1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-23 18:22:02 +01:00

Compare commits

..

3 Commits

Author SHA1 Message Date
d8c0c0ba0a Fix and compiles 2020-08-12 14:35:08 -04:00
c6cf918d4c Typo 2020-08-12 14:24:39 -04:00
6d0a907c5c first try at A2A four quark offload 2020-08-12 14:17:46 -04:00
719 changed files with 19772 additions and 81048 deletions

View File

@ -1,54 +0,0 @@
name: Bug report
description: Report a bug.
title: "<insert title>"
labels: [bug]
body:
- type: markdown
attributes:
value: >
Thank you for taking the time to file a bug report.
Please check that the code is pointing to the HEAD of develop
or any commit in master which is tagged with a version number.
- type: textarea
attributes:
label: "Describe the issue:"
description: >
Describe the issue and any previous attempt to solve it.
validations:
required: true
- type: textarea
attributes:
label: "Code example:"
description: >
If relevant, show how to reproduce the issue using a minimal working
example.
placeholder: |
<< your code here >>
render: shell
validations:
required: false
- type: textarea
attributes:
label: "Target platform:"
description: >
Give a description of the target platform (CPU, network, compiler).
Please give the full CPU part description, using for example
`cat /proc/cpuinfo | grep 'model name' | uniq` (Linux)
or `sysctl machdep.cpu.brand_string` (macOS) and the full output
the `--version` option of your compiler.
validations:
required: true
- type: textarea
attributes:
label: "Configure options:"
description: >
Please give the exact configure command used and attach
`config.log`, `grid.config.summary` and the output of `make V=1`.
render: shell
validations:
required: true

5
.gitignore vendored
View File

@ -1,7 +1,3 @@
# Doxygen stuff
html/*
latex/*
# Compiled Object files # # Compiled Object files #
######################### #########################
*.slo *.slo
@ -92,7 +88,6 @@ Thumbs.db
# build directory # # build directory #
################### ###################
build*/* build*/*
Documentation/_build
# IDE related files # # IDE related files #
##################### #####################

61
.travis.yml Normal file
View File

@ -0,0 +1,61 @@
language: cpp
cache:
directories:
- clang
matrix:
include:
- os: osx
osx_image: xcode8.3
compiler: clang
env: PREC=single
- os: osx
osx_image: xcode8.3
compiler: clang
env: PREC=double
before_install:
- export GRIDDIR=`pwd`
- if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]] && [ ! -e clang/bin ]; then wget $CLANG_LINK; tar -xf `basename $CLANG_LINK`; mkdir clang; mv clang+*/* clang/; fi
- if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]]; then export PATH="${GRIDDIR}/clang/bin:${PATH}"; fi
- if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]]; then export LD_LIBRARY_PATH="${GRIDDIR}/clang/lib:${LD_LIBRARY_PATH}"; fi
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew update; fi
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew install libmpc openssl; fi
install:
- export CWD=`pwd`
- echo $CWD
- export CC=$CC$VERSION
- export CXX=$CXX$VERSION
- echo $PATH
- which autoconf
- autoconf --version
- which automake
- automake --version
- which $CC
- $CC --version
- which $CXX
- $CXX --version
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then export LDFLAGS='-L/usr/local/lib'; fi
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then export EXTRACONF='--with-openssl=/usr/local/opt/openssl'; fi
script:
- ./bootstrap.sh
- mkdir build
- cd build
- mkdir lime
- cd lime
- mkdir build
- cd build
- wget http://usqcd-software.github.io/downloads/c-lime/lime-1.3.2.tar.gz
- tar xf lime-1.3.2.tar.gz
- cd lime-1.3.2
- ./configure --prefix=$CWD/build/lime/install
- make -j4
- make install
- cd $CWD/build
- ../configure --enable-precision=$PREC --enable-simd=SSE4 --enable-comms=none --with-lime=$CWD/build/lime/install ${EXTRACONF}
- make -j4
- ./benchmarks/Benchmark_dwf --threads 1 --debug-signals
- make check

View File

@ -37,29 +37,19 @@ directory
#endif #endif
//disables and intel compiler specific warning (in json.hpp) //disables and intel compiler specific warning (in json.hpp)
#ifdef __ICC
#pragma warning disable 488 #pragma warning disable 488
#endif
#ifdef __NVCC__ #ifdef __NVCC__
//disables nvcc specific warning in json.hpp //disables nvcc specific warning in json.hpp
#pragma clang diagnostic ignored "-Wdeprecated-register" #pragma clang diagnostic ignored "-Wdeprecated-register"
#ifdef __NVCC_DIAG_PRAGMA_SUPPORT__
//disables nvcc specific warning in json.hpp
#pragma nv_diag_suppress unsigned_compare_with_zero
#pragma nv_diag_suppress cast_to_qualified_type
//disables nvcc specific warning in many files
#pragma nv_diag_suppress esa_on_defaulted_function_ignored
#pragma nv_diag_suppress extra_semicolon
#else
//disables nvcc specific warning in json.hpp
#pragma diag_suppress unsigned_compare_with_zero #pragma diag_suppress unsigned_compare_with_zero
#pragma diag_suppress cast_to_qualified_type #pragma diag_suppress cast_to_qualified_type
//disables nvcc specific warning in many files //disables nvcc specific warning in many files
#pragma diag_suppress esa_on_defaulted_function_ignored #pragma diag_suppress esa_on_defaulted_function_ignored
#pragma diag_suppress extra_semicolon #pragma diag_suppress extra_semicolon
#endif
//Eigen only
#endif #endif
// Disable vectorisation in Eigen on the Power8/9 and PowerPC // Disable vectorisation in Eigen on the Power8/9 and PowerPC

View File

@ -44,10 +44,9 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#include <Grid/GridStd.h> #include <Grid/GridStd.h>
#include <Grid/threads/Pragmas.h> #include <Grid/threads/Pragmas.h>
#include <Grid/perfmon/Timer.h> #include <Grid/perfmon/Timer.h>
//#include <Grid/perfmon/PerfCount.h> #include <Grid/perfmon/PerfCount.h>
#include <Grid/util/Util.h> #include <Grid/util/Util.h>
#include <Grid/log/Log.h> #include <Grid/log/Log.h>
#include <Grid/perfmon/Tracing.h>
#include <Grid/allocator/Allocator.h> #include <Grid/allocator/Allocator.h>
#include <Grid/simd/Simd.h> #include <Grid/simd/Simd.h>
#include <Grid/threads/ThreadReduction.h> #include <Grid/threads/ThreadReduction.h>

View File

@ -36,7 +36,6 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#include <Grid/GridCore.h> #include <Grid/GridCore.h>
#include <Grid/qcd/QCD.h> #include <Grid/qcd/QCD.h>
#include <Grid/qcd/spin/Spin.h> #include <Grid/qcd/spin/Spin.h>
#include <Grid/qcd/gparity/Gparity.h>
#include <Grid/qcd/utils/Utils.h> #include <Grid/qcd/utils/Utils.h>
#include <Grid/qcd/representations/Representations.h> #include <Grid/qcd/representations/Representations.h>
NAMESPACE_CHECK(GridQCDCore); NAMESPACE_CHECK(GridQCDCore);

View File

@ -16,7 +16,6 @@
#include <functional> #include <functional>
#include <stdio.h> #include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#include <strings.h>
#include <stdio.h> #include <stdio.h>
#include <signal.h> #include <signal.h>
#include <ctime> #include <ctime>
@ -29,7 +28,4 @@
/////////////////// ///////////////////
#include "Config.h" #include "Config.h"
#ifdef TOFU
#undef GRID_COMMS_THREADS
#endif
#endif /* GRID_STD_H */ #endif /* GRID_STD_H */

View File

@ -14,11 +14,7 @@
/* NVCC save and restore compile environment*/ /* NVCC save and restore compile environment*/
#ifdef __NVCC__ #ifdef __NVCC__
#pragma push #pragma push
#ifdef __NVCC_DIAG_PRAGMA_SUPPORT__
#pragma nv_diag_suppress code_is_unreachable
#else
#pragma diag_suppress code_is_unreachable #pragma diag_suppress code_is_unreachable
#endif
#pragma push_macro("__CUDA_ARCH__") #pragma push_macro("__CUDA_ARCH__")
#pragma push_macro("__NVCC__") #pragma push_macro("__NVCC__")
#pragma push_macro("__CUDACC__") #pragma push_macro("__CUDACC__")
@ -34,16 +30,10 @@
#pragma push_macro("__SYCL_DEVICE_ONLY__") #pragma push_macro("__SYCL_DEVICE_ONLY__")
#undef __SYCL_DEVICE_ONLY__ #undef __SYCL_DEVICE_ONLY__
#define EIGEN_DONT_VECTORIZE #define EIGEN_DONT_VECTORIZE
#undef EIGEN_USE_SYCL //#undef EIGEN_USE_SYCL
#define __SYCL__REDEFINE__ #define __SYCL__REDEFINE__
#endif #endif
/* HIP save and restore compile environment*/
#ifdef GRID_HIP
#pragma push
#pragma push_macro("__HIP_DEVICE_COMPILE__")
#endif
#define EIGEN_NO_HIP
#include <Grid/Eigen/Dense> #include <Grid/Eigen/Dense>
#include <Grid/Eigen/unsupported/CXX11/Tensor> #include <Grid/Eigen/unsupported/CXX11/Tensor>
@ -52,7 +42,7 @@
#ifdef __NVCC__REDEFINE__ #ifdef __NVCC__REDEFINE__
#pragma pop_macro("__CUDACC__") #pragma pop_macro("__CUDACC__")
#pragma pop_macro("__NVCC__") #pragma pop_macro("__NVCC__")
#pragma pop_macro("__CUDA_ARCH__") #pragma pop_macro("GRID_SIMT")
#pragma pop #pragma pop
#endif #endif
@ -62,12 +52,6 @@
#pragma pop #pragma pop
#endif #endif
/*HIP restore*/
#ifdef __HIP__REDEFINE__
#pragma pop_macro("__HIP_DEVICE_COMPILE__")
#pragma pop
#endif
#if defined __GNUC__ #if defined __GNUC__
#pragma GCC diagnostic pop #pragma GCC diagnostic pop
#endif #endif

View File

@ -21,7 +21,6 @@ if BUILD_HDF5
extra_headers+=serialisation/Hdf5Type.h extra_headers+=serialisation/Hdf5Type.h
endif endif
all: version-cache Version.h all: version-cache Version.h
version-cache: version-cache:
@ -54,23 +53,6 @@ Version.h: version-cache
include Make.inc include Make.inc
include Eigen.inc include Eigen.inc
extra_sources+=$(WILS_FERMION_FILES)
extra_sources+=$(STAG_FERMION_FILES)
if BUILD_ZMOBIUS
extra_sources+=$(ZWILS_FERMION_FILES)
endif
if BUILD_GPARITY
extra_sources+=$(GP_FERMION_FILES)
endif
if BUILD_FERMION_REPS
extra_sources+=$(ADJ_FERMION_FILES)
extra_sources+=$(TWOIND_FERMION_FILES)
endif
if BUILD_SP
extra_sources+=$(SP_FERMION_FILES)
extra_sources+=$(SP_TWOIND_FERMION_FILES)
endif
lib_LIBRARIES = libGrid.a lib_LIBRARIES = libGrid.a
CCFILES += $(extra_sources) CCFILES += $(extra_sources)

View File

@ -54,8 +54,6 @@ NAMESPACE_CHECK(BiCGSTAB);
#include <Grid/algorithms/iterative/SchurRedBlack.h> #include <Grid/algorithms/iterative/SchurRedBlack.h>
#include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h> #include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h>
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h> #include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
#include <Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h>
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrecBatched.h>
#include <Grid/algorithms/iterative/BiCGSTABMixedPrec.h> #include <Grid/algorithms/iterative/BiCGSTABMixedPrec.h>
#include <Grid/algorithms/iterative/BlockConjugateGradient.h> #include <Grid/algorithms/iterative/BlockConjugateGradient.h>
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h> #include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>

View File

@ -31,7 +31,6 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_ALGORITHM_COARSENED_MATRIX_H #ifndef GRID_ALGORITHM_COARSENED_MATRIX_H
#define GRID_ALGORITHM_COARSENED_MATRIX_H #define GRID_ALGORITHM_COARSENED_MATRIX_H
#include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No)
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
@ -60,14 +59,12 @@ inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner,
class Geometry { class Geometry {
public: public:
int npoint; int npoint;
int base;
std::vector<int> directions ; std::vector<int> directions ;
std::vector<int> displacements; std::vector<int> displacements;
std::vector<int> points_dagger;
Geometry(int _d) { Geometry(int _d) {
base = (_d==5) ? 1:0; int base = (_d==5) ? 1:0;
// make coarse grid stencil for 4d , not 5d // make coarse grid stencil for 4d , not 5d
if ( _d==5 ) _d=4; if ( _d==5 ) _d=4;
@ -75,51 +72,16 @@ public:
npoint = 2*_d+1; npoint = 2*_d+1;
directions.resize(npoint); directions.resize(npoint);
displacements.resize(npoint); displacements.resize(npoint);
points_dagger.resize(npoint);
for(int d=0;d<_d;d++){ for(int d=0;d<_d;d++){
directions[d ] = d+base; directions[d ] = d+base;
directions[d+_d] = d+base; directions[d+_d] = d+base;
displacements[d ] = +1; displacements[d ] = +1;
displacements[d+_d]= -1; displacements[d+_d]= -1;
points_dagger[d ] = d+_d;
points_dagger[d+_d] = d;
} }
directions [2*_d]=0; directions [2*_d]=0;
displacements[2*_d]=0; displacements[2*_d]=0;
points_dagger[2*_d]=2*_d;
} }
int point(int dir, int disp) {
assert(disp == -1 || disp == 0 || disp == 1);
assert(base+0 <= dir && dir < base+4);
// directions faster index = new indexing
// 4d (base = 0):
// point 0 1 2 3 4 5 6 7 8
// dir 0 1 2 3 0 1 2 3 0
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
// 5d (base = 1):
// point 0 1 2 3 4 5 6 7 8
// dir 1 2 3 4 1 2 3 4 0
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
// displacements faster index = old indexing
// 4d (base = 0):
// point 0 1 2 3 4 5 6 7 8
// dir 0 0 1 1 2 2 3 3 0
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
// 5d (base = 1):
// point 0 1 2 3 4 5 6 7 8
// dir 1 1 2 2 3 3 4 4 0
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
if(dir == 0 and disp == 0)
return 8;
else // New indexing
return (1 - disp) / 2 * 4 + dir - base;
// else // Old indexing
// return (4 * (dir - base) + 1 - disp) / 2;
}
}; };
template<class Fobj,class CComplex,int nbasis> template<class Fobj,class CComplex,int nbasis>
@ -262,7 +224,7 @@ public:
autoView( Tnp_v , (*Tnp), AcceleratorWrite); autoView( Tnp_v , (*Tnp), AcceleratorWrite);
autoView( Tnm_v , (*Tnm), AcceleratorWrite); autoView( Tnm_v , (*Tnm), AcceleratorWrite);
const int Nsimd = CComplex::Nsimd(); const int Nsimd = CComplex::Nsimd();
accelerator_for(ss, FineGrid->oSites(), Nsimd, { accelerator_forNB(ss, FineGrid->oSites(), Nsimd, {
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss)); coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss)); coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
}); });
@ -296,7 +258,7 @@ public:
// Fine Object == (per site) type of fine field // Fine Object == (per site) type of fine field
// nbasis == number of deflation vectors // nbasis == number of deflation vectors
template<class Fobj,class CComplex,int nbasis> template<class Fobj,class CComplex,int nbasis>
class CoarsenedMatrix : public CheckerBoardedSparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > { class CoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
public: public:
typedef iVector<CComplex,nbasis > siteVector; typedef iVector<CComplex,nbasis > siteVector;
@ -306,59 +268,33 @@ public:
typedef iMatrix<CComplex,nbasis > Cobj; typedef iMatrix<CComplex,nbasis > Cobj;
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj > FineField; typedef Lattice<Fobj > FineField;
typedef CoarseVector FermionField;
// enrich interface, use default implementation as in FermionOperator ///////
void Dminus(CoarseVector const& in, CoarseVector& out) { out = in; }
void DminusDag(CoarseVector const& in, CoarseVector& out) { out = in; }
void ImportPhysicalFermionSource(CoarseVector const& input, CoarseVector& imported) { imported = input; }
void ImportUnphysicalFermion(CoarseVector const& input, CoarseVector& imported) { imported = input; }
void ExportPhysicalFermionSolution(CoarseVector const& solution, CoarseVector& exported) { exported = solution; };
void ExportPhysicalFermionSource(CoarseVector const& solution, CoarseVector& exported) { exported = solution; };
//////////////////// ////////////////////
// Data members // Data members
//////////////////// ////////////////////
Geometry geom; Geometry geom;
GridBase * _grid; GridBase * _grid;
GridBase* _cbgrid;
int hermitian; int hermitian;
CartesianStencil<siteVector,siteVector,DefaultImplParams> Stencil; CartesianStencil<siteVector,siteVector,int> Stencil;
CartesianStencil<siteVector,siteVector,DefaultImplParams> StencilEven;
CartesianStencil<siteVector,siteVector,DefaultImplParams> StencilOdd;
std::vector<CoarseMatrix> A; std::vector<CoarseMatrix> A;
std::vector<CoarseMatrix> Aeven;
std::vector<CoarseMatrix> Aodd;
CoarseMatrix AselfInv;
CoarseMatrix AselfInvEven;
CoarseMatrix AselfInvOdd;
Vector<RealD> dag_factor;
/////////////////////// ///////////////////////
// Interface // Interface
/////////////////////// ///////////////////////
GridBase * Grid(void) { return _grid; }; // this is all the linalg routines need to know GridBase * Grid(void) { return _grid; }; // this is all the linalg routines need to know
GridBase * RedBlackGrid() { return _cbgrid; };
int ConstEE() { return 0; }
void M (const CoarseVector &in, CoarseVector &out) void M (const CoarseVector &in, CoarseVector &out)
{ {
conformable(_grid,in.Grid()); conformable(_grid,in.Grid());
conformable(in.Grid(),out.Grid()); conformable(in.Grid(),out.Grid());
out.Checkerboard() = in.Checkerboard();
SimpleCompressor<siteVector> compressor; SimpleCompressor<siteVector> compressor;
Stencil.HaloExchange(in,compressor); Stencil.HaloExchange(in,compressor);
autoView( in_v , in, AcceleratorRead); autoView( in_v , in, AcceleratorRead);
autoView( out_v , out, AcceleratorWrite); autoView( out_v , out, AcceleratorWrite);
autoView( Stencil_v , Stencil, AcceleratorRead);
int npoint = geom.npoint;
typedef LatticeView<Cobj> Aview; typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer; Vector<Aview> AcceleratorViewContainer;
@ -380,14 +316,14 @@ public:
int ptype; int ptype;
StencilEntry *SE; StencilEntry *SE;
for(int point=0;point<npoint;point++){ for(int point=0;point<geom.npoint;point++){
SE=Stencil_v.GetEntry(ptype,point,ss); SE=Stencil.GetEntry(ptype,point,ss);
if(SE->_is_local) { if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute); nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else { } else {
nbr = coalescedRead(Stencil_v.CommBuf()[SE->_offset]); nbr = coalescedRead(Stencil.CommBuf()[SE->_offset]);
} }
acceleratorSynchronise(); acceleratorSynchronise();
@ -408,74 +344,12 @@ public:
return M(in,out); return M(in,out);
} else { } else {
// corresponds to Galerkin coarsening // corresponds to Galerkin coarsening
return MdagNonHermitian(in, out); CoarseVector tmp(Grid());
G5C(tmp, in);
M(tmp, out);
G5C(out, out);
} }
}; };
void MdagNonHermitian(const CoarseVector &in, CoarseVector &out)
{
conformable(_grid,in.Grid());
conformable(in.Grid(),out.Grid());
out.Checkerboard() = in.Checkerboard();
SimpleCompressor<siteVector> compressor;
Stencil.HaloExchange(in,compressor);
autoView( in_v , in, AcceleratorRead);
autoView( out_v , out, AcceleratorWrite);
autoView( Stencil_v , Stencil, AcceleratorRead);
int npoint = geom.npoint;
typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer;
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
Aview *Aview_p = & AcceleratorViewContainer[0];
const int Nsimd = CComplex::Nsimd();
typedef decltype(coalescedRead(in_v[0])) calcVector;
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
int osites=Grid()->oSites();
Vector<int> points(geom.npoint, 0);
for(int p=0; p<geom.npoint; p++)
points[p] = geom.points_dagger[p];
auto points_p = &points[0];
RealD* dag_factor_p = &dag_factor[0];
accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, {
int ss = sss/nbasis;
int b = sss%nbasis;
calcComplex res = Zero();
calcVector nbr;
int ptype;
StencilEntry *SE;
for(int p=0;p<npoint;p++){
int point = points_p[p];
SE=Stencil_v.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(Stencil_v.CommBuf()[SE->_offset]);
}
acceleratorSynchronise();
for(int bb=0;bb<nbasis;bb++) {
res = res + dag_factor_p[b*nbasis+bb]*coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
}
}
coalescedWrite(out_v[ss](b),res);
});
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
}
void MdirComms(const CoarseVector &in) void MdirComms(const CoarseVector &in)
{ {
SimpleCompressor<siteVector> compressor; SimpleCompressor<siteVector> compressor;
@ -485,7 +359,6 @@ public:
{ {
conformable(_grid,in.Grid()); conformable(_grid,in.Grid());
conformable(_grid,out.Grid()); conformable(_grid,out.Grid());
out.Checkerboard() = in.Checkerboard();
typedef LatticeView<Cobj> Aview; typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer; Vector<Aview> AcceleratorViewContainer;
@ -494,7 +367,6 @@ public:
autoView( out_v , out, AcceleratorWrite); autoView( out_v , out, AcceleratorWrite);
autoView( in_v , in, AcceleratorRead); autoView( in_v , in, AcceleratorRead);
autoView( Stencil_v , Stencil, AcceleratorRead);
const int Nsimd = CComplex::Nsimd(); const int Nsimd = CComplex::Nsimd();
typedef decltype(coalescedRead(in_v[0])) calcVector; typedef decltype(coalescedRead(in_v[0])) calcVector;
@ -508,12 +380,12 @@ public:
int ptype; int ptype;
StencilEntry *SE; StencilEntry *SE;
SE=Stencil_v.GetEntry(ptype,point,ss); SE=Stencil.GetEntry(ptype,point,ss);
if(SE->_is_local) { if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute); nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else { } else {
nbr = coalescedRead(Stencil_v.CommBuf()[SE->_offset]); nbr = coalescedRead(Stencil.CommBuf()[SE->_offset]);
} }
acceleratorSynchronise(); acceleratorSynchronise();
@ -541,7 +413,34 @@ public:
this->MdirComms(in); this->MdirComms(in);
MdirCalc(in,out,geom.point(dir,disp)); int ndim = in.Grid()->Nd();
//////////////
// 4D action like wilson
// 0+ => 0
// 0- => 1
// 1+ => 2
// 1- => 3
// etc..
//////////////
// 5D action like DWF
// 1+ => 0
// 1- => 1
// 2+ => 2
// 2- => 3
// etc..
auto point = [dir, disp, ndim](){
if(dir == 0 and disp == 0)
return 8;
else if ( ndim==4 ) {
return (4 * dir + 1 - disp) / 2;
} else {
return (4 * (dir-1) + 1 - disp) / 2;
}
}();
MdirCalc(in,out,point);
}; };
void Mdiag(const CoarseVector &in, CoarseVector &out) void Mdiag(const CoarseVector &in, CoarseVector &out)
@ -550,298 +449,23 @@ public:
MdirCalc(in, out, point); // No comms MdirCalc(in, out, point); // No comms
}; };
void Mooee(const CoarseVector &in, CoarseVector &out) {
MooeeInternal(in, out, DaggerNo, InverseNo);
}
void MooeeInv(const CoarseVector &in, CoarseVector &out) {
MooeeInternal(in, out, DaggerNo, InverseYes);
}
void MooeeDag(const CoarseVector &in, CoarseVector &out) {
MooeeInternal(in, out, DaggerYes, InverseNo);
}
void MooeeInvDag(const CoarseVector &in, CoarseVector &out) {
MooeeInternal(in, out, DaggerYes, InverseYes);
}
void Meooe(const CoarseVector &in, CoarseVector &out) {
if(in.Checkerboard() == Odd) {
DhopEO(in, out, DaggerNo);
} else {
DhopOE(in, out, DaggerNo);
}
}
void MeooeDag(const CoarseVector &in, CoarseVector &out) {
if(in.Checkerboard() == Odd) {
DhopEO(in, out, DaggerYes);
} else {
DhopOE(in, out, DaggerYes);
}
}
void Dhop(const CoarseVector &in, CoarseVector &out, int dag) {
conformable(in.Grid(), _grid); // verifies full grid
conformable(in.Grid(), out.Grid());
out.Checkerboard() = in.Checkerboard();
DhopInternal(Stencil, A, in, out, dag);
}
void DhopOE(const CoarseVector &in, CoarseVector &out, int dag) {
conformable(in.Grid(), _cbgrid); // verifies half grid
conformable(in.Grid(), out.Grid()); // drops the cb check
assert(in.Checkerboard() == Even);
out.Checkerboard() = Odd;
DhopInternal(StencilEven, Aodd, in, out, dag);
}
void DhopEO(const CoarseVector &in, CoarseVector &out, int dag) {
conformable(in.Grid(), _cbgrid); // verifies half grid
conformable(in.Grid(), out.Grid()); // drops the cb check
assert(in.Checkerboard() == Odd);
out.Checkerboard() = Even;
DhopInternal(StencilOdd, Aeven, in, out, dag);
}
void MooeeInternal(const CoarseVector &in, CoarseVector &out, int dag, int inv) {
out.Checkerboard() = in.Checkerboard();
assert(in.Checkerboard() == Odd || in.Checkerboard() == Even);
CoarseMatrix *Aself = nullptr;
if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) {
Aself = (inv) ? &AselfInvOdd : &Aodd[geom.npoint-1];
DselfInternal(StencilOdd, *Aself, in, out, dag);
} else {
Aself = (inv) ? &AselfInvEven : &Aeven[geom.npoint-1];
DselfInternal(StencilEven, *Aself, in, out, dag);
}
} else {
Aself = (inv) ? &AselfInv : &A[geom.npoint-1];
DselfInternal(Stencil, *Aself, in, out, dag);
}
assert(Aself != nullptr);
}
void DselfInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, CoarseMatrix &a,
const CoarseVector &in, CoarseVector &out, int dag) {
int point = geom.npoint-1;
autoView( out_v, out, AcceleratorWrite);
autoView( in_v, in, AcceleratorRead);
autoView( st_v, st, AcceleratorRead);
autoView( a_v, a, AcceleratorRead);
const int Nsimd = CComplex::Nsimd();
typedef decltype(coalescedRead(in_v[0])) calcVector;
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
RealD* dag_factor_p = &dag_factor[0];
if(dag) {
accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, {
int ss = sss/nbasis;
int b = sss%nbasis;
calcComplex res = Zero();
calcVector nbr;
int ptype;
StencilEntry *SE;
SE=st_v.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(st_v.CommBuf()[SE->_offset]);
}
acceleratorSynchronise();
for(int bb=0;bb<nbasis;bb++) {
res = res + dag_factor_p[b*nbasis+bb]*coalescedRead(a_v[ss](b,bb))*nbr(bb);
}
coalescedWrite(out_v[ss](b),res);
});
} else {
accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, {
int ss = sss/nbasis;
int b = sss%nbasis;
calcComplex res = Zero();
calcVector nbr;
int ptype;
StencilEntry *SE;
SE=st_v.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(st_v.CommBuf()[SE->_offset]);
}
acceleratorSynchronise();
for(int bb=0;bb<nbasis;bb++) {
res = res + coalescedRead(a_v[ss](b,bb))*nbr(bb);
}
coalescedWrite(out_v[ss](b),res);
});
}
}
void DhopInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, std::vector<CoarseMatrix> &a,
const CoarseVector &in, CoarseVector &out, int dag) {
SimpleCompressor<siteVector> compressor;
st.HaloExchange(in,compressor);
autoView( in_v, in, AcceleratorRead);
autoView( out_v, out, AcceleratorWrite);
autoView( st_v , st, AcceleratorRead);
typedef LatticeView<Cobj> Aview;
// determine in what order we need the points
int npoint = geom.npoint-1;
Vector<int> points(npoint, 0);
for(int p=0; p<npoint; p++)
points[p] = (dag && !hermitian) ? geom.points_dagger[p] : p;
auto points_p = &points[0];
Vector<Aview> AcceleratorViewContainer;
for(int p=0;p<npoint;p++) AcceleratorViewContainer.push_back(a[p].View(AcceleratorRead));
Aview *Aview_p = & AcceleratorViewContainer[0];
const int Nsimd = CComplex::Nsimd();
typedef decltype(coalescedRead(in_v[0])) calcVector;
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
RealD* dag_factor_p = &dag_factor[0];
if(dag) {
accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, {
int ss = sss/nbasis;
int b = sss%nbasis;
calcComplex res = Zero();
calcVector nbr;
int ptype;
StencilEntry *SE;
for(int p=0;p<npoint;p++){
int point = points_p[p];
SE=st_v.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(st_v.CommBuf()[SE->_offset]);
}
acceleratorSynchronise();
for(int bb=0;bb<nbasis;bb++) {
res = res + dag_factor_p[b*nbasis+bb]*coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
}
}
coalescedWrite(out_v[ss](b),res);
});
} else {
accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, {
int ss = sss/nbasis;
int b = sss%nbasis;
calcComplex res = Zero();
calcVector nbr;
int ptype;
StencilEntry *SE;
for(int p=0;p<npoint;p++){
int point = points_p[p];
SE=st_v.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(st_v.CommBuf()[SE->_offset]);
}
acceleratorSynchronise();
for(int bb=0;bb<nbasis;bb++) {
res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
}
}
coalescedWrite(out_v[ss](b),res);
});
}
for(int p=0;p<npoint;p++) AcceleratorViewContainer[p].ViewClose();
}
CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) : CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) :
_grid(&CoarseGrid),
_cbgrid(new GridRedBlackCartesian(&CoarseGrid)),
geom(CoarseGrid._ndimension),
hermitian(hermitian_),
Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements),
StencilEven(_cbgrid,geom.npoint,Even,geom.directions,geom.displacements),
StencilOdd(_cbgrid,geom.npoint,Odd,geom.directions,geom.displacements),
A(geom.npoint,&CoarseGrid),
Aeven(geom.npoint,_cbgrid),
Aodd(geom.npoint,_cbgrid),
AselfInv(&CoarseGrid),
AselfInvEven(_cbgrid),
AselfInvOdd(_cbgrid),
dag_factor(nbasis*nbasis)
{
fillFactor();
};
CoarsenedMatrix(GridCartesian &CoarseGrid, GridRedBlackCartesian &CoarseRBGrid, int hermitian_=0) :
_grid(&CoarseGrid), _grid(&CoarseGrid),
_cbgrid(&CoarseRBGrid),
geom(CoarseGrid._ndimension), geom(CoarseGrid._ndimension),
hermitian(hermitian_), hermitian(hermitian_),
Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements), Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements,0),
StencilEven(&CoarseRBGrid,geom.npoint,Even,geom.directions,geom.displacements), A(geom.npoint,&CoarseGrid)
StencilOdd(&CoarseRBGrid,geom.npoint,Odd,geom.directions,geom.displacements),
A(geom.npoint,&CoarseGrid),
Aeven(geom.npoint,&CoarseRBGrid),
Aodd(geom.npoint,&CoarseRBGrid),
AselfInv(&CoarseGrid),
AselfInvEven(&CoarseRBGrid),
AselfInvOdd(&CoarseRBGrid),
dag_factor(nbasis*nbasis)
{ {
fillFactor();
}; };
void fillFactor() {
Eigen::MatrixXd dag_factor_eigen = Eigen::MatrixXd::Ones(nbasis, nbasis);
if(!hermitian) {
const int nb = nbasis/2;
dag_factor_eigen.block(0,nb,nb,nb) *= -1.0;
dag_factor_eigen.block(nb,0,nb,nb) *= -1.0;
}
// GPU readable prefactor
thread_for(i, nbasis*nbasis, {
int j = i/nbasis;
int k = i%nbasis;
dag_factor[i] = dag_factor_eigen(j, k);
});
}
void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop, void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & Subspace) Aggregation<Fobj,CComplex,nbasis> & Subspace)
{ {
typedef Lattice<typename Fobj::tensor_reduced> FineComplexField; typedef Lattice<typename Fobj::tensor_reduced> FineComplexField;
typedef typename Fobj::scalar_type scalar_type; typedef typename Fobj::scalar_type scalar_type;
std::cout << GridLogMessage<< "CoarsenMatrix "<< std::endl;
FineComplexField one(FineGrid); one=scalar_type(1.0,0.0); FineComplexField one(FineGrid); one=scalar_type(1.0,0.0);
FineComplexField zero(FineGrid); zero=scalar_type(0.0,0.0); FineComplexField zero(FineGrid); zero=scalar_type(0.0,0.0);
@ -872,13 +496,11 @@ public:
CoarseScalar InnerProd(Grid()); CoarseScalar InnerProd(Grid());
std::cout << GridLogMessage<< "CoarsenMatrix Orthog "<< std::endl;
// Orthogonalise the subblocks over the basis // Orthogonalise the subblocks over the basis
blockOrthogonalise(InnerProd,Subspace.subspace); blockOrthogonalise(InnerProd,Subspace.subspace);
// Compute the matrix elements of linop between this orthonormal // Compute the matrix elements of linop between this orthonormal
// set of vectors. // set of vectors.
std::cout << GridLogMessage<< "CoarsenMatrix masks "<< std::endl;
int self_stencil=-1; int self_stencil=-1;
for(int p=0;p<geom.npoint;p++) for(int p=0;p<geom.npoint;p++)
{ {
@ -917,7 +539,7 @@ public:
phi=Subspace.subspace[i]; phi=Subspace.subspace[i];
std::cout << GridLogMessage<< "CoarsenMatrix vector "<<i << std::endl; // std::cout << GridLogMessage<< "CoarsenMatrix vector "<<i << std::endl;
linop.OpDirAll(phi,Mphi_p); linop.OpDirAll(phi,Mphi_p);
linop.OpDiag (phi,Mphi_p[geom.npoint-1]); linop.OpDiag (phi,Mphi_p[geom.npoint-1]);
@ -946,18 +568,6 @@ public:
autoView( A_self , A[self_stencil], AcceleratorWrite); autoView( A_self , A[self_stencil], AcceleratorWrite);
accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_p[ss](j,i),oZProj_v(ss)); }); accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_p[ss](j,i),oZProj_v(ss)); });
if ( hermitian && (disp==-1) ) {
for(int pp=0;pp<geom.npoint;pp++){// Find the opposite link and set <j|A|i> = <i|A|j>*
int dirp = geom.directions[pp];
int dispp = geom.displacements[pp];
if ( (dirp==dir) && (dispp==1) ){
auto sft = conjugate(Cshift(oZProj,dir,1));
autoView( sft_v , sft , AcceleratorWrite);
autoView( A_pp , A[pp], AcceleratorWrite);
accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_pp[ss](i,j),sft_v(ss)); });
}
}
}
} }
} }
@ -996,54 +606,28 @@ public:
} }
if(hermitian) { if(hermitian) {
std::cout << GridLogMessage << " ForceHermitian, new code "<<std::endl; std::cout << GridLogMessage << " ForceHermitian, new code "<<std::endl;
ForceHermitian();
}
} }
InvertSelfStencilLink(); std::cout << GridLogMessage << "Coarse self link inverted" << std::endl; void ForceHermitian(void) {
FillHalfCbs(); std::cout << GridLogMessage << "Coarse half checkerboards filled" << std::endl; CoarseMatrix Diff (Grid());
for(int p=0;p<geom.npoint;p++){
int dir = geom.directions[p];
int disp = geom.displacements[p];
if(disp==-1) {
// Find the opposite link
for(int pp=0;pp<geom.npoint;pp++){
int dirp = geom.directions[pp];
int dispp = geom.displacements[pp];
if ( (dirp==dir) && (dispp==1) ){
// Diff = adj(Cshift(A[p],dir,1)) - A[pp];
// std::cout << GridLogMessage<<" Replacing stencil leg "<<pp<<" with leg "<<p<< " diff "<<norm2(Diff) <<std::endl;
A[pp] = adj(Cshift(A[p],dir,1));
}
} }
void InvertSelfStencilLink() {
std::cout << GridLogDebug << "CoarsenedMatrix::InvertSelfStencilLink" << std::endl;
int localVolume = Grid()->lSites();
typedef typename Cobj::scalar_object scalar_object;
autoView(Aself_v, A[geom.npoint-1], CpuRead);
autoView(AselfInv_v, AselfInv, CpuWrite);
thread_for(site, localVolume, { // NOTE: Not able to bring this to GPU because of Eigen + peek/poke
Eigen::MatrixXcd selfLinkEigen = Eigen::MatrixXcd::Zero(nbasis, nbasis);
Eigen::MatrixXcd selfLinkInvEigen = Eigen::MatrixXcd::Zero(nbasis, nbasis);
scalar_object selfLink = Zero();
scalar_object selfLinkInv = Zero();
Coordinate lcoor;
Grid()->LocalIndexToLocalCoor(site, lcoor);
peekLocalSite(selfLink, Aself_v, lcoor);
for (int i = 0; i < nbasis; ++i)
for (int j = 0; j < nbasis; ++j)
selfLinkEigen(i, j) = static_cast<ComplexD>(TensorRemove(selfLink(i, j)));
selfLinkInvEigen = selfLinkEigen.inverse();
for(int i = 0; i < nbasis; ++i)
for(int j = 0; j < nbasis; ++j)
selfLinkInv(i, j) = selfLinkInvEigen(i, j);
pokeLocalSite(selfLinkInv, AselfInv_v, lcoor);
});
} }
void FillHalfCbs() {
std::cout << GridLogDebug << "CoarsenedMatrix::FillHalfCbs" << std::endl;
for(int p = 0; p < geom.npoint; ++p) {
pickCheckerboard(Even, Aeven[p], A[p]);
pickCheckerboard(Odd, Aodd[p], A[p]);
} }
pickCheckerboard(Even, AselfInvEven, AselfInv);
pickCheckerboard(Odd, AselfInvOdd, AselfInv);
} }
}; };

View File

@ -136,7 +136,7 @@ public:
flops=0; flops=0;
usec =0; usec =0;
Coordinate layout(Nd,1); Coordinate layout(Nd,1);
sgrid = new GridCartesian(dimensions,layout,processors,*grid); sgrid = new GridCartesian(dimensions,layout,processors);
}; };
~FFT ( void) { ~FFT ( void) {
@ -182,7 +182,7 @@ public:
pencil_gd[dim] = G*processors[dim]; pencil_gd[dim] = G*processors[dim];
// Pencil global vol LxLxGxLxL per node // Pencil global vol LxLxGxLxL per node
GridCartesian pencil_g(pencil_gd,layout,processors,*vgrid); GridCartesian pencil_g(pencil_gd,layout,processors);
// Construct pencils // Construct pencils
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;

View File

@ -52,7 +52,6 @@ public:
virtual void AdjOp (const Field &in, Field &out) = 0; // Abstract base virtual void AdjOp (const Field &in, Field &out) = 0; // Abstract base
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2)=0; virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2)=0;
virtual void HermOp(const Field &in, Field &out)=0; virtual void HermOp(const Field &in, Field &out)=0;
virtual ~LinearOperatorBase(){};
}; };
@ -508,7 +507,7 @@ class SchurStaggeredOperator : public SchurOperatorBase<Field> {
virtual void MpcDag (const Field &in, Field &out){ virtual void MpcDag (const Field &in, Field &out){
Mpc(in,out); Mpc(in,out);
} }
virtual void MpcDagMpc(const Field &in, Field &out) { virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
assert(0);// Never need with staggered assert(0);// Never need with staggered
} }
}; };
@ -526,23 +525,11 @@ public:
(*this)(Linop,in[k],out[k]); (*this)(Linop,in[k],out[k]);
} }
}; };
virtual ~OperatorFunction(){};
}; };
template<class Field> class LinearFunction { template<class Field> class LinearFunction {
public: public:
virtual void operator() (const Field &in, Field &out) = 0; virtual void operator() (const Field &in, Field &out) = 0;
virtual void operator() (const std::vector<Field> &in, std::vector<Field> &out)
{
assert(in.size() == out.size());
for (unsigned int i = 0; i < in.size(); ++i)
{
(*this)(in[i], out[i]);
}
}
virtual ~LinearFunction(){};
}; };
template<class Field> class IdentityLinearFunction : public LinearFunction<Field> { template<class Field> class IdentityLinearFunction : public LinearFunction<Field> {
@ -588,7 +575,6 @@ class HermOpOperatorFunction : public OperatorFunction<Field> {
template<typename Field> template<typename Field>
class PlainHermOp : public LinearFunction<Field> { class PlainHermOp : public LinearFunction<Field> {
public: public:
using LinearFunction<Field>::operator();
LinearOperatorBase<Field> &_Linop; LinearOperatorBase<Field> &_Linop;
PlainHermOp(LinearOperatorBase<Field>& linop) : _Linop(linop) PlainHermOp(LinearOperatorBase<Field>& linop) : _Linop(linop)
@ -602,7 +588,6 @@ public:
template<typename Field> template<typename Field>
class FunctionHermOp : public LinearFunction<Field> { class FunctionHermOp : public LinearFunction<Field> {
public: public:
using LinearFunction<Field>::operator();
OperatorFunction<Field> & _poly; OperatorFunction<Field> & _poly;
LinearOperatorBase<Field> &_Linop; LinearOperatorBase<Field> &_Linop;

View File

@ -30,19 +30,13 @@ Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
template<class Field> using Preconditioner = LinearFunction<Field> ;
/*
template<class Field> class Preconditioner : public LinearFunction<Field> { template<class Field> class Preconditioner : public LinearFunction<Field> {
using LinearFunction<Field>::operator();
virtual void operator()(const Field &src, Field & psi)=0; virtual void operator()(const Field &src, Field & psi)=0;
}; };
*/
template<class Field> class TrivialPrecon : public Preconditioner<Field> { template<class Field> class TrivialPrecon : public Preconditioner<Field> {
public: public:
using Preconditioner<Field>::operator(); void operator()(const Field &src, Field & psi){
virtual void operator()(const Field &src, Field & psi){
psi = src; psi = src;
} }
TrivialPrecon(void){}; TrivialPrecon(void){};

View File

@ -48,7 +48,6 @@ public:
virtual void Mdiag (const Field &in, Field &out)=0; virtual void Mdiag (const Field &in, Field &out)=0;
virtual void Mdir (const Field &in, Field &out,int dir, int disp)=0; virtual void Mdir (const Field &in, Field &out,int dir, int disp)=0;
virtual void MdirAll (const Field &in, std::vector<Field> &out)=0; virtual void MdirAll (const Field &in, std::vector<Field> &out)=0;
virtual ~SparseMatrixBase() {};
}; };
///////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////
@ -73,7 +72,7 @@ public:
virtual void MeooeDag (const Field &in, Field &out)=0; virtual void MeooeDag (const Field &in, Field &out)=0;
virtual void MooeeDag (const Field &in, Field &out)=0; virtual void MooeeDag (const Field &in, Field &out)=0;
virtual void MooeeInvDag (const Field &in, Field &out)=0; virtual void MooeeInvDag (const Field &in, Field &out)=0;
virtual ~CheckerBoardedSparseMatrixBase() {};
}; };
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -258,12 +258,26 @@ public:
for(int n=2;n<order;n++){ for(int n=2;n<order;n++){
Linop.HermOp(*Tn,y); Linop.HermOp(*Tn,y);
#if 0
auto y_v = y.View();
auto Tn_v = Tn->View();
auto Tnp_v = Tnp->View();
auto Tnm_v = Tnm->View();
constexpr int Nsimd = vector_type::Nsimd();
accelerator_forNB(ss, in.Grid()->oSites(), Nsimd, {
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
});
if ( Coeffs[n] != 0.0) {
axpy(out,Coeffs[n],*Tnp,out);
}
#else
axpby(y,xscale,mscale,y,(*Tn)); axpby(y,xscale,mscale,y,(*Tn));
axpby(*Tnp,2.0,-1.0,y,(*Tnm)); axpby(*Tnp,2.0,-1.0,y,(*Tnm));
if ( Coeffs[n] != 0.0) { if ( Coeffs[n] != 0.0) {
axpy(out,Coeffs[n],*Tnp,out); axpy(out,Coeffs[n],*Tnp,out);
} }
#endif
// Cycle pointers to avoid copies // Cycle pointers to avoid copies
Field *swizzle = Tnm; Field *swizzle = Tnm;
Tnm =Tn; Tnm =Tn;

View File

@ -293,7 +293,7 @@ static void sncndnFK(INTERNAL_PRECISION u, INTERNAL_PRECISION k,
* Set type = 0 for the Zolotarev approximation, which is zero at x = 0, and * Set type = 0 for the Zolotarev approximation, which is zero at x = 0, and
* type = 1 for the approximation which is infinite at x = 0. */ * type = 1 for the approximation which is infinite at x = 0. */
zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) { zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) {
INTERNAL_PRECISION A, c, cp, kp, ksq, sn, cn, dn, Kp, Kj, z, z0, t, M, F, INTERNAL_PRECISION A, c, cp, kp, ksq, sn, cn, dn, Kp, Kj, z, z0, t, M, F,
l, invlambda, xi, xisq, *tv, s, opl; l, invlambda, xi, xisq, *tv, s, opl;
int m, czero, ts; int m, czero, ts;
@ -375,12 +375,12 @@ zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) {
construct_partfrac(d); construct_partfrac(d);
construct_contfrac(d); construct_contfrac(d);
/* Converting everything to ZOLO_PRECISION for external use only */ /* Converting everything to PRECISION for external use only */
zd = (zolotarev_data*) malloc(sizeof(zolotarev_data)); zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
zd -> A = (ZOLO_PRECISION) d -> A; zd -> A = (PRECISION) d -> A;
zd -> Delta = (ZOLO_PRECISION) d -> Delta; zd -> Delta = (PRECISION) d -> Delta;
zd -> epsilon = (ZOLO_PRECISION) d -> epsilon; zd -> epsilon = (PRECISION) d -> epsilon;
zd -> n = d -> n; zd -> n = d -> n;
zd -> type = d -> type; zd -> type = d -> type;
zd -> dn = d -> dn; zd -> dn = d -> dn;
@ -390,24 +390,24 @@ zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) {
zd -> deg_num = d -> deg_num; zd -> deg_num = d -> deg_num;
zd -> deg_denom = d -> deg_denom; zd -> deg_denom = d -> deg_denom;
zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION)); zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION));
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m]; for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m];
free(d -> a); free(d -> a);
zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION)); zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION));
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m]; for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m];
free(d -> ap); free(d -> ap);
zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION)); zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION));
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m]; for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m];
free(d -> alpha); free(d -> alpha);
zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION)); zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION));
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m]; for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m];
free(d -> beta); free(d -> beta);
zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION)); zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION));
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m]; for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m];
free(d -> gamma); free(d -> gamma);
free(d); free(d);
@ -426,7 +426,7 @@ void zolotarev_free(zolotarev_data *zdata)
} }
zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) { zolotarev_data* higham(PRECISION epsilon, int n) {
INTERNAL_PRECISION A, M, c, cp, z, z0, t, epssq; INTERNAL_PRECISION A, M, c, cp, z, z0, t, epssq;
int m, czero; int m, czero;
zolotarev_data *zd; zolotarev_data *zd;
@ -481,9 +481,9 @@ zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) {
/* Converting everything to PRECISION for external use only */ /* Converting everything to PRECISION for external use only */
zd = (zolotarev_data*) malloc(sizeof(zolotarev_data)); zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
zd -> A = (ZOLO_PRECISION) d -> A; zd -> A = (PRECISION) d -> A;
zd -> Delta = (ZOLO_PRECISION) d -> Delta; zd -> Delta = (PRECISION) d -> Delta;
zd -> epsilon = (ZOLO_PRECISION) d -> epsilon; zd -> epsilon = (PRECISION) d -> epsilon;
zd -> n = d -> n; zd -> n = d -> n;
zd -> type = d -> type; zd -> type = d -> type;
zd -> dn = d -> dn; zd -> dn = d -> dn;
@ -493,24 +493,24 @@ zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) {
zd -> deg_num = d -> deg_num; zd -> deg_num = d -> deg_num;
zd -> deg_denom = d -> deg_denom; zd -> deg_denom = d -> deg_denom;
zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION)); zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION));
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m]; for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m];
free(d -> a); free(d -> a);
zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION)); zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION));
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m]; for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m];
free(d -> ap); free(d -> ap);
zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION)); zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION));
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m]; for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m];
free(d -> alpha); free(d -> alpha);
zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION)); zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION));
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m]; for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m];
free(d -> beta); free(d -> beta);
zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION)); zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION));
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m]; for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m];
free(d -> gamma); free(d -> gamma);
free(d); free(d);
@ -523,17 +523,17 @@ NAMESPACE_END(Grid);
#ifdef TEST #ifdef TEST
#undef ZERO #undef ZERO
#define ZERO ((ZOLO_PRECISION) 0) #define ZERO ((PRECISION) 0)
#undef ONE #undef ONE
#define ONE ((ZOLO_PRECISION) 1) #define ONE ((PRECISION) 1)
#undef TWO #undef TWO
#define TWO ((ZOLO_PRECISION) 2) #define TWO ((PRECISION) 2)
/* Evaluate the rational approximation R(x) using the factored form */ /* Evaluate the rational approximation R(x) using the factored form */
static ZOLO_PRECISION zolotarev_eval(ZOLO_PRECISION x, zolotarev_data* rdata) { static PRECISION zolotarev_eval(PRECISION x, zolotarev_data* rdata) {
int m; int m;
ZOLO_PRECISION R; PRECISION R;
if (rdata -> type == 0) { if (rdata -> type == 0) {
R = rdata -> A * x; R = rdata -> A * x;
@ -551,9 +551,9 @@ static ZOLO_PRECISION zolotarev_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
/* Evaluate the rational approximation R(x) using the partial fraction form */ /* Evaluate the rational approximation R(x) using the partial fraction form */
static ZOLO_PRECISION zolotarev_partfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) { static PRECISION zolotarev_partfrac_eval(PRECISION x, zolotarev_data* rdata) {
int m; int m;
ZOLO_PRECISION R = rdata -> alpha[rdata -> da - 1]; PRECISION R = rdata -> alpha[rdata -> da - 1];
for (m = 0; m < rdata -> dd; m++) for (m = 0; m < rdata -> dd; m++)
R += rdata -> alpha[m] / (x * x - rdata -> ap[m]); R += rdata -> alpha[m] / (x * x - rdata -> ap[m]);
if (rdata -> type == 1) R += rdata -> alpha[rdata -> dd] / (x * x); if (rdata -> type == 1) R += rdata -> alpha[rdata -> dd] / (x * x);
@ -568,18 +568,18 @@ static ZOLO_PRECISION zolotarev_partfrac_eval(ZOLO_PRECISION x, zolotarev_data*
* non-signalling overflow this will work correctly since 1/(1/0) = 1/INF = 0, * non-signalling overflow this will work correctly since 1/(1/0) = 1/INF = 0,
* but with signalling overflow you will get an error message. */ * but with signalling overflow you will get an error message. */
static ZOLO_PRECISION zolotarev_contfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) { static PRECISION zolotarev_contfrac_eval(PRECISION x, zolotarev_data* rdata) {
int m; int m;
ZOLO_PRECISION R = rdata -> beta[0] * x; PRECISION R = rdata -> beta[0] * x;
for (m = 1; m < rdata -> db; m++) R = rdata -> beta[m] * x + ONE / R; for (m = 1; m < rdata -> db; m++) R = rdata -> beta[m] * x + ONE / R;
return R; return R;
} }
/* Evaluate the rational approximation R(x) using Cayley form */ /* Evaluate the rational approximation R(x) using Cayley form */
static ZOLO_PRECISION zolotarev_cayley_eval(ZOLO_PRECISION x, zolotarev_data* rdata) { static PRECISION zolotarev_cayley_eval(PRECISION x, zolotarev_data* rdata) {
int m; int m;
ZOLO_PRECISION T; PRECISION T;
T = rdata -> type == 0 ? ONE : -ONE; T = rdata -> type == 0 ? ONE : -ONE;
for (m = 0; m < rdata -> n; m++) for (m = 0; m < rdata -> n; m++)
@ -607,7 +607,7 @@ int main(int argc, char** argv) {
int m, n, plotpts = 5000, type = 0; int m, n, plotpts = 5000, type = 0;
float eps, x, ypferr, ycferr, ycaylerr, maxypferr, maxycferr, maxycaylerr; float eps, x, ypferr, ycferr, ycaylerr, maxypferr, maxycferr, maxycaylerr;
zolotarev_data *rdata; zolotarev_data *rdata;
ZOLO_PRECISION y; PRECISION y;
FILE *plot_function, *plot_error, FILE *plot_function, *plot_error,
*plot_partfrac, *plot_contfrac, *plot_cayley; *plot_partfrac, *plot_contfrac, *plot_cayley;
@ -626,13 +626,13 @@ int main(int argc, char** argv) {
} }
rdata = type == 2 rdata = type == 2
? higham((ZOLO_PRECISION) eps, n) ? higham((PRECISION) eps, n)
: zolotarev((ZOLO_PRECISION) eps, n, type); : zolotarev((PRECISION) eps, n, type);
printf("Zolotarev Test: R(epsilon = %g, n = %d, type = %d)\n\t" printf("Zolotarev Test: R(epsilon = %g, n = %d, type = %d)\n\t"
STRINGIFY(VERSION) "\n\t" STRINGIFY(HVERSION) STRINGIFY(VERSION) "\n\t" STRINGIFY(HVERSION)
"\n\tINTERNAL_PRECISION = " STRINGIFY(INTERNAL_PRECISION) "\n\tINTERNAL_PRECISION = " STRINGIFY(INTERNAL_PRECISION)
"\tZOLO_PRECISION = " STRINGIFY(ZOLO_PRECISION) "\tPRECISION = " STRINGIFY(PRECISION)
"\n\n\tRational approximation of degree (%d,%d), %s at x = 0\n" "\n\n\tRational approximation of degree (%d,%d), %s at x = 0\n"
"\tDelta = %g (maximum error)\n\n" "\tDelta = %g (maximum error)\n\n"
"\tA = %g (overall factor)\n", "\tA = %g (overall factor)\n",
@ -681,15 +681,15 @@ int main(int argc, char** argv) {
x = 2.4 * (float) m / plotpts - 1.2; x = 2.4 * (float) m / plotpts - 1.2;
if (rdata -> type == 0 || fabs(x) * (float) plotpts > 1.0) { if (rdata -> type == 0 || fabs(x) * (float) plotpts > 1.0) {
/* skip x = 0 for type 1, as R(0) is singular */ /* skip x = 0 for type 1, as R(0) is singular */
y = zolotarev_eval((ZOLO_PRECISION) x, rdata); y = zolotarev_eval((PRECISION) x, rdata);
fprintf(plot_function, "%g %g\n", x, (float) y); fprintf(plot_function, "%g %g\n", x, (float) y);
fprintf(plot_error, "%g %g\n", fprintf(plot_error, "%g %g\n",
x, (float)((y - ((x > 0.0 ? ONE : -ONE))) / rdata -> Delta)); x, (float)((y - ((x > 0.0 ? ONE : -ONE))) / rdata -> Delta));
ypferr = (float)((zolotarev_partfrac_eval((ZOLO_PRECISION) x, rdata) - y) ypferr = (float)((zolotarev_partfrac_eval((PRECISION) x, rdata) - y)
/ rdata -> Delta); / rdata -> Delta);
ycferr = (float)((zolotarev_contfrac_eval((ZOLO_PRECISION) x, rdata) - y) ycferr = (float)((zolotarev_contfrac_eval((PRECISION) x, rdata) - y)
/ rdata -> Delta); / rdata -> Delta);
ycaylerr = (float)((zolotarev_cayley_eval((ZOLO_PRECISION) x, rdata) - y) ycaylerr = (float)((zolotarev_cayley_eval((PRECISION) x, rdata) - y)
/ rdata -> Delta); / rdata -> Delta);
if (fabs(x) < 1.0 && fabs(x) > rdata -> epsilon) { if (fabs(x) < 1.0 && fabs(x) > rdata -> epsilon) {
maxypferr = MAX(maxypferr, fabs(ypferr)); maxypferr = MAX(maxypferr, fabs(ypferr));

View File

@ -9,10 +9,10 @@ NAMESPACE_BEGIN(Approx);
#define HVERSION Header Time-stamp: <14-OCT-2004 09:26:51.00 adk@MISSCONTRARY> #define HVERSION Header Time-stamp: <14-OCT-2004 09:26:51.00 adk@MISSCONTRARY>
#ifndef ZOLOTAREV_INTERNAL #ifndef ZOLOTAREV_INTERNAL
#ifndef ZOLO_PRECISION #ifndef PRECISION
#define ZOLO_PRECISION double #define PRECISION double
#endif #endif
#define ZPRECISION ZOLO_PRECISION #define ZPRECISION PRECISION
#define ZOLOTAREV_DATA zolotarev_data #define ZOLOTAREV_DATA zolotarev_data
#endif #endif
@ -77,8 +77,8 @@ typedef struct {
* zolotarev_data structure. The arguments must satisfy the constraints that * zolotarev_data structure. The arguments must satisfy the constraints that
* epsilon > 0, n > 0, and type = 0 or 1. */ * epsilon > 0, n > 0, and type = 0 or 1. */
ZOLOTAREV_DATA* higham(ZOLO_PRECISION epsilon, int n) ; ZOLOTAREV_DATA* higham(PRECISION epsilon, int n) ;
ZOLOTAREV_DATA* zolotarev(ZOLO_PRECISION epsilon, int n, int type); ZOLOTAREV_DATA* zolotarev(PRECISION epsilon, int n, int type);
void zolotarev_free(zolotarev_data *zdata); void zolotarev_free(zolotarev_data *zdata);
#endif #endif
@ -86,4 +86,3 @@ void zolotarev_free(zolotarev_data *zdata);
NAMESPACE_END(Approx); NAMESPACE_END(Approx);
NAMESPACE_END(Grid); NAMESPACE_END(Grid);
#endif #endif

View File

@ -1,34 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: BatchedBlas.h
Copyright (C) 2023
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/GridCore.h>
#include <Grid/algorithms/blas/BatchedBlas.h>
NAMESPACE_BEGIN(Grid);
gridblasHandle_t GridBLAS::gridblasHandle;
int GridBLAS::gridblasInit;
NAMESPACE_END(Grid);

View File

@ -1,727 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: BatchedBlas.h
Copyright (C) 2023
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#ifdef GRID_HIP
#include <hipblas/hipblas.h>
#endif
#ifdef GRID_CUDA
#include <cublas_v2.h>
#endif
#ifdef GRID_SYCL
#include <oneapi/mkl.hpp>
#endif
#if 0
#define GRID_ONE_MKL
#endif
#ifdef GRID_ONE_MKL
#include <oneapi/mkl.hpp>
#endif
///////////////////////////////////////////////////////////////////////
// Need to rearrange lattice data to be in the right format for a
// batched multiply. Might as well make these static, dense packed
///////////////////////////////////////////////////////////////////////
NAMESPACE_BEGIN(Grid);
#ifdef GRID_HIP
typedef hipblasHandle_t gridblasHandle_t;
#endif
#ifdef GRID_CUDA
typedef cublasHandle_t gridblasHandle_t;
#endif
#ifdef GRID_SYCL
typedef cl::sycl::queue *gridblasHandle_t;
#endif
#ifdef GRID_ONE_MKL
typedef cl::sycl::queue *gridblasHandle_t;
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
typedef int32_t gridblasHandle_t;
#endif
enum GridBLASOperation_t { GridBLAS_OP_N, GridBLAS_OP_T, GridBLAS_OP_C } ;
class GridBLAS {
public:
static gridblasHandle_t gridblasHandle;
static int gridblasInit;
static void Init(void)
{
if ( ! gridblasInit ) {
#ifdef GRID_CUDA
std::cout << "cublasCreate"<<std::endl;
cublasCreate(&gridblasHandle);
cublasSetPointerMode(gridblasHandle, CUBLAS_POINTER_MODE_DEVICE);
#endif
#ifdef GRID_HIP
std::cout << "hipblasCreate"<<std::endl;
hipblasCreate(&gridblasHandle);
#endif
#ifdef GRID_SYCL
gridblasHandle = theGridAccelerator;
#endif
#ifdef GRID_ONE_MKL
cl::sycl::cpu_selector selector;
cl::sycl::device selectedDevice { selector };
gridblasHandle =new sycl::queue (selectedDevice);
#endif
gridblasInit=1;
}
}
// Force construct once
GridBLAS() { Init(); };
~GridBLAS() { };
/////////////////////////////////////////////////////////////////////////////////////
// BLAS GEMM conventions:
/////////////////////////////////////////////////////////////////////////////////////
// - C = alpha A * B + beta C
// Dimensions:
// - C_m.n
// - A_m.k
// - B_k.n
// - Flops = 8 M N K
// - Bytes = 2*sizeof(word) * (MN+MK+KN)
// M=60, N=12
// Flop/Byte = 8 . 60.60.12 / (60.12+60.60+60.12)/16 = 4 so expect about 4 TF/s on a GCD
/////////////////////////////////////////////////////////////////////////////////////
void synchronise(void)
{
#ifdef GRID_HIP
auto err = hipDeviceSynchronize();
assert(err==hipSuccess);
#endif
#ifdef GRID_CUDA
auto err = cudaDeviceSynchronize();
assert(err==cudaSuccess);
#endif
#ifdef GRID_SYCL
accelerator_barrier();
#endif
#ifdef GRID_ONE_MKL
gridblasHandle->wait();
#endif
}
void gemmBatched(int m,int n, int k,
ComplexD alpha,
deviceVector<ComplexD*> &Amk, // pointer list to matrices
deviceVector<ComplexD*> &Bkn,
ComplexD beta,
deviceVector<ComplexD*> &Cmn)
{
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
m,n,k,
alpha,
Amk,
Bkn,
beta,
Cmn);
}
void gemmBatched(int m,int n, int k,
ComplexF alpha,
deviceVector<ComplexF*> &Amk, // pointer list to matrices
deviceVector<ComplexF*> &Bkn,
ComplexF beta,
deviceVector<ComplexF*> &Cmn)
{
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
m,n,k,
alpha,
Amk,
Bkn,
beta,
Cmn);
}
void gemmBatched(int m,int n, int k,
RealD alpha,
deviceVector<RealD*> &Amk, // pointer list to matrices
deviceVector<RealD*> &Bkn,
RealD beta,
deviceVector<RealD*> &Cmn)
{
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
m,n,k,
alpha,
Amk,
Bkn,
beta,
Cmn);
}
void gemmBatched(int m,int n, int k,
RealF alpha,
deviceVector<RealF*> &Amk, // pointer list to matrices
deviceVector<RealF*> &Bkn,
RealF beta,
deviceVector<RealF*> &Cmn)
{
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
m,n,k,
alpha,
Amk,
Bkn,
beta,
Cmn);
}
void gemmBatched(GridBLASOperation_t OpA,
GridBLASOperation_t OpB,
int m,int n, int k,
ComplexD alpha,
deviceVector<ComplexD*> &Amk, // pointer list to matrices
deviceVector<ComplexD*> &Bkn,
ComplexD beta,
deviceVector<ComplexD*> &Cmn)
{
RealD t2=usecond();
int32_t batchCount = Amk.size();
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
if(OpA!=GridBLAS_OP_N)
lda = k;
if(OpB!=GridBLAS_OP_N)
ldb = n;
static deviceVector<ComplexD> alpha_p(1);
static deviceVector<ComplexD> beta_p(1);
// can prestore the 1 and the zero on device
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
RealD t0=usecond();
// std::cout << "ZgemmBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
#ifdef GRID_HIP
hipblasOperation_t hOpA;
hipblasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
auto err = hipblasZgemmBatched(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(hipblasDoubleComplex *) &alpha_p[0],
(hipblasDoubleComplex **)&Amk[0], lda,
(hipblasDoubleComplex **)&Bkn[0], ldb,
(hipblasDoubleComplex *) &beta_p[0],
(hipblasDoubleComplex **)&Cmn[0], ldc,
batchCount);
// std::cout << " hipblas return code " <<(int)err<<std::endl;
assert(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasOperation_t hOpA;
cublasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
auto err = cublasZgemmBatched(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(cuDoubleComplex *) &alpha_p[0],
(cuDoubleComplex **)&Amk[0], lda,
(cuDoubleComplex **)&Bkn[0], ldb,
(cuDoubleComplex *) &beta_p[0],
(cuDoubleComplex **)&Cmn[0], ldc,
batchCount);
assert(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
//MKLs cblas_<T>gemm_batch & OneAPI
#warning "oneMKL implementation not built "
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
// Need a default/reference implementation
int sda = lda*k;
int sdb = ldb*k;
int sdc = ldc*n;
for (int p = 0; p < batchCount; ++p) {
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
ComplexD c_mn(0.0);
for (int kk = 0; kk < k; ++kk)
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
}
}
}
#endif
// synchronise();
RealD t1=usecond();
RealD flops = 8.0*m*n*k*batchCount;
RealD bytes = 1.0*sizeof(ComplexD)*(m*k+k*n+m*n)*batchCount;
// std::cout <<GridLogMessage<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
// std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
// std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
}
void gemmBatched(GridBLASOperation_t OpA,
GridBLASOperation_t OpB,
int m,int n, int k,
ComplexF alpha,
deviceVector<ComplexF*> &Amk, // pointer list to matrices
deviceVector<ComplexF*> &Bkn,
ComplexF beta,
deviceVector<ComplexF*> &Cmn)
{
RealD t2=usecond();
int32_t batchCount = Amk.size();
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
if(OpA!=GridBLAS_OP_N)
lda = k;
if(OpB!=GridBLAS_OP_N)
ldb = n;
static deviceVector<ComplexF> alpha_p(1);
static deviceVector<ComplexF> beta_p(1);
// can prestore the 1 and the zero on device
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexF));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexF));
RealD t0=usecond();
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
#ifdef GRID_HIP
hipblasOperation_t hOpA;
hipblasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
auto err = hipblasCgemmBatched(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(hipblasComplex *) &alpha_p[0],
(hipblasComplex **)&Amk[0], lda,
(hipblasComplex **)&Bkn[0], ldb,
(hipblasComplex *) &beta_p[0],
(hipblasComplex **)&Cmn[0], ldc,
batchCount);
assert(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasOperation_t hOpA;
cublasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
auto err = cublasCgemmBatched(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(cuComplex *) &alpha_p[0],
(cuComplex **)&Amk[0], lda,
(cuComplex **)&Bkn[0], ldb,
(cuComplex *) &beta_p[0],
(cuComplex **)&Cmn[0], ldc,
batchCount);
assert(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
//MKLs cblas_<T>gemm_batch & OneAPI
#warning "oneMKL implementation not built "
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
int sda = lda*k;
int sdb = ldb*k;
int sdc = ldc*n;
ComplexF alphaf(real(alpha),imag(alpha));
ComplexF betaf(real(beta),imag(beta));
// Need a default/reference implementation
for (int p = 0; p < batchCount; ++p) {
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
ComplexF c_mn(0.0);
for (int kk = 0; kk < k; ++kk)
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
Cmn[p][mm + nn*ldc] = (alphaf)*c_mn + (betaf)*Cmn[p][mm + nn*ldc ];
}
}
}
#endif
RealD t1=usecond();
RealD flops = 8.0*m*n*k*batchCount;
RealD bytes = 1.0*sizeof(ComplexF)*(m*k+k*n+m*n)*batchCount;
}
///////////////////////////////////////////////////////////////////////////
// Single precision real GEMM
///////////////////////////////////////////////////////////////////////////
void gemmBatched(GridBLASOperation_t OpA,
GridBLASOperation_t OpB,
int m,int n, int k,
RealF alpha,
deviceVector<RealF*> &Amk, // pointer list to matrices
deviceVector<RealF*> &Bkn,
RealF beta,
deviceVector<RealF*> &Cmn)
{
RealD t2=usecond();
int32_t batchCount = Amk.size();
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
if(OpA!=GridBLAS_OP_N)
lda = k;
if(OpB!=GridBLAS_OP_N)
ldb = n;
static deviceVector<RealF> alpha_p(1);
static deviceVector<RealF> beta_p(1);
// can prestore the 1 and the zero on device
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealF));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealF));
RealD t0=usecond();
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
#ifdef GRID_HIP
hipblasOperation_t hOpA;
hipblasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
auto err = hipblasSgemmBatched(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(float *) &alpha_p[0],
(float **)&Amk[0], lda,
(float **)&Bkn[0], ldb,
(float *) &beta_p[0],
(float **)&Cmn[0], ldc,
batchCount);
assert(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasOperation_t hOpA;
cublasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
auto err = cublasSgemmBatched(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(float *) &alpha_p[0],
(float **)&Amk[0], lda,
(float **)&Bkn[0], ldb,
(float *) &beta_p[0],
(float **)&Cmn[0], ldc,
batchCount);
assert(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
//MKLs cblas_<T>gemm_batch & OneAPI
#warning "oneMKL implementation not built "
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
int sda = lda*k;
int sdb = ldb*k;
int sdc = ldc*n;
// Need a default/reference implementation
for (int p = 0; p < batchCount; ++p) {
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
RealD c_mn(0.0);
for (int kk = 0; kk < k; ++kk)
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
}
}
}
#endif
RealD t1=usecond();
RealD flops = 2.0*m*n*k*batchCount;
RealD bytes = 1.0*sizeof(RealF)*(m*k+k*n+m*n)*batchCount;
}
///////////////////////////////////////////////////////////////////////////
// Double precision real GEMM
///////////////////////////////////////////////////////////////////////////
void gemmBatched(GridBLASOperation_t OpA,
GridBLASOperation_t OpB,
int m,int n, int k,
RealD alpha,
deviceVector<RealD*> &Amk, // pointer list to matrices
deviceVector<RealD*> &Bkn,
RealD beta,
deviceVector<RealD*> &Cmn)
{
RealD t2=usecond();
int32_t batchCount = Amk.size();
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
if(OpA!=GridBLAS_OP_N)
lda = k;
if(OpB!=GridBLAS_OP_N)
ldb = n;
static deviceVector<RealD> alpha_p(1);
static deviceVector<RealD> beta_p(1);
// can prestore the 1 and the zero on device
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealD));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealD));
RealD t0=usecond();
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
#ifdef GRID_HIP
hipblasOperation_t hOpA;
hipblasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
auto err = hipblasDgemmBatched(gridblasHandle,
HIPBLAS_OP_N,
HIPBLAS_OP_N,
m,n,k,
(double *) &alpha_p[0],
(double **)&Amk[0], lda,
(double **)&Bkn[0], ldb,
(double *) &beta_p[0],
(double **)&Cmn[0], ldc,
batchCount);
assert(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasOperation_t hOpA;
cublasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
auto err = cublasDgemmBatched(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(double *) &alpha_p[0],
(double **)&Amk[0], lda,
(double **)&Bkn[0], ldb,
(double *) &beta_p[0],
(double **)&Cmn[0], ldc,
batchCount);
assert(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
/*
int64_t m64=m;
int64_t n64=n;
int64_t k64=k;
int64_t batchCount64=batchCount;
oneapi::mkl::blas::column_major::gemm_batch(*theGridAccelerator,
onemkl::transpose::N,
onemkl::transpose::N,
&m64,&n64,&k64,
(double *) &alpha_p[0],
(double **)&Amk[0], lda,
(double **)&Bkn[0], ldb,
(double *) &beta_p[0],
(double **)&Cmn[0], ldc,
1,&batchCount64);
*/
//MKLs cblas_<T>gemm_batch & OneAPI
#warning "oneMKL implementation not built "
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
int sda = lda*k;
int sdb = ldb*k;
int sdc = ldc*n;
// Need a default/reference implementation
for (int p = 0; p < batchCount; ++p) {
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
RealD c_mn(0.0);
for (int kk = 0; kk < k; ++kk)
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
}
}
}
#endif
RealD t1=usecond();
RealD flops = 2.0*m*n*k*batchCount;
RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount;
}
////////////////////////////////////////////////////////////////////////////////////////////////
// Strided case used by benchmark, but generally unused in Grid
// Keep a code example in double complex, but don't generate the single and real variants for now
////////////////////////////////////////////////////////////////////////////////////////////////
void gemmStridedBatched(int m,int n, int k,
ComplexD alpha,
ComplexD* Amk, // pointer list to matrices
ComplexD* Bkn,
ComplexD beta,
ComplexD* Cmn,
int batchCount)
{
// Use C-row major storage, so transpose calls
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
int sda = m*k;
int sdb = k*n;
int sdc = m*n;
deviceVector<ComplexD> alpha_p(1);
deviceVector<ComplexD> beta_p(1);
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
// std::cout << "blasZgemmStridedBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
// std::cout << "blasZgemmStridedBatched ld "<<lda<<","<<ldb<<","<<ldc<<std::endl;
// std::cout << "blasZgemmStridedBatched sd "<<sda<<","<<sdb<<","<<sdc<<std::endl;
#ifdef GRID_HIP
auto err = hipblasZgemmStridedBatched(gridblasHandle,
HIPBLAS_OP_N,
HIPBLAS_OP_N,
m,n,k,
(hipblasDoubleComplex *) &alpha_p[0],
(hipblasDoubleComplex *) Amk, lda, sda,
(hipblasDoubleComplex *) Bkn, ldb, sdb,
(hipblasDoubleComplex *) &beta_p[0],
(hipblasDoubleComplex *) Cmn, ldc, sdc,
batchCount);
assert(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasZgemmStridedBatched(gridblasHandle,
CUBLAS_OP_N,
CUBLAS_OP_N,
m,n,k,
(cuDoubleComplex *) &alpha_p[0],
(cuDoubleComplex *) Amk, lda, sda,
(cuDoubleComplex *) Bkn, ldb, sdb,
(cuDoubleComplex *) &beta_p[0],
(cuDoubleComplex *) Cmn, ldc, sdc,
batchCount);
#endif
#if defined(GRID_SYCL) || defined(GRID_ONE_MKL)
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
oneapi::mkl::transpose::N,
oneapi::mkl::transpose::N,
m,n,k,
alpha,
(const ComplexD *)Amk,lda,sda,
(const ComplexD *)Bkn,ldb,sdb,
beta,
(ComplexD *)Cmn,ldc,sdc,
batchCount);
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
// Need a default/reference implementation
for (int p = 0; p < batchCount; ++p) {
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
ComplexD c_mn(0.0);
for (int kk = 0; kk < k; ++kk)
c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
Cmn[mm + nn*ldc + p*sdc] = (alpha)*c_mn + (beta)*Cmn[mm + nn*ldc + p*sdc];
}
}
}
#endif
}
double benchmark(int M, int N, int K, int BATCH)
{
int32_t N_A = M*K*BATCH;
int32_t N_B = K*N*BATCH;
int32_t N_C = M*N*BATCH;
deviceVector<ComplexD> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(ComplexD));
deviceVector<ComplexD> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(ComplexD));
deviceVector<ComplexD> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(ComplexD));
ComplexD alpha(1.0);
ComplexD beta (1.0);
RealD flops = 8.0*M*N*K*BATCH;
int ncall=10;
RealD t0 = usecond();
for(int i=0;i<ncall;i++){
gemmStridedBatched(M,N,K,
alpha,
&A[0], // m x k
&B[0], // k x n
beta,
&C[0], // m x n
BATCH);
}
synchronise();
RealD t1 = usecond();
RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K)*BATCH;
flops = 8.0*M*N*K*BATCH*ncall;
flops = flops/(t1-t0)/1.e3;
return flops; // Returns gigaflops
}
};
NAMESPACE_END(Grid);

View File

@ -37,7 +37,6 @@ template<class FieldD, class FieldF, typename std::enable_if< getPrecision<Field
class MixedPrecisionBiCGSTAB : public LinearFunction<FieldD> class MixedPrecisionBiCGSTAB : public LinearFunction<FieldD>
{ {
public: public:
using LinearFunction<FieldD>::operator();
RealD Tolerance; RealD Tolerance;
RealD InnerTolerance; // Initial tolerance for inner CG. Defaults to Tolerance but can be changed RealD InnerTolerance; // Initial tolerance for inner CG. Defaults to Tolerance but can be changed
Integer MaxInnerIterations; Integer MaxInnerIterations;

View File

@ -58,7 +58,6 @@ public:
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) { void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
GRID_TRACE("ConjugateGradient");
psi.Checkerboard() = src.Checkerboard(); psi.Checkerboard() = src.Checkerboard();
conformable(psi, src); conformable(psi, src);
@ -118,13 +117,9 @@ public:
GridStopWatch MatrixTimer; GridStopWatch MatrixTimer;
GridStopWatch SolverTimer; GridStopWatch SolverTimer;
RealD usecs = -usecond();
SolverTimer.Start(); SolverTimer.Start();
int k; int k;
for (k = 1; k <= MaxIterations; k++) { for (k = 1; k <= MaxIterations; k++) {
GridStopWatch IterationTimer;
IterationTimer.Start();
c = cp; c = cp;
MatrixTimer.Start(); MatrixTimer.Start();
@ -157,41 +152,31 @@ public:
LinearCombTimer.Stop(); LinearCombTimer.Stop();
LinalgTimer.Stop(); LinalgTimer.Stop();
IterationTimer.Stop();
if ( (k % 500) == 0 ) {
std::cout << GridLogMessage << "ConjugateGradient: Iteration " << k
<< " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl;
} else {
std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k
<< " residual " << sqrt(cp/ssq) << " target " << Tolerance << " took " << IterationTimer.Elapsed() << std::endl; << " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl;
}
// Stopping condition // Stopping condition
if (cp <= rsq) { if (cp <= rsq) {
usecs +=usecond();
SolverTimer.Stop(); SolverTimer.Stop();
Linop.HermOpAndNorm(psi, mmp, d, qq); Linop.HermOpAndNorm(psi, mmp, d, qq);
p = mmp - src; p = mmp - src;
GridBase *grid = src.Grid();
RealD DwfFlops = (1452. )*grid->gSites()*4*k
+ (8+4+8+4+4)*12*grid->gSites()*k; // CG linear algebra
RealD srcnorm = std::sqrt(norm2(src)); RealD srcnorm = std::sqrt(norm2(src));
RealD resnorm = std::sqrt(norm2(p)); RealD resnorm = std::sqrt(norm2(p));
RealD true_residual = resnorm / srcnorm; RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k
<< "\tComputed residual " << std::sqrt(cp / ssq) << "\tComputed residual " << std::sqrt(cp / ssq)
<< "\tTrue residual " << true_residual << "\tTrue residual " << true_residual
<< "\tTarget " << Tolerance << std::endl; << "\tTarget " << Tolerance << std::endl;
std::cout << GridLogMessage << "Time breakdown "<<std::endl; std::cout << GridLogIterative << "Time breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl; std::cout << GridLogIterative << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl; std::cout << GridLogIterative << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl; std::cout << GridLogIterative << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tInner " << InnerTimer.Elapsed() <<std::endl; std::cout << GridLogIterative << "\tInner " << InnerTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl; std::cout << GridLogIterative << "\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl; std::cout << GridLogIterative << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl;
if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0); if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);

View File

@ -36,7 +36,6 @@ NAMESPACE_BEGIN(Grid);
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0> typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class MixedPrecisionConjugateGradient : public LinearFunction<FieldD> { class MixedPrecisionConjugateGradient : public LinearFunction<FieldD> {
public: public:
using LinearFunction<FieldD>::operator();
RealD Tolerance; RealD Tolerance;
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
Integer MaxInnerIterations; Integer MaxInnerIterations;
@ -49,7 +48,6 @@ NAMESPACE_BEGIN(Grid);
Integer TotalInnerIterations; //Number of inner CG iterations Integer TotalInnerIterations; //Number of inner CG iterations
Integer TotalOuterIterations; //Number of restarts Integer TotalOuterIterations; //Number of restarts
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
RealD TrueResidual;
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess //Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
LinearFunction<FieldF> *guesser; LinearFunction<FieldF> *guesser;
@ -69,7 +67,6 @@ NAMESPACE_BEGIN(Grid);
} }
void operator() (const FieldD &src_d_in, FieldD &sol_d){ void operator() (const FieldD &src_d_in, FieldD &sol_d){
std::cout << GridLogMessage << "MixedPrecisionConjugateGradient: Starting mixed precision CG with outer tolerance " << Tolerance << " and inner tolerance " << InnerTolerance << std::endl;
TotalInnerIterations = 0; TotalInnerIterations = 0;
GridStopWatch TotalTimer; GridStopWatch TotalTimer;
@ -99,7 +96,6 @@ NAMESPACE_BEGIN(Grid);
FieldF sol_f(SinglePrecGrid); FieldF sol_f(SinglePrecGrid);
sol_f.Checkerboard() = cb; sol_f.Checkerboard() = cb;
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Starting initial inner CG with tolerance " << inner_tol << std::endl;
ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations); ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
CG_f.ErrorOnNoConverge = false; CG_f.ErrorOnNoConverge = false;
@ -109,9 +105,6 @@ NAMESPACE_BEGIN(Grid);
Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
precisionChangeWorkspace pc_wk_sp_to_dp(DoublePrecGrid, SinglePrecGrid);
precisionChangeWorkspace pc_wk_dp_to_sp(SinglePrecGrid, DoublePrecGrid);
for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){ for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){
//Compute double precision rsd and also new RHS vector. //Compute double precision rsd and also new RHS vector.
Linop_d.HermOp(sol_d, tmp_d); Linop_d.HermOp(sol_d, tmp_d);
@ -126,7 +119,7 @@ NAMESPACE_BEGIN(Grid);
while(norm * inner_tol * inner_tol < stop) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ?? while(norm * inner_tol * inner_tol < stop) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
PrecChangeTimer.Start(); PrecChangeTimer.Start();
precisionChange(src_f, src_d, pc_wk_dp_to_sp); precisionChange(src_f, src_d);
PrecChangeTimer.Stop(); PrecChangeTimer.Stop();
sol_f = Zero(); sol_f = Zero();
@ -136,7 +129,6 @@ NAMESPACE_BEGIN(Grid);
(*guesser)(src_f, sol_f); (*guesser)(src_f, sol_f);
//Inner CG //Inner CG
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " << outer_iter << " starting inner CG with tolerance " << inner_tol << std::endl;
CG_f.Tolerance = inner_tol; CG_f.Tolerance = inner_tol;
InnerCGtimer.Start(); InnerCGtimer.Start();
CG_f(Linop_f, src_f, sol_f); CG_f(Linop_f, src_f, sol_f);
@ -145,7 +137,7 @@ NAMESPACE_BEGIN(Grid);
//Convert sol back to double and add to double prec solution //Convert sol back to double and add to double prec solution
PrecChangeTimer.Start(); PrecChangeTimer.Start();
precisionChange(tmp_d, sol_f, pc_wk_sp_to_dp); precisionChange(tmp_d, sol_f);
PrecChangeTimer.Stop(); PrecChangeTimer.Stop();
axpy(sol_d, 1.0, tmp_d, sol_d); axpy(sol_d, 1.0, tmp_d, sol_d);
@ -157,7 +149,6 @@ NAMESPACE_BEGIN(Grid);
ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations); ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations);
CG_d(Linop_d, src_d_in, sol_d); CG_d(Linop_d, src_d_in, sol_d);
TotalFinalStepIterations = CG_d.IterationsToComplete; TotalFinalStepIterations = CG_d.IterationsToComplete;
TrueResidual = CG_d.TrueResidual;
TotalTimer.Stop(); TotalTimer.Stop();
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl; std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;

View File

@ -1,213 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ConjugateGradientMixedPrecBatched.h
Copyright (C) 2015
Author: Raoul Hodgson <raoul.hodgson@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CONJUGATE_GRADIENT_MIXED_PREC_BATCHED_H
#define GRID_CONJUGATE_GRADIENT_MIXED_PREC_BATCHED_H
NAMESPACE_BEGIN(Grid);
//Mixed precision restarted defect correction CG
template<class FieldD,class FieldF,
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class MixedPrecisionConjugateGradientBatched : public LinearFunction<FieldD> {
public:
using LinearFunction<FieldD>::operator();
RealD Tolerance;
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
Integer MaxInnerIterations;
Integer MaxOuterIterations;
Integer MaxPatchupIterations;
GridBase* SinglePrecGrid; //Grid for single-precision fields
RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
LinearOperatorBase<FieldF> &Linop_f;
LinearOperatorBase<FieldD> &Linop_d;
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
LinearFunction<FieldF> *guesser;
bool updateResidual;
MixedPrecisionConjugateGradientBatched(RealD tol,
Integer maxinnerit,
Integer maxouterit,
Integer maxpatchit,
GridBase* _sp_grid,
LinearOperatorBase<FieldF> &_Linop_f,
LinearOperatorBase<FieldD> &_Linop_d,
bool _updateResidual=true) :
Linop_f(_Linop_f), Linop_d(_Linop_d),
Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit), MaxOuterIterations(maxouterit), MaxPatchupIterations(maxpatchit), SinglePrecGrid(_sp_grid),
OuterLoopNormMult(100.), guesser(NULL), updateResidual(_updateResidual) { };
void useGuesser(LinearFunction<FieldF> &g){
guesser = &g;
}
void operator() (const FieldD &src_d_in, FieldD &sol_d){
std::vector<FieldD> srcs_d_in{src_d_in};
std::vector<FieldD> sols_d{sol_d};
(*this)(srcs_d_in,sols_d);
sol_d = sols_d[0];
}
void operator() (const std::vector<FieldD> &src_d_in, std::vector<FieldD> &sol_d){
assert(src_d_in.size() == sol_d.size());
int NBatch = src_d_in.size();
std::cout << GridLogMessage << "NBatch = " << NBatch << std::endl;
Integer TotalOuterIterations = 0; //Number of restarts
std::vector<Integer> TotalInnerIterations(NBatch,0); //Number of inner CG iterations
std::vector<Integer> TotalFinalStepIterations(NBatch,0); //Number of CG iterations in final patch-up step
GridStopWatch TotalTimer;
TotalTimer.Start();
GridStopWatch InnerCGtimer;
GridStopWatch PrecChangeTimer;
int cb = src_d_in[0].Checkerboard();
std::vector<RealD> src_norm;
std::vector<RealD> norm;
std::vector<RealD> stop;
GridBase* DoublePrecGrid = src_d_in[0].Grid();
FieldD tmp_d(DoublePrecGrid);
tmp_d.Checkerboard() = cb;
FieldD tmp2_d(DoublePrecGrid);
tmp2_d.Checkerboard() = cb;
std::vector<FieldD> src_d;
std::vector<FieldF> src_f;
std::vector<FieldF> sol_f;
for (int i=0; i<NBatch; i++) {
sol_d[i].Checkerboard() = cb;
src_norm.push_back(norm2(src_d_in[i]));
norm.push_back(0.);
stop.push_back(src_norm[i] * Tolerance*Tolerance);
src_d.push_back(src_d_in[i]); //source for next inner iteration, computed from residual during operation
src_f.push_back(SinglePrecGrid);
src_f[i].Checkerboard() = cb;
sol_f.push_back(SinglePrecGrid);
sol_f[i].Checkerboard() = cb;
}
RealD inner_tol = InnerTolerance;
ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
CG_f.ErrorOnNoConverge = false;
Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage << "Outer iteration " << outer_iter << std::endl;
bool allConverged = true;
for (int i=0; i<NBatch; i++) {
//Compute double precision rsd and also new RHS vector.
Linop_d.HermOp(sol_d[i], tmp_d);
norm[i] = axpy_norm(src_d[i], -1., tmp_d, src_d_in[i]); //src_d is residual vector
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Outer iteration " << outer_iter <<" solve " << i << " residual "<< norm[i] << " target "<< stop[i] <<std::endl;
PrecChangeTimer.Start();
precisionChange(src_f[i], src_d[i]);
PrecChangeTimer.Stop();
sol_f[i] = Zero();
if(norm[i] > OuterLoopNormMult * stop[i]) {
allConverged = false;
}
}
if (allConverged) break;
if (updateResidual) {
RealD normMax = *std::max_element(std::begin(norm), std::end(norm));
RealD stopMax = *std::max_element(std::begin(stop), std::end(stop));
while( normMax * inner_tol * inner_tol < stopMax) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
CG_f.Tolerance = inner_tol;
}
//Optionally improve inner solver guess (eg using known eigenvectors)
if(guesser != NULL) {
(*guesser)(src_f, sol_f);
}
for (int i=0; i<NBatch; i++) {
//Inner CG
InnerCGtimer.Start();
CG_f(Linop_f, src_f[i], sol_f[i]);
InnerCGtimer.Stop();
TotalInnerIterations[i] += CG_f.IterationsToComplete;
//Convert sol back to double and add to double prec solution
PrecChangeTimer.Start();
precisionChange(tmp_d, sol_f[i]);
PrecChangeTimer.Stop();
axpy(sol_d[i], 1.0, tmp_d, sol_d[i]);
}
}
//Final trial CG
std::cout << GridLogMessage << std::endl;
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Starting final patch-up double-precision solve"<<std::endl;
for (int i=0; i<NBatch; i++) {
ConjugateGradient<FieldD> CG_d(Tolerance, MaxPatchupIterations);
CG_d(Linop_d, src_d_in[i], sol_d[i]);
TotalFinalStepIterations[i] += CG_d.IterationsToComplete;
}
TotalTimer.Stop();
std::cout << GridLogMessage << std::endl;
for (int i=0; i<NBatch; i++) {
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: solve " << i << " Inner CG iterations " << TotalInnerIterations[i] << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations[i] << std::endl;
}
std::cout << GridLogMessage << std::endl;
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Total time " << TotalTimer.Elapsed() << " Precision change " << PrecChangeTimer.Elapsed() << " Inner CG total " << InnerCGtimer.Elapsed() << std::endl;
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -44,7 +44,7 @@ public:
using OperatorFunction<Field>::operator(); using OperatorFunction<Field>::operator();
// RealD Tolerance; RealD Tolerance;
Integer MaxIterations; Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
std::vector<int> IterationsToCompleteShift; // Iterations for this shift std::vector<int> IterationsToCompleteShift; // Iterations for this shift
@ -52,7 +52,7 @@ public:
MultiShiftFunction shifts; MultiShiftFunction shifts;
std::vector<RealD> TrueResidualShift; std::vector<RealD> TrueResidualShift;
ConjugateGradientMultiShift(Integer maxit, const MultiShiftFunction &_shifts) : ConjugateGradientMultiShift(Integer maxit,MultiShiftFunction &_shifts) :
MaxIterations(maxit), MaxIterations(maxit),
shifts(_shifts) shifts(_shifts)
{ {
@ -84,7 +84,6 @@ public:
void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &psi) void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &psi)
{ {
GRID_TRACE("ConjugateGradientMultiShift");
GridBase *grid = src.Grid(); GridBase *grid = src.Grid();
@ -184,9 +183,6 @@ public:
axpby(psi[s],0.,-bs[s]*alpha[s],src,src); axpby(psi[s],0.,-bs[s]*alpha[s],src,src);
} }
std::cout << GridLogIterative << "ConjugateGradientMultiShift: initial rn (|src|^2) =" << rn << " qq (|MdagM src|^2) =" << qq << " d ( dot(src, [MdagM + m_0]src) ) =" << d << " c=" << c << std::endl;
/////////////////////////////////////// ///////////////////////////////////////
// Timers // Timers
/////////////////////////////////////// ///////////////////////////////////////
@ -326,7 +322,7 @@ public:
std::cout << GridLogMessage << "Time Breakdown "<<std::endl; std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl; std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tAXPY " << AXPYTimer.Elapsed() <<std::endl; std::cout << GridLogMessage << "\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl; std::cout << GridLogMessage << "\tMarix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tShift " << ShiftTimer.Elapsed() <<std::endl; std::cout << GridLogMessage << "\tShift " << ShiftTimer.Elapsed() <<std::endl;
IterationsToComplete = k; IterationsToComplete = k;

View File

@ -1,373 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Christopher Kelly <ckelly@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
//CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision.
//The residual is stored in single precision, but the search directions and solution are stored in double precision.
//Every update_freq iterations the residual is corrected in double precision.
//For safety the a final regular CG is applied to clean up if necessary
//PB Pure single, then double fixup
template<class FieldD, class FieldF,
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class ConjugateGradientMultiShiftMixedPrecCleanup : public OperatorMultiFunction<FieldD>,
public OperatorFunction<FieldD>
{
public:
using OperatorFunction<FieldD>::operator();
RealD Tolerance;
Integer MaxIterationsMshift;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
int verbose;
MultiShiftFunction shifts;
std::vector<RealD> TrueResidualShift;
int ReliableUpdateFreq; //number of iterations between reliable updates
GridBase* SinglePrecGrid; //Grid for single-precision fields
LinearOperatorBase<FieldF> &Linop_f; //single precision
ConjugateGradientMultiShiftMixedPrecCleanup(Integer maxit, const MultiShiftFunction &_shifts,
GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
int _ReliableUpdateFreq) :
MaxIterationsMshift(maxit), shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq),
MaxIterations(20000)
{
verbose=1;
IterationsToCompleteShift.resize(_shifts.order);
TrueResidualShift.resize(_shifts.order);
}
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi)
{
GridBase *grid = src.Grid();
int nshift = shifts.order;
std::vector<FieldD> results(nshift,grid);
(*this)(Linop,src,results,psi);
}
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi)
{
int nshift = shifts.order;
(*this)(Linop,src,results);
psi = shifts.norm*src;
for(int i=0;i<nshift;i++){
psi = psi + shifts.residues[i]*results[i];
}
return;
}
void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d)
{
GRID_TRACE("ConjugateGradientMultiShiftMixedPrecCleanup");
GridBase *DoublePrecGrid = src_d.Grid();
////////////////////////////////////////////////////////////////////////
// Convenience references to the info stored in "MultiShiftFunction"
////////////////////////////////////////////////////////////////////////
int nshift = shifts.order;
std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
std::vector<RealD> &mresidual(shifts.tolerances);
std::vector<RealD> alpha(nshift,1.0);
//Double precision search directions
FieldD p_d(DoublePrecGrid);
std::vector<FieldF> ps_f (nshift, SinglePrecGrid);// Search directions (single precision)
std::vector<FieldF> psi_f(nshift, SinglePrecGrid);// solutions (single precision)
FieldD tmp_d(DoublePrecGrid);
FieldD r_d(DoublePrecGrid);
FieldF r_f(SinglePrecGrid);
FieldD mmp_d(DoublePrecGrid);
assert(psi_d.size()==nshift);
assert(mass.size()==nshift);
assert(mresidual.size()==nshift);
// dynamic sized arrays on stack; 2d is a pain with vector
RealD bs[nshift];
RealD rsq[nshift];
RealD rsqf[nshift];
RealD z[nshift][2];
int converged[nshift];
const int primary =0;
//Primary shift fields CG iteration
RealD a,b,c,d;
RealD cp,bp,qq; //prev
// Matrix mult fields
FieldF p_f(SinglePrecGrid);
FieldF mmp_f(SinglePrecGrid);
// Check lightest mass
for(int s=0;s<nshift;s++){
assert( mass[s]>= mass[primary] );
converged[s]=0;
}
// Wire guess to zero
// Residuals "r" are src
// First search direction "p" is also src
cp = norm2(src_d);
// Handle trivial case of zero src.
if( cp == 0. ){
for(int s=0;s<nshift;s++){
psi_d[s] = Zero();
psi_f[s] = Zero();
IterationsToCompleteShift[s] = 1;
TrueResidualShift[s] = 0.;
}
return;
}
for(int s=0;s<nshift;s++){
rsq[s] = cp * mresidual[s] * mresidual[s];
rsqf[s] =rsq[s];
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
// ps_d[s] = src_d;
precisionChange(ps_f[s],src_d);
}
// r and p for primary
p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
r_d = p_d;
//MdagM+m[0]
precisionChange(p_f,p_d);
Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
precisionChange(tmp_d,mmp_f);
Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
tmp_d = tmp_d - mmp_d;
std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
// assert(norm2(tmp_d)< 1.0e-4);
axpy(mmp_d,mass[0],p_d,mmp_d);
RealD rn = norm2(p_d);
d += rn*mass[0];
b = -cp /d;
// Set up the various shift variables
int iz=0;
z[0][1-iz] = 1.0;
z[0][iz] = 1.0;
bs[0] = b;
for(int s=1;s<nshift;s++){
z[s][1-iz] = 1.0;
z[s][iz] = 1.0/( 1.0 - b*(mass[s]-mass[0]));
bs[s] = b*z[s][iz];
}
// r += b[0] A.p[0]
// c= norm(r)
c=axpy_norm(r_d,b,mmp_d,r_d);
for(int s=0;s<nshift;s++) {
axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
precisionChange(psi_f[s],psi_d[s]);
}
///////////////////////////////////////
// Timers
///////////////////////////////////////
GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer;
SolverTimer.Start();
// Iteration loop
int k;
for (k=1;k<=MaxIterationsMshift;k++){
a = c /cp;
AXPYTimer.Start();
axpy(p_d,a,p_d,r_d);
AXPYTimer.Stop();
PrecChangeTimer.Start();
precisionChange(r_f, r_d);
PrecChangeTimer.Stop();
AXPYTimer.Start();
for(int s=0;s<nshift;s++){
if ( ! converged[s] ) {
if (s==0){
axpy(ps_f[s],a,ps_f[s],r_f);
} else{
RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
axpby(ps_f[s],z[s][iz],as,r_f,ps_f[s]);
}
}
}
AXPYTimer.Stop();
cp=c;
PrecChangeTimer.Start();
precisionChange(p_f, p_d); //get back single prec search direction for linop
PrecChangeTimer.Stop();
MatrixTimer.Start();
Linop_f.HermOp(p_f,mmp_f);
MatrixTimer.Stop();
PrecChangeTimer.Start();
precisionChange(mmp_d, mmp_f); // From Float to Double
PrecChangeTimer.Stop();
d=real(innerProduct(p_d,mmp_d));
axpy(mmp_d,mass[0],p_d,mmp_d);
RealD rn = norm2(p_d);
d += rn*mass[0];
bp=b;
b=-cp/d;
// Toggle the recurrence history
bs[0] = b;
iz = 1-iz;
ShiftTimer.Start();
for(int s=1;s<nshift;s++){
if((!converged[s])){
RealD z0 = z[s][1-iz];
RealD z1 = z[s][iz];
z[s][iz] = z0*z1*bp
/ (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));
bs[s] = b*z[s][iz]/z0; // NB sign rel to Mike
}
}
ShiftTimer.Stop();
//Update single precision solutions
AXPYTimer.Start();
for(int s=0;s<nshift;s++){
int ss = s;
if( (!converged[s]) ) {
axpy(psi_f[ss],-bs[s]*alpha[s],ps_f[s],psi_f[ss]);
}
}
c = axpy_norm(r_d,b,mmp_d,r_d);
AXPYTimer.Stop();
// Convergence checks
int all_converged = 1;
for(int s=0;s<nshift;s++){
if ( (!converged[s]) ){
IterationsToCompleteShift[s] = k;
RealD css = c * z[s][iz]* z[s][iz];
if(css<rsqf[s]){
if ( ! converged[s] )
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
converged[s]=1;
} else {
all_converged=0;
}
}
}
if ( all_converged || k == MaxIterationsMshift-1){
SolverTimer.Stop();
for(int s=0;s<nshift;s++){
precisionChange(psi_d[s],psi_f[s]);
}
if ( all_converged ){
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: All shifts have converged iteration "<<k<<std::endl;
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: Checking solutions"<<std::endl;
} else {
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: Not all shifts have converged iteration "<<k<<std::endl;
}
// Check answers
for(int s=0; s < nshift; s++) {
Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq);
axpy(tmp_d,mass[s],psi_d[s],mmp_d);
axpy(r_d,-alpha[s],src_d,tmp_d);
RealD rn = norm2(r_d);
RealD cn = norm2(src_d);
TrueResidualShift[s] = std::sqrt(rn/cn);
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl;
//If we have not reached the desired tolerance, do a (mixed precision) CG cleanup
if(rn >= rsq[s]){
CleanupTimer.Start();
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: performing cleanup step for shift " << s << std::endl;
//Setup linear operators for final cleanup
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]);
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]);
MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d);
cg(src_d, psi_d[s]);
TrueResidualShift[s] = cg.TrueResidual;
CleanupTimer.Stop();
}
}
std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrecCleanup: Time Breakdown for body"<<std::endl;
std::cout << GridLogMessage << "\tSolver " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tShift " << ShiftTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl;
IterationsToComplete = k;
return;
}
}
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
assert(0);
}
};
NAMESPACE_END(Grid);

View File

@ -1,416 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Christopher Kelly <ckelly@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
#define GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
NAMESPACE_BEGIN(Grid);
//CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision.
//The residual is stored in single precision, but the search directions and solution are stored in double precision.
//Every update_freq iterations the residual is corrected in double precision.
//For safety the a final regular CG is applied to clean up if necessary
//Linop to add shift to input linop, used in cleanup CG
namespace ConjugateGradientMultiShiftMixedPrecSupport{
template<typename Field>
class ShiftedLinop: public LinearOperatorBase<Field>{
public:
LinearOperatorBase<Field> &linop_base;
RealD shift;
ShiftedLinop(LinearOperatorBase<Field> &_linop_base, RealD _shift): linop_base(_linop_base), shift(_shift){}
void OpDiag (const Field &in, Field &out){ assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
void Op (const Field &in, Field &out){ assert(0); }
void AdjOp (const Field &in, Field &out){ assert(0); }
void HermOp(const Field &in, Field &out){
linop_base.HermOp(in, out);
axpy(out, shift, in, out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
HermOp(in,out);
ComplexD dot = innerProduct(in,out);
n1=real(dot);
n2=norm2(out);
}
};
};
template<class FieldD, class FieldF,
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class ConjugateGradientMultiShiftMixedPrec : public OperatorMultiFunction<FieldD>,
public OperatorFunction<FieldD>
{
public:
using OperatorFunction<FieldD>::operator();
RealD Tolerance;
Integer MaxIterationsMshift;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
int verbose;
MultiShiftFunction shifts;
std::vector<RealD> TrueResidualShift;
int ReliableUpdateFreq; //number of iterations between reliable updates
GridBase* SinglePrecGrid; //Grid for single-precision fields
LinearOperatorBase<FieldF> &Linop_f; //single precision
ConjugateGradientMultiShiftMixedPrec(Integer maxit, const MultiShiftFunction &_shifts,
GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
int _ReliableUpdateFreq) :
MaxIterationsMshift(maxit), shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq),
MaxIterations(20000)
{
verbose=1;
IterationsToCompleteShift.resize(_shifts.order);
TrueResidualShift.resize(_shifts.order);
}
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi)
{
GridBase *grid = src.Grid();
int nshift = shifts.order;
std::vector<FieldD> results(nshift,grid);
(*this)(Linop,src,results,psi);
}
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi)
{
int nshift = shifts.order;
(*this)(Linop,src,results);
psi = shifts.norm*src;
for(int i=0;i<nshift;i++){
psi = psi + shifts.residues[i]*results[i];
}
return;
}
void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d)
{
GRID_TRACE("ConjugateGradientMultiShiftMixedPrec");
GridBase *DoublePrecGrid = src_d.Grid();
precisionChangeWorkspace pc_wk_s_to_d(DoublePrecGrid,SinglePrecGrid);
precisionChangeWorkspace pc_wk_d_to_s(SinglePrecGrid,DoublePrecGrid);
////////////////////////////////////////////////////////////////////////
// Convenience references to the info stored in "MultiShiftFunction"
////////////////////////////////////////////////////////////////////////
int nshift = shifts.order;
std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
std::vector<RealD> &mresidual(shifts.tolerances);
std::vector<RealD> alpha(nshift,1.0);
//Double precision search directions
FieldD p_d(DoublePrecGrid);
std::vector<FieldD> ps_d(nshift, DoublePrecGrid);// Search directions (double precision)
FieldD tmp_d(DoublePrecGrid);
FieldD r_d(DoublePrecGrid);
FieldD mmp_d(DoublePrecGrid);
assert(psi_d.size()==nshift);
assert(mass.size()==nshift);
assert(mresidual.size()==nshift);
// dynamic sized arrays on stack; 2d is a pain with vector
RealD bs[nshift];
RealD rsq[nshift];
RealD rsqf[nshift];
RealD z[nshift][2];
int converged[nshift];
const int primary =0;
//Primary shift fields CG iteration
RealD a,b,c,d;
RealD cp,bp,qq; //prev
// Matrix mult fields
FieldF p_f(SinglePrecGrid);
FieldF mmp_f(SinglePrecGrid);
// Check lightest mass
for(int s=0;s<nshift;s++){
assert( mass[s]>= mass[primary] );
converged[s]=0;
}
// Wire guess to zero
// Residuals "r" are src
// First search direction "p" is also src
cp = norm2(src_d);
// Handle trivial case of zero src.
if( cp == 0. ){
for(int s=0;s<nshift;s++){
psi_d[s] = Zero();
IterationsToCompleteShift[s] = 1;
TrueResidualShift[s] = 0.;
}
return;
}
for(int s=0;s<nshift;s++){
rsq[s] = cp * mresidual[s] * mresidual[s];
rsqf[s] =rsq[s];
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
ps_d[s] = src_d;
}
// r and p for primary
p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
r_d = p_d;
//MdagM+m[0]
precisionChange(p_f, p_d, pc_wk_d_to_s);
Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
precisionChange(tmp_d, mmp_f, pc_wk_s_to_d);
Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
tmp_d = tmp_d - mmp_d;
std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
assert(norm2(tmp_d)< 1.0);
axpy(mmp_d,mass[0],p_d,mmp_d);
RealD rn = norm2(p_d);
d += rn*mass[0];
b = -cp /d;
// Set up the various shift variables
int iz=0;
z[0][1-iz] = 1.0;
z[0][iz] = 1.0;
bs[0] = b;
for(int s=1;s<nshift;s++){
z[s][1-iz] = 1.0;
z[s][iz] = 1.0/( 1.0 - b*(mass[s]-mass[0]));
bs[s] = b*z[s][iz];
}
// r += b[0] A.p[0]
// c= norm(r)
c=axpy_norm(r_d,b,mmp_d,r_d);
for(int s=0;s<nshift;s++) {
axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
}
///////////////////////////////////////
// Timers
///////////////////////////////////////
GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer;
SolverTimer.Start();
// Iteration loop
int k;
for (k=1;k<=MaxIterationsMshift;k++){
a = c /cp;
AXPYTimer.Start();
axpy(p_d,a,p_d,r_d);
for(int s=0;s<nshift;s++){
if ( ! converged[s] ) {
if (s==0){
axpy(ps_d[s],a,ps_d[s],r_d);
} else{
RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
axpby(ps_d[s],z[s][iz],as,r_d,ps_d[s]);
}
}
}
AXPYTimer.Stop();
PrecChangeTimer.Start();
precisionChange(p_f, p_d, pc_wk_d_to_s); //get back single prec search direction for linop
PrecChangeTimer.Stop();
cp=c;
MatrixTimer.Start();
Linop_f.HermOp(p_f,mmp_f);
MatrixTimer.Stop();
PrecChangeTimer.Start();
precisionChange(mmp_d, mmp_f, pc_wk_s_to_d); // From Float to Double
PrecChangeTimer.Stop();
AXPYTimer.Start();
d=real(innerProduct(p_d,mmp_d));
axpy(mmp_d,mass[0],p_d,mmp_d);
AXPYTimer.Stop();
RealD rn = norm2(p_d);
d += rn*mass[0];
bp=b;
b=-cp/d;
// Toggle the recurrence history
bs[0] = b;
iz = 1-iz;
ShiftTimer.Start();
for(int s=1;s<nshift;s++){
if((!converged[s])){
RealD z0 = z[s][1-iz];
RealD z1 = z[s][iz];
z[s][iz] = z0*z1*bp
/ (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));
bs[s] = b*z[s][iz]/z0; // NB sign rel to Mike
}
}
ShiftTimer.Stop();
//Update double precision solutions
AXPYTimer.Start();
for(int s=0;s<nshift;s++){
int ss = s;
if( (!converged[s]) ) {
axpy(psi_d[ss],-bs[s]*alpha[s],ps_d[s],psi_d[ss]);
}
}
//Perform reliable update if necessary; otherwise update residual from single-prec mmp
c = axpy_norm(r_d,b,mmp_d,r_d);
AXPYTimer.Stop();
if(k % ReliableUpdateFreq == 0){
RealD c_old = c;
//Replace r with true residual
MatrixTimer.Start();
Linop_d.HermOp(psi_d[0],mmp_d);
MatrixTimer.Stop();
AXPYTimer.Start();
axpy(mmp_d,mass[0],psi_d[0],mmp_d);
c = axpy_norm(r_d, -1.0, mmp_d, src_d);
AXPYTimer.Stop();
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<< ", replaced |r|^2 = "<<c_old <<" with |r|^2 = "<<c<<std::endl;
}
// Convergence checks
int all_converged = 1;
for(int s=0;s<nshift;s++){
if ( (!converged[s]) ){
IterationsToCompleteShift[s] = k;
RealD css = c * z[s][iz]* z[s][iz];
if(css<rsqf[s]){
if ( ! converged[s] )
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
converged[s]=1;
} else {
all_converged=0;
}
}
}
if ( all_converged || k == MaxIterationsMshift-1){
SolverTimer.Stop();
if ( all_converged ){
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: All shifts have converged iteration "<<k<<std::endl;
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Checking solutions"<<std::endl;
} else {
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Not all shifts have converged iteration "<<k<<std::endl;
}
// Check answers
for(int s=0; s < nshift; s++) {
Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq);
axpy(tmp_d,mass[s],psi_d[s],mmp_d);
axpy(r_d,-alpha[s],src_d,tmp_d);
RealD rn = norm2(r_d);
RealD cn = norm2(src_d);
TrueResidualShift[s] = std::sqrt(rn/cn);
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl;
//If we have not reached the desired tolerance, do a (mixed precision) CG cleanup
if(rn >= rsq[s]){
CleanupTimer.Start();
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: performing cleanup step for shift " << s << std::endl;
//Setup linear operators for final cleanup
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]);
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]);
MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d);
cg(src_d, psi_d[s]);
TrueResidualShift[s] = cg.TrueResidual;
CleanupTimer.Stop();
}
}
std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrec: Time Breakdown for body"<<std::endl;
std::cout << GridLogMessage << "\tSolver " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tShift " << ShiftTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl;
IterationsToComplete = k;
return;
}
}
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
assert(0);
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -48,7 +48,7 @@ public:
LinearOperatorBase<FieldF> &Linop_f; LinearOperatorBase<FieldF> &Linop_f;
LinearOperatorBase<FieldD> &Linop_d; LinearOperatorBase<FieldD> &Linop_d;
GridBase* SinglePrecGrid; GridBase* SinglePrecGrid;
RealD Delta; //reliable update parameter. A reliable update is performed when the residual drops by a factor of Delta relative to its value at the last update RealD Delta; //reliable update parameter
//Optional ability to switch to a different linear operator once the tolerance reaches a certain point. Useful for single/half -> single/single //Optional ability to switch to a different linear operator once the tolerance reaches a certain point. Useful for single/half -> single/single
LinearOperatorBase<FieldF> *Linop_fallback; LinearOperatorBase<FieldF> *Linop_fallback;
@ -65,9 +65,7 @@ public:
ErrorOnNoConverge(err_on_no_conv), ErrorOnNoConverge(err_on_no_conv),
DoFinalCleanup(true), DoFinalCleanup(true),
Linop_fallback(NULL) Linop_fallback(NULL)
{ {};
assert(Delta > 0. && Delta < 1. && "Expect 0 < Delta < 1");
};
void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){ void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){
Linop_fallback = &_Linop_fallback; Linop_fallback = &_Linop_fallback;
@ -75,7 +73,6 @@ public:
} }
void operator()(const FieldD &src, FieldD &psi) { void operator()(const FieldD &src, FieldD &psi) {
GRID_TRACE("ConjugateGradientReliableUpdate");
LinearOperatorBase<FieldF> *Linop_f_use = &Linop_f; LinearOperatorBase<FieldF> *Linop_f_use = &Linop_f;
bool using_fallback = false; bool using_fallback = false;
@ -118,12 +115,9 @@ public:
} }
//Single prec initialization //Single prec initialization
precisionChangeWorkspace pc_wk_sp_to_dp(src.Grid(), SinglePrecGrid);
precisionChangeWorkspace pc_wk_dp_to_sp(SinglePrecGrid, src.Grid());
FieldF r_f(SinglePrecGrid); FieldF r_f(SinglePrecGrid);
r_f.Checkerboard() = r.Checkerboard(); r_f.Checkerboard() = r.Checkerboard();
precisionChange(r_f, r, pc_wk_dp_to_sp); precisionChange(r_f, r);
FieldF psi_f(r_f); FieldF psi_f(r_f);
psi_f = Zero(); psi_f = Zero();
@ -139,7 +133,6 @@ public:
GridStopWatch LinalgTimer; GridStopWatch LinalgTimer;
GridStopWatch MatrixTimer; GridStopWatch MatrixTimer;
GridStopWatch SolverTimer; GridStopWatch SolverTimer;
GridStopWatch PrecChangeTimer;
SolverTimer.Start(); SolverTimer.Start();
int k = 0; int k = 0;
@ -179,9 +172,7 @@ public:
// Stopping condition // Stopping condition
if (cp <= rsq) { if (cp <= rsq) {
//Although not written in the paper, I assume that I have to add on the final solution //Although not written in the paper, I assume that I have to add on the final solution
PrecChangeTimer.Start(); precisionChange(mmp, psi_f);
precisionChange(mmp, psi_f, pc_wk_sp_to_dp);
PrecChangeTimer.Stop();
psi = psi + mmp; psi = psi + mmp;
@ -202,9 +193,6 @@ public:
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl; std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl; std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl; std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tPrecChange " << PrecChangeTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tPrecChange avg time " << PrecChangeTimer.Elapsed()/(2*l+1) <<std::endl;
IterationsToComplete = k; IterationsToComplete = k;
ReliableUpdatesPerformed = l; ReliableUpdatesPerformed = l;
@ -225,21 +213,14 @@ public:
else if(cp < Delta * MaxResidSinceLastRelUp) { //reliable update else if(cp < Delta * MaxResidSinceLastRelUp) { //reliable update
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate " std::cout << GridLogMessage << "ConjugateGradientReliableUpdate "
<< cp << "(residual) < " << Delta << "(Delta) * " << MaxResidSinceLastRelUp << "(MaxResidSinceLastRelUp) on iteration " << k << " : performing reliable update\n"; << cp << "(residual) < " << Delta << "(Delta) * " << MaxResidSinceLastRelUp << "(MaxResidSinceLastRelUp) on iteration " << k << " : performing reliable update\n";
PrecChangeTimer.Start(); precisionChange(mmp, psi_f);
precisionChange(mmp, psi_f, pc_wk_sp_to_dp);
PrecChangeTimer.Stop();
psi = psi + mmp; psi = psi + mmp;
MatrixTimer.Start();
Linop_d.HermOpAndNorm(psi, mmp, d, qq); Linop_d.HermOpAndNorm(psi, mmp, d, qq);
MatrixTimer.Stop();
r = src - mmp; r = src - mmp;
psi_f = Zero(); psi_f = Zero();
PrecChangeTimer.Start(); precisionChange(r_f, r);
precisionChange(r_f, r, pc_wk_dp_to_sp);
PrecChangeTimer.Stop();
cp = norm2(r); cp = norm2(r);
MaxResidSinceLastRelUp = cp; MaxResidSinceLastRelUp = cp;

View File

@ -33,19 +33,16 @@ namespace Grid {
template<class Field> template<class Field>
class ZeroGuesser: public LinearFunction<Field> { class ZeroGuesser: public LinearFunction<Field> {
public: public:
using LinearFunction<Field>::operator();
virtual void operator()(const Field &src, Field &guess) { guess = Zero(); }; virtual void operator()(const Field &src, Field &guess) { guess = Zero(); };
}; };
template<class Field> template<class Field>
class DoNothingGuesser: public LinearFunction<Field> { class DoNothingGuesser: public LinearFunction<Field> {
public: public:
using LinearFunction<Field>::operator();
virtual void operator()(const Field &src, Field &guess) { }; virtual void operator()(const Field &src, Field &guess) { };
}; };
template<class Field> template<class Field>
class SourceGuesser: public LinearFunction<Field> { class SourceGuesser: public LinearFunction<Field> {
public: public:
using LinearFunction<Field>::operator();
virtual void operator()(const Field &src, Field &guess) { guess = src; }; virtual void operator()(const Field &src, Field &guess) { guess = src; };
}; };
@ -57,24 +54,15 @@ class DeflatedGuesser: public LinearFunction<Field> {
private: private:
const std::vector<Field> &evec; const std::vector<Field> &evec;
const std::vector<RealD> &eval; const std::vector<RealD> &eval;
const unsigned int N;
public: public:
using LinearFunction<Field>::operator();
DeflatedGuesser(const std::vector<Field> & _evec,const std::vector<RealD> & _eval) DeflatedGuesser(const std::vector<Field> & _evec,const std::vector<RealD> & _eval) : evec(_evec), eval(_eval) {};
: DeflatedGuesser(_evec, _eval, _evec.size())
{}
DeflatedGuesser(const std::vector<Field> & _evec, const std::vector<RealD> & _eval, const unsigned int _N)
: evec(_evec), eval(_eval), N(_N)
{
assert(evec.size()==eval.size());
assert(N <= evec.size());
}
virtual void operator()(const Field &src,Field &guess) { virtual void operator()(const Field &src,Field &guess) {
guess = Zero(); guess = Zero();
assert(evec.size()==eval.size());
auto N = evec.size();
for (int i=0;i<N;i++) { for (int i=0;i<N;i++) {
const Field& tmp = evec[i]; const Field& tmp = evec[i];
axpy(guess,TensorRemove(innerProduct(tmp,src)) / eval[i],tmp,guess); axpy(guess,TensorRemove(innerProduct(tmp,src)) / eval[i],tmp,guess);
@ -91,7 +79,6 @@ private:
const std::vector<RealD> &eval_coarse; const std::vector<RealD> &eval_coarse;
public: public:
using LinearFunction<FineField>::operator();
LocalCoherenceDeflatedGuesser(const std::vector<FineField> &_subspace, LocalCoherenceDeflatedGuesser(const std::vector<FineField> &_subspace,
const std::vector<CoarseField> &_evec_coarse, const std::vector<CoarseField> &_evec_coarse,
const std::vector<RealD> &_eval_coarse) const std::vector<RealD> &_eval_coarse)
@ -113,43 +100,7 @@ public:
blockPromote(guess_coarse,guess,subspace); blockPromote(guess_coarse,guess,subspace);
guess.Checkerboard() = src.Checkerboard(); guess.Checkerboard() = src.Checkerboard();
}; };
};
void operator()(const std::vector<FineField> &src,std::vector<FineField> &guess) {
int Nevec = (int)evec_coarse.size();
int Nsrc = (int)src.size();
// make temp variables
std::vector<CoarseField> src_coarse(Nsrc,evec_coarse[0].Grid());
std::vector<CoarseField> guess_coarse(Nsrc,evec_coarse[0].Grid());
//Preporcessing
std::cout << GridLogMessage << "Start BlockProject for loop" << std::endl;
for (int j=0;j<Nsrc;j++)
{
guess_coarse[j] = Zero();
std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl;
blockProject(src_coarse[j],src[j],subspace);
}
//deflation set up for eigen vector batchsize 1 and source batch size equal number of sources
std::cout << GridLogMessage << "Start ProjectAccum for loop" << std::endl;
for (int i=0;i<Nevec;i++)
{
std::cout << GridLogMessage << "ProjectAccum Nvec: " << i << std::endl;
const CoarseField & tmp = evec_coarse[i];
for (int j=0;j<Nsrc;j++)
{
axpy(guess_coarse[j],TensorRemove(innerProduct(tmp,src_coarse[j])) / eval_coarse[i],tmp,guess_coarse[j]);
}
}
//postprocessing
std::cout << GridLogMessage << "Start BlockPromote for loop" << std::endl;
for (int j=0;j<Nsrc;j++)
{
std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl;
blockPromote(guess_coarse[j],guess[j],subspace);
guess[j].Checkerboard() = src[j].Checkerboard();
}
};
};

File diff suppressed because it is too large Load Diff

View File

@ -419,15 +419,14 @@ until convergence
} }
} }
if ( Nconv < Nstop ) { if ( Nconv < Nstop )
std::cout << GridLogIRL << "Nconv ("<<Nconv<<") < Nstop ("<<Nstop<<")"<<std::endl; std::cout << GridLogIRL << "Nconv ("<<Nconv<<") < Nstop ("<<Nstop<<")"<<std::endl;
std::cout << GridLogIRL << "returning Nstop vectors, the last "<< Nstop-Nconv << "of which might meet convergence criterion only approximately" <<std::endl;
}
eval=eval2; eval=eval2;
//Keep only converged //Keep only converged
eval.resize(Nstop);// was Nconv eval.resize(Nconv);// Nstop?
evec.resize(Nstop,grid);// was Nconv evec.resize(Nconv,grid);// Nstop?
basisSortInPlace(evec,eval,reverse); basisSortInPlace(evec,eval,reverse);
} }

View File

@ -44,7 +44,6 @@ public:
int, MinRes); // Must restart int, MinRes); // Must restart
}; };
//This class is the input parameter class for some testing programs
struct LocalCoherenceLanczosParams : Serializable { struct LocalCoherenceLanczosParams : Serializable {
public: public:
GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams, GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
@ -68,7 +67,6 @@ public:
template<class Fobj,class CComplex,int nbasis> template<class Fobj,class CComplex,int nbasis>
class ProjectedHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > { class ProjectedHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
public: public:
using LinearFunction<Lattice<iVector<CComplex,nbasis > > >::operator();
typedef iVector<CComplex,nbasis > CoarseSiteVector; typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CoarseSiteVector> CoarseField; typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
@ -99,7 +97,6 @@ public:
template<class Fobj,class CComplex,int nbasis> template<class Fobj,class CComplex,int nbasis>
class ProjectedFunctionHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > { class ProjectedFunctionHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
public: public:
using LinearFunction<Lattice<iVector<CComplex,nbasis > > >::operator();
typedef iVector<CComplex,nbasis > CoarseSiteVector; typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CoarseSiteVector> CoarseField; typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
@ -147,23 +144,15 @@ public:
RealD _coarse_relax_tol; RealD _coarse_relax_tol;
std::vector<FineField> &_subspace; std::vector<FineField> &_subspace;
int _largestEvalIdxForReport; //The convergence of the LCL is based on the evals of the coarse grid operator, not those of the underlying fine grid operator
//As a result we do not know what the eval range of the fine operator is until the very end, making tuning the Cheby bounds very difficult
//To work around this issue, every restart we separately reconstruct the fine operator eval for the lowest and highest evec and print these
//out alongside the evals of the coarse operator. To do so we need to know the index of the largest eval (i.e. Nstop-1)
//NOTE: If largestEvalIdxForReport=-1 (default) then this is not performed
ImplicitlyRestartedLanczosSmoothedTester(LinearFunction<CoarseField> &Poly, ImplicitlyRestartedLanczosSmoothedTester(LinearFunction<CoarseField> &Poly,
OperatorFunction<FineField> &smoother, OperatorFunction<FineField> &smoother,
LinearOperatorBase<FineField> &Linop, LinearOperatorBase<FineField> &Linop,
std::vector<FineField> &subspace, std::vector<FineField> &subspace,
RealD coarse_relax_tol=5.0e3, RealD coarse_relax_tol=5.0e3)
int largestEvalIdxForReport=-1)
: _smoother(smoother), _Linop(Linop), _Poly(Poly), _subspace(subspace), : _smoother(smoother), _Linop(Linop), _Poly(Poly), _subspace(subspace),
_coarse_relax_tol(coarse_relax_tol), _largestEvalIdxForReport(largestEvalIdxForReport) _coarse_relax_tol(coarse_relax_tol)
{ }; { };
//evalMaxApprox: approximation of largest eval of the fine Chebyshev operator (suitably wrapped by block projection)
int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox) int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
{ {
CoarseField v(B); CoarseField v(B);
@ -186,26 +175,12 @@ public:
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
<<std::endl; <<std::endl;
if(_largestEvalIdxForReport != -1 && (j==0 || j==_largestEvalIdxForReport)){
std::cout<<GridLogIRL << "Estimating true eval of fine grid operator for eval idx " << j << std::endl;
RealD tmp_eval;
ReconstructEval(j,eresid,B,tmp_eval,1.0); //don't use evalMaxApprox of coarse operator! (cf below)
}
int conv=0; int conv=0;
if( (vv<eresid*eresid) ) conv = 1; if( (vv<eresid*eresid) ) conv = 1;
return conv; return conv;
} }
//This function is called at the end of the coarse grid Lanczos. It promotes the coarse eigenvector 'B' to the fine grid,
//applies a smoother to the result then computes the computes the *fine grid* eigenvalue (output as 'eval').
//evalMaxApprox should be the approximation of the largest eval of the fine Hermop. However when this function is called by IRL it actually passes the largest eval of the *Chebyshev* operator (as this is the max approx used for the TestConvergence above)
//As the largest eval of the Chebyshev is typically several orders of magnitude larger this makes the convergence test pass even when it should not.
//We therefore ignore evalMaxApprox here and use a value of 1.0 (note this value is already used by TestCoarse)
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox) int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
{ {
evalMaxApprox = 1.0; //cf above
GridBase *FineGrid = _subspace[0].Grid(); GridBase *FineGrid = _subspace[0].Grid();
int checkerboard = _subspace[0].Checkerboard(); int checkerboard = _subspace[0].Checkerboard();
FineField fB(FineGrid);fB.Checkerboard() =checkerboard; FineField fB(FineGrid);fB.Checkerboard() =checkerboard;
@ -224,13 +199,13 @@ public:
eval = vnum/vden; eval = vnum/vden;
fv -= eval*fB; fv -= eval*fB;
RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0); RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
std::cout.precision(13); std::cout.precision(13);
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] " std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")" <<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv << " target " << eresid*eresid <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
<<std::endl; <<std::endl;
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
if( (vv<eresid*eresid) ) return 1; if( (vv<eresid*eresid) ) return 1;
return 0; return 0;
} }
@ -308,10 +283,6 @@ public:
evals_coarse.resize(0); evals_coarse.resize(0);
}; };
//The block inner product is the inner product on the fine grid locally summed over the blocks
//to give a Lattice<Scalar> on the coarse grid. This function orthnormalizes the fine-grid subspace
//vectors under the block inner product. This step must be performed after computing the fine grid
//eigenvectors and before computing the coarse grid eigenvectors.
void Orthogonalise(void ) { void Orthogonalise(void ) {
CoarseScalar InnerProd(_CoarseGrid); CoarseScalar InnerProd(_CoarseGrid);
std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl; std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
@ -355,8 +326,6 @@ public:
} }
} }
//While this method serves to check the coarse eigenvectors, it also recomputes the eigenvalues from the smoothed reconstructed eigenvectors
//hence the smoother can be tuned after running the coarse Lanczos by using a different smoother here
void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax) void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax)
{ {
assert(evals_fine.size() == nbasis); assert(evals_fine.size() == nbasis);
@ -405,31 +374,25 @@ public:
evals_fine.resize(nbasis); evals_fine.resize(nbasis);
subspace.resize(nbasis,_FineGrid); subspace.resize(nbasis,_FineGrid);
} }
//cheby_op: Parameters of the fine grid Chebyshev polynomial used for the Lanczos acceleration
//cheby_smooth: Parameters of a separate Chebyshev polynomial used after the Lanczos has completed to smooth out high frequency noise in the reconstructed fine grid eigenvectors prior to computing the eigenvalue
//relax: Reconstructed eigenvectors (post smoothing) are naturally not as precise as true eigenvectors. This factor acts as a multiplier on the stopping condition when determining whether the results satisfy the user provided stopping condition
void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax, void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
int Nstop, int Nk, int Nm,RealD resid, int Nstop, int Nk, int Nm,RealD resid,
RealD MaxIt, RealD betastp, int MinRes) RealD MaxIt, RealD betastp, int MinRes)
{ {
Chebyshev<FineField> Cheby(cheby_op); //Chebyshev of fine operator on fine grid Chebyshev<FineField> Cheby(cheby_op);
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,subspace); //Fine operator on coarse grid with intermediate fine grid conversion ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,subspace);
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace); //Chebyshev of fine operator on coarse grid with intermediate fine grid conversion ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace);
////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL // create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////
Chebyshev<FineField> ChebySmooth(cheby_smooth); //lower order Chebyshev of fine operator on fine grid used to smooth regenerated eigenvectors Chebyshev<FineField> ChebySmooth(cheby_smooth);
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax,Nstop-1); ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
evals_coarse.resize(Nm); evals_coarse.resize(Nm);
evec_coarse.resize(Nm,_CoarseGrid); evec_coarse.resize(Nm,_CoarseGrid);
CoarseField src(_CoarseGrid); src=1.0; CoarseField src(_CoarseGrid); src=1.0;
//Note the "tester" here is also responsible for generating the fine grid eigenvalues which are output into the "evals_coarse" array
ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes); ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
int Nconv=0; int Nconv=0;
IRL.calc(evals_coarse,evec_coarse,src,Nconv,false); IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
@ -440,14 +403,6 @@ public:
std::cout << i << " Coarse eval = " << evals_coarse[i] << std::endl; std::cout << i << " Coarse eval = " << evals_coarse[i] << std::endl;
} }
} }
//Get the fine eigenvector 'i' by reconstruction
void getFineEvecEval(FineField &evec, RealD &eval, const int i) const{
blockPromote(evec_coarse[i],evec,subspace);
eval = evals_coarse[i];
}
}; };
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -30,8 +30,6 @@ template<class Field> class PowerMethod
RealD vden = norm2(src_n); RealD vden = norm2(src_n);
RealD na = vnum/vden; RealD na = vnum/vden;
std::cout << GridLogIterative << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) { if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) {
evalMaxApprox = na; evalMaxApprox = na;
std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl; std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;

View File

@ -43,7 +43,7 @@ NAMESPACE_BEGIN(Grid);
template<class Field> template<class Field>
class PrecGeneralisedConjugateResidual : public LinearFunction<Field> { class PrecGeneralisedConjugateResidual : public LinearFunction<Field> {
public: public:
using LinearFunction<Field>::operator();
RealD Tolerance; RealD Tolerance;
Integer MaxIterations; Integer MaxIterations;
int verbose; int verbose;

View File

@ -43,7 +43,7 @@ NAMESPACE_BEGIN(Grid);
template<class Field> template<class Field>
class PrecGeneralisedConjugateResidualNonHermitian : public LinearFunction<Field> { class PrecGeneralisedConjugateResidualNonHermitian : public LinearFunction<Field> {
public: public:
using LinearFunction<Field>::operator();
RealD Tolerance; RealD Tolerance;
Integer MaxIterations; Integer MaxIterations;
int verbose; int verbose;
@ -119,8 +119,7 @@ public:
RealD GCRnStep(const Field &src, Field &psi,RealD rsq){ RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
RealD cp; RealD cp;
ComplexD a, b; ComplexD a, b, zAz;
// ComplexD zAz;
RealD zAAz; RealD zAAz;
ComplexD rq; ComplexD rq;
@ -147,7 +146,7 @@ public:
////////////////////////////////// //////////////////////////////////
MatTimer.Start(); MatTimer.Start();
Linop.Op(psi,Az); Linop.Op(psi,Az);
// zAz = innerProduct(Az,psi); zAz = innerProduct(Az,psi);
zAAz= norm2(Az); zAAz= norm2(Az);
MatTimer.Stop(); MatTimer.Stop();
@ -171,7 +170,7 @@ public:
LinalgTimer.Start(); LinalgTimer.Start();
// zAz = innerProduct(Az,psi); zAz = innerProduct(Az,psi);
zAAz= norm2(Az); zAAz= norm2(Az);
//p[0],q[0],qq[0] //p[0],q[0],qq[0]
@ -213,7 +212,7 @@ public:
MatTimer.Start(); MatTimer.Start();
Linop.Op(z,Az); Linop.Op(z,Az);
MatTimer.Stop(); MatTimer.Stop();
// zAz = innerProduct(Az,psi); zAz = innerProduct(Az,psi);
zAAz= norm2(Az); zAAz= norm2(Az);
LinalgTimer.Start(); LinalgTimer.Start();

View File

@ -132,31 +132,6 @@ namespace Grid {
(*this)(_Matrix,in,out,guess); (*this)(_Matrix,in,out,guess);
} }
void RedBlackSource(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &src_o)
{
GridBase *grid = _Matrix.RedBlackGrid();
Field tmp(grid);
int nblock = in.size();
for(int b=0;b<nblock;b++){
RedBlackSource(_Matrix,in[b],tmp,src_o[b]);
}
}
// James can write his own deflated guesser
// with optimised code for the inner products
// RedBlackSolveSplitGrid();
// RedBlackSolve(_Matrix,src_o,sol_o);
void RedBlackSolution(Matrix &_Matrix, const std::vector<Field> &in, const std::vector<Field> &sol_o, std::vector<Field> &out)
{
GridBase *grid = _Matrix.RedBlackGrid();
Field tmp(grid);
int nblock = in.size();
for(int b=0;b<nblock;b++) {
pickCheckerboard(Even,tmp,in[b]);
RedBlackSolution(_Matrix,sol_o[b],tmp,out[b]);
}
}
template<class Guesser> template<class Guesser>
void operator()(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &out,Guesser &guess) void operator()(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &out,Guesser &guess)
{ {
@ -175,27 +150,22 @@ namespace Grid {
//////////////////////////////////////////////// ////////////////////////////////////////////////
// Prepare RedBlack source // Prepare RedBlack source
//////////////////////////////////////////////// ////////////////////////////////////////////////
RedBlackSource(_Matrix,in,src_o); for(int b=0;b<nblock;b++){
// for(int b=0;b<nblock;b++){ RedBlackSource(_Matrix,in[b],tmp,src_o[b]);
// RedBlackSource(_Matrix,in[b],tmp,src_o[b]); }
// }
//////////////////////////////////////////////// ////////////////////////////////////////////////
// Make the guesses // Make the guesses
//////////////////////////////////////////////// ////////////////////////////////////////////////
if ( subGuess ) guess_save.resize(nblock,grid); if ( subGuess ) guess_save.resize(nblock,grid);
if(useSolnAsInitGuess) {
for(int b=0;b<nblock;b++){ for(int b=0;b<nblock;b++){
if(useSolnAsInitGuess) {
pickCheckerboard(Odd, sol_o[b], out[b]); pickCheckerboard(Odd, sol_o[b], out[b]);
}
} else { } else {
guess(src_o, sol_o); guess(src_o[b],sol_o[b]);
} }
if ( subGuess ) { if ( subGuess ) {
for(int b=0;b<nblock;b++){
guess_save[b] = sol_o[b]; guess_save[b] = sol_o[b];
} }
} }

View File

@ -0,0 +1,67 @@
#include <Grid/GridCore.h>
#include <fcntl.h>
NAMESPACE_BEGIN(Grid);
MemoryStats *MemoryProfiler::stats = nullptr;
bool MemoryProfiler::debug = false;
void check_huge_pages(void *Buf,uint64_t BYTES)
{
#ifdef __linux__
int fd = open("/proc/self/pagemap", O_RDONLY);
assert(fd >= 0);
const int page_size = 4096;
uint64_t virt_pfn = (uint64_t)Buf / page_size;
off_t offset = sizeof(uint64_t) * virt_pfn;
uint64_t npages = (BYTES + page_size-1) / page_size;
uint64_t pagedata[npages];
uint64_t ret = lseek(fd, offset, SEEK_SET);
assert(ret == offset);
ret = ::read(fd, pagedata, sizeof(uint64_t)*npages);
assert(ret == sizeof(uint64_t) * npages);
int nhugepages = npages / 512;
int n4ktotal, nnothuge;
n4ktotal = 0;
nnothuge = 0;
for (int i = 0; i < nhugepages; ++i) {
uint64_t baseaddr = (pagedata[i*512] & 0x7fffffffffffffULL) * page_size;
for (int j = 0; j < 512; ++j) {
uint64_t pageaddr = (pagedata[i*512+j] & 0x7fffffffffffffULL) * page_size;
++n4ktotal;
if (pageaddr != baseaddr + j * page_size)
++nnothuge;
}
}
int rank = CartesianCommunicator::RankWorld();
printf("rank %d Allocated %d 4k pages, %d not in huge pages\n", rank, n4ktotal, nnothuge);
#endif
}
std::string sizeString(const size_t bytes)
{
constexpr unsigned int bufSize = 256;
const char *suffixes[7] = {"", "K", "M", "G", "T", "P", "E"};
char buf[256];
size_t s = 0;
double count = bytes;
while (count >= 1024 && s < 7)
{
s++;
count /= 1024;
}
if (count - floor(count) == 0.0)
{
snprintf(buf, bufSize, "%d %sB", (int)count, suffixes[s]);
}
else
{
snprintf(buf, bufSize, "%.1f %sB", count, suffixes[s]);
}
return std::string(buf);
}
NAMESPACE_END(Grid);

View File

@ -65,7 +65,8 @@ public:
MemoryManager::CpuFree((void *)__p,bytes); MemoryManager::CpuFree((void *)__p,bytes);
} }
// FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop // FIXME: hack for the copy constructor, eventually it must be avoided
//void construct(pointer __p, const _Tp& __val) { new((void *)__p) _Tp(__val); };
void construct(pointer __p, const _Tp& __val) { assert(0);}; void construct(pointer __p, const _Tp& __val) { assert(0);};
void construct(pointer __p) { }; void construct(pointer __p) { };
void destroy(pointer __p) { }; void destroy(pointer __p) { };
@ -73,9 +74,6 @@ public:
template<typename _Tp> inline bool operator==(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return true; } template<typename _Tp> inline bool operator==(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return true; }
template<typename _Tp> inline bool operator!=(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return false; } template<typename _Tp> inline bool operator!=(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return false; }
//////////////////////////////////////////////////////////////////////////////////////
// Unified virtual memory
//////////////////////////////////////////////////////////////////////////////////////
template<typename _Tp> template<typename _Tp>
class uvmAllocator { class uvmAllocator {
public: public:
@ -111,73 +109,22 @@ public:
MemoryManager::SharedFree((void *)__p,bytes); MemoryManager::SharedFree((void *)__p,bytes);
} }
// FIXME: hack for the copy constructor, eventually it must be avoided
void construct(pointer __p, const _Tp& __val) { new((void *)__p) _Tp(__val); }; void construct(pointer __p, const _Tp& __val) { new((void *)__p) _Tp(__val); };
//void construct(pointer __p, const _Tp& __val) { };
void construct(pointer __p) { }; void construct(pointer __p) { };
void destroy(pointer __p) { }; void destroy(pointer __p) { };
}; };
template<typename _Tp> inline bool operator==(const uvmAllocator<_Tp>&, const uvmAllocator<_Tp>&){ return true; } template<typename _Tp> inline bool operator==(const uvmAllocator<_Tp>&, const uvmAllocator<_Tp>&){ return true; }
template<typename _Tp> inline bool operator!=(const uvmAllocator<_Tp>&, const uvmAllocator<_Tp>&){ return false; } template<typename _Tp> inline bool operator!=(const uvmAllocator<_Tp>&, const uvmAllocator<_Tp>&){ return false; }
////////////////////////////////////////////////////////////////////////////////
// Device memory
////////////////////////////////////////////////////////////////////////////////
template<typename _Tp>
class devAllocator {
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef _Tp* pointer;
typedef const _Tp* const_pointer;
typedef _Tp& reference;
typedef const _Tp& const_reference;
typedef _Tp value_type;
template<typename _Tp1> struct rebind { typedef devAllocator<_Tp1> other; };
devAllocator() throw() { }
devAllocator(const devAllocator&) throw() { }
template<typename _Tp1> devAllocator(const devAllocator<_Tp1>&) throw() { }
~devAllocator() throw() { }
pointer address(reference __x) const { return &__x; }
size_type max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
pointer allocate(size_type __n, const void* _p= 0)
{
size_type bytes = __n*sizeof(_Tp);
profilerAllocate(bytes);
_Tp *ptr = (_Tp*) MemoryManager::AcceleratorAllocate(bytes);
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
return ptr;
}
void deallocate(pointer __p, size_type __n)
{
size_type bytes = __n * sizeof(_Tp);
profilerFree(bytes);
MemoryManager::AcceleratorFree((void *)__p,bytes);
}
void construct(pointer __p, const _Tp& __val) { };
void construct(pointer __p) { };
void destroy(pointer __p) { };
};
template<typename _Tp> inline bool operator==(const devAllocator<_Tp>&, const devAllocator<_Tp>&){ return true; }
template<typename _Tp> inline bool operator!=(const devAllocator<_Tp>&, const devAllocator<_Tp>&){ return false; }
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
// Template typedefs // Template typedefs
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
#ifdef ACCELERATOR_CSHIFT template<class T> using commAllocator = uvmAllocator<T>;
// Cshift on device
template<class T> using cshiftAllocator = devAllocator<T>;
#else
// Cshift on host
template<class T> using cshiftAllocator = std::allocator<T>;
#endif
template<class T> using Vector = std::vector<T,uvmAllocator<T> >; template<class T> using Vector = std::vector<T,uvmAllocator<T> >;
template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >; template<class T> using commVector = std::vector<T,uvmAllocator<T> >;
template<class T> using commVector = std::vector<T,devAllocator<T> >; //template<class T> using Matrix = std::vector<std::vector<T,alignedAllocator<T> > >;
template<class T> using deviceVector = std::vector<T,devAllocator<T> >;
template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -4,156 +4,106 @@ NAMESPACE_BEGIN(Grid);
/*Allocation types, saying which pointer cache should be used*/ /*Allocation types, saying which pointer cache should be used*/
#define Cpu (0) #define Cpu (0)
#define CpuHuge (1) #define CpuSmall (1)
#define CpuSmall (2) #define Acc (2)
#define Acc (3) #define AccSmall (3)
#define AccHuge (4) #define Shared (4)
#define AccSmall (5) #define SharedSmall (5)
#define Shared (6)
#define SharedHuge (7)
#define SharedSmall (8)
#undef GRID_MM_VERBOSE
uint64_t total_shared; uint64_t total_shared;
uint64_t total_device; uint64_t total_device;
uint64_t total_host;; uint64_t total_host;;
void MemoryManager::PrintBytes(void) void MemoryManager::PrintBytes(void)
{ {
std::cout << " MemoryManager : ------------------------------------ "<<std::endl; std::cout << " MemoryManager : "<<total_shared<<" shared bytes "<<std::endl;
std::cout << " MemoryManager : PrintBytes "<<std::endl; std::cout << " MemoryManager : "<<total_device<<" accelerator bytes "<<std::endl;
std::cout << " MemoryManager : ------------------------------------ "<<std::endl; std::cout << " MemoryManager : "<<total_host <<" cpu bytes "<<std::endl;
std::cout << " MemoryManager : "<<(total_shared>>20)<<" shared Mbytes "<<std::endl;
std::cout << " MemoryManager : "<<(total_device>>20)<<" accelerator Mbytes "<<std::endl;
std::cout << " MemoryManager : "<<(total_host>>20) <<" cpu Mbytes "<<std::endl;
uint64_t cacheBytes;
cacheBytes = CacheBytes[Cpu];
std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" cpu cache Mbytes "<<std::endl;
cacheBytes = CacheBytes[Acc];
std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" acc cache Mbytes "<<std::endl;
cacheBytes = CacheBytes[Shared];
std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" shared cache Mbytes "<<std::endl;
#ifdef GRID_CUDA
cuda_mem();
#endif
} }
uint64_t MemoryManager::DeviceCacheBytes() { return CacheBytes[Acc] + CacheBytes[AccHuge] + CacheBytes[AccSmall]; }
uint64_t MemoryManager::HostCacheBytes() { return CacheBytes[Cpu] + CacheBytes[CpuHuge] + CacheBytes[CpuSmall]; }
////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////
// Data tables for recently freed pooiniter caches // Data tables for recently freed pooiniter caches
////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////
MemoryManager::AllocationCacheEntry MemoryManager::Entries[MemoryManager::NallocType][MemoryManager::NallocCacheMax]; MemoryManager::AllocationCacheEntry MemoryManager::Entries[MemoryManager::NallocType][MemoryManager::NallocCacheMax];
int MemoryManager::Victim[MemoryManager::NallocType]; int MemoryManager::Victim[MemoryManager::NallocType];
int MemoryManager::Ncache[MemoryManager::NallocType] = { 2, 0, 8, 8, 0, 16, 8, 0, 16 }; int MemoryManager::Ncache[MemoryManager::NallocType] = { 8, 32, 8, 32, 8, 32 };
uint64_t MemoryManager::CacheBytes[MemoryManager::NallocType];
////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////
// Actual allocation and deallocation utils // Actual allocation and deallocation utils
////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////
void *MemoryManager::AcceleratorAllocate(size_t bytes) void *MemoryManager::AcceleratorAllocate(size_t bytes)
{ {
total_device+=bytes;
void *ptr = (void *) Lookup(bytes,Acc); void *ptr = (void *) Lookup(bytes,Acc);
if ( ptr == (void *) NULL ) { if ( ptr == (void *) NULL ) {
ptr = (void *) acceleratorAllocDevice(bytes); ptr = (void *) acceleratorAllocDevice(bytes);
total_device+=bytes;
} }
#ifdef GRID_MM_VERBOSE
std::cout <<"AcceleratorAllocate "<<std::endl;
PrintBytes();
#endif
return ptr; return ptr;
} }
void MemoryManager::AcceleratorFree (void *ptr,size_t bytes) void MemoryManager::AcceleratorFree (void *ptr,size_t bytes)
{ {
total_device-=bytes;
void *__freeme = Insert(ptr,bytes,Acc); void *__freeme = Insert(ptr,bytes,Acc);
if ( __freeme ) { if ( __freeme ) {
acceleratorFreeDevice(__freeme); acceleratorFreeDevice(__freeme);
total_device-=bytes;
// PrintBytes();
} }
#ifdef GRID_MM_VERBOSE
std::cout <<"AcceleratorFree "<<std::endl;
PrintBytes();
#endif
} }
void *MemoryManager::SharedAllocate(size_t bytes) void *MemoryManager::SharedAllocate(size_t bytes)
{ {
total_shared+=bytes;
void *ptr = (void *) Lookup(bytes,Shared); void *ptr = (void *) Lookup(bytes,Shared);
if ( ptr == (void *) NULL ) { if ( ptr == (void *) NULL ) {
ptr = (void *) acceleratorAllocShared(bytes); ptr = (void *) acceleratorAllocShared(bytes);
total_shared+=bytes;
// std::cout <<"AcceleratorAllocate: allocated Shared pointer "<<std::hex<<ptr<<std::dec<<std::endl;
// PrintBytes();
} }
#ifdef GRID_MM_VERBOSE
std::cout <<"SharedAllocate "<<std::endl;
PrintBytes();
#endif
return ptr; return ptr;
} }
void MemoryManager::SharedFree (void *ptr,size_t bytes) void MemoryManager::SharedFree (void *ptr,size_t bytes)
{ {
total_shared-=bytes;
void *__freeme = Insert(ptr,bytes,Shared); void *__freeme = Insert(ptr,bytes,Shared);
if ( __freeme ) { if ( __freeme ) {
acceleratorFreeShared(__freeme); acceleratorFreeShared(__freeme);
total_shared-=bytes;
// PrintBytes();
} }
#ifdef GRID_MM_VERBOSE
std::cout <<"SharedFree "<<std::endl;
PrintBytes();
#endif
} }
#ifdef GRID_UVM #ifdef GRID_UVM
void *MemoryManager::CpuAllocate(size_t bytes) void *MemoryManager::CpuAllocate(size_t bytes)
{ {
total_host+=bytes;
void *ptr = (void *) Lookup(bytes,Cpu); void *ptr = (void *) Lookup(bytes,Cpu);
if ( ptr == (void *) NULL ) { if ( ptr == (void *) NULL ) {
ptr = (void *) acceleratorAllocShared(bytes); ptr = (void *) acceleratorAllocShared(bytes);
total_host+=bytes;
} }
#ifdef GRID_MM_VERBOSE
std::cout <<"CpuAllocate "<<std::endl;
PrintBytes();
#endif
return ptr; return ptr;
} }
void MemoryManager::CpuFree (void *_ptr,size_t bytes) void MemoryManager::CpuFree (void *_ptr,size_t bytes)
{ {
total_host-=bytes;
NotifyDeletion(_ptr); NotifyDeletion(_ptr);
void *__freeme = Insert(_ptr,bytes,Cpu); void *__freeme = Insert(_ptr,bytes,Cpu);
if ( __freeme ) { if ( __freeme ) {
acceleratorFreeShared(__freeme); acceleratorFreeShared(__freeme);
total_host-=bytes;
} }
#ifdef GRID_MM_VERBOSE
std::cout <<"CpuFree "<<std::endl;
PrintBytes();
#endif
} }
#else #else
void *MemoryManager::CpuAllocate(size_t bytes) void *MemoryManager::CpuAllocate(size_t bytes)
{ {
total_host+=bytes;
void *ptr = (void *) Lookup(bytes,Cpu); void *ptr = (void *) Lookup(bytes,Cpu);
if ( ptr == (void *) NULL ) { if ( ptr == (void *) NULL ) {
ptr = (void *) acceleratorAllocCpu(bytes); ptr = (void *) acceleratorAllocCpu(bytes);
total_host+=bytes;
} }
#ifdef GRID_MM_VERBOSE
std::cout <<"CpuAllocate "<<std::endl;
PrintBytes();
#endif
return ptr; return ptr;
} }
void MemoryManager::CpuFree (void *_ptr,size_t bytes) void MemoryManager::CpuFree (void *_ptr,size_t bytes)
{ {
total_host-=bytes;
NotifyDeletion(_ptr); NotifyDeletion(_ptr);
void *__freeme = Insert(_ptr,bytes,Cpu); void *__freeme = Insert(_ptr,bytes,Cpu);
if ( __freeme ) { if ( __freeme ) {
acceleratorFreeCpu(__freeme); acceleratorFreeCpu(__freeme);
total_host-=bytes;
} }
#ifdef GRID_MM_VERBOSE
std::cout <<"CpuFree "<<std::endl;
PrintBytes();
#endif
} }
#endif #endif
@ -165,6 +115,7 @@ void MemoryManager::Init(void)
char * str; char * str;
int Nc; int Nc;
int NcS;
str= getenv("GRID_ALLOC_NCACHE_LARGE"); str= getenv("GRID_ALLOC_NCACHE_LARGE");
if ( str ) { if ( str ) {
@ -176,16 +127,6 @@ void MemoryManager::Init(void)
} }
} }
str= getenv("GRID_ALLOC_NCACHE_HUGE");
if ( str ) {
Nc = atoi(str);
if ( (Nc>=0) && (Nc < NallocCacheMax)) {
Ncache[CpuHuge]=Nc;
Ncache[AccHuge]=Nc;
Ncache[SharedHuge]=Nc;
}
}
str= getenv("GRID_ALLOC_NCACHE_SMALL"); str= getenv("GRID_ALLOC_NCACHE_SMALL");
if ( str ) { if ( str ) {
Nc = atoi(str); Nc = atoi(str);
@ -195,20 +136,9 @@ void MemoryManager::Init(void)
Ncache[SharedSmall]=Nc; Ncache[SharedSmall]=Nc;
} }
} }
}
void MemoryManager::InitMessage(void) {
#ifndef GRID_UVM
std::cout << GridLogMessage << "MemoryManager Cache "<< MemoryManager::DeviceMaxBytes <<" bytes "<<std::endl;
#endif
std::cout << GridLogMessage<< "MemoryManager::Init() setting up"<<std::endl; std::cout << GridLogMessage<< "MemoryManager::Init() setting up"<<std::endl;
#ifdef ALLOCATION_CACHE #ifdef ALLOCATION_CACHE
std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent host allocations: SMALL "<<Ncache[CpuSmall]<<" LARGE "<<Ncache[Cpu]<<" HUGE "<<Ncache[CpuHuge]<<std::endl; std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent allocations: SMALL "<<Ncache[CpuSmall]<<" LARGE "<<Ncache[Cpu]<<std::endl;
std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent device allocations: SMALL "<<Ncache[AccSmall]<<" LARGE "<<Ncache[Acc]<<" Huge "<<Ncache[AccHuge]<<std::endl;
std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent shared allocations: SMALL "<<Ncache[SharedSmall]<<" LARGE "<<Ncache[Shared]<<" Huge "<<Ncache[SharedHuge]<<std::endl;
#endif #endif
#ifdef GRID_UVM #ifdef GRID_UVM
@ -234,31 +164,26 @@ void MemoryManager::InitMessage(void) {
std::cout << GridLogMessage<< "MemoryManager::Init() Using SYCL malloc_device"<<std::endl; std::cout << GridLogMessage<< "MemoryManager::Init() Using SYCL malloc_device"<<std::endl;
#endif #endif
#endif #endif
} }
void *MemoryManager::Insert(void *ptr,size_t bytes,int type) void *MemoryManager::Insert(void *ptr,size_t bytes,int type)
{ {
#ifdef ALLOCATION_CACHE #ifdef ALLOCATION_CACHE
int cache; bool small = (bytes < GRID_ALLOC_SMALL_LIMIT);
if (bytes < GRID_ALLOC_SMALL_LIMIT) cache = type + 2; int cache = type + small;
else if (bytes >= GRID_ALLOC_HUGE_LIMIT) cache = type + 1; return Insert(ptr,bytes,Entries[cache],Ncache[cache],Victim[cache]);
else cache = type;
return Insert(ptr,bytes,Entries[cache],Ncache[cache],Victim[cache],CacheBytes[cache]);
#else #else
return ptr; return ptr;
#endif #endif
} }
void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim, uint64_t &cacheBytes) void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim)
{ {
assert(ncache>0);
#ifdef GRID_OMP #ifdef GRID_OMP
assert(omp_in_parallel()==0); assert(omp_in_parallel()==0);
#endif #endif
if (ncache == 0) return ptr;
void * ret = NULL; void * ret = NULL;
int v = -1; int v = -1;
@ -276,7 +201,6 @@ void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries
if ( entries[v].valid ) { if ( entries[v].valid ) {
ret = entries[v].address; ret = entries[v].address;
cacheBytes -= entries[v].bytes;
entries[v].valid = 0; entries[v].valid = 0;
entries[v].address = NULL; entries[v].address = NULL;
entries[v].bytes = 0; entries[v].bytes = 0;
@ -285,7 +209,6 @@ void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries
entries[v].address=ptr; entries[v].address=ptr;
entries[v].bytes =bytes; entries[v].bytes =bytes;
entries[v].valid =1; entries[v].valid =1;
cacheBytes += bytes;
return ret; return ret;
} }
@ -293,26 +216,23 @@ void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries
void *MemoryManager::Lookup(size_t bytes,int type) void *MemoryManager::Lookup(size_t bytes,int type)
{ {
#ifdef ALLOCATION_CACHE #ifdef ALLOCATION_CACHE
int cache; bool small = (bytes < GRID_ALLOC_SMALL_LIMIT);
if (bytes < GRID_ALLOC_SMALL_LIMIT) cache = type + 2; int cache = type+small;
else if (bytes >= GRID_ALLOC_HUGE_LIMIT) cache = type + 1; return Lookup(bytes,Entries[cache],Ncache[cache]);
else cache = type;
return Lookup(bytes,Entries[cache],Ncache[cache],CacheBytes[cache]);
#else #else
return NULL; return NULL;
#endif #endif
} }
void *MemoryManager::Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t & cacheBytes) void *MemoryManager::Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache)
{ {
assert(ncache>0);
#ifdef GRID_OMP #ifdef GRID_OMP
assert(omp_in_parallel()==0); assert(omp_in_parallel()==0);
#endif #endif
for(int e=0;e<ncache;e++){ for(int e=0;e<ncache;e++){
if ( entries[e].valid && ( entries[e].bytes == bytes ) ) { if ( entries[e].valid && ( entries[e].bytes == bytes ) ) {
entries[e].valid = 0; entries[e].valid = 0;
cacheBytes -= entries[e].bytes;
return entries[e].address; return entries[e].address;
} }
} }

View File

@ -34,13 +34,9 @@ NAMESPACE_BEGIN(Grid);
// Move control to configure.ac and Config.h? // Move control to configure.ac and Config.h?
#define ALLOCATION_CACHE
#define GRID_ALLOC_ALIGN (2*1024*1024)
#define GRID_ALLOC_SMALL_LIMIT (4096) #define GRID_ALLOC_SMALL_LIMIT (4096)
#define GRID_ALLOC_HUGE_LIMIT (2147483648)
#define STRINGIFY(x) #x
#define TOSTRING(x) STRINGIFY(x)
#define FILE_LINE __FILE__ ":" TOSTRING(__LINE__)
#define AUDIT(a) MemoryManager::Audit(FILE_LINE)
/*Pinning pages is costly*/ /*Pinning pages is costly*/
//////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////
@ -71,21 +67,6 @@ enum ViewMode {
CpuWriteDiscard = 0x10 // same for now CpuWriteDiscard = 0x10 // same for now
}; };
struct MemoryStatus {
uint64_t DeviceBytes;
uint64_t DeviceLRUBytes;
uint64_t DeviceMaxBytes;
uint64_t HostToDeviceBytes;
uint64_t DeviceToHostBytes;
uint64_t HostToDeviceXfer;
uint64_t DeviceToHostXfer;
uint64_t DeviceEvictions;
uint64_t DeviceDestroy;
uint64_t DeviceAllocCacheBytes;
uint64_t HostAllocCacheBytes;
};
class MemoryManager { class MemoryManager {
private: private:
@ -99,27 +80,24 @@ private:
} AllocationCacheEntry; } AllocationCacheEntry;
static const int NallocCacheMax=128; static const int NallocCacheMax=128;
static const int NallocType=9; static const int NallocType=6;
static AllocationCacheEntry Entries[NallocType][NallocCacheMax]; static AllocationCacheEntry Entries[NallocType][NallocCacheMax];
static int Victim[NallocType]; static int Victim[NallocType];
static int Ncache[NallocType]; static int Ncache[NallocType];
static uint64_t CacheBytes[NallocType];
///////////////////////////////////////////////// /////////////////////////////////////////////////
// Free pool // Free pool
///////////////////////////////////////////////// /////////////////////////////////////////////////
static void *Insert(void *ptr,size_t bytes,int type) ; static void *Insert(void *ptr,size_t bytes,int type) ;
static void *Lookup(size_t bytes,int type) ; static void *Lookup(size_t bytes,int type) ;
static void *Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim,uint64_t &cbytes) ; static void *Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim) ;
static void *Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t &cbytes) ; static void *Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache) ;
public:
static void PrintBytes(void);
static void Audit(std::string s);
static void Init(void);
static void InitMessage(void);
static void *AcceleratorAllocate(size_t bytes); static void *AcceleratorAllocate(size_t bytes);
static void AcceleratorFree (void *ptr,size_t bytes); static void AcceleratorFree (void *ptr,size_t bytes);
static void PrintBytes(void);
public:
static void Init(void);
static void *SharedAllocate(size_t bytes); static void *SharedAllocate(size_t bytes);
static void SharedFree (void *ptr,size_t bytes); static void SharedFree (void *ptr,size_t bytes);
static void *CpuAllocate(size_t bytes); static void *CpuAllocate(size_t bytes);
@ -135,27 +113,6 @@ private:
static uint64_t DeviceToHostBytes; static uint64_t DeviceToHostBytes;
static uint64_t HostToDeviceXfer; static uint64_t HostToDeviceXfer;
static uint64_t DeviceToHostXfer; static uint64_t DeviceToHostXfer;
static uint64_t DeviceEvictions;
static uint64_t DeviceDestroy;
static uint64_t DeviceCacheBytes();
static uint64_t HostCacheBytes();
static MemoryStatus GetFootprint(void) {
MemoryStatus stat;
stat.DeviceBytes = DeviceBytes;
stat.DeviceLRUBytes = DeviceLRUBytes;
stat.DeviceMaxBytes = DeviceMaxBytes;
stat.HostToDeviceBytes = HostToDeviceBytes;
stat.DeviceToHostBytes = DeviceToHostBytes;
stat.HostToDeviceXfer = HostToDeviceXfer;
stat.DeviceToHostXfer = DeviceToHostXfer;
stat.DeviceEvictions = DeviceEvictions;
stat.DeviceDestroy = DeviceDestroy;
stat.DeviceAllocCacheBytes = DeviceCacheBytes();
stat.HostAllocCacheBytes = HostCacheBytes();
return stat;
};
private: private:
#ifndef GRID_UVM #ifndef GRID_UVM
@ -213,8 +170,6 @@ private:
public: public:
static void Print(void); static void Print(void);
static void PrintAll(void);
static void PrintState( void* CpuPtr);
static int isOpen (void* CpuPtr); static int isOpen (void* CpuPtr);
static void ViewClose(void* CpuPtr,ViewMode mode); static void ViewClose(void* CpuPtr,ViewMode mode);
static void *ViewOpen (void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint); static void *ViewOpen (void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);

View File

@ -1,16 +1,10 @@
#include <Grid/GridCore.h> #include <Grid/GridCore.h>
#ifndef GRID_UVM #ifndef GRID_UVM
#warning "Using explicit device memory copies" #warning "Using explicit device memory copies"
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
#define dprintf(...)
#define MAXLINE 512
static char print_buffer [ MAXLINE ];
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer;
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer;
//#define dprintf(...)
//////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////
// For caching copies of data on device // For caching copies of data on device
@ -28,8 +22,6 @@ uint64_t MemoryManager::HostToDeviceBytes;
uint64_t MemoryManager::DeviceToHostBytes; uint64_t MemoryManager::DeviceToHostBytes;
uint64_t MemoryManager::HostToDeviceXfer; uint64_t MemoryManager::HostToDeviceXfer;
uint64_t MemoryManager::DeviceToHostXfer; uint64_t MemoryManager::DeviceToHostXfer;
uint64_t MemoryManager::DeviceEvictions;
uint64_t MemoryManager::DeviceDestroy;
//////////////////////////////////// ////////////////////////////////////
// Priority ordering for unlocked entries // Priority ordering for unlocked entries
@ -111,17 +103,15 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
/////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////
assert(AccCache.state!=Empty); assert(AccCache.state!=Empty);
mprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr); // dprintf("MemoryManager: Discard(%llx) %llx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
assert(AccCache.accLock==0); assert(AccCache.accLock==0);
assert(AccCache.cpuLock==0); assert(AccCache.cpuLock==0);
assert(AccCache.CpuPtr!=(uint64_t)NULL); assert(AccCache.CpuPtr!=(uint64_t)NULL);
if(AccCache.AccPtr) { if(AccCache.AccPtr) {
AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes); AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
DeviceDestroy++;
DeviceBytes -=AccCache.bytes; DeviceBytes -=AccCache.bytes;
LRUremove(AccCache); LRUremove(AccCache);
AccCache.AccPtr=(uint64_t) NULL; // dprintf("MemoryManager: Free(%llx) LRU %lld Total %lld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);
dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);
} }
uint64_t CpuPtr = AccCache.CpuPtr; uint64_t CpuPtr = AccCache.CpuPtr;
EntryErase(CpuPtr); EntryErase(CpuPtr);
@ -130,36 +120,26 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
void MemoryManager::Evict(AcceleratorViewEntry &AccCache) void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
{ {
/////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////
// Make CPU consistent, remove from Accelerator, remove from LRU, LEAVE CPU only entry // Make CPU consistent, remove from Accelerator, remove entry
// Cannot be acclocked. If allocated must be in LRU pool. // Cannot be locked. If allocated must be in LRU pool.
//
// Nov 2022... Felix issue: Allocating two CpuPtrs, can have an entry in LRU-q with CPUlock.
// and require to evict the AccPtr copy. Eviction was a mistake in CpuViewOpen
// but there is a weakness where CpuLock entries are attempted for erase
// Take these OUT LRU queue when CPU locked?
// Cannot take out the table as cpuLock data is important.
/////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////
assert(AccCache.state!=Empty); assert(AccCache.state!=Empty);
mprintf("MemoryManager: Evict cpu %lx acc %lx cpuLock %ld accLock %ld\n", // dprintf("MemoryManager: Evict(%llx) %llx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr, assert(AccCache.accLock==0);
(uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock); assert(AccCache.cpuLock==0);
if (AccCache.accLock!=0) return;
if (AccCache.cpuLock!=0) return;
if(AccCache.state==AccDirty) { if(AccCache.state==AccDirty) {
Flush(AccCache); Flush(AccCache);
} }
assert(AccCache.CpuPtr!=(uint64_t)NULL);
if(AccCache.AccPtr) { if(AccCache.AccPtr) {
AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes); AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
LRUremove(AccCache);
AccCache.AccPtr=(uint64_t)NULL;
AccCache.state=CpuDirty; // CPU primary now
DeviceBytes -=AccCache.bytes; DeviceBytes -=AccCache.bytes;
dprintf("MemoryManager: Free(%lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes); LRUremove(AccCache);
// dprintf("MemoryManager: Free(%llx) footprint now %lld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);
} }
// uint64_t CpuPtr = AccCache.CpuPtr; uint64_t CpuPtr = AccCache.CpuPtr;
DeviceEvictions++; EntryErase(CpuPtr);
// EntryErase(CpuPtr);
} }
void MemoryManager::Flush(AcceleratorViewEntry &AccCache) void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
{ {
@ -169,7 +149,7 @@ void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
assert(AccCache.AccPtr!=(uint64_t)NULL); assert(AccCache.AccPtr!=(uint64_t)NULL);
assert(AccCache.CpuPtr!=(uint64_t)NULL); assert(AccCache.CpuPtr!=(uint64_t)NULL);
acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes); acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
mprintf("MemoryManager: Flush %lx -> %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout); // dprintf("MemoryManager: Flush %llx -> %llx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
DeviceToHostBytes+=AccCache.bytes; DeviceToHostBytes+=AccCache.bytes;
DeviceToHostXfer++; DeviceToHostXfer++;
AccCache.state=Consistent; AccCache.state=Consistent;
@ -184,7 +164,7 @@ void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes); AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
DeviceBytes+=AccCache.bytes; DeviceBytes+=AccCache.bytes;
} }
mprintf("MemoryManager: Clone %lx <- %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout); // dprintf("MemoryManager: Clone %llx <- %llx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes); acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
HostToDeviceBytes+=AccCache.bytes; HostToDeviceBytes+=AccCache.bytes;
HostToDeviceXfer++; HostToDeviceXfer++;
@ -210,7 +190,6 @@ void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache)
void MemoryManager::ViewClose(void* Ptr,ViewMode mode) void MemoryManager::ViewClose(void* Ptr,ViewMode mode)
{ {
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){ if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
dprintf("AcceleratorViewClose %lx\n",(uint64_t)Ptr);
AcceleratorViewClose((uint64_t)Ptr); AcceleratorViewClose((uint64_t)Ptr);
} else if( (mode==CpuRead)||(mode==CpuWrite)){ } else if( (mode==CpuRead)||(mode==CpuWrite)){
CpuViewClose((uint64_t)Ptr); CpuViewClose((uint64_t)Ptr);
@ -222,7 +201,6 @@ void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvis
{ {
uint64_t CpuPtr = (uint64_t)_CpuPtr; uint64_t CpuPtr = (uint64_t)_CpuPtr;
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){ if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
dprintf("AcceleratorViewOpen %lx\n",(uint64_t)CpuPtr);
return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint); return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint);
} else if( (mode==CpuRead)||(mode==CpuWrite)){ } else if( (mode==CpuRead)||(mode==CpuWrite)){
return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint); return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint);
@ -233,16 +211,13 @@ void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvis
} }
void MemoryManager::EvictVictims(uint64_t bytes) void MemoryManager::EvictVictims(uint64_t bytes)
{ {
assert(bytes<DeviceMaxBytes);
while(bytes+DeviceLRUBytes > DeviceMaxBytes){ while(bytes+DeviceLRUBytes > DeviceMaxBytes){
if ( DeviceLRUBytes > 0){ if ( DeviceLRUBytes > 0){
assert(LRU.size()>0); assert(LRU.size()>0);
uint64_t victim = LRU.back(); // From the LRU uint64_t victim = LRU.back();
auto AccCacheIterator = EntryLookup(victim); auto AccCacheIterator = EntryLookup(victim);
auto & AccCache = AccCacheIterator->second; auto & AccCache = AccCacheIterator->second;
Evict(AccCache); Evict(AccCache);
} else {
return;
} }
} }
} }
@ -252,25 +227,18 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
// Find if present, otherwise get or force an empty // Find if present, otherwise get or force an empty
//////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////
if ( EntryPresent(CpuPtr)==0 ){ if ( EntryPresent(CpuPtr)==0 ){
EvictVictims(bytes);
EntryCreate(CpuPtr,bytes,mode,hint); EntryCreate(CpuPtr,bytes,mode,hint);
} }
auto AccCacheIterator = EntryLookup(CpuPtr); auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second; auto & AccCache = AccCacheIterator->second;
if (!AccCache.AccPtr) {
EvictVictims(bytes);
}
assert((mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard)); assert((mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard));
assert(AccCache.cpuLock==0); // Programming error assert(AccCache.cpuLock==0); // Programming error
if(AccCache.state!=Empty) { if(AccCache.state!=Empty) {
dprintf("ViewOpen found entry %lx %lx : %ld %ld accLock %ld\n",
(uint64_t)AccCache.CpuPtr,
(uint64_t)CpuPtr,
(uint64_t)AccCache.bytes,
(uint64_t)bytes,
(uint64_t)AccCache.accLock);
assert(AccCache.CpuPtr == CpuPtr); assert(AccCache.CpuPtr == CpuPtr);
assert(AccCache.bytes ==bytes); assert(AccCache.bytes ==bytes);
} }
@ -305,7 +273,6 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
AccCache.state = Consistent; // Empty + AccRead => Consistent AccCache.state = Consistent; // Empty + AccRead => Consistent
} }
AccCache.accLock= 1; AccCache.accLock= 1;
dprintf("Copied Empty entry into device accLock= %d\n",AccCache.accLock);
} else if(AccCache.state==CpuDirty ){ } else if(AccCache.state==CpuDirty ){
if(mode==AcceleratorWriteDiscard) { if(mode==AcceleratorWriteDiscard) {
CpuDiscard(AccCache); CpuDiscard(AccCache);
@ -318,30 +285,28 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
AccCache.state = Consistent; // CpuDirty + AccRead => Consistent AccCache.state = Consistent; // CpuDirty + AccRead => Consistent
} }
AccCache.accLock++; AccCache.accLock++;
dprintf("CpuDirty entry into device ++accLock= %d\n",AccCache.accLock); // printf("Copied CpuDirty entry into device accLock %d\n",AccCache.accLock);
} else if(AccCache.state==Consistent) { } else if(AccCache.state==Consistent) {
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard)) if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
AccCache.state = AccDirty; // Consistent + AcceleratorWrite=> AccDirty AccCache.state = AccDirty; // Consistent + AcceleratorWrite=> AccDirty
else else
AccCache.state = Consistent; // Consistent + AccRead => Consistent AccCache.state = Consistent; // Consistent + AccRead => Consistent
AccCache.accLock++; AccCache.accLock++;
dprintf("Consistent entry into device ++accLock= %d\n",AccCache.accLock); // printf("Consistent entry into device accLock %d\n",AccCache.accLock);
} else if(AccCache.state==AccDirty) { } else if(AccCache.state==AccDirty) {
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard)) if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
AccCache.state = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty AccCache.state = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty
else else
AccCache.state = AccDirty; // AccDirty + AccRead => AccDirty AccCache.state = AccDirty; // AccDirty + AccRead => AccDirty
AccCache.accLock++; AccCache.accLock++;
dprintf("AccDirty entry ++accLock= %d\n",AccCache.accLock); // printf("AccDirty entry into device accLock %d\n",AccCache.accLock);
} else { } else {
assert(0); assert(0);
} }
assert(AccCache.accLock>0); // If view is opened on device remove from LRU
// If view is opened on device must remove from LRU
if(AccCache.LRU_valid==1){ if(AccCache.LRU_valid==1){
// must possibly remove from LRU as now locked on GPU // must possibly remove from LRU as now locked on GPU
dprintf("AccCache entry removed from LRU \n");
LRUremove(AccCache); LRUremove(AccCache);
} }
@ -362,12 +327,10 @@ void MemoryManager::AcceleratorViewClose(uint64_t CpuPtr)
assert(AccCache.accLock>0); assert(AccCache.accLock>0);
AccCache.accLock--; AccCache.accLock--;
// Move to LRU queue if not locked and close on device // Move to LRU queue if not locked and close on device
if(AccCache.accLock==0) { if(AccCache.accLock==0) {
dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
LRUinsert(AccCache); LRUinsert(AccCache);
} else {
dprintf("AccleratorViewClose %lx AccLock decremented to %ld\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
} }
} }
void MemoryManager::CpuViewClose(uint64_t CpuPtr) void MemoryManager::CpuViewClose(uint64_t CpuPtr)
@ -398,17 +361,13 @@ uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,V
// Find if present, otherwise get or force an empty // Find if present, otherwise get or force an empty
//////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////
if ( EntryPresent(CpuPtr)==0 ){ if ( EntryPresent(CpuPtr)==0 ){
EvictVictims(bytes);
EntryCreate(CpuPtr,bytes,mode,transient); EntryCreate(CpuPtr,bytes,mode,transient);
} }
auto AccCacheIterator = EntryLookup(CpuPtr); auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second; auto & AccCache = AccCacheIterator->second;
// CPU doesn't need to free space
// if (!AccCache.AccPtr) {
// EvictVictims(bytes);
// }
assert((mode==CpuRead)||(mode==CpuWrite)); assert((mode==CpuRead)||(mode==CpuWrite));
assert(AccCache.accLock==0); // Programming error assert(AccCache.accLock==0); // Programming error
@ -460,29 +419,20 @@ void MemoryManager::NotifyDeletion(void *_ptr)
} }
void MemoryManager::Print(void) void MemoryManager::Print(void)
{ {
PrintBytes(); std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
std::cout << GridLogMessage << "--------------------------------------------" << std::endl; std::cout << GridLogDebug << "Memory Manager " << std::endl;
std::cout << GridLogMessage << "Memory Manager " << std::endl; std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
std::cout << GridLogMessage << "--------------------------------------------" << std::endl; std::cout << GridLogDebug << DeviceBytes << " bytes allocated on device " << std::endl;
std::cout << GridLogMessage << DeviceBytes << " bytes allocated on device " << std::endl; std::cout << GridLogDebug << DeviceLRUBytes<< " bytes evictable on device " << std::endl;
std::cout << GridLogMessage << DeviceLRUBytes<< " bytes evictable on device " << std::endl; std::cout << GridLogDebug << DeviceMaxBytes<< " bytes max on device " << std::endl;
std::cout << GridLogMessage << DeviceMaxBytes<< " bytes max on device " << std::endl; std::cout << GridLogDebug << HostToDeviceXfer << " transfers to device " << std::endl;
std::cout << GridLogMessage << HostToDeviceXfer << " transfers to device " << std::endl; std::cout << GridLogDebug << DeviceToHostXfer << " transfers from device " << std::endl;
std::cout << GridLogMessage << DeviceToHostXfer << " transfers from device " << std::endl; std::cout << GridLogDebug << HostToDeviceBytes<< " bytes transfered to device " << std::endl;
std::cout << GridLogMessage << HostToDeviceBytes<< " bytes transfered to device " << std::endl; std::cout << GridLogDebug << DeviceToHostBytes<< " bytes transfered from device " << std::endl;
std::cout << GridLogMessage << DeviceToHostBytes<< " bytes transfered from device " << std::endl; std::cout << GridLogDebug << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl;
std::cout << GridLogMessage << DeviceEvictions << " Evictions from device " << std::endl; std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
std::cout << GridLogMessage << DeviceDestroy << " Destroyed vectors on device " << std::endl; std::cout << GridLogDebug << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl;
std::cout << GridLogMessage << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl; std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
}
void MemoryManager::PrintAll(void)
{
Print();
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
std::cout << GridLogMessage << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl;
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){ for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){
auto &AccCache = it->second; auto &AccCache = it->second;
@ -492,13 +442,13 @@ void MemoryManager::PrintAll(void)
if ( AccCache.state==AccDirty ) str = std::string("AccDirty"); if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
if ( AccCache.state==Consistent)str = std::string("Consistent"); if ( AccCache.state==Consistent)str = std::string("Consistent");
std::cout << GridLogMessage << "0x"<<std::hex<<AccCache.CpuPtr<<std::dec std::cout << GridLogDebug << "0x"<<std::hex<<AccCache.CpuPtr<<std::dec
<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str << "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
<< "\t" << AccCache.cpuLock << "\t" << AccCache.cpuLock
<< "\t" << AccCache.accLock << "\t" << AccCache.accLock
<< "\t" << AccCache.LRU_valid<<std::endl; << "\t" << AccCache.LRU_valid<<std::endl;
} }
std::cout << GridLogMessage << "--------------------------------------------" << std::endl; std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
}; };
int MemoryManager::isOpen (void* _CpuPtr) int MemoryManager::isOpen (void* _CpuPtr)
@ -512,89 +462,6 @@ int MemoryManager::isOpen (void* _CpuPtr)
return 0; return 0;
} }
} }
void MemoryManager::Audit(std::string s)
{
uint64_t CpuBytes=0;
uint64_t AccBytes=0;
uint64_t LruBytes1=0;
uint64_t LruBytes2=0;
uint64_t LruCnt=0;
std::cout << " Memory Manager::Audit() from "<<s<<std::endl;
for(auto it=LRU.begin();it!=LRU.end();it++){
uint64_t cpuPtr = *it;
assert(EntryPresent(cpuPtr));
auto AccCacheIterator = EntryLookup(cpuPtr);
auto & AccCache = AccCacheIterator->second;
LruBytes2+=AccCache.bytes;
assert(AccCache.LRU_valid==1);
assert(AccCache.LRU_entry==it);
}
std::cout << " Memory Manager::Audit() LRU queue matches table entries "<<std::endl;
for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){
auto &AccCache = it->second;
std::string str;
if ( AccCache.state==Empty ) str = std::string("Empty");
if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty");
if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
if ( AccCache.state==Consistent)str = std::string("Consistent");
CpuBytes+=AccCache.bytes;
if( AccCache.AccPtr ) AccBytes+=AccCache.bytes;
if( AccCache.LRU_valid ) LruBytes1+=AccCache.bytes;
if( AccCache.LRU_valid ) LruCnt++;
if ( AccCache.cpuLock || AccCache.accLock ) {
assert(AccCache.LRU_valid==0);
std::cout << GridLogError << s<< "\n\t 0x"<<std::hex<<AccCache.CpuPtr<<std::dec
<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
<< "\t cpuLock " << AccCache.cpuLock
<< "\t accLock " << AccCache.accLock
<< "\t LRUvalid " << AccCache.LRU_valid<<std::endl;
}
assert( AccCache.cpuLock== 0 ) ;
assert( AccCache.accLock== 0 ) ;
}
std::cout << " Memory Manager::Audit() no locked table entries "<<std::endl;
assert(LruBytes1==LruBytes2);
assert(LruBytes1==DeviceLRUBytes);
std::cout << " Memory Manager::Audit() evictable bytes matches sum over table "<<std::endl;
assert(AccBytes==DeviceBytes);
std::cout << " Memory Manager::Audit() device bytes matches sum over table "<<std::endl;
assert(LruCnt == LRU.size());
std::cout << " Memory Manager::Audit() LRU entry count matches "<<std::endl;
}
void MemoryManager::PrintState(void* _CpuPtr)
{
uint64_t CpuPtr = (uint64_t)_CpuPtr;
if ( EntryPresent(CpuPtr) ){
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
std::string str;
if ( AccCache.state==Empty ) str = std::string("Empty");
if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty");
if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
if ( AccCache.state==Consistent)str = std::string("Consistent");
if ( AccCache.state==EvictNext) str = std::string("EvictNext");
std::cout << GridLogMessage << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl;
std::cout << GridLogMessage << "\tx"<<std::hex<<AccCache.CpuPtr<<std::dec
<< "\tx"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
<< "\t" << AccCache.cpuLock
<< "\t" << AccCache.accLock
<< "\t" << AccCache.LRU_valid<<std::endl;
} else {
std::cout << GridLogMessage << "No Entry in AccCache table." << std::endl;
}
}
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -1,6 +1,7 @@
#include <Grid/GridCore.h> #include <Grid/GridCore.h>
#ifdef GRID_UVM #ifdef GRID_UVM
#warning "Grid is assuming unified virtual memory address space"
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
///////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////
// View management is 1:1 address space mapping // View management is 1:1 address space mapping
@ -12,19 +13,11 @@ uint64_t MemoryManager::HostToDeviceBytes;
uint64_t MemoryManager::DeviceToHostBytes; uint64_t MemoryManager::DeviceToHostBytes;
uint64_t MemoryManager::HostToDeviceXfer; uint64_t MemoryManager::HostToDeviceXfer;
uint64_t MemoryManager::DeviceToHostXfer; uint64_t MemoryManager::DeviceToHostXfer;
uint64_t MemoryManager::DeviceEvictions;
uint64_t MemoryManager::DeviceDestroy;
void MemoryManager::Audit(std::string s){};
void MemoryManager::ViewClose(void* AccPtr,ViewMode mode){}; void MemoryManager::ViewClose(void* AccPtr,ViewMode mode){};
void *MemoryManager::ViewOpen(void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint){ return CpuPtr; }; void *MemoryManager::ViewOpen(void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint){ return CpuPtr; };
int MemoryManager::isOpen (void* CpuPtr) { return 0;} int MemoryManager::isOpen (void* CpuPtr) { return 0;}
void MemoryManager::PrintState(void* CpuPtr)
{
std::cout << GridLogMessage << "Host<->Device memory movement not currently managed by Grid." << std::endl;
};
void MemoryManager::Print(void){}; void MemoryManager::Print(void){};
void MemoryManager::PrintAll(void){};
void MemoryManager::NotifyDeletion(void *ptr){}; void MemoryManager::NotifyDeletion(void *ptr){};
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -36,7 +36,7 @@ static const int CbBlack=1;
static const int Even =CbRed; static const int Even =CbRed;
static const int Odd =CbBlack; static const int Odd =CbBlack;
accelerator_inline int RedBlackCheckerBoardFromOindex (int oindex,const Coordinate &rdim,const Coordinate &chk_dim_msk) accelerator_inline int RedBlackCheckerBoardFromOindex (int oindex, Coordinate &rdim, Coordinate &chk_dim_msk)
{ {
int nd=rdim.size(); int nd=rdim.size();
Coordinate coor(nd); Coordinate coor(nd);

View File

@ -33,8 +33,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
bool Stencil_force_mpi = true;
/////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////
// Info that is setup once and indept of cartesian layout // Info that is setup once and indept of cartesian layout
/////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////

View File

@ -1,3 +1,4 @@
/************************************************************************************* /*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid Grid physics library, www.github.com/paboyle/Grid
@ -35,8 +36,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
extern bool Stencil_force_mpi ;
class CartesianCommunicator : public SharedMemory { class CartesianCommunicator : public SharedMemory {
public: public:
@ -53,11 +52,10 @@ public:
// Communicator should know nothing of the physics grid, only processor grid. // Communicator should know nothing of the physics grid, only processor grid.
//////////////////////////////////////////// ////////////////////////////////////////////
int _Nprocessors; // How many in all int _Nprocessors; // How many in all
int _processor; // linear processor rank
unsigned long _ndimension;
Coordinate _shm_processors; // Which dimensions get relayed out over processors lanes.
Coordinate _processors; // Which dimensions get relayed out over processors lanes. Coordinate _processors; // Which dimensions get relayed out over processors lanes.
int _processor; // linear processor rank
Coordinate _processor_coor; // linear processor coordinate Coordinate _processor_coor; // linear processor coordinate
unsigned long _ndimension;
static Grid_MPI_Comm communicator_world; static Grid_MPI_Comm communicator_world;
Grid_MPI_Comm communicator; Grid_MPI_Comm communicator;
std::vector<Grid_MPI_Comm> communicator_halo; std::vector<Grid_MPI_Comm> communicator_halo;
@ -98,7 +96,6 @@ public:
int BossRank(void) ; int BossRank(void) ;
int ThisRank(void) ; int ThisRank(void) ;
const Coordinate & ThisProcessorCoor(void) ; const Coordinate & ThisProcessorCoor(void) ;
const Coordinate & ShmGrid(void) { return _shm_processors; } ;
const Coordinate & ProcessorGrid(void) ; const Coordinate & ProcessorGrid(void) ;
int ProcessorCount(void) ; int ProcessorCount(void) ;
@ -107,13 +104,10 @@ public:
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
static int RankWorld(void) ; static int RankWorld(void) ;
static void BroadcastWorld(int root,void* data, int bytes); static void BroadcastWorld(int root,void* data, int bytes);
static void BarrierWorld(void);
//////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////
// Reduction // Reduction
//////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////
void GlobalMax(RealD &);
void GlobalMax(RealF &);
void GlobalSum(RealF &); void GlobalSum(RealF &);
void GlobalSumVector(RealF *,int N); void GlobalSumVector(RealF *,int N);
void GlobalSum(RealD &); void GlobalSum(RealD &);
@ -131,7 +125,7 @@ public:
template<class obj> void GlobalSum(obj &o){ template<class obj> void GlobalSum(obj &o){
typedef typename obj::scalar_type scalar_type; typedef typename obj::scalar_type scalar_type;
int words = sizeof(obj)/sizeof(scalar_type); int words = sizeof(obj)/sizeof(scalar_type);
scalar_type * ptr = (scalar_type *)& o; // Safe alias scalar_type * ptr = (scalar_type *)& o;
GlobalSumVector(ptr,words); GlobalSumVector(ptr,words);
} }
@ -144,18 +138,33 @@ public:
int recv_from_rank, int recv_from_rank,
int bytes); int bytes);
double StencilSendToRecvFrom(void *xmit, void SendRecvPacket(void *xmit,
int xmit_to_rank,int do_xmit,
void *recv, void *recv,
int recv_from_rank,int do_recv, int xmit_to_rank,
int recv_from_rank,
int bytes);
void SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,
void *recv,
int recv_from_rank,
int bytes);
void SendToRecvFromComplete(std::vector<CommsRequest_t> &waitall);
double StencilSendToRecvFrom(void *xmit,
int xmit_to_rank,
void *recv,
int recv_from_rank,
int bytes,int dir); int bytes,int dir);
double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list, double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit, void *xmit,
int xmit_to_rank,int do_xmit, int xmit_to_rank,
void *recv, void *recv,
int recv_from_rank,int do_recv, int recv_from_rank,
int xbytes,int rbytes,int dir); int bytes,int dir);
void StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int i); void StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int i);

View File

@ -43,16 +43,8 @@ void CartesianCommunicator::Init(int *argc, char ***argv)
MPI_Initialized(&flag); // needed to coexist with other libs apparently MPI_Initialized(&flag); // needed to coexist with other libs apparently
if ( !flag ) { if ( !flag ) {
#ifndef GRID_COMMS_THREADS
nCommThreads=1;
// wrong results here too
// For now: comms-overlap leads to wrong results in Benchmark_wilson even on single node MPI runs
// other comms schemes are ok
MPI_Init_thread(argc,argv,MPI_THREAD_SERIALIZED,&provided);
#else
MPI_Init_thread(argc,argv,MPI_THREAD_MULTIPLE,&provided); MPI_Init_thread(argc,argv,MPI_THREAD_MULTIPLE,&provided);
#endif
//If only 1 comms thread we require any threading mode other than SINGLE, but for multiple comms threads we need MULTIPLE //If only 1 comms thread we require any threading mode other than SINGLE, but for multiple comms threads we need MULTIPLE
if( (nCommThreads == 1) && (provided == MPI_THREAD_SINGLE) ) { if( (nCommThreads == 1) && (provided == MPI_THREAD_SINGLE) ) {
assert(0); assert(0);
@ -106,7 +98,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
// Remap using the shared memory optimising routine // Remap using the shared memory optimising routine
// The remap creates a comm which must be freed // The remap creates a comm which must be freed
//////////////////////////////////////////////////// ////////////////////////////////////////////////////
GlobalSharedMemory::OptimalCommunicator (processors,optimal_comm,_shm_processors); GlobalSharedMemory::OptimalCommunicator (processors,optimal_comm);
InitFromMPICommunicator(processors,optimal_comm); InitFromMPICommunicator(processors,optimal_comm);
SetCommunicator(optimal_comm); SetCommunicator(optimal_comm);
/////////////////////////////////////////////////// ///////////////////////////////////////////////////
@ -124,13 +116,12 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
int parent_ndimension = parent._ndimension; assert(_ndimension >= parent._ndimension); int parent_ndimension = parent._ndimension; assert(_ndimension >= parent._ndimension);
Coordinate parent_processor_coor(_ndimension,0); Coordinate parent_processor_coor(_ndimension,0);
Coordinate parent_processors (_ndimension,1); Coordinate parent_processors (_ndimension,1);
Coordinate shm_processors (_ndimension,1);
// Can make 5d grid from 4d etc... // Can make 5d grid from 4d etc...
int pad = _ndimension-parent_ndimension; int pad = _ndimension-parent_ndimension;
for(int d=0;d<parent_ndimension;d++){ for(int d=0;d<parent_ndimension;d++){
parent_processor_coor[pad+d]=parent._processor_coor[d]; parent_processor_coor[pad+d]=parent._processor_coor[d];
parent_processors [pad+d]=parent._processors[d]; parent_processors [pad+d]=parent._processors[d];
shm_processors [pad+d]=parent._shm_processors[d];
} }
////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////
@ -155,7 +146,6 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
ccoor[d] = parent_processor_coor[d] % processors[d]; ccoor[d] = parent_processor_coor[d] % processors[d];
scoor[d] = parent_processor_coor[d] / processors[d]; scoor[d] = parent_processor_coor[d] / processors[d];
ssize[d] = parent_processors[d] / processors[d]; ssize[d] = parent_processors[d] / processors[d];
if ( processors[d] < shm_processors[d] ) shm_processors[d] = processors[d]; // subnode splitting.
} }
// rank within subcomm ; srank is rank of subcomm within blocks of subcomms // rank within subcomm ; srank is rank of subcomm within blocks of subcomms
@ -277,16 +267,6 @@ void CartesianCommunicator::GlobalXOR(uint64_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_BXOR,communicator); int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_BXOR,communicator);
assert(ierr==0); assert(ierr==0);
} }
void CartesianCommunicator::GlobalMax(float &f)
{
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_MAX,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalMax(double &d)
{
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSum(float &f){ void CartesianCommunicator::GlobalSum(float &f){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator); int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
assert(ierr==0); assert(ierr==0);
@ -314,46 +294,78 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
int bytes) int bytes)
{ {
std::vector<CommsRequest_t> reqs(0); std::vector<CommsRequest_t> reqs(0);
unsigned long xcrc = crc32(0L, Z_NULL, 0); // unsigned long xcrc = crc32(0L, Z_NULL, 0);
unsigned long rcrc = crc32(0L, Z_NULL, 0); // unsigned long rcrc = crc32(0L, Z_NULL, 0);
// xcrc = crc32(xcrc,(unsigned char *)xmit,bytes);
SendToRecvFromBegin(reqs,xmit,dest,recv,from,bytes);
SendToRecvFromComplete(reqs);
// rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
// printf("proc %d SendToRecvFrom %d bytes %lx %lx\n",_processor,bytes,xcrc,rcrc);
}
void CartesianCommunicator::SendRecvPacket(void *xmit,
void *recv,
int sender,
int receiver,
int bytes)
{
MPI_Status stat;
assert(sender != receiver);
int tag = sender;
if ( _processor == sender ) {
MPI_Send(xmit, bytes, MPI_CHAR,receiver,tag,communicator);
}
if ( _processor == receiver ) {
MPI_Recv(recv, bytes, MPI_CHAR,sender,tag,communicator,&stat);
}
}
// Basic Halo comms primitive
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
int from,
int bytes)
{
int myrank = _processor; int myrank = _processor;
int ierr; int ierr;
// Enforce no UVM in comms, device or host OK if ( CommunicatorPolicy == CommunicatorPolicyConcurrent ) {
assert(acceleratorIsCommunicable(xmit)); MPI_Request xrq;
assert(acceleratorIsCommunicable(recv)); MPI_Request rrq;
ierr =MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator,&rrq);
ierr|=MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator,&xrq);
assert(ierr==0);
list.push_back(xrq);
list.push_back(rrq);
} else {
// Give the CPU to MPI immediately; can use threads to overlap optionally // Give the CPU to MPI immediately; can use threads to overlap optionally
// printf("proc %d SendToRecvFrom %d bytes Sendrecv \n",_processor,bytes);
ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,dest,myrank, ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,dest,myrank,
recv,bytes,MPI_CHAR,from, from, recv,bytes,MPI_CHAR,from, from,
communicator,MPI_STATUS_IGNORE); communicator,MPI_STATUS_IGNORE);
assert(ierr==0); assert(ierr==0);
}
// xcrc = crc32(xcrc,(unsigned char *)xmit,bytes);
// rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
// printf("proc %d SendToRecvFrom %d bytes xcrc %lx rcrc %lx\n",_processor,bytes,xcrc,rcrc); fflush
} }
// Basic Halo comms primitive
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit, double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
int dest, int dox, int dest,
void *recv, void *recv,
int from, int dor, int from,
int bytes,int dir) int bytes,int dir)
{ {
std::vector<CommsRequest_t> list; std::vector<CommsRequest_t> list;
double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir); double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,recv,from,bytes,dir);
StencilSendToRecvFromComplete(list,dir); StencilSendToRecvFromComplete(list,dir);
return offbytes; return offbytes;
} }
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list, double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit, void *xmit,
int dest,int dox, int dest,
void *recv, void *recv,
int from,int dor, int from,
int xbytes,int rbytes,int dir) int bytes,int dir)
{ {
int ncomm =communicator_halo.size(); int ncomm =communicator_halo.size();
int commdir=dir%ncomm; int commdir=dir%ncomm;
@ -370,35 +382,36 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
assert(from != _processor); assert(from != _processor);
assert(gme == ShmRank); assert(gme == ShmRank);
double off_node_bytes=0.0; double off_node_bytes=0.0;
int tag;
if ( dor ) { if ( gfrom ==MPI_UNDEFINED) {
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) { ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator_halo[commdir],&rrq);
tag= dir+from*32;
ierr=MPI_Irecv(recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
assert(ierr==0); assert(ierr==0);
list.push_back(rrq); list.push_back(rrq);
off_node_bytes+=rbytes; off_node_bytes+=bytes;
}
} }
if (dox) { if ( gdest == MPI_UNDEFINED ) {
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) { ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator_halo[commdir],&xrq);
tag= dir+_processor*32;
ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
assert(ierr==0); assert(ierr==0);
list.push_back(xrq); list.push_back(xrq);
off_node_bytes+=xbytes; off_node_bytes+=bytes;
} else {
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
assert(shm!=NULL);
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
} }
if ( CommunicatorPolicy == CommunicatorPolicySequential ) {
this->StencilSendToRecvFromComplete(list,dir);
} }
return off_node_bytes; return off_node_bytes;
} }
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir) void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
{
SendToRecvFromComplete(waitall);
}
void CartesianCommunicator::StencilBarrier(void)
{
MPI_Barrier (ShmComm);
}
void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
{ {
int nreq=list.size(); int nreq=list.size();
@ -409,13 +422,6 @@ void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsReque
assert(ierr==0); assert(ierr==0);
list.resize(0); list.resize(0);
} }
void CartesianCommunicator::StencilBarrier(void)
{
MPI_Barrier (ShmComm);
}
//void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
//{
//}
void CartesianCommunicator::Barrier(void) void CartesianCommunicator::Barrier(void)
{ {
int ierr = MPI_Barrier(communicator); int ierr = MPI_Barrier(communicator);
@ -435,10 +441,6 @@ int CartesianCommunicator::RankWorld(void){
MPI_Comm_rank(communicator_world,&r); MPI_Comm_rank(communicator_world,&r);
return r; return r;
} }
void CartesianCommunicator::BarrierWorld(void){
int ierr = MPI_Barrier(communicator_world);
assert(ierr==0);
}
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
{ {
int ierr= MPI_Bcast(data, int ierr= MPI_Bcast(data,
@ -481,3 +483,5 @@ void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t
} }
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -45,14 +45,12 @@ void CartesianCommunicator::Init(int *argc, char *** arv)
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank) CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)
: CartesianCommunicator(processors) : CartesianCommunicator(processors)
{ {
_shm_processors = Coordinate(processors.size(),1);
srank=0; srank=0;
SetCommunicator(communicator_world); SetCommunicator(communicator_world);
} }
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors) CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
{ {
_shm_processors = Coordinate(processors.size(),1);
_processors = processors; _processors = processors;
_ndimension = processors.size(); assert(_ndimension>=1); _ndimension = processors.size(); assert(_ndimension>=1);
_processor_coor.resize(_ndimension); _processor_coor.resize(_ndimension);
@ -69,8 +67,6 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
CartesianCommunicator::~CartesianCommunicator(){} CartesianCommunicator::~CartesianCommunicator(){}
void CartesianCommunicator::GlobalMax(float &){}
void CartesianCommunicator::GlobalMax(double &){}
void CartesianCommunicator::GlobalSum(float &){} void CartesianCommunicator::GlobalSum(float &){}
void CartesianCommunicator::GlobalSumVector(float *,int N){} void CartesianCommunicator::GlobalSumVector(float *,int N){}
void CartesianCommunicator::GlobalSum(double &){} void CartesianCommunicator::GlobalSum(double &){}
@ -81,6 +77,15 @@ void CartesianCommunicator::GlobalSumVector(uint64_t *,int N){}
void CartesianCommunicator::GlobalXOR(uint32_t &){} void CartesianCommunicator::GlobalXOR(uint32_t &){}
void CartesianCommunicator::GlobalXOR(uint64_t &){} void CartesianCommunicator::GlobalXOR(uint64_t &){}
void CartesianCommunicator::SendRecvPacket(void *xmit,
void *recv,
int xmit_to_rank,
int recv_from_rank,
int bytes)
{
assert(0);
}
// Basic Halo comms primitive -- should never call in single node // Basic Halo comms primitive -- should never call in single node
void CartesianCommunicator::SendToRecvFrom(void *xmit, void CartesianCommunicator::SendToRecvFrom(void *xmit,
@ -91,6 +96,20 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
{ {
assert(0); assert(0);
} }
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
int from,
int bytes)
{
assert(0);
}
void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
{
assert(0);
}
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes) void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
{ {
bcopy(in,out,bytes*words); bcopy(in,out,bytes*words);
@ -104,7 +123,6 @@ int CartesianCommunicator::RankWorld(void){return 0;}
void CartesianCommunicator::Barrier(void){} void CartesianCommunicator::Barrier(void){}
void CartesianCommunicator::Broadcast(int root,void* data, int bytes) {} void CartesianCommunicator::Broadcast(int root,void* data, int bytes) {}
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) { } void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) { }
void CartesianCommunicator::BarrierWorld(void) { }
int CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor) { return 0;} int CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor) { return 0;}
void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor){ coor = _processor_coor; } void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor){ coor = _processor_coor; }
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest) void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
@ -114,24 +132,31 @@ void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest
} }
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit, double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
int xmit_to_rank,int dox, int xmit_to_rank,
void *recv, void *recv,
int recv_from_rank,int dor, int recv_from_rank,
int bytes, int dir) int bytes, int dir)
{ {
std::vector<CommsRequest_t> list;
// Discard the "dir"
SendToRecvFromBegin (list,xmit,xmit_to_rank,recv,recv_from_rank,bytes);
SendToRecvFromComplete(list);
return 2.0*bytes; return 2.0*bytes;
} }
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list, double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit, void *xmit,
int xmit_to_rank,int dox, int xmit_to_rank,
void *recv, void *recv,
int recv_from_rank,int dor, int recv_from_rank,
int xbytes,int rbytes, int dir) int bytes, int dir)
{ {
return xbytes+rbytes; // Discard the "dir"
SendToRecvFromBegin(list,xmit,xmit_to_rank,recv,recv_from_rank,bytes);
return 2.0*bytes;
} }
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir) void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
{ {
SendToRecvFromComplete(waitall);
} }
void CartesianCommunicator::StencilBarrier(void){}; void CartesianCommunicator::StencilBarrier(void){};

View File

@ -91,59 +91,6 @@ void *SharedMemory::ShmBufferSelf(void)
//std::cerr << "ShmBufferSelf "<<ShmRank<<" "<<std::hex<< ShmCommBufs[ShmRank] <<std::dec<<std::endl; //std::cerr << "ShmBufferSelf "<<ShmRank<<" "<<std::hex<< ShmCommBufs[ShmRank] <<std::dec<<std::endl;
return ShmCommBufs[ShmRank]; return ShmCommBufs[ShmRank];
} }
static inline int divides(int a,int b)
{
return ( b == ( (b/a)*a ) );
}
void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims)
{
////////////////////////////////////////////////////////////////
// Allow user to configure through environment variable
////////////////////////////////////////////////////////////////
char* str = getenv(("GRID_SHM_DIMS_" + std::to_string(ShmDims.size())).c_str());
if ( str ) {
std::vector<int> IntShmDims;
GridCmdOptionIntVector(std::string(str),IntShmDims);
assert(IntShmDims.size() == WorldDims.size());
long ShmSize = 1;
for (int dim=0;dim<WorldDims.size();dim++) {
ShmSize *= (ShmDims[dim] = IntShmDims[dim]);
assert(divides(ShmDims[dim],WorldDims[dim]));
}
assert(ShmSize == WorldShmSize);
return;
}
////////////////////////////////////////////////////////////////
// Powers of 2,3,5 only in prime decomposition for now
////////////////////////////////////////////////////////////////
int ndimension = WorldDims.size();
ShmDims=Coordinate(ndimension,1);
std::vector<int> primes({2,3,5});
int dim = 0;
int last_dim = ndimension - 1;
int AutoShmSize = 1;
while(AutoShmSize != WorldShmSize) {
int p;
for(p=0;p<primes.size();p++) {
int prime=primes[p];
if ( divides(prime,WorldDims[dim]/ShmDims[dim])
&& divides(prime,WorldShmSize/AutoShmSize) ) {
AutoShmSize*=prime;
ShmDims[dim]*=prime;
last_dim = dim;
break;
}
}
if (p == primes.size() && last_dim == dim) {
std::cerr << "GlobalSharedMemory::GetShmDims failed" << std::endl;
exit(EXIT_FAILURE);
}
dim=(dim+1) %ndimension;
}
}
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -93,17 +93,16 @@ public:
// Create an optimal reordered communicator that makes MPI_Cart_create get it right // Create an optimal reordered communicator that makes MPI_Cart_create get it right
////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////
static void Init(Grid_MPI_Comm comm); // Typically MPI_COMM_WORLD static void Init(Grid_MPI_Comm comm); // Typically MPI_COMM_WORLD
// Turns MPI_COMM_WORLD into right layout for Cartesian static void OptimalCommunicator (const Coordinate &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
static void OptimalCommunicator (const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims); static void OptimalCommunicatorHypercube (const Coordinate &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
static void OptimalCommunicatorHypercube (const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims); static void OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
static void OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims);
static void GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims); static void GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims);
/////////////////////////////////////////////////// ///////////////////////////////////////////////////
// Provide shared memory facilities off comm world // Provide shared memory facilities off comm world
/////////////////////////////////////////////////// ///////////////////////////////////////////////////
static void SharedMemoryAllocate(uint64_t bytes, int flags); static void SharedMemoryAllocate(uint64_t bytes, int flags);
static void SharedMemoryFree(void); static void SharedMemoryFree(void);
static void SharedMemoryCopy(void *dest,void *src,size_t bytes); static void SharedMemoryCopy(void *dest,const void *src,size_t bytes);
static void SharedMemoryZero(void *dest,size_t bytes); static void SharedMemoryZero(void *dest,size_t bytes);
}; };

View File

@ -7,7 +7,6 @@
Copyright (C) 2015 Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk> Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
@ -27,131 +26,15 @@ Author: Christoph Lehner <christoph@lhnr.de>
*************************************************************************************/ *************************************************************************************/
/* END LEGAL */ /* END LEGAL */
#define Mheader "SharedMemoryMpi: "
#include <Grid/GridCore.h> #include <Grid/GridCore.h>
#include <pwd.h> #include <pwd.h>
#ifdef GRID_CUDA #ifdef GRID_CUDA
#include <cuda_runtime_api.h> #include <cuda_runtime_api.h>
#endif #endif
#ifdef GRID_HIP
#include <hip/hip_runtime_api.h>
#endif
#ifdef GRID_SYCL
#define GRID_SYCL_LEVEL_ZERO_IPC
#include <syscall.h>
#define SHM_SOCKETS
#endif
#include <sys/socket.h>
#include <sys/un.h>
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
#define header "SharedMemoryMpi: "
#ifdef SHM_SOCKETS
/*
* Barbaric extra intranode communication route in case we need sockets to pass FDs
* Forced by level_zero not being nicely designed
*/
static int sock;
static const char *sock_path_fmt = "/tmp/GridUnixSocket.%d";
static char sock_path[256];
class UnixSockets {
public:
static void Open(int rank)
{
int errnum;
sock = socket(AF_UNIX, SOCK_DGRAM, 0); assert(sock>0);
struct sockaddr_un sa_un = { 0 };
sa_un.sun_family = AF_UNIX;
snprintf(sa_un.sun_path, sizeof(sa_un.sun_path),sock_path_fmt,rank);
unlink(sa_un.sun_path);
if (bind(sock, (struct sockaddr *)&sa_un, sizeof(sa_un))) {
perror("bind failure");
exit(EXIT_FAILURE);
}
}
static int RecvFileDescriptor(void)
{
int n;
int fd;
char buf[1];
struct iovec iov;
struct msghdr msg;
struct cmsghdr *cmsg;
char cms[CMSG_SPACE(sizeof(int))];
iov.iov_base = buf;
iov.iov_len = 1;
memset(&msg, 0, sizeof msg);
msg.msg_name = 0;
msg.msg_namelen = 0;
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = (caddr_t)cms;
msg.msg_controllen = sizeof cms;
if((n=recvmsg(sock, &msg, 0)) < 0) {
perror("recvmsg failed");
return -1;
}
if(n == 0){
perror("recvmsg returned 0");
return -1;
}
cmsg = CMSG_FIRSTHDR(&msg);
memmove(&fd, CMSG_DATA(cmsg), sizeof(int));
return fd;
}
static void SendFileDescriptor(int fildes,int xmit_to_rank)
{
struct msghdr msg;
struct iovec iov;
struct cmsghdr *cmsg = NULL;
char ctrl[CMSG_SPACE(sizeof(int))];
char data = ' ';
memset(&msg, 0, sizeof(struct msghdr));
memset(ctrl, 0, CMSG_SPACE(sizeof(int)));
iov.iov_base = &data;
iov.iov_len = sizeof(data);
sprintf(sock_path,sock_path_fmt,xmit_to_rank);
struct sockaddr_un sa_un = { 0 };
sa_un.sun_family = AF_UNIX;
snprintf(sa_un.sun_path, sizeof(sa_un.sun_path),sock_path_fmt,xmit_to_rank);
msg.msg_name = (void *)&sa_un;
msg.msg_namelen = sizeof(sa_un);
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_controllen = CMSG_SPACE(sizeof(int));
msg.msg_control = ctrl;
cmsg = CMSG_FIRSTHDR(&msg);
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
cmsg->cmsg_len = CMSG_LEN(sizeof(int));
*((int *) CMSG_DATA(cmsg)) = fildes;
sendmsg(sock, &msg, 0);
};
};
#endif
/*Construct from an MPI communicator*/ /*Construct from an MPI communicator*/
void GlobalSharedMemory::Init(Grid_MPI_Comm comm) void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
{ {
@ -164,18 +47,13 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
///////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////
// Split into groups that can share memory // Split into groups that can share memory
///////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////
#ifndef GRID_MPI3_SHM_NONE
MPI_Comm_split_type(comm, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&WorldShmComm); MPI_Comm_split_type(comm, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&WorldShmComm);
#else
MPI_Comm_split(comm, WorldRank, 0, &WorldShmComm);
#endif
MPI_Comm_rank(WorldShmComm ,&WorldShmRank); MPI_Comm_rank(WorldShmComm ,&WorldShmRank);
MPI_Comm_size(WorldShmComm ,&WorldShmSize); MPI_Comm_size(WorldShmComm ,&WorldShmSize);
if ( WorldRank == 0) { if ( WorldRank == 0) {
std::cout << Mheader " World communicator of size " <<WorldSize << std::endl; std::cout << header " World communicator of size " <<WorldSize << std::endl;
std::cout << Mheader " Node communicator of size " <<WorldShmSize << std::endl; std::cout << header " Node communicator of size " <<WorldShmSize << std::endl;
} }
// WorldShmComm, WorldShmSize, WorldShmRank // WorldShmComm, WorldShmSize, WorldShmRank
@ -183,7 +61,6 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
WorldNodes = WorldSize/WorldShmSize; WorldNodes = WorldSize/WorldShmSize;
assert( (WorldNodes * WorldShmSize) == WorldSize ); assert( (WorldNodes * WorldShmSize) == WorldSize );
// FIXME: Check all WorldShmSize are the same ? // FIXME: Check all WorldShmSize are the same ?
///////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////
@ -262,7 +139,7 @@ int Log2Size(int TwoToPower,int MAXLOG2)
} }
return log2size; return log2size;
} }
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM) void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
{ {
////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////
// Look and see if it looks like an HPE 8600 based on hostname conventions // Look and see if it looks like an HPE 8600 based on hostname conventions
@ -275,11 +152,46 @@ void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_M
gethostname(name,namelen); gethostname(name,namelen);
int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ; int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ;
if(nscan==3 && HPEhypercube ) OptimalCommunicatorHypercube(processors,optimal_comm,SHM); if(nscan==3 && HPEhypercube ) OptimalCommunicatorHypercube(processors,optimal_comm);
else OptimalCommunicatorSharedMemory(processors,optimal_comm,SHM); else OptimalCommunicatorSharedMemory(processors,optimal_comm);
} }
static inline int divides(int a,int b)
{
return ( b == ( (b/a)*a ) );
}
void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims)
{
////////////////////////////////////////////////////////////////
// Powers of 2,3,5 only in prime decomposition for now
////////////////////////////////////////////////////////////////
int ndimension = WorldDims.size();
ShmDims=Coordinate(ndimension,1);
void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM) std::vector<int> primes({2,3,5});
int dim = 0;
int last_dim = ndimension - 1;
int AutoShmSize = 1;
while(AutoShmSize != WorldShmSize) {
int p;
for(p=0;p<primes.size();p++) {
int prime=primes[p];
if ( divides(prime,WorldDims[dim]/ShmDims[dim])
&& divides(prime,WorldShmSize/AutoShmSize) ) {
AutoShmSize*=prime;
ShmDims[dim]*=prime;
last_dim = dim;
break;
}
}
if (p == primes.size() && last_dim == dim) {
std::cerr << "GlobalSharedMemory::GetShmDims failed" << std::endl;
exit(EXIT_FAILURE);
}
dim=(dim+1) %ndimension;
}
}
void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
{ {
//////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////
// Assert power of two shm_size. // Assert power of two shm_size.
@ -352,7 +264,6 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
Coordinate HyperCoor(ndimension); Coordinate HyperCoor(ndimension);
GetShmDims(WorldDims,ShmDims); GetShmDims(WorldDims,ShmDims);
SHM = ShmDims;
//////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////
// Establish torus of processes and nodes with sub-blockings // Establish torus of processes and nodes with sub-blockings
@ -400,7 +311,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm); int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
assert(ierr==0); assert(ierr==0);
} }
void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM) void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
{ {
//////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////
// Identify subblock of ranks on node spreading across dims // Identify subblock of ranks on node spreading across dims
@ -412,8 +323,6 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
Coordinate ShmCoor(ndimension); Coordinate NodeCoor(ndimension); Coordinate WorldCoor(ndimension); Coordinate ShmCoor(ndimension); Coordinate NodeCoor(ndimension); Coordinate WorldCoor(ndimension);
GetShmDims(WorldDims,ShmDims); GetShmDims(WorldDims,ShmDims);
SHM=ShmDims;
//////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////
// Establish torus of processes and nodes with sub-blockings // Establish torus of processes and nodes with sub-blockings
//////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////
@ -452,7 +361,7 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
#ifdef GRID_MPI3_SHMGET #ifdef GRID_MPI3_SHMGET
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{ {
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl; std::cout << header "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl;
assert(_ShmSetup==1); assert(_ShmSetup==1);
assert(_ShmAlloc==0); assert(_ShmAlloc==0);
@ -511,47 +420,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
//////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////
// Hugetlbfs mapping intended // Hugetlbfs mapping intended
//////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////
#if defined(GRID_CUDA) ||defined(GRID_HIP) || defined(GRID_SYCL) #ifdef GRID_CUDA
//if defined(GRID_SYCL)
#if 0
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
void * ShmCommBuf ;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// allocate the pointer array for shared windows for our group
//////////////////////////////////////////////////////////////////////////////////////////////////////////
MPI_Barrier(WorldShmComm);
WorldShmCommBufs.resize(WorldShmSize);
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Each MPI rank should allocate our own buffer
///////////////////////////////////////////////////////////////////////////////////////////////////////////
ShmCommBuf = acceleratorAllocDevice(bytes);
if (ShmCommBuf == (void *)NULL ) {
std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
exit(EXIT_FAILURE);
}
std::cout << WorldRank << Mheader " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
<< "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
SharedMemoryZero(ShmCommBuf,bytes);
assert(WorldShmSize == 1);
for(int r=0;r<WorldShmSize;r++){
WorldShmCommBufs[r] = ShmCommBuf;
}
_ShmAllocBytes=bytes;
_ShmAlloc=1;
}
#endif
#if defined(GRID_CUDA) ||defined(GRID_HIP) ||defined(GRID_SYCL)
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{ {
void * ShmCommBuf ; void * ShmCommBuf ;
@ -574,88 +443,41 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
/////////////////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Each MPI rank should allocate our own buffer // Each MPI rank should allocate our own buffer
/////////////////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////////////
ShmCommBuf = acceleratorAllocDevice(bytes); auto err = cudaMalloc(&ShmCommBuf, bytes);
if ( err != cudaSuccess) {
std::cerr << " SharedMemoryMPI.cc cudaMallocManaged failed for " << bytes<<" bytes " <<cudaGetErrorString(err)<< std::endl;
exit(EXIT_FAILURE);
}
if (ShmCommBuf == (void *)NULL ) { if (ShmCommBuf == (void *)NULL ) {
std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl; std::cerr << " SharedMemoryMPI.cc cudaMallocManaged failed NULL pointer for " << bytes<<" bytes " << std::endl;
exit(EXIT_FAILURE); exit(EXIT_FAILURE);
} }
if ( WorldRank == 0 ){ if ( WorldRank == 0 ){
std::cout << WorldRank << Mheader " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes std::cout << header " SharedMemoryMPI.cc cudaMalloc "<< bytes << "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
<< "bytes at "<< std::hex<< ShmCommBuf << " - "<<(bytes-1+(uint64_t)ShmCommBuf) <<std::dec<<" for comms buffers " <<std::endl;
} }
SharedMemoryZero(ShmCommBuf,bytes); SharedMemoryZero(ShmCommBuf,bytes);
std::cout<< "Setting up IPC"<<std::endl;
/////////////////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Loop over ranks/gpu's on our node // Loop over ranks/gpu's on our node
/////////////////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef SHM_SOCKETS
UnixSockets::Open(WorldShmRank);
#endif
for(int r=0;r<WorldShmSize;r++){ for(int r=0;r<WorldShmSize;r++){
MPI_Barrier(WorldShmComm);
#ifndef GRID_MPI3_SHM_NONE
////////////////////////////////////////////////// //////////////////////////////////////////////////
// If it is me, pass around the IPC access key // If it is me, pass around the IPC access key
////////////////////////////////////////////////// //////////////////////////////////////////////////
void * thisBuf = ShmCommBuf;
if(!Stencil_force_mpi) {
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t;
auto zeDevice = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
auto zeContext = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
ze_ipc_mem_handle_t ihandle;
clone_mem_t handle;
if ( r==WorldShmRank ) {
auto err = zeMemGetIpcHandle(zeContext,ShmCommBuf,&ihandle);
if ( err != ZE_RESULT_SUCCESS ) {
std::cerr << "SharedMemoryMPI.cc zeMemGetIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
exit(EXIT_FAILURE);
} else {
std::cout << "SharedMemoryMPI.cc zeMemGetIpcHandle succeeded for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
}
memcpy((void *)&handle.fd,(void *)&ihandle,sizeof(int));
handle.pid = getpid();
memcpy((void *)&handle.ze,(void *)&ihandle,sizeof(ihandle));
#ifdef SHM_SOCKETS
for(int rr=0;rr<WorldShmSize;rr++){
if(rr!=r){
UnixSockets::SendFileDescriptor(handle.fd,rr);
}
}
#endif
}
#endif
#ifdef GRID_CUDA
cudaIpcMemHandle_t handle; cudaIpcMemHandle_t handle;
if ( r==WorldShmRank ) { if ( r==WorldShmRank ) {
auto err = cudaIpcGetMemHandle(&handle,ShmCommBuf); err = cudaIpcGetMemHandle(&handle,ShmCommBuf);
if ( err != cudaSuccess) { if ( err != cudaSuccess) {
std::cerr << " SharedMemoryMPI.cc cudaIpcGetMemHandle failed for rank" << r <<" "<<cudaGetErrorString(err)<< std::endl; std::cerr << " SharedMemoryMPI.cc cudaIpcGetMemHandle failed for rank" << r <<" "<<cudaGetErrorString(err)<< std::endl;
exit(EXIT_FAILURE); exit(EXIT_FAILURE);
} }
} }
#endif
#ifdef GRID_HIP
hipIpcMemHandle_t handle;
if ( r==WorldShmRank ) {
auto err = hipIpcGetMemHandle(&handle,ShmCommBuf);
if ( err != hipSuccess) {
std::cerr << " SharedMemoryMPI.cc hipIpcGetMemHandle failed for rank" << r <<" "<<hipGetErrorString(err)<< std::endl;
exit(EXIT_FAILURE);
}
}
#endif
////////////////////////////////////////////////// //////////////////////////////////////////////////
// Share this IPC handle across the Shm Comm // Share this IPC handle across the Shm Comm
////////////////////////////////////////////////// //////////////////////////////////////////////////
{ {
MPI_Barrier(WorldShmComm);
int ierr=MPI_Bcast(&handle, int ierr=MPI_Bcast(&handle,
sizeof(handle), sizeof(handle),
MPI_BYTE, MPI_BYTE,
@ -667,84 +489,28 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
/////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////
// If I am not the source, overwrite thisBuf with remote buffer // If I am not the source, overwrite thisBuf with remote buffer
/////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////
void * thisBuf = ShmCommBuf;
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
if ( r!=WorldShmRank ) { if ( r!=WorldShmRank ) {
thisBuf = nullptr; err = cudaIpcOpenMemHandle(&thisBuf,handle,cudaIpcMemLazyEnablePeerAccess);
int myfd;
#ifdef SHM_SOCKETS
myfd=UnixSockets::RecvFileDescriptor();
#else
std::cout<<"mapping seeking remote pid/fd "
<<handle.pid<<"/"
<<handle.fd<<std::endl;
int pidfd = syscall(SYS_pidfd_open,handle.pid,0);
std::cout<<"Using IpcHandle pidfd "<<pidfd<<"\n";
// int myfd = syscall(SYS_pidfd_getfd,pidfd,handle.fd,0);
myfd = syscall(438,pidfd,handle.fd,0);
int err_t = errno;
if (myfd < 0) {
fprintf(stderr,"pidfd_getfd returned %d errno was %d\n", myfd,err_t); fflush(stderr);
perror("pidfd_getfd failed ");
assert(0);
}
#endif
std::cout<<"Using IpcHandle mapped remote pid "<<handle.pid <<" FD "<<handle.fd <<" to myfd "<<myfd<<"\n";
memcpy((void *)&ihandle,(void *)&handle.ze,sizeof(ihandle));
memcpy((void *)&ihandle,(void *)&myfd,sizeof(int));
auto err = zeMemOpenIpcHandle(zeContext,zeDevice,ihandle,0,&thisBuf);
if ( err != ZE_RESULT_SUCCESS ) {
std::cerr << "SharedMemoryMPI.cc "<<zeContext<<" "<<zeDevice<<std::endl;
std::cerr << "SharedMemoryMPI.cc zeMemOpenIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
exit(EXIT_FAILURE);
} else {
std::cout << "SharedMemoryMPI.cc zeMemOpenIpcHandle succeeded for rank "<<r<<std::endl;
std::cout << "SharedMemoryMPI.cc zeMemOpenIpcHandle pointer is "<<std::hex<<thisBuf<<std::dec<<std::endl;
}
assert(thisBuf!=nullptr);
}
#endif
#ifdef GRID_CUDA
if ( r!=WorldShmRank ) {
auto err = cudaIpcOpenMemHandle(&thisBuf,handle,cudaIpcMemLazyEnablePeerAccess);
if ( err != cudaSuccess) { if ( err != cudaSuccess) {
std::cerr << " SharedMemoryMPI.cc cudaIpcOpenMemHandle failed for rank" << r <<" "<<cudaGetErrorString(err)<< std::endl; std::cerr << " SharedMemoryMPI.cc cudaIpcOpenMemHandle failed for rank" << r <<" "<<cudaGetErrorString(err)<< std::endl;
exit(EXIT_FAILURE); exit(EXIT_FAILURE);
} }
} }
#endif
#ifdef GRID_HIP
if ( r!=WorldShmRank ) {
auto err = hipIpcOpenMemHandle(&thisBuf,handle,hipIpcMemLazyEnablePeerAccess);
if ( err != hipSuccess) {
std::cerr << " SharedMemoryMPI.cc hipIpcOpenMemHandle failed for rank" << r <<" "<<hipGetErrorString(err)<< std::endl;
exit(EXIT_FAILURE);
}
}
#endif
/////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////
// Save a copy of the device buffers // Save a copy of the device buffers
/////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////
}
WorldShmCommBufs[r] = thisBuf; WorldShmCommBufs[r] = thisBuf;
#else
WorldShmCommBufs[r] = ShmCommBuf;
#endif
MPI_Barrier(WorldShmComm);
} }
_ShmAllocBytes=bytes; _ShmAllocBytes=bytes;
_ShmAlloc=1; _ShmAlloc=1;
} }
#endif
#else #else
#ifdef GRID_MPI3_SHMMMAP #ifdef GRID_MPI3_SHMMMAP
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{ {
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl; std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl;
assert(_ShmSetup==1); assert(_ShmSetup==1);
assert(_ShmAlloc==0); assert(_ShmAlloc==0);
////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////
@ -781,7 +547,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
assert(((uint64_t)ptr&0x3F)==0); assert(((uint64_t)ptr&0x3F)==0);
close(fd); close(fd);
WorldShmCommBufs[r] =ptr; WorldShmCommBufs[r] =ptr;
// std::cout << Mheader "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl; // std::cout << header "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
} }
_ShmAlloc=1; _ShmAlloc=1;
_ShmAllocBytes = bytes; _ShmAllocBytes = bytes;
@ -791,7 +557,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
#ifdef GRID_MPI3_SHM_NONE #ifdef GRID_MPI3_SHM_NONE
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{ {
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl; std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl;
assert(_ShmSetup==1); assert(_ShmSetup==1);
assert(_ShmAlloc==0); assert(_ShmAlloc==0);
////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////
@ -838,7 +604,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
//////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{ {
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl; std::cout << header "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl;
assert(_ShmSetup==1); assert(_ShmSetup==1);
assert(_ShmAlloc==0); assert(_ShmAlloc==0);
MPI_Barrier(WorldShmComm); MPI_Barrier(WorldShmComm);
@ -867,6 +633,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
#endif #endif
void * ptr = mmap(NULL,size, PROT_READ | PROT_WRITE, mmap_flag, fd, 0); void * ptr = mmap(NULL,size, PROT_READ | PROT_WRITE, mmap_flag, fd, 0);
// std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< size<< "bytes)"<<std::endl;
if ( ptr == (void * )MAP_FAILED ) { if ( ptr == (void * )MAP_FAILED ) {
perror("failed mmap"); perror("failed mmap");
assert(0); assert(0);
@ -910,16 +677,16 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
///////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////
void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes) void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
{ {
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL) #ifdef GRID_CUDA
acceleratorMemSet(dest,0,bytes); cudaMemset(dest,0,bytes);
#else #else
bzero(dest,bytes); bzero(dest,bytes);
#endif #endif
} }
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes) void GlobalSharedMemory::SharedMemoryCopy(void *dest,const void *src,size_t bytes)
{ {
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL) #ifdef GRID_CUDA
acceleratorCopyToDevice(src,dest,bytes); cudaMemcpy(dest,src,bytes,cudaMemcpyDefault);
#else #else
bcopy(src,dest,bytes); bcopy(src,dest,bytes);
#endif #endif
@ -938,11 +705,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
///////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////
// Split into groups that can share memory // Split into groups that can share memory
///////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////
#ifndef GRID_MPI3_SHM_NONE
MPI_Comm_split_type(comm, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&ShmComm); MPI_Comm_split_type(comm, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&ShmComm);
#else
MPI_Comm_split(comm, rank, 0, &ShmComm);
#endif
MPI_Comm_rank(ShmComm ,&ShmRank); MPI_Comm_rank(ShmComm ,&ShmRank);
MPI_Comm_size(ShmComm ,&ShmSize); MPI_Comm_size(ShmComm ,&ShmSize);
ShmCommBufs.resize(ShmSize); ShmCommBufs.resize(ShmSize);
@ -972,18 +735,25 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
std::vector<int> ranks(size); for(int r=0;r<size;r++) ranks[r]=r; std::vector<int> ranks(size); for(int r=0;r<size;r++) ranks[r]=r;
MPI_Group_translate_ranks (FullGroup,size,&ranks[0],ShmGroup, &ShmRanks[0]); MPI_Group_translate_ranks (FullGroup,size,&ranks[0],ShmGroup, &ShmRanks[0]);
#ifdef GRID_SHM_FORCE_MPI #ifdef GRID_IBM_SUMMIT
// Hide the shared memory path between ranks // Hide the shared memory path between sockets
{ // if even number of nodes
if ( (ShmSize & 0x1)==0 ) {
int SocketSize = ShmSize/2;
int mySocket = ShmRank/SocketSize;
for(int r=0;r<size;r++){ for(int r=0;r<size;r++){
if ( r!=rank ) { int hisRank=ShmRanks[r];
if ( hisRank!= MPI_UNDEFINED ) {
int hisSocket=hisRank/SocketSize;
if ( hisSocket != mySocket ) {
ShmRanks[r] = MPI_UNDEFINED; ShmRanks[r] = MPI_UNDEFINED;
} }
} }
} }
}
#endif #endif
//SharedMemoryTest(); SharedMemoryTest();
} }
////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////
// On node barrier // On node barrier

View File

@ -29,7 +29,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/GridCore.h> #include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
#define header "SharedMemoryNone: "
/*Construct from an MPI communicator*/ /*Construct from an MPI communicator*/
void GlobalSharedMemory::Init(Grid_MPI_Comm comm) void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
@ -48,47 +47,14 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
_ShmSetup=1; _ShmSetup=1;
} }
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM) void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
{ {
optimal_comm = WorldComm; optimal_comm = WorldComm;
SHM = Coordinate(processors.size(),1);
} }
//////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////
// Hugetlbfs mapping intended, use anonymous mmap // Hugetlbfs mapping intended, use anonymous mmap
//////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////
#if 1
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
std::cout << header "SharedMemoryAllocate "<< bytes<< " GPU implementation "<<std::endl;
void * ShmCommBuf ;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Each MPI rank should allocate our own buffer
///////////////////////////////////////////////////////////////////////////////////////////////////////////
ShmCommBuf = acceleratorAllocDevice(bytes);
if (ShmCommBuf == (void *)NULL ) {
std::cerr << " SharedMemoryNone.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
exit(EXIT_FAILURE);
}
if ( WorldRank == 0 ){
std::cout << WorldRank << header " SharedMemoryNone.cc acceleratorAllocDevice "<< bytes
<< "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
}
SharedMemoryZero(ShmCommBuf,bytes);
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Loop over ranks/gpu's on our node
///////////////////////////////////////////////////////////////////////////////////////////////////////////
WorldShmCommBufs[0] = ShmCommBuf;
_ShmAllocBytes=bytes;
_ShmAlloc=1;
}
#else
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{ {
void * ShmCommBuf ; void * ShmCommBuf ;
@ -117,15 +83,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
_ShmAllocBytes=bytes; _ShmAllocBytes=bytes;
_ShmAlloc=1; _ShmAlloc=1;
}; };
#endif
void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
{
acceleratorMemSet(dest,0,bytes);
}
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
{
acceleratorCopyToDevice(src,dest,bytes);
}
//////////////////////////////////////////////////////// ////////////////////////////////////////////////////////
// Global shared functionality finished // Global shared functionality finished
// Now move to per communicator functionality // Now move to per communicator functionality

View File

@ -52,8 +52,23 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr> template<typename Op, typename T1>
auto Cshift(const Expression &expr,int dim,int shift) -> decltype(closure(expr)) auto Cshift(const LatticeUnaryExpression<Op,T1> &expr,int dim,int shift)
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1)))>
{
return Cshift(closure(expr),dim,shift);
}
template <class Op, class T1, class T2>
auto Cshift(const LatticeBinaryExpression<Op,T1,T2> &expr,int dim,int shift)
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1),eval(0, expr.arg2)))>
{
return Cshift(closure(expr),dim,shift);
}
template <class Op, class T1, class T2, class T3>
auto Cshift(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr,int dim,int shift)
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1),
eval(0, expr.arg2),
eval(0, expr.arg3)))>
{ {
return Cshift(closure(expr),dim,shift); return Cshift(closure(expr),dim,shift);
} }

View File

@ -29,32 +29,13 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
extern std::vector<std::pair<int,int> > Cshift_table; extern Vector<std::pair<int,int> > Cshift_table;
extern commVector<std::pair<int,int> > Cshift_table_device;
inline std::pair<int,int> *MapCshiftTable(void)
{
// GPU version
#ifdef ACCELERATOR_CSHIFT
uint64_t sz=Cshift_table.size();
if (Cshift_table_device.size()!=sz ) {
Cshift_table_device.resize(sz);
}
acceleratorCopyToDevice((void *)&Cshift_table[0],
(void *)&Cshift_table_device[0],
sizeof(Cshift_table[0])*sz);
return &Cshift_table_device[0];
#else
return &Cshift_table[0];
#endif
// CPU version use identify map
}
/////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////
// Gather for when there is no need to SIMD split // Gather for when there is no need to SIMD split
/////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////
template<class vobj> void template<class vobj> void
Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0) Gather_plane_simple (const Lattice<vobj> &rhs,commVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
{ {
int rd = rhs.Grid()->_rdimensions[dimension]; int rd = rhs.Grid()->_rdimensions[dimension];
@ -92,19 +73,12 @@ Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dim
} }
} }
{ {
auto buffer_p = & buffer[0];
auto table = MapCshiftTable();
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead); autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for(i,ent,vobj::Nsimd(),{ auto buffer_p = & buffer[0];
coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second])); auto table = &Cshift_table[0];
}); accelerator_for(i,ent,1,{
#else
autoView(rhs_v , rhs, CpuRead);
thread_for(i,ent,{
buffer_p[table[i].first]=rhs_v[table[i].second]; buffer_p[table[i].first]=rhs_v[table[i].second];
}); });
#endif
} }
} }
@ -129,36 +103,21 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
int n1=rhs.Grid()->_slice_stride[dimension]; int n1=rhs.Grid()->_slice_stride[dimension];
if ( cbmask ==0x3){ if ( cbmask ==0x3){
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead); autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for(nn,e1*e2,1,{ accelerator_for2d(n,e1,b,e2,1,{
int n = nn%e1;
int b = nn/e1;
int o = n*n1; int o = n*n1;
int offset = b+n*e2; int offset = b+n*e2;
vobj temp =rhs_v[so+o+b]; vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset); extract<vobj>(temp,pointers,offset);
}); });
#else
autoView(rhs_v , rhs, CpuRead);
thread_for2d(n,e1,b,e2,{
int o = n*n1;
int offset = b+n*e2;
vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset);
});
#endif
} else { } else {
autoView(rhs_v , rhs, AcceleratorRead);
Coordinate rdim=rhs.Grid()->_rdimensions; Coordinate rdim=rhs.Grid()->_rdimensions;
Coordinate cdm =rhs.Grid()->_checker_dim_mask; Coordinate cdm =rhs.Grid()->_checker_dim_mask;
std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb? std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb?
#ifdef ACCELERATOR_CSHIFT accelerator_for2d(n,e1,b,e2,1,{
autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for(nn,e1*e2,1,{
int n = nn%e1;
int b = nn/e1;
Coordinate coor; Coordinate coor;
@ -175,33 +134,13 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
extract<vobj>(temp,pointers,offset); extract<vobj>(temp,pointers,offset);
} }
}); });
#else
autoView(rhs_v , rhs, CpuRead);
thread_for2d(n,e1,b,e2,{
Coordinate coor;
int o=n*n1;
int oindex = o+b;
int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm);
int ocb=1<<cb;
int offset = b+n*e2;
if ( ocb & cbmask ) {
vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset);
}
});
#endif
} }
} }
////////////////////////////////////////////////////// //////////////////////////////////////////////////////
// Scatter for when there is no need to SIMD split // Scatter for when there is no need to SIMD split
////////////////////////////////////////////////////// //////////////////////////////////////////////////////
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<vobj> &buffer, int dimension,int plane,int cbmask) template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,commVector<vobj> &buffer, int dimension,int plane,int cbmask)
{ {
int rd = rhs.Grid()->_rdimensions[dimension]; int rd = rhs.Grid()->_rdimensions[dimension];
@ -243,19 +182,12 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<
} }
{ {
auto buffer_p = & buffer[0];
auto table = MapCshiftTable();
#ifdef ACCELERATOR_CSHIFT
autoView( rhs_v, rhs, AcceleratorWrite); autoView( rhs_v, rhs, AcceleratorWrite);
accelerator_for(i,ent,vobj::Nsimd(),{ auto buffer_p = & buffer[0];
coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second])); auto table = &Cshift_table[0];
}); accelerator_for(i,ent,1,{
#else
autoView( rhs_v, rhs, CpuWrite);
thread_for(i,ent,{
rhs_v[table[i].first]=buffer_p[table[i].second]; rhs_v[table[i].first]=buffer_p[table[i].second];
}); });
#endif
} }
} }
@ -276,32 +208,18 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
int e2=rhs.Grid()->_slice_block[dimension]; int e2=rhs.Grid()->_slice_block[dimension];
if(cbmask ==0x3 ) { if(cbmask ==0x3 ) {
int _slice_stride = rhs.Grid()->_slice_stride[dimension];
int _slice_block = rhs.Grid()->_slice_block[dimension];
#ifdef ACCELERATOR_CSHIFT
autoView( rhs_v , rhs, AcceleratorWrite); autoView( rhs_v , rhs, AcceleratorWrite);
accelerator_for(nn,e1*e2,1,{ accelerator_for2d(n,e1,b,e2,1,{
int n = nn%e1; int o = n*rhs.Grid()->_slice_stride[dimension];
int b = nn/e1; int offset = b+n*rhs.Grid()->_slice_block[dimension];
int o = n*_slice_stride;
int offset = b+n*_slice_block;
merge(rhs_v[so+o+b],pointers,offset); merge(rhs_v[so+o+b],pointers,offset);
}); });
#else
autoView( rhs_v , rhs, CpuWrite);
thread_for2d(n,e1,b,e2,{
int o = n*_slice_stride;
int offset = b+n*_slice_block;
merge(rhs_v[so+o+b],pointers,offset);
});
#endif
} else { } else {
// Case of SIMD split AND checker dim cannot currently be hit, except in // Case of SIMD split AND checker dim cannot currently be hit, except in
// Test_cshift_red_black code. // Test_cshift_red_black code.
std::cout << "Scatter_plane merge assert(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME // std::cout << "Scatter_plane merge assert(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME
std::cout<<" Unthreaded warning -- buffer is not densely packed ??"<<std::endl; std::cout<<" Unthreaded warning -- buffer is not densely packed ??"<<std::endl;
assert(0); // This will fail if hit on GPU
autoView( rhs_v, rhs, CpuWrite); autoView( rhs_v, rhs, CpuWrite);
for(int n=0;n<e1;n++){ for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){ for(int b=0;b<e2;b++){
@ -359,20 +277,12 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
} }
{ {
auto table = MapCshiftTable();
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead); autoView(rhs_v , rhs, AcceleratorRead);
autoView(lhs_v , lhs, AcceleratorWrite); autoView(lhs_v , lhs, AcceleratorWrite);
accelerator_for(i,ent,vobj::Nsimd(),{ auto table = &Cshift_table[0];
coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second])); accelerator_for(i,ent,1,{
});
#else
autoView(rhs_v , rhs, CpuRead);
autoView(lhs_v , lhs, CpuWrite);
thread_for(i,ent,{
lhs_v[table[i].first]=rhs_v[table[i].second]; lhs_v[table[i].first]=rhs_v[table[i].second];
}); });
#endif
} }
} }
@ -411,20 +321,12 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
} }
{ {
auto table = MapCshiftTable();
#ifdef ACCELERATOR_CSHIFT
autoView( rhs_v, rhs, AcceleratorRead); autoView( rhs_v, rhs, AcceleratorRead);
autoView( lhs_v, lhs, AcceleratorWrite); autoView( lhs_v, lhs, AcceleratorWrite);
auto table = &Cshift_table[0];
accelerator_for(i,ent,1,{ accelerator_for(i,ent,1,{
permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type); permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
}); });
#else
autoView( rhs_v, rhs, CpuRead);
autoView( lhs_v, lhs, CpuWrite);
thread_for(i,ent,{
permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
});
#endif
} }
} }

View File

@ -52,8 +52,7 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
int comm_dim = rhs.Grid()->_processors[dimension] >1 ; int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
int splice_dim = rhs.Grid()->_simd_layout[dimension]>1 && (comm_dim); int splice_dim = rhs.Grid()->_simd_layout[dimension]>1 && (comm_dim);
RealD t1,t0;
t0=usecond();
if ( !comm_dim ) { if ( !comm_dim ) {
//std::cout << "CSHIFT: Cshift_local" <<std::endl; //std::cout << "CSHIFT: Cshift_local" <<std::endl;
Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding
@ -64,8 +63,6 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
//std::cout << "CSHIFT: Cshift_comms" <<std::endl; //std::cout << "CSHIFT: Cshift_comms" <<std::endl;
Cshift_comms(ret,rhs,dimension,shift); Cshift_comms(ret,rhs,dimension,shift);
} }
t1=usecond();
// std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl;
return ret; return ret;
} }
@ -104,8 +101,7 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob
Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
} }
} }
#define ACCELERATOR_CSHIFT_NO_COPY
#ifdef ACCELERATOR_CSHIFT_NO_COPY
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{ {
typedef typename vobj::vector_type vector_type; typedef typename vobj::vector_type vector_type;
@ -125,65 +121,46 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
assert(shift<fd); assert(shift<fd);
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension]; int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
static cshiftVector<vobj> send_buf; send_buf.resize(buffer_size); commVector<vobj> send_buf(buffer_size);
static cshiftVector<vobj> recv_buf; recv_buf.resize(buffer_size); commVector<vobj> recv_buf(buffer_size);
int cb= (cbmask==0x2)? Odd : Even; int cb= (cbmask==0x2)? Odd : Even;
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb); int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
RealD tcopy=0.0;
RealD tgather=0.0;
RealD tscatter=0.0;
RealD tcomms=0.0;
uint64_t xbytes=0;
for(int x=0;x<rd;x++){ for(int x=0;x<rd;x++){
int sx = (x+sshift)%rd; int sx = (x+sshift)%rd;
int comm_proc = ((x+sshift)/rd)%pd; int comm_proc = ((x+sshift)/rd)%pd;
if (comm_proc==0) { if (comm_proc==0) {
tcopy-=usecond();
Copy_plane(ret,rhs,dimension,x,sx,cbmask); Copy_plane(ret,rhs,dimension,x,sx,cbmask);
tcopy+=usecond();
} else { } else {
int words = buffer_size; int words = send_buf.size();
if (cbmask != 0x3) words=words>>1; if (cbmask != 0x3) words=words>>1;
int bytes = words * sizeof(vobj); int bytes = words * sizeof(vobj);
tgather-=usecond();
Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask); Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask);
tgather+=usecond();
// int rank = grid->_processor; // int rank = grid->_processor;
int recv_from_rank; int recv_from_rank;
int xmit_to_rank; int xmit_to_rank;
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank); grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond();
// grid->Barrier();
grid->SendToRecvFrom((void *)&send_buf[0], grid->SendToRecvFrom((void *)&send_buf[0],
xmit_to_rank, xmit_to_rank,
(void *)&recv_buf[0], (void *)&recv_buf[0],
recv_from_rank, recv_from_rank,
bytes); bytes);
xbytes+=bytes; grid->Barrier();
// grid->Barrier();
tcomms+=usecond();
tscatter-=usecond();
Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask); Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask);
tscatter+=usecond();
} }
} }
/*
std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
*/
} }
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
@ -210,12 +187,6 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
assert(shift>=0); assert(shift>=0);
assert(shift<fd); assert(shift<fd);
RealD tcopy=0.0;
RealD tgather=0.0;
RealD tscatter=0.0;
RealD tcomms=0.0;
uint64_t xbytes=0;
int permute_type=grid->PermuteType(dimension); int permute_type=grid->PermuteType(dimension);
/////////////////////////////////////////////// ///////////////////////////////////////////////
@ -224,15 +195,8 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension]; int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
// int words = sizeof(vobj)/sizeof(vector_type); // int words = sizeof(vobj)/sizeof(vector_type);
static std::vector<cshiftVector<scalar_object> > send_buf_extract; send_buf_extract.resize(Nsimd); std::vector<commVector<scalar_object> > send_buf_extract(Nsimd,commVector<scalar_object>(buffer_size) );
static std::vector<cshiftVector<scalar_object> > recv_buf_extract; recv_buf_extract.resize(Nsimd); std::vector<commVector<scalar_object> > recv_buf_extract(Nsimd,commVector<scalar_object>(buffer_size) );
scalar_object * recv_buf_extract_mpi;
scalar_object * send_buf_extract_mpi;
for(int s=0;s<Nsimd;s++){
send_buf_extract[s].resize(buffer_size);
recv_buf_extract[s].resize(buffer_size);
}
int bytes = buffer_size*sizeof(scalar_object); int bytes = buffer_size*sizeof(scalar_object);
@ -253,9 +217,7 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
pointers[i] = &send_buf_extract[i][0]; pointers[i] = &send_buf_extract[i][0];
} }
int sx = (x+sshift)%rd; int sx = (x+sshift)%rd;
tgather-=usecond();
Gather_plane_extract(rhs,pointers,dimension,sx,cbmask); Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
tgather+=usecond();
for(int i=0;i<Nsimd;i++){ for(int i=0;i<Nsimd;i++){
@ -280,267 +242,23 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
if(nbr_proc){ if(nbr_proc){
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank); grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond(); grid->SendToRecvFrom((void *)&send_buf_extract[nbr_lane][0],
// grid->Barrier();
send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
recv_buf_extract_mpi = &recv_buf_extract[i][0];
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
xmit_to_rank, xmit_to_rank,
(void *)recv_buf_extract_mpi, (void *)&recv_buf_extract[i][0],
recv_from_rank, recv_from_rank,
bytes); bytes);
grid->Barrier();
xbytes+=bytes;
// grid->Barrier();
tcomms+=usecond();
rpointers[i] = &recv_buf_extract[i][0]; rpointers[i] = &recv_buf_extract[i][0];
} else { } else {
rpointers[i] = &send_buf_extract[nbr_lane][0]; rpointers[i] = &send_buf_extract[nbr_lane][0];
} }
} }
tscatter-=usecond();
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask); Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
tscatter+=usecond();
}
/*
std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
*/
}
#else
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
GridBase *grid=rhs.Grid();
Lattice<vobj> temp(rhs.Grid());
int fd = rhs.Grid()->_fdimensions[dimension];
int rd = rhs.Grid()->_rdimensions[dimension];
int pd = rhs.Grid()->_processors[dimension];
int simd_layout = rhs.Grid()->_simd_layout[dimension];
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
assert(simd_layout==1);
assert(comm_dim==1);
assert(shift>=0);
assert(shift<fd);
RealD tcopy=0.0;
RealD tgather=0.0;
RealD tscatter=0.0;
RealD tcomms=0.0;
uint64_t xbytes=0;
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
static cshiftVector<vobj> send_buf_v; send_buf_v.resize(buffer_size);
static cshiftVector<vobj> recv_buf_v; recv_buf_v.resize(buffer_size);
vobj *send_buf;
vobj *recv_buf;
{
grid->ShmBufferFreeAll();
size_t bytes = buffer_size*sizeof(vobj);
send_buf=(vobj *)grid->ShmBufferMalloc(bytes);
recv_buf=(vobj *)grid->ShmBufferMalloc(bytes);
} }
int cb= (cbmask==0x2)? Odd : Even;
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
for(int x=0;x<rd;x++){
int sx = (x+sshift)%rd;
int comm_proc = ((x+sshift)/rd)%pd;
if (comm_proc==0) {
tcopy-=usecond();
Copy_plane(ret,rhs,dimension,x,sx,cbmask);
tcopy+=usecond();
} else {
int words = buffer_size;
if (cbmask != 0x3) words=words>>1;
int bytes = words * sizeof(vobj);
tgather-=usecond();
Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask);
tgather+=usecond();
// int rank = grid->_processor;
int recv_from_rank;
int xmit_to_rank;
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond();
// grid->Barrier();
acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes);
grid->SendToRecvFrom((void *)&send_buf[0],
xmit_to_rank,
(void *)&recv_buf[0],
recv_from_rank,
bytes);
xbytes+=bytes;
acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes);
// grid->Barrier();
tcomms+=usecond();
tscatter-=usecond();
Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask);
tscatter+=usecond();
}
}
/*
std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
*/
} }
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
GridBase *grid=rhs.Grid();
const int Nsimd = grid->Nsimd();
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
int fd = grid->_fdimensions[dimension];
int rd = grid->_rdimensions[dimension];
int ld = grid->_ldimensions[dimension];
int pd = grid->_processors[dimension];
int simd_layout = grid->_simd_layout[dimension];
int comm_dim = grid->_processors[dimension] >1 ;
//std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
// << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout
// << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
assert(comm_dim==1);
assert(simd_layout==2);
assert(shift>=0);
assert(shift<fd);
RealD tcopy=0.0;
RealD tgather=0.0;
RealD tscatter=0.0;
RealD tcomms=0.0;
uint64_t xbytes=0;
int permute_type=grid->PermuteType(dimension);
///////////////////////////////////////////////
// Simd direction uses an extract/merge pair
///////////////////////////////////////////////
int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
// int words = sizeof(vobj)/sizeof(vector_type);
static std::vector<cshiftVector<scalar_object> > send_buf_extract; send_buf_extract.resize(Nsimd);
static std::vector<cshiftVector<scalar_object> > recv_buf_extract; recv_buf_extract.resize(Nsimd);
scalar_object * recv_buf_extract_mpi;
scalar_object * send_buf_extract_mpi;
{
size_t bytes = sizeof(scalar_object)*buffer_size;
grid->ShmBufferFreeAll();
send_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
recv_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
}
for(int s=0;s<Nsimd;s++){
send_buf_extract[s].resize(buffer_size);
recv_buf_extract[s].resize(buffer_size);
}
int bytes = buffer_size*sizeof(scalar_object);
ExtractPointerArray<scalar_object> pointers(Nsimd); //
ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers
///////////////////////////////////////////
// Work out what to send where
///////////////////////////////////////////
int cb = (cbmask==0x2)? Odd : Even;
int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
// loop over outer coord planes orthog to dim
for(int x=0;x<rd;x++){
// FIXME call local permute copy if none are offnode.
for(int i=0;i<Nsimd;i++){
pointers[i] = &send_buf_extract[i][0];
}
tgather-=usecond();
int sx = (x+sshift)%rd;
Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
tgather+=usecond();
for(int i=0;i<Nsimd;i++){
int inner_bit = (Nsimd>>(permute_type+1));
int ic= (i&inner_bit)? 1:0;
int my_coor = rd*ic + x;
int nbr_coor = my_coor+sshift;
int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors
int nbr_ic = (nbr_coor%ld)/rd; // inner coord of peer
int nbr_ox = (nbr_coor%rd); // outer coord of peer
int nbr_lane = (i&(~inner_bit));
int recv_from_rank;
int xmit_to_rank;
if (nbr_ic) nbr_lane|=inner_bit;
assert (sx == nbr_ox);
if(nbr_proc){
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond();
// grid->Barrier();
acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes);
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
xmit_to_rank,
(void *)recv_buf_extract_mpi,
recv_from_rank,
bytes);
acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes);
xbytes+=bytes;
// grid->Barrier();
tcomms+=usecond();
rpointers[i] = &recv_buf_extract[i][0];
} else {
rpointers[i] = &send_buf_extract[nbr_lane][0];
}
}
tscatter-=usecond();
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
tscatter+=usecond();
}
/*
std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s"<<std::endl;
*/
}
#endif
NAMESPACE_END(Grid); NAMESPACE_END(Grid);
#endif #endif

View File

@ -1,5 +1,4 @@
#include <Grid/GridCore.h> #include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
std::vector<std::pair<int,int> > Cshift_table; Vector<std::pair<int,int> > Cshift_table;
commVector<std::pair<int,int> > Cshift_table_device;
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

File diff suppressed because it is too large Load Diff

View File

@ -35,10 +35,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/lattice/Lattice_transpose.h> #include <Grid/lattice/Lattice_transpose.h>
#include <Grid/lattice/Lattice_local.h> #include <Grid/lattice/Lattice_local.h>
#include <Grid/lattice/Lattice_reduction.h> #include <Grid/lattice/Lattice_reduction.h>
#include <Grid/lattice/Lattice_crc.h>
#include <Grid/lattice/Lattice_peekpoke.h> #include <Grid/lattice/Lattice_peekpoke.h>
#include <Grid/lattice/Lattice_reality.h> //#include <Grid/lattice/Lattice_reality.h>
#include <Grid/lattice/Lattice_real_imag.h>
#include <Grid/lattice/Lattice_comparison_utils.h> #include <Grid/lattice/Lattice_comparison_utils.h>
#include <Grid/lattice/Lattice_comparison.h> #include <Grid/lattice/Lattice_comparison.h>
#include <Grid/lattice/Lattice_coordinate.h> #include <Grid/lattice/Lattice_coordinate.h>
@ -47,4 +45,3 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/lattice/Lattice_unary.h> #include <Grid/lattice/Lattice_unary.h>
#include <Grid/lattice/Lattice_transfer.h> #include <Grid/lattice/Lattice_transfer.h>
#include <Grid/lattice/Lattice_basis.h> #include <Grid/lattice/Lattice_basis.h>
#include <Grid/lattice/PaddedCell.h>

View File

@ -42,28 +42,13 @@ NAMESPACE_BEGIN(Grid);
//////////////////////////////////////////////////// ////////////////////////////////////////////////////
// Predicated where support // Predicated where support
//////////////////////////////////////////////////// ////////////////////////////////////////////////////
#ifdef GRID_SIMT
// drop to scalar in SIMT; cleaner in fact
template <class iobj, class vobj, class robj> template <class iobj, class vobj, class robj>
accelerator_inline vobj predicatedWhere(const iobj &predicate, accelerator_inline vobj predicatedWhere(const iobj &predicate, const vobj &iftrue,
const vobj &iftrue, const robj &iffalse) {
const robj &iffalse)
{
Integer mask = TensorRemove(predicate);
typename std::remove_const<vobj>::type ret= iffalse;
if (mask) ret=iftrue;
return ret;
}
#else
template <class iobj, class vobj, class robj>
accelerator_inline vobj predicatedWhere(const iobj &predicate,
const vobj &iftrue,
const robj &iffalse)
{
typename std::remove_const<vobj>::type ret; typename std::remove_const<vobj>::type ret;
typedef typename vobj::scalar_object scalar_object; typedef typename vobj::scalar_object scalar_object;
// typedef typename vobj::scalar_type scalar_type; typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type; typedef typename vobj::vector_type vector_type;
const int Nsimd = vobj::vector_type::Nsimd(); const int Nsimd = vobj::vector_type::Nsimd();
@ -83,7 +68,6 @@ accelerator_inline vobj predicatedWhere(const iobj &predicate,
merge(ret, falsevals); merge(ret, falsevals);
return ret; return ret;
} }
#endif
///////////////////////////////////////////////////// /////////////////////////////////////////////////////
//Specialization of getVectorType for lattices //Specialization of getVectorType for lattices
@ -97,62 +81,32 @@ struct getVectorType<Lattice<T> >{
//-- recursive evaluation of expressions; -- //-- recursive evaluation of expressions; --
// handle leaves of syntax tree // handle leaves of syntax tree
/////////////////////////////////////////////////// ///////////////////////////////////////////////////
template<class sobj, template<class sobj> accelerator_inline
typename std::enable_if<!is_lattice<sobj>::value&&!is_lattice_expr<sobj>::value,sobj>::type * = nullptr>
accelerator_inline
sobj eval(const uint64_t ss, const sobj &arg) sobj eval(const uint64_t ss, const sobj &arg)
{ {
return arg; return arg;
} }
template <class lobj> accelerator_inline
auto eval(const uint64_t ss, const LatticeView<lobj> &arg) -> decltype(arg(ss))
{
return arg(ss);
}
////////////////////////////////////////////
//-- recursive evaluation of expressions; --
// whole vector return, used only for expression return type inference
///////////////////////////////////////////////////
template<class sobj> accelerator_inline
sobj vecEval(const uint64_t ss, const sobj &arg)
{
return arg;
}
template <class lobj> accelerator_inline template <class lobj> accelerator_inline
const lobj & vecEval(const uint64_t ss, const LatticeView<lobj> &arg) const lobj & eval(const uint64_t ss, const LatticeView<lobj> &arg)
{ {
return arg[ss]; return arg[ss];
} }
/////////////////////////////////////////////////// // What needs this?
// handle nodes in syntax tree- eval one operand // Cannot be legal on accelerator
// vecEval needed (but never called as all expressions offloaded) to infer the return type // Comparison must convert
// in SIMT contexts of closure. #if 1
/////////////////////////////////////////////////// template <class lobj> accelerator_inline
template <typename Op, typename T1> accelerator_inline const lobj & eval(const uint64_t ss, const Lattice<lobj> &arg)
auto vecEval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)
-> decltype(expr.op.func( vecEval(ss, expr.arg1)))
{ {
return expr.op.func( vecEval(ss, expr.arg1) ); auto view = arg.View(AcceleratorRead);
} return view[ss];
// vecEval two operands
template <typename Op, typename T1, typename T2> accelerator_inline
auto vecEval(const uint64_t ss, const LatticeBinaryExpression<Op, T1, T2> &expr)
-> decltype(expr.op.func( vecEval(ss,expr.arg1),vecEval(ss,expr.arg2)))
{
return expr.op.func( vecEval(ss,expr.arg1), vecEval(ss,expr.arg2) );
}
// vecEval three operands
template <typename Op, typename T1, typename T2, typename T3> accelerator_inline
auto vecEval(const uint64_t ss, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
-> decltype(expr.op.func(vecEval(ss, expr.arg1), vecEval(ss, expr.arg2), vecEval(ss, expr.arg3)))
{
return expr.op.func(vecEval(ss, expr.arg1), vecEval(ss, expr.arg2), vecEval(ss, expr.arg3));
} }
#endif
/////////////////////////////////////////////////// ///////////////////////////////////////////////////
// handle nodes in syntax tree- eval one operand coalesced // handle nodes in syntax tree- eval one operand
/////////////////////////////////////////////////// ///////////////////////////////////////////////////
template <typename Op, typename T1> accelerator_inline template <typename Op, typename T1> accelerator_inline
auto eval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr) auto eval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)
@ -160,41 +114,23 @@ auto eval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)
{ {
return expr.op.func( eval(ss, expr.arg1) ); return expr.op.func( eval(ss, expr.arg1) );
} }
///////////////////////
// eval two operands // eval two operands
///////////////////////
template <typename Op, typename T1, typename T2> accelerator_inline template <typename Op, typename T1, typename T2> accelerator_inline
auto eval(const uint64_t ss, const LatticeBinaryExpression<Op, T1, T2> &expr) auto eval(const uint64_t ss, const LatticeBinaryExpression<Op, T1, T2> &expr)
-> decltype(expr.op.func( eval(ss,expr.arg1),eval(ss,expr.arg2))) -> decltype(expr.op.func( eval(ss,expr.arg1),eval(ss,expr.arg2)))
{ {
return expr.op.func( eval(ss,expr.arg1), eval(ss,expr.arg2) ); return expr.op.func( eval(ss,expr.arg1), eval(ss,expr.arg2) );
} }
///////////////////////
// eval three operands // eval three operands
///////////////////////
template <typename Op, typename T1, typename T2, typename T3> accelerator_inline template <typename Op, typename T1, typename T2, typename T3> accelerator_inline
auto eval(const uint64_t ss, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr) auto eval(const uint64_t ss, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
-> decltype(expr.op.func(eval(ss, expr.arg1), -> decltype(expr.op.func(eval(ss, expr.arg1), eval(ss, expr.arg2), eval(ss, expr.arg3)))
eval(ss, expr.arg2),
eval(ss, expr.arg3)))
{ {
#ifdef GRID_SIMT return expr.op.func(eval(ss, expr.arg1), eval(ss, expr.arg2), eval(ss, expr.arg3));
// Handles Nsimd (vInteger) != Nsimd(ComplexD)
typedef decltype(vecEval(ss, expr.arg2)) rvobj;
typedef typename std::remove_reference<rvobj>::type vobj;
const int Nsimd = vobj::vector_type::Nsimd();
auto vpred = vecEval(ss,expr.arg1);
ExtractBuffer<Integer> mask(Nsimd);
extract<vInteger, Integer>(TensorRemove(vpred), mask);
int s = acceleratorSIMTlane(Nsimd);
return expr.op.func(mask[s],
eval(ss, expr.arg2),
eval(ss, expr.arg3));
#else
return expr.op.func(eval(ss, expr.arg1),
eval(ss, expr.arg2),
eval(ss, expr.arg3));
#endif
} }
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
@ -292,7 +228,7 @@ template <typename Op, typename T1, typename T2> inline
void ExpressionViewOpen(LatticeBinaryExpression<Op, T1, T2> &expr) void ExpressionViewOpen(LatticeBinaryExpression<Op, T1, T2> &expr)
{ {
ExpressionViewOpen(expr.arg1); // recurse AST ExpressionViewOpen(expr.arg1); // recurse AST
ExpressionViewOpen(expr.arg2); // rrecurse AST ExpressionViewOpen(expr.arg2); // recurse AST
} }
template <typename Op, typename T1, typename T2, typename T3> template <typename Op, typename T1, typename T2, typename T3>
inline void ExpressionViewOpen(LatticeTrinaryExpression<Op, T1, T2, T3> &expr) inline void ExpressionViewOpen(LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
@ -336,22 +272,28 @@ inline void ExpressionViewClose(LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
// Unary operators and funcs // Unary operators and funcs
//////////////////////////////////////////// ////////////////////////////////////////////
#define GridUnopClass(name, ret) \ #define GridUnopClass(name, ret) \
template <class arg> \
struct name { \ struct name { \
template<class _arg> static auto accelerator_inline func(const _arg a) -> decltype(ret) { return ret; } \ static auto accelerator_inline func(const arg a) -> decltype(ret) { return ret; } \
}; };
GridUnopClass(UnarySub, -a); GridUnopClass(UnarySub, -a);
GridUnopClass(UnaryNot, Not(a)); GridUnopClass(UnaryNot, Not(a));
GridUnopClass(UnaryAdj, adj(a));
GridUnopClass(UnaryConj, conjugate(a));
GridUnopClass(UnaryTrace, trace(a)); GridUnopClass(UnaryTrace, trace(a));
GridUnopClass(UnaryTranspose, transpose(a)); GridUnopClass(UnaryTranspose, transpose(a));
GridUnopClass(UnaryTa, Ta(a)); GridUnopClass(UnaryTa, Ta(a));
GridUnopClass(UnarySpTa, SpTa(a));
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a)); GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
GridUnopClass(UnaryProjectOnSpGroup, ProjectOnSpGroup(a)); GridUnopClass(UnaryReal, real(a));
GridUnopClass(UnaryImag, imag(a));
GridUnopClass(UnaryToReal, toReal(a));
GridUnopClass(UnaryToComplex, toComplex(a));
GridUnopClass(UnaryTimesI, timesI(a)); GridUnopClass(UnaryTimesI, timesI(a));
GridUnopClass(UnaryTimesMinusI, timesMinusI(a)); GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
GridUnopClass(UnaryAbs, abs(a)); GridUnopClass(UnaryAbs, abs(a));
GridUnopClass(UnarySqrt, sqrt(a)); GridUnopClass(UnarySqrt, sqrt(a));
GridUnopClass(UnaryRsqrt, rsqrt(a));
GridUnopClass(UnarySin, sin(a)); GridUnopClass(UnarySin, sin(a));
GridUnopClass(UnaryCos, cos(a)); GridUnopClass(UnaryCos, cos(a));
GridUnopClass(UnaryAsin, asin(a)); GridUnopClass(UnaryAsin, asin(a));
@ -363,10 +305,10 @@ GridUnopClass(UnaryExp, exp(a));
// Binary operators // Binary operators
//////////////////////////////////////////// ////////////////////////////////////////////
#define GridBinOpClass(name, combination) \ #define GridBinOpClass(name, combination) \
template <class left, class right> \
struct name { \ struct name { \
template <class _left, class _right> \
static auto accelerator_inline \ static auto accelerator_inline \
func(const _left &lhs, const _right &rhs) \ func(const left &lhs, const right &rhs) \
-> decltype(combination) const \ -> decltype(combination) const \
{ \ { \
return combination; \ return combination; \
@ -386,10 +328,10 @@ GridBinOpClass(BinaryOrOr, lhs || rhs);
// Trinary conditional op // Trinary conditional op
//////////////////////////////////////////////////// ////////////////////////////////////////////////////
#define GridTrinOpClass(name, combination) \ #define GridTrinOpClass(name, combination) \
template <class predicate, class left, class right> \
struct name { \ struct name { \
template <class _predicate,class _left, class _right> \
static auto accelerator_inline \ static auto accelerator_inline \
func(const _predicate &pred, const _left &lhs, const _right &rhs) \ func(const predicate &pred, const left &lhs, const right &rhs) \
-> decltype(combination) const \ -> decltype(combination) const \
{ \ { \
return combination; \ return combination; \
@ -397,17 +339,17 @@ GridBinOpClass(BinaryOrOr, lhs || rhs);
}; };
GridTrinOpClass(TrinaryWhere, GridTrinOpClass(TrinaryWhere,
(predicatedWhere< (predicatedWhere<predicate,
typename std::remove_reference<_predicate>::type, typename std::remove_reference<left>::type,
typename std::remove_reference<_left>::type, typename std::remove_reference<right>::type>(pred, lhs,rhs)));
typename std::remove_reference<_right>::type>(pred, lhs,rhs)));
//////////////////////////////////////////// ////////////////////////////////////////////
// Operator syntactical glue // Operator syntactical glue
//////////////////////////////////////////// ////////////////////////////////////////////
#define GRID_UNOP(name) name
#define GRID_BINOP(name) name #define GRID_UNOP(name) name<decltype(eval(0, arg))>
#define GRID_TRINOP(name) name #define GRID_BINOP(name) name<decltype(eval(0, lhs)), decltype(eval(0, rhs))>
#define GRID_TRINOP(name) name<decltype(eval(0, pred)), decltype(eval(0, lhs)), decltype(eval(0, rhs))>
#define GRID_DEF_UNOP(op, name) \ #define GRID_DEF_UNOP(op, name) \
template <typename T1, typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value,T1>::type * = nullptr> \ template <typename T1, typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value,T1>::type * = nullptr> \
@ -453,19 +395,22 @@ GridTrinOpClass(TrinaryWhere,
GRID_DEF_UNOP(operator-, UnarySub); GRID_DEF_UNOP(operator-, UnarySub);
GRID_DEF_UNOP(Not, UnaryNot); GRID_DEF_UNOP(Not, UnaryNot);
GRID_DEF_UNOP(operator!, UnaryNot); GRID_DEF_UNOP(operator!, UnaryNot);
//GRID_DEF_UNOP(adj, UnaryAdj); GRID_DEF_UNOP(adj, UnaryAdj);
//GRID_DEF_UNOP(conjugate, UnaryConj); GRID_DEF_UNOP(conjugate, UnaryConj);
GRID_DEF_UNOP(trace, UnaryTrace); GRID_DEF_UNOP(trace, UnaryTrace);
GRID_DEF_UNOP(transpose, UnaryTranspose); GRID_DEF_UNOP(transpose, UnaryTranspose);
GRID_DEF_UNOP(Ta, UnaryTa); GRID_DEF_UNOP(Ta, UnaryTa);
GRID_DEF_UNOP(SpTa, UnarySpTa);
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup); GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
GRID_DEF_UNOP(ProjectOnSpGroup, UnaryProjectOnSpGroup); GRID_DEF_UNOP(real, UnaryReal);
GRID_DEF_UNOP(imag, UnaryImag);
GRID_DEF_UNOP(toReal, UnaryToReal);
GRID_DEF_UNOP(toComplex, UnaryToComplex);
GRID_DEF_UNOP(timesI, UnaryTimesI); GRID_DEF_UNOP(timesI, UnaryTimesI);
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI); GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
GRID_DEF_UNOP(abs, UnaryAbs); // abs overloaded in cmath C++98; DON'T do the GRID_DEF_UNOP(abs, UnaryAbs); // abs overloaded in cmath C++98; DON'T do the
// abs-fabs-dabs-labs thing // abs-fabs-dabs-labs thing
GRID_DEF_UNOP(sqrt, UnarySqrt); GRID_DEF_UNOP(sqrt, UnarySqrt);
GRID_DEF_UNOP(rsqrt, UnaryRsqrt);
GRID_DEF_UNOP(sin, UnarySin); GRID_DEF_UNOP(sin, UnarySin);
GRID_DEF_UNOP(cos, UnaryCos); GRID_DEF_UNOP(cos, UnaryCos);
GRID_DEF_UNOP(asin, UnaryAsin); GRID_DEF_UNOP(asin, UnaryAsin);
@ -490,36 +435,29 @@ GRID_DEF_TRINOP(where, TrinaryWhere);
///////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////
template <class Op, class T1> template <class Op, class T1>
auto closure(const LatticeUnaryExpression<Op, T1> &expr) auto closure(const LatticeUnaryExpression<Op, T1> &expr)
-> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1)))>::type > -> Lattice<decltype(expr.op.func(eval(0, expr.arg1)))>
{ {
Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1)))>::type > ret(expr); Lattice<decltype(expr.op.func(eval(0, expr.arg1)))> ret(expr);
return ret; return ret;
} }
template <class Op, class T1, class T2> template <class Op, class T1, class T2>
auto closure(const LatticeBinaryExpression<Op, T1, T2> &expr) auto closure(const LatticeBinaryExpression<Op, T1, T2> &expr)
-> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),vecEval(0, expr.arg2)))>::type > -> Lattice<decltype(expr.op.func(eval(0, expr.arg1),eval(0, expr.arg2)))>
{ {
Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),vecEval(0, expr.arg2)))>::type > ret(expr); Lattice<decltype(expr.op.func(eval(0, expr.arg1),eval(0, expr.arg2)))> ret(expr);
return ret; return ret;
} }
template <class Op, class T1, class T2, class T3> template <class Op, class T1, class T2, class T3>
auto closure(const LatticeTrinaryExpression<Op, T1, T2, T3> &expr) auto closure(const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
-> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1), -> Lattice<decltype(expr.op.func(eval(0, expr.arg1),
vecEval(0, expr.arg2), eval(0, expr.arg2),
vecEval(0, expr.arg3)))>::type > eval(0, expr.arg3)))>
{ {
Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1), Lattice<decltype(expr.op.func(eval(0, expr.arg1),
vecEval(0, expr.arg2), eval(0, expr.arg2),
vecEval(0, expr.arg3)))>::type > ret(expr); eval(0, expr.arg3)))> ret(expr);
return ret; return ret;
} }
#define EXPRESSION_CLOSURE(function) \
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr> \
auto function(Expression &expr) -> decltype(function(closure(expr))) \
{ \
return function(closure(expr)); \
}
#undef GRID_UNOP #undef GRID_UNOP
#undef GRID_BINOP #undef GRID_BINOP

View File

@ -36,7 +36,6 @@ NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////
template<class obj1,class obj2,class obj3> inline template<class obj1,class obj2,class obj3> inline
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){ void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
GRID_TRACE("mult");
ret.Checkerboard() = lhs.Checkerboard(); ret.Checkerboard() = lhs.Checkerboard();
autoView( ret_v , ret, AcceleratorWrite); autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead); autoView( lhs_v , lhs, AcceleratorRead);
@ -54,7 +53,6 @@ void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
template<class obj1,class obj2,class obj3> inline template<class obj1,class obj2,class obj3> inline
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){ void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
GRID_TRACE("mac");
ret.Checkerboard() = lhs.Checkerboard(); ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,rhs); conformable(ret,rhs);
conformable(lhs,rhs); conformable(lhs,rhs);
@ -62,9 +60,9 @@ void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
autoView( lhs_v , lhs, AcceleratorRead); autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead); autoView( rhs_v , rhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{ accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss); auto lhs_t=lhs_v(ss);
auto rhs_t=rhs_v(ss); auto rhs_t=rhs_v(ss);
auto tmp =ret_v(ss);
mac(&tmp,&lhs_t,&rhs_t); mac(&tmp,&lhs_t,&rhs_t);
coalescedWrite(ret_v[ss],tmp); coalescedWrite(ret_v[ss],tmp);
}); });
@ -72,7 +70,6 @@ void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
template<class obj1,class obj2,class obj3> inline template<class obj1,class obj2,class obj3> inline
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){ void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
GRID_TRACE("sub");
ret.Checkerboard() = lhs.Checkerboard(); ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,rhs); conformable(ret,rhs);
conformable(lhs,rhs); conformable(lhs,rhs);
@ -89,7 +86,6 @@ void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
} }
template<class obj1,class obj2,class obj3> inline template<class obj1,class obj2,class obj3> inline
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){ void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
GRID_TRACE("add");
ret.Checkerboard() = lhs.Checkerboard(); ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,rhs); conformable(ret,rhs);
conformable(lhs,rhs); conformable(lhs,rhs);
@ -110,7 +106,6 @@ void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////
template<class obj1,class obj2,class obj3> inline template<class obj1,class obj2,class obj3> inline
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){ void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
GRID_TRACE("mult");
ret.Checkerboard() = lhs.Checkerboard(); ret.Checkerboard() = lhs.Checkerboard();
conformable(lhs,ret); conformable(lhs,ret);
autoView( ret_v , ret, AcceleratorWrite); autoView( ret_v , ret, AcceleratorWrite);
@ -124,13 +119,12 @@ void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
template<class obj1,class obj2,class obj3> inline template<class obj1,class obj2,class obj3> inline
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){ void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
GRID_TRACE("mac");
ret.Checkerboard() = lhs.Checkerboard(); ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,lhs); conformable(ret,lhs);
autoView( ret_v , ret, AcceleratorWrite); autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead); autoView( lhs_v , lhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{ accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
auto tmp =ret_v(ss); decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss); auto lhs_t=lhs_v(ss);
mac(&tmp,&lhs_t,&rhs); mac(&tmp,&lhs_t,&rhs);
coalescedWrite(ret_v[ss],tmp); coalescedWrite(ret_v[ss],tmp);
@ -139,7 +133,6 @@ void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
template<class obj1,class obj2,class obj3> inline template<class obj1,class obj2,class obj3> inline
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){ void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
GRID_TRACE("sub");
ret.Checkerboard() = lhs.Checkerboard(); ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,lhs); conformable(ret,lhs);
autoView( ret_v , ret, AcceleratorWrite); autoView( ret_v , ret, AcceleratorWrite);
@ -153,7 +146,6 @@ void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
} }
template<class obj1,class obj2,class obj3> inline template<class obj1,class obj2,class obj3> inline
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){ void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
GRID_TRACE("add");
ret.Checkerboard() = lhs.Checkerboard(); ret.Checkerboard() = lhs.Checkerboard();
conformable(lhs,ret); conformable(lhs,ret);
autoView( ret_v , ret, AcceleratorWrite); autoView( ret_v , ret, AcceleratorWrite);
@ -171,7 +163,6 @@ void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////
template<class obj1,class obj2,class obj3> inline template<class obj1,class obj2,class obj3> inline
void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){ void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
GRID_TRACE("mult");
ret.Checkerboard() = rhs.Checkerboard(); ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs); conformable(ret,rhs);
autoView( ret_v , ret, AcceleratorWrite); autoView( ret_v , ret, AcceleratorWrite);
@ -186,13 +177,12 @@ void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
template<class obj1,class obj2,class obj3> inline template<class obj1,class obj2,class obj3> inline
void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){ void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
GRID_TRACE("mac");
ret.Checkerboard() = rhs.Checkerboard(); ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs); conformable(ret,rhs);
autoView( ret_v , ret, AcceleratorWrite); autoView( ret_v , ret, AcceleratorWrite);
autoView( rhs_v , lhs, AcceleratorRead); autoView( rhs_v , lhs, AcceleratorRead);
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{ accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
auto tmp =ret_v(ss); decltype(coalescedRead(obj1())) tmp;
auto rhs_t=rhs_v(ss); auto rhs_t=rhs_v(ss);
mac(&tmp,&lhs,&rhs_t); mac(&tmp,&lhs,&rhs_t);
coalescedWrite(ret_v[ss],tmp); coalescedWrite(ret_v[ss],tmp);
@ -201,7 +191,6 @@ void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
template<class obj1,class obj2,class obj3> inline template<class obj1,class obj2,class obj3> inline
void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){ void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
GRID_TRACE("sub");
ret.Checkerboard() = rhs.Checkerboard(); ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs); conformable(ret,rhs);
autoView( ret_v , ret, AcceleratorWrite); autoView( ret_v , ret, AcceleratorWrite);
@ -215,7 +204,6 @@ void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
} }
template<class obj1,class obj2,class obj3> inline template<class obj1,class obj2,class obj3> inline
void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){ void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
GRID_TRACE("add");
ret.Checkerboard() = rhs.Checkerboard(); ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs); conformable(ret,rhs);
autoView( ret_v , ret, AcceleratorWrite); autoView( ret_v , ret, AcceleratorWrite);
@ -230,7 +218,6 @@ void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
template<class sobj,class vobj> inline template<class sobj,class vobj> inline
void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){ void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){
GRID_TRACE("axpy");
ret.Checkerboard() = x.Checkerboard(); ret.Checkerboard() = x.Checkerboard();
conformable(ret,x); conformable(ret,x);
conformable(x,y); conformable(x,y);
@ -238,13 +225,12 @@ void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &
autoView( x_v , x, AcceleratorRead); autoView( x_v , x, AcceleratorRead);
autoView( y_v , y, AcceleratorRead); autoView( y_v , y, AcceleratorRead);
accelerator_for(ss,x_v.size(),vobj::Nsimd(),{ accelerator_for(ss,x_v.size(),vobj::Nsimd(),{
auto tmp = a*coalescedRead(x_v[ss])+coalescedRead(y_v[ss]); auto tmp = a*x_v(ss)+y_v(ss);
coalescedWrite(ret_v[ss],tmp); coalescedWrite(ret_v[ss],tmp);
}); });
} }
template<class sobj,class vobj> inline template<class sobj,class vobj> inline
void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y){ void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y){
GRID_TRACE("axpby");
ret.Checkerboard() = x.Checkerboard(); ret.Checkerboard() = x.Checkerboard();
conformable(ret,x); conformable(ret,x);
conformable(x,y); conformable(x,y);
@ -260,52 +246,13 @@ void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice
template<class sobj,class vobj> inline template<class sobj,class vobj> inline
RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y) RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
{ {
GRID_TRACE("axpy_norm");
return axpy_norm_fast(ret,a,x,y); return axpy_norm_fast(ret,a,x,y);
} }
template<class sobj,class vobj> inline template<class sobj,class vobj> inline
RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y) RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
{ {
GRID_TRACE("axpby_norm");
return axpby_norm_fast(ret,a,b,x,y); return axpby_norm_fast(ret,a,b,x,y);
} }
/// Trace product
template<class obj> auto traceProduct(const Lattice<obj> &rhs_1,const Lattice<obj> &rhs_2)
-> Lattice<decltype(trace(obj()))>
{
typedef decltype(trace(obj())) robj;
Lattice<robj> ret_i(rhs_1.Grid());
autoView( rhs1 , rhs_1, AcceleratorRead);
autoView( rhs2 , rhs_2, AcceleratorRead);
autoView( ret , ret_i, AcceleratorWrite);
ret.Checkerboard() = rhs_1.Checkerboard();
accelerator_for(ss,rhs1.size(),obj::Nsimd(),{
coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2(ss)));
});
return ret_i;
}
template<class obj1,class obj2> auto traceProduct(const Lattice<obj1> &rhs_1,const obj2 &rhs2)
-> Lattice<decltype(trace(obj1()))>
{
typedef decltype(trace(obj1())) robj;
Lattice<robj> ret_i(rhs_1.Grid());
autoView( rhs1 , rhs_1, AcceleratorRead);
autoView( ret , ret_i, AcceleratorWrite);
ret.Checkerboard() = rhs_1.Checkerboard();
accelerator_for(ss,rhs1.size(),obj1::Nsimd(),{
coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2));
});
return ret_i;
}
template<class obj1,class obj2> auto traceProduct(const obj2 &rhs_2,const Lattice<obj1> &rhs_1)
-> Lattice<decltype(trace(obj1()))>
{
return traceProduct(rhs_1,rhs_2);
}
NAMESPACE_END(Grid); NAMESPACE_END(Grid);
#endif #endif

View File

@ -88,13 +88,6 @@ public:
LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this),mode); LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this),mode);
accessor.ViewClose(); accessor.ViewClose();
} }
// Helper function to print the state of this object in the AccCache
void PrintCacheState(void)
{
MemoryManager::PrintState(this->_odata);
}
///////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////
// Return a view object that may be dereferenced in site loops. // Return a view object that may be dereferenced in site loops.
// The view is trivially copy constructible and may be copied to an accelerator device // The view is trivially copy constructible and may be copied to an accelerator device
@ -117,7 +110,6 @@ public:
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
template <typename Op, typename T1> inline Lattice<vobj> & operator=(const LatticeUnaryExpression<Op,T1> &expr) template <typename Op, typename T1> inline Lattice<vobj> & operator=(const LatticeUnaryExpression<Op,T1> &expr)
{ {
GRID_TRACE("ExpressionTemplateEval");
GridBase *egrid(nullptr); GridBase *egrid(nullptr);
GridFromExpression(egrid,expr); GridFromExpression(egrid,expr);
assert(egrid!=nullptr); assert(egrid!=nullptr);
@ -131,9 +123,9 @@ public:
auto exprCopy = expr; auto exprCopy = expr;
ExpressionViewOpen(exprCopy); ExpressionViewOpen(exprCopy);
auto me = View(AcceleratorWriteDiscard); auto me = View(AcceleratorWriteDiscard);
accelerator_for(ss,me.size(),vobj::Nsimd(),{ accelerator_for(ss,me.size(),1,{
auto tmp = eval(ss,exprCopy); auto tmp = eval(ss,exprCopy);
coalescedWrite(me[ss],tmp); vstream(me[ss],tmp);
}); });
me.ViewClose(); me.ViewClose();
ExpressionViewClose(exprCopy); ExpressionViewClose(exprCopy);
@ -141,7 +133,6 @@ public:
} }
template <typename Op, typename T1,typename T2> inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr) template <typename Op, typename T1,typename T2> inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr)
{ {
GRID_TRACE("ExpressionTemplateEval");
GridBase *egrid(nullptr); GridBase *egrid(nullptr);
GridFromExpression(egrid,expr); GridFromExpression(egrid,expr);
assert(egrid!=nullptr); assert(egrid!=nullptr);
@ -155,9 +146,9 @@ public:
auto exprCopy = expr; auto exprCopy = expr;
ExpressionViewOpen(exprCopy); ExpressionViewOpen(exprCopy);
auto me = View(AcceleratorWriteDiscard); auto me = View(AcceleratorWriteDiscard);
accelerator_for(ss,me.size(),vobj::Nsimd(),{ accelerator_for(ss,me.size(),1,{
auto tmp = eval(ss,exprCopy); auto tmp = eval(ss,exprCopy);
coalescedWrite(me[ss],tmp); vstream(me[ss],tmp);
}); });
me.ViewClose(); me.ViewClose();
ExpressionViewClose(exprCopy); ExpressionViewClose(exprCopy);
@ -165,7 +156,6 @@ public:
} }
template <typename Op, typename T1,typename T2,typename T3> inline Lattice<vobj> & operator=(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr) template <typename Op, typename T1,typename T2,typename T3> inline Lattice<vobj> & operator=(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr)
{ {
GRID_TRACE("ExpressionTemplateEval");
GridBase *egrid(nullptr); GridBase *egrid(nullptr);
GridFromExpression(egrid,expr); GridFromExpression(egrid,expr);
assert(egrid!=nullptr); assert(egrid!=nullptr);
@ -178,9 +168,9 @@ public:
auto exprCopy = expr; auto exprCopy = expr;
ExpressionViewOpen(exprCopy); ExpressionViewOpen(exprCopy);
auto me = View(AcceleratorWriteDiscard); auto me = View(AcceleratorWriteDiscard);
accelerator_for(ss,me.size(),vobj::Nsimd(),{ accelerator_for(ss,me.size(),1,{
auto tmp = eval(ss,exprCopy); auto tmp = eval(ss,exprCopy);
coalescedWrite(me[ss],tmp); vstream(me[ss],tmp);
}); });
me.ViewClose(); me.ViewClose();
ExpressionViewClose(exprCopy); ExpressionViewClose(exprCopy);
@ -291,8 +281,8 @@ public:
typename std::enable_if<!std::is_same<robj,vobj>::value,int>::type i=0; typename std::enable_if<!std::is_same<robj,vobj>::value,int>::type i=0;
conformable(*this,r); conformable(*this,r);
this->checkerboard = r.Checkerboard(); this->checkerboard = r.Checkerboard();
auto him= r.View(AcceleratorRead);
auto me = View(AcceleratorWriteDiscard); auto me = View(AcceleratorWriteDiscard);
auto him= r.View(AcceleratorRead);
accelerator_for(ss,me.size(),vobj::Nsimd(),{ accelerator_for(ss,me.size(),vobj::Nsimd(),{
coalescedWrite(me[ss],him(ss)); coalescedWrite(me[ss],him(ss));
}); });
@ -306,8 +296,8 @@ public:
inline Lattice<vobj> & operator = (const Lattice<vobj> & r){ inline Lattice<vobj> & operator = (const Lattice<vobj> & r){
this->checkerboard = r.Checkerboard(); this->checkerboard = r.Checkerboard();
conformable(*this,r); conformable(*this,r);
auto him= r.View(AcceleratorRead);
auto me = View(AcceleratorWriteDiscard); auto me = View(AcceleratorWriteDiscard);
auto him= r.View(AcceleratorRead);
accelerator_for(ss,me.size(),vobj::Nsimd(),{ accelerator_for(ss,me.size(),vobj::Nsimd(),{
coalescedWrite(me[ss],him(ss)); coalescedWrite(me[ss],him(ss));
}); });

View File

@ -54,34 +54,13 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
typedef decltype(basis[0].View(AcceleratorRead)) View; typedef decltype(basis[0].View(AcceleratorRead)) View;
Vector<View> basis_v; basis_v.reserve(basis.size()); Vector<View> basis_v; basis_v.reserve(basis.size());
typedef typename std::remove_reference<decltype(basis_v[0][0])>::type vobj;
typedef typename std::remove_reference<decltype(Qt(0,0))>::type Coeff_t;
GridBase* grid = basis[0].Grid(); GridBase* grid = basis[0].Grid();
for(int k=0;k<basis.size();k++){ for(int k=0;k<basis.size();k++){
basis_v.push_back(basis[k].View(AcceleratorWrite)); basis_v.push_back(basis[k].View(AcceleratorWrite));
} }
#if ( !(defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)) )
int max_threads = thread_max();
Vector < vobj > Bt(Nm * max_threads);
thread_region
{
vobj* B = &Bt[Nm * thread_num()];
thread_for_in_region(ss, grid->oSites(),{
for(int j=j0; j<j1; ++j) B[j]=0.;
for(int j=j0; j<j1; ++j){
for(int k=k0; k<k1; ++k){
B[j] +=Qt(j,k) * basis_v[k][ss];
}
}
for(int j=j0; j<j1; ++j){
basis_v[j][ss] = B[j];
}
});
}
#else
View *basis_vp = &basis_v[0]; View *basis_vp = &basis_v[0];
int nrot = j1-j0; int nrot = j1-j0;
@ -91,12 +70,14 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
uint64_t oSites =grid->oSites(); uint64_t oSites =grid->oSites();
uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead
typedef typename std::remove_reference<decltype(basis_v[0][0])>::type vobj;
Vector <vobj> Bt(siteBlock * nrot); Vector <vobj> Bt(siteBlock * nrot);
auto Bp=&Bt[0]; auto Bp=&Bt[0];
// GPU readable copy of matrix // GPU readable copy of matrix
Vector<Coeff_t> Qt_jv(Nm*Nm); Vector<double> Qt_jv(Nm*Nm);
Coeff_t *Qt_p = & Qt_jv[0]; double *Qt_p = & Qt_jv[0];
thread_for(i,Nm*Nm,{ thread_for(i,Nm*Nm,{
int j = i/Nm; int j = i/Nm;
int k = i%Nm; int k = i%Nm;
@ -125,7 +106,7 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
for(int k=k0; k<k1; ++k){ for(int k=k0; k<k1; ++k){
auto tmp = coalescedRead(Bp[ss*nrot+j]); auto tmp = coalescedRead(Bp[ss*nrot+j]);
coalescedWrite(Bp[ss*nrot+j],tmp+ Qt_p[jj*Nm+k] * coalescedRead(basis_vp[k][sss])); coalescedWrite(Bp[ss*nrot+j],tmp+ Qt_p[jj*Nm+k] * coalescedRead(basis_v[k][sss]));
} }
}); });
@ -134,10 +115,9 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
int jj =j0+j; int jj =j0+j;
int ss =sj/nrot; int ss =sj/nrot;
int sss=ss+s; int sss=ss+s;
coalescedWrite(basis_vp[jj][sss],coalescedRead(Bp[ss*nrot+j])); coalescedWrite(basis_v[jj][sss],coalescedRead(Bp[ss*nrot+j]));
}); });
} }
#endif
for(int k=0;k<basis.size();k++) basis_v[k].ViewClose(); for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
} }
@ -161,13 +141,11 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in
double * Qt_j = & Qt_jv[0]; double * Qt_j = & Qt_jv[0];
for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k); for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k);
auto basis_vp=& basis_v[0];
autoView(result_v,result,AcceleratorWrite); autoView(result_v,result,AcceleratorWrite);
accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{ accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
vobj zzz=Zero(); auto B=coalescedRead(zz);
auto B=coalescedRead(zzz);
for(int k=k0; k<k1; ++k){ for(int k=k0; k<k1; ++k){
B +=Qt_j[k] * coalescedRead(basis_vp[k][ss]); B +=Qt_j[k] * coalescedRead(basis_v[k][ss]);
} }
coalescedWrite(result_v[ss], B); coalescedWrite(result_v[ss], B);
}); });

View File

@ -42,6 +42,34 @@ NAMESPACE_BEGIN(Grid);
typedef iScalar<vInteger> vPredicate ; typedef iScalar<vInteger> vPredicate ;
/*
template <class iobj, class vobj, class robj> accelerator_inline
vobj predicatedWhere(const iobj &predicate, const vobj &iftrue, const robj &iffalse)
{
typename std::remove_const<vobj>::type ret;
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
const int Nsimd = vobj::vector_type::Nsimd();
ExtractBuffer<Integer> mask(Nsimd);
ExtractBuffer<scalar_object> truevals(Nsimd);
ExtractBuffer<scalar_object> falsevals(Nsimd);
extract(iftrue, truevals);
extract(iffalse, falsevals);
extract<vInteger, Integer>(TensorRemove(predicate), mask);
for (int s = 0; s < Nsimd; s++) {
if (mask[s]) falsevals[s] = truevals[s];
}
merge(ret, falsevals);
return ret;
}
*/
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
// compare lattice to lattice // compare lattice to lattice
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////

View File

@ -1,55 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_crc.h
Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template<class vobj> void DumpSliceNorm(std::string s,Lattice<vobj> &f,int mu=-1)
{
auto ff = localNorm2(f);
if ( mu==-1 ) mu = f.Grid()->Nd()-1;
typedef typename vobj::tensor_reduced normtype;
typedef typename normtype::scalar_object scalar;
std::vector<scalar> sff;
sliceSum(ff,sff,mu);
for(int t=0;t<sff.size();t++){
std::cout << s<<" "<<t<<" "<<sff[t]<<std::endl;
}
}
template<class vobj> uint32_t crc(const Lattice<vobj> & buf)
{
autoView( buf_v , buf, CpuRead);
return ::crc32(0L,(unsigned char *)&buf_v[0],(size_t)sizeof(vobj)*buf.oSites());
}
#define CRC(U) std::cerr << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
NAMESPACE_END(Grid);

View File

@ -32,6 +32,7 @@ template<class vobj>
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0) static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
{ {
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type; typedef typename vobj::vector_type vector_type;
int Nblock = X.Grid()->GlobalDimensions()[Orthog]; int Nblock = X.Grid()->GlobalDimensions()[Orthog];
@ -81,6 +82,7 @@ template<class vobj>
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0) static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)
{ {
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type; typedef typename vobj::vector_type vector_type;
int Nblock = X.Grid()->GlobalDimensions()[Orthog]; int Nblock = X.Grid()->GlobalDimensions()[Orthog];
@ -128,6 +130,7 @@ template<class vobj>
static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog) static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
{ {
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type; typedef typename vobj::vector_type vector_type;
GridBase *FullGrid = lhs.Grid(); GridBase *FullGrid = lhs.Grid();

View File

@ -96,6 +96,9 @@ void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){
GridBase *grid=l.Grid(); GridBase *grid=l.Grid();
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nsimd = grid->Nsimd(); int Nsimd = grid->Nsimd();
assert( l.Checkerboard()== l.Grid()->CheckerBoard(site)); assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
@ -122,17 +125,14 @@ void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){
////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////
// Peek a scalar object from the SIMD array // Peek a scalar object from the SIMD array
////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////
template<class vobj>
typename vobj::scalar_object peekSite(const Lattice<vobj> &l,const Coordinate &site){
typename vobj::scalar_object s;
peekSite(s,l,site);
return s;
}
template<class vobj,class sobj> template<class vobj,class sobj>
void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){ void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
GridBase *grid=l.Grid(); GridBase *grid=l.Grid();
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nsimd = grid->Nsimd(); int Nsimd = grid->Nsimd();
assert( l.Checkerboard() == l.Grid()->CheckerBoard(site)); assert( l.Checkerboard() == l.Grid()->CheckerBoard(site));
@ -173,23 +173,15 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
idx= grid->iIndex(site); idx= grid->iIndex(site);
odx= grid->oIndex(site); odx= grid->oIndex(site);
const vector_type *vp = (const vector_type *) &l[odx]; scalar_type * vp = (scalar_type *)&l[odx];
scalar_type * pt = (scalar_type *)&s; scalar_type * pt = (scalar_type *)&s;
for(int w=0;w<words;w++){ for(int w=0;w<words;w++){
pt[w] = getlane(vp[w],idx); pt[w] = vp[idx+w*Nsimd];
} }
return; return;
}; };
template<class vobj,class sobj>
inline void peekLocalSite(sobj &s,const Lattice<vobj> &l,Coordinate &site)
{
autoView(lv,l,CpuRead);
peekLocalSite(s,lv,site);
return;
};
// Must be CPU write view // Must be CPU write view
template<class vobj,class sobj> template<class vobj,class sobj>
inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site) inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site)
@ -210,22 +202,14 @@ inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site)
idx= grid->iIndex(site); idx= grid->iIndex(site);
odx= grid->oIndex(site); odx= grid->oIndex(site);
vector_type * vp = (vector_type *)&l[odx]; scalar_type * vp = (scalar_type *)&l[odx];
scalar_type * pt = (scalar_type *)&s; scalar_type * pt = (scalar_type *)&s;
for(int w=0;w<words;w++){ for(int w=0;w<words;w++){
putlane(vp[w],pt[w],idx); vp[idx+w*Nsimd] = pt[w];
} }
return; return;
}; };
template<class vobj,class sobj>
inline void pokeLocalSite(const sobj &s, Lattice<vobj> &l,Coordinate &site)
{
autoView(lv,l,CpuWrite);
pokeLocalSite(s,lv,site);
return;
};
NAMESPACE_END(Grid); NAMESPACE_END(Grid);
#endif #endif

View File

@ -1,79 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_reality.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_REAL_IMAG_H
#define GRID_LATTICE_REAL_IMAG_H
// FIXME .. this is the sector of the code
// I am most worried about the directions
// The choice of burying complex in the SIMD
// is making the use of "real" and "imag" very cumbersome
NAMESPACE_BEGIN(Grid);
template<class vobj> inline Lattice<vobj> real(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs.Grid());
autoView( lhs_v, lhs, AcceleratorRead);
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard()=lhs.Checkerboard();
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] =real(lhs_v[ss]);
});
return ret;
};
template<class vobj> inline Lattice<vobj> imag(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs.Grid());
autoView( lhs_v, lhs, AcceleratorRead);
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard()=lhs.Checkerboard();
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] =imag(lhs_v[ss]);
});
return ret;
};
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto real(const Expression &expr) -> decltype(real(closure(expr)))
{
return real(closure(expr));
}
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto imag(const Expression &expr) -> decltype(imag(closure(expr)))
{
return imag(closure(expr));
}
NAMESPACE_END(Grid);
#endif

View File

@ -45,8 +45,8 @@ template<class vobj> inline Lattice<vobj> adj(const Lattice<vobj> &lhs){
autoView( ret_v, ret, AcceleratorWrite); autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard()=lhs.Checkerboard(); ret.Checkerboard()=lhs.Checkerboard();
accelerator_for( ss, lhs_v.size(), 1, { accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), {
ret_v[ss] = adj(lhs_v[ss]); coalescedWrite(ret_v[ss], adj(lhs_v(ss)));
}); });
return ret; return ret;
}; };
@ -64,53 +64,6 @@ template<class vobj> inline Lattice<vobj> conjugate(const Lattice<vobj> &lhs){
return ret; return ret;
}; };
template<class vobj> inline Lattice<typename vobj::Complexified> toComplex(const Lattice<vobj> &lhs){
Lattice<typename vobj::Complexified> ret(lhs.Grid());
autoView( lhs_v, lhs, AcceleratorRead);
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard() = lhs.Checkerboard();
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] = toComplex(lhs_v[ss]);
});
return ret;
};
template<class vobj> inline Lattice<typename vobj::Realified> toReal(const Lattice<vobj> &lhs){
Lattice<typename vobj::Realified> ret(lhs.Grid());
autoView( lhs_v, lhs, AcceleratorRead);
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard() = lhs.Checkerboard();
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] = toReal(lhs_v[ss]);
});
return ret;
};
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto toComplex(const Expression &expr) -> decltype(closure(expr))
{
return toComplex(closure(expr));
}
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto toReal(const Expression &expr) -> decltype(closure(expr))
{
return toReal(closure(expr));
}
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto adj(const Expression &expr) -> decltype(closure(expr))
{
return adj(closure(expr));
}
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto conjugate(const Expression &expr) -> decltype(closure(expr))
{
return conjugate(closure(expr));
}
NAMESPACE_END(Grid); NAMESPACE_END(Grid);
#endif #endif

View File

@ -28,10 +28,6 @@ Author: Christoph Lehner <christoph@lhnr.de>
#if defined(GRID_CUDA)||defined(GRID_HIP) #if defined(GRID_CUDA)||defined(GRID_HIP)
#include <Grid/lattice/Lattice_reduction_gpu.h> #include <Grid/lattice/Lattice_reduction_gpu.h>
#endif #endif
#if defined(GRID_SYCL)
#include <Grid/lattice/Lattice_reduction_sycl.h>
#endif
#include <Grid/lattice/Lattice_slicesum_core.h>
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
@ -95,40 +91,17 @@ inline typename vobj::scalar_objectD sumD_cpu(const vobj *arg, Integer osites)
for(int i=0;i<nthread;i++){ for(int i=0;i<nthread;i++){
ssum = ssum+sumarray[i]; ssum = ssum+sumarray[i];
} }
return ssum;
typedef typename vobj::scalar_object ssobj;
ssobj ret = ssum;
return ret;
} }
/*
Threaded max, don't use for now
template<class Double>
inline Double max(const Double *arg, Integer osites)
{
// const int Nsimd = vobj::Nsimd();
const int nthread = GridThread::GetThreads();
std::vector<Double> maxarray(nthread);
thread_for(thr,nthread, {
int nwork, mywork, myoff;
nwork = osites;
GridThread::GetWork(nwork,thr,mywork,myoff);
Double max=arg[0];
for(int ss=myoff;ss<mywork+myoff; ss++){
if( arg[ss] > max ) max = arg[ss];
}
maxarray[thr]=max;
});
Double tmax=maxarray[0];
for(int i=0;i<nthread;i++){
if (maxarray[i]>tmax) tmax = maxarray[i];
}
return tmax;
}
*/
template<class vobj> template<class vobj>
inline typename vobj::scalar_object sum(const vobj *arg, Integer osites) inline typename vobj::scalar_object sum(const vobj *arg, Integer osites)
{ {
#if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL) #if defined(GRID_CUDA)||defined(GRID_HIP)
return sum_gpu(arg,osites); return sum_gpu(arg,osites);
#else #else
return sum_cpu(arg,osites); return sum_cpu(arg,osites);
@ -137,61 +110,25 @@ inline typename vobj::scalar_object sum(const vobj *arg, Integer osites)
template<class vobj> template<class vobj>
inline typename vobj::scalar_objectD sumD(const vobj *arg, Integer osites) inline typename vobj::scalar_objectD sumD(const vobj *arg, Integer osites)
{ {
#if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL) #if defined(GRID_CUDA)||defined(GRID_HIP)
return sumD_gpu(arg,osites); return sumD_gpu(arg,osites);
#else #else
return sumD_cpu(arg,osites); return sumD_cpu(arg,osites);
#endif #endif
} }
template<class vobj>
inline typename vobj::scalar_objectD sumD_large(const vobj *arg, Integer osites)
{
#if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL)
return sumD_gpu_large(arg,osites);
#else
return sumD_cpu(arg,osites);
#endif
}
template<class vobj>
inline typename vobj::scalar_object rankSum(const Lattice<vobj> &arg)
{
Integer osites = arg.Grid()->oSites();
#if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL)
autoView( arg_v, arg, AcceleratorRead);
return sum_gpu(&arg_v[0],osites);
#else
autoView(arg_v, arg, CpuRead);
return sum_cpu(&arg_v[0],osites);
#endif
}
template<class vobj> template<class vobj>
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg) inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
{ {
auto ssum = rankSum(arg); #if defined(GRID_CUDA)||defined(GRID_HIP)
arg.Grid()->GlobalSum(ssum);
return ssum;
}
template<class vobj>
inline typename vobj::scalar_object rankSumLarge(const Lattice<vobj> &arg)
{
#if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL)
autoView( arg_v, arg, AcceleratorRead); autoView( arg_v, arg, AcceleratorRead);
Integer osites = arg.Grid()->oSites(); Integer osites = arg.Grid()->oSites();
return sum_gpu_large(&arg_v[0],osites); auto ssum= sum_gpu(&arg_v[0],osites);
#else #else
autoView(arg_v, arg, CpuRead); autoView(arg_v, arg, CpuRead);
Integer osites = arg.Grid()->oSites(); Integer osites = arg.Grid()->oSites();
return sum_cpu(&arg_v[0],osites); auto ssum= sum_cpu(&arg_v[0],osites);
#endif #endif
}
template<class vobj>
inline typename vobj::scalar_object sum_large(const Lattice<vobj> &arg)
{
auto ssum = rankSumLarge(arg);
arg.Grid()->GlobalSum(ssum); arg.Grid()->GlobalSum(ssum);
return ssum; return ssum;
} }
@ -204,36 +141,11 @@ template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){
return real(nrm); return real(nrm);
} }
//The global maximum of the site norm2
template<class vobj> inline RealD maxLocalNorm2(const Lattice<vobj> &arg)
{
typedef typename vobj::tensor_reduced vscalar; //iScalar<iScalar<.... <vPODtype> > >
typedef typename vscalar::scalar_object scalar; //iScalar<iScalar<.... <PODtype> > >
Lattice<vscalar> inner = localNorm2(arg);
auto grid = arg.Grid();
RealD max;
for(int l=0;l<grid->lSites();l++){
Coordinate coor;
scalar val;
RealD r;
grid->LocalIndexToLocalCoor(l,coor);
peekLocalSite(val,inner,coor);
r=real(TensorRemove(val));
if( (l==0) || (r>max)){
max=r;
}
}
grid->GlobalMax(max);
return max;
}
// Double inner product // Double inner product
template<class vobj> template<class vobj>
inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right)
{ {
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_typeD vector_type; typedef typename vobj::vector_typeD vector_type;
ComplexD nrm; ComplexD nrm;
@ -243,40 +155,24 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
const uint64_t sites = grid->oSites(); const uint64_t sites = grid->oSites();
// Might make all code paths go this way. // Might make all code paths go this way.
#if 0
typedef decltype(innerProductD(vobj(),vobj())) inner_t; typedef decltype(innerProductD(vobj(),vobj())) inner_t;
Vector<inner_t> inner_tmp(sites); Vector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0]; auto inner_tmp_v = &inner_tmp[0];
{
autoView( left_v , left, AcceleratorRead);
autoView( right_v,right, AcceleratorRead);
// This code could read coalesce
// GPU - SIMT lane compliance...
accelerator_for( ss, sites, nsimd,{
auto x_l = left_v(ss);
auto y_l = right_v(ss);
coalescedWrite(inner_tmp_v[ss],innerProductD(x_l,y_l));
});
}
#else
typedef decltype(innerProduct(vobj(),vobj())) inner_t;
Vector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
{ {
autoView( left_v , left, AcceleratorRead); autoView( left_v , left, AcceleratorRead);
autoView( right_v,right, AcceleratorRead); autoView( right_v,right, AcceleratorRead);
// GPU - SIMT lane compliance... // GPU - SIMT lane compliance...
accelerator_for( ss, sites, nsimd,{ accelerator_for( ss, sites, 1,{
auto x_l = left_v(ss); auto x_l = left_v[ss];
auto y_l = right_v(ss); auto y_l = right_v[ss];
coalescedWrite(inner_tmp_v[ss],innerProduct(x_l,y_l)); inner_tmp_v[ss]=innerProductD(x_l,y_l);
}); });
} }
#endif
// This is in single precision and fails some tests // This is in single precision and fails some tests
auto anrm = sumD(inner_tmp_v,sites); auto anrm = sum(inner_tmp_v,sites);
nrm = anrm; nrm = anrm;
return nrm; return nrm;
} }
@ -285,7 +181,6 @@ template<class vobj>
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) { inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) {
GridBase *grid = left.Grid(); GridBase *grid = left.Grid();
ComplexD nrm = rankInnerProduct(left,right); ComplexD nrm = rankInnerProduct(left,right);
// std::cerr<<"flight log " << std::hexfloat << nrm <<" "<<crc(left)<<std::endl;
grid->GlobalSum(nrm); grid->GlobalSum(nrm);
return nrm; return nrm;
} }
@ -310,7 +205,8 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
conformable(z,x); conformable(z,x);
conformable(x,y); conformable(x,y);
// typedef typename vobj::vector_typeD vector_type; typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_typeD vector_type;
RealD nrm; RealD nrm;
GridBase *grid = x.Grid(); GridBase *grid = x.Grid();
@ -322,29 +218,17 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
autoView( x_v, x, AcceleratorRead); autoView( x_v, x, AcceleratorRead);
autoView( y_v, y, AcceleratorRead); autoView( y_v, y, AcceleratorRead);
autoView( z_v, z, AcceleratorWrite); autoView( z_v, z, AcceleratorWrite);
#if 0
typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t; typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t;
Vector<inner_t> inner_tmp(sites); Vector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0]; auto inner_tmp_v = &inner_tmp[0];
accelerator_for( ss, sites, nsimd,{ accelerator_for( ss, sites, 1,{
auto tmp = a*x_v(ss)+b*y_v(ss); auto tmp = a*x_v[ss]+b*y_v[ss];
coalescedWrite(inner_tmp_v[ss],innerProductD(tmp,tmp)); inner_tmp_v[ss]=innerProductD(tmp,tmp);
coalescedWrite(z_v[ss],tmp); z_v[ss]=tmp;
}); });
nrm = real(TensorRemove(sum(inner_tmp_v,sites))); nrm = real(TensorRemove(sum(inner_tmp_v,sites)));
#else
typedef decltype(innerProduct(x_v[0],y_v[0])) inner_t;
Vector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
accelerator_for( ss, sites, nsimd,{
auto tmp = a*x_v(ss)+b*y_v(ss);
coalescedWrite(inner_tmp_v[ss],innerProduct(tmp,tmp));
coalescedWrite(z_v[ss],tmp);
});
nrm = real(TensorRemove(sumD(inner_tmp_v,sites)));
#endif
grid->GlobalSum(nrm); grid->GlobalSum(nrm);
return nrm; return nrm;
} }
@ -354,6 +238,7 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti
{ {
conformable(left,right); conformable(left,right);
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_typeD vector_type; typedef typename vobj::vector_typeD vector_type;
Vector<ComplexD> tmp(2); Vector<ComplexD> tmp(2);
@ -424,7 +309,6 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
// But easily avoided by using double precision fields // But easily avoided by using double precision fields
/////////////////////////////////////////////////////// ///////////////////////////////////////////////////////
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_object::scalar_type scalar_type;
GridBase *grid = Data.Grid(); GridBase *grid = Data.Grid();
assert(grid!=NULL); assert(grid!=NULL);
@ -450,10 +334,19 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
int e1= grid->_slice_nblock[orthogdim]; int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim]; int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim]; int stride=grid->_slice_stride[orthogdim];
int ostride=grid->_ostride[orthogdim];
//Reduce Data down to lvSum // sum over reduced dimension planes, breaking out orthog dir
sliceSumReduction(Data,lvSum,rd, e1,e2,stride,ostride,Nsimd); // Parallel over orthog direction
autoView( Data_v, Data, CpuRead);
thread_for( r,rd, {
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
lvSum[r]=lvSum[r]+Data_v[ss];
}
}
});
// Sum across simd lanes in the plane, breaking out orthog dir. // Sum across simd lanes in the plane, breaking out orthog dir.
Coordinate icoor(Nd); Coordinate icoor(Nd);
@ -474,29 +367,21 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
} }
// sum over nodes. // sum over nodes.
sobj gsum;
for(int t=0;t<fd;t++){ for(int t=0;t<fd;t++){
int pt = t/ld; // processor plane int pt = t/ld; // processor plane
int lt = t%ld; int lt = t%ld;
if ( pt == grid->_processor_coor[orthogdim] ) { if ( pt == grid->_processor_coor[orthogdim] ) {
result[t]=lsSum[lt]; gsum=lsSum[lt];
} else { } else {
result[t]=Zero(); gsum=Zero();
} }
} grid->GlobalSum(gsum);
scalar_type * ptr = (scalar_type *) &result[0];
int words = fd*sizeof(sobj)/sizeof(scalar_type);
grid->GlobalSumVector(ptr, words);
}
template<class vobj> inline
std::vector<typename vobj::scalar_object>
sliceSum(const Lattice<vobj> &Data,int orthogdim)
{
std::vector<typename vobj::scalar_object> result;
sliceSum(Data,result,orthogdim);
return result;
}
result[t]=gsum;
}
}
template<class vobj> template<class vobj>
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim) static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)
@ -602,7 +487,6 @@ template<class vobj>
static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice<vobj> &X,const Lattice<vobj> &Y, static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice<vobj> &X,const Lattice<vobj> &Y,
int orthogdim,RealD scale=1.0) int orthogdim,RealD scale=1.0)
{ {
// perhaps easier to just promote A to a field and use regular madd
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type; typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type; typedef typename vobj::vector_type vector_type;
@ -633,7 +517,8 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice
for(int l=0;l<Nsimd;l++){ for(int l=0;l<Nsimd;l++){
grid->iCoorFromIindex(icoor,l); grid->iCoorFromIindex(icoor,l);
int ldx =r+icoor[orthogdim]*rd; int ldx =r+icoor[orthogdim]*rd;
av.putlane(scalar_type(a[ldx])*zscale,l); scalar_type *as =(scalar_type *)&av;
as[l] = scalar_type(a[ldx])*zscale;
} }
tensor_reduced at; at=av; tensor_reduced at; at=av;
@ -673,6 +558,7 @@ template<class vobj>
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0) static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
{ {
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type; typedef typename vobj::vector_type vector_type;
int Nblock = X.Grid()->GlobalDimensions()[Orthog]; int Nblock = X.Grid()->GlobalDimensions()[Orthog];
@ -726,6 +612,7 @@ template<class vobj>
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0) static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)
{ {
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type; typedef typename vobj::vector_type vector_type;
int Nblock = X.Grid()->GlobalDimensions()[Orthog]; int Nblock = X.Grid()->GlobalDimensions()[Orthog];
@ -779,6 +666,7 @@ template<class vobj>
static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog) static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
{ {
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type; typedef typename vobj::vector_type vector_type;
GridBase *FullGrid = lhs.Grid(); GridBase *FullGrid = lhs.Grid();

View File

@ -2,13 +2,12 @@ NAMESPACE_BEGIN(Grid);
#ifdef GRID_HIP #ifdef GRID_HIP
extern hipDeviceProp_t *gpu_props; extern hipDeviceProp_t *gpu_props;
#define WARP_SIZE 64
#endif #endif
#ifdef GRID_CUDA #ifdef GRID_CUDA
extern cudaDeviceProp *gpu_props; extern cudaDeviceProp *gpu_props;
#define WARP_SIZE 32
#endif #endif
#define WARP_SIZE 32
__device__ unsigned int retirementCount = 0; __device__ unsigned int retirementCount = 0;
template <class Iterator> template <class Iterator>
@ -23,27 +22,28 @@ unsigned int nextPow2(Iterator x) {
} }
template <class Iterator> template <class Iterator>
int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &threads, Iterator &blocks) { void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &threads, Iterator &blocks) {
int device; int device;
#ifdef GRID_CUDA #ifdef GRID_CUDA
cudaGetDevice(&device); cudaGetDevice(&device);
#endif #endif
#ifdef GRID_HIP #ifdef GRID_HIP
auto r=hipGetDevice(&device); hipGetDevice(&device);
#endif #endif
Iterator warpSize = gpu_props[device].warpSize; Iterator warpSize = gpu_props[device].warpSize;
Iterator sharedMemPerBlock = gpu_props[device].sharedMemPerBlock; Iterator sharedMemPerBlock = gpu_props[device].sharedMemPerBlock;
Iterator maxThreadsPerBlock = gpu_props[device].maxThreadsPerBlock; Iterator maxThreadsPerBlock = gpu_props[device].maxThreadsPerBlock;
Iterator multiProcessorCount = gpu_props[device].multiProcessorCount; Iterator multiProcessorCount = gpu_props[device].multiProcessorCount;
/*
std::cout << GridLogDebug << "GPU has:" << std::endl; std::cout << GridLogDebug << "GPU has:" << std::endl;
std::cout << GridLogDebug << "\twarpSize = " << warpSize << std::endl; std::cout << GridLogDebug << "\twarpSize = " << warpSize << std::endl;
std::cout << GridLogDebug << "\tsharedMemPerBlock = " << sharedMemPerBlock << std::endl; std::cout << GridLogDebug << "\tsharedMemPerBlock = " << sharedMemPerBlock << std::endl;
std::cout << GridLogDebug << "\tmaxThreadsPerBlock = " << maxThreadsPerBlock << std::endl; std::cout << GridLogDebug << "\tmaxThreadsPerBlock = " << maxThreadsPerBlock << std::endl;
std::cout << GridLogDebug << "\tmaxThreadsPerBlock = " << warpSize << std::endl;
std::cout << GridLogDebug << "\tmultiProcessorCount = " << multiProcessorCount << std::endl; std::cout << GridLogDebug << "\tmultiProcessorCount = " << multiProcessorCount << std::endl;
*/
if (warpSize != WARP_SIZE) { if (warpSize != WARP_SIZE) {
std::cout << GridLogError << "The warp size of the GPU in use does not match the warp size set when compiling Grid." << std::endl; std::cout << GridLogError << "The warp size of the GPU in use does not match the warp size set when compiling Grid." << std::endl;
exit(EXIT_FAILURE); exit(EXIT_FAILURE);
@ -51,14 +51,10 @@ int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &
// let the number of threads in a block be a multiple of 2, starting from warpSize // let the number of threads in a block be a multiple of 2, starting from warpSize
threads = warpSize; threads = warpSize;
if ( threads*sizeofsobj > sharedMemPerBlock ) {
std::cout << GridLogError << "The object is too large for the shared memory." << std::endl;
return 0;
}
while( 2*threads*sizeofsobj < sharedMemPerBlock && 2*threads <= maxThreadsPerBlock ) threads *= 2; while( 2*threads*sizeofsobj < sharedMemPerBlock && 2*threads <= maxThreadsPerBlock ) threads *= 2;
// keep all the streaming multiprocessors busy // keep all the streaming multiprocessors busy
blocks = nextPow2(multiProcessorCount); blocks = nextPow2(multiProcessorCount);
return 1;
} }
template <class sobj, class Iterator> template <class sobj, class Iterator>
@ -68,7 +64,7 @@ __device__ void reduceBlock(volatile sobj *sdata, sobj mySum, const Iterator tid
// cannot use overloaded operators for sobj as they are not volatile-qualified // cannot use overloaded operators for sobj as they are not volatile-qualified
memcpy((void *)&sdata[tid], (void *)&mySum, sizeof(sobj)); memcpy((void *)&sdata[tid], (void *)&mySum, sizeof(sobj));
acceleratorSynchronise(); __syncwarp();
const Iterator VEC = WARP_SIZE; const Iterator VEC = WARP_SIZE;
const Iterator vid = tid & (VEC-1); const Iterator vid = tid & (VEC-1);
@ -82,9 +78,9 @@ __device__ void reduceBlock(volatile sobj *sdata, sobj mySum, const Iterator tid
beta += temp; beta += temp;
memcpy((void *)&sdata[tid], (void *)&beta, sizeof(sobj)); memcpy((void *)&sdata[tid], (void *)&beta, sizeof(sobj));
} }
acceleratorSynchronise(); __syncwarp();
} }
acceleratorSynchroniseAll(); __syncthreads();
if (threadIdx.x == 0) { if (threadIdx.x == 0) {
beta = Zero(); beta = Zero();
@ -94,7 +90,7 @@ __device__ void reduceBlock(volatile sobj *sdata, sobj mySum, const Iterator tid
} }
memcpy((void *)&sdata[0], (void *)&beta, sizeof(sobj)); memcpy((void *)&sdata[0], (void *)&beta, sizeof(sobj));
} }
acceleratorSynchroniseAll(); __syncthreads();
} }
@ -198,7 +194,7 @@ __global__ void reduceKernel(const vobj *lat, sobj *buffer, Iterator n) {
// Possibly promote to double and sum // Possibly promote to double and sum
///////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////////
template <class vobj> template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osites) inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
{ {
typedef typename vobj::scalar_objectD sobj; typedef typename vobj::scalar_objectD sobj;
typedef decltype(lat) Iterator; typedef decltype(lat) Iterator;
@ -207,77 +203,17 @@ inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osi
Integer size = osites*nsimd; Integer size = osites*nsimd;
Integer numThreads, numBlocks; Integer numThreads, numBlocks;
int ok = getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks); getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
assert(ok);
Integer smemSize = numThreads * sizeof(sobj); Integer smemSize = numThreads * sizeof(sobj);
// Move out of UVM
// Turns out I had messed up the synchronise after move to compute stream
// as running this on the default stream fools the synchronise
#undef UVM_BLOCK_BUFFER
#ifndef UVM_BLOCK_BUFFER
commVector<sobj> buffer(numBlocks);
sobj *buffer_v = &buffer[0];
sobj result;
reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
accelerator_barrier();
acceleratorCopyFromDevice(buffer_v,&result,sizeof(result));
#else
Vector<sobj> buffer(numBlocks); Vector<sobj> buffer(numBlocks);
sobj *buffer_v = &buffer[0]; sobj *buffer_v = &buffer[0];
sobj result;
reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size); reduceKernel<<< numBlocks, numThreads, smemSize >>>(lat, buffer_v, size);
accelerator_barrier(); accelerator_barrier();
result = *buffer_v; auto result = buffer_v[0];
#endif
return result; return result;
} }
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osites)
{
typedef typename vobj::vector_type vector;
typedef typename vobj::scalar_typeD scalarD;
typedef typename vobj::scalar_objectD sobj;
sobj ret;
scalarD *ret_p = (scalarD *)&ret;
const int words = sizeof(vobj)/sizeof(vector);
Vector<vector> buffer(osites);
vector *dat = (vector *)lat;
vector *buf = &buffer[0];
iScalar<vector> *tbuf =(iScalar<vector> *) &buffer[0];
for(int w=0;w<words;w++) {
accelerator_for(ss,osites,1,{
buf[ss] = dat[ss*words+w];
});
ret_p[w] = sumD_gpu_small(tbuf,osites);
}
return ret;
}
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
{
typedef typename vobj::scalar_objectD sobj;
sobj ret;
Integer nsimd= vobj::Nsimd();
Integer size = osites*nsimd;
Integer numThreads, numBlocks;
int ok = getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
if ( ok ) {
ret = sumD_gpu_small(lat,osites);
} else {
ret = sumD_gpu_large(lat,osites);
}
return ret;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////////
// Return as same precision as input performing reduction in double precision though // Return as same precision as input performing reduction in double precision though
///////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////////
@ -290,13 +226,6 @@ inline typename vobj::scalar_object sum_gpu(const vobj *lat, Integer osites)
return result; return result;
} }
template <class vobj>
inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osites)
{
typedef typename vobj::scalar_object sobj;
sobj result;
result = sumD_gpu_large(lat,osites);
return result;
}
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -1,125 +0,0 @@
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////////////////////////////////
// Possibly promote to double and sum
/////////////////////////////////////////////////////////////////////////////////////////////////////////
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_tensor(const vobj *lat, Integer osites)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_objectD sobjD;
sobj *mysum =(sobj *) malloc_shared(sizeof(sobj),*theGridAccelerator);
sobj identity; zeroit(identity);
sobj ret ;
Integer nsimd= vobj::Nsimd();
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
auto Reduction = cl::sycl::reduction(mysum,identity,std::plus<>());
cgh.parallel_for(cl::sycl::range<1>{osites},
Reduction,
[=] (cl::sycl::id<1> item, auto &sum) {
auto osite = item[0];
sum +=Reduce(lat[osite]);
});
});
theGridAccelerator->wait();
ret = mysum[0];
free(mysum,*theGridAccelerator);
sobjD dret; convertType(dret,ret);
return dret;
}
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osites)
{
return sumD_gpu_tensor(lat,osites);
}
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osites)
{
return sumD_gpu_large(lat,osites);
}
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
{
return sumD_gpu_large(lat,osites);
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////
// Return as same precision as input performing reduction in double precision though
/////////////////////////////////////////////////////////////////////////////////////////////////////////
template <class vobj>
inline typename vobj::scalar_object sum_gpu(const vobj *lat, Integer osites)
{
typedef typename vobj::scalar_object sobj;
sobj result;
result = sumD_gpu(lat,osites);
return result;
}
template <class vobj>
inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osites)
{
typedef typename vobj::scalar_object sobj;
sobj result;
result = sumD_gpu_large(lat,osites);
return result;
}
NAMESPACE_END(Grid);
/*
template<class Double> Double svm_reduce(Double *vec,uint64_t L)
{
Double sumResult; zeroit(sumResult);
Double *d_sum =(Double *)cl::sycl::malloc_shared(sizeof(Double),*theGridAccelerator);
Double identity; zeroit(identity);
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
auto Reduction = cl::sycl::reduction(d_sum,identity,std::plus<>());
cgh.parallel_for(cl::sycl::range<1>{L},
Reduction,
[=] (cl::sycl::id<1> index, auto &sum) {
sum +=vec[index];
});
});
theGridAccelerator->wait();
Double ret = d_sum[0];
free(d_sum,*theGridAccelerator);
std::cout << " svm_reduce finished "<<L<<" sites sum = " << ret <<std::endl;
return ret;
}
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_repack(const vobj *lat, Integer osites)
{
typedef typename vobj::vector_type vector;
typedef typename vobj::scalar_type scalar;
typedef typename vobj::scalar_typeD scalarD;
typedef typename vobj::scalar_objectD sobjD;
sobjD ret;
scalarD *ret_p = (scalarD *)&ret;
const int nsimd = vobj::Nsimd();
const int words = sizeof(vobj)/sizeof(vector);
Vector<scalar> buffer(osites*nsimd);
scalar *buf = &buffer[0];
vector *dat = (vector *)lat;
for(int w=0;w<words;w++) {
accelerator_for(ss,osites,nsimd,{
int lane = acceleratorSIMTlane(nsimd);
buf[ss*nsimd+lane] = dat[ss*words+w].getlane(lane);
});
//Precision change at this point is to late to gain precision
ret_p[w] = svm_reduce(buf,nsimd*osites);
}
return ret;
}
*/

View File

@ -152,7 +152,6 @@ public:
#ifdef RNG_FAST_DISCARD #ifdef RNG_FAST_DISCARD
static void Skip(RngEngine &eng,uint64_t site) static void Skip(RngEngine &eng,uint64_t site)
{ {
#if 0
///////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////
// Skip by 2^40 elements between successive lattice sites // Skip by 2^40 elements between successive lattice sites
// This goes by 10^12. // This goes by 10^12.
@ -180,9 +179,6 @@ public:
assert((skip >> shift)==site); // check for overflow assert((skip >> shift)==site); // check for overflow
eng.discard(skip); eng.discard(skip);
#else
eng.discardhi(site);
#endif
// std::cout << " Engine " <<site << " state " <<eng<<std::endl; // std::cout << " Engine " <<site << " state " <<eng<<std::endl;
} }
#endif #endif
@ -428,33 +424,9 @@ public:
// MT implementation does not implement fast discard even though // MT implementation does not implement fast discard even though
// in principle this is possible // in principle this is possible
//////////////////////////////////////////////// ////////////////////////////////////////////////
#if 1
thread_for( lidx, _grid->lSites(), {
int gidx;
int o_idx;
int i_idx;
int rank;
Coordinate pcoor;
Coordinate lcoor;
Coordinate gcoor;
_grid->LocalIndexToLocalCoor(lidx,lcoor);
pcoor=_grid->ThisProcessorCoor();
_grid->ProcessorCoorLocalCoorToGlobalCoor(pcoor,lcoor,gcoor);
_grid->GlobalCoorToGlobalIndex(gcoor,gidx);
_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
assert(rank == _grid->ThisRank() );
int l_idx=generator_idx(o_idx,i_idx);
_generators[l_idx] = master_engine;
Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
});
#else
// Everybody loops over global volume. // Everybody loops over global volume.
thread_for( gidx, _grid->_gsites, { thread_for( gidx, _grid->_gsites, {
// Where is it? // Where is it?
int rank; int rank;
int o_idx; int o_idx;
@ -471,7 +443,6 @@ public:
Skip(_generators[l_idx],gidx); // Skip to next RNG sequence Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
} }
}); });
#endif
#else #else
//////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////
// Machine and thread decomposition dependent seeding is efficient // Machine and thread decomposition dependent seeding is efficient

View File

@ -1,213 +0,0 @@
#pragma once
#include <type_traits>
#if defined(GRID_CUDA)
#include <cub/cub.cuh>
#define gpucub cub
#define gpuError_t cudaError_t
#define gpuSuccess cudaSuccess
#elif defined(GRID_HIP)
#include <hipcub/hipcub.hpp>
#define gpucub hipcub
#define gpuError_t hipError_t
#define gpuSuccess hipSuccess
#endif
NAMESPACE_BEGIN(Grid);
#if defined(GRID_CUDA) || defined(GRID_HIP)
template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
size_t subvol_size = e1*e2;
commVector<vobj> reduction_buffer(rd*subvol_size);
auto rb_p = &reduction_buffer[0];
vobj zero_init;
zeroit(zero_init);
void *temp_storage_array = NULL;
size_t temp_storage_bytes = 0;
vobj *d_out;
int* d_offsets;
std::vector<int> offsets(rd+1,0);
for (int i = 0; i < offsets.size(); i++) {
offsets[i] = i*subvol_size;
}
//Allocate memory for output and offset arrays on device
d_out = static_cast<vobj*>(acceleratorAllocDevice(rd*sizeof(vobj)));
d_offsets = static_cast<int*>(acceleratorAllocDevice((rd+1)*sizeof(int)));
//copy offsets to device
acceleratorCopyToDeviceAsync(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream);
gpuError_t gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), zero_init, computeStream);
if (gpuErr!=gpuSuccess) {
std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce (setup)! Error: " << gpuErr <<std::endl;
exit(EXIT_FAILURE);
}
//allocate memory for temp_storage_array
temp_storage_array = acceleratorAllocDevice(temp_storage_bytes);
//prepare buffer for reduction
//use non-blocking accelerator_for to avoid syncs (ok because we submit to same computeStream)
//use 2d accelerator_for to avoid launch latencies found when serially looping over rd
accelerator_for2dNB( s,subvol_size, r,rd, Nsimd,{
int n = s / e2;
int b = s % e2;
int so=r*ostride; // base offset for start of plane
int ss= so+n*stride+b;
coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data[ss]));
});
//issue segmented reductions in computeStream
gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p, d_out, rd, d_offsets, d_offsets+1,::gpucub::Sum(), zero_init, computeStream);
if (gpuErr!=gpuSuccess) {
std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce! Error: " << gpuErr <<std::endl;
exit(EXIT_FAILURE);
}
acceleratorCopyFromDeviceAsync(d_out,&lvSum[0],rd*sizeof(vobj),computeStream);
//sync after copy
accelerator_barrier();
acceleratorFreeDevice(temp_storage_array);
acceleratorFreeDevice(d_out);
acceleratorFreeDevice(d_offsets);
}
template<class vobj> inline void sliceSumReduction_cub_large(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
typedef typename vobj::vector_type vector;
const int words = sizeof(vobj)/sizeof(vector);
const int osites = rd*e1*e2;
commVector<vector>buffer(osites);
vector *dat = (vector *)Data;
vector *buf = &buffer[0];
Vector<vector> lvSum_small(rd);
vector *lvSum_ptr = (vector *)&lvSum[0];
for (int w = 0; w < words; w++) {
accelerator_for(ss,osites,1,{
buf[ss] = dat[ss*words+w];
});
sliceSumReduction_cub_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd);
for (int r = 0; r < rd; r++) {
lvSum_ptr[w+words*r]=lvSum_small[r];
}
}
}
template<class vobj> inline void sliceSumReduction_cub(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd)
{
autoView(Data_v, Data, AcceleratorRead); //hipcub/cub cannot deal with large vobjs so we split into small/large case.
if constexpr (sizeof(vobj) <= 256) {
sliceSumReduction_cub_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
}
else {
sliceSumReduction_cub_large(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
}
}
#endif
#if defined(GRID_SYCL)
template<class vobj> inline void sliceSumReduction_sycl(const Lattice<vobj> &Data, Vector <vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
{
typedef typename vobj::scalar_object sobj;
size_t subvol_size = e1*e2;
vobj *mysum = (vobj *) malloc_shared(sizeof(vobj),*theGridAccelerator);
vobj vobj_zero;
zeroit(vobj_zero);
commVector<vobj> reduction_buffer(rd*subvol_size);
auto rb_p = &reduction_buffer[0];
autoView(Data_v, Data, AcceleratorRead);
//prepare reduction buffer
accelerator_for2d( s,subvol_size, r,rd, (size_t)Nsimd,{
int n = s / e2;
int b = s % e2;
int so=r*ostride; // base offset for start of plane
int ss= so+n*stride+b;
coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data_v[ss]));
});
for (int r = 0; r < rd; r++) {
mysum[0] = vobj_zero; //dirty hack: cannot pass vobj_zero as identity to sycl::reduction as its not device_copyable
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
auto Reduction = cl::sycl::reduction(mysum,std::plus<>());
cgh.parallel_for(cl::sycl::range<1>{subvol_size},
Reduction,
[=](cl::sycl::id<1> item, auto &sum) {
auto s = item[0];
sum += rb_p[r*subvol_size+s];
});
});
theGridAccelerator->wait();
lvSum[r] = mysum[0];
}
free(mysum,*theGridAccelerator);
}
#endif
template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
{
// sum over reduced dimension planes, breaking out orthog dir
// Parallel over orthog direction
autoView( Data_v, Data, CpuRead);
thread_for( r,rd, {
int so=r*ostride; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
lvSum[r]=lvSum[r]+Data_v[ss];
}
}
});
}
template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
{
#if defined(GRID_CUDA) || defined(GRID_HIP)
sliceSumReduction_cub(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
#elif defined(GRID_SYCL)
sliceSumReduction_sycl(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
#else
sliceSumReduction_cpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
#endif
}
NAMESPACE_END(Grid);

View File

@ -66,65 +66,6 @@ inline auto TraceIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<
return ret; return ret;
}; };
template<int N, class Vec>
Lattice<iScalar<iScalar<iScalar<Vec> > > > Determinant(const Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu)
{
GridBase *grid=Umu.Grid();
auto lvol = grid->lSites();
Lattice<iScalar<iScalar<iScalar<Vec> > > > ret(grid);
typedef typename Vec::scalar_type scalar;
autoView(Umu_v,Umu,CpuRead);
autoView(ret_v,ret,CpuWrite);
thread_for(site,lvol,{
Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
iScalar<iScalar<iMatrix<scalar, N> > > Us;
peekLocalSite(Us, Umu_v, lcoor);
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
scalar tmp= Us()()(i,j);
ComplexD ztmp(real(tmp),imag(tmp));
EigenU(i,j)=ztmp;
}}
ComplexD detD = EigenU.determinant();
typename Vec::scalar_type det(detD.real(),detD.imag());
pokeLocalSite(det,ret_v,lcoor);
});
return ret;
}
template<int N>
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > Inverse(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu)
{
GridBase *grid=Umu.Grid();
auto lvol = grid->lSites();
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > ret(grid);
autoView(Umu_v,Umu,CpuRead);
autoView(ret_v,ret,CpuWrite);
thread_for(site,lvol,{
Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
iScalar<iScalar<iMatrix<ComplexD, N> > > Us;
iScalar<iScalar<iMatrix<ComplexD, N> > > Ui;
peekLocalSite(Us, Umu_v, lcoor);
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
EigenU(i,j) = Us()()(i,j);
}}
Eigen::MatrixXcd EigenUinv = EigenU.inverse();
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
Ui()()(i,j) = EigenUinv(i,j);
}}
pokeLocalSite(Ui,ret_v,lcoor);
});
return ret;
}
NAMESPACE_END(Grid); NAMESPACE_END(Grid);
#endif #endif

View File

@ -85,76 +85,6 @@ template<class vobj> inline void setCheckerboard(Lattice<vobj> &full,const Latti
}); });
} }
template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full, int checker_dim_half=0)
{
half.Checkerboard() = cb;
autoView(half_v, half, AcceleratorWrite);
autoView(full_v, full, AcceleratorRead);
Coordinate rdim_full = full.Grid()->_rdimensions;
Coordinate rdim_half = half.Grid()->_rdimensions;
unsigned long ndim_half = half.Grid()->_ndimension;
Coordinate checker_dim_mask_half = half.Grid()->_checker_dim_mask;
Coordinate ostride_half = half.Grid()->_ostride;
accelerator_for(ss, full.Grid()->oSites(),full.Grid()->Nsimd(),{
Coordinate coor;
int cbos;
int linear=0;
Lexicographic::CoorFromIndex(coor,ss,rdim_full);
assert(coor.size()==ndim_half);
for(int d=0;d<ndim_half;d++){
if(checker_dim_mask_half[d]) linear += coor[d];
}
cbos = (linear&0x1);
if (cbos==cb) {
int ssh=0;
for(int d=0;d<ndim_half;d++) {
if (d == checker_dim_half) ssh += ostride_half[d] * ((coor[d] / 2) % rdim_half[d]);
else ssh += ostride_half[d] * (coor[d] % rdim_half[d]);
}
coalescedWrite(half_v[ssh],full_v(ss));
}
});
}
template<class vobj> inline void acceleratorSetCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half, int checker_dim_half=0)
{
int cb = half.Checkerboard();
autoView(half_v , half, AcceleratorRead);
autoView(full_v , full, AcceleratorWrite);
Coordinate rdim_full = full.Grid()->_rdimensions;
Coordinate rdim_half = half.Grid()->_rdimensions;
unsigned long ndim_half = half.Grid()->_ndimension;
Coordinate checker_dim_mask_half = half.Grid()->_checker_dim_mask;
Coordinate ostride_half = half.Grid()->_ostride;
accelerator_for(ss,full.Grid()->oSites(),full.Grid()->Nsimd(),{
Coordinate coor;
int cbos;
int linear=0;
Lexicographic::CoorFromIndex(coor,ss,rdim_full);
assert(coor.size()==ndim_half);
for(int d=0;d<ndim_half;d++){
if(checker_dim_mask_half[d]) linear += coor[d];
}
cbos = (linear&0x1);
if (cbos==cb) {
int ssh=0;
for(int d=0;d<ndim_half;d++){
if (d == checker_dim_half) ssh += ostride_half[d] * ((coor[d] / 2) % rdim_half[d]);
else ssh += ostride_half[d] * (coor[d] % rdim_half[d]);
}
coalescedWrite(full_v[ss],half_v(ssh));
}
});
}
//////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////
// Flexible Type Conversion for internal promotion to double as well as graceful // Flexible Type Conversion for internal promotion to double as well as graceful
// treatment of scalar-compatible types // treatment of scalar-compatible types
@ -167,20 +97,6 @@ accelerator_inline void convertType(ComplexF & out, const std::complex<float> &
out = in; out = in;
} }
template<typename T>
accelerator_inline EnableIf<isGridFundamental<T>> convertType(T & out, const T & in) {
out = in;
}
// This would allow for conversions between GridFundamental types, but is not strictly needed as yet
/*template<typename T1, typename T2>
accelerator_inline typename std::enable_if<isGridFundamental<T1>::value && isGridFundamental<T2>::value>::type
// Or to make this very broad, conversions between anything that's not a GridTensor could be allowed
//accelerator_inline typename std::enable_if<!isGridTensor<T1>::value && !isGridTensor<T2>::value>::type
convertType(T1 & out, const T2 & in) {
out = in;
}*/
#ifdef GRID_SIMT #ifdef GRID_SIMT
accelerator_inline void convertType(vComplexF & out, const ComplexF & in) { accelerator_inline void convertType(vComplexF & out, const ComplexF & in) {
((ComplexF*)&out)[acceleratorSIMTlane(vComplexF::Nsimd())] = in; ((ComplexF*)&out)[acceleratorSIMTlane(vComplexF::Nsimd())] = in;
@ -194,25 +110,25 @@ accelerator_inline void convertType(vComplexD2 & out, const ComplexD & in) {
#endif #endif
accelerator_inline void convertType(vComplexF & out, const vComplexD2 & in) { accelerator_inline void convertType(vComplexF & out, const vComplexD2 & in) {
precisionChange(out,in); out.v = Optimization::PrecisionChange::DtoS(in._internal[0].v,in._internal[1].v);
} }
accelerator_inline void convertType(vComplexD2 & out, const vComplexF & in) { accelerator_inline void convertType(vComplexD2 & out, const vComplexF & in) {
precisionChange(out,in); Optimization::PrecisionChange::StoD(in.v,out._internal[0].v,out._internal[1].v);
} }
template<typename T1,typename T2> template<typename T1,typename T2,int N>
accelerator_inline void convertType(iScalar<T1> & out, const iScalar<T2> & in) { accelerator_inline void convertType(iMatrix<T1,N> & out, const iMatrix<T2,N> & in);
convertType(out._internal,in._internal); template<typename T1,typename T2,int N>
} accelerator_inline void convertType(iVector<T1,N> & out, const iVector<T2,N> & in);
template<typename T1,typename T2> template<typename T1,typename T2, typename std::enable_if<!isGridScalar<T1>::value, T1>::type* = nullptr>
accelerator_inline NotEnableIf<isGridScalar<T1>> convertType(T1 & out, const iScalar<T2> & in) { accelerator_inline void convertType(T1 & out, const iScalar<T2> & in) {
convertType(out,in._internal); convertType(out,in._internal);
} }
template<typename T1,typename T2> template<typename T1,typename T2>
accelerator_inline NotEnableIf<isGridScalar<T2>> convertType(iScalar<T1> & out, const T2 & in) { accelerator_inline void convertType(iScalar<T1> & out, const T2 & in) {
convertType(out._internal,in); convertType(out._internal,in);
} }
@ -229,6 +145,11 @@ accelerator_inline void convertType(iVector<T1,N> & out, const iVector<T2,N> & i
convertType(out._internal[i],in._internal[i]); convertType(out._internal[i],in._internal[i]);
} }
template<typename T, typename std::enable_if<isGridFundamental<T>::value, T>::type* = nullptr>
accelerator_inline void convertType(T & out, const T & in) {
out = in;
}
template<typename T1,typename T2> template<typename T1,typename T2>
accelerator_inline void convertType(Lattice<T1> & out, const Lattice<T2> & in) { accelerator_inline void convertType(Lattice<T1> & out, const Lattice<T2> & in) {
autoView( out_v , out,AcceleratorWrite); autoView( out_v , out,AcceleratorWrite);
@ -288,36 +209,7 @@ inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
blockZAXPY(fineDataRed,ip,Basis[v],fineDataRed); blockZAXPY(fineDataRed,ip,Basis[v],fineDataRed);
} }
} }
template<class vobj,class CComplex,int nbasis,class VLattice>
inline void batchBlockProject(std::vector<Lattice<iVector<CComplex,nbasis>>> &coarseData,
const std::vector<Lattice<vobj>> &fineData,
const VLattice &Basis)
{
int NBatch = fineData.size();
assert(coarseData.size() == NBatch);
GridBase * fine = fineData[0].Grid();
GridBase * coarse= coarseData[0].Grid();
Lattice<iScalar<CComplex>> ip(coarse);
std::vector<Lattice<vobj>> fineDataCopy = fineData;
autoView(ip_, ip, AcceleratorWrite);
for(int v=0;v<nbasis;v++) {
for (int k=0; k<NBatch; k++) {
autoView( coarseData_ , coarseData[k], AcceleratorWrite);
blockInnerProductD(ip,Basis[v],fineDataCopy[k]); // ip = <basis|fine>
accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
convertType(coarseData_[sc](v),ip_[sc]);
});
// improve numerical stability of projection
// |fine> = |fine> - <basis|fine> |basis>
ip=-ip;
blockZAXPY(fineDataCopy[k],ip,Basis[v],fineDataCopy[k]);
}
}
}
template<class vobj,class vobj2,class CComplex> template<class vobj,class vobj2,class CComplex>
inline void blockZAXPY(Lattice<vobj> &fineZ, inline void blockZAXPY(Lattice<vobj> &fineZ,
@ -348,8 +240,6 @@ template<class vobj,class vobj2,class CComplex>
autoView( fineX_ , fineX, AcceleratorRead); autoView( fineX_ , fineX, AcceleratorRead);
autoView( fineY_ , fineY, AcceleratorRead); autoView( fineY_ , fineY, AcceleratorRead);
autoView( coarseA_, coarseA, AcceleratorRead); autoView( coarseA_, coarseA, AcceleratorRead);
Coordinate fine_rdimensions = fine->_rdimensions;
Coordinate coarse_rdimensions = coarse->_rdimensions;
accelerator_for(sf, fine->oSites(), CComplex::Nsimd(), { accelerator_for(sf, fine->oSites(), CComplex::Nsimd(), {
@ -357,9 +247,9 @@ template<class vobj,class vobj2,class CComplex>
Coordinate coor_c(_ndimension); Coordinate coor_c(_ndimension);
Coordinate coor_f(_ndimension); Coordinate coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions); Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d]; for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions); Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
// z = A x + y // z = A x + y
#ifdef GRID_SIMT #ifdef GRID_SIMT
@ -463,19 +353,12 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
autoView( coarseData_ , coarseData, AcceleratorWrite); autoView( coarseData_ , coarseData, AcceleratorWrite);
autoView( fineData_ , fineData, AcceleratorRead); autoView( fineData_ , fineData, AcceleratorRead);
auto coarseData_p = &coarseData_[0];
auto fineData_p = &fineData_[0];
Coordinate fine_rdimensions = fine->_rdimensions;
Coordinate coarse_rdimensions = coarse->_rdimensions;
accelerator_for(sc,coarse->oSites(),1,{ accelerator_for(sc,coarse->oSites(),1,{
// One thread per sub block // One thread per sub block
Coordinate coor_c(_ndimension); Coordinate coor_c(_ndimension);
Lexicographic::CoorFromIndex(coor_c,sc,coarse_rdimensions); // Block coordinate Lexicographic::CoorFromIndex(coor_c,sc,coarse->_rdimensions); // Block coordinate
coarseData_[sc]=Zero();
vobj cd = Zero();
for(int sb=0;sb<blockVol;sb++){ for(int sb=0;sb<blockVol;sb++){
@ -484,13 +367,11 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
Coordinate coor_f(_ndimension); Coordinate coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_b,sb,block_r); // Block sub coordinate Lexicographic::CoorFromIndex(coor_b,sb,block_r); // Block sub coordinate
for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d] + coor_b[d]; for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d] + coor_b[d];
Lexicographic::IndexFromCoor(coor_f,sf,fine_rdimensions); Lexicographic::IndexFromCoor(coor_f,sf,fine->_rdimensions);
cd=cd+fineData_p[sf]; coarseData_[sc]=coarseData_[sc]+fineData_[sf];
} }
coarseData_p[sc] = cd;
}); });
return; return;
} }
@ -617,26 +498,6 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
} }
#endif #endif
template<class vobj,class CComplex,int nbasis,class VLattice>
inline void batchBlockPromote(const std::vector<Lattice<iVector<CComplex,nbasis>>> &coarseData,
std::vector<Lattice<vobj>> &fineData,
const VLattice &Basis)
{
int NBatch = coarseData.size();
assert(fineData.size() == NBatch);
GridBase * fine = fineData[0].Grid();
GridBase * coarse = coarseData[0].Grid();
for (int k=0; k<NBatch; k++)
fineData[k]=Zero();
for (int i=0;i<nbasis;i++) {
for (int k=0; k<NBatch; k++) {
Lattice<iScalar<CComplex>> ip = PeekIndex<0>(coarseData[k],i);
blockZAXPY(fineData[k],ip,Basis[i],fineData[k]);
}
}
}
// Useful for precision conversion, or indeed anything where an operator= does a conversion on scalars. // Useful for precision conversion, or indeed anything where an operator= does a conversion on scalars.
// Simd layouts need not match since we use peek/poke Local // Simd layouts need not match since we use peek/poke Local
template<class vobj,class vvobj> template<class vobj,class vvobj>
@ -695,68 +556,8 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
for(int d=0;d<nd;d++){ for(int d=0;d<nd;d++){
assert(Fg->_processors[d] == Tg->_processors[d]); assert(Fg->_processors[d] == Tg->_processors[d]);
} }
// the above should guarantee that the operations are local // the above should guarantee that the operations are local
#if 1
size_t nsite = 1;
for(int i=0;i<nd;i++) nsite *= RegionSize[i];
size_t tbytes = 4*nsite*sizeof(int);
int *table = (int*)malloc(tbytes);
thread_for(idx, nsite, {
Coordinate from_coor, to_coor;
size_t rem = idx;
for(int i=0;i<nd;i++){
size_t base_i = rem % RegionSize[i]; rem /= RegionSize[i];
from_coor[i] = base_i + FromLowerLeft[i];
to_coor[i] = base_i + ToLowerLeft[i];
}
int foidx = Fg->oIndex(from_coor);
int fiidx = Fg->iIndex(from_coor);
int toidx = Tg->oIndex(to_coor);
int tiidx = Tg->iIndex(to_coor);
int* tt = table + 4*idx;
tt[0] = foidx;
tt[1] = fiidx;
tt[2] = toidx;
tt[3] = tiidx;
});
int* table_d = (int*)acceleratorAllocDevice(tbytes);
acceleratorCopyToDevice(table,table_d,tbytes);
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
autoView(from_v,From,AcceleratorRead);
autoView(to_v,To,AcceleratorWrite);
accelerator_for(idx,nsite,1,{
static const int words=sizeof(vobj)/sizeof(vector_type);
int* tt = table_d + 4*idx;
int from_oidx = *tt++;
int from_lane = *tt++;
int to_oidx = *tt++;
int to_lane = *tt;
const vector_type* from = (const vector_type *)&from_v[from_oidx];
vector_type* to = (vector_type *)&to_v[to_oidx];
scalar_type stmp;
for(int w=0;w<words;w++){
stmp = getlane(from[w], from_lane);
putlane(to[w], stmp, to_lane);
}
});
acceleratorFreeDevice(table_d);
free(table);
#else
Coordinate ldf = Fg->_ldimensions; Coordinate ldf = Fg->_ldimensions;
Coordinate rdf = Fg->_rdimensions; Coordinate rdf = Fg->_rdimensions;
Coordinate isf = Fg->_istride; Coordinate isf = Fg->_istride;
@ -765,9 +566,9 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
Coordinate ist = Tg->_istride; Coordinate ist = Tg->_istride;
Coordinate ost = Tg->_ostride; Coordinate ost = Tg->_ostride;
autoView( t_v , To, CpuWrite); autoView( t_v , To, AcceleratorWrite);
autoView( f_v , From, CpuRead); autoView( f_v , From, AcceleratorRead);
thread_for(idx,Fg->lSites(),{ accelerator_for(idx,Fg->lSites(),1,{
sobj s; sobj s;
Coordinate Fcoor(nd); Coordinate Fcoor(nd);
Coordinate Tcoor(nd); Coordinate Tcoor(nd);
@ -780,24 +581,17 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
Tcoor[d] = ToLowerLeft[d]+ Fcoor[d]-FromLowerLeft[d]; Tcoor[d] = ToLowerLeft[d]+ Fcoor[d]-FromLowerLeft[d];
} }
if (in_region) { if (in_region) {
#if 0 Integer idx_f = 0; for(int d=0;d<nd;d++) idx_f+=isf[d]*(Fcoor[d]/rdf[d]);
Integer idx_f = 0; for(int d=0;d<nd;d++) idx_f+=isf[d]*(Fcoor[d]/rdf[d]); // inner index from Integer idx_t = 0; for(int d=0;d<nd;d++) idx_t+=ist[d]*(Tcoor[d]/rdt[d]);
Integer idx_t = 0; for(int d=0;d<nd;d++) idx_t+=ist[d]*(Tcoor[d]/rdt[d]); // inner index to Integer odx_f = 0; for(int d=0;d<nd;d++) odx_f+=osf[d]*(Fcoor[d]%rdf[d]);
Integer odx_f = 0; for(int d=0;d<nd;d++) odx_f+=osf[d]*(Fcoor[d]%rdf[d]); // outer index from Integer odx_t = 0; for(int d=0;d<nd;d++) odx_t+=ost[d]*(Tcoor[d]%rdt[d]);
Integer odx_t = 0; for(int d=0;d<nd;d++) odx_t+=ost[d]*(Tcoor[d]%rdt[d]); // outer index to
scalar_type * fp = (scalar_type *)&f_v[odx_f]; scalar_type * fp = (scalar_type *)&f_v[odx_f];
scalar_type * tp = (scalar_type *)&t_v[odx_t]; scalar_type * tp = (scalar_type *)&t_v[odx_t];
for(int w=0;w<words;w++){ for(int w=0;w<words;w++){
tp[w].putlane(fp[w].getlane(idx_f),idx_t); tp[idx_t+w*Nsimd] = fp[idx_f+w*Nsimd]; // FIXME IF RRII layout, type pun no worke
} }
#else
peekLocalSite(s,f_v,Fcoor);
pokeLocalSite(s,t_v,Tcoor);
#endif
} }
}); });
#endif
} }
@ -890,8 +684,6 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
} }
//Insert subvolume orthogonal to direction 'orthog' with slice index 'slice_lo' from 'lowDim' onto slice index 'slice_hi' of higherDim
//The local dimensions of both 'lowDim' and 'higherDim' orthogonal to 'orthog' should be the same
template<class vobj> template<class vobj>
void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog) void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
{ {
@ -913,65 +705,6 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
} }
} }
#if 1
size_t nsite = lg->lSites()/lg->LocalDimensions()[orthog];
size_t tbytes = 4*nsite*sizeof(int);
int *table = (int*)malloc(tbytes);
thread_for(idx,nsite,{
Coordinate lcoor(nl);
Coordinate hcoor(nh);
lcoor[orthog] = slice_lo;
hcoor[orthog] = slice_hi;
size_t rem = idx;
for(int mu=0;mu<nl;mu++){
if(mu != orthog){
int xmu = rem % lg->LocalDimensions()[mu]; rem /= lg->LocalDimensions()[mu];
lcoor[mu] = hcoor[mu] = xmu;
}
}
int loidx = lg->oIndex(lcoor);
int liidx = lg->iIndex(lcoor);
int hoidx = hg->oIndex(hcoor);
int hiidx = hg->iIndex(hcoor);
int* tt = table + 4*idx;
tt[0] = loidx;
tt[1] = liidx;
tt[2] = hoidx;
tt[3] = hiidx;
});
int* table_d = (int*)acceleratorAllocDevice(tbytes);
acceleratorCopyToDevice(table,table_d,tbytes);
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
autoView(lowDim_v,lowDim,AcceleratorRead);
autoView(higherDim_v,higherDim,AcceleratorWrite);
accelerator_for(idx,nsite,1,{
static const int words=sizeof(vobj)/sizeof(vector_type);
int* tt = table_d + 4*idx;
int from_oidx = *tt++;
int from_lane = *tt++;
int to_oidx = *tt++;
int to_lane = *tt;
const vector_type* from = (const vector_type *)&lowDim_v[from_oidx];
vector_type* to = (vector_type *)&higherDim_v[to_oidx];
scalar_type stmp;
for(int w=0;w<words;w++){
stmp = getlane(from[w], from_lane);
putlane(to[w], stmp, to_lane);
}
});
acceleratorFreeDevice(table_d);
free(table);
#else
// the above should guarantee that the operations are local // the above should guarantee that the operations are local
autoView(lowDimv,lowDim,CpuRead); autoView(lowDimv,lowDim,CpuRead);
autoView(higherDimv,higherDim,CpuWrite); autoView(higherDimv,higherDim,CpuWrite);
@ -987,7 +720,6 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
pokeLocalSite(s,higherDimv,hcoor); pokeLocalSite(s,higherDimv,hcoor);
} }
}); });
#endif
} }
@ -1031,7 +763,7 @@ void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int
template<class vobj> template<class vobj>
void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine) void Replicate(Lattice<vobj> &coarse,Lattice<vobj> & fine)
{ {
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;
@ -1256,27 +988,9 @@ vectorizeFromRevLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out)
}); });
} }
//Very fast precision change. Requires in/out objects to reside on same Grid (e.g. by using double2 for the double-precision field) //Convert a Lattice from one precision to another
template<class VobjOut, class VobjIn> template<class VobjOut, class VobjIn>
void precisionChangeFast(Lattice<VobjOut> &out, const Lattice<VobjIn> &in) void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
{
typedef typename VobjOut::vector_type Vout;
typedef typename VobjIn::vector_type Vin;
const int N = sizeof(VobjOut)/sizeof(Vout);
conformable(out.Grid(),in.Grid());
out.Checkerboard() = in.Checkerboard();
int nsimd = out.Grid()->Nsimd();
autoView( out_v , out, AcceleratorWrite);
autoView( in_v , in, AcceleratorRead);
accelerator_for(idx,out.Grid()->oSites(),1,{
Vout *vout = (Vout *)&out_v[idx];
Vin *vin = (Vin *)&in_v[idx];
precisionChange(vout,vin,N);
});
}
//Convert a Lattice from one precision to another (original, slow implementation)
template<class VobjOut, class VobjIn>
void precisionChangeOrig(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
{ {
assert(out.Grid()->Nd() == in.Grid()->Nd()); assert(out.Grid()->Nd() == in.Grid()->Nd());
for(int d=0;d<out.Grid()->Nd();d++){ for(int d=0;d<out.Grid()->Nd();d++){
@ -1291,7 +1005,7 @@ void precisionChangeOrig(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
int ndim = out.Grid()->Nd(); int ndim = out.Grid()->Nd();
int out_nsimd = out_grid->Nsimd(); int out_nsimd = out_grid->Nsimd();
int in_nsimd = in_grid->Nsimd();
std::vector<Coordinate > out_icoor(out_nsimd); std::vector<Coordinate > out_icoor(out_nsimd);
for(int lane=0; lane < out_nsimd; lane++){ for(int lane=0; lane < out_nsimd; lane++){
@ -1322,128 +1036,6 @@ void precisionChangeOrig(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
}); });
} }
//The workspace for a precision change operation allowing for the reuse of the mapping to save time on subsequent calls
class precisionChangeWorkspace{
std::pair<Integer,Integer>* fmap_device; //device pointer
//maintain grids for checking
GridBase* _out_grid;
GridBase* _in_grid;
public:
precisionChangeWorkspace(GridBase *out_grid, GridBase *in_grid): _out_grid(out_grid), _in_grid(in_grid){
//Build a map between the sites and lanes of the output field and the input field as we cannot use the Grids on the device
assert(out_grid->Nd() == in_grid->Nd());
for(int d=0;d<out_grid->Nd();d++){
assert(out_grid->FullDimensions()[d] == in_grid->FullDimensions()[d]);
}
int Nsimd_out = out_grid->Nsimd();
std::vector<Coordinate> out_icorrs(out_grid->Nsimd()); //reuse these
for(int lane=0; lane < out_grid->Nsimd(); lane++)
out_grid->iCoorFromIindex(out_icorrs[lane], lane);
std::vector<std::pair<Integer,Integer> > fmap_host(out_grid->lSites()); //lsites = osites*Nsimd
thread_for(out_oidx,out_grid->oSites(),{
Coordinate out_ocorr;
out_grid->oCoorFromOindex(out_ocorr, out_oidx);
Coordinate lcorr; //the local coordinate (common to both in and out as full coordinate)
for(int out_lane=0; out_lane < Nsimd_out; out_lane++){
out_grid->InOutCoorToLocalCoor(out_ocorr, out_icorrs[out_lane], lcorr);
//int in_oidx = in_grid->oIndex(lcorr), in_lane = in_grid->iIndex(lcorr);
//Note oIndex and OcorrFromOindex (and same for iIndex) are not inverse for checkerboarded lattice, the former coordinates being defined on the full lattice and the latter on the reduced lattice
//Until this is fixed we need to circumvent the problem locally. Here I will use the coordinates defined on the reduced lattice for simplicity
int in_oidx = 0, in_lane = 0;
for(int d=0;d<in_grid->_ndimension;d++){
in_oidx += in_grid->_ostride[d] * ( lcorr[d] % in_grid->_rdimensions[d] );
in_lane += in_grid->_istride[d] * ( lcorr[d] / in_grid->_rdimensions[d] );
}
fmap_host[out_lane + Nsimd_out*out_oidx] = std::pair<Integer,Integer>( in_oidx, in_lane );
}
});
//Copy the map to the device (if we had a way to tell if an accelerator is in use we could avoid this copy for CPU-only machines)
size_t fmap_bytes = out_grid->lSites() * sizeof(std::pair<Integer,Integer>);
fmap_device = (std::pair<Integer,Integer>*)acceleratorAllocDevice(fmap_bytes);
acceleratorCopyToDevice(fmap_host.data(), fmap_device, fmap_bytes);
}
//Prevent moving or copying
precisionChangeWorkspace(const precisionChangeWorkspace &r) = delete;
precisionChangeWorkspace(precisionChangeWorkspace &&r) = delete;
precisionChangeWorkspace &operator=(const precisionChangeWorkspace &r) = delete;
precisionChangeWorkspace &operator=(precisionChangeWorkspace &&r) = delete;
std::pair<Integer,Integer> const* getMap() const{ return fmap_device; }
void checkGrids(GridBase* out, GridBase* in) const{
conformable(out, _out_grid);
conformable(in, _in_grid);
}
~precisionChangeWorkspace(){
acceleratorFreeDevice(fmap_device);
}
};
//We would like to use precisionChangeFast when possible. However usage of this requires the Grids to be the same (runtime check)
//*and* the precisionChange(VobjOut::vector_type, VobjIn, int) function to be defined for the types; this requires an extra compile-time check which we do using some SFINAE trickery
template<class VobjOut, class VobjIn>
auto _precisionChangeFastWrap(Lattice<VobjOut> &out, const Lattice<VobjIn> &in, int dummy)->decltype( precisionChange( ((typename VobjOut::vector_type*)0), ((typename VobjIn::vector_type*)0), 1), int()){
if(out.Grid() == in.Grid()){
precisionChangeFast(out,in);
return 1;
}else{
return 0;
}
}
template<class VobjOut, class VobjIn>
int _precisionChangeFastWrap(Lattice<VobjOut> &out, const Lattice<VobjIn> &in, long dummy){ //note long here is intentional; it means the above is preferred if available
return 0;
}
//Convert a lattice of one precision to another. Much faster than original implementation but requires a pregenerated workspace
//which contains the mapping data.
template<class VobjOut, class VobjIn>
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in, const precisionChangeWorkspace &workspace){
if(_precisionChangeFastWrap(out,in,0)) return;
static_assert( std::is_same<typename VobjOut::scalar_typeD, typename VobjIn::scalar_typeD>::value == 1, "precisionChange: tensor types must be the same" ); //if tensor types are same the DoublePrecision type must be the same
out.Checkerboard() = in.Checkerboard();
constexpr int Nsimd_out = VobjOut::Nsimd();
workspace.checkGrids(out.Grid(),in.Grid());
std::pair<Integer,Integer> const* fmap_device = workspace.getMap();
//Do the copy/precision change
autoView( out_v , out, AcceleratorWrite);
autoView( in_v , in, AcceleratorRead);
accelerator_for(out_oidx, out.Grid()->oSites(), 1,{
std::pair<Integer,Integer> const* fmap_osite = fmap_device + out_oidx*Nsimd_out;
for(int out_lane=0; out_lane < Nsimd_out; out_lane++){
int in_oidx = fmap_osite[out_lane].first;
int in_lane = fmap_osite[out_lane].second;
copyLane(out_v[out_oidx], out_lane, in_v[in_oidx], in_lane);
}
});
}
//Convert a Lattice from one precision to another. Much faster than original implementation but slower than precisionChangeFast
//or precisionChange called with pregenerated workspace, as it needs to internally generate the workspace on the host and copy to device
template<class VobjOut, class VobjIn>
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in){
if(_precisionChangeFastWrap(out,in,0)) return;
precisionChangeWorkspace workspace(out.Grid(), in.Grid());
precisionChange(out, in, workspace);
}
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
// Communicate between grids // Communicate between grids
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////

View File

@ -45,7 +45,6 @@ public:
}; };
// Host only // Host only
GridBase * getGrid(void) const { return _grid; }; GridBase * getGrid(void) const { return _grid; };
vobj* getHostPointer(void) const { return _odata; };
}; };
///////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////
@ -68,13 +67,8 @@ public:
accelerator_inline const vobj & operator()(size_t i) const { return this->_odata[i]; } accelerator_inline const vobj & operator()(size_t i) const { return this->_odata[i]; }
#endif #endif
#if 1
// accelerator_inline const vobj & operator[](size_t i) const { return this->_odata[i]; };
accelerator_inline vobj & operator[](size_t i) const { return this->_odata[i]; };
#else
accelerator_inline const vobj & operator[](size_t i) const { return this->_odata[i]; }; accelerator_inline const vobj & operator[](size_t i) const { return this->_odata[i]; };
accelerator_inline vobj & operator[](size_t i) { return this->_odata[i]; }; accelerator_inline vobj & operator[](size_t i) { return this->_odata[i]; };
#endif
accelerator_inline uint64_t begin(void) const { return 0;}; accelerator_inline uint64_t begin(void) const { return 0;};
accelerator_inline uint64_t end(void) const { return this->_odata_size; }; accelerator_inline uint64_t end(void) const { return this->_odata_size; };

View File

@ -43,7 +43,7 @@ inline void whereWolf(Lattice<vobj> &ret,const Lattice<iobj> &predicate,Lattice<
conformable(iftrue,predicate); conformable(iftrue,predicate);
conformable(iftrue,ret); conformable(iftrue,ret);
GridBase *grid=iftrue.Grid(); GridBase *grid=iftrue._grid;
typedef typename vobj::scalar_object scalar_object; typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type; typedef typename vobj::scalar_type scalar_type;
@ -52,23 +52,22 @@ inline void whereWolf(Lattice<vobj> &ret,const Lattice<iobj> &predicate,Lattice<
const int Nsimd = grid->Nsimd(); const int Nsimd = grid->Nsimd();
autoView(iftrue_v,iftrue,CpuRead); std::vector<Integer> mask(Nsimd);
autoView(iffalse_v,iffalse,CpuRead); std::vector<scalar_object> truevals (Nsimd);
autoView(predicate_v,predicate,CpuRead); std::vector<scalar_object> falsevals(Nsimd);
autoView(ret_v,ret,CpuWrite);
Integer NN= grid->oSites(); parallel_for(int ss=0;ss<iftrue._grid->oSites(); ss++){
thread_for(ss,NN,{
Integer mask; extract(iftrue._odata[ss] ,truevals);
scalar_object trueval; extract(iffalse._odata[ss] ,falsevals);
scalar_object falseval; extract<vInteger,Integer>(TensorRemove(predicate._odata[ss]),mask);
for(int l=0;l<Nsimd;l++){
trueval =extractLane(l,iftrue_v[ss]); for(int s=0;s<Nsimd;s++){
falseval=extractLane(l,iffalse_v[ss]); if (mask[s]) falsevals[s]=truevals[s];
mask =extractLane(l,predicate_v[ss]); }
if (mask) falseval=trueval;
insertLane(l,ret_v[ss],falseval); merge(ret._odata[ss],falsevals);
} }
});
} }
template<class vobj,class iobj> template<class vobj,class iobj>
@ -77,9 +76,9 @@ inline Lattice<vobj> whereWolf(const Lattice<iobj> &predicate,Lattice<vobj> &ift
conformable(iftrue,iffalse); conformable(iftrue,iffalse);
conformable(iftrue,predicate); conformable(iftrue,predicate);
Lattice<vobj> ret(iftrue.Grid()); Lattice<vobj> ret(iftrue._grid);
whereWolf(ret,predicate,iftrue,iffalse); where(ret,predicate,iftrue,iffalse);
return ret; return ret;
} }

View File

@ -1,174 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/PaddedCell.h
Copyright (C) 2019
Author: Peter Boyle pboyle@bnl.gov
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include<Grid/cshift/Cshift.h>
NAMESPACE_BEGIN(Grid);
//Allow the user to specify how the C-shift is performed, e.g. to respect the appropriate boundary conditions
template<typename vobj>
struct CshiftImplBase{
virtual Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const = 0;
virtual ~CshiftImplBase(){}
};
template<typename vobj>
struct CshiftImplDefault: public CshiftImplBase<vobj>{
Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const override{ return Grid::Cshift(in,dir,shift); }
};
template<typename Gimpl>
struct CshiftImplGauge: public CshiftImplBase<typename Gimpl::GaugeLinkField::vector_object>{
typename Gimpl::GaugeLinkField Cshift(const typename Gimpl::GaugeLinkField &in, int dir, int shift) const override{ return Gimpl::CshiftLink(in,dir,shift); }
};
class PaddedCell {
public:
GridCartesian * unpadded_grid;
int dims;
int depth;
std::vector<GridCartesian *> grids;
~PaddedCell()
{
DeleteGrids();
}
PaddedCell(int _depth,GridCartesian *_grid)
{
unpadded_grid = _grid;
depth=_depth;
dims=_grid->Nd();
AllocateGrids();
Coordinate local =unpadded_grid->LocalDimensions();
for(int d=0;d<dims;d++){
assert(local[d]>=depth);
}
}
void DeleteGrids(void)
{
for(int d=0;d<grids.size();d++){
delete grids[d];
}
grids.resize(0);
};
void AllocateGrids(void)
{
Coordinate local =unpadded_grid->LocalDimensions();
Coordinate simd =unpadded_grid->_simd_layout;
Coordinate processors=unpadded_grid->_processors;
Coordinate plocal =unpadded_grid->LocalDimensions();
Coordinate global(dims);
// expand up one dim at a time
for(int d=0;d<dims;d++){
plocal[d] += 2*depth;
for(int d=0;d<dims;d++){
global[d] = plocal[d]*processors[d];
}
grids.push_back(new GridCartesian(global,simd,processors));
}
};
template<class vobj>
inline Lattice<vobj> Extract(const Lattice<vobj> &in) const
{
Lattice<vobj> out(unpadded_grid);
Coordinate local =unpadded_grid->LocalDimensions();
Coordinate fll(dims,depth); // depends on the MPI spread
Coordinate tll(dims,0); // depends on the MPI spread
localCopyRegion(in,out,fll,tll,local);
return out;
}
template<class vobj>
inline Lattice<vobj> Exchange(const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
{
GridBase *old_grid = in.Grid();
int dims = old_grid->Nd();
Lattice<vobj> tmp = in;
for(int d=0;d<dims;d++){
tmp = Expand(d,tmp,cshift); // rvalue && assignment
}
return tmp;
}
// expand up one dim at a time
template<class vobj>
inline Lattice<vobj> Expand(int dim, const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
{
GridBase *old_grid = in.Grid();
GridCartesian *new_grid = grids[dim];//These are new grids
Lattice<vobj> padded(new_grid);
Lattice<vobj> shifted(old_grid);
Coordinate local =old_grid->LocalDimensions();
Coordinate plocal =new_grid->LocalDimensions();
if(dim==0) conformable(old_grid,unpadded_grid);
else conformable(old_grid,grids[dim-1]);
std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl;
double tins=0, tshift=0;
// Middle bit
double t = usecond();
for(int x=0;x<local[dim];x++){
InsertSliceLocal(in,padded,x,depth+x,dim);
}
tins += usecond() - t;
// High bit
t = usecond();
shifted = cshift.Cshift(in,dim,depth);
tshift += usecond() - t;
t=usecond();
for(int x=0;x<depth;x++){
InsertSliceLocal(shifted,padded,local[dim]-depth+x,depth+local[dim]+x,dim);
}
tins += usecond() - t;
// Low bit
t = usecond();
shifted = cshift.Cshift(in,dim,-depth);
tshift += usecond() - t;
t = usecond();
for(int x=0;x<depth;x++){
InsertSliceLocal(shifted,padded,x,x,dim);
}
tins += usecond() - t;
std::cout << GridLogPerformance << "PaddedCell::Expand timings: cshift:" << tshift/1000 << "ms, insert-slice:" << tins/1000 << "ms" << std::endl;
return padded;
}
};
NAMESPACE_END(Grid);

View File

@ -65,40 +65,29 @@ GridLogger GridLogSolver (1, "Solver", GridLogColours, "NORMAL");
GridLogger GridLogError (1, "Error" , GridLogColours, "RED"); GridLogger GridLogError (1, "Error" , GridLogColours, "RED");
GridLogger GridLogWarning(1, "Warning", GridLogColours, "YELLOW"); GridLogger GridLogWarning(1, "Warning", GridLogColours, "YELLOW");
GridLogger GridLogMessage(1, "Message", GridLogColours, "NORMAL"); GridLogger GridLogMessage(1, "Message", GridLogColours, "NORMAL");
GridLogger GridLogMemory (1, "Memory", GridLogColours, "NORMAL");
GridLogger GridLogTracing(1, "Tracing", GridLogColours, "NORMAL");
GridLogger GridLogDebug (1, "Debug", GridLogColours, "PURPLE"); GridLogger GridLogDebug (1, "Debug", GridLogColours, "PURPLE");
GridLogger GridLogPerformance(1, "Performance", GridLogColours, "GREEN"); GridLogger GridLogPerformance(1, "Performance", GridLogColours, "GREEN");
GridLogger GridLogDslash (1, "Dslash", GridLogColours, "BLUE");
GridLogger GridLogIterative (1, "Iterative", GridLogColours, "BLUE"); GridLogger GridLogIterative (1, "Iterative", GridLogColours, "BLUE");
GridLogger GridLogIntegrator (1, "Integrator", GridLogColours, "BLUE"); GridLogger GridLogIntegrator (1, "Integrator", GridLogColours, "BLUE");
GridLogger GridLogHMC (1, "HMC", GridLogColours, "BLUE");
void GridLogConfigure(std::vector<std::string> &logstreams) { void GridLogConfigure(std::vector<std::string> &logstreams) {
GridLogError.Active(1); GridLogError.Active(0);
GridLogWarning.Active(0); GridLogWarning.Active(0);
GridLogMessage.Active(1); // at least the messages should be always on GridLogMessage.Active(1); // at least the messages should be always on
GridLogMemory.Active(0);
GridLogTracing.Active(0);
GridLogIterative.Active(0); GridLogIterative.Active(0);
GridLogDebug.Active(0); GridLogDebug.Active(0);
GridLogPerformance.Active(0); GridLogPerformance.Active(0);
GridLogDslash.Active(0);
GridLogIntegrator.Active(1); GridLogIntegrator.Active(1);
GridLogColours.Active(0); GridLogColours.Active(0);
GridLogHMC.Active(1);
for (int i = 0; i < logstreams.size(); i++) { for (int i = 0; i < logstreams.size(); i++) {
if (logstreams[i] == std::string("Tracing")) GridLogTracing.Active(1); if (logstreams[i] == std::string("Error")) GridLogError.Active(1);
if (logstreams[i] == std::string("Memory")) GridLogMemory.Active(1);
if (logstreams[i] == std::string("Warning")) GridLogWarning.Active(1); if (logstreams[i] == std::string("Warning")) GridLogWarning.Active(1);
if (logstreams[i] == std::string("NoMessage")) GridLogMessage.Active(0); if (logstreams[i] == std::string("NoMessage")) GridLogMessage.Active(0);
if (logstreams[i] == std::string("Iterative")) GridLogIterative.Active(1); if (logstreams[i] == std::string("Iterative")) GridLogIterative.Active(1);
if (logstreams[i] == std::string("Debug")) GridLogDebug.Active(1); if (logstreams[i] == std::string("Debug")) GridLogDebug.Active(1);
if (logstreams[i] == std::string("Performance")) GridLogPerformance.Active(1); if (logstreams[i] == std::string("Performance")) GridLogPerformance.Active(1);
if (logstreams[i] == std::string("Dslash")) GridLogDslash.Active(1); if (logstreams[i] == std::string("Integrator")) GridLogIntegrator.Active(1);
if (logstreams[i] == std::string("NoIntegrator"))GridLogIntegrator.Active(0);
if (logstreams[i] == std::string("NoHMC")) GridLogHMC.Active(0);
if (logstreams[i] == std::string("Colours")) GridLogColours.Active(1); if (logstreams[i] == std::string("Colours")) GridLogColours.Active(1);
} }
} }

View File

@ -130,16 +130,13 @@ public:
friend std::ostream& operator<< (std::ostream& stream, Logger& log){ friend std::ostream& operator<< (std::ostream& stream, Logger& log){
if ( log.active ) { if ( log.active ) {
std::ios_base::fmtflags f(stream.flags());
stream << log.background()<< std::left; stream << log.background()<< std::left;
if (log.topWidth > 0) if (log.topWidth > 0)
{ {
stream << std::setw(log.topWidth); stream << std::setw(log.topWidth);
} }
stream << log.topName << log.background()<< " : "; stream << log.topName << log.background()<< " : ";
// stream << log.colour() << std::left; stream << log.colour() << std::left;
stream << std::left;
if (log.chanWidth > 0) if (log.chanWidth > 0)
{ {
stream << std::setw(log.chanWidth); stream << std::setw(log.chanWidth);
@ -154,9 +151,7 @@ public:
stream << log.evidence() stream << log.evidence()
<< now << log.background() << " : " ; << now << log.background() << " : " ;
} }
// stream << log.colour(); stream << log.colour();
stream << std::right;
stream.flags(f);
return stream; return stream;
} else { } else {
return devnull; return devnull;
@ -179,53 +174,14 @@ extern GridLogger GridLogSolver;
extern GridLogger GridLogError; extern GridLogger GridLogError;
extern GridLogger GridLogWarning; extern GridLogger GridLogWarning;
extern GridLogger GridLogMessage; extern GridLogger GridLogMessage;
extern GridLogger GridLogDebug; extern GridLogger GridLogDebug ;
extern GridLogger GridLogPerformance; extern GridLogger GridLogPerformance;
extern GridLogger GridLogDslash; extern GridLogger GridLogIterative ;
extern GridLogger GridLogIterative; extern GridLogger GridLogIntegrator ;
extern GridLogger GridLogIntegrator;
extern GridLogger GridLogHMC;
extern GridLogger GridLogMemory;
extern GridLogger GridLogTracing;
extern Colours GridLogColours; extern Colours GridLogColours;
std::string demangle(const char* name) ; std::string demangle(const char* name) ;
template<typename... Args>
inline std::string sjoin(Args&&... args) noexcept {
std::ostringstream msg;
(msg << ... << args);
return msg.str();
}
/*! @brief make log messages work like python print */
template <typename... Args>
inline void Grid_log(Args&&... args) {
std::string msg = sjoin(std::forward<Args>(args)...);
std::cout << GridLogMessage << msg << std::endl;
}
/*! @brief make warning messages work like python print */
template <typename... Args>
inline void Grid_warn(Args&&... args) {
std::string msg = sjoin(std::forward<Args>(args)...);
std::cout << "\033[33m" << GridLogWarning << msg << "\033[0m" << std::endl;
}
/*! @brief make error messages work like python print */
template <typename... Args>
inline void Grid_error(Args&&... args) {
std::string msg = sjoin(std::forward<Args>(args)...);
std::cout << "\033[31m" << GridLogError << msg << "\033[0m" << std::endl;
}
/*! @brief make pass messages work like python print */
template <typename... Args>
inline void Grid_pass(Args&&... args) {
std::string msg = sjoin(std::forward<Args>(args)...);
std::cout << "\033[32m" << GridLogMessage << msg << "\033[0m" << std::endl;
}
#define _NBACKTRACE (256) #define _NBACKTRACE (256)
extern void * Grid_backtrace_buffer[_NBACKTRACE]; extern void * Grid_backtrace_buffer[_NBACKTRACE];

View File

@ -1,4 +1,3 @@
#include <Grid/GridCore.h> #include <Grid/GridCore.h>
int Grid::BinaryIO::latticeWriteMaxRetry = -1; int Grid::BinaryIO::latticeWriteMaxRetry = -1;
Grid::BinaryIO::IoPerf Grid::BinaryIO::lastPerf;

View File

@ -79,13 +79,6 @@ inline void removeWhitespace(std::string &key)
/////////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////
class BinaryIO { class BinaryIO {
public: public:
struct IoPerf
{
uint64_t size{0},time{0};
double mbytesPerSecond{0.};
};
static IoPerf lastPerf;
static int latticeWriteMaxRetry; static int latticeWriteMaxRetry;
///////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////
@ -509,15 +502,12 @@ class BinaryIO {
timer.Stop(); timer.Stop();
} }
lastPerf.size = sizeof(fobj)*iodata.size()*nrank;
lastPerf.time = timer.useconds();
lastPerf.mbytesPerSecond = lastPerf.size/1024./1024./(lastPerf.time/1.0e6);
std::cout<<GridLogMessage<<"IOobject: "; std::cout<<GridLogMessage<<"IOobject: ";
if ( control & BINARYIO_READ) std::cout << " read "; if ( control & BINARYIO_READ) std::cout << " read ";
else std::cout << " write "; else std::cout << " write ";
uint64_t bytes = sizeof(fobj)*iodata.size()*nrank; uint64_t bytes = sizeof(fobj)*iodata.size()*nrank;
std::cout<< lastPerf.size <<" bytes in "<< timer.Elapsed() <<" " std::cout<< bytes <<" bytes in "<<timer.Elapsed() <<" "
<< lastPerf.mbytesPerSecond <<" MB/s "<<std::endl; << (double)bytes/ (double)timer.useconds() <<" MB/s "<<std::endl;
std::cout<<GridLogMessage<<"IOobject: endian and checksum overhead "<<bstimer.Elapsed() <<std::endl; std::cout<<GridLogMessage<<"IOobject: endian and checksum overhead "<<bstimer.Elapsed() <<std::endl;
@ -673,15 +663,10 @@ class BinaryIO {
nersc_csum,scidac_csuma,scidac_csumb); nersc_csum,scidac_csuma,scidac_csumb);
timer.Start(); timer.Start();
thread_for(lidx,lsites,{ // FIX ME, suboptimal implementation thread_for(lidx,lsites,{
std::vector<RngStateType> tmp(RngStateCount); std::vector<RngStateType> tmp(RngStateCount);
std::copy(iodata[lidx].begin(),iodata[lidx].end(),tmp.begin()); std::copy(iodata[lidx].begin(),iodata[lidx].end(),tmp.begin());
Coordinate lcoor; parallel_rng.SetState(tmp,lidx);
grid->LocalIndexToLocalCoor(lidx, lcoor);
int o_idx=grid->oIndex(lcoor);
int i_idx=grid->iIndex(lcoor);
int gidx=parallel_rng.generator_idx(o_idx,i_idx);
parallel_rng.SetState(tmp,gidx);
}); });
timer.Stop(); timer.Stop();
@ -738,12 +723,7 @@ class BinaryIO {
std::vector<RNGstate> iodata(lsites); std::vector<RNGstate> iodata(lsites);
thread_for(lidx,lsites,{ thread_for(lidx,lsites,{
std::vector<RngStateType> tmp(RngStateCount); std::vector<RngStateType> tmp(RngStateCount);
Coordinate lcoor; parallel_rng.GetState(tmp,lidx);
grid->LocalIndexToLocalCoor(lidx, lcoor);
int o_idx=grid->oIndex(lcoor);
int i_idx=grid->iIndex(lcoor);
int gidx=parallel_rng.generator_idx(o_idx,i_idx);
parallel_rng.GetState(tmp,gidx);
std::copy(tmp.begin(),tmp.end(),iodata[lidx].begin()); std::copy(tmp.begin(),tmp.end(),iodata[lidx].begin());
}); });
timer.Stop(); timer.Stop();

View File

@ -31,7 +31,6 @@ directory
#include <fstream> #include <fstream>
#include <iomanip> #include <iomanip>
#include <iostream> #include <iostream>
#include <string>
#include <map> #include <map>
#include <pwd.h> #include <pwd.h>
@ -124,7 +123,7 @@ assert(GRID_FIELD_NORM_CALC(FieldNormMetaData_, n2ck) < 1.0e-5);
//////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////
// Helper to fill out metadata // Helper to fill out metadata
//////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////
template<class vobj> void ScidacMetaData(Lattice<vobj> & field, template<class vobj> void ScidacMetaData(Lattice<vobj> & field,
FieldMetaData &header, FieldMetaData &header,
scidacRecord & _scidacRecord, scidacRecord & _scidacRecord,
scidacFile & _scidacFile) scidacFile & _scidacFile)
@ -577,8 +576,6 @@ class ScidacReader : public GridLimeReader {
std::string rec_name(ILDG_BINARY_DATA); std::string rec_name(ILDG_BINARY_DATA);
while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) { while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) {
if ( !strncmp(limeReaderType(LimeR), rec_name.c_str(),strlen(rec_name.c_str()) ) ) { if ( !strncmp(limeReaderType(LimeR), rec_name.c_str(),strlen(rec_name.c_str()) ) ) {
// in principle should do the line below, but that breaks backard compatibility with old data
// skipPastObjectRecord(std::string(GRID_FIELD_NORM));
skipPastObjectRecord(std::string(SCIDAC_CHECKSUM)); skipPastObjectRecord(std::string(SCIDAC_CHECKSUM));
return; return;
} }
@ -622,12 +619,12 @@ class IldgWriter : public ScidacWriter {
// Don't require scidac records EXCEPT checksum // Don't require scidac records EXCEPT checksum
// Use Grid MetaData object if present. // Use Grid MetaData object if present.
//////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////
template <class stats = PeriodicGaugeStatistics> template <class vsimd>
void writeConfiguration(Lattice<vLorentzColourMatrixD > &Umu,int sequence,std::string LFN,std::string description) void writeConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,int sequence,std::string LFN,std::string description)
{ {
GridBase * grid = Umu.Grid(); GridBase * grid = Umu.Grid();
typedef Lattice<vLorentzColourMatrixD> GaugeField; typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
typedef vLorentzColourMatrixD vobj; typedef iLorentzColourMatrix<vsimd> vobj;
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;
//////////////////////////////////////// ////////////////////////////////////////
@ -639,9 +636,6 @@ class IldgWriter : public ScidacWriter {
ScidacMetaData(Umu,header,_scidacRecord,_scidacFile); ScidacMetaData(Umu,header,_scidacRecord,_scidacFile);
stats Stats;
Stats(Umu,header);
std::string format = header.floating_point; std::string format = header.floating_point;
header.ensemble_id = description; header.ensemble_id = description;
header.ensemble_label = description; header.ensemble_label = description;
@ -655,8 +649,7 @@ class IldgWriter : public ScidacWriter {
// Fill ILDG header data struct // Fill ILDG header data struct
////////////////////////////////////////////////////// //////////////////////////////////////////////////////
ildgFormat ildgfmt ; ildgFormat ildgfmt ;
const std::string stNC = std::to_string( Nc ) ; ildgfmt.field = std::string("su3gauge");
ildgfmt.field = std::string("su"+stNC+"gauge");
if ( format == std::string("IEEE32BIG") ) { if ( format == std::string("IEEE32BIG") ) {
ildgfmt.precision = 32; ildgfmt.precision = 32;
@ -712,10 +705,10 @@ class IldgReader : public GridLimeReader {
// Else use ILDG MetaData object if present. // Else use ILDG MetaData object if present.
// Else use SciDAC MetaData object if present. // Else use SciDAC MetaData object if present.
//////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////
template <class stats = PeriodicGaugeStatistics> template <class vsimd>
void readConfiguration(Lattice<vLorentzColourMatrixD> &Umu, FieldMetaData &FieldMetaData_) { void readConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu, FieldMetaData &FieldMetaData_) {
typedef Lattice<vLorentzColourMatrixD > GaugeField; typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
typedef typename GaugeField::vector_object vobj; typedef typename GaugeField::vector_object vobj;
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;
@ -873,8 +866,7 @@ class IldgReader : public GridLimeReader {
} else { } else {
assert(found_ildgFormat); assert(found_ildgFormat);
const std::string stNC = std::to_string( Nc ) ; assert ( ildgFormat_.field == std::string("su3gauge") );
assert ( ildgFormat_.field == std::string("su"+stNC+"gauge") );
/////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////
// Populate our Grid metadata as best we can // Populate our Grid metadata as best we can
@ -882,7 +874,7 @@ class IldgReader : public GridLimeReader {
std::ostringstream vers; vers << ildgFormat_.version; std::ostringstream vers; vers << ildgFormat_.version;
FieldMetaData_.hdr_version = vers.str(); FieldMetaData_.hdr_version = vers.str();
FieldMetaData_.data_type = std::string("4D_SU"+stNC+"_GAUGE_"+stNC+"x"+stNC); FieldMetaData_.data_type = std::string("4D_SU3_GAUGE_3X3");
FieldMetaData_.nd=4; FieldMetaData_.nd=4;
FieldMetaData_.dimension.resize(4); FieldMetaData_.dimension.resize(4);
@ -929,8 +921,7 @@ class IldgReader : public GridLimeReader {
if ( found_FieldMetaData || found_usqcdInfo ) { if ( found_FieldMetaData || found_usqcdInfo ) {
FieldMetaData checker; FieldMetaData checker;
stats Stats; GaugeStatistics(Umu,checker);
Stats(Umu,checker);
assert(fabs(checker.plaquette - FieldMetaData_.plaquette )<1.0e-5); assert(fabs(checker.plaquette - FieldMetaData_.plaquette )<1.0e-5);
assert(fabs(checker.link_trace - FieldMetaData_.link_trace)<1.0e-5); assert(fabs(checker.link_trace - FieldMetaData_.link_trace)<1.0e-5);
std::cout << GridLogMessage<<"Plaquette and link trace match " << std::endl; std::cout << GridLogMessage<<"Plaquette and link trace match " << std::endl;

View File

@ -6,8 +6,8 @@
Copyright (C) 2015 Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk> Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Jamie Hudspith <renwick.james.hudspth@gmail.com>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
@ -128,7 +128,7 @@ inline void MachineCharacteristics(FieldMetaData &header)
std::time_t t = std::time(nullptr); std::time_t t = std::time(nullptr);
std::tm tm_ = *std::localtime(&t); std::tm tm_ = *std::localtime(&t);
std::ostringstream oss; std::ostringstream oss;
oss << std::put_time(&tm_, "%c %Z"); // oss << std::put_time(&tm_, "%c %Z");
header.creation_date = oss.str(); header.creation_date = oss.str();
header.archive_date = header.creation_date; header.archive_date = header.creation_date;
@ -176,18 +176,29 @@ template<class vobj> inline void PrepareMetaData(Lattice<vobj> & field, FieldMet
GridMetaData(grid,header); GridMetaData(grid,header);
MachineCharacteristics(header); MachineCharacteristics(header);
} }
template<class Impl> inline void GaugeStatistics(Lattice<vLorentzColourMatrixF> & data,FieldMetaData &header)
class GaugeStatistics
{ {
public: // How to convert data precision etc...
void operator()(Lattice<vLorentzColourMatrixD> & data,FieldMetaData &header) header.link_trace=WilsonLoops<PeriodicGimplF>::linkTrace(data);
{ header.plaquette =WilsonLoops<PeriodicGimplF>::avgPlaquette(data);
header.link_trace = WilsonLoops<Impl>::linkTrace(data); }
header.plaquette = WilsonLoops<Impl>::avgPlaquette(data); inline void GaugeStatistics(Lattice<vLorentzColourMatrixD> & data,FieldMetaData &header)
} {
}; // How to convert data precision etc...
typedef GaugeStatistics<PeriodicGimplD> PeriodicGaugeStatistics; header.link_trace=WilsonLoops<PeriodicGimplD>::linkTrace(data);
typedef GaugeStatistics<ConjugateGimplD> ConjugateGaugeStatistics; header.plaquette =WilsonLoops<PeriodicGimplD>::avgPlaquette(data);
}
template<> inline void PrepareMetaData<vLorentzColourMatrixF>(Lattice<vLorentzColourMatrixF> & field, FieldMetaData &header)
{
GridBase *grid = field.Grid();
std::string format = getFormatString<vLorentzColourMatrixF>();
header.floating_point = format;
header.checksum = 0x0; // Nersc checksum unused in ILDG, Scidac
GridMetaData(grid,header);
GaugeStatistics(field,header);
MachineCharacteristics(header);
}
template<> inline void PrepareMetaData<vLorentzColourMatrixD>(Lattice<vLorentzColourMatrixD> & field, FieldMetaData &header) template<> inline void PrepareMetaData<vLorentzColourMatrixD>(Lattice<vLorentzColourMatrixD> & field, FieldMetaData &header)
{ {
GridBase *grid = field.Grid(); GridBase *grid = field.Grid();
@ -195,6 +206,7 @@ template<> inline void PrepareMetaData<vLorentzColourMatrixD>(Lattice<vLorentzCo
header.floating_point = format; header.floating_point = format;
header.checksum = 0x0; // Nersc checksum unused in ILDG, Scidac header.checksum = 0x0; // Nersc checksum unused in ILDG, Scidac
GridMetaData(grid,header); GridMetaData(grid,header);
GaugeStatistics(field,header);
MachineCharacteristics(header); MachineCharacteristics(header);
} }
@ -203,24 +215,20 @@ template<> inline void PrepareMetaData<vLorentzColourMatrixD>(Lattice<vLorentzCo
////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////
inline void reconstruct3(LorentzColourMatrix & cm) inline void reconstruct3(LorentzColourMatrix & cm)
{ {
assert( Nc < 4 && Nc > 1 ) ; const int x=0;
const int y=1;
const int z=2;
for(int mu=0;mu<Nd;mu++){ for(int mu=0;mu<Nd;mu++){
#if Nc == 2
cm(mu)()(1,0) = -adj(cm(mu)()(0,y)) ;
cm(mu)()(1,1) = adj(cm(mu)()(0,x)) ;
#else
const int x=0 , y=1 , z=2 ; // a little disinenuous labelling
cm(mu)()(2,x) = adj(cm(mu)()(0,y)*cm(mu)()(1,z)-cm(mu)()(0,z)*cm(mu)()(1,y)); //x= yz-zy cm(mu)()(2,x) = adj(cm(mu)()(0,y)*cm(mu)()(1,z)-cm(mu)()(0,z)*cm(mu)()(1,y)); //x= yz-zy
cm(mu)()(2,y) = adj(cm(mu)()(0,z)*cm(mu)()(1,x)-cm(mu)()(0,x)*cm(mu)()(1,z)); //y= zx-xz cm(mu)()(2,y) = adj(cm(mu)()(0,z)*cm(mu)()(1,x)-cm(mu)()(0,x)*cm(mu)()(1,z)); //y= zx-xz
cm(mu)()(2,z) = adj(cm(mu)()(0,x)*cm(mu)()(1,y)-cm(mu)()(0,y)*cm(mu)()(1,x)); //z= xy-yx cm(mu)()(2,z) = adj(cm(mu)()(0,x)*cm(mu)()(1,y)-cm(mu)()(0,y)*cm(mu)()(1,x)); //z= xy-yx
#endif
} }
} }
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
// Some data types for intermediate storage // Some data types for intermediate storage
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
template<typename vtype> using iLorentzColour2x3 = iVector<iVector<iVector<vtype, Nc>, Nc-1>, Nd >; template<typename vtype> using iLorentzColour2x3 = iVector<iVector<iVector<vtype, Nc>, 2>, Nd >;
typedef iLorentzColour2x3<Complex> LorentzColour2x3; typedef iLorentzColour2x3<Complex> LorentzColour2x3;
typedef iLorentzColour2x3<ComplexF> LorentzColour2x3F; typedef iLorentzColour2x3<ComplexF> LorentzColour2x3F;
@ -282,6 +290,7 @@ struct GaugeSimpleMunger{
template <class fobj, class sobj> template <class fobj, class sobj>
struct GaugeSimpleUnmunger { struct GaugeSimpleUnmunger {
void operator()(sobj &in, fobj &out) { void operator()(sobj &in, fobj &out) {
for (int mu = 0; mu < Nd; mu++) { for (int mu = 0; mu < Nd; mu++) {
for (int i = 0; i < Nc; i++) { for (int i = 0; i < Nc; i++) {
@ -320,8 +329,8 @@ template<class fobj,class sobj>
struct Gauge3x2munger{ struct Gauge3x2munger{
void operator() (fobj &in,sobj &out){ void operator() (fobj &in,sobj &out){
for(int mu=0;mu<Nd;mu++){ for(int mu=0;mu<Nd;mu++){
for(int i=0;i<Nc-1;i++){ for(int i=0;i<2;i++){
for(int j=0;j<Nc;j++){ for(int j=0;j<3;j++){
out(mu)()(i,j) = in(mu)(i)(j); out(mu)()(i,j) = in(mu)(i)(j);
}} }}
} }
@ -333,8 +342,8 @@ template<class fobj,class sobj>
struct Gauge3x2unmunger{ struct Gauge3x2unmunger{
void operator() (sobj &in,fobj &out){ void operator() (sobj &in,fobj &out){
for(int mu=0;mu<Nd;mu++){ for(int mu=0;mu<Nd;mu++){
for(int i=0;i<Nc-1;i++){ for(int i=0;i<2;i++){
for(int j=0;j<Nc;j++){ for(int j=0;j<3;j++){
out(mu)(i)(j) = in(mu)()(i,j); out(mu)(i)(j) = in(mu)()(i,j);
}} }}
} }

View File

@ -9,7 +9,6 @@
Author: Matt Spraggs <matthew.spraggs@gmail.com> Author: Matt Spraggs <matthew.spraggs@gmail.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk> Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk> Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Jamie Hudspith <renwick.james.hudspth@gmail.com>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
@ -31,8 +30,6 @@
#ifndef GRID_NERSC_IO_H #ifndef GRID_NERSC_IO_H
#define GRID_NERSC_IO_H #define GRID_NERSC_IO_H
#include <string>
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
using namespace Grid; using namespace Grid;
@ -42,10 +39,6 @@ using namespace Grid;
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
class NerscIO : public BinaryIO { class NerscIO : public BinaryIO {
public: public:
typedef Lattice<vLorentzColourMatrixD> GaugeField;
// Enable/disable exiting if the plaquette in the header does not match the value computed (default true)
static bool & exitOnReadPlaquetteMismatch(){ static bool v=true; return v; }
static inline void truncate(std::string file){ static inline void truncate(std::string file){
std::ofstream fout(file,std::ios::out); std::ofstream fout(file,std::ios::out);
@ -136,12 +129,12 @@ public:
// Now the meat: the object readers // Now the meat: the object readers
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template<class GaugeStats=PeriodicGaugeStatistics> template<class vsimd>
static inline void readConfiguration(GaugeField &Umu, static inline void readConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,
FieldMetaData& header, FieldMetaData& header,
std::string file, std::string file)
GaugeStats GaugeStatisticsCalculator=GaugeStats())
{ {
typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
GridBase *grid = Umu.Grid(); GridBase *grid = Umu.Grid();
uint64_t offset = readHeader(file,Umu.Grid(),header); uint64_t offset = readHeader(file,Umu.Grid(),header);
@ -150,35 +143,33 @@ public:
std::string format(header.floating_point); std::string format(header.floating_point);
const int ieee32big = (format == std::string("IEEE32BIG")); int ieee32big = (format == std::string("IEEE32BIG"));
const int ieee32 = (format == std::string("IEEE32")); int ieee32 = (format == std::string("IEEE32"));
const int ieee64big = (format == std::string("IEEE64BIG")); int ieee64big = (format == std::string("IEEE64BIG"));
const int ieee64 = (format == std::string("IEEE64") || \ int ieee64 = (format == std::string("IEEE64") || format == std::string("IEEE64LITTLE"));
format == std::string("IEEE64LITTLE"));
uint32_t nersc_csum,scidac_csuma,scidac_csumb; uint32_t nersc_csum,scidac_csuma,scidac_csumb;
// depending on datatype, set up munger; // depending on datatype, set up munger;
// munger is a function of <floating point, Real, data_type> // munger is a function of <floating point, Real, data_type>
const std::string stNC = std::to_string( Nc ) ; if ( header.data_type == std::string("4D_SU3_GAUGE") ) {
if ( header.data_type == std::string("4D_SU"+stNC+"_GAUGE") ) {
if ( ieee32 || ieee32big ) { if ( ieee32 || ieee32big ) {
BinaryIO::readLatticeObject<vLorentzColourMatrixD, LorentzColour2x3F> BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>, LorentzColour2x3F>
(Umu,file,Gauge3x2munger<LorentzColour2x3F,LorentzColourMatrix>(), offset,format, (Umu,file,Gauge3x2munger<LorentzColour2x3F,LorentzColourMatrix>(), offset,format,
nersc_csum,scidac_csuma,scidac_csumb); nersc_csum,scidac_csuma,scidac_csumb);
} }
if ( ieee64 || ieee64big ) { if ( ieee64 || ieee64big ) {
BinaryIO::readLatticeObject<vLorentzColourMatrixD, LorentzColour2x3D> BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>, LorentzColour2x3D>
(Umu,file,Gauge3x2munger<LorentzColour2x3D,LorentzColourMatrix>(),offset,format, (Umu,file,Gauge3x2munger<LorentzColour2x3D,LorentzColourMatrix>(),offset,format,
nersc_csum,scidac_csuma,scidac_csumb); nersc_csum,scidac_csuma,scidac_csumb);
} }
} else if ( header.data_type == std::string("4D_SU"+stNC+"_GAUGE_"+stNC+"x"+stNC) ) { } else if ( header.data_type == std::string("4D_SU3_GAUGE_3x3") ) {
if ( ieee32 || ieee32big ) { if ( ieee32 || ieee32big ) {
BinaryIO::readLatticeObject<vLorentzColourMatrixD,LorentzColourMatrixF> BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>,LorentzColourMatrixF>
(Umu,file,GaugeSimpleMunger<LorentzColourMatrixF,LorentzColourMatrix>(),offset,format, (Umu,file,GaugeSimpleMunger<LorentzColourMatrixF,LorentzColourMatrix>(),offset,format,
nersc_csum,scidac_csuma,scidac_csumb); nersc_csum,scidac_csuma,scidac_csumb);
} }
if ( ieee64 || ieee64big ) { if ( ieee64 || ieee64big ) {
BinaryIO::readLatticeObject<vLorentzColourMatrixD,LorentzColourMatrixD> BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>,LorentzColourMatrixD>
(Umu,file,GaugeSimpleMunger<LorentzColourMatrixD,LorentzColourMatrix>(),offset,format, (Umu,file,GaugeSimpleMunger<LorentzColourMatrixD,LorentzColourMatrix>(),offset,format,
nersc_csum,scidac_csuma,scidac_csumb); nersc_csum,scidac_csuma,scidac_csumb);
} }
@ -186,7 +177,7 @@ public:
assert(0); assert(0);
} }
GaugeStats Stats; Stats(Umu,clone); GaugeStatistics(Umu,clone);
std::cout<<GridLogMessage <<"NERSC Configuration "<<file<<" checksum "<<std::hex<<nersc_csum<< std::dec std::cout<<GridLogMessage <<"NERSC Configuration "<<file<<" checksum "<<std::hex<<nersc_csum<< std::dec
<<" header "<<std::hex<<header.checksum<<std::dec <<std::endl; <<" header "<<std::hex<<header.checksum<<std::dec <<std::endl;
@ -205,40 +196,31 @@ public:
std::cerr << " nersc_csum " <<std::hex<< nersc_csum << " " << header.checksum<< std::dec<< std::endl; std::cerr << " nersc_csum " <<std::hex<< nersc_csum << " " << header.checksum<< std::dec<< std::endl;
exit(0); exit(0);
} }
if(exitOnReadPlaquetteMismatch()) assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 ); assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
assert(fabs(clone.link_trace-header.link_trace) < 1.0e-6 ); assert(fabs(clone.link_trace-header.link_trace) < 1.0e-6 );
assert(nersc_csum == header.checksum ); assert(nersc_csum == header.checksum );
std::cout<<GridLogMessage <<"NERSC Configuration "<<file<< " and plaquette, link trace, and checksum agree"<<std::endl; std::cout<<GridLogMessage <<"NERSC Configuration "<<file<< " and plaquette, link trace, and checksum agree"<<std::endl;
} }
// Preferred interface template<class vsimd>
template<class GaugeStats=PeriodicGaugeStatistics> static inline void writeConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,
static inline void writeConfiguration(Lattice<vLorentzColourMatrixD > &Umu,
std::string file,
std::string ens_label = std::string("DWF"),
std::string ens_id = std::string("UKQCD"),
unsigned int sequence_number = 1)
{
writeConfiguration(Umu,file,0,1,ens_label,ens_id,sequence_number);
}
template<class GaugeStats=PeriodicGaugeStatistics>
static inline void writeConfiguration(Lattice<vLorentzColourMatrixD > &Umu,
std::string file, std::string file,
int two_row, int two_row,
int bits32, int bits32)
std::string ens_label = std::string("DWF"),
std::string ens_id = std::string("UKQCD"),
unsigned int sequence_number = 1)
{ {
typedef vLorentzColourMatrixD vobj; typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
typedef iLorentzColourMatrix<vsimd> vobj;
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;
FieldMetaData header; FieldMetaData header;
header.sequence_number = sequence_number; ///////////////////////////////////////////
header.ensemble_id = ens_id; // Following should become arguments
header.ensemble_label = ens_label; ///////////////////////////////////////////
header.hdr_version = "1.0" ; header.sequence_number = 1;
header.ensemble_id = "UKQCD";
header.ensemble_label = "DWF";
typedef LorentzColourMatrixD fobj3D; typedef LorentzColourMatrixD fobj3D;
typedef LorentzColour2x3D fobj2D; typedef LorentzColour2x3D fobj2D;
@ -247,19 +229,15 @@ public:
GridMetaData(grid,header); GridMetaData(grid,header);
assert(header.nd==4); assert(header.nd==4);
GaugeStats Stats; Stats(Umu,header); GaugeStatistics(Umu,header);
MachineCharacteristics(header); MachineCharacteristics(header);
uint64_t offset; uint64_t offset;
// Sod it -- always write NcxNc double // Sod it -- always write 3x3 double
header.floating_point = std::string("IEEE64BIG"); header.floating_point = std::string("IEEE64BIG");
const std::string stNC = std::to_string( Nc ) ; header.data_type = std::string("4D_SU3_GAUGE_3x3");
if( two_row ) { GaugeSimpleUnmunger<fobj3D,sobj> munge;
header.data_type = std::string("4D_SU" + stNC + "_GAUGE" );
} else {
header.data_type = std::string("4D_SU" + stNC + "_GAUGE_" + stNC + "x" + stNC );
}
if ( grid->IsBoss() ) { if ( grid->IsBoss() ) {
truncate(file); truncate(file);
offset = writeHeader(header,file); offset = writeHeader(header,file);
@ -267,15 +245,8 @@ public:
grid->Broadcast(0,(void *)&offset,sizeof(offset)); grid->Broadcast(0,(void *)&offset,sizeof(offset));
uint32_t nersc_csum,scidac_csuma,scidac_csumb; uint32_t nersc_csum,scidac_csuma,scidac_csumb;
if( two_row ) {
Gauge3x2unmunger<fobj2D,sobj> munge;
BinaryIO::writeLatticeObject<vobj,fobj2D>(Umu,file,munge,offset,header.floating_point,
nersc_csum,scidac_csuma,scidac_csumb);
} else {
GaugeSimpleUnmunger<fobj3D,sobj> munge;
BinaryIO::writeLatticeObject<vobj,fobj3D>(Umu,file,munge,offset,header.floating_point, BinaryIO::writeLatticeObject<vobj,fobj3D>(Umu,file,munge,offset,header.floating_point,
nersc_csum,scidac_csuma,scidac_csumb); nersc_csum,scidac_csuma,scidac_csumb);
}
header.checksum = nersc_csum; header.checksum = nersc_csum;
if ( grid->IsBoss() ) { if ( grid->IsBoss() ) {
writeHeader(header,file); writeHeader(header,file);
@ -308,6 +279,7 @@ public:
MachineCharacteristics(header); MachineCharacteristics(header);
uint64_t offset; uint64_t offset;
#ifdef RNG_RANLUX #ifdef RNG_RANLUX
header.floating_point = std::string("UINT64"); header.floating_point = std::string("UINT64");
header.data_type = std::string("RANLUX48"); header.data_type = std::string("RANLUX48");

View File

@ -154,7 +154,7 @@ public:
grid->Barrier(); timer.Stop(); grid->Barrier(); timer.Stop();
std::cout << Grid::GridLogMessage << "OpenQcdIO::readConfiguration: redistribute overhead " << timer.Elapsed() << std::endl; std::cout << Grid::GridLogMessage << "OpenQcdIO::readConfiguration: redistribute overhead " << timer.Elapsed() << std::endl;
PeriodicGaugeStatistics Stats; Stats(Umu, clone); GaugeStatistics(Umu, clone);
RealD plaq_diff = fabs(clone.plaquette - header.plaquette); RealD plaq_diff = fabs(clone.plaquette - header.plaquette);

View File

@ -208,7 +208,7 @@ public:
FieldMetaData clone(header); FieldMetaData clone(header);
PeriodicGaugeStatistics Stats; Stats(Umu, clone); GaugeStatistics(Umu, clone);
RealD plaq_diff = fabs(clone.plaquette - header.plaquette); RealD plaq_diff = fabs(clone.plaquette - header.plaquette);

View File

@ -27,12 +27,9 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
/* END LEGAL */ /* END LEGAL */
#include <Grid/GridCore.h> #include <Grid/GridCore.h>
#include <Grid/perfmon/Timer.h>
#include <Grid/perfmon/PerfCount.h> #include <Grid/perfmon/PerfCount.h>
NAMESPACE_BEGIN(Grid);
GridTimePoint theProgramStart = GridClock::now(); NAMESPACE_BEGIN(Grid);
#define CacheControl(L,O,R) ((PERF_COUNT_HW_CACHE_##L)|(PERF_COUNT_HW_CACHE_OP_##O<<8)| (PERF_COUNT_HW_CACHE_RESULT_##R<<16)) #define CacheControl(L,O,R) ((PERF_COUNT_HW_CACHE_##L)|(PERF_COUNT_HW_CACHE_OP_##O<<8)| (PERF_COUNT_HW_CACHE_RESULT_##R<<16))
#define RawConfig(A,B) (A<<8|B) #define RawConfig(A,B) (A<<8|B)

View File

@ -30,12 +30,6 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_PERFCOUNT_H #ifndef GRID_PERFCOUNT_H
#define GRID_PERFCOUNT_H #define GRID_PERFCOUNT_H
#ifndef __SSC_START
#define __SSC_START
#define __SSC_STOP
#endif
#include <sys/time.h> #include <sys/time.h>
#include <ctime> #include <ctime>
#include <chrono> #include <chrono>
@ -78,9 +72,17 @@ static long perf_event_open(struct perf_event_attr *hw_event, pid_t pid,
inline uint64_t cyclecount(void){ inline uint64_t cyclecount(void){
return 0; return 0;
} }
#define __SSC_MARK(mark) __asm__ __volatile__ ("movl %0, %%ebx; .byte 0x64, 0x67, 0x90 " ::"i"(mark):"%ebx")
#define __SSC_STOP __SSC_MARK(0x110)
#define __SSC_START __SSC_MARK(0x111)
#else #else
#define __SSC_MARK(mark)
#define __SSC_STOP
#define __SSC_START
/* /*
* cycle counters arch dependent * cycle counters arch dependent
*/ */

View File

@ -35,8 +35,17 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid) NAMESPACE_BEGIN(Grid)
//typedef std::chrono::system_clock GridClock; // Dress the output; use std::chrono
typedef std::chrono::high_resolution_clock GridClock; // C++11 time facilities better?
inline double usecond(void) {
struct timeval tv;
#ifdef TIMERS_ON
gettimeofday(&tv,NULL);
#endif
return 1.0*tv.tv_usec + 1.0e6*tv.tv_sec;
}
typedef std::chrono::system_clock GridClock;
typedef std::chrono::time_point<GridClock> GridTimePoint; typedef std::chrono::time_point<GridClock> GridTimePoint;
typedef std::chrono::seconds GridSecs; typedef std::chrono::seconds GridSecs;
@ -44,15 +53,6 @@ typedef std::chrono::milliseconds GridMillisecs;
typedef std::chrono::microseconds GridUsecs; typedef std::chrono::microseconds GridUsecs;
typedef std::chrono::microseconds GridTime; typedef std::chrono::microseconds GridTime;
extern GridTimePoint theProgramStart;
// Dress the output; use std::chrono
// C++11 time facilities better?
inline double usecond(void) {
auto usecs = std::chrono::duration_cast<GridUsecs>(GridClock::now()-theProgramStart);
return 1.0*usecs.count();
}
inline std::ostream& operator<< (std::ostream & stream, const GridSecs & time) inline std::ostream& operator<< (std::ostream & stream, const GridSecs & time)
{ {
stream << time.count()<<" s"; stream << time.count()<<" s";

View File

@ -1,70 +0,0 @@
#pragma once
NAMESPACE_BEGIN(Grid);
#ifdef GRID_TRACING_NVTX
#include <nvToolsExt.h>
class GridTracer {
public:
GridTracer(const char* name) {
nvtxRangePushA(name);
}
~GridTracer() {
nvtxRangePop();
}
};
inline void tracePush(const char *name) { nvtxRangePushA(name); }
inline void tracePop(const char *name) { nvtxRangePop(); }
inline int traceStart(const char *name) { }
inline void traceStop(int ID) { }
#endif
#ifdef GRID_TRACING_ROCTX
#include <roctracer/roctx.h>
class GridTracer {
public:
GridTracer(const char* name) {
roctxRangePushA(name);
std::cout << "roctxRangePush "<<name<<std::endl;
}
~GridTracer() {
roctxRangePop();
std::cout << "roctxRangePop "<<std::endl;
}
};
inline void tracePush(const char *name) { roctxRangePushA(name); }
inline void tracePop(const char *name) { roctxRangePop(); }
inline int traceStart(const char *name) { return roctxRangeStart(name); }
inline void traceStop(int ID) { roctxRangeStop(ID); }
#endif
#ifdef GRID_TRACING_TIMER
class GridTracer {
public:
const char *name;
double elapsed;
GridTracer(const char* _name) {
name = _name;
elapsed=-usecond();
}
~GridTracer() {
elapsed+=usecond();
std::cout << GridLogTracing << name << " took " <<elapsed<< " us" <<std::endl;
}
};
inline void tracePush(const char *name) { }
inline void tracePop(const char *name) { }
inline int traceStart(const char *name) { return 0; }
inline void traceStop(int ID) { }
#endif
#ifdef GRID_TRACING_NONE
#define GRID_TRACE(name)
inline void tracePush(const char *name) { }
inline void tracePop(const char *name) { }
inline int traceStart(const char *name) { return 0; }
inline void traceStop(int ID) { }
#else
#define GRID_TRACE(name) GridTracer uniq_name_using_macros##__COUNTER__(name);
#endif
NAMESPACE_END(Grid);

View File

@ -16,12 +16,8 @@
#ifdef __NVCC__ #ifdef __NVCC__
#pragma push #pragma push
#ifdef __NVCC_DIAG_PRAGMA_SUPPORT__
#pragma nv_diag_suppress declared_but_not_referenced // suppress "function was declared but never referenced warning"
#else
#pragma diag_suppress declared_but_not_referenced // suppress "function was declared but never referenced warning" #pragma diag_suppress declared_but_not_referenced // suppress "function was declared but never referenced warning"
#endif #endif
#endif
#include "pugixml.h" #include "pugixml.h"

View File

@ -47,7 +47,7 @@ static constexpr int Ym = 5;
static constexpr int Zm = 6; static constexpr int Zm = 6;
static constexpr int Tm = 7; static constexpr int Tm = 7;
static constexpr int Nc=Config_Nc; static constexpr int Nc=3;
static constexpr int Ns=4; static constexpr int Ns=4;
static constexpr int Nd=4; static constexpr int Nd=4;
static constexpr int Nhs=2; // half spinor static constexpr int Nhs=2; // half spinor
@ -63,7 +63,6 @@ static constexpr int Ngp=2; // gparity index range
#define ColourIndex (2) #define ColourIndex (2)
#define SpinIndex (1) #define SpinIndex (1)
#define LorentzIndex (0) #define LorentzIndex (0)
#define GparityFlavourIndex (0)
// Also should make these a named enum type // Also should make these a named enum type
static constexpr int DaggerNo=0; static constexpr int DaggerNo=0;
@ -81,15 +80,6 @@ template<typename T> struct isSpinor {
template <typename T> using IfSpinor = Invoke<std::enable_if< isSpinor<T>::value,int> > ; template <typename T> using IfSpinor = Invoke<std::enable_if< isSpinor<T>::value,int> > ;
template <typename T> using IfNotSpinor = Invoke<std::enable_if<!isSpinor<T>::value,int> > ; template <typename T> using IfNotSpinor = Invoke<std::enable_if<!isSpinor<T>::value,int> > ;
const int CoarseIndex = 4;
template<typename T> struct isCoarsened {
static constexpr bool value = (CoarseIndex<=T::TensorLevel);
};
template <typename T> using IfCoarsened = Invoke<std::enable_if< isCoarsened<T>::value,int> > ;
template <typename T> using IfNotCoarsened = Invoke<std::enable_if<!isCoarsened<T>::value,int> > ;
const int GparityFlavourTensorIndex = 3; //TensorLevel counts from the bottom!
// ChrisK very keen to add extra space for Gparity doubling. // ChrisK very keen to add extra space for Gparity doubling.
// //
// Also add domain wall index, in a way where Wilson operator // Also add domain wall index, in a way where Wilson operator
@ -104,7 +94,6 @@ template<typename vtype> using iSpinMatrix = iScalar<iMatrix<iSca
template<typename vtype> using iColourMatrix = iScalar<iScalar<iMatrix<vtype, Nc> > > ; template<typename vtype> using iColourMatrix = iScalar<iScalar<iMatrix<vtype, Nc> > > ;
template<typename vtype> using iSpinColourMatrix = iScalar<iMatrix<iMatrix<vtype, Nc>, Ns> >; template<typename vtype> using iSpinColourMatrix = iScalar<iMatrix<iMatrix<vtype, Nc>, Ns> >;
template<typename vtype> using iLorentzColourMatrix = iVector<iScalar<iMatrix<vtype, Nc> >, Nd > ; template<typename vtype> using iLorentzColourMatrix = iVector<iScalar<iMatrix<vtype, Nc> >, Nd > ;
template<typename vtype> using iLorentzComplex = iVector<iScalar<iScalar<vtype> >, Nd > ;
template<typename vtype> using iDoubleStoredColourMatrix = iVector<iScalar<iMatrix<vtype, Nc> >, Nds > ; template<typename vtype> using iDoubleStoredColourMatrix = iVector<iScalar<iMatrix<vtype, Nc> >, Nds > ;
template<typename vtype> using iSpinVector = iScalar<iVector<iScalar<vtype>, Ns> >; template<typename vtype> using iSpinVector = iScalar<iVector<iScalar<vtype>, Ns> >;
template<typename vtype> using iColourVector = iScalar<iScalar<iVector<vtype, Nc> > >; template<typename vtype> using iColourVector = iScalar<iScalar<iVector<vtype, Nc> > >;
@ -114,10 +103,8 @@ template<typename vtype> using iHalfSpinColourVector = iScalar<iVector<iVec
template<typename vtype> using iSpinColourSpinColourMatrix = iScalar<iMatrix<iMatrix<iMatrix<iMatrix<vtype, Nc>, Ns>, Nc>, Ns> >; template<typename vtype> using iSpinColourSpinColourMatrix = iScalar<iMatrix<iMatrix<iMatrix<iMatrix<vtype, Nc>, Ns>, Nc>, Ns> >;
template<typename vtype> using iGparityFlavourVector = iVector<iScalar<iScalar<vtype> >, Ngp>;
template<typename vtype> using iGparitySpinColourVector = iVector<iVector<iVector<vtype, Nc>, Ns>, Ngp >; template<typename vtype> using iGparitySpinColourVector = iVector<iVector<iVector<vtype, Nc>, Ns>, Ngp >;
template<typename vtype> using iGparityHalfSpinColourVector = iVector<iVector<iVector<vtype, Nc>, Nhs>, Ngp >; template<typename vtype> using iGparityHalfSpinColourVector = iVector<iVector<iVector<vtype, Nc>, Nhs>, Ngp >;
template<typename vtype> using iGparityFlavourMatrix = iMatrix<iScalar<iScalar<vtype> >, Ngp>;
// Spin matrix // Spin matrix
typedef iSpinMatrix<Complex > SpinMatrix; typedef iSpinMatrix<Complex > SpinMatrix;
@ -127,7 +114,6 @@ typedef iSpinMatrix<ComplexD > SpinMatrixD;
typedef iSpinMatrix<vComplex > vSpinMatrix; typedef iSpinMatrix<vComplex > vSpinMatrix;
typedef iSpinMatrix<vComplexF> vSpinMatrixF; typedef iSpinMatrix<vComplexF> vSpinMatrixF;
typedef iSpinMatrix<vComplexD> vSpinMatrixD; typedef iSpinMatrix<vComplexD> vSpinMatrixD;
typedef iSpinMatrix<vComplexD2> vSpinMatrixD2;
// Colour Matrix // Colour Matrix
typedef iColourMatrix<Complex > ColourMatrix; typedef iColourMatrix<Complex > ColourMatrix;
@ -137,7 +123,6 @@ typedef iColourMatrix<ComplexD > ColourMatrixD;
typedef iColourMatrix<vComplex > vColourMatrix; typedef iColourMatrix<vComplex > vColourMatrix;
typedef iColourMatrix<vComplexF> vColourMatrixF; typedef iColourMatrix<vComplexF> vColourMatrixF;
typedef iColourMatrix<vComplexD> vColourMatrixD; typedef iColourMatrix<vComplexD> vColourMatrixD;
typedef iColourMatrix<vComplexD2> vColourMatrixD2;
// SpinColour matrix // SpinColour matrix
typedef iSpinColourMatrix<Complex > SpinColourMatrix; typedef iSpinColourMatrix<Complex > SpinColourMatrix;
@ -147,7 +132,6 @@ typedef iSpinColourMatrix<ComplexD > SpinColourMatrixD;
typedef iSpinColourMatrix<vComplex > vSpinColourMatrix; typedef iSpinColourMatrix<vComplex > vSpinColourMatrix;
typedef iSpinColourMatrix<vComplexF> vSpinColourMatrixF; typedef iSpinColourMatrix<vComplexF> vSpinColourMatrixF;
typedef iSpinColourMatrix<vComplexD> vSpinColourMatrixD; typedef iSpinColourMatrix<vComplexD> vSpinColourMatrixD;
typedef iSpinColourMatrix<vComplexD2> vSpinColourMatrixD2;
// SpinColourSpinColour matrix // SpinColourSpinColour matrix
typedef iSpinColourSpinColourMatrix<Complex > SpinColourSpinColourMatrix; typedef iSpinColourSpinColourMatrix<Complex > SpinColourSpinColourMatrix;
@ -157,7 +141,6 @@ typedef iSpinColourSpinColourMatrix<ComplexD > SpinColourSpinColourMatrixD;
typedef iSpinColourSpinColourMatrix<vComplex > vSpinColourSpinColourMatrix; typedef iSpinColourSpinColourMatrix<vComplex > vSpinColourSpinColourMatrix;
typedef iSpinColourSpinColourMatrix<vComplexF> vSpinColourSpinColourMatrixF; typedef iSpinColourSpinColourMatrix<vComplexF> vSpinColourSpinColourMatrixF;
typedef iSpinColourSpinColourMatrix<vComplexD> vSpinColourSpinColourMatrixD; typedef iSpinColourSpinColourMatrix<vComplexD> vSpinColourSpinColourMatrixD;
typedef iSpinColourSpinColourMatrix<vComplexD2> vSpinColourSpinColourMatrixD2;
// SpinColourSpinColour matrix // SpinColourSpinColour matrix
typedef iSpinColourSpinColourMatrix<Complex > SpinColourSpinColourMatrix; typedef iSpinColourSpinColourMatrix<Complex > SpinColourSpinColourMatrix;
@ -167,7 +150,6 @@ typedef iSpinColourSpinColourMatrix<ComplexD > SpinColourSpinColourMatrixD;
typedef iSpinColourSpinColourMatrix<vComplex > vSpinColourSpinColourMatrix; typedef iSpinColourSpinColourMatrix<vComplex > vSpinColourSpinColourMatrix;
typedef iSpinColourSpinColourMatrix<vComplexF> vSpinColourSpinColourMatrixF; typedef iSpinColourSpinColourMatrix<vComplexF> vSpinColourSpinColourMatrixF;
typedef iSpinColourSpinColourMatrix<vComplexD> vSpinColourSpinColourMatrixD; typedef iSpinColourSpinColourMatrix<vComplexD> vSpinColourSpinColourMatrixD;
typedef iSpinColourSpinColourMatrix<vComplexD2> vSpinColourSpinColourMatrixD2;
// LorentzColour // LorentzColour
typedef iLorentzColourMatrix<Complex > LorentzColourMatrix; typedef iLorentzColourMatrix<Complex > LorentzColourMatrix;
@ -177,16 +159,6 @@ typedef iLorentzColourMatrix<ComplexD > LorentzColourMatrixD;
typedef iLorentzColourMatrix<vComplex > vLorentzColourMatrix; typedef iLorentzColourMatrix<vComplex > vLorentzColourMatrix;
typedef iLorentzColourMatrix<vComplexF> vLorentzColourMatrixF; typedef iLorentzColourMatrix<vComplexF> vLorentzColourMatrixF;
typedef iLorentzColourMatrix<vComplexD> vLorentzColourMatrixD; typedef iLorentzColourMatrix<vComplexD> vLorentzColourMatrixD;
typedef iLorentzColourMatrix<vComplexD2> vLorentzColourMatrixD2;
// LorentzComplex
typedef iLorentzComplex<Complex > LorentzComplex;
typedef iLorentzComplex<ComplexF > LorentzComplexF;
typedef iLorentzComplex<ComplexD > LorentzComplexD;
typedef iLorentzComplex<vComplex > vLorentzComplex;
typedef iLorentzComplex<vComplexF> vLorentzComplexF;
typedef iLorentzComplex<vComplexD> vLorentzComplexD;
// DoubleStored gauge field // DoubleStored gauge field
typedef iDoubleStoredColourMatrix<Complex > DoubleStoredColourMatrix; typedef iDoubleStoredColourMatrix<Complex > DoubleStoredColourMatrix;
@ -196,18 +168,6 @@ typedef iDoubleStoredColourMatrix<ComplexD > DoubleStoredColourMatrixD;
typedef iDoubleStoredColourMatrix<vComplex > vDoubleStoredColourMatrix; typedef iDoubleStoredColourMatrix<vComplex > vDoubleStoredColourMatrix;
typedef iDoubleStoredColourMatrix<vComplexF> vDoubleStoredColourMatrixF; typedef iDoubleStoredColourMatrix<vComplexF> vDoubleStoredColourMatrixF;
typedef iDoubleStoredColourMatrix<vComplexD> vDoubleStoredColourMatrixD; typedef iDoubleStoredColourMatrix<vComplexD> vDoubleStoredColourMatrixD;
typedef iDoubleStoredColourMatrix<vComplexD2> vDoubleStoredColourMatrixD2;
//G-parity flavour matrix
typedef iGparityFlavourMatrix<Complex> GparityFlavourMatrix;
typedef iGparityFlavourMatrix<ComplexF> GparityFlavourMatrixF;
typedef iGparityFlavourMatrix<ComplexD> GparityFlavourMatrixD;
typedef iGparityFlavourMatrix<vComplex> vGparityFlavourMatrix;
typedef iGparityFlavourMatrix<vComplexF> vGparityFlavourMatrixF;
typedef iGparityFlavourMatrix<vComplexD> vGparityFlavourMatrixD;
typedef iGparityFlavourMatrix<vComplexD2> vGparityFlavourMatrixD2;
// Spin vector // Spin vector
typedef iSpinVector<Complex > SpinVector; typedef iSpinVector<Complex > SpinVector;
@ -217,7 +177,6 @@ typedef iSpinVector<ComplexD> SpinVectorD;
typedef iSpinVector<vComplex > vSpinVector; typedef iSpinVector<vComplex > vSpinVector;
typedef iSpinVector<vComplexF> vSpinVectorF; typedef iSpinVector<vComplexF> vSpinVectorF;
typedef iSpinVector<vComplexD> vSpinVectorD; typedef iSpinVector<vComplexD> vSpinVectorD;
typedef iSpinVector<vComplexD2> vSpinVectorD2;
// Colour vector // Colour vector
typedef iColourVector<Complex > ColourVector; typedef iColourVector<Complex > ColourVector;
@ -227,7 +186,6 @@ typedef iColourVector<ComplexD> ColourVectorD;
typedef iColourVector<vComplex > vColourVector; typedef iColourVector<vComplex > vColourVector;
typedef iColourVector<vComplexF> vColourVectorF; typedef iColourVector<vComplexF> vColourVectorF;
typedef iColourVector<vComplexD> vColourVectorD; typedef iColourVector<vComplexD> vColourVectorD;
typedef iColourVector<vComplexD2> vColourVectorD2;
// SpinColourVector // SpinColourVector
typedef iSpinColourVector<Complex > SpinColourVector; typedef iSpinColourVector<Complex > SpinColourVector;
@ -237,7 +195,6 @@ typedef iSpinColourVector<ComplexD> SpinColourVectorD;
typedef iSpinColourVector<vComplex > vSpinColourVector; typedef iSpinColourVector<vComplex > vSpinColourVector;
typedef iSpinColourVector<vComplexF> vSpinColourVectorF; typedef iSpinColourVector<vComplexF> vSpinColourVectorF;
typedef iSpinColourVector<vComplexD> vSpinColourVectorD; typedef iSpinColourVector<vComplexD> vSpinColourVectorD;
typedef iSpinColourVector<vComplexD2> vSpinColourVectorD2;
// HalfSpin vector // HalfSpin vector
typedef iHalfSpinVector<Complex > HalfSpinVector; typedef iHalfSpinVector<Complex > HalfSpinVector;
@ -247,7 +204,6 @@ typedef iHalfSpinVector<ComplexD> HalfSpinVectorD;
typedef iHalfSpinVector<vComplex > vHalfSpinVector; typedef iHalfSpinVector<vComplex > vHalfSpinVector;
typedef iHalfSpinVector<vComplexF> vHalfSpinVectorF; typedef iHalfSpinVector<vComplexF> vHalfSpinVectorF;
typedef iHalfSpinVector<vComplexD> vHalfSpinVectorD; typedef iHalfSpinVector<vComplexD> vHalfSpinVectorD;
typedef iHalfSpinVector<vComplexD2> vHalfSpinVectorD2;
// HalfSpinColour vector // HalfSpinColour vector
typedef iHalfSpinColourVector<Complex > HalfSpinColourVector; typedef iHalfSpinColourVector<Complex > HalfSpinColourVector;
@ -257,17 +213,6 @@ typedef iHalfSpinColourVector<ComplexD> HalfSpinColourVectorD;
typedef iHalfSpinColourVector<vComplex > vHalfSpinColourVector; typedef iHalfSpinColourVector<vComplex > vHalfSpinColourVector;
typedef iHalfSpinColourVector<vComplexF> vHalfSpinColourVectorF; typedef iHalfSpinColourVector<vComplexF> vHalfSpinColourVectorF;
typedef iHalfSpinColourVector<vComplexD> vHalfSpinColourVectorD; typedef iHalfSpinColourVector<vComplexD> vHalfSpinColourVectorD;
typedef iHalfSpinColourVector<vComplexD2> vHalfSpinColourVectorD2;
//G-parity flavour vector
typedef iGparityFlavourVector<Complex > GparityFlavourVector;
typedef iGparityFlavourVector<ComplexF> GparityFlavourVectorF;
typedef iGparityFlavourVector<ComplexD> GparityFlavourVectorD;
typedef iGparityFlavourVector<vComplex > vGparityFlavourVector;
typedef iGparityFlavourVector<vComplexF> vGparityFlavourVectorF;
typedef iGparityFlavourVector<vComplexD> vGparityFlavourVectorD;
typedef iGparityFlavourVector<vComplexD2> vGparityFlavourVectorD2;
// singlets // singlets
typedef iSinglet<Complex > TComplex; // FIXME This is painful. Tensor singlet complex type. typedef iSinglet<Complex > TComplex; // FIXME This is painful. Tensor singlet complex type.
@ -277,7 +222,6 @@ typedef iSinglet<ComplexD> TComplexD; // FIXME This is painful. Tenso
typedef iSinglet<vComplex > vTComplex ; // what if we don't know the tensor structure typedef iSinglet<vComplex > vTComplex ; // what if we don't know the tensor structure
typedef iSinglet<vComplexF> vTComplexF; // what if we don't know the tensor structure typedef iSinglet<vComplexF> vTComplexF; // what if we don't know the tensor structure
typedef iSinglet<vComplexD> vTComplexD; // what if we don't know the tensor structure typedef iSinglet<vComplexD> vTComplexD; // what if we don't know the tensor structure
typedef iSinglet<vComplexD2> vTComplexD2; // what if we don't know the tensor structure
typedef iSinglet<Real > TReal; // Shouldn't need these; can I make it work without? typedef iSinglet<Real > TReal; // Shouldn't need these; can I make it work without?
typedef iSinglet<RealF> TRealF; // Shouldn't need these; can I make it work without? typedef iSinglet<RealF> TRealF; // Shouldn't need these; can I make it work without?
@ -295,62 +239,47 @@ typedef iSinglet<Integer > TInteger;
typedef Lattice<vColourMatrix> LatticeColourMatrix; typedef Lattice<vColourMatrix> LatticeColourMatrix;
typedef Lattice<vColourMatrixF> LatticeColourMatrixF; typedef Lattice<vColourMatrixF> LatticeColourMatrixF;
typedef Lattice<vColourMatrixD> LatticeColourMatrixD; typedef Lattice<vColourMatrixD> LatticeColourMatrixD;
typedef Lattice<vColourMatrixD2> LatticeColourMatrixD2;
typedef Lattice<vSpinMatrix> LatticeSpinMatrix; typedef Lattice<vSpinMatrix> LatticeSpinMatrix;
typedef Lattice<vSpinMatrixF> LatticeSpinMatrixF; typedef Lattice<vSpinMatrixF> LatticeSpinMatrixF;
typedef Lattice<vSpinMatrixD> LatticeSpinMatrixD; typedef Lattice<vSpinMatrixD> LatticeSpinMatrixD;
typedef Lattice<vSpinMatrixD2> LatticeSpinMatrixD2;
typedef Lattice<vSpinColourMatrix> LatticeSpinColourMatrix; typedef Lattice<vSpinColourMatrix> LatticeSpinColourMatrix;
typedef Lattice<vSpinColourMatrixF> LatticeSpinColourMatrixF; typedef Lattice<vSpinColourMatrixF> LatticeSpinColourMatrixF;
typedef Lattice<vSpinColourMatrixD> LatticeSpinColourMatrixD; typedef Lattice<vSpinColourMatrixD> LatticeSpinColourMatrixD;
typedef Lattice<vSpinColourMatrixD2> LatticeSpinColourMatrixD2;
typedef Lattice<vSpinColourSpinColourMatrix> LatticeSpinColourSpinColourMatrix; typedef Lattice<vSpinColourSpinColourMatrix> LatticeSpinColourSpinColourMatrix;
typedef Lattice<vSpinColourSpinColourMatrixF> LatticeSpinColourSpinColourMatrixF; typedef Lattice<vSpinColourSpinColourMatrixF> LatticeSpinColourSpinColourMatrixF;
typedef Lattice<vSpinColourSpinColourMatrixD> LatticeSpinColourSpinColourMatrixD; typedef Lattice<vSpinColourSpinColourMatrixD> LatticeSpinColourSpinColourMatrixD;
typedef Lattice<vSpinColourSpinColourMatrixD2> LatticeSpinColourSpinColourMatrixD2;
typedef Lattice<vLorentzColourMatrix> LatticeLorentzColourMatrix; typedef Lattice<vLorentzColourMatrix> LatticeLorentzColourMatrix;
typedef Lattice<vLorentzColourMatrixF> LatticeLorentzColourMatrixF; typedef Lattice<vLorentzColourMatrixF> LatticeLorentzColourMatrixF;
typedef Lattice<vLorentzColourMatrixD> LatticeLorentzColourMatrixD; typedef Lattice<vLorentzColourMatrixD> LatticeLorentzColourMatrixD;
typedef Lattice<vLorentzColourMatrixD2> LatticeLorentzColourMatrixD2;
typedef Lattice<vLorentzComplex> LatticeLorentzComplex;
typedef Lattice<vLorentzComplexF> LatticeLorentzComplexF;
typedef Lattice<vLorentzComplexD> LatticeLorentzComplexD;
// DoubleStored gauge field // DoubleStored gauge field
typedef Lattice<vDoubleStoredColourMatrix> LatticeDoubleStoredColourMatrix; typedef Lattice<vDoubleStoredColourMatrix> LatticeDoubleStoredColourMatrix;
typedef Lattice<vDoubleStoredColourMatrixF> LatticeDoubleStoredColourMatrixF; typedef Lattice<vDoubleStoredColourMatrixF> LatticeDoubleStoredColourMatrixF;
typedef Lattice<vDoubleStoredColourMatrixD> LatticeDoubleStoredColourMatrixD; typedef Lattice<vDoubleStoredColourMatrixD> LatticeDoubleStoredColourMatrixD;
typedef Lattice<vDoubleStoredColourMatrixD2> LatticeDoubleStoredColourMatrixD2;
typedef Lattice<vSpinVector> LatticeSpinVector; typedef Lattice<vSpinVector> LatticeSpinVector;
typedef Lattice<vSpinVectorF> LatticeSpinVectorF; typedef Lattice<vSpinVectorF> LatticeSpinVectorF;
typedef Lattice<vSpinVectorD> LatticeSpinVectorD; typedef Lattice<vSpinVectorD> LatticeSpinVectorD;
typedef Lattice<vSpinVectorD2> LatticeSpinVectorD2;
typedef Lattice<vColourVector> LatticeColourVector; typedef Lattice<vColourVector> LatticeColourVector;
typedef Lattice<vColourVectorF> LatticeColourVectorF; typedef Lattice<vColourVectorF> LatticeColourVectorF;
typedef Lattice<vColourVectorD> LatticeColourVectorD; typedef Lattice<vColourVectorD> LatticeColourVectorD;
typedef Lattice<vColourVectorD2> LatticeColourVectorD2;
typedef Lattice<vSpinColourVector> LatticeSpinColourVector; typedef Lattice<vSpinColourVector> LatticeSpinColourVector;
typedef Lattice<vSpinColourVectorF> LatticeSpinColourVectorF; typedef Lattice<vSpinColourVectorF> LatticeSpinColourVectorF;
typedef Lattice<vSpinColourVectorD> LatticeSpinColourVectorD; typedef Lattice<vSpinColourVectorD> LatticeSpinColourVectorD;
typedef Lattice<vSpinColourVectorD2> LatticeSpinColourVectorD2;
typedef Lattice<vHalfSpinVector> LatticeHalfSpinVector; typedef Lattice<vHalfSpinVector> LatticeHalfSpinVector;
typedef Lattice<vHalfSpinVectorF> LatticeHalfSpinVectorF; typedef Lattice<vHalfSpinVectorF> LatticeHalfSpinVectorF;
typedef Lattice<vHalfSpinVectorD> LatticeHalfSpinVectorD; typedef Lattice<vHalfSpinVectorD> LatticeHalfSpinVectorD;
typedef Lattice<vHalfSpinVectorD2> LatticeHalfSpinVectorD2;
typedef Lattice<vHalfSpinColourVector> LatticeHalfSpinColourVector; typedef Lattice<vHalfSpinColourVector> LatticeHalfSpinColourVector;
typedef Lattice<vHalfSpinColourVectorF> LatticeHalfSpinColourVectorF; typedef Lattice<vHalfSpinColourVectorF> LatticeHalfSpinColourVectorF;
typedef Lattice<vHalfSpinColourVectorD> LatticeHalfSpinColourVectorD; typedef Lattice<vHalfSpinColourVectorD> LatticeHalfSpinColourVectorD;
typedef Lattice<vHalfSpinColourVectorD2> LatticeHalfSpinColourVectorD2;
typedef Lattice<vTReal> LatticeReal; typedef Lattice<vTReal> LatticeReal;
typedef Lattice<vTRealF> LatticeRealF; typedef Lattice<vTRealF> LatticeRealF;
@ -359,7 +288,6 @@ typedef Lattice<vTRealD> LatticeRealD;
typedef Lattice<vTComplex> LatticeComplex; typedef Lattice<vTComplex> LatticeComplex;
typedef Lattice<vTComplexF> LatticeComplexF; typedef Lattice<vTComplexF> LatticeComplexF;
typedef Lattice<vTComplexD> LatticeComplexD; typedef Lattice<vTComplexD> LatticeComplexD;
typedef Lattice<vTComplexD2> LatticeComplexD2;
typedef Lattice<vTInteger> LatticeInteger; // Predicates for "where" typedef Lattice<vTInteger> LatticeInteger; // Predicates for "where"
@ -369,40 +297,35 @@ typedef Lattice<vTInteger> LatticeInteger; // Predicates for "where"
/////////////////////////////////////////// ///////////////////////////////////////////
typedef LatticeHalfSpinColourVector LatticeHalfFermion; typedef LatticeHalfSpinColourVector LatticeHalfFermion;
typedef LatticeHalfSpinColourVectorF LatticeHalfFermionF; typedef LatticeHalfSpinColourVectorF LatticeHalfFermionF;
typedef LatticeHalfSpinColourVectorD LatticeHalfFermionD; typedef LatticeHalfSpinColourVectorF LatticeHalfFermionD;
typedef LatticeHalfSpinColourVectorD2 LatticeHalfFermionD2;
typedef LatticeSpinColourVector LatticeFermion; typedef LatticeSpinColourVector LatticeFermion;
typedef LatticeSpinColourVectorF LatticeFermionF; typedef LatticeSpinColourVectorF LatticeFermionF;
typedef LatticeSpinColourVectorD LatticeFermionD; typedef LatticeSpinColourVectorD LatticeFermionD;
typedef LatticeSpinColourVectorD2 LatticeFermionD2;
typedef LatticeSpinColourMatrix LatticePropagator; typedef LatticeSpinColourMatrix LatticePropagator;
typedef LatticeSpinColourMatrixF LatticePropagatorF; typedef LatticeSpinColourMatrixF LatticePropagatorF;
typedef LatticeSpinColourMatrixD LatticePropagatorD; typedef LatticeSpinColourMatrixD LatticePropagatorD;
typedef LatticeSpinColourMatrixD2 LatticePropagatorD2;
typedef LatticeLorentzColourMatrix LatticeGaugeField; typedef LatticeLorentzColourMatrix LatticeGaugeField;
typedef LatticeLorentzColourMatrixF LatticeGaugeFieldF; typedef LatticeLorentzColourMatrixF LatticeGaugeFieldF;
typedef LatticeLorentzColourMatrixD LatticeGaugeFieldD; typedef LatticeLorentzColourMatrixD LatticeGaugeFieldD;
typedef LatticeLorentzColourMatrixD2 LatticeGaugeFieldD2;
typedef LatticeDoubleStoredColourMatrix LatticeDoubledGaugeField; typedef LatticeDoubleStoredColourMatrix LatticeDoubledGaugeField;
typedef LatticeDoubleStoredColourMatrixF LatticeDoubledGaugeFieldF; typedef LatticeDoubleStoredColourMatrixF LatticeDoubledGaugeFieldF;
typedef LatticeDoubleStoredColourMatrixD LatticeDoubledGaugeFieldD; typedef LatticeDoubleStoredColourMatrixD LatticeDoubledGaugeFieldD;
typedef LatticeDoubleStoredColourMatrixD2 LatticeDoubledGaugeFieldD2;
template<class GF> using LorentzScalar = Lattice<iScalar<typename GF::vector_object::element> >; template<class GF> using LorentzScalar = Lattice<iScalar<typename GF::vector_object::element> >;
// Uhgg... typing this hurt ;)
// (my keyboard got burning hot when I typed this, must be the anti-Fermion)
typedef Lattice<vColourVector> LatticeStaggeredFermion; typedef Lattice<vColourVector> LatticeStaggeredFermion;
typedef Lattice<vColourVectorF> LatticeStaggeredFermionF; typedef Lattice<vColourVectorF> LatticeStaggeredFermionF;
typedef Lattice<vColourVectorD> LatticeStaggeredFermionD; typedef Lattice<vColourVectorD> LatticeStaggeredFermionD;
typedef Lattice<vColourVectorD2> LatticeStaggeredFermionD2;
typedef Lattice<vColourMatrix> LatticeStaggeredPropagator; typedef Lattice<vColourMatrix> LatticeStaggeredPropagator;
typedef Lattice<vColourMatrixF> LatticeStaggeredPropagatorF; typedef Lattice<vColourMatrixF> LatticeStaggeredPropagatorF;
typedef Lattice<vColourMatrixD> LatticeStaggeredPropagatorD; typedef Lattice<vColourMatrixD> LatticeStaggeredPropagatorD;
typedef Lattice<vColourMatrixD2> LatticeStaggeredPropagatorD2;
////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////
// Peek and Poke named after physics attributes // Peek and Poke named after physics attributes
@ -521,20 +444,9 @@ template<class vobj> void pokeLorentz(vobj &lhs,const decltype(peekIndex<Lorentz
// Fermion <-> propagator assignements // Fermion <-> propagator assignements
////////////////////////////////////////////// //////////////////////////////////////////////
//template <class Prop, class Ferm> //template <class Prop, class Ferm>
#define FAST_FERM_TO_PROP
template <class Fimpl> template <class Fimpl>
void FermToProp(typename Fimpl::PropagatorField &p, const typename Fimpl::FermionField &f, const int s, const int c) void FermToProp(typename Fimpl::PropagatorField &p, const typename Fimpl::FermionField &f, const int s, const int c)
{ {
#ifdef FAST_FERM_TO_PROP
autoView(p_v,p,CpuWrite);
autoView(f_v,f,CpuRead);
thread_for(idx,p_v.oSites(),{
for(int ss = 0; ss < Ns; ++ss) {
for(int cc = 0; cc < Fimpl::Dimension; ++cc) {
p_v[idx]()(ss,s)(cc,c) = f_v[idx]()(ss)(cc); // Propagator sink index is LEFT, suitable for left mult by gauge link (e.g.)
}}
});
#else
for(int j = 0; j < Ns; ++j) for(int j = 0; j < Ns; ++j)
{ {
auto pjs = peekSpin(p, j, s); auto pjs = peekSpin(p, j, s);
@ -546,23 +458,12 @@ void FermToProp(typename Fimpl::PropagatorField &p, const typename Fimpl::Fermio
} }
pokeSpin(p, pjs, j, s); pokeSpin(p, pjs, j, s);
} }
#endif
} }
//template <class Prop, class Ferm> //template <class Prop, class Ferm>
template <class Fimpl> template <class Fimpl>
void PropToFerm(typename Fimpl::FermionField &f, const typename Fimpl::PropagatorField &p, const int s, const int c) void PropToFerm(typename Fimpl::FermionField &f, const typename Fimpl::PropagatorField &p, const int s, const int c)
{ {
#ifdef FAST_FERM_TO_PROP
autoView(p_v,p,CpuRead);
autoView(f_v,f,CpuWrite);
thread_for(idx,p_v.oSites(),{
for(int ss = 0; ss < Ns; ++ss) {
for(int cc = 0; cc < Fimpl::Dimension; ++cc) {
f_v[idx]()(ss)(cc) = p_v[idx]()(ss,s)(cc,c); // LEFT index is copied across for s,c right index
}}
});
#else
for(int j = 0; j < Ns; ++j) for(int j = 0; j < Ns; ++j)
{ {
auto pjs = peekSpin(p, j, s); auto pjs = peekSpin(p, j, s);
@ -574,7 +475,6 @@ void PropToFerm(typename Fimpl::FermionField &f, const typename Fimpl::Propagato
} }
pokeSpin(f, fj, j); pokeSpin(f, fj, j);
} }
#endif
} }
////////////////////////////////////////////// //////////////////////////////////////////////

View File

@ -34,117 +34,21 @@ directory
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
///////////////////////////////////
// Smart configuration base class
///////////////////////////////////
template< class Field >
class ConfigurationBase
{
public:
ConfigurationBase() {}
virtual ~ConfigurationBase() {}
virtual void set_Field(Field& U) =0;
virtual void smeared_force(Field&) = 0;
virtual Field& get_SmearedU() =0;
virtual Field &get_U(bool smeared = false) = 0;
};
template <class GaugeField > template <class GaugeField >
class Action class Action
{ {
public: public:
bool is_smeared = false; bool is_smeared = false;
RealD deriv_norm_sum;
RealD deriv_max_sum;
RealD Fdt_norm_sum;
RealD Fdt_max_sum;
int deriv_num;
RealD deriv_us;
RealD S_us;
RealD refresh_us;
void reset_timer(void) {
deriv_us = S_us = refresh_us = 0.0;
deriv_norm_sum = deriv_max_sum=0.0;
Fdt_max_sum = Fdt_norm_sum = 0.0;
deriv_num=0;
}
void deriv_log(RealD nrm, RealD max,RealD Fdt_nrm,RealD Fdt_max) {
if ( max > deriv_max_sum ) {
deriv_max_sum=max;
}
deriv_norm_sum+=nrm;
if ( Fdt_max > Fdt_max_sum ) {
Fdt_max_sum=Fdt_max;
}
Fdt_norm_sum+=Fdt_nrm; deriv_num++;
}
RealD deriv_max_average(void) { return deriv_max_sum; };
RealD deriv_norm_average(void) { return deriv_norm_sum/deriv_num; };
RealD Fdt_max_average(void) { return Fdt_max_sum; };
RealD Fdt_norm_average(void) { return Fdt_norm_sum/deriv_num; };
RealD deriv_timer(void) { return deriv_us; };
RealD S_timer(void) { return S_us; };
RealD refresh_timer(void) { return refresh_us; };
void deriv_timer_start(void) { deriv_us-=usecond(); }
void deriv_timer_stop(void) { deriv_us+=usecond(); }
void refresh_timer_start(void) { refresh_us-=usecond(); }
void refresh_timer_stop(void) { refresh_us+=usecond(); }
void S_timer_start(void) { S_us-=usecond(); }
void S_timer_stop(void) { S_us+=usecond(); }
/////////////////////////////
// Heatbath? // Heatbath?
///////////////////////////// virtual void refresh(const GaugeField& U, GridParallelRNG& pRNG) = 0; // refresh pseudofermions
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) = 0; // refresh pseudofermions
virtual RealD S(const GaugeField& U) = 0; // evaluate the action virtual RealD S(const GaugeField& U) = 0; // evaluate the action
virtual RealD Sinitial(const GaugeField& U) { return this->S(U); } ; // if the refresh computes the action, can cache it. Alternately refreshAndAction() ?
virtual void deriv(const GaugeField& U, GaugeField& dSdU) = 0; // evaluate the action derivative virtual void deriv(const GaugeField& U, GaugeField& dSdU) = 0; // evaluate the action derivative
/////////////////////////////////////////////////////////////
// virtual smeared interface through configuration container
/////////////////////////////////////////////////////////////
virtual void refresh(ConfigurationBase<GaugeField> & U, GridSerialRNG &sRNG, GridParallelRNG& pRNG)
{
refresh(U.get_U(is_smeared),sRNG,pRNG);
}
virtual RealD S(ConfigurationBase<GaugeField>& U)
{
return S(U.get_U(is_smeared));
}
virtual RealD Sinitial(ConfigurationBase<GaugeField>& U)
{
return Sinitial(U.get_U(is_smeared));
}
virtual void deriv(ConfigurationBase<GaugeField>& U, GaugeField& dSdU)
{
deriv(U.get_U(is_smeared),dSdU);
if ( is_smeared ) {
U.smeared_force(dSdU);
}
}
///////////////////////////////
// Logging
///////////////////////////////
virtual std::string action_name() = 0; // return the action name virtual std::string action_name() = 0; // return the action name
virtual std::string LogParameters() = 0; // prints action parameters virtual std::string LogParameters() = 0; // prints action parameters
virtual ~Action(){} virtual ~Action(){}
}; };
template <class GaugeField >
class EmptyAction : public Action <GaugeField>
{
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) { assert(0);}; // refresh pseudofermions
virtual RealD S(const GaugeField& U) { return 0.0;}; // evaluate the action
virtual void deriv(const GaugeField& U, GaugeField& dSdU) { assert(0); }; // evaluate the action derivative
///////////////////////////////
// Logging
///////////////////////////////
virtual std::string action_name() { return std::string("Level Force Log"); };
virtual std::string LogParameters() { return std::string("No parameters");};
};
NAMESPACE_END(Grid); NAMESPACE_END(Grid);
#endif // ACTION_BASE_H #endif // ACTION_BASE_H

View File

@ -30,8 +30,6 @@ directory
#ifndef QCD_ACTION_CORE #ifndef QCD_ACTION_CORE
#define QCD_ACTION_CORE #define QCD_ACTION_CORE
#include <Grid/qcd/action/gauge/GaugeImplementations.h>
#include <Grid/qcd/action/ActionBase.h> #include <Grid/qcd/action/ActionBase.h>
NAMESPACE_CHECK(ActionBase); NAMESPACE_CHECK(ActionBase);
#include <Grid/qcd/action/ActionSet.h> #include <Grid/qcd/action/ActionSet.h>
@ -39,10 +37,6 @@ NAMESPACE_CHECK(ActionSet);
#include <Grid/qcd/action/ActionParams.h> #include <Grid/qcd/action/ActionParams.h>
NAMESPACE_CHECK(ActionParams); NAMESPACE_CHECK(ActionParams);
#include <Grid/qcd/action/filters/MomentumFilter.h>
#include <Grid/qcd/action/filters/DirichletFilter.h>
#include <Grid/qcd/action/filters/DDHMCFilter.h>
//////////////////////////////////////////// ////////////////////////////////////////////
// Gauge Actions // Gauge Actions
//////////////////////////////////////////// ////////////////////////////////////////////

View File

@ -34,45 +34,27 @@ directory
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
// These can move into a params header and be given MacroMagic serialisation
struct GparityWilsonImplParams { struct GparityWilsonImplParams {
Coordinate twists; Coordinate twists;
//mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs GparityWilsonImplParams() : twists(Nd, 0) {};
Coordinate dirichlet; // Blocksize of dirichlet BCs
int partialDirichlet;
GparityWilsonImplParams() : twists(Nd, 0) {
dirichlet.resize(0);
partialDirichlet=0;
};
}; };
struct WilsonImplParams { struct WilsonImplParams {
bool overlapCommsCompute; bool overlapCommsCompute;
Coordinate dirichlet; // Blocksize of dirichlet BCs
int partialDirichlet;
AcceleratorVector<Real,Nd> twist_n_2pi_L; AcceleratorVector<Real,Nd> twist_n_2pi_L;
AcceleratorVector<Complex,Nd> boundary_phases; AcceleratorVector<Complex,Nd> boundary_phases;
WilsonImplParams() { WilsonImplParams() {
dirichlet.resize(0);
partialDirichlet=0;
boundary_phases.resize(Nd, 1.0); boundary_phases.resize(Nd, 1.0);
twist_n_2pi_L.resize(Nd, 0.0); twist_n_2pi_L.resize(Nd, 0.0);
}; };
WilsonImplParams(const AcceleratorVector<Complex,Nd> phi) : boundary_phases(phi), overlapCommsCompute(false) { WilsonImplParams(const AcceleratorVector<Complex,Nd> phi) : boundary_phases(phi), overlapCommsCompute(false) {
twist_n_2pi_L.resize(Nd, 0.0); twist_n_2pi_L.resize(Nd, 0.0);
partialDirichlet=0;
dirichlet.resize(0);
} }
}; };
struct StaggeredImplParams { struct StaggeredImplParams {
Coordinate dirichlet; // Blocksize of dirichlet BCs StaggeredImplParams() {};
int partialDirichlet;
StaggeredImplParams()
{
partialDirichlet=0;
dirichlet.resize(0);
};
}; };
struct OneFlavourRationalParams : Serializable { struct OneFlavourRationalParams : Serializable {
@ -81,11 +63,9 @@ struct StaggeredImplParams {
RealD, hi, RealD, hi,
int, MaxIter, int, MaxIter,
RealD, tolerance, RealD, tolerance,
RealD, mdtolerance,
int, degree, int, degree,
int, precision, int, precision,
int, BoundsCheckFreq, int, BoundsCheckFreq);
RealD, BoundsCheckTol);
// MaxIter and tolerance, vectors?? // MaxIter and tolerance, vectors??
@ -96,62 +76,16 @@ struct StaggeredImplParams {
RealD tol = 1.0e-8, RealD tol = 1.0e-8,
int _degree = 10, int _degree = 10,
int _precision = 64, int _precision = 64,
int _BoundsCheckFreq=20, int _BoundsCheckFreq=20)
RealD mdtol = 1.0e-6,
double _BoundsCheckTol=1e-6)
: lo(_lo), : lo(_lo),
hi(_hi), hi(_hi),
MaxIter(_maxit), MaxIter(_maxit),
tolerance(tol), tolerance(tol),
mdtolerance(mdtol),
degree(_degree), degree(_degree),
precision(_precision), precision(_precision),
BoundsCheckFreq(_BoundsCheckFreq),
BoundsCheckTol(_BoundsCheckTol){};
};
/*Action parameters for the generalized rational action
The approximation is for (M^dag M)^{1/inv_pow}
where inv_pow is the denominator of the fractional power.
Default inv_pow=2 for square root, making this equivalent to
the OneFlavourRational action
*/
struct RationalActionParams : Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(RationalActionParams,
int, inv_pow,
RealD, lo, //low eigenvalue bound of rational approx
RealD, hi, //high eigenvalue bound of rational approx
int, MaxIter, //maximum iterations in msCG
RealD, action_tolerance, //msCG tolerance in action evaluation
int, action_degree, //rational approx tolerance in action evaluation
RealD, md_tolerance, //msCG tolerance in MD integration
int, md_degree, //rational approx tolerance in MD integration
int, precision, //precision of floating point arithmetic
int, BoundsCheckFreq); //frequency the approximation is tested (with Metropolis degree/tolerance); 0 disables the check
// constructor
RationalActionParams(int _inv_pow = 2,
RealD _lo = 0.0,
RealD _hi = 1.0,
int _maxit = 1000,
RealD _action_tolerance = 1.0e-8,
int _action_degree = 10,
RealD _md_tolerance = 1.0e-8,
int _md_degree = 10,
int _precision = 64,
int _BoundsCheckFreq=20)
: inv_pow(_inv_pow),
lo(_lo),
hi(_hi),
MaxIter(_maxit),
action_tolerance(_action_tolerance),
action_degree(_action_degree),
md_tolerance(_md_tolerance),
md_degree(_md_degree),
precision(_precision),
BoundsCheckFreq(_BoundsCheckFreq){}; BoundsCheckFreq(_BoundsCheckFreq){};
}; };
NAMESPACE_END(Grid); NAMESPACE_END(Grid);
#endif #endif

View File

@ -68,17 +68,9 @@ public:
/////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////
// Support for MADWF tricks // Support for MADWF tricks
/////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////
RealD Mass(void) { return (mass_plus + mass_minus) / 2.0; }; RealD Mass(void) { return mass; };
RealD MassPlus(void) { return mass_plus; };
RealD MassMinus(void) { return mass_minus; };
void SetMass(RealD _mass) { void SetMass(RealD _mass) {
mass_plus=mass_minus=_mass; mass=_mass;
SetCoefficientsInternal(_zolo_hi,_gamma,_b,_c); // Reset coeffs
} ;
void SetMass(RealD _mass_plus, RealD _mass_minus) {
mass_plus=_mass_plus;
mass_minus=_mass_minus;
SetCoefficientsInternal(_zolo_hi,_gamma,_b,_c); // Reset coeffs SetCoefficientsInternal(_zolo_hi,_gamma,_b,_c); // Reset coeffs
} ; } ;
void P(const FermionField &psi, FermionField &chi); void P(const FermionField &psi, FermionField &chi);
@ -116,7 +108,7 @@ public:
void MeooeDag5D (const FermionField &in, FermionField &out); void MeooeDag5D (const FermionField &in, FermionField &out);
// protected: // protected:
RealD mass_plus, mass_minus; RealD mass;
// Save arguments to SetCoefficientsInternal // Save arguments to SetCoefficientsInternal
Vector<Coeff_t> _gamma; Vector<Coeff_t> _gamma;
@ -183,6 +175,16 @@ public:
GridRedBlackCartesian &FourDimRedBlackGrid, GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5,const ImplParams &p= ImplParams()); RealD _mass,RealD _M5,const ImplParams &p= ImplParams());
void CayleyReport(void);
void CayleyZeroCounters(void);
double M5Dflops;
double M5Dcalls;
double M5Dtime;
double MooeeInvFlops;
double MooeeInvCalls;
double MooeeInvTime;
protected: protected:
virtual void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c); virtual void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c);

View File

@ -1,334 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonCloverFermionImplementation.h
Copyright (C) 2017 - 2022
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
Author: Mattia Bruno <mattia.bruno@cern.ch>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/Grid.h>
#include <Grid/qcd/spin/Dirac.h>
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
////////////////////////////////////////////
// Standard Clover
// (4+m0) + csw * clover_term
// Exp Clover
// (4+m0) * exp(csw/(4+m0) clover_term)
// = (4+m0) + csw * clover_term + ...
////////////////////////////////////////////
NAMESPACE_BEGIN(Grid);
//////////////////////////////////
// Generic Standard Clover
//////////////////////////////////
template<class Impl>
class CloverHelpers: public WilsonCloverHelpers<Impl> {
public:
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
typedef WilsonCloverHelpers<Impl> Helpers;
static void Instantiate(CloverField& CloverTerm, CloverField& CloverTermInv, RealD csw_t, RealD diag_mass) {
GridBase *grid = CloverTerm.Grid();
CloverTerm += diag_mass;
int lvol = grid->lSites();
int DimRep = Impl::Dimension;
{
autoView(CTv,CloverTerm,CpuRead);
autoView(CTIv,CloverTermInv,CpuWrite);
thread_for(site, lvol, {
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
Eigen::MatrixXcd EigenCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
Eigen::MatrixXcd EigenInvCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
typename SiteClover::scalar_object Qx = Zero(), Qxinv = Zero();
peekLocalSite(Qx, CTv, lcoor);
for (int j = 0; j < Ns; j++)
for (int k = 0; k < Ns; k++)
for (int a = 0; a < DimRep; a++)
for (int b = 0; b < DimRep; b++){
auto zz = Qx()(j, k)(a, b);
EigenCloverOp(a + j * DimRep, b + k * DimRep) = std::complex<double>(zz);
}
EigenInvCloverOp = EigenCloverOp.inverse();
for (int j = 0; j < Ns; j++)
for (int k = 0; k < Ns; k++)
for (int a = 0; a < DimRep; a++)
for (int b = 0; b < DimRep; b++)
Qxinv()(j, k)(a, b) = EigenInvCloverOp(a + j * DimRep, b + k * DimRep);
pokeLocalSite(Qxinv, CTIv, lcoor);
});
}
}
static GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu) {
return Helpers::Cmunu(U, lambda, mu, nu);
}
};
//////////////////////////////////
// Generic Exp Clover
//////////////////////////////////
template<class Impl>
class ExpCloverHelpers: public WilsonCloverHelpers<Impl> {
public:
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
template <typename vtype> using iImplClover = iScalar<iMatrix<iMatrix<vtype, Impl::Dimension>, Ns>>;
typedef WilsonCloverHelpers<Impl> Helpers;
// Can this be avoided?
static void IdentityTimesC(const CloverField& in, RealD c) {
int DimRep = Impl::Dimension;
autoView(in_v, in, AcceleratorWrite);
accelerator_for(ss, in.Grid()->oSites(), 1, {
for (int sa=0; sa<Ns; sa++)
for (int ca=0; ca<DimRep; ca++)
in_v[ss]()(sa,sa)(ca,ca) = c;
});
}
static int getNMAX(RealD prec, RealD R) {
/* compute stop condition for exponential */
int NMAX=1;
RealD cond=R*R/2.;
while (cond*std::exp(R)>prec) {
NMAX++;
cond*=R/(double)(NMAX+1);
}
return NMAX;
}
static int getNMAX(Lattice<iImplClover<vComplexD2>> &t, RealD R) {return getNMAX(1e-12,R);}
static int getNMAX(Lattice<iImplClover<vComplexD>> &t, RealD R) {return getNMAX(1e-12,R);}
static int getNMAX(Lattice<iImplClover<vComplexF>> &t, RealD R) {return getNMAX(1e-6,R);}
static void Instantiate(CloverField& Clover, CloverField& CloverInv, RealD csw_t, RealD diag_mass) {
GridBase* grid = Clover.Grid();
CloverField ExpClover(grid);
int NMAX = getNMAX(Clover, 3.*csw_t/diag_mass);
Clover *= (1.0/diag_mass);
// Taylor expansion, slow but generic
// Horner scheme: a0 + a1 x + a2 x^2 + .. = a0 + x (a1 + x(...))
// qN = cN
// qn = cn + qn+1 X
std::vector<RealD> cn(NMAX+1);
cn[0] = 1.0;
for (int i=1; i<=NMAX; i++)
cn[i] = cn[i-1] / RealD(i);
ExpClover = Zero();
IdentityTimesC(ExpClover, cn[NMAX]);
for (int i=NMAX-1; i>=0; i--)
ExpClover = ExpClover * Clover + cn[i];
// prepare inverse
CloverInv = (-1.0)*Clover;
Clover = ExpClover * diag_mass;
ExpClover = Zero();
IdentityTimesC(ExpClover, cn[NMAX]);
for (int i=NMAX-1; i>=0; i--)
ExpClover = ExpClover * CloverInv + cn[i];
CloverInv = ExpClover * (1.0/diag_mass);
}
static GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu) {
assert(0);
return lambda;
}
};
//////////////////////////////////
// Compact Standard Clover
//////////////////////////////////
template<class Impl>
class CompactCloverHelpers: public CompactWilsonCloverHelpers<Impl>,
public WilsonCloverHelpers<Impl> {
public:
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
INHERIT_COMPACT_CLOVER_TYPES(Impl);
typedef WilsonCloverHelpers<Impl> Helpers;
typedef CompactWilsonCloverHelpers<Impl> CompactHelpers;
static void InstantiateClover(CloverField& Clover, CloverField& CloverInv, RealD csw_t, RealD diag_mass) {
Clover += diag_mass;
}
static void InvertClover(CloverField& InvClover,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle,
CloverDiagonalField& diagonalInv,
CloverTriangleField& triangleInv,
bool fixedBoundaries) {
CompactHelpers::Invert(diagonal, triangle, diagonalInv, triangleInv);
}
// TODO: implement Cmunu for better performances with compact layout, but don't do it
// here, but rather in WilsonCloverHelpers.h -> CompactWilsonCloverHelpers
static GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu) {
return Helpers::Cmunu(U, lambda, mu, nu);
}
};
//////////////////////////////////
// Compact Exp Clover
//////////////////////////////////
template<class Impl>
class CompactExpCloverHelpers: public CompactWilsonCloverHelpers<Impl> {
public:
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
INHERIT_COMPACT_CLOVER_TYPES(Impl);
template <typename vtype> using iImplClover = iScalar<iMatrix<iMatrix<vtype, Impl::Dimension>, Ns>>;
typedef CompactWilsonCloverHelpers<Impl> CompactHelpers;
// Can this be avoided?
static void IdentityTimesC(const CloverField& in, RealD c) {
int DimRep = Impl::Dimension;
autoView(in_v, in, AcceleratorWrite);
accelerator_for(ss, in.Grid()->oSites(), 1, {
for (int sa=0; sa<Ns; sa++)
for (int ca=0; ca<DimRep; ca++)
in_v[ss]()(sa,sa)(ca,ca) = c;
});
}
static int getNMAX(RealD prec, RealD R) {
/* compute stop condition for exponential */
int NMAX=1;
RealD cond=R*R/2.;
while (cond*std::exp(R)>prec) {
NMAX++;
cond*=R/(double)(NMAX+1);
}
return NMAX;
}
static int getNMAX(Lattice<iImplClover<vComplexD>> &t, RealD R) {return getNMAX(1e-12,R);}
static int getNMAX(Lattice<iImplClover<vComplexF>> &t, RealD R) {return getNMAX(1e-6,R);}
static void InstantiateClover(CloverField& Clover, CloverField& CloverInv, RealD csw_t, RealD diag_mass) {
GridBase* grid = Clover.Grid();
CloverField ExpClover(grid);
int NMAX = getNMAX(Clover, 3.*csw_t/diag_mass);
Clover *= (1.0/diag_mass);
// Taylor expansion, slow but generic
// Horner scheme: a0 + a1 x + a2 x^2 + .. = a0 + x (a1 + x(...))
// qN = cN
// qn = cn + qn+1 X
std::vector<RealD> cn(NMAX+1);
cn[0] = 1.0;
for (int i=1; i<=NMAX; i++)
cn[i] = cn[i-1] / RealD(i);
ExpClover = Zero();
IdentityTimesC(ExpClover, cn[NMAX]);
for (int i=NMAX-1; i>=0; i--)
ExpClover = ExpClover * Clover + cn[i];
// prepare inverse
CloverInv = (-1.0)*Clover;
Clover = ExpClover * diag_mass;
ExpClover = Zero();
IdentityTimesC(ExpClover, cn[NMAX]);
for (int i=NMAX-1; i>=0; i--)
ExpClover = ExpClover * CloverInv + cn[i];
CloverInv = ExpClover * (1.0/diag_mass);
}
static void InvertClover(CloverField& InvClover,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle,
CloverDiagonalField& diagonalInv,
CloverTriangleField& triangleInv,
bool fixedBoundaries) {
if (fixedBoundaries)
{
CompactHelpers::Invert(diagonal, triangle, diagonalInv, triangleInv);
}
else
{
CompactHelpers::ConvertLayout(InvClover, diagonalInv, triangleInv);
}
}
static GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu) {
assert(0);
return lambda;
}
};
NAMESPACE_END(Grid);

View File

@ -1,241 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/CompactWilsonCloverFermion.h
Copyright (C) 2020 - 2022
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
Author: Nils Meyer <nils.meyer@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/qcd/action/fermion/WilsonCloverTypes.h>
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
#include <Grid/qcd/action/fermion/CloverHelpers.h>
NAMESPACE_BEGIN(Grid);
// see Grid/qcd/action/fermion/WilsonCloverFermion.h for description
//
// Modifications done here:
//
// Original: clover term = 12x12 matrix per site
//
// But: Only two diagonal 6x6 hermitian blocks are non-zero (also true for original, verified by running)
// Sufficient to store/transfer only the real parts of the diagonal and one triangular part
// 2 * (6 + 15 * 2) = 72 real or 36 complex words to be stored/transfered
//
// Here: Above but diagonal as complex numbers, i.e., need to store/transfer
// 2 * (6 * 2 + 15 * 2) = 84 real or 42 complex words
//
// Words per site and improvement compared to original (combined with the input and output spinors):
//
// - Original: 2*12 + 12*12 = 168 words -> 1.00 x less
// - Minimal: 2*12 + 36 = 60 words -> 2.80 x less
// - Here: 2*12 + 42 = 66 words -> 2.55 x less
//
// These improvements directly translate to wall-clock time
//
// Data layout:
//
// - diagonal and triangle part as separate lattice fields,
// this was faster than as 1 combined field on all tested machines
// - diagonal: as expected
// - triangle: store upper right triangle in row major order
// - graphical:
// 0 1 2 3 4
// 5 6 7 8
// 9 10 11 = upper right triangle indices
// 12 13
// 14
// 0
// 1
// 2
// 3 = diagonal indices
// 4
// 5
// 0
// 1 5
// 2 6 9 = lower left triangle indices
// 3 7 10 12
// 4 8 11 13 14
//
// Impact on total memory consumption:
// - Original: (2 * 1 + 8 * 1/2) 12x12 matrices = 6 12x12 matrices = 864 complex words per site
// - Here: (2 * 1 + 4 * 1/2) diagonal parts = 4 diagonal parts = 24 complex words per site
// + (2 * 1 + 4 * 1/2) triangle parts = 4 triangle parts = 60 complex words per site
// = 84 complex words per site
template<class Impl, class CloverHelpers>
class CompactWilsonCloverFermion : public WilsonFermion<Impl>,
public WilsonCloverHelpers<Impl>,
public CompactWilsonCloverHelpers<Impl> {
/////////////////////////////////////////////
// Sizes
/////////////////////////////////////////////
public:
INHERIT_COMPACT_CLOVER_SIZES(Impl);
/////////////////////////////////////////////
// Type definitions
/////////////////////////////////////////////
public:
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
INHERIT_COMPACT_CLOVER_TYPES(Impl);
typedef WilsonFermion<Impl> WilsonBase;
typedef WilsonCloverHelpers<Impl> Helpers;
typedef CompactWilsonCloverHelpers<Impl> CompactHelpers;
/////////////////////////////////////////////
// Constructors
/////////////////////////////////////////////
public:
CompactWilsonCloverFermion(GaugeField& _Umu,
GridCartesian& Fgrid,
GridRedBlackCartesian& Hgrid,
const RealD _mass,
const RealD _csw_r = 0.0,
const RealD _csw_t = 0.0,
const RealD _cF = 1.0,
const WilsonAnisotropyCoefficients& clover_anisotropy = WilsonAnisotropyCoefficients(),
const ImplParams& impl_p = ImplParams());
/////////////////////////////////////////////
// Member functions (implementing interface)
/////////////////////////////////////////////
public:
virtual void Instantiatable() {};
int ConstEE() override { return 0; };
int isTrivialEE() override { return 0; };
void Dhop(const FermionField& in, FermionField& out, int dag) override;
void DhopOE(const FermionField& in, FermionField& out, int dag) override;
void DhopEO(const FermionField& in, FermionField& out, int dag) override;
void DhopDir(const FermionField& in, FermionField& out, int dir, int disp) override;
void DhopDirAll(const FermionField& in, std::vector<FermionField>& out) /* override */;
void M(const FermionField& in, FermionField& out) override;
void Mdag(const FermionField& in, FermionField& out) override;
void Meooe(const FermionField& in, FermionField& out) override;
void MeooeDag(const FermionField& in, FermionField& out) override;
void Mooee(const FermionField& in, FermionField& out) override;
void MooeeDag(const FermionField& in, FermionField& out) override;
void MooeeInv(const FermionField& in, FermionField& out) override;
void MooeeInvDag(const FermionField& in, FermionField& out) override;
void Mdir(const FermionField& in, FermionField& out, int dir, int disp) override;
void MdirAll(const FermionField& in, std::vector<FermionField>& out) override;
void MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) override;
void MooDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override;
void MeeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override;
/////////////////////////////////////////////
// Member functions (internals)
/////////////////////////////////////////////
void MooeeInternal(const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle);
/////////////////////////////////////////////
// Helpers
/////////////////////////////////////////////
void ImportGauge(const GaugeField& _Umu) override;
/////////////////////////////////////////////
// Helpers
/////////////////////////////////////////////
private:
template<class Field>
const MaskField* getCorrectMaskField(const Field &in) const {
if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) {
return &this->BoundaryMaskOdd;
} else {
return &this->BoundaryMaskEven;
}
} else {
return &this->BoundaryMask;
}
}
template<class Field>
void ApplyBoundaryMask(Field& f) {
const MaskField* m = getCorrectMaskField(f); assert(m != nullptr);
assert(m != nullptr);
CompactHelpers::ApplyBoundaryMask(f, *m);
}
/////////////////////////////////////////////
// Member Data
/////////////////////////////////////////////
public:
RealD csw_r;
RealD csw_t;
RealD cF;
bool fixedBoundaries;
CloverDiagonalField Diagonal, DiagonalEven, DiagonalOdd;
CloverDiagonalField DiagonalInv, DiagonalInvEven, DiagonalInvOdd;
CloverTriangleField Triangle, TriangleEven, TriangleOdd;
CloverTriangleField TriangleInv, TriangleInvEven, TriangleInvOdd;
FermionField Tmp;
MaskField BoundaryMask, BoundaryMaskEven, BoundaryMaskOdd;
};
NAMESPACE_END(Grid);

View File

@ -1,291 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/DWFSlow.h
Copyright (C) 2022
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template <class Impl>
class DWFSlowFermion : public FermionOperator<Impl>
{
public:
INHERIT_IMPL_TYPES(Impl);
///////////////////////////////////////////////////////////////
// Implement the abstract base
///////////////////////////////////////////////////////////////
GridBase *GaugeGrid(void) { return _grid4; }
GridBase *GaugeRedBlackGrid(void) { return _cbgrid4; }
GridBase *FermionGrid(void) { return _grid; }
GridBase *FermionRedBlackGrid(void) { return _cbgrid; }
FermionField _tmp;
FermionField &tmp(void) { return _tmp; }
//////////////////////////////////////////////////////////////////
// override multiply; cut number routines if pass dagger argument
// and also make interface more uniformly consistent
//////////////////////////////////////////////////////////////////
virtual void M(const FermionField &in, FermionField &out)
{
FermionField tmp(_grid);
out = (5.0 - M5) * in;
Dhop(in,tmp,DaggerNo);
out = out + tmp;
}
virtual void Mdag(const FermionField &in, FermionField &out)
{
FermionField tmp(_grid);
out = (5.0 - M5) * in;
Dhop(in,tmp,DaggerYes);
out = out + tmp;
};
/////////////////////////////////////////////////////////
// half checkerboard operations 5D redblack so just site identiy
/////////////////////////////////////////////////////////
void Meooe(const FermionField &in, FermionField &out)
{
if ( in.Checkerboard() == Odd ) {
this->DhopEO(in,out,DaggerNo);
} else {
this->DhopOE(in,out,DaggerNo);
}
}
void MeooeDag(const FermionField &in, FermionField &out)
{
if ( in.Checkerboard() == Odd ) {
this->DhopEO(in,out,DaggerYes);
} else {
this->DhopOE(in,out,DaggerYes);
}
};
// allow override for twisted mass and clover
virtual void Mooee(const FermionField &in, FermionField &out)
{
out = (5.0 - M5) * in;
}
virtual void MooeeDag(const FermionField &in, FermionField &out)
{
out = (5.0 - M5) * in;
}
virtual void MooeeInv(const FermionField &in, FermionField &out)
{
out = (1.0/(5.0 - M5)) * in;
};
virtual void MooeeInvDag(const FermionField &in, FermionField &out)
{
out = (1.0/(5.0 - M5)) * in;
};
virtual void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _mass,std::vector<double> twist) {} ;
////////////////////////
// Derivative interface
////////////////////////
// Interface calls an internal routine
void DhopDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag) { assert(0);};
void DhopDerivOE(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){ assert(0);};
void DhopDerivEO(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){ assert(0);};
///////////////////////////////////////////////////////////////
// non-hermitian hopping term; half cb or both
///////////////////////////////////////////////////////////////
void Dhop(const FermionField &in, FermionField &out, int dag)
{
FermionField tmp(in.Grid());
Dhop5(in,out,MassField,MassField,dag );
for(int mu=0;mu<4;mu++){
DhopDirU(in,Umu[mu],Umu[mu],tmp,mu,dag ); out = out + tmp;
}
};
void DhopOE(const FermionField &in, FermionField &out, int dag)
{
FermionField tmp(in.Grid());
assert(in.Checkerboard()==Even);
Dhop5(in,out,MassFieldOdd,MassFieldEven,dag);
for(int mu=0;mu<4;mu++){
DhopDirU(in,UmuOdd[mu],UmuEven[mu],tmp,mu,dag ); out = out + tmp;
}
};
void DhopEO(const FermionField &in, FermionField &out, int dag)
{
FermionField tmp(in.Grid());
assert(in.Checkerboard()==Odd);
Dhop5(in,out, MassFieldEven,MassFieldOdd ,dag );
for(int mu=0;mu<4;mu++){
DhopDirU(in,UmuEven[mu],UmuOdd[mu],tmp,mu,dag ); out = out + tmp;
}
};
///////////////////////////////////////////////////////////////
// Multigrid assistance; force term uses too
///////////////////////////////////////////////////////////////
void Mdir(const FermionField &in, FermionField &out, int dir, int disp){ assert(0);};
void MdirAll(const FermionField &in, std::vector<FermionField> &out) { assert(0);};
void DhopDir(const FermionField &in, FermionField &out, int dir, int disp) { assert(0);};
void DhopDirAll(const FermionField &in, std::vector<FermionField> &out) { assert(0);};
void DhopDirCalc(const FermionField &in, FermionField &out, int dirdisp,int gamma, int dag) { assert(0);};
void DhopDirU(const FermionField &in, const GaugeLinkField &U5e, const GaugeLinkField &U5o, FermionField &out, int mu, int dag)
{
RealD sgn= 1.0;
if (dag ) sgn=-1.0;
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
// mass is 1,1,1,1,-m has to multiply the round the world term
FermionField tmp (in.Grid());
tmp = U5e * Cshift(in,mu+1,1);
out = tmp - Gamma(Gmu[mu])*tmp*sgn;
tmp = Cshift(adj(U5o)*in,mu+1,-1);
out = out + tmp + Gamma(Gmu[mu])*tmp*sgn;
out = -0.5*out;
};
void Dhop5(const FermionField &in, FermionField &out, ComplexField &massE, ComplexField &massO, int dag)
{
// Mass term.... must multiple the round world with mass = 1,1,1,1, -m
RealD sgn= 1.0;
if (dag ) sgn=-1.0;
Gamma G5(Gamma::Algebra::Gamma5);
FermionField tmp (in.Grid());
tmp = massE*Cshift(in,0,1);
out = tmp - G5*tmp*sgn;
tmp = Cshift(massO*in,0,-1);
out = out + tmp + G5*tmp*sgn;
out = -0.5*out;
};
// Constructor
DWFSlowFermion(GaugeField &_Umu, GridCartesian &Fgrid,
GridRedBlackCartesian &Hgrid, RealD _mass, RealD _M5)
:
_grid(&Fgrid),
_cbgrid(&Hgrid),
_grid4(_Umu.Grid()),
Umu(Nd,&Fgrid),
UmuEven(Nd,&Hgrid),
UmuOdd(Nd,&Hgrid),
MassField(&Fgrid),
MassFieldEven(&Hgrid),
MassFieldOdd(&Hgrid),
M5(_M5),
mass(_mass),
_tmp(&Hgrid)
{
Ls=Fgrid._fdimensions[0];
ImportGauge(_Umu);
typedef typename FermionField::scalar_type scalar;
Lattice<iScalar<vInteger> > coor(&Fgrid);
LatticeCoordinate(coor, 0); // Scoor
ComplexField one(&Fgrid);
MassField =scalar(-mass);
one =scalar(1.0);
MassField =where(coor==Integer(Ls-1),MassField,one);
for(int mu=0;mu<Nd;mu++){
pickCheckerboard(Even,UmuEven[mu],Umu[mu]);
pickCheckerboard(Odd ,UmuOdd[mu],Umu[mu]);
}
pickCheckerboard(Even,MassFieldEven,MassField);
pickCheckerboard(Odd ,MassFieldOdd,MassField);
}
// DoubleStore impl dependent
void ImportGauge(const GaugeField &_Umu4)
{
GaugeLinkField U4(_grid4);
for(int mu=0;mu<Nd;mu++){
U4 = PeekIndex<LorentzIndex>(_Umu4, mu);
for(int s=0;s<this->Ls;s++){
InsertSlice(U4,Umu[mu],s,0);
}
}
}
///////////////////////////////////////////////////////////////
// Data members require to support the functionality
///////////////////////////////////////////////////////////////
public:
virtual RealD Mass(void) { return mass; }
virtual int isTrivialEE(void) { return 1; };
RealD mass;
RealD M5;
int Ls;
GridBase *_grid4;
GridBase *_grid;
GridBase *_cbgrid4;
GridBase *_cbgrid;
// Copy of the gauge field , with even and odd subsets
std::vector<GaugeLinkField> Umu;
std::vector<GaugeLinkField> UmuEven;
std::vector<GaugeLinkField> UmuOdd;
ComplexField MassField;
ComplexField MassFieldEven;
ComplexField MassFieldOdd;
///////////////////////////////////////////////////////////////
// Conserved current utilities
///////////////////////////////////////////////////////////////
void ContractConservedCurrent(PropagatorField &q_in_1,
PropagatorField &q_in_2,
PropagatorField &q_out,
PropagatorField &phys_src,
Current curr_type,
unsigned int mu){}
void SeqConservedCurrent(PropagatorField &q_in,
PropagatorField &q_out,
PropagatorField &phys_src,
Current curr_type,
unsigned int mu,
unsigned int tmin,
unsigned int tmax,
ComplexField &lattice_cmplx){}
};
typedef DWFSlowFermion<WilsonImplF> DWFSlowFermionF;
typedef DWFSlowFermion<WilsonImplD> DWFSlowFermionD;
NAMESPACE_END(Grid);

View File

@ -47,14 +47,12 @@ Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
//////////////////////////////////////////// ////////////////////////////////////////////
// Fermion operators / actions // Fermion operators / actions
//////////////////////////////////////////// ////////////////////////////////////////////
#include <Grid/qcd/action/fermion/DWFSlow.h> // Slow DWF
#include <Grid/qcd/action/fermion/WilsonFermion.h> // 4d wilson like #include <Grid/qcd/action/fermion/WilsonFermion.h> // 4d wilson like
NAMESPACE_CHECK(Wilson); NAMESPACE_CHECK(Wilson);
#include <Grid/qcd/action/fermion/WilsonTMFermion.h> // 4d wilson like #include <Grid/qcd/action/fermion/WilsonTMFermion.h> // 4d wilson like
NAMESPACE_CHECK(WilsonTM); NAMESPACE_CHECK(WilsonTM);
#include <Grid/qcd/action/fermion/WilsonCloverFermion.h> // 4d wilson clover fermions #include <Grid/qcd/action/fermion/WilsonCloverFermion.h> // 4d wilson clover fermions
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h> // 4d compact wilson clover fermions
NAMESPACE_CHECK(WilsonClover); NAMESPACE_CHECK(WilsonClover);
#include <Grid/qcd/action/fermion/WilsonFermion5D.h> // 5d base used by all 5d overlap types #include <Grid/qcd/action/fermion/WilsonFermion5D.h> // 5d base used by all 5d overlap types
NAMESPACE_CHECK(Wilson5D); NAMESPACE_CHECK(Wilson5D);
@ -113,164 +111,192 @@ NAMESPACE_CHECK(DWFutils);
// Cayley 5d // Cayley 5d
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
typedef WilsonFermion<WilsonImplD2> WilsonFermionD2; typedef WilsonFermion<WilsonImplR> WilsonFermionR;
typedef WilsonFermion<WilsonImplF> WilsonFermionF; typedef WilsonFermion<WilsonImplF> WilsonFermionF;
typedef WilsonFermion<WilsonImplD> WilsonFermionD; typedef WilsonFermion<WilsonImplD> WilsonFermionD;
typedef WilsonFermion<WilsonImplRL> WilsonFermionRL;
typedef WilsonFermion<WilsonImplFH> WilsonFermionFH;
typedef WilsonFermion<WilsonImplDF> WilsonFermionDF;
typedef WilsonFermion<WilsonAdjImplR> WilsonAdjFermionR;
typedef WilsonFermion<WilsonAdjImplF> WilsonAdjFermionF; typedef WilsonFermion<WilsonAdjImplF> WilsonAdjFermionF;
typedef WilsonFermion<WilsonAdjImplD> WilsonAdjFermionD; typedef WilsonFermion<WilsonAdjImplD> WilsonAdjFermionD;
typedef WilsonFermion<WilsonTwoIndexSymmetricImplR> WilsonTwoIndexSymmetricFermionR;
typedef WilsonFermion<WilsonTwoIndexSymmetricImplF> WilsonTwoIndexSymmetricFermionF; typedef WilsonFermion<WilsonTwoIndexSymmetricImplF> WilsonTwoIndexSymmetricFermionF;
typedef WilsonFermion<WilsonTwoIndexSymmetricImplD> WilsonTwoIndexSymmetricFermionD; typedef WilsonFermion<WilsonTwoIndexSymmetricImplD> WilsonTwoIndexSymmetricFermionD;
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplR> WilsonTwoIndexAntiSymmetricFermionR;
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonTwoIndexAntiSymmetricFermionF; typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonTwoIndexAntiSymmetricFermionF;
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonTwoIndexAntiSymmetricFermionD; typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonTwoIndexAntiSymmetricFermionD;
// Sp(2n)
typedef WilsonFermion<SpWilsonImplF> SpWilsonFermionF;
typedef WilsonFermion<SpWilsonImplD> SpWilsonFermionD;
typedef WilsonFermion<SpWilsonTwoIndexAntiSymmetricImplF> SpWilsonTwoIndexAntiSymmetricFermionF;
typedef WilsonFermion<SpWilsonTwoIndexAntiSymmetricImplD> SpWilsonTwoIndexAntiSymmetricFermionD;
typedef WilsonFermion<SpWilsonTwoIndexSymmetricImplF> SpWilsonTwoIndexSymmetricFermionF;
typedef WilsonFermion<SpWilsonTwoIndexSymmetricImplD> SpWilsonTwoIndexSymmetricFermionD;
// Twisted mass fermion // Twisted mass fermion
typedef WilsonTMFermion<WilsonImplD2> WilsonTMFermionD2; typedef WilsonTMFermion<WilsonImplR> WilsonTMFermionR;
typedef WilsonTMFermion<WilsonImplF> WilsonTMFermionF; typedef WilsonTMFermion<WilsonImplF> WilsonTMFermionF;
typedef WilsonTMFermion<WilsonImplD> WilsonTMFermionD; typedef WilsonTMFermion<WilsonImplD> WilsonTMFermionD;
// Clover fermions // Clover fermions
template <typename WImpl> using WilsonClover = WilsonCloverFermion<WImpl, CloverHelpers<WImpl>>; typedef WilsonCloverFermion<WilsonImplR> WilsonCloverFermionR;
template <typename WImpl> using WilsonExpClover = WilsonCloverFermion<WImpl, ExpCloverHelpers<WImpl>>; typedef WilsonCloverFermion<WilsonImplF> WilsonCloverFermionF;
typedef WilsonCloverFermion<WilsonImplD> WilsonCloverFermionD;
typedef WilsonClover<WilsonImplD2> WilsonCloverFermionD2; typedef WilsonCloverFermion<WilsonAdjImplR> WilsonCloverAdjFermionR;
typedef WilsonClover<WilsonImplF> WilsonCloverFermionF; typedef WilsonCloverFermion<WilsonAdjImplF> WilsonCloverAdjFermionF;
typedef WilsonClover<WilsonImplD> WilsonCloverFermionD; typedef WilsonCloverFermion<WilsonAdjImplD> WilsonCloverAdjFermionD;
typedef WilsonExpClover<WilsonImplD2> WilsonExpCloverFermionD2; typedef WilsonCloverFermion<WilsonTwoIndexSymmetricImplR> WilsonCloverTwoIndexSymmetricFermionR;
typedef WilsonExpClover<WilsonImplF> WilsonExpCloverFermionF; typedef WilsonCloverFermion<WilsonTwoIndexSymmetricImplF> WilsonCloverTwoIndexSymmetricFermionF;
typedef WilsonExpClover<WilsonImplD> WilsonExpCloverFermionD; typedef WilsonCloverFermion<WilsonTwoIndexSymmetricImplD> WilsonCloverTwoIndexSymmetricFermionD;
typedef WilsonClover<WilsonAdjImplF> WilsonCloverAdjFermionF; typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplR> WilsonCloverTwoIndexAntiSymmetricFermionR;
typedef WilsonClover<WilsonAdjImplD> WilsonCloverAdjFermionD; typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonCloverTwoIndexAntiSymmetricFermionF;
typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiSymmetricFermionD;
typedef WilsonClover<WilsonTwoIndexSymmetricImplF> WilsonCloverTwoIndexSymmetricFermionF;
typedef WilsonClover<WilsonTwoIndexSymmetricImplD> WilsonCloverTwoIndexSymmetricFermionD;
typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplF> WilsonCloverTwoIndexAntiSymmetricFermionF;
typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiSymmetricFermionD;
// Compact Clover fermions
template <typename WImpl> using CompactWilsonClover = CompactWilsonCloverFermion<WImpl, CompactCloverHelpers<WImpl>>;
template <typename WImpl> using CompactWilsonExpClover = CompactWilsonCloverFermion<WImpl, CompactExpCloverHelpers<WImpl>>;
typedef CompactWilsonClover<WilsonImplD2> CompactWilsonCloverFermionD2;
typedef CompactWilsonClover<WilsonImplF> CompactWilsonCloverFermionF;
typedef CompactWilsonClover<WilsonImplD> CompactWilsonCloverFermionD;
typedef CompactWilsonExpClover<WilsonImplD2> CompactWilsonExpCloverFermionD2;
typedef CompactWilsonExpClover<WilsonImplF> CompactWilsonExpCloverFermionF;
typedef CompactWilsonExpClover<WilsonImplD> CompactWilsonExpCloverFermionD;
typedef CompactWilsonClover<WilsonAdjImplF> CompactWilsonCloverAdjFermionF;
typedef CompactWilsonClover<WilsonAdjImplD> CompactWilsonCloverAdjFermionD;
typedef CompactWilsonClover<WilsonTwoIndexSymmetricImplF> CompactWilsonCloverTwoIndexSymmetricFermionF;
typedef CompactWilsonClover<WilsonTwoIndexSymmetricImplD> CompactWilsonCloverTwoIndexSymmetricFermionD;
typedef CompactWilsonClover<WilsonTwoIndexAntiSymmetricImplF> CompactWilsonCloverTwoIndexAntiSymmetricFermionF;
typedef CompactWilsonClover<WilsonTwoIndexAntiSymmetricImplD> CompactWilsonCloverTwoIndexAntiSymmetricFermionD;
// Domain Wall fermions // Domain Wall fermions
typedef DomainWallFermion<WilsonImplR> DomainWallFermionR;
typedef DomainWallFermion<WilsonImplF> DomainWallFermionF; typedef DomainWallFermion<WilsonImplF> DomainWallFermionF;
typedef DomainWallFermion<WilsonImplD> DomainWallFermionD; typedef DomainWallFermion<WilsonImplD> DomainWallFermionD;
typedef DomainWallFermion<WilsonImplD2> DomainWallFermionD2;
typedef DomainWallEOFAFermion<WilsonImplD2> DomainWallEOFAFermionD2; typedef DomainWallFermion<WilsonImplRL> DomainWallFermionRL;
typedef DomainWallFermion<WilsonImplFH> DomainWallFermionFH;
typedef DomainWallFermion<WilsonImplDF> DomainWallFermionDF;
typedef DomainWallEOFAFermion<WilsonImplR> DomainWallEOFAFermionR;
typedef DomainWallEOFAFermion<WilsonImplF> DomainWallEOFAFermionF; typedef DomainWallEOFAFermion<WilsonImplF> DomainWallEOFAFermionF;
typedef DomainWallEOFAFermion<WilsonImplD> DomainWallEOFAFermionD; typedef DomainWallEOFAFermion<WilsonImplD> DomainWallEOFAFermionD;
typedef MobiusFermion<WilsonImplD2> MobiusFermionD2; typedef DomainWallEOFAFermion<WilsonImplRL> DomainWallEOFAFermionRL;
typedef DomainWallEOFAFermion<WilsonImplFH> DomainWallEOFAFermionFH;
typedef DomainWallEOFAFermion<WilsonImplDF> DomainWallEOFAFermionDF;
typedef MobiusFermion<WilsonImplR> MobiusFermionR;
typedef MobiusFermion<WilsonImplF> MobiusFermionF; typedef MobiusFermion<WilsonImplF> MobiusFermionF;
typedef MobiusFermion<WilsonImplD> MobiusFermionD; typedef MobiusFermion<WilsonImplD> MobiusFermionD;
typedef MobiusEOFAFermion<WilsonImplD2> MobiusEOFAFermionD2; typedef MobiusFermion<WilsonImplRL> MobiusFermionRL;
typedef MobiusFermion<WilsonImplFH> MobiusFermionFH;
typedef MobiusFermion<WilsonImplDF> MobiusFermionDF;
typedef MobiusEOFAFermion<WilsonImplR> MobiusEOFAFermionR;
typedef MobiusEOFAFermion<WilsonImplF> MobiusEOFAFermionF; typedef MobiusEOFAFermion<WilsonImplF> MobiusEOFAFermionF;
typedef MobiusEOFAFermion<WilsonImplD> MobiusEOFAFermionD; typedef MobiusEOFAFermion<WilsonImplD> MobiusEOFAFermionD;
typedef ZMobiusFermion<ZWilsonImplD2> ZMobiusFermionD2; typedef MobiusEOFAFermion<WilsonImplRL> MobiusEOFAFermionRL;
typedef MobiusEOFAFermion<WilsonImplFH> MobiusEOFAFermionFH;
typedef MobiusEOFAFermion<WilsonImplDF> MobiusEOFAFermionDF;
typedef ZMobiusFermion<ZWilsonImplR> ZMobiusFermionR;
typedef ZMobiusFermion<ZWilsonImplF> ZMobiusFermionF; typedef ZMobiusFermion<ZWilsonImplF> ZMobiusFermionF;
typedef ZMobiusFermion<ZWilsonImplD> ZMobiusFermionD; typedef ZMobiusFermion<ZWilsonImplD> ZMobiusFermionD;
typedef ScaledShamirFermion<WilsonImplD2> ScaledShamirFermionD2; typedef ZMobiusFermion<ZWilsonImplRL> ZMobiusFermionRL;
typedef ZMobiusFermion<ZWilsonImplFH> ZMobiusFermionFH;
typedef ZMobiusFermion<ZWilsonImplDF> ZMobiusFermionDF;
// Ls vectorised
typedef ScaledShamirFermion<WilsonImplR> ScaledShamirFermionR;
typedef ScaledShamirFermion<WilsonImplF> ScaledShamirFermionF; typedef ScaledShamirFermion<WilsonImplF> ScaledShamirFermionF;
typedef ScaledShamirFermion<WilsonImplD> ScaledShamirFermionD; typedef ScaledShamirFermion<WilsonImplD> ScaledShamirFermionD;
typedef MobiusZolotarevFermion<WilsonImplD2> MobiusZolotarevFermionD2; typedef MobiusZolotarevFermion<WilsonImplR> MobiusZolotarevFermionR;
typedef MobiusZolotarevFermion<WilsonImplF> MobiusZolotarevFermionF; typedef MobiusZolotarevFermion<WilsonImplF> MobiusZolotarevFermionF;
typedef MobiusZolotarevFermion<WilsonImplD> MobiusZolