mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-10-27 18:19:34 +00:00 
			
		
		
		
	Compare commits
	
		
			3 Commits
		
	
	
		
			7f9d06f339
			...
			feature/co
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| de8b2dcca3 | |||
| efe000341d | |||
| 11086c5c25 | 
							
								
								
									
										54
									
								
								.github/ISSUE_TEMPLATE/bug-report.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										54
									
								
								.github/ISSUE_TEMPLATE/bug-report.yml
									
									
									
									
										vendored
									
									
								
							| @@ -1,54 +0,0 @@ | ||||
| name: Bug report | ||||
| description: Report a bug. | ||||
| title: "<insert title>" | ||||
| labels: [bug] | ||||
|  | ||||
| body: | ||||
|   - type: markdown | ||||
|     attributes: | ||||
|       value: > | ||||
|         Thank you for taking the time to file a bug report. | ||||
|         Please check that the code is pointing to the HEAD of develop | ||||
|         or any commit in master which is tagged with a version number. | ||||
|  | ||||
|   - type: textarea | ||||
|     attributes: | ||||
|       label: "Describe the issue:" | ||||
|       description: > | ||||
|         Describe the issue and any previous attempt to solve it. | ||||
|     validations: | ||||
|       required: true | ||||
|  | ||||
|   - type: textarea | ||||
|     attributes: | ||||
|       label: "Code example:" | ||||
|       description: > | ||||
|         If relevant, show how to reproduce the issue using a minimal working | ||||
|         example. | ||||
|       placeholder: | | ||||
|         << your code here >> | ||||
|       render: shell | ||||
|     validations: | ||||
|       required: false | ||||
|  | ||||
|   - type: textarea | ||||
|     attributes: | ||||
|       label: "Target platform:" | ||||
|       description: > | ||||
|         Give a description of the target platform (CPU, network, compiler). | ||||
|         Please give the full CPU part description, using for example | ||||
|         `cat /proc/cpuinfo | grep 'model name' | uniq` (Linux) | ||||
|         or `sysctl machdep.cpu.brand_string` (macOS) and the full output | ||||
|         the `--version` option of your compiler. | ||||
|     validations: | ||||
|       required: true | ||||
|  | ||||
|   - type: textarea | ||||
|     attributes: | ||||
|       label: "Configure options:" | ||||
|       description: > | ||||
|         Please give the exact configure command used and attach | ||||
|         `config.log`, `grid.config.summary` and the output of `make V=1`. | ||||
|       render: shell | ||||
|     validations: | ||||
|       required: true | ||||
							
								
								
									
										6
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										6
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							| @@ -1,7 +1,3 @@ | ||||
| # Doxygen stuff | ||||
| html/* | ||||
| latex/* | ||||
|  | ||||
| # Compiled Object files # | ||||
| ######################### | ||||
| *.slo | ||||
| @@ -92,7 +88,6 @@ Thumbs.db | ||||
| # build directory # | ||||
| ################### | ||||
| build*/* | ||||
| Documentation/_build | ||||
|  | ||||
| # IDE related files # | ||||
| ##################### | ||||
| @@ -119,4 +114,3 @@ gh-pages/ | ||||
| ##################### | ||||
| Grid/qcd/spin/gamma-gen/*.h | ||||
| Grid/qcd/spin/gamma-gen/*.cc | ||||
| Grid/util/Version.h | ||||
|   | ||||
							
								
								
