||
  conformable(in.Grid(),out.Grid());
 | 
			
		||||
 | 
			
		||||
@@ -490,17 +539,12 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt_5d(FermionField &out,const
 | 
			
		||||
  LatComplex    sk(_grid);  sk = Zero();
 | 
			
		||||
  LatComplex    sk2(_grid); sk2= Zero();
 | 
			
		||||
  LatComplex    W(_grid); W= Zero();
 | 
			
		||||
  LatComplex    a(_grid); a= Zero();
 | 
			
		||||
  LatComplex    one  (_grid); one = ScalComplex(1.0,0.0);
 | 
			
		||||
  LatComplex 	cosha(_grid);
 | 
			
		||||
  LatComplex 	kmu(_grid);
 | 
			
		||||
  LatComplex 	Wea(_grid);
 | 
			
		||||
  LatComplex 	Wema(_grid);
 | 
			
		||||
  LatComplex 	ea(_grid);
 | 
			
		||||
  LatComplex 	ema(_grid);
 | 
			
		||||
  LatComplex 	eaLs(_grid);
 | 
			
		||||
  LatComplex 	emaLs(_grid);
 | 
			
		||||
  LatComplex 	ea2Ls(_grid);
 | 
			
		||||
  LatComplex 	ema2Ls(_grid);
 | 
			
		||||
  LatComplex 	sinha(_grid);
 | 
			
		||||
  LatComplex 	sinhaLs(_grid);
 | 
			
		||||
  LatComplex 	coshaLs(_grid);
 | 
			
		||||
@@ -535,29 +579,39 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt_5d(FermionField &out,const
 | 
			
		||||
  ////////////////////////////////////////////
 | 
			
		||||
  cosha = (one + W*W + sk) / (abs(W)*2.0);
 | 
			
		||||
 | 
			
		||||
  ea = (cosha + sqrt(cosha*cosha-one));
 | 
			
		||||
  ema= (cosha - sqrt(cosha*cosha-one));
 | 
			
		||||
  eaLs = pow(ea,Ls);
 | 
			
		||||
  emaLs= pow(ema,Ls);
 | 
			
		||||
  ea2Ls = pow(ea,2.0*Ls);
 | 
			
		||||
  ema2Ls= pow(ema,2.0*Ls);
 | 
			
		||||
  Wea= abs(W) * ea;
 | 
			
		||||
  Wema= abs(W) * ema;
 | 
			
		||||
  //  a=log(ea);
 | 
			
		||||
  // FIXME Need a Lattice acosh
 | 
			
		||||
 | 
			
		||||
  sinha = 0.5*(ea - ema);
 | 
			
		||||
  sinhaLs = 0.5*(eaLs-emaLs);
 | 
			
		||||
  coshaLs = 0.5*(eaLs+emaLs);
 | 
			
		||||
  {
 | 
			
		||||
    autoView(cosha_v,cosha,CpuRead);
 | 
			
		||||
    autoView(a_v,a,CpuWrite);
 | 
			
		||||
    for(int idx=0;idx<_grid->lSites();idx++){
 | 
			
		||||
      Coordinate lcoor(Nd);
 | 
			
		||||
      Tcomplex cc;
 | 
			
		||||
      //    RealD sgn;
 | 
			
		||||
      _grid->LocalIndexToLocalCoor(idx,lcoor);
 | 
			
		||||
      peekLocalSite(cc,cosha_v,lcoor);
 | 
			
		||||
      assert((double)real(cc)>=1.0);
 | 
			
		||||
      assert(fabs((double)imag(cc))<=1.0e-15);
 | 
			
		||||
      cc = ScalComplex(::acosh(real(cc)),0.0);
 | 
			
		||||
      pokeLocalSite(cc,a_v,lcoor);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  Wea = ( exp( a) * abs(W)  );
 | 
			
		||||
  Wema= ( exp(-a) * abs(W)  );
 | 
			
		||||
  sinha = 0.5*(exp( a) - exp(-a));
 | 
			
		||||
  sinhaLs = 0.5*(exp( a*Ls) - exp(-a*Ls));
 | 
			
		||||
  coshaLs = 0.5*(exp( a*Ls) + exp(-a*Ls));
 | 
			
		||||
 | 
			
		||||
  A = one / (abs(W) * sinha * 2.0) * one / (sinhaLs * 2.0);
 | 
			
		||||
  F = eaLs * (one - Wea + (Wema - one) * mass*mass);
 | 
			
		||||
  F = F + emaLs * (Wema - one + (one - Wea) * mass*mass);
 | 
			
		||||
  F = exp( a*Ls) * (one - Wea + (Wema - one) * mass*mass);
 | 
			
		||||
  F = F + exp(-a*Ls) * (Wema - one + (one - Wea) * mass*mass);
 | 
			
		||||
  F = F - abs(W) * sinha * 4.0 * mass;
 | 
			
		||||
 | 
			
		||||
  Bpp =  (A/F) * (ema2Ls - one) * (one - Wema) * (one - mass*mass * one);
 | 
			
		||||
  Bmm =  (A/F) * (one - ea2Ls)  * (one - Wea) * (one - mass*mass * one);
 | 
			
		||||
  App =  (A/F) * (ema2Ls - one) * ema * (ema - abs(W)) * (one - mass*mass * one);
 | 
			
		||||
  Amm =  (A/F) * (one - ea2Ls)  * ea  * (ea  - abs(W)) * (one - mass*mass * one);
 | 
			
		||||
  Bpp =  (A/F) * (exp(-a*Ls*2.0) - one) * (one - Wema) * (one - mass*mass * one);
 | 
			
		||||
  Bmm =  (A/F) * (one - exp(a*Ls*2.0)) * (one - Wea) * (one - mass*mass * one);
 | 
			
		||||
  App =  (A/F) * (exp(-a*Ls*2.0) - one) * exp(-a) * (exp(-a) - abs(W)) * (one - mass*mass * one);
 | 
			
		||||
  Amm =  (A/F) * (one - exp(a*Ls*2.0)) * exp(a) * (exp(a) - abs(W)) * (one - mass*mass * one);
 | 
			
		||||
  ABpm = (A/F) * abs(W) * sinha * 2.0  * (one + mass * coshaLs * 2.0 + mass*mass * one);
 | 
			
		||||
 | 
			
		||||
  //P+ source, P- source
 | 
			
		||||
@@ -580,29 +634,29 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt_5d(FermionField &out,const
 | 
			
		||||
      buf1_4d = Zero();
 | 
			
		||||
      ExtractSlice(buf1_4d, PRsource, (tt-1), 0);
 | 
			
		||||
      //G(s,t)
 | 
			
		||||
      bufR_4d = bufR_4d + A * eaLs * pow(ema,f) * signW * buf1_4d + A * emaLs * pow(ea,f) * signW * buf1_4d;
 | 
			
		||||
      bufR_4d = bufR_4d + A * exp(a*Ls) * exp(-a*f) * signW * buf1_4d + A * exp(-a*Ls) * exp(a*f) * signW * buf1_4d;
 | 
			
		||||
      //A++*exp(a(s+t))
 | 
			
		||||
      bufR_4d = bufR_4d + App * pow(ea,ss) * pow(ea,tt) * signW * buf1_4d ;
 | 
			
		||||
      bufR_4d = bufR_4d + App * exp(a*ss) * exp(a*tt) * signW * buf1_4d ;
 | 
			
		||||
      //A+-*exp(a(s-t))
 | 
			
		||||
      bufR_4d = bufR_4d + ABpm * pow(ea,ss) * pow(ema,tt) * signW * buf1_4d ;
 | 
			
		||||
      bufR_4d = bufR_4d + ABpm * exp(a*ss) * exp(-a*tt) * signW * buf1_4d ;
 | 
			
		||||
      //A-+*exp(a(-s+t))
 | 
			
		||||
      bufR_4d = bufR_4d + ABpm * pow(ema,ss) * pow(ea,tt) * signW * buf1_4d ;
 | 
			
		||||
      bufR_4d = bufR_4d + ABpm * exp(-a*ss) * exp(a*tt) * signW * buf1_4d ;
 | 
			
		||||
      //A--*exp(a(-s-t))
 | 
			
		||||
      bufR_4d = bufR_4d + Amm * pow(ema,ss) * pow(ema,tt) * signW * buf1_4d ;
 | 
			
		||||
      bufR_4d = bufR_4d + Amm * exp(-a*ss) * exp(-a*tt) * signW * buf1_4d ;
 | 
			
		||||
 | 
			
		||||
      //GL
 | 
			
		||||
      buf2_4d = Zero();
 | 
			
		||||
      ExtractSlice(buf2_4d, PLsource, (tt-1), 0);
 | 
			
		||||
      //G(s,t)
 | 
			
		||||
      bufL_4d = bufL_4d + A * eaLs * pow(ema,f) * signW * buf2_4d + A * emaLs * pow(ea,f) * signW * buf2_4d;
 | 
			
		||||
      bufL_4d = bufL_4d + A * exp(a*Ls) * exp(-a*f) * signW * buf2_4d + A * exp(-a*Ls) * exp(a*f) * signW * buf2_4d;
 | 
			
		||||
      //B++*exp(a(s+t))
 | 
			
		||||
      bufL_4d = bufL_4d + Bpp * pow(ea,ss) * pow(ea,tt) * signW * buf2_4d ;
 | 
			
		||||
      bufL_4d = bufL_4d + Bpp * exp(a*ss) * exp(a*tt) * signW * buf2_4d ;
 | 
			
		||||
      //B+-*exp(a(s-t))
 | 
			
		||||
      bufL_4d = bufL_4d + ABpm * pow(ea,ss) * pow(ema,tt) * signW * buf2_4d ;
 | 
			
		||||
      bufL_4d = bufL_4d + ABpm * exp(a*ss) * exp(-a*tt) * signW * buf2_4d ;
 | 
			
		||||
      //B-+*exp(a(-s+t))
 | 
			
		||||
      bufL_4d = bufL_4d + ABpm * pow(ema,ss) * pow(ea,tt) * signW * buf2_4d ;
 | 
			
		||||
      bufL_4d = bufL_4d + ABpm * exp(-a*ss) * exp(a*tt) * signW * buf2_4d ;
 | 
			
		||||
      //B--*exp(a(-s-t))
 | 
			
		||||
      bufL_4d = bufL_4d + Bmm * pow(ema,ss) * pow(ema,tt) * signW * buf2_4d ;
 | 
			
		||||
      bufL_4d = bufL_4d + Bmm * exp(-a*ss) * exp(-a*tt) * signW * buf2_4d ;
 | 
			
		||||
    }
 | 
			
		||||
    InsertSlice(bufR_4d, GR, (ss-1), 0);
 | 
			
		||||
    InsertSlice(bufL_4d, GL, (ss-1), 0);
 | 
			
		||||
@@ -721,12 +775,28 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt(FermionField &out,const Fe
 | 
			
		||||
  W = one - M5 + sk2;
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////
 | 
			
		||||
  // Cosh alpha -> exp(+/- alpha)
 | 
			
		||||
  // Cosh alpha -> alpha
 | 
			
		||||
  ////////////////////////////////////////////
 | 
			
		||||
  cosha =  (one + W*W + sk) / (abs(W)*2.0);
 | 
			
		||||
 | 
			
		||||
  Wea = abs(W)*(cosha + sqrt(cosha*cosha-one));
 | 
			
		||||
  Wema= abs(W)*(cosha - sqrt(cosha*cosha-one));
 | 
			
		||||
  // FIXME Need a Lattice acosh
 | 
			
		||||
  {
 | 
			
		||||
  autoView(cosha_v,cosha,CpuRead);
 | 
			
		||||
  autoView(a_v,a,CpuWrite);
 | 
			
		||||
  for(int idx=0;idx<_grid->lSites();idx++){
 | 
			
		||||
    Coordinate lcoor(Nd);
 | 
			
		||||
    Tcomplex cc;
 | 
			
		||||
    //    RealD sgn;
 | 
			
		||||
    _grid->LocalIndexToLocalCoor(idx,lcoor);
 | 
			
		||||
    peekLocalSite(cc,cosha_v,lcoor);
 | 
			
		||||
    assert((double)real(cc)>=1.0);
 | 
			
		||||
    assert(fabs((double)imag(cc))<=1.0e-15);
 | 
			
		||||
    cc = ScalComplex(::acosh(real(cc)),0.0);
 | 
			
		||||
    pokeLocalSite(cc,a_v,lcoor);
 | 
			
		||||
  }}
 | 
			
		||||
  
 | 
			
		||||
  Wea = ( exp( a) * abs(W)  );
 | 
			
		||||
  Wema= ( exp(-a) * abs(W)  );
 | 
			
		||||
  
 | 
			
		||||
  num   = num + ( one - Wema ) * mass * in;
 | 
			
		||||
  denom= ( Wea - one ) + mass*mass * (one - Wema); 
 | 
			
		||||
 
 | 
			
		||||
@@ -60,9 +60,6 @@ WilsonFermion<Impl>::WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
 | 
			
		||||
      _tmp(&Hgrid),
 | 
			
		||||
      anisotropyCoeff(anis)
 | 
			
		||||
{
 | 
			
		||||
  Stencil.lo     = &Lebesgue;
 | 
			
		||||
  StencilEven.lo = &LebesgueEvenOdd;
 | 
			
		||||
  StencilOdd.lo  = &LebesgueEvenOdd;
 | 
			
		||||
  // Allocate the required comms buffer
 | 
			
		||||
  ImportGauge(_Umu);
 | 
			
		||||
  if  (anisotropyCoeff.isAnisotropic){
 | 
			
		||||
@@ -79,6 +76,91 @@ WilsonFermion<Impl>::WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
 | 
			
		||||
  StencilOdd.BuildSurfaceList(1,vol4);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void WilsonFermion<Impl>::Report(void)
 | 
			
		||||
{
 | 
			
		||||
  RealD NP = _grid->_Nprocessors;
 | 
			
		||||
  RealD NN = _grid->NodeCount();
 | 
			
		||||
  RealD volume = 1;
 | 
			
		||||
  Coordinate latt = _grid->GlobalDimensions();
 | 
			
		||||
  for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
 | 
			
		||||
 | 
			
		||||
  if ( DhopCalls > 0 ) {
 | 
			
		||||
    std::cout << GridLogMessage << "#### Dhop calls report " << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion Number of DhopEO Calls   : " << DhopCalls   << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion TotalTime   /Calls        : " << DhopTotalTime   / DhopCalls << " us" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion CommTime    /Calls        : " << DhopCommTime    / DhopCalls << " us" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion FaceTime    /Calls        : " << DhopFaceTime    / DhopCalls << " us" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion ComputeTime1/Calls        : " << DhopComputeTime / DhopCalls << " us" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion ComputeTime2/Calls        : " << DhopComputeTime2/ DhopCalls << " us" << std::endl;
 | 
			
		||||
 | 
			
		||||
    // Average the compute time
 | 
			
		||||
    _grid->GlobalSum(DhopComputeTime);
 | 
			
		||||
    DhopComputeTime/=NP;
 | 
			
		||||
    RealD mflops = 1320*volume*DhopCalls/DhopComputeTime/2; // 2 for red black counting
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call                : " << mflops << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call per rank       : " << mflops/NP << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call per node       : " << mflops/NN << std::endl;
 | 
			
		||||
 | 
			
		||||
    RealD Fullmflops = 1320*volume*DhopCalls/(DhopTotalTime)/2; // 2 for red black counting
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call (full)         : " << Fullmflops << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call per rank (full): " << Fullmflops/NP << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NN << std::endl;
 | 
			
		||||
 | 
			
		||||
   }
 | 
			
		||||
 | 
			
		||||
  if ( DerivCalls > 0 ) {
 | 
			
		||||
    std::cout << GridLogMessage << "#### Deriv calls report "<< std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion Number of Deriv Calls    : " <<DerivCalls <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion CommTime/Calls           : " <<DerivCommTime/DerivCalls<<" us" <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion ComputeTime/Calls        : " <<DerivComputeTime/DerivCalls<<" us" <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion Dhop ComputeTime/Calls   : " <<DerivDhopComputeTime/DerivCalls<<" us" <<std::endl;
 | 
			
		||||
 | 
			
		||||
    // how to count flops here?
 | 
			
		||||
    RealD mflops = 144*volume*DerivCalls/DerivDhopComputeTime;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call               ? : " << mflops << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call per node      ? : " << mflops/NP << std::endl;
 | 
			
		||||
 | 
			
		||||
    // how to count flops here?
 | 
			
		||||
    RealD Fullmflops = 144*volume*DerivCalls/(DerivDhopComputeTime+DerivCommTime)/2; // 2 for red black counting
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call (full)        ? : " << Fullmflops << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call per node (full) ? : " << Fullmflops/NP << std::endl;  }
 | 
			
		||||
 | 
			
		||||
  if (DerivCalls > 0 || DhopCalls > 0){
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion Stencil"    <<std::endl;  Stencil.Report();
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion StencilEven"<<std::endl;  StencilEven.Report();
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion StencilOdd" <<std::endl;  StencilOdd.Report();
 | 
			
		||||
  }
 | 
			
		||||
  if ( DhopCalls > 0){
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion Stencil     Reporti()"    <<std::endl;  Stencil.Reporti(DhopCalls);
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion StencilEven Reporti()"<<std::endl;  StencilEven.Reporti(DhopCalls);
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion StencilOdd  Reporti()" <<std::endl;  StencilOdd.Reporti(DhopCalls);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void WilsonFermion<Impl>::ZeroCounters(void) {
 | 
			
		||||
  DhopCalls       = 0; // ok
 | 
			
		||||
  DhopCommTime    = 0;
 | 
			
		||||
  DhopComputeTime = 0;
 | 
			
		||||
  DhopComputeTime2= 0;
 | 
			
		||||
  DhopFaceTime    = 0;
 | 
			
		||||
  DhopTotalTime   = 0;
 | 
			
		||||
 | 
			
		||||
  DerivCalls       = 0; // ok
 | 
			
		||||
  DerivCommTime    = 0;
 | 
			
		||||
  DerivComputeTime = 0;
 | 
			
		||||
  DerivDhopComputeTime = 0;
 | 
			
		||||
 | 
			
		||||
  Stencil.ZeroCounters();
 | 
			
		||||
  StencilEven.ZeroCounters();
 | 
			
		||||
  StencilOdd.ZeroCounters();
 | 
			
		||||
  Stencil.ZeroCountersi();
 | 
			
		||||
  StencilEven.ZeroCountersi();
 | 
			
		||||
  StencilOdd.ZeroCountersi();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <class Impl>
 | 
			
		||||
void WilsonFermion<Impl>::ImportGauge(const GaugeField &_Umu)
 | 
			
		||||
{
 | 
			
		||||
@@ -238,6 +320,7 @@ template <class Impl>
 | 
			
		||||
void WilsonFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGaugeField &U,
 | 
			
		||||
                                        GaugeField &mat, const FermionField &A,
 | 
			
		||||
                                        const FermionField &B, int dag) {
 | 
			
		||||
  DerivCalls++;
 | 
			
		||||
  assert((dag == DaggerNo) || (dag == DaggerYes));
 | 
			
		||||
 | 
			
		||||
  Compressor compressor(dag);
 | 
			
		||||
@@ -246,8 +329,11 @@ void WilsonFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGaugeField &U,
 | 
			
		||||
  FermionField Atilde(B.Grid());
 | 
			
		||||
  Atilde = A;
 | 
			
		||||
 | 
			
		||||
  DerivCommTime-=usecond();
 | 
			
		||||
  st.HaloExchange(B, compressor);
 | 
			
		||||
  DerivCommTime+=usecond();
 | 
			
		||||
 | 
			
		||||
  DerivComputeTime-=usecond();
 | 
			
		||||
  for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Flip gamma (1+g)<->(1-g) if dag
 | 
			
		||||
@@ -255,6 +341,7 @@ void WilsonFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGaugeField &U,
 | 
			
		||||
    int gamma = mu;
 | 
			
		||||
    if (!dag) gamma += Nd;
 | 
			
		||||
 | 
			
		||||
    DerivDhopComputeTime -= usecond();
 | 
			
		||||
    int Ls=1;
 | 
			
		||||
    Kernels::DhopDirKernel(st, U, st.CommBuf(), Ls, B.Grid()->oSites(), B, Btilde, mu, gamma);
 | 
			
		||||
 | 
			
		||||
@@ -262,7 +349,9 @@ void WilsonFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGaugeField &U,
 | 
			
		||||
    // spin trace outer product
 | 
			
		||||
    //////////////////////////////////////////////////
 | 
			
		||||
    Impl::InsertForce4D(mat, Btilde, Atilde, mu);
 | 
			
		||||
    DerivDhopComputeTime += usecond();
 | 
			
		||||
  }
 | 
			
		||||
  DerivComputeTime += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class Impl>
 | 
			
		||||
@@ -309,6 +398,7 @@ void WilsonFermion<Impl>::DhopDerivEO(GaugeField &mat, const FermionField &U, co
 | 
			
		||||
template <class Impl>
 | 
			
		||||
void WilsonFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int dag)
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls+=2;
 | 
			
		||||
  conformable(in.Grid(), _grid);  // verifies full grid
 | 
			
		||||
  conformable(in.Grid(), out.Grid());
 | 
			
		||||
 | 
			
		||||
@@ -320,6 +410,7 @@ void WilsonFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int da
 | 
			
		||||
template <class Impl>
 | 
			
		||||
void WilsonFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int dag)
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls++;
 | 
			
		||||
  conformable(in.Grid(), _cbgrid);    // verifies half grid
 | 
			
		||||
  conformable(in.Grid(), out.Grid());  // drops the cb check
 | 
			
		||||
 | 
			
		||||
@@ -332,6 +423,7 @@ void WilsonFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int
 | 
			
		||||
template <class Impl>
 | 
			
		||||
void WilsonFermion<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls++;
 | 
			
		||||
  conformable(in.Grid(), _cbgrid);    // verifies half grid
 | 
			
		||||
  conformable(in.Grid(), out.Grid());  // drops the cb check
 | 
			
		||||
 | 
			
		||||
@@ -396,12 +488,14 @@ void WilsonFermion<Impl>::DhopInternal(StencilImpl &st, LebesgueOrder &lo,
 | 
			
		||||
                                       const FermionField &in,
 | 
			
		||||
                                       FermionField &out, int dag)
 | 
			
		||||
{
 | 
			
		||||
  DhopTotalTime-=usecond();
 | 
			
		||||
#ifdef GRID_OMP
 | 
			
		||||
  if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute )
 | 
			
		||||
    DhopInternalOverlappedComms(st,lo,U,in,out,dag);
 | 
			
		||||
  else
 | 
			
		||||
#endif
 | 
			
		||||
    DhopInternalSerial(st,lo,U,in,out,dag);
 | 
			
		||||
  DhopTotalTime+=usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class Impl>
 | 
			
		||||
@@ -410,7 +504,6 @@ void WilsonFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, LebesgueO
 | 
			
		||||
						      const FermionField &in,
 | 
			
		||||
						      FermionField &out, int dag)
 | 
			
		||||
{
 | 
			
		||||
  GRID_TRACE("DhopOverlapped");
 | 
			
		||||
  assert((dag == DaggerNo) || (dag == DaggerYes));
 | 
			
		||||
 | 
			
		||||
  Compressor compressor(dag);
 | 
			
		||||
@@ -421,55 +514,53 @@ void WilsonFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, LebesgueO
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  std::vector<std::vector<CommsRequest_t> > requests;
 | 
			
		||||
  st.Prepare();
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("Gather");
 | 
			
		||||
    st.HaloGather(in,compressor);
 | 
			
		||||
  }
 | 
			
		||||
  DhopFaceTime-=usecond();
 | 
			
		||||
  st.HaloGather(in,compressor);
 | 
			
		||||
  DhopFaceTime+=usecond();
 | 
			
		||||
 | 
			
		||||
  tracePush("Communication");
 | 
			
		||||
  DhopCommTime -=usecond();
 | 
			
		||||
  st.CommunicateBegin(requests);
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  // Overlap with comms
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("MergeSHM");
 | 
			
		||||
    st.CommsMergeSHM(compressor);
 | 
			
		||||
  }
 | 
			
		||||
  DhopFaceTime-=usecond();
 | 
			
		||||
  st.CommsMergeSHM(compressor);
 | 
			
		||||
  DhopFaceTime+=usecond();
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  // do the compute interior
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  int Opt = WilsonKernelsStatic::Opt;
 | 
			
		||||
  DhopComputeTime-=usecond();
 | 
			
		||||
  if (dag == DaggerYes) {
 | 
			
		||||
    GRID_TRACE("DhopDagInterior");
 | 
			
		||||
    Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,1,0);
 | 
			
		||||
  } else {
 | 
			
		||||
    GRID_TRACE("DhopInterior");
 | 
			
		||||
    Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,1,0);
 | 
			
		||||
  }
 | 
			
		||||
  DhopComputeTime+=usecond();
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  // Complete comms
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  st.CommunicateComplete(requests);
 | 
			
		||||
  tracePop("Communication");
 | 
			
		||||
  DhopCommTime   +=usecond();
 | 
			
		||||
 | 
			
		||||
  DhopFaceTime-=usecond();
 | 
			
		||||
  st.CommsMerge(compressor);
 | 
			
		||||
  DhopFaceTime+=usecond();
 | 
			
		||||
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("Merge");
 | 
			
		||||
    st.CommsMerge(compressor);
 | 
			
		||||
  }
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  // do the compute exterior
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
 | 
			
		||||
  DhopComputeTime2-=usecond();
 | 
			
		||||
  if (dag == DaggerYes) {
 | 
			
		||||
    GRID_TRACE("DhopDagExterior");
 | 
			
		||||
    Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,0,1);
 | 
			
		||||
  } else {
 | 
			
		||||
    GRID_TRACE("DhopExterior");
 | 
			
		||||
    Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,0,1);
 | 
			
		||||
  }
 | 
			
		||||
  DhopComputeTime2+=usecond();
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -479,22 +570,20 @@ void WilsonFermion<Impl>::DhopInternalSerial(StencilImpl &st, LebesgueOrder &lo,
 | 
			
		||||
                                       const FermionField &in,
 | 
			
		||||
                                       FermionField &out, int dag)
 | 
			
		||||
{
 | 
			
		||||
  GRID_TRACE("DhopSerial");
 | 
			
		||||
  assert((dag == DaggerNo) || (dag == DaggerYes));
 | 
			
		||||
  Compressor compressor(dag);
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("HaloExchange");
 | 
			
		||||
    st.HaloExchange(in, compressor);
 | 
			
		||||
  }
 | 
			
		||||
  DhopCommTime-=usecond();
 | 
			
		||||
  st.HaloExchange(in, compressor);
 | 
			
		||||
  DhopCommTime+=usecond();
 | 
			
		||||
 | 
			
		||||
  DhopComputeTime-=usecond();
 | 
			
		||||
  int Opt = WilsonKernelsStatic::Opt;
 | 
			
		||||
  if (dag == DaggerYes) {
 | 
			
		||||
    GRID_TRACE("DhopDag");
 | 
			
		||||
    Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out);
 | 
			
		||||
  } else {
 | 
			
		||||
    GRID_TRACE("Dhop");
 | 
			
		||||
    Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out);
 | 
			
		||||
  }
 | 
			
		||||
  DhopComputeTime+=usecond();
 | 
			
		||||
};
 | 
			
		||||
/*Change ends */
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -72,15 +72,20 @@ accelerator_inline void get_stencil(StencilEntry * mem, StencilEntry &chip)
 | 
			
		||||
  if (SE->_is_local) {						\
 | 
			
		||||
    int perm= SE->_permute;					\
 | 
			
		||||
    auto tmp = coalescedReadPermute(in[SE->_offset],ptype,perm,lane);	\
 | 
			
		||||
    spProj(chi,tmp);							\
 | 
			
		||||
    Impl::multLink(Uchi, U[sU], chi, Dir, SE, st);			\
 | 
			
		||||
    Recon(result, Uchi);						\
 | 
			
		||||
  }									\
 | 
			
		||||
    spProj(chi,tmp);						\
 | 
			
		||||
  } else if ( st.same_node[Dir] ) {				\
 | 
			
		||||
    chi = coalescedRead(buf[SE->_offset],lane);			\
 | 
			
		||||
  }								\
 | 
			
		||||
  acceleratorSynchronise();						\
 | 
			
		||||
  if (SE->_is_local || st.same_node[Dir] ) {			\
 | 
			
		||||
    Impl::multLink(Uchi, U[sU], chi, Dir, SE, st);		\
 | 
			
		||||
    Recon(result, Uchi);					\
 | 
			
		||||
  }								\
 | 
			
		||||
  acceleratorSynchronise();
 | 
			
		||||
 | 
			
		||||
#define GENERIC_STENCIL_LEG_EXT(Dir,spProj,Recon)		\
 | 
			
		||||
  SE = st.GetEntry(ptype, Dir, sF);				\
 | 
			
		||||
  if (!SE->_is_local ) {		\
 | 
			
		||||
  if ((!SE->_is_local) && (!st.same_node[Dir]) ) {		\
 | 
			
		||||
    auto chi = coalescedRead(buf[SE->_offset],lane);		\
 | 
			
		||||
    Impl::multLink(Uchi, U[sU], chi, Dir, SE, st);		\
 | 
			
		||||
    Recon(result, Uchi);					\
 | 
			
		||||
@@ -411,6 +416,19 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
 | 
			
		||||
#undef LoopBody
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#define KERNEL_CALL_TMP(A) \
 | 
			
		||||
  const uint64_t    NN = Nsite*Ls;					\
 | 
			
		||||
  auto U_p = & U_v[0];							\
 | 
			
		||||
  auto in_p = & in_v[0];						\
 | 
			
		||||
  auto out_p = & out_v[0];						\
 | 
			
		||||
  auto st_p = st_v._entries_p;						\
 | 
			
		||||
  auto st_perm = st_v._permute_type;					\
 | 
			
		||||
  accelerator_forNB( ss, NN, Simd::Nsimd(), {				\
 | 
			
		||||
      int sF = ss;							\
 | 
			
		||||
      int sU = ss/Ls;							\
 | 
			
		||||
      WilsonKernels<Impl>::A(st_perm,st_p,U_p,buf,sF,sU,in_p,out_p);	\
 | 
			
		||||
    });									\
 | 
			
		||||
  accelerator_barrier();
 | 
			
		||||
 | 
			
		||||
#define KERNEL_CALLNB(A)						\
 | 
			
		||||
  const uint64_t    NN = Nsite*Ls;					\
 | 
			
		||||
@@ -422,34 +440,12 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
 | 
			
		||||
 | 
			
		||||
#define KERNEL_CALL(A) KERNEL_CALLNB(A); accelerator_barrier();
 | 
			
		||||
 | 
			
		||||
#define KERNEL_CALL_EXT(A)						\
 | 
			
		||||
  const uint64_t    sz = st.surface_list.size();			\
 | 
			
		||||
  auto ptr = &st.surface_list[0];					\
 | 
			
		||||
  accelerator_forNB( ss, sz, Simd::Nsimd(), {				\
 | 
			
		||||
      int sF = ptr[ss];							\
 | 
			
		||||
      int sU = sF/Ls;							\
 | 
			
		||||
      WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,in_v,out_v);		\
 | 
			
		||||
    });									\
 | 
			
		||||
  accelerator_barrier();
 | 
			
		||||
 | 
			
		||||
#define ASM_CALL(A)							\
 | 
			
		||||
  thread_for( sss, Nsite, {						\
 | 
			
		||||
    int ss = st.lo->Reorder(sss);					\
 | 
			
		||||
  thread_for( ss, Nsite, {						\
 | 
			
		||||
    int sU = ss;							\
 | 
			
		||||
    int sF = ss*Ls;							\
 | 
			
		||||
    WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,Ls,1,in_v,out_v);		\
 | 
			
		||||
  });
 | 
			
		||||
#define ASM_CALL_SLICE(A)						\
 | 
			
		||||
  auto grid = in.Grid() ;						\
 | 
			
		||||
  int nt = grid->LocalDimensions()[4];					\
 | 
			
		||||
  int nxyz = Nsite/nt ;							\
 | 
			
		||||
  for(int t=0;t<nt;t++){						\
 | 
			
		||||
  thread_for( sss, nxyz, {						\
 | 
			
		||||
    int ss = t*nxyz+sss;						\
 | 
			
		||||
    int sU = ss;							\
 | 
			
		||||
    int sF = ss*Ls;							\
 | 
			
		||||
    WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,Ls,1,in_v,out_v);		\
 | 
			
		||||
    });}
 | 
			
		||||
 | 
			
		||||
template <class Impl>
 | 
			
		||||
void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st,  DoubledGaugeField &U, SiteHalfSpinor * buf,
 | 
			
		||||
@@ -463,7 +459,11 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st,  DoubledGaugeField
 | 
			
		||||
 | 
			
		||||
   if( interior && exterior ) {
 | 
			
		||||
     if (Opt == WilsonKernelsStatic::OptGeneric    ) { KERNEL_CALL(GenericDhopSite); return;}
 | 
			
		||||
#ifdef SYCL_HACK     
 | 
			
		||||
     if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL_TMP(HandDhopSiteSycl);    return; }
 | 
			
		||||
#else
 | 
			
		||||
     if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSite);    return;}
 | 
			
		||||
#endif     
 | 
			
		||||
#ifndef GRID_CUDA
 | 
			
		||||
     if (Opt == WilsonKernelsStatic::OptInlineAsm  ) {  ASM_CALL(AsmDhopSite);    return;}
 | 
			
		||||
#endif
 | 
			
		||||
@@ -474,10 +474,8 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st,  DoubledGaugeField
 | 
			
		||||
     if (Opt == WilsonKernelsStatic::OptInlineAsm  ) {  ASM_CALL(AsmDhopSiteInt);    return;}
 | 
			
		||||
#endif
 | 
			
		||||
   } else if( exterior ) {
 | 
			
		||||
     // dependent on result of merge
 | 
			
		||||
     acceleratorFenceComputeStream();
 | 
			
		||||
     if (Opt == WilsonKernelsStatic::OptGeneric    ) { KERNEL_CALL_EXT(GenericDhopSiteExt); return;}
 | 
			
		||||
     if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL_EXT(HandDhopSiteExt);    return;}
 | 
			
		||||
     if (Opt == WilsonKernelsStatic::OptGeneric    ) { KERNEL_CALL(GenericDhopSiteExt); return;}
 | 
			
		||||
     if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteExt);    return;}
 | 
			
		||||
#ifndef GRID_CUDA
 | 
			
		||||
     if (Opt == WilsonKernelsStatic::OptInlineAsm  ) {  ASM_CALL(AsmDhopSiteExt);    return;}
 | 
			
		||||
#endif
 | 
			
		||||
@@ -500,20 +498,21 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st,  DoubledGaugeField
 | 
			
		||||
#ifndef GRID_CUDA
 | 
			
		||||
     if (Opt == WilsonKernelsStatic::OptInlineAsm  ) {  ASM_CALL(AsmDhopSiteDag);     return;}
 | 
			
		||||
#endif
 | 
			
		||||
     acceleratorFenceComputeStream();
 | 
			
		||||
   } else if( interior ) {
 | 
			
		||||
     if (Opt == WilsonKernelsStatic::OptGeneric    ) { KERNEL_CALLNB(GenericDhopSiteDagInt); return;}
 | 
			
		||||
     if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALLNB(HandDhopSiteDagInt);    return;}
 | 
			
		||||
     if (Opt == WilsonKernelsStatic::OptGeneric    ) { KERNEL_CALL(GenericDhopSiteDagInt); return;}
 | 
			
		||||
     if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteDagInt);    return;}
 | 
			
		||||
#ifndef GRID_CUDA
 | 
			
		||||
     if (Opt == WilsonKernelsStatic::OptInlineAsm  ) {  ASM_CALL(AsmDhopSiteDagInt);     return;}
 | 
			
		||||
#endif
 | 
			
		||||
   } else if( exterior ) {
 | 
			
		||||
     // Dependent on result of merge
 | 
			
		||||
     acceleratorFenceComputeStream();
 | 
			
		||||
     if (Opt == WilsonKernelsStatic::OptGeneric    ) { KERNEL_CALL_EXT(GenericDhopSiteDagExt); return;}
 | 
			
		||||
     if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL_EXT(HandDhopSiteDagExt);    return;}
 | 
			
		||||
     if (Opt == WilsonKernelsStatic::OptGeneric    ) { KERNEL_CALL(GenericDhopSiteDagExt); return;}
 | 
			
		||||
     if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteDagExt);    return;}
 | 
			
		||||
#ifndef GRID_CUDA
 | 
			
		||||
     if (Opt == WilsonKernelsStatic::OptInlineAsm  ) {  ASM_CALL(AsmDhopSiteDagExt);     return;}
 | 
			
		||||
#endif
 | 
			
		||||
     acceleratorFenceComputeStream();
 | 
			
		||||
   }
 | 
			
		||||
   assert(0 && " Kernel optimisation case not covered ");
 | 
			
		||||
  }
 | 
			
		||||
 
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonCloverFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonKernelsInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonTMFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
#define IMPLEMENTATION SpWilsonImplD
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonCloverFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonKernelsInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonTMFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
#define IMPLEMENTATION SpWilsonImplF
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonCloverFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonKernelsInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonTMFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
#define IMPLEMENTATION SpWilsonTwoIndexAntiSymmetricImplD
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonCloverFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonKernelsInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonTMFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
#define IMPLEMENTATION SpWilsonTwoIndexAntiSymmetricImplF
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonCloverFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonFermionInstantiation.cc.master
 | 
			
		||||
Some files were not shown because too many files have changed in this diff Show More
		Reference in New Issue
	
	Block a user