									
										61
									
								
								.travis.yml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										61
									
								
								.travis.yml
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,61 @@ | ||||
| language: cpp | ||||
|  | ||||
| cache: | ||||
|   directories: | ||||
|     - clang | ||||
|  | ||||
| matrix: | ||||
|   include: | ||||
|     - os:        osx | ||||
|       osx_image: xcode8.3 | ||||
|       compiler: clang | ||||
|       env: PREC=single | ||||
|     - os:        osx | ||||
|       osx_image: xcode8.3 | ||||
|       compiler: clang | ||||
|       env: PREC=double | ||||
|        | ||||
| before_install: | ||||
|     - export GRIDDIR=`pwd` | ||||
|     - if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]] && [ ! -e clang/bin ]; then wget $CLANG_LINK; tar -xf `basename $CLANG_LINK`; mkdir clang; mv clang+*/* clang/; fi | ||||
|     - if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]]; then export PATH="${GRIDDIR}/clang/bin:${PATH}"; fi | ||||
|     - if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]]; then export LD_LIBRARY_PATH="${GRIDDIR}/clang/lib:${LD_LIBRARY_PATH}"; fi | ||||
|     - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew update; fi | ||||
|     - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew install libmpc openssl; fi | ||||
|      | ||||
| install: | ||||
|     - export CWD=`pwd` | ||||
|     - echo $CWD | ||||
|     - export CC=$CC$VERSION | ||||
|     - export CXX=$CXX$VERSION | ||||
|     - echo $PATH | ||||
|     - which autoconf | ||||
|     - autoconf  --version | ||||
|     - which automake | ||||
|     - automake  --version | ||||
|     - which $CC | ||||
|     - $CC  --version | ||||
|     - which $CXX | ||||
|     - $CXX --version | ||||
|     - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then export LDFLAGS='-L/usr/local/lib'; fi | ||||
|     - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then export EXTRACONF='--with-openssl=/usr/local/opt/openssl'; fi | ||||
|      | ||||
| script: | ||||
|     - ./bootstrap.sh | ||||
|     - mkdir build | ||||
|     - cd build | ||||
|     - mkdir lime | ||||
|     - cd lime | ||||
|     - mkdir build | ||||
|     - cd build | ||||
|     - wget http://usqcd-software.github.io/downloads/c-lime/lime-1.3.2.tar.gz | ||||
|     - tar xf lime-1.3.2.tar.gz | ||||
|     - cd lime-1.3.2 | ||||
|     - ./configure --prefix=$CWD/build/lime/install | ||||
|     - make -j4 | ||||
|     - make install | ||||
|     - cd $CWD/build | ||||
|     - ../configure --enable-precision=$PREC --enable-simd=SSE4 --enable-comms=none --with-lime=$CWD/build/lime/install ${EXTRACONF} | ||||
|     - make -j4  | ||||
|     - ./benchmarks/Benchmark_dwf --threads 1 --debug-signals | ||||
|     - make check | ||||
| @@ -1,5 +0,0 @@ | ||||
| Version : 0.8.0 | ||||
|  | ||||
| - Clang 3.5 and above, ICPC v16 and above, GCC 6.3 and above recommended | ||||
| - MPI and MPI3 comms optimisations for KNL and OPA finished | ||||
| - Half precision comms | ||||
|   | ||||
| @@ -30,44 +30,8 @@ directory | ||||
| #ifndef DISABLE_WARNINGS_H | ||||
| #define DISABLE_WARNINGS_H | ||||
|  | ||||
|  | ||||
|  | ||||
| #if defined __GNUC__ && __GNUC__>=6 | ||||
| #pragma GCC diagnostic ignored "-Wignored-attributes" | ||||
| #endif | ||||
|  | ||||
|  //disables and intel compiler specific warning (in json.hpp) | ||||
| #ifdef __ICC | ||||
| #pragma warning disable 488   | ||||
| #endif | ||||
|  | ||||
| #ifdef __NVCC__ | ||||
|  //disables nvcc specific warning in json.hpp | ||||
| #pragma clang diagnostic ignored "-Wdeprecated-register" | ||||
|  | ||||
| #ifdef __NVCC_DIAG_PRAGMA_SUPPORT__ | ||||
|  //disables nvcc specific warning in json.hpp | ||||
| #pragma nv_diag_suppress unsigned_compare_with_zero | ||||
| #pragma nv_diag_suppress cast_to_qualified_type | ||||
|  //disables nvcc specific warning in many files | ||||
| #pragma nv_diag_suppress esa_on_defaulted_function_ignored | ||||
| #pragma nv_diag_suppress extra_semicolon | ||||
| #else | ||||
|  //disables nvcc specific warning in json.hpp | ||||
| #pragma diag_suppress unsigned_compare_with_zero | ||||
| #pragma diag_suppress cast_to_qualified_type | ||||
|  //disables nvcc specific warning in many files | ||||
| #pragma diag_suppress esa_on_defaulted_function_ignored | ||||
| #pragma diag_suppress extra_semicolon | ||||
| #endif | ||||
| #endif | ||||
|  | ||||
| // Disable vectorisation in Eigen on the Power8/9 and PowerPC | ||||
| #ifdef  __ALTIVEC__ | ||||
| #define  EIGEN_DONT_VECTORIZE | ||||
| #endif | ||||
| #ifdef  __VSX__ | ||||
| #define  EIGEN_DONT_VECTORIZE | ||||
| #endif | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -42,7 +42,6 @@ Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| #include <Grid/GridQCDcore.h> | ||||
| #include <Grid/qcd/action/Action.h> | ||||
| #include <Grid/qcd/utils/GaugeFix.h> | ||||
| #include <Grid/qcd/utils/CovariantSmearing.h> | ||||
| #include <Grid/qcd/smearing/Smearing.h> | ||||
| #include <Grid/parallelIO/MetaData.h> | ||||
| #include <Grid/qcd/hmc/HMC_aggregate.h> | ||||
|   | ||||
| @@ -38,20 +38,16 @@ Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| #ifndef GRID_BASE_H | ||||
| #define GRID_BASE_H | ||||
|  | ||||
|  | ||||
| #include <Grid/DisableWarnings.h> | ||||
| #include <Grid/Namespace.h> | ||||
| #include <Grid/GridStd.h> | ||||
| #include <Grid/threads/Pragmas.h> | ||||
|  | ||||
| #include <Grid/perfmon/Timer.h> | ||||
| //#include <Grid/perfmon/PerfCount.h> | ||||
| #include <Grid/util/Util.h> | ||||
| #include <Grid/perfmon/PerfCount.h> | ||||
| #include <Grid/log/Log.h> | ||||
| #include <Grid/perfmon/Tracing.h> | ||||
| #include <Grid/allocator/Allocator.h> | ||||
| #include <Grid/allocator/AlignedAllocator.h> | ||||
| #include <Grid/simd/Simd.h> | ||||
| #include <Grid/threads/ThreadReduction.h> | ||||
| #include <Grid/serialisation/Serialisation.h> | ||||
| #include <Grid/threads/Threads.h> | ||||
| #include <Grid/util/Util.h> | ||||
| #include <Grid/util/Sha.h> | ||||
| #include <Grid/communicator/Communicator.h>  | ||||
| #include <Grid/cartesian/Cartesian.h>     | ||||
| @@ -61,6 +57,5 @@ Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| #include <Grid/stencil/Stencil.h>       | ||||
| #include <Grid/parallelIO/BinaryIO.h> | ||||
| #include <Grid/algorithms/Algorithms.h>    | ||||
| NAMESPACE_CHECK(GridCore) | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -36,9 +36,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| #include <Grid/GridCore.h> | ||||
| #include <Grid/qcd/QCD.h> | ||||
| #include <Grid/qcd/spin/Spin.h> | ||||
| #include <Grid/qcd/gparity/Gparity.h> | ||||
| #include <Grid/qcd/utils/Utils.h> | ||||
| #include <Grid/qcd/representations/Representations.h> | ||||
| NAMESPACE_CHECK(GridQCDCore); | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -6,9 +6,7 @@ | ||||
| /////////////////// | ||||
| #include <cassert> | ||||
| #include <complex> | ||||
| #include <memory> | ||||
| #include <vector> | ||||
| #include <array> | ||||
| #include <string> | ||||
| #include <iostream> | ||||
| #include <iomanip> | ||||
| @@ -16,7 +14,6 @@ | ||||
| #include <functional> | ||||
| #include <stdio.h> | ||||
| #include <stdlib.h> | ||||
| #include <strings.h> | ||||
| #include <stdio.h> | ||||
| #include <signal.h> | ||||
| #include <ctime> | ||||
| @@ -29,7 +26,4 @@ | ||||
| /////////////////// | ||||
| #include "Config.h" | ||||
|  | ||||
| #ifdef TOFU | ||||
| #undef GRID_COMMS_THREADS | ||||
| #endif | ||||
| #endif /* GRID_STD_H */ | ||||
|   | ||||
| @@ -1,75 +1,14 @@ | ||||
| #include <Grid/GridCore.h> | ||||
| #pragma once | ||||
| // Force Eigen to use MKL if Grid has been configured with --enable-mkl | ||||
| #ifdef USE_MKL | ||||
| #define EIGEN_USE_MKL_ALL | ||||
| #endif | ||||
|  | ||||
|  | ||||
| #if defined __GNUC__ | ||||
| #pragma GCC diagnostic push | ||||
| #pragma GCC diagnostic ignored "-Wdeprecated-declarations" | ||||
| #endif | ||||
|  | ||||
| /* NVCC save and restore compile environment*/ | ||||
| #ifdef __NVCC__ | ||||
| #pragma push | ||||
| #ifdef __NVCC_DIAG_PRAGMA_SUPPORT__ | ||||
| #pragma nv_diag_suppress code_is_unreachable | ||||
| #else | ||||
| #pragma diag_suppress code_is_unreachable | ||||
| #endif | ||||
| #pragma push_macro("__CUDA_ARCH__") | ||||
| #pragma push_macro("__NVCC__") | ||||
| #pragma push_macro("__CUDACC__") | ||||
| #undef __CUDA_ARCH__ | ||||
| #undef __NVCC__ | ||||
| #undef __CUDACC__ | ||||
| #define __NVCC__REDEFINE__ | ||||
| #endif  | ||||
|  | ||||
| /* SYCL save and restore compile environment*/ | ||||
| #ifdef GRID_SYCL | ||||
| #pragma push | ||||
| #pragma push_macro("__SYCL_DEVICE_ONLY__") | ||||
| #undef __SYCL_DEVICE_ONLY__ | ||||
| #define EIGEN_DONT_VECTORIZE | ||||
| #undef EIGEN_USE_SYCL | ||||
| #define __SYCL__REDEFINE__ | ||||
| #endif | ||||
|  | ||||
| /* HIP save and restore compile environment*/ | ||||
| #ifdef GRID_HIP | ||||
| #pragma push | ||||
| #pragma push_macro("__HIP_DEVICE_COMPILE__") | ||||
| #endif | ||||
| #define EIGEN_NO_HIP | ||||
|  | ||||
| #include <Grid/Eigen/Dense> | ||||
| #include <Grid/Eigen/unsupported/CXX11/Tensor> | ||||
|  | ||||
| /* NVCC restore */ | ||||
| #ifdef __NVCC__REDEFINE__ | ||||
| #pragma pop_macro("__CUDACC__") | ||||
| #pragma pop_macro("__NVCC__") | ||||
| #pragma pop_macro("__CUDA_ARCH__") | ||||
| #pragma pop | ||||
| #endif | ||||
|  | ||||
| /*SYCL restore*/ | ||||
| #ifdef __SYCL__REDEFINE__ | ||||
| #pragma pop_macro("__SYCL_DEVICE_ONLY__") | ||||
| #pragma pop | ||||
| #endif | ||||
|  | ||||
| /*HIP restore*/ | ||||
| #ifdef __HIP__REDEFINE__ | ||||
| #pragma pop_macro("__HIP_DEVICE_COMPILE__") | ||||
| #pragma pop | ||||
| #endif | ||||
|  | ||||
| #if defined __GNUC__ | ||||
| #pragma GCC diagnostic pop | ||||
| #endif | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -1 +0,0 @@ | ||||
| #include <Grid/Grid_Eigen_Dense.h> | ||||
| @@ -21,8 +21,7 @@ if BUILD_HDF5 | ||||
|   extra_headers+=serialisation/Hdf5Type.h | ||||
| endif | ||||
|  | ||||
|  | ||||
| all: version-cache Version.h | ||||
| all: version-cache | ||||
|  | ||||
| version-cache: | ||||
| 	@if [ `git status --porcelain | grep -v '??' | wc -l` -gt 0 ]; then\ | ||||
| @@ -43,7 +42,7 @@ version-cache: | ||||
| 	fi;\ | ||||
| 	rm -f vertmp | ||||
|  | ||||
| Version.h: version-cache | ||||
| Version.h: | ||||
| 	cp version-cache Version.h | ||||
|  | ||||
| .PHONY: version-cache | ||||
| @@ -54,23 +53,6 @@ Version.h: version-cache | ||||
| include Make.inc | ||||
| include Eigen.inc | ||||
|  | ||||
| extra_sources+=$(WILS_FERMION_FILES) | ||||
| extra_sources+=$(STAG_FERMION_FILES) | ||||
| if BUILD_ZMOBIUS | ||||
|   extra_sources+=$(ZWILS_FERMION_FILES) | ||||
| endif | ||||
| if BUILD_GPARITY | ||||
|   extra_sources+=$(GP_FERMION_FILES) | ||||
| endif | ||||
| if BUILD_FERMION_REPS | ||||
|   extra_sources+=$(ADJ_FERMION_FILES) | ||||
|   extra_sources+=$(TWOIND_FERMION_FILES) | ||||
| endif | ||||
| if BUILD_SP | ||||
|     extra_sources+=$(SP_FERMION_FILES) | ||||
|     extra_sources+=$(SP_TWOIND_FERMION_FILES) | ||||
| endif | ||||
|  | ||||
| lib_LIBRARIES = libGrid.a | ||||
|  | ||||
| CCFILES += $(extra_sources) | ||||
|   | ||||
| @@ -29,34 +29,23 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #ifndef GRID_ALGORITHMS_H | ||||
| #define GRID_ALGORITHMS_H | ||||
|  | ||||
| NAMESPACE_CHECK(algorithms); | ||||
| #include <Grid/algorithms/SparseMatrix.h> | ||||
| #include <Grid/algorithms/LinearOperator.h> | ||||
| #include <Grid/algorithms/Preconditioner.h> | ||||
| NAMESPACE_CHECK(SparseMatrix); | ||||
|  | ||||
| #include <Grid/algorithms/approx/Zolotarev.h> | ||||
| #include <Grid/algorithms/approx/Chebyshev.h> | ||||
| #include <Grid/algorithms/approx/JacobiPolynomial.h> | ||||
| #include <Grid/algorithms/approx/Remez.h> | ||||
| #include <Grid/algorithms/approx/MultiShiftFunction.h> | ||||
| #include <Grid/algorithms/approx/Forecast.h> | ||||
| #include <Grid/algorithms/approx/RemezGeneral.h> | ||||
| #include <Grid/algorithms/approx/ZMobius.h> | ||||
| NAMESPACE_CHECK(approx); | ||||
|  | ||||
| #include <Grid/algorithms/iterative/Deflation.h> | ||||
| #include <Grid/algorithms/iterative/ConjugateGradient.h> | ||||
| NAMESPACE_CHECK(ConjGrad); | ||||
| #include <Grid/algorithms/iterative/BiCGSTAB.h> | ||||
| NAMESPACE_CHECK(BiCGSTAB); | ||||
| #include <Grid/algorithms/iterative/ConjugateResidual.h> | ||||
| #include <Grid/algorithms/iterative/NormalEquations.h> | ||||
| #include <Grid/algorithms/iterative/SchurRedBlack.h> | ||||
| #include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h> | ||||
| #include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h> | ||||
| #include <Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h> | ||||
| #include <Grid/algorithms/iterative/ConjugateGradientMixedPrecBatched.h> | ||||
| #include <Grid/algorithms/iterative/BiCGSTABMixedPrec.h> | ||||
| #include <Grid/algorithms/iterative/BlockConjugateGradient.h> | ||||
| #include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h> | ||||
| #include <Grid/algorithms/iterative/MinimalResidual.h> | ||||
| @@ -66,11 +55,13 @@ NAMESPACE_CHECK(BiCGSTAB); | ||||
| #include <Grid/algorithms/iterative/FlexibleCommunicationAvoidingGeneralisedMinimalResidual.h> | ||||
| #include <Grid/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h> | ||||
| #include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h> | ||||
| #include <Grid/algorithms/iterative/PowerMethod.h> | ||||
|  | ||||
| NAMESPACE_CHECK(PowerMethod); | ||||
| #include <Grid/algorithms/CoarsenedMatrix.h> | ||||
| NAMESPACE_CHECK(CoarsendMatrix); | ||||
| #include <Grid/algorithms/FFT.h> | ||||
|  | ||||
| // EigCg | ||||
| // Pcg | ||||
| // Hdcg | ||||
| // GCR | ||||
| // etc.. | ||||
|  | ||||
| #endif | ||||
|   | ||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							| @@ -1,3 +1,4 @@ | ||||
|  | ||||
|     /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
| @@ -29,14 +30,15 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #define _GRID_FFT_H_ | ||||
|  | ||||
| #ifdef HAVE_FFTW | ||||
| #if defined(USE_MKL) || defined(GRID_SYCL) | ||||
| #ifdef USE_MKL | ||||
| #include <fftw/fftw3.h> | ||||
| #else | ||||
| #include <fftw3.h> | ||||
| #endif | ||||
| #endif | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| namespace Grid { | ||||
|  | ||||
|   template<class scalar> struct FFTW { }; | ||||
|  | ||||
| @@ -113,9 +115,9 @@ private: | ||||
|     double flops_call; | ||||
|     uint64_t usec; | ||||
|      | ||||
|   Coordinate dimensions; | ||||
|   Coordinate processors; | ||||
|   Coordinate processor_coor; | ||||
|     std::vector<int> dimensions; | ||||
|     std::vector<int> processors; | ||||
|     std::vector<int> processor_coor; | ||||
|      | ||||
|   public: | ||||
|      | ||||
| @@ -135,8 +137,8 @@ public: | ||||
|     { | ||||
|       flops=0; | ||||
|       usec =0; | ||||
|     Coordinate layout(Nd,1); | ||||
|     sgrid = new GridCartesian(dimensions,layout,processors,*grid); | ||||
|       std::vector<int> layout(Nd,1); | ||||
|       sgrid = new GridCartesian(dimensions,layout,processors); | ||||
|     }; | ||||
|      | ||||
|     ~FFT ( void)  { | ||||
| @@ -144,10 +146,10 @@ public: | ||||
|     } | ||||
|      | ||||
|     template<class vobj> | ||||
|   void FFT_dim_mask(Lattice<vobj> &result,const Lattice<vobj> &source,Coordinate mask,int sign){ | ||||
|     void FFT_dim_mask(Lattice<vobj> &result,const Lattice<vobj> &source,std::vector<int> mask,int sign){ | ||||
|  | ||||
|     conformable(result.Grid(),vgrid); | ||||
|     conformable(source.Grid(),vgrid); | ||||
|       conformable(result._grid,vgrid); | ||||
|       conformable(source._grid,vgrid); | ||||
|       Lattice<vobj> tmp(vgrid); | ||||
|       tmp = source; | ||||
|       for(int d=0;d<Nd;d++){ | ||||
| @@ -160,7 +162,7 @@ public: | ||||
|  | ||||
|     template<class vobj> | ||||
|     void FFT_all_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int sign){ | ||||
|     Coordinate mask(Nd,1); | ||||
|       std::vector<int> mask(Nd,1); | ||||
|       FFT_dim_mask(result,source,mask,sign); | ||||
|     } | ||||
|  | ||||
| @@ -170,26 +172,26 @@ public: | ||||
| #ifndef HAVE_FFTW | ||||
|       assert(0); | ||||
| #else | ||||
|     conformable(result.Grid(),vgrid); | ||||
|     conformable(source.Grid(),vgrid); | ||||
|       conformable(result._grid,vgrid); | ||||
|       conformable(source._grid,vgrid); | ||||
|  | ||||
|       int L = vgrid->_ldimensions[dim]; | ||||
|       int G = vgrid->_fdimensions[dim]; | ||||
|        | ||||
|     Coordinate layout(Nd,1); | ||||
|     Coordinate pencil_gd(vgrid->_fdimensions); | ||||
|       std::vector<int> layout(Nd,1); | ||||
|       std::vector<int> pencil_gd(vgrid->_fdimensions); | ||||
|        | ||||
|       pencil_gd[dim] = G*processors[dim]; | ||||
|        | ||||
|       // Pencil global vol LxLxGxLxL per node | ||||
|     GridCartesian pencil_g(pencil_gd,layout,processors,*vgrid); | ||||
|       GridCartesian pencil_g(pencil_gd,layout,processors); | ||||
|        | ||||
|       // Construct pencils | ||||
|       typedef typename vobj::scalar_object sobj; | ||||
|       typedef typename sobj::scalar_type   scalar; | ||||
|        | ||||
|       Lattice<sobj> pgbuf(&pencil_g); | ||||
|     autoView(pgbuf_v , pgbuf, CpuWrite); | ||||
|        | ||||
|  | ||||
|       typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar; | ||||
|       typedef typename FFTW<scalar>::FFTW_plan   FFTW_plan; | ||||
| @@ -215,8 +217,8 @@ public: | ||||
|        | ||||
|       FFTW_plan p; | ||||
|       { | ||||
|       FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0]; | ||||
|       FFTW_scalar *out= (FFTW_scalar *)&pgbuf_v[0]; | ||||
|         FFTW_scalar *in = (FFTW_scalar *)&pgbuf._odata[0]; | ||||
|         FFTW_scalar *out= (FFTW_scalar *)&pgbuf._odata[0]; | ||||
|         p = FFTW<scalar>::fftw_plan_many_dft(rank,n,howmany, | ||||
|                                              in,inembed, | ||||
|                                              istride,idist, | ||||
| @@ -226,23 +228,26 @@ public: | ||||
|       } | ||||
|        | ||||
|       // Barrel shift and collect global pencil | ||||
|     Coordinate lcoor(Nd), gcoor(Nd); | ||||
|       std::vector<int> lcoor(Nd), gcoor(Nd); | ||||
|       result = source; | ||||
|       int pc = processor_coor[dim]; | ||||
|       for(int p=0;p<processors[dim];p++) { | ||||
|         PARALLEL_REGION | ||||
|         { | ||||
| 	autoView(r_v,result,CpuRead); | ||||
| 	autoView(p_v,pgbuf,CpuWrite); | ||||
| 	thread_for(idx, sgrid->lSites(),{ | ||||
|           Coordinate cbuf(Nd); | ||||
|           std::vector<int> cbuf(Nd); | ||||
|           sobj s; | ||||
|            | ||||
|           PARALLEL_FOR_LOOP_INTERN | ||||
|           for(int idx=0;idx<sgrid->lSites();idx++) { | ||||
|             sgrid->LocalIndexToLocalCoor(idx,cbuf); | ||||
| 	  peekLocalSite(s,r_v,cbuf); | ||||
|             peekLocalSite(s,result,cbuf); | ||||
| 	    cbuf[dim]+=((pc+p) % processors[dim])*L; | ||||
| 	  pokeLocalSite(s,p_v,cbuf); | ||||
|         }); | ||||
| 	    //            cbuf[dim]+=p*L; | ||||
|             pokeLocalSite(s,pgbuf,cbuf); | ||||
|           } | ||||
|       if (p != processors[dim] - 1) { | ||||
|         } | ||||
|         if (p != processors[dim] - 1) | ||||
|         { | ||||
|           result = Cshift(result,dim,L); | ||||
|         } | ||||
|       } | ||||
| @@ -251,15 +256,20 @@ public: | ||||
|       int NN=pencil_g.lSites(); | ||||
|       GridStopWatch timer; | ||||
|       timer.Start(); | ||||
|     thread_for( idx,NN,{ | ||||
|         Coordinate cbuf(Nd); | ||||
|       PARALLEL_REGION | ||||
|       { | ||||
|         std::vector<int> cbuf(Nd); | ||||
|          | ||||
|         PARALLEL_FOR_LOOP_INTERN | ||||
|         for(int idx=0;idx<NN;idx++) { | ||||
|           pencil_g.LocalIndexToLocalCoor(idx, cbuf); | ||||
|           if ( cbuf[dim] == 0 ) {  // restricts loop to plane at lcoor[dim]==0 | ||||
| 	  FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[idx]; | ||||
| 	  FFTW_scalar *out= (FFTW_scalar *)&pgbuf_v[idx]; | ||||
|             FFTW_scalar *in = (FFTW_scalar *)&pgbuf._odata[idx]; | ||||
|             FFTW_scalar *out= (FFTW_scalar *)&pgbuf._odata[idx]; | ||||
|             FFTW<scalar>::fftw_execute_dft(p,in,out); | ||||
|           } | ||||
|     }); | ||||
|         } | ||||
|       } | ||||
|       timer.Stop(); | ||||
|        | ||||
|       // performance counting | ||||
| @@ -270,18 +280,19 @@ public: | ||||
|       flops+= flops_call*NN; | ||||
|        | ||||
|       // writing out result | ||||
|       PARALLEL_REGION | ||||
|       { | ||||
|       autoView(pgbuf_v,pgbuf,CpuRead); | ||||
|       autoView(result_v,result,CpuWrite); | ||||
|       thread_for(idx,sgrid->lSites(),{ | ||||
| 	Coordinate clbuf(Nd), cgbuf(Nd); | ||||
|         std::vector<int> clbuf(Nd), cgbuf(Nd); | ||||
|         sobj s; | ||||
|          | ||||
|         PARALLEL_FOR_LOOP_INTERN | ||||
|         for(int idx=0;idx<sgrid->lSites();idx++) { | ||||
|           sgrid->LocalIndexToLocalCoor(idx,clbuf); | ||||
|           cgbuf = clbuf; | ||||
|           cgbuf[dim] = clbuf[dim]+L*pc; | ||||
| 	peekLocalSite(s,pgbuf_v,cgbuf); | ||||
| 	pokeLocalSite(s,result_v,clbuf); | ||||
|       }); | ||||
|           peekLocalSite(s,pgbuf,cgbuf); | ||||
|           pokeLocalSite(s,result,clbuf); | ||||
|         } | ||||
|       } | ||||
|       result = result*div; | ||||
|        | ||||
| @@ -290,7 +301,6 @@ public: | ||||
| #endif | ||||
|     } | ||||
|   }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -26,15 +26,16 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
|     *************************************************************************************/ | ||||
|     /*  END LEGAL */ | ||||
| #pragma once  | ||||
| #ifndef  GRID_ALGORITHM_LINEAR_OP_H | ||||
| #define  GRID_ALGORITHM_LINEAR_OP_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // LinearOperators Take a something and return a something. | ||||
|   ///////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // | ||||
| // Hopefully linearity is satisfied and the AdjOp is indeed the Hermitian Conjugateugate (transpose if real): | ||||
|   // Hopefully linearity is satisfied and the AdjOp is indeed the Hermitian conjugateugate (transpose if real): | ||||
|   //SBase | ||||
|   //   i)  F(a x + b y) = aF(x) + b F(y). | ||||
|   //  ii)  <x|Op|y> = <y|AdjOp|x>^\ast | ||||
| @@ -43,16 +44,15 @@ NAMESPACE_BEGIN(Grid); | ||||
|   ///////////////////////////////////////////////////////////////////////////////////////////// | ||||
|     template<class Field> class LinearOperatorBase { | ||||
|     public: | ||||
|  | ||||
|       // Support for coarsening to a multigrid | ||||
|       virtual void OpDiag (const Field &in, Field &out) = 0; // Abstract base | ||||
|       virtual void OpDir  (const Field &in, Field &out,int dir,int disp) = 0; // Abstract base | ||||
|   virtual void OpDirAll  (const Field &in, std::vector<Field> &out) = 0; // Abstract base | ||||
|  | ||||
|       virtual void Op     (const Field &in, Field &out) = 0; // Abstract base | ||||
|       virtual void AdjOp  (const Field &in, Field &out) = 0; // Abstract base | ||||
|       virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2) = 0; | ||||
|       virtual void HermOp(const Field &in, Field &out)=0; | ||||
|   virtual ~LinearOperatorBase(){}; | ||||
|     }; | ||||
|  | ||||
|  | ||||
| @@ -84,9 +84,6 @@ public: | ||||
|       void OpDir  (const Field &in, Field &out,int dir,int disp) { | ||||
| 	_Mat.Mdir(in,out,dir,disp); | ||||
|       } | ||||
|   void OpDirAll  (const Field &in, std::vector<Field> &out){ | ||||
|     _Mat.MdirAll(in,out); | ||||
|   }; | ||||
|       void Op     (const Field &in, Field &out){ | ||||
| 	_Mat.M(in,out); | ||||
|       } | ||||
| @@ -94,13 +91,11 @@ public: | ||||
| 	_Mat.Mdag(in,out); | ||||
|       } | ||||
|       void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
|     _Mat.MdagM(in,out); | ||||
|     ComplexD dot = innerProduct(in,out); | ||||
|     n1=real(dot); | ||||
|     n2=norm2(out); | ||||
| 	_Mat.MdagM(in,out,n1,n2); | ||||
|       } | ||||
|       void HermOp(const Field &in, Field &out){ | ||||
|     _Mat.MdagM(in,out); | ||||
| 	RealD n1,n2; | ||||
| 	HermOpAndNorm(in,out,n1,n2); | ||||
|       } | ||||
|     }; | ||||
|  | ||||
| @@ -122,9 +117,6 @@ public: | ||||
| 	_Mat.Mdir(in,out,dir,disp); | ||||
| 	assert(0); | ||||
|       } | ||||
|   void OpDirAll  (const Field &in, std::vector<Field> &out){ | ||||
|     assert(0); | ||||
|   }; | ||||
|       void Op     (const Field &in, Field &out){ | ||||
| 	_Mat.M(in,out); | ||||
| 	assert(0); | ||||
| @@ -134,14 +126,17 @@ public: | ||||
| 	assert(0); | ||||
|       } | ||||
|       void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
|     HermOp(in,out); | ||||
|     ComplexD dot = innerProduct(in,out); | ||||
| 	_Mat.MdagM(in,out,n1,n2); | ||||
| 	out = out + _shift*in; | ||||
|  | ||||
| 	ComplexD dot;	 | ||||
| 	dot= innerProduct(in,out); | ||||
| 	n1=real(dot); | ||||
| 	n2=norm2(out); | ||||
|       } | ||||
|       void HermOp(const Field &in, Field &out){ | ||||
|     _Mat.MdagM(in,out); | ||||
|     out = out + _shift*in; | ||||
| 	RealD n1,n2; | ||||
| 	HermOpAndNorm(in,out,n1,n2); | ||||
|       } | ||||
|     }; | ||||
|  | ||||
| @@ -160,9 +155,6 @@ public: | ||||
|       void OpDir  (const Field &in, Field &out,int dir,int disp) { | ||||
| 	_Mat.Mdir(in,out,dir,disp); | ||||
|       } | ||||
|   void OpDirAll  (const Field &in, std::vector<Field> &out){ | ||||
|     _Mat.MdirAll(in,out); | ||||
|   }; | ||||
|       void Op     (const Field &in, Field &out){ | ||||
| 	_Mat.M(in,out); | ||||
|       } | ||||
| @@ -170,7 +162,8 @@ public: | ||||
| 	_Mat.M(in,out); | ||||
|       } | ||||
|       void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
|     HermOp(in,out); | ||||
| 	_Mat.M(in,out); | ||||
| 	 | ||||
| 	ComplexD dot= innerProduct(in,out); n1=real(dot); | ||||
| 	n2=norm2(out); | ||||
|       } | ||||
| @@ -179,35 +172,6 @@ public: | ||||
|       } | ||||
|     }; | ||||
|  | ||||
| template<class Matrix,class Field> | ||||
| class NonHermitianLinearOperator : public LinearOperatorBase<Field> { | ||||
|   Matrix &_Mat; | ||||
| public: | ||||
|   NonHermitianLinearOperator(Matrix &Mat): _Mat(Mat){}; | ||||
|   // Support for coarsening to a multigrid | ||||
|   void OpDiag (const Field &in, Field &out) { | ||||
|     _Mat.Mdiag(in,out); | ||||
|   } | ||||
|   void OpDir  (const Field &in, Field &out,int dir,int disp) { | ||||
|     _Mat.Mdir(in,out,dir,disp); | ||||
|   } | ||||
|   void OpDirAll  (const Field &in, std::vector<Field> &out){ | ||||
|     _Mat.MdirAll(in,out); | ||||
|   }; | ||||
|   void Op     (const Field &in, Field &out){ | ||||
|     _Mat.M(in,out); | ||||
|   } | ||||
|   void AdjOp     (const Field &in, Field &out){ | ||||
|     _Mat.Mdag(in,out); | ||||
|   } | ||||
|   void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
|     assert(0); | ||||
|   } | ||||
|   void HermOp(const Field &in, Field &out){ | ||||
|     assert(0); | ||||
|   } | ||||
| }; | ||||
|  | ||||
|     ////////////////////////////////////////////////////////// | ||||
|     // Even Odd Schur decomp operators; there are several | ||||
|     // ways to introduce the even odd checkerboarding | ||||
| @@ -216,24 +180,21 @@ public: | ||||
|     template<class Field> | ||||
|       class SchurOperatorBase :  public LinearOperatorBase<Field> { | ||||
|     public: | ||||
|   virtual  void Mpc      (const Field &in, Field &out) =0; | ||||
|   virtual  void MpcDag   (const Field &in, Field &out) =0; | ||||
|   virtual  void MpcDagMpc(const Field &in, Field &out) { | ||||
|     Field tmp(in.Grid()); | ||||
|     tmp.Checkerboard() = in.Checkerboard(); | ||||
|     Mpc(in,tmp); | ||||
|     MpcDag(tmp,out); | ||||
|       virtual  RealD Mpc      (const Field &in, Field &out) =0; | ||||
|       virtual  RealD MpcDag   (const Field &in, Field &out) =0; | ||||
|       virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) { | ||||
|       Field tmp(in._grid); | ||||
|       tmp.checkerboard = in.checkerboard; | ||||
| 	ni=Mpc(in,tmp); | ||||
| 	no=MpcDag(tmp,out); | ||||
|       } | ||||
|       virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
|     out.Checkerboard() = in.Checkerboard(); | ||||
|     MpcDagMpc(in,out); | ||||
|     ComplexD dot= innerProduct(in,out);  | ||||
|     n1=real(dot); | ||||
|     n2=norm2(out); | ||||
|       out.checkerboard = in.checkerboard; | ||||
| 	MpcDagMpc(in,out,n1,n2); | ||||
|       } | ||||
|       virtual void HermOp(const Field &in, Field &out){ | ||||
|     out.Checkerboard() = in.Checkerboard(); | ||||
|     MpcDagMpc(in,out); | ||||
| 	RealD n1,n2; | ||||
| 	HermOpAndNorm(in,out,n1,n2); | ||||
|       } | ||||
|       void Op     (const Field &in, Field &out){ | ||||
| 	Mpc(in,out); | ||||
| @@ -248,33 +209,35 @@ class SchurOperatorBase :  public LinearOperatorBase<Field> { | ||||
|       void OpDir  (const Field &in, Field &out,int dir,int disp) { | ||||
| 	assert(0); | ||||
|       } | ||||
|   void OpDirAll  (const Field &in, std::vector<Field> &out){ | ||||
|     assert(0); | ||||
|   }; | ||||
|     }; | ||||
|     template<class Matrix,class Field> | ||||
|       class SchurDiagMooeeOperator :  public SchurOperatorBase<Field> { | ||||
|  public: | ||||
|     protected: | ||||
|       Matrix &_Mat; | ||||
|     public: | ||||
|       SchurDiagMooeeOperator (Matrix &Mat): _Mat(Mat){}; | ||||
|     virtual  void Mpc      (const Field &in, Field &out) { | ||||
|       Field tmp(in.Grid()); | ||||
|       tmp.Checkerboard() = !in.Checkerboard(); | ||||
|       virtual  RealD Mpc      (const Field &in, Field &out) { | ||||
|       Field tmp(in._grid); | ||||
|       tmp.checkerboard = !in.checkerboard; | ||||
| 	//std::cout <<"grid pointers: in._grid="<< in._grid << " out._grid=" << out._grid << "  _Mat.Grid=" << _Mat.Grid() << " _Mat.RedBlackGrid=" << _Mat.RedBlackGrid() << std::endl; | ||||
|  | ||||
| 	_Mat.Meooe(in,tmp); | ||||
| 	_Mat.MooeeInv(tmp,out); | ||||
| 	_Mat.Meooe(out,tmp); | ||||
|  | ||||
|       //std::cout << "cb in " << in.checkerboard << "  cb out " << out.checkerboard << std::endl; | ||||
| 	_Mat.Mooee(in,out); | ||||
|       axpy(out,-1.0,tmp,out); | ||||
| 	return axpy_norm(out,-1.0,tmp,out); | ||||
|       } | ||||
|     virtual void MpcDag   (const Field &in, Field &out){ | ||||
|       Field tmp(in.Grid()); | ||||
|       virtual  RealD MpcDag   (const Field &in, Field &out){ | ||||
| 	Field tmp(in._grid); | ||||
|  | ||||
| 	_Mat.MeooeDag(in,tmp); | ||||
|         _Mat.MooeeInvDag(tmp,out); | ||||
| 	_Mat.MeooeDag(out,tmp); | ||||
|  | ||||
| 	_Mat.MooeeDag(in,out); | ||||
|       axpy(out,-1.0,tmp,out); | ||||
| 	return axpy_norm(out,-1.0,tmp,out); | ||||
|       } | ||||
|     }; | ||||
|     template<class Matrix,class Field> | ||||
| @@ -284,23 +247,25 @@ template<class Matrix,class Field> | ||||
|     public: | ||||
|       SchurDiagOneOperator (Matrix &Mat): _Mat(Mat){}; | ||||
|  | ||||
|     virtual void Mpc      (const Field &in, Field &out) { | ||||
|       Field tmp(in.Grid()); | ||||
|       virtual  RealD Mpc      (const Field &in, Field &out) { | ||||
| 	Field tmp(in._grid); | ||||
|  | ||||
| 	_Mat.Meooe(in,out); | ||||
| 	_Mat.MooeeInv(out,tmp); | ||||
| 	_Mat.Meooe(tmp,out); | ||||
| 	_Mat.MooeeInv(out,tmp); | ||||
|       axpy(out,-1.0,tmp,in); | ||||
|  | ||||
| 	return axpy_norm(out,-1.0,tmp,in); | ||||
|       } | ||||
|     virtual void MpcDag   (const Field &in, Field &out){ | ||||
|       Field tmp(in.Grid()); | ||||
|       virtual  RealD MpcDag   (const Field &in, Field &out){ | ||||
| 	Field tmp(in._grid); | ||||
|  | ||||
| 	_Mat.MooeeInvDag(in,out); | ||||
| 	_Mat.MeooeDag(out,tmp); | ||||
| 	_Mat.MooeeInvDag(tmp,out); | ||||
| 	_Mat.MeooeDag(out,tmp); | ||||
|       axpy(out,-1.0,tmp,in); | ||||
|  | ||||
| 	return axpy_norm(out,-1.0,tmp,in); | ||||
|       } | ||||
|     }; | ||||
|     template<class Matrix,class Field> | ||||
| @@ -310,159 +275,30 @@ template<class Matrix,class Field> | ||||
|     public: | ||||
|       SchurDiagTwoOperator (Matrix &Mat): _Mat(Mat){}; | ||||
|  | ||||
|     virtual void Mpc      (const Field &in, Field &out) { | ||||
|       Field tmp(in.Grid()); | ||||
|       virtual  RealD Mpc      (const Field &in, Field &out) { | ||||
| 	Field tmp(in._grid); | ||||
|  | ||||
| 	_Mat.MooeeInv(in,out); | ||||
| 	_Mat.Meooe(out,tmp); | ||||
| 	_Mat.MooeeInv(tmp,out); | ||||
| 	_Mat.Meooe(out,tmp); | ||||
|  | ||||
|       axpy(out,-1.0,tmp,in); | ||||
| 	return axpy_norm(out,-1.0,tmp,in); | ||||
|       } | ||||
|     virtual  void MpcDag   (const Field &in, Field &out){ | ||||
|       Field tmp(in.Grid()); | ||||
|       virtual  RealD MpcDag   (const Field &in, Field &out){ | ||||
| 	Field tmp(in._grid); | ||||
|  | ||||
| 	_Mat.MeooeDag(in,out); | ||||
| 	_Mat.MooeeInvDag(out,tmp); | ||||
| 	_Mat.MeooeDag(tmp,out); | ||||
| 	_Mat.MooeeInvDag(out,tmp); | ||||
|  | ||||
|       axpy(out,-1.0,tmp,in); | ||||
| 	return axpy_norm(out,-1.0,tmp,in); | ||||
|       } | ||||
|     }; | ||||
|  | ||||
| template<class Field> | ||||
| class NonHermitianSchurOperatorBase :  public LinearOperatorBase<Field>  | ||||
| { | ||||
|  public: | ||||
|   virtual void  Mpc      (const Field& in, Field& out) = 0; | ||||
|   virtual void  MpcDag   (const Field& in, Field& out) = 0; | ||||
|   virtual void  MpcDagMpc(const Field& in, Field& out) { | ||||
|     Field tmp(in.Grid()); | ||||
|     tmp.Checkerboard() = in.Checkerboard(); | ||||
|     Mpc(in,tmp); | ||||
|     MpcDag(tmp,out); | ||||
|   } | ||||
|   virtual void HermOpAndNorm(const Field& in, Field& out, RealD& n1, RealD& n2) { | ||||
|     assert(0); | ||||
|   } | ||||
|   virtual void HermOp(const Field& in, Field& out) { | ||||
|     assert(0); | ||||
|   } | ||||
|   void Op(const Field& in, Field& out) { | ||||
|     Mpc(in, out); | ||||
|   } | ||||
|   void AdjOp(const Field& in, Field& out) {  | ||||
|     MpcDag(in, out); | ||||
|   } | ||||
|   // Support for coarsening to a multigrid | ||||
|   void OpDiag(const Field& in, Field& out) { | ||||
|     assert(0); // must coarsen the unpreconditioned system | ||||
|   } | ||||
|   void OpDir(const Field& in, Field& out, int dir, int disp) { | ||||
|     assert(0); | ||||
|   } | ||||
|   void OpDirAll(const Field& in, std::vector<Field>& out){ | ||||
|     assert(0); | ||||
|   }; | ||||
| }; | ||||
|  | ||||
| template<class Matrix, class Field> | ||||
| class NonHermitianSchurDiagMooeeOperator :  public NonHermitianSchurOperatorBase<Field>  | ||||
| { | ||||
|  public: | ||||
|   Matrix& _Mat; | ||||
|  NonHermitianSchurDiagMooeeOperator(Matrix& Mat): _Mat(Mat){}; | ||||
|   virtual void Mpc(const Field& in, Field& out) { | ||||
|     Field tmp(in.Grid()); | ||||
|     tmp.Checkerboard() = !in.Checkerboard(); | ||||
|      | ||||
|     _Mat.Meooe(in, tmp); | ||||
|     _Mat.MooeeInv(tmp, out); | ||||
|     _Mat.Meooe(out, tmp); | ||||
|      | ||||
|     _Mat.Mooee(in, out); | ||||
|      | ||||
|     axpy(out, -1.0, tmp, out); | ||||
|   } | ||||
|   virtual void MpcDag(const Field& in, Field& out) { | ||||
|     Field tmp(in.Grid()); | ||||
|      | ||||
|     _Mat.MeooeDag(in, tmp); | ||||
|     _Mat.MooeeInvDag(tmp, out); | ||||
|     _Mat.MeooeDag(out, tmp); | ||||
| 	   | ||||
|     _Mat.MooeeDag(in, out); | ||||
|      | ||||
|     axpy(out, -1.0, tmp, out); | ||||
|   } | ||||
| }; | ||||
|      | ||||
| template<class Matrix,class Field> | ||||
| class NonHermitianSchurDiagOneOperator : public NonHermitianSchurOperatorBase<Field>  | ||||
| { | ||||
|  protected: | ||||
|   Matrix &_Mat; | ||||
|    | ||||
|  public: | ||||
|   NonHermitianSchurDiagOneOperator (Matrix& Mat): _Mat(Mat){}; | ||||
|   virtual void Mpc(const Field& in, Field& out) { | ||||
|     Field tmp(in.Grid()); | ||||
| 	   | ||||
|     _Mat.Meooe(in, out); | ||||
|     _Mat.MooeeInv(out, tmp); | ||||
|     _Mat.Meooe(tmp, out); | ||||
|     _Mat.MooeeInv(out, tmp); | ||||
|  | ||||
|     axpy(out, -1.0, tmp, in); | ||||
|   } | ||||
|   virtual void MpcDag(const Field& in, Field& out) { | ||||
|     Field tmp(in.Grid()); | ||||
|      | ||||
|     _Mat.MooeeInvDag(in, out); | ||||
|     _Mat.MeooeDag(out, tmp); | ||||
|     _Mat.MooeeInvDag(tmp, out); | ||||
|     _Mat.MeooeDag(out, tmp); | ||||
|      | ||||
|     axpy(out, -1.0, tmp, in); | ||||
|   } | ||||
| }; | ||||
|  | ||||
| template<class Matrix, class Field> | ||||
| class NonHermitianSchurDiagTwoOperator : public NonHermitianSchurOperatorBase<Field>  | ||||
| { | ||||
|  protected: | ||||
|   Matrix& _Mat; | ||||
|    | ||||
|  public: | ||||
|  NonHermitianSchurDiagTwoOperator(Matrix& Mat): _Mat(Mat){}; | ||||
|  | ||||
|   virtual void Mpc(const Field& in, Field& out) { | ||||
|     Field tmp(in.Grid()); | ||||
|      | ||||
|     _Mat.MooeeInv(in, out); | ||||
|     _Mat.Meooe(out, tmp); | ||||
|     _Mat.MooeeInv(tmp, out); | ||||
|     _Mat.Meooe(out, tmp); | ||||
|  | ||||
|     axpy(out, -1.0, tmp, in); | ||||
|   } | ||||
|   virtual void MpcDag(const Field& in, Field& out) { | ||||
|     Field tmp(in.Grid()); | ||||
|      | ||||
|     _Mat.MeooeDag(in, out); | ||||
|     _Mat.MooeeInvDag(out, tmp); | ||||
|     _Mat.MeooeDag(tmp, out); | ||||
|     _Mat.MooeeInvDag(out, tmp); | ||||
|  | ||||
|     axpy(out, -1.0, tmp, in); | ||||
|   } | ||||
| }; | ||||
|  | ||||
|     /////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|     // Left  handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) psi = eta  -->  ( 1 - Moo^-1 Moe Mee^-1 Meo ) psi = Moo^-1 eta | ||||
| // Right handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) Moo^-1 Moo psi = eta  -->  ( 1 - Moe Mee^-1 Meo Moo^-1) phi=eta ; psi = Moo^-1 phi | ||||
|     // Right handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) Moo^-1 Moo psi = eta  -->  ( 1 - Moe Mee^-1 Meo ) Moo^-1 phi=eta ; psi = Moo^-1 phi | ||||
|     /////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|     template<class Matrix,class Field> using SchurDiagOneRH = SchurDiagTwoOperator<Matrix,Field> ; | ||||
|     template<class Matrix,class Field> using SchurDiagOneLH = SchurDiagOneOperator<Matrix,Field> ; | ||||
| @@ -475,45 +311,69 @@ class SchurStaggeredOperator :  public SchurOperatorBase<Field> { | ||||
|       Matrix &_Mat; | ||||
|       Field tmp; | ||||
|       RealD mass; | ||||
|       double tMpc; | ||||
|       double tIP; | ||||
|       double tMeo; | ||||
|       double taxpby_norm; | ||||
|       uint64_t ncall; | ||||
|     public: | ||||
|       void Report(void) | ||||
|       { | ||||
| 	std::cout << GridLogMessage << " HermOpAndNorm.Mpc "<< tMpc/ncall<<" usec "<<std::endl; | ||||
| 	std::cout << GridLogMessage << " HermOpAndNorm.IP  "<< tIP /ncall<<" usec "<<std::endl; | ||||
| 	std::cout << GridLogMessage << " Mpc.MeoMoe        "<< tMeo/ncall<<" usec "<<std::endl; | ||||
| 	std::cout << GridLogMessage << " Mpc.axpby_norm    "<< taxpby_norm/ncall<<" usec "<<std::endl; | ||||
|       } | ||||
|       SchurStaggeredOperator (Matrix &Mat): _Mat(Mat), tmp(_Mat.RedBlackGrid())  | ||||
|       {  | ||||
| 	assert( _Mat.isTrivialEE() ); | ||||
| 	mass = _Mat.Mass(); | ||||
| 	tMpc=0; | ||||
| 	tIP =0; | ||||
|         tMeo=0; | ||||
|         taxpby_norm=0; | ||||
| 	ncall=0; | ||||
|       } | ||||
|       virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
|     Mpc(in,out); | ||||
| 	ncall++; | ||||
| 	tMpc-=usecond(); | ||||
| 	n2 = Mpc(in,out); | ||||
| 	tMpc+=usecond(); | ||||
| 	tIP-=usecond(); | ||||
| 	ComplexD dot= innerProduct(in,out); | ||||
| 	tIP+=usecond(); | ||||
| 	n1 = real(dot); | ||||
|     n2 =0.0; | ||||
|       } | ||||
|       virtual void HermOp(const Field &in, Field &out){ | ||||
|     Mpc(in,out); | ||||
|     //    _Mat.Meooe(in,out); | ||||
|     //    _Mat.Meooe(out,tmp); | ||||
|     //    axpby(out,-1.0,mass*mass,tmp,in); | ||||
|   } | ||||
|   virtual  void Mpc      (const Field &in, Field &out)  | ||||
|   { | ||||
|     Field tmp(in.Grid()); | ||||
|     Field tmp2(in.Grid()); | ||||
| 	 | ||||
|     //    _Mat.Mooee(in,out); | ||||
|     //    _Mat.Mooee(out,tmp); | ||||
|  | ||||
| 	ncall++; | ||||
| 	tMpc-=usecond(); | ||||
| 	_Mat.Meooe(in,out); | ||||
| 	_Mat.Meooe(out,tmp); | ||||
| 	tMpc+=usecond(); | ||||
| 	taxpby_norm-=usecond(); | ||||
| 	axpby(out,-1.0,mass*mass,tmp,in); | ||||
| 	taxpby_norm+=usecond(); | ||||
|       } | ||||
|   virtual  void MpcDag   (const Field &in, Field &out){ | ||||
|     Mpc(in,out); | ||||
|       virtual  RealD Mpc      (const Field &in, Field &out) { | ||||
| 	tMeo-=usecond(); | ||||
| 	_Mat.Meooe(in,out); | ||||
| 	_Mat.Meooe(out,tmp); | ||||
| 	tMeo+=usecond(); | ||||
| 	taxpby_norm-=usecond(); | ||||
| 	RealD nn=axpby_norm(out,-1.0,mass*mass,tmp,in); | ||||
| 	taxpby_norm+=usecond(); | ||||
| 	return nn; | ||||
|       } | ||||
|   virtual void MpcDagMpc(const Field &in, Field &out) { | ||||
|       virtual  RealD MpcDag   (const Field &in, Field &out){ | ||||
| 	return Mpc(in,out); | ||||
|       } | ||||
|       virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) { | ||||
| 	assert(0);// Never need with staggered | ||||
|       } | ||||
|     }; | ||||
|     template<class Matrix,class Field> using SchurStagOperator = SchurStaggeredOperator<Matrix,Field>; | ||||
|  | ||||
|  | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     // Base classes for functions of operators | ||||
|     ///////////////////////////////////////////////////////////// | ||||
| @@ -526,23 +386,11 @@ public: | ||||
| 	  (*this)(Linop,in[k],out[k]); | ||||
| 	} | ||||
|       }; | ||||
|   virtual ~OperatorFunction(){}; | ||||
|     }; | ||||
|  | ||||
|     template<class Field> class LinearFunction { | ||||
|     public: | ||||
|       virtual void operator() (const Field &in, Field &out) = 0; | ||||
|  | ||||
|   virtual void operator() (const std::vector<Field> &in, std::vector<Field> &out) | ||||
|   { | ||||
|     assert(in.size() == out.size()); | ||||
|  | ||||
|     for (unsigned int i = 0; i < in.size(); ++i) | ||||
|     { | ||||
|       (*this)(in[i], out[i]); | ||||
|     } | ||||
|   } | ||||
|   virtual ~LinearFunction(){}; | ||||
|     }; | ||||
|  | ||||
|     template<class Field> class IdentityLinearFunction : public LinearFunction<Field> { | ||||
| @@ -588,7 +436,6 @@ class HermOpOperatorFunction : public OperatorFunction<Field> { | ||||
|     template<typename Field> | ||||
|       class PlainHermOp : public LinearFunction<Field> { | ||||
|     public: | ||||
|   using LinearFunction<Field>::operator(); | ||||
|       LinearOperatorBase<Field> &_Linop; | ||||
|        | ||||
|       PlainHermOp(LinearOperatorBase<Field>& linop) : _Linop(linop)  | ||||
| @@ -602,7 +449,6 @@ public: | ||||
|     template<typename Field> | ||||
|     class FunctionHermOp : public LinearFunction<Field> { | ||||
|     public: | ||||
|   using LinearFunction<Field>::operator();  | ||||
|       OperatorFunction<Field>   & _poly; | ||||
|       LinearOperatorBase<Field> &_Linop; | ||||
|        | ||||
| @@ -619,15 +465,13 @@ class Polynomial : public OperatorFunction<Field> { | ||||
|   private: | ||||
|     std::vector<RealD> Coeffs; | ||||
|   public: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|     Polynomial(std::vector<RealD> &_Coeffs) : Coeffs(_Coeffs) { }; | ||||
|  | ||||
|     // Implement the required interface | ||||
|     void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) { | ||||
|  | ||||
|     Field AtoN(in.Grid()); | ||||
|     Field Mtmp(in.Grid()); | ||||
|       Field AtoN(in._grid); | ||||
|       Field Mtmp(in._grid); | ||||
|       AtoN = in; | ||||
|       out = AtoN*Coeffs[0]; | ||||
|       for(int n=1;n<Coeffs.size();n++){ | ||||
| @@ -638,4 +482,6 @@ public: | ||||
|     }; | ||||
|   }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -28,25 +28,19 @@ Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| #ifndef GRID_PRECONDITIONER_H | ||||
| #define GRID_PRECONDITIONER_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
| template<class Field> using Preconditioner =  LinearFunction<Field> ; | ||||
|  | ||||
| /* | ||||
|   template<class Field> class Preconditioner :  public LinearFunction<Field> {  | ||||
|   using LinearFunction<Field>::operator(); | ||||
|     virtual void operator()(const Field &src, Field & psi)=0; | ||||
|   }; | ||||
| */ | ||||
|  | ||||
|   template<class Field> class TrivialPrecon :  public Preconditioner<Field> {  | ||||
|   public: | ||||
|   using Preconditioner<Field>::operator(); | ||||
|   virtual void operator()(const Field &src, Field & psi){ | ||||
|     void operator()(const Field &src, Field & psi){ | ||||
|       psi = src; | ||||
|     } | ||||
|     TrivialPrecon(void){}; | ||||
|   }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #define  GRID_ALGORITHM_SPARSE_MATRIX_H | ||||
|  | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Interface defining what I expect of a general sparse matrix, such as a Fermion action | ||||
| @@ -38,17 +38,15 @@ template<class Field> class SparseMatrixBase { | ||||
|     public: | ||||
|       virtual GridBase *Grid(void) =0; | ||||
|       // Full checkerboar operations | ||||
|   virtual void  M    (const Field &in, Field &out)=0; | ||||
|   virtual void  Mdag (const Field &in, Field &out)=0; | ||||
|   virtual void  MdagM(const Field &in, Field &out) { | ||||
|     Field tmp (in.Grid()); | ||||
|     M(in,tmp); | ||||
|     Mdag(tmp,out); | ||||
|       virtual RealD M    (const Field &in, Field &out)=0; | ||||
|       virtual RealD Mdag (const Field &in, Field &out)=0; | ||||
|       virtual void  MdagM(const Field &in, Field &out,RealD &ni,RealD &no) { | ||||
| 	Field tmp (in._grid); | ||||
| 	ni=M(in,tmp); | ||||
| 	no=Mdag(tmp,out); | ||||
|       } | ||||
|       virtual  void Mdiag    (const Field &in, Field &out)=0; | ||||
|       virtual  void Mdir     (const Field &in, Field &out,int dir, int disp)=0; | ||||
|   virtual  void MdirAll  (const Field &in, std::vector<Field> &out)=0; | ||||
|   virtual ~SparseMatrixBase() {}; | ||||
|     }; | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -62,7 +60,7 @@ public: | ||||
|       // Query the even even properties to make algorithmic decisions | ||||
|       ////////////////////////////////////////////////////////////////////// | ||||
|       virtual RealD  Mass(void)        { return 0.0; }; | ||||
|   virtual int    ConstEE(void)     { return 1; }; // Disable assumptions unless overridden | ||||
|       virtual int    ConstEE(void)     { return 0; }; // Disable assumptions unless overridden | ||||
|       virtual int    isTrivialEE(void) { return 0; }; // by a derived class that knows better | ||||
|  | ||||
|       // half checkerboard operaions | ||||
| @@ -73,9 +71,9 @@ public: | ||||
|       virtual  void MeooeDag    (const Field &in, Field &out)=0; | ||||
|       virtual  void MooeeDag    (const Field &in, Field &out)=0; | ||||
|       virtual  void MooeeInvDag (const Field &in, Field &out)=0; | ||||
|   virtual ~CheckerBoardedSparseMatrixBase() {}; | ||||
|  | ||||
|     }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -32,7 +32,7 @@ Author: Christoph Lehner <clehner@bnl.gov> | ||||
|  | ||||
| #include <Grid/algorithms/LinearOperator.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
| struct ChebyParams : Serializable { | ||||
|   GRID_SERIALIZABLE_CLASS_MEMBERS(ChebyParams, | ||||
| @@ -47,8 +47,6 @@ struct ChebyParams : Serializable { | ||||
|   template<class Field> | ||||
|   class Chebyshev : public OperatorFunction<Field> { | ||||
|   private: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|     std::vector<RealD> Coeffs; | ||||
|     int order; | ||||
|     RealD hi; | ||||
| @@ -57,7 +55,7 @@ private: | ||||
|   public: | ||||
|     void csv(std::ostream &out){ | ||||
|       RealD diff = hi-lo; | ||||
|     RealD delta = diff*1.0e-9; | ||||
|       RealD delta = (hi-lo)*1.0e-9; | ||||
|       for (RealD x=lo; x<hi; x+=delta) { | ||||
| 	delta*=1.1; | ||||
| 	RealD f = approx(x); | ||||
| @@ -95,24 +93,6 @@ public: | ||||
|       Coeffs[order-1] = 1.; | ||||
|     }; | ||||
|  | ||||
|   // PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's. | ||||
|   // Similar kick effect below the threshold as Lanczos filter approach | ||||
|   void InitLowPass(RealD _lo,RealD _hi,int _order) | ||||
|   { | ||||
|     lo=_lo; | ||||
|     hi=_hi; | ||||
|     order=_order; | ||||
|        | ||||
|     if(order < 2) exit(-1); | ||||
|     Coeffs.resize(order); | ||||
|     for(int j=0;j<order;j++){ | ||||
|       RealD k=(order-1.0); | ||||
|       RealD s=std::cos( j*M_PI*(k+0.5)/order ); | ||||
|       Coeffs[j] = s * 2.0/order; | ||||
|     } | ||||
|      | ||||
|   }; | ||||
|  | ||||
|     void Init(RealD _lo,RealD _hi,int _order, RealD (* func)(RealD)) | ||||
|     { | ||||
|       lo=_lo; | ||||
| @@ -232,10 +212,12 @@ public: | ||||
|     // Implement the required interface | ||||
|     void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) { | ||||
|  | ||||
|     GridBase *grid=in.Grid(); | ||||
|       GridBase *grid=in._grid; | ||||
|  | ||||
|       // std::cout << "Chevyshef(): in._grid="<<in._grid<<std::endl; | ||||
|       //std::cout <<" Linop.Grid()="<<Linop.Grid()<<"Linop.RedBlackGrid()="<<Linop.RedBlackGrid()<<std::endl; | ||||
|  | ||||
|       int vol=grid->gSites(); | ||||
|     typedef typename Field::vector_type vector_type; | ||||
|  | ||||
|       Field T0(grid); T0 = in;   | ||||
|       Field T1(grid);  | ||||
| @@ -250,19 +232,19 @@ public: | ||||
|       RealD xscale = 2.0/(hi-lo); | ||||
|       RealD mscale = -(hi+lo)/(hi-lo); | ||||
|       Linop.HermOp(T0,y); | ||||
|     axpby(T1,xscale,mscale,y,in); | ||||
|       T1=y*xscale+in*mscale; | ||||
|  | ||||
|       // sum = .5 c[0] T0 + c[1] T1 | ||||
|     //    out = ()*T0 + Coeffs[1]*T1; | ||||
|     axpby(out,0.5*Coeffs[0],Coeffs[1],T0,T1); | ||||
|       out = (0.5*Coeffs[0])*T0 + Coeffs[1]*T1; | ||||
|       for(int n=2;n<order;n++){ | ||||
| 	 | ||||
| 	Linop.HermOp(*Tn,y); | ||||
|       axpby(y,xscale,mscale,y,(*Tn)); | ||||
|       axpby(*Tnp,2.0,-1.0,y,(*Tnm)); | ||||
|       if ( Coeffs[n] != 0.0) { | ||||
| 	axpy(out,Coeffs[n],*Tnp,out); | ||||
|       } | ||||
|  | ||||
| 	y=xscale*y+mscale*(*Tn); | ||||
|  | ||||
| 	*Tnp=2.0*y-(*Tnm); | ||||
|  | ||||
| 	out=out+Coeffs[n]* (*Tnp); | ||||
|  | ||||
| 	// Cycle pointers to avoid copies | ||||
| 	Field *swizzle = Tnm; | ||||
| @@ -339,7 +321,7 @@ public: | ||||
|     // shift_Multiply in Rudy's code | ||||
|     void AminusMuSq(LinearOperatorBase<Field> &Linop, const Field &in, Field &out)  | ||||
|     { | ||||
|     GridBase *grid=in.Grid(); | ||||
|       GridBase *grid=in._grid; | ||||
|       Field tmp(grid); | ||||
|  | ||||
|       RealD aa= alpha*alpha; | ||||
| @@ -356,7 +338,7 @@ public: | ||||
|     // Implement the required interface | ||||
|     void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) { | ||||
|  | ||||
|     GridBase *grid=in.Grid(); | ||||
|       GridBase *grid=in._grid; | ||||
|  | ||||
|       int vol=grid->gSites(); | ||||
|  | ||||
| @@ -391,5 +373,5 @@ public: | ||||
|       } | ||||
|     } | ||||
|   }; | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -31,7 +31,7 @@ See the full license in the file "LICENSE" in the top level distribution directo | ||||
| #ifndef INCLUDED_FORECAST_H | ||||
| #define INCLUDED_FORECAST_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|   // Abstract base class. | ||||
|   // Takes a matrix (Mat), a source (phi), and a vector of Fields (chi) | ||||
| @@ -57,10 +57,10 @@ public: | ||||
|         Field chi(phi); // forecasted solution | ||||
|  | ||||
|         // Trivial cases | ||||
|     if(degree == 0){ chi = Zero(); return chi; } | ||||
|         if(degree == 0){ chi = zero; return chi; } | ||||
|         else if(degree == 1){ return prev_solns[0]; } | ||||
|  | ||||
|     //    RealD dot; | ||||
|         RealD dot; | ||||
|         ComplexD xp; | ||||
|         Field r(phi); // residual | ||||
|         Field Mv(phi); | ||||
| @@ -92,7 +92,7 @@ public: | ||||
|         for(int j=0; j<degree; j++){ | ||||
|         for(int k=j+1; k<degree; k++){ | ||||
|           G[j][k] = innerProduct(v[j],MdagMv[k]); | ||||
| 	G[k][j] = conjugate(G[j][k]); | ||||
|           G[k][j] = std::conj(G[j][k]); | ||||
|         }} | ||||
|  | ||||
|         // Gauss-Jordan elimination with partial pivoting | ||||
| @@ -100,7 +100,7 @@ public: | ||||
|  | ||||
|           // Perform partial pivoting | ||||
|           int k = i; | ||||
|       for(int j=i+1; j<degree; j++){ if(abs(G[j][j]) > abs(G[k][k])){ k = j; } } | ||||
|           for(int j=i+1; j<degree; j++){ if(std::abs(G[j][j]) > std::abs(G[k][k])){ k = j; } } | ||||
|           if(k != i){ | ||||
|             xp = b[k]; | ||||
|             b[k] = b[i]; | ||||
| @@ -121,7 +121,7 @@ public: | ||||
|         } | ||||
|  | ||||
|         // Use Gaussian elimination to solve equations and calculate initial guess | ||||
|     chi = Zero(); | ||||
|         chi = zero; | ||||
|         r = phi; | ||||
|         for(int i=degree-1; i>=0; i--){ | ||||
|           a[i] = 0.0; | ||||
| @@ -136,7 +136,7 @@ public: | ||||
|         for(int i=0; i<degree; i++){ | ||||
|           tmp = -b[i]; | ||||
|           for(int j=0; j<degree; j++){ tmp += G[i][j]*a[j]; } | ||||
|       tmp = conjugate(tmp)*tmp; | ||||
|           tmp = std::conj(tmp)*tmp; | ||||
|           true_r += std::sqrt(tmp.real()); | ||||
|         } | ||||
|  | ||||
| @@ -147,6 +147,6 @@ public: | ||||
|       }; | ||||
|   }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -1,129 +0,0 @@ | ||||
| #ifndef GRID_JACOBIPOLYNOMIAL_H | ||||
| #define GRID_JACOBIPOLYNOMIAL_H | ||||
|  | ||||
| #include <Grid/algorithms/LinearOperator.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class Field> | ||||
| class JacobiPolynomial : public OperatorFunction<Field> { | ||||
|  private: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   int order; | ||||
|   RealD hi; | ||||
|   RealD lo; | ||||
|   RealD alpha; | ||||
|   RealD beta; | ||||
|  | ||||
|  public: | ||||
|   void csv(std::ostream &out){ | ||||
|     csv(out,lo,hi); | ||||
|   } | ||||
|   void csv(std::ostream &out,RealD llo,RealD hhi){ | ||||
|     RealD diff = hhi-llo; | ||||
|     RealD delta = diff*1.0e-5; | ||||
|     for (RealD x=llo-delta; x<=hhi; x+=delta) { | ||||
|       RealD f = approx(x); | ||||
|       out<< x<<" "<<f <<std::endl; | ||||
|     } | ||||
|     return; | ||||
|   } | ||||
|  | ||||
|   JacobiPolynomial(){}; | ||||
|   JacobiPolynomial(RealD _lo,RealD _hi,int _order,RealD _alpha, RealD _beta) | ||||
|   { | ||||
|       lo=_lo; | ||||
|       hi=_hi; | ||||
|       alpha=_alpha; | ||||
|       beta=_beta; | ||||
|       order=_order; | ||||
|   }; | ||||
|  | ||||
|   RealD approx(RealD x) // Convenience for plotting the approximation                                                        | ||||
|   { | ||||
|     RealD Tn; | ||||
|     RealD Tnm; | ||||
|     RealD Tnp; | ||||
|  | ||||
|     RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo)); | ||||
|  | ||||
|     RealD T0=1.0; | ||||
|     RealD T1=(alpha-beta)*0.5+(alpha+beta+2.0)*0.5*y; | ||||
|  | ||||
|     Tn =T1; | ||||
|     Tnm=T0; | ||||
|     for(int n=2;n<=order;n++){ | ||||
|       RealD cnp = 2.0*n*(n+alpha+beta)*(2.0*n-2.0+alpha+beta); | ||||
|       RealD cny = (2.0*n-2.0+alpha+beta)*(2.0*n-1.0+alpha+beta)*(2.0*n+alpha+beta); | ||||
|       RealD cn1 = (2.0*n+alpha+beta-1.0)*(alpha*alpha-beta*beta); | ||||
|       RealD cnm = - 2.0*(n+alpha-1.0)*(n+beta-1.0)*(2.0*n+alpha+beta); | ||||
|       Tnp= ( cny * y *Tn + cn1 * Tn + cnm * Tnm )/ cnp; | ||||
|       Tnm=Tn; | ||||
|       Tn =Tnp; | ||||
|     } | ||||
|     return Tnp; | ||||
|   }; | ||||
|  | ||||
|   // Implement the required interface                                                                                        | ||||
|   void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) { | ||||
|     GridBase *grid=in.Grid(); | ||||
|  | ||||
|     int vol=grid->gSites(); | ||||
|  | ||||
|     Field T0(grid); | ||||
|     Field T1(grid); | ||||
|     Field T2(grid); | ||||
|     Field y(grid); | ||||
|  | ||||
|  | ||||
|     Field *Tnm = &T0; | ||||
|     Field *Tn  = &T1; | ||||
|     Field *Tnp = &T2; | ||||
|  | ||||
|     //    RealD T0=1.0;                                                                                                      | ||||
|     T0=in; | ||||
|  | ||||
|     //    RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));                                                                            | ||||
|     //           = x * 2/(hi-lo) - (hi+lo)/(hi-lo)                                                                           | ||||
|     Linop.HermOp(T0,y); | ||||
|     RealD xscale = 2.0/(hi-lo); | ||||
|     RealD mscale = -(hi+lo)/(hi-lo); | ||||
|     Linop.HermOp(T0,y); | ||||
|     y=y*xscale+in*mscale; | ||||
|  | ||||
|     // RealD T1=(alpha-beta)*0.5+(alpha+beta+2.0)*0.5*y; | ||||
|     RealD halfAmB  = (alpha-beta)*0.5; | ||||
|     RealD halfApBp2= (alpha+beta+2.0)*0.5; | ||||
|     T1 = halfAmB * in + halfApBp2*y; | ||||
|  | ||||
|     for(int n=2;n<=order;n++){ | ||||
|  | ||||
|       Linop.HermOp(*Tn,y); | ||||
|       y=xscale*y+mscale*(*Tn); | ||||
|  | ||||
|       RealD cnp = 2.0*n*(n+alpha+beta)*(2.0*n-2.0+alpha+beta); | ||||
|       RealD cny = (2.0*n-2.0+alpha+beta)*(2.0*n-1.0+alpha+beta)*(2.0*n+alpha+beta); | ||||
|       RealD cn1 = (2.0*n+alpha+beta-1.0)*(alpha*alpha-beta*beta); | ||||
|       RealD cnm = - 2.0*(n+alpha-1.0)*(n+beta-1.0)*(2.0*n+alpha+beta); | ||||
|  | ||||
|       //      Tnp= ( cny * y *Tn + cn1 * Tn + cnm * Tnm )/ cnp;                                                              | ||||
|       cny=cny/cnp; | ||||
|       cn1=cn1/cnp; | ||||
|       cn1=cn1/cnp; | ||||
|       cnm=cnm/cnp; | ||||
|  | ||||
|       *Tnp=cny*y + cn1 *(*Tn) + cnm * (*Tnm); | ||||
|  | ||||
|       // Cycle pointers to avoid copies                                                                                      | ||||
|       Field *swizzle = Tnm; | ||||
|       Tnm    =Tn; | ||||
|       Tn     =Tnp; | ||||
|       Tnp    =swizzle; | ||||
|     } | ||||
|     out=*Tnp; | ||||
|  | ||||
|   } | ||||
| }; | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
| @@ -27,8 +27,7 @@ Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
|     /*  END LEGAL */ | ||||
| #include <Grid/GridCore.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| namespace Grid { | ||||
| double MultiShiftFunction::approx(double x) | ||||
| { | ||||
|   double a = norm; | ||||
| @@ -54,4 +53,4 @@ void MultiShiftFunction::csv(std::ostream &out) | ||||
|   } | ||||
|   return; | ||||
| } | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
|   | ||||
| @@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #ifndef MULTI_SHIFT_FUNCTION | ||||
| #define MULTI_SHIFT_FUNCTION | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
| class MultiShiftFunction { | ||||
| public: | ||||
| @@ -63,5 +63,5 @@ public: | ||||
|   } | ||||
|  | ||||
| }; | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -298,7 +298,7 @@ void AlgRemez::stpini(bigfloat *step) { | ||||
| // Search for error maxima and minima | ||||
| void AlgRemez::search(bigfloat *step) { | ||||
|   bigfloat a, q, xm, ym, xn, yn, xx0, xx1; | ||||
|   int i, meq, emsign, ensign, steps; | ||||
|   int i, j, meq, emsign, ensign, steps; | ||||
|  | ||||
|   meq = neq + 1; | ||||
|   bigfloat *yy = new bigfloat[meq]; | ||||
| @@ -306,6 +306,7 @@ void AlgRemez::search(bigfloat *step) { | ||||
|   bigfloat eclose = 1.0e30; | ||||
|   bigfloat farther = 0l; | ||||
|  | ||||
|   j = 1; | ||||
|   xx0 = apstrt; | ||||
|  | ||||
|   for (i = 0; i < meq; i++) { | ||||
|   | ||||
| @@ -1,473 +0,0 @@ | ||||
| #include<math.h> | ||||
| #include<stdio.h> | ||||
| #include<stdlib.h> | ||||
| #include<string> | ||||
| #include<iostream> | ||||
| #include<iomanip> | ||||
| #include<cassert> | ||||
|  | ||||
| #include<Grid/algorithms/approx/RemezGeneral.h> | ||||
|  | ||||
|  | ||||
| // Constructor | ||||
| AlgRemezGeneral::AlgRemezGeneral(double lower, double upper, long precision, | ||||
| 				 bigfloat (*f)(bigfloat x, void *data), void *data): f(f),  | ||||
| 										     data(data),  | ||||
| 										     prec(precision), | ||||
| 										     apstrt(lower), apend(upper), apwidt(upper - lower), | ||||
| 										     n(0), d(0), pow_n(0), pow_d(0) | ||||
| { | ||||
|   bigfloat::setDefaultPrecision(prec); | ||||
|  | ||||
|   std::cout<<"Approximation bounds are ["<<apstrt<<","<<apend<<"]\n"; | ||||
|   std::cout<<"Precision of arithmetic is "<<precision<<std::endl; | ||||
| } | ||||
|  | ||||
| //Determine the properties of the numerator and denominator polynomials | ||||
| void AlgRemezGeneral::setupPolyProperties(int num_degree, int den_degree, PolyType num_type_in, PolyType den_type_in){ | ||||
|   pow_n = num_degree; | ||||
|   pow_d = den_degree; | ||||
|  | ||||
|   if(pow_n % 2 == 0 && num_type_in == PolyType::Odd) assert(0); | ||||
|   if(pow_n % 2 == 1 && num_type_in == PolyType::Even) assert(0); | ||||
|  | ||||
|   if(pow_d % 2 == 0 && den_type_in == PolyType::Odd) assert(0); | ||||
|   if(pow_d % 2 == 1 && den_type_in == PolyType::Even) assert(0); | ||||
|  | ||||
|   num_type = num_type_in; | ||||
|   den_type = den_type_in; | ||||
|  | ||||
|   num_pows.resize(pow_n+1); | ||||
|   den_pows.resize(pow_d+1); | ||||
|  | ||||
|   int n_in = 0; | ||||
|   bool odd = num_type == PolyType::Full || num_type == PolyType::Odd; | ||||
|   bool even = num_type == PolyType::Full || num_type == PolyType::Even; | ||||
|   for(int i=0;i<=pow_n;i++){ | ||||
|     num_pows[i] = -1; | ||||
|     if(i % 2 == 0 && even) num_pows[i] = n_in++; | ||||
|     if(i % 2 == 1 && odd) num_pows[i] = n_in++; | ||||
|   } | ||||
|  | ||||
|   std::cout << n_in << " terms in numerator" << std::endl; | ||||
|   --n_in; //power is 1 less than the number of terms, eg  pow=1   a x^1  + b x^0 | ||||
|  | ||||
|   int d_in = 0; | ||||
|   odd = den_type == PolyType::Full || den_type == PolyType::Odd; | ||||
|   even = den_type == PolyType::Full || den_type == PolyType::Even; | ||||
|   for(int i=0;i<=pow_d;i++){ | ||||
|     den_pows[i] = -1; | ||||
|     if(i % 2 == 0 && even) den_pows[i] = d_in++; | ||||
|     if(i % 2 == 1 && odd) den_pows[i] = d_in++; | ||||
|   } | ||||
|  | ||||
|   std::cout << d_in << " terms in denominator" << std::endl; | ||||
|   --d_in; | ||||
|  | ||||
|   n = n_in; | ||||
|   d = d_in; | ||||
| } | ||||
|  | ||||
| //Setup algorithm | ||||
| void AlgRemezGeneral::reinitializeAlgorithm(){ | ||||
|   spread = 1.0e37; | ||||
|   iter = 0; | ||||
|  | ||||
|   neq = n + d + 1; //not +2 because highest-power term in denominator is fixed to 1 | ||||
|  | ||||
|   param.resize(neq); | ||||
|   yy.resize(neq+1); | ||||
|  | ||||
|   //Initialize linear equation temporaries | ||||
|   A.resize(neq*neq); | ||||
|   B.resize(neq); | ||||
|   IPS.resize(neq); | ||||
|  | ||||
|   //Initialize maximum and minimum errors | ||||
|   xx.resize(neq+2); | ||||
|   mm.resize(neq+1); | ||||
|   initialGuess(); | ||||
|  | ||||
|   //Initialize search steps | ||||
|   step.resize(neq+1); | ||||
|   stpini(); | ||||
| } | ||||
|  | ||||
| double AlgRemezGeneral::generateApprox(const int num_degree, const int den_degree,  | ||||
| 				       const PolyType num_type_in, const PolyType den_type_in,  | ||||
| 				       const double _tolerance, const int report_freq){ | ||||
|   //Setup the properties of the polynomial | ||||
|   setupPolyProperties(num_degree, den_degree, num_type_in, den_type_in); | ||||
|  | ||||
|   //Setup the algorithm | ||||
|   reinitializeAlgorithm(); | ||||
|  | ||||
|   bigfloat tolerance = _tolerance; | ||||
|  | ||||
|   //Iterate until convergance | ||||
|   while (spread > tolerance) {  | ||||
|     if (iter++ % report_freq==0) | ||||
|       std::cout<<"Iteration " <<iter-1<<" spread "<<(double)spread<<" delta "<<(double)delta << std::endl;  | ||||
|  | ||||
|     equations(); | ||||
|     if (delta < tolerance) { | ||||
|       std::cout<<"Iteration " << iter-1 << " delta too small (" << delta << "<" << tolerance << "), try increasing precision\n"; | ||||
|       assert(0); | ||||
|     };     | ||||
|     assert( delta>= tolerance ); | ||||
|  | ||||
|     search(); | ||||
|   } | ||||
|  | ||||
|   int sign; | ||||
|   double error = (double)getErr(mm[0],&sign); | ||||
|   std::cout<<"Converged at "<<iter<<" iterations; error = "<<error<<std::endl; | ||||
|  | ||||
|   // Return the maximum error in the approximation | ||||
|   return error; | ||||
| } | ||||
|  | ||||
|  | ||||
| // Initial values of maximal and minimal errors | ||||
| void AlgRemezGeneral::initialGuess(){ | ||||
|   // Supply initial guesses for solution points | ||||
|   long ncheb = neq;			// Degree of Chebyshev error estimate | ||||
|  | ||||
|   // Find ncheb+1 extrema of Chebyshev polynomial | ||||
|   bigfloat a = ncheb; | ||||
|   bigfloat r; | ||||
|  | ||||
|   mm[0] = apstrt; | ||||
|   for (long i = 1; i < ncheb; i++) { | ||||
|     r = 0.5 * (1 - cos((M_PI * i)/(double) a)); | ||||
|     //r *= sqrt_bf(r); | ||||
|     r = (exp((double)r)-1.0)/(exp(1.0)-1.0); | ||||
|     mm[i] = apstrt + r * apwidt; | ||||
|   } | ||||
|   mm[ncheb] = apend; | ||||
|  | ||||
|   a = 2.0 * ncheb; | ||||
|   for (long i = 0; i <= ncheb; i++) { | ||||
|     r = 0.5 * (1 - cos(M_PI * (2*i+1)/(double) a)); | ||||
|     //r *= sqrt_bf(r); // Squeeze to low end of interval | ||||
|     r = (exp((double)r)-1.0)/(exp(1.0)-1.0); | ||||
|     xx[i] = apstrt + r * apwidt; | ||||
|   } | ||||
| } | ||||
|  | ||||
| // Initialise step sizes | ||||
| void AlgRemezGeneral::stpini(){ | ||||
|   xx[neq+1] = apend; | ||||
|   delta = 0.25; | ||||
|   step[0] = xx[0] - apstrt; | ||||
|   for (int i = 1; i < neq; i++) step[i] = xx[i] - xx[i-1]; | ||||
|   step[neq] = step[neq-1]; | ||||
| } | ||||
|  | ||||
| // Search for error maxima and minima | ||||
| void AlgRemezGeneral::search(){ | ||||
|   bigfloat a, q, xm, ym, xn, yn, xx1; | ||||
|   int emsign, ensign, steps; | ||||
|  | ||||
|   int meq = neq + 1; | ||||
|  | ||||
|   bigfloat eclose = 1.0e30; | ||||
|   bigfloat farther = 0l; | ||||
|  | ||||
|   bigfloat xx0 = apstrt; | ||||
|  | ||||
|   for (int i = 0; i < meq; i++) { | ||||
|     steps = 0; | ||||
|     xx1 = xx[i]; // Next zero | ||||
|     if (i == meq-1) xx1 = apend; | ||||
|     xm = mm[i]; | ||||
|     ym = getErr(xm,&emsign); | ||||
|     q = step[i]; | ||||
|     xn = xm + q; | ||||
|     if (xn < xx0 || xn >= xx1) {	// Cannot skip over adjacent boundaries | ||||
|       q = -q; | ||||
|       xn = xm; | ||||
|       yn = ym; | ||||
|       ensign = emsign; | ||||
|     } else { | ||||
|       yn = getErr(xn,&ensign); | ||||
|       if (yn < ym) { | ||||
| 	q = -q; | ||||
| 	xn = xm; | ||||
| 	yn = ym; | ||||
| 	ensign = emsign; | ||||
|       } | ||||
|     } | ||||
|    | ||||
|     while(yn >= ym) {		// March until error becomes smaller. | ||||
|       if (++steps > 10) | ||||
|       	break; | ||||
|        | ||||
|       ym = yn; | ||||
|       xm = xn; | ||||
|       emsign = ensign; | ||||
|       a = xm + q; | ||||
|       if (a == xm || a <= xx0 || a >= xx1) | ||||
| 	break;// Must not skip over the zeros either side.       | ||||
|  | ||||
|       xn = a; | ||||
|       yn = getErr(xn,&ensign); | ||||
|     } | ||||
|  | ||||
|     mm[i] = xm;			// Position of maximum | ||||
|     yy[i] = ym;			// Value of maximum | ||||
|  | ||||
|     if (eclose > ym) eclose = ym; | ||||
|     if (farther < ym) farther = ym; | ||||
|  | ||||
|     xx0 = xx1; // Walk to next zero. | ||||
|   } // end of search loop | ||||
|  | ||||
|   q = (farther - eclose);	// Decrease step size if error spread increased | ||||
|  | ||||
|   if (eclose != 0.0) q /= eclose; // Relative error spread | ||||
|  | ||||
|   if (q >= spread) | ||||
|     delta *= 0.5; // Spread is increasing; decrease step size | ||||
|    | ||||
|   spread = q; | ||||
|  | ||||
|   for (int i = 0; i < neq; i++) { | ||||
|     q = yy[i+1]; | ||||
|     if (q != 0.0) q = yy[i] / q  - (bigfloat)1l; | ||||
|     else q = 0.0625; | ||||
|     if (q > (bigfloat)0.25) q = 0.25; | ||||
|     q *= mm[i+1] - mm[i]; | ||||
|     step[i] = q * delta; | ||||
|   } | ||||
|   step[neq] = step[neq-1]; | ||||
|    | ||||
|   for (int i = 0; i < neq; i++) {	// Insert new locations for the zeros. | ||||
|     xm = xx[i] - step[i]; | ||||
|  | ||||
|     if (xm <= apstrt) | ||||
|       continue; | ||||
|  | ||||
|     if (xm >= apend) | ||||
|       continue; | ||||
|  | ||||
|     if (xm <= mm[i]) | ||||
|       xm = (bigfloat)0.5 * (mm[i] + xx[i]);     | ||||
|  | ||||
|     if (xm >= mm[i+1]) | ||||
|       xm = (bigfloat)0.5 * (mm[i+1] + xx[i]); | ||||
|      | ||||
|     xx[i] = xm; | ||||
|   } | ||||
| } | ||||
|  | ||||
| // Solve the equations | ||||
| void AlgRemezGeneral::equations(){ | ||||
|   bigfloat x, y, z; | ||||
|   bigfloat *aa; | ||||
|    | ||||
|   for (int i = 0; i < neq; i++) {	// set up the equations for solution by simq() | ||||
|     int ip = neq * i;		// offset to 1st element of this row of matrix | ||||
|     x = xx[i];			// the guess for this row | ||||
|     y = func(x);		// right-hand-side vector | ||||
|  | ||||
|     z = (bigfloat)1l; | ||||
|     aa = A.data()+ip; | ||||
|     int t = 0; | ||||
|     for (int j = 0; j <= pow_n; j++) { | ||||
|       if(num_pows[j] != -1){ *aa++ = z; t++; } | ||||
|       z *= x; | ||||
|     } | ||||
|     assert(t == n+1); | ||||
|  | ||||
|     z = (bigfloat)1l; | ||||
|     t = 0; | ||||
|     for (int j = 0; j < pow_d; j++) { | ||||
|       if(den_pows[j] != -1){ *aa++ = -y * z; t++; } | ||||
|       z *= x; | ||||
|     } | ||||
|     assert(t == d); | ||||
|  | ||||
|     B[i] = y * z;		// Right hand side vector | ||||
|   } | ||||
|  | ||||
|   // Solve the simultaneous linear equations. | ||||
|   if (simq()){ | ||||
|     std::cout<<"simq failed\n"; | ||||
|     exit(0); | ||||
|   } | ||||
| } | ||||
|  | ||||
|  | ||||
| // Evaluate the rational form P(x)/Q(x) using coefficients | ||||
| // from the solution vector param | ||||
| bigfloat AlgRemezGeneral::approx(const bigfloat x) const{ | ||||
|   // Work backwards toward the constant term. | ||||
|   int c = n; | ||||
|   bigfloat yn = param[c--];		// Highest order numerator coefficient | ||||
|   for (int i = pow_n-1; i >= 0; i--) yn = x * yn  +  (num_pows[i] != -1 ? param[c--] : bigfloat(0l));   | ||||
|  | ||||
|   c = n+d; | ||||
|   bigfloat yd = 1l; //Highest degree coefficient is 1.0 | ||||
|   for (int i = pow_d-1; i >= 0; i--) yd = x * yd  +  (den_pows[i] != -1 ? param[c--] : bigfloat(0l));  | ||||
|  | ||||
|   return(yn/yd); | ||||
| } | ||||
|  | ||||
| // Compute size and sign of the approximation error at x | ||||
| bigfloat AlgRemezGeneral::getErr(bigfloat x, int *sign) const{ | ||||
|   bigfloat f = func(x); | ||||
|   bigfloat e = approx(x) - f; | ||||
|   if (f != 0) e /= f; | ||||
|   if (e < (bigfloat)0.0) { | ||||
|     *sign = -1; | ||||
|     e = -e; | ||||
|   } | ||||
|   else *sign = 1; | ||||
|    | ||||
|   return(e); | ||||
| } | ||||
|  | ||||
| // Solve the system AX=B | ||||
| int AlgRemezGeneral::simq(){ | ||||
|  | ||||
|   int ip, ipj, ipk, ipn; | ||||
|   int idxpiv; | ||||
|   int kp, kp1, kpk, kpn; | ||||
|   int nip, nkp; | ||||
|   bigfloat em, q, rownrm, big, size, pivot, sum; | ||||
|   bigfloat *aa; | ||||
|   bigfloat *X = param.data(); | ||||
|  | ||||
|   int n = neq; | ||||
|   int nm1 = n - 1; | ||||
|   // Initialize IPS and X | ||||
|    | ||||
|   int ij = 0; | ||||
|   for (int i = 0; i < n; i++) { | ||||
|     IPS[i] = i; | ||||
|     rownrm = 0.0; | ||||
|     for(int j = 0; j < n; j++) { | ||||
|       q = abs_bf(A[ij]); | ||||
|       if(rownrm < q) rownrm = q; | ||||
|       ++ij; | ||||
|     } | ||||
|     if (rownrm == (bigfloat)0l) { | ||||
|       std::cout<<"simq rownrm=0\n"; | ||||
|       return(1); | ||||
|     } | ||||
|     X[i] = (bigfloat)1.0 / rownrm; | ||||
|   } | ||||
|    | ||||
|   for (int k = 0; k < nm1; k++) { | ||||
|     big = 0.0; | ||||
|     idxpiv = 0; | ||||
|      | ||||
|     for (int i = k; i < n; i++) { | ||||
|       ip = IPS[i]; | ||||
|       ipk = n*ip + k; | ||||
|       size = abs_bf(A[ipk]) * X[ip]; | ||||
|       if (size > big) { | ||||
| 	big = size; | ||||
| 	idxpiv = i; | ||||
|       } | ||||
|     } | ||||
|      | ||||
|     if (big == (bigfloat)0l) { | ||||
|       std::cout<<"simq big=0\n"; | ||||
|       return(2); | ||||
|     } | ||||
|     if (idxpiv != k) { | ||||
|       int j = IPS[k]; | ||||
|       IPS[k] = IPS[idxpiv]; | ||||
|       IPS[idxpiv] = j; | ||||
|     } | ||||
|     kp = IPS[k]; | ||||
|     kpk = n*kp + k; | ||||
|     pivot = A[kpk]; | ||||
|     kp1 = k+1; | ||||
|     for (int i = kp1; i < n; i++) { | ||||
|       ip = IPS[i]; | ||||
|       ipk = n*ip + k; | ||||
|       em = -A[ipk] / pivot; | ||||
|       A[ipk] = -em; | ||||
|       nip = n*ip; | ||||
|       nkp = n*kp; | ||||
|       aa = A.data()+nkp+kp1; | ||||
|       for (int j = kp1; j < n; j++) { | ||||
| 	ipj = nip + j; | ||||
| 	A[ipj] = A[ipj] + em * *aa++; | ||||
|       } | ||||
|     } | ||||
|   } | ||||
|   kpn = n * IPS[n-1] + n - 1;	// last element of IPS[n] th row | ||||
|   if (A[kpn] == (bigfloat)0l) { | ||||
|     std::cout<<"simq A[kpn]=0\n"; | ||||
|     return(3); | ||||
|   } | ||||
|  | ||||
|    | ||||
|   ip = IPS[0]; | ||||
|   X[0] = B[ip]; | ||||
|   for (int i = 1; i < n; i++) { | ||||
|     ip = IPS[i]; | ||||
|     ipj = n * ip; | ||||
|     sum = 0.0; | ||||
|     for (int j = 0; j < i; j++) { | ||||
|       sum += A[ipj] * X[j]; | ||||
|       ++ipj; | ||||
|     } | ||||
|     X[i] = B[ip] - sum; | ||||
|   } | ||||
|    | ||||
|   ipn = n * IPS[n-1] + n - 1; | ||||
|   X[n-1] = X[n-1] / A[ipn]; | ||||
|    | ||||
|   for (int iback = 1; iback < n; iback++) { | ||||
|     //i goes (n-1),...,1 | ||||
|     int i = nm1 - iback; | ||||
|     ip = IPS[i]; | ||||
|     nip = n*ip; | ||||
|     sum = 0.0; | ||||
|     aa = A.data()+nip+i+1; | ||||
|     for (int j= i + 1; j < n; j++)  | ||||
|       sum += *aa++ * X[j]; | ||||
|     X[i] = (X[i] - sum) / A[nip+i]; | ||||
|   } | ||||
|    | ||||
|   return(0); | ||||
| } | ||||
|  | ||||
| void AlgRemezGeneral::csv(std::ostream & os) const{ | ||||
|   os << "Numerator" << std::endl; | ||||
|   for(int i=0;i<=pow_n;i++){ | ||||
|     os << getCoeffNum(i) << "*x^" << i; | ||||
|     if(i!=pow_n) os << " + "; | ||||
|   } | ||||
|   os << std::endl; | ||||
|  | ||||
|   os << "Denominator" << std::endl; | ||||
|   for(int i=0;i<=pow_d;i++){ | ||||
|     os << getCoeffDen(i) << "*x^" << i; | ||||
|     if(i!=pow_d) os << " + "; | ||||
|   } | ||||
|   os << std::endl; | ||||
|  | ||||
|   //For a true minimax solution the errors should all be equal and the signs should oscillate +-+-+- etc | ||||
|   int sign; | ||||
|   os << "Errors at maxima: coordinate, error, (sign)" << std::endl; | ||||
|   for(int i=0;i<neq+1;i++){  | ||||
|     os << mm[i] << " " << getErr(mm[i],&sign) << " (" << sign << ")" << std::endl; | ||||
|   } | ||||
|  | ||||
|   os << "Scan over range:" << std::endl; | ||||
|   int npt = 60; | ||||
|   bigfloat dlt = (apend - apstrt)/bigfloat(npt-1); | ||||
|  | ||||
|   for (bigfloat x=apstrt; x<=apend; x = x + dlt) { | ||||
|     double f = evaluateFunc(x); | ||||
|     double r = evaluateApprox(x); | ||||
|     os<< x<<","<<r<<","<<f<<","<<r-f<<std::endl; | ||||
|   } | ||||
|   return; | ||||
| } | ||||
| @@ -1,170 +0,0 @@ | ||||
| /* | ||||
|   C.Kelly Jan 2020 based on implementation by M. Clark May 2005 | ||||
|  | ||||
|   AlgRemezGeneral is an implementation of the Remez algorithm for approximating an arbitrary function by a rational polynomial  | ||||
|   It includes optional restriction to odd/even polynomials for the numerator and/or denominator | ||||
| */ | ||||
|  | ||||
| #ifndef INCLUDED_ALG_REMEZ_GENERAL_H | ||||
| #define INCLUDED_ALG_REMEZ_GENERAL_H | ||||
|  | ||||
| #include <stddef.h> | ||||
| #include <Grid/GridStd.h> | ||||
|  | ||||
| #ifdef HAVE_LIBGMP | ||||
| #include "bigfloat.h" | ||||
| #else | ||||
| #include "bigfloat_double.h" | ||||
| #endif | ||||
|  | ||||
|  | ||||
| class AlgRemezGeneral{ | ||||
|  public: | ||||
|   enum PolyType { Even, Odd, Full }; | ||||
|  | ||||
|  private: | ||||
|  | ||||
|   // In GSL-style, pass the function as a function pointer. Any data required to evaluate the function is passed in as a void pointer | ||||
|   bigfloat (*f)(bigfloat x, void *data); | ||||
|   void *data; | ||||
|  | ||||
|   // The approximation parameters | ||||
|   std::vector<bigfloat> param; | ||||
|   bigfloat norm; | ||||
|  | ||||
|   // The number of non-zero terms in the numerator and denominator | ||||
|   int n, d; | ||||
|   // The numerator and denominator degree (i.e.  the largest power) | ||||
|   int pow_n, pow_d; | ||||
|    | ||||
|   // Specify if the numerator and/or denominator are odd/even polynomials | ||||
|   PolyType num_type; | ||||
|   PolyType den_type; | ||||
|   std::vector<int> num_pows; //contains the mapping, with -1 if not present | ||||
|   std::vector<int> den_pows; | ||||
|  | ||||
|   // The bounds of the approximation | ||||
|   bigfloat apstrt, apwidt, apend; | ||||
|  | ||||
|   // Variables used to calculate the approximation | ||||
|   int nd1, iter; | ||||
|   std::vector<bigfloat> xx; | ||||
|   std::vector<bigfloat> mm; | ||||
|   std::vector<bigfloat> step; | ||||
|  | ||||
|   bigfloat delta, spread; | ||||
|    | ||||
|   // Variables used in search | ||||
|   std::vector<bigfloat> yy; | ||||
|  | ||||
|   // Variables used in solving linear equations | ||||
|   std::vector<bigfloat> A; | ||||
|   std::vector<bigfloat> B; | ||||
|   std::vector<int> IPS; | ||||
|  | ||||
|   // The number of equations we must solve at each iteration (n+d+1) | ||||
|   int neq; | ||||
|  | ||||
|   // The precision of the GNU MP library | ||||
|   long prec; | ||||
|  | ||||
|   // Initialize member variables associated with the polynomial's properties | ||||
|   void setupPolyProperties(int num_degree, int den_degree, PolyType num_type_in, PolyType den_type_in); | ||||
|  | ||||
|   // Initial values of maximal and minmal errors | ||||
|   void initialGuess(); | ||||
|  | ||||
|   // Initialise step sizes | ||||
|   void stpini(); | ||||
|  | ||||
|   // Initialize the algorithm | ||||
|   void reinitializeAlgorithm(); | ||||
|  | ||||
|   // Solve the equations | ||||
|   void equations(); | ||||
|  | ||||
|   // Search for error maxima and minima | ||||
|   void search();  | ||||
|  | ||||
|   // Calculate function required for the approximation | ||||
|   inline bigfloat func(bigfloat x) const{ | ||||
|     return f(x, data); | ||||
|   } | ||||
|  | ||||
|   // Compute size and sign of the approximation error at x | ||||
|   bigfloat getErr(bigfloat x, int *sign) const; | ||||
|  | ||||
|   // Solve the system AX=B   where X = param | ||||
|   int simq(); | ||||
|  | ||||
|   // Evaluate the rational form P(x)/Q(x) using coefficients from the solution vector param | ||||
|   bigfloat approx(bigfloat x) const; | ||||
|  | ||||
|  public: | ||||
|    | ||||
|   AlgRemezGeneral(double lower, double upper, long prec, | ||||
| 		  bigfloat (*f)(bigfloat x, void *data), void *data); | ||||
|  | ||||
|   inline int getDegree(void) const{  | ||||
|     assert(n==d); | ||||
|     return n; | ||||
|   } | ||||
|   // Reset the bounds of the approximation | ||||
|   inline void setBounds(double lower, double upper) { | ||||
|     apstrt = lower; | ||||
|     apend = upper; | ||||
|     apwidt = apend - apstrt; | ||||
|   } | ||||
|  | ||||
|   // Get the bounds of the approximation | ||||
|   inline void getBounds(double &lower, double &upper) const{  | ||||
|     lower=(double)apstrt; | ||||
|     upper=(double)apend; | ||||
|   } | ||||
|  | ||||
|   // Run the algorithm to generate the rational approximation | ||||
|   double generateApprox(int num_degree, int den_degree,  | ||||
| 			PolyType num_type, PolyType den_type, | ||||
| 			const double tolerance = 1e-15, const int report_freq = 1000); | ||||
|    | ||||
|   inline double generateApprox(int num_degree, int den_degree,  | ||||
| 			       const double tolerance = 1e-15, const int report_freq = 1000){ | ||||
|     return generateApprox(num_degree, den_degree, Full, Full, tolerance, report_freq); | ||||
|   } | ||||
|    | ||||
|   // Evaluate the rational form P(x)/Q(x) using coefficients from the | ||||
|   // solution vector param | ||||
|   inline double evaluateApprox(double x) const{ | ||||
|     return (double)approx((bigfloat)x); | ||||
|   } | ||||
|  | ||||
|   // Evaluate the rational form Q(x)/P(x) using coefficients from the solution vector param | ||||
|   inline double evaluateInverseApprox(double x) const{ | ||||
|     return 1.0/(double)approx((bigfloat)x); | ||||
|   }   | ||||
|  | ||||
|   // Calculate function required for the approximation | ||||
|   inline double evaluateFunc(double x) const{ | ||||
|     return (double)func((bigfloat)x); | ||||
|   } | ||||
|  | ||||
|   // Calculate inverse function required for the approximation | ||||
|   inline double evaluateInverseFunc(double x) const{ | ||||
|     return 1.0/(double)func((bigfloat)x); | ||||
|   } | ||||
|  | ||||
|   // Dump csv of function, approx and error | ||||
|   void csv(std::ostream &os = std::cout) const; | ||||
|  | ||||
|   // Get the coefficient of the term x^i in the numerator | ||||
|   inline double getCoeffNum(const int i) const{     | ||||
|     return num_pows[i] == -1 ? 0. : double(param[num_pows[i]]); | ||||
|   } | ||||
|   // Get the coefficient of the term x^i in the denominator | ||||
|   inline double getCoeffDen(const int i) const{  | ||||
|     if(i == pow_d) return 1.0; | ||||
|     else return den_pows[i] == -1 ? 0. : double(param[den_pows[i]+n+1]);  | ||||
|   } | ||||
| }; | ||||
|  | ||||
| #endif | ||||
| @@ -1,183 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/approx/ZMobius.cc | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Christopher Kelly <ckelly@phys.columbia.edu> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
|  | ||||
| #include <Grid/algorithms/approx/ZMobius.h> | ||||
| #include <Grid/algorithms/approx/RemezGeneral.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| NAMESPACE_BEGIN(Approx); | ||||
|  | ||||
| //Compute the tanh approximation | ||||
| inline double epsilonMobius(const double x, const std::vector<ComplexD> &w){ | ||||
|   int Ls = w.size(); | ||||
|  | ||||
|   ComplexD fxp = 1., fmp = 1.; | ||||
|   for(int i=0;i<Ls;i++){ | ||||
|     fxp = fxp * ( w[i] + x ); | ||||
|     fmp = fmp * ( w[i] - x ); | ||||
|   } | ||||
|   return ((fxp - fmp)/(fxp + fmp)).real(); | ||||
| } | ||||
| inline double epsilonMobius(const double x, const std::vector<RealD> &w){ | ||||
|   int Ls = w.size(); | ||||
|  | ||||
|   double fxp = 1., fmp = 1.; | ||||
|   for(int i=0;i<Ls;i++){ | ||||
|     fxp = fxp * ( w[i] + x ); | ||||
|     fmp = fmp * ( w[i] - x ); | ||||
|   } | ||||
|   return (fxp - fmp)/(fxp + fmp); | ||||
| } | ||||
|  | ||||
|  | ||||
|  | ||||
| //Compute the tanh approximation in a form suitable for the Remez | ||||
| bigfloat epsilonMobius(bigfloat x, void* data){ | ||||
|   const std::vector<RealD> &omega = *( (std::vector<RealD> const*)data ); | ||||
|   bigfloat fxp(1.0); | ||||
|   bigfloat fmp(1.0); | ||||
|  | ||||
|   for(int i=0;i<omega.size();i++){ | ||||
|     fxp = fxp * ( bigfloat(omega[i]) + x); | ||||
|     fmp = fmp * ( bigfloat(omega[i]) - x); | ||||
|   } | ||||
|   return (fxp - fmp)/(fxp + fmp); | ||||
| } | ||||
|  | ||||
| //Compute the Zmobius Omega parameters suitable for eigenvalue range   -lambda_bound <= lambda <= lambda_bound | ||||
| //Note omega_i = 1/(b_i + c_i)   where b_i and c_i are the Mobius parameters | ||||
| void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out, | ||||
| 			 const std::vector<RealD> &omega_in, const int Ls_in, | ||||
| 			 const RealD lambda_bound){ | ||||
|   assert(omega_in.size() == Ls_in); | ||||
|   omega_out.resize(Ls_out); | ||||
|  | ||||
|   //Use the Remez algorithm to generate the appropriate rational polynomial | ||||
|   //For odd polynomial, to satisfy Haar condition must take either positive or negative half of range (cf https://arxiv.org/pdf/0803.0439.pdf page 6)   | ||||
|   AlgRemezGeneral remez(0, lambda_bound, 64, &epsilonMobius, (void*)&omega_in);  | ||||
|   remez.generateApprox(Ls_out-1, Ls_out,AlgRemezGeneral::Odd, AlgRemezGeneral::Even, 1e-15, 100); | ||||
|   remez.csv(std::cout); | ||||
|  | ||||
|   //The rational approximation has the form  [ f(x) - f(-x) ] / [ f(x) + f(-x) ]  where  f(x) = \Prod_{i=0}^{L_s-1} ( \omega_i + x ) | ||||
|   //cf https://academiccommons.columbia.edu/doi/10.7916/D8T72HD7  pg 102 | ||||
|   //omega_i are therefore the negative of the complex roots of f(x) | ||||
|  | ||||
|   //We can find the roots by recognizing that the eigenvalues of a matrix A are the roots of the characteristic polynomial | ||||
|   // \rho(\lambda) = det( A - \lambda I )    where I is the unit matrix | ||||
|   //The matrix whose characteristic polynomial is an arbitrary monic polynomial a0 + a1 x + a2 x^2 + ... x^n   is the companion matrix  | ||||
|   // A = | 0    1   0    0 0 .... 0 | | ||||
|   //     | 0    0   1    0 0 .... 0 | | ||||
|   //     | :    :   :    : :      : | | ||||
|   //     | 0    0   0    0 0      1 | ||||
|   //     | -a0 -a1 -a2  ...  ... -an| | ||||
|  | ||||
|  | ||||
|   //Note the Remez defines the largest power to have unit coefficient | ||||
|   std::vector<RealD> coeffs(Ls_out+1); | ||||
|   for(int i=0;i<Ls_out+1;i+=2) coeffs[i] = coeffs[i] = remez.getCoeffDen(i); //even powers | ||||
|   for(int i=1;i<Ls_out+1;i+=2) coeffs[i] = coeffs[i] = remez.getCoeffNum(i); //odd powers | ||||
|  | ||||
|   std::vector<std::complex<RealD> > roots(Ls_out); | ||||
|  | ||||
|   //Form the companion matrix | ||||
|   Eigen::MatrixXd compn(Ls_out,Ls_out); | ||||
|   for(int i=0;i<Ls_out-1;i++) compn(i,0) = 0.; | ||||
|   compn(Ls_out - 1, 0) = -coeffs[0]; | ||||
|    | ||||
|   for(int j=1;j<Ls_out;j++){ | ||||
|     for(int i=0;i<Ls_out-1;i++) compn(i,j) = i == j-1 ? 1. : 0.; | ||||
|     compn(Ls_out - 1, j) = -coeffs[j]; | ||||
|   } | ||||
|  | ||||
|   //Eigensolve | ||||
|   Eigen::EigenSolver<Eigen::MatrixXd> slv(compn, false); | ||||
|  | ||||
|   const auto & ev = slv.eigenvalues(); | ||||
|   for(int i=0;i<Ls_out;i++) | ||||
|     omega_out[i] = -ev(i); | ||||
|  | ||||
|   //Sort ascending (smallest at start of vector!) | ||||
|   std::sort(omega_out.begin(), omega_out.end(),  | ||||
| 	    [&](const ComplexD &a, const ComplexD &b){ return a.real() < b.real() || (a.real() == b.real() && a.imag() < b.imag()); }); | ||||
|  | ||||
|   //McGlynn thesis pg 122 suggest improved iteration counts if magnitude of omega diminishes towards the center of the 5th dimension | ||||
|   std::vector<ComplexD> omega_tmp = omega_out; | ||||
|   int s_low=0, s_high=Ls_out-1, ss=0; | ||||
|   for(int s_from = Ls_out-1; s_from >= 0; s_from--){ //loop from largest omega | ||||
|     int s_to; | ||||
|     if(ss % 2 == 0){ | ||||
|       s_to = s_low++; | ||||
|     }else{ | ||||
|       s_to = s_high--; | ||||
|     } | ||||
|     omega_out[s_to] = omega_tmp[s_from]; | ||||
|     ++ss; | ||||
|   } | ||||
|    | ||||
|   std::cout << "Resulting omega_i:" << std::endl;   | ||||
|   for(int i=0;i<Ls_out;i++) | ||||
|     std::cout << omega_out[i] << std::endl; | ||||
|  | ||||
|   std::cout << "Test result matches the approximate polynomial found by the Remez" << std::endl; | ||||
|   std::cout << "<x> <remez approx> <poly approx> <diff poly approx remez approx> <exact> <diff poly approx exact>\n"; | ||||
|    | ||||
|   int npt = 60; | ||||
|   double dlt = lambda_bound/double(npt-1); | ||||
|  | ||||
|   for (int i =0; i<npt; i++){ | ||||
|     double x = i*dlt; | ||||
|     double r = remez.evaluateApprox(x); | ||||
|     double p = epsilonMobius(x, omega_out); | ||||
|     double e = epsilonMobius(x, omega_in); | ||||
|  | ||||
|     std::cout << x<< " " << r << " " << p <<" " <<r-p << " " << e << " " << e-p << std::endl; | ||||
|   } | ||||
|  | ||||
| } | ||||
|    | ||||
| //mobius_param = b+c   with b-c=1 | ||||
| void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound){ | ||||
|   std::vector<RealD> omega_in(Ls_in, 1./mobius_param); | ||||
|   computeZmobiusOmega(omega_out, Ls_out, omega_in, Ls_in, lambda_bound); | ||||
| } | ||||
|  | ||||
| //ZMobius class takes  gamma_i = (b+c) omega_i as its input, where b, c are factored out | ||||
| void computeZmobiusGamma(std::vector<ComplexD> &gamma_out,  | ||||
| 			 const RealD mobius_param_out, const int Ls_out,  | ||||
| 			 const RealD mobius_param_in, const int Ls_in, | ||||
| 			 const RealD lambda_bound){ | ||||
|   computeZmobiusOmega(gamma_out, Ls_out, mobius_param_in, Ls_in, lambda_bound); | ||||
|   for(int i=0;i<Ls_out;i++) gamma_out[i] = gamma_out[i] * mobius_param_out; | ||||
| } | ||||
| //Assumes mobius_param_out == mobius_param_in | ||||
| void computeZmobiusGamma(std::vector<ComplexD> &gamma_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound){ | ||||
|   computeZmobiusGamma(gamma_out, mobius_param, Ls_out, mobius_param, Ls_in, lambda_bound); | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Approx); | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -1,57 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/approx/ZMobius.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Christopher Kelly <ckelly@phys.columbia.edu> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_ZMOBIUS_APPROX_H | ||||
| #define GRID_ZMOBIUS_APPROX_H | ||||
|  | ||||
| #include <Grid/GridCore.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| NAMESPACE_BEGIN(Approx); | ||||
|  | ||||
| //Compute the Zmobius Omega parameters suitable for eigenvalue range   -lambda_bound <= lambda <= lambda_bound | ||||
| //Note omega_i = 1/(b_i + c_i)   where b_i and c_i are the Mobius parameters | ||||
| void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out, | ||||
| 			 const std::vector<RealD> &omega_in, const int Ls_in, | ||||
| 			 const RealD lambda_bound); | ||||
|    | ||||
| //mobius_param = b+c   with b-c=1 | ||||
| void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound); | ||||
|  | ||||
| //ZMobius class takes  gamma_i = (b+c) omega_i as its input, where b, c are factored out | ||||
| void computeZmobiusGamma(std::vector<ComplexD> &gamma_out,  | ||||
| 			 const RealD mobius_param_out, const int Ls_out,  | ||||
| 			 const RealD mobius_param_in, const int Ls_in, | ||||
| 			 const RealD lambda_bound); | ||||
|  | ||||
| //Assumes mobius_param_out == mobius_param_in | ||||
| void computeZmobiusGamma(std::vector<ComplexD> &gamma_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound); | ||||
|  | ||||
| NAMESPACE_END(Approx); | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif | ||||
| @@ -58,8 +58,8 @@ | ||||
|  | ||||
| /* Compute the partial fraction expansion coefficients (alpha) from the | ||||
|  * factored form */ | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| NAMESPACE_BEGIN(Approx); | ||||
| namespace Grid { | ||||
| namespace Approx { | ||||
|  | ||||
| static void construct_partfrac(izd *z) { | ||||
|   int dn = z -> dn, dd = z -> dd, type = z -> type; | ||||
| @@ -293,7 +293,7 @@ static void sncndnFK(INTERNAL_PRECISION u, INTERNAL_PRECISION k, | ||||
|  * Set type = 0 for the Zolotarev approximation, which is zero at x = 0, and | ||||
|  * type = 1 for the approximation which is infinite at x = 0. */ | ||||
|  | ||||
| zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) { | ||||
| zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) { | ||||
|   INTERNAL_PRECISION A, c, cp, kp, ksq, sn, cn, dn, Kp, Kj, z, z0, t, M, F, | ||||
|     l, invlambda, xi, xisq, *tv, s, opl; | ||||
|   int m, czero, ts; | ||||
| @@ -375,12 +375,12 @@ zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) { | ||||
|   construct_partfrac(d); | ||||
|   construct_contfrac(d); | ||||
|  | ||||
|   /* Converting everything to ZOLO_PRECISION for external use only */ | ||||
|   /* Converting everything to PRECISION for external use only */ | ||||
|  | ||||
|   zd = (zolotarev_data*) malloc(sizeof(zolotarev_data)); | ||||
|   zd -> A = (ZOLO_PRECISION) d -> A; | ||||
|   zd -> Delta = (ZOLO_PRECISION) d -> Delta; | ||||
|   zd -> epsilon = (ZOLO_PRECISION) d -> epsilon; | ||||
|   zd -> A = (PRECISION) d -> A; | ||||
|   zd -> Delta = (PRECISION) d -> Delta; | ||||
|   zd -> epsilon = (PRECISION) d -> epsilon; | ||||
|   zd -> n = d -> n; | ||||
|   zd -> type = d -> type; | ||||
|   zd -> dn = d -> dn; | ||||
| @@ -390,24 +390,24 @@ zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) { | ||||
|   zd -> deg_num = d -> deg_num; | ||||
|   zd -> deg_denom = d -> deg_denom; | ||||
|  | ||||
|   zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m]; | ||||
|   zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m]; | ||||
|   free(d -> a); | ||||
|  | ||||
|   zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m]; | ||||
|   zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m]; | ||||
|   free(d -> ap); | ||||
|  | ||||
|   zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m]; | ||||
|   zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m]; | ||||
|   free(d -> alpha); | ||||
|  | ||||
|   zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m]; | ||||
|   zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m]; | ||||
|   free(d -> beta); | ||||
|  | ||||
|   zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m]; | ||||
|   zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m]; | ||||
|   free(d -> gamma); | ||||
|  | ||||
|   free(d); | ||||
| @@ -426,7 +426,7 @@ void zolotarev_free(zolotarev_data *zdata) | ||||
| } | ||||
|  | ||||
|  | ||||
| zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) { | ||||
| zolotarev_data* higham(PRECISION epsilon, int n) { | ||||
|   INTERNAL_PRECISION A, M, c, cp, z, z0, t, epssq; | ||||
|   int m, czero; | ||||
|   zolotarev_data *zd; | ||||
| @@ -481,9 +481,9 @@ zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) { | ||||
|   /* Converting everything to PRECISION for external use only */ | ||||
|  | ||||
|   zd = (zolotarev_data*) malloc(sizeof(zolotarev_data)); | ||||
|   zd -> A = (ZOLO_PRECISION) d -> A; | ||||
|   zd -> Delta = (ZOLO_PRECISION) d -> Delta; | ||||
|   zd -> epsilon = (ZOLO_PRECISION) d -> epsilon; | ||||
|   zd -> A = (PRECISION) d -> A; | ||||
|   zd -> Delta = (PRECISION) d -> Delta; | ||||
|   zd -> epsilon = (PRECISION) d -> epsilon; | ||||
|   zd -> n = d -> n; | ||||
|   zd -> type = d -> type; | ||||
|   zd -> dn = d -> dn; | ||||
| @@ -493,47 +493,45 @@ zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) { | ||||
|   zd -> deg_num = d -> deg_num; | ||||
|   zd -> deg_denom = d -> deg_denom; | ||||
|  | ||||
|   zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m]; | ||||
|   zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m]; | ||||
|   free(d -> a); | ||||
|  | ||||
|   zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m]; | ||||
|   zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m]; | ||||
|   free(d -> ap); | ||||
|  | ||||
|   zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m]; | ||||
|   zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m]; | ||||
|   free(d -> alpha); | ||||
|  | ||||
|   zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m]; | ||||
|   zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m]; | ||||
|   free(d -> beta); | ||||
|  | ||||
|   zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m]; | ||||
|   zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m]; | ||||
|   free(d -> gamma); | ||||
|  | ||||
|   free(d); | ||||
|   return zd; | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Approx); | ||||
| NAMESPACE_END(Grid); | ||||
| }} | ||||
|  | ||||
| #ifdef TEST | ||||
|  | ||||
| #undef ZERO | ||||
| #define ZERO ((ZOLO_PRECISION) 0) | ||||
| #define ZERO ((PRECISION) 0) | ||||
| #undef ONE | ||||
| #define ONE ((ZOLO_PRECISION) 1) | ||||
| #define ONE ((PRECISION) 1) | ||||
| #undef TWO | ||||
| #define TWO ((ZOLO_PRECISION) 2) | ||||
| #define TWO ((PRECISION) 2) | ||||
|  | ||||
| /* Evaluate the rational approximation R(x) using the factored form */ | ||||
|  | ||||
| static ZOLO_PRECISION zolotarev_eval(ZOLO_PRECISION x, zolotarev_data* rdata) { | ||||
| static PRECISION zolotarev_eval(PRECISION x, zolotarev_data* rdata) { | ||||
|   int m; | ||||
|   ZOLO_PRECISION R; | ||||
|   PRECISION R; | ||||
|  | ||||
|   if (rdata -> type == 0) { | ||||
|     R = rdata -> A * x; | ||||
| @@ -551,9 +549,9 @@ static ZOLO_PRECISION zolotarev_eval(ZOLO_PRECISION x, zolotarev_data* rdata) { | ||||
|  | ||||
| /* Evaluate the rational approximation R(x) using the partial fraction form */ | ||||
|  | ||||
| static ZOLO_PRECISION zolotarev_partfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) { | ||||
| static PRECISION zolotarev_partfrac_eval(PRECISION x, zolotarev_data* rdata) { | ||||
|   int m; | ||||
|   ZOLO_PRECISION R = rdata -> alpha[rdata -> da - 1]; | ||||
|   PRECISION R = rdata -> alpha[rdata -> da - 1]; | ||||
|   for (m = 0; m < rdata -> dd; m++) | ||||
|     R += rdata -> alpha[m] / (x * x - rdata -> ap[m]); | ||||
|   if (rdata -> type == 1) R += rdata -> alpha[rdata -> dd] / (x * x); | ||||
| @@ -568,18 +566,18 @@ static ZOLO_PRECISION zolotarev_partfrac_eval(ZOLO_PRECISION x, zolotarev_data* | ||||
|  * non-signalling overflow this will work correctly since 1/(1/0) = 1/INF = 0, | ||||
|  * but with signalling overflow you will get an error message. */ | ||||
|  | ||||
| static ZOLO_PRECISION zolotarev_contfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) { | ||||
| static PRECISION zolotarev_contfrac_eval(PRECISION x, zolotarev_data* rdata) { | ||||
|   int m; | ||||
|   ZOLO_PRECISION R = rdata -> beta[0] * x; | ||||
|   PRECISION R = rdata -> beta[0] * x; | ||||
|   for (m = 1; m < rdata -> db; m++) R = rdata -> beta[m] * x + ONE / R; | ||||
|   return R; | ||||
| }     | ||||
|  | ||||
| /* Evaluate the rational approximation R(x) using Cayley form */ | ||||
|  | ||||
| static ZOLO_PRECISION zolotarev_cayley_eval(ZOLO_PRECISION x, zolotarev_data* rdata) { | ||||
| static PRECISION zolotarev_cayley_eval(PRECISION x, zolotarev_data* rdata) { | ||||
|   int m; | ||||
|   ZOLO_PRECISION T; | ||||
|   PRECISION T; | ||||
|  | ||||
|   T = rdata -> type == 0 ? ONE : -ONE; | ||||
|   for (m = 0; m < rdata -> n; m++) | ||||
| @@ -587,7 +585,6 @@ static ZOLO_PRECISION zolotarev_cayley_eval(ZOLO_PRECISION x, zolotarev_data* rd | ||||
|   return (ONE - T) / (ONE + T); | ||||
| } | ||||
|  | ||||
|  | ||||
| /* Test program. Apart from printing out the parameters for R(x) it produces | ||||
|  * the following data files for plotting (unless NPLOT is defined): | ||||
|  * | ||||
| @@ -607,7 +604,7 @@ int main(int argc, char** argv) { | ||||
|   int m, n, plotpts = 5000, type = 0; | ||||
|   float eps, x, ypferr, ycferr, ycaylerr, maxypferr, maxycferr, maxycaylerr; | ||||
|   zolotarev_data *rdata; | ||||
|   ZOLO_PRECISION y; | ||||
|   PRECISION y; | ||||
|   FILE *plot_function, *plot_error,  | ||||
|     *plot_partfrac, *plot_contfrac, *plot_cayley; | ||||
|  | ||||
| @@ -626,13 +623,13 @@ int main(int argc, char** argv) { | ||||
|   } | ||||
|  | ||||
|   rdata = type == 2  | ||||
|     ? higham((ZOLO_PRECISION) eps, n)  | ||||
|     : zolotarev((ZOLO_PRECISION) eps, n, type); | ||||
|     ? higham((PRECISION) eps, n)  | ||||
|     : zolotarev((PRECISION) eps, n, type); | ||||
|  | ||||
|   printf("Zolotarev Test: R(epsilon = %g, n = %d, type = %d)\n\t"  | ||||
| 	 STRINGIFY(VERSION) "\n\t" STRINGIFY(HVERSION) | ||||
| 	 "\n\tINTERNAL_PRECISION = " STRINGIFY(INTERNAL_PRECISION) | ||||
| 	 "\tZOLO_PRECISION = " STRINGIFY(ZOLO_PRECISION) | ||||
| 	 "\tPRECISION = " STRINGIFY(PRECISION) | ||||
| 	 "\n\n\tRational approximation of degree (%d,%d), %s at x = 0\n" | ||||
| 	 "\tDelta = %g (maximum error)\n\n" | ||||
| 	 "\tA = %g (overall factor)\n", | ||||
| @@ -681,15 +678,15 @@ int main(int argc, char** argv) { | ||||
|     x = 2.4 * (float) m / plotpts - 1.2; | ||||
|     if (rdata -> type == 0 || fabs(x) * (float) plotpts > 1.0) { | ||||
|       /* skip x = 0 for type 1, as R(0) is singular */ | ||||
|       y = zolotarev_eval((ZOLO_PRECISION) x, rdata); | ||||
|       y = zolotarev_eval((PRECISION) x, rdata); | ||||
|       fprintf(plot_function, "%g %g\n", x, (float) y); | ||||
|       fprintf(plot_error, "%g %g\n", | ||||
| 	      x, (float)((y - ((x > 0.0 ? ONE : -ONE))) / rdata -> Delta)); | ||||
|       ypferr = (float)((zolotarev_partfrac_eval((ZOLO_PRECISION) x, rdata) - y) | ||||
|       ypferr = (float)((zolotarev_partfrac_eval((PRECISION) x, rdata) - y) | ||||
| 		       / rdata -> Delta); | ||||
|       ycferr = (float)((zolotarev_contfrac_eval((ZOLO_PRECISION) x, rdata) - y) | ||||
|       ycferr = (float)((zolotarev_contfrac_eval((PRECISION) x, rdata) - y) | ||||
| 		       / rdata -> Delta); | ||||
|       ycaylerr = (float)((zolotarev_cayley_eval((ZOLO_PRECISION) x, rdata) - y) | ||||
|       ycaylerr = (float)((zolotarev_cayley_eval((PRECISION) x, rdata) - y) | ||||
| 		       / rdata -> Delta); | ||||
|       if (fabs(x) < 1.0 && fabs(x) > rdata -> epsilon) { | ||||
| 	maxypferr = MAX(maxypferr, fabs(ypferr)); | ||||
| @@ -726,5 +723,5 @@ int main(int argc, char** argv) { | ||||
|   return EXIT_SUCCESS; | ||||
| } | ||||
|  | ||||
| #endif /* TEST */ | ||||
|  | ||||
| #endif /* TEST */ | ||||
|   | ||||
| @@ -1,18 +1,18 @@ | ||||
| /* -*- Mode: C; comment-column: 22; fill-column: 79; -*- */ | ||||
|  | ||||
| #ifdef __cplusplus | ||||
| #include <Grid/Namespace.h> | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| NAMESPACE_BEGIN(Approx); | ||||
| namespace Grid { | ||||
| namespace Approx { | ||||
| #endif | ||||
|  | ||||
| #define HVERSION Header Time-stamp: <14-OCT-2004 09:26:51.00 adk@MISSCONTRARY> | ||||
|  | ||||
|  | ||||
| #ifndef ZOLOTAREV_INTERNAL | ||||
| #ifndef ZOLO_PRECISION | ||||
| #define ZOLO_PRECISION double | ||||
| #ifndef PRECISION | ||||
| #define PRECISION double | ||||
| #endif | ||||
| #define ZPRECISION ZOLO_PRECISION | ||||
| #define ZPRECISION PRECISION | ||||
| #define ZOLOTAREV_DATA zolotarev_data | ||||
| #endif | ||||
|  | ||||
| @@ -77,13 +77,11 @@ typedef struct { | ||||
|  * zolotarev_data structure. The arguments must satisfy the constraints that | ||||
|  * epsilon > 0, n > 0, and type = 0 or 1. */ | ||||
|  | ||||
| ZOLOTAREV_DATA* higham(ZOLO_PRECISION epsilon, int n) ; | ||||
| ZOLOTAREV_DATA* zolotarev(ZOLO_PRECISION epsilon, int n, int type); | ||||
| ZOLOTAREV_DATA* higham(PRECISION epsilon, int n) ; | ||||
| ZOLOTAREV_DATA* zolotarev(PRECISION epsilon, int n, int type); | ||||
| void zolotarev_free(zolotarev_data *zdata); | ||||
| #endif | ||||
|  | ||||
| #ifdef __cplusplus | ||||
| NAMESPACE_END(Approx); | ||||
| NAMESPACE_END(Grid); | ||||
| }} | ||||
| #endif | ||||
|  | ||||
|   | ||||
| @@ -10,12 +10,10 @@ | ||||
| #ifndef INCLUDED_BIGFLOAT_H | ||||
| #define INCLUDED_BIGFLOAT_H | ||||
|  | ||||
| #define __GMP_WITHIN_CONFIGURE | ||||
|  | ||||
| #include <gmp.h> | ||||
| #include <mpf2mpfr.h> | ||||
| #include <mpfr.h> | ||||
| #undef  __GMP_WITHIN_CONFIGURE | ||||
|  | ||||
| class bigfloat { | ||||
|  | ||||
| private: | ||||
|   | ||||
| @@ -25,10 +25,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
|     *************************************************************************************/ | ||||
|     /*  END LEGAL */ | ||||
|  | ||||
| #ifndef INCLUDED_BIGFLOAT_DOUBLE_H | ||||
| #define INCLUDED_BIGFLOAT_DOUBLE_H | ||||
|  | ||||
| #include <math.h> | ||||
|  | ||||
| typedef double mfloat;  | ||||
| @@ -190,6 +186,4 @@ public: | ||||
|   //  friend bigfloat& random(void); | ||||
| }; | ||||
|  | ||||
| #endif | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -1,34 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: BatchedBlas.h | ||||
|  | ||||
|     Copyright (C) 2023 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #include <Grid/GridCore.h> | ||||
| #include <Grid/algorithms/blas/BatchedBlas.h> | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| gridblasHandle_t GridBLAS::gridblasHandle; | ||||
| int              GridBLAS::gridblasInit; | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| @@ -1,727 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: BatchedBlas.h | ||||
|  | ||||
|     Copyright (C) 2023 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| #ifdef GRID_HIP | ||||
| #include <hipblas/hipblas.h> | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
| #include <cublas_v2.h> | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
| #include <oneapi/mkl.hpp> | ||||
| #endif | ||||
| #if 0 | ||||
| #define GRID_ONE_MKL | ||||
| #endif | ||||
| #ifdef GRID_ONE_MKL | ||||
| #include <oneapi/mkl.hpp> | ||||
| #endif | ||||
| ///////////////////////////////////////////////////////////////////////	   | ||||
| // Need to rearrange lattice data to be in the right format for a | ||||
| // batched multiply. Might as well make these static, dense packed | ||||
| /////////////////////////////////////////////////////////////////////// | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| #ifdef GRID_HIP | ||||
|   typedef hipblasHandle_t gridblasHandle_t; | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|   typedef cublasHandle_t gridblasHandle_t; | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|   typedef cl::sycl::queue *gridblasHandle_t; | ||||
| #endif | ||||
| #ifdef GRID_ONE_MKL | ||||
|   typedef cl::sycl::queue *gridblasHandle_t; | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL) | ||||
|   typedef int32_t gridblasHandle_t; | ||||
| #endif | ||||
|  | ||||
| enum GridBLASOperation_t { GridBLAS_OP_N, GridBLAS_OP_T, GridBLAS_OP_C } ; | ||||
|  | ||||
| class GridBLAS { | ||||
| public: | ||||
|  | ||||
|    | ||||
|   static gridblasHandle_t gridblasHandle; | ||||
|   static int            gridblasInit; | ||||
|    | ||||
|   static void Init(void) | ||||
|   { | ||||
|     if ( ! gridblasInit ) { | ||||
| #ifdef GRID_CUDA | ||||
|       std::cout << "cublasCreate"<<std::endl; | ||||
|       cublasCreate(&gridblasHandle); | ||||
|       cublasSetPointerMode(gridblasHandle, CUBLAS_POINTER_MODE_DEVICE); | ||||
| #endif | ||||
| #ifdef GRID_HIP | ||||
|       std::cout << "hipblasCreate"<<std::endl; | ||||
|       hipblasCreate(&gridblasHandle); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|       gridblasHandle = theGridAccelerator; | ||||
| #endif | ||||
| #ifdef GRID_ONE_MKL | ||||
|       cl::sycl::cpu_selector selector; | ||||
|       cl::sycl::device selectedDevice { selector }; | ||||
|       gridblasHandle =new sycl::queue (selectedDevice); | ||||
| #endif | ||||
|       gridblasInit=1; | ||||
|     } | ||||
|   } | ||||
|    | ||||
|   // Force construct once | ||||
|   GridBLAS() { Init(); }; | ||||
|   ~GridBLAS() { }; | ||||
|    | ||||
|   ///////////////////////////////////////////////////////////////////////////////////// | ||||
|   // BLAS GEMM conventions: | ||||
|   ///////////////////////////////////////////////////////////////////////////////////// | ||||
|   // - C = alpha A * B + beta C | ||||
|   // Dimensions: | ||||
|   // - C_m.n | ||||
|   // - A_m.k | ||||
|   // - B_k.n | ||||
|   // - Flops = 8 M N K | ||||
|   // - Bytes = 2*sizeof(word) * (MN+MK+KN) | ||||
|   // M=60, N=12 | ||||
|   // Flop/Byte = 8 . 60.60.12 / (60.12+60.60+60.12)/16 = 4 so expect about 4 TF/s on a GCD | ||||
|   ///////////////////////////////////////////////////////////////////////////////////// | ||||
|   void synchronise(void) | ||||
|   { | ||||
| #ifdef GRID_HIP | ||||
|     auto err = hipDeviceSynchronize(); | ||||
|     assert(err==hipSuccess); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     auto err = cudaDeviceSynchronize(); | ||||
|     assert(err==cudaSuccess); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     accelerator_barrier(); | ||||
| #endif | ||||
| #ifdef GRID_ONE_MKL | ||||
|     gridblasHandle->wait(); | ||||
| #endif | ||||
|   } | ||||
|    | ||||
|   void gemmBatched(int m,int n, int k, | ||||
| 		   ComplexD alpha, | ||||
| 		   deviceVector<ComplexD*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<ComplexD*> &Bkn, | ||||
| 		   ComplexD beta, | ||||
| 		   deviceVector<ComplexD*> &Cmn) | ||||
|   { | ||||
|     gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, | ||||
| 		m,n,k, | ||||
| 		alpha, | ||||
| 		Amk, | ||||
| 		Bkn, | ||||
| 		beta, | ||||
| 		Cmn); | ||||
|   } | ||||
|   void gemmBatched(int m,int n, int k, | ||||
| 		   ComplexF alpha, | ||||
| 		   deviceVector<ComplexF*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<ComplexF*> &Bkn, | ||||
| 		   ComplexF beta, | ||||
| 		   deviceVector<ComplexF*> &Cmn) | ||||
|   { | ||||
|     gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, | ||||
| 		m,n,k, | ||||
| 		alpha, | ||||
| 		Amk, | ||||
| 		Bkn, | ||||
| 		beta, | ||||
| 		Cmn); | ||||
|   } | ||||
|   void gemmBatched(int m,int n, int k, | ||||
| 		   RealD alpha, | ||||
| 		   deviceVector<RealD*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<RealD*> &Bkn, | ||||
| 		   RealD beta, | ||||
| 		   deviceVector<RealD*> &Cmn) | ||||
|   { | ||||
|     gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, | ||||
| 		m,n,k, | ||||
| 		alpha, | ||||
| 		Amk, | ||||
| 		Bkn, | ||||
| 		beta, | ||||
| 		Cmn); | ||||
|   } | ||||
|   void gemmBatched(int m,int n, int k, | ||||
| 		   RealF alpha, | ||||
| 		   deviceVector<RealF*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<RealF*> &Bkn, | ||||
| 		   RealF beta, | ||||
| 		   deviceVector<RealF*> &Cmn) | ||||
|   { | ||||
|     gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, | ||||
| 		m,n,k, | ||||
| 		alpha, | ||||
| 		Amk, | ||||
| 		Bkn, | ||||
| 		beta, | ||||
| 		Cmn); | ||||
|   } | ||||
|  | ||||
|   void gemmBatched(GridBLASOperation_t OpA, | ||||
| 		   GridBLASOperation_t OpB, | ||||
| 		   int m,int n, int k, | ||||
| 		   ComplexD alpha, | ||||
| 		   deviceVector<ComplexD*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<ComplexD*> &Bkn, | ||||
| 		   ComplexD beta, | ||||
| 		   deviceVector<ComplexD*> &Cmn) | ||||
|   { | ||||
|     RealD t2=usecond(); | ||||
|     int32_t batchCount = Amk.size(); | ||||
|     assert(Bkn.size()==batchCount); | ||||
|     assert(Cmn.size()==batchCount); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
|     if(OpA!=GridBLAS_OP_N) | ||||
|       lda = k; | ||||
|     if(OpB!=GridBLAS_OP_N) | ||||
|       ldb = n; | ||||
|      | ||||
|     static deviceVector<ComplexD> alpha_p(1); | ||||
|     static deviceVector<ComplexD> beta_p(1); | ||||
|     // can prestore the 1 and the zero on device | ||||
|     acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD)); | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD)); | ||||
|     RealD t0=usecond(); | ||||
|     //    std::cout << "ZgemmBatched mnk  "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl; | ||||
| #ifdef GRID_HIP | ||||
|     hipblasOperation_t hOpA; | ||||
|     hipblasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C; | ||||
|     auto err = hipblasZgemmBatched(gridblasHandle, | ||||
| 				   hOpA, | ||||
| 				   hOpB, | ||||
| 				   m,n,k, | ||||
| 				   (hipblasDoubleComplex *) &alpha_p[0], | ||||
| 				   (hipblasDoubleComplex **)&Amk[0], lda, | ||||
| 				   (hipblasDoubleComplex **)&Bkn[0], ldb, | ||||
| 				   (hipblasDoubleComplex *) &beta_p[0], | ||||
| 				   (hipblasDoubleComplex **)&Cmn[0], ldc, | ||||
| 				   batchCount); | ||||
|     //	 std::cout << " hipblas return code " <<(int)err<<std::endl; | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasOperation_t hOpA; | ||||
|     cublasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C; | ||||
|     auto err = cublasZgemmBatched(gridblasHandle, | ||||
| 				  hOpA, | ||||
| 				  hOpB, | ||||
| 				  m,n,k, | ||||
| 				  (cuDoubleComplex *) &alpha_p[0], | ||||
| 				  (cuDoubleComplex **)&Amk[0], lda, | ||||
| 				  (cuDoubleComplex **)&Bkn[0], ldb, | ||||
| 				  (cuDoubleComplex *) &beta_p[0], | ||||
| 				  (cuDoubleComplex **)&Cmn[0], ldc, | ||||
| 				  batchCount); | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     //MKL’s cblas_<T>gemm_batch & OneAPI | ||||
| #warning "oneMKL implementation not built " | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
|     // Need a default/reference implementation | ||||
|     int sda = lda*k; | ||||
|     int sdb = ldb*k; | ||||
|     int sdc = ldc*n; | ||||
|     for (int p = 0; p < batchCount; ++p) { | ||||
|       for (int mm = 0; mm < m; ++mm) { | ||||
| 	for (int nn = 0; nn < n; ++nn) { | ||||
| 	  ComplexD c_mn(0.0); | ||||
| 	  for (int kk = 0; kk < k; ++kk) | ||||
| 	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb]; | ||||
| 	  Cmn[p][mm + nn*ldc] =  (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ]; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
|     //    synchronise(); | ||||
|      RealD t1=usecond(); | ||||
|      RealD flops = 8.0*m*n*k*batchCount; | ||||
|      RealD bytes = 1.0*sizeof(ComplexD)*(m*k+k*n+m*n)*batchCount; | ||||
|      //     std::cout <<GridLogMessage<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl; | ||||
|      //     std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl; | ||||
|      //     std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl; | ||||
|   } | ||||
|  | ||||
|   void gemmBatched(GridBLASOperation_t OpA, | ||||
| 		   GridBLASOperation_t OpB, | ||||
| 		   int m,int n, int k, | ||||
| 		   ComplexF alpha, | ||||
| 		   deviceVector<ComplexF*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<ComplexF*> &Bkn, | ||||
| 		   ComplexF beta, | ||||
| 		   deviceVector<ComplexF*> &Cmn) | ||||
|   { | ||||
|     RealD t2=usecond(); | ||||
|     int32_t batchCount = Amk.size(); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
|     if(OpA!=GridBLAS_OP_N) | ||||
|       lda = k; | ||||
|     if(OpB!=GridBLAS_OP_N) | ||||
|       ldb = n; | ||||
|     static deviceVector<ComplexF> alpha_p(1); | ||||
|     static deviceVector<ComplexF> beta_p(1); | ||||
|     // can prestore the 1 and the zero on device | ||||
|     acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexF)); | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexF)); | ||||
|     RealD t0=usecond(); | ||||
|  | ||||
|     assert(Bkn.size()==batchCount); | ||||
|     assert(Cmn.size()==batchCount); | ||||
| #ifdef GRID_HIP | ||||
|     hipblasOperation_t hOpA; | ||||
|     hipblasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C; | ||||
|     auto err = hipblasCgemmBatched(gridblasHandle, | ||||
| 				   hOpA, | ||||
| 				   hOpB, | ||||
| 				   m,n,k, | ||||
| 				   (hipblasComplex *) &alpha_p[0], | ||||
| 				   (hipblasComplex **)&Amk[0], lda, | ||||
| 				   (hipblasComplex **)&Bkn[0], ldb, | ||||
| 				   (hipblasComplex *) &beta_p[0], | ||||
| 				   (hipblasComplex **)&Cmn[0], ldc, | ||||
| 				   batchCount); | ||||
|  | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasOperation_t hOpA; | ||||
|     cublasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C; | ||||
|     auto err = cublasCgemmBatched(gridblasHandle, | ||||
| 				  hOpA, | ||||
| 				  hOpB, | ||||
| 				  m,n,k, | ||||
| 				  (cuComplex *) &alpha_p[0], | ||||
| 				  (cuComplex **)&Amk[0], lda, | ||||
| 				  (cuComplex **)&Bkn[0], ldb, | ||||
| 				  (cuComplex *) &beta_p[0], | ||||
| 				  (cuComplex **)&Cmn[0], ldc, | ||||
| 				  batchCount); | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     //MKL’s cblas_<T>gemm_batch & OneAPI | ||||
| #warning "oneMKL implementation not built " | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
|     int sda = lda*k; | ||||
|     int sdb = ldb*k; | ||||
|     int sdc = ldc*n; | ||||
|     ComplexF alphaf(real(alpha),imag(alpha)); | ||||
|     ComplexF betaf(real(beta),imag(beta)); | ||||
|     // Need a default/reference implementation | ||||
|     for (int p = 0; p < batchCount; ++p) { | ||||
|       for (int mm = 0; mm < m; ++mm) { | ||||
| 	for (int nn = 0; nn < n; ++nn) { | ||||
| 	  ComplexF c_mn(0.0); | ||||
| 	  for (int kk = 0; kk < k; ++kk) | ||||
| 	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb]; | ||||
| 	  Cmn[p][mm + nn*ldc] =  (alphaf)*c_mn + (betaf)*Cmn[p][mm + nn*ldc ]; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
|      RealD t1=usecond(); | ||||
|      RealD flops = 8.0*m*n*k*batchCount; | ||||
|      RealD bytes = 1.0*sizeof(ComplexF)*(m*k+k*n+m*n)*batchCount; | ||||
|   } | ||||
|    | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|   // Single precision real GEMM | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|   void gemmBatched(GridBLASOperation_t OpA, | ||||
| 		   GridBLASOperation_t OpB, | ||||
| 		   int m,int n, int k, | ||||
| 		   RealF alpha, | ||||
| 		   deviceVector<RealF*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<RealF*> &Bkn, | ||||
| 		   RealF beta, | ||||
| 		   deviceVector<RealF*> &Cmn) | ||||
|   { | ||||
|     RealD t2=usecond(); | ||||
|     int32_t batchCount = Amk.size(); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
|     if(OpA!=GridBLAS_OP_N) | ||||
|       lda = k; | ||||
|     if(OpB!=GridBLAS_OP_N) | ||||
|       ldb = n; | ||||
|     static deviceVector<RealF> alpha_p(1); | ||||
|     static deviceVector<RealF> beta_p(1); | ||||
|     // can prestore the 1 and the zero on device | ||||
|     acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealF)); | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealF)); | ||||
|     RealD t0=usecond(); | ||||
|  | ||||
|     assert(Bkn.size()==batchCount); | ||||
|     assert(Cmn.size()==batchCount); | ||||
| #ifdef GRID_HIP | ||||
|     hipblasOperation_t hOpA; | ||||
|     hipblasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C; | ||||
|     auto err = hipblasSgemmBatched(gridblasHandle, | ||||
| 				   hOpA, | ||||
| 				   hOpB, | ||||
| 				   m,n,k, | ||||
| 				   (float *) &alpha_p[0], | ||||
| 				   (float **)&Amk[0], lda, | ||||
| 				   (float **)&Bkn[0], ldb, | ||||
| 				   (float *) &beta_p[0], | ||||
| 				   (float **)&Cmn[0], ldc, | ||||
| 				   batchCount); | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasOperation_t hOpA; | ||||
|     cublasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C; | ||||
|     auto err = cublasSgemmBatched(gridblasHandle, | ||||
| 				  hOpA, | ||||
| 				  hOpB, | ||||
| 				  m,n,k, | ||||
| 				  (float *) &alpha_p[0], | ||||
| 				  (float **)&Amk[0], lda, | ||||
| 				  (float **)&Bkn[0], ldb, | ||||
| 				  (float *) &beta_p[0], | ||||
| 				  (float **)&Cmn[0], ldc, | ||||
| 				  batchCount); | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     //MKL’s cblas_<T>gemm_batch & OneAPI | ||||
| #warning "oneMKL implementation not built " | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
|     int sda = lda*k; | ||||
|     int sdb = ldb*k; | ||||
|     int sdc = ldc*n; | ||||
|     // Need a default/reference implementation | ||||
|     for (int p = 0; p < batchCount; ++p) { | ||||
|       for (int mm = 0; mm < m; ++mm) { | ||||
| 	for (int nn = 0; nn < n; ++nn) { | ||||
| 	  RealD c_mn(0.0); | ||||
| 	  for (int kk = 0; kk < k; ++kk) | ||||
| 	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb]; | ||||
| 	  Cmn[p][mm + nn*ldc] =  (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ]; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
|      RealD t1=usecond(); | ||||
|      RealD flops = 2.0*m*n*k*batchCount; | ||||
|      RealD bytes = 1.0*sizeof(RealF)*(m*k+k*n+m*n)*batchCount; | ||||
|   } | ||||
|    | ||||
|    | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|   // Double precision real GEMM | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|   void gemmBatched(GridBLASOperation_t OpA, | ||||
| 		   GridBLASOperation_t OpB, | ||||
| 		   int m,int n, int k, | ||||
| 		   RealD alpha, | ||||
| 		   deviceVector<RealD*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<RealD*> &Bkn, | ||||
| 		   RealD beta, | ||||
| 		   deviceVector<RealD*> &Cmn) | ||||
|   { | ||||
|     RealD t2=usecond(); | ||||
|     int32_t batchCount = Amk.size(); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
|     if(OpA!=GridBLAS_OP_N) | ||||
|       lda = k; | ||||
|     if(OpB!=GridBLAS_OP_N) | ||||
|       ldb = n; | ||||
|      | ||||
|     static deviceVector<RealD> alpha_p(1); | ||||
|     static deviceVector<RealD> beta_p(1); | ||||
|     // can prestore the 1 and the zero on device | ||||
|     acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealD)); | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealD)); | ||||
|     RealD t0=usecond(); | ||||
|  | ||||
|     assert(Bkn.size()==batchCount); | ||||
|     assert(Cmn.size()==batchCount); | ||||
| #ifdef GRID_HIP | ||||
|     hipblasOperation_t hOpA; | ||||
|     hipblasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C; | ||||
|     auto err = hipblasDgemmBatched(gridblasHandle, | ||||
| 				   HIPBLAS_OP_N, | ||||
| 				   HIPBLAS_OP_N, | ||||
| 				   m,n,k, | ||||
| 				   (double *) &alpha_p[0], | ||||
| 				   (double **)&Amk[0], lda, | ||||
| 				   (double **)&Bkn[0], ldb, | ||||
| 				   (double *) &beta_p[0], | ||||
| 				   (double **)&Cmn[0], ldc, | ||||
| 				   batchCount); | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasOperation_t hOpA; | ||||
|     cublasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C; | ||||
|     auto err = cublasDgemmBatched(gridblasHandle, | ||||
| 				  hOpA, | ||||
| 				  hOpB, | ||||
| 				  m,n,k, | ||||
| 				  (double *) &alpha_p[0], | ||||
| 				  (double **)&Amk[0], lda, | ||||
| 				  (double **)&Bkn[0], ldb, | ||||
| 				  (double *) &beta_p[0], | ||||
| 				  (double **)&Cmn[0], ldc, | ||||
| 				  batchCount); | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     /* | ||||
|       int64_t m64=m; | ||||
|       int64_t n64=n; | ||||
|       int64_t k64=k; | ||||
|       int64_t batchCount64=batchCount; | ||||
|       oneapi::mkl::blas::column_major::gemm_batch(*theGridAccelerator, | ||||
|       onemkl::transpose::N, | ||||
|       onemkl::transpose::N, | ||||
|       &m64,&n64,&k64, | ||||
|       (double *) &alpha_p[0], | ||||
|       (double **)&Amk[0], lda, | ||||
|       (double **)&Bkn[0], ldb, | ||||
|       (double *) &beta_p[0], | ||||
|       (double **)&Cmn[0], ldc, | ||||
|       1,&batchCount64); | ||||
|      */ | ||||
|     //MKL’s cblas_<T>gemm_batch & OneAPI | ||||
| #warning "oneMKL implementation not built " | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
|     int sda = lda*k; | ||||
|     int sdb = ldb*k; | ||||
|     int sdc = ldc*n; | ||||
|     // Need a default/reference implementation | ||||
|     for (int p = 0; p < batchCount; ++p) { | ||||
|       for (int mm = 0; mm < m; ++mm) { | ||||
| 	for (int nn = 0; nn < n; ++nn) { | ||||
| 	  RealD c_mn(0.0); | ||||
| 	  for (int kk = 0; kk < k; ++kk) | ||||
| 	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb]; | ||||
| 	  Cmn[p][mm + nn*ldc] =  (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ]; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
|      RealD t1=usecond(); | ||||
|      RealD flops = 2.0*m*n*k*batchCount; | ||||
|      RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount; | ||||
|   } | ||||
|    | ||||
|  | ||||
|    | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Strided case used by benchmark, but generally unused in Grid | ||||
|   // Keep a code example in double complex, but don't generate the single and real variants for now | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|    | ||||
|   void gemmStridedBatched(int m,int n, int k, | ||||
| 			  ComplexD alpha, | ||||
| 			  ComplexD* Amk,  // pointer list to matrices | ||||
| 			  ComplexD* Bkn, | ||||
| 			  ComplexD beta, | ||||
| 			  ComplexD* Cmn, | ||||
| 			  int batchCount) | ||||
|   { | ||||
|     // Use C-row major storage, so transpose calls | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
|     int sda = m*k; | ||||
|     int sdb = k*n; | ||||
|     int sdc = m*n; | ||||
|     deviceVector<ComplexD> alpha_p(1); | ||||
|     deviceVector<ComplexD> beta_p(1); | ||||
|     acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD)); | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD)); | ||||
|  | ||||
|     //    std::cout << "blasZgemmStridedBatched mnk  "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl; | ||||
|     //    std::cout << "blasZgemmStridedBatched ld   "<<lda<<","<<ldb<<","<<ldc<<std::endl; | ||||
|     //    std::cout << "blasZgemmStridedBatched sd   "<<sda<<","<<sdb<<","<<sdc<<std::endl; | ||||
| #ifdef GRID_HIP | ||||
|     auto err = hipblasZgemmStridedBatched(gridblasHandle, | ||||
| 					  HIPBLAS_OP_N, | ||||
| 					  HIPBLAS_OP_N, | ||||
| 					  m,n,k, | ||||
| 					  (hipblasDoubleComplex *) &alpha_p[0], | ||||
| 					  (hipblasDoubleComplex *) Amk, lda, sda, | ||||
| 					  (hipblasDoubleComplex *) Bkn, ldb, sdb, | ||||
| 					  (hipblasDoubleComplex *) &beta_p[0], | ||||
| 					  (hipblasDoubleComplex *) Cmn, ldc, sdc, | ||||
| 					  batchCount); | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasZgemmStridedBatched(gridblasHandle, | ||||
| 			      CUBLAS_OP_N, | ||||
| 			      CUBLAS_OP_N, | ||||
| 			      m,n,k, | ||||
| 			      (cuDoubleComplex *) &alpha_p[0], | ||||
| 			      (cuDoubleComplex *) Amk, lda, sda, | ||||
| 			      (cuDoubleComplex *) Bkn, ldb, sdb, | ||||
| 			      (cuDoubleComplex *) &beta_p[0], | ||||
| 			      (cuDoubleComplex *) Cmn, ldc, sdc, | ||||
| 			      batchCount); | ||||
| #endif | ||||
| #if defined(GRID_SYCL) || defined(GRID_ONE_MKL) | ||||
|     oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle, | ||||
| 						oneapi::mkl::transpose::N, | ||||
| 						oneapi::mkl::transpose::N, | ||||
| 						m,n,k, | ||||
| 						alpha, | ||||
| 						(const ComplexD *)Amk,lda,sda, | ||||
| 						(const ComplexD *)Bkn,ldb,sdb, | ||||
| 						beta, | ||||
| 						(ComplexD *)Cmn,ldc,sdc, | ||||
| 						batchCount); | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL) | ||||
|      // Need a default/reference implementation | ||||
|      for (int p = 0; p < batchCount; ++p) { | ||||
|        for (int mm = 0; mm < m; ++mm) { | ||||
| 	 for (int nn = 0; nn < n; ++nn) { | ||||
| 	   ComplexD c_mn(0.0); | ||||
| 	   for (int kk = 0; kk < k; ++kk) | ||||
| 	     c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb]; | ||||
| 	   Cmn[mm + nn*ldc + p*sdc] =  (alpha)*c_mn + (beta)*Cmn[mm + nn*ldc + p*sdc]; | ||||
| 	 } | ||||
|        } | ||||
|      } | ||||
| #endif | ||||
|   } | ||||
|  | ||||
|   double benchmark(int M, int N, int K, int BATCH) | ||||
|   { | ||||
|     int32_t N_A = M*K*BATCH; | ||||
|     int32_t N_B = K*N*BATCH; | ||||
|     int32_t N_C = M*N*BATCH; | ||||
|     deviceVector<ComplexD> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(ComplexD)); | ||||
|     deviceVector<ComplexD> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(ComplexD)); | ||||
|     deviceVector<ComplexD> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(ComplexD)); | ||||
|     ComplexD alpha(1.0); | ||||
|     ComplexD beta (1.0); | ||||
|     RealD flops = 8.0*M*N*K*BATCH; | ||||
|     int ncall=10; | ||||
|     RealD t0 = usecond(); | ||||
|     for(int i=0;i<ncall;i++){ | ||||
|       gemmStridedBatched(M,N,K, | ||||
| 			 alpha, | ||||
| 			 &A[0], // m x k  | ||||
| 			 &B[0], // k x n | ||||
| 			 beta,  | ||||
| 			 &C[0], // m x n | ||||
| 			 BATCH); | ||||
|     } | ||||
|     synchronise(); | ||||
|     RealD t1 = usecond(); | ||||
|     RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K)*BATCH; | ||||
|     flops = 8.0*M*N*K*BATCH*ncall; | ||||
|     flops = flops/(t1-t0)/1.e3; | ||||
|     return flops; // Returns gigaflops | ||||
|   } | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -90,8 +90,8 @@ class TwoLevelFlexiblePcg : public LinearFunction<Field> | ||||
|   void operator() (const Field &src, Field &psi){ | ||||
|   void operator() (const Field &src, Field &psi){ | ||||
|  | ||||
|     psi.Checkerboard() = src.Checkerboard(); | ||||
|     grid             = src.Grid(); | ||||
|     psi.checkerboard = src.checkerboard; | ||||
|     grid             = src._grid; | ||||
|  | ||||
|     RealD f; | ||||
|     RealD rtzp,rtz,a,d,b; | ||||
|   | ||||
| @@ -1,234 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/algorithms/iterative/BiCGSTAB.h | ||||
|  | ||||
| Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| Author: juettner <juettner@soton.ac.uk> | ||||
| Author: David Murphy <djmurphy@mit.edu> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
|  | ||||
| #ifndef GRID_BICGSTAB_H | ||||
| #define GRID_BICGSTAB_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| ///////////////////////////////////////////////////////////// | ||||
| // Base classes for iterative processes based on operators | ||||
| // single input vec, single output vec. | ||||
| ///////////////////////////////////////////////////////////// | ||||
|  | ||||
| template <class Field> | ||||
| class BiCGSTAB : public OperatorFunction<Field>  | ||||
| { | ||||
|   public: | ||||
|     using OperatorFunction<Field>::operator(); | ||||
|      | ||||
|     bool ErrorOnNoConverge;  // throw an assert when the CG fails to converge. | ||||
|                              // Defaults true. | ||||
|     RealD Tolerance; | ||||
|     Integer MaxIterations; | ||||
|     Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion | ||||
|    | ||||
|     BiCGSTAB(RealD tol, Integer maxit, bool err_on_no_conv = true) :  | ||||
|       Tolerance(tol), MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv){}; | ||||
|  | ||||
|     void operator()(LinearOperatorBase<Field>& Linop, const Field& src, Field& psi)  | ||||
|     { | ||||
|       psi.Checkerboard() = src.Checkerboard(); | ||||
|       conformable(psi, src); | ||||
|  | ||||
|       RealD cp(0), rho(1), rho_prev(0), alpha(1), beta(0), omega(1); | ||||
|       RealD a(0), bo(0), b(0), ssq(0); | ||||
|  | ||||
|       Field p(src); | ||||
|       Field r(src); | ||||
|       Field rhat(src); | ||||
|       Field v(src); | ||||
|       Field s(src); | ||||
|       Field t(src); | ||||
|       Field h(src); | ||||
|  | ||||
|       v = Zero(); | ||||
|       p = Zero(); | ||||
|  | ||||
|       // Initial residual computation & set up | ||||
|       RealD guess = norm2(psi); | ||||
|       assert(std::isnan(guess) == 0); | ||||
|      | ||||
|       Linop.Op(psi, v); | ||||
|       b = norm2(v); | ||||
|  | ||||
|       r = src - v; | ||||
|       rhat = r; | ||||
|       a = norm2(r); | ||||
|       ssq = norm2(src); | ||||
|  | ||||
|       std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: guess " << guess << std::endl; | ||||
|       std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB:   src " << ssq << std::endl; | ||||
|       std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB:    mp " << b << std::endl; | ||||
|       std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB:     r " << a << std::endl; | ||||
|  | ||||
|       RealD rsq = Tolerance * Tolerance * ssq; | ||||
|  | ||||
|       // Check if guess is really REALLY good :) | ||||
|       if(a <= rsq){ return; } | ||||
|  | ||||
|       std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: k=0 residual " << a << " target " << rsq << std::endl; | ||||
|  | ||||
|       GridStopWatch LinalgTimer; | ||||
|       GridStopWatch InnerTimer; | ||||
|       GridStopWatch AxpyNormTimer; | ||||
|       GridStopWatch LinearCombTimer; | ||||
|       GridStopWatch MatrixTimer; | ||||
|       GridStopWatch SolverTimer; | ||||
|  | ||||
|       SolverTimer.Start(); | ||||
|       int k; | ||||
|       for (k = 1; k <= MaxIterations; k++)  | ||||
|       { | ||||
|         rho_prev = rho; | ||||
|  | ||||
|         LinalgTimer.Start(); | ||||
|         InnerTimer.Start(); | ||||
|         ComplexD Crho  = innerProduct(rhat,r); | ||||
|         InnerTimer.Stop(); | ||||
|         rho = Crho.real(); | ||||
|  | ||||
|         beta = (rho / rho_prev) * (alpha / omega); | ||||
|  | ||||
|         LinearCombTimer.Start(); | ||||
|         bo = beta * omega; | ||||
| 	{ | ||||
| 	  autoView( p_v , p, AcceleratorWrite); | ||||
| 	  autoView( r_v , r, AcceleratorRead); | ||||
| 	  autoView( v_v , v, AcceleratorRead); | ||||
| 	  accelerator_for(ss, p_v.size(), Field::vector_object::Nsimd(),{ | ||||
| 	      coalescedWrite(p_v[ss], beta*p_v(ss) - bo*v_v(ss) + r_v(ss)); | ||||
| 	    }); | ||||
| 	} | ||||
|         LinearCombTimer.Stop(); | ||||
|         LinalgTimer.Stop(); | ||||
|  | ||||
|         MatrixTimer.Start(); | ||||
|         Linop.Op(p,v); | ||||
|         MatrixTimer.Stop(); | ||||
|  | ||||
|         LinalgTimer.Start(); | ||||
|         InnerTimer.Start(); | ||||
|         ComplexD Calpha = innerProduct(rhat,v); | ||||
|         InnerTimer.Stop(); | ||||
|         alpha = rho / Calpha.real(); | ||||
|  | ||||
|         LinearCombTimer.Start(); | ||||
| 	{ | ||||
| 	  autoView( p_v , p, AcceleratorRead); | ||||
| 	  autoView( r_v , r, AcceleratorRead); | ||||
| 	  autoView( v_v , v, AcceleratorRead); | ||||
| 	  autoView( psi_v,psi, AcceleratorRead); | ||||
| 	  autoView( h_v  ,  h, AcceleratorWrite); | ||||
| 	  autoView( s_v  ,  s, AcceleratorWrite); | ||||
| 	  accelerator_for(ss, h_v.size(), Field::vector_object::Nsimd(),{ | ||||
| 	      coalescedWrite(h_v[ss], alpha*p_v(ss) + psi_v(ss)); | ||||
| 	    }); | ||||
| 	  accelerator_for(ss, s_v.size(), Field::vector_object::Nsimd(),{ | ||||
| 	      coalescedWrite(s_v[ss], -alpha*v_v(ss) + r_v(ss)); | ||||
|  	  }); | ||||
|         } | ||||
|         LinearCombTimer.Stop(); | ||||
|         LinalgTimer.Stop(); | ||||
|  | ||||
|         MatrixTimer.Start(); | ||||
|         Linop.Op(s,t); | ||||
|         MatrixTimer.Stop(); | ||||
|  | ||||
|         LinalgTimer.Start(); | ||||
|         InnerTimer.Start(); | ||||
|         ComplexD Comega = innerProduct(t,s); | ||||
|         InnerTimer.Stop(); | ||||
|         omega = Comega.real() / norm2(t); | ||||
|  | ||||
|         LinearCombTimer.Start(); | ||||
| 	{ | ||||
| 	  autoView( psi_v,psi, AcceleratorWrite); | ||||
| 	  autoView( r_v , r, AcceleratorWrite); | ||||
| 	  autoView( h_v , h, AcceleratorRead); | ||||
| 	  autoView( s_v , s, AcceleratorRead); | ||||
| 	  autoView( t_v , t, AcceleratorRead); | ||||
| 	  accelerator_for(ss, psi_v.size(), Field::vector_object::Nsimd(),{ | ||||
| 	      coalescedWrite(psi_v[ss], h_v(ss) + omega * s_v(ss)); | ||||
| 	      coalescedWrite(r_v[ss], -omega * t_v(ss) + s_v(ss)); | ||||
| 	    }); | ||||
| 	} | ||||
|         LinearCombTimer.Stop(); | ||||
| 	 | ||||
|         cp = norm2(r); | ||||
|         LinalgTimer.Stop(); | ||||
|  | ||||
|         std::cout << GridLogIterative << "BiCGSTAB: Iteration " << k << " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl; | ||||
|  | ||||
|         // Stopping condition | ||||
|         if(cp <= rsq)  | ||||
|         { | ||||
|           SolverTimer.Stop(); | ||||
|           Linop.Op(psi, v); | ||||
|           p = v - src; | ||||
|  | ||||
|           RealD srcnorm = sqrt(norm2(src)); | ||||
|           RealD resnorm = sqrt(norm2(p)); | ||||
|           RealD true_residual = resnorm / srcnorm; | ||||
|  | ||||
|           std::cout << GridLogMessage << "BiCGSTAB Converged on iteration " << k << std::endl; | ||||
|           std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp/ssq) << std::endl; | ||||
|           std::cout << GridLogMessage << "\tTrue residual " << true_residual << std::endl; | ||||
|           std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl; | ||||
|  | ||||
|           std::cout << GridLogMessage << "Time breakdown " << std::endl; | ||||
|           std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed() << std::endl; | ||||
|           std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() << std::endl; | ||||
|           std::cout << GridLogMessage << "\tLinalg     " << LinalgTimer.Elapsed() << std::endl; | ||||
|           std::cout << GridLogMessage << "\tInner      " << InnerTimer.Elapsed() << std::endl; | ||||
|           std::cout << GridLogMessage << "\tAxpyNorm   " << AxpyNormTimer.Elapsed() << std::endl; | ||||
|           std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() << std::endl; | ||||
|  | ||||
|           if(ErrorOnNoConverge){ assert(true_residual / Tolerance < 10000.0); } | ||||
|  | ||||
|           IterationsToComplete = k;	 | ||||
|  | ||||
|           return; | ||||
|         } | ||||
|       } | ||||
|        | ||||
|       std::cout << GridLogMessage << "BiCGSTAB did NOT converge" << std::endl; | ||||
|  | ||||
|       if(ErrorOnNoConverge){ assert(0); } | ||||
|       IterationsToComplete = k; | ||||
|     } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif | ||||
| @@ -1,159 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
| Source file: ./lib/algorithms/iterative/BiCGSTABMixedPrec.h | ||||
|  | ||||
| Copyright (C) 2015 | ||||
|  | ||||
| Author: Christopher Kelly <ckelly@phys.columbia.edu> | ||||
| Author: David Murphy <djmurphy@mit.edu> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
|  | ||||
| #ifndef GRID_BICGSTAB_MIXED_PREC_H | ||||
| #define GRID_BICGSTAB_MIXED_PREC_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| // Mixed precision restarted defect correction BiCGSTAB | ||||
| template<class FieldD, class FieldF, typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0, typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>  | ||||
| class MixedPrecisionBiCGSTAB : public LinearFunction<FieldD>  | ||||
| { | ||||
|   public: | ||||
|     using LinearFunction<FieldD>::operator(); | ||||
|     RealD   Tolerance; | ||||
|     RealD   InnerTolerance; // Initial tolerance for inner CG. Defaults to Tolerance but can be changed | ||||
|     Integer MaxInnerIterations; | ||||
|     Integer MaxOuterIterations; | ||||
|     GridBase* SinglePrecGrid; // Grid for single-precision fields | ||||
|     RealD OuterLoopNormMult; // Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance | ||||
|     LinearOperatorBase<FieldF> &Linop_f; | ||||
|     LinearOperatorBase<FieldD> &Linop_d; | ||||
|  | ||||
|     Integer TotalInnerIterations; //Number of inner CG iterations | ||||
|     Integer TotalOuterIterations; //Number of restarts | ||||
|     Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step | ||||
|  | ||||
|     //Option to speed up *inner single precision* solves using a LinearFunction that produces a guess | ||||
|     LinearFunction<FieldF> *guesser; | ||||
|      | ||||
|     MixedPrecisionBiCGSTAB(RealD tol, Integer maxinnerit, Integer maxouterit, GridBase* _sp_grid,  | ||||
|         LinearOperatorBase<FieldF>& _Linop_f, LinearOperatorBase<FieldD>& _Linop_d) :  | ||||
|       Linop_f(_Linop_f), Linop_d(_Linop_d), Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit),  | ||||
|       MaxOuterIterations(maxouterit), SinglePrecGrid(_sp_grid), OuterLoopNormMult(100.), guesser(NULL) {}; | ||||
|  | ||||
|     void useGuesser(LinearFunction<FieldF>& g){ | ||||
|       guesser = &g; | ||||
|     } | ||||
|    | ||||
|     void operator() (const FieldD& src_d_in, FieldD& sol_d) | ||||
|     { | ||||
|       TotalInnerIterations = 0; | ||||
|      | ||||
|       GridStopWatch TotalTimer; | ||||
|       TotalTimer.Start(); | ||||
|        | ||||
|       int cb = src_d_in.Checkerboard(); | ||||
|       sol_d.Checkerboard() = cb; | ||||
|        | ||||
|       RealD src_norm = norm2(src_d_in); | ||||
|       RealD stop = src_norm * Tolerance*Tolerance; | ||||
|  | ||||
|       GridBase* DoublePrecGrid = src_d_in.Grid(); | ||||
|       FieldD tmp_d(DoublePrecGrid); | ||||
|       tmp_d.Checkerboard() = cb; | ||||
|        | ||||
|       FieldD tmp2_d(DoublePrecGrid); | ||||
|       tmp2_d.Checkerboard() = cb; | ||||
|        | ||||
|       FieldD src_d(DoublePrecGrid); | ||||
|       src_d = src_d_in; //source for next inner iteration, computed from residual during operation | ||||
|        | ||||
|       RealD inner_tol = InnerTolerance; | ||||
|        | ||||
|       FieldF src_f(SinglePrecGrid); | ||||
|       src_f.Checkerboard() = cb; | ||||
|        | ||||
|       FieldF sol_f(SinglePrecGrid); | ||||
|       sol_f.Checkerboard() = cb; | ||||
|        | ||||
|       BiCGSTAB<FieldF> CG_f(inner_tol, MaxInnerIterations); | ||||
|       CG_f.ErrorOnNoConverge = false; | ||||
|  | ||||
|       GridStopWatch InnerCGtimer; | ||||
|  | ||||
|       GridStopWatch PrecChangeTimer; | ||||
|        | ||||
|       Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count | ||||
|          | ||||
|       for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++) | ||||
|       { | ||||
|         // Compute double precision rsd and also new RHS vector. | ||||
|         Linop_d.Op(sol_d, tmp_d); | ||||
|         RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector | ||||
|          | ||||
|         std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Outer iteration " << outer_iter << " residual " << norm << " target " << stop << std::endl; | ||||
|  | ||||
|         if(norm < OuterLoopNormMult * stop){ | ||||
|           std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Outer iteration converged on iteration " << outer_iter << std::endl; | ||||
|           break; | ||||
|         } | ||||
|         while(norm * inner_tol * inner_tol < stop){ inner_tol *= 2; } // inner_tol = sqrt(stop/norm) ?? | ||||
|  | ||||
|         PrecChangeTimer.Start(); | ||||
|         precisionChange(src_f, src_d); | ||||
|         PrecChangeTimer.Stop(); | ||||
|          | ||||
|         sol_f = Zero(); | ||||
|  | ||||
|         //Optionally improve inner solver guess (eg using known eigenvectors) | ||||
|         if(guesser != NULL){ (*guesser)(src_f, sol_f); } | ||||
|  | ||||
|         //Inner CG | ||||
|         CG_f.Tolerance = inner_tol; | ||||
|         InnerCGtimer.Start(); | ||||
|         CG_f(Linop_f, src_f, sol_f); | ||||
|         InnerCGtimer.Stop(); | ||||
|         TotalInnerIterations += CG_f.IterationsToComplete; | ||||
|          | ||||
|         //Convert sol back to double and add to double prec solution | ||||
|         PrecChangeTimer.Start(); | ||||
|         precisionChange(tmp_d, sol_f); | ||||
|         PrecChangeTimer.Stop(); | ||||
|          | ||||
|         axpy(sol_d, 1.0, tmp_d, sol_d); | ||||
|       } | ||||
|        | ||||
|       //Final trial CG | ||||
|       std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Starting final patch-up double-precision solve" << std::endl; | ||||
|        | ||||
|       BiCGSTAB<FieldD> CG_d(Tolerance, MaxInnerIterations); | ||||
|       CG_d(Linop_d, src_d_in, sol_d); | ||||
|       TotalFinalStepIterations = CG_d.IterationsToComplete; | ||||
|  | ||||
|       TotalTimer.Stop(); | ||||
|       std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl; | ||||
|       std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Total time " << TotalTimer.Elapsed() << " Precision change " << PrecChangeTimer.Elapsed() << " Inner CG total " << InnerCGtimer.Elapsed() << std::endl; | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif | ||||
| @@ -27,9 +27,11 @@ See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
| #ifndef GRID_BLOCK_CONJUGATE_GRADIENT_H | ||||
| #define GRID_BLOCK_CONJUGATE_GRADIENT_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| namespace Grid { | ||||
|  | ||||
| enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS, BlockCGVec, BlockCGrQVec }; | ||||
|  | ||||
| @@ -52,7 +54,6 @@ class BlockConjugateGradient : public OperatorFunction<Field> { | ||||
|   Integer MaxIterations; | ||||
|   Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion | ||||
|   Integer PrintInterval; //GridLogMessages or Iterative | ||||
|   RealD TrueResidual; | ||||
|    | ||||
|   BlockConjugateGradient(BlockCGtype cgtype,int _Orthog,RealD tol, Integer maxit, bool err_on_no_conv = true) | ||||
|     : Tolerance(tol), CGtype(cgtype),   blockDim(_Orthog),  MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv),PrintInterval(100) | ||||
| @@ -153,12 +154,12 @@ virtual void operator()(LinearOperatorBase<Field> &Linop, const std::vector<Fiel | ||||
| void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)  | ||||
| { | ||||
|   int Orthog = blockDim; // First dimension is block dim; this is an assumption | ||||
|   Nblock = B.Grid()->_fdimensions[Orthog]; | ||||
|   Nblock = B._grid->_fdimensions[Orthog]; | ||||
| /* FAKE */ | ||||
|   Nblock=8; | ||||
|   std::cout<<GridLogMessage<<" Block Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl; | ||||
|  | ||||
|   X.Checkerboard() = B.Checkerboard(); | ||||
|   X.checkerboard = B.checkerboard; | ||||
|   conformable(X, B); | ||||
|  | ||||
|   Field tmp(B); | ||||
| @@ -307,8 +308,7 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X) | ||||
|  | ||||
|       Linop.HermOp(X, AD); | ||||
|       AD = AD-B; | ||||
|       TrueResidual = std::sqrt(norm2(AD)/norm2(B)); | ||||
|       std::cout << GridLogMessage <<"\tTrue residual is " << TrueResidual <<std::endl; | ||||
|       std::cout << GridLogMessage <<"\t True residual is " << std::sqrt(norm2(AD)/norm2(B)) <<std::endl; | ||||
|  | ||||
|       std::cout << GridLogMessage << "Time Breakdown "<<std::endl; | ||||
|       std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed()     <<std::endl; | ||||
| @@ -334,11 +334,11 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X) | ||||
| void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)  | ||||
| { | ||||
|   int Orthog = blockDim; // First dimension is block dim | ||||
|   Nblock = Src.Grid()->_fdimensions[Orthog]; | ||||
|   Nblock = Src._grid->_fdimensions[Orthog]; | ||||
|  | ||||
|   std::cout<<GridLogMessage<<"MultiRHS Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl; | ||||
|  | ||||
|   Psi.Checkerboard() = Src.Checkerboard(); | ||||
|   Psi.checkerboard = Src.checkerboard; | ||||
|   conformable(Psi, Src); | ||||
|  | ||||
|   Field P(Src); | ||||
| @@ -444,8 +444,7 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field & | ||||
|  | ||||
|       Linop.HermOp(Psi, AP); | ||||
|       AP = AP-Src; | ||||
|       TrueResidual = std::sqrt(norm2(AP)/norm2(Src)); | ||||
|       std::cout <<GridLogMessage << "\tTrue residual is " << TrueResidual <<std::endl; | ||||
|       std::cout <<GridLogMessage << "\tTrue residual is " << std::sqrt(norm2(AP)/norm2(Src)) <<std::endl; | ||||
|  | ||||
|       std::cout << GridLogMessage << "Time Breakdown "<<std::endl; | ||||
|       std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed()     <<std::endl; | ||||
| @@ -479,7 +478,7 @@ void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector< | ||||
|   for(int b=0;b<Nblock;b++){ | ||||
|     tmp[b]   = Y[b]; | ||||
|     for(int bp=0;bp<Nblock;bp++) { | ||||
|       tmp[b] = tmp[b] + scomplex(scale*m(bp,b))*X[bp];  | ||||
|       tmp[b] = tmp[b] + (scale*m(bp,b))*X[bp];  | ||||
|     } | ||||
|   } | ||||
|   for(int b=0;b<Nblock;b++){ | ||||
| @@ -489,9 +488,9 @@ void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector< | ||||
| void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){ | ||||
|   // Should make this cache friendly with site outermost, parallel_for | ||||
|   for(int b=0;b<Nblock;b++){ | ||||
|     AP[b] = Zero(); | ||||
|     AP[b] = zero; | ||||
|     for(int bp=0;bp<Nblock;bp++) { | ||||
|       AP[b] += scomplex(m(bp,b))*X[bp];  | ||||
|       AP[b] += (m(bp,b))*X[bp];  | ||||
|     } | ||||
|   } | ||||
| } | ||||
| @@ -518,7 +517,7 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field | ||||
|   std::cout<<GridLogMessage<<" Block Conjugate Gradient Vec rQ : Nblock "<<Nblock<<std::endl; | ||||
|  | ||||
|   for(int b=0;b<Nblock;b++){  | ||||
|     X[b].Checkerboard() = B[b].Checkerboard(); | ||||
|     X[b].checkerboard = B[b].checkerboard; | ||||
|     conformable(X[b], B[b]); | ||||
|     conformable(X[b], X[0]);  | ||||
|   } | ||||
| @@ -656,7 +655,7 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field | ||||
|       if ( rr > max_resid ) max_resid = rr; | ||||
|     } | ||||
|  | ||||
|     std::cout << GridLogIterative << "\t Block Iteration "<<k<<" ave resid "<< std::sqrt(rrsum/sssum) << " max "<< std::sqrt(max_resid) <<std::endl; | ||||
|     std::cout << GridLogIterative << "\t Block Iteration "<<k<<" ave resid "<< sqrt(rrsum/sssum) << " max "<< sqrt(max_resid) <<std::endl; | ||||
|  | ||||
|     if ( max_resid < Tolerance*Tolerance ) {  | ||||
|  | ||||
| @@ -671,8 +670,7 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field | ||||
|  | ||||
|       for(int b=0;b<Nblock;b++) Linop.HermOp(X[b], AD[b]); | ||||
|       for(int b=0;b<Nblock;b++) AD[b] = AD[b]-B[b]; | ||||
|       TrueResidual = std::sqrt(normv(AD)/normv(B)); | ||||
|       std::cout << GridLogMessage << "\tTrue residual is " << TrueResidual <<std::endl; | ||||
|       std::cout << GridLogMessage <<"\t True residual is " << std::sqrt(normv(AD)/normv(B)) <<std::endl; | ||||
|  | ||||
|       std::cout << GridLogMessage << "Time Breakdown "<<std::endl; | ||||
|       std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed()     <<std::endl; | ||||
| @@ -692,7 +690,9 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field | ||||
|   IterationsToComplete = k; | ||||
| } | ||||
|  | ||||
|  | ||||
|  | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -34,8 +34,6 @@ namespace Grid { | ||||
| template<class Field> | ||||
| class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|  public: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   bool ErrorOnNoConverge; // Throw an assert when CAGMRES fails to converge, | ||||
|                           // defaults to true | ||||
|  | ||||
| @@ -54,10 +52,10 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction< | ||||
|  | ||||
|   Eigen::MatrixXcd H; | ||||
|  | ||||
|   std::vector<ComplexD> y; | ||||
|   std::vector<ComplexD> gamma; | ||||
|   std::vector<ComplexD> c; | ||||
|   std::vector<ComplexD> s; | ||||
|   std::vector<std::complex<double>> y; | ||||
|   std::vector<std::complex<double>> gamma; | ||||
|   std::vector<std::complex<double>> c; | ||||
|   std::vector<std::complex<double>> s; | ||||
|  | ||||
|   CommunicationAvoidingGeneralisedMinimalResidual(RealD   tol, | ||||
|                                                   Integer maxit, | ||||
| @@ -78,7 +76,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction< | ||||
|  | ||||
|     std::cout << GridLogWarning << "This algorithm currently doesn't differ from regular GMRES" << std::endl; | ||||
|  | ||||
|     psi.Checkerboard() = src.Checkerboard(); | ||||
|     psi.checkerboard = src.checkerboard; | ||||
|     conformable(psi, src); | ||||
|  | ||||
|     RealD guess = norm2(psi); | ||||
| @@ -88,7 +86,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction< | ||||
|     RealD ssq = norm2(src); | ||||
|     RealD rsq = Tolerance * Tolerance * ssq; | ||||
|  | ||||
|     Field r(src.Grid()); | ||||
|     Field r(src._grid); | ||||
|  | ||||
|     std::cout << std::setprecision(4) << std::scientific; | ||||
|     std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: guess " << guess << std::endl; | ||||
| @@ -144,11 +142,11 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction< | ||||
|  | ||||
|     RealD cp = 0; | ||||
|  | ||||
|     Field w(src.Grid()); | ||||
|     Field r(src.Grid()); | ||||
|     Field w(src._grid); | ||||
|     Field r(src._grid); | ||||
|  | ||||
|     // this should probably be made a class member so that it is only allocated once, not in every restart | ||||
|     std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero(); | ||||
|     std::vector<Field> v(RestartLength + 1, src._grid); for (auto &elem : v) elem = zero; | ||||
|  | ||||
|     MatrixTimer.Start(); | ||||
|     LinOp.Op(psi, w); | ||||
| @@ -159,9 +157,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction< | ||||
|  | ||||
|     gamma[0] = sqrt(norm2(r)); | ||||
|  | ||||
|     ComplexD scale = 1.0/gamma[0]; | ||||
|     v[0] = scale * r; | ||||
|  | ||||
|     v[0] = (1. / gamma[0]) * r; | ||||
|     LinalgTimer.Stop(); | ||||
|  | ||||
|     for (int i=0; i<RestartLength; i++) { | ||||
| @@ -172,7 +168,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction< | ||||
|  | ||||
|       qrUpdate(i); | ||||
|  | ||||
|       cp = norm(gamma[i+1]); | ||||
|       cp = std::norm(gamma[i+1]); | ||||
|  | ||||
|       std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: Iteration " << IterationCount | ||||
|                 << " residual " << cp << " target " << rsq << std::endl; | ||||
| @@ -198,11 +194,11 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction< | ||||
|     LinalgTimer.Start(); | ||||
|     for (int i = 0; i <= iter; ++i) { | ||||
|       H(iter, i) = innerProduct(v[i], w); | ||||
|       w = w - ComplexD(H(iter, i)) * v[i]; | ||||
|       w = w - H(iter, i) * v[i]; | ||||
|     } | ||||
|  | ||||
|     H(iter, iter + 1) = sqrt(norm2(w)); | ||||
|     v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w; | ||||
|     v[iter + 1] = (1. / H(iter, iter + 1)) * w; | ||||
|     LinalgTimer.Stop(); | ||||
|   } | ||||
|  | ||||
| @@ -210,13 +206,13 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction< | ||||
|  | ||||
|     QrTimer.Start(); | ||||
|     for (int i = 0; i < iter ; ++i) { | ||||
|       auto tmp       = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1)); | ||||
|       H(iter, i)     = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1)); | ||||
|       auto tmp       = -s[i] * H(iter, i) + c[i] * H(iter, i + 1); | ||||
|       H(iter, i)     = std::conj(c[i]) * H(iter, i) + std::conj(s[i]) * H(iter, i + 1); | ||||
|       H(iter, i + 1) = tmp; | ||||
|     } | ||||
|  | ||||
|     // Compute new Givens Rotation | ||||
|     auto nu     = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1))); | ||||
|     ComplexD nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1))); | ||||
|     c[iter]     = H(iter, iter) / nu; | ||||
|     s[iter]     = H(iter, iter + 1) / nu; | ||||
|  | ||||
| @@ -225,7 +221,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction< | ||||
|     H(iter, iter + 1) = 0.; | ||||
|  | ||||
|     gamma[iter + 1] = -s[iter] * gamma[iter]; | ||||
|     gamma[iter]     = conjugate(c[iter]) * gamma[iter]; | ||||
|     gamma[iter]     = std::conj(c[iter]) * gamma[iter]; | ||||
|     QrTimer.Stop(); | ||||
|   } | ||||
|  | ||||
| @@ -235,8 +231,8 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction< | ||||
|     for (int i = iter; i >= 0; i--) { | ||||
|       y[i] = gamma[i]; | ||||
|       for (int k = i + 1; k <= iter; k++) | ||||
|         y[i] = y[i] - ComplexD(H(k, i)) * y[k]; | ||||
|       y[i] = y[i] / ComplexD(H(i, i)); | ||||
|         y[i] = y[i] - H(k, i) * y[k]; | ||||
|       y[i] = y[i] / H(i, i); | ||||
|     } | ||||
|  | ||||
|     for (int i = 0; i <= iter; i++) | ||||
|   | ||||
| @@ -31,7 +31,7 @@ directory | ||||
| #ifndef GRID_CONJUGATE_GRADIENT_H | ||||
| #define GRID_CONJUGATE_GRADIENT_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
| ///////////////////////////////////////////////////////////// | ||||
| // Base classes for iterative processes based on operators | ||||
| @@ -41,15 +41,11 @@ NAMESPACE_BEGIN(Grid); | ||||
| template <class Field> | ||||
| class ConjugateGradient : public OperatorFunction<Field> { | ||||
|  public: | ||||
|  | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   bool ErrorOnNoConverge;  // throw an assert when the CG fails to converge. | ||||
|                            // Defaults true. | ||||
|   RealD Tolerance; | ||||
|   Integer MaxIterations; | ||||
|   Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion | ||||
|   RealD TrueResidual; | ||||
|    | ||||
|   ConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true) | ||||
|       : Tolerance(tol), | ||||
| @@ -58,13 +54,11 @@ public: | ||||
|  | ||||
|   void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) { | ||||
|  | ||||
|     GRID_TRACE("ConjugateGradient"); | ||||
|     psi.Checkerboard() = src.Checkerboard(); | ||||
|  | ||||
|     psi.checkerboard = src.checkerboard; | ||||
|     conformable(psi, src); | ||||
|  | ||||
|     RealD cp, c, a, d, b, ssq, qq; | ||||
|     //RealD b_pred; | ||||
|     RealD cp, c, a, d, b, ssq, qq, b_pred; | ||||
|  | ||||
|     Field p(src); | ||||
|     Field mmp(src); | ||||
| @@ -74,6 +68,7 @@ public: | ||||
|     RealD guess = norm2(psi); | ||||
|     assert(std::isnan(guess) == 0); | ||||
|  | ||||
|      | ||||
|     Linop.HermOpAndNorm(psi, mmp, d, b); | ||||
|  | ||||
|     r = src - mmp; | ||||
| @@ -83,14 +78,6 @@ public: | ||||
|     cp = a; | ||||
|     ssq = norm2(src); | ||||
|  | ||||
|     // Handle trivial case of zero src | ||||
|     if (ssq == 0.){ | ||||
|       psi = Zero(); | ||||
|       IterationsToComplete = 1; | ||||
|       TrueResidual = 0.; | ||||
|       return; | ||||
|     } | ||||
|  | ||||
|     std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: guess " << guess << std::endl; | ||||
|     std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient:   src " << ssq << std::endl; | ||||
|     std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient:    mp " << d << std::endl; | ||||
| @@ -102,9 +89,6 @@ public: | ||||
|  | ||||
|     // Check if guess is really REALLY good :) | ||||
|     if (cp <= rsq) { | ||||
|       TrueResidual = std::sqrt(a/ssq); | ||||
|       std::cout << GridLogMessage << "ConjugateGradient guess is converged already " << std::endl; | ||||
|       IterationsToComplete = 0;	 | ||||
|       return; | ||||
|     } | ||||
|  | ||||
| @@ -118,13 +102,9 @@ public: | ||||
|     GridStopWatch MatrixTimer; | ||||
|     GridStopWatch SolverTimer; | ||||
|  | ||||
|     RealD usecs = -usecond(); | ||||
|     SolverTimer.Start(); | ||||
|     int k; | ||||
|     for (k = 1; k <= MaxIterations; k++) { | ||||
|  | ||||
|       GridStopWatch IterationTimer; | ||||
|       IterationTimer.Start(); | ||||
|     for (k = 1; k <= MaxIterations*1000; k++) { | ||||
|       c = cp; | ||||
|  | ||||
|       MatrixTimer.Start(); | ||||
| @@ -145,43 +125,30 @@ public: | ||||
|       b = cp / c; | ||||
|  | ||||
|       LinearCombTimer.Start(); | ||||
|       { | ||||
| 	autoView( psi_v , psi, AcceleratorWrite); | ||||
| 	autoView( p_v   , p,   AcceleratorWrite); | ||||
| 	autoView( r_v   , r,   AcceleratorWrite); | ||||
| 	accelerator_for(ss,p_v.size(), Field::vector_object::Nsimd(),{ | ||||
| 	    coalescedWrite(psi_v[ss], a      *  p_v(ss) + psi_v(ss)); | ||||
| 	    coalescedWrite(p_v[ss]  , b      *  p_v(ss) + r_v  (ss)); | ||||
| 	}); | ||||
|       parallel_for(int ss=0;ss<src._grid->oSites();ss++){ | ||||
| 	vstream(psi[ss], a      *  p[ss] + psi[ss]); | ||||
| 	vstream(p  [ss], b      *  p[ss] + r[ss]); | ||||
|       } | ||||
|       LinearCombTimer.Stop(); | ||||
|       LinalgTimer.Stop(); | ||||
|  | ||||
|       IterationTimer.Stop(); | ||||
|       if ( (k % 500) == 0 ) { | ||||
| 	std::cout << GridLogMessage << "ConjugateGradient: Iteration " << k | ||||
|                 << " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl; | ||||
|       } else {  | ||||
|       std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k | ||||
| 		  << " residual " << sqrt(cp/ssq) << " target " << Tolerance << " took " << IterationTimer.Elapsed() << std::endl; | ||||
|       } | ||||
|                 << " residual^2 " << sqrt(cp/ssq) << " target " << Tolerance << std::endl; | ||||
|  | ||||
|       // Stopping condition | ||||
|       if (cp <= rsq) { | ||||
| 	usecs +=usecond(); | ||||
|         SolverTimer.Stop(); | ||||
|         Linop.HermOpAndNorm(psi, mmp, d, qq); | ||||
|         p = mmp - src; | ||||
| 	GridBase *grid = src.Grid(); | ||||
| 	RealD DwfFlops = (1452. )*grid->gSites()*4*k | ||||
|    	               + (8+4+8+4+4)*12*grid->gSites()*k; // CG linear algebra | ||||
|         RealD srcnorm = std::sqrt(norm2(src)); | ||||
|         RealD resnorm = std::sqrt(norm2(p)); | ||||
|  | ||||
|         RealD srcnorm = sqrt(norm2(src)); | ||||
|         RealD resnorm = sqrt(norm2(p)); | ||||
|         RealD true_residual = resnorm / srcnorm; | ||||
|         std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k  | ||||
| 		  << "\tComputed residual " << std::sqrt(cp / ssq) | ||||
| 		  << "\tTrue residual " << true_residual | ||||
| 		  << "\tTarget " << Tolerance << std::endl; | ||||
|  | ||||
|         std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k << std::endl; | ||||
|         std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp / ssq)<<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl; | ||||
|  | ||||
|         std::cout << GridLogMessage << "Time breakdown "<<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed() <<std::endl; | ||||
| @@ -191,28 +158,20 @@ public: | ||||
| 	std::cout << GridLogMessage << "\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl; | ||||
|  | ||||
| 	std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl; | ||||
|  | ||||
|         if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0); | ||||
|  | ||||
| 	IterationsToComplete = k;	 | ||||
| 	TrueResidual = true_residual; | ||||
|  | ||||
|         return; | ||||
|       } | ||||
|     } | ||||
|     // Failed. Calculate true residual before giving up                                                          | ||||
|     Linop.HermOpAndNorm(psi, mmp, d, qq); | ||||
|     p = mmp - src; | ||||
|  | ||||
|     TrueResidual = sqrt(norm2(p)/ssq); | ||||
|  | ||||
|     std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations<< std::endl; | ||||
|     std::cout << GridLogMessage << "ConjugateGradient did NOT converge" | ||||
|               << std::endl; | ||||
|  | ||||
|     if (ErrorOnNoConverge) assert(0); | ||||
|     IterationsToComplete = k; | ||||
|  | ||||
|   } | ||||
| }; | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -28,15 +28,12 @@ Author: Christopher Kelly <ckelly@phys.columbia.edu> | ||||
| #ifndef GRID_CONJUGATE_GRADIENT_MIXED_PREC_H | ||||
| #define GRID_CONJUGATE_GRADIENT_MIXED_PREC_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|   //Mixed precision restarted defect correction CG | ||||
|   template<class FieldD,class FieldF,  | ||||
|     typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0, | ||||
|     typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>  | ||||
|   template<class FieldD,class FieldF, typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>  | ||||
|   class MixedPrecisionConjugateGradient : public LinearFunction<FieldD> { | ||||
|   public:                                                 | ||||
|     using LinearFunction<FieldD>::operator(); | ||||
|     RealD   Tolerance; | ||||
|     RealD   InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed | ||||
|     Integer MaxInnerIterations; | ||||
| @@ -49,17 +46,11 @@ NAMESPACE_BEGIN(Grid); | ||||
|     Integer TotalInnerIterations; //Number of inner CG iterations | ||||
|     Integer TotalOuterIterations; //Number of restarts | ||||
|     Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step | ||||
|     RealD TrueResidual; | ||||
|  | ||||
|     //Option to speed up *inner single precision* solves using a LinearFunction that produces a guess | ||||
|     LinearFunction<FieldF> *guesser; | ||||
|      | ||||
|     MixedPrecisionConjugateGradient(RealD tol,  | ||||
| 				    Integer maxinnerit,  | ||||
| 				    Integer maxouterit,  | ||||
| 				    GridBase* _sp_grid,  | ||||
| 				    LinearOperatorBase<FieldF> &_Linop_f,  | ||||
| 				    LinearOperatorBase<FieldD> &_Linop_d) : | ||||
|     MixedPrecisionConjugateGradient(RealD tol, Integer maxinnerit, Integer maxouterit, GridBase* _sp_grid, LinearOperatorBase<FieldF> &_Linop_f, LinearOperatorBase<FieldD> &_Linop_d) : | ||||
|       Linop_f(_Linop_f), Linop_d(_Linop_d), | ||||
|       Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit), MaxOuterIterations(maxouterit), SinglePrecGrid(_sp_grid), | ||||
|       OuterLoopNormMult(100.), guesser(NULL){ }; | ||||
| @@ -69,24 +60,23 @@ NAMESPACE_BEGIN(Grid); | ||||
|     } | ||||
|    | ||||
|     void operator() (const FieldD &src_d_in, FieldD &sol_d){ | ||||
|     std::cout << GridLogMessage << "MixedPrecisionConjugateGradient: Starting mixed precision CG with outer tolerance " << Tolerance << " and inner tolerance " << InnerTolerance << std::endl; | ||||
|       TotalInnerIterations = 0; | ||||
| 	 | ||||
|       GridStopWatch TotalTimer; | ||||
|       TotalTimer.Start(); | ||||
|      | ||||
|     int cb = src_d_in.Checkerboard(); | ||||
|     sol_d.Checkerboard() = cb; | ||||
|       int cb = src_d_in.checkerboard; | ||||
|       sol_d.checkerboard = cb; | ||||
|      | ||||
|       RealD src_norm = norm2(src_d_in); | ||||
|       RealD stop = src_norm * Tolerance*Tolerance; | ||||
|  | ||||
|     GridBase* DoublePrecGrid = src_d_in.Grid(); | ||||
|       GridBase* DoublePrecGrid = src_d_in._grid; | ||||
|       FieldD tmp_d(DoublePrecGrid); | ||||
|     tmp_d.Checkerboard() = cb; | ||||
|       tmp_d.checkerboard = cb; | ||||
|      | ||||
|       FieldD tmp2_d(DoublePrecGrid); | ||||
|     tmp2_d.Checkerboard() = cb; | ||||
|       tmp2_d.checkerboard = cb; | ||||
|      | ||||
|       FieldD src_d(DoublePrecGrid); | ||||
|       src_d = src_d_in; //source for next inner iteration, computed from residual during operation | ||||
| @@ -94,12 +84,11 @@ NAMESPACE_BEGIN(Grid); | ||||
|       RealD inner_tol = InnerTolerance; | ||||
|      | ||||
|       FieldF src_f(SinglePrecGrid); | ||||
|     src_f.Checkerboard() = cb; | ||||
|       src_f.checkerboard = cb; | ||||
|      | ||||
|       FieldF sol_f(SinglePrecGrid); | ||||
|     sol_f.Checkerboard() = cb; | ||||
|       sol_f.checkerboard = cb; | ||||
|      | ||||
|     std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Starting initial inner CG with tolerance " << inner_tol << std::endl; | ||||
|       ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations); | ||||
|       CG_f.ErrorOnNoConverge = false; | ||||
|  | ||||
| @@ -109,9 +98,6 @@ NAMESPACE_BEGIN(Grid); | ||||
|      | ||||
|       Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count | ||||
|        | ||||
|     precisionChangeWorkspace pc_wk_sp_to_dp(DoublePrecGrid, SinglePrecGrid); | ||||
|     precisionChangeWorkspace pc_wk_dp_to_sp(SinglePrecGrid, DoublePrecGrid); | ||||
|      | ||||
|       for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){ | ||||
| 	//Compute double precision rsd and also new RHS vector. | ||||
| 	Linop_d.HermOp(sol_d, tmp_d); | ||||
| @@ -126,17 +112,16 @@ NAMESPACE_BEGIN(Grid); | ||||
| 	while(norm * inner_tol * inner_tol < stop) inner_tol *= 2;  // inner_tol = sqrt(stop/norm) ?? | ||||
|  | ||||
| 	PrecChangeTimer.Start(); | ||||
|       precisionChange(src_f, src_d, pc_wk_dp_to_sp); | ||||
| 	precisionChange(src_f, src_d); | ||||
| 	PrecChangeTimer.Stop(); | ||||
|        | ||||
|       sol_f = Zero(); | ||||
| 	zeroit(sol_f); | ||||
|  | ||||
| 	//Optionally improve inner solver guess (eg using known eigenvectors) | ||||
| 	if(guesser != NULL) | ||||
| 	  (*guesser)(src_f, sol_f); | ||||
|  | ||||
| 	//Inner CG | ||||
|       std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " << outer_iter << " starting inner CG with tolerance " << inner_tol << std::endl; | ||||
| 	CG_f.Tolerance = inner_tol; | ||||
| 	InnerCGtimer.Start(); | ||||
| 	CG_f(Linop_f, src_f, sol_f); | ||||
| @@ -145,7 +130,7 @@ NAMESPACE_BEGIN(Grid); | ||||
|        | ||||
| 	//Convert sol back to double and add to double prec solution | ||||
| 	PrecChangeTimer.Start(); | ||||
|       precisionChange(tmp_d, sol_f, pc_wk_sp_to_dp); | ||||
| 	precisionChange(tmp_d, sol_f); | ||||
| 	PrecChangeTimer.Stop(); | ||||
|        | ||||
| 	axpy(sol_d, 1.0, tmp_d, sol_d); | ||||
| @@ -157,7 +142,6 @@ NAMESPACE_BEGIN(Grid); | ||||
|       ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations); | ||||
|       CG_d(Linop_d, src_d_in, sol_d); | ||||
|       TotalFinalStepIterations = CG_d.IterationsToComplete; | ||||
|     TrueResidual = CG_d.TrueResidual; | ||||
|  | ||||
|       TotalTimer.Stop(); | ||||
|       std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl; | ||||
| @@ -165,6 +149,6 @@ NAMESPACE_BEGIN(Grid); | ||||
|     } | ||||
|   }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -1,213 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/iterative/ConjugateGradientMixedPrecBatched.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
|     Author: Raoul Hodgson <raoul.hodgson@ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_CONJUGATE_GRADIENT_MIXED_PREC_BATCHED_H | ||||
| #define GRID_CONJUGATE_GRADIENT_MIXED_PREC_BATCHED_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| //Mixed precision restarted defect correction CG | ||||
| template<class FieldD,class FieldF,  | ||||
|   typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0, | ||||
|   typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>  | ||||
| class MixedPrecisionConjugateGradientBatched : public LinearFunction<FieldD> { | ||||
| public: | ||||
|   using LinearFunction<FieldD>::operator(); | ||||
|   RealD   Tolerance; | ||||
|   RealD   InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed | ||||
|   Integer MaxInnerIterations; | ||||
|   Integer MaxOuterIterations; | ||||
|   Integer MaxPatchupIterations; | ||||
|   GridBase* SinglePrecGrid; //Grid for single-precision fields | ||||
|   RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance | ||||
|   LinearOperatorBase<FieldF> &Linop_f; | ||||
|   LinearOperatorBase<FieldD> &Linop_d; | ||||
|  | ||||
|   //Option to speed up *inner single precision* solves using a LinearFunction that produces a guess | ||||
|   LinearFunction<FieldF> *guesser; | ||||
|   bool updateResidual; | ||||
|    | ||||
|   MixedPrecisionConjugateGradientBatched(RealD tol,  | ||||
|           Integer maxinnerit,  | ||||
|           Integer maxouterit,  | ||||
|           Integer maxpatchit, | ||||
|           GridBase* _sp_grid,  | ||||
|           LinearOperatorBase<FieldF> &_Linop_f,  | ||||
|           LinearOperatorBase<FieldD> &_Linop_d, | ||||
|           bool _updateResidual=true) : | ||||
|     Linop_f(_Linop_f), Linop_d(_Linop_d), | ||||
|     Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit), MaxOuterIterations(maxouterit), MaxPatchupIterations(maxpatchit), SinglePrecGrid(_sp_grid), | ||||
|     OuterLoopNormMult(100.), guesser(NULL), updateResidual(_updateResidual) { }; | ||||
|  | ||||
|   void useGuesser(LinearFunction<FieldF> &g){ | ||||
|     guesser = &g; | ||||
|   } | ||||
|    | ||||
|   void operator() (const FieldD &src_d_in, FieldD &sol_d){ | ||||
|     std::vector<FieldD> srcs_d_in{src_d_in}; | ||||
|     std::vector<FieldD> sols_d{sol_d}; | ||||
|  | ||||
|     (*this)(srcs_d_in,sols_d); | ||||
|  | ||||
|     sol_d = sols_d[0]; | ||||
|   } | ||||
|  | ||||
|   void operator() (const std::vector<FieldD> &src_d_in, std::vector<FieldD> &sol_d){ | ||||
|     assert(src_d_in.size() == sol_d.size()); | ||||
|     int NBatch = src_d_in.size(); | ||||
|  | ||||
|     std::cout << GridLogMessage << "NBatch = " << NBatch << std::endl; | ||||
|  | ||||
|     Integer TotalOuterIterations = 0; //Number of restarts | ||||
|     std::vector<Integer> TotalInnerIterations(NBatch,0);     //Number of inner CG iterations | ||||
|     std::vector<Integer> TotalFinalStepIterations(NBatch,0); //Number of CG iterations in final patch-up step | ||||
|    | ||||
|     GridStopWatch TotalTimer; | ||||
|     TotalTimer.Start(); | ||||
|  | ||||
|     GridStopWatch InnerCGtimer; | ||||
|     GridStopWatch PrecChangeTimer; | ||||
|      | ||||
|     int cb = src_d_in[0].Checkerboard(); | ||||
|      | ||||
|     std::vector<RealD> src_norm; | ||||
|     std::vector<RealD> norm; | ||||
|     std::vector<RealD> stop; | ||||
|      | ||||
|     GridBase* DoublePrecGrid = src_d_in[0].Grid(); | ||||
|     FieldD tmp_d(DoublePrecGrid); | ||||
|     tmp_d.Checkerboard() = cb; | ||||
|      | ||||
|     FieldD tmp2_d(DoublePrecGrid); | ||||
|     tmp2_d.Checkerboard() = cb; | ||||
|  | ||||
|     std::vector<FieldD> src_d; | ||||
|     std::vector<FieldF> src_f; | ||||
|     std::vector<FieldF> sol_f; | ||||
|  | ||||
|     for (int i=0; i<NBatch; i++) { | ||||
|       sol_d[i].Checkerboard() = cb; | ||||
|  | ||||
|       src_norm.push_back(norm2(src_d_in[i])); | ||||
|       norm.push_back(0.); | ||||
|       stop.push_back(src_norm[i] * Tolerance*Tolerance); | ||||
|  | ||||
|       src_d.push_back(src_d_in[i]); //source for next inner iteration, computed from residual during operation | ||||
|  | ||||
|       src_f.push_back(SinglePrecGrid); | ||||
|       src_f[i].Checkerboard() = cb; | ||||
|  | ||||
|       sol_f.push_back(SinglePrecGrid); | ||||
|       sol_f[i].Checkerboard() = cb; | ||||
|     } | ||||
|      | ||||
|     RealD inner_tol = InnerTolerance; | ||||
|      | ||||
|     ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations); | ||||
|     CG_f.ErrorOnNoConverge = false; | ||||
|      | ||||
|     Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count | ||||
|        | ||||
|     for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){ | ||||
|       std::cout << GridLogMessage << std::endl; | ||||
|       std::cout << GridLogMessage << "Outer iteration " << outer_iter << std::endl; | ||||
|        | ||||
|       bool allConverged = true; | ||||
|        | ||||
|       for (int i=0; i<NBatch; i++) { | ||||
|         //Compute double precision rsd and also new RHS vector. | ||||
|         Linop_d.HermOp(sol_d[i], tmp_d); | ||||
|         norm[i] = axpy_norm(src_d[i], -1., tmp_d, src_d_in[i]); //src_d is residual vector | ||||
|          | ||||
|         std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Outer iteration " << outer_iter <<" solve " << i << " residual "<< norm[i] << " target "<< stop[i] <<std::endl; | ||||
|  | ||||
|         PrecChangeTimer.Start(); | ||||
|         precisionChange(src_f[i], src_d[i]); | ||||
|         PrecChangeTimer.Stop(); | ||||
|          | ||||
|         sol_f[i] = Zero(); | ||||
|        | ||||
|         if(norm[i] > OuterLoopNormMult * stop[i]) { | ||||
|           allConverged = false; | ||||
|         } | ||||
|       } | ||||
|       if (allConverged) break; | ||||
|  | ||||
|       if (updateResidual) { | ||||
|         RealD normMax = *std::max_element(std::begin(norm), std::end(norm)); | ||||
|         RealD stopMax = *std::max_element(std::begin(stop), std::end(stop)); | ||||
|         while( normMax * inner_tol * inner_tol < stopMax) inner_tol *= 2;  // inner_tol = sqrt(stop/norm) ?? | ||||
|         CG_f.Tolerance = inner_tol; | ||||
|       } | ||||
|  | ||||
|       //Optionally improve inner solver guess (eg using known eigenvectors) | ||||
|       if(guesser != NULL) { | ||||
|         (*guesser)(src_f, sol_f); | ||||
|       } | ||||
|  | ||||
|       for (int i=0; i<NBatch; i++) { | ||||
|         //Inner CG | ||||
|         InnerCGtimer.Start(); | ||||
|         CG_f(Linop_f, src_f[i], sol_f[i]); | ||||
|         InnerCGtimer.Stop(); | ||||
|         TotalInnerIterations[i] += CG_f.IterationsToComplete; | ||||
|          | ||||
|         //Convert sol back to double and add to double prec solution | ||||
|         PrecChangeTimer.Start(); | ||||
|         precisionChange(tmp_d, sol_f[i]); | ||||
|         PrecChangeTimer.Stop(); | ||||
|          | ||||
|         axpy(sol_d[i], 1.0, tmp_d, sol_d[i]); | ||||
|       } | ||||
|  | ||||
|     } | ||||
|      | ||||
|     //Final trial CG | ||||
|     std::cout << GridLogMessage << std::endl; | ||||
|     std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Starting final patch-up double-precision solve"<<std::endl; | ||||
|      | ||||
|     for (int i=0; i<NBatch; i++) { | ||||
|       ConjugateGradient<FieldD> CG_d(Tolerance, MaxPatchupIterations); | ||||
|       CG_d(Linop_d, src_d_in[i], sol_d[i]); | ||||
|       TotalFinalStepIterations[i] += CG_d.IterationsToComplete; | ||||
|     } | ||||
|  | ||||
|     TotalTimer.Stop(); | ||||
|  | ||||
|     std::cout << GridLogMessage << std::endl; | ||||
|     for (int i=0; i<NBatch; i++) { | ||||
|       std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: solve " << i << " Inner CG iterations " << TotalInnerIterations[i] << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations[i] << std::endl; | ||||
|     } | ||||
|     std::cout << GridLogMessage << std::endl; | ||||
|     std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Total time " << TotalTimer.Elapsed() << " Precision change " << PrecChangeTimer.Elapsed() << " Inner CG total " << InnerCGtimer.Elapsed() << std::endl; | ||||
|      | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif | ||||
| @@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #ifndef GRID_CONJUGATE_MULTI_SHIFT_GRADIENT_H | ||||
| #define GRID_CONJUGATE_MULTI_SHIFT_GRADIENT_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     // Base classes for iterative processes based on operators | ||||
| @@ -41,29 +41,22 @@ class ConjugateGradientMultiShift : public OperatorMultiFunction<Field>, | ||||
|                                         public OperatorFunction<Field> | ||||
|     { | ||||
| public:                                                 | ||||
|  | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   //  RealD   Tolerance; | ||||
|     RealD   Tolerance; | ||||
|     Integer MaxIterations; | ||||
|     Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion | ||||
|   std::vector<int> IterationsToCompleteShift;  // Iterations for this shift | ||||
|     int verbose; | ||||
|     MultiShiftFunction shifts; | ||||
|   std::vector<RealD> TrueResidualShift; | ||||
|  | ||||
|   ConjugateGradientMultiShift(Integer maxit, const MultiShiftFunction &_shifts) :  | ||||
|     ConjugateGradientMultiShift(Integer maxit,MultiShiftFunction &_shifts) :  | ||||
| 	MaxIterations(maxit), | ||||
| 	shifts(_shifts) | ||||
|     {  | ||||
|       verbose=1; | ||||
|     IterationsToCompleteShift.resize(_shifts.order); | ||||
|     TrueResidualShift.resize(_shifts.order); | ||||
|     } | ||||
|  | ||||
| void operator() (LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) | ||||
| { | ||||
|     GridBase *grid = src.Grid(); | ||||
|   GridBase *grid = src._grid; | ||||
|   int nshift = shifts.order; | ||||
|   std::vector<Field> results(nshift,grid); | ||||
|   (*this)(Linop,src,results,psi); | ||||
| @@ -84,9 +77,8 @@ public: | ||||
|  | ||||
| void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &psi) | ||||
| { | ||||
|     GRID_TRACE("ConjugateGradientMultiShift"); | ||||
|    | ||||
|     GridBase *grid = src.Grid(); | ||||
|   GridBase *grid = src._grid; | ||||
|    | ||||
|   //////////////////////////////////////////////////////////////////////// | ||||
|   // Convenience references to the info stored in "MultiShiftFunction" | ||||
| @@ -130,17 +122,6 @@ public: | ||||
|   // Residuals "r" are src | ||||
|   // First search direction "p" is also src | ||||
|   cp = norm2(src); | ||||
|  | ||||
|     // Handle trivial case of zero src. | ||||
|     if( cp == 0. ){ | ||||
|       for(int s=0;s<nshift;s++){ | ||||
| 	psi[s] = Zero(); | ||||
| 	IterationsToCompleteShift[s] = 1; | ||||
| 	TrueResidualShift[s] = 0.; | ||||
|       } | ||||
|       return; | ||||
|     } | ||||
|  | ||||
|   for(int s=0;s<nshift;s++){ | ||||
|     rsq[s] = cp * mresidual[s] * mresidual[s]; | ||||
|     std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s | ||||
| @@ -184,9 +165,6 @@ public: | ||||
|     axpby(psi[s],0.,-bs[s]*alpha[s],src,src); | ||||
|   } | ||||
|   | ||||
|     std::cout << GridLogIterative << "ConjugateGradientMultiShift: initial rn (|src|^2) =" << rn << " qq (|MdagM src|^2) =" << qq << " d ( dot(src, [MdagM + m_0]src) ) =" << d << " c=" << c << std::endl; | ||||
|      | ||||
|    | ||||
|   /////////////////////////////////////// | ||||
|   // Timers | ||||
|   /////////////////////////////////////// | ||||
| @@ -289,7 +267,6 @@ public: | ||||
|     for(int s=0;s<nshift;s++){ | ||||
|        | ||||
|       if ( (!converged[s]) ){ | ||||
| 	  IterationsToCompleteShift[s] = k; | ||||
| 	 | ||||
| 	RealD css  = c * z[s][iz]* z[s][iz]; | ||||
| 	 | ||||
| @@ -319,14 +296,13 @@ public: | ||||
| 	axpy(r,-alpha[s],src,tmp); | ||||
| 	RealD rn = norm2(r); | ||||
| 	RealD cn = norm2(src); | ||||
| 	  TrueResidualShift[s] = std::sqrt(rn/cn); | ||||
| 	  std::cout<<GridLogMessage<<"CGMultiShift: shift["<<s<<"] true residual "<< TrueResidualShift[s] <<std::endl; | ||||
| 	std::cout<<GridLogMessage<<"CGMultiShift: shift["<<s<<"] true residual "<<std::sqrt(rn/cn)<<std::endl; | ||||
|       } | ||||
|  | ||||
|       std::cout << GridLogMessage << "Time Breakdown "<<std::endl; | ||||
|       std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed()     <<std::endl; | ||||
|       std::cout << GridLogMessage << "\tAXPY    " << AXPYTimer.Elapsed()     <<std::endl; | ||||
|       std::cout << GridLogMessage << "\tMatrix   " << MatrixTimer.Elapsed()     <<std::endl; | ||||
|       std::cout << GridLogMessage << "\tMarix    " << MatrixTimer.Elapsed()     <<std::endl; | ||||
|       std::cout << GridLogMessage << "\tShift    " << ShiftTimer.Elapsed()     <<std::endl; | ||||
|  | ||||
|       IterationsToComplete = k;	 | ||||
| @@ -342,5 +318,5 @@ public: | ||||
| } | ||||
|  | ||||
|   }; | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -1,373 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: Christopher Kelly <ckelly@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| //CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision.  | ||||
| //The residual is stored in single precision, but the search directions and solution are stored in double precision.  | ||||
| //Every update_freq iterations the residual is corrected in double precision.  | ||||
| //For safety the a final regular CG is applied to clean up if necessary | ||||
|  | ||||
| //PB Pure single, then double fixup | ||||
|  | ||||
| template<class FieldD, class FieldF, | ||||
| 	 typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0, | ||||
| 	 typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>  | ||||
| class ConjugateGradientMultiShiftMixedPrecCleanup : public OperatorMultiFunction<FieldD>, | ||||
| 					     public OperatorFunction<FieldD> | ||||
| { | ||||
| public:                                                 | ||||
|  | ||||
|   using OperatorFunction<FieldD>::operator(); | ||||
|  | ||||
|   RealD   Tolerance; | ||||
|   Integer MaxIterationsMshift; | ||||
|   Integer MaxIterations; | ||||
|   Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion | ||||
|   std::vector<int> IterationsToCompleteShift;  // Iterations for this shift | ||||
|   int verbose; | ||||
|   MultiShiftFunction shifts; | ||||
|   std::vector<RealD> TrueResidualShift; | ||||
|  | ||||
|   int ReliableUpdateFreq; //number of iterations between reliable updates | ||||
|  | ||||
|   GridBase* SinglePrecGrid; //Grid for single-precision fields | ||||
|   LinearOperatorBase<FieldF> &Linop_f; //single precision | ||||
|  | ||||
|   ConjugateGradientMultiShiftMixedPrecCleanup(Integer maxit, const MultiShiftFunction &_shifts, | ||||
| 				       GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f, | ||||
| 				       int _ReliableUpdateFreq) :  | ||||
|     MaxIterationsMshift(maxit),  shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq), | ||||
|     MaxIterations(20000) | ||||
|   {  | ||||
|     verbose=1; | ||||
|     IterationsToCompleteShift.resize(_shifts.order); | ||||
|     TrueResidualShift.resize(_shifts.order); | ||||
|   } | ||||
|  | ||||
|   void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi) | ||||
|   { | ||||
|     GridBase *grid = src.Grid(); | ||||
|     int nshift = shifts.order; | ||||
|     std::vector<FieldD> results(nshift,grid); | ||||
|     (*this)(Linop,src,results,psi); | ||||
|   } | ||||
|   void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi) | ||||
|   { | ||||
|     int nshift = shifts.order; | ||||
|  | ||||
|     (*this)(Linop,src,results); | ||||
|    | ||||
|     psi = shifts.norm*src; | ||||
|     for(int i=0;i<nshift;i++){ | ||||
|       psi = psi + shifts.residues[i]*results[i]; | ||||
|     } | ||||
|  | ||||
|     return; | ||||
|   } | ||||
|  | ||||
|   void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d) | ||||
|   {  | ||||
|     GRID_TRACE("ConjugateGradientMultiShiftMixedPrecCleanup"); | ||||
|     GridBase *DoublePrecGrid = src_d.Grid(); | ||||
|  | ||||
|     //////////////////////////////////////////////////////////////////////// | ||||
|     // Convenience references to the info stored in "MultiShiftFunction" | ||||
|     //////////////////////////////////////////////////////////////////////// | ||||
|     int nshift = shifts.order; | ||||
|  | ||||
|     std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts" | ||||
|     std::vector<RealD> &mresidual(shifts.tolerances); | ||||
|     std::vector<RealD> alpha(nshift,1.0); | ||||
|  | ||||
|     //Double precision search directions | ||||
|     FieldD p_d(DoublePrecGrid); | ||||
|     std::vector<FieldF> ps_f (nshift, SinglePrecGrid);// Search directions (single precision) | ||||
|     std::vector<FieldF> psi_f(nshift, SinglePrecGrid);// solutions (single precision) | ||||
|  | ||||
|     FieldD tmp_d(DoublePrecGrid); | ||||
|     FieldD r_d(DoublePrecGrid); | ||||
|     FieldF r_f(SinglePrecGrid); | ||||
|     FieldD mmp_d(DoublePrecGrid); | ||||
|  | ||||
|     assert(psi_d.size()==nshift); | ||||
|     assert(mass.size()==nshift); | ||||
|     assert(mresidual.size()==nshift); | ||||
|    | ||||
|     // dynamic sized arrays on stack; 2d is a pain with vector | ||||
|     RealD  bs[nshift]; | ||||
|     RealD  rsq[nshift]; | ||||
|     RealD  rsqf[nshift]; | ||||
|     RealD  z[nshift][2]; | ||||
|     int     converged[nshift]; | ||||
|    | ||||
|     const int       primary =0; | ||||
|    | ||||
|     //Primary shift fields CG iteration | ||||
|     RealD a,b,c,d; | ||||
|     RealD cp,bp,qq; //prev | ||||
|    | ||||
|     // Matrix mult fields | ||||
|     FieldF p_f(SinglePrecGrid); | ||||
|     FieldF mmp_f(SinglePrecGrid); | ||||
|  | ||||
|     // Check lightest mass | ||||
|     for(int s=0;s<nshift;s++){ | ||||
|       assert( mass[s]>= mass[primary] ); | ||||
|       converged[s]=0; | ||||
|     } | ||||
|    | ||||
|     // Wire guess to zero | ||||
|     // Residuals "r" are src | ||||
|     // First search direction "p" is also src | ||||
|     cp = norm2(src_d); | ||||
|  | ||||
|     // Handle trivial case of zero src. | ||||
|     if( cp == 0. ){ | ||||
|       for(int s=0;s<nshift;s++){ | ||||
| 	psi_d[s] = Zero(); | ||||
| 	psi_f[s] = Zero(); | ||||
| 	IterationsToCompleteShift[s] = 1; | ||||
| 	TrueResidualShift[s] = 0.; | ||||
|       } | ||||
|       return; | ||||
|     } | ||||
|  | ||||
|     for(int s=0;s<nshift;s++){ | ||||
|       rsq[s] = cp * mresidual[s] * mresidual[s]; | ||||
|       rsqf[s] =rsq[s]; | ||||
|       std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: shift "<< s <<" target resid "<<rsq[s]<<std::endl; | ||||
|       //      ps_d[s] = src_d; | ||||
|       precisionChange(ps_f[s],src_d); | ||||
|     } | ||||
|     // r and p for primary | ||||
|     p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys | ||||
|     r_d = p_d; | ||||
|      | ||||
|     //MdagM+m[0] | ||||
|     precisionChange(p_f,p_d); | ||||
|     Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp) | ||||
|     precisionChange(tmp_d,mmp_f); | ||||
|     Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp) | ||||
|     tmp_d = tmp_d - mmp_d; | ||||
|     std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl; | ||||
|     //    assert(norm2(tmp_d)< 1.0e-4); | ||||
|  | ||||
|     axpy(mmp_d,mass[0],p_d,mmp_d); | ||||
|     RealD rn = norm2(p_d); | ||||
|     d += rn*mass[0]; | ||||
|  | ||||
|     b = -cp /d; | ||||
|    | ||||
|     // Set up the various shift variables | ||||
|     int       iz=0; | ||||
|     z[0][1-iz] = 1.0; | ||||
|     z[0][iz]   = 1.0; | ||||
|     bs[0]      = b; | ||||
|     for(int s=1;s<nshift;s++){ | ||||
|       z[s][1-iz] = 1.0; | ||||
|       z[s][iz]   = 1.0/( 1.0 - b*(mass[s]-mass[0])); | ||||
|       bs[s]      = b*z[s][iz];  | ||||
|     } | ||||
|    | ||||
|     // r += b[0] A.p[0] | ||||
|     // c= norm(r) | ||||
|     c=axpy_norm(r_d,b,mmp_d,r_d); | ||||
|    | ||||
|     for(int s=0;s<nshift;s++) { | ||||
|       axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d); | ||||
|       precisionChange(psi_f[s],psi_d[s]); | ||||
|     } | ||||
|    | ||||
|     /////////////////////////////////////// | ||||
|     // Timers | ||||
|     /////////////////////////////////////// | ||||
|     GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer; | ||||
|  | ||||
|     SolverTimer.Start(); | ||||
|    | ||||
|     // Iteration loop | ||||
|     int k; | ||||
|    | ||||
|     for (k=1;k<=MaxIterationsMshift;k++){     | ||||
|  | ||||
|       a = c /cp; | ||||
|       AXPYTimer.Start(); | ||||
|       axpy(p_d,a,p_d,r_d);  | ||||
|       AXPYTimer.Stop(); | ||||
|  | ||||
|       PrecChangeTimer.Start(); | ||||
|       precisionChange(r_f, r_d); | ||||
|       PrecChangeTimer.Stop(); | ||||
|  | ||||
|       AXPYTimer.Start(); | ||||
|       for(int s=0;s<nshift;s++){ | ||||
| 	if ( ! converged[s] ) {  | ||||
| 	  if (s==0){ | ||||
| 	    axpy(ps_f[s],a,ps_f[s],r_f); | ||||
| 	  } else{ | ||||
| 	    RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b); | ||||
| 	    axpby(ps_f[s],z[s][iz],as,r_f,ps_f[s]); | ||||
| 	  } | ||||
| 	} | ||||
|       } | ||||
|       AXPYTimer.Stop(); | ||||
|  | ||||
|       cp=c; | ||||
|       PrecChangeTimer.Start(); | ||||
|       precisionChange(p_f, p_d); //get back single prec search direction for linop | ||||
|       PrecChangeTimer.Stop(); | ||||
|       MatrixTimer.Start();   | ||||
|       Linop_f.HermOp(p_f,mmp_f); | ||||
|       MatrixTimer.Stop();   | ||||
|       PrecChangeTimer.Start(); | ||||
|       precisionChange(mmp_d, mmp_f); // From Float to Double | ||||
|       PrecChangeTimer.Stop(); | ||||
|  | ||||
|       d=real(innerProduct(p_d,mmp_d));     | ||||
|       axpy(mmp_d,mass[0],p_d,mmp_d); | ||||
|       RealD rn = norm2(p_d); | ||||
|       d += rn*mass[0]; | ||||
|      | ||||
|       bp=b; | ||||
|       b=-cp/d; | ||||
|  | ||||
|       // Toggle the recurrence history | ||||
|       bs[0] = b; | ||||
|       iz = 1-iz; | ||||
|       ShiftTimer.Start(); | ||||
|       for(int s=1;s<nshift;s++){ | ||||
| 	if((!converged[s])){ | ||||
| 	  RealD z0 = z[s][1-iz]; | ||||
| 	  RealD z1 = z[s][iz]; | ||||
| 	  z[s][iz] = z0*z1*bp | ||||
| 	    / (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));  | ||||
| 	  bs[s] = b*z[s][iz]/z0; // NB sign  rel to Mike | ||||
| 	} | ||||
|       } | ||||
|       ShiftTimer.Stop(); | ||||
|  | ||||
|       //Update single precision solutions | ||||
|       AXPYTimer.Start(); | ||||
|       for(int s=0;s<nshift;s++){ | ||||
| 	int ss = s; | ||||
| 	if( (!converged[s]) ) {  | ||||
| 	  axpy(psi_f[ss],-bs[s]*alpha[s],ps_f[s],psi_f[ss]); | ||||
| 	} | ||||
|       } | ||||
|       c = axpy_norm(r_d,b,mmp_d,r_d); | ||||
|       AXPYTimer.Stop(); | ||||
|      | ||||
|       // Convergence checks | ||||
|       int all_converged = 1; | ||||
|       for(int s=0;s<nshift;s++){ | ||||
|        | ||||
| 	if ( (!converged[s]) ){ | ||||
| 	  IterationsToCompleteShift[s] = k; | ||||
| 	 | ||||
| 	  RealD css  = c * z[s][iz]* z[s][iz]; | ||||
| 	 | ||||
| 	  if(css<rsqf[s]){ | ||||
| 	    if ( ! converged[s] ) | ||||
| 	      std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup k="<<k<<" Shift "<<s<<" has converged"<<std::endl; | ||||
| 	    converged[s]=1; | ||||
| 	  } else { | ||||
| 	    all_converged=0; | ||||
| 	  } | ||||
|  | ||||
| 	} | ||||
|       } | ||||
|  | ||||
|       if ( all_converged || k == MaxIterationsMshift-1){ | ||||
|  | ||||
| 	SolverTimer.Stop(); | ||||
|  | ||||
| 	for(int s=0;s<nshift;s++){ | ||||
| 	  precisionChange(psi_d[s],psi_f[s]); | ||||
| 	} | ||||
|  | ||||
| 	 | ||||
| 	if ( all_converged ){ | ||||
| 	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: All shifts have converged iteration "<<k<<std::endl; | ||||
| 	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: Checking solutions"<<std::endl; | ||||
| 	} else { | ||||
| 	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: Not all shifts have converged iteration "<<k<<std::endl; | ||||
| 	} | ||||
| 	 | ||||
| 	// Check answers  | ||||
| 	for(int s=0; s < nshift; s++) {  | ||||
| 	  Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq); | ||||
| 	  axpy(tmp_d,mass[s],psi_d[s],mmp_d); | ||||
| 	  axpy(r_d,-alpha[s],src_d,tmp_d); | ||||
| 	  RealD rn = norm2(r_d); | ||||
| 	  RealD cn = norm2(src_d); | ||||
| 	  TrueResidualShift[s] = std::sqrt(rn/cn); | ||||
| 	  std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl; | ||||
|  | ||||
| 	  //If we have not reached the desired tolerance, do a (mixed precision) CG cleanup | ||||
| 	  if(rn >= rsq[s]){ | ||||
| 	    CleanupTimer.Start(); | ||||
| 	    std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: performing cleanup step for shift " << s << std::endl; | ||||
|  | ||||
| 	    //Setup linear operators for final cleanup | ||||
| 	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]); | ||||
| 	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]); | ||||
| 					        | ||||
| 	    MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d);  | ||||
| 	    cg(src_d, psi_d[s]); | ||||
| 	     | ||||
| 	    TrueResidualShift[s] = cg.TrueResidual; | ||||
| 	    CleanupTimer.Stop(); | ||||
| 	  } | ||||
| 	} | ||||
|  | ||||
| 	std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrecCleanup: Time Breakdown for body"<<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tSolver    " << SolverTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\t\tAXPY    " << AXPYTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\t\tMatrix    " << MatrixTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\t\tShift    " << ShiftTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl; | ||||
|  | ||||
| 	IterationsToComplete = k;	 | ||||
|  | ||||
| 	return; | ||||
|       } | ||||
|     | ||||
|     } | ||||
|     std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl; | ||||
|     assert(0); | ||||
|   } | ||||
|  | ||||
| }; | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| @@ -1,416 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: Christopher Kelly <ckelly@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H | ||||
| #define GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| //CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision.  | ||||
| //The residual is stored in single precision, but the search directions and solution are stored in double precision.  | ||||
| //Every update_freq iterations the residual is corrected in double precision.  | ||||
|      | ||||
| //For safety the a final regular CG is applied to clean up if necessary | ||||
|  | ||||
| //Linop to add shift to input linop, used in cleanup CG | ||||
| namespace ConjugateGradientMultiShiftMixedPrecSupport{ | ||||
| template<typename Field> | ||||
| class ShiftedLinop: public LinearOperatorBase<Field>{ | ||||
| public: | ||||
|   LinearOperatorBase<Field> &linop_base; | ||||
|   RealD shift; | ||||
|  | ||||
|   ShiftedLinop(LinearOperatorBase<Field> &_linop_base, RealD _shift): linop_base(_linop_base), shift(_shift){} | ||||
|  | ||||
|   void OpDiag (const Field &in, Field &out){ assert(0); } | ||||
|   void OpDir  (const Field &in, Field &out,int dir,int disp){ assert(0); } | ||||
|   void OpDirAll  (const Field &in, std::vector<Field> &out){ assert(0); } | ||||
|    | ||||
|   void Op     (const Field &in, Field &out){ assert(0); } | ||||
|   void AdjOp  (const Field &in, Field &out){ assert(0); } | ||||
|  | ||||
|   void HermOp(const Field &in, Field &out){ | ||||
|     linop_base.HermOp(in, out); | ||||
|     axpy(out, shift, in, out); | ||||
|   }     | ||||
|  | ||||
|   void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
|     HermOp(in,out); | ||||
|     ComplexD dot = innerProduct(in,out); | ||||
|     n1=real(dot); | ||||
|     n2=norm2(out); | ||||
|   } | ||||
| }; | ||||
| }; | ||||
|  | ||||
|  | ||||
| template<class FieldD, class FieldF, | ||||
| 	 typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0, | ||||
| 	 typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>  | ||||
| class ConjugateGradientMultiShiftMixedPrec : public OperatorMultiFunction<FieldD>, | ||||
| 					     public OperatorFunction<FieldD> | ||||
| { | ||||
| public:                                                 | ||||
|  | ||||
|   using OperatorFunction<FieldD>::operator(); | ||||
|  | ||||
|   RealD   Tolerance; | ||||
|   Integer MaxIterationsMshift; | ||||
|   Integer MaxIterations; | ||||
|   Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion | ||||
|   std::vector<int> IterationsToCompleteShift;  // Iterations for this shift | ||||
|   int verbose; | ||||
|   MultiShiftFunction shifts; | ||||
|   std::vector<RealD> TrueResidualShift; | ||||
|  | ||||
|   int ReliableUpdateFreq; //number of iterations between reliable updates | ||||
|  | ||||
|   GridBase* SinglePrecGrid; //Grid for single-precision fields | ||||
|   LinearOperatorBase<FieldF> &Linop_f; //single precision | ||||
|  | ||||
|   ConjugateGradientMultiShiftMixedPrec(Integer maxit, const MultiShiftFunction &_shifts, | ||||
| 				       GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f, | ||||
| 				       int _ReliableUpdateFreq) :  | ||||
|     MaxIterationsMshift(maxit),  shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq), | ||||
|     MaxIterations(20000) | ||||
|   {  | ||||
|     verbose=1; | ||||
|     IterationsToCompleteShift.resize(_shifts.order); | ||||
|     TrueResidualShift.resize(_shifts.order); | ||||
|   } | ||||
|  | ||||
|   void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi) | ||||
|   { | ||||
|     GridBase *grid = src.Grid(); | ||||
|     int nshift = shifts.order; | ||||
|     std::vector<FieldD> results(nshift,grid); | ||||
|     (*this)(Linop,src,results,psi); | ||||
|   } | ||||
|   void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi) | ||||
|   { | ||||
|     int nshift = shifts.order; | ||||
|  | ||||
|     (*this)(Linop,src,results); | ||||
|    | ||||
|     psi = shifts.norm*src; | ||||
|     for(int i=0;i<nshift;i++){ | ||||
|       psi = psi + shifts.residues[i]*results[i]; | ||||
|     } | ||||
|  | ||||
|     return; | ||||
|   } | ||||
|  | ||||
|   void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d) | ||||
|   {  | ||||
|     GRID_TRACE("ConjugateGradientMultiShiftMixedPrec"); | ||||
|     GridBase *DoublePrecGrid = src_d.Grid(); | ||||
|  | ||||
|     precisionChangeWorkspace pc_wk_s_to_d(DoublePrecGrid,SinglePrecGrid); | ||||
|     precisionChangeWorkspace pc_wk_d_to_s(SinglePrecGrid,DoublePrecGrid); | ||||
|      | ||||
|     //////////////////////////////////////////////////////////////////////// | ||||
|     // Convenience references to the info stored in "MultiShiftFunction" | ||||
|     //////////////////////////////////////////////////////////////////////// | ||||
|     int nshift = shifts.order; | ||||
|  | ||||
|     std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts" | ||||
|     std::vector<RealD> &mresidual(shifts.tolerances); | ||||
|     std::vector<RealD> alpha(nshift,1.0); | ||||
|  | ||||
|     //Double precision search directions | ||||
|     FieldD p_d(DoublePrecGrid); | ||||
|     std::vector<FieldD> ps_d(nshift, DoublePrecGrid);// Search directions (double precision) | ||||
|  | ||||
|     FieldD tmp_d(DoublePrecGrid); | ||||
|     FieldD r_d(DoublePrecGrid); | ||||
|     FieldD mmp_d(DoublePrecGrid); | ||||
|  | ||||
|     assert(psi_d.size()==nshift); | ||||
|     assert(mass.size()==nshift); | ||||
|     assert(mresidual.size()==nshift); | ||||
|    | ||||
|     // dynamic sized arrays on stack; 2d is a pain with vector | ||||
|     RealD  bs[nshift]; | ||||
|     RealD  rsq[nshift]; | ||||
|     RealD  rsqf[nshift]; | ||||
|     RealD  z[nshift][2]; | ||||
|     int     converged[nshift]; | ||||
|    | ||||
|     const int       primary =0; | ||||
|    | ||||
|     //Primary shift fields CG iteration | ||||
|     RealD a,b,c,d; | ||||
|     RealD cp,bp,qq; //prev | ||||
|    | ||||
|     // Matrix mult fields | ||||
|     FieldF p_f(SinglePrecGrid); | ||||
|     FieldF mmp_f(SinglePrecGrid); | ||||
|  | ||||
|     // Check lightest mass | ||||
|     for(int s=0;s<nshift;s++){ | ||||
|       assert( mass[s]>= mass[primary] ); | ||||
|       converged[s]=0; | ||||
|     } | ||||
|    | ||||
|     // Wire guess to zero | ||||
|     // Residuals "r" are src | ||||
|     // First search direction "p" is also src | ||||
|     cp = norm2(src_d); | ||||
|  | ||||
|     // Handle trivial case of zero src. | ||||
|     if( cp == 0. ){ | ||||
|       for(int s=0;s<nshift;s++){ | ||||
| 	psi_d[s] = Zero(); | ||||
| 	IterationsToCompleteShift[s] = 1; | ||||
| 	TrueResidualShift[s] = 0.; | ||||
|       } | ||||
|       return; | ||||
|     } | ||||
|  | ||||
|     for(int s=0;s<nshift;s++){ | ||||
|       rsq[s] = cp * mresidual[s] * mresidual[s]; | ||||
|       rsqf[s] =rsq[s]; | ||||
|       std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift "<< s <<" target resid "<<rsq[s]<<std::endl; | ||||
|       ps_d[s] = src_d; | ||||
|     } | ||||
|     // r and p for primary | ||||
|     p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys | ||||
|     r_d = p_d; | ||||
|      | ||||
|     //MdagM+m[0] | ||||
|     precisionChange(p_f, p_d, pc_wk_d_to_s); | ||||
|  | ||||
|     Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp) | ||||
|     precisionChange(tmp_d, mmp_f, pc_wk_s_to_d); | ||||
|     Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp) | ||||
|     tmp_d = tmp_d - mmp_d; | ||||
|     std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl; | ||||
|     assert(norm2(tmp_d)< 1.0); | ||||
|  | ||||
|     axpy(mmp_d,mass[0],p_d,mmp_d); | ||||
|     RealD rn = norm2(p_d); | ||||
|     d += rn*mass[0]; | ||||
|  | ||||
|     b = -cp /d; | ||||
|    | ||||
|     // Set up the various shift variables | ||||
|     int       iz=0; | ||||
|     z[0][1-iz] = 1.0; | ||||
|     z[0][iz]   = 1.0; | ||||
|     bs[0]      = b; | ||||
|     for(int s=1;s<nshift;s++){ | ||||
|       z[s][1-iz] = 1.0; | ||||
|       z[s][iz]   = 1.0/( 1.0 - b*(mass[s]-mass[0])); | ||||
|       bs[s]      = b*z[s][iz];  | ||||
|     } | ||||
|    | ||||
|     // r += b[0] A.p[0] | ||||
|     // c= norm(r) | ||||
|     c=axpy_norm(r_d,b,mmp_d,r_d); | ||||
|    | ||||
|     for(int s=0;s<nshift;s++) { | ||||
|       axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d); | ||||
|     } | ||||
|    | ||||
|     /////////////////////////////////////// | ||||
|     // Timers | ||||
|     /////////////////////////////////////// | ||||
|     GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer; | ||||
|  | ||||
|     SolverTimer.Start(); | ||||
|    | ||||
|     // Iteration loop | ||||
|     int k; | ||||
|    | ||||
|     for (k=1;k<=MaxIterationsMshift;k++){     | ||||
|  | ||||
|       a = c /cp; | ||||
|       AXPYTimer.Start(); | ||||
|       axpy(p_d,a,p_d,r_d);  | ||||
|  | ||||
|       for(int s=0;s<nshift;s++){ | ||||
| 	if ( ! converged[s] ) {  | ||||
| 	  if (s==0){ | ||||
| 	    axpy(ps_d[s],a,ps_d[s],r_d); | ||||
| 	  } else{ | ||||
| 	    RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b); | ||||
| 	    axpby(ps_d[s],z[s][iz],as,r_d,ps_d[s]); | ||||
| 	  } | ||||
| 	} | ||||
|       } | ||||
|       AXPYTimer.Stop(); | ||||
|  | ||||
|       PrecChangeTimer.Start(); | ||||
|       precisionChange(p_f, p_d, pc_wk_d_to_s); //get back single prec search direction for linop | ||||
|       PrecChangeTimer.Stop(); | ||||
|  | ||||
|       cp=c; | ||||
|       MatrixTimer.Start();   | ||||
|       Linop_f.HermOp(p_f,mmp_f); | ||||
|       MatrixTimer.Stop();   | ||||
|  | ||||
|       PrecChangeTimer.Start(); | ||||
|       precisionChange(mmp_d, mmp_f, pc_wk_s_to_d); // From Float to Double | ||||
|       PrecChangeTimer.Stop(); | ||||
|  | ||||
|       AXPYTimer.Start(); | ||||
|       d=real(innerProduct(p_d,mmp_d));     | ||||
|       axpy(mmp_d,mass[0],p_d,mmp_d); | ||||
|       AXPYTimer.Stop(); | ||||
|       RealD rn = norm2(p_d); | ||||
|       d += rn*mass[0]; | ||||
|      | ||||
|       bp=b; | ||||
|       b=-cp/d; | ||||
|  | ||||
|       // Toggle the recurrence history | ||||
|       bs[0] = b; | ||||
|       iz = 1-iz; | ||||
|       ShiftTimer.Start(); | ||||
|       for(int s=1;s<nshift;s++){ | ||||
| 	if((!converged[s])){ | ||||
| 	  RealD z0 = z[s][1-iz]; | ||||
| 	  RealD z1 = z[s][iz]; | ||||
| 	  z[s][iz] = z0*z1*bp | ||||
| 	    / (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));  | ||||
| 	  bs[s] = b*z[s][iz]/z0; // NB sign  rel to Mike | ||||
| 	} | ||||
|       } | ||||
|       ShiftTimer.Stop(); | ||||
|  | ||||
|       //Update double precision solutions | ||||
|       AXPYTimer.Start(); | ||||
|       for(int s=0;s<nshift;s++){ | ||||
| 	int ss = s; | ||||
| 	if( (!converged[s]) ) {  | ||||
| 	  axpy(psi_d[ss],-bs[s]*alpha[s],ps_d[s],psi_d[ss]); | ||||
| 	} | ||||
|       } | ||||
|  | ||||
|       //Perform reliable update if necessary; otherwise update residual from single-prec mmp | ||||
|       c = axpy_norm(r_d,b,mmp_d,r_d); | ||||
|  | ||||
|       AXPYTimer.Stop(); | ||||
|  | ||||
|       if(k % ReliableUpdateFreq == 0){ | ||||
| 	RealD c_old = c; | ||||
| 	//Replace r with true residual | ||||
| 	MatrixTimer.Start();   | ||||
| 	Linop_d.HermOp(psi_d[0],mmp_d);  | ||||
| 	MatrixTimer.Stop();   | ||||
|  | ||||
| 	AXPYTimer.Start(); | ||||
| 	axpy(mmp_d,mass[0],psi_d[0],mmp_d); | ||||
|  | ||||
| 	c = axpy_norm(r_d, -1.0, mmp_d, src_d); | ||||
| 	AXPYTimer.Stop(); | ||||
|  | ||||
| 	std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<< ", replaced |r|^2 = "<<c_old <<" with |r|^2 = "<<c<<std::endl; | ||||
|       } | ||||
|      | ||||
|       // Convergence checks | ||||
|       int all_converged = 1; | ||||
|       for(int s=0;s<nshift;s++){ | ||||
|        | ||||
| 	if ( (!converged[s]) ){ | ||||
| 	  IterationsToCompleteShift[s] = k; | ||||
| 	 | ||||
| 	  RealD css  = c * z[s][iz]* z[s][iz]; | ||||
| 	 | ||||
| 	  if(css<rsqf[s]){ | ||||
| 	    if ( ! converged[s] ) | ||||
| 	      std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<<" Shift "<<s<<" has converged"<<std::endl; | ||||
| 	    converged[s]=1; | ||||
| 	  } else { | ||||
| 	    all_converged=0; | ||||
| 	  } | ||||
|  | ||||
| 	} | ||||
|       } | ||||
|  | ||||
|       if ( all_converged || k == MaxIterationsMshift-1){ | ||||
|  | ||||
| 	SolverTimer.Stop(); | ||||
|  | ||||
| 	if ( all_converged ){ | ||||
| 	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: All shifts have converged iteration "<<k<<std::endl; | ||||
| 	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Checking solutions"<<std::endl; | ||||
| 	} else { | ||||
| 	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Not all shifts have converged iteration "<<k<<std::endl; | ||||
| 	} | ||||
| 	 | ||||
| 	// Check answers  | ||||
| 	for(int s=0; s < nshift; s++) {  | ||||
| 	  Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq); | ||||
| 	  axpy(tmp_d,mass[s],psi_d[s],mmp_d); | ||||
| 	  axpy(r_d,-alpha[s],src_d,tmp_d); | ||||
| 	  RealD rn = norm2(r_d); | ||||
| 	  RealD cn = norm2(src_d); | ||||
| 	  TrueResidualShift[s] = std::sqrt(rn/cn); | ||||
| 	  std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl; | ||||
|  | ||||
| 	  //If we have not reached the desired tolerance, do a (mixed precision) CG cleanup | ||||
| 	  if(rn >= rsq[s]){ | ||||
| 	    CleanupTimer.Start(); | ||||
| 	    std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: performing cleanup step for shift " << s << std::endl; | ||||
|  | ||||
| 	    //Setup linear operators for final cleanup | ||||
| 	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]); | ||||
| 	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]); | ||||
| 					        | ||||
| 	    MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d);  | ||||
| 	    cg(src_d, psi_d[s]); | ||||
| 	     | ||||
| 	    TrueResidualShift[s] = cg.TrueResidual; | ||||
| 	    CleanupTimer.Stop(); | ||||
| 	  } | ||||
| 	} | ||||
|  | ||||
| 	std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrec: Time Breakdown for body"<<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tSolver    " << SolverTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\t\tAXPY    " << AXPYTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\t\tMatrix    " << MatrixTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\t\tShift    " << ShiftTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl; | ||||
|  | ||||
| 	IterationsToComplete = k;	 | ||||
|  | ||||
| 	return; | ||||
|       } | ||||
|     | ||||
|     } | ||||
|     std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl; | ||||
|     assert(0); | ||||
|   } | ||||
|  | ||||
| }; | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
| @@ -28,11 +28,9 @@ Author: Christopher Kelly <ckelly@phys.columbia.edu> | ||||
| #ifndef GRID_CONJUGATE_GRADIENT_RELIABLE_UPDATE_H | ||||
| #define GRID_CONJUGATE_GRADIENT_RELIABLE_UPDATE_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
| template<class FieldD,class FieldF,  | ||||
| 	 typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0, | ||||
| 	 typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>  | ||||
|   template<class FieldD,class FieldF, typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>  | ||||
|   class ConjugateGradientReliableUpdate : public LinearFunction<FieldD> { | ||||
|   public: | ||||
|     bool ErrorOnNoConverge;  // throw an assert when the CG fails to converge. | ||||
| @@ -48,7 +46,7 @@ public: | ||||
|     LinearOperatorBase<FieldF> &Linop_f; | ||||
|     LinearOperatorBase<FieldD> &Linop_d; | ||||
|     GridBase* SinglePrecGrid; | ||||
|   RealD Delta; //reliable update parameter. A reliable update is performed when the residual drops by a factor of Delta relative to its value at the last update | ||||
|     RealD Delta; //reliable update parameter | ||||
|  | ||||
|     //Optional ability to switch to a different linear operator once the tolerance reaches a certain point. Useful for single/half -> single/single | ||||
|     LinearOperatorBase<FieldF> *Linop_fallback; | ||||
| @@ -65,9 +63,7 @@ public: | ||||
|         ErrorOnNoConverge(err_on_no_conv), | ||||
| 	DoFinalCleanup(true), | ||||
| 	Linop_fallback(NULL) | ||||
|   { | ||||
|     assert(Delta > 0. && Delta < 1. && "Expect  0 < Delta < 1"); | ||||
|   }; | ||||
|     {}; | ||||
|  | ||||
|     void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){ | ||||
|       Linop_fallback = &_Linop_fallback; | ||||
| @@ -75,11 +71,10 @@ public: | ||||
|     } | ||||
|      | ||||
|     void operator()(const FieldD &src, FieldD &psi) { | ||||
|     GRID_TRACE("ConjugateGradientReliableUpdate"); | ||||
|       LinearOperatorBase<FieldF> *Linop_f_use = &Linop_f; | ||||
|       bool using_fallback = false; | ||||
|        | ||||
|     psi.Checkerboard() = src.Checkerboard(); | ||||
|       psi.checkerboard = src.checkerboard; | ||||
|       conformable(psi, src); | ||||
|  | ||||
|       RealD cp, c, a, d, b, ssq, qq, b_pred; | ||||
| @@ -113,20 +108,17 @@ public: | ||||
|       // Check if guess is really REALLY good :) | ||||
|       if (cp <= rsq) { | ||||
| 	std::cout << GridLogMessage << "ConjugateGradientReliableUpdate guess was REALLY good\n"; | ||||
|       std::cout << GridLogMessage << "\tComputed residual " << std::sqrt(cp / ssq)<<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp / ssq)<<std::endl; | ||||
| 	return; | ||||
|       } | ||||
|  | ||||
|       //Single prec initialization | ||||
|     precisionChangeWorkspace pc_wk_sp_to_dp(src.Grid(), SinglePrecGrid); | ||||
|     precisionChangeWorkspace pc_wk_dp_to_sp(SinglePrecGrid, src.Grid()); | ||||
|      | ||||
|       FieldF r_f(SinglePrecGrid); | ||||
|     r_f.Checkerboard() = r.Checkerboard(); | ||||
|     precisionChange(r_f, r, pc_wk_dp_to_sp); | ||||
|       r_f.checkerboard = r.checkerboard; | ||||
|       precisionChange(r_f, r); | ||||
|  | ||||
|       FieldF psi_f(r_f); | ||||
|     psi_f = Zero(); | ||||
|       psi_f = zero; | ||||
|  | ||||
|       FieldF p_f(r_f); | ||||
|       FieldF mmp_f(r_f); | ||||
| @@ -139,7 +131,6 @@ public: | ||||
|       GridStopWatch LinalgTimer; | ||||
|       GridStopWatch MatrixTimer; | ||||
|       GridStopWatch SolverTimer; | ||||
|     GridStopWatch PrecChangeTimer; | ||||
|  | ||||
|       SolverTimer.Start(); | ||||
|       int k = 0; | ||||
| @@ -179,9 +170,7 @@ public: | ||||
| 	// Stopping condition | ||||
| 	if (cp <= rsq) { | ||||
| 	  //Although not written in the paper, I assume that I have to add on the final solution | ||||
| 	PrecChangeTimer.Start(); | ||||
| 	precisionChange(mmp, psi_f, pc_wk_sp_to_dp); | ||||
| 	PrecChangeTimer.Stop(); | ||||
| 	  precisionChange(mmp, psi_f); | ||||
| 	  psi = psi + mmp; | ||||
| 	 | ||||
| 	 | ||||
| @@ -189,12 +178,12 @@ public: | ||||
| 	  Linop_d.HermOpAndNorm(psi, mmp, d, qq); | ||||
| 	  p = mmp - src; | ||||
|  | ||||
| 	RealD srcnorm = std::sqrt(norm2(src)); | ||||
| 	RealD resnorm = std::sqrt(norm2(p)); | ||||
| 	  RealD srcnorm = sqrt(norm2(src)); | ||||
| 	  RealD resnorm = sqrt(norm2(p)); | ||||
| 	  RealD true_residual = resnorm / srcnorm; | ||||
|  | ||||
| 	  std::cout << GridLogMessage << "ConjugateGradientReliableUpdate Converged on iteration " << k << " after " << l << " reliable updates" << std::endl; | ||||
| 	std::cout << GridLogMessage << "\tComputed residual " << std::sqrt(cp / ssq)<<std::endl; | ||||
| 	  std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp / ssq)<<std::endl; | ||||
| 	  std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl; | ||||
| 	  std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl; | ||||
|  | ||||
| @@ -202,9 +191,6 @@ public: | ||||
| 	  std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed() <<std::endl; | ||||
| 	  std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl; | ||||
| 	  std::cout << GridLogMessage << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tPrecChange " << PrecChangeTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tPrecChange avg time " << PrecChangeTimer.Elapsed()/(2*l+1) <<std::endl; | ||||
|  | ||||
|  | ||||
| 	  IterationsToComplete = k;	 | ||||
| 	  ReliableUpdatesPerformed = l; | ||||
| @@ -225,21 +211,14 @@ public: | ||||
| 	else if(cp < Delta * MaxResidSinceLastRelUp) { //reliable update | ||||
| 	  std::cout << GridLogMessage << "ConjugateGradientReliableUpdate " | ||||
| 		    << cp << "(residual) < " << Delta << "(Delta) * " << MaxResidSinceLastRelUp << "(MaxResidSinceLastRelUp) on iteration " << k << " : performing reliable update\n"; | ||||
| 	PrecChangeTimer.Start(); | ||||
| 	precisionChange(mmp, psi_f, pc_wk_sp_to_dp); | ||||
| 	PrecChangeTimer.Stop(); | ||||
| 	  precisionChange(mmp, psi_f); | ||||
| 	  psi = psi + mmp; | ||||
|  | ||||
| 	MatrixTimer.Start(); | ||||
| 	  Linop_d.HermOpAndNorm(psi, mmp, d, qq); | ||||
| 	MatrixTimer.Stop(); | ||||
| 	 | ||||
| 	  r = src - mmp; | ||||
|  | ||||
| 	psi_f = Zero(); | ||||
| 	PrecChangeTimer.Start(); | ||||
| 	precisionChange(r_f, r, pc_wk_dp_to_sp); | ||||
| 	PrecChangeTimer.Stop(); | ||||
| 	  psi_f = zero; | ||||
| 	  precisionChange(r_f, r); | ||||
| 	  cp = norm2(r); | ||||
| 	  MaxResidSinceLastRelUp = cp; | ||||
|  | ||||
| @@ -270,7 +249,7 @@ public: | ||||
|   }; | ||||
|  | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| }; | ||||
|  | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #ifndef GRID_CONJUGATE_RESIDUAL_H | ||||
| #define GRID_CONJUGATE_RESIDUAL_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     // Base classes for iterative processes based on operators | ||||
| @@ -39,8 +39,6 @@ NAMESPACE_BEGIN(Grid); | ||||
|   template<class Field>  | ||||
|     class ConjugateResidual : public OperatorFunction<Field> { | ||||
|   public:                                                 | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|     RealD   Tolerance; | ||||
|     Integer MaxIterations; | ||||
|     int verbose; | ||||
| @@ -51,14 +49,14 @@ public: | ||||
|  | ||||
|     void operator() (LinearOperatorBase<Field> &Linop,const Field &src, Field &psi){ | ||||
|  | ||||
|     RealD a, b; // c, d; | ||||
|       RealD a, b, c, d; | ||||
|       RealD cp, ssq,rsq; | ||||
|        | ||||
|       RealD rAr, rAAr, rArp; | ||||
|       RealD pAp, pAAp; | ||||
|  | ||||
|     GridBase *grid = src.Grid(); | ||||
|     psi=Zero(); | ||||
|       GridBase *grid = src._grid; | ||||
|       psi=zero; | ||||
|       Field r(grid),  p(grid), Ap(grid), Ar(grid); | ||||
|        | ||||
|       r=src; | ||||
| @@ -97,8 +95,8 @@ public: | ||||
| 	  axpy(r,-1.0,src,Ap); | ||||
| 	  RealD true_resid = norm2(r)/ssq; | ||||
| 	  std::cout<<GridLogMessage<<"ConjugateResidual: Converged on iteration " <<k | ||||
| 		 << " computed residual "<<std::sqrt(cp/ssq) | ||||
| 		 << " true residual "<<std::sqrt(true_resid) | ||||
| 		   << " computed residual "<<sqrt(cp/ssq) | ||||
| 	           << " true residual "<<sqrt(true_resid) | ||||
| 	           << " target "       <<Tolerance <<std::endl; | ||||
| 	  return; | ||||
| 	} | ||||
| @@ -109,5 +107,5 @@ public: | ||||
|       assert(0); | ||||
|     } | ||||
|   }; | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -33,19 +33,12 @@ namespace Grid { | ||||
| template<class Field> | ||||
| class ZeroGuesser: public LinearFunction<Field> { | ||||
| public: | ||||
|   using LinearFunction<Field>::operator(); | ||||
|     virtual void operator()(const Field &src, Field &guess) { guess = Zero(); }; | ||||
| }; | ||||
| template<class Field> | ||||
| class DoNothingGuesser: public LinearFunction<Field> { | ||||
| public: | ||||
|   using LinearFunction<Field>::operator(); | ||||
|   virtual void operator()(const Field &src, Field &guess) {  }; | ||||
|   virtual void operator()(const Field &src, Field &guess) { guess = zero; }; | ||||
| }; | ||||
|  | ||||
| template<class Field> | ||||
| class SourceGuesser: public LinearFunction<Field> { | ||||
| public: | ||||
|   using LinearFunction<Field>::operator(); | ||||
|   virtual void operator()(const Field &src, Field &guess) { guess = src; }; | ||||
| }; | ||||
|  | ||||
| @@ -57,29 +50,20 @@ class DeflatedGuesser: public LinearFunction<Field> { | ||||
| private: | ||||
|   const std::vector<Field> &evec; | ||||
|   const std::vector<RealD> &eval; | ||||
|   const unsigned int       N; | ||||
|  | ||||
| public: | ||||
|   using LinearFunction<Field>::operator(); | ||||
|  | ||||
|   DeflatedGuesser(const std::vector<Field> & _evec,const std::vector<RealD> & _eval) | ||||
|   : DeflatedGuesser(_evec, _eval, _evec.size()) | ||||
|   {} | ||||
|  | ||||
|   DeflatedGuesser(const std::vector<Field> & _evec, const std::vector<RealD> & _eval, const unsigned int _N) | ||||
|   : evec(_evec), eval(_eval), N(_N) | ||||
|   { | ||||
|     assert(evec.size()==eval.size()); | ||||
|     assert(N <= evec.size()); | ||||
|   }  | ||||
|   DeflatedGuesser(const std::vector<Field> & _evec,const std::vector<RealD> & _eval) : evec(_evec), eval(_eval) {}; | ||||
|  | ||||
|   virtual void operator()(const Field &src,Field &guess) { | ||||
|     guess = Zero(); | ||||
|     guess = zero; | ||||
|     assert(evec.size()==eval.size()); | ||||
|     auto N = evec.size(); | ||||
|     for (int i=0;i<N;i++) { | ||||
|       const Field& tmp = evec[i]; | ||||
|       axpy(guess,TensorRemove(innerProduct(tmp,src)) / eval[i],tmp,guess); | ||||
|     } | ||||
|     guess.Checkerboard() = src.Checkerboard(); | ||||
|     guess.checkerboard = src.checkerboard; | ||||
|   } | ||||
| }; | ||||
|  | ||||
| @@ -91,7 +75,6 @@ private: | ||||
|   const std::vector<RealD>       &eval_coarse; | ||||
| public: | ||||
|    | ||||
|   using LinearFunction<FineField>::operator(); | ||||
|   LocalCoherenceDeflatedGuesser(const std::vector<FineField>   &_subspace, | ||||
| 				const std::vector<CoarseField> &_evec_coarse, | ||||
| 				const std::vector<RealD>       &_eval_coarse) | ||||
| @@ -103,52 +86,16 @@ public: | ||||
|    | ||||
|   void operator()(const FineField &src,FineField &guess) {  | ||||
|     int N = (int)evec_coarse.size(); | ||||
|     CoarseField src_coarse(evec_coarse[0].Grid()); | ||||
|     CoarseField guess_coarse(evec_coarse[0].Grid());    guess_coarse = Zero(); | ||||
|     CoarseField src_coarse(evec_coarse[0]._grid); | ||||
|     CoarseField guess_coarse(evec_coarse[0]._grid);    guess_coarse = zero; | ||||
|     blockProject(src_coarse,src,subspace);     | ||||
|     for (int i=0;i<N;i++) { | ||||
|       const CoarseField & tmp = evec_coarse[i]; | ||||
|       axpy(guess_coarse,TensorRemove(innerProduct(tmp,src_coarse)) / eval_coarse[i],tmp,guess_coarse); | ||||
|     } | ||||
|     blockPromote(guess_coarse,guess,subspace); | ||||
|     guess.Checkerboard() = src.Checkerboard(); | ||||
|     guess.checkerboard = src.checkerboard; | ||||
|   }; | ||||
|  | ||||
|   void operator()(const std::vector<FineField> &src,std::vector<FineField> &guess) { | ||||
|     int Nevec = (int)evec_coarse.size(); | ||||
|     int Nsrc = (int)src.size(); | ||||
|     // make temp variables | ||||
|     std::vector<CoarseField> src_coarse(Nsrc,evec_coarse[0].Grid()); | ||||
|     std::vector<CoarseField> guess_coarse(Nsrc,evec_coarse[0].Grid());     | ||||
|     //Preporcessing | ||||
|     std::cout << GridLogMessage << "Start BlockProject for loop" << std::endl; | ||||
|     for (int j=0;j<Nsrc;j++) | ||||
|     { | ||||
|     guess_coarse[j] = Zero(); | ||||
|     std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl; | ||||
|     blockProject(src_coarse[j],src[j],subspace); | ||||
|     } | ||||
|     //deflation set up for eigen vector batchsize 1 and source batch size equal number of sources | ||||
|     std::cout << GridLogMessage << "Start ProjectAccum for loop" << std::endl; | ||||
|     for (int i=0;i<Nevec;i++) | ||||
|     { | ||||
|       std::cout << GridLogMessage << "ProjectAccum Nvec: " << i << std::endl; | ||||
|       const CoarseField & tmp = evec_coarse[i]; | ||||
|       for (int j=0;j<Nsrc;j++) | ||||
|       { | ||||
|         axpy(guess_coarse[j],TensorRemove(innerProduct(tmp,src_coarse[j])) / eval_coarse[i],tmp,guess_coarse[j]); | ||||
|       } | ||||
|     } | ||||
|     //postprocessing | ||||
|     std::cout << GridLogMessage << "Start BlockPromote for loop" << std::endl; | ||||
|     for (int j=0;j<Nsrc;j++) | ||||
|     { | ||||
|     std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl; | ||||
|     blockPromote(guess_coarse[j],guess[j],subspace); | ||||
|     guess[j].Checkerboard() = src[j].Checkerboard(); | ||||
|     } | ||||
|   }; | ||||
|  | ||||
| }; | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -34,8 +34,6 @@ namespace Grid { | ||||
| template<class Field> | ||||
| class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|  public: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   bool ErrorOnNoConverge; // Throw an assert when FCAGMRES fails to converge, | ||||
|                           // defaults to true | ||||
|  | ||||
| @@ -55,10 +53,10 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF | ||||
|  | ||||
|   Eigen::MatrixXcd H; | ||||
|  | ||||
|   std::vector<ComplexD> y; | ||||
|   std::vector<ComplexD> gamma; | ||||
|   std::vector<ComplexD> c; | ||||
|   std::vector<ComplexD> s; | ||||
|   std::vector<std::complex<double>> y; | ||||
|   std::vector<std::complex<double>> gamma; | ||||
|   std::vector<std::complex<double>> c; | ||||
|   std::vector<std::complex<double>> s; | ||||
|  | ||||
|   LinearFunction<Field> &Preconditioner; | ||||
|  | ||||
| @@ -83,7 +81,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF | ||||
|  | ||||
|     std::cout << GridLogWarning << "This algorithm currently doesn't differ from regular FGMRES" << std::endl; | ||||
|  | ||||
|     psi.Checkerboard() = src.Checkerboard(); | ||||
|     psi.checkerboard = src.checkerboard; | ||||
|     conformable(psi, src); | ||||
|  | ||||
|     RealD guess = norm2(psi); | ||||
| @@ -93,7 +91,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF | ||||
|     RealD ssq = norm2(src); | ||||
|     RealD rsq = Tolerance * Tolerance * ssq; | ||||
|  | ||||
|     Field r(src.Grid()); | ||||
|     Field r(src._grid); | ||||
|  | ||||
|     std::cout << std::setprecision(4) << std::scientific; | ||||
|     std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: guess " << guess << std::endl; | ||||
| @@ -151,12 +149,12 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF | ||||
|  | ||||
|     RealD cp = 0; | ||||
|  | ||||
|     Field w(src.Grid()); | ||||
|     Field r(src.Grid()); | ||||
|     Field w(src._grid); | ||||
|     Field r(src._grid); | ||||
|  | ||||
|     // these should probably be made class members so that they are only allocated once, not in every restart | ||||
|     std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero(); | ||||
|     std::vector<Field> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero(); | ||||
|     std::vector<Field> v(RestartLength + 1, src._grid); for (auto &elem : v) elem = zero; | ||||
|     std::vector<Field> z(RestartLength + 1, src._grid); for (auto &elem : z) elem = zero; | ||||
|  | ||||
|     MatrixTimer.Start(); | ||||
|     LinOp.Op(psi, w); | ||||
| @@ -178,7 +176,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF | ||||
|  | ||||
|       qrUpdate(i); | ||||
|  | ||||
|       cp = norm(gamma[i+1]); | ||||
|       cp = std::norm(gamma[i+1]); | ||||
|  | ||||
|       std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: Iteration " << IterationCount | ||||
|                 << " residual " << cp << " target " << rsq << std::endl; | ||||
| @@ -208,11 +206,11 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF | ||||
|     LinalgTimer.Start(); | ||||
|     for (int i = 0; i <= iter; ++i) { | ||||
|       H(iter, i) = innerProduct(v[i], w); | ||||
|       w = w - ComplexD(H(iter, i)) * v[i]; | ||||
|       w = w - H(iter, i) * v[i]; | ||||
|     } | ||||
|  | ||||
|     H(iter, iter + 1) = sqrt(norm2(w)); | ||||
|     v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w; | ||||
|     v[iter + 1] = (1. / H(iter, iter + 1)) * w; | ||||
|     LinalgTimer.Stop(); | ||||
|   } | ||||
|  | ||||
| @@ -220,13 +218,13 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF | ||||
|  | ||||
|     QrTimer.Start(); | ||||
|     for (int i = 0; i < iter ; ++i) { | ||||
|       auto tmp       = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1)); | ||||
|       H(iter, i)     = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1)); | ||||
|       auto tmp       = -s[i] * H(iter, i) + c[i] * H(iter, i + 1); | ||||
|       H(iter, i)     = std::conj(c[i]) * H(iter, i) + std::conj(s[i]) * H(iter, i + 1); | ||||
|       H(iter, i + 1) = tmp; | ||||
|     } | ||||
|  | ||||
|     // Compute new Givens Rotation | ||||
|     auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1))); | ||||
|     ComplexD nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1))); | ||||
|     c[iter]     = H(iter, iter) / nu; | ||||
|     s[iter]     = H(iter, iter + 1) / nu; | ||||
|  | ||||
| @@ -235,7 +233,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF | ||||
|     H(iter, iter + 1) = 0.; | ||||
|  | ||||
|     gamma[iter + 1] = -s[iter] * gamma[iter]; | ||||
|     gamma[iter]     = conjugate(c[iter]) * gamma[iter]; | ||||
|     gamma[iter]     = std::conj(c[iter]) * gamma[iter]; | ||||
|     QrTimer.Stop(); | ||||
|   } | ||||
|  | ||||
| @@ -245,8 +243,8 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF | ||||
|     for (int i = iter; i >= 0; i--) { | ||||
|       y[i] = gamma[i]; | ||||
|       for (int k = i + 1; k <= iter; k++) | ||||
|         y[i] = y[i] - ComplexD(H(k, i)) * y[k]; | ||||
|       y[i] = y[i] / ComplexD(H(i, i)); | ||||
|         y[i] = y[i] - H(k, i) * y[k]; | ||||
|       y[i] = y[i] / H(i, i); | ||||
|     } | ||||
|  | ||||
|     for (int i = 0; i <= iter; i++) | ||||
|   | ||||
| @@ -34,8 +34,6 @@ namespace Grid { | ||||
| template<class Field> | ||||
| class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|  public: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   bool ErrorOnNoConverge; // Throw an assert when FGMRES fails to converge, | ||||
|                           // defaults to true | ||||
|  | ||||
| @@ -55,10 +53,10 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|  | ||||
|   Eigen::MatrixXcd H; | ||||
|  | ||||
|   std::vector<ComplexD> y; | ||||
|   std::vector<ComplexD> gamma; | ||||
|   std::vector<ComplexD> c; | ||||
|   std::vector<ComplexD> s; | ||||
|   std::vector<std::complex<double>> y; | ||||
|   std::vector<std::complex<double>> gamma; | ||||
|   std::vector<std::complex<double>> c; | ||||
|   std::vector<std::complex<double>> s; | ||||
|  | ||||
|   LinearFunction<Field> &Preconditioner; | ||||
|  | ||||
| @@ -81,7 +79,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|  | ||||
|   void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) { | ||||
|  | ||||
|     psi.Checkerboard() = src.Checkerboard(); | ||||
|     psi.checkerboard = src.checkerboard; | ||||
|     conformable(psi, src); | ||||
|  | ||||
|     RealD guess = norm2(psi); | ||||
| @@ -91,7 +89,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|     RealD ssq = norm2(src); | ||||
|     RealD rsq = Tolerance * Tolerance * ssq; | ||||
|  | ||||
|     Field r(src.Grid()); | ||||
|     Field r(src._grid); | ||||
|  | ||||
|     std::cout << std::setprecision(4) << std::scientific; | ||||
|     std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: guess " << guess << std::endl; | ||||
| @@ -149,12 +147,12 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|  | ||||
|     RealD cp = 0; | ||||
|  | ||||
|     Field w(src.Grid()); | ||||
|     Field r(src.Grid()); | ||||
|     Field w(src._grid); | ||||
|     Field r(src._grid); | ||||
|  | ||||
|     // these should probably be made class members so that they are only allocated once, not in every restart | ||||
|     std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero(); | ||||
|     std::vector<Field> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero(); | ||||
|     std::vector<Field> v(RestartLength + 1, src._grid); for (auto &elem : v) elem = zero; | ||||
|     std::vector<Field> z(RestartLength + 1, src._grid); for (auto &elem : z) elem = zero; | ||||
|  | ||||
|     MatrixTimer.Start(); | ||||
|     LinOp.Op(psi, w); | ||||
| @@ -176,7 +174,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|  | ||||
|       qrUpdate(i); | ||||
|  | ||||
|       cp = norm(gamma[i+1]); | ||||
|       cp = std::norm(gamma[i+1]); | ||||
|  | ||||
|       std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: Iteration " << IterationCount | ||||
|                 << " residual " << cp << " target " << rsq << std::endl; | ||||
| @@ -206,11 +204,11 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|     LinalgTimer.Start(); | ||||
|     for (int i = 0; i <= iter; ++i) { | ||||
|       H(iter, i) = innerProduct(v[i], w); | ||||
|       w = w - ComplexD(H(iter, i)) * v[i]; | ||||
|       w = w - H(iter, i) * v[i]; | ||||
|     } | ||||
|  | ||||
|     H(iter, iter + 1) = sqrt(norm2(w)); | ||||
|     v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w; | ||||
|     v[iter + 1] = (1. / H(iter, iter + 1)) * w; | ||||
|     LinalgTimer.Stop(); | ||||
|   } | ||||
|  | ||||
| @@ -218,13 +216,13 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|  | ||||
|     QrTimer.Start(); | ||||
|     for (int i = 0; i < iter ; ++i) { | ||||
|       auto tmp       = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1)); | ||||
|       H(iter, i)     = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1)); | ||||
|       auto tmp       = -s[i] * H(iter, i) + c[i] * H(iter, i + 1); | ||||
|       H(iter, i)     = std::conj(c[i]) * H(iter, i) + std::conj(s[i]) * H(iter, i + 1); | ||||
|       H(iter, i + 1) = tmp; | ||||
|     } | ||||
|  | ||||
|     // Compute new Givens Rotation | ||||
|     auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1))); | ||||
|     ComplexD nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1))); | ||||
|     c[iter]     = H(iter, iter) / nu; | ||||
|     s[iter]     = H(iter, iter + 1) / nu; | ||||
|  | ||||
| @@ -233,7 +231,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|     H(iter, iter + 1) = 0.; | ||||
|  | ||||
|     gamma[iter + 1] = -s[iter] * gamma[iter]; | ||||
|     gamma[iter]     = conjugate(c[iter]) * gamma[iter]; | ||||
|     gamma[iter]     = std::conj(c[iter]) * gamma[iter]; | ||||
|     QrTimer.Stop(); | ||||
|   } | ||||
|  | ||||
| @@ -243,8 +241,8 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|     for (int i = iter; i >= 0; i--) { | ||||
|       y[i] = gamma[i]; | ||||
|       for (int k = i + 1; k <= iter; k++) | ||||
|         y[i] = y[i] - ComplexD(H(k, i)) * y[k]; | ||||
|       y[i] = y[i] / ComplexD(H(i, i)); | ||||
|         y[i] = y[i] - H(k, i) * y[k]; | ||||
|       y[i] = y[i] / H(i, i); | ||||
|     } | ||||
|  | ||||
|     for (int i = 0; i <= iter; i++) | ||||
|   | ||||
| @@ -34,8 +34,6 @@ namespace Grid { | ||||
| template<class Field> | ||||
| class GeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|  public: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   bool ErrorOnNoConverge; // Throw an assert when GMRES fails to converge, | ||||
|                           // defaults to true | ||||
|  | ||||
| @@ -54,10 +52,10 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|  | ||||
|   Eigen::MatrixXcd H; | ||||
|  | ||||
|   std::vector<ComplexD> y; | ||||
|   std::vector<ComplexD> gamma; | ||||
|   std::vector<ComplexD> c; | ||||
|   std::vector<ComplexD> s; | ||||
|   std::vector<std::complex<double>> y; | ||||
|   std::vector<std::complex<double>> gamma; | ||||
|   std::vector<std::complex<double>> c; | ||||
|   std::vector<std::complex<double>> s; | ||||
|  | ||||
|   GeneralisedMinimalResidual(RealD   tol, | ||||
|                              Integer maxit, | ||||
| @@ -76,7 +74,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|  | ||||
|   void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) { | ||||
|  | ||||
|     psi.Checkerboard() = src.Checkerboard(); | ||||
|     psi.checkerboard = src.checkerboard; | ||||
|     conformable(psi, src); | ||||
|  | ||||
|     RealD guess = norm2(psi); | ||||
| @@ -86,7 +84,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|     RealD ssq = norm2(src); | ||||
|     RealD rsq = Tolerance * Tolerance * ssq; | ||||
|  | ||||
|     Field r(src.Grid()); | ||||
|     Field r(src._grid); | ||||
|  | ||||
|     std::cout << std::setprecision(4) << std::scientific; | ||||
|     std::cout << GridLogIterative << "GeneralisedMinimalResidual: guess " << guess << std::endl; | ||||
| @@ -142,11 +140,11 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|  | ||||
|     RealD cp = 0; | ||||
|  | ||||
|     Field w(src.Grid()); | ||||
|     Field r(src.Grid()); | ||||
|     Field w(src._grid); | ||||
|     Field r(src._grid); | ||||
|  | ||||
|     // this should probably be made a class member so that it is only allocated once, not in every restart | ||||
|     std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero(); | ||||
|     std::vector<Field> v(RestartLength + 1, src._grid); for (auto &elem : v) elem = zero; | ||||
|  | ||||
|     MatrixTimer.Start(); | ||||
|     LinOp.Op(psi, w); | ||||
| @@ -168,7 +166,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|  | ||||
|       qrUpdate(i); | ||||
|  | ||||
|       cp = norm(gamma[i+1]); | ||||
|       cp = std::norm(gamma[i+1]); | ||||
|  | ||||
|       std::cout << GridLogIterative << "GeneralisedMinimalResidual: Iteration " << IterationCount | ||||
|                 << " residual " << cp << " target " << rsq << std::endl; | ||||
| @@ -194,11 +192,11 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|     LinalgTimer.Start(); | ||||
|     for (int i = 0; i <= iter; ++i) { | ||||
|       H(iter, i) = innerProduct(v[i], w); | ||||
|       w = w - ComplexD(H(iter, i)) * v[i]; | ||||
|       w = w - H(iter, i) * v[i]; | ||||
|     } | ||||
|  | ||||
|     H(iter, iter + 1) = sqrt(norm2(w)); | ||||
|     v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w; | ||||
|     v[iter + 1] = (1. / H(iter, iter + 1)) * w; | ||||
|     LinalgTimer.Stop(); | ||||
|   } | ||||
|  | ||||
| @@ -206,13 +204,13 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|  | ||||
|     QrTimer.Start(); | ||||
|     for (int i = 0; i < iter ; ++i) { | ||||
|       auto tmp       = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1)); | ||||
|       H(iter, i)     = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1)); | ||||
|       auto tmp       = -s[i] * H(iter, i) + c[i] * H(iter, i + 1); | ||||
|       H(iter, i)     = std::conj(c[i]) * H(iter, i) + std::conj(s[i]) * H(iter, i + 1); | ||||
|       H(iter, i + 1) = tmp; | ||||
|     } | ||||
|  | ||||
|     // Compute new Givens Rotation | ||||
|     auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1))); | ||||
|     ComplexD nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1))); | ||||
|     c[iter]     = H(iter, iter) / nu; | ||||
|     s[iter]     = H(iter, iter + 1) / nu; | ||||
|  | ||||
| @@ -221,7 +219,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|     H(iter, iter + 1) = 0.; | ||||
|  | ||||
|     gamma[iter + 1] = -s[iter] * gamma[iter]; | ||||
|     gamma[iter]     = conjugate(c[iter]) * gamma[iter]; | ||||
|     gamma[iter]     = std::conj(c[iter]) * gamma[iter]; | ||||
|     QrTimer.Stop(); | ||||
|   } | ||||
|  | ||||
| @@ -231,8 +229,8 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|     for (int i = iter; i >= 0; i--) { | ||||
|       y[i] = gamma[i]; | ||||
|       for (int k = i + 1; k <= iter; k++) | ||||
|         y[i] = y[i] - ComplexD(H(k, i)) * y[k]; | ||||
|       y[i] = y[i] / ComplexD(H(i, i)); | ||||
|         y[i] = y[i] - H(k, i) * y[k]; | ||||
|       y[i] = y[i] / H(i, i); | ||||
|     } | ||||
|  | ||||
|     for (int i = 0; i <= iter; i++) | ||||
|   | ||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							| @@ -35,7 +35,120 @@ Author: Christoph Lehner <clehner@bnl.gov> | ||||
| //#include <zlib.h> | ||||
| #include <sys/stat.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid);  | ||||
| namespace Grid {  | ||||
|  | ||||
|   //////////////////////////////////////////////////////// | ||||
|   // Move following 100 LOC to lattice/Lattice_basis.h | ||||
|   //////////////////////////////////////////////////////// | ||||
| template<class Field> | ||||
| void basisOrthogonalize(std::vector<Field> &basis,Field &w,int k)  | ||||
| { | ||||
|   for(int j=0; j<k; ++j){ | ||||
|     auto ip = innerProduct(basis[j],w); | ||||
|     w = w - ip*basis[j]; | ||||
|   } | ||||
| } | ||||
|  | ||||
| template<class Field> | ||||
| void basisRotate(std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j0, int j1, int k0,int k1,int Nm)  | ||||
| { | ||||
|   typedef typename Field::vector_object vobj; | ||||
|   GridBase* grid = basis[0]._grid; | ||||
|        | ||||
|   parallel_region | ||||
|   { | ||||
|  | ||||
|     std::vector < vobj , commAllocator<vobj> > B(Nm); // Thread private | ||||
|         | ||||
|     parallel_for_internal(int ss=0;ss < grid->oSites();ss++){ | ||||
|       for(int j=j0; j<j1; ++j) B[j]=0.; | ||||
|        | ||||
|       for(int j=j0; j<j1; ++j){ | ||||
| 	for(int k=k0; k<k1; ++k){ | ||||
| 	  B[j] +=Qt(j,k) * basis[k]._odata[ss]; | ||||
| 	} | ||||
|       } | ||||
|       for(int j=j0; j<j1; ++j){ | ||||
| 	  basis[j]._odata[ss] = B[j]; | ||||
|       } | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| // Extract a single rotated vector | ||||
| template<class Field> | ||||
| void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j, int k0,int k1,int Nm)  | ||||
| { | ||||
|   typedef typename Field::vector_object vobj; | ||||
|   GridBase* grid = basis[0]._grid; | ||||
|  | ||||
|   result.checkerboard = basis[0].checkerboard; | ||||
|   parallel_for(int ss=0;ss < grid->oSites();ss++){ | ||||
|     vobj B = zero; | ||||
|     for(int k=k0; k<k1; ++k){ | ||||
|       B +=Qt(j,k) * basis[k]._odata[ss]; | ||||
|     } | ||||
|     result._odata[ss] = B; | ||||
|   } | ||||
| } | ||||
|  | ||||
| template<class Field> | ||||
| void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, std::vector<int>& idx)  | ||||
| { | ||||
|   int vlen = idx.size(); | ||||
|  | ||||
|   assert(vlen>=1); | ||||
|   assert(vlen<=sort_vals.size()); | ||||
|   assert(vlen<=_v.size()); | ||||
|  | ||||
|   for (size_t i=0;i<vlen;i++) { | ||||
|  | ||||
|     if (idx[i] != i) { | ||||
|  | ||||
|       ////////////////////////////////////// | ||||
|       // idx[i] is a table of desired sources giving a permutation. | ||||
|       // Swap v[i] with v[idx[i]]. | ||||
|       // Find  j>i for which _vnew[j] = _vold[i], | ||||
|       // track the move idx[j] => idx[i] | ||||
|       // track the move idx[i] => i | ||||
|       ////////////////////////////////////// | ||||
|       size_t j; | ||||
|       for (j=i;j<idx.size();j++) | ||||
| 	if (idx[j]==i) | ||||
| 	  break; | ||||
|  | ||||
|       assert(idx[i] > i);     assert(j!=idx.size());      assert(idx[j]==i); | ||||
|  | ||||
|       std::swap(_v[i]._odata,_v[idx[i]]._odata); // should use vector move constructor, no data copy | ||||
|       std::swap(sort_vals[i],sort_vals[idx[i]]); | ||||
|  | ||||
|       idx[j] = idx[i]; | ||||
|       idx[i] = i; | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| inline std::vector<int> basisSortGetIndex(std::vector<RealD>& sort_vals)  | ||||
| { | ||||
|   std::vector<int> idx(sort_vals.size()); | ||||
|   std::iota(idx.begin(), idx.end(), 0); | ||||
|  | ||||
|   // sort indexes based on comparing values in v | ||||
|   std::sort(idx.begin(), idx.end(), [&sort_vals](int i1, int i2) { | ||||
|     return ::fabs(sort_vals[i1]) < ::fabs(sort_vals[i2]); | ||||
|   }); | ||||
|   return idx; | ||||
| } | ||||
|  | ||||
| template<class Field> | ||||
| void basisSortInPlace(std::vector<Field> & _v,std::vector<RealD>& sort_vals, bool reverse)  | ||||
| { | ||||
|   std::vector<int> idx = basisSortGetIndex(sort_vals); | ||||
|   if (reverse) | ||||
|     std::reverse(idx.begin(), idx.end()); | ||||
|    | ||||
|   basisReorderInPlace(_v,sort_vals,idx); | ||||
| } | ||||
|  | ||||
| ///////////////////////////////////////////////////////////// | ||||
| // Implicitly restarted lanczos | ||||
| @@ -146,7 +259,7 @@ public: | ||||
| 			    RealD _eresid, // resid in lmdue deficit  | ||||
| 			    int _MaxIter, // Max iterations | ||||
| 			    RealD _betastp=0.0, // if beta(k) < betastp: converged | ||||
| 			    int _MinRestart=0, int _orth_period = 1, | ||||
| 			    int _MinRestart=1, int _orth_period = 1, | ||||
| 			    IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen) : | ||||
|     SimpleTester(HermOp), _PolyOp(PolyOp),      _HermOp(HermOp), _Tester(Tester), | ||||
|     Nstop(_Nstop)  ,      Nk(_Nk),      Nm(_Nm), | ||||
| @@ -162,7 +275,7 @@ public: | ||||
| 			       RealD _eresid, // resid in lmdue deficit  | ||||
| 			       int _MaxIter, // Max iterations | ||||
| 			       RealD _betastp=0.0, // if beta(k) < betastp: converged | ||||
| 			       int _MinRestart=0, int _orth_period = 1, | ||||
| 			       int _MinRestart=1, int _orth_period = 1, | ||||
| 			       IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen) : | ||||
|     SimpleTester(HermOp),  _PolyOp(PolyOp),      _HermOp(HermOp), _Tester(SimpleTester), | ||||
|     Nstop(_Nstop)  ,      Nk(_Nk),      Nm(_Nm), | ||||
| @@ -176,7 +289,7 @@ public: | ||||
|   template<typename T>  static RealD normalise(T& v)  | ||||
|   { | ||||
|     RealD nn = norm2(v); | ||||
|     nn = std::sqrt(nn); | ||||
|     nn = sqrt(nn); | ||||
|     v = v * (1.0/nn); | ||||
|     return nn; | ||||
|   } | ||||
| @@ -208,10 +321,10 @@ until convergence | ||||
| */ | ||||
|   void calc(std::vector<RealD>& eval, std::vector<Field>& evec,  const Field& src, int& Nconv, bool reverse=false) | ||||
|   { | ||||
|     GridBase *grid = src.Grid(); | ||||
|     assert(grid == evec[0].Grid()); | ||||
|     GridBase *grid = src._grid; | ||||
|     assert(grid == evec[0]._grid); | ||||
|      | ||||
|     //    GridLogIRL.TimingMode(1); | ||||
|     GridLogIRL.TimingMode(1); | ||||
|     std::cout << GridLogIRL <<"**************************************************************************"<< std::endl; | ||||
|     std::cout << GridLogIRL <<" ImplicitlyRestartedLanczos::calc() starting iteration 0 /  "<< MaxIter<< std::endl; | ||||
|     std::cout << GridLogIRL <<"**************************************************************************"<< std::endl; | ||||
| @@ -236,17 +349,14 @@ until convergence | ||||
|     { | ||||
|       auto src_n = src; | ||||
|       auto tmp = src; | ||||
|       std::cout << GridLogIRL << " IRL source norm " << norm2(src) << std::endl; | ||||
|       const int _MAX_ITER_IRL_MEVAPP_ = 50; | ||||
|       for (int i=0;i<_MAX_ITER_IRL_MEVAPP_;i++) { | ||||
| 	normalise(src_n); | ||||
| 	_HermOp(src_n,tmp); | ||||
| 	//	std::cout << GridLogMessage<< tmp<<std::endl; exit(0); | ||||
| 	//	std::cout << GridLogIRL << " _HermOp " << norm2(tmp) << std::endl; | ||||
| 	RealD vnum = real(innerProduct(src_n,tmp)); // HermOp. | ||||
| 	RealD vden = norm2(src_n); | ||||
| 	RealD na = vnum/vden; | ||||
| 	if (fabs(evalMaxApprox/na - 1.0) < 0.0001) | ||||
| 	if (fabs(evalMaxApprox/na - 1.0) < 0.05) | ||||
| 	  i=_MAX_ITER_IRL_MEVAPP_; | ||||
| 	evalMaxApprox = na; | ||||
| 	std::cout << GridLogIRL << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl; | ||||
| @@ -336,7 +446,7 @@ until convergence | ||||
|       assert(k2<Nm);      assert(k2<Nm);      assert(k1>0); | ||||
|  | ||||
|       basisRotate(evec,Qt,k1-1,k2+1,0,Nm,Nm); /// big constraint on the basis | ||||
|       std::cout<<GridLogIRL <<"basisRotated  by Qt *"<<k1-1<<","<<k2+1<<")"<<std::endl; | ||||
|       std::cout<<GridLogIRL <<"basisRotated  by Qt"<<std::endl; | ||||
|        | ||||
|       //////////////////////////////////////////////////// | ||||
|       // Compressed vector f and beta(k2) | ||||
| @@ -344,7 +454,7 @@ until convergence | ||||
|       f *= Qt(k2-1,Nm-1); | ||||
|       f += lme[k2-1] * evec[k2]; | ||||
|       beta_k = norm2(f); | ||||
|       beta_k = std::sqrt(beta_k); | ||||
|       beta_k = sqrt(beta_k); | ||||
|       std::cout<<GridLogIRL<<" beta(k) = "<<beta_k<<std::endl; | ||||
| 	   | ||||
|       RealD betar = 1.0/beta_k; | ||||
| @@ -367,7 +477,7 @@ until convergence | ||||
|  | ||||
| 	std::cout << GridLogIRL << "Test convergence: rotate subset of vectors to test convergence " << std::endl; | ||||
|  | ||||
| 	Field B(grid); B.Checkerboard() = evec[0].Checkerboard(); | ||||
| 	Field B(grid); B.checkerboard = evec[0].checkerboard; | ||||
|  | ||||
| 	//  power of two search pattern;  not every evalue in eval2 is assessed. | ||||
| 	int allconv =1; | ||||
| @@ -405,7 +515,7 @@ until convergence | ||||
| 	 | ||||
|   converged: | ||||
|     { | ||||
|       Field B(grid); B.Checkerboard() = evec[0].Checkerboard(); | ||||
|       Field B(grid); B.checkerboard = evec[0].checkerboard; | ||||
|       basisRotate(evec,Qt,0,Nk,0,Nk,Nm);	     | ||||
|       std::cout << GridLogIRL << " Rotated basis"<<std::endl; | ||||
|       Nconv=0; | ||||
| @@ -419,15 +529,14 @@ until convergence | ||||
| 	} | ||||
|       } | ||||
|  | ||||
|       if ( Nconv < Nstop ) { | ||||
|       if ( Nconv < Nstop ) | ||||
| 	std::cout << GridLogIRL << "Nconv ("<<Nconv<<") < Nstop ("<<Nstop<<")"<<std::endl; | ||||
| 	std::cout << GridLogIRL << "returning Nstop vectors, the last "<< Nstop-Nconv << "of which might meet convergence criterion only approximately" <<std::endl; | ||||
|       } | ||||
|  | ||||
|       eval=eval2; | ||||
|        | ||||
|       //Keep only converged | ||||
|       eval.resize(Nstop);// was Nconv | ||||
|       evec.resize(Nstop,grid);// was Nconv | ||||
|       eval.resize(Nconv);// Nstop? | ||||
|       evec.resize(Nconv,grid);// Nstop? | ||||
|       basisSortInPlace(evec,eval,reverse); | ||||
|        | ||||
|     } | ||||
| @@ -445,11 +554,11 @@ until convergence | ||||
| /* Saad PP. 195 | ||||
| 1. Choose an initial vector v1 of 2-norm unity. Set β1 ≡ 0, v0 ≡ 0 | ||||
| 2. For k = 1,2,...,m Do: | ||||
| 3. wk:=Avk - b_k v_{k-1}       | ||||
| 4. ak:=(wk,vk)       //  | ||||
| 5. wk:=wk-akvk       // wk orthog vk  | ||||
| 6. bk+1 := ||wk||_2. If b_k+1 = 0 then Stop | ||||
| 7. vk+1 := wk/b_k+1 | ||||
| 3. wk:=Avk−βkv_{k−1}       | ||||
| 4. αk:=(wk,vk)       //  | ||||
| 5. wk:=wk−αkvk       // wk orthog vk  | ||||
| 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop | ||||
| 7. vk+1 := wk/βk+1 | ||||
| 8. EndDo | ||||
|  */ | ||||
|   void step(std::vector<RealD>& lmd, | ||||
| @@ -457,7 +566,6 @@ until convergence | ||||
| 	    std::vector<Field>& evec, | ||||
| 	    Field& w,int Nm,int k) | ||||
|   { | ||||
|     std::cout<<GridLogIRL << "Lanczos step " <<k<<std::endl; | ||||
|     const RealD tiny = 1.0e-20; | ||||
|     assert( k< Nm ); | ||||
|  | ||||
| @@ -469,20 +577,20 @@ until convergence | ||||
|  | ||||
|     if(k>0) w -= lme[k-1] * evec[k-1]; | ||||
|  | ||||
|     ComplexD zalph = innerProduct(evec_k,w); | ||||
|     ComplexD zalph = innerProduct(evec_k,w); // 4. αk:=(wk,vk) | ||||
|     RealD     alph = real(zalph); | ||||
|  | ||||
|     w = w - alph * evec_k; | ||||
|     w = w - alph * evec_k;// 5. wk:=wk−αkvk | ||||
|  | ||||
|     RealD beta = normalise(w);  | ||||
|     RealD beta = normalise(w); // 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop | ||||
|     // 7. vk+1 := wk/βk+1 | ||||
|  | ||||
|     lmd[k] = alph; | ||||
|     lme[k] = beta; | ||||
|  | ||||
|     if ( (k>0) && ( (k % orth_period) == 0 )) { | ||||
|       std::cout<<GridLogIRL << "Orthogonalising " <<k<<std::endl; | ||||
|     if (k>0 && k % orth_period == 0) { | ||||
|       orthogonalize(w,evec,k); // orthonormalise | ||||
|       std::cout<<GridLogIRL << "Orthogonalised " <<k<<std::endl; | ||||
|       std::cout<<GridLogIRL << "Orthogonalised " <<std::endl; | ||||
|     } | ||||
|  | ||||
|     if(k < Nm-1) evec[k+1] = w; | ||||
| @@ -490,8 +598,6 @@ until convergence | ||||
|     std::cout<<GridLogIRL << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl; | ||||
|     if ( beta < tiny )  | ||||
|       std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl; | ||||
|  | ||||
|     std::cout<<GridLogIRL << "Lanczos step complete " <<k<<std::endl; | ||||
|   } | ||||
|  | ||||
|   void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme,  | ||||
| @@ -701,7 +807,7 @@ void diagonalize_QR(std::vector<RealD>& lmd, std::vector<RealD>& lme, | ||||
|      | ||||
|     // determination of 2x2 leading submatrix | ||||
|     RealD dsub = lmd[kmax-1]-lmd[kmax-2]; | ||||
|     RealD dd = std::sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]); | ||||
|     RealD dd = sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]); | ||||
|     RealD Dsh = 0.5*(lmd[kmax-2]+lmd[kmax-1] +dd*(dsub/fabs(dsub))); | ||||
|     // (Dsh: shift) | ||||
|      | ||||
| @@ -732,6 +838,5 @@ void diagonalize_QR(std::vector<RealD>& lmd, std::vector<RealD>& lme, | ||||
|   abort(); | ||||
| } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -29,7 +29,8 @@ Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| #ifndef GRID_LOCAL_COHERENCE_IRL_H | ||||
| #define GRID_LOCAL_COHERENCE_IRL_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid);  | ||||
| namespace Grid {  | ||||
|  | ||||
|  | ||||
| struct LanczosParams : Serializable { | ||||
|  public: | ||||
| @@ -44,7 +45,6 @@ public: | ||||
| 				  int, MinRes);    // Must restart | ||||
| }; | ||||
|  | ||||
| //This class is the input parameter class for some testing programs | ||||
| struct LocalCoherenceLanczosParams : Serializable { | ||||
|  public: | ||||
|   GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams, | ||||
| @@ -59,7 +59,7 @@ public: | ||||
| 				  RealD        , coarse_relax_tol, | ||||
| 				  std::vector<int>, blockSize, | ||||
| 				  std::string, config, | ||||
| 				  std::vector < ComplexD  >, omega, | ||||
| 				  std::vector < std::complex<double>  >, omega, | ||||
| 				  RealD, mass, | ||||
| 				  RealD, M5); | ||||
| }; | ||||
| @@ -68,7 +68,6 @@ public: | ||||
| template<class Fobj,class CComplex,int nbasis> | ||||
| class ProjectedHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > { | ||||
| public: | ||||
|   using LinearFunction<Lattice<iVector<CComplex,nbasis > > >::operator(); | ||||
|   typedef iVector<CComplex,nbasis >           CoarseSiteVector; | ||||
|   typedef Lattice<CoarseSiteVector>           CoarseField; | ||||
|   typedef Lattice<CComplex>   CoarseScalar; // used for inner products on fine field | ||||
| @@ -84,11 +83,11 @@ public: | ||||
|   }; | ||||
|  | ||||
|   void operator()(const CoarseField& in, CoarseField& out) { | ||||
|     GridBase *FineGrid = subspace[0].Grid();     | ||||
|     int   checkerboard = subspace[0].Checkerboard(); | ||||
|     GridBase *FineGrid = subspace[0]._grid;     | ||||
|     int   checkerboard = subspace[0].checkerboard; | ||||
|        | ||||
|     FineField fin (FineGrid);     fin.Checkerboard()= checkerboard; | ||||
|     FineField fout(FineGrid);   fout.Checkerboard() = checkerboard; | ||||
|     FineField fin (FineGrid);     fin.checkerboard= checkerboard; | ||||
|     FineField fout(FineGrid);   fout.checkerboard = checkerboard; | ||||
|  | ||||
|     blockPromote(in,fin,subspace);       std::cout<<GridLogIRL<<"ProjectedHermop : Promote to fine"<<std::endl; | ||||
|     _Linop.HermOp(fin,fout);             std::cout<<GridLogIRL<<"ProjectedHermop : HermOp (fine) "<<std::endl; | ||||
| @@ -99,7 +98,6 @@ public: | ||||
| template<class Fobj,class CComplex,int nbasis> | ||||
| class ProjectedFunctionHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > { | ||||
| public: | ||||
|   using LinearFunction<Lattice<iVector<CComplex,nbasis > > >::operator(); | ||||
|   typedef iVector<CComplex,nbasis >           CoarseSiteVector; | ||||
|   typedef Lattice<CoarseSiteVector>           CoarseField; | ||||
|   typedef Lattice<CComplex>   CoarseScalar; // used for inner products on fine field | ||||
| @@ -120,11 +118,11 @@ public: | ||||
|  | ||||
|   void operator()(const CoarseField& in, CoarseField& out) { | ||||
|      | ||||
|     GridBase *FineGrid = subspace[0].Grid();     | ||||
|     int   checkerboard = subspace[0].Checkerboard(); | ||||
|     GridBase *FineGrid = subspace[0]._grid;     | ||||
|     int   checkerboard = subspace[0].checkerboard; | ||||
|  | ||||
|     FineField fin (FineGrid); fin.Checkerboard() =checkerboard; | ||||
|     FineField fout(FineGrid);fout.Checkerboard() =checkerboard; | ||||
|     FineField fin (FineGrid); fin.checkerboard =checkerboard; | ||||
|     FineField fout(FineGrid);fout.checkerboard =checkerboard; | ||||
|      | ||||
|     blockPromote(in,fin,subspace);             std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Promote to fine"<<std::endl; | ||||
|     _poly(_Linop,fin,fout);                    std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Poly "<<std::endl; | ||||
| @@ -147,23 +145,15 @@ public: | ||||
|   RealD                          _coarse_relax_tol; | ||||
|   std::vector<FineField>        &_subspace; | ||||
|    | ||||
|   int _largestEvalIdxForReport; //The convergence of the LCL is based on the evals of the coarse grid operator, not those of the underlying fine grid operator | ||||
|                                 //As a result we do not know what the eval range of the fine operator is until the very end, making tuning the Cheby bounds very difficult | ||||
|                                 //To work around this issue, every restart we separately reconstruct the fine operator eval for the lowest and highest evec and print these | ||||
|                                 //out alongside the evals of the coarse operator. To do so we need to know the index of the largest eval (i.e. Nstop-1) | ||||
|                                 //NOTE: If largestEvalIdxForReport=-1 (default) then this is not performed | ||||
|    | ||||
|   ImplicitlyRestartedLanczosSmoothedTester(LinearFunction<CoarseField>   &Poly, | ||||
| 					   OperatorFunction<FineField>   &smoother, | ||||
| 					   LinearOperatorBase<FineField> &Linop, | ||||
| 					   std::vector<FineField>        &subspace, | ||||
| 					   RealD coarse_relax_tol=5.0e3, | ||||
| 					   int largestEvalIdxForReport=-1)  | ||||
| 					   RealD coarse_relax_tol=5.0e3)  | ||||
|     : _smoother(smoother), _Linop(Linop), _Poly(Poly), _subspace(subspace), | ||||
|       _coarse_relax_tol(coarse_relax_tol), _largestEvalIdxForReport(largestEvalIdxForReport) | ||||
|       _coarse_relax_tol(coarse_relax_tol)   | ||||
|   {    }; | ||||
|  | ||||
|   //evalMaxApprox: approximation of largest eval of the fine Chebyshev operator (suitably wrapped by block projection) | ||||
|   int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox) | ||||
|   { | ||||
|     CoarseField v(B); | ||||
| @@ -186,30 +176,16 @@ public: | ||||
| 	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv | ||||
| 	     <<std::endl; | ||||
|  | ||||
|     if(_largestEvalIdxForReport != -1 && (j==0 || j==_largestEvalIdxForReport)){ | ||||
|       std::cout<<GridLogIRL << "Estimating true eval of fine grid operator for eval idx " << j << std::endl; | ||||
|       RealD tmp_eval; | ||||
|       ReconstructEval(j,eresid,B,tmp_eval,1.0); //don't use evalMaxApprox of coarse operator! (cf below) | ||||
|     } | ||||
|      | ||||
|     int conv=0; | ||||
|     if( (vv<eresid*eresid) ) conv = 1; | ||||
|     return conv; | ||||
|   } | ||||
|  | ||||
|   //This function is called at the end of the coarse grid Lanczos. It promotes the coarse eigenvector 'B' to the fine grid, | ||||
|   //applies a smoother to the result then computes the computes the *fine grid* eigenvalue (output as 'eval'). | ||||
|  | ||||
|   //evalMaxApprox should be the approximation of the largest eval of the fine Hermop. However when this function is called by IRL it actually passes the largest eval of the *Chebyshev* operator (as this is the max approx used for the TestConvergence above) | ||||
|   //As the largest eval of the Chebyshev is typically several orders of magnitude larger this makes the convergence test pass even when it should not. | ||||
|   //We therefore ignore evalMaxApprox here and use a value of 1.0 (note this value is already used by TestCoarse) | ||||
|   int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox) | ||||
|   { | ||||
|     evalMaxApprox = 1.0; //cf above | ||||
|     GridBase *FineGrid = _subspace[0].Grid();     | ||||
|     int checkerboard   = _subspace[0].Checkerboard(); | ||||
|     FineField fB(FineGrid);fB.Checkerboard() =checkerboard; | ||||
|     FineField fv(FineGrid);fv.Checkerboard() =checkerboard; | ||||
|     GridBase *FineGrid = _subspace[0]._grid;     | ||||
|     int checkerboard   = _subspace[0].checkerboard; | ||||
|     FineField fB(FineGrid);fB.checkerboard =checkerboard; | ||||
|     FineField fv(FineGrid);fv.checkerboard =checkerboard; | ||||
|  | ||||
|     blockPromote(B,fv,_subspace);   | ||||
|      | ||||
| @@ -224,13 +200,13 @@ public: | ||||
|     eval   = vnum/vden; | ||||
|     fv -= eval*fB; | ||||
|     RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0); | ||||
|     if ( j > nbasis ) eresid = eresid*_coarse_relax_tol; | ||||
|  | ||||
|     std::cout.precision(13); | ||||
|     std::cout<<GridLogIRL  << "[" << std::setw(3)<<j<<"] " | ||||
| 	     <<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")" | ||||
| 	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv << " target " << eresid*eresid | ||||
| 	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv | ||||
| 	     <<std::endl; | ||||
|     if ( j > nbasis ) eresid = eresid*_coarse_relax_tol; | ||||
|     if( (vv<eresid*eresid) ) return 1; | ||||
|     return 0; | ||||
|   } | ||||
| @@ -308,10 +284,6 @@ public: | ||||
|     evals_coarse.resize(0); | ||||
|   }; | ||||
|  | ||||
|   //The block inner product is the inner product on the fine grid locally summed over the blocks | ||||
|   //to give a Lattice<Scalar> on the coarse grid. This function orthnormalizes the fine-grid subspace | ||||
|   //vectors under the block inner product. This step must be performed after computing the fine grid | ||||
|   //eigenvectors and before computing the coarse grid eigenvectors.     | ||||
|   void Orthogonalise(void ) { | ||||
|     CoarseScalar InnerProd(_CoarseGrid); | ||||
|     std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl; | ||||
| @@ -333,11 +305,11 @@ public: | ||||
|     int Nk = nbasis; | ||||
|     subspace.resize(Nk,_FineGrid); | ||||
|     subspace[0]=1.0; | ||||
|     subspace[0].Checkerboard()=_checkerboard; | ||||
|     subspace[0].checkerboard=_checkerboard; | ||||
|     normalise(subspace[0]); | ||||
|     PlainHermOp<FineField>    Op(_FineOp); | ||||
|     for(int k=1;k<Nk;k++){ | ||||
|       subspace[k].Checkerboard()=_checkerboard; | ||||
|       subspace[k].checkerboard=_checkerboard; | ||||
|       Op(subspace[k-1],subspace[k]); | ||||
|       normalise(subspace[k]); | ||||
|     } | ||||
| @@ -355,8 +327,6 @@ public: | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   //While this method serves to check the coarse eigenvectors, it also recomputes the eigenvalues from the smoothed reconstructed eigenvectors | ||||
|   //hence the smoother can be tuned after running the coarse Lanczos by using a different smoother here | ||||
|   void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax)  | ||||
|   { | ||||
|     assert(evals_fine.size() == nbasis); | ||||
| @@ -390,11 +360,7 @@ public: | ||||
|  | ||||
|     ImplicitlyRestartedLanczos<FineField> IRL(ChebyOp,Op,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes); | ||||
|  | ||||
|     FineField src(_FineGrid);  | ||||
|     typedef typename FineField::scalar_type Scalar; | ||||
|     // src=1.0;  | ||||
|     src=Scalar(1.0);  | ||||
|     src.Checkerboard() = _checkerboard; | ||||
|     FineField src(_FineGrid); src=1.0; src.checkerboard = _checkerboard; | ||||
|  | ||||
|     int Nconv; | ||||
|     IRL.calc(evals_fine,subspace,src,Nconv,false); | ||||
| @@ -405,31 +371,25 @@ public: | ||||
|     evals_fine.resize(nbasis); | ||||
|     subspace.resize(nbasis,_FineGrid); | ||||
|   } | ||||
|  | ||||
|  | ||||
|   //cheby_op: Parameters of the fine grid Chebyshev polynomial used for the Lanczos acceleration | ||||
|   //cheby_smooth: Parameters of a separate Chebyshev polynomial used after the Lanczos has completed to smooth out high frequency noise in the reconstructed fine grid eigenvectors prior to computing the eigenvalue | ||||
|   //relax: Reconstructed eigenvectors (post smoothing) are naturally not as precise as true eigenvectors. This factor acts as a multiplier on the stopping condition when determining whether the results satisfy the user provided stopping condition | ||||
|   void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax, | ||||
| 		  int Nstop, int Nk, int Nm,RealD resid,  | ||||
| 		  RealD MaxIt, RealD betastp, int MinRes) | ||||
|   { | ||||
|     Chebyshev<FineField>                          Cheby(cheby_op); //Chebyshev of fine operator on fine grid | ||||
|     ProjectedHermOp<Fobj,CComplex,nbasis>         Op(_FineOp,subspace); //Fine operator on coarse grid with intermediate fine grid conversion | ||||
|     ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace); //Chebyshev of fine operator on coarse grid with intermediate fine grid conversion | ||||
|     Chebyshev<FineField>                          Cheby(cheby_op); | ||||
|     ProjectedHermOp<Fobj,CComplex,nbasis>         Op(_FineOp,subspace); | ||||
|     ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace); | ||||
|     ////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|     // create a smoother and see if we can get a cheap convergence test and smooth inside the IRL | ||||
|     ////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|     Chebyshev<FineField>                                           ChebySmooth(cheby_smooth); //lower order Chebyshev of fine operator on fine grid used to smooth regenerated eigenvectors | ||||
|     ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax,Nstop-1);  | ||||
|     Chebyshev<FineField>                                           ChebySmooth(cheby_smooth); | ||||
|     ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax); | ||||
|  | ||||
|     evals_coarse.resize(Nm); | ||||
|     evec_coarse.resize(Nm,_CoarseGrid); | ||||
|  | ||||
|     CoarseField src(_CoarseGrid);     src=1.0;  | ||||
|  | ||||
|     //Note the "tester" here is also responsible for generating the fine grid eigenvalues which are output into the "evals_coarse" array | ||||
|     ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes); | ||||
|     int Nconv=0; | ||||
|     IRL.calc(evals_coarse,evec_coarse,src,Nconv,false); | ||||
| @@ -440,15 +400,7 @@ public: | ||||
|       std::cout << i << " Coarse eval = " << evals_coarse[i]  << std::endl; | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   //Get the fine eigenvector 'i' by reconstruction | ||||
|   void getFineEvecEval(FineField &evec, RealD &eval, const int i) const{ | ||||
|     blockPromote(evec_coarse[i],evec,subspace);   | ||||
|     eval = evals_coarse[i]; | ||||
|   } | ||||
|      | ||||
|      | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -33,8 +33,6 @@ namespace Grid { | ||||
|  | ||||
| template<class Field> class MinimalResidual : public OperatorFunction<Field> { | ||||
|  public: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   bool ErrorOnNoConverge; // throw an assert when the MR fails to converge. | ||||
|                           // Defaults true. | ||||
|   RealD   Tolerance; | ||||
| @@ -48,11 +46,11 @@ template<class Field> class MinimalResidual : public OperatorFunction<Field> { | ||||
|  | ||||
|   void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) { | ||||
|  | ||||
|     psi.Checkerboard() = src.Checkerboard(); | ||||
|     psi.checkerboard = src.checkerboard; | ||||
|     conformable(psi, src); | ||||
|  | ||||
|     ComplexD a, c; | ||||
|     RealD    d; | ||||
|     Complex a, c; | ||||
|     Real    d; | ||||
|  | ||||
|     Field Mr(src); | ||||
|     Field r(src); | ||||
| @@ -73,6 +71,7 @@ template<class Field> class MinimalResidual : public OperatorFunction<Field> { | ||||
|     std::cout << std::setprecision(4) << std::scientific; | ||||
|     std::cout << GridLogIterative << "MinimalResidual: guess " << guess << std::endl; | ||||
|     std::cout << GridLogIterative << "MinimalResidual:   src " << ssq << std::endl; | ||||
|     std::cout << GridLogIterative << "MinimalResidual:    mp " << d << std::endl; | ||||
|     std::cout << GridLogIterative << "MinimalResidual:  cp,r " << cp << std::endl; | ||||
|  | ||||
|     if (cp <= rsq) { | ||||
|   | ||||
| @@ -34,9 +34,6 @@ namespace Grid { | ||||
| template<class FieldD, class FieldF, typename std::enable_if<getPrecision<FieldD>::value == 2, int>::type = 0, typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0> | ||||
| class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction<FieldD> { | ||||
|  public: | ||||
|  | ||||
|   using OperatorFunction<FieldD>::operator(); | ||||
|  | ||||
|   bool ErrorOnNoConverge; // Throw an assert when MPFGMRES fails to converge, | ||||
|                           // defaults to true | ||||
|  | ||||
| @@ -57,10 +54,10 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction | ||||
|  | ||||
|   Eigen::MatrixXcd H; | ||||
|  | ||||
|   std::vector<ComplexD> y; | ||||
|   std::vector<ComplexD> gamma; | ||||
|   std::vector<ComplexD> c; | ||||
|   std::vector<ComplexD> s; | ||||
|   std::vector<std::complex<double>> y; | ||||
|   std::vector<std::complex<double>> gamma; | ||||
|   std::vector<std::complex<double>> c; | ||||
|   std::vector<std::complex<double>> s; | ||||
|  | ||||
|   GridBase* SinglePrecGrid; | ||||
|  | ||||
| @@ -87,7 +84,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction | ||||
|  | ||||
|   void operator()(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi) { | ||||
|  | ||||
|     psi.Checkerboard() = src.Checkerboard(); | ||||
|     psi.checkerboard = src.checkerboard; | ||||
|     conformable(psi, src); | ||||
|  | ||||
|     RealD guess = norm2(psi); | ||||
| @@ -97,7 +94,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction | ||||
|     RealD ssq = norm2(src); | ||||
|     RealD rsq = Tolerance * Tolerance * ssq; | ||||
|  | ||||
|     FieldD r(src.Grid()); | ||||
|     FieldD r(src._grid); | ||||
|  | ||||
|     std::cout << std::setprecision(4) << std::scientific; | ||||
|     std::cout << GridLogIterative << "MPFGMRES: guess " << guess << std::endl; | ||||
| @@ -157,12 +154,12 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction | ||||
|  | ||||
|     RealD cp = 0; | ||||
|  | ||||
|     FieldD w(src.Grid()); | ||||
|     FieldD r(src.Grid()); | ||||
|     FieldD w(src._grid); | ||||
|     FieldD r(src._grid); | ||||
|  | ||||
|     // these should probably be made class members so that they are only allocated once, not in every restart | ||||
|     std::vector<FieldD> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero(); | ||||
|     std::vector<FieldD> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero(); | ||||
|     std::vector<FieldD> v(RestartLength + 1, src._grid); for (auto &elem : v) elem = zero; | ||||
|     std::vector<FieldD> z(RestartLength + 1, src._grid); for (auto &elem : z) elem = zero; | ||||
|  | ||||
|     MatrixTimer.Start(); | ||||
|     LinOp.Op(psi, w); | ||||
| @@ -184,7 +181,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction | ||||
|  | ||||
|       qrUpdate(i); | ||||
|  | ||||
|       cp = norm(gamma[i+1]); | ||||
|       cp = std::norm(gamma[i+1]); | ||||
|  | ||||
|       std::cout << GridLogIterative << "MPFGMRES: Iteration " << IterationCount | ||||
|                 << " residual " << cp << " target " << rsq << std::endl; | ||||
| @@ -226,11 +223,11 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction | ||||
|     LinalgTimer.Start(); | ||||
|     for (int i = 0; i <= iter; ++i) { | ||||
|       H(iter, i) = innerProduct(v[i], w); | ||||
|       w = w - ComplexD(H(iter, i)) * v[i]; | ||||
|       w = w - H(iter, i) * v[i]; | ||||
|     } | ||||
|  | ||||
|     H(iter, iter + 1) = sqrt(norm2(w)); | ||||
|     v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w; | ||||
|     v[iter + 1] = (1. / H(iter, iter + 1)) * w; | ||||
|     LinalgTimer.Stop(); | ||||
|   } | ||||
|  | ||||
| @@ -238,13 +235,13 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction | ||||
|  | ||||
|     QrTimer.Start(); | ||||
|     for (int i = 0; i < iter ; ++i) { | ||||
|       auto tmp       = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1)); | ||||
|       H(iter, i)     = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1)); | ||||
|       auto tmp       = -s[i] * H(iter, i) + c[i] * H(iter, i + 1); | ||||
|       H(iter, i)     = std::conj(c[i]) * H(iter, i) + std::conj(s[i]) * H(iter, i + 1); | ||||
|       H(iter, i + 1) = tmp; | ||||
|     } | ||||
|  | ||||
|     // Compute new Givens Rotation | ||||
|     auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1))); | ||||
|     ComplexD nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1))); | ||||
|     c[iter]     = H(iter, iter) / nu; | ||||
|     s[iter]     = H(iter, iter + 1) / nu; | ||||
|  | ||||
| @@ -253,7 +250,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction | ||||
|     H(iter, iter + 1) = 0.; | ||||
|  | ||||
|     gamma[iter + 1] = -s[iter] * gamma[iter]; | ||||
|     gamma[iter]     = conjugate(c[iter]) * gamma[iter]; | ||||
|     gamma[iter]     = std::conj(c[iter]) * gamma[iter]; | ||||
|     QrTimer.Stop(); | ||||
|   } | ||||
|  | ||||
| @@ -263,8 +260,8 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction | ||||
|     for (int i = iter; i >= 0; i--) { | ||||
|       y[i] = gamma[i]; | ||||
|       for (int k = i + 1; k <= iter; k++) | ||||
|         y[i] = y[i] - ComplexD(H(k, i)) * y[k]; | ||||
|       y[i] = y[i] / ComplexD(H(i, i)); | ||||
|         y[i] = y[i] - H(k, i) * y[k]; | ||||
|       y[i] = y[i] / H(i, i); | ||||
|     } | ||||
|  | ||||
|     for (int i = 0; i <= iter; i++) | ||||
|   | ||||
| @@ -28,85 +28,33 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #ifndef GRID_NORMAL_EQUATIONS_H | ||||
| #define GRID_NORMAL_EQUATIONS_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Take a matrix and form an NE solver calling a Herm solver | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<class Field> class NormalEquations { | ||||
|   template<class Field> class NormalEquations : public OperatorFunction<Field>{ | ||||
|   private: | ||||
|     SparseMatrixBase<Field> & _Matrix; | ||||
|     OperatorFunction<Field> & _HermitianSolver; | ||||
|   LinearFunction<Field>   & _Guess; | ||||
|  | ||||
|   public: | ||||
|  | ||||
|     ///////////////////////////////////////////////////// | ||||
|     // Wrap the usual normal equations trick | ||||
|     ///////////////////////////////////////////////////// | ||||
|  NormalEquations(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver, | ||||
| 		 LinearFunction<Field> &Guess)  | ||||
|    :  _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};  | ||||
|   NormalEquations(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver)  | ||||
|     :  _Matrix(Matrix), _HermitianSolver(HermitianSolver) {};  | ||||
|  | ||||
|     void operator() (const Field &in, Field &out){ | ||||
|   | ||||
|     Field src(in.Grid()); | ||||
|     Field tmp(in.Grid()); | ||||
|       Field src(in._grid); | ||||
|  | ||||
|     MdagMLinearOperator<SparseMatrixBase<Field>,Field> MdagMOp(_Matrix); | ||||
|       _Matrix.Mdag(in,src); | ||||
|     _Guess(src,out); | ||||
|     _HermitianSolver(MdagMOp,src,out);  // Mdag M out = Mdag in | ||||
|       _HermitianSolver(src,out);  // Mdag M out = Mdag in | ||||
|   | ||||
|     }      | ||||
|   }; | ||||
|  | ||||
| template<class Field> class HPDSolver { | ||||
| private: | ||||
|   LinearOperatorBase<Field> & _Matrix; | ||||
|   OperatorFunction<Field> & _HermitianSolver; | ||||
|   LinearFunction<Field>   & _Guess; | ||||
| public: | ||||
|  | ||||
|   ///////////////////////////////////////////////////// | ||||
|   // Wrap the usual normal equations trick | ||||
|   ///////////////////////////////////////////////////// | ||||
|  HPDSolver(LinearOperatorBase<Field> &Matrix, | ||||
| 	   OperatorFunction<Field> &HermitianSolver, | ||||
| 	   LinearFunction<Field> &Guess)  | ||||
|    :  _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};  | ||||
|  | ||||
|   void operator() (const Field &in, Field &out){ | ||||
|   | ||||
|     _Guess(in,out); | ||||
|     _HermitianSolver(_Matrix,in,out);  // Mdag M out = Mdag in | ||||
|  | ||||
| } | ||||
| }; | ||||
|  | ||||
|  | ||||
| template<class Field> class MdagMSolver { | ||||
| private: | ||||
|   SparseMatrixBase<Field> & _Matrix; | ||||
|   OperatorFunction<Field> & _HermitianSolver; | ||||
|   LinearFunction<Field>   & _Guess; | ||||
| public: | ||||
|  | ||||
|   ///////////////////////////////////////////////////// | ||||
|   // Wrap the usual normal equations trick | ||||
|   ///////////////////////////////////////////////////// | ||||
|  MdagMSolver(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver, | ||||
| 	     LinearFunction<Field> &Guess)  | ||||
|    :  _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};  | ||||
|  | ||||
|   void operator() (const Field &in, Field &out){ | ||||
|   | ||||
|     MdagMLinearOperator<SparseMatrixBase<Field>,Field> MdagMOp(_Matrix); | ||||
|     _Guess(in,out); | ||||
|  | ||||
|     _HermitianSolver(MdagMOp,in,out);  // Mdag M out = Mdag in | ||||
|  | ||||
|   }      | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
|   | ||||
| @@ -1,47 +0,0 @@ | ||||
| #pragma once | ||||
| namespace Grid { | ||||
| template<class Field> class PowerMethod   | ||||
| {  | ||||
|  public:  | ||||
|  | ||||
|   template<typename T>  static RealD normalise(T& v)  | ||||
|   { | ||||
|     RealD nn = norm2(v); | ||||
|     nn = sqrt(nn); | ||||
|     v = v * (1.0/nn); | ||||
|     return nn; | ||||
|   } | ||||
|  | ||||
|   RealD operator()(LinearOperatorBase<Field> &HermOp, const Field &src)  | ||||
|   {  | ||||
|     GridBase *grid = src.Grid();  | ||||
|      | ||||
|     // quickly get an idea of the largest eigenvalue to more properly normalize the residuum  | ||||
|     RealD evalMaxApprox = 0.0;  | ||||
|     auto src_n = src;  | ||||
|     auto tmp = src;  | ||||
|     const int _MAX_ITER_EST_ = 50;  | ||||
|  | ||||
|     for (int i=0;i<_MAX_ITER_EST_;i++) {  | ||||
|        | ||||
|       normalise(src_n);  | ||||
|       HermOp.HermOp(src_n,tmp);  | ||||
|       RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.  | ||||
|       RealD vden = norm2(src_n);  | ||||
|       RealD na = vnum/vden;  | ||||
|  | ||||
|       std::cout << GridLogIterative << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl; | ||||
|        | ||||
|       if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) {  | ||||
|  	evalMaxApprox = na;  | ||||
| 	std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl; | ||||
|  	return evalMaxApprox;  | ||||
|       }  | ||||
|       evalMaxApprox = na;  | ||||
|       src_n = tmp; | ||||
|     } | ||||
|     assert(0); | ||||
|     return 0; | ||||
|   } | ||||
| }; | ||||
| } | ||||
| @@ -28,7 +28,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #ifndef GRID_PREC_CONJUGATE_RESIDUAL_H | ||||
| #define GRID_PREC_CONJUGATE_RESIDUAL_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     // Base classes for iterative processes based on operators | ||||
| @@ -56,7 +56,7 @@ public: | ||||
|       RealD rAr, rAAr, rArp; | ||||
|       RealD pAp, pAAp; | ||||
|  | ||||
|     GridBase *grid = src.Grid(); | ||||
|       GridBase *grid = src._grid; | ||||
|       Field r(grid),  p(grid), Ap(grid), Ar(grid), z(grid); | ||||
|        | ||||
|       psi=zero; | ||||
| @@ -115,5 +115,5 @@ public: | ||||
|       assert(0); | ||||
|     } | ||||
|   }; | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -36,50 +36,41 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| //NB. Likely not original reference since they are focussing on a preconditioner variant. | ||||
| //    but VPGCR was nicely written up in their paper | ||||
| /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| #define GCRLogLevel std::cout << GridLogMessage <<std::string(level,'\t')<< " Level "<<level<<" "  | ||||
| namespace Grid { | ||||
|  | ||||
|   template<class Field> | ||||
| class PrecGeneralisedConjugateResidual : public LinearFunction<Field> { | ||||
|     class PrecGeneralisedConjugateResidual : public OperatorFunction<Field> { | ||||
|   public:                                                 | ||||
|   using LinearFunction<Field>::operator(); | ||||
|     RealD   Tolerance; | ||||
|     Integer MaxIterations; | ||||
|     int verbose; | ||||
|     int mmax; | ||||
|     int nstep; | ||||
|     int steps; | ||||
|   int level; | ||||
|     GridStopWatch PrecTimer; | ||||
|     GridStopWatch MatTimer; | ||||
|     GridStopWatch LinalgTimer; | ||||
|  | ||||
|     LinearFunction<Field> &Preconditioner; | ||||
|   LinearOperatorBase<Field> &Linop; | ||||
|  | ||||
|   void Level(int lv) { level=lv; }; | ||||
|  | ||||
|   PrecGeneralisedConjugateResidual(RealD tol,Integer maxit,LinearOperatorBase<Field> &_Linop,LinearFunction<Field> &Prec,int _mmax,int _nstep) :  | ||||
|    PrecGeneralisedConjugateResidual(RealD tol,Integer maxit,LinearFunction<Field> &Prec,int _mmax,int _nstep) :  | ||||
|       Tolerance(tol),  | ||||
|       MaxIterations(maxit), | ||||
|     Linop(_Linop), | ||||
|       Preconditioner(Prec), | ||||
|       mmax(_mmax), | ||||
|       nstep(_nstep) | ||||
|     {  | ||||
|     level=1; | ||||
|       verbose=1; | ||||
|     }; | ||||
|  | ||||
|   void operator() (const Field &src, Field &psi){ | ||||
|     void operator() (LinearOperatorBase<Field> &Linop,const Field &src, Field &psi){ | ||||
|  | ||||
|     psi=Zero(); | ||||
|       psi=zero; | ||||
|       RealD cp, ssq,rsq; | ||||
|       ssq=norm2(src); | ||||
|       rsq=Tolerance*Tolerance*ssq; | ||||
|        | ||||
|     Field r(src.Grid()); | ||||
|       Field r(src._grid); | ||||
|  | ||||
|         PrecTimer.Reset(); | ||||
|          MatTimer.Reset(); | ||||
| @@ -91,9 +82,9 @@ public: | ||||
|       steps=0; | ||||
|       for(int k=0;k<MaxIterations;k++){ | ||||
|  | ||||
|       cp=GCRnStep(src,psi,rsq); | ||||
| 	cp=GCRnStep(Linop,src,psi,rsq); | ||||
|  | ||||
|       GCRLogLevel <<"PGCR("<<mmax<<","<<nstep<<") "<< steps <<" steps cp = "<<cp<<" target "<<rsq <<std::endl; | ||||
| 	std::cout<<GridLogMessage<<"VPGCR("<<mmax<<","<<nstep<<") "<< steps <<" steps cp = "<<cp<<std::endl; | ||||
|  | ||||
| 	if(cp<rsq) { | ||||
|  | ||||
| @@ -102,33 +93,31 @@ public: | ||||
| 	  Linop.HermOp(psi,r); | ||||
| 	  axpy(r,-1.0,src,r); | ||||
| 	  RealD tr = norm2(r); | ||||
| 	GCRLogLevel<<"PGCR: Converged on iteration " <<steps | ||||
| 	  std::cout<<GridLogMessage<<"PrecGeneralisedConjugateResidual: Converged on iteration " <<steps | ||||
| 		   << " computed residual "<<sqrt(cp/ssq) | ||||
| 	           << " true residual "    <<sqrt(tr/ssq) | ||||
| 	           << " target "           <<Tolerance <<std::endl; | ||||
|  | ||||
| 	GCRLogLevel<<"PGCR Time elapsed: Total  "<< SolverTimer.Elapsed() <<std::endl; | ||||
| 	/* | ||||
| 	  GCRLogLevel<<"PGCR Time elapsed: Precon "<<   PrecTimer.Elapsed() <<std::endl; | ||||
| 	  GCRLogLevel<<"PGCR Time elapsed: Matrix "<<    MatTimer.Elapsed() <<std::endl; | ||||
| 	  GCRLogLevel<<"PGCR Time elapsed: Linalg "<< LinalgTimer.Elapsed() <<std::endl; | ||||
| 	*/ | ||||
| 	  std::cout<<GridLogMessage<<"VPGCR Time elapsed: Total  "<< SolverTimer.Elapsed() <<std::endl; | ||||
| 	  std::cout<<GridLogMessage<<"VPGCR Time elapsed: Precon "<<   PrecTimer.Elapsed() <<std::endl; | ||||
| 	  std::cout<<GridLogMessage<<"VPGCR Time elapsed: Matrix "<<    MatTimer.Elapsed() <<std::endl; | ||||
| 	  std::cout<<GridLogMessage<<"VPGCR Time elapsed: Linalg "<< LinalgTimer.Elapsed() <<std::endl; | ||||
| 	  return; | ||||
| 	} | ||||
|  | ||||
|       } | ||||
|     GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl; | ||||
|     //    assert(0); | ||||
|       std::cout<<GridLogMessage<<"Variable Preconditioned GCR did not converge"<<std::endl; | ||||
|       assert(0); | ||||
|     } | ||||
|  | ||||
|   RealD GCRnStep(const Field &src, Field &psi,RealD rsq){ | ||||
|     RealD GCRnStep(LinearOperatorBase<Field> &Linop,const Field &src, Field &psi,RealD rsq){ | ||||
|  | ||||
|       RealD cp; | ||||
|     RealD a, b; | ||||
|       RealD a, b, c, d; | ||||
|       RealD zAz, zAAz; | ||||
|     RealD rq; | ||||
|       RealD rAq, rq; | ||||
|  | ||||
|     GridBase *grid = src.Grid(); | ||||
|       GridBase *grid = src._grid; | ||||
|  | ||||
|       Field r(grid); | ||||
|       Field z(grid); | ||||
| @@ -143,8 +132,6 @@ public: | ||||
|       std::vector<Field> p(mmax,grid); | ||||
|       std::vector<RealD> qq(mmax); | ||||
|        | ||||
|     GCRLogLevel<< "PGCR nStep("<<nstep<<")"<<std::endl; | ||||
|  | ||||
|       ////////////////////////////////// | ||||
|       // initial guess x0 is taken as nonzero. | ||||
|       // r0=src-A x0 = src | ||||
| @@ -153,26 +140,38 @@ public: | ||||
|       Linop.HermOpAndNorm(psi,Az,zAz,zAAz);  | ||||
|       MatTimer.Stop(); | ||||
|  | ||||
|  | ||||
|       LinalgTimer.Start(); | ||||
|       r=src-Az; | ||||
|       LinalgTimer.Stop(); | ||||
|     GCRLogLevel<< "PGCR true residual r = src - A psi   "<<norm2(r) <<std::endl; | ||||
|  | ||||
|       ///////////////////// | ||||
|       // p = Prec(r) | ||||
|       ///////////////////// | ||||
|  | ||||
|       PrecTimer.Start(); | ||||
|       Preconditioner(r,z); | ||||
|       PrecTimer.Stop(); | ||||
|  | ||||
|       MatTimer.Start(); | ||||
|       Linop.HermOp(z,tmp);  | ||||
|       MatTimer.Stop(); | ||||
|  | ||||
|       LinalgTimer.Start(); | ||||
|       ttmp=tmp; | ||||
|       tmp=tmp-r; | ||||
|       LinalgTimer.Stop(); | ||||
|  | ||||
|       /* | ||||
|       std::cout<<GridLogMessage<<r<<std::endl; | ||||
|       std::cout<<GridLogMessage<<z<<std::endl; | ||||
|       std::cout<<GridLogMessage<<ttmp<<std::endl; | ||||
|       std::cout<<GridLogMessage<<tmp<<std::endl; | ||||
|       */ | ||||
|  | ||||
|       MatTimer.Start(); | ||||
|       Linop.HermOpAndNorm(z,Az,zAz,zAAz);  | ||||
|       MatTimer.Stop(); | ||||
|  | ||||
|       LinalgTimer.Start(); | ||||
|  | ||||
|       //p[0],q[0],qq[0]  | ||||
|       p[0]= z; | ||||
|       q[0]= Az; | ||||
| @@ -198,12 +197,11 @@ public: | ||||
| 	cp = axpy_norm(r,-a,q[peri_k],r); | ||||
|         LinalgTimer.Stop(); | ||||
|  | ||||
|       GCRLogLevel<< "PGCR step["<<steps<<"]  resid " << cp << " target " <<rsq<<std::endl;  | ||||
|  | ||||
| 	if((k==nstep-1)||(cp<rsq)){ | ||||
| 	  return cp; | ||||
| 	} | ||||
|  | ||||
| 	std::cout<<GridLogMessage<< " VPGCR_step["<<steps<<"]  resid " <<sqrt(cp/rsq)<<std::endl;  | ||||
|  | ||||
| 	PrecTimer.Start(); | ||||
| 	Preconditioner(r,z);// solve Az = r | ||||
| @@ -211,9 +209,12 @@ public: | ||||
|  | ||||
| 	MatTimer.Start(); | ||||
| 	Linop.HermOpAndNorm(z,Az,zAz,zAAz); | ||||
| 	Linop.HermOp(z,tmp); | ||||
| 	MatTimer.Stop(); | ||||
|  | ||||
|         LinalgTimer.Start(); | ||||
|         tmp=tmp-r; | ||||
| 	std::cout<<GridLogMessage<< " Preconditioner resid " <<sqrt(norm2(tmp)/norm2(r))<<std::endl;  | ||||
|  | ||||
| 	q[peri_kp]=Az; | ||||
| 	p[peri_kp]=z; | ||||
| @@ -231,9 +232,10 @@ public: | ||||
| 	qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm | ||||
|         LinalgTimer.Stop(); | ||||
|       } | ||||
|  | ||||
|       assert(0); // never reached | ||||
|       return cp; | ||||
|     } | ||||
|   }; | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -1,242 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/iterative/PrecGeneralisedConjugateResidual.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_PREC_GCR_NON_HERM_H | ||||
| #define GRID_PREC_GCR_NON_HERM_H | ||||
|  | ||||
| /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| //VPGCR Abe and Zhang, 2005. | ||||
| //INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING | ||||
| //Computing and Information Volume 2, Number 2, Pages 147-161 | ||||
| //NB. Likely not original reference since they are focussing on a preconditioner variant. | ||||
| //    but VPGCR was nicely written up in their paper | ||||
| /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| #define GCRLogLevel std::cout << GridLogMessage <<std::string(level,'\t')<< " Level "<<level<<" "  | ||||
|  | ||||
| template<class Field> | ||||
| class PrecGeneralisedConjugateResidualNonHermitian : public LinearFunction<Field> { | ||||
| public:                                                 | ||||
|   using LinearFunction<Field>::operator(); | ||||
|   RealD   Tolerance; | ||||
|   Integer MaxIterations; | ||||
|   int verbose; | ||||
|   int mmax; | ||||
|   int nstep; | ||||
|   int steps; | ||||
|   int level; | ||||
|   GridStopWatch PrecTimer; | ||||
|   GridStopWatch MatTimer; | ||||
|   GridStopWatch LinalgTimer; | ||||
|  | ||||
|   LinearFunction<Field>     &Preconditioner; | ||||
|   LinearOperatorBase<Field> &Linop; | ||||
|  | ||||
|   void Level(int lv) { level=lv; }; | ||||
|  | ||||
|   PrecGeneralisedConjugateResidualNonHermitian(RealD tol,Integer maxit,LinearOperatorBase<Field> &_Linop,LinearFunction<Field> &Prec,int _mmax,int _nstep) :  | ||||
|     Tolerance(tol),  | ||||
|     MaxIterations(maxit), | ||||
|     Linop(_Linop), | ||||
|     Preconditioner(Prec), | ||||
|     mmax(_mmax), | ||||
|     nstep(_nstep) | ||||
|   {  | ||||
|     level=1; | ||||
|     verbose=1; | ||||
|   }; | ||||
|  | ||||
|   void operator() (const Field &src, Field &psi){ | ||||
|  | ||||
|     psi=Zero(); | ||||
|     RealD cp, ssq,rsq; | ||||
|     ssq=norm2(src); | ||||
|     rsq=Tolerance*Tolerance*ssq; | ||||
|        | ||||
|     Field r(src.Grid()); | ||||
|  | ||||
|     PrecTimer.Reset(); | ||||
|     MatTimer.Reset(); | ||||
|     LinalgTimer.Reset(); | ||||
|  | ||||
|     GridStopWatch SolverTimer; | ||||
|     SolverTimer.Start(); | ||||
|  | ||||
|     steps=0; | ||||
|     for(int k=0;k<MaxIterations;k++){ | ||||
|  | ||||
|       cp=GCRnStep(src,psi,rsq); | ||||
|  | ||||
|       GCRLogLevel <<"PGCR("<<mmax<<","<<nstep<<") "<< steps <<" steps cp = "<<cp<<" target "<<rsq <<std::endl; | ||||
|  | ||||
|       if(cp<rsq) { | ||||
|  | ||||
| 	SolverTimer.Stop(); | ||||
|  | ||||
| 	Linop.Op(psi,r); | ||||
| 	axpy(r,-1.0,src,r); | ||||
| 	RealD tr = norm2(r); | ||||
| 	GCRLogLevel<<"PGCR: Converged on iteration " <<steps | ||||
| 		 << " computed residual "<<sqrt(cp/ssq) | ||||
| 		 << " true residual "    <<sqrt(tr/ssq) | ||||
| 		 << " target "           <<Tolerance <<std::endl; | ||||
|  | ||||
| 	GCRLogLevel<<"PGCR Time elapsed: Total  "<< SolverTimer.Elapsed() <<std::endl; | ||||
| 	return; | ||||
|       } | ||||
|  | ||||
|     } | ||||
|     GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl; | ||||
|     //    assert(0); | ||||
|   } | ||||
|  | ||||
|   RealD GCRnStep(const Field &src, Field &psi,RealD rsq){ | ||||
|  | ||||
|     RealD cp; | ||||
|     ComplexD a, b; | ||||
|     //    ComplexD zAz; | ||||
|     RealD zAAz; | ||||
|     ComplexD rq; | ||||
|  | ||||
|     GridBase *grid = src.Grid(); | ||||
|  | ||||
|     Field r(grid); | ||||
|     Field z(grid); | ||||
|     Field tmp(grid); | ||||
|     Field ttmp(grid); | ||||
|     Field Az(grid); | ||||
|  | ||||
|     //////////////////////////////// | ||||
|     // history for flexible orthog | ||||
|     //////////////////////////////// | ||||
|     std::vector<Field> q(mmax,grid); | ||||
|     std::vector<Field> p(mmax,grid); | ||||
|     std::vector<RealD> qq(mmax); | ||||
|        | ||||
|     GCRLogLevel<< "PGCR nStep("<<nstep<<")"<<std::endl; | ||||
|  | ||||
|     ////////////////////////////////// | ||||
|     // initial guess x0 is taken as nonzero. | ||||
|     // r0=src-A x0 = src | ||||
|     ////////////////////////////////// | ||||
|     MatTimer.Start(); | ||||
|     Linop.Op(psi,Az); | ||||
|     //    zAz = innerProduct(Az,psi); | ||||
|     zAAz= norm2(Az); | ||||
|     MatTimer.Stop(); | ||||
|      | ||||
|  | ||||
|     LinalgTimer.Start(); | ||||
|     r=src-Az; | ||||
|     LinalgTimer.Stop(); | ||||
|     GCRLogLevel<< "PGCR true residual r = src - A psi   "<<norm2(r) <<std::endl; | ||||
|      | ||||
|     ///////////////////// | ||||
|     // p = Prec(r) | ||||
|     ///////////////////// | ||||
|  | ||||
|     PrecTimer.Start(); | ||||
|     Preconditioner(r,z); | ||||
|     PrecTimer.Stop(); | ||||
|  | ||||
|     MatTimer.Start(); | ||||
|     Linop.Op(z,Az); | ||||
|     MatTimer.Stop(); | ||||
|  | ||||
|     LinalgTimer.Start(); | ||||
|  | ||||
|     //    zAz = innerProduct(Az,psi); | ||||
|     zAAz= norm2(Az); | ||||
|  | ||||
|     //p[0],q[0],qq[0]  | ||||
|     p[0]= z; | ||||
|     q[0]= Az; | ||||
|     qq[0]= zAAz; | ||||
|      | ||||
|     cp =norm2(r); | ||||
|     LinalgTimer.Stop(); | ||||
|  | ||||
|     for(int k=0;k<nstep;k++){ | ||||
|  | ||||
|       steps++; | ||||
|  | ||||
|       int kp     = k+1; | ||||
|       int peri_k = k %mmax; | ||||
|       int peri_kp= kp%mmax; | ||||
|  | ||||
|       LinalgTimer.Start(); | ||||
|       rq= innerProduct(q[peri_k],r); // what if rAr not real? | ||||
|       a = rq/qq[peri_k]; | ||||
|  | ||||
|       axpy(psi,a,p[peri_k],psi);          | ||||
|  | ||||
|       cp = axpy_norm(r,-a,q[peri_k],r); | ||||
|       LinalgTimer.Stop(); | ||||
|  | ||||
|       GCRLogLevel<< "PGCR step["<<steps<<"]  resid " << cp << " target " <<rsq<<std::endl;  | ||||
|  | ||||
|       if((k==nstep-1)||(cp<rsq)){ | ||||
| 	return cp; | ||||
|       } | ||||
|  | ||||
|  | ||||
|       PrecTimer.Start(); | ||||
|       Preconditioner(r,z);// solve Az = r | ||||
|       PrecTimer.Stop(); | ||||
|  | ||||
|       MatTimer.Start(); | ||||
|       Linop.Op(z,Az); | ||||
|       MatTimer.Stop(); | ||||
|       //      zAz = innerProduct(Az,psi); | ||||
|       zAAz= norm2(Az); | ||||
|  | ||||
|       LinalgTimer.Start(); | ||||
|  | ||||
|       q[peri_kp]=Az; | ||||
|       p[peri_kp]=z; | ||||
|  | ||||
|       int northog = ((kp)>(mmax-1))?(mmax-1):(kp);  // if more than mmax done, we orthog all mmax history. | ||||
|       for(int back=0;back<northog;back++){ | ||||
|  | ||||
| 	int peri_back=(k-back)%mmax;   	  assert((k-back)>=0); | ||||
|  | ||||
| 	b=-real(innerProduct(q[peri_back],Az))/qq[peri_back]; | ||||
| 	p[peri_kp]=p[peri_kp]+b*p[peri_back]; | ||||
| 	q[peri_kp]=q[peri_kp]+b*q[peri_back]; | ||||
|  | ||||
|       } | ||||
|       qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm | ||||
|       LinalgTimer.Stop(); | ||||
|     } | ||||
|     assert(0); // never reached | ||||
|     return cp; | ||||
|   } | ||||
| }; | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
| @@ -1,371 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/algorithmsf/iterative/QuasiMinimalResidual.h | ||||
|  | ||||
| Copyright (C) 2019 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class Field>  | ||||
| RealD innerG5ProductReal(Field &l, Field &r) | ||||
| { | ||||
|   Gamma G5(Gamma::Algebra::Gamma5); | ||||
|   Field tmp(l.Grid()); | ||||
|   //  tmp = G5*r; | ||||
|   G5R5(tmp,r); | ||||
|   ComplexD ip =innerProduct(l,tmp); | ||||
|   std::cout << "innerProductRealG5R5 "<<ip<<std::endl; | ||||
|   return ip.real(); | ||||
| } | ||||
|  | ||||
| template<class Field> | ||||
| class QuasiMinimalResidual : public OperatorFunction<Field> { | ||||
|  public: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   bool ErrorOnNoConverge;  | ||||
|   RealD   Tolerance; | ||||
|   Integer MaxIterations; | ||||
|   Integer IterationCount; | ||||
|  | ||||
|   QuasiMinimalResidual(RealD   tol, | ||||
| 		       Integer maxit, | ||||
| 		       bool    err_on_no_conv = true) | ||||
|       : Tolerance(tol) | ||||
|       , MaxIterations(maxit) | ||||
|       , ErrorOnNoConverge(err_on_no_conv)  | ||||
|   {}; | ||||
|  | ||||
| #if 1 | ||||
|   void operator()(LinearOperatorBase<Field> &LinOp, const Field &b, Field &x)  | ||||
|   { | ||||
|     RealD resid; | ||||
|     IterationCount=0; | ||||
|  | ||||
|     RealD  rho, rho_1, xi, gamma, gamma_1, theta, theta_1; | ||||
|     RealD  eta, delta, ep, beta;  | ||||
|  | ||||
|     GridBase *Grid = b.Grid(); | ||||
|     Field r(Grid), d(Grid), s(Grid); | ||||
|     Field v(Grid), w(Grid), y(Grid),  z(Grid); | ||||
|     Field v_tld(Grid), w_tld(Grid), y_tld(Grid), z_tld(Grid); | ||||
|     Field p(Grid), q(Grid), p_tld(Grid); | ||||
|  | ||||
|     Real normb = norm2(b); | ||||
|  | ||||
|     LinOp.Op(x,r); r = b - r; | ||||
|  | ||||
|     assert(normb> 0.0); | ||||
|  | ||||
|     resid = norm2(r)/normb; | ||||
|     if (resid <= Tolerance) { | ||||
|       return; | ||||
|     } | ||||
|  | ||||
|     v_tld = r; | ||||
|     y = v_tld; | ||||
|     rho = norm2(y); | ||||
|  | ||||
|     // Take Gamma5 conjugate | ||||
|     //    Gamma G5(Gamma::Algebra::Gamma5); | ||||
|     //    G5R5(w_tld,r); | ||||
|     //    w_tld = G5* v_tld; | ||||
|     w_tld=v_tld; | ||||
|     z = w_tld; | ||||
|     xi = norm2(z); | ||||
|  | ||||
|     gamma = 1.0; | ||||
|     eta   = -1.0; | ||||
|     theta = 0.0; | ||||
|  | ||||
|     for (int i = 1; i <= MaxIterations; i++) { | ||||
|  | ||||
|       // Breakdown tests | ||||
|       assert( rho != 0.0); | ||||
|       assert( xi  != 0.0); | ||||
|  | ||||
|       v = (1. / rho) * v_tld; | ||||
|       y = (1. / rho) * y; | ||||
|  | ||||
|       w = (1. / xi) * w_tld; | ||||
|       z = (1. / xi) * z; | ||||
|  | ||||
|       ComplexD Zdelta = innerProduct(z, y); // Complex? | ||||
|       std::cout << "Zdelta "<<Zdelta<<std::endl; | ||||
|       delta = Zdelta.real(); | ||||
|  | ||||
|       y_tld = y;  | ||||
|       z_tld = z; | ||||
|  | ||||
|       if (i > 1) { | ||||
| 	p = y_tld - (xi  * delta / ep) * p; | ||||
| 	q = z_tld - (rho * delta / ep) * q; | ||||
|       } else { | ||||
| 	p = y_tld; | ||||
| 	q = z_tld; | ||||
|       } | ||||
|  | ||||
|       LinOp.Op(p,p_tld);      //     p_tld = A * p; | ||||
|       ComplexD Zep = innerProduct(q, p_tld); | ||||
|       ep=Zep.real(); | ||||
|       std::cout << "Zep "<<Zep <<std::endl; | ||||
|       // Complex Audit | ||||
|       assert(abs(ep)>0); | ||||
|  | ||||
|       beta = ep / delta; | ||||
|       assert(abs(beta)>0); | ||||
|  | ||||
|       v_tld = p_tld - beta * v; | ||||
|       y = v_tld; | ||||
|  | ||||
|       rho_1 = rho; | ||||
|       rho   = norm2(y); | ||||
|       LinOp.AdjOp(q,w_tld); | ||||
|       w_tld = w_tld - beta * w; | ||||
|       z = w_tld; | ||||
|  | ||||
|       xi = norm2(z); | ||||
|  | ||||
|       gamma_1 = gamma; | ||||
|       theta_1 = theta; | ||||
|  | ||||
|       theta   = rho / (gamma_1 * beta); | ||||
|       gamma   = 1.0 / sqrt(1.0 + theta * theta); | ||||
|       std::cout << "theta "<<theta<<std::endl; | ||||
|       std::cout << "gamma "<<gamma<<std::endl; | ||||
|  | ||||
|       assert(abs(gamma)> 0.0); | ||||
|  | ||||
|       eta = -eta * rho_1 * gamma* gamma / (beta * gamma_1 * gamma_1); | ||||
|  | ||||
|       if (i > 1) { | ||||
| 	d = eta * p + (theta_1 * theta_1 * gamma * gamma) * d; | ||||
| 	s = eta * p_tld + (theta_1 * theta_1 * gamma * gamma) * s; | ||||
|       } else { | ||||
| 	d = eta * p; | ||||
| 	s = eta * p_tld; | ||||
|       } | ||||
|  | ||||
|       x =x+d;                            // update approximation vector | ||||
|       r =r-s;                            // compute residual | ||||
|  | ||||
|       if ((resid = norm2(r) / normb) <= Tolerance) { | ||||
| 	return; | ||||
|       } | ||||
|       std::cout << "Iteration "<<i<<" resid " << resid<<std::endl; | ||||
|     } | ||||
|     assert(0); | ||||
|     return;                            // no convergence | ||||
|   } | ||||
| #else | ||||
|   // QMRg5 SMP thesis | ||||
|   void operator()(LinearOperatorBase<Field> &LinOp, const Field &b, Field &x)  | ||||
|   { | ||||
|     // Real scalars | ||||
|     GridBase *grid = b.Grid(); | ||||
|  | ||||
|     Field    r(grid); | ||||
|     Field    p_m(grid), p_m_minus_1(grid), p_m_minus_2(grid); | ||||
|     Field    v_m(grid), v_m_minus_1(grid), v_m_plus_1(grid); | ||||
|     Field    tmp(grid); | ||||
|  | ||||
|     RealD    w; | ||||
|     RealD    z1, z2; | ||||
|     RealD    delta_m, delta_m_minus_1; | ||||
|     RealD    c_m_plus_1, c_m, c_m_minus_1; | ||||
|     RealD    s_m_plus_1, s_m, s_m_minus_1; | ||||
|     RealD    alpha, beta, gamma, epsilon; | ||||
|     RealD    mu, nu, rho, theta, xi, chi; | ||||
|     RealD    mod2r, mod2b; | ||||
|     RealD    tau2, target2; | ||||
|  | ||||
|     mod2b=norm2(b); | ||||
|  | ||||
|     ///////////////////////// | ||||
|     // Initial residual | ||||
|     ///////////////////////// | ||||
|     LinOp.Op(x,tmp); | ||||
|     r = b - tmp; | ||||
|  | ||||
|     ///////////////////////// | ||||
|     // \mu = \rho = |r_0| | ||||
|     ///////////////////////// | ||||
|     mod2r = norm2(r); | ||||
|     rho = sqrt( mod2r); | ||||
|     mu=rho; | ||||
|      | ||||
|     std::cout << "QuasiMinimalResidual rho "<< rho<<std::endl; | ||||
|     ///////////////////////// | ||||
|     // Zero negative history | ||||
|     ///////////////////////// | ||||
|     v_m_plus_1  = Zero(); | ||||
|     v_m_minus_1 = Zero(); | ||||
|     p_m_minus_1 = Zero(); | ||||
|     p_m_minus_2 = Zero(); | ||||
|  | ||||
|     // v0 | ||||
|     v_m = (1.0/rho)*r; | ||||
|  | ||||
|     ///////////////////////// | ||||
|     // Initial coeffs | ||||
|     ///////////////////////// | ||||
|     delta_m_minus_1 = 1.0; | ||||
|     c_m_minus_1     = 1.0; | ||||
|     c_m             = 1.0; | ||||
|     s_m_minus_1     = 0.0; | ||||
|     s_m             = 0.0; | ||||
|  | ||||
|     ///////////////////////// | ||||
|     // Set up convergence check | ||||
|     ///////////////////////// | ||||
|     tau2    = mod2r; | ||||
|     target2 = mod2b * Tolerance*Tolerance; | ||||
|   | ||||
|     for(int iter = 0 ; iter < MaxIterations; iter++){ | ||||
|  | ||||
|       ///////////////////////// | ||||
|       // \delta_m = (v_m, \gamma_5 v_m)  | ||||
|       ///////////////////////// | ||||
|       delta_m = innerG5ProductReal(v_m,v_m); | ||||
|       std::cout << "QuasiMinimalResidual delta_m "<< delta_m<<std::endl; | ||||
|  | ||||
|       ///////////////////////// | ||||
|       // tmp = A v_m | ||||
|       ///////////////////////// | ||||
|       LinOp.Op(v_m,tmp); | ||||
|  | ||||
|       ///////////////////////// | ||||
|       // \alpha = (v_m, \gamma_5 temp) / \delta_m  | ||||
|       ///////////////////////// | ||||
|       alpha = innerG5ProductReal(v_m,tmp); | ||||
|       alpha = alpha/delta_m ; | ||||
|       std::cout << "QuasiMinimalResidual alpha "<< alpha<<std::endl; | ||||
|  | ||||
|       ///////////////////////// | ||||
|       // \beta = \rho \delta_m / \delta_{m-1} | ||||
|       ///////////////////////// | ||||
|       beta = rho * delta_m / delta_m_minus_1; | ||||
|       std::cout << "QuasiMinimalResidual beta "<< beta<<std::endl; | ||||
|  | ||||
|       ///////////////////////// | ||||
|       // \tilde{v}_{m+1} = temp - \alpha v_m - \beta v_{m-1} | ||||
|       ///////////////////////// | ||||
|       v_m_plus_1 = tmp - alpha*v_m - beta*v_m_minus_1; | ||||
|  | ||||
|       /////////////////////////////// | ||||
|       // \rho = || \tilde{v}_{m+1} || | ||||
|       /////////////////////////////// | ||||
|       rho = sqrt( norm2(v_m_plus_1) ); | ||||
|       std::cout << "QuasiMinimalResidual rho "<< rho<<std::endl; | ||||
|  | ||||
|       /////////////////////////////// | ||||
|       //      v_{m+1} = \tilde{v}_{m+1} | ||||
|       /////////////////////////////// | ||||
|       v_m_plus_1 = (1.0 / rho) * v_m_plus_1; | ||||
|  | ||||
|       //////////////////////////////// | ||||
|       // QMR recurrence coefficients. | ||||
|       //////////////////////////////// | ||||
|       theta      = s_m_minus_1 * beta; | ||||
|       gamma      = c_m_minus_1 * beta; | ||||
|       epsilon    =  c_m * gamma + s_m * alpha; | ||||
|       xi         = -s_m * gamma + c_m * alpha; | ||||
|       nu         = sqrt( xi*xi + rho*rho ); | ||||
|       c_m_plus_1 = fabs(xi) / nu; | ||||
|       if ( xi == 0.0 ) { | ||||
| 	s_m_plus_1 = 1.0; | ||||
|       } else { | ||||
| 	s_m_plus_1 = c_m_plus_1 * rho / xi; | ||||
|       } | ||||
|       chi = c_m_plus_1 * xi + s_m_plus_1 * rho; | ||||
|  | ||||
|       std::cout << "QuasiMinimalResidual coeffs "<< theta <<" "<<gamma<<" "<< epsilon<<" "<< xi<<" "<< nu<<std::endl; | ||||
|       std::cout << "QuasiMinimalResidual coeffs "<< chi   <<std::endl; | ||||
|  | ||||
|       //////////////////////////////// | ||||
|       //p_m=(v_m - \epsilon p_{m-1} - \theta p_{m-2}) / \chi | ||||
|       //////////////////////////////// | ||||
|       p_m = (1.0/chi) * v_m - (epsilon/chi) * p_m_minus_1 - (theta/chi) * p_m_minus_2; | ||||
|  | ||||
|       //////////////////////////////////////////////////////////////// | ||||
|       //      \psi = \psi + c_{m+1} \mu p_m	 | ||||
|       //////////////////////////////////////////////////////////////// | ||||
|       x = x + ( c_m_plus_1 * mu ) * p_m; | ||||
|  | ||||
|       //////////////////////////////////////// | ||||
|       // | ||||
|       //////////////////////////////////////// | ||||
|       mu              = -s_m_plus_1 * mu; | ||||
|       delta_m_minus_1 = delta_m; | ||||
|       c_m_minus_1     = c_m; | ||||
|       c_m             = c_m_plus_1; | ||||
|       s_m_minus_1     = s_m; | ||||
|       s_m             = s_m_plus_1; | ||||
|  | ||||
|       //////////////////////////////////// | ||||
|       // Could use pointer swizzle games. | ||||
|       //////////////////////////////////// | ||||
|       v_m_minus_1 = v_m; | ||||
|       v_m         = v_m_plus_1; | ||||
|       p_m_minus_2 = p_m_minus_1; | ||||
|       p_m_minus_1 = p_m; | ||||
|  | ||||
|  | ||||
|       ///////////////////////////////////// | ||||
|       // Convergence checks | ||||
|       ///////////////////////////////////// | ||||
|       z1 = RealD(iter+1.0); | ||||
|       z2 = z1 + 1.0; | ||||
|       tau2 = tau2 *( z2 / z1 ) * s_m * s_m; | ||||
|       std::cout << " QuasiMinimumResidual iteration "<< iter<<std::endl; | ||||
|       std::cout << " QuasiMinimumResidual tau bound "<< tau2<<std::endl; | ||||
|  | ||||
|       // Compute true residual | ||||
|       mod2r = tau2; | ||||
|       if ( 1 || (tau2 < (100.0 * target2)) ) { | ||||
| 	LinOp.Op(x,tmp); | ||||
| 	r = b - tmp; | ||||
| 	mod2r = norm2(r); | ||||
| 	std::cout << " QuasiMinimumResidual true residual is "<< mod2r<<std::endl; | ||||
|       } | ||||
|  | ||||
|  | ||||
|       if ( mod2r < target2 ) {  | ||||
|  | ||||
| 	std::cout << " QuasiMinimumResidual has converged"<<std::endl; | ||||
| 	return; | ||||
|  | ||||
|       } | ||||
|  | ||||
|     } | ||||
|  | ||||
|  | ||||
|   } | ||||
| #endif | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -99,13 +99,10 @@ namespace Grid { | ||||
|     OperatorFunction<Field> & _HermitianRBSolver; | ||||
|     int CBfactorise; | ||||
|     bool subGuess; | ||||
|     bool useSolnAsInitGuess; // if true user-supplied solution vector is used as initial guess for solver | ||||
|   public: | ||||
|  | ||||
|     SchurRedBlackBase(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false, | ||||
|         const bool _solnAsInitGuess = false)  : | ||||
|     _HermitianRBSolver(HermitianRBSolver), | ||||
|     useSolnAsInitGuess(_solnAsInitGuess) | ||||
|     SchurRedBlackBase(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false)  : | ||||
|     _HermitianRBSolver(HermitianRBSolver)  | ||||
|     {  | ||||
|       CBfactorise = 0; | ||||
|       subtractGuess(initSubGuess); | ||||
| @@ -132,31 +129,6 @@ namespace Grid { | ||||
|       (*this)(_Matrix,in,out,guess); | ||||
|     } | ||||
|  | ||||
|     void RedBlackSource(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &src_o)  | ||||
|     { | ||||
|       GridBase *grid = _Matrix.RedBlackGrid(); | ||||
|       Field tmp(grid); | ||||
|       int nblock = in.size(); | ||||
|       for(int b=0;b<nblock;b++){ | ||||
| 	RedBlackSource(_Matrix,in[b],tmp,src_o[b]); | ||||
|       } | ||||
|     } | ||||
|     // James can write his own deflated guesser | ||||
|     // with optimised code for the inner products | ||||
|     //    RedBlackSolveSplitGrid(); | ||||
|     //    RedBlackSolve(_Matrix,src_o,sol_o);  | ||||
|  | ||||
|     void RedBlackSolution(Matrix &_Matrix, const std::vector<Field> &in, const std::vector<Field> &sol_o, std::vector<Field> &out) | ||||
|     { | ||||
|       GridBase *grid = _Matrix.RedBlackGrid(); | ||||
|       Field tmp(grid); | ||||
|       int nblock = in.size(); | ||||
|       for(int b=0;b<nblock;b++) { | ||||
| 	pickCheckerboard(Even,tmp,in[b]); | ||||
| 	RedBlackSolution(_Matrix,sol_o[b],tmp,out[b]); | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     template<class Guesser> | ||||
|     void operator()(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &out,Guesser &guess)  | ||||
|     { | ||||
| @@ -175,27 +147,18 @@ namespace Grid { | ||||
|       //////////////////////////////////////////////// | ||||
|       // Prepare RedBlack source | ||||
|       //////////////////////////////////////////////// | ||||
|       RedBlackSource(_Matrix,in,src_o); | ||||
| 	//      for(int b=0;b<nblock;b++){ | ||||
| 	//	RedBlackSource(_Matrix,in[b],tmp,src_o[b]); | ||||
| 	//      } | ||||
|        | ||||
|       for(int b=0;b<nblock;b++){ | ||||
| 	RedBlackSource(_Matrix,in[b],tmp,src_o[b]); | ||||
|       } | ||||
|       //////////////////////////////////////////////// | ||||
|       // Make the guesses | ||||
|       //////////////////////////////////////////////// | ||||
|       if ( subGuess ) guess_save.resize(nblock,grid); | ||||
|  | ||||
|        | ||||
|       if(useSolnAsInitGuess) { | ||||
|       for(int b=0;b<nblock;b++){ | ||||
|           pickCheckerboard(Odd, sol_o[b], out[b]); | ||||
|         } | ||||
|       } else { | ||||
|         guess(src_o, sol_o);  | ||||
|       } | ||||
| 	guess(src_o[b],sol_o[b]);  | ||||
|  | ||||
| 	if ( subGuess ) {  | ||||
|         for(int b=0;b<nblock;b++){ | ||||
| 	  guess_save[b] = sol_o[b]; | ||||
| 	} | ||||
|       } | ||||
| @@ -253,11 +216,8 @@ namespace Grid { | ||||
|       //////////////////////////////// | ||||
|       // Construct the guess | ||||
|       //////////////////////////////// | ||||
|       if(useSolnAsInitGuess) { | ||||
|         pickCheckerboard(Odd, sol_o, out); | ||||
|       } else { | ||||
|       Field   tmp(grid); | ||||
|       guess(src_o,sol_o); | ||||
|       } | ||||
|  | ||||
|       Field  guess_save(grid); | ||||
|       guess_save = sol_o; | ||||
| @@ -291,7 +251,7 @@ namespace Grid { | ||||
|     }      | ||||
|      | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     // Override in derived.  | ||||
|     // Override in derived. Not virtual as template methods | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     virtual void RedBlackSource  (Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)                =0; | ||||
|     virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)          =0; | ||||
| @@ -304,9 +264,8 @@ namespace Grid { | ||||
|   public: | ||||
|     typedef CheckerBoardedSparseMatrixBase<Field> Matrix; | ||||
|  | ||||
|     SchurRedBlackStaggeredSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false, | ||||
|         const bool _solnAsInitGuess = false)  | ||||
|       :    SchurRedBlackBase<Field> (HermitianRBSolver,initSubGuess,_solnAsInitGuess)  | ||||
|     SchurRedBlackStaggeredSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false)  | ||||
|       :    SchurRedBlackBase<Field> (HermitianRBSolver,initSubGuess)  | ||||
|     { | ||||
|     } | ||||
|  | ||||
| @@ -327,9 +286,9 @@ namespace Grid { | ||||
|       ///////////////////////////////////////////////////// | ||||
|       // src_o = (source_o - Moe MeeInv source_e) | ||||
|       ///////////////////////////////////////////////////// | ||||
|       _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.Checkerboard() ==Even); | ||||
|       _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.Checkerboard() ==Odd);      | ||||
|       tmp=src_o-Mtmp;                  assert(  tmp.Checkerboard() ==Odd);      | ||||
|       _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.checkerboard ==Even); | ||||
|       _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.checkerboard ==Odd);      | ||||
|       tmp=src_o-Mtmp;                  assert(  tmp.checkerboard ==Odd);      | ||||
|  | ||||
|       _Matrix.Mooee(tmp,src_o); // Extra factor of "m" in source from dumb choice of matrix norm. | ||||
|     } | ||||
| @@ -347,17 +306,17 @@ namespace Grid { | ||||
|       /////////////////////////////////////////////////// | ||||
|       // sol_e = M_ee^-1 * ( src_e - Meo sol_o )... | ||||
|       /////////////////////////////////////////////////// | ||||
|       _Matrix.Meooe(sol_o,tmp);        assert(  tmp.Checkerboard()   ==Even); | ||||
|       src_e = src_e-tmp;               assert(  src_e.Checkerboard() ==Even); | ||||
|       _Matrix.MooeeInv(src_e,sol_e);   assert(  sol_e.Checkerboard() ==Even); | ||||
|       _Matrix.Meooe(sol_o,tmp);        assert(  tmp.checkerboard   ==Even); | ||||
|       src_e = src_e-tmp;               assert(  src_e.checkerboard ==Even); | ||||
|       _Matrix.MooeeInv(src_e,sol_e);   assert(  sol_e.checkerboard ==Even); | ||||
|       | ||||
|       setCheckerboard(sol,sol_e); assert(  sol_e.Checkerboard() ==Even); | ||||
|       setCheckerboard(sol,sol_o); assert(  sol_o.Checkerboard() ==Odd ); | ||||
|       setCheckerboard(sol,sol_e); assert(  sol_e.checkerboard ==Even); | ||||
|       setCheckerboard(sol,sol_o); assert(  sol_o.checkerboard ==Odd ); | ||||
|     } | ||||
|     virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o) | ||||
|     { | ||||
|       SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix); | ||||
|       this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  assert(sol_o.Checkerboard()==Odd); | ||||
|       this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  assert(sol_o.checkerboard==Odd); | ||||
|     }; | ||||
|     virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o) | ||||
|     { | ||||
| @@ -374,9 +333,8 @@ namespace Grid { | ||||
|   public: | ||||
|     typedef CheckerBoardedSparseMatrixBase<Field> Matrix; | ||||
|  | ||||
|     SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false, | ||||
|         const bool _solnAsInitGuess = false)   | ||||
|       : SchurRedBlackBase<Field> (HermitianRBSolver,initSubGuess,_solnAsInitGuess) {}; | ||||
|     SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false)   | ||||
|       : SchurRedBlackBase<Field> (HermitianRBSolver,initSubGuess) {}; | ||||
|  | ||||
|  | ||||
|     ////////////////////////////////////////////////////// | ||||
| @@ -396,13 +354,13 @@ namespace Grid { | ||||
|       ///////////////////////////////////////////////////// | ||||
|       // src_o = Mdag * (source_o - Moe MeeInv source_e) | ||||
|       ///////////////////////////////////////////////////// | ||||
|       _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.Checkerboard() ==Even); | ||||
|       _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.Checkerboard() ==Odd);      | ||||
|       tmp=src_o-Mtmp;                  assert(  tmp.Checkerboard() ==Odd);      | ||||
|       _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.checkerboard ==Even); | ||||
|       _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.checkerboard ==Odd);      | ||||
|       tmp=src_o-Mtmp;                  assert(  tmp.checkerboard ==Odd);      | ||||
|  | ||||
|       // get the right MpcDag | ||||
|       SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix); | ||||
|       _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.Checkerboard() ==Odd);        | ||||
|       _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.checkerboard ==Odd);        | ||||
|  | ||||
|     } | ||||
|     virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol) | ||||
| @@ -416,17 +374,17 @@ namespace Grid { | ||||
|       /////////////////////////////////////////////////// | ||||
|       // sol_e = M_ee^-1 * ( src_e - Meo sol_o )... | ||||
|       /////////////////////////////////////////////////// | ||||
|       _Matrix.Meooe(sol_o,tmp);          assert(  tmp.Checkerboard()   ==Even); | ||||
|       src_e_i = src_e-tmp;               assert(  src_e_i.Checkerboard() ==Even); | ||||
|       _Matrix.MooeeInv(src_e_i,sol_e);   assert(  sol_e.Checkerboard() ==Even); | ||||
|       _Matrix.Meooe(sol_o,tmp);          assert(  tmp.checkerboard   ==Even); | ||||
|       src_e_i = src_e-tmp;               assert(  src_e_i.checkerboard ==Even); | ||||
|       _Matrix.MooeeInv(src_e_i,sol_e);   assert(  sol_e.checkerboard ==Even); | ||||
|       | ||||
|       setCheckerboard(sol,sol_e); assert(  sol_e.Checkerboard() ==Even); | ||||
|       setCheckerboard(sol,sol_o); assert(  sol_o.Checkerboard() ==Odd ); | ||||
|       setCheckerboard(sol,sol_e); assert(  sol_e.checkerboard ==Even); | ||||
|       setCheckerboard(sol,sol_o); assert(  sol_o.checkerboard ==Odd ); | ||||
|     } | ||||
|     virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o) | ||||
|     { | ||||
|       SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix); | ||||
|       this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  assert(sol_o.Checkerboard()==Odd); | ||||
|       this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  assert(sol_o.checkerboard==Odd); | ||||
|     }; | ||||
|     virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o) | ||||
|     { | ||||
| @@ -435,70 +393,6 @@ namespace Grid { | ||||
|     } | ||||
|   }; | ||||
|  | ||||
|   template<class Field> class NonHermitianSchurRedBlackDiagMooeeSolve : public SchurRedBlackBase<Field>  | ||||
|   { | ||||
|     public: | ||||
|       typedef CheckerBoardedSparseMatrixBase<Field> Matrix; | ||||
|  | ||||
|       NonHermitianSchurRedBlackDiagMooeeSolve(OperatorFunction<Field>& RBSolver, const bool initSubGuess = false, | ||||
|           const bool _solnAsInitGuess = false)   | ||||
|       : SchurRedBlackBase<Field>(RBSolver, initSubGuess, _solnAsInitGuess) {}; | ||||
|  | ||||
|       ////////////////////////////////////////////////////// | ||||
|       // Override RedBlack specialisation | ||||
|       ////////////////////////////////////////////////////// | ||||
|       virtual void RedBlackSource(Matrix& _Matrix, const Field& src, Field& src_e, Field& src_o) | ||||
|       { | ||||
|         GridBase* grid  = _Matrix.RedBlackGrid(); | ||||
|         GridBase* fgrid = _Matrix.Grid(); | ||||
|  | ||||
|         Field  tmp(grid); | ||||
|         Field Mtmp(grid); | ||||
|  | ||||
|         pickCheckerboard(Even, src_e, src); | ||||
|         pickCheckerboard(Odd , src_o, src); | ||||
|  | ||||
|         ///////////////////////////////////////////////////// | ||||
|         // src_o = Mdag * (source_o - Moe MeeInv source_e) | ||||
|         ///////////////////////////////////////////////////// | ||||
|         _Matrix.MooeeInv(src_e, tmp);   assert(   tmp.Checkerboard() == Even ); | ||||
|         _Matrix.Meooe   (tmp, Mtmp);    assert(  Mtmp.Checkerboard() == Odd  );      | ||||
|         src_o -= Mtmp;                  assert( src_o.Checkerboard() == Odd  );      | ||||
|       } | ||||
|        | ||||
|       virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol) | ||||
|       { | ||||
|         GridBase* grid  = _Matrix.RedBlackGrid(); | ||||
|         GridBase* fgrid = _Matrix.Grid(); | ||||
|  | ||||
|         Field     tmp(grid); | ||||
|         Field   sol_e(grid); | ||||
|         Field src_e_i(grid); | ||||
|          | ||||
|         /////////////////////////////////////////////////// | ||||
|         // sol_e = M_ee^-1 * ( src_e - Meo sol_o )... | ||||
|         /////////////////////////////////////////////////// | ||||
|         _Matrix.Meooe(sol_o, tmp);         assert(     tmp.Checkerboard() == Even ); | ||||
|         src_e_i = src_e - tmp;             assert( src_e_i.Checkerboard() == Even ); | ||||
|         _Matrix.MooeeInv(src_e_i, sol_e);  assert(   sol_e.Checkerboard() == Even ); | ||||
|         | ||||
|         setCheckerboard(sol, sol_e); assert( sol_e.Checkerboard() == Even ); | ||||
|         setCheckerboard(sol, sol_o); assert( sol_o.Checkerboard() == Odd  ); | ||||
|       } | ||||
|  | ||||
|       virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o) | ||||
|       { | ||||
|         NonHermitianSchurDiagMooeeOperator<Matrix,Field> _OpEO(_Matrix); | ||||
|         this->_HermitianRBSolver(_OpEO, src_o, sol_o);  assert(sol_o.Checkerboard() == Odd); | ||||
|       } | ||||
|  | ||||
|       virtual void RedBlackSolve(Matrix& _Matrix, const std::vector<Field>& src_o, std::vector<Field>& sol_o) | ||||
|       { | ||||
|         NonHermitianSchurDiagMooeeOperator<Matrix,Field> _OpEO(_Matrix); | ||||
|         this->_HermitianRBSolver(_OpEO, src_o, sol_o);  | ||||
|       } | ||||
|   }; | ||||
|  | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Site diagonal is identity, right preconditioned by Mee^inv | ||||
|   // ( 1 - Meo Moo^inv Moe Mee^inv  ) phi =( 1 - Meo Moo^inv Moe Mee^inv  ) Mee psi =  = eta  = eta | ||||
| @@ -511,9 +405,8 @@ namespace Grid { | ||||
|     ///////////////////////////////////////////////////// | ||||
|     // Wrap the usual normal equations Schur trick | ||||
|     ///////////////////////////////////////////////////// | ||||
|   SchurRedBlackDiagTwoSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false, | ||||
|       const bool _solnAsInitGuess = false)   | ||||
|     : SchurRedBlackBase<Field>(HermitianRBSolver,initSubGuess,_solnAsInitGuess) {}; | ||||
|   SchurRedBlackDiagTwoSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false)   | ||||
|     : SchurRedBlackBase<Field>(HermitianRBSolver,initSubGuess) {}; | ||||
|  | ||||
|     virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o) | ||||
|     { | ||||
| @@ -531,12 +424,12 @@ namespace Grid { | ||||
|       ///////////////////////////////////////////////////// | ||||
|       // src_o = Mdag * (source_o - Moe MeeInv source_e) | ||||
|       ///////////////////////////////////////////////////// | ||||
|       _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.Checkerboard() ==Even); | ||||
|       _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.Checkerboard() ==Odd);      | ||||
|       tmp=src_o-Mtmp;                  assert(  tmp.Checkerboard() ==Odd);      | ||||
|       _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.checkerboard ==Even); | ||||
|       _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.checkerboard ==Odd);      | ||||
|       tmp=src_o-Mtmp;                  assert(  tmp.checkerboard ==Odd);      | ||||
|  | ||||
|       // get the right MpcDag | ||||
|       _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.Checkerboard() ==Odd);        | ||||
|       _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.checkerboard ==Odd);        | ||||
|     } | ||||
|  | ||||
|     virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol) | ||||
| @@ -557,12 +450,12 @@ namespace Grid { | ||||
|       /////////////////////////////////////////////////// | ||||
|       // sol_e = M_ee^-1 * ( src_e - Meo sol_o )... | ||||
|       /////////////////////////////////////////////////// | ||||
|       _Matrix.Meooe(sol_o_i,tmp);    assert(  tmp.Checkerboard()   ==Even); | ||||
|       tmp = src_e-tmp;               assert(  src_e.Checkerboard() ==Even); | ||||
|       _Matrix.MooeeInv(tmp,sol_e);   assert(  sol_e.Checkerboard() ==Even); | ||||
|       _Matrix.Meooe(sol_o_i,tmp);    assert(  tmp.checkerboard   ==Even); | ||||
|       tmp = src_e-tmp;               assert(  src_e.checkerboard ==Even); | ||||
|       _Matrix.MooeeInv(tmp,sol_e);   assert(  sol_e.checkerboard ==Even); | ||||
|       | ||||
|       setCheckerboard(sol,sol_e);    assert(  sol_e.Checkerboard() ==Even); | ||||
|       setCheckerboard(sol,sol_o_i);  assert(  sol_o_i.Checkerboard() ==Odd ); | ||||
|       setCheckerboard(sol,sol_e);    assert(  sol_e.checkerboard ==Even); | ||||
|       setCheckerboard(sol,sol_o_i);  assert(  sol_o_i.checkerboard ==Odd ); | ||||
|     }; | ||||
|  | ||||
|     virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o) | ||||
| @@ -576,76 +469,5 @@ namespace Grid { | ||||
|       this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  | ||||
|     } | ||||
|   }; | ||||
|  | ||||
|   template<class Field> class NonHermitianSchurRedBlackDiagTwoSolve : public SchurRedBlackBase<Field>  | ||||
|   { | ||||
|     public: | ||||
|       typedef CheckerBoardedSparseMatrixBase<Field> Matrix; | ||||
|  | ||||
|       ///////////////////////////////////////////////////// | ||||
|       // Wrap the usual normal equations Schur trick | ||||
|       ///////////////////////////////////////////////////// | ||||
|       NonHermitianSchurRedBlackDiagTwoSolve(OperatorFunction<Field>& RBSolver, const bool initSubGuess = false, | ||||
|           const bool _solnAsInitGuess = false)   | ||||
|       : SchurRedBlackBase<Field>(RBSolver, initSubGuess, _solnAsInitGuess) {}; | ||||
|  | ||||
|       virtual void RedBlackSource(Matrix& _Matrix, const Field& src, Field& src_e, Field& src_o) | ||||
|       { | ||||
|         GridBase* grid  = _Matrix.RedBlackGrid(); | ||||
|         GridBase* fgrid = _Matrix.Grid(); | ||||
|  | ||||
|         Field  tmp(grid); | ||||
|         Field Mtmp(grid); | ||||
|  | ||||
|         pickCheckerboard(Even, src_e, src); | ||||
|         pickCheckerboard(Odd , src_o, src); | ||||
|        | ||||
|         ///////////////////////////////////////////////////// | ||||
|         // src_o = Mdag * (source_o - Moe MeeInv source_e) | ||||
|         ///////////////////////////////////////////////////// | ||||
|         _Matrix.MooeeInv(src_e, tmp);   assert(   tmp.Checkerboard() == Even ); | ||||
|         _Matrix.Meooe   (tmp, Mtmp);    assert(  Mtmp.Checkerboard() == Odd  );      | ||||
|         src_o -= Mtmp;                  assert( src_o.Checkerboard() == Odd  );      | ||||
| } | ||||
|  | ||||
|       virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol) | ||||
|       { | ||||
|         GridBase* grid  = _Matrix.RedBlackGrid(); | ||||
|         GridBase* fgrid = _Matrix.Grid(); | ||||
|  | ||||
|         Field sol_o_i(grid); | ||||
|         Field     tmp(grid); | ||||
|         Field   sol_e(grid); | ||||
|  | ||||
|         //////////////////////////////////////////////// | ||||
|         // MooeeInv due to pecond | ||||
|         //////////////////////////////////////////////// | ||||
|         _Matrix.MooeeInv(sol_o, tmp); | ||||
|         sol_o_i = tmp; | ||||
|  | ||||
|         /////////////////////////////////////////////////// | ||||
|         // sol_e = M_ee^-1 * ( src_e - Meo sol_o )... | ||||
|         /////////////////////////////////////////////////// | ||||
|         _Matrix.Meooe(sol_o_i, tmp);    assert(   tmp.Checkerboard() == Even ); | ||||
|         tmp = src_e - tmp;              assert( src_e.Checkerboard() == Even ); | ||||
|         _Matrix.MooeeInv(tmp, sol_e);   assert( sol_e.Checkerboard() == Even ); | ||||
|         | ||||
|         setCheckerboard(sol, sol_e);    assert(   sol_e.Checkerboard() == Even ); | ||||
|         setCheckerboard(sol, sol_o_i);  assert( sol_o_i.Checkerboard() == Odd  ); | ||||
|       }; | ||||
|  | ||||
|       virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o) | ||||
|       { | ||||
|         NonHermitianSchurDiagTwoOperator<Matrix,Field> _OpEO(_Matrix); | ||||
|         this->_HermitianRBSolver(_OpEO, src_o, sol_o); | ||||
|       }; | ||||
|  | ||||
|       virtual void RedBlackSolve(Matrix& _Matrix, const std::vector<Field>& src_o,  std::vector<Field>& sol_o) | ||||
|       { | ||||
|         NonHermitianSchurDiagTwoOperator<Matrix,Field> _OpEO(_Matrix); | ||||
|         this->_HermitianRBSolver(_OpEO, src_o, sol_o);  | ||||
|       } | ||||
|   }; | ||||
| } | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -1,11 +1,70 @@ | ||||
| #include <Grid/GridCore.h> | ||||
| #include <fcntl.h> | ||||
| 
 | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
| 
 | ||||
| MemoryStats *MemoryProfiler::stats = nullptr; | ||||
| bool         MemoryProfiler::debug = false; | ||||
| 
 | ||||
| int PointerCache::victim; | ||||
| 
 | ||||
| PointerCache::PointerCacheEntry PointerCache::Entries[PointerCache::Ncache]; | ||||
| 
 | ||||
| void *PointerCache::Insert(void *ptr,size_t bytes) { | ||||
| 
 | ||||
|   if (bytes < 4096 ) return ptr; | ||||
| 
 | ||||
| #ifdef GRID_OMP | ||||
|   assert(omp_in_parallel()==0); | ||||
| #endif  | ||||
| 
 | ||||
|   void * ret = NULL; | ||||
|   int v = -1; | ||||
| 
 | ||||
|   for(int e=0;e<Ncache;e++) { | ||||
|     if ( Entries[e].valid==0 ) { | ||||
|       v=e;  | ||||
|       break; | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   if ( v==-1 ) { | ||||
|     v=victim; | ||||
|     victim = (victim+1)%Ncache; | ||||
|   } | ||||
| 
 | ||||
|   if ( Entries[v].valid ) { | ||||
|     ret = Entries[v].address; | ||||
|     Entries[v].valid = 0; | ||||
|     Entries[v].address = NULL; | ||||
|     Entries[v].bytes = 0; | ||||
|   } | ||||
| 
 | ||||
|   Entries[v].address=ptr; | ||||
|   Entries[v].bytes  =bytes; | ||||
|   Entries[v].valid  =1; | ||||
| 
 | ||||
|   return ret; | ||||
| } | ||||
| 
 | ||||
| void *PointerCache::Lookup(size_t bytes) { | ||||
| 
 | ||||
|  if (bytes < 4096 ) return NULL; | ||||
| 
 | ||||
| #ifdef _OPENMP | ||||
|   assert(omp_in_parallel()==0); | ||||
| #endif  | ||||
| 
 | ||||
|   for(int e=0;e<Ncache;e++){ | ||||
|     if ( Entries[e].valid && ( Entries[e].bytes == bytes ) ) { | ||||
|       Entries[e].valid = 0; | ||||
|       return Entries[e].address; | ||||
|     } | ||||
|   } | ||||
|   return NULL; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| void check_huge_pages(void *Buf,uint64_t BYTES) | ||||
| { | ||||
| #ifdef __linux__ | ||||
| @@ -63,5 +122,4 @@ std::string sizeString(const size_t bytes) | ||||
|   return std::string(buf); | ||||
| } | ||||
| 
 | ||||
| NAMESPACE_END(Grid); | ||||
| 
 | ||||
| } | ||||
| @@ -26,9 +26,107 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
|     *************************************************************************************/ | ||||
|     /*  END LEGAL */ | ||||
| #pragma once | ||||
| #ifndef GRID_ALIGNED_ALLOCATOR_H | ||||
| #define GRID_ALIGNED_ALLOCATOR_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| #ifdef HAVE_MALLOC_MALLOC_H | ||||
| #include <malloc/malloc.h> | ||||
| #endif | ||||
| #ifdef HAVE_MALLOC_H | ||||
| #include <malloc.h> | ||||
| #endif | ||||
|  | ||||
| #ifdef HAVE_MM_MALLOC_H | ||||
| #include <mm_malloc.h> | ||||
| #endif | ||||
|  | ||||
| namespace Grid { | ||||
|  | ||||
|   class PointerCache { | ||||
|   private: | ||||
|  | ||||
|     static const int Ncache=8; | ||||
|     static int victim; | ||||
|  | ||||
|     typedef struct {  | ||||
|       void *address; | ||||
|       size_t bytes; | ||||
|       int valid; | ||||
|     } PointerCacheEntry; | ||||
|      | ||||
|     static PointerCacheEntry Entries[Ncache]; | ||||
|  | ||||
|   public: | ||||
|  | ||||
|  | ||||
|     static void *Insert(void *ptr,size_t bytes) ; | ||||
|     static void *Lookup(size_t bytes) ; | ||||
|  | ||||
|   }; | ||||
|    | ||||
|   std::string sizeString(size_t bytes); | ||||
|  | ||||
|   struct MemoryStats | ||||
|   { | ||||
|     size_t totalAllocated{0}, maxAllocated{0},  | ||||
|            currentlyAllocated{0}, totalFreed{0}; | ||||
|   }; | ||||
|      | ||||
|   class MemoryProfiler | ||||
|   { | ||||
|   public: | ||||
|     static MemoryStats *stats; | ||||
|     static bool        debug; | ||||
|   }; | ||||
|  | ||||
|   #define memString(bytes) std::to_string(bytes) + " (" + sizeString(bytes) + ")" | ||||
|   #define profilerDebugPrint \ | ||||
|   if (MemoryProfiler::stats)\ | ||||
|   {\ | ||||
|     auto s = MemoryProfiler::stats;\ | ||||
|     std::cout << GridLogDebug << "[Memory debug] Stats " << MemoryProfiler::stats << std::endl;\ | ||||
|     std::cout << GridLogDebug << "[Memory debug] total  : " << memString(s->totalAllocated) \ | ||||
|               << std::endl;\ | ||||
|     std::cout << GridLogDebug << "[Memory debug] max    : " << memString(s->maxAllocated) \ | ||||
|               << std::endl;\ | ||||
|     std::cout << GridLogDebug << "[Memory debug] current: " << memString(s->currentlyAllocated) \ | ||||
|               << std::endl;\ | ||||
|     std::cout << GridLogDebug << "[Memory debug] freed  : " << memString(s->totalFreed) \ | ||||
|               << std::endl;\ | ||||
|   } | ||||
|  | ||||
|   #define profilerAllocate(bytes)\ | ||||
|   if (MemoryProfiler::stats)\ | ||||
|   {\ | ||||
|     auto s = MemoryProfiler::stats;\ | ||||
|     s->totalAllocated     += (bytes);\ | ||||
|     s->currentlyAllocated += (bytes);\ | ||||
|     s->maxAllocated        = std::max(s->maxAllocated, s->currentlyAllocated);\ | ||||
|   }\ | ||||
|   if (MemoryProfiler::debug)\ | ||||
|   {\ | ||||
|     std::cout << GridLogDebug << "[Memory debug] allocating " << memString(bytes) << std::endl;\ | ||||
|     profilerDebugPrint;\ | ||||
|   } | ||||
|  | ||||
|   #define profilerFree(bytes)\ | ||||
|   if (MemoryProfiler::stats)\ | ||||
|   {\ | ||||
|     auto s = MemoryProfiler::stats;\ | ||||
|     s->totalFreed         += (bytes);\ | ||||
|     s->currentlyAllocated -= (bytes);\ | ||||
|   }\ | ||||
|   if (MemoryProfiler::debug)\ | ||||
|   {\ | ||||
|     std::cout << GridLogDebug << "[Memory debug] freeing " << memString(bytes) << std::endl;\ | ||||
|     profilerDebugPrint;\ | ||||
|   } | ||||
|  | ||||
|   void check_huge_pages(void *Buf,uint64_t BYTES); | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////// | ||||
| // A lattice of something, but assume the something is SIMDized. | ||||
| //////////////////////////////////////////////////////////////////// | ||||
|  | ||||
| template<typename _Tp> | ||||
| class alignedAllocator { | ||||
| @@ -53,31 +151,68 @@ public: | ||||
|   {  | ||||
|     size_type bytes = __n*sizeof(_Tp); | ||||
|     profilerAllocate(bytes); | ||||
|     _Tp *ptr = (_Tp*) MemoryManager::CpuAllocate(bytes); | ||||
|     assert( ( (_Tp*)ptr != (_Tp *)NULL ) ); | ||||
|  | ||||
|     _Tp *ptr = (_Tp *) PointerCache::Lookup(bytes); | ||||
|     //    if ( ptr != NULL )  | ||||
|     //      std::cout << "alignedAllocator "<<__n << " cache hit "<< std::hex << ptr <<std::dec <<std::endl; | ||||
|  | ||||
|     ////////////////// | ||||
|     // Hack 2MB align; could make option probably doesn't need configurability | ||||
|     ////////////////// | ||||
| //define GRID_ALLOC_ALIGN (128) | ||||
| #define GRID_ALLOC_ALIGN (2*1024*1024) | ||||
| #ifdef HAVE_MM_MALLOC_H | ||||
|     if ( ptr == (_Tp *) NULL ) ptr = (_Tp *) _mm_malloc(bytes,GRID_ALLOC_ALIGN); | ||||
| #else | ||||
|     if ( ptr == (_Tp *) NULL ) ptr = (_Tp *) memalign(GRID_ALLOC_ALIGN,bytes); | ||||
| #endif | ||||
|     //    std::cout << "alignedAllocator " << std::hex << ptr <<std::dec <<std::endl; | ||||
|     // First touch optimise in threaded loop | ||||
|     uint8_t *cp = (uint8_t *)ptr; | ||||
| #ifdef GRID_OMP | ||||
| #pragma omp parallel for | ||||
| #endif | ||||
|     for(size_type n=0;n<bytes;n+=4096){ | ||||
|       cp[n]=0; | ||||
|     } | ||||
|     return ptr; | ||||
|   } | ||||
|  | ||||
|   void deallocate(pointer __p, size_type __n)  | ||||
|   {  | ||||
|   void deallocate(pointer __p, size_type __n) {  | ||||
|     size_type bytes = __n * sizeof(_Tp); | ||||
|     profilerFree(bytes); | ||||
|     MemoryManager::CpuFree((void *)__p,bytes); | ||||
|   } | ||||
|  | ||||
|   // FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop | ||||
|   void construct(pointer __p, const _Tp& __val) { assert(0);}; | ||||
|     profilerFree(bytes); | ||||
|  | ||||
|     pointer __freeme = (pointer)PointerCache::Insert((void *)__p,bytes); | ||||
|  | ||||
| #ifdef HAVE_MM_MALLOC_H | ||||
|     if ( __freeme ) _mm_free((void *)__freeme);  | ||||
| #else | ||||
|     if ( __freeme ) free((void *)__freeme); | ||||
| #endif | ||||
|   } | ||||
|   void construct(pointer __p, const _Tp& __val) { }; | ||||
|   void construct(pointer __p) { }; | ||||
|   void destroy(pointer __p) { }; | ||||
| }; | ||||
| template<typename _Tp>  inline bool operator==(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return true; } | ||||
| template<typename _Tp>  inline bool operator!=(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return false; } | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Unified virtual memory | ||||
| ////////////////////////////////////////////////////////////////////////////////////// | ||||
| ////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // MPI3 : comms must use shm region | ||||
| // SHMEM: comms must use symmetric heap | ||||
| ////////////////////////////////////////////////////////////////////////////////////////// | ||||
| #ifdef GRID_COMMS_SHMEM | ||||
| extern "C" {  | ||||
| #include <mpp/shmem.h> | ||||
| extern void * shmem_align(size_t, size_t); | ||||
| extern void  shmem_free(void *); | ||||
| } | ||||
| #define PARANOID_SYMMETRIC_HEAP | ||||
| #endif | ||||
|  | ||||
| template<typename _Tp> | ||||
| class uvmAllocator { | ||||
| class commAllocator { | ||||
| public:  | ||||
|   typedef std::size_t     size_type; | ||||
|   typedef std::ptrdiff_t  difference_type; | ||||
| @@ -87,98 +222,94 @@ public: | ||||
|   typedef const _Tp& const_reference; | ||||
|   typedef _Tp        value_type; | ||||
|  | ||||
|   template<typename _Tp1>  struct rebind { typedef uvmAllocator<_Tp1> other; }; | ||||
|   uvmAllocator() throw() { } | ||||
|   uvmAllocator(const uvmAllocator&) throw() { } | ||||
|   template<typename _Tp1> uvmAllocator(const uvmAllocator<_Tp1>&) throw() { } | ||||
|   ~uvmAllocator() throw() { } | ||||
|   template<typename _Tp1>  struct rebind { typedef commAllocator<_Tp1> other; }; | ||||
|   commAllocator() throw() { } | ||||
|   commAllocator(const commAllocator&) throw() { } | ||||
|   template<typename _Tp1> commAllocator(const commAllocator<_Tp1>&) throw() { } | ||||
|   ~commAllocator() throw() { } | ||||
|   pointer       address(reference __x)       const { return &__x; } | ||||
|   size_type  max_size() const throw() { return size_t(-1) / sizeof(_Tp); } | ||||
|  | ||||
| #ifdef GRID_COMMS_SHMEM | ||||
|   pointer allocate(size_type __n, const void* _p= 0) | ||||
|   { | ||||
|     size_type bytes = __n*sizeof(_Tp); | ||||
|  | ||||
|     profilerAllocate(bytes); | ||||
|     _Tp *ptr = (_Tp*) MemoryManager::SharedAllocate(bytes); | ||||
|     assert( ( (_Tp*)ptr != (_Tp *)NULL ) ); | ||||
| #ifdef CRAY | ||||
|     _Tp *ptr = (_Tp *) shmem_align(bytes,64); | ||||
| #else | ||||
|     _Tp *ptr = (_Tp *) shmem_align(64,bytes); | ||||
| #endif | ||||
| #ifdef PARANOID_SYMMETRIC_HEAP | ||||
|     static void * bcast; | ||||
|     static long  psync[_SHMEM_REDUCE_SYNC_SIZE]; | ||||
|  | ||||
|     bcast = (void *) ptr; | ||||
|     shmem_broadcast32((void *)&bcast,(void *)&bcast,sizeof(void *)/4,0,0,0,shmem_n_pes(),psync); | ||||
|  | ||||
|     if ( bcast != ptr ) { | ||||
|       std::printf("inconsistent alloc pe %d %lx %lx \n",shmem_my_pe(),bcast,ptr);std::fflush(stdout); | ||||
|       //      BACKTRACEFILE(); | ||||
|       exit(0); | ||||
|     } | ||||
|     assert( bcast == (void *) ptr); | ||||
| #endif  | ||||
|     return ptr; | ||||
|   } | ||||
|  | ||||
|   void deallocate(pointer __p, size_type __n)  | ||||
|   {  | ||||
|   void deallocate(pointer __p, size_type __n) {  | ||||
|     size_type bytes = __n*sizeof(_Tp); | ||||
|  | ||||
|     profilerFree(bytes); | ||||
|     MemoryManager::SharedFree((void *)__p,bytes); | ||||
|     shmem_free((void *)__p); | ||||
|   } | ||||
|  | ||||
|   void construct(pointer __p, const _Tp& __val) { new((void *)__p) _Tp(__val); }; | ||||
|   void construct(pointer __p) { }; | ||||
|   void destroy(pointer __p) { }; | ||||
| }; | ||||
| template<typename _Tp>  inline bool operator==(const uvmAllocator<_Tp>&, const uvmAllocator<_Tp>&){ return true; } | ||||
| template<typename _Tp>  inline bool operator!=(const uvmAllocator<_Tp>&, const uvmAllocator<_Tp>&){ return false; } | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
| // Device memory | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
| template<typename _Tp> | ||||
| class devAllocator { | ||||
| public:  | ||||
|   typedef std::size_t     size_type; | ||||
|   typedef std::ptrdiff_t  difference_type; | ||||
|   typedef _Tp*       pointer; | ||||
|   typedef const _Tp* const_pointer; | ||||
|   typedef _Tp&       reference; | ||||
|   typedef const _Tp& const_reference; | ||||
|   typedef _Tp        value_type; | ||||
|  | ||||
|   template<typename _Tp1>  struct rebind { typedef devAllocator<_Tp1> other; }; | ||||
|   devAllocator() throw() { } | ||||
|   devAllocator(const devAllocator&) throw() { } | ||||
|   template<typename _Tp1> devAllocator(const devAllocator<_Tp1>&) throw() { } | ||||
|   ~devAllocator() throw() { } | ||||
|   pointer       address(reference __x)       const { return &__x; } | ||||
|   size_type  max_size() const throw() { return size_t(-1) / sizeof(_Tp); } | ||||
|  | ||||
| #else | ||||
|   pointer allocate(size_type __n, const void* _p= 0)  | ||||
|   { | ||||
|     size_type bytes = __n*sizeof(_Tp); | ||||
|      | ||||
|     profilerAllocate(bytes); | ||||
|     _Tp *ptr = (_Tp*) MemoryManager::AcceleratorAllocate(bytes); | ||||
|     assert( ( (_Tp*)ptr != (_Tp *)NULL ) ); | ||||
| #ifdef HAVE_MM_MALLOC_H | ||||
|     _Tp * ptr = (_Tp *) _mm_malloc(bytes, GRID_ALLOC_ALIGN); | ||||
| #else | ||||
|     _Tp * ptr = (_Tp *) memalign(GRID_ALLOC_ALIGN, bytes); | ||||
| #endif | ||||
|     uint8_t *cp = (uint8_t *)ptr; | ||||
|     if ( ptr ) {  | ||||
|     // One touch per 4k page, static OMP loop to catch same loop order | ||||
| #ifdef GRID_OMP | ||||
| #pragma omp parallel for schedule(static) | ||||
| #endif | ||||
|       for(size_type n=0;n<bytes;n+=4096){ | ||||
| 	cp[n]=0; | ||||
|       } | ||||
|     } | ||||
|     return ptr; | ||||
|   } | ||||
|  | ||||
|   void deallocate(pointer __p, size_type __n)  | ||||
|   {  | ||||
|   void deallocate(pointer __p, size_type __n) { | ||||
|     size_type bytes = __n*sizeof(_Tp); | ||||
|  | ||||
|     profilerFree(bytes); | ||||
|     MemoryManager::AcceleratorFree((void *)__p,bytes); | ||||
| #ifdef HAVE_MM_MALLOC_H | ||||
|     _mm_free((void *)__p);  | ||||
| #else | ||||
|     free((void *)__p); | ||||
| #endif | ||||
|   } | ||||
| #endif | ||||
|   void construct(pointer __p, const _Tp& __val) { }; | ||||
|   void construct(pointer __p) { }; | ||||
|   void destroy(pointer __p) { }; | ||||
| }; | ||||
| template<typename _Tp>  inline bool operator==(const devAllocator<_Tp>&, const devAllocator<_Tp>&){ return true; } | ||||
| template<typename _Tp>  inline bool operator!=(const devAllocator<_Tp>&, const devAllocator<_Tp>&){ return false; } | ||||
| template<typename _Tp>  inline bool operator==(const commAllocator<_Tp>&, const commAllocator<_Tp>&){ return true; } | ||||
| template<typename _Tp>  inline bool operator!=(const commAllocator<_Tp>&, const commAllocator<_Tp>&){ return false; } | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
| // Template typedefs | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
| #ifdef ACCELERATOR_CSHIFT | ||||
| // Cshift on device | ||||
| template<class T> using cshiftAllocator = devAllocator<T>; | ||||
| #else | ||||
| // Cshift on host | ||||
| template<class T> using cshiftAllocator = std::allocator<T>; | ||||
| template<class T> using Vector     = std::vector<T,alignedAllocator<T> >;            | ||||
| template<class T> using commVector = std::vector<T,commAllocator<T> >;               | ||||
| template<class T> using Matrix     = std::vector<std::vector<T,alignedAllocator<T> > >; | ||||
|      | ||||
| }; // namespace Grid | ||||
| #endif | ||||
|  | ||||
| template<class T> using Vector        = std::vector<T,uvmAllocator<T> >;            | ||||
| template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;            | ||||
| template<class T> using commVector = std::vector<T,devAllocator<T> >; | ||||
| template<class T> using deviceVector  = std::vector<T,devAllocator<T> >; | ||||
| template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -1,4 +0,0 @@ | ||||
| #pragma once | ||||
| #include <Grid/allocator/MemoryStats.h> | ||||
| #include <Grid/allocator/MemoryManager.h> | ||||
| #include <Grid/allocator/AlignedAllocator.h> | ||||
| @@ -1,324 +0,0 @@ | ||||
| #include <Grid/GridCore.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| /*Allocation types, saying which pointer cache should be used*/ | ||||
| #define Cpu      (0) | ||||
| #define CpuHuge  (1) | ||||
| #define CpuSmall (2) | ||||
| #define Acc      (3) | ||||
| #define AccHuge  (4) | ||||
| #define AccSmall (5) | ||||
| #define Shared   (6) | ||||
| #define SharedHuge  (7) | ||||
| #define SharedSmall (8) | ||||
| #undef GRID_MM_VERBOSE  | ||||
| uint64_t total_shared; | ||||
| uint64_t total_device; | ||||
| uint64_t total_host;; | ||||
| void MemoryManager::PrintBytes(void) | ||||
| { | ||||
|   std::cout << " MemoryManager : ------------------------------------ "<<std::endl; | ||||
|   std::cout << " MemoryManager : PrintBytes "<<std::endl; | ||||
|   std::cout << " MemoryManager : ------------------------------------ "<<std::endl; | ||||
|   std::cout << " MemoryManager : "<<(total_shared>>20)<<" shared      Mbytes "<<std::endl; | ||||
|   std::cout << " MemoryManager : "<<(total_device>>20)<<" accelerator Mbytes "<<std::endl; | ||||
|   std::cout << " MemoryManager : "<<(total_host>>20)  <<" cpu         Mbytes "<<std::endl; | ||||
|   uint64_t cacheBytes; | ||||
|   cacheBytes = CacheBytes[Cpu]; | ||||
|   std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" cpu cache Mbytes "<<std::endl; | ||||
|   cacheBytes = CacheBytes[Acc]; | ||||
|   std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" acc cache Mbytes "<<std::endl; | ||||
|   cacheBytes = CacheBytes[Shared]; | ||||
|   std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" shared cache Mbytes "<<std::endl; | ||||
|    | ||||
| #ifdef GRID_CUDA | ||||
|   cuda_mem(); | ||||
| #endif | ||||
|    | ||||
| } | ||||
|  | ||||
| uint64_t MemoryManager::DeviceCacheBytes() { return CacheBytes[Acc] + CacheBytes[AccHuge] + CacheBytes[AccSmall]; } | ||||
| uint64_t MemoryManager::HostCacheBytes()   { return CacheBytes[Cpu] + CacheBytes[CpuHuge] + CacheBytes[CpuSmall]; } | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////// | ||||
| // Data tables for recently freed pooiniter caches | ||||
| ////////////////////////////////////////////////////////////////////// | ||||
| MemoryManager::AllocationCacheEntry MemoryManager::Entries[MemoryManager::NallocType][MemoryManager::NallocCacheMax]; | ||||
| int MemoryManager::Victim[MemoryManager::NallocType]; | ||||
| int MemoryManager::Ncache[MemoryManager::NallocType] = { 2, 0, 8, 8, 0, 16, 8, 0, 16 }; | ||||
| uint64_t MemoryManager::CacheBytes[MemoryManager::NallocType]; | ||||
| ////////////////////////////////////////////////////////////////////// | ||||
| // Actual allocation and deallocation utils | ||||
| ////////////////////////////////////////////////////////////////////// | ||||
| void *MemoryManager::AcceleratorAllocate(size_t bytes) | ||||
| { | ||||
|   total_device+=bytes; | ||||
|   void *ptr = (void *) Lookup(bytes,Acc); | ||||
|   if ( ptr == (void *) NULL ) { | ||||
|     ptr = (void *) acceleratorAllocDevice(bytes); | ||||
|   } | ||||
| #ifdef GRID_MM_VERBOSE | ||||
|   std::cout <<"AcceleratorAllocate "<<std::endl; | ||||
|   PrintBytes(); | ||||
| #endif | ||||
|   return ptr; | ||||
| } | ||||
| void  MemoryManager::AcceleratorFree    (void *ptr,size_t bytes) | ||||
| { | ||||
|   total_device-=bytes; | ||||
|   void *__freeme = Insert(ptr,bytes,Acc); | ||||
|   if ( __freeme ) { | ||||
|     acceleratorFreeDevice(__freeme); | ||||
|   } | ||||
| #ifdef GRID_MM_VERBOSE | ||||
|   std::cout <<"AcceleratorFree "<<std::endl; | ||||
|   PrintBytes(); | ||||
| #endif | ||||
| } | ||||
| void *MemoryManager::SharedAllocate(size_t bytes) | ||||
| { | ||||
|   total_shared+=bytes; | ||||
|   void *ptr = (void *) Lookup(bytes,Shared); | ||||
|   if ( ptr == (void *) NULL ) { | ||||
|     ptr = (void *) acceleratorAllocShared(bytes); | ||||
|   } | ||||
| #ifdef GRID_MM_VERBOSE | ||||
|   std::cout <<"SharedAllocate "<<std::endl; | ||||
|   PrintBytes(); | ||||
| #endif | ||||
|   return ptr; | ||||
| } | ||||
| void  MemoryManager::SharedFree    (void *ptr,size_t bytes) | ||||
| { | ||||
|   total_shared-=bytes; | ||||
|   void *__freeme = Insert(ptr,bytes,Shared); | ||||
|   if ( __freeme ) { | ||||
|     acceleratorFreeShared(__freeme); | ||||
|   } | ||||
| #ifdef GRID_MM_VERBOSE | ||||
|   std::cout <<"SharedFree "<<std::endl; | ||||
|   PrintBytes(); | ||||
| #endif | ||||
| } | ||||
| #ifdef GRID_UVM | ||||
| void *MemoryManager::CpuAllocate(size_t bytes) | ||||
| { | ||||
|   total_host+=bytes; | ||||
|   void *ptr = (void *) Lookup(bytes,Cpu); | ||||
|   if ( ptr == (void *) NULL ) { | ||||
|     ptr = (void *) acceleratorAllocShared(bytes); | ||||
|   } | ||||
| #ifdef GRID_MM_VERBOSE | ||||
|   std::cout <<"CpuAllocate "<<std::endl; | ||||
|   PrintBytes(); | ||||
| #endif | ||||
|   return ptr; | ||||
| } | ||||
| void  MemoryManager::CpuFree    (void *_ptr,size_t bytes) | ||||
| { | ||||
|   total_host-=bytes; | ||||
|   NotifyDeletion(_ptr); | ||||
|   void *__freeme = Insert(_ptr,bytes,Cpu); | ||||
|   if ( __freeme ) {  | ||||
|     acceleratorFreeShared(__freeme); | ||||
|   } | ||||
| #ifdef GRID_MM_VERBOSE | ||||
|   std::cout <<"CpuFree "<<std::endl; | ||||
|   PrintBytes(); | ||||
| #endif | ||||
| } | ||||
| #else | ||||
| void *MemoryManager::CpuAllocate(size_t bytes) | ||||
| { | ||||
|   total_host+=bytes; | ||||
|   void *ptr = (void *) Lookup(bytes,Cpu); | ||||
|   if ( ptr == (void *) NULL ) { | ||||
|     ptr = (void *) acceleratorAllocCpu(bytes); | ||||
|   } | ||||
| #ifdef GRID_MM_VERBOSE | ||||
|   std::cout <<"CpuAllocate "<<std::endl; | ||||
|   PrintBytes(); | ||||
| #endif | ||||
|   return ptr; | ||||
| } | ||||
| void  MemoryManager::CpuFree    (void *_ptr,size_t bytes) | ||||
| { | ||||
|   total_host-=bytes; | ||||
|   NotifyDeletion(_ptr); | ||||
|   void *__freeme = Insert(_ptr,bytes,Cpu); | ||||
|   if ( __freeme ) {  | ||||
|     acceleratorFreeCpu(__freeme); | ||||
|   } | ||||
| #ifdef GRID_MM_VERBOSE | ||||
|   std::cout <<"CpuFree "<<std::endl; | ||||
|   PrintBytes(); | ||||
| #endif | ||||
| } | ||||
| #endif | ||||
|  | ||||
| ////////////////////////////////////////// | ||||
| // call only once | ||||
| ////////////////////////////////////////// | ||||
| void MemoryManager::Init(void) | ||||
| { | ||||
|  | ||||
|   char * str; | ||||
|   int Nc; | ||||
|    | ||||
|   str= getenv("GRID_ALLOC_NCACHE_LARGE"); | ||||
|   if ( str ) { | ||||
|     Nc = atoi(str); | ||||
|     if ( (Nc>=0) && (Nc < NallocCacheMax)) { | ||||
|       Ncache[Cpu]=Nc; | ||||
|       Ncache[Acc]=Nc; | ||||
|       Ncache[Shared]=Nc; | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   str= getenv("GRID_ALLOC_NCACHE_HUGE"); | ||||
|   if ( str ) { | ||||
|     Nc = atoi(str); | ||||
|     if ( (Nc>=0) && (Nc < NallocCacheMax)) { | ||||
|       Ncache[CpuHuge]=Nc; | ||||
|       Ncache[AccHuge]=Nc; | ||||
|       Ncache[SharedHuge]=Nc; | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   str= getenv("GRID_ALLOC_NCACHE_SMALL"); | ||||
|   if ( str ) { | ||||
|     Nc = atoi(str); | ||||
|     if ( (Nc>=0) && (Nc < NallocCacheMax)) { | ||||
|       Ncache[CpuSmall]=Nc; | ||||
|       Ncache[AccSmall]=Nc; | ||||
|       Ncache[SharedSmall]=Nc; | ||||
|     } | ||||
|   } | ||||
|  | ||||
| } | ||||
|  | ||||
| void MemoryManager::InitMessage(void) { | ||||
|  | ||||
| #ifndef GRID_UVM | ||||
|   std::cout << GridLogMessage << "MemoryManager Cache "<< MemoryManager::DeviceMaxBytes <<" bytes "<<std::endl; | ||||
| #endif | ||||
|    | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() setting up"<<std::endl; | ||||
| #ifdef ALLOCATION_CACHE | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent host   allocations: SMALL "<<Ncache[CpuSmall]<<" LARGE "<<Ncache[Cpu]<<" HUGE "<<Ncache[CpuHuge]<<std::endl; | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent device allocations: SMALL "<<Ncache[AccSmall]<<" LARGE "<<Ncache[Acc]<<" Huge "<<Ncache[AccHuge]<<std::endl; | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent shared allocations: SMALL "<<Ncache[SharedSmall]<<" LARGE "<<Ncache[Shared]<<" Huge "<<Ncache[SharedHuge]<<std::endl; | ||||
| #endif | ||||
|    | ||||
| #ifdef GRID_UVM | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() Unified memory space"<<std::endl; | ||||
| #ifdef GRID_CUDA | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() Using cudaMallocManaged"<<std::endl; | ||||
| #endif | ||||
| #ifdef GRID_HIP | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() Using hipMallocManaged"<<std::endl; | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() Using SYCL malloc_shared"<<std::endl; | ||||
| #endif | ||||
| #else | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() Non unified: Caching accelerator data in dedicated memory"<<std::endl; | ||||
| #ifdef GRID_CUDA | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() Using cudaMalloc"<<std::endl; | ||||
| #endif | ||||
| #ifdef GRID_HIP | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() Using hipMalloc"<<std::endl; | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() Using SYCL malloc_device"<<std::endl; | ||||
| #endif | ||||
| #endif | ||||
|  | ||||
| } | ||||
|  | ||||
| void *MemoryManager::Insert(void *ptr,size_t bytes,int type)  | ||||
| { | ||||
| #ifdef ALLOCATION_CACHE | ||||
|   int cache; | ||||
|   if      (bytes < GRID_ALLOC_SMALL_LIMIT) cache = type + 2; | ||||
|   else if (bytes >= GRID_ALLOC_HUGE_LIMIT) cache = type + 1; | ||||
|   else                                     cache = type; | ||||
|  | ||||
|   return Insert(ptr,bytes,Entries[cache],Ncache[cache],Victim[cache],CacheBytes[cache]);   | ||||
| #else | ||||
|   return ptr; | ||||
| #endif | ||||
| } | ||||
|  | ||||
| void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim, uint64_t &cacheBytes)  | ||||
| { | ||||
| #ifdef GRID_OMP | ||||
|   assert(omp_in_parallel()==0); | ||||
| #endif  | ||||
|  | ||||
|   if (ncache == 0) return ptr; | ||||
|  | ||||
|   void * ret = NULL; | ||||
|   int v = -1; | ||||
|  | ||||
|   for(int e=0;e<ncache;e++) { | ||||
|     if ( entries[e].valid==0 ) { | ||||
|       v=e;  | ||||
|       break; | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   if ( v==-1 ) { | ||||
|     v=victim; | ||||
|     victim = (victim+1)%ncache; | ||||
|   } | ||||
|  | ||||
|   if ( entries[v].valid ) { | ||||
|     ret = entries[v].address; | ||||
|     cacheBytes -= entries[v].bytes; | ||||
|     entries[v].valid = 0; | ||||
|     entries[v].address = NULL; | ||||
|     entries[v].bytes = 0; | ||||
|   } | ||||
|  | ||||
|   entries[v].address=ptr; | ||||
|   entries[v].bytes  =bytes; | ||||
|   entries[v].valid  =1; | ||||
|   cacheBytes += bytes; | ||||
|  | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
| void *MemoryManager::Lookup(size_t bytes,int type) | ||||
| { | ||||
| #ifdef ALLOCATION_CACHE | ||||
|   int cache; | ||||
|   if      (bytes < GRID_ALLOC_SMALL_LIMIT) cache = type + 2; | ||||
|   else if (bytes >= GRID_ALLOC_HUGE_LIMIT) cache = type + 1; | ||||
|   else                                     cache = type; | ||||
|  | ||||
|   return Lookup(bytes,Entries[cache],Ncache[cache],CacheBytes[cache]); | ||||
| #else | ||||
|   return NULL; | ||||
| #endif | ||||
| } | ||||
|  | ||||
| void *MemoryManager::Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t & cacheBytes)  | ||||
| { | ||||
| #ifdef GRID_OMP | ||||
|   assert(omp_in_parallel()==0); | ||||
| #endif  | ||||
|   for(int e=0;e<ncache;e++){ | ||||
|     if ( entries[e].valid && ( entries[e].bytes == bytes ) ) { | ||||
|       entries[e].valid = 0; | ||||
|       cacheBytes -= entries[e].bytes; | ||||
|       return entries[e].address; | ||||
|     } | ||||
|   } | ||||
|   return NULL; | ||||
| } | ||||
|  | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| @@ -1,226 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/MemoryManager.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
| #include <list>  | ||||
| #include <unordered_map>   | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| // Move control to configure.ac and Config.h? | ||||
|  | ||||
| #define GRID_ALLOC_SMALL_LIMIT (4096) | ||||
| #define GRID_ALLOC_HUGE_LIMIT  (2147483648) | ||||
|  | ||||
| #define STRINGIFY(x) #x | ||||
| #define TOSTRING(x) STRINGIFY(x) | ||||
| #define FILE_LINE __FILE__ ":" TOSTRING(__LINE__) | ||||
| #define AUDIT(a) MemoryManager::Audit(FILE_LINE) | ||||
|  | ||||
| /*Pinning pages is costly*/ | ||||
| //////////////////////////////////////////////////////////////////////////// | ||||
| // Advise the LatticeAccelerator class | ||||
| //////////////////////////////////////////////////////////////////////////// | ||||
| enum ViewAdvise { | ||||
|  AdviseDefault       = 0x0,    // Regular data | ||||
|  AdviseInfrequentUse = 0x1     // Advise that the data is used infrequently.  This can | ||||
|                                // significantly influence performance of bulk storage. | ||||
|   | ||||
|  // AdviseTransient      = 0x2,   // Data will mostly be read.  On some architectures | ||||
|                                // enables read-only copies of memory to be kept on | ||||
|                                // host and device. | ||||
|  | ||||
|  // AdviseAcceleratorWriteDiscard = 0x4  // Field will be written in entirety on device | ||||
|  | ||||
| }; | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////// | ||||
| // View Access Mode | ||||
| //////////////////////////////////////////////////////////////////////////// | ||||
| enum ViewMode { | ||||
|   AcceleratorRead  = 0x01, | ||||
|   AcceleratorWrite = 0x02, | ||||
|   AcceleratorWriteDiscard = 0x04, | ||||
|   CpuRead  = 0x08, | ||||
|   CpuWrite = 0x10, | ||||
|   CpuWriteDiscard = 0x10 // same for now | ||||
| }; | ||||
|  | ||||
| struct MemoryStatus { | ||||
|   uint64_t     DeviceBytes; | ||||
|   uint64_t     DeviceLRUBytes; | ||||
|   uint64_t     DeviceMaxBytes; | ||||
|   uint64_t     HostToDeviceBytes; | ||||
|   uint64_t     DeviceToHostBytes; | ||||
|   uint64_t     HostToDeviceXfer; | ||||
|   uint64_t     DeviceToHostXfer; | ||||
|   uint64_t     DeviceEvictions; | ||||
|   uint64_t     DeviceDestroy; | ||||
|   uint64_t     DeviceAllocCacheBytes; | ||||
|   uint64_t     HostAllocCacheBytes; | ||||
| }; | ||||
|  | ||||
|  | ||||
| class MemoryManager { | ||||
| private: | ||||
|  | ||||
|   //////////////////////////////////////////////////////////// | ||||
|   // For caching recently freed allocations | ||||
|   //////////////////////////////////////////////////////////// | ||||
|   typedef struct {  | ||||
|     void *address; | ||||
|     size_t bytes; | ||||
|     int valid; | ||||
|   } AllocationCacheEntry; | ||||
|  | ||||
|   static const int NallocCacheMax=128;  | ||||
|   static const int NallocType=9; | ||||
|   static AllocationCacheEntry Entries[NallocType][NallocCacheMax]; | ||||
|   static int Victim[NallocType]; | ||||
|   static int Ncache[NallocType]; | ||||
|   static uint64_t CacheBytes[NallocType]; | ||||
|  | ||||
|   ///////////////////////////////////////////////// | ||||
|   // Free pool | ||||
|   ///////////////////////////////////////////////// | ||||
|   static void *Insert(void *ptr,size_t bytes,int type) ; | ||||
|   static void *Lookup(size_t bytes,int type) ; | ||||
|   static void *Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim,uint64_t &cbytes) ; | ||||
|   static void *Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t &cbytes) ; | ||||
|  | ||||
|  public: | ||||
|   static void PrintBytes(void); | ||||
|   static void Audit(std::string s); | ||||
|   static void Init(void); | ||||
|   static void InitMessage(void); | ||||
|   static void *AcceleratorAllocate(size_t bytes); | ||||
|   static void  AcceleratorFree    (void *ptr,size_t bytes); | ||||
|   static void *SharedAllocate(size_t bytes); | ||||
|   static void  SharedFree    (void *ptr,size_t bytes); | ||||
|   static void *CpuAllocate(size_t bytes); | ||||
|   static void  CpuFree    (void *ptr,size_t bytes); | ||||
|  | ||||
|   //////////////////////////////////////////////////////// | ||||
|   // Footprint tracking | ||||
|   //////////////////////////////////////////////////////// | ||||
|   static uint64_t     DeviceBytes; | ||||
|   static uint64_t     DeviceLRUBytes; | ||||
|   static uint64_t     DeviceMaxBytes; | ||||
|   static uint64_t     HostToDeviceBytes; | ||||
|   static uint64_t     DeviceToHostBytes; | ||||
|   static uint64_t     HostToDeviceXfer; | ||||
|   static uint64_t     DeviceToHostXfer; | ||||
|   static uint64_t     DeviceEvictions; | ||||
|   static uint64_t     DeviceDestroy; | ||||
|    | ||||
|   static uint64_t     DeviceCacheBytes(); | ||||
|   static uint64_t     HostCacheBytes(); | ||||
|  | ||||
|   static MemoryStatus GetFootprint(void) { | ||||
|     MemoryStatus stat; | ||||
|     stat.DeviceBytes       = DeviceBytes; | ||||
|     stat.DeviceLRUBytes    = DeviceLRUBytes; | ||||
|     stat.DeviceMaxBytes    = DeviceMaxBytes; | ||||
|     stat.HostToDeviceBytes = HostToDeviceBytes; | ||||
|     stat.DeviceToHostBytes = DeviceToHostBytes; | ||||
|     stat.HostToDeviceXfer  = HostToDeviceXfer; | ||||
|     stat.DeviceToHostXfer  = DeviceToHostXfer; | ||||
|     stat.DeviceEvictions   = DeviceEvictions; | ||||
|     stat.DeviceDestroy     = DeviceDestroy; | ||||
|     stat.DeviceAllocCacheBytes = DeviceCacheBytes(); | ||||
|     stat.HostAllocCacheBytes   = HostCacheBytes(); | ||||
|     return stat; | ||||
|   }; | ||||
|    | ||||
|  private: | ||||
| #ifndef GRID_UVM | ||||
|   ////////////////////////////////////////////////////////////////////// | ||||
|   // Data tables for ViewCache | ||||
|   ////////////////////////////////////////////////////////////////////// | ||||
|   typedef std::list<uint64_t> LRU_t; | ||||
|   typedef typename LRU_t::iterator LRUiterator; | ||||
|   typedef struct {  | ||||
|     int        LRU_valid; | ||||
|     LRUiterator LRU_entry; | ||||
|     uint64_t CpuPtr; | ||||
|     uint64_t AccPtr; | ||||
|     size_t   bytes; | ||||
|     uint32_t transient; | ||||
|     uint32_t state; | ||||
|     uint32_t accLock; | ||||
|     uint32_t cpuLock; | ||||
|   } AcceleratorViewEntry; | ||||
|    | ||||
|   typedef std::unordered_map<uint64_t,AcceleratorViewEntry> AccViewTable_t; | ||||
|   typedef typename AccViewTable_t::iterator AccViewTableIterator ; | ||||
|  | ||||
|   static AccViewTable_t AccViewTable; | ||||
|   static LRU_t LRU; | ||||
|  | ||||
|   ///////////////////////////////////////////////// | ||||
|   // Device motion | ||||
|   ///////////////////////////////////////////////// | ||||
|   static void  Create(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint); | ||||
|   static void  EvictVictims(uint64_t bytes); // Frees up <bytes> | ||||
|   static void  Evict(AcceleratorViewEntry &AccCache); | ||||
|   static void  Flush(AcceleratorViewEntry &AccCache); | ||||
|   static void  Clone(AcceleratorViewEntry &AccCache); | ||||
|   static void  AccDiscard(AcceleratorViewEntry &AccCache); | ||||
|   static void  CpuDiscard(AcceleratorViewEntry &AccCache); | ||||
|  | ||||
|   //  static void  LRUupdate(AcceleratorViewEntry &AccCache); | ||||
|   static void  LRUinsert(AcceleratorViewEntry &AccCache); | ||||
|   static void  LRUremove(AcceleratorViewEntry &AccCache); | ||||
|    | ||||
|   // manage entries in the table | ||||
|   static int                  EntryPresent(uint64_t CpuPtr); | ||||
|   static void                 EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint); | ||||
|   static void                 EntryErase (uint64_t CpuPtr); | ||||
|   static AccViewTableIterator EntryLookup(uint64_t CpuPtr); | ||||
|   static void                 EntrySet   (uint64_t CpuPtr,AcceleratorViewEntry &entry); | ||||
|  | ||||
|   static void     AcceleratorViewClose(uint64_t AccPtr); | ||||
|   static uint64_t AcceleratorViewOpen(uint64_t  CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint); | ||||
|   static void     CpuViewClose(uint64_t Ptr); | ||||
|   static uint64_t CpuViewOpen(uint64_t  CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint); | ||||
| #endif | ||||
|   static void NotifyDeletion(void * CpuPtr); | ||||
|  | ||||
|  public: | ||||
|   static void Print(void); | ||||
|   static void PrintAll(void); | ||||
|   static void PrintState( void* CpuPtr); | ||||
|   static int   isOpen   (void* CpuPtr); | ||||
|   static void  ViewClose(void* CpuPtr,ViewMode mode); | ||||
|   static void *ViewOpen (void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint); | ||||
|  | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|  | ||||
| @@ -1,601 +0,0 @@ | ||||
| #include <Grid/GridCore.h> | ||||
| #ifndef GRID_UVM | ||||
|  | ||||
| #warning "Using explicit device memory copies" | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| #define MAXLINE 512 | ||||
| static char print_buffer [ MAXLINE ]; | ||||
|  | ||||
| #define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer; | ||||
| #define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer; | ||||
| //#define dprintf(...)  | ||||
|  | ||||
|  | ||||
| //////////////////////////////////////////////////////////// | ||||
| // For caching copies of data on device | ||||
| //////////////////////////////////////////////////////////// | ||||
| MemoryManager::AccViewTable_t MemoryManager::AccViewTable; | ||||
| MemoryManager::LRU_t MemoryManager::LRU; | ||||
|    | ||||
| //////////////////////////////////////////////////////// | ||||
| // Footprint tracking | ||||
| //////////////////////////////////////////////////////// | ||||
| uint64_t  MemoryManager::DeviceBytes; | ||||
| uint64_t  MemoryManager::DeviceLRUBytes; | ||||
| uint64_t  MemoryManager::DeviceMaxBytes = 1024*1024*128; | ||||
| uint64_t  MemoryManager::HostToDeviceBytes; | ||||
| uint64_t  MemoryManager::DeviceToHostBytes; | ||||
| uint64_t  MemoryManager::HostToDeviceXfer; | ||||
| uint64_t  MemoryManager::DeviceToHostXfer; | ||||
| uint64_t  MemoryManager::DeviceEvictions; | ||||
| uint64_t  MemoryManager::DeviceDestroy; | ||||
|  | ||||
| //////////////////////////////////// | ||||
| // Priority ordering for unlocked entries | ||||
| //  Empty | ||||
| //  CpuDirty  | ||||
| //  Consistent | ||||
| //  AccDirty | ||||
| //////////////////////////////////// | ||||
| #define Empty         (0x0)  /*Entry unoccupied  */ | ||||
| #define CpuDirty      (0x1)  /*CPU copy is golden, Acc buffer MAY not be allocated*/ | ||||
| #define Consistent    (0x2)  /*ACC copy AND CPU copy are valid */ | ||||
| #define AccDirty      (0x4)  /*ACC copy is golden */ | ||||
| #define EvictNext     (0x8)  /*Priority for eviction*/ | ||||
|  | ||||
| ///////////////////////////////////////////////// | ||||
| // Mechanics of data table maintenance | ||||
| ///////////////////////////////////////////////// | ||||
| int   MemoryManager::EntryPresent(uint64_t CpuPtr) | ||||
| { | ||||
|   if(AccViewTable.empty()) return 0; | ||||
|  | ||||
|   auto count = AccViewTable.count(CpuPtr);  assert((count==0)||(count==1)); | ||||
|   return count; | ||||
| } | ||||
| void  MemoryManager::EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint) | ||||
| { | ||||
|   assert(!EntryPresent(CpuPtr)); | ||||
|   AcceleratorViewEntry AccCache; | ||||
|   AccCache.CpuPtr = CpuPtr; | ||||
|   AccCache.AccPtr = (uint64_t)NULL; | ||||
|   AccCache.bytes  = bytes; | ||||
|   AccCache.state  = CpuDirty; | ||||
|   AccCache.LRU_valid=0; | ||||
|   AccCache.transient=0; | ||||
|   AccCache.accLock=0; | ||||
|   AccCache.cpuLock=0; | ||||
|   AccViewTable[CpuPtr] = AccCache; | ||||
| } | ||||
| MemoryManager::AccViewTableIterator MemoryManager::EntryLookup(uint64_t CpuPtr) | ||||
| { | ||||
|   assert(EntryPresent(CpuPtr)); | ||||
|   auto AccCacheIterator = AccViewTable.find(CpuPtr); | ||||
|   assert(AccCacheIterator!=AccViewTable.end()); | ||||
|   return AccCacheIterator; | ||||
| } | ||||
| void MemoryManager::EntryErase(uint64_t CpuPtr) | ||||
| { | ||||
|   auto AccCache = EntryLookup(CpuPtr); | ||||
|   AccViewTable.erase(CpuPtr); | ||||
| } | ||||
| void  MemoryManager::LRUinsert(AcceleratorViewEntry &AccCache) | ||||
| { | ||||
|   assert(AccCache.LRU_valid==0); | ||||
|   if (AccCache.transient) {  | ||||
|     LRU.push_back(AccCache.CpuPtr); | ||||
|     AccCache.LRU_entry = --LRU.end(); | ||||
|   } else { | ||||
|     LRU.push_front(AccCache.CpuPtr); | ||||
|     AccCache.LRU_entry = LRU.begin(); | ||||
|   } | ||||
|   AccCache.LRU_valid = 1; | ||||
|   DeviceLRUBytes+=AccCache.bytes; | ||||
| } | ||||
| void  MemoryManager::LRUremove(AcceleratorViewEntry &AccCache) | ||||
| { | ||||
|   assert(AccCache.LRU_valid==1); | ||||
|   LRU.erase(AccCache.LRU_entry); | ||||
|   AccCache.LRU_valid = 0; | ||||
|   DeviceLRUBytes-=AccCache.bytes; | ||||
| } | ||||
| ///////////////////////////////////////////////// | ||||
| // Accelerator cache motion & consistency logic | ||||
| ///////////////////////////////////////////////// | ||||
| void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache) | ||||
| { | ||||
|   /////////////////////////////////////////////////////////// | ||||
|   // Remove from Accelerator, remove entry, without flush | ||||
|   // Cannot be locked. If allocated Must be in LRU pool. | ||||
|   /////////////////////////////////////////////////////////// | ||||
|   assert(AccCache.state!=Empty); | ||||
|    | ||||
|   mprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);  | ||||
|   assert(AccCache.accLock==0); | ||||
|   assert(AccCache.cpuLock==0); | ||||
|   assert(AccCache.CpuPtr!=(uint64_t)NULL); | ||||
|   if(AccCache.AccPtr) { | ||||
|     AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes); | ||||
|     DeviceDestroy++; | ||||
|     DeviceBytes   -=AccCache.bytes; | ||||
|     LRUremove(AccCache); | ||||
|     AccCache.AccPtr=(uint64_t) NULL; | ||||
|     dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);   | ||||
|   } | ||||
|   uint64_t CpuPtr = AccCache.CpuPtr; | ||||
|   EntryErase(CpuPtr); | ||||
| } | ||||
|  | ||||
| void MemoryManager::Evict(AcceleratorViewEntry &AccCache) | ||||
| { | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|   // Make CPU consistent, remove from Accelerator, remove from LRU, LEAVE CPU only entry | ||||
|   // Cannot be acclocked. If allocated must be in LRU pool. | ||||
|   // | ||||
|   // Nov 2022... Felix issue: Allocating two CpuPtrs, can have an entry in LRU-q with CPUlock. | ||||
|   //                          and require to evict the AccPtr copy. Eviction was a mistake in CpuViewOpen | ||||
|   //                          but there is a weakness where CpuLock entries are attempted for erase | ||||
|   //                          Take these OUT LRU queue when CPU locked? | ||||
|   //                          Cannot take out the table as cpuLock data is important. | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|   assert(AccCache.state!=Empty); | ||||
|    | ||||
|   mprintf("MemoryManager: Evict cpu %lx acc %lx cpuLock %ld accLock %ld\n", | ||||
| 	  (uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr, | ||||
| 	  (uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock);  | ||||
|   if (AccCache.accLock!=0) return; | ||||
|   if (AccCache.cpuLock!=0) return; | ||||
|   if(AccCache.state==AccDirty) { | ||||
|     Flush(AccCache); | ||||
|   } | ||||
|   if(AccCache.AccPtr) { | ||||
|     AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes); | ||||
|     LRUremove(AccCache); | ||||
|     AccCache.AccPtr=(uint64_t)NULL; | ||||
|     AccCache.state=CpuDirty; // CPU primary now | ||||
|     DeviceBytes   -=AccCache.bytes; | ||||
|     dprintf("MemoryManager: Free(%lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);   | ||||
|   } | ||||
|   //  uint64_t CpuPtr = AccCache.CpuPtr; | ||||
|   DeviceEvictions++; | ||||
|   //  EntryErase(CpuPtr); | ||||
| } | ||||
| void MemoryManager::Flush(AcceleratorViewEntry &AccCache) | ||||
| { | ||||
|   assert(AccCache.state==AccDirty); | ||||
|   assert(AccCache.cpuLock==0); | ||||
|   assert(AccCache.accLock==0); | ||||
|   assert(AccCache.AccPtr!=(uint64_t)NULL); | ||||
|   assert(AccCache.CpuPtr!=(uint64_t)NULL); | ||||
|   acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes); | ||||
|   mprintf("MemoryManager: Flush  %lx -> %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout); | ||||
|   DeviceToHostBytes+=AccCache.bytes; | ||||
|   DeviceToHostXfer++; | ||||
|   AccCache.state=Consistent; | ||||
| } | ||||
| void MemoryManager::Clone(AcceleratorViewEntry &AccCache) | ||||
| { | ||||
|   assert(AccCache.state==CpuDirty); | ||||
|   assert(AccCache.cpuLock==0); | ||||
|   assert(AccCache.accLock==0); | ||||
|   assert(AccCache.CpuPtr!=(uint64_t)NULL); | ||||
|   if(AccCache.AccPtr==(uint64_t)NULL){ | ||||
|     AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes); | ||||
|     DeviceBytes+=AccCache.bytes; | ||||
|   } | ||||
|   mprintf("MemoryManager: Clone %lx <- %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout); | ||||
|   acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes); | ||||
|   HostToDeviceBytes+=AccCache.bytes; | ||||
|   HostToDeviceXfer++; | ||||
|   AccCache.state=Consistent; | ||||
| } | ||||
|  | ||||
| void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache) | ||||
| { | ||||
|   assert(AccCache.state!=Empty); | ||||
|   assert(AccCache.cpuLock==0); | ||||
|   assert(AccCache.accLock==0); | ||||
|   assert(AccCache.CpuPtr!=(uint64_t)NULL); | ||||
|   if(AccCache.AccPtr==(uint64_t)NULL){ | ||||
|     AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes); | ||||
|     DeviceBytes+=AccCache.bytes; | ||||
|   } | ||||
|   AccCache.state=AccDirty; | ||||
| } | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////////////// | ||||
| // View management | ||||
| ///////////////////////////////////////////////////////////////////////////////// | ||||
| void MemoryManager::ViewClose(void* Ptr,ViewMode mode) | ||||
| { | ||||
|   if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){ | ||||
|     dprintf("AcceleratorViewClose %lx\n",(uint64_t)Ptr); | ||||
|     AcceleratorViewClose((uint64_t)Ptr); | ||||
|   } else if( (mode==CpuRead)||(mode==CpuWrite)){ | ||||
|     CpuViewClose((uint64_t)Ptr); | ||||
|   } else {  | ||||
|     assert(0); | ||||
|   } | ||||
| } | ||||
| void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint) | ||||
| { | ||||
|   uint64_t CpuPtr = (uint64_t)_CpuPtr; | ||||
|   if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){ | ||||
|     dprintf("AcceleratorViewOpen %lx\n",(uint64_t)CpuPtr); | ||||
|     return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint); | ||||
|   } else if( (mode==CpuRead)||(mode==CpuWrite)){ | ||||
|     return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint); | ||||
|   } else {  | ||||
|     assert(0); | ||||
|     return NULL; | ||||
|   } | ||||
| } | ||||
| void  MemoryManager::EvictVictims(uint64_t bytes) | ||||
| { | ||||
|   assert(bytes<DeviceMaxBytes); | ||||
|   while(bytes+DeviceLRUBytes > DeviceMaxBytes){ | ||||
|     if ( DeviceLRUBytes > 0){ | ||||
|       assert(LRU.size()>0); | ||||
|       uint64_t victim = LRU.back(); // From the LRU | ||||
|       auto AccCacheIterator = EntryLookup(victim); | ||||
|       auto & AccCache = AccCacheIterator->second; | ||||
|       Evict(AccCache); | ||||
|     } else { | ||||
|       return; | ||||
|     } | ||||
|   } | ||||
| } | ||||
| uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint) | ||||
| { | ||||
|   //////////////////////////////////////////////////////////////////////////// | ||||
|   // Find if present, otherwise get or force an empty | ||||
|   //////////////////////////////////////////////////////////////////////////// | ||||
|   if ( EntryPresent(CpuPtr)==0 ){ | ||||
|     EntryCreate(CpuPtr,bytes,mode,hint); | ||||
|   } | ||||
|  | ||||
|   auto AccCacheIterator = EntryLookup(CpuPtr); | ||||
|   auto & AccCache = AccCacheIterator->second; | ||||
|   if (!AccCache.AccPtr) { | ||||
|     EvictVictims(bytes);  | ||||
|   }  | ||||
|   assert((mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard)); | ||||
|  | ||||
|   assert(AccCache.cpuLock==0);  // Programming error | ||||
|  | ||||
|   if(AccCache.state!=Empty) { | ||||
|     dprintf("ViewOpen found entry %lx %lx : %ld %ld accLock %ld\n", | ||||
| 		    (uint64_t)AccCache.CpuPtr, | ||||
| 		    (uint64_t)CpuPtr, | ||||
| 		    (uint64_t)AccCache.bytes, | ||||
| 	            (uint64_t)bytes, | ||||
| 		    (uint64_t)AccCache.accLock); | ||||
|     assert(AccCache.CpuPtr == CpuPtr); | ||||
|     assert(AccCache.bytes  ==bytes); | ||||
|   } | ||||
| /* | ||||
|  *  State transitions and actions | ||||
|  * | ||||
|  *  Action  State   StateNext         Flush    Clone | ||||
|  * | ||||
|  *  AccRead  Empty   Consistent        -        Y | ||||
|  *  AccWrite Empty   AccDirty          -        Y | ||||
|  *  AccRead  CpuDirty Consistent       -        Y | ||||
|  *  AccWrite CpuDirty AccDirty         -        Y | ||||
|  *  AccRead  Consistent Consistent     -        -  | ||||
|  *  AccWrite Consistent AccDirty       -        -  | ||||
|  *  AccRead  AccDirty   AccDirty       -        -  | ||||
|  *  AccWrite AccDirty   AccDirty       -        -  | ||||
|  */ | ||||
|   if(AccCache.state==Empty) { | ||||
|     assert(AccCache.LRU_valid==0); | ||||
|     AccCache.CpuPtr = CpuPtr; | ||||
|     AccCache.AccPtr = (uint64_t)NULL; | ||||
|     AccCache.bytes  = bytes; | ||||
|     AccCache.state  = CpuDirty;   // Cpu starts primary | ||||
|     if(mode==AcceleratorWriteDiscard){ | ||||
|       CpuDiscard(AccCache); | ||||
|       AccCache.state  = AccDirty;   // Empty + AcceleratorWrite=> AccDirty | ||||
|     } else if(mode==AcceleratorWrite){ | ||||
|       Clone(AccCache); | ||||
|       AccCache.state  = AccDirty;   // Empty + AcceleratorWrite=> AccDirty | ||||
|     } else { | ||||
|       Clone(AccCache); | ||||
|       AccCache.state  = Consistent; // Empty + AccRead => Consistent | ||||
|     } | ||||
|     AccCache.accLock= 1; | ||||
|     dprintf("Copied Empty entry into device accLock= %d\n",AccCache.accLock); | ||||
|   } else if(AccCache.state==CpuDirty ){ | ||||
|     if(mode==AcceleratorWriteDiscard) { | ||||
|       CpuDiscard(AccCache); | ||||
|       AccCache.state  = AccDirty;   // CpuDirty + AcceleratorWrite=> AccDirty | ||||
|     } else if(mode==AcceleratorWrite) { | ||||
|       Clone(AccCache); | ||||
|       AccCache.state  = AccDirty;   // CpuDirty + AcceleratorWrite=> AccDirty | ||||
|     } else { | ||||
|       Clone(AccCache); | ||||
|       AccCache.state  = Consistent; // CpuDirty + AccRead => Consistent | ||||
|     } | ||||
|     AccCache.accLock++; | ||||
|     dprintf("CpuDirty entry into device ++accLock= %d\n",AccCache.accLock); | ||||
|   } else if(AccCache.state==Consistent) { | ||||
|     if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard)) | ||||
|       AccCache.state  = AccDirty;   // Consistent + AcceleratorWrite=> AccDirty | ||||
|     else | ||||
|       AccCache.state  = Consistent; // Consistent + AccRead => Consistent | ||||
|     AccCache.accLock++; | ||||
|     dprintf("Consistent entry into device ++accLock= %d\n",AccCache.accLock); | ||||
|   } else if(AccCache.state==AccDirty) { | ||||
|     if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard)) | ||||
|       AccCache.state  = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty | ||||
|     else | ||||
|       AccCache.state  = AccDirty; // AccDirty + AccRead => AccDirty | ||||
|     AccCache.accLock++; | ||||
|     dprintf("AccDirty entry ++accLock= %d\n",AccCache.accLock); | ||||
|   } else { | ||||
|     assert(0); | ||||
|   } | ||||
|  | ||||
|   assert(AccCache.accLock>0); | ||||
|   // If view is opened on device must remove from LRU | ||||
|   if(AccCache.LRU_valid==1){ | ||||
|     // must possibly remove from LRU as now locked on GPU | ||||
|     dprintf("AccCache entry removed from LRU \n"); | ||||
|     LRUremove(AccCache); | ||||
|   } | ||||
|  | ||||
|   int transient =hint; | ||||
|   AccCache.transient= transient? EvictNext : 0; | ||||
|  | ||||
|   return AccCache.AccPtr; | ||||
| } | ||||
| //////////////////////////////////// | ||||
| // look up & decrement lock count | ||||
| //////////////////////////////////// | ||||
| void MemoryManager::AcceleratorViewClose(uint64_t CpuPtr) | ||||
| { | ||||
|   auto AccCacheIterator = EntryLookup(CpuPtr); | ||||
|   auto & AccCache = AccCacheIterator->second; | ||||
|  | ||||
|   assert(AccCache.cpuLock==0); | ||||
|   assert(AccCache.accLock>0); | ||||
|  | ||||
|   AccCache.accLock--; | ||||
|   // Move to LRU queue if not locked and close on device | ||||
|   if(AccCache.accLock==0) { | ||||
|     dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock); | ||||
|     LRUinsert(AccCache); | ||||
|   } else { | ||||
|     dprintf("AccleratorViewClose %lx AccLock decremented to %ld\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock); | ||||
|   } | ||||
| } | ||||
| void MemoryManager::CpuViewClose(uint64_t CpuPtr) | ||||
| { | ||||
|   auto AccCacheIterator = EntryLookup(CpuPtr); | ||||
|   auto & AccCache = AccCacheIterator->second; | ||||
|  | ||||
|   assert(AccCache.cpuLock>0); | ||||
|   assert(AccCache.accLock==0); | ||||
|  | ||||
|   AccCache.cpuLock--; | ||||
| } | ||||
| /* | ||||
|  *  Action  State   StateNext         Flush    Clone | ||||
|  * | ||||
|  *  CpuRead  Empty   CpuDirty          -        - | ||||
|  *  CpuWrite Empty   CpuDirty          -        - | ||||
|  *  CpuRead  CpuDirty CpuDirty         -        - | ||||
|  *  CpuWrite CpuDirty CpuDirty         -        -  | ||||
|  *  CpuRead  Consistent Consistent     -        -  | ||||
|  *  CpuWrite Consistent CpuDirty       -        -  | ||||
|  *  CpuRead  AccDirty   Consistent     Y        - | ||||
|  *  CpuWrite AccDirty   CpuDirty       Y        - | ||||
|  */ | ||||
| uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise transient) | ||||
| { | ||||
|   //////////////////////////////////////////////////////////////////////////// | ||||
|   // Find if present, otherwise get or force an empty | ||||
|   //////////////////////////////////////////////////////////////////////////// | ||||
|   if ( EntryPresent(CpuPtr)==0 ){ | ||||
|     EntryCreate(CpuPtr,bytes,mode,transient); | ||||
|   } | ||||
|  | ||||
|   auto AccCacheIterator = EntryLookup(CpuPtr); | ||||
|   auto & AccCache = AccCacheIterator->second; | ||||
|  | ||||
|   // CPU doesn't need to free space | ||||
|   //  if (!AccCache.AccPtr) { | ||||
|   //    EvictVictims(bytes); | ||||
|   //  } | ||||
|  | ||||
|   assert((mode==CpuRead)||(mode==CpuWrite)); | ||||
|   assert(AccCache.accLock==0);  // Programming error | ||||
|  | ||||
|   if(AccCache.state!=Empty) { | ||||
|     assert(AccCache.CpuPtr == CpuPtr); | ||||
|     assert(AccCache.bytes==bytes); | ||||
|   } | ||||
|  | ||||
|   if(AccCache.state==Empty) { | ||||
|     AccCache.CpuPtr = CpuPtr; | ||||
|     AccCache.AccPtr = (uint64_t)NULL; | ||||
|     AccCache.bytes  = bytes; | ||||
|     AccCache.state  = CpuDirty; // Empty + CpuRead/CpuWrite => CpuDirty | ||||
|     AccCache.accLock= 0; | ||||
|     AccCache.cpuLock= 1; | ||||
|   } else if(AccCache.state==CpuDirty ){ | ||||
|     // AccPtr dont care, deferred allocate | ||||
|     AccCache.state = CpuDirty; // CpuDirty +CpuRead/CpuWrite => CpuDirty | ||||
|     AccCache.cpuLock++; | ||||
|   } else if(AccCache.state==Consistent) { | ||||
|     assert(AccCache.AccPtr != (uint64_t)NULL); | ||||
|     if(mode==CpuWrite) | ||||
|       AccCache.state = CpuDirty;   // Consistent +CpuWrite => CpuDirty | ||||
|     else  | ||||
|       AccCache.state = Consistent; // Consistent +CpuRead  => Consistent | ||||
|     AccCache.cpuLock++; | ||||
|   } else if(AccCache.state==AccDirty) { | ||||
|     assert(AccCache.AccPtr != (uint64_t)NULL); | ||||
|     Flush(AccCache); | ||||
|     if(mode==CpuWrite) AccCache.state = CpuDirty;   // AccDirty +CpuWrite => CpuDirty, Flush | ||||
|     else            AccCache.state = Consistent; // AccDirty +CpuRead  => Consistent, Flush | ||||
|     AccCache.cpuLock++; | ||||
|   } else { | ||||
|     assert(0); // should be unreachable | ||||
|   } | ||||
|  | ||||
|   AccCache.transient= transient? EvictNext : 0; | ||||
|  | ||||
|   return AccCache.CpuPtr; | ||||
| } | ||||
| void  MemoryManager::NotifyDeletion(void *_ptr) | ||||
| { | ||||
|   // Look up in ViewCache | ||||
|   uint64_t ptr = (uint64_t)_ptr; | ||||
|   if(EntryPresent(ptr)) { | ||||
|     auto e = EntryLookup(ptr); | ||||
|     AccDiscard(e->second); | ||||
|   } | ||||
| } | ||||
| void  MemoryManager::Print(void) | ||||
| { | ||||
|   PrintBytes(); | ||||
|   std::cout << GridLogMessage << "--------------------------------------------" << std::endl; | ||||
|   std::cout << GridLogMessage << "Memory Manager                             " << std::endl; | ||||
|   std::cout << GridLogMessage << "--------------------------------------------" << std::endl; | ||||
|   std::cout << GridLogMessage << DeviceBytes   << " bytes allocated on device " << std::endl; | ||||
|   std::cout << GridLogMessage << DeviceLRUBytes<< " bytes evictable on device " << std::endl; | ||||
|   std::cout << GridLogMessage << DeviceMaxBytes<< " bytes max on device       " << std::endl; | ||||
|   std::cout << GridLogMessage << HostToDeviceXfer << " transfers        to   device " << std::endl; | ||||
|   std::cout << GridLogMessage << DeviceToHostXfer << " transfers        from device " << std::endl; | ||||
|   std::cout << GridLogMessage << HostToDeviceBytes<< " bytes transfered to   device " << std::endl; | ||||
|   std::cout << GridLogMessage << DeviceToHostBytes<< " bytes transfered from device " << std::endl; | ||||
|   std::cout << GridLogMessage << DeviceEvictions  << " Evictions from device " << std::endl; | ||||
|   std::cout << GridLogMessage << DeviceDestroy    << " Destroyed vectors on device " << std::endl; | ||||
|   std::cout << GridLogMessage << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl; | ||||
|   std::cout << GridLogMessage << "--------------------------------------------" << std::endl; | ||||
| } | ||||
| void  MemoryManager::PrintAll(void) | ||||
| { | ||||
|   Print(); | ||||
|   std::cout << GridLogMessage << std::endl; | ||||
|   std::cout << GridLogMessage << "--------------------------------------------" << std::endl; | ||||
|   std::cout << GridLogMessage << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl; | ||||
|   std::cout << GridLogMessage << "--------------------------------------------" << std::endl; | ||||
|   for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){ | ||||
|     auto &AccCache = it->second; | ||||
|      | ||||
|     std::string str; | ||||
|     if ( AccCache.state==Empty    ) str = std::string("Empty"); | ||||
|     if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty"); | ||||
|     if ( AccCache.state==AccDirty ) str = std::string("AccDirty"); | ||||
|     if ( AccCache.state==Consistent)str = std::string("Consistent"); | ||||
|  | ||||
|     std::cout << GridLogMessage << "0x"<<std::hex<<AccCache.CpuPtr<<std::dec | ||||
| 	      << "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str | ||||
| 	      << "\t" << AccCache.cpuLock | ||||
| 	      << "\t" << AccCache.accLock | ||||
| 	      << "\t" << AccCache.LRU_valid<<std::endl; | ||||
|   } | ||||
|   std::cout << GridLogMessage << "--------------------------------------------" << std::endl; | ||||
|  | ||||
| }; | ||||
| int   MemoryManager::isOpen   (void* _CpuPtr)  | ||||
| {  | ||||
|   uint64_t CpuPtr = (uint64_t)_CpuPtr; | ||||
|   if ( EntryPresent(CpuPtr) ){ | ||||
|     auto AccCacheIterator = EntryLookup(CpuPtr); | ||||
|     auto & AccCache = AccCacheIterator->second; | ||||
|     return AccCache.cpuLock+AccCache.accLock; | ||||
|   } else {  | ||||
|     return 0; | ||||
|   } | ||||
| } | ||||
| void MemoryManager::Audit(std::string s) | ||||
| { | ||||
|   uint64_t CpuBytes=0; | ||||
|   uint64_t AccBytes=0; | ||||
|   uint64_t LruBytes1=0; | ||||
|   uint64_t LruBytes2=0; | ||||
|   uint64_t LruCnt=0; | ||||
|    | ||||
|   std::cout << " Memory Manager::Audit() from "<<s<<std::endl; | ||||
|   for(auto it=LRU.begin();it!=LRU.end();it++){ | ||||
|     uint64_t cpuPtr = *it; | ||||
|     assert(EntryPresent(cpuPtr)); | ||||
|     auto AccCacheIterator = EntryLookup(cpuPtr); | ||||
|     auto & AccCache = AccCacheIterator->second; | ||||
|     LruBytes2+=AccCache.bytes; | ||||
|     assert(AccCache.LRU_valid==1); | ||||
|     assert(AccCache.LRU_entry==it); | ||||
|   } | ||||
|   std::cout << " Memory Manager::Audit() LRU queue matches table entries "<<std::endl; | ||||
|  | ||||
|   for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){ | ||||
|     auto &AccCache = it->second; | ||||
|      | ||||
|     std::string str; | ||||
|     if ( AccCache.state==Empty    ) str = std::string("Empty"); | ||||
|     if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty"); | ||||
|     if ( AccCache.state==AccDirty ) str = std::string("AccDirty"); | ||||
|     if ( AccCache.state==Consistent)str = std::string("Consistent"); | ||||
|  | ||||
|     CpuBytes+=AccCache.bytes; | ||||
|     if( AccCache.AccPtr )    AccBytes+=AccCache.bytes; | ||||
|     if( AccCache.LRU_valid ) LruBytes1+=AccCache.bytes; | ||||
|     if( AccCache.LRU_valid ) LruCnt++; | ||||
|      | ||||
|     if ( AccCache.cpuLock || AccCache.accLock ) { | ||||
|       assert(AccCache.LRU_valid==0); | ||||
|  | ||||
|       std::cout << GridLogError << s<< "\n\t 0x"<<std::hex<<AccCache.CpuPtr<<std::dec | ||||
| 		<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str | ||||
| 		<< "\t cpuLock  " << AccCache.cpuLock | ||||
| 		<< "\t accLock  " << AccCache.accLock | ||||
| 		<< "\t LRUvalid " << AccCache.LRU_valid<<std::endl; | ||||
|     } | ||||
|  | ||||
|     assert( AccCache.cpuLock== 0 ) ; | ||||
|     assert( AccCache.accLock== 0 ) ; | ||||
|   } | ||||
|   std::cout << " Memory Manager::Audit() no locked table entries "<<std::endl; | ||||
|   assert(LruBytes1==LruBytes2); | ||||
|   assert(LruBytes1==DeviceLRUBytes); | ||||
|   std::cout << " Memory Manager::Audit() evictable bytes matches sum over table "<<std::endl; | ||||
|   assert(AccBytes==DeviceBytes); | ||||
|   std::cout << " Memory Manager::Audit() device bytes matches sum over table "<<std::endl; | ||||
|   assert(LruCnt == LRU.size()); | ||||
|   std::cout << " Memory Manager::Audit() LRU entry count matches "<<std::endl; | ||||
|  | ||||
| } | ||||
|  | ||||
| void MemoryManager::PrintState(void* _CpuPtr) | ||||
| { | ||||
|   uint64_t CpuPtr = (uint64_t)_CpuPtr; | ||||
|  | ||||
|   if ( EntryPresent(CpuPtr) ){ | ||||
|     auto AccCacheIterator = EntryLookup(CpuPtr); | ||||
|     auto & AccCache = AccCacheIterator->second; | ||||
|     std::string str; | ||||
|     if ( AccCache.state==Empty    ) str = std::string("Empty"); | ||||
|     if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty"); | ||||
|     if ( AccCache.state==AccDirty ) str = std::string("AccDirty"); | ||||
|     if ( AccCache.state==Consistent)str = std::string("Consistent"); | ||||
|     if ( AccCache.state==EvictNext) str = std::string("EvictNext"); | ||||
|  | ||||
|     std::cout << GridLogMessage << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl; | ||||
|     std::cout << GridLogMessage << "\tx"<<std::hex<<AccCache.CpuPtr<<std::dec | ||||
|     << "\tx"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str | ||||
|     << "\t" << AccCache.cpuLock | ||||
|     << "\t" << AccCache.accLock | ||||
|     << "\t" << AccCache.LRU_valid<<std::endl; | ||||
|  | ||||
|   } else { | ||||
|     std::cout << GridLogMessage << "No Entry in AccCache table." << std::endl;  | ||||
|   } | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif | ||||
| @@ -1,31 +0,0 @@ | ||||
| #include <Grid/GridCore.h> | ||||
| #ifdef GRID_UVM | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| ///////////////////////////////////////////////////////////////////////////////// | ||||
| // View management is 1:1 address space mapping | ||||
| ///////////////////////////////////////////////////////////////////////////////// | ||||
| uint64_t  MemoryManager::DeviceBytes; | ||||
| uint64_t  MemoryManager::DeviceLRUBytes; | ||||
| uint64_t  MemoryManager::DeviceMaxBytes = 1024*1024*128; | ||||
| uint64_t  MemoryManager::HostToDeviceBytes; | ||||
| uint64_t  MemoryManager::DeviceToHostBytes; | ||||
| uint64_t  MemoryManager::HostToDeviceXfer; | ||||
| uint64_t  MemoryManager::DeviceToHostXfer; | ||||
| uint64_t  MemoryManager::DeviceEvictions; | ||||
| uint64_t  MemoryManager::DeviceDestroy; | ||||
|  | ||||
| void  MemoryManager::Audit(std::string s){}; | ||||
| void  MemoryManager::ViewClose(void* AccPtr,ViewMode mode){}; | ||||
| void *MemoryManager::ViewOpen(void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint){ return CpuPtr; }; | ||||
| int   MemoryManager::isOpen   (void* CpuPtr) { return 0;} | ||||
| void  MemoryManager::PrintState(void* CpuPtr) | ||||
| { | ||||
| std::cout << GridLogMessage << "Host<->Device memory movement not currently managed by Grid." << std::endl; | ||||
| }; | ||||
| void  MemoryManager::Print(void){}; | ||||
| void  MemoryManager::PrintAll(void){}; | ||||
| void  MemoryManager::NotifyDeletion(void *ptr){}; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
| @@ -1,95 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/MemoryStats.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| std::string sizeString(size_t bytes); | ||||
|  | ||||
| struct MemoryStats | ||||
| { | ||||
|   size_t totalAllocated{0}, maxAllocated{0},  | ||||
|     currentlyAllocated{0}, totalFreed{0}; | ||||
| }; | ||||
|      | ||||
| class MemoryProfiler | ||||
| { | ||||
| public: | ||||
|   static MemoryStats *stats; | ||||
|   static bool        debug; | ||||
| }; | ||||
|  | ||||
| #define memString(bytes) std::to_string(bytes) + " (" + sizeString(bytes) + ")" | ||||
| #define profilerDebugPrint						\ | ||||
|   if (MemoryProfiler::stats)						\ | ||||
|     {									\ | ||||
|       auto s = MemoryProfiler::stats;					\ | ||||
|       std::cout << GridLogDebug << "[Memory debug] Stats " << MemoryProfiler::stats << std::endl; \ | ||||
|       std::cout << GridLogDebug << "[Memory debug] total  : " << memString(s->totalAllocated) \ | ||||
| 		<< std::endl;						\ | ||||
|       std::cout << GridLogDebug << "[Memory debug] max    : " << memString(s->maxAllocated) \ | ||||
| 		<< std::endl;						\ | ||||
|       std::cout << GridLogDebug << "[Memory debug] current: " << memString(s->currentlyAllocated) \ | ||||
| 		<< std::endl;						\ | ||||
|       std::cout << GridLogDebug << "[Memory debug] freed  : " << memString(s->totalFreed) \ | ||||
| 		<< std::endl;						\ | ||||
|     } | ||||
|  | ||||
| #define profilerAllocate(bytes)						\ | ||||
|   if (MemoryProfiler::stats)						\ | ||||
|     {									\ | ||||
|       auto s = MemoryProfiler::stats;					\ | ||||
|       s->totalAllocated     += (bytes);					\ | ||||
|       s->currentlyAllocated += (bytes);					\ | ||||
|       s->maxAllocated        = std::max(s->maxAllocated, s->currentlyAllocated); \ | ||||
|     }									\ | ||||
|   if (MemoryProfiler::debug)						\ | ||||
|     {									\ | ||||
|       std::cout << GridLogDebug << "[Memory debug] allocating " << memString(bytes) << std::endl; \ | ||||
|       profilerDebugPrint;						\ | ||||
|     } | ||||
|  | ||||
| #define profilerFree(bytes)						\ | ||||
|   if (MemoryProfiler::stats)						\ | ||||
|     {									\ | ||||
|       auto s = MemoryProfiler::stats;					\ | ||||
|       s->totalFreed         += (bytes);					\ | ||||
|       s->currentlyAllocated -= (bytes);					\ | ||||
|     }									\ | ||||
|   if (MemoryProfiler::debug)						\ | ||||
|     {									\ | ||||
|       std::cout << GridLogDebug << "[Memory debug] freeing " << memString(bytes) << std::endl; \ | ||||
|       profilerDebugPrint;						\ | ||||
|     } | ||||
|  | ||||
| void check_huge_pages(void *Buf,uint64_t BYTES); | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| @@ -30,15 +30,16 @@ | ||||
| #ifndef GRID_CARTESIAN_BASE_H | ||||
| #define GRID_CARTESIAN_BASE_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| namespace Grid{ | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////// | ||||
|   // Commicator provides information on the processor grid | ||||
|   ////////////////////////////////////////////////////////////////////// | ||||
|   //    unsigned long _ndimension; | ||||
| //    Coordinate _processors; // processor grid | ||||
|   //    std::vector<int> _processors; // processor grid | ||||
|   //    int              _processor;  // linear processor rank | ||||
| //    Coordinate _processor_coor;  // linear processor rank | ||||
|   //    std::vector<int> _processor_coor;  // linear processor rank | ||||
|   ////////////////////////////////////////////////////////////////////// | ||||
|   class GridBase : public CartesianCommunicator , public GridThread { | ||||
|  | ||||
| @@ -47,41 +48,38 @@ public: | ||||
|     // Give Lattice access | ||||
|     template<class object> friend class Lattice; | ||||
|  | ||||
|   GridBase(const Coordinate & processor_grid) : CartesianCommunicator(processor_grid) { LocallyPeriodic=0;};  | ||||
|  | ||||
|   GridBase(const Coordinate & processor_grid, | ||||
|     GridBase(const std::vector<int> & processor_grid) : CartesianCommunicator(processor_grid) {}; | ||||
|     GridBase(const std::vector<int> & processor_grid, | ||||
| 	     const CartesianCommunicator &parent, | ||||
| 	     int &split_rank)  | ||||
|     : CartesianCommunicator(processor_grid,parent,split_rank) {LocallyPeriodic=0;}; | ||||
|  | ||||
|   GridBase(const Coordinate & processor_grid, | ||||
|       : CartesianCommunicator(processor_grid,parent,split_rank) {}; | ||||
|     GridBase(const std::vector<int> & processor_grid, | ||||
| 	     const CartesianCommunicator &parent)  | ||||
|     : CartesianCommunicator(processor_grid,parent,dummy) {LocallyPeriodic=0;}; | ||||
|       : CartesianCommunicator(processor_grid,parent,dummy) {}; | ||||
|  | ||||
|     virtual ~GridBase() = default; | ||||
|  | ||||
|  | ||||
|     // Physics Grid information. | ||||
|   Coordinate _simd_layout;// Which dimensions get relayed out over simd lanes. | ||||
|   Coordinate _fdimensions;// (full) Global dimensions of array prior to cb removal | ||||
|   Coordinate _gdimensions;// Global dimensions of array after cb removal | ||||
|   Coordinate _ldimensions;// local dimensions of array with processor images removed | ||||
|   Coordinate _rdimensions;// Reduced local dimensions with simd lane images and processor images removed  | ||||
|   Coordinate _ostride;    // Outer stride for each dimension | ||||
|   Coordinate _istride;    // Inner stride i.e. within simd lane | ||||
|     std::vector<int> _simd_layout;// Which dimensions get relayed out over simd lanes. | ||||
|     std::vector<int> _fdimensions;// (full) Global dimensions of array prior to cb removal | ||||
|     std::vector<int> _gdimensions;// Global dimensions of array after cb removal | ||||
|     std::vector<int> _ldimensions;// local dimensions of array with processor images removed | ||||
|     std::vector<int> _rdimensions;// Reduced local dimensions with simd lane images and processor images removed  | ||||
|     std::vector<int> _ostride;    // Outer stride for each dimension | ||||
|     std::vector<int> _istride;    // Inner stride i.e. within simd lane | ||||
|     int _osites;                  // _isites*_osites = product(dimensions). | ||||
|     int _isites; | ||||
|     int _fsites;                  // _isites*_osites = product(dimensions). | ||||
|     int _gsites; | ||||
|   Coordinate _slice_block;// subslice information | ||||
|   Coordinate _slice_stride; | ||||
|   Coordinate _slice_nblock; | ||||
|     std::vector<int> _slice_block;// subslice information | ||||
|     std::vector<int> _slice_stride; | ||||
|     std::vector<int> _slice_nblock; | ||||
|  | ||||
|   Coordinate _lstart;     // local start of array in gcoors _processor_coor[d]*_ldimensions[d] | ||||
|   Coordinate _lend  ;     // local end of array in gcoors   _processor_coor[d]*_ldimensions[d]+_ldimensions_[d]-1 | ||||
|     std::vector<int> _lstart;     // local start of array in gcoors _processor_coor[d]*_ldimensions[d] | ||||
|     std::vector<int> _lend  ;     // local end of array in gcoors   _processor_coor[d]*_ldimensions[d]+_ldimensions_[d]-1 | ||||
|  | ||||
|     bool _isCheckerBoarded;  | ||||
|   int        LocallyPeriodic; | ||||
|   Coordinate _checker_dim_mask; | ||||
|  | ||||
| public: | ||||
|  | ||||
| @@ -90,7 +88,7 @@ public: | ||||
|     // GridCartesian / GridRedBlackCartesian | ||||
|     //////////////////////////////////////////////////////////////// | ||||
|     virtual int CheckerBoarded(int dim)=0; | ||||
|   virtual int CheckerBoard(const Coordinate &site)=0; | ||||
|     virtual int CheckerBoard(const std::vector<int> &site)=0; | ||||
|     virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0; | ||||
|     virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0; | ||||
|     virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int cb)=0; | ||||
| @@ -109,20 +107,20 @@ public: | ||||
|     // coordinate. Note, however, for data parallel operations the "inner" indexing cost is not paid and all | ||||
|     // lanes are operated upon simultaneously. | ||||
|    | ||||
|   virtual int oIndex(Coordinate &coor) | ||||
|     virtual int oIndex(std::vector<int> &coor) | ||||
|     { | ||||
|         int idx=0; | ||||
|         // Works with either global or local coordinates | ||||
|         for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*(coor[d]%_rdimensions[d]); | ||||
|         return idx; | ||||
|     } | ||||
|   virtual int iIndex(Coordinate &lcoor) | ||||
|     virtual int iIndex(std::vector<int> &lcoor) | ||||
|     { | ||||
|         int idx=0; | ||||
|         for(int d=0;d<_ndimension;d++) idx+=_istride[d]*(lcoor[d]/_rdimensions[d]); | ||||
|         return idx; | ||||
|     } | ||||
|   inline int oIndexReduced(Coordinate &ocoor) | ||||
|     inline int oIndexReduced(std::vector<int> &ocoor) | ||||
|     { | ||||
|       int idx=0;  | ||||
|       // ocoor is already reduced so can eliminate the modulo operation | ||||
| @@ -130,11 +128,11 @@ public: | ||||
|       for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*ocoor[d]; | ||||
|       return idx; | ||||
|     } | ||||
|   inline void oCoorFromOindex (Coordinate& coor,int Oindex){ | ||||
|     inline void oCoorFromOindex (std::vector<int>& coor,int Oindex){ | ||||
|       Lexicographic::CoorFromIndex(coor,Oindex,_rdimensions); | ||||
|     } | ||||
|  | ||||
|   inline void InOutCoorToLocalCoor (Coordinate &ocoor, Coordinate &icoor, Coordinate &lcoor) { | ||||
|     inline void InOutCoorToLocalCoor (std::vector<int> &ocoor, std::vector<int> &icoor, std::vector<int> &lcoor) { | ||||
|       lcoor.resize(_ndimension); | ||||
|       for (int d = 0; d < _ndimension; d++) | ||||
|         lcoor[d] = ocoor[d] + _rdimensions[d] * icoor[d]; | ||||
| @@ -143,7 +141,7 @@ public: | ||||
|     ////////////////////////////////////////////////////////// | ||||
|     // SIMD lane addressing | ||||
|     ////////////////////////////////////////////////////////// | ||||
|   inline void iCoorFromIindex(Coordinate &coor,int lane) | ||||
|     inline void iCoorFromIindex(std::vector<int> &coor,int lane) | ||||
|     { | ||||
|       Lexicographic::CoorFromIndex(coor,lane,_simd_layout); | ||||
|     } | ||||
| @@ -154,6 +152,8 @@ public: | ||||
|     inline int PermuteType(int dimension){ | ||||
|       int permute_type=0; | ||||
|       // | ||||
|       // FIXME: | ||||
|       // | ||||
|       // Best way to encode this would be to present a mask  | ||||
|       // for which simd dimensions are rotated, and the rotation | ||||
|       // size. If there is only one simd dimension rotated, this is just  | ||||
| @@ -186,11 +186,11 @@ public: | ||||
|     inline int gSites(void) const { return _isites*_osites*_Nprocessors; };  | ||||
|     inline int Nd    (void) const { return _ndimension;}; | ||||
|  | ||||
|   inline const Coordinate LocalStarts(void)             { return _lstart;    }; | ||||
|   inline const Coordinate &FullDimensions(void)         { return _fdimensions;}; | ||||
|   inline const Coordinate &GlobalDimensions(void)       { return _gdimensions;}; | ||||
|   inline const Coordinate &LocalDimensions(void)        { return _ldimensions;}; | ||||
|   inline const Coordinate &VirtualLocalDimensions(void) { return _ldimensions;}; | ||||
|     inline const std::vector<int> LocalStarts(void)             { return _lstart;    }; | ||||
|     inline const std::vector<int> &FullDimensions(void)         { return _fdimensions;}; | ||||
|     inline const std::vector<int> &GlobalDimensions(void)       { return _gdimensions;}; | ||||
|     inline const std::vector<int> &LocalDimensions(void)        { return _ldimensions;}; | ||||
|     inline const std::vector<int> &VirtualLocalDimensions(void) { return _ldimensions;}; | ||||
|  | ||||
|     //////////////////////////////////////////////////////////////// | ||||
|     // Utility to print the full decomposition details  | ||||
| @@ -214,15 +214,15 @@ public: | ||||
|     //////////////////////////////////////////////////////////////// | ||||
|     // Global addressing | ||||
|     //////////////////////////////////////////////////////////////// | ||||
|   void GlobalIndexToGlobalCoor(int gidx,Coordinate &gcoor){ | ||||
|     void GlobalIndexToGlobalCoor(int gidx,std::vector<int> &gcoor){ | ||||
|       assert(gidx< gSites()); | ||||
|       Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions); | ||||
|     } | ||||
|   void LocalIndexToLocalCoor(int lidx,Coordinate &lcoor){ | ||||
|     void LocalIndexToLocalCoor(int lidx,std::vector<int> &lcoor){ | ||||
|       assert(lidx<lSites()); | ||||
|       Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions); | ||||
|     } | ||||
|   void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int & gidx){ | ||||
|     void GlobalCoorToGlobalIndex(const std::vector<int> & gcoor,int & gidx){ | ||||
|       gidx=0; | ||||
|       int mult=1; | ||||
|       for(int mu=0;mu<_ndimension;mu++) { | ||||
| @@ -230,7 +230,7 @@ public: | ||||
|         mult*=_gdimensions[mu]; | ||||
|       } | ||||
|     } | ||||
|   void GlobalCoorToProcessorCoorLocalCoor(Coordinate &pcoor,Coordinate &lcoor,const Coordinate &gcoor) | ||||
|     void GlobalCoorToProcessorCoorLocalCoor(std::vector<int> &pcoor,std::vector<int> &lcoor,const std::vector<int> &gcoor) | ||||
|     { | ||||
|       pcoor.resize(_ndimension); | ||||
|       lcoor.resize(_ndimension); | ||||
| @@ -240,14 +240,14 @@ public: | ||||
|         lcoor[mu] = gcoor[mu]%_fld; | ||||
|       } | ||||
|     } | ||||
|   void GlobalCoorToRankIndex(int &rank, int &o_idx, int &i_idx ,const Coordinate &gcoor) | ||||
|     void GlobalCoorToRankIndex(int &rank, int &o_idx, int &i_idx ,const std::vector<int> &gcoor) | ||||
|     { | ||||
|     Coordinate pcoor; | ||||
|     Coordinate lcoor; | ||||
|       std::vector<int> pcoor; | ||||
|       std::vector<int> lcoor; | ||||
|       GlobalCoorToProcessorCoorLocalCoor(pcoor,lcoor,gcoor); | ||||
|       rank = RankFromProcessorCoor(pcoor); | ||||
|       /* | ||||
|       Coordinate cblcoor(lcoor); | ||||
|       std::vector<int> cblcoor(lcoor); | ||||
|       for(int d=0;d<cblcoor.size();d++){ | ||||
|         if( this->CheckerBoarded(d) ) { | ||||
|           cblcoor[d] = lcoor[d]/2; | ||||
| @@ -258,10 +258,10 @@ public: | ||||
|       o_idx= oIndex(lcoor); | ||||
|     } | ||||
|  | ||||
|   void RankIndexToGlobalCoor(int rank, int o_idx, int i_idx , Coordinate &gcoor) | ||||
|     void RankIndexToGlobalCoor(int rank, int o_idx, int i_idx , std::vector<int> &gcoor) | ||||
|     { | ||||
|       gcoor.resize(_ndimension); | ||||
|     Coordinate coor(_ndimension); | ||||
|       std::vector<int> coor(_ndimension); | ||||
|  | ||||
|       ProcessorCoorFromRank(rank,coor); | ||||
|       for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = _ldimensions[mu]*coor[mu]; | ||||
| @@ -273,19 +273,20 @@ public: | ||||
|       for(int mu=0;mu<_ndimension;mu++) gcoor[mu] += coor[mu]; | ||||
|        | ||||
|     } | ||||
|   void RankIndexCbToFullGlobalCoor(int rank, int o_idx, int i_idx, int cb,Coordinate &fcoor) | ||||
|     void RankIndexCbToFullGlobalCoor(int rank, int o_idx, int i_idx, int cb,std::vector<int> &fcoor) | ||||
|     { | ||||
|       RankIndexToGlobalCoor(rank,o_idx,i_idx ,fcoor); | ||||
|       if(CheckerBoarded(0)){ | ||||
|         fcoor[0] = fcoor[0]*2+cb; | ||||
|       } | ||||
|     } | ||||
|   void ProcessorCoorLocalCoorToGlobalCoor(Coordinate &Pcoor,Coordinate &Lcoor,Coordinate &gcoor) | ||||
|     void ProcessorCoorLocalCoorToGlobalCoor(std::vector<int> &Pcoor,std::vector<int> &Lcoor,std::vector<int> &gcoor) | ||||
|     { | ||||
|       gcoor.resize(_ndimension); | ||||
|       for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = Pcoor[mu]*_ldimensions[mu]+Lcoor[mu]; | ||||
|     } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -28,17 +28,17 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #ifndef GRID_CARTESIAN_FULL_H | ||||
| #define GRID_CARTESIAN_FULL_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid{ | ||||
|      | ||||
| ///////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Grid Support. | ||||
| ///////////////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|  | ||||
| class GridCartesian: public GridBase { | ||||
|  | ||||
| public: | ||||
|     int dummy; | ||||
|   Coordinate _checker_dim_mask; | ||||
|     virtual int  CheckerBoardFromOindexTable (int Oindex) { | ||||
|       return 0; | ||||
|     } | ||||
| @@ -49,7 +49,7 @@ public: | ||||
|     virtual int CheckerBoarded(int dim){ | ||||
|       return 0; | ||||
|     } | ||||
|   virtual int CheckerBoard(const Coordinate &site){ | ||||
|     virtual int CheckerBoard(const std::vector<int> &site){ | ||||
|         return 0; | ||||
|     } | ||||
|     virtual int CheckerBoardDestination(int cb,int shift,int dim){ | ||||
| @@ -64,16 +64,16 @@ public: | ||||
|     ///////////////////////////////////////////////////////////////////////// | ||||
|     // Constructor takes a parent grid and possibly subdivides communicator. | ||||
|     ///////////////////////////////////////////////////////////////////////// | ||||
|   GridCartesian(const Coordinate &dimensions, | ||||
| 		const Coordinate &simd_layout, | ||||
| 		const Coordinate &processor_grid, | ||||
|     GridCartesian(const std::vector<int> &dimensions, | ||||
| 		  const std::vector<int> &simd_layout, | ||||
| 		  const std::vector<int> &processor_grid, | ||||
| 		  const GridCartesian &parent) : GridBase(processor_grid,parent,dummy) | ||||
|     { | ||||
|       Init(dimensions,simd_layout,processor_grid); | ||||
|     } | ||||
|   GridCartesian(const Coordinate &dimensions, | ||||
| 		const Coordinate &simd_layout, | ||||
| 		const Coordinate &processor_grid, | ||||
|     GridCartesian(const std::vector<int> &dimensions, | ||||
| 		  const std::vector<int> &simd_layout, | ||||
| 		  const std::vector<int> &processor_grid, | ||||
| 		  const GridCartesian &parent,int &split_rank) : GridBase(processor_grid,parent,split_rank) | ||||
|     { | ||||
|       Init(dimensions,simd_layout,processor_grid); | ||||
| @@ -81,18 +81,18 @@ public: | ||||
|     ///////////////////////////////////////////////////////////////////////// | ||||
|     // Construct from comm world | ||||
|     ///////////////////////////////////////////////////////////////////////// | ||||
|   GridCartesian(const Coordinate &dimensions, | ||||
| 		const Coordinate &simd_layout, | ||||
| 		const Coordinate &processor_grid) : GridBase(processor_grid) | ||||
|     GridCartesian(const std::vector<int> &dimensions, | ||||
| 		  const std::vector<int> &simd_layout, | ||||
| 		  const std::vector<int> &processor_grid) : GridBase(processor_grid) | ||||
|     { | ||||
|       Init(dimensions,simd_layout,processor_grid); | ||||
|     } | ||||
|  | ||||
|     virtual ~GridCartesian() = default; | ||||
|  | ||||
|   void Init(const Coordinate &dimensions, | ||||
| 	    const Coordinate &simd_layout, | ||||
| 	    const Coordinate &processor_grid) | ||||
|     void Init(const std::vector<int> &dimensions, | ||||
| 	      const std::vector<int> &simd_layout, | ||||
| 	      const std::vector<int> &processor_grid) | ||||
|     { | ||||
|       /////////////////////// | ||||
|       // Grid information | ||||
| @@ -105,7 +105,6 @@ public: | ||||
|       _ldimensions.resize(_ndimension); | ||||
|       _rdimensions.resize(_ndimension); | ||||
|       _simd_layout.resize(_ndimension); | ||||
|     _checker_dim_mask.resize(_ndimension);; | ||||
|       _lstart.resize(_ndimension); | ||||
|       _lend.resize(_ndimension); | ||||
|  | ||||
| @@ -116,8 +115,6 @@ public: | ||||
|  | ||||
|       for (int d = 0; d < _ndimension; d++) | ||||
|       { | ||||
| 	_checker_dim_mask[d]=0; | ||||
|  | ||||
|         _fdimensions[d] = dimensions[d];   // Global dimensions | ||||
|         _gdimensions[d] = _fdimensions[d]; // Global dimensions | ||||
|         _simd_layout[d] = simd_layout[d]; | ||||
| @@ -173,6 +170,5 @@ public: | ||||
|     }; | ||||
|  | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -29,34 +29,19 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #ifndef GRID_CARTESIAN_RED_BLACK_H | ||||
| #define GRID_CARTESIAN_RED_BLACK_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| namespace Grid { | ||||
|  | ||||
|   static const int CbRed  =0; | ||||
|   static const int CbBlack=1; | ||||
|   static const int Even   =CbRed; | ||||
|   static const int Odd    =CbBlack; | ||||
|      | ||||
| accelerator_inline int RedBlackCheckerBoardFromOindex (int oindex,const Coordinate &rdim,const Coordinate &chk_dim_msk) | ||||
| { | ||||
|   int nd=rdim.size(); | ||||
|   Coordinate coor(nd); | ||||
|  | ||||
|   Lexicographic::CoorFromIndex(coor,oindex,rdim); | ||||
|  | ||||
|   int linear=0; | ||||
|   for(int d=0;d<nd;d++){ | ||||
|     if(chk_dim_msk[d]) | ||||
|       linear=linear+coor[d]; | ||||
|   } | ||||
|   return (linear&0x1); | ||||
| } | ||||
|  | ||||
|      | ||||
| // Specialise this for red black grids storing half the data like a chess board. | ||||
| class GridRedBlackCartesian : public GridBase | ||||
| { | ||||
| public: | ||||
|   //  Coordinate _checker_dim_mask; | ||||
|     std::vector<int> _checker_dim_mask; | ||||
|     int              _checker_dim; | ||||
|     std::vector<int> _checker_board; | ||||
|  | ||||
| @@ -64,7 +49,7 @@ public: | ||||
|       if( dim==_checker_dim) return 1; | ||||
|       else return 0; | ||||
|     } | ||||
|   virtual int CheckerBoard(const Coordinate &site){ | ||||
|     virtual int CheckerBoard(const std::vector<int> &site){ | ||||
|       int linear=0; | ||||
|       assert(site.size()==_ndimension); | ||||
|       for(int d=0;d<_ndimension;d++){  | ||||
| @@ -74,6 +59,7 @@ public: | ||||
|       return (linear&0x1); | ||||
|     } | ||||
|  | ||||
|  | ||||
|     // Depending on the cb of site, we toggle source cb. | ||||
|     // for block #b, element #e = (b, e) | ||||
|     // we need  | ||||
| @@ -97,7 +83,7 @@ public: | ||||
|     } | ||||
|     virtual int  CheckerBoardFromOindex (int Oindex) | ||||
|     { | ||||
|     Coordinate ocoor; | ||||
|       std::vector<int> ocoor; | ||||
|       oCoorFromOindex(ocoor,Oindex); | ||||
|       return CheckerBoard(ocoor); | ||||
|     } | ||||
| @@ -132,7 +118,7 @@ public: | ||||
|     GridRedBlackCartesian(const GridBase *base) : GridBase(base->_processors,*base) | ||||
|     { | ||||
|       int dims = base->_ndimension; | ||||
|     Coordinate checker_dim_mask(dims,1); | ||||
|       std::vector<int> checker_dim_mask(dims,1); | ||||
|       int checker_dim = 0; | ||||
|       Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim); | ||||
|     }; | ||||
| @@ -141,7 +127,7 @@ public: | ||||
|     // Create redblack from original grid, with non-trivial checker dim mask | ||||
|     //////////////////////////////////////////////////////////// | ||||
|     GridRedBlackCartesian(const GridBase *base, | ||||
| 			const Coordinate &checker_dim_mask, | ||||
| 			  const std::vector<int> &checker_dim_mask, | ||||
| 			  int checker_dim | ||||
| 			  ) :  GridBase(base->_processors,*base)  | ||||
|     { | ||||
| @@ -149,11 +135,40 @@ public: | ||||
|     } | ||||
|  | ||||
|     virtual ~GridRedBlackCartesian() = default; | ||||
| #if 0 | ||||
|     //////////////////////////////////////////////////////////// | ||||
|     // Create redblack grid ;; deprecate these. Should not | ||||
|     // need direct creation of redblack without a full grid to base on | ||||
|     //////////////////////////////////////////////////////////// | ||||
|     GridRedBlackCartesian(const GridBase *base, | ||||
| 			  const std::vector<int> &dimensions, | ||||
| 			  const std::vector<int> &simd_layout, | ||||
| 			  const std::vector<int> &processor_grid, | ||||
| 			  const std::vector<int> &checker_dim_mask, | ||||
| 			  int checker_dim | ||||
| 			  ) :  GridBase(processor_grid,*base)  | ||||
|     { | ||||
|       Init(dimensions,simd_layout,processor_grid,checker_dim_mask,checker_dim); | ||||
|     } | ||||
|  | ||||
|   void Init(const Coordinate &dimensions, | ||||
| 	    const Coordinate &simd_layout, | ||||
| 	    const Coordinate &processor_grid, | ||||
| 	    const Coordinate &checker_dim_mask, | ||||
|     //////////////////////////////////////////////////////////// | ||||
|     // Create redblack grid | ||||
|     //////////////////////////////////////////////////////////// | ||||
|     GridRedBlackCartesian(const GridBase *base, | ||||
| 			  const std::vector<int> &dimensions, | ||||
| 			  const std::vector<int> &simd_layout, | ||||
| 			  const std::vector<int> &processor_grid) : GridBase(processor_grid,*base)  | ||||
|     { | ||||
|       std::vector<int> checker_dim_mask(dimensions.size(),1); | ||||
|       int checker_dim = 0; | ||||
|       Init(dimensions,simd_layout,processor_grid,checker_dim_mask,checker_dim); | ||||
|     } | ||||
| #endif | ||||
|  | ||||
|     void Init(const std::vector<int> &dimensions, | ||||
|               const std::vector<int> &simd_layout, | ||||
|               const std::vector<int> &processor_grid, | ||||
|               const std::vector<int> &checker_dim_mask, | ||||
|               int checker_dim) | ||||
|     { | ||||
|  | ||||
| @@ -267,7 +282,7 @@ public: | ||||
|     }; | ||||
|  | ||||
|   protected: | ||||
|   virtual int oIndex(Coordinate &coor) | ||||
|     virtual int oIndex(std::vector<int> &coor) | ||||
|     { | ||||
|       int idx = 0; | ||||
|       for (int d = 0; d < _ndimension; d++) | ||||
| @@ -284,7 +299,7 @@ protected: | ||||
|       return idx; | ||||
|     }; | ||||
|  | ||||
|   virtual int iIndex(Coordinate &lcoor) | ||||
|     virtual int iIndex(std::vector<int> &lcoor) | ||||
|     { | ||||
|       int idx = 0; | ||||
|       for (int d = 0; d < _ndimension; d++) | ||||
| @@ -301,5 +316,5 @@ protected: | ||||
|       return idx; | ||||
|     } | ||||
| }; | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -28,7 +28,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #ifndef GRID_COMMUNICATOR_H | ||||
| #define GRID_COMMUNICATOR_H | ||||
|  | ||||
| #include <Grid/util/Coordinate.h> | ||||
| #include <Grid/communicator/SharedMemory.h> | ||||
| #include <Grid/communicator/Communicator_base.h> | ||||
|  | ||||
|   | ||||
| @@ -31,9 +31,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #include <limits.h> | ||||
| #include <sys/mman.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| bool Stencil_force_mpi = true; | ||||
| namespace Grid { | ||||
|  | ||||
| /////////////////////////////////////////////////////////////// | ||||
| // Info that is setup once and indept of cartesian layout | ||||
| @@ -49,8 +47,8 @@ int                      CartesianCommunicator::Dimensions(void)        { return | ||||
| int                      CartesianCommunicator::IsBoss(void)            { return _processor==0; }; | ||||
| int                      CartesianCommunicator::BossRank(void)          { return 0; }; | ||||
| int                      CartesianCommunicator::ThisRank(void)          { return _processor; }; | ||||
| const Coordinate & CartesianCommunicator::ThisProcessorCoor(void) { return _processor_coor; }; | ||||
| const Coordinate & CartesianCommunicator::ProcessorGrid(void)     { return _processors; }; | ||||
| const std::vector<int> & CartesianCommunicator::ThisProcessorCoor(void) { return _processor_coor; }; | ||||
| const std::vector<int> & CartesianCommunicator::ProcessorGrid(void)     { return _processors; }; | ||||
| int                      CartesianCommunicator::ProcessorCount(void)    { return _Nprocessors; }; | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -74,6 +72,5 @@ void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N) | ||||
|   GlobalSumVector((double *)c,2*N); | ||||
| } | ||||
|    | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| } | ||||
|  | ||||
|   | ||||
| @@ -1,3 +1,4 @@ | ||||
|  | ||||
|     /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
| @@ -33,9 +34,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| /////////////////////////////////// | ||||
| #include <Grid/communicator/SharedMemory.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| extern bool Stencil_force_mpi ; | ||||
| namespace Grid { | ||||
|  | ||||
| class CartesianCommunicator : public SharedMemory { | ||||
|  | ||||
| @@ -53,11 +52,10 @@ public: | ||||
|   // Communicator should know nothing of the physics grid, only processor grid. | ||||
|   //////////////////////////////////////////// | ||||
|   int              _Nprocessors;     // How many in all | ||||
|   std::vector<int> _processors;      // Which dimensions get relayed out over processors lanes. | ||||
|   int              _processor;       // linear processor rank | ||||
|   std::vector<int> _processor_coor;  // linear processor coordinate | ||||
|   unsigned long    _ndimension; | ||||
|   Coordinate _shm_processors;  // Which dimensions get relayed out over processors lanes. | ||||
|   Coordinate _processors;      // Which dimensions get relayed out over processors lanes. | ||||
|   Coordinate _processor_coor;  // linear processor coordinate | ||||
|   static Grid_MPI_Comm      communicator_world; | ||||
|   Grid_MPI_Comm             communicator; | ||||
|   std::vector<Grid_MPI_Comm> communicator_halo; | ||||
| @@ -71,8 +69,8 @@ public: | ||||
|   // Constructors to sub-divide a parent communicator | ||||
|   // and default to comm world | ||||
|   //////////////////////////////////////////////// | ||||
|   CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank); | ||||
|   CartesianCommunicator(const Coordinate &pdimensions_in); | ||||
|   CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent,int &srank); | ||||
|   CartesianCommunicator(const std::vector<int> &pdimensions_in); | ||||
|   virtual ~CartesianCommunicator(); | ||||
|  | ||||
|  private: | ||||
| @@ -81,7 +79,7 @@ private: | ||||
|   // Private initialise from an MPI communicator | ||||
|   // Can use after an MPI_Comm_split, but hidden from user so private | ||||
|   //////////////////////////////////////////////// | ||||
|   void InitFromMPICommunicator(const Coordinate &processors, Grid_MPI_Comm communicator_base); | ||||
|   void InitFromMPICommunicator(const std::vector<int> &processors, Grid_MPI_Comm communicator_base); | ||||
|  | ||||
|  public: | ||||
|  | ||||
| @@ -90,16 +88,15 @@ public: | ||||
|   // Wraps MPI_Cart routines, or implements equivalent on other impls | ||||
|   //////////////////////////////////////////////////////////////////////////////////////// | ||||
|   void ShiftedRanks(int dim,int shift,int & source, int & dest); | ||||
|   int  RankFromProcessorCoor(Coordinate &coor); | ||||
|   void ProcessorCoorFromRank(int rank,Coordinate &coor); | ||||
|   int  RankFromProcessorCoor(std::vector<int> &coor); | ||||
|   void ProcessorCoorFromRank(int rank,std::vector<int> &coor); | ||||
|    | ||||
|   int                      Dimensions(void)        ; | ||||
|   int                      IsBoss(void)            ; | ||||
|   int                      BossRank(void)          ; | ||||
|   int                      ThisRank(void)          ; | ||||
|   const Coordinate & ThisProcessorCoor(void) ; | ||||
|   const Coordinate & ShmGrid(void)  { return _shm_processors; }  ; | ||||
|   const Coordinate & ProcessorGrid(void)     ; | ||||
|   const std::vector<int> & ThisProcessorCoor(void) ; | ||||
|   const std::vector<int> & ProcessorGrid(void)     ; | ||||
|   int                      ProcessorCount(void)    ; | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -107,20 +104,16 @@ public: | ||||
|   //////////////////////////////////////////////////////////////////////////////// | ||||
|   static int  RankWorld(void) ; | ||||
|   static void BroadcastWorld(int root,void* data, int bytes); | ||||
|   static void BarrierWorld(void); | ||||
|    | ||||
|   //////////////////////////////////////////////////////////// | ||||
|   // Reduction | ||||
|   //////////////////////////////////////////////////////////// | ||||
|   void GlobalMax(RealD &); | ||||
|   void GlobalMax(RealF &); | ||||
|   void GlobalSum(RealF &); | ||||
|   void GlobalSumVector(RealF *,int N); | ||||
|   void GlobalSum(RealD &); | ||||
|   void GlobalSumVector(RealD *,int N); | ||||
|   void GlobalSum(uint32_t &); | ||||
|   void GlobalSum(uint64_t &); | ||||
|   void GlobalSumVector(uint64_t*,int N); | ||||
|   void GlobalSum(ComplexF &c); | ||||
|   void GlobalSumVector(ComplexF *c,int N); | ||||
|   void GlobalSum(ComplexD &c); | ||||
| @@ -131,7 +124,7 @@ public: | ||||
|   template<class obj> void GlobalSum(obj &o){ | ||||
|     typedef typename obj::scalar_type scalar_type; | ||||
|     int words = sizeof(obj)/sizeof(scalar_type); | ||||
|     scalar_type * ptr = (scalar_type *)& o; // Safe alias  | ||||
|     scalar_type * ptr = (scalar_type *)& o; | ||||
|     GlobalSumVector(ptr,words); | ||||
|   } | ||||
|    | ||||
| @@ -144,18 +137,33 @@ public: | ||||
| 		      int recv_from_rank, | ||||
| 		      int bytes); | ||||
|    | ||||
|   double StencilSendToRecvFrom(void *xmit, | ||||
| 			       int xmit_to_rank,int do_xmit, | ||||
|   void SendRecvPacket(void *xmit, | ||||
| 		      void *recv, | ||||
| 			       int recv_from_rank,int do_recv, | ||||
| 		      int xmit_to_rank, | ||||
| 		      int recv_from_rank, | ||||
| 		      int bytes); | ||||
|    | ||||
|   void SendToRecvFromBegin(std::vector<CommsRequest_t> &list, | ||||
| 			   void *xmit, | ||||
| 			   int xmit_to_rank, | ||||
| 			   void *recv, | ||||
| 			   int recv_from_rank, | ||||
| 			   int bytes); | ||||
|    | ||||
|   void SendToRecvFromComplete(std::vector<CommsRequest_t> &waitall); | ||||
|  | ||||
|   double StencilSendToRecvFrom(void *xmit, | ||||
| 			       int xmit_to_rank, | ||||
| 			       void *recv, | ||||
| 			       int recv_from_rank, | ||||
| 			       int bytes,int dir); | ||||
|  | ||||
|   double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list, | ||||
| 				    void *xmit, | ||||
| 				    int xmit_to_rank,int do_xmit, | ||||
| 				    int xmit_to_rank, | ||||
| 				    void *recv, | ||||
| 				    int recv_from_rank,int do_recv, | ||||
| 				    int xbytes,int rbytes,int dir); | ||||
| 				    int recv_from_rank, | ||||
| 				    int bytes,int dir); | ||||
|    | ||||
|    | ||||
|   void StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int i); | ||||
| @@ -191,10 +199,9 @@ public: | ||||
|   template<class obj> void Broadcast(int root,obj &data) | ||||
|     { | ||||
|       Broadcast(root,(void *)&data,sizeof(data)); | ||||
|   } | ||||
|  | ||||
|     }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| };  | ||||
| } | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -28,7 +28,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #include <Grid/GridCore.h> | ||||
| #include <Grid/communicator/SharedMemory.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
| Grid_MPI_Comm       CartesianCommunicator::communicator_world; | ||||
|  | ||||
| @@ -43,35 +43,20 @@ void CartesianCommunicator::Init(int *argc, char ***argv) | ||||
|  | ||||
|   MPI_Initialized(&flag); // needed to coexist with other libs apparently | ||||
|   if ( !flag ) { | ||||
|  | ||||
| #ifndef GRID_COMMS_THREADS | ||||
|     nCommThreads=1; | ||||
|     // wrong results here too | ||||
|     // For now: comms-overlap leads to wrong results in Benchmark_wilson even on single node MPI runs | ||||
|     // other comms schemes are ok | ||||
|     MPI_Init_thread(argc,argv,MPI_THREAD_SERIALIZED,&provided); | ||||
| #else | ||||
|     MPI_Init_thread(argc,argv,MPI_THREAD_MULTIPLE,&provided); | ||||
| #endif | ||||
|     //If only 1 comms thread we require any threading mode other than SINGLE, but for multiple comms threads we need MULTIPLE | ||||
|     if( (nCommThreads == 1) && (provided == MPI_THREAD_SINGLE) ) { | ||||
|     if( (nCommThreads == 1 && provided == MPI_THREAD_SINGLE) || | ||||
|         (nCommThreads > 1 && provided != MPI_THREAD_MULTIPLE) ) | ||||
|       assert(0); | ||||
|   } | ||||
|  | ||||
|     if( (nCommThreads > 1) && (provided != MPI_THREAD_MULTIPLE) ) { | ||||
|       assert(0); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   // Never clean up as done once. | ||||
|   MPI_Comm_dup (MPI_COMM_WORLD,&communicator_world); | ||||
|  | ||||
|   Grid_quiesce_nodes(); | ||||
|   GlobalSharedMemory::Init(communicator_world); | ||||
|   GlobalSharedMemory::SharedMemoryAllocate( | ||||
| 		   GlobalSharedMemory::MAX_MPI_SHM_BYTES, | ||||
| 		   GlobalSharedMemory::Hugepages); | ||||
|   Grid_unquiesce_nodes(); | ||||
| } | ||||
|  | ||||
| /////////////////////////////////////////////////////////////////////////// | ||||
| @@ -82,14 +67,14 @@ void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest | ||||
|   int ierr=MPI_Cart_shift(communicator,dim,shift,&source,&dest); | ||||
|   assert(ierr==0); | ||||
| } | ||||
| int CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor) | ||||
| int CartesianCommunicator::RankFromProcessorCoor(std::vector<int> &coor) | ||||
| { | ||||
|   int rank; | ||||
|   int ierr=MPI_Cart_rank  (communicator, &coor[0], &rank); | ||||
|   assert(ierr==0); | ||||
|   return rank; | ||||
| } | ||||
| void  CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor) | ||||
| void  CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector<int> &coor) | ||||
| { | ||||
|   coor.resize(_ndimension); | ||||
|   int ierr=MPI_Cart_coords  (communicator, rank, _ndimension,&coor[0]); | ||||
| @@ -99,14 +84,14 @@ void  CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor) | ||||
| //////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Initialises from communicator_world | ||||
| //////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| CartesianCommunicator::CartesianCommunicator(const Coordinate &processors) | ||||
| CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)  | ||||
| { | ||||
|   MPI_Comm optimal_comm; | ||||
|   //////////////////////////////////////////////////// | ||||
|   // Remap using the shared memory optimising routine | ||||
|   // The remap creates a comm which must be freed | ||||
|   //////////////////////////////////////////////////// | ||||
|   GlobalSharedMemory::OptimalCommunicator    (processors,optimal_comm,_shm_processors); | ||||
|   GlobalSharedMemory::OptimalCommunicator    (processors,optimal_comm); | ||||
|   InitFromMPICommunicator(processors,optimal_comm); | ||||
|   SetCommunicator(optimal_comm); | ||||
|   /////////////////////////////////////////////////// | ||||
| @@ -118,19 +103,19 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors) | ||||
| ////////////////////////////////// | ||||
| // Try to subdivide communicator | ||||
| ////////////////////////////////// | ||||
| CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank) | ||||
| CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent,int &srank)     | ||||
| { | ||||
|   _ndimension = processors.size();  assert(_ndimension>=1); | ||||
|   _ndimension = processors.size(); | ||||
|  | ||||
|   int parent_ndimension = parent._ndimension; assert(_ndimension >= parent._ndimension); | ||||
|   Coordinate parent_processor_coor(_ndimension,0); | ||||
|   Coordinate parent_processors    (_ndimension,1); | ||||
|   Coordinate shm_processors       (_ndimension,1); | ||||
|   std::vector<int> parent_processor_coor(_ndimension,0); | ||||
|   std::vector<int> parent_processors    (_ndimension,1); | ||||
|  | ||||
|   // Can make 5d grid from 4d etc... | ||||
|   int pad = _ndimension-parent_ndimension; | ||||
|   for(int d=0;d<parent_ndimension;d++){ | ||||
|     parent_processor_coor[pad+d]=parent._processor_coor[d]; | ||||
|     parent_processors    [pad+d]=parent._processors[d]; | ||||
|     shm_processors       [pad+d]=parent._shm_processors[d]; | ||||
|   } | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -147,15 +132,14 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const | ||||
|   int Nchild = Nparent/childsize; | ||||
|   assert (childsize * Nchild == Nparent); | ||||
|  | ||||
|   Coordinate ccoor(_ndimension); // coor within subcommunicator | ||||
|   Coordinate scoor(_ndimension); // coor of split within parent | ||||
|   Coordinate ssize(_ndimension); // coor of split within parent | ||||
|   std::vector<int> ccoor(_ndimension); // coor within subcommunicator | ||||
|   std::vector<int> scoor(_ndimension); // coor of split within parent | ||||
|   std::vector<int> ssize(_ndimension); // coor of split within parent | ||||
|  | ||||
|   for(int d=0;d<_ndimension;d++){ | ||||
|     ccoor[d] = parent_processor_coor[d] % processors[d]; | ||||
|     scoor[d] = parent_processor_coor[d] / processors[d]; | ||||
|     ssize[d] = parent_processors[d]     / processors[d]; | ||||
|     if ( processors[d] < shm_processors[d] ) shm_processors[d] = processors[d]; // subnode splitting. | ||||
|   } | ||||
|  | ||||
|   // rank within subcomm ; srank is rank of subcomm within blocks of subcomms | ||||
| @@ -167,6 +151,36 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const | ||||
|   MPI_Comm comm_split; | ||||
|   if ( Nchild > 1 ) {  | ||||
|  | ||||
|     if(0){ | ||||
|       std::cout << GridLogMessage<<"Child communicator of "<< std::hex << parent.communicator << std::dec<<std::endl; | ||||
|       std::cout << GridLogMessage<<" parent grid["<< parent._ndimension<<"]    "; | ||||
|       for(int d=0;d<parent._ndimension;d++)  std::cout << parent._processors[d] << " "; | ||||
|       std::cout<<std::endl; | ||||
|        | ||||
|       std::cout << GridLogMessage<<" child grid["<< _ndimension <<"]    "; | ||||
|       for(int d=0;d<processors.size();d++)  std::cout << processors[d] << " "; | ||||
|       std::cout<<std::endl; | ||||
|        | ||||
|       std::cout << GridLogMessage<<" old rank "<< parent._processor<<" coor ["<< parent._ndimension <<"]    "; | ||||
|       for(int d=0;d<parent._ndimension;d++)  std::cout << parent._processor_coor[d] << " "; | ||||
|       std::cout<<std::endl; | ||||
|        | ||||
|       std::cout << GridLogMessage<<" new split "<< srank<<" scoor ["<< _ndimension <<"]    "; | ||||
|       for(int d=0;d<processors.size();d++)  std::cout << scoor[d] << " "; | ||||
|       std::cout<<std::endl; | ||||
|        | ||||
|       std::cout << GridLogMessage<<" new rank "<< crank<<" coor ["<< _ndimension <<"]    "; | ||||
|       for(int d=0;d<processors.size();d++)  std::cout << ccoor[d] << " "; | ||||
|       std::cout<<std::endl; | ||||
|  | ||||
|       ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|       // Declare victory | ||||
|       ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|       std::cout << GridLogMessage<<"Divided communicator "<< parent._Nprocessors<<" into " | ||||
| 		<< Nchild <<" communicators with " << childsize << " ranks"<<std::endl; | ||||
|       std::cout << " Split communicator " <<comm_split <<std::endl; | ||||
|     } | ||||
|  | ||||
|     //////////////////////////////////////////////////////////////// | ||||
|     // Split the communicator | ||||
|     //////////////////////////////////////////////////////////////// | ||||
| @@ -205,7 +219,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const | ||||
|   } | ||||
| } | ||||
|  | ||||
| void CartesianCommunicator::InitFromMPICommunicator(const Coordinate &processors, MPI_Comm communicator_base) | ||||
| void CartesianCommunicator::InitFromMPICommunicator(const std::vector<int> &processors, MPI_Comm communicator_base) | ||||
| { | ||||
|   //////////////////////////////////////////////////// | ||||
|   // Creates communicator, and the communicator_halo | ||||
| @@ -222,7 +236,7 @@ void CartesianCommunicator::InitFromMPICommunicator(const Coordinate &processors | ||||
|     _Nprocessors*=_processors[i]; | ||||
|   } | ||||
|  | ||||
|   Coordinate periodic(_ndimension,1); | ||||
|   std::vector<int> periodic(_ndimension,1); | ||||
|   MPI_Cart_create(communicator_base, _ndimension,&_processors[0],&periodic[0],0,&communicator); | ||||
|   MPI_Comm_rank(communicator,&_processor); | ||||
|   MPI_Cart_coords(communicator,_processor,_ndimension,&_processor_coor[0]); | ||||
| @@ -265,10 +279,6 @@ void CartesianCommunicator::GlobalSum(uint64_t &u){ | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator); | ||||
|   assert(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::GlobalSumVector(uint64_t* u,int N){ | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,u,N,MPI_UINT64_T,MPI_SUM,communicator); | ||||
|   assert(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::GlobalXOR(uint32_t &u){ | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_BXOR,communicator); | ||||
|   assert(ierr==0); | ||||
| @@ -277,16 +287,6 @@ void CartesianCommunicator::GlobalXOR(uint64_t &u){ | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_BXOR,communicator); | ||||
|   assert(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::GlobalMax(float &f) | ||||
| { | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_MAX,communicator); | ||||
|   assert(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::GlobalMax(double &d) | ||||
| { | ||||
|   int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator); | ||||
|   assert(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::GlobalSum(float &f){ | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator); | ||||
|   assert(ierr==0); | ||||
| @@ -314,47 +314,78 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit, | ||||
| 					   int bytes) | ||||
| { | ||||
|   std::vector<CommsRequest_t> reqs(0); | ||||
|   unsigned long  xcrc = crc32(0L, Z_NULL, 0); | ||||
|   unsigned long  rcrc = crc32(0L, Z_NULL, 0); | ||||
|  | ||||
|   //    unsigned long  xcrc = crc32(0L, Z_NULL, 0); | ||||
|   //    unsigned long  rcrc = crc32(0L, Z_NULL, 0); | ||||
|   //    xcrc = crc32(xcrc,(unsigned char *)xmit,bytes); | ||||
|   SendToRecvFromBegin(reqs,xmit,dest,recv,from,bytes); | ||||
|   SendToRecvFromComplete(reqs); | ||||
|   //    rcrc = crc32(rcrc,(unsigned char *)recv,bytes); | ||||
|   //    printf("proc %d SendToRecvFrom %d bytes %lx %lx\n",_processor,bytes,xcrc,rcrc); | ||||
| } | ||||
| void CartesianCommunicator::SendRecvPacket(void *xmit, | ||||
| 					   void *recv, | ||||
| 					   int sender, | ||||
| 					   int receiver, | ||||
| 					   int bytes) | ||||
| { | ||||
|   MPI_Status stat; | ||||
|   assert(sender != receiver); | ||||
|   int tag = sender; | ||||
|   if ( _processor == sender ) { | ||||
|     MPI_Send(xmit, bytes, MPI_CHAR,receiver,tag,communicator); | ||||
|   } | ||||
|   if ( _processor == receiver ) {  | ||||
|     MPI_Recv(recv, bytes, MPI_CHAR,sender,tag,communicator,&stat); | ||||
|   } | ||||
| } | ||||
| // Basic Halo comms primitive | ||||
| void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list, | ||||
| 						void *xmit, | ||||
| 						int dest, | ||||
| 						void *recv, | ||||
| 						int from, | ||||
| 						int bytes) | ||||
| { | ||||
|   int myrank = _processor; | ||||
|   int ierr; | ||||
|  | ||||
|   // Enforce no UVM in comms, device or host OK | ||||
|   assert(acceleratorIsCommunicable(xmit)); | ||||
|   assert(acceleratorIsCommunicable(recv)); | ||||
|   if ( CommunicatorPolicy == CommunicatorPolicyConcurrent ) {  | ||||
|     MPI_Request xrq; | ||||
|     MPI_Request rrq; | ||||
|  | ||||
|     ierr =MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator,&rrq); | ||||
|     ierr|=MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator,&xrq); | ||||
|      | ||||
|     assert(ierr==0); | ||||
|     list.push_back(xrq); | ||||
|     list.push_back(rrq); | ||||
|   } else {  | ||||
|     // Give the CPU to MPI immediately; can use threads to overlap optionally | ||||
|   //  printf("proc %d SendToRecvFrom %d bytes Sendrecv \n",_processor,bytes); | ||||
|     ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,dest,myrank, | ||||
| 		      recv,bytes,MPI_CHAR,from, from, | ||||
| 		      communicator,MPI_STATUS_IGNORE); | ||||
|     assert(ierr==0); | ||||
|  | ||||
|   //  xcrc = crc32(xcrc,(unsigned char *)xmit,bytes); | ||||
|   //  rcrc = crc32(rcrc,(unsigned char *)recv,bytes); | ||||
|   //  printf("proc %d SendToRecvFrom %d bytes xcrc %lx rcrc %lx\n",_processor,bytes,xcrc,rcrc); fflush | ||||
|   } | ||||
| // Basic Halo comms primitive | ||||
| } | ||||
|  | ||||
| double CartesianCommunicator::StencilSendToRecvFrom( void *xmit, | ||||
| 						     int dest, int dox, | ||||
| 						     int dest, | ||||
| 						     void *recv, | ||||
| 						     int from, int dor, | ||||
| 						     int from, | ||||
| 						     int bytes,int dir) | ||||
| { | ||||
|   std::vector<CommsRequest_t> list; | ||||
|   double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir); | ||||
|   double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,recv,from,bytes,dir); | ||||
|   StencilSendToRecvFromComplete(list,dir); | ||||
|   return offbytes; | ||||
| } | ||||
|  | ||||
| #undef NVLINK_GET // Define to use get instead of put DMA | ||||
| double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list, | ||||
| 							 void *xmit, | ||||
| 							 int dest,int dox, | ||||
| 							 int dest, | ||||
| 							 void *recv, | ||||
| 							 int from,int dor, | ||||
| 							 int xbytes,int rbytes,int dir) | ||||
| 							 int from, | ||||
| 							 int bytes,int dir) | ||||
| { | ||||
|   int ncomm  =communicator_halo.size();  | ||||
|   int commdir=dir%ncomm; | ||||
| @@ -371,49 +402,39 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques | ||||
|   assert(from != _processor); | ||||
|   assert(gme  == ShmRank); | ||||
|   double off_node_bytes=0.0; | ||||
|   int tag; | ||||
|  | ||||
|   if ( dor ) { | ||||
|     if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) { | ||||
|       tag= dir+from*32; | ||||
|       ierr=MPI_Irecv(recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq); | ||||
|   if ( gfrom ==MPI_UNDEFINED) { | ||||
|     ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator_halo[commdir],&rrq); | ||||
|     assert(ierr==0); | ||||
|     list.push_back(rrq); | ||||
|       off_node_bytes+=rbytes; | ||||
|     } | ||||
| #ifdef NVLINK_GET | ||||
|       void *shm = (void *) this->ShmBufferTranslate(from,xmit); | ||||
|       assert(shm!=NULL); | ||||
|       acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes); | ||||
| #endif | ||||
|     off_node_bytes+=bytes; | ||||
|   } | ||||
|  | ||||
|   if (dox) { | ||||
|     //  rcrc = crc32(rcrc,(unsigned char *)recv,bytes); | ||||
|     if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) { | ||||
|       tag= dir+_processor*32; | ||||
|       ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq); | ||||
|   if ( gdest == MPI_UNDEFINED ) { | ||||
|     ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator_halo[commdir],&xrq); | ||||
|     assert(ierr==0); | ||||
|     list.push_back(xrq); | ||||
|       off_node_bytes+=xbytes; | ||||
|     } else { | ||||
| #ifndef NVLINK_GET | ||||
|       void *shm = (void *) this->ShmBufferTranslate(dest,recv); | ||||
|       assert(shm!=NULL); | ||||
|       acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes); | ||||
| #endif | ||||
|        | ||||
|     off_node_bytes+=bytes; | ||||
|   } | ||||
|  | ||||
|   if ( CommunicatorPolicy == CommunicatorPolicySequential ) {  | ||||
|     this->StencilSendToRecvFromComplete(list,dir); | ||||
|   } | ||||
|  | ||||
|   return off_node_bytes; | ||||
| } | ||||
| void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir) | ||||
| void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir) | ||||
| { | ||||
|   SendToRecvFromComplete(waitall); | ||||
| } | ||||
| void CartesianCommunicator::StencilBarrier(void) | ||||
| { | ||||
|   MPI_Barrier  (ShmComm); | ||||
| } | ||||
| void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list) | ||||
| { | ||||
|   int nreq=list.size(); | ||||
|  | ||||
|   acceleratorCopySynchronise(); | ||||
|  | ||||
|   if (nreq==0) return; | ||||
|  | ||||
|   std::vector<MPI_Status> status(nreq); | ||||
| @@ -421,13 +442,6 @@ void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsReque | ||||
|   assert(ierr==0); | ||||
|   list.resize(0); | ||||
| } | ||||
| void CartesianCommunicator::StencilBarrier(void) | ||||
| { | ||||
|   MPI_Barrier  (ShmComm); | ||||
| } | ||||
| //void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list) | ||||
| //{ | ||||
| //} | ||||
| void CartesianCommunicator::Barrier(void) | ||||
| { | ||||
|   int ierr = MPI_Barrier(communicator); | ||||
| @@ -447,10 +461,6 @@ int CartesianCommunicator::RankWorld(void){ | ||||
|   MPI_Comm_rank(communicator_world,&r); | ||||
|   return r; | ||||
| } | ||||
| void CartesianCommunicator::BarrierWorld(void){ | ||||
|   int ierr = MPI_Barrier(communicator_world); | ||||
|   assert(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) | ||||
| { | ||||
|   int ierr= MPI_Bcast(data, | ||||
| @@ -463,7 +473,7 @@ void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) | ||||
|  | ||||
| void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,uint64_t words,uint64_t bytes) | ||||
| { | ||||
|   Coordinate row(_ndimension,1); | ||||
|   std::vector<int> row(_ndimension,1); | ||||
|   assert(dim>=0 && dim<_ndimension); | ||||
|  | ||||
|   //  Split the communicator | ||||
| @@ -492,4 +502,7 @@ void CartesianCommunicator::AllToAll(void  *in,void *out,uint64_t words,uint64_t | ||||
|   MPI_Type_free(&object); | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|  | ||||
| } | ||||
|  | ||||
|   | ||||
| @@ -27,7 +27,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|     /*  END LEGAL */ | ||||
| #include <Grid/GridCore.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
| /////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Info that is setup once and indept of cartesian layout | ||||
| @@ -42,19 +42,17 @@ void CartesianCommunicator::Init(int *argc, char *** arv) | ||||
| 		   GlobalSharedMemory::Hugepages); | ||||
| } | ||||
|  | ||||
| CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)  | ||||
| CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent,int &srank)  | ||||
|   : CartesianCommunicator(processors)  | ||||
| { | ||||
|   _shm_processors = Coordinate(processors.size(),1); | ||||
|   srank=0; | ||||
|   SetCommunicator(communicator_world); | ||||
| } | ||||
|  | ||||
| CartesianCommunicator::CartesianCommunicator(const Coordinate &processors) | ||||
| CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors) | ||||
| { | ||||
|   _shm_processors = Coordinate(processors.size(),1); | ||||
|   _processors = processors; | ||||
|   _ndimension = processors.size();  assert(_ndimension>=1); | ||||
|   _ndimension = processors.size(); | ||||
|   _processor_coor.resize(_ndimension); | ||||
|    | ||||
|   // Require 1^N processor grid for fake | ||||
| @@ -69,18 +67,24 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors) | ||||
|  | ||||
| CartesianCommunicator::~CartesianCommunicator(){} | ||||
|  | ||||
| void CartesianCommunicator::GlobalMax(float &){} | ||||
| void CartesianCommunicator::GlobalMax(double &){} | ||||
| void CartesianCommunicator::GlobalSum(float &){} | ||||
| void CartesianCommunicator::GlobalSumVector(float *,int N){} | ||||
| void CartesianCommunicator::GlobalSum(double &){} | ||||
| void CartesianCommunicator::GlobalSumVector(double *,int N){} | ||||
| void CartesianCommunicator::GlobalSum(uint32_t &){} | ||||
| void CartesianCommunicator::GlobalSum(uint64_t &){} | ||||
| void CartesianCommunicator::GlobalSumVector(uint64_t *,int N){} | ||||
| void CartesianCommunicator::GlobalSumVector(double *,int N){} | ||||
| void CartesianCommunicator::GlobalXOR(uint32_t &){} | ||||
| void CartesianCommunicator::GlobalXOR(uint64_t &){} | ||||
|  | ||||
| void CartesianCommunicator::SendRecvPacket(void *xmit, | ||||
| 					   void *recv, | ||||
| 					   int xmit_to_rank, | ||||
| 					   int recv_from_rank, | ||||
| 					   int bytes) | ||||
| { | ||||
|   assert(0); | ||||
| } | ||||
|  | ||||
|  | ||||
| // Basic Halo comms primitive -- should never call in single node | ||||
| void CartesianCommunicator::SendToRecvFrom(void *xmit, | ||||
| @@ -91,6 +95,20 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit, | ||||
| { | ||||
|   assert(0); | ||||
| } | ||||
| void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list, | ||||
| 						void *xmit, | ||||
| 						int dest, | ||||
| 						void *recv, | ||||
| 						int from, | ||||
| 						int bytes) | ||||
| { | ||||
|   assert(0); | ||||
| } | ||||
|  | ||||
| void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list) | ||||
| { | ||||
|   assert(0); | ||||
| } | ||||
| void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,uint64_t words,uint64_t bytes) | ||||
| { | ||||
|   bcopy(in,out,bytes*words); | ||||
| @@ -104,9 +122,8 @@ int  CartesianCommunicator::RankWorld(void){return 0;} | ||||
| void CartesianCommunicator::Barrier(void){} | ||||
| void CartesianCommunicator::Broadcast(int root,void* data, int bytes) {} | ||||
| void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) { } | ||||
| void CartesianCommunicator::BarrierWorld(void) { } | ||||
| int  CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor) {  return 0;} | ||||
| void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor){  coor = _processor_coor; } | ||||
| int  CartesianCommunicator::RankFromProcessorCoor(std::vector<int> &coor) {  return 0;} | ||||
| void CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector<int> &coor){  coor = _processor_coor; } | ||||
| void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest) | ||||
| { | ||||
|   source =0; | ||||
| @@ -114,28 +131,35 @@ void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest | ||||
| } | ||||
|  | ||||
| double CartesianCommunicator::StencilSendToRecvFrom( void *xmit, | ||||
| 						     int xmit_to_rank,int dox, | ||||
| 						     int xmit_to_rank, | ||||
| 						     void *recv, | ||||
| 						     int recv_from_rank,int dor, | ||||
| 						     int recv_from_rank, | ||||
| 						     int bytes, int dir) | ||||
| { | ||||
|   std::vector<CommsRequest_t> list; | ||||
|   // Discard the "dir" | ||||
|   SendToRecvFromBegin   (list,xmit,xmit_to_rank,recv,recv_from_rank,bytes); | ||||
|   SendToRecvFromComplete(list); | ||||
|   return 2.0*bytes; | ||||
| } | ||||
| double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list, | ||||
| 							 void *xmit, | ||||
| 							 int xmit_to_rank,int dox, | ||||
| 							 int xmit_to_rank, | ||||
| 							 void *recv, | ||||
| 							 int recv_from_rank,int dor, | ||||
| 							 int xbytes,int rbytes, int dir) | ||||
| 							 int recv_from_rank, | ||||
| 							 int bytes, int dir) | ||||
| { | ||||
|   return xbytes+rbytes; | ||||
|   // Discard the "dir" | ||||
|   SendToRecvFromBegin(list,xmit,xmit_to_rank,recv,recv_from_rank,bytes); | ||||
|   return 2.0*bytes; | ||||
| } | ||||
| void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir) | ||||
| { | ||||
|   SendToRecvFromComplete(waitall); | ||||
| } | ||||
|  | ||||
| void CartesianCommunicator::StencilBarrier(void){}; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| } | ||||
|  | ||||
|   | ||||
| @@ -28,11 +28,10 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
| #include <Grid/GridCore.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid);  | ||||
| namespace Grid {  | ||||
|  | ||||
| // static data | ||||
|  | ||||
| int                 GlobalSharedMemory::HPEhypercube = 1; | ||||
| uint64_t            GlobalSharedMemory::MAX_MPI_SHM_BYTES   = 1024LL*1024LL*1024LL;  | ||||
| int                 GlobalSharedMemory::Hugepages = 0; | ||||
| int                 GlobalSharedMemory::_ShmSetup; | ||||
| @@ -40,9 +39,6 @@ int                 GlobalSharedMemory::_ShmAlloc; | ||||
| uint64_t            GlobalSharedMemory::_ShmAllocBytes; | ||||
|  | ||||
| std::vector<void *> GlobalSharedMemory::WorldShmCommBufs; | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
| void * GlobalSharedMemory::HostCommBuf; | ||||
| #endif | ||||
|  | ||||
| Grid_MPI_Comm       GlobalSharedMemory::WorldShmComm; | ||||
| int                 GlobalSharedMemory::WorldShmRank; | ||||
| @@ -69,26 +65,6 @@ void GlobalSharedMemory::SharedMemoryFree(void) | ||||
| ///////////////////////////////// | ||||
| // Alloc, free shmem region | ||||
| ///////////////////////////////// | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
| void *SharedMemory::HostBufferMalloc(size_t bytes){ | ||||
|   void *ptr = (void *)host_heap_top; | ||||
|   host_heap_top  += bytes; | ||||
|   host_heap_bytes+= bytes; | ||||
|   if (host_heap_bytes >= host_heap_size) { | ||||
|     std::cout<< " HostBufferMalloc exceeded heap size -- try increasing with --shm <MB> flag" <<std::endl; | ||||
|     std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl; | ||||
|     std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl; | ||||
|     std::cout<< " Current bytes is " << (host_heap_bytes/(1024*1024)) <<"MB"<<std::endl; | ||||
|     std::cout<< " Current heap  is " << (host_heap_size/(1024*1024)) <<"MB"<<std::endl; | ||||
|     assert(host_heap_bytes<host_heap_size); | ||||
|   } | ||||
|   return ptr; | ||||
| } | ||||
| void SharedMemory::HostBufferFreeAll(void) {  | ||||
|   host_heap_top  =(size_t)HostCommBuf; | ||||
|   host_heap_bytes=0; | ||||
| } | ||||
| #endif | ||||
| void *SharedMemory::ShmBufferMalloc(size_t bytes){ | ||||
|   //  bytes = (bytes+sizeof(vRealD))&(~(sizeof(vRealD)-1));// align up bytes | ||||
|   void *ptr = (void *)heap_top; | ||||
| @@ -97,12 +73,9 @@ void *SharedMemory::ShmBufferMalloc(size_t bytes){ | ||||
|   if (heap_bytes >= heap_size) { | ||||
|     std::cout<< " ShmBufferMalloc exceeded shared heap size -- try increasing with --shm <MB> flag" <<std::endl; | ||||
|     std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl; | ||||
|     std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl; | ||||
|     std::cout<< " Current bytes is " << (heap_bytes/(1024*1024)) <<"MB"<<std::endl; | ||||
|     std::cout<< " Current heap  is " << (heap_size/(1024*1024)) <<"MB"<<std::endl; | ||||
|     std::cout<< " Current value is " << (heap_size/(1024*1024)) <<std::endl; | ||||
|     assert(heap_bytes<heap_size); | ||||
|   } | ||||
|   //std::cerr << "ShmBufferMalloc "<<std::hex<< ptr<<" - "<<((uint64_t)ptr+bytes)<<std::dec<<std::endl; | ||||
|   return ptr; | ||||
| } | ||||
| void SharedMemory::ShmBufferFreeAll(void) {  | ||||
| @@ -111,62 +84,9 @@ void SharedMemory::ShmBufferFreeAll(void) { | ||||
| } | ||||
| void *SharedMemory::ShmBufferSelf(void) | ||||
| { | ||||
|   //std::cerr << "ShmBufferSelf "<<ShmRank<<" "<<std::hex<< ShmCommBufs[ShmRank] <<std::dec<<std::endl; | ||||
|   return ShmCommBufs[ShmRank]; | ||||
| } | ||||
| static inline int divides(int a,int b) | ||||
| { | ||||
|   return ( b == ( (b/a)*a ) ); | ||||
| } | ||||
| void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims) | ||||
| { | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Allow user to configure through environment variable | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   char* str = getenv(("GRID_SHM_DIMS_" + std::to_string(ShmDims.size())).c_str()); | ||||
|   if ( str ) { | ||||
|     std::vector<int> IntShmDims; | ||||
|     GridCmdOptionIntVector(std::string(str),IntShmDims); | ||||
|     assert(IntShmDims.size() == WorldDims.size()); | ||||
|     long ShmSize = 1; | ||||
|     for (int dim=0;dim<WorldDims.size();dim++) { | ||||
|       ShmSize *= (ShmDims[dim] = IntShmDims[dim]); | ||||
|       assert(divides(ShmDims[dim],WorldDims[dim])); | ||||
|     } | ||||
|     assert(ShmSize == WorldShmSize); | ||||
|     return; | ||||
|   } | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Powers of 2,3,5 only in prime decomposition for now | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   int ndimension = WorldDims.size(); | ||||
|   ShmDims=Coordinate(ndimension,1); | ||||
|  | ||||
|   std::vector<int> primes({2,3,5}); | ||||
|  | ||||
|   int dim = 0; | ||||
|   int last_dim = ndimension - 1; | ||||
|   int AutoShmSize = 1; | ||||
|   while(AutoShmSize != WorldShmSize) { | ||||
|     int p; | ||||
|     for(p=0;p<primes.size();p++) { | ||||
|       int prime=primes[p]; | ||||
|       if ( divides(prime,WorldDims[dim]/ShmDims[dim]) | ||||
|         && divides(prime,WorldShmSize/AutoShmSize)  ) { | ||||
|   AutoShmSize*=prime; | ||||
|   ShmDims[dim]*=prime; | ||||
|   last_dim = dim; | ||||
|   break; | ||||
| } | ||||
|     } | ||||
|     if (p == primes.size() && last_dim == dim) { | ||||
|       std::cerr << "GlobalSharedMemory::GetShmDims failed" << std::endl; | ||||
|       exit(EXIT_FAILURE); | ||||
|     } | ||||
|     dim=(dim+1) %ndimension; | ||||
|   } | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid);  | ||||
|  | ||||
|   | ||||
| @@ -25,6 +25,18 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
|  | ||||
|  | ||||
| // TODO | ||||
| // 1) move includes into SharedMemory.cc | ||||
| // | ||||
| // 2) split shared memory into a) optimal communicator creation from comm world | ||||
| //  | ||||
| //                             b) shared memory buffers container | ||||
| //                                -- static globally shared; init once | ||||
| //                                -- per instance set of buffers. | ||||
| //                                    | ||||
|  | ||||
| #pragma once  | ||||
|  | ||||
| #include <Grid/GridCore.h> | ||||
| @@ -41,8 +53,11 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #include <sys/shm.h> | ||||
| #include <sys/mman.h> | ||||
| #include <zlib.h> | ||||
| #ifdef HAVE_NUMAIF_H | ||||
| #include <numaif.h> | ||||
| #endif | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
| #if defined (GRID_COMMS_MPI3)  | ||||
|   typedef MPI_Comm    Grid_MPI_Comm; | ||||
| @@ -56,18 +71,12 @@ class GlobalSharedMemory { | ||||
|  private: | ||||
|   static const int     MAXLOG2RANKSPERNODE = 16;             | ||||
|  | ||||
|  | ||||
|   // Init once lock on the buffer allocation | ||||
|   static int      _ShmSetup; | ||||
|   static int      _ShmAlloc; | ||||
|   static uint64_t _ShmAllocBytes; | ||||
|  | ||||
|  public: | ||||
|   /////////////////////////////////////// | ||||
|   // HPE 8600 hypercube optimisation | ||||
|   /////////////////////////////////////// | ||||
|   static int HPEhypercube; | ||||
|  | ||||
|   static int      ShmSetup(void)      { return _ShmSetup; } | ||||
|   static int      ShmAlloc(void)      { return _ShmAlloc; } | ||||
|   static uint64_t ShmAllocBytes(void) { return _ShmAllocBytes; } | ||||
| @@ -75,9 +84,7 @@ public: | ||||
|   static int           Hugepages; | ||||
|  | ||||
|   static std::vector<void *> WorldShmCommBufs; | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|   static void *HostCommBuf; | ||||
| #endif | ||||
|  | ||||
|   static Grid_MPI_Comm WorldComm; | ||||
|   static int           WorldRank; | ||||
|   static int           WorldSize; | ||||
| @@ -95,18 +102,12 @@ public: | ||||
|   // Create an optimal reordered communicator that makes MPI_Cart_create get it right | ||||
|   ////////////////////////////////////////////////////////////////////////////////////// | ||||
|   static void Init(Grid_MPI_Comm comm); // Typically MPI_COMM_WORLD | ||||
|   // Turns MPI_COMM_WORLD into right layout for Cartesian | ||||
|   static void OptimalCommunicator            (const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims);  | ||||
|   static void OptimalCommunicatorHypercube   (const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims);  | ||||
|   static void OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims);  | ||||
|   static void GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims); | ||||
|   static void OptimalCommunicator(const std::vector<int> &processors,Grid_MPI_Comm & optimal_comm);  // Turns MPI_COMM_WORLD into right layout for Cartesian | ||||
|   /////////////////////////////////////////////////// | ||||
|   // Provide shared memory facilities off comm world | ||||
|   /////////////////////////////////////////////////// | ||||
|   static void SharedMemoryAllocate(uint64_t bytes, int flags); | ||||
|   static void SharedMemoryFree(void); | ||||
|   static void SharedMemoryCopy(void *dest,void *src,size_t bytes); | ||||
|   static void SharedMemoryZero(void *dest,size_t bytes); | ||||
|  | ||||
| }; | ||||
|  | ||||
| @@ -122,13 +123,6 @@ private: | ||||
|   size_t heap_bytes; | ||||
|   size_t heap_size; | ||||
|  | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|   size_t host_heap_top;  // set in free all | ||||
|   size_t host_heap_bytes;// set in free all | ||||
|   void *HostCommBuf;     // set in SetCommunicator | ||||
|   size_t host_heap_size; // set in SetCommunicator | ||||
| #endif | ||||
|    | ||||
|  protected: | ||||
|  | ||||
|   Grid_MPI_Comm    ShmComm; // for barriers | ||||
| @@ -154,16 +148,12 @@ public: | ||||
|   // Call on any instance | ||||
|   /////////////////////////////////////////////////// | ||||
|   void SharedMemoryTest(void); | ||||
|    | ||||
|   void *ShmBufferSelf(void); | ||||
|   void *ShmBuffer    (int rank); | ||||
|   void *ShmBufferTranslate(int rank,void * local_p); | ||||
|   void *ShmBufferMalloc(size_t bytes); | ||||
|   void  ShmBufferFreeAll(void) ; | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|   void *HostBufferMalloc(size_t bytes); | ||||
|   void HostBufferFreeAll(void); | ||||
| #endif   | ||||
|    | ||||
|   ////////////////////////////////////////////////////////////////////////// | ||||
|   // Make info on Nodes & ranks and Shared memory available | ||||
|   ////////////////////////////////////////////////////////////////////////// | ||||
| @@ -172,5 +162,4 @@ public: | ||||
|  | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| } | ||||
|   | ||||
| @@ -7,7 +7,6 @@ | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: Christoph Lehner <christoph@lhnr.de> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
| @@ -27,132 +26,10 @@ Author: Christoph Lehner <christoph@lhnr.de> | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
|  | ||||
| #define Mheader "SharedMemoryMpi: " | ||||
|  | ||||
| #include <Grid/GridCore.h> | ||||
| #include <pwd.h> | ||||
|  | ||||
| #ifdef GRID_CUDA | ||||
| #include <cuda_runtime_api.h> | ||||
| #endif | ||||
| #ifdef GRID_HIP | ||||
| #include <hip/hip_runtime_api.h> | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
| #ifdef ACCELERATOR_AWARE_MPI | ||||
| #define GRID_SYCL_LEVEL_ZERO_IPC | ||||
| #define SHM_SOCKETS | ||||
| #endif  | ||||
| #include <syscall.h> | ||||
| #endif | ||||
|  | ||||
| #include <sys/socket.h> | ||||
| #include <sys/un.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid);  | ||||
|  | ||||
| #ifdef SHM_SOCKETS | ||||
|  | ||||
| /* | ||||
|  * Barbaric extra intranode communication route in case we need sockets to pass FDs | ||||
|  * Forced by level_zero not being nicely designed | ||||
|  */ | ||||
| static int sock; | ||||
| static const char *sock_path_fmt = "/tmp/GridUnixSocket.%d"; | ||||
| static char sock_path[256]; | ||||
| class UnixSockets { | ||||
| public: | ||||
|   static void Open(int rank) | ||||
|   { | ||||
|     int errnum; | ||||
|  | ||||
|     sock = socket(AF_UNIX, SOCK_DGRAM, 0);  assert(sock>0); | ||||
|  | ||||
|     struct sockaddr_un sa_un = { 0 }; | ||||
|     sa_un.sun_family = AF_UNIX; | ||||
|     snprintf(sa_un.sun_path, sizeof(sa_un.sun_path),sock_path_fmt,rank); | ||||
|     unlink(sa_un.sun_path); | ||||
|     if (bind(sock, (struct sockaddr *)&sa_un, sizeof(sa_un))) { | ||||
|       perror("bind failure"); | ||||
|       exit(EXIT_FAILURE); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   static int RecvFileDescriptor(void) | ||||
|   { | ||||
|     int n; | ||||
|     int fd; | ||||
|     char buf[1]; | ||||
|     struct iovec iov; | ||||
|     struct msghdr msg; | ||||
|     struct cmsghdr *cmsg; | ||||
|     char cms[CMSG_SPACE(sizeof(int))]; | ||||
|  | ||||
|     iov.iov_base = buf; | ||||
|     iov.iov_len = 1; | ||||
|  | ||||
|     memset(&msg, 0, sizeof msg); | ||||
|     msg.msg_name = 0; | ||||
|     msg.msg_namelen = 0; | ||||
|     msg.msg_iov = &iov; | ||||
|     msg.msg_iovlen = 1; | ||||
|  | ||||
|     msg.msg_control = (caddr_t)cms; | ||||
|     msg.msg_controllen = sizeof cms; | ||||
|  | ||||
|     if((n=recvmsg(sock, &msg, 0)) < 0) { | ||||
|       perror("recvmsg failed"); | ||||
|       return -1; | ||||
|     } | ||||
|     if(n == 0){ | ||||
|       perror("recvmsg returned 0"); | ||||
|       return -1; | ||||
|     } | ||||
|     cmsg = CMSG_FIRSTHDR(&msg); | ||||
|  | ||||
|     memmove(&fd, CMSG_DATA(cmsg), sizeof(int)); | ||||
|  | ||||
|     return fd; | ||||
|   } | ||||
|  | ||||
|   static void SendFileDescriptor(int fildes,int xmit_to_rank) | ||||
|   { | ||||
|     struct msghdr msg; | ||||
|     struct iovec iov; | ||||
|     struct cmsghdr *cmsg = NULL; | ||||
|     char ctrl[CMSG_SPACE(sizeof(int))]; | ||||
|     char data = ' '; | ||||
|  | ||||
|     memset(&msg, 0, sizeof(struct msghdr)); | ||||
|     memset(ctrl, 0, CMSG_SPACE(sizeof(int))); | ||||
|     iov.iov_base = &data; | ||||
|     iov.iov_len = sizeof(data); | ||||
|      | ||||
|     sprintf(sock_path,sock_path_fmt,xmit_to_rank); | ||||
|      | ||||
|     struct sockaddr_un sa_un = { 0 }; | ||||
|     sa_un.sun_family = AF_UNIX; | ||||
|     snprintf(sa_un.sun_path, sizeof(sa_un.sun_path),sock_path_fmt,xmit_to_rank); | ||||
|  | ||||
|     msg.msg_name = (void *)&sa_un; | ||||
|     msg.msg_namelen = sizeof(sa_un); | ||||
|     msg.msg_iov = &iov; | ||||
|     msg.msg_iovlen = 1; | ||||
|     msg.msg_controllen =  CMSG_SPACE(sizeof(int)); | ||||
|     msg.msg_control = ctrl; | ||||
|  | ||||
|     cmsg = CMSG_FIRSTHDR(&msg); | ||||
|     cmsg->cmsg_level = SOL_SOCKET; | ||||
|     cmsg->cmsg_type = SCM_RIGHTS; | ||||
|     cmsg->cmsg_len = CMSG_LEN(sizeof(int)); | ||||
|  | ||||
|     *((int *) CMSG_DATA(cmsg)) = fildes; | ||||
|  | ||||
|     sendmsg(sock, &msg, 0); | ||||
|   }; | ||||
| }; | ||||
| #endif | ||||
|  | ||||
| namespace Grid {  | ||||
|  | ||||
| /*Construct from an MPI communicator*/ | ||||
| void GlobalSharedMemory::Init(Grid_MPI_Comm comm) | ||||
| @@ -166,26 +43,15 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm) | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
|   // Split into groups that can share memory | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
| #ifndef GRID_MPI3_SHM_NONE | ||||
|   MPI_Comm_split_type(comm, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&WorldShmComm); | ||||
| #else | ||||
|   MPI_Comm_split(comm, WorldRank, 0, &WorldShmComm); | ||||
| #endif | ||||
|  | ||||
|   MPI_Comm_rank(WorldShmComm     ,&WorldShmRank); | ||||
|   MPI_Comm_size(WorldShmComm     ,&WorldShmSize); | ||||
|  | ||||
|   if ( WorldRank == 0) { | ||||
|     std::cout << Mheader " World communicator of size " <<WorldSize << std::endl;   | ||||
|     std::cout << Mheader " Node  communicator of size " <<WorldShmSize << std::endl; | ||||
|   } | ||||
|   // WorldShmComm, WorldShmSize, WorldShmRank | ||||
|  | ||||
|   // WorldNodes | ||||
|   WorldNodes = WorldSize/WorldShmSize; | ||||
|   assert( (WorldNodes * WorldShmSize) == WorldSize ); | ||||
|  | ||||
|  | ||||
|   // FIXME: Check all WorldShmSize are the same ? | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
| @@ -264,25 +130,9 @@ int Log2Size(int TwoToPower,int MAXLOG2) | ||||
|   } | ||||
|   return log2size; | ||||
| } | ||||
| void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM) | ||||
| { | ||||
|   ////////////////////////////////////////////////////////////////////////////// | ||||
|   // Look and see if it looks like an HPE 8600 based on hostname conventions | ||||
|   ////////////////////////////////////////////////////////////////////////////// | ||||
|   const int namelen = _POSIX_HOST_NAME_MAX; | ||||
|   char name[namelen]; | ||||
|   int R; | ||||
|   int I; | ||||
|   int N; | ||||
|   gethostname(name,namelen); | ||||
|   int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ; | ||||
|  | ||||
|   if(nscan==3 && HPEhypercube ) OptimalCommunicatorHypercube(processors,optimal_comm,SHM); | ||||
|   else                          OptimalCommunicatorSharedMemory(processors,optimal_comm,SHM); | ||||
| } | ||||
|  | ||||
| void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM) | ||||
| void GlobalSharedMemory::OptimalCommunicator(const std::vector<int> &processors,Grid_MPI_Comm & optimal_comm) | ||||
| { | ||||
| #ifdef HYPERCUBE | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Assert power of two shm_size. | ||||
|   //////////////////////////////////////////////////////////////// | ||||
| @@ -323,9 +173,9 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo | ||||
|   } | ||||
|  | ||||
|   std::string hname(name); | ||||
|   //  std::cout << "hostname "<<hname<<std::endl; | ||||
|   //  std::cout << "R " << R << " I " << I << " N "<< N | ||||
|   //            << " hypercoor 0x"<<std::hex<<hypercoor<<std::dec<<std::endl; | ||||
|   std::cout << "hostname "<<hname<<std::endl; | ||||
|   std::cout << "R " << R << " I " << I << " N "<< N | ||||
|             << " hypercoor 0x"<<std::hex<<hypercoor<<std::dec<<std::endl; | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////// | ||||
|   // broadcast node 0's base coordinate for this partition. | ||||
| @@ -347,14 +197,16 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo | ||||
|   // in a maximally symmetrical way | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   int ndimension              = processors.size(); | ||||
|   Coordinate processor_coor(ndimension); | ||||
|   Coordinate WorldDims = processors; | ||||
|   Coordinate ShmDims  (ndimension);  Coordinate NodeDims (ndimension); | ||||
|   Coordinate ShmCoor  (ndimension);    Coordinate NodeCoor (ndimension);    Coordinate WorldCoor(ndimension); | ||||
|   Coordinate HyperCoor(ndimension); | ||||
|  | ||||
|   GetShmDims(WorldDims,ShmDims); | ||||
|   SHM = ShmDims; | ||||
|   std::vector<int> processor_coor(ndimension); | ||||
|   std::vector<int> WorldDims = processors;   std::vector<int> ShmDims  (ndimension,1);  std::vector<int> NodeDims (ndimension); | ||||
|   std::vector<int> ShmCoor  (ndimension);    std::vector<int> NodeCoor (ndimension);    std::vector<int> WorldCoor(ndimension); | ||||
|   std::vector<int> HyperCoor(ndimension); | ||||
|   int dim = 0; | ||||
|   for(int l2=0;l2<log2size;l2++){ | ||||
|     while ( (WorldDims[dim] / ShmDims[dim]) <= 1 ) dim=(dim+1)%ndimension; | ||||
|     ShmDims[dim]*=2; | ||||
|     dim=(dim+1)%ndimension; | ||||
|   } | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Establish torus of processes and nodes with sub-blockings | ||||
| @@ -401,20 +253,27 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo | ||||
|   ///////////////////////////////////////////////////////////////// | ||||
|   int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm); | ||||
|   assert(ierr==0); | ||||
| } | ||||
| void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM) | ||||
| { | ||||
| #else  | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Assert power of two shm_size. | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   int log2size = Log2Size(WorldShmSize,MAXLOG2RANKSPERNODE); | ||||
|   assert(log2size != -1); | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Identify subblock of ranks on node spreading across dims | ||||
|   // in a maximally symmetrical way | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   int ndimension              = processors.size(); | ||||
|   Coordinate processor_coor(ndimension); | ||||
|   Coordinate WorldDims = processors; Coordinate ShmDims(ndimension);  Coordinate NodeDims (ndimension); | ||||
|   Coordinate ShmCoor(ndimension);    Coordinate NodeCoor(ndimension);   Coordinate WorldCoor(ndimension); | ||||
|  | ||||
|   GetShmDims(WorldDims,ShmDims); | ||||
|   SHM=ShmDims; | ||||
|   std::vector<int> processor_coor(ndimension); | ||||
|   std::vector<int> WorldDims = processors;   std::vector<int> ShmDims  (ndimension,1);  std::vector<int> NodeDims (ndimension); | ||||
|   std::vector<int> ShmCoor  (ndimension);    std::vector<int> NodeCoor (ndimension);    std::vector<int> WorldCoor(ndimension); | ||||
|   int dim = 0; | ||||
|   for(int l2=0;l2<log2size;l2++){ | ||||
|     while ( (WorldDims[dim] / ShmDims[dim]) <= 1 ) dim=(dim+1)%ndimension; | ||||
|     ShmDims[dim]*=2; | ||||
|     dim=(dim+1)%ndimension; | ||||
|   } | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Establish torus of processes and nodes with sub-blockings | ||||
| @@ -447,6 +306,7 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce | ||||
|   ///////////////////////////////////////////////////////////////// | ||||
|   int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm); | ||||
|   assert(ierr==0); | ||||
| #endif | ||||
| } | ||||
| //////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // SHMGET | ||||
| @@ -454,7 +314,7 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce | ||||
| #ifdef GRID_MPI3_SHMGET | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| { | ||||
|   std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl; | ||||
|   std::cout << "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl; | ||||
|   assert(_ShmSetup==1); | ||||
|   assert(_ShmAlloc==0); | ||||
|  | ||||
| @@ -477,7 +337,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
|         int errsv = errno; | ||||
|         printf("Errno %d\n",errsv); | ||||
|         printf("key   %d\n",key); | ||||
|         printf("size  %ld\n",size); | ||||
|         printf("size  %lld\n",size); | ||||
|         printf("flags %d\n",flags); | ||||
|         perror("shmget"); | ||||
|         exit(1); | ||||
| @@ -513,202 +373,10 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| //////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Hugetlbfs mapping intended | ||||
| //////////////////////////////////////////////////////////////////////////////////////////// | ||||
| #if defined(GRID_CUDA) ||defined(GRID_HIP)  || defined(GRID_SYCL) | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| { | ||||
|   void * ShmCommBuf ;  | ||||
|   assert(_ShmSetup==1); | ||||
|   assert(_ShmAlloc==0); | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // allocate the pointer array for shared windows for our group | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   MPI_Barrier(WorldShmComm); | ||||
|   WorldShmCommBufs.resize(WorldShmSize); | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // TODO/FIXME : NOT ALL NVLINK BOARDS have full Peer to peer connectivity. | ||||
|   // The annoyance is that they have partial peer 2 peer. This occurs on the 8 GPU blades. | ||||
|   // e.g. DGX1, supermicro board,  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   //  cudaDeviceGetP2PAttribute(&perfRank, cudaDevP2PAttrPerformanceRank, device1, device2); | ||||
|  | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Each MPI rank should allocate our own buffer | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|   HostCommBuf= malloc(bytes); | ||||
| #endif   | ||||
|   ShmCommBuf = acceleratorAllocDevice(bytes); | ||||
|   if (ShmCommBuf == (void *)NULL ) { | ||||
|     std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl; | ||||
|     exit(EXIT_FAILURE);   | ||||
|   } | ||||
|   if ( WorldRank == 0 ){ | ||||
|     std::cout << WorldRank << Mheader " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes  | ||||
| 	      << "bytes at "<< std::hex<< ShmCommBuf << " - "<<(bytes-1+(uint64_t)ShmCommBuf) <<std::dec<<" for comms buffers " <<std::endl; | ||||
|   } | ||||
|   SharedMemoryZero(ShmCommBuf,bytes); | ||||
|   std::cout<< "Setting up IPC"<<std::endl; | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Loop over ranks/gpu's on our node | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| #ifdef SHM_SOCKETS | ||||
|   UnixSockets::Open(WorldShmRank); | ||||
| #endif | ||||
|   for(int r=0;r<WorldShmSize;r++){ | ||||
|  | ||||
|     MPI_Barrier(WorldShmComm); | ||||
|  | ||||
| #ifndef GRID_MPI3_SHM_NONE | ||||
|     ////////////////////////////////////////////////// | ||||
|     // If it is me, pass around the IPC access key | ||||
|     ////////////////////////////////////////////////// | ||||
|     void * thisBuf = ShmCommBuf; | ||||
|     if(!Stencil_force_mpi) { | ||||
| #ifdef GRID_SYCL_LEVEL_ZERO_IPC | ||||
|     typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t; | ||||
|  | ||||
|     auto zeDevice    = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device()); | ||||
|     auto zeContext   = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context()); | ||||
|        | ||||
|     ze_ipc_mem_handle_t ihandle; | ||||
|     clone_mem_t handle; | ||||
|      | ||||
|     if ( r==WorldShmRank ) {  | ||||
|       auto err = zeMemGetIpcHandle(zeContext,ShmCommBuf,&ihandle); | ||||
|       if ( err != ZE_RESULT_SUCCESS ) { | ||||
| 	std::cerr << "SharedMemoryMPI.cc zeMemGetIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl; | ||||
| 	exit(EXIT_FAILURE); | ||||
|       } else { | ||||
| 	std::cout << "SharedMemoryMPI.cc zeMemGetIpcHandle succeeded for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl; | ||||
|       } | ||||
|       memcpy((void *)&handle.fd,(void *)&ihandle,sizeof(int)); | ||||
|       handle.pid = getpid(); | ||||
|       memcpy((void *)&handle.ze,(void *)&ihandle,sizeof(ihandle)); | ||||
| #ifdef SHM_SOCKETS | ||||
|       for(int rr=0;rr<WorldShmSize;rr++){ | ||||
| 	if(rr!=r){ | ||||
| 	  UnixSockets::SendFileDescriptor(handle.fd,rr); | ||||
| 	} | ||||
|       } | ||||
| #endif | ||||
|     } | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cudaIpcMemHandle_t handle; | ||||
|     if ( r==WorldShmRank ) {  | ||||
|       auto err = cudaIpcGetMemHandle(&handle,ShmCommBuf); | ||||
|       if ( err !=  cudaSuccess) { | ||||
| 	std::cerr << " SharedMemoryMPI.cc cudaIpcGetMemHandle failed for rank" << r <<" "<<cudaGetErrorString(err)<< std::endl; | ||||
| 	exit(EXIT_FAILURE); | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
| #ifdef GRID_HIP | ||||
|     hipIpcMemHandle_t handle;     | ||||
|     if ( r==WorldShmRank ) {  | ||||
|       auto err = hipIpcGetMemHandle(&handle,ShmCommBuf); | ||||
|       if ( err !=  hipSuccess) { | ||||
| 	std::cerr << " SharedMemoryMPI.cc hipIpcGetMemHandle failed for rank" << r <<" "<<hipGetErrorString(err)<< std::endl; | ||||
| 	exit(EXIT_FAILURE); | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
|  | ||||
|     ////////////////////////////////////////////////// | ||||
|     // Share this IPC handle across the Shm Comm | ||||
|     ////////////////////////////////////////////////// | ||||
|     {  | ||||
|       MPI_Barrier(WorldShmComm); | ||||
|       int ierr=MPI_Bcast(&handle, | ||||
| 			 sizeof(handle), | ||||
| 			 MPI_BYTE, | ||||
| 			 r, | ||||
| 			 WorldShmComm); | ||||
|       assert(ierr==0); | ||||
|     } | ||||
|      | ||||
|     /////////////////////////////////////////////////////////////// | ||||
|     // If I am not the source, overwrite thisBuf with remote buffer | ||||
|     /////////////////////////////////////////////////////////////// | ||||
|  | ||||
| #ifdef GRID_SYCL_LEVEL_ZERO_IPC | ||||
|     if ( r!=WorldShmRank ) { | ||||
|       thisBuf = nullptr; | ||||
|       int myfd; | ||||
| #ifdef SHM_SOCKETS | ||||
|       myfd=UnixSockets::RecvFileDescriptor(); | ||||
| #else | ||||
|       std::cout<<"mapping seeking remote pid/fd " | ||||
| 	       <<handle.pid<<"/" | ||||
| 	       <<handle.fd<<std::endl; | ||||
|  | ||||
|       int pidfd = syscall(SYS_pidfd_open,handle.pid,0); | ||||
|       std::cout<<"Using IpcHandle pidfd "<<pidfd<<"\n"; | ||||
|       //      int myfd  = syscall(SYS_pidfd_getfd,pidfd,handle.fd,0); | ||||
|       myfd  = syscall(438,pidfd,handle.fd,0); | ||||
|       int err_t = errno; | ||||
|       if (myfd < 0) { | ||||
|         fprintf(stderr,"pidfd_getfd returned %d errno was %d\n", myfd,err_t); fflush(stderr); | ||||
| 	perror("pidfd_getfd failed "); | ||||
| 	assert(0); | ||||
|       } | ||||
| #endif | ||||
|       std::cout<<"Using IpcHandle mapped remote pid "<<handle.pid <<" FD "<<handle.fd <<" to myfd "<<myfd<<"\n"; | ||||
|       memcpy((void *)&ihandle,(void *)&handle.ze,sizeof(ihandle)); | ||||
|       memcpy((void *)&ihandle,(void *)&myfd,sizeof(int)); | ||||
|  | ||||
|       auto err = zeMemOpenIpcHandle(zeContext,zeDevice,ihandle,0,&thisBuf); | ||||
|       if ( err != ZE_RESULT_SUCCESS ) { | ||||
| 	std::cerr << "SharedMemoryMPI.cc "<<zeContext<<" "<<zeDevice<<std::endl; | ||||
| 	std::cerr << "SharedMemoryMPI.cc zeMemOpenIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;  | ||||
| 	exit(EXIT_FAILURE); | ||||
|       } else { | ||||
| 	std::cout << "SharedMemoryMPI.cc zeMemOpenIpcHandle succeeded for rank "<<r<<std::endl; | ||||
| 	std::cout << "SharedMemoryMPI.cc zeMemOpenIpcHandle pointer is "<<std::hex<<thisBuf<<std::dec<<std::endl; | ||||
|       } | ||||
|       assert(thisBuf!=nullptr); | ||||
|     } | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     if ( r!=WorldShmRank ) {  | ||||
|       auto err = cudaIpcOpenMemHandle(&thisBuf,handle,cudaIpcMemLazyEnablePeerAccess); | ||||
|       if ( err !=  cudaSuccess) { | ||||
| 	std::cerr << " SharedMemoryMPI.cc cudaIpcOpenMemHandle failed for rank" << r <<" "<<cudaGetErrorString(err)<< std::endl; | ||||
| 	exit(EXIT_FAILURE); | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
| #ifdef GRID_HIP | ||||
|     if ( r!=WorldShmRank ) {  | ||||
|       auto err = hipIpcOpenMemHandle(&thisBuf,handle,hipIpcMemLazyEnablePeerAccess); | ||||
|       if ( err !=  hipSuccess) { | ||||
| 	std::cerr << " SharedMemoryMPI.cc hipIpcOpenMemHandle failed for rank" << r <<" "<<hipGetErrorString(err)<< std::endl; | ||||
| 	exit(EXIT_FAILURE); | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
|     /////////////////////////////////////////////////////////////// | ||||
|     // Save a copy of the device buffers | ||||
|     /////////////////////////////////////////////////////////////// | ||||
|     } | ||||
|     WorldShmCommBufs[r] = thisBuf; | ||||
| #else | ||||
|     WorldShmCommBufs[r] = ShmCommBuf; | ||||
| #endif | ||||
|     MPI_Barrier(WorldShmComm); | ||||
|   } | ||||
|  | ||||
|   _ShmAllocBytes=bytes; | ||||
|   _ShmAlloc=1; | ||||
| } | ||||
|  | ||||
| #else  | ||||
| #ifdef GRID_MPI3_SHMMMAP | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| { | ||||
|   std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl; | ||||
|   std::cout << "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl; | ||||
|   assert(_ShmSetup==1); | ||||
|   assert(_ShmAlloc==0); | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -745,7 +413,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
|     assert(((uint64_t)ptr&0x3F)==0); | ||||
|     close(fd); | ||||
|     WorldShmCommBufs[r] =ptr; | ||||
|     //    std::cout << Mheader "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl; | ||||
|     //    std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl; | ||||
|   } | ||||
|   _ShmAlloc=1; | ||||
|   _ShmAllocBytes  = bytes; | ||||
| @@ -755,7 +423,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| #ifdef GRID_MPI3_SHM_NONE | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| { | ||||
|   std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl; | ||||
|   std::cout << "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl; | ||||
|   assert(_ShmSetup==1); | ||||
|   assert(_ShmAlloc==0); | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -802,7 +470,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| //////////////////////////////////////////////////////////////////////////////////////////// | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| {  | ||||
|   std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl; | ||||
|   std::cout << "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl; | ||||
|   assert(_ShmSetup==1); | ||||
|   assert(_ShmAlloc==0);  | ||||
|   MPI_Barrier(WorldShmComm); | ||||
| @@ -831,6 +499,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| #endif | ||||
|       void * ptr =  mmap(NULL,size, PROT_READ | PROT_WRITE, mmap_flag, fd, 0); | ||||
|        | ||||
|       //      std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< size<< "bytes)"<<std::endl; | ||||
|       if ( ptr == (void * )MAP_FAILED ) {        | ||||
| 	perror("failed mmap");      | ||||
| 	assert(0);     | ||||
| @@ -867,27 +536,10 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
|   _ShmAllocBytes = bytes; | ||||
| } | ||||
| #endif | ||||
| #endif // End NVCC case for GPU device buffers | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////// | ||||
| // Routines accessing shared memory should route through for GPU safety | ||||
| ///////////////////////////////////////////////////////////////////////// | ||||
| void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes) | ||||
| { | ||||
| #if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL) | ||||
|   acceleratorMemSet(dest,0,bytes); | ||||
| #else | ||||
|   bzero(dest,bytes); | ||||
| #endif | ||||
| } | ||||
| void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes) | ||||
| { | ||||
| #if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL) | ||||
|   acceleratorCopyToDevice(src,dest,bytes); | ||||
| #else    | ||||
|   bcopy(src,dest,bytes); | ||||
| #endif | ||||
| } | ||||
|  | ||||
|  | ||||
|  | ||||
|   //////////////////////////////////////////////////////// | ||||
|   // Global shared functionality finished | ||||
|   // Now move to per communicator functionality | ||||
| @@ -902,11 +554,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm) | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
|   // Split into groups that can share memory | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
| #ifndef GRID_MPI3_SHM_NONE | ||||
|   MPI_Comm_split_type(comm, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&ShmComm); | ||||
| #else | ||||
|   MPI_Comm_split(comm, rank, 0, &ShmComm); | ||||
| #endif | ||||
|   MPI_Comm_rank(ShmComm     ,&ShmRank); | ||||
|   MPI_Comm_size(ShmComm     ,&ShmSize); | ||||
|   ShmCommBufs.resize(ShmSize); | ||||
| @@ -923,15 +571,10 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm) | ||||
|     MPI_Allreduce(MPI_IN_PLACE,&wsr,1,MPI_UINT32_T,MPI_SUM,ShmComm); | ||||
|  | ||||
|     ShmCommBufs[r] = GlobalSharedMemory::WorldShmCommBufs[wsr]; | ||||
|     //    std::cout << "SetCommunicator ShmCommBufs ["<< r<< "] = "<< ShmCommBufs[r]<< "  wsr = "<<wsr<<std::endl; | ||||
|   } | ||||
|   ShmBufferFreeAll(); | ||||
|  | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|   host_heap_size = heap_size; | ||||
|   HostCommBuf= GlobalSharedMemory::HostCommBuf; | ||||
|   HostBufferFreeAll(); | ||||
| #endif   | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
|   // find comm ranks in our SHM group (i.e. which ranks are on our node) | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
| @@ -941,19 +584,6 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm) | ||||
|  | ||||
|   std::vector<int> ranks(size);   for(int r=0;r<size;r++) ranks[r]=r; | ||||
|   MPI_Group_translate_ranks (FullGroup,size,&ranks[0],ShmGroup, &ShmRanks[0]);  | ||||
|  | ||||
| #ifdef GRID_SHM_FORCE_MPI | ||||
|   // Hide the shared memory path between ranks | ||||
|   { | ||||
|     for(int r=0;r<size;r++){ | ||||
|       if ( r!=rank ) { | ||||
| 	ShmRanks[r] = MPI_UNDEFINED; | ||||
|       } | ||||
|     } | ||||
|   } | ||||
| #endif | ||||
|  | ||||
|   //SharedMemoryTest(); | ||||
| } | ||||
| ////////////////////////////////////////////////////////////////// | ||||
| // On node barrier | ||||
| @@ -968,26 +598,24 @@ void SharedMemory::ShmBarrier(void) | ||||
| void SharedMemory::SharedMemoryTest(void) | ||||
| { | ||||
|   ShmBarrier(); | ||||
|   uint64_t check[3]; | ||||
|   uint64_t magic = 0x5A5A5A; | ||||
|   if ( ShmRank == 0 ) { | ||||
|     for(uint64_t r=0;r<ShmSize;r++){ | ||||
|     for(int r=0;r<ShmSize;r++){ | ||||
|       uint64_t * check = (uint64_t *) ShmCommBufs[r]; | ||||
|       check[0] = GlobalSharedMemory::WorldNode; | ||||
|       check[1] = r; | ||||
|        check[2]=magic; | ||||
|        GlobalSharedMemory::SharedMemoryCopy( ShmCommBufs[r], check, 3*sizeof(uint64_t)); | ||||
|       check[2] = 0x5A5A5A; | ||||
|     } | ||||
|   } | ||||
|   ShmBarrier(); | ||||
|   for(uint64_t r=0;r<ShmSize;r++){ | ||||
|     ShmBarrier(); | ||||
|     GlobalSharedMemory::SharedMemoryCopy(check,ShmCommBufs[r], 3*sizeof(uint64_t)); | ||||
|     ShmBarrier(); | ||||
|   for(int r=0;r<ShmSize;r++){ | ||||
|     uint64_t * check = (uint64_t *) ShmCommBufs[r]; | ||||
|      | ||||
|     assert(check[0]==GlobalSharedMemory::WorldNode); | ||||
|     assert(check[1]==r); | ||||
|     assert(check[2]==magic); | ||||
|     ShmBarrier(); | ||||
|     assert(check[2]==0x5A5A5A); | ||||
|      | ||||
|   } | ||||
|   ShmBarrier(); | ||||
| } | ||||
|  | ||||
| void *SharedMemory::ShmBuffer(int rank) | ||||
| @@ -1001,6 +629,7 @@ void *SharedMemory::ShmBuffer(int rank) | ||||
| } | ||||
| void *SharedMemory::ShmBufferTranslate(int rank,void * local_p) | ||||
| { | ||||
|   static int count =0; | ||||
|   int gpeer = ShmRanks[rank]; | ||||
|   assert(gpeer!=ShmRank); // never send to self | ||||
|   if (gpeer == MPI_UNDEFINED){ | ||||
| @@ -1019,5 +648,4 @@ SharedMemory::~SharedMemory() | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid);  | ||||
|  | ||||
| } | ||||
|   | ||||
| @@ -28,8 +28,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
| #include <Grid/GridCore.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid);  | ||||
| #define header "SharedMemoryNone: " | ||||
| namespace Grid {  | ||||
|  | ||||
| /*Construct from an MPI communicator*/ | ||||
| void GlobalSharedMemory::Init(Grid_MPI_Comm comm) | ||||
| @@ -48,47 +47,14 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm) | ||||
|   _ShmSetup=1; | ||||
| } | ||||
|  | ||||
| void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM) | ||||
| void GlobalSharedMemory::OptimalCommunicator(const std::vector<int> &processors,Grid_MPI_Comm & optimal_comm) | ||||
| { | ||||
|   optimal_comm = WorldComm; | ||||
|   SHM = Coordinate(processors.size(),1); | ||||
| } | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Hugetlbfs mapping intended, use anonymous mmap | ||||
| //////////////////////////////////////////////////////////////////////////////////////////// | ||||
| #if 1 | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| { | ||||
|   std::cout << header "SharedMemoryAllocate "<< bytes<< " GPU implementation "<<std::endl; | ||||
|   void * ShmCommBuf ;  | ||||
|   assert(_ShmSetup==1); | ||||
|   assert(_ShmAlloc==0); | ||||
|  | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Each MPI rank should allocate our own buffer | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   ShmCommBuf = acceleratorAllocDevice(bytes); | ||||
|  | ||||
|   if (ShmCommBuf == (void *)NULL ) { | ||||
|     std::cerr << " SharedMemoryNone.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl; | ||||
|     exit(EXIT_FAILURE);   | ||||
|   } | ||||
|   if ( WorldRank == 0 ){ | ||||
|     std::cout << WorldRank << header " SharedMemoryNone.cc acceleratorAllocDevice "<< bytes  | ||||
| 	      << "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl; | ||||
|   } | ||||
|   SharedMemoryZero(ShmCommBuf,bytes); | ||||
|  | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Loop over ranks/gpu's on our node | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   WorldShmCommBufs[0] = ShmCommBuf; | ||||
|  | ||||
|   _ShmAllocBytes=bytes; | ||||
|   _ShmAlloc=1; | ||||
| } | ||||
| #else | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| { | ||||
|   void * ShmCommBuf ;  | ||||
| @@ -117,15 +83,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
|   _ShmAllocBytes=bytes; | ||||
|   _ShmAlloc=1; | ||||
| }; | ||||
| #endif | ||||
| void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes) | ||||
| { | ||||
|   acceleratorMemSet(dest,0,bytes); | ||||
| } | ||||
| void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes) | ||||
| { | ||||
|   acceleratorCopyToDevice(src,dest,bytes); | ||||
| } | ||||
|  | ||||
|   //////////////////////////////////////////////////////// | ||||
|   // Global shared functionality finished | ||||
|   // Now move to per communicator functionality | ||||
| @@ -167,5 +125,4 @@ void *SharedMemory::ShmBufferTranslate(int rank,void * local_p) | ||||
| SharedMemory::~SharedMemory() | ||||
| {}; | ||||
|  | ||||
| NAMESPACE_END(Grid);  | ||||
|  | ||||
| } | ||||
|   | ||||
| @@ -49,14 +49,4 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #ifdef GRID_COMMS_SHMEM | ||||
| #include <Grid/cshift/Cshift_mpi.h> // uses same implementation of communicator | ||||
| #endif  | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>  | ||||
| auto Cshift(const Expression &expr,int dim,int shift)  -> decltype(closure(expr))  | ||||
| { | ||||
|   return Cshift(closure(expr),dim,shift); | ||||
| } | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -25,58 +25,37 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
|     *************************************************************************************/ | ||||
|     /*  END LEGAL */ | ||||
| #pragma once | ||||
| #ifndef _GRID_CSHIFT_COMMON_H_ | ||||
| #define _GRID_CSHIFT_COMMON_H_ | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
| extern std::vector<std::pair<int,int> > Cshift_table;  | ||||
| extern commVector<std::pair<int,int> > Cshift_table_device;  | ||||
|  | ||||
| inline std::pair<int,int> *MapCshiftTable(void) | ||||
| { | ||||
|   // GPU version | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|   uint64_t sz=Cshift_table.size(); | ||||
|   if (Cshift_table_device.size()!=sz )    { | ||||
|     Cshift_table_device.resize(sz); | ||||
|   } | ||||
|   acceleratorCopyToDevice((void *)&Cshift_table[0], | ||||
| 			  (void *)&Cshift_table_device[0], | ||||
| 			  sizeof(Cshift_table[0])*sz); | ||||
|  | ||||
|   return &Cshift_table_device[0]; | ||||
| #else  | ||||
|   return &Cshift_table[0]; | ||||
| #endif | ||||
|   // CPU version use identify map | ||||
| } | ||||
| /////////////////////////////////////////////////////////////////// | ||||
| // Gather for when there is no need to SIMD split  | ||||
| /////////////////////////////////////////////////////////////////// | ||||
| template<class vobj> void  | ||||
| Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0) | ||||
| Gather_plane_simple (const Lattice<vobj> &rhs,commVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0) | ||||
| { | ||||
|   int rd = rhs.Grid()->_rdimensions[dimension]; | ||||
|   int rd = rhs._grid->_rdimensions[dimension]; | ||||
|  | ||||
|   if ( !rhs.Grid()->CheckerBoarded(dimension) ) { | ||||
|   if ( !rhs._grid->CheckerBoarded(dimension) ) { | ||||
|     cbmask = 0x3; | ||||
|   } | ||||
|    | ||||
|   int so=plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane  | ||||
|   int e1=rhs.Grid()->_slice_nblock[dimension]; | ||||
|   int e2=rhs.Grid()->_slice_block[dimension]; | ||||
|   int so=plane*rhs._grid->_ostride[dimension]; // base offset for start of plane  | ||||
|   int e1=rhs._grid->_slice_nblock[dimension]; | ||||
|   int e2=rhs._grid->_slice_block[dimension]; | ||||
|   int ent = 0; | ||||
|  | ||||
|   if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest | ||||
|  | ||||
|   int stride=rhs.Grid()->_slice_stride[dimension]; | ||||
|   static std::vector<std::pair<int,int> > table; table.resize(e1*e2); | ||||
|  | ||||
|   int stride=rhs._grid->_slice_stride[dimension]; | ||||
|   if ( cbmask == 0x3 ) {  | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
| 	int o  = n*stride; | ||||
| 	int bo = n*e2; | ||||
| 	Cshift_table[ent++] = std::pair<int,int>(off+bo+b,so+o+b); | ||||
| 	table[ent++] = std::pair<int,int>(off+bo+b,so+o+b); | ||||
|       } | ||||
|     } | ||||
|   } else {  | ||||
| @@ -84,27 +63,15 @@ Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dim | ||||
|      for(int n=0;n<e1;n++){ | ||||
|        for(int b=0;b<e2;b++){ | ||||
| 	 int o  = n*stride; | ||||
| 	 int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b); | ||||
| 	 int ocb=1<<rhs._grid->CheckerBoardFromOindex(o+b); | ||||
| 	 if ( ocb &cbmask ) { | ||||
| 	   Cshift_table[ent++]=std::pair<int,int> (off+bo++,so+o+b); | ||||
| 	   table[ent++]=std::pair<int,int> (off+bo++,so+o+b); | ||||
| 	 } | ||||
|        } | ||||
|      } | ||||
|   } | ||||
|   { | ||||
|     auto buffer_p = & buffer[0]; | ||||
|     auto table = MapCshiftTable(); | ||||
| #ifdef ACCELERATOR_CSHIFT | ||||
|     autoView(rhs_v , rhs, AcceleratorRead); | ||||
|     accelerator_for(i,ent,vobj::Nsimd(),{ | ||||
| 	coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second])); | ||||
|     }); | ||||
| #else | ||||
|     autoView(rhs_v , rhs, CpuRead); | ||||
|     thread_for(i,ent,{ | ||||
|       buffer_p[table[i].first]=rhs_v[table[i].second]; | ||||
|     }); | ||||
| #endif | ||||
|   parallel_for(int i=0;i<ent;i++){ | ||||
|     buffer[table[i].first]=rhs._odata[table[i].second]; | ||||
|   } | ||||
| } | ||||
|  | ||||
| @@ -112,120 +79,80 @@ Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dim | ||||
| // Gather for when there *is* need to SIMD split  | ||||
| /////////////////////////////////////////////////////////////////// | ||||
| template<class vobj> void  | ||||
| Gather_plane_extract(const Lattice<vobj> &rhs, | ||||
| 		     ExtractPointerArray<typename vobj::scalar_object> pointers, | ||||
| 		     int dimension,int plane,int cbmask) | ||||
| Gather_plane_extract(const Lattice<vobj> &rhs,std::vector<typename vobj::scalar_object *> pointers,int dimension,int plane,int cbmask) | ||||
| { | ||||
|   int rd = rhs.Grid()->_rdimensions[dimension]; | ||||
|   int rd = rhs._grid->_rdimensions[dimension]; | ||||
|  | ||||
|   if ( !rhs.Grid()->CheckerBoarded(dimension) ) { | ||||
|   if ( !rhs._grid->CheckerBoarded(dimension) ) { | ||||
|     cbmask = 0x3; | ||||
|   } | ||||
|  | ||||
|   int so  = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane  | ||||
|   int so  = plane*rhs._grid->_ostride[dimension]; // base offset for start of plane  | ||||
|  | ||||
|   int e1=rhs.Grid()->_slice_nblock[dimension]; | ||||
|   int e2=rhs.Grid()->_slice_block[dimension]; | ||||
|   int n1=rhs.Grid()->_slice_stride[dimension]; | ||||
|   int e1=rhs._grid->_slice_nblock[dimension]; | ||||
|   int e2=rhs._grid->_slice_block[dimension]; | ||||
|   int n1=rhs._grid->_slice_stride[dimension]; | ||||
|  | ||||
|   if ( cbmask ==0x3){ | ||||
| #ifdef ACCELERATOR_CSHIFT | ||||
|     autoView(rhs_v , rhs, AcceleratorRead); | ||||
|     accelerator_for(nn,e1*e2,1,{ | ||||
| 	int n = nn%e1; | ||||
| 	int b = nn/e1; | ||||
|     parallel_for_nest2(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
|  | ||||
| 	int o      =   n*n1; | ||||
| 	int offset = b+n*e2; | ||||
| 	 | ||||
| 	vobj temp =rhs_v[so+o+b]; | ||||
| 	vobj temp =rhs._odata[so+o+b]; | ||||
| 	extract<vobj>(temp,pointers,offset); | ||||
|       }); | ||||
| #else | ||||
|     autoView(rhs_v , rhs, CpuRead); | ||||
|     thread_for2d(n,e1,b,e2,{ | ||||
| 	int o      =   n*n1; | ||||
| 	int offset = b+n*e2; | ||||
|  | ||||
| 	vobj temp =rhs_v[so+o+b]; | ||||
| 	extract<vobj>(temp,pointers,offset); | ||||
|       }); | ||||
| #endif | ||||
|       } | ||||
|     } | ||||
|   } else {  | ||||
|     Coordinate rdim=rhs.Grid()->_rdimensions; | ||||
|     Coordinate cdm =rhs.Grid()->_checker_dim_mask; | ||||
|     std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb? | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     autoView(rhs_v , rhs, AcceleratorRead); | ||||
|     accelerator_for(nn,e1*e2,1,{ | ||||
| 	int n = nn%e1; | ||||
| 	int b = nn/e1; | ||||
|  | ||||
| 	Coordinate coor; | ||||
|     // Case of SIMD split AND checker dim cannot currently be hit, except in  | ||||
|     // Test_cshift_red_black code. | ||||
|     std::cout << " Dense packed buffer WARNING " <<std::endl; | ||||
|     parallel_for_nest2(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
|  | ||||
| 	int o=n*n1; | ||||
| 	int oindex = o+b; | ||||
|  | ||||
|        	int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm); | ||||
|  | ||||
| 	int ocb=1<<cb; | ||||
| 	int ocb=1<<rhs._grid->CheckerBoardFromOindex(o+b); | ||||
| 	int offset = b+n*e2; | ||||
|  | ||||
| 	if ( ocb & cbmask ) { | ||||
| 	  vobj temp =rhs_v[so+o+b]; | ||||
| 	  vobj temp =rhs._odata[so+o+b]; | ||||
| 	  extract<vobj>(temp,pointers,offset); | ||||
| 	} | ||||
|       }); | ||||
| #else | ||||
|     autoView(rhs_v , rhs, CpuRead); | ||||
|     thread_for2d(n,e1,b,e2,{ | ||||
|  | ||||
| 	Coordinate coor; | ||||
|  | ||||
| 	int o=n*n1; | ||||
| 	int oindex = o+b; | ||||
|  | ||||
|        	int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm); | ||||
|  | ||||
| 	int ocb=1<<cb; | ||||
| 	int offset = b+n*e2; | ||||
|  | ||||
| 	if ( ocb & cbmask ) { | ||||
| 	  vobj temp =rhs_v[so+o+b]; | ||||
| 	  extract<vobj>(temp,pointers,offset); | ||||
|       } | ||||
|       }); | ||||
| #endif | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| ////////////////////////////////////////////////////// | ||||
| // Scatter for when there is no need to SIMD split | ||||
| ////////////////////////////////////////////////////// | ||||
| template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<vobj> &buffer, int dimension,int plane,int cbmask) | ||||
| template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,commVector<vobj> &buffer, int dimension,int plane,int cbmask) | ||||
| { | ||||
|   int rd = rhs.Grid()->_rdimensions[dimension]; | ||||
|   int rd = rhs._grid->_rdimensions[dimension]; | ||||
|  | ||||
|   if ( !rhs.Grid()->CheckerBoarded(dimension) ) { | ||||
|   if ( !rhs._grid->CheckerBoarded(dimension) ) { | ||||
|     cbmask=0x3; | ||||
|   } | ||||
|  | ||||
|   int so  = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane  | ||||
|   int so  = plane*rhs._grid->_ostride[dimension]; // base offset for start of plane  | ||||
|      | ||||
|   int e1=rhs.Grid()->_slice_nblock[dimension]; | ||||
|   int e2=rhs.Grid()->_slice_block[dimension]; | ||||
|   int stride=rhs.Grid()->_slice_stride[dimension]; | ||||
|  | ||||
|   if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest | ||||
|   int e1=rhs._grid->_slice_nblock[dimension]; | ||||
|   int e2=rhs._grid->_slice_block[dimension]; | ||||
|   int stride=rhs._grid->_slice_stride[dimension]; | ||||
|  | ||||
|   static std::vector<std::pair<int,int> > table; table.resize(e1*e2); | ||||
|   int ent    =0; | ||||
|  | ||||
|   if ( cbmask ==0x3 ) { | ||||
|  | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
| 	int o   =n*rhs.Grid()->_slice_stride[dimension]; | ||||
| 	int bo  =n*rhs.Grid()->_slice_block[dimension]; | ||||
| 	Cshift_table[ent++] = std::pair<int,int>(so+o+b,bo+b); | ||||
| 	int o   =n*rhs._grid->_slice_stride[dimension]; | ||||
| 	int bo  =n*rhs._grid->_slice_block[dimension]; | ||||
| 	table[ent++] = std::pair<int,int>(so+o+b,bo+b); | ||||
|       } | ||||
|     } | ||||
|  | ||||
| @@ -233,83 +160,57 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector< | ||||
|     int bo=0; | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
| 	int o   =n*rhs.Grid()->_slice_stride[dimension]; | ||||
| 	int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b);// Could easily be a table lookup | ||||
| 	int o   =n*rhs._grid->_slice_stride[dimension]; | ||||
| 	int ocb=1<<rhs._grid->CheckerBoardFromOindex(o+b);// Could easily be a table lookup | ||||
| 	if ( ocb & cbmask ) { | ||||
| 	  Cshift_table[ent++]=std::pair<int,int> (so+o+b,bo++); | ||||
| 	  table[ent++]=std::pair<int,int> (so+o+b,bo++); | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   { | ||||
|     auto buffer_p = & buffer[0]; | ||||
|     auto table = MapCshiftTable(); | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     autoView( rhs_v, rhs, AcceleratorWrite); | ||||
|     accelerator_for(i,ent,vobj::Nsimd(),{ | ||||
| 	coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second])); | ||||
|     }); | ||||
| #else | ||||
|     autoView( rhs_v, rhs, CpuWrite); | ||||
|     thread_for(i,ent,{ | ||||
|       rhs_v[table[i].first]=buffer_p[table[i].second]; | ||||
|     }); | ||||
| #endif | ||||
|   parallel_for(int i=0;i<ent;i++){ | ||||
|     rhs._odata[table[i].first]=buffer[table[i].second]; | ||||
|   } | ||||
| } | ||||
|  | ||||
| ////////////////////////////////////////////////////// | ||||
| // Scatter for when there *is* need to SIMD split | ||||
| ////////////////////////////////////////////////////// | ||||
| template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerArray<typename vobj::scalar_object> pointers,int dimension,int plane,int cbmask) | ||||
| template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,std::vector<typename vobj::scalar_object *> pointers,int dimension,int plane,int cbmask) | ||||
| { | ||||
|   int rd = rhs.Grid()->_rdimensions[dimension]; | ||||
|   int rd = rhs._grid->_rdimensions[dimension]; | ||||
|  | ||||
|   if ( !rhs.Grid()->CheckerBoarded(dimension) ) { | ||||
|   if ( !rhs._grid->CheckerBoarded(dimension) ) { | ||||
|     cbmask=0x3; | ||||
|   } | ||||
|  | ||||
|   int so  = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane  | ||||
|   int so  = plane*rhs._grid->_ostride[dimension]; // base offset for start of plane  | ||||
|      | ||||
|   int e1=rhs.Grid()->_slice_nblock[dimension]; | ||||
|   int e2=rhs.Grid()->_slice_block[dimension]; | ||||
|   int e1=rhs._grid->_slice_nblock[dimension]; | ||||
|   int e2=rhs._grid->_slice_block[dimension]; | ||||
|  | ||||
|   if(cbmask ==0x3 ) { | ||||
|     int _slice_stride = rhs.Grid()->_slice_stride[dimension]; | ||||
|     int _slice_block = rhs.Grid()->_slice_block[dimension]; | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     autoView( rhs_v , rhs, AcceleratorWrite); | ||||
|     accelerator_for(nn,e1*e2,1,{ | ||||
| 	int n = nn%e1; | ||||
| 	int b = nn/e1; | ||||
| 	int o      = n*_slice_stride; | ||||
| 	int offset = b+n*_slice_block; | ||||
| 	merge(rhs_v[so+o+b],pointers,offset); | ||||
|       }); | ||||
| #else | ||||
|     autoView( rhs_v , rhs, CpuWrite); | ||||
|     thread_for2d(n,e1,b,e2,{ | ||||
| 	int o      = n*_slice_stride; | ||||
| 	int offset = b+n*_slice_block; | ||||
| 	merge(rhs_v[so+o+b],pointers,offset); | ||||
|     }); | ||||
| #endif | ||||
|     parallel_for_nest2(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
| 	int o      = n*rhs._grid->_slice_stride[dimension]; | ||||
| 	int offset = b+n*rhs._grid->_slice_block[dimension]; | ||||
| 	merge(rhs._odata[so+o+b],pointers,offset); | ||||
|       } | ||||
|     } | ||||
|   } else {  | ||||
|  | ||||
|     // Case of SIMD split AND checker dim cannot currently be hit, except in  | ||||
|     // Test_cshift_red_black code. | ||||
|     std::cout << "Scatter_plane merge assert(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME | ||||
|     //    std::cout << "Scatter_plane merge assert(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME | ||||
|     std::cout<<" Unthreaded warning -- buffer is not densely packed ??"<<std::endl; | ||||
|     assert(0); // This will fail if hit on GPU | ||||
|     autoView( rhs_v, rhs, CpuWrite); | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
| 	int o      = n*rhs.Grid()->_slice_stride[dimension]; | ||||
| 	int offset = b+n*rhs.Grid()->_slice_block[dimension]; | ||||
| 	int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b); | ||||
| 	int o      = n*rhs._grid->_slice_stride[dimension]; | ||||
| 	int offset = b+n*rhs._grid->_slice_block[dimension]; | ||||
| 	int ocb=1<<rhs._grid->CheckerBoardFromOindex(o+b); | ||||
| 	if ( ocb&cbmask ) { | ||||
| 	  merge(rhs_v[so+o+b],pointers,offset); | ||||
| 	  merge(rhs._odata[so+o+b],pointers,offset); | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
| @@ -319,112 +220,85 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA | ||||
| ////////////////////////////////////////////////////// | ||||
| // local to node block strided copies | ||||
| ////////////////////////////////////////////////////// | ||||
|  | ||||
| template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs, int dimension,int lplane,int rplane,int cbmask) | ||||
| { | ||||
|   int rd = rhs.Grid()->_rdimensions[dimension]; | ||||
|   int rd = rhs._grid->_rdimensions[dimension]; | ||||
|  | ||||
|   if ( !rhs.Grid()->CheckerBoarded(dimension) ) { | ||||
|   if ( !rhs._grid->CheckerBoarded(dimension) ) { | ||||
|     cbmask=0x3; | ||||
|   } | ||||
|  | ||||
|   int ro  = rplane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane  | ||||
|   int lo  = lplane*lhs.Grid()->_ostride[dimension]; // base offset for start of plane  | ||||
|  | ||||
|   int e1=rhs.Grid()->_slice_nblock[dimension]; // clearly loop invariant for icpc | ||||
|   int e2=rhs.Grid()->_slice_block[dimension]; | ||||
|   int stride = rhs.Grid()->_slice_stride[dimension]; | ||||
|  | ||||
|   if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest | ||||
|   int ro  = rplane*rhs._grid->_ostride[dimension]; // base offset for start of plane  | ||||
|   int lo  = lplane*lhs._grid->_ostride[dimension]; // base offset for start of plane  | ||||
|  | ||||
|   int e1=rhs._grid->_slice_nblock[dimension]; // clearly loop invariant for icpc | ||||
|   int e2=rhs._grid->_slice_block[dimension]; | ||||
|   int stride = rhs._grid->_slice_stride[dimension]; | ||||
|   static std::vector<std::pair<int,int> > table; table.resize(e1*e2); | ||||
|   int ent=0; | ||||
|  | ||||
|   if(cbmask == 0x3 ){ | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
|         int o =n*stride+b; | ||||
| 	Cshift_table[ent++] = std::pair<int,int>(lo+o,ro+o); | ||||
| 	table[ent++] = std::pair<int,int>(lo+o,ro+o); | ||||
|       } | ||||
|     } | ||||
|   } else {  | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
|         int o =n*stride+b; | ||||
|         int ocb=1<<lhs.Grid()->CheckerBoardFromOindex(o); | ||||
|         int ocb=1<<lhs._grid->CheckerBoardFromOindex(o); | ||||
|         if ( ocb&cbmask ) { | ||||
| 	  Cshift_table[ent++] = std::pair<int,int>(lo+o,ro+o); | ||||
| 	  table[ent++] = std::pair<int,int>(lo+o,ro+o); | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   { | ||||
|     auto table = MapCshiftTable(); | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     autoView(rhs_v , rhs, AcceleratorRead); | ||||
|     autoView(lhs_v , lhs, AcceleratorWrite); | ||||
|     accelerator_for(i,ent,vobj::Nsimd(),{ | ||||
|       coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second])); | ||||
|     }); | ||||
| #else | ||||
|     autoView(rhs_v , rhs, CpuRead); | ||||
|     autoView(lhs_v , lhs, CpuWrite); | ||||
|     thread_for(i,ent,{ | ||||
|       lhs_v[table[i].first]=rhs_v[table[i].second]; | ||||
|     }); | ||||
| #endif | ||||
|   parallel_for(int i=0;i<ent;i++){ | ||||
|     lhs._odata[table[i].first]=rhs._odata[table[i].second]; | ||||
|   } | ||||
|  | ||||
| } | ||||
|  | ||||
| template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vobj> &rhs, int dimension,int lplane,int rplane,int cbmask,int permute_type) | ||||
| { | ||||
|   int rd = rhs.Grid()->_rdimensions[dimension]; | ||||
|   | ||||
|   if ( !rhs.Grid()->CheckerBoarded(dimension) ) { | ||||
|   int rd = rhs._grid->_rdimensions[dimension]; | ||||
|  | ||||
|   if ( !rhs._grid->CheckerBoarded(dimension) ) { | ||||
|     cbmask=0x3; | ||||
|   } | ||||
|  | ||||
|   int ro  = rplane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane  | ||||
|   int lo  = lplane*lhs.Grid()->_ostride[dimension]; // base offset for start of plane  | ||||
|   int ro  = rplane*rhs._grid->_ostride[dimension]; // base offset for start of plane  | ||||
|   int lo  = lplane*lhs._grid->_ostride[dimension]; // base offset for start of plane  | ||||
|  | ||||
|   int e1=rhs.Grid()->_slice_nblock[dimension]; | ||||
|   int e2=rhs.Grid()->_slice_block [dimension]; | ||||
|   int stride = rhs.Grid()->_slice_stride[dimension]; | ||||
|  | ||||
|   if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest | ||||
|   int e1=rhs._grid->_slice_nblock[dimension]; | ||||
|   int e2=rhs._grid->_slice_block [dimension]; | ||||
|   int stride = rhs._grid->_slice_stride[dimension]; | ||||
|  | ||||
|   static std::vector<std::pair<int,int> > table;  table.resize(e1*e2); | ||||
|   int ent=0; | ||||
|  | ||||
|   double t_tab,t_perm; | ||||
|   if ( cbmask == 0x3 ) { | ||||
|     for(int n=0;n<e1;n++){ | ||||
|     for(int b=0;b<e2;b++){ | ||||
|       int o  =n*stride; | ||||
|       Cshift_table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b); | ||||
|       table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b); | ||||
|     }} | ||||
|   } else { | ||||
|     for(int n=0;n<e1;n++){ | ||||
|     for(int b=0;b<e2;b++){ | ||||
|       int o  =n*stride; | ||||
|       int ocb=1<<lhs.Grid()->CheckerBoardFromOindex(o+b); | ||||
|       if ( ocb&cbmask ) Cshift_table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b); | ||||
|       int ocb=1<<lhs._grid->CheckerBoardFromOindex(o+b); | ||||
|       if ( ocb&cbmask ) table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b); | ||||
|     }} | ||||
|   } | ||||
|  | ||||
|   { | ||||
|     auto table = MapCshiftTable(); | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     autoView( rhs_v, rhs, AcceleratorRead); | ||||
|     autoView( lhs_v, lhs, AcceleratorWrite); | ||||
|     accelerator_for(i,ent,1,{ | ||||
|       permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type); | ||||
|     }); | ||||
| #else | ||||
|     autoView( rhs_v, rhs, CpuRead); | ||||
|     autoView( lhs_v, lhs, CpuWrite); | ||||
|     thread_for(i,ent,{ | ||||
|       permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type); | ||||
|     }); | ||||
| #endif | ||||
|   parallel_for(int i=0;i<ent;i++){ | ||||
|     permute(lhs._odata[table[i].first],rhs._odata[table[i].second],permute_type); | ||||
|   } | ||||
| } | ||||
|  | ||||
| @@ -435,8 +309,10 @@ template<class vobj> void Cshift_local(Lattice<vobj>& ret,const Lattice<vobj> &r | ||||
| { | ||||
|   int sshift[2]; | ||||
|  | ||||
|   sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even); | ||||
|   sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd); | ||||
|   sshift[0] = rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,Even); | ||||
|   sshift[1] = rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,Odd); | ||||
|  | ||||
|   double t_local; | ||||
|    | ||||
|   if ( sshift[0] == sshift[1] ) { | ||||
|     Cshift_local(ret,rhs,dimension,shift,0x3); | ||||
| @@ -448,7 +324,7 @@ template<class vobj> void Cshift_local(Lattice<vobj>& ret,const Lattice<vobj> &r | ||||
|  | ||||
| template<class vobj> void Cshift_local(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) | ||||
| { | ||||
|   GridBase *grid = rhs.Grid(); | ||||
|   GridBase *grid = rhs._grid; | ||||
|   int fd = grid->_fdimensions[dimension]; | ||||
|   int rd = grid->_rdimensions[dimension]; | ||||
|   int ld = grid->_ldimensions[dimension]; | ||||
| @@ -459,18 +335,18 @@ template<class vobj> void Cshift_local(Lattice<vobj> &ret,const Lattice<vobj> &r | ||||
|   shift = (shift+fd)%fd; | ||||
|  | ||||
|   // the permute type | ||||
|   ret.Checkerboard() = grid->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension); | ||||
|   ret.checkerboard = grid->CheckerBoardDestination(rhs.checkerboard,shift,dimension); | ||||
|   int permute_dim =grid->PermuteDim(dimension); | ||||
|   int permute_type=grid->PermuteType(dimension); | ||||
|   int permute_type_dist; | ||||
|  | ||||
|   for(int x=0;x<rd;x++){        | ||||
|  | ||||
|     //    int o   = 0; | ||||
|     int o   = 0; | ||||
|     int bo  = x * grid->_ostride[dimension]; | ||||
|     int cb= (cbmask==0x2)? Odd : Even; | ||||
|  | ||||
|     int sshift = grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb); | ||||
|     int sshift = grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,cb); | ||||
|     int sx     = (x+sshift)%rd; | ||||
|      | ||||
|     // wrap is whether sshift > rd. | ||||
| @@ -511,5 +387,5 @@ template<class vobj> void Cshift_local(Lattice<vobj> &ret,const Lattice<vobj> &r | ||||
|    | ||||
|   } | ||||
| } | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -30,30 +30,29 @@ Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| #define _GRID_CSHIFT_MPI_H_ | ||||
|  | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid);  | ||||
| namespace Grid {  | ||||
|  | ||||
| template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift) | ||||
| { | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|  | ||||
|   Lattice<vobj> ret(rhs.Grid());  | ||||
|   Lattice<vobj> ret(rhs._grid);  | ||||
|    | ||||
|   int fd = rhs.Grid()->_fdimensions[dimension]; | ||||
|   int rd = rhs.Grid()->_rdimensions[dimension]; | ||||
|   int fd = rhs._grid->_fdimensions[dimension]; | ||||
|   int rd = rhs._grid->_rdimensions[dimension]; | ||||
|  | ||||
|   // Map to always positive shift modulo global full dimension. | ||||
|   shift = (shift+fd)%fd; | ||||
|  | ||||
|   ret.Checkerboard() = rhs.Grid()->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension); | ||||
|   ret.checkerboard = rhs._grid->CheckerBoardDestination(rhs.checkerboard,shift,dimension); | ||||
|          | ||||
|   // the permute type | ||||
|   int simd_layout     = rhs.Grid()->_simd_layout[dimension]; | ||||
|   int comm_dim        = rhs.Grid()->_processors[dimension] >1 ; | ||||
|   int splice_dim      = rhs.Grid()->_simd_layout[dimension]>1 && (comm_dim); | ||||
|   int simd_layout     = rhs._grid->_simd_layout[dimension]; | ||||
|   int comm_dim        = rhs._grid->_processors[dimension] >1 ; | ||||
|   int splice_dim      = rhs._grid->_simd_layout[dimension]>1 && (comm_dim); | ||||
|  | ||||
|  | ||||
|   RealD t1,t0; | ||||
|   t0=usecond(); | ||||
|   if ( !comm_dim ) { | ||||
|     //std::cout << "CSHIFT: Cshift_local" <<std::endl; | ||||
|     Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding | ||||
| @@ -64,8 +63,6 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension | ||||
|     //std::cout << "CSHIFT: Cshift_comms" <<std::endl; | ||||
|     Cshift_comms(ret,rhs,dimension,shift); | ||||
|   } | ||||
|   t1=usecond(); | ||||
|   //  std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl; | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
| @@ -73,10 +70,10 @@ template<class vobj> void Cshift_comms(Lattice<vobj>& ret,const Lattice<vobj> &r | ||||
| { | ||||
|   int sshift[2]; | ||||
|  | ||||
|   sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even); | ||||
|   sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd); | ||||
|   sshift[0] = rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,Even); | ||||
|   sshift[1] = rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,Odd); | ||||
|  | ||||
|   //  std::cout << "Cshift_comms dim "<<dimension<<"cb "<<rhs.Checkerboard()<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl; | ||||
|   //  std::cout << "Cshift_comms dim "<<dimension<<"cb "<<rhs.checkerboard<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl; | ||||
|   if ( sshift[0] == sshift[1] ) { | ||||
|     //    std::cout << "Single pass Cshift_comms" <<std::endl; | ||||
|     Cshift_comms(ret,rhs,dimension,shift,0x3); | ||||
| @@ -91,8 +88,8 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob | ||||
| { | ||||
|   int sshift[2]; | ||||
|  | ||||
|   sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even); | ||||
|   sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd); | ||||
|   sshift[0] = rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,Even); | ||||
|   sshift[1] = rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,Odd); | ||||
|  | ||||
|   //std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.checkerboard<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl; | ||||
|   if ( sshift[0] == sshift[1] ) { | ||||
| @@ -104,91 +101,71 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob | ||||
|     Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration | ||||
|   } | ||||
| } | ||||
| #define ACCELERATOR_CSHIFT_NO_COPY | ||||
| #ifdef ACCELERATOR_CSHIFT_NO_COPY | ||||
|  | ||||
| template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) | ||||
| { | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|  | ||||
|   GridBase *grid=rhs.Grid(); | ||||
|   Lattice<vobj> temp(rhs.Grid()); | ||||
|   GridBase *grid=rhs._grid; | ||||
|   Lattice<vobj> temp(rhs._grid); | ||||
|  | ||||
|   int fd              = rhs.Grid()->_fdimensions[dimension]; | ||||
|   int rd              = rhs.Grid()->_rdimensions[dimension]; | ||||
|   int pd              = rhs.Grid()->_processors[dimension]; | ||||
|   int simd_layout     = rhs.Grid()->_simd_layout[dimension]; | ||||
|   int comm_dim        = rhs.Grid()->_processors[dimension] >1 ; | ||||
|   int fd              = rhs._grid->_fdimensions[dimension]; | ||||
|   int rd              = rhs._grid->_rdimensions[dimension]; | ||||
|   int pd              = rhs._grid->_processors[dimension]; | ||||
|   int simd_layout     = rhs._grid->_simd_layout[dimension]; | ||||
|   int comm_dim        = rhs._grid->_processors[dimension] >1 ; | ||||
|   assert(simd_layout==1); | ||||
|   assert(comm_dim==1); | ||||
|   assert(shift>=0); | ||||
|   assert(shift<fd); | ||||
|    | ||||
|   int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension]; | ||||
|   static cshiftVector<vobj> send_buf; send_buf.resize(buffer_size); | ||||
|   static cshiftVector<vobj> recv_buf; recv_buf.resize(buffer_size); | ||||
|   int buffer_size = rhs._grid->_slice_nblock[dimension]*rhs._grid->_slice_block[dimension]; | ||||
|   commVector<vobj> send_buf(buffer_size); | ||||
|   commVector<vobj> recv_buf(buffer_size); | ||||
|  | ||||
|   int cb= (cbmask==0x2)? Odd : Even; | ||||
|   int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb); | ||||
|   RealD tcopy=0.0; | ||||
|   RealD tgather=0.0; | ||||
|   RealD tscatter=0.0; | ||||
|   RealD tcomms=0.0; | ||||
|   uint64_t xbytes=0; | ||||
|   int sshift= rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,cb); | ||||
|  | ||||
|   for(int x=0;x<rd;x++){        | ||||
|  | ||||
|     int sx        =  (x+sshift)%rd; | ||||
|     int comm_proc = ((x+sshift)/rd)%pd; | ||||
|      | ||||
|     if (comm_proc==0) { | ||||
|       tcopy-=usecond(); | ||||
|  | ||||
|       Copy_plane(ret,rhs,dimension,x,sx,cbmask);  | ||||
|       tcopy+=usecond(); | ||||
|  | ||||
|     } else { | ||||
|  | ||||
|       int words = buffer_size; | ||||
|       int words = send_buf.size(); | ||||
|       if (cbmask != 0x3) words=words>>1; | ||||
|  | ||||
|       int bytes = words * sizeof(vobj); | ||||
|  | ||||
|       tgather-=usecond(); | ||||
|       Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask); | ||||
|       tgather+=usecond(); | ||||
|  | ||||
|       //      int rank           = grid->_processor; | ||||
|       int rank           = grid->_processor; | ||||
|       int recv_from_rank; | ||||
|       int xmit_to_rank; | ||||
|       grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank); | ||||
|  | ||||
|       tcomms-=usecond(); | ||||
|       //      grid->Barrier(); | ||||
|  | ||||
|       grid->SendToRecvFrom((void *)&send_buf[0], | ||||
| 			   xmit_to_rank, | ||||
| 			   (void *)&recv_buf[0], | ||||
| 			   recv_from_rank, | ||||
| 			   bytes); | ||||
|       xbytes+=bytes; | ||||
|       //      grid->Barrier(); | ||||
|       tcomms+=usecond(); | ||||
|       grid->Barrier(); | ||||
|  | ||||
|       tscatter-=usecond(); | ||||
|       Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask); | ||||
|       tscatter+=usecond(); | ||||
|     } | ||||
|   } | ||||
|   /* | ||||
|   std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl; | ||||
|   */ | ||||
| } | ||||
|  | ||||
| template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) | ||||
| { | ||||
|   GridBase *grid=rhs.Grid(); | ||||
|   GridBase *grid=rhs._grid; | ||||
|   const int Nsimd = grid->Nsimd(); | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_object scalar_object; | ||||
| @@ -210,40 +187,27 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|   assert(shift>=0); | ||||
|   assert(shift<fd); | ||||
|  | ||||
|   RealD tcopy=0.0; | ||||
|   RealD tgather=0.0; | ||||
|   RealD tscatter=0.0; | ||||
|   RealD tcomms=0.0; | ||||
|   uint64_t xbytes=0; | ||||
|    | ||||
|   int permute_type=grid->PermuteType(dimension); | ||||
|  | ||||
|   /////////////////////////////////////////////// | ||||
|   // Simd direction uses an extract/merge pair | ||||
|   /////////////////////////////////////////////// | ||||
|   int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension]; | ||||
|   //  int words = sizeof(vobj)/sizeof(vector_type); | ||||
|   int words = sizeof(vobj)/sizeof(vector_type); | ||||
|  | ||||
|   static std::vector<cshiftVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd); | ||||
|   static std::vector<cshiftVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd); | ||||
|   scalar_object *  recv_buf_extract_mpi; | ||||
|   scalar_object *  send_buf_extract_mpi; | ||||
|   | ||||
|   for(int s=0;s<Nsimd;s++){ | ||||
|     send_buf_extract[s].resize(buffer_size); | ||||
|     recv_buf_extract[s].resize(buffer_size); | ||||
|   } | ||||
|   std::vector<commVector<scalar_object> >   send_buf_extract(Nsimd,commVector<scalar_object>(buffer_size) ); | ||||
|   std::vector<commVector<scalar_object> >   recv_buf_extract(Nsimd,commVector<scalar_object>(buffer_size) ); | ||||
|  | ||||
|   int bytes = buffer_size*sizeof(scalar_object); | ||||
|  | ||||
|   ExtractPointerArray<scalar_object>  pointers(Nsimd); //  | ||||
|   ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers | ||||
|   std::vector<scalar_object *>  pointers(Nsimd); //  | ||||
|   std::vector<scalar_object *> rpointers(Nsimd); // received pointers | ||||
|  | ||||
|   /////////////////////////////////////////// | ||||
|   // Work out what to send where | ||||
|   /////////////////////////////////////////// | ||||
|   int cb    = (cbmask==0x2)? Odd : Even; | ||||
|   int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb); | ||||
|   int sshift= grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,cb); | ||||
|  | ||||
|   // loop over outer coord planes orthog to dim | ||||
|   for(int x=0;x<rd;x++){        | ||||
| @@ -253,9 +217,7 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|       pointers[i] = &send_buf_extract[i][0]; | ||||
|     } | ||||
|     int sx   = (x+sshift)%rd; | ||||
|     tgather-=usecond(); | ||||
|     Gather_plane_extract(rhs,pointers,dimension,sx,cbmask); | ||||
|     tgather+=usecond(); | ||||
|  | ||||
|     for(int i=0;i<Nsimd;i++){ | ||||
|        | ||||
| @@ -280,267 +242,21 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|       if(nbr_proc){ | ||||
| 	grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);  | ||||
|  | ||||
| 	tcomms-=usecond(); | ||||
| 	//	grid->Barrier(); | ||||
|  | ||||
| 	send_buf_extract_mpi = &send_buf_extract[nbr_lane][0]; | ||||
| 	recv_buf_extract_mpi = &recv_buf_extract[i][0]; | ||||
| 	grid->SendToRecvFrom((void *)send_buf_extract_mpi, | ||||
| 	grid->SendToRecvFrom((void *)&send_buf_extract[nbr_lane][0], | ||||
| 			     xmit_to_rank, | ||||
| 			     (void *)recv_buf_extract_mpi, | ||||
| 			     (void *)&recv_buf_extract[i][0], | ||||
| 			     recv_from_rank, | ||||
| 			     bytes); | ||||
|  | ||||
| 	xbytes+=bytes; | ||||
| 	//	grid->Barrier(); | ||||
| 	tcomms+=usecond(); | ||||
|  | ||||
| 	grid->Barrier(); | ||||
| 	rpointers[i] = &recv_buf_extract[i][0]; | ||||
|       } else {  | ||||
| 	rpointers[i] = &send_buf_extract[nbr_lane][0]; | ||||
|       } | ||||
|  | ||||
|     } | ||||
|     tscatter-=usecond(); | ||||
|     Scatter_plane_merge(ret,rpointers,dimension,x,cbmask); | ||||
|     tscatter+=usecond(); | ||||
|   } | ||||
|   /* | ||||
|   std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl; | ||||
|   */ | ||||
| } | ||||
| #else  | ||||
| template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) | ||||
| { | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|  | ||||
|   GridBase *grid=rhs.Grid(); | ||||
|   Lattice<vobj> temp(rhs.Grid()); | ||||
|  | ||||
|   int fd              = rhs.Grid()->_fdimensions[dimension]; | ||||
|   int rd              = rhs.Grid()->_rdimensions[dimension]; | ||||
|   int pd              = rhs.Grid()->_processors[dimension]; | ||||
|   int simd_layout     = rhs.Grid()->_simd_layout[dimension]; | ||||
|   int comm_dim        = rhs.Grid()->_processors[dimension] >1 ; | ||||
|   assert(simd_layout==1); | ||||
|   assert(comm_dim==1); | ||||
|   assert(shift>=0); | ||||
|   assert(shift<fd); | ||||
|   RealD tcopy=0.0; | ||||
|   RealD tgather=0.0; | ||||
|   RealD tscatter=0.0; | ||||
|   RealD tcomms=0.0; | ||||
|   uint64_t xbytes=0; | ||||
|    | ||||
|   int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension]; | ||||
|   static cshiftVector<vobj> send_buf_v; send_buf_v.resize(buffer_size); | ||||
|   static cshiftVector<vobj> recv_buf_v; recv_buf_v.resize(buffer_size); | ||||
|   vobj *send_buf; | ||||
|   vobj *recv_buf; | ||||
|   { | ||||
|     grid->ShmBufferFreeAll(); | ||||
|     size_t bytes = buffer_size*sizeof(vobj); | ||||
|     send_buf=(vobj *)grid->ShmBufferMalloc(bytes); | ||||
|     recv_buf=(vobj *)grid->ShmBufferMalloc(bytes); | ||||
|   } | ||||
|      | ||||
|   int cb= (cbmask==0x2)? Odd : Even; | ||||
|   int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb); | ||||
|  | ||||
|   for(int x=0;x<rd;x++){        | ||||
|  | ||||
|     int sx        =  (x+sshift)%rd; | ||||
|     int comm_proc = ((x+sshift)/rd)%pd; | ||||
|      | ||||
|     if (comm_proc==0) { | ||||
|  | ||||
|       tcopy-=usecond(); | ||||
|       Copy_plane(ret,rhs,dimension,x,sx,cbmask);  | ||||
|       tcopy+=usecond(); | ||||
|  | ||||
|     } else { | ||||
|  | ||||
|       int words = buffer_size; | ||||
|       if (cbmask != 0x3) words=words>>1; | ||||
|  | ||||
|       int bytes = words * sizeof(vobj); | ||||
|  | ||||
|       tgather-=usecond(); | ||||
|       Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask); | ||||
|       tgather+=usecond(); | ||||
|  | ||||
|       //      int rank           = grid->_processor; | ||||
|       int recv_from_rank; | ||||
|       int xmit_to_rank; | ||||
|       grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank); | ||||
|  | ||||
|  | ||||
|       tcomms-=usecond(); | ||||
|       //      grid->Barrier(); | ||||
|  | ||||
|       acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes); | ||||
|       grid->SendToRecvFrom((void *)&send_buf[0], | ||||
| 			   xmit_to_rank, | ||||
| 			   (void *)&recv_buf[0], | ||||
| 			   recv_from_rank, | ||||
| 			   bytes); | ||||
|       xbytes+=bytes; | ||||
|       acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes); | ||||
|  | ||||
|       //      grid->Barrier(); | ||||
|       tcomms+=usecond(); | ||||
|  | ||||
|       tscatter-=usecond(); | ||||
|       Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask); | ||||
|       tscatter+=usecond(); | ||||
|     } | ||||
|   } | ||||
|   /* | ||||
|   std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl; | ||||
|   */ | ||||
| } | ||||
|  | ||||
| template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) | ||||
| { | ||||
|   GridBase *grid=rhs.Grid(); | ||||
|   const int Nsimd = grid->Nsimd(); | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_object scalar_object; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|     | ||||
|   int fd = grid->_fdimensions[dimension]; | ||||
|   int rd = grid->_rdimensions[dimension]; | ||||
|   int ld = grid->_ldimensions[dimension]; | ||||
|   int pd = grid->_processors[dimension]; | ||||
|   int simd_layout     = grid->_simd_layout[dimension]; | ||||
|   int comm_dim        = grid->_processors[dimension] >1 ; | ||||
|  | ||||
|   //std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd | ||||
|   //    << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout  | ||||
|   //    << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl; | ||||
|  | ||||
|   assert(comm_dim==1); | ||||
|   assert(simd_layout==2); | ||||
|   assert(shift>=0); | ||||
|   assert(shift<fd); | ||||
|   RealD tcopy=0.0; | ||||
|   RealD tgather=0.0; | ||||
|   RealD tscatter=0.0; | ||||
|   RealD tcomms=0.0; | ||||
|   uint64_t xbytes=0; | ||||
|  | ||||
|   int permute_type=grid->PermuteType(dimension); | ||||
|  | ||||
|   /////////////////////////////////////////////// | ||||
|   // Simd direction uses an extract/merge pair | ||||
|   /////////////////////////////////////////////// | ||||
|   int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension]; | ||||
|   //  int words = sizeof(vobj)/sizeof(vector_type); | ||||
|  | ||||
|   static std::vector<cshiftVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd); | ||||
|   static std::vector<cshiftVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd); | ||||
|   scalar_object *  recv_buf_extract_mpi; | ||||
|   scalar_object *  send_buf_extract_mpi; | ||||
|   { | ||||
|     size_t bytes = sizeof(scalar_object)*buffer_size; | ||||
|     grid->ShmBufferFreeAll(); | ||||
|     send_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes); | ||||
|     recv_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes); | ||||
|   } | ||||
|   for(int s=0;s<Nsimd;s++){ | ||||
|     send_buf_extract[s].resize(buffer_size); | ||||
|     recv_buf_extract[s].resize(buffer_size); | ||||
|   } | ||||
|  | ||||
|   int bytes = buffer_size*sizeof(scalar_object); | ||||
|  | ||||
|   ExtractPointerArray<scalar_object>  pointers(Nsimd); //  | ||||
|   ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers | ||||
|  | ||||
|   /////////////////////////////////////////// | ||||
|   // Work out what to send where | ||||
|   /////////////////////////////////////////// | ||||
|   int cb    = (cbmask==0x2)? Odd : Even; | ||||
|   int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb); | ||||
|  | ||||
|   // loop over outer coord planes orthog to dim | ||||
|   for(int x=0;x<rd;x++){        | ||||
|  | ||||
|     // FIXME call local permute copy if none are offnode. | ||||
|     for(int i=0;i<Nsimd;i++){        | ||||
|       pointers[i] = &send_buf_extract[i][0]; | ||||
|     } | ||||
|     tgather-=usecond(); | ||||
|     int sx   = (x+sshift)%rd; | ||||
|     Gather_plane_extract(rhs,pointers,dimension,sx,cbmask); | ||||
|     tgather+=usecond(); | ||||
|  | ||||
|     for(int i=0;i<Nsimd;i++){ | ||||
|        | ||||
|       int inner_bit = (Nsimd>>(permute_type+1)); | ||||
|       int ic= (i&inner_bit)? 1:0; | ||||
|  | ||||
|       int my_coor          = rd*ic + x; | ||||
|       int nbr_coor         = my_coor+sshift; | ||||
|       int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors | ||||
|  | ||||
|       int nbr_ic   = (nbr_coor%ld)/rd;    // inner coord of peer | ||||
|       int nbr_ox   = (nbr_coor%rd);       // outer coord of peer | ||||
|       int nbr_lane = (i&(~inner_bit)); | ||||
|  | ||||
|       int recv_from_rank; | ||||
|       int xmit_to_rank; | ||||
|  | ||||
|       if (nbr_ic) nbr_lane|=inner_bit; | ||||
|  | ||||
|       assert (sx == nbr_ox); | ||||
|  | ||||
|       if(nbr_proc){ | ||||
| 	grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);  | ||||
|  | ||||
| 	tcomms-=usecond(); | ||||
| 	//	grid->Barrier(); | ||||
|  | ||||
| 	acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes); | ||||
| 	grid->SendToRecvFrom((void *)send_buf_extract_mpi, | ||||
| 			     xmit_to_rank, | ||||
| 			     (void *)recv_buf_extract_mpi, | ||||
| 			     recv_from_rank, | ||||
| 			     bytes); | ||||
| 	acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes); | ||||
| 	xbytes+=bytes; | ||||
|  | ||||
| 	//	grid->Barrier(); | ||||
| 	tcomms+=usecond(); | ||||
| 	rpointers[i] = &recv_buf_extract[i][0]; | ||||
|       } else {  | ||||
| 	rpointers[i] = &send_buf_extract[nbr_lane][0]; | ||||
|   } | ||||
|  | ||||
|  } | ||||
|     tscatter-=usecond(); | ||||
|     Scatter_plane_merge(ret,rpointers,dimension,x,cbmask); | ||||
|     tscatter+=usecond(); | ||||
|  | ||||
|   } | ||||
|   /* | ||||
|   std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s"<<std::endl; | ||||
|   */ | ||||
| } | ||||
| #endif | ||||
| NAMESPACE_END(Grid);  | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -27,14 +27,13 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|     /*  END LEGAL */ | ||||
| #ifndef _GRID_CSHIFT_NONE_H_ | ||||
| #define _GRID_CSHIFT_NONE_H_ | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
| template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift) | ||||
| { | ||||
|   Lattice<vobj> ret(rhs.Grid()); | ||||
|   ret.Checkerboard() = rhs.Grid()->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension); | ||||
|   Lattice<vobj> ret(rhs._grid); | ||||
|   ret.checkerboard = rhs._grid->CheckerBoardDestination(rhs.checkerboard,shift,dimension); | ||||
|   Cshift_local(ret,rhs,dimension,shift); | ||||
|   return ret; | ||||
| } | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -1,5 +0,0 @@ | ||||
| #include <Grid/GridCore.h>        | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| std::vector<std::pair<int,int> > Cshift_table;  | ||||
| commVector<std::pair<int,int> > Cshift_table_device;  | ||||
| NAMESPACE_END(Grid); | ||||
							
								
								
									
										23403
									
								
								Grid/json/json.hpp
									
									
									
									
									
								
							
							
						
						
									
										23403
									
								
								Grid/json/json.hpp
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							| @@ -25,26 +25,9 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
|     *************************************************************************************/ | ||||
|     /*  END LEGAL */ | ||||
| #pragma once | ||||
| #include <Grid/lattice/Lattice_view.h> | ||||
| #ifndef GRID_LATTICE_H | ||||
| #define GRID_LATTICE_H | ||||
|  | ||||
| #include <Grid/lattice/Lattice_base.h> | ||||
| #include <Grid/lattice/Lattice_conformable.h> | ||||
| #include <Grid/lattice/Lattice_ET.h> | ||||
| #include <Grid/lattice/Lattice_arith.h> | ||||
| #include <Grid/lattice/Lattice_trace.h> | ||||
| #include <Grid/lattice/Lattice_transpose.h> | ||||
| #include <Grid/lattice/Lattice_local.h> | ||||
| #include <Grid/lattice/Lattice_reduction.h> | ||||
| #include <Grid/lattice/Lattice_crc.h> | ||||
| #include <Grid/lattice/Lattice_peekpoke.h> | ||||
| #include <Grid/lattice/Lattice_reality.h> | ||||
| #include <Grid/lattice/Lattice_real_imag.h> | ||||
| #include <Grid/lattice/Lattice_comparison_utils.h> | ||||
| #include <Grid/lattice/Lattice_comparison.h> | ||||
| #include <Grid/lattice/Lattice_coordinate.h> | ||||
| //#include <Grid/lattice/Lattice_where.h> | ||||
| #include <Grid/lattice/Lattice_rng.h> | ||||
| #include <Grid/lattice/Lattice_unary.h> | ||||
| #include <Grid/lattice/Lattice_transfer.h> | ||||
| #include <Grid/lattice/Lattice_basis.h> | ||||
| #include <Grid/lattice/PaddedCell.h> | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -9,7 +9,6 @@ Copyright (C) 2015 | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: neo <cossu@post.kek.jp> | ||||
| Author: Christoph Lehner <christoph@lhnr.de | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| @@ -37,40 +36,26 @@ directory | ||||
| #include <typeinfo> | ||||
| #include <vector> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
| //////////////////////////////////////////////////// | ||||
| // Predicated where support | ||||
| //////////////////////////////////////////////////// | ||||
| #ifdef GRID_SIMT | ||||
| // drop to scalar in SIMT; cleaner in fact | ||||
| template <class iobj, class vobj, class robj> | ||||
| accelerator_inline vobj predicatedWhere(const iobj &predicate,  | ||||
| 					const vobj &iftrue,  | ||||
| 					const robj &iffalse)  | ||||
| { | ||||
|   Integer mask = TensorRemove(predicate); | ||||
|   typename std::remove_const<vobj>::type ret= iffalse; | ||||
|   if (mask) ret=iftrue; | ||||
|   return ret; | ||||
| } | ||||
| #else | ||||
| template <class iobj, class vobj, class robj> | ||||
| accelerator_inline vobj predicatedWhere(const iobj &predicate,  | ||||
| 					const vobj &iftrue,  | ||||
| 					const robj &iffalse)  | ||||
| { | ||||
| inline vobj predicatedWhere(const iobj &predicate, const vobj &iftrue, | ||||
|                             const robj &iffalse) { | ||||
|   typename std::remove_const<vobj>::type ret; | ||||
|  | ||||
|   typedef typename vobj::scalar_object scalar_object; | ||||
|   //  typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   const int Nsimd = vobj::vector_type::Nsimd(); | ||||
|   const int words = sizeof(vobj) / sizeof(vector_type); | ||||
|  | ||||
|   ExtractBuffer<Integer> mask(Nsimd); | ||||
|   ExtractBuffer<scalar_object> truevals(Nsimd); | ||||
|   ExtractBuffer<scalar_object> falsevals(Nsimd); | ||||
|   std::vector<Integer> mask(Nsimd); | ||||
|   std::vector<scalar_object> truevals(Nsimd); | ||||
|   std::vector<scalar_object> falsevals(Nsimd); | ||||
|  | ||||
|   extract(iftrue, truevals); | ||||
|   extract(iffalse, falsevals); | ||||
| @@ -83,275 +68,178 @@ accelerator_inline vobj predicatedWhere(const iobj &predicate, | ||||
|   merge(ret, falsevals); | ||||
|   return ret; | ||||
| } | ||||
| #endif | ||||
|  | ||||
| ///////////////////////////////////////////////////// | ||||
| //////////////////////////////////////////// | ||||
| // recursive evaluation of expressions; Could | ||||
| // switch to generic approach with variadics, a la | ||||
| // Antonin's Lat Sim but the repack to variadic with popped | ||||
| // from tuple is hideous; C++14 introduces std::make_index_sequence for this | ||||
| //////////////////////////////////////////// | ||||
|  | ||||
| // leaf eval of lattice ; should enable if protect using traits | ||||
|  | ||||
| template <typename T> | ||||
| using is_lattice = std::is_base_of<LatticeBase, T>; | ||||
|  | ||||
| template <typename T> | ||||
| using is_lattice_expr = std::is_base_of<LatticeExpressionBase, T>; | ||||
|  | ||||
| template <typename T> using is_lattice_expr = std::is_base_of<LatticeExpressionBase,T >; | ||||
|  | ||||
| //Specialization of getVectorType for lattices | ||||
| ///////////////////////////////////////////////////// | ||||
| template<typename T> | ||||
| struct getVectorType<Lattice<T> >{ | ||||
|   typedef typename Lattice<T>::vector_object type; | ||||
| }; | ||||
|   | ||||
| //////////////////////////////////////////// | ||||
| //--  recursive evaluation of expressions; -- | ||||
| // handle leaves of syntax tree | ||||
| /////////////////////////////////////////////////// | ||||
| template<class sobj, | ||||
|   typename std::enable_if<!is_lattice<sobj>::value&&!is_lattice_expr<sobj>::value,sobj>::type * = nullptr>  | ||||
| accelerator_inline  | ||||
| sobj eval(const uint64_t ss, const sobj &arg) | ||||
| template<class sobj> | ||||
| inline sobj eval(const unsigned int ss, const sobj &arg) | ||||
| { | ||||
|   return arg; | ||||
| } | ||||
| template <class lobj> accelerator_inline  | ||||
| auto eval(const uint64_t ss, const LatticeView<lobj> &arg) -> decltype(arg(ss)) | ||||
| { | ||||
|   return arg(ss); | ||||
| template <class lobj> | ||||
| inline const lobj &eval(const unsigned int ss, const Lattice<lobj> &arg) { | ||||
|   return arg._odata[ss]; | ||||
| } | ||||
|  | ||||
| //////////////////////////////////////////// | ||||
| //--  recursive evaluation of expressions; -- | ||||
| // whole vector return, used only for expression return type inference | ||||
| /////////////////////////////////////////////////// | ||||
| template<class sobj> accelerator_inline  | ||||
| sobj vecEval(const uint64_t ss, const sobj &arg) | ||||
| { | ||||
|   return arg; | ||||
| } | ||||
| template <class lobj> accelerator_inline  | ||||
| const lobj & vecEval(const uint64_t ss, const LatticeView<lobj> &arg)  | ||||
| { | ||||
|   return arg[ss]; | ||||
| // handle nodes in syntax tree | ||||
| template <typename Op, typename T1> | ||||
| auto inline eval( | ||||
|     const unsigned int ss, | ||||
|     const LatticeUnaryExpression<Op, T1> &expr)  // eval one operand | ||||
|     -> decltype(expr.first.func(eval(ss, std::get<0>(expr.second)))) { | ||||
|   return expr.first.func(eval(ss, std::get<0>(expr.second))); | ||||
| } | ||||
|  | ||||
| /////////////////////////////////////////////////// | ||||
| // handle nodes in syntax tree- eval one operand | ||||
| // vecEval needed (but never called as all expressions offloaded) to infer the return type | ||||
| // in SIMT contexts of closure. | ||||
| /////////////////////////////////////////////////// | ||||
| template <typename Op, typename T1> accelerator_inline  | ||||
| auto vecEval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)   | ||||
|   -> decltype(expr.op.func( vecEval(ss, expr.arg1))) | ||||
| { | ||||
|   return expr.op.func( vecEval(ss, expr.arg1) ); | ||||
| } | ||||
| // vecEval two operands | ||||
| template <typename Op, typename T1, typename T2> accelerator_inline | ||||
| auto vecEval(const uint64_t ss, const LatticeBinaryExpression<Op, T1, T2> &expr)   | ||||
|   -> decltype(expr.op.func( vecEval(ss,expr.arg1),vecEval(ss,expr.arg2))) | ||||
| { | ||||
|   return expr.op.func( vecEval(ss,expr.arg1), vecEval(ss,expr.arg2) ); | ||||
| } | ||||
| // vecEval three operands | ||||
| template <typename Op, typename T1, typename T2, typename T3> accelerator_inline | ||||
| auto vecEval(const uint64_t ss, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)   | ||||
|   -> decltype(expr.op.func(vecEval(ss, expr.arg1), vecEval(ss, expr.arg2), vecEval(ss, expr.arg3))) | ||||
| { | ||||
|   return expr.op.func(vecEval(ss, expr.arg1), vecEval(ss, expr.arg2), vecEval(ss, expr.arg3)); | ||||
| template <typename Op, typename T1, typename T2> | ||||
| auto inline eval( | ||||
|     const unsigned int ss, | ||||
|     const LatticeBinaryExpression<Op, T1, T2> &expr)  // eval two operands | ||||
|     -> decltype(expr.first.func(eval(ss, std::get<0>(expr.second)), | ||||
|                                 eval(ss, std::get<1>(expr.second)))) { | ||||
|   return expr.first.func(eval(ss, std::get<0>(expr.second)), | ||||
|                          eval(ss, std::get<1>(expr.second))); | ||||
| } | ||||
|  | ||||
| /////////////////////////////////////////////////// | ||||
| // handle nodes in syntax tree- eval one operand coalesced | ||||
| /////////////////////////////////////////////////// | ||||
| template <typename Op, typename T1> accelerator_inline  | ||||
| auto eval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)   | ||||
|   -> decltype(expr.op.func( eval(ss, expr.arg1))) | ||||
| { | ||||
|   return expr.op.func( eval(ss, expr.arg1) ); | ||||
| } | ||||
| // eval two operands | ||||
| template <typename Op, typename T1, typename T2> accelerator_inline | ||||
| auto eval(const uint64_t ss, const LatticeBinaryExpression<Op, T1, T2> &expr)   | ||||
|   -> decltype(expr.op.func( eval(ss,expr.arg1),eval(ss,expr.arg2))) | ||||
| { | ||||
|   return expr.op.func( eval(ss,expr.arg1), eval(ss,expr.arg2) ); | ||||
| } | ||||
| // eval three operands | ||||
| template <typename Op, typename T1, typename T2, typename T3> accelerator_inline | ||||
| auto eval(const uint64_t ss, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)   | ||||
|   -> decltype(expr.op.func(eval(ss, expr.arg1),  | ||||
| 			   eval(ss, expr.arg2),  | ||||
| 			   eval(ss, expr.arg3))) | ||||
| { | ||||
| #ifdef GRID_SIMT | ||||
|   // Handles Nsimd (vInteger) != Nsimd(ComplexD) | ||||
|   typedef decltype(vecEval(ss, expr.arg2)) rvobj; | ||||
|   typedef typename std::remove_reference<rvobj>::type vobj; | ||||
|  | ||||
|   const int Nsimd = vobj::vector_type::Nsimd(); | ||||
|  | ||||
|   auto vpred = vecEval(ss,expr.arg1); | ||||
|  | ||||
|   ExtractBuffer<Integer> mask(Nsimd); | ||||
|   extract<vInteger, Integer>(TensorRemove(vpred), mask); | ||||
|  | ||||
|   int s = acceleratorSIMTlane(Nsimd); | ||||
|   return expr.op.func(mask[s], | ||||
| 		      eval(ss, expr.arg2),  | ||||
| 		      eval(ss, expr.arg3)); | ||||
| #else | ||||
|   return expr.op.func(eval(ss, expr.arg1), | ||||
| 		      eval(ss, expr.arg2),  | ||||
| 		      eval(ss, expr.arg3)); | ||||
| #endif | ||||
| template <typename Op, typename T1, typename T2, typename T3> | ||||
| auto inline eval(const unsigned int ss, | ||||
|                  const LatticeTrinaryExpression<Op, T1, T2, T3> | ||||
|                      &expr)  // eval three operands | ||||
|     -> decltype(expr.first.func(eval(ss, std::get<0>(expr.second)), | ||||
|                                 eval(ss, std::get<1>(expr.second)), | ||||
|                                 eval(ss, std::get<2>(expr.second)))) { | ||||
|   return expr.first.func(eval(ss, std::get<0>(expr.second)), | ||||
|                          eval(ss, std::get<1>(expr.second)), | ||||
|                          eval(ss, std::get<2>(expr.second))); | ||||
| } | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| // Obtain the grid from an expression, ensuring conformable. This must follow a | ||||
| // tree recursion; must retain grid pointer in the LatticeView class which sucks | ||||
| // Use a different method, and make it void *. | ||||
| // Perhaps a conformable method. | ||||
| // tree recursion | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr> | ||||
| accelerator_inline void GridFromExpression(GridBase *&grid, const T1 &lat)  // Lattice leaf | ||||
| template <class T1, | ||||
|           typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr> | ||||
| inline void GridFromExpression(GridBase *&grid, const T1 &lat)  // Lattice leaf | ||||
| { | ||||
|   lat.Conformable(grid); | ||||
|   if (grid) { | ||||
|     conformable(grid, lat._grid); | ||||
|   } | ||||
|  | ||||
| template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr> | ||||
| accelerator_inline  | ||||
| void GridFromExpression(GridBase *&grid,const T1 ¬lat)  // non-lattice leaf | ||||
|   grid = lat._grid; | ||||
| } | ||||
| template <class T1, | ||||
|           typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr> | ||||
| inline void GridFromExpression(GridBase *&grid, | ||||
|                                const T1 ¬lat)  // non-lattice leaf | ||||
| {} | ||||
|  | ||||
| template <typename Op, typename T1> | ||||
| accelerator_inline  | ||||
| void GridFromExpression(GridBase *&grid,const LatticeUnaryExpression<Op, T1> &expr)  | ||||
| { | ||||
|   GridFromExpression(grid, expr.arg1);  // recurse | ||||
| inline void GridFromExpression(GridBase *&grid, | ||||
|                                const LatticeUnaryExpression<Op, T1> &expr) { | ||||
|   GridFromExpression(grid, std::get<0>(expr.second));  // recurse | ||||
| } | ||||
|  | ||||
| template <typename Op, typename T1, typename T2> | ||||
| accelerator_inline  | ||||
| void GridFromExpression(GridBase *&grid, const LatticeBinaryExpression<Op, T1, T2> &expr)  | ||||
| { | ||||
|   GridFromExpression(grid, expr.arg1);  // recurse | ||||
|   GridFromExpression(grid, expr.arg2); | ||||
| inline void GridFromExpression( | ||||
|     GridBase *&grid, const LatticeBinaryExpression<Op, T1, T2> &expr) { | ||||
|   GridFromExpression(grid, std::get<0>(expr.second));  // recurse | ||||
|   GridFromExpression(grid, std::get<1>(expr.second)); | ||||
| } | ||||
| template <typename Op, typename T1, typename T2, typename T3> | ||||
| accelerator_inline  | ||||
| void GridFromExpression(GridBase *&grid, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)  | ||||
| { | ||||
|   GridFromExpression(grid, expr.arg1);  // recurse | ||||
|   GridFromExpression(grid, expr.arg2);  // recurse | ||||
|   GridFromExpression(grid, expr.arg3);  // recurse | ||||
| inline void GridFromExpression( | ||||
|     GridBase *&grid, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr) { | ||||
|   GridFromExpression(grid, std::get<0>(expr.second));  // recurse | ||||
|   GridFromExpression(grid, std::get<1>(expr.second)); | ||||
|   GridFromExpression(grid, std::get<2>(expr.second)); | ||||
| } | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| // Obtain the CB from an expression, ensuring conformable. This must follow a | ||||
| // tree recursion | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr> | ||||
| template <class T1, | ||||
|           typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr> | ||||
| inline void CBFromExpression(int &cb, const T1 &lat)  // Lattice leaf | ||||
| { | ||||
|   if ((cb == Odd) || (cb == Even)) { | ||||
|     assert(cb == lat.Checkerboard()); | ||||
|     assert(cb == lat.checkerboard); | ||||
|   } | ||||
|   cb = lat.Checkerboard(); | ||||
|   cb = lat.checkerboard; | ||||
|   //  std::cout<<GridLogMessage<<"Lattice leaf cb "<<cb<<std::endl; | ||||
| } | ||||
| template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr> | ||||
| inline void CBFromExpression(int &cb, const T1 ¬lat) {} // non-lattice leaf | ||||
| template <typename Op, typename T1> inline  | ||||
| void CBFromExpression(int &cb,const LatticeUnaryExpression<Op, T1> &expr)  | ||||
| template <class T1, | ||||
|           typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr> | ||||
| inline void CBFromExpression(int &cb, const T1 ¬lat)  // non-lattice leaf | ||||
| { | ||||
|   CBFromExpression(cb, expr.arg1);  // recurse AST | ||||
|   //  std::cout<<GridLogMessage<<"Non lattice leaf cb"<<cb<<std::endl; | ||||
| } | ||||
| template <typename Op, typename T1, typename T2> inline  | ||||
| void CBFromExpression(int &cb,const LatticeBinaryExpression<Op, T1, T2> &expr)  | ||||
| { | ||||
|   CBFromExpression(cb, expr.arg1);  // recurse AST | ||||
|   CBFromExpression(cb, expr.arg2);  // recurse AST | ||||
| template <typename Op, typename T1> | ||||
| inline void CBFromExpression(int &cb, | ||||
|                              const LatticeUnaryExpression<Op, T1> &expr) { | ||||
|   CBFromExpression(cb, std::get<0>(expr.second));  // recurse | ||||
|   //  std::cout<<GridLogMessage<<"Unary node cb "<<cb<<std::endl; | ||||
| } | ||||
|  | ||||
| template <typename Op, typename T1, typename T2> | ||||
| inline void CBFromExpression(int &cb, | ||||
|                              const LatticeBinaryExpression<Op, T1, T2> &expr) { | ||||
|   CBFromExpression(cb, std::get<0>(expr.second));  // recurse | ||||
|   CBFromExpression(cb, std::get<1>(expr.second)); | ||||
|   //  std::cout<<GridLogMessage<<"Binary node cb "<<cb<<std::endl; | ||||
| } | ||||
| template <typename Op, typename T1, typename T2, typename T3> | ||||
| inline void CBFromExpression(int &cb, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)  | ||||
| { | ||||
|   CBFromExpression(cb, expr.arg1);  // recurse AST | ||||
|   CBFromExpression(cb, expr.arg2);  // recurse AST | ||||
|   CBFromExpression(cb, expr.arg3);  // recurse AST | ||||
| } | ||||
|  | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| // ViewOpen | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr> | ||||
| inline void ExpressionViewOpen(T1 &lat)  // Lattice leaf | ||||
| { | ||||
|   lat.ViewOpen(AcceleratorRead); | ||||
| } | ||||
| template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr> | ||||
|   inline void ExpressionViewOpen(T1 ¬lat) {} | ||||
|  | ||||
| template <typename Op, typename T1> inline  | ||||
| void ExpressionViewOpen(LatticeUnaryExpression<Op, T1> &expr)  | ||||
| {   | ||||
|   ExpressionViewOpen(expr.arg1); // recurse AST | ||||
| } | ||||
|  | ||||
| template <typename Op, typename T1, typename T2> inline  | ||||
| void ExpressionViewOpen(LatticeBinaryExpression<Op, T1, T2> &expr)  | ||||
| { | ||||
|   ExpressionViewOpen(expr.arg1);  // recurse AST | ||||
|   ExpressionViewOpen(expr.arg2);  // rrecurse AST | ||||
| } | ||||
| template <typename Op, typename T1, typename T2, typename T3> | ||||
| inline void ExpressionViewOpen(LatticeTrinaryExpression<Op, T1, T2, T3> &expr)  | ||||
| { | ||||
|   ExpressionViewOpen(expr.arg1);  // recurse AST | ||||
|   ExpressionViewOpen(expr.arg2);  // recurse AST | ||||
|   ExpressionViewOpen(expr.arg3);  // recurse AST | ||||
| } | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| // ViewClose | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr> | ||||
| inline void ExpressionViewClose( T1 &lat)  // Lattice leaf | ||||
| { | ||||
|   lat.ViewClose(); | ||||
| } | ||||
| template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr> | ||||
| inline void ExpressionViewClose(T1 ¬lat) {} | ||||
|  | ||||
| template <typename Op, typename T1> inline  | ||||
| void ExpressionViewClose(LatticeUnaryExpression<Op, T1> &expr)  | ||||
| {   | ||||
|   ExpressionViewClose(expr.arg1); // recurse AST | ||||
| } | ||||
| template <typename Op, typename T1, typename T2> inline  | ||||
| void ExpressionViewClose(LatticeBinaryExpression<Op, T1, T2> &expr)  | ||||
| { | ||||
|   ExpressionViewClose(expr.arg1);  // recurse AST | ||||
|   ExpressionViewClose(expr.arg2);  // recurse AST | ||||
| } | ||||
| template <typename Op, typename T1, typename T2, typename T3> | ||||
| inline void ExpressionViewClose(LatticeTrinaryExpression<Op, T1, T2, T3> &expr)  | ||||
| { | ||||
|   ExpressionViewClose(expr.arg1);  // recurse AST | ||||
|   ExpressionViewClose(expr.arg2);  // recurse AST | ||||
|   ExpressionViewClose(expr.arg3);  // recurse AST | ||||
| inline void CBFromExpression( | ||||
|     int &cb, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr) { | ||||
|   CBFromExpression(cb, std::get<0>(expr.second));  // recurse | ||||
|   CBFromExpression(cb, std::get<1>(expr.second)); | ||||
|   CBFromExpression(cb, std::get<2>(expr.second)); | ||||
|   //  std::cout<<GridLogMessage<<"Trinary node cb "<<cb<<std::endl; | ||||
| } | ||||
|  | ||||
| //////////////////////////////////////////// | ||||
| // Unary operators and funcs | ||||
| //////////////////////////////////////////// | ||||
| #define GridUnopClass(name, ret)                                          \ | ||||
|   template <class arg>                                                    \ | ||||
|   struct name {                                                           \ | ||||
|     template<class _arg> static auto accelerator_inline func(const _arg a) -> decltype(ret) { return ret; } \ | ||||
|     static auto inline func(const arg a) -> decltype(ret) { return ret; } \ | ||||
|   }; | ||||
|  | ||||
| GridUnopClass(UnarySub, -a); | ||||
| GridUnopClass(UnaryNot, Not(a)); | ||||
| GridUnopClass(UnaryAdj, adj(a)); | ||||
| GridUnopClass(UnaryConj, conjugate(a)); | ||||
| GridUnopClass(UnaryTrace, trace(a)); | ||||
| GridUnopClass(UnaryTranspose, transpose(a)); | ||||
| GridUnopClass(UnaryTa, Ta(a)); | ||||
| GridUnopClass(UnarySpTa, SpTa(a)); | ||||
| GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a)); | ||||
| GridUnopClass(UnaryProjectOnSpGroup, ProjectOnSpGroup(a)); | ||||
| GridUnopClass(UnaryReal, real(a)); | ||||
| GridUnopClass(UnaryImag, imag(a)); | ||||
| GridUnopClass(UnaryToReal, toReal(a)); | ||||
| GridUnopClass(UnaryToComplex, toComplex(a)); | ||||
| GridUnopClass(UnaryTimesI, timesI(a)); | ||||
| GridUnopClass(UnaryTimesMinusI, timesMinusI(a)); | ||||
| GridUnopClass(UnaryAbs, abs(a)); | ||||
| GridUnopClass(UnarySqrt, sqrt(a)); | ||||
| GridUnopClass(UnaryRsqrt, rsqrt(a)); | ||||
| GridUnopClass(UnarySin, sin(a)); | ||||
| GridUnopClass(UnaryCos, cos(a)); | ||||
| GridUnopClass(UnaryAsin, asin(a)); | ||||
| @@ -363,20 +251,18 @@ GridUnopClass(UnaryExp, exp(a)); | ||||
| // Binary operators | ||||
| //////////////////////////////////////////// | ||||
| #define GridBinOpClass(name, combination)                      \ | ||||
|   template <class left, class right>                           \ | ||||
|   struct name {                                                \ | ||||
|     template <class _left, class _right>			\ | ||||
|     static auto accelerator_inline				\ | ||||
|     func(const _left &lhs, const _right &rhs)			\ | ||||
|       -> decltype(combination) const				\ | ||||
|     {								\ | ||||
|     static auto inline func(const left &lhs, const right &rhs) \ | ||||
|         -> decltype(combination) const {                       \ | ||||
|       return combination;                                      \ | ||||
|     }                                                          \ | ||||
|   }; | ||||
|  | ||||
|   } | ||||
| GridBinOpClass(BinaryAdd, lhs + rhs); | ||||
| GridBinOpClass(BinarySub, lhs - rhs); | ||||
| GridBinOpClass(BinaryMul, lhs *rhs); | ||||
| GridBinOpClass(BinaryDiv, lhs /rhs); | ||||
|  | ||||
| GridBinOpClass(BinaryAnd, lhs &rhs); | ||||
| GridBinOpClass(BinaryOr, lhs | rhs); | ||||
| GridBinOpClass(BinaryAndAnd, lhs &&rhs); | ||||
| @@ -386,53 +272,70 @@ GridBinOpClass(BinaryOrOr, lhs || rhs); | ||||
| // Trinary conditional op | ||||
| //////////////////////////////////////////////////// | ||||
| #define GridTrinOpClass(name, combination)                                     \ | ||||
|   template <class predicate, class left, class right>                          \ | ||||
|   struct name {                                                                \ | ||||
|     template <class _predicate,class _left, class _right>		\ | ||||
|     static auto accelerator_inline					\ | ||||
|     func(const _predicate &pred, const _left &lhs, const _right &rhs)	\ | ||||
|       -> decltype(combination) const					\ | ||||
|     {									\ | ||||
|     static auto inline func(const predicate &pred, const left &lhs,            \ | ||||
|                             const right &rhs) -> decltype(combination) const { \ | ||||
|       return combination;                                                      \ | ||||
|     }                                                                          \ | ||||
|   }; | ||||
|   } | ||||
|  | ||||
| GridTrinOpClass(TrinaryWhere, | ||||
| 		(predicatedWhere< | ||||
| 		 typename std::remove_reference<_predicate>::type,  | ||||
| 		 typename std::remove_reference<_left>::type, | ||||
| 		 typename std::remove_reference<_right>::type>(pred, lhs,rhs))); | ||||
| GridTrinOpClass( | ||||
|     TrinaryWhere, | ||||
|     (predicatedWhere<predicate, typename std::remove_reference<left>::type, | ||||
|                      typename std::remove_reference<right>::type>(pred, lhs, | ||||
|                                                                   rhs))); | ||||
|  | ||||
| //////////////////////////////////////////// | ||||
| // Operator syntactical glue | ||||
| //////////////////////////////////////////// | ||||
| #define GRID_UNOP(name)   name | ||||
| #define GRID_BINOP(name)  name | ||||
| #define GRID_TRINOP(name) name | ||||
|  | ||||
| #define GRID_UNOP(name) name<decltype(eval(0, arg))> | ||||
| #define GRID_BINOP(name) name<decltype(eval(0, lhs)), decltype(eval(0, rhs))> | ||||
| #define GRID_TRINOP(name) \ | ||||
|   name<decltype(eval(0, pred)), decltype(eval(0, lhs)), decltype(eval(0, rhs))> | ||||
|  | ||||
| #define GRID_DEF_UNOP(op, name)                                             \ | ||||
|   template <typename T1, typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value,T1>::type * = nullptr> \ | ||||
|   inline auto op(const T1 &arg) ->decltype(LatticeUnaryExpression<GRID_UNOP(name),T1>(GRID_UNOP(name)(), arg)) \ | ||||
|   {									\ | ||||
|     return     LatticeUnaryExpression<GRID_UNOP(name),T1>(GRID_UNOP(name)(), arg); \ | ||||
|   template <typename T1,                                                    \ | ||||
|             typename std::enable_if<is_lattice<T1>::value ||                \ | ||||
|                                         is_lattice_expr<T1>::value,         \ | ||||
|                                     T1>::type * = nullptr>                  \ | ||||
|   inline auto op(const T1 &arg)                                             \ | ||||
|       ->decltype(LatticeUnaryExpression<GRID_UNOP(name), const T1 &>(       \ | ||||
|           std::make_pair(GRID_UNOP(name)(), std::forward_as_tuple(arg)))) { \ | ||||
|     return LatticeUnaryExpression<GRID_UNOP(name), const T1 &>(             \ | ||||
|         std::make_pair(GRID_UNOP(name)(), std::forward_as_tuple(arg)));     \ | ||||
|   } | ||||
|  | ||||
| #define GRID_BINOP_LEFT(op, name)                                             \ | ||||
|   template <typename T1, typename T2,                                         \ | ||||
|             typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value,T1>::type * = nullptr> \ | ||||
|             typename std::enable_if<is_lattice<T1>::value ||                  \ | ||||
|                                         is_lattice_expr<T1>::value,           \ | ||||
|                                     T1>::type * = nullptr>                    \ | ||||
|   inline auto op(const T1 &lhs, const T2 &rhs)                                \ | ||||
|     ->decltype(LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs,rhs)) \ | ||||
|   {									\ | ||||
|     return     LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs,rhs);\ | ||||
|       ->decltype(                                                             \ | ||||
|           LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>(  \ | ||||
|               std::make_pair(GRID_BINOP(name)(),                              \ | ||||
|                              std::forward_as_tuple(lhs, rhs)))) {             \ | ||||
|     return LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>( \ | ||||
|         std::make_pair(GRID_BINOP(name)(), std::forward_as_tuple(lhs, rhs))); \ | ||||
|   } | ||||
|  | ||||
| #define GRID_BINOP_RIGHT(op, name)                                            \ | ||||
|   template <typename T1, typename T2,                                         \ | ||||
|             typename std::enable_if<!is_lattice<T1>::value&&!is_lattice_expr<T1>::value,T1>::type * = nullptr, \ | ||||
|             typename std::enable_if< is_lattice<T2>::value|| is_lattice_expr<T2>::value,T2>::type * = nullptr> \ | ||||
|             typename std::enable_if<!is_lattice<T1>::value &&                 \ | ||||
|                                         !is_lattice_expr<T1>::value,          \ | ||||
|                                     T1>::type * = nullptr,                    \ | ||||
|             typename std::enable_if<is_lattice<T2>::value ||                  \ | ||||
|                                         is_lattice_expr<T2>::value,           \ | ||||
|                                     T2>::type * = nullptr>                    \ | ||||
|   inline auto op(const T1 &lhs, const T2 &rhs)                                \ | ||||
|     ->decltype(LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs, rhs)) \ | ||||
|   {									\ | ||||
|     return     LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs, rhs); \ | ||||
|       ->decltype(                                                             \ | ||||
|           LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>(  \ | ||||
|               std::make_pair(GRID_BINOP(name)(),                              \ | ||||
|                              std::forward_as_tuple(lhs, rhs)))) {             \ | ||||
|     return LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>( \ | ||||
|         std::make_pair(GRID_BINOP(name)(), std::forward_as_tuple(lhs, rhs))); \ | ||||
|   } | ||||
|  | ||||
| #define GRID_DEF_BINOP(op, name) \ | ||||
| @@ -442,30 +345,37 @@ GridTrinOpClass(TrinaryWhere, | ||||
| #define GRID_DEF_TRINOP(op, name)                                              \ | ||||
|   template <typename T1, typename T2, typename T3>                             \ | ||||
|   inline auto op(const T1 &pred, const T2 &lhs, const T3 &rhs)                 \ | ||||
|     ->decltype(LatticeTrinaryExpression<GRID_TRINOP(name),T1,T2,T3>(GRID_TRINOP(name)(),pred, lhs, rhs)) \ | ||||
|   {									\ | ||||
|     return LatticeTrinaryExpression<GRID_TRINOP(name),T1,T2,T3>(GRID_TRINOP(name)(),pred, lhs, rhs); \ | ||||
|       ->decltype(                                                              \ | ||||
|           LatticeTrinaryExpression<GRID_TRINOP(name), const T1 &, const T2 &,  \ | ||||
|                                    const T3 &>(std::make_pair(                 \ | ||||
|               GRID_TRINOP(name)(), std::forward_as_tuple(pred, lhs, rhs)))) {  \ | ||||
|     return LatticeTrinaryExpression<GRID_TRINOP(name), const T1 &, const T2 &, \ | ||||
|                                     const T3 &>(std::make_pair(                \ | ||||
|         GRID_TRINOP(name)(), std::forward_as_tuple(pred, lhs, rhs)));          \ | ||||
|   } | ||||
|  | ||||
| //////////////////////// | ||||
| // Operator definitions | ||||
| //////////////////////// | ||||
|  | ||||
| GRID_DEF_UNOP(operator-, UnarySub); | ||||
| GRID_DEF_UNOP(Not, UnaryNot); | ||||
| GRID_DEF_UNOP(operator!, UnaryNot); | ||||
| //GRID_DEF_UNOP(adj, UnaryAdj); | ||||
| //GRID_DEF_UNOP(conjugate, UnaryConj); | ||||
| GRID_DEF_UNOP(adj, UnaryAdj); | ||||
| GRID_DEF_UNOP(conjugate, UnaryConj); | ||||
| GRID_DEF_UNOP(trace, UnaryTrace); | ||||
| GRID_DEF_UNOP(transpose, UnaryTranspose); | ||||
| GRID_DEF_UNOP(Ta, UnaryTa); | ||||
| GRID_DEF_UNOP(SpTa, UnarySpTa); | ||||
| GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup); | ||||
| GRID_DEF_UNOP(ProjectOnSpGroup, UnaryProjectOnSpGroup); | ||||
| GRID_DEF_UNOP(real, UnaryReal); | ||||
| GRID_DEF_UNOP(imag, UnaryImag); | ||||
| GRID_DEF_UNOP(toReal, UnaryToReal); | ||||
| GRID_DEF_UNOP(toComplex, UnaryToComplex); | ||||
| GRID_DEF_UNOP(timesI, UnaryTimesI); | ||||
| GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI); | ||||
| GRID_DEF_UNOP(abs, UnaryAbs);  // abs overloaded in cmath C++98; DON'T do the | ||||
|                                // abs-fabs-dabs-labs thing | ||||
| GRID_DEF_UNOP(sqrt, UnarySqrt); | ||||
| GRID_DEF_UNOP(rsqrt, UnaryRsqrt); | ||||
| GRID_DEF_UNOP(sin, UnarySin); | ||||
| GRID_DEF_UNOP(cos, UnaryCos); | ||||
| GRID_DEF_UNOP(asin, UnaryAsin); | ||||
| @@ -490,36 +400,31 @@ GRID_DEF_TRINOP(where, TrinaryWhere); | ||||
| ///////////////////////////////////////////////////////////// | ||||
| template <class Op, class T1> | ||||
| auto closure(const LatticeUnaryExpression<Op, T1> &expr) | ||||
|   -> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1)))>::type >  | ||||
| { | ||||
|   Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1)))>::type > ret(expr); | ||||
|     -> Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second))))> { | ||||
|   Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second))))> ret( | ||||
|       expr); | ||||
|   return ret; | ||||
| } | ||||
| template <class Op, class T1, class T2> | ||||
| auto closure(const LatticeBinaryExpression<Op, T1, T2> &expr) | ||||
|   -> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),vecEval(0, expr.arg2)))>::type > | ||||
| { | ||||
|   Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),vecEval(0, expr.arg2)))>::type > ret(expr); | ||||
|     -> Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)), | ||||
|                                         eval(0, std::get<1>(expr.second))))> { | ||||
|   Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)), | ||||
|                                    eval(0, std::get<1>(expr.second))))> | ||||
|       ret(expr); | ||||
|   return ret; | ||||
| } | ||||
| template <class Op, class T1, class T2, class T3> | ||||
| auto closure(const LatticeTrinaryExpression<Op, T1, T2, T3> &expr) | ||||
|   -> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1), | ||||
| 				   vecEval(0, expr.arg2), | ||||
| 				   vecEval(0, expr.arg3)))>::type > | ||||
| { | ||||
|   Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1), | ||||
| 				vecEval(0, expr.arg2), | ||||
| 			        vecEval(0, expr.arg3)))>::type >  ret(expr); | ||||
|     -> Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)), | ||||
|                                         eval(0, std::get<1>(expr.second)), | ||||
|                                         eval(0, std::get<2>(expr.second))))> { | ||||
|   Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)), | ||||
|                                    eval(0, std::get<1>(expr.second)), | ||||
|                                    eval(0, std::get<2>(expr.second))))> | ||||
|       ret(expr); | ||||
|   return ret; | ||||
| } | ||||
| #define EXPRESSION_CLOSURE(function)					\ | ||||
|   template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr> \ | ||||
|     auto function(Expression &expr) -> decltype(function(closure(expr))) \ | ||||
|   {									\ | ||||
|     return function(closure(expr));					\ | ||||
|   } | ||||
|  | ||||
|  | ||||
| #undef GRID_UNOP | ||||
| #undef GRID_BINOP | ||||
| @@ -528,7 +433,34 @@ auto closure(const LatticeTrinaryExpression<Op, T1, T2, T3> &expr) | ||||
| #undef GRID_DEF_UNOP | ||||
| #undef GRID_DEF_BINOP | ||||
| #undef GRID_DEF_TRINOP | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #if 0 | ||||
| using namespace Grid; | ||||
|          | ||||
|  int main(int argc,char **argv){ | ||||
|     | ||||
|    Lattice<double> v1(16); | ||||
|    Lattice<double> v2(16); | ||||
|    Lattice<double> v3(16); | ||||
|  | ||||
|    BinaryAdd<double,double> tmp; | ||||
|    LatticeBinaryExpression<BinaryAdd<double,double>,Lattice<double> &,Lattice<double> &>  | ||||
|      expr(std::make_pair(tmp, | ||||
|     std::forward_as_tuple(v1,v2))); | ||||
|    tmp.func(eval(0,v1),eval(0,v2)); | ||||
|  | ||||
|    auto var = v1+v2; | ||||
|    std::cout<<GridLogMessage<<typeid(var).name()<<std::endl; | ||||
|  | ||||
|    v3=v1+v2; | ||||
|    v3=v1+v2+v1*v2; | ||||
|  }; | ||||
|  | ||||
| void testit(Lattice<double> &v1,Lattice<double> &v2,Lattice<double> &v3) | ||||
| { | ||||
|    v3=v1+v2+v1*v2; | ||||
| } | ||||
| #endif | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -7,7 +7,6 @@ | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: Christoph Lehner <christoph@lhnr.de> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
| @@ -29,283 +28,228 @@ Author: Christoph Lehner <christoph@lhnr.de> | ||||
| #ifndef GRID_LATTICE_ARITH_H | ||||
| #define GRID_LATTICE_ARITH_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   //  avoid copy back routines for mult, mac, sub, add | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
|   template<class obj1,class obj2,class obj3> strong_inline | ||||
|     void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){ | ||||
|   GRID_TRACE("mult"); | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   autoView( rhs_v , rhs, AcceleratorRead); | ||||
|     ret.checkerboard = lhs.checkerboard; | ||||
|     conformable(ret,rhs); | ||||
|     conformable(lhs,rhs); | ||||
|   accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{ | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     auto lhs_t = lhs_v(ss); | ||||
|     auto rhs_t = rhs_v(ss); | ||||
|     mult(&tmp,&lhs_t,&rhs_t); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
|     parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       obj1 tmp; | ||||
|       mult(&tmp,&lhs._odata[ss],&rhs._odata[ss]); | ||||
|       vstream(ret._odata[ss],tmp); | ||||
| #else | ||||
|       mult(&ret._odata[ss],&lhs._odata[ss],&rhs._odata[ss]); | ||||
| #endif | ||||
|     } | ||||
|   } | ||||
|    | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
|   template<class obj1,class obj2,class obj3> strong_inline | ||||
|     void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){ | ||||
|   GRID_TRACE("mac"); | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|     ret.checkerboard = lhs.checkerboard; | ||||
|     conformable(ret,rhs); | ||||
|     conformable(lhs,rhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   autoView( rhs_v , rhs, AcceleratorRead); | ||||
|   accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{ | ||||
|     auto lhs_t=lhs_v(ss); | ||||
|     auto rhs_t=rhs_v(ss); | ||||
|     auto tmp  =ret_v(ss); | ||||
|     mac(&tmp,&lhs_t,&rhs_t); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
|     parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       obj1 tmp; | ||||
|       mac(&tmp,&lhs._odata[ss],&rhs._odata[ss]); | ||||
|       vstream(ret._odata[ss],tmp); | ||||
| #else | ||||
|       mac(&ret._odata[ss],&lhs._odata[ss],&rhs._odata[ss]); | ||||
| #endif | ||||
|     } | ||||
|   } | ||||
|    | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
|   template<class obj1,class obj2,class obj3> strong_inline | ||||
|     void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){ | ||||
|   GRID_TRACE("sub"); | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|     ret.checkerboard = lhs.checkerboard; | ||||
|     conformable(ret,rhs); | ||||
|     conformable(lhs,rhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   autoView( rhs_v , rhs, AcceleratorRead); | ||||
|   accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{ | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     auto lhs_t=lhs_v(ss); | ||||
|     auto rhs_t=rhs_v(ss); | ||||
|     sub(&tmp,&lhs_t,&rhs_t); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
|     parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       obj1 tmp; | ||||
|       sub(&tmp,&lhs._odata[ss],&rhs._odata[ss]); | ||||
|       vstream(ret._odata[ss],tmp); | ||||
| #else | ||||
|       sub(&ret._odata[ss],&lhs._odata[ss],&rhs._odata[ss]); | ||||
| #endif | ||||
|     } | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
|   } | ||||
|   template<class obj1,class obj2,class obj3> strong_inline | ||||
|     void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){ | ||||
|   GRID_TRACE("add"); | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|     ret.checkerboard = lhs.checkerboard; | ||||
|     conformable(ret,rhs); | ||||
|     conformable(lhs,rhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   autoView( rhs_v , rhs, AcceleratorRead); | ||||
|   accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{ | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     auto lhs_t=lhs_v(ss); | ||||
|     auto rhs_t=rhs_v(ss); | ||||
|     add(&tmp,&lhs_t,&rhs_t); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
|     parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       obj1 tmp; | ||||
|       add(&tmp,&lhs._odata[ss],&rhs._odata[ss]); | ||||
|       vstream(ret._odata[ss],tmp); | ||||
| #else | ||||
|       add(&ret._odata[ss],&lhs._odata[ss],&rhs._odata[ss]); | ||||
| #endif | ||||
|     } | ||||
|   } | ||||
|    | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   //  avoid copy back routines for mult, mac, sub, add | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
|   template<class obj1,class obj2,class obj3> strong_inline | ||||
|     void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){ | ||||
|   GRID_TRACE("mult"); | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|     ret.checkerboard = lhs.checkerboard; | ||||
|     conformable(lhs,ret); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{ | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     mult(&tmp,&lhs_v(ss),&rhs); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
|     parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){ | ||||
|       obj1 tmp; | ||||
|       mult(&tmp,&lhs._odata[ss],&rhs); | ||||
|       vstream(ret._odata[ss],tmp); | ||||
|     } | ||||
|   } | ||||
|    | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
|   template<class obj1,class obj2,class obj3> strong_inline | ||||
|     void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){ | ||||
|   GRID_TRACE("mac"); | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|     ret.checkerboard = lhs.checkerboard; | ||||
|     conformable(ret,lhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{ | ||||
|     auto tmp  =ret_v(ss); | ||||
|     auto lhs_t=lhs_v(ss); | ||||
|     mac(&tmp,&lhs_t,&rhs); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
|     parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){ | ||||
|       obj1 tmp; | ||||
|       mac(&tmp,&lhs._odata[ss],&rhs); | ||||
|       vstream(ret._odata[ss],tmp); | ||||
|     } | ||||
|   } | ||||
|    | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
|   template<class obj1,class obj2,class obj3> strong_inline | ||||
|     void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){ | ||||
|   GRID_TRACE("sub"); | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|     ret.checkerboard = lhs.checkerboard; | ||||
|     conformable(ret,lhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{ | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     auto lhs_t=lhs_v(ss); | ||||
|     sub(&tmp,&lhs_t,&rhs); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
|     parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       obj1 tmp; | ||||
|       sub(&tmp,&lhs._odata[ss],&rhs); | ||||
|       vstream(ret._odata[ss],tmp); | ||||
| #else  | ||||
|       sub(&ret._odata[ss],&lhs._odata[ss],&rhs); | ||||
| #endif | ||||
|     } | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
|   } | ||||
|   template<class obj1,class obj2,class obj3> strong_inline | ||||
|     void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){ | ||||
|   GRID_TRACE("add"); | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|     ret.checkerboard = lhs.checkerboard; | ||||
|     conformable(lhs,ret); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{ | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     auto lhs_t=lhs_v(ss); | ||||
|     add(&tmp,&lhs_t,&rhs); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
|     parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       obj1 tmp; | ||||
|       add(&tmp,&lhs._odata[ss],&rhs); | ||||
|       vstream(ret._odata[ss],tmp); | ||||
| #else  | ||||
|       add(&ret._odata[ss],&lhs._odata[ss],&rhs); | ||||
| #endif | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   //  avoid copy back routines for mult, mac, sub, add | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
|     template<class obj1,class obj2,class obj3> strong_inline | ||||
|     void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){ | ||||
|   GRID_TRACE("mult"); | ||||
|   ret.Checkerboard() = rhs.Checkerboard(); | ||||
|     ret.checkerboard = rhs.checkerboard; | ||||
|     conformable(ret,rhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( rhs_v , lhs, AcceleratorRead); | ||||
|   accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{ | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     auto rhs_t=rhs_v(ss); | ||||
|     mult(&tmp,&lhs,&rhs_t); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
|     parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       obj1 tmp; | ||||
|       mult(&tmp,&lhs,&rhs._odata[ss]); | ||||
|       vstream(ret._odata[ss],tmp); | ||||
| #else  | ||||
|       mult(&ret._odata[ss],&lhs,&rhs._odata[ss]); | ||||
| #endif | ||||
|     } | ||||
|   } | ||||
|    | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
|   template<class obj1,class obj2,class obj3> strong_inline | ||||
|     void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){ | ||||
|   GRID_TRACE("mac"); | ||||
|   ret.Checkerboard() = rhs.Checkerboard(); | ||||
|     ret.checkerboard = rhs.checkerboard; | ||||
|     conformable(ret,rhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( rhs_v , lhs, AcceleratorRead); | ||||
|   accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{ | ||||
|     auto tmp  =ret_v(ss); | ||||
|     auto rhs_t=rhs_v(ss); | ||||
|     mac(&tmp,&lhs,&rhs_t); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
|     parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       obj1 tmp; | ||||
|       mac(&tmp,&lhs,&rhs._odata[ss]); | ||||
|       vstream(ret._odata[ss],tmp); | ||||
| #else  | ||||
|       mac(&ret._odata[ss],&lhs,&rhs._odata[ss]); | ||||
| #endif | ||||
|     } | ||||
|   } | ||||
|    | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
|   template<class obj1,class obj2,class obj3> strong_inline | ||||
|     void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){ | ||||
|   GRID_TRACE("sub"); | ||||
|   ret.Checkerboard() = rhs.Checkerboard(); | ||||
|     ret.checkerboard = rhs.checkerboard; | ||||
|     conformable(ret,rhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( rhs_v , lhs, AcceleratorRead); | ||||
|   accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{ | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     auto rhs_t=rhs_v(ss); | ||||
|     sub(&tmp,&lhs,&rhs_t); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
|     parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       obj1 tmp; | ||||
|       sub(&tmp,&lhs,&rhs._odata[ss]); | ||||
|       vstream(ret._odata[ss],tmp); | ||||
| #else  | ||||
|       sub(&ret._odata[ss],&lhs,&rhs._odata[ss]); | ||||
| #endif | ||||
|     } | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
|   } | ||||
|   template<class obj1,class obj2,class obj3> strong_inline | ||||
|     void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){ | ||||
|   GRID_TRACE("add"); | ||||
|   ret.Checkerboard() = rhs.Checkerboard(); | ||||
|     ret.checkerboard = rhs.checkerboard; | ||||
|     conformable(ret,rhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( rhs_v , lhs, AcceleratorRead); | ||||
|   accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{ | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     auto rhs_t=rhs_v(ss); | ||||
|     add(&tmp,&lhs,&rhs_t); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
|     parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       obj1 tmp; | ||||
|       add(&tmp,&lhs,&rhs._odata[ss]); | ||||
|       vstream(ret._odata[ss],tmp); | ||||
| #else  | ||||
|       add(&ret._odata[ss],&lhs,&rhs._odata[ss]); | ||||
| #endif | ||||
|     } | ||||
|   } | ||||
|    | ||||
| template<class sobj,class vobj> inline | ||||
|   template<class sobj,class vobj> strong_inline | ||||
|   void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){ | ||||
|   GRID_TRACE("axpy"); | ||||
|   ret.Checkerboard() = x.Checkerboard(); | ||||
|     ret.checkerboard = x.checkerboard; | ||||
|     conformable(ret,x); | ||||
|     conformable(x,y); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( x_v , x, AcceleratorRead); | ||||
|   autoView( y_v , y, AcceleratorRead); | ||||
|   accelerator_for(ss,x_v.size(),vobj::Nsimd(),{ | ||||
|     auto tmp = a*coalescedRead(x_v[ss])+coalescedRead(y_v[ss]); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
|     parallel_for(int ss=0;ss<x._grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       vobj tmp = a*x._odata[ss]+y._odata[ss]; | ||||
|       vstream(ret._odata[ss],tmp); | ||||
| #else | ||||
|       ret._odata[ss]=a*x._odata[ss]+y._odata[ss]; | ||||
| #endif | ||||
|     } | ||||
| template<class sobj,class vobj> inline | ||||
|   } | ||||
|   template<class sobj,class vobj> strong_inline | ||||
|   void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y){ | ||||
|   GRID_TRACE("axpby"); | ||||
|   ret.Checkerboard() = x.Checkerboard(); | ||||
|     ret.checkerboard = x.checkerboard; | ||||
|     conformable(ret,x); | ||||
|     conformable(x,y); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( x_v , x, AcceleratorRead); | ||||
|   autoView( y_v , y, AcceleratorRead); | ||||
|   accelerator_for(ss,x_v.size(),vobj::Nsimd(),{ | ||||
|     auto tmp = a*x_v(ss)+b*y_v(ss); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
|     parallel_for(int ss=0;ss<x._grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       vobj tmp = a*x._odata[ss]+b*y._odata[ss]; | ||||
|       vstream(ret._odata[ss],tmp); | ||||
| #else | ||||
|       ret._odata[ss]=a*x._odata[ss]+b*y._odata[ss]; | ||||
| #endif | ||||
|     } | ||||
|   } | ||||
|  | ||||
| template<class sobj,class vobj> inline | ||||
| RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y) | ||||
| { | ||||
|   GRID_TRACE("axpy_norm"); | ||||
|   template<class sobj,class vobj> strong_inline | ||||
|   RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){ | ||||
|     return axpy_norm_fast(ret,a,x,y); | ||||
|   } | ||||
| template<class sobj,class vobj> inline | ||||
| RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y) | ||||
| { | ||||
|   GRID_TRACE("axpby_norm"); | ||||
|   template<class sobj,class vobj> strong_inline | ||||
|   RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y){ | ||||
|     return axpby_norm_fast(ret,a,b,x,y); | ||||
|   } | ||||
|  | ||||
| /// Trace product | ||||
| template<class obj> auto traceProduct(const Lattice<obj> &rhs_1,const Lattice<obj> &rhs_2) | ||||
|   -> Lattice<decltype(trace(obj()))> | ||||
| { | ||||
|   typedef decltype(trace(obj())) robj; | ||||
|   Lattice<robj> ret_i(rhs_1.Grid()); | ||||
|   autoView( rhs1 , rhs_1, AcceleratorRead); | ||||
|   autoView( rhs2 , rhs_2, AcceleratorRead); | ||||
|   autoView( ret , ret_i, AcceleratorWrite); | ||||
|   ret.Checkerboard() = rhs_1.Checkerboard(); | ||||
|   accelerator_for(ss,rhs1.size(),obj::Nsimd(),{ | ||||
|       coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2(ss))); | ||||
|   }); | ||||
|   return ret_i; | ||||
| } | ||||
|  | ||||
| template<class obj1,class obj2> auto traceProduct(const Lattice<obj1> &rhs_1,const obj2 &rhs2) | ||||
|   -> Lattice<decltype(trace(obj1()))> | ||||
| { | ||||
|   typedef decltype(trace(obj1())) robj; | ||||
|   Lattice<robj> ret_i(rhs_1.Grid()); | ||||
|   autoView( rhs1 , rhs_1, AcceleratorRead); | ||||
|   autoView( ret , ret_i, AcceleratorWrite); | ||||
|   ret.Checkerboard() = rhs_1.Checkerboard(); | ||||
|   accelerator_for(ss,rhs1.size(),obj1::Nsimd(),{ | ||||
|       coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2)); | ||||
|   }); | ||||
|   return ret_i; | ||||
| } | ||||
| template<class obj1,class obj2> auto traceProduct(const obj2 &rhs_2,const Lattice<obj1> &rhs_1) | ||||
|   -> Lattice<decltype(trace(obj1()))> | ||||
| { | ||||
|   return traceProduct(rhs_1,rhs_2); | ||||
| } | ||||
|  | ||||
|  | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
|   | ||||
| @@ -9,7 +9,6 @@ Copyright (C) 2015 | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| Author: Christoph Lehner <christoph@lhnr.de> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| @@ -29,343 +28,311 @@ See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
|  | ||||
| #pragma once  | ||||
| #ifndef GRID_LATTICE_BASE_H | ||||
| #define GRID_LATTICE_BASE_H | ||||
|  | ||||
| #define STREAMING_STORES | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
| // TODO:  | ||||
| //       mac,real,imag | ||||
|  | ||||
| // Functionality: | ||||
| //     -=,+=,*=,() | ||||
| //     add,+,sub,-,mult,mac,* | ||||
| //     adj,conjugate | ||||
| //     real,imag | ||||
| //     transpose,transposeIndex   | ||||
| //     trace,traceIndex | ||||
| //     peekIndex | ||||
| //     innerProduct,outerProduct, | ||||
| //     localNorm2 | ||||
| //     localInnerProduct | ||||
|  | ||||
| extern int GridCshiftPermuteMap[4][16]; | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////////////////////// | ||||
| // The real lattice class, with normal copy and assignment semantics. | ||||
| // This contains extra (host resident) grid pointer data that may be accessed by host code | ||||
| ///////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<class vobj> | ||||
| class Lattice : public LatticeAccelerator<vobj> | ||||
| //////////////////////////////////////////////// | ||||
| // Basic expressions used in Expression Template | ||||
| //////////////////////////////////////////////// | ||||
|  | ||||
| class LatticeBase | ||||
| { | ||||
| public: | ||||
|   GridBase *Grid(void) const { return this->_grid; } | ||||
|   /////////////////////////////////////////////////// | ||||
|   // Member types | ||||
|   /////////////////////////////////////////////////// | ||||
|     virtual ~LatticeBase(void) = default; | ||||
|     GridBase *_grid; | ||||
| }; | ||||
|      | ||||
| class LatticeExpressionBase {}; | ||||
|  | ||||
| template <typename Op, typename T1>                            | ||||
| class LatticeUnaryExpression  : public std::pair<Op,std::tuple<T1> > , public LatticeExpressionBase { | ||||
|  public: | ||||
|  LatticeUnaryExpression(const std::pair<Op,std::tuple<T1> > &arg): std::pair<Op,std::tuple<T1> >(arg) {}; | ||||
| }; | ||||
|  | ||||
| template <typename Op, typename T1, typename T2>               | ||||
| class LatticeBinaryExpression : public std::pair<Op,std::tuple<T1,T2> > , public LatticeExpressionBase { | ||||
|  public: | ||||
|  LatticeBinaryExpression(const std::pair<Op,std::tuple<T1,T2> > &arg): std::pair<Op,std::tuple<T1,T2> >(arg) {}; | ||||
| }; | ||||
|  | ||||
| template <typename Op, typename T1, typename T2, typename T3>  | ||||
| class LatticeTrinaryExpression :public std::pair<Op,std::tuple<T1,T2,T3> >, public LatticeExpressionBase { | ||||
|  public: | ||||
|  LatticeTrinaryExpression(const std::pair<Op,std::tuple<T1,T2,T3> > &arg): std::pair<Op,std::tuple<T1,T2,T3> >(arg) {}; | ||||
| }; | ||||
|  | ||||
| void inline conformable(GridBase *lhs,GridBase *rhs) | ||||
| { | ||||
|   assert(lhs == rhs); | ||||
| } | ||||
|  | ||||
| template<class vobj> | ||||
| class Lattice : public LatticeBase | ||||
| { | ||||
| public: | ||||
|     int checkerboard; | ||||
|     Vector<vobj> _odata; | ||||
|      | ||||
|     // to pthread need a computable loop where loop induction is not required | ||||
|     int begin(void) { return 0;}; | ||||
|     int end(void)   { return _odata.size(); } | ||||
|     vobj & operator[](int i) { return _odata[i]; }; | ||||
|     const vobj & operator[](int i) const { return _odata[i]; }; | ||||
|  | ||||
| public: | ||||
|     typedef typename vobj::scalar_type scalar_type; | ||||
|     typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_object scalar_object; | ||||
|     typedef vobj vector_object; | ||||
|     | ||||
| private: | ||||
|   void dealloc(void) | ||||
|   { | ||||
|     if( this->_odata_size ) { | ||||
|       alignedAllocator<vobj> alloc; | ||||
|       alloc.deallocate(this->_odata,this->_odata_size); | ||||
|       this->_odata=nullptr; | ||||
|       this->_odata_size=0; | ||||
|     } | ||||
|   } | ||||
|   void resize(uint64_t size) | ||||
|   { | ||||
|     if ( this->_odata_size != size ) { | ||||
|       alignedAllocator<vobj> alloc; | ||||
|  | ||||
|       dealloc(); | ||||
|        | ||||
|       this->_odata_size = size; | ||||
|       if ( size ) | ||||
| 	this->_odata      = alloc.allocate(this->_odata_size); | ||||
|       else  | ||||
| 	this->_odata      = nullptr; | ||||
|     } | ||||
|   } | ||||
| public: | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////////////////////////// | ||||
|   // Can use to make accelerator dirty without copy from host ; useful for temporaries "dont care" prev contents | ||||
|   ///////////////////////////////////////////////////////////////////////////////// | ||||
|   void SetViewMode(ViewMode mode) { | ||||
|     LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this),mode); | ||||
|     accessor.ViewClose(); | ||||
|   } | ||||
|  | ||||
|   // Helper function to print the state of this object in the AccCache | ||||
|   void PrintCacheState(void) | ||||
|   { | ||||
|     MemoryManager::PrintState(this->_odata); | ||||
|   } | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////////////////////////// | ||||
|   // Return a view object that may be dereferenced in site loops. | ||||
|   // The view is trivially copy constructible and may be copied to an accelerator device | ||||
|   // in device lambdas | ||||
|   ///////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|   LatticeView<vobj> View (ViewMode mode) const  | ||||
|   { | ||||
|     LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this),mode); | ||||
|     return accessor; | ||||
|   } | ||||
|  | ||||
|   ~Lattice() {  | ||||
|     if ( this->_odata_size ) { | ||||
|       dealloc(); | ||||
|     } | ||||
|    } | ||||
|   //////////////////////////////////////////////////////////////////////////////// | ||||
|   // Expression Template closure support | ||||
|   //////////////////////////////////////////////////////////////////////////////// | ||||
|   template <typename Op, typename T1> inline Lattice<vobj> & operator=(const LatticeUnaryExpression<Op,T1> &expr) | ||||
|   template <typename Op, typename T1>                         strong_inline Lattice<vobj> & operator=(const LatticeUnaryExpression<Op,T1> &expr) | ||||
|   { | ||||
|     GRID_TRACE("ExpressionTemplateEval"); | ||||
|     GridBase *egrid(nullptr); | ||||
|     GridFromExpression(egrid,expr); | ||||
|     assert(egrid!=nullptr); | ||||
|     conformable(this->_grid,egrid); | ||||
|     conformable(_grid,egrid); | ||||
|  | ||||
|     int cb=-1; | ||||
|     CBFromExpression(cb,expr); | ||||
|     assert( (cb==Odd) || (cb==Even)); | ||||
|     this->checkerboard=cb; | ||||
|     checkerboard=cb; | ||||
|  | ||||
|     auto exprCopy = expr; | ||||
|     ExpressionViewOpen(exprCopy); | ||||
|     auto me  = View(AcceleratorWriteDiscard); | ||||
|     accelerator_for(ss,me.size(),vobj::Nsimd(),{ | ||||
|       auto tmp = eval(ss,exprCopy); | ||||
|       coalescedWrite(me[ss],tmp); | ||||
|     }); | ||||
|     me.ViewClose(); | ||||
|     ExpressionViewClose(exprCopy); | ||||
|     parallel_for(int ss=0;ss<_grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       vobj tmp = eval(ss,expr); | ||||
|       vstream(_odata[ss] ,tmp); | ||||
| #else | ||||
|       _odata[ss]=eval(ss,expr); | ||||
| #endif | ||||
|     } | ||||
|     return *this; | ||||
|   } | ||||
|   template <typename Op, typename T1,typename T2> inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr) | ||||
|   template <typename Op, typename T1,typename T2> strong_inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr) | ||||
|   { | ||||
|     GRID_TRACE("ExpressionTemplateEval"); | ||||
|     GridBase *egrid(nullptr); | ||||
|     GridFromExpression(egrid,expr); | ||||
|     assert(egrid!=nullptr); | ||||
|     conformable(this->_grid,egrid); | ||||
|     conformable(_grid,egrid); | ||||
|  | ||||
|     int cb=-1; | ||||
|     CBFromExpression(cb,expr); | ||||
|     assert( (cb==Odd) || (cb==Even)); | ||||
|     this->checkerboard=cb; | ||||
|     checkerboard=cb; | ||||
|  | ||||
|     auto exprCopy = expr; | ||||
|     ExpressionViewOpen(exprCopy); | ||||
|     auto me  = View(AcceleratorWriteDiscard); | ||||
|     accelerator_for(ss,me.size(),vobj::Nsimd(),{ | ||||
|       auto tmp = eval(ss,exprCopy); | ||||
|       coalescedWrite(me[ss],tmp); | ||||
|     }); | ||||
|     me.ViewClose(); | ||||
|     ExpressionViewClose(exprCopy); | ||||
|     parallel_for(int ss=0;ss<_grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       vobj tmp = eval(ss,expr); | ||||
|       vstream(_odata[ss] ,tmp); | ||||
| #else | ||||
|       _odata[ss]=eval(ss,expr); | ||||
| #endif | ||||
|     } | ||||
|     return *this; | ||||
|   } | ||||
|   template <typename Op, typename T1,typename T2,typename T3> inline Lattice<vobj> & operator=(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr) | ||||
|   template <typename Op, typename T1,typename T2,typename T3> strong_inline Lattice<vobj> & operator=(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr) | ||||
|   { | ||||
|     GRID_TRACE("ExpressionTemplateEval"); | ||||
|     GridBase *egrid(nullptr); | ||||
|     GridFromExpression(egrid,expr); | ||||
|     assert(egrid!=nullptr); | ||||
|     conformable(this->_grid,egrid); | ||||
|     conformable(_grid,egrid); | ||||
|  | ||||
|     int cb=-1; | ||||
|     CBFromExpression(cb,expr); | ||||
|     assert( (cb==Odd) || (cb==Even)); | ||||
|     this->checkerboard=cb; | ||||
|     auto exprCopy = expr; | ||||
|     ExpressionViewOpen(exprCopy); | ||||
|     auto me  = View(AcceleratorWriteDiscard); | ||||
|     accelerator_for(ss,me.size(),vobj::Nsimd(),{ | ||||
|       auto tmp = eval(ss,exprCopy); | ||||
|       coalescedWrite(me[ss],tmp); | ||||
|     }); | ||||
|     me.ViewClose(); | ||||
|     ExpressionViewClose(exprCopy); | ||||
|     checkerboard=cb; | ||||
|  | ||||
|     parallel_for(int ss=0;ss<_grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       //vobj tmp = eval(ss,expr); | ||||
|       vstream(_odata[ss] ,eval(ss,expr)); | ||||
| #else | ||||
|       _odata[ss] = eval(ss,expr); | ||||
| #endif | ||||
|     } | ||||
|     return *this; | ||||
|   } | ||||
|   //GridFromExpression is tricky to do | ||||
|   template<class Op,class T1> | ||||
|     Lattice(const LatticeUnaryExpression<Op,T1> & expr) { | ||||
|     this->_grid = nullptr; | ||||
|     GridFromExpression(this->_grid,expr); | ||||
|     assert(this->_grid!=nullptr); | ||||
|     _grid = nullptr; | ||||
|     GridFromExpression(_grid,expr); | ||||
|     assert(_grid!=nullptr); | ||||
|  | ||||
|     int cb=-1; | ||||
|     CBFromExpression(cb,expr); | ||||
|     assert( (cb==Odd) || (cb==Even)); | ||||
|     this->checkerboard=cb; | ||||
|     checkerboard=cb; | ||||
|  | ||||
|     resize(this->_grid->oSites()); | ||||
|  | ||||
|     *this = expr; | ||||
|     _odata.resize(_grid->oSites()); | ||||
|     parallel_for(int ss=0;ss<_grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       vobj tmp = eval(ss,expr); | ||||
|       vstream(_odata[ss] ,tmp); | ||||
| #else | ||||
|       _odata[ss]=eval(ss,expr); | ||||
| #endif | ||||
|     } | ||||
|   }; | ||||
|   template<class Op,class T1, class T2> | ||||
|   Lattice(const LatticeBinaryExpression<Op,T1,T2> & expr) { | ||||
|     this->_grid = nullptr; | ||||
|     GridFromExpression(this->_grid,expr); | ||||
|     assert(this->_grid!=nullptr); | ||||
|     _grid = nullptr; | ||||
|     GridFromExpression(_grid,expr); | ||||
|     assert(_grid!=nullptr); | ||||
|  | ||||
|     int cb=-1; | ||||
|     CBFromExpression(cb,expr); | ||||
|     assert( (cb==Odd) || (cb==Even)); | ||||
|     this->checkerboard=cb; | ||||
|     checkerboard=cb; | ||||
|  | ||||
|     resize(this->_grid->oSites()); | ||||
|  | ||||
|     *this = expr; | ||||
|     _odata.resize(_grid->oSites()); | ||||
|     parallel_for(int ss=0;ss<_grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       vobj tmp = eval(ss,expr); | ||||
|       vstream(_odata[ss] ,tmp); | ||||
| #else | ||||
|       _odata[ss]=eval(ss,expr); | ||||
| #endif | ||||
|     } | ||||
|   }; | ||||
|   template<class Op,class T1, class T2, class T3> | ||||
|   Lattice(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr) { | ||||
|     this->_grid = nullptr; | ||||
|     GridFromExpression(this->_grid,expr); | ||||
|     assert(this->_grid!=nullptr); | ||||
|     _grid = nullptr; | ||||
|     GridFromExpression(_grid,expr); | ||||
|     assert(_grid!=nullptr); | ||||
|  | ||||
|     int cb=-1; | ||||
|     CBFromExpression(cb,expr); | ||||
|     assert( (cb==Odd) || (cb==Even)); | ||||
|     this->checkerboard=cb; | ||||
|     checkerboard=cb; | ||||
|  | ||||
|     resize(this->_grid->oSites()); | ||||
|  | ||||
|     *this = expr; | ||||
|   } | ||||
|  | ||||
|   template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){ | ||||
|     auto me  = View(CpuWrite); | ||||
|     thread_for(ss,me.size(),{ | ||||
| 	me[ss]= r; | ||||
|     }); | ||||
|     me.ViewClose(); | ||||
|     return *this; | ||||
|     _odata.resize(_grid->oSites()); | ||||
|     parallel_for(int ss=0;ss<_grid->oSites();ss++){ | ||||
|       vstream(_odata[ss] ,eval(ss,expr)); | ||||
|     } | ||||
|   }; | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////// | ||||
|   // Follow rule of five, with Constructor requires "grid" passed | ||||
|   // to user defined constructor | ||||
|   /////////////////////////////////////////// | ||||
|   // user defined constructor | ||||
|   /////////////////////////////////////////// | ||||
|   Lattice(GridBase *grid,ViewMode mode=AcceleratorWriteDiscard) {  | ||||
|     this->_grid = grid; | ||||
|     resize(this->_grid->oSites()); | ||||
|     assert((((uint64_t)&this->_odata[0])&0xF) ==0); | ||||
|     this->checkerboard=0; | ||||
|     SetViewMode(mode); | ||||
|   // Constructor requires "grid" passed. | ||||
|   // what about a default grid? | ||||
|   ////////////////////////////////////////////////////////////////// | ||||
|   Lattice(GridBase *grid) : _odata(grid->oSites()) { | ||||
|     _grid = grid; | ||||
|     //        _odata.reserve(_grid->oSites()); | ||||
|     //        _odata.resize(_grid->oSites()); | ||||
|     //      std::cout << "Constructing lattice object with Grid pointer "<<_grid<<std::endl; | ||||
|     assert((((uint64_t)&_odata[0])&0xF) ==0); | ||||
|     checkerboard=0; | ||||
|   } | ||||
|    | ||||
|   //  virtual ~Lattice(void) = default; | ||||
|   Lattice(const Lattice& r){ // copy constructor | ||||
|     _grid = r._grid; | ||||
|     checkerboard = r.checkerboard; | ||||
|     _odata.resize(_grid->oSites());// essential | ||||
|     parallel_for(int ss=0;ss<_grid->oSites();ss++){ | ||||
|       _odata[ss]=r._odata[ss]; | ||||
|     }  	 | ||||
|   } | ||||
|  | ||||
|   Lattice(Lattice&& r){ // move constructor | ||||
|     _grid = r._grid; | ||||
|     checkerboard = r.checkerboard; | ||||
|     _odata=std::move(r._odata); | ||||
|   } | ||||
|    | ||||
|   inline Lattice<vobj> & operator = (Lattice<vobj> && r) | ||||
|   { | ||||
|     _grid        = r._grid; | ||||
|     checkerboard = r.checkerboard; | ||||
|     _odata       =std::move(r._odata); | ||||
|     return *this; | ||||
|   } | ||||
|  | ||||
|   inline Lattice<vobj> & operator = (const Lattice<vobj> & r){ | ||||
|     _grid        = r._grid; | ||||
|     checkerboard = r.checkerboard; | ||||
|     _odata.resize(_grid->oSites());// essential | ||||
|      | ||||
|     parallel_for(int ss=0;ss<_grid->oSites();ss++){ | ||||
|       _odata[ss]=r._odata[ss]; | ||||
|     }  	 | ||||
|     return *this; | ||||
|   } | ||||
|  | ||||
|   template<class robj> strong_inline Lattice<vobj> & operator = (const Lattice<robj> & r){ | ||||
|     this->checkerboard = r.checkerboard; | ||||
|     conformable(*this,r); | ||||
|      | ||||
|     parallel_for(int ss=0;ss<_grid->oSites();ss++){ | ||||
|       this->_odata[ss]=r._odata[ss]; | ||||
|     } | ||||
|     return *this; | ||||
|   } | ||||
|  | ||||
|   virtual ~Lattice(void) = default; | ||||
|      | ||||
|   void reset(GridBase* grid) { | ||||
|     if (this->_grid != grid) { | ||||
|       this->_grid = grid; | ||||
|       this->resize(grid->oSites()); | ||||
|       this->checkerboard = 0; | ||||
|     if (_grid != grid) { | ||||
|       _grid = grid; | ||||
|       _odata.resize(grid->oSites()); | ||||
|       checkerboard = 0; | ||||
|     } | ||||
|   } | ||||
|   /////////////////////////////////////////// | ||||
|   // copy constructor | ||||
|   /////////////////////////////////////////// | ||||
|   Lattice(const Lattice& r){  | ||||
|     this->_grid = r.Grid(); | ||||
|     resize(this->_grid->oSites()); | ||||
|     *this = r; | ||||
|    | ||||
|  | ||||
|   template<class sobj> strong_inline Lattice<vobj> & operator = (const sobj & r){ | ||||
|     parallel_for(int ss=0;ss<_grid->oSites();ss++){ | ||||
|       this->_odata[ss]=r; | ||||
|     } | ||||
|   /////////////////////////////////////////// | ||||
|   // move constructor | ||||
|   /////////////////////////////////////////// | ||||
|   Lattice(Lattice && r){  | ||||
|     this->_grid = r.Grid(); | ||||
|     this->_odata      = r._odata; | ||||
|     this->_odata_size = r._odata_size; | ||||
|     this->checkerboard= r.Checkerboard(); | ||||
|     r._odata      = nullptr; | ||||
|     r._odata_size = 0; | ||||
|   } | ||||
|   /////////////////////////////////////////// | ||||
|   // assignment template | ||||
|   /////////////////////////////////////////// | ||||
|   template<class robj> inline Lattice<vobj> & operator = (const Lattice<robj> & r){ | ||||
|     typename std::enable_if<!std::is_same<robj,vobj>::value,int>::type i=0; | ||||
|     conformable(*this,r); | ||||
|     this->checkerboard = r.Checkerboard(); | ||||
|     auto him= r.View(AcceleratorRead); | ||||
|     auto me =   View(AcceleratorWriteDiscard); | ||||
|     accelerator_for(ss,me.size(),vobj::Nsimd(),{ | ||||
|       coalescedWrite(me[ss],him(ss)); | ||||
|     }); | ||||
|     me.ViewClose();    him.ViewClose(); | ||||
|     return *this; | ||||
|   } | ||||
|    | ||||
|   /////////////////////////////////////////// | ||||
|   // Copy assignment  | ||||
|   /////////////////////////////////////////// | ||||
|   inline Lattice<vobj> & operator = (const Lattice<vobj> & r){ | ||||
|     this->checkerboard = r.Checkerboard(); | ||||
|     conformable(*this,r); | ||||
|     auto him= r.View(AcceleratorRead); | ||||
|     auto me =   View(AcceleratorWriteDiscard); | ||||
|     accelerator_for(ss,me.size(),vobj::Nsimd(),{ | ||||
|       coalescedWrite(me[ss],him(ss)); | ||||
|     }); | ||||
|     me.ViewClose();    him.ViewClose(); | ||||
|     return *this; | ||||
|   } | ||||
|   /////////////////////////////////////////// | ||||
|   // Move assignment possible if same type | ||||
|   /////////////////////////////////////////// | ||||
|   inline Lattice<vobj> & operator = (Lattice<vobj> && r){ | ||||
|    | ||||
|     resize(0); // deletes if appropriate | ||||
|     this->_grid       = r.Grid(); | ||||
|     this->_odata      = r._odata; | ||||
|     this->_odata_size = r._odata_size; | ||||
|     this->checkerboard= r.Checkerboard(); | ||||
|  | ||||
|     r._odata      = nullptr; | ||||
|     r._odata_size = 0; | ||||
|      | ||||
|     return *this; | ||||
|   } | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////////////////////// | ||||
|   // *=,+=,-= operators inherit behvour from correspond */+/- operation | ||||
|   ///////////////////////////////////////////////////////////////////////////// | ||||
|   template<class T> inline Lattice<vobj> &operator *=(const T &r) { | ||||
|   template<class T> strong_inline Lattice<vobj> &operator *=(const T &r) { | ||||
|     *this = (*this)*r; | ||||
|     return *this; | ||||
|   } | ||||
|    | ||||
|   template<class T> inline Lattice<vobj> &operator -=(const T &r) { | ||||
|   template<class T> strong_inline Lattice<vobj> &operator -=(const T &r) { | ||||
|     *this = (*this)-r; | ||||
|     return *this; | ||||
|   } | ||||
|   template<class T> inline Lattice<vobj> &operator +=(const T &r) { | ||||
|   template<class T> strong_inline Lattice<vobj> &operator +=(const T &r) { | ||||
|     *this = (*this)+r; | ||||
|     return *this; | ||||
|   } | ||||
|  | ||||
|   friend inline void swap(Lattice &l, Lattice &r) {  | ||||
|     conformable(l,r); | ||||
|     LatticeAccelerator<vobj> tmp; | ||||
|     LatticeAccelerator<vobj> *lp = (LatticeAccelerator<vobj> *)&l; | ||||
|     LatticeAccelerator<vobj> *rp = (LatticeAccelerator<vobj> *)&r; | ||||
|     tmp = *lp;    *lp=*rp;    *rp=tmp; | ||||
|   } | ||||
|  | ||||
| }; // class Lattice | ||||
|    | ||||
|   template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){ | ||||
|     std::vector<int> gcoor; | ||||
|     typedef typename vobj::scalar_object sobj; | ||||
|   for(int g=0;g<o.Grid()->_gsites;g++){ | ||||
|  | ||||
|     Coordinate gcoor; | ||||
|     o.Grid()->GlobalIndexToGlobalCoor(g,gcoor); | ||||
|  | ||||
|     sobj ss; | ||||
|     for(int g=0;g<o._grid->_gsites;g++){ | ||||
|       o._grid->GlobalIndexToGlobalCoor(g,gcoor); | ||||
|       peekSite(ss,o,gcoor); | ||||
|       stream<<"["; | ||||
|       for(int d=0;d<gcoor.size();d++){ | ||||
| @@ -378,5 +345,31 @@ template<class vobj> std::ostream& operator<< (std::ostream& stream, const Latti | ||||
|     return stream; | ||||
|   } | ||||
|    | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
|  | ||||
|  | ||||
|  | ||||
| #include "Lattice_conformable.h" | ||||
| #define GRID_LATTICE_EXPRESSION_TEMPLATES | ||||
| #ifdef  GRID_LATTICE_EXPRESSION_TEMPLATES | ||||
| #include "Lattice_ET.h" | ||||
| #else  | ||||
| #include "Lattice_overload.h" | ||||
| #endif | ||||
| #include "Lattice_arith.h" | ||||
| #include "Lattice_trace.h" | ||||
| #include "Lattice_transpose.h" | ||||
| #include "Lattice_local.h" | ||||
| #include "Lattice_reduction.h" | ||||
| #include "Lattice_peekpoke.h" | ||||
| #include "Lattice_reality.h" | ||||
| #include "Lattice_comparison_utils.h" | ||||
| #include "Lattice_comparison.h" | ||||
| #include "Lattice_coordinate.h" | ||||
| #include "Lattice_where.h" | ||||
| #include "Lattice_rng.h" | ||||
| #include "Lattice_unary.h" | ||||
| #include "Lattice_transfer.h" | ||||
|  | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -1,248 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/lattice/Lattice_basis.h | ||||
|  | ||||
| Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| Author: Christoph Lehner <christoph@lhnr.de> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| 			   /*  END LEGAL */ | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class Field> | ||||
| void basisOrthogonalize(std::vector<Field> &basis,Field &w,int k)  | ||||
| { | ||||
|   // If assume basis[j] are already orthonormal, | ||||
|   // can take all inner products in parallel saving 2x bandwidth | ||||
|   // Save 3x bandwidth on the second line of loop. | ||||
|   // perhaps 2.5x speed up. | ||||
|   // 2x overall in Multigrid Lanczos   | ||||
|   for(int j=0; j<k; ++j){ | ||||
|     auto ip = innerProduct(basis[j],w); | ||||
|     w = w - ip*basis[j]; | ||||
|   } | ||||
| } | ||||
|  | ||||
| template<class VField, class Matrix> | ||||
| void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)  | ||||
| { | ||||
|   typedef decltype(basis[0]) Field; | ||||
|   typedef decltype(basis[0].View(AcceleratorRead)) View; | ||||
|  | ||||
|   Vector<View> basis_v; basis_v.reserve(basis.size()); | ||||
|   typedef typename std::remove_reference<decltype(basis_v[0][0])>::type vobj; | ||||
|   typedef typename std::remove_reference<decltype(Qt(0,0))>::type Coeff_t; | ||||
|   GridBase* grid = basis[0].Grid(); | ||||
|        | ||||
|   for(int k=0;k<basis.size();k++){ | ||||
|     basis_v.push_back(basis[k].View(AcceleratorWrite)); | ||||
|   } | ||||
|  | ||||
| #if ( !(defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)) ) | ||||
|   int max_threads = thread_max(); | ||||
|   Vector < vobj > Bt(Nm * max_threads); | ||||
|   thread_region | ||||
|     { | ||||
|       vobj* B = &Bt[Nm * thread_num()]; | ||||
|       thread_for_in_region(ss, grid->oSites(),{ | ||||
| 	  for(int j=j0; j<j1; ++j) B[j]=0.; | ||||
|        | ||||
| 	  for(int j=j0; j<j1; ++j){ | ||||
| 	    for(int k=k0; k<k1; ++k){ | ||||
| 	      B[j] +=Qt(j,k) * basis_v[k][ss]; | ||||
| 	    } | ||||
| 	  } | ||||
| 	  for(int j=j0; j<j1; ++j){ | ||||
| 	    basis_v[j][ss] = B[j]; | ||||
| 	  } | ||||
| 	}); | ||||
|     } | ||||
| #else | ||||
|   View *basis_vp = &basis_v[0]; | ||||
|  | ||||
|   int nrot = j1-j0; | ||||
|   if (!nrot) // edge case not handled gracefully by Cuda | ||||
|     return; | ||||
|  | ||||
|   uint64_t oSites   =grid->oSites(); | ||||
|   uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead | ||||
|  | ||||
|   Vector <vobj> Bt(siteBlock * nrot);  | ||||
|   auto Bp=&Bt[0]; | ||||
|  | ||||
|   // GPU readable copy of matrix | ||||
|   Vector<Coeff_t> Qt_jv(Nm*Nm); | ||||
|   Coeff_t *Qt_p = & Qt_jv[0]; | ||||
|   thread_for(i,Nm*Nm,{ | ||||
|       int j = i/Nm; | ||||
|       int k = i%Nm; | ||||
|       Qt_p[i]=Qt(j,k); | ||||
|   }); | ||||
|  | ||||
|   // Block the loop to keep storage footprint down | ||||
|   for(uint64_t s=0;s<oSites;s+=siteBlock){ | ||||
|  | ||||
|     // remaining work in this block | ||||
|     int ssites=MIN(siteBlock,oSites-s); | ||||
|  | ||||
|     // zero out the accumulators | ||||
|     accelerator_for(ss,siteBlock*nrot,vobj::Nsimd(),{ | ||||
| 	decltype(coalescedRead(Bp[ss])) z; | ||||
| 	z=Zero(); | ||||
| 	coalescedWrite(Bp[ss],z); | ||||
|       }); | ||||
|  | ||||
|     accelerator_for(sj,ssites*nrot,vobj::Nsimd(),{ | ||||
| 	 | ||||
| 	int j =sj%nrot; | ||||
| 	int jj  =j0+j; | ||||
| 	int ss =sj/nrot; | ||||
| 	int sss=ss+s; | ||||
|  | ||||
| 	for(int k=k0; k<k1; ++k){ | ||||
| 	  auto tmp = coalescedRead(Bp[ss*nrot+j]); | ||||
| 	  coalescedWrite(Bp[ss*nrot+j],tmp+ Qt_p[jj*Nm+k] * coalescedRead(basis_vp[k][sss])); | ||||
| 	} | ||||
|       }); | ||||
|  | ||||
|     accelerator_for(sj,ssites*nrot,vobj::Nsimd(),{ | ||||
| 	int j =sj%nrot; | ||||
| 	int jj  =j0+j; | ||||
| 	int ss =sj/nrot; | ||||
| 	int sss=ss+s; | ||||
| 	coalescedWrite(basis_vp[jj][sss],coalescedRead(Bp[ss*nrot+j])); | ||||
|       }); | ||||
|   } | ||||
| #endif | ||||
|  | ||||
|   for(int k=0;k<basis.size();k++) basis_v[k].ViewClose(); | ||||
| } | ||||
|  | ||||
| // Extract a single rotated vector | ||||
| template<class Field> | ||||
| void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j, int k0,int k1,int Nm)  | ||||
| { | ||||
|   typedef decltype(basis[0].View(AcceleratorRead)) View; | ||||
|   typedef typename Field::vector_object vobj; | ||||
|   GridBase* grid = basis[0].Grid(); | ||||
|  | ||||
|   result.Checkerboard() = basis[0].Checkerboard(); | ||||
|  | ||||
|   Vector<View> basis_v; basis_v.reserve(basis.size()); | ||||
|   for(int k=0;k<basis.size();k++){ | ||||
|     basis_v.push_back(basis[k].View(AcceleratorRead)); | ||||
|   } | ||||
|   vobj zz=Zero(); | ||||
|   Vector<double> Qt_jv(Nm); | ||||
|   double * Qt_j = & Qt_jv[0]; | ||||
|   for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k); | ||||
|  | ||||
|   auto basis_vp=& basis_v[0]; | ||||
|   autoView(result_v,result,AcceleratorWrite); | ||||
|   accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{ | ||||
|     vobj zzz=Zero(); | ||||
|     auto B=coalescedRead(zzz); | ||||
|     for(int k=k0; k<k1; ++k){ | ||||
|       B +=Qt_j[k] * coalescedRead(basis_vp[k][ss]); | ||||
|     } | ||||
|     coalescedWrite(result_v[ss], B); | ||||
|   }); | ||||
|   for(int k=0;k<basis.size();k++) basis_v[k].ViewClose(); | ||||
| } | ||||
|  | ||||
| template<class Field> | ||||
| void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, std::vector<int>& idx)  | ||||
| { | ||||
|   int vlen = idx.size(); | ||||
|  | ||||
|   assert(vlen>=1); | ||||
|   assert(vlen<=sort_vals.size()); | ||||
|   assert(vlen<=_v.size()); | ||||
|  | ||||
|   for (size_t i=0;i<vlen;i++) { | ||||
|  | ||||
|     if (idx[i] != i) { | ||||
|  | ||||
|       ////////////////////////////////////// | ||||
|       // idx[i] is a table of desired sources giving a permutation. | ||||
|       // Swap v[i] with v[idx[i]]. | ||||
|       // Find  j>i for which _vnew[j] = _vold[i], | ||||
|       // track the move idx[j] => idx[i] | ||||
|       // track the move idx[i] => i | ||||
|       ////////////////////////////////////// | ||||
|       size_t j; | ||||
|       for (j=i;j<idx.size();j++) | ||||
| 	if (idx[j]==i) | ||||
| 	  break; | ||||
|  | ||||
|       assert(idx[i] > i);     assert(j!=idx.size());      assert(idx[j]==i); | ||||
|  | ||||
|       swap(_v[i],_v[idx[i]]); // should use vector move constructor, no data copy | ||||
|       std::swap(sort_vals[i],sort_vals[idx[i]]); | ||||
|  | ||||
|       idx[j] = idx[i]; | ||||
|       idx[i] = i; | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| inline std::vector<int> basisSortGetIndex(std::vector<RealD>& sort_vals)  | ||||
| { | ||||
|   std::vector<int> idx(sort_vals.size()); | ||||
|   std::iota(idx.begin(), idx.end(), 0); | ||||
|  | ||||
|   // sort indexes based on comparing values in v | ||||
|   std::sort(idx.begin(), idx.end(), [&sort_vals](int i1, int i2) { | ||||
|     return ::fabs(sort_vals[i1]) < ::fabs(sort_vals[i2]); | ||||
|   }); | ||||
|   return idx; | ||||
| } | ||||
|  | ||||
| template<class Field> | ||||
| void basisSortInPlace(std::vector<Field> & _v,std::vector<RealD>& sort_vals, bool reverse)  | ||||
| { | ||||
|   std::vector<int> idx = basisSortGetIndex(sort_vals); | ||||
|   if (reverse) | ||||
|     std::reverse(idx.begin(), idx.end()); | ||||
|    | ||||
|   basisReorderInPlace(_v,sort_vals,idx); | ||||
| } | ||||
|  | ||||
| // PAB: faster to compute the inner products first then fuse loops. | ||||
| // If performance critical can improve. | ||||
| template<class Field> | ||||
| void basisDeflate(const std::vector<Field> &_v,const std::vector<RealD>& eval,const Field& src_orig,Field& result) { | ||||
|   result = Zero(); | ||||
|   assert(_v.size()==eval.size()); | ||||
|   int N = (int)_v.size(); | ||||
|   for (int i=0;i<N;i++) { | ||||
|     Field& tmp = _v[i]; | ||||
|     axpy(result,TensorRemove(innerProduct(tmp,src_orig)) / eval[i],tmp,result); | ||||
|   } | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #ifndef GRID_LATTICE_COMPARISON_H | ||||
| #define GRID_LATTICE_COMPARISON_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|     ////////////////////////////////////////////////////////////////////////// | ||||
|     // relational operators | ||||
| @@ -40,50 +40,40 @@ NAMESPACE_BEGIN(Grid); | ||||
|     //Query supporting logical &&, ||,  | ||||
|     ////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
| typedef iScalar<vInteger> vPredicate ; | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////// | ||||
|   // compare lattice to lattice | ||||
|   ////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|   template<class vfunctor,class lobj,class robj>   | ||||
| inline Lattice<vPredicate> LLComparison(vfunctor op,const Lattice<lobj> &lhs,const Lattice<robj> &rhs) | ||||
|     inline Lattice<vInteger> LLComparison(vfunctor op,const Lattice<lobj> &lhs,const Lattice<robj> &rhs) | ||||
|   { | ||||
|   Lattice<vPredicate> ret(rhs.Grid()); | ||||
|   autoView( lhs_v, lhs, CpuRead); | ||||
|   autoView( rhs_v, rhs, CpuRead); | ||||
|   autoView( ret_v, ret, CpuWrite); | ||||
|   thread_for( ss, rhs_v.size(), { | ||||
|       ret_v[ss]=op(lhs_v[ss],rhs_v[ss]); | ||||
|   }); | ||||
|     Lattice<vInteger> ret(rhs._grid); | ||||
|     parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){ | ||||
|       ret._odata[ss]=op(lhs._odata[ss],rhs._odata[ss]); | ||||
|     } | ||||
|     return ret; | ||||
|   } | ||||
|   ////////////////////////////////////////////////////////////////////////// | ||||
|   // compare lattice to scalar | ||||
|   ////////////////////////////////////////////////////////////////////////// | ||||
|   template<class vfunctor,class lobj,class robj>  | ||||
| inline Lattice<vPredicate> LSComparison(vfunctor op,const Lattice<lobj> &lhs,const robj &rhs) | ||||
|     inline Lattice<vInteger> LSComparison(vfunctor op,const Lattice<lobj> &lhs,const robj &rhs) | ||||
|   { | ||||
|   Lattice<vPredicate> ret(lhs.Grid()); | ||||
|   autoView( lhs_v, lhs, CpuRead); | ||||
|   autoView( ret_v, ret, CpuWrite); | ||||
|   thread_for( ss, lhs_v.size(), { | ||||
|     ret_v[ss]=op(lhs_v[ss],rhs); | ||||
|   }); | ||||
|     Lattice<vInteger> ret(lhs._grid); | ||||
|     parallel_for(int ss=0;ss<lhs._grid->oSites(); ss++){ | ||||
|       ret._odata[ss]=op(lhs._odata[ss],rhs); | ||||
|     } | ||||
|     return ret; | ||||
|   } | ||||
|   ////////////////////////////////////////////////////////////////////////// | ||||
|   // compare scalar to lattice | ||||
|   ////////////////////////////////////////////////////////////////////////// | ||||
|   template<class vfunctor,class lobj,class robj>  | ||||
| inline Lattice<vPredicate> SLComparison(vfunctor op,const lobj &lhs,const Lattice<robj> &rhs) | ||||
|     inline Lattice<vInteger> SLComparison(vfunctor op,const lobj &lhs,const Lattice<robj> &rhs) | ||||
|   { | ||||
|   Lattice<vPredicate> ret(rhs.Grid()); | ||||
|   autoView( rhs_v, rhs, CpuRead); | ||||
|   autoView( ret_v, ret, CpuWrite); | ||||
|   thread_for( ss, rhs_v.size(), { | ||||
|     ret_v[ss]=op(lhs,rhs_v[ss]); | ||||
|   }); | ||||
|     Lattice<vInteger> ret(rhs._grid); | ||||
|     parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){ | ||||
|       ret._odata[ss]=op(lhs._odata[ss],rhs); | ||||
|     } | ||||
|     return ret; | ||||
|   } | ||||
|    | ||||
| @@ -92,88 +82,88 @@ inline Lattice<vPredicate> SLComparison(vfunctor op,const lobj &lhs,const Lattic | ||||
|   ////////////////////////////////////////////////////////////////////////// | ||||
|   // Less than | ||||
|   template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator < (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { | ||||
|     inline Lattice<vInteger> operator < (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { | ||||
|     return LLComparison(vlt<lobj,robj>(),lhs,rhs); | ||||
|   } | ||||
|   template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator < (const Lattice<lobj> & lhs, const robj & rhs) { | ||||
|     inline Lattice<vInteger> operator < (const Lattice<lobj> & lhs, const robj & rhs) { | ||||
|     return LSComparison(vlt<lobj,robj>(),lhs,rhs); | ||||
|   } | ||||
|   template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator < (const lobj & lhs, const Lattice<robj> & rhs) { | ||||
|     inline Lattice<vInteger> operator < (const lobj & lhs, const Lattice<robj> & rhs) { | ||||
|     return SLComparison(vlt<lobj,robj>(),lhs,rhs); | ||||
|   } | ||||
|    | ||||
|   // Less than equal | ||||
|   template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator <= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { | ||||
|     inline Lattice<vInteger> operator <= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { | ||||
|     return LLComparison(vle<lobj,robj>(),lhs,rhs); | ||||
|   } | ||||
|   template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator <= (const Lattice<lobj> & lhs, const robj & rhs) { | ||||
|     inline Lattice<vInteger> operator <= (const Lattice<lobj> & lhs, const robj & rhs) { | ||||
|     return LSComparison(vle<lobj,robj>(),lhs,rhs); | ||||
|   } | ||||
|   template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator <= (const lobj & lhs, const Lattice<robj> & rhs) { | ||||
|     inline Lattice<vInteger> operator <= (const lobj & lhs, const Lattice<robj> & rhs) { | ||||
|     return SLComparison(vle<lobj,robj>(),lhs,rhs); | ||||
|   } | ||||
|    | ||||
|   // Greater than  | ||||
|   template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator > (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { | ||||
|     inline Lattice<vInteger> operator > (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { | ||||
|     return LLComparison(vgt<lobj,robj>(),lhs,rhs); | ||||
|   } | ||||
|   template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator > (const Lattice<lobj> & lhs, const robj & rhs) { | ||||
|     inline Lattice<vInteger> operator > (const Lattice<lobj> & lhs, const robj & rhs) { | ||||
|     return LSComparison(vgt<lobj,robj>(),lhs,rhs); | ||||
|   } | ||||
|   template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator > (const lobj & lhs, const Lattice<robj> & rhs) { | ||||
|     inline Lattice<vInteger> operator > (const lobj & lhs, const Lattice<robj> & rhs) { | ||||
|      return SLComparison(vgt<lobj,robj>(),lhs,rhs); | ||||
|   } | ||||
|    | ||||
|    | ||||
|   // Greater than equal | ||||
|    template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator >= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { | ||||
|      inline Lattice<vInteger> operator >= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { | ||||
|      return LLComparison(vge<lobj,robj>(),lhs,rhs); | ||||
|    } | ||||
|    template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator >= (const Lattice<lobj> & lhs, const robj & rhs) { | ||||
|    inline Lattice<vInteger> operator >= (const Lattice<lobj> & lhs, const robj & rhs) { | ||||
|      return LSComparison(vge<lobj,robj>(),lhs,rhs); | ||||
|    } | ||||
|    template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator >= (const lobj & lhs, const Lattice<robj> & rhs) { | ||||
|      inline Lattice<vInteger> operator >= (const lobj & lhs, const Lattice<robj> & rhs) { | ||||
|      return SLComparison(vge<lobj,robj>(),lhs,rhs); | ||||
|    } | ||||
|     | ||||
|    // equal | ||||
|    template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator == (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { | ||||
|      inline Lattice<vInteger> operator == (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { | ||||
|      return LLComparison(veq<lobj,robj>(),lhs,rhs); | ||||
|    } | ||||
|    template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator == (const Lattice<lobj> & lhs, const robj & rhs) { | ||||
|      inline Lattice<vInteger> operator == (const Lattice<lobj> & lhs, const robj & rhs) { | ||||
|      return LSComparison(veq<lobj,robj>(),lhs,rhs); | ||||
|    } | ||||
|    template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator == (const lobj & lhs, const Lattice<robj> & rhs) { | ||||
|      inline Lattice<vInteger> operator == (const lobj & lhs, const Lattice<robj> & rhs) { | ||||
|      return SLComparison(veq<lobj,robj>(),lhs,rhs); | ||||
|    } | ||||
|     | ||||
|     | ||||
|    // not equal | ||||
|    template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator != (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { | ||||
|      inline Lattice<vInteger> operator != (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { | ||||
|      return LLComparison(vne<lobj,robj>(),lhs,rhs); | ||||
|    } | ||||
|    template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator != (const Lattice<lobj> & lhs, const robj & rhs) { | ||||
|      inline Lattice<vInteger> operator != (const Lattice<lobj> & lhs, const robj & rhs) { | ||||
|      return LSComparison(vne<lobj,robj>(),lhs,rhs); | ||||
|    } | ||||
|    template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator != (const lobj & lhs, const Lattice<robj> & rhs) { | ||||
|      inline Lattice<vInteger> operator != (const lobj & lhs, const Lattice<robj> & rhs) { | ||||
|      return SLComparison(vne<lobj,robj>(),lhs,rhs); | ||||
|    } | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -26,10 +26,10 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
|     *************************************************************************************/ | ||||
|     /*  END LEGAL */ | ||||
| #ifndef GRID_COMPARISON_H | ||||
| #define GRID_COMPARISON_H | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|   ///////////////////////////////////////// | ||||
|   // This implementation is a bit poor. | ||||
| @@ -44,42 +44,42 @@ NAMESPACE_BEGIN(Grid); | ||||
|   // | ||||
|   template<class lobj,class robj> class veq { | ||||
|   public: | ||||
|     accelerator vInteger operator()(const lobj &lhs, const robj &rhs) | ||||
|     vInteger operator()(const lobj &lhs, const robj &rhs) | ||||
|     {  | ||||
|       return (lhs) == (rhs); | ||||
|     } | ||||
|   }; | ||||
|   template<class lobj,class robj> class vne { | ||||
|   public: | ||||
|     accelerator vInteger operator()(const lobj &lhs, const robj &rhs) | ||||
|     vInteger operator()(const lobj &lhs, const robj &rhs) | ||||
|     {  | ||||
|       return (lhs) != (rhs); | ||||
|     } | ||||
|   }; | ||||
|   template<class lobj,class robj> class vlt { | ||||
|   public: | ||||
|     accelerator vInteger operator()(const lobj &lhs, const robj &rhs) | ||||
|     vInteger operator()(const lobj &lhs, const robj &rhs) | ||||
|     {  | ||||
|       return (lhs) < (rhs); | ||||
|     } | ||||
|   }; | ||||
|   template<class lobj,class robj> class vle { | ||||
|   public: | ||||
|     accelerator vInteger operator()(const lobj &lhs, const robj &rhs) | ||||
|     vInteger operator()(const lobj &lhs, const robj &rhs) | ||||
|     {  | ||||
|       return (lhs) <= (rhs); | ||||
|     } | ||||
|   }; | ||||
|   template<class lobj,class robj> class vgt { | ||||
|   public: | ||||
|     accelerator vInteger operator()(const lobj &lhs, const robj &rhs) | ||||
|     vInteger operator()(const lobj &lhs, const robj &rhs) | ||||
|     {  | ||||
|       return (lhs) > (rhs); | ||||
|     } | ||||
|   }; | ||||
|   template<class lobj,class robj> class vge { | ||||
|     public: | ||||
|     accelerator vInteger operator()(const lobj &lhs, const robj &rhs) | ||||
|     vInteger operator()(const lobj &lhs, const robj &rhs) | ||||
|     {  | ||||
|       return (lhs) >= (rhs); | ||||
|     } | ||||
| @@ -88,42 +88,42 @@ NAMESPACE_BEGIN(Grid); | ||||
|   // Generic list of functors | ||||
|   template<class lobj,class robj> class seq { | ||||
|   public: | ||||
|     accelerator Integer operator()(const lobj &lhs, const robj &rhs) | ||||
|     Integer operator()(const lobj &lhs, const robj &rhs) | ||||
|     {  | ||||
|       return (lhs) == (rhs); | ||||
|     } | ||||
|   }; | ||||
|   template<class lobj,class robj> class sne { | ||||
|   public: | ||||
|     accelerator Integer operator()(const lobj &lhs, const robj &rhs) | ||||
|     Integer operator()(const lobj &lhs, const robj &rhs) | ||||
|     {  | ||||
|       return (lhs) != (rhs); | ||||
|     } | ||||
|   }; | ||||
|   template<class lobj,class robj> class slt { | ||||
|   public: | ||||
|     accelerator Integer operator()(const lobj &lhs, const robj &rhs) | ||||
|     Integer operator()(const lobj &lhs, const robj &rhs) | ||||
|     {  | ||||
|       return (lhs) < (rhs); | ||||
|     } | ||||
|   }; | ||||
|   template<class lobj,class robj> class sle { | ||||
|   public: | ||||
|     accelerator Integer operator()(const lobj &lhs, const robj &rhs) | ||||
|     Integer operator()(const lobj &lhs, const robj &rhs) | ||||
|     {  | ||||
|       return (lhs) <= (rhs); | ||||
|     } | ||||
|   }; | ||||
|   template<class lobj,class robj> class sgt { | ||||
|   public: | ||||
|     accelerator Integer operator()(const lobj &lhs, const robj &rhs) | ||||
|     Integer operator()(const lobj &lhs, const robj &rhs) | ||||
|     {  | ||||
|       return (lhs) > (rhs); | ||||
|     } | ||||
|   }; | ||||
|   template<class lobj,class robj> class sge { | ||||
|   public: | ||||
|     accelerator Integer operator()(const lobj &lhs, const robj &rhs) | ||||
|     Integer operator()(const lobj &lhs, const robj &rhs) | ||||
|     {  | ||||
|       return (lhs) >= (rhs); | ||||
|     } | ||||
| @@ -133,12 +133,12 @@ NAMESPACE_BEGIN(Grid); | ||||
|   // Integer and real get extra relational functions. | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   template<class sfunctor, class vsimd,IfNotComplex<vsimd> = 0>  | ||||
|     accelerator_inline vInteger Comparison(sfunctor sop,const vsimd & lhs, const vsimd & rhs) | ||||
|     inline vInteger Comparison(sfunctor sop,const vsimd & lhs, const vsimd & rhs) | ||||
|     { | ||||
|       typedef typename vsimd::scalar_type scalar; | ||||
|       ExtractBuffer<scalar> vlhs(vsimd::Nsimd());   // Use functors to reduce this to single implementation | ||||
|       ExtractBuffer<scalar> vrhs(vsimd::Nsimd()); | ||||
|       ExtractBuffer<Integer> vpred(vsimd::Nsimd()); | ||||
|       std::vector<scalar> vlhs(vsimd::Nsimd());   // Use functors to reduce this to single implementation | ||||
|       std::vector<scalar> vrhs(vsimd::Nsimd()); | ||||
|       std::vector<Integer> vpred(vsimd::Nsimd()); | ||||
|       vInteger ret; | ||||
|       extract<vsimd,scalar>(lhs,vlhs); | ||||
|       extract<vsimd,scalar>(rhs,vrhs); | ||||
| @@ -150,11 +150,11 @@ NAMESPACE_BEGIN(Grid); | ||||
|     } | ||||
|  | ||||
|   template<class sfunctor, class vsimd,IfNotComplex<vsimd> = 0>  | ||||
|     accelerator_inline vInteger Comparison(sfunctor sop,const vsimd & lhs, const typename vsimd::scalar_type & rhs) | ||||
|     inline vInteger Comparison(sfunctor sop,const vsimd & lhs, const typename vsimd::scalar_type & rhs) | ||||
|     { | ||||
|       typedef typename vsimd::scalar_type scalar; | ||||
|       ExtractBuffer<scalar> vlhs(vsimd::Nsimd());   // Use functors to reduce this to single implementation | ||||
|       ExtractBuffer<Integer> vpred(vsimd::Nsimd()); | ||||
|       std::vector<scalar> vlhs(vsimd::Nsimd());   // Use functors to reduce this to single implementation | ||||
|       std::vector<Integer> vpred(vsimd::Nsimd()); | ||||
|       vInteger ret; | ||||
|       extract<vsimd,scalar>(lhs,vlhs); | ||||
|       for(int s=0;s<vsimd::Nsimd();s++){ | ||||
| @@ -165,11 +165,11 @@ NAMESPACE_BEGIN(Grid); | ||||
|     } | ||||
|  | ||||
|   template<class sfunctor, class vsimd,IfNotComplex<vsimd> = 0>  | ||||
|     accelerator_inline vInteger Comparison(sfunctor sop,const typename vsimd::scalar_type & lhs, const vsimd & rhs) | ||||
|     inline vInteger Comparison(sfunctor sop,const typename vsimd::scalar_type & lhs, const vsimd & rhs) | ||||
|     { | ||||
|       typedef typename vsimd::scalar_type scalar; | ||||
|       ExtractBuffer<scalar> vrhs(vsimd::Nsimd());   // Use functors to reduce this to single implementation | ||||
|       ExtractBuffer<Integer> vpred(vsimd::Nsimd()); | ||||
|       std::vector<scalar> vrhs(vsimd::Nsimd());   // Use functors to reduce this to single implementation | ||||
|       std::vector<Integer> vpred(vsimd::Nsimd()); | ||||
|       vInteger ret; | ||||
|       extract<vsimd,scalar>(rhs,vrhs); | ||||
|       for(int s=0;s<vsimd::Nsimd();s++){ | ||||
| @@ -181,30 +181,30 @@ NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| #define DECLARE_RELATIONAL_EQ(op,functor) \ | ||||
|   template<class vsimd,IfSimd<vsimd> = 0>\ | ||||
|     accelerator_inline vInteger operator op (const vsimd & lhs, const vsimd & rhs)\ | ||||
|     inline vInteger operator op (const vsimd & lhs, const vsimd & rhs)\ | ||||
|     {\ | ||||
|       typedef typename vsimd::scalar_type scalar;\ | ||||
|       return Comparison(functor<scalar,scalar>(),lhs,rhs);\ | ||||
|     }\ | ||||
|   template<class vsimd,IfSimd<vsimd> = 0>\ | ||||
|     accelerator_inline vInteger operator op (const vsimd & lhs, const typename vsimd::scalar_type & rhs) \ | ||||
|     inline vInteger operator op (const vsimd & lhs, const typename vsimd::scalar_type & rhs) \ | ||||
|     {\ | ||||
|       typedef typename vsimd::scalar_type scalar;\ | ||||
|       return Comparison(functor<scalar,scalar>(),lhs,rhs);\ | ||||
|     }\ | ||||
|   template<class vsimd,IfSimd<vsimd> = 0>\ | ||||
|     accelerator_inline vInteger operator op (const typename vsimd::scalar_type & lhs, const vsimd & rhs) \ | ||||
|     inline vInteger operator op (const typename vsimd::scalar_type & lhs, const vsimd & rhs) \ | ||||
|     {\ | ||||
|       typedef typename vsimd::scalar_type scalar;\ | ||||
|       return Comparison(functor<scalar,scalar>(),lhs,rhs);\ | ||||
|     }\ | ||||
|   template<class vsimd>\ | ||||
|     accelerator_inline vInteger operator op(const iScalar<vsimd> &lhs,const typename vsimd::scalar_type &rhs) \ | ||||
|     inline vInteger operator op(const iScalar<vsimd> &lhs,const typename vsimd::scalar_type &rhs) \ | ||||
|     {									\ | ||||
|       return lhs._internal op rhs;					\ | ||||
|     }									\ | ||||
|   template<class vsimd>\ | ||||
|     accelerator_inline vInteger operator op(const typename vsimd::scalar_type &lhs,const iScalar<vsimd> &rhs) \ | ||||
|     inline vInteger operator op(const typename vsimd::scalar_type &lhs,const iScalar<vsimd> &rhs) \ | ||||
|     {									\ | ||||
|       return lhs op rhs._internal;					\ | ||||
|     }									\ | ||||
| @@ -212,7 +212,7 @@ NAMESPACE_BEGIN(Grid); | ||||
| #define DECLARE_RELATIONAL(op,functor) \ | ||||
|   DECLARE_RELATIONAL_EQ(op,functor)    \ | ||||
|   template<class vsimd>\ | ||||
|     accelerator_inline vInteger operator op(const iScalar<vsimd> &lhs,const iScalar<vsimd> &rhs)\ | ||||
|     inline vInteger operator op(const iScalar<vsimd> &lhs,const iScalar<vsimd> &rhs)\ | ||||
|     {									\ | ||||
|       return lhs._internal op rhs._internal;				\ | ||||
|     }									 | ||||
| @@ -226,7 +226,7 @@ DECLARE_RELATIONAL(!=,sne); | ||||
|  | ||||
| #undef DECLARE_RELATIONAL | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| } | ||||
|  | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -28,13 +28,13 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #ifndef GRID_LATTICE_CONFORMABLE_H | ||||
| #define GRID_LATTICE_CONFORMABLE_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|     template<class obj1,class obj2> void conformable(const Lattice<obj1> &lhs,const Lattice<obj2> &rhs) | ||||
|     { | ||||
|   assert(lhs.Grid() == rhs.Grid()); | ||||
|   assert(lhs.Checkerboard() == rhs.Checkerboard()); | ||||
|         assert(lhs._grid == rhs._grid); | ||||
|         assert(lhs.checkerboard == rhs.checkerboard); | ||||
|     } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -25,31 +25,32 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
|     *************************************************************************************/ | ||||
|     /*  END LEGAL */ | ||||
| #pragma once  | ||||
| #ifndef GRID_LATTICE_COORDINATE_H | ||||
| #define GRID_LATTICE_COORDINATE_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|     template<class iobj> inline void LatticeCoordinate(Lattice<iobj> &l,int mu) | ||||
|     { | ||||
|       typedef typename iobj::scalar_type scalar_type; | ||||
|       typedef typename iobj::vector_type vector_type; | ||||
|  | ||||
|   GridBase *grid = l.Grid(); | ||||
|       GridBase *grid = l._grid; | ||||
|       int Nsimd = grid->iSites(); | ||||
|  | ||||
|   autoView(l_v, l, CpuWrite); | ||||
|   thread_for( o, grid->oSites(), { | ||||
|       std::vector<int> gcoor; | ||||
|       std::vector<scalar_type> mergebuf(Nsimd); | ||||
|  | ||||
|       vector_type vI; | ||||
|     Coordinate gcoor; | ||||
|     ExtractBuffer<scalar_type> mergebuf(Nsimd); | ||||
|       for(int o=0;o<grid->oSites();o++){ | ||||
| 	for(int i=0;i<grid->iSites();i++){ | ||||
| 	  grid->RankIndexToGlobalCoor(grid->ThisRank(),o,i,gcoor); | ||||
| 	  mergebuf[i]=(Integer)gcoor[mu]; | ||||
| 	} | ||||
| 	merge<vector_type,scalar_type>(vI,mergebuf); | ||||
|     l_v[o]=vI; | ||||
|   }); | ||||
| 	l._odata[o]=vI; | ||||
|       } | ||||
|     }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -1,55 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/lattice/Lattice_crc.h | ||||
|  | ||||
|     Copyright (C) 2021 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class vobj> void DumpSliceNorm(std::string s,Lattice<vobj> &f,int mu=-1) | ||||
| { | ||||
|   auto ff = localNorm2(f); | ||||
|   if ( mu==-1 ) mu = f.Grid()->Nd()-1; | ||||
|   typedef typename vobj::tensor_reduced normtype; | ||||
|   typedef typename normtype::scalar_object scalar; | ||||
|   std::vector<scalar> sff; | ||||
|   sliceSum(ff,sff,mu); | ||||
|   for(int t=0;t<sff.size();t++){ | ||||
|     std::cout << s<<" "<<t<<" "<<sff[t]<<std::endl; | ||||
|   } | ||||
| } | ||||
|  | ||||
| template<class vobj> uint32_t crc(const Lattice<vobj> & buf) | ||||
| { | ||||
|   autoView( buf_v , buf, CpuRead); | ||||
|   return ::crc32(0L,(unsigned char *)&buf_v[0],(size_t)sizeof(vobj)*buf.oSites()); | ||||
| } | ||||
|  | ||||
| #define CRC(U) std::cerr << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|  | ||||
| @@ -32,7 +32,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| // localInner, localNorm, outerProduct | ||||
| /////////////////////////////////////////////// | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|   ///////////////////////////////////////////////////// | ||||
|   // Non site, reduced locally reduced routines | ||||
| @@ -42,12 +42,10 @@ NAMESPACE_BEGIN(Grid); | ||||
|   template<class vobj> | ||||
|     inline auto localNorm2 (const Lattice<vobj> &rhs)-> Lattice<typename vobj::tensor_reduced> | ||||
|     { | ||||
|   Lattice<typename vobj::tensor_reduced> ret(rhs.Grid()); | ||||
|   autoView( rhs_v , rhs, AcceleratorRead); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{ | ||||
|     coalescedWrite(ret_v[ss],innerProduct(rhs_v(ss),rhs_v(ss))); | ||||
|   }); | ||||
|       Lattice<typename vobj::tensor_reduced> ret(rhs._grid); | ||||
|       parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){ | ||||
| 	ret._odata[ss]=innerProduct(rhs._odata[ss],rhs._odata[ss]); | ||||
|       } | ||||
|       return ret; | ||||
|     } | ||||
|    | ||||
| @@ -55,33 +53,23 @@ inline auto localNorm2 (const Lattice<vobj> &rhs)-> Lattice<typename vobj::tenso | ||||
|   template<class vobj> | ||||
|     inline auto localInnerProduct (const Lattice<vobj> &lhs,const Lattice<vobj> &rhs) -> Lattice<typename vobj::tensor_reduced> | ||||
|     { | ||||
|   Lattice<typename vobj::tensor_reduced> ret(rhs.Grid()); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   autoView( rhs_v , rhs, AcceleratorRead); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{ | ||||
|     coalescedWrite(ret_v[ss],innerProduct(lhs_v(ss),rhs_v(ss))); | ||||
|   }); | ||||
|       Lattice<typename vobj::tensor_reduced> ret(rhs._grid); | ||||
|       parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){ | ||||
| 	ret._odata[ss]=innerProduct(lhs._odata[ss],rhs._odata[ss]); | ||||
|       } | ||||
|       return ret; | ||||
|     } | ||||
|    | ||||
|   // outerProduct Scalar x Scalar -> Scalar | ||||
|   //              Vector x Vector -> Matrix | ||||
|   template<class ll,class rr> | ||||
| inline auto outerProduct (const Lattice<ll> &lhs,const Lattice<rr> &rhs) -> Lattice<decltype(outerProduct(ll(),rr()))> | ||||
|     inline auto outerProduct (const Lattice<ll> &lhs,const Lattice<rr> &rhs) -> Lattice<decltype(outerProduct(lhs._odata[0],rhs._odata[0]))> | ||||
|   { | ||||
|   typedef decltype(coalescedRead(ll())) sll; | ||||
|   typedef decltype(coalescedRead(rr())) srr; | ||||
|   Lattice<decltype(outerProduct(ll(),rr()))> ret(rhs.Grid()); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   autoView( rhs_v , rhs, AcceleratorRead); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   accelerator_for(ss,rhs_v.size(),1,{ | ||||
|     // FIXME had issues with scalar version of outer  | ||||
|     // Use vector [] operator and don't read coalesce this loop | ||||
|     ret_v[ss]=outerProduct(lhs_v[ss],rhs_v[ss]); | ||||
|   }); | ||||
|     Lattice<decltype(outerProduct(lhs._odata[0],rhs._odata[0]))> ret(rhs._grid); | ||||
|     parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){ | ||||
|       ret._odata[ss]=outerProduct(lhs._odata[ss],rhs._odata[ss]); | ||||
|     } | ||||
|     return ret; | ||||
|   } | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
Some files were not shown because too many files have changed in this diff Show More
		Reference in New Issue
	
	Block a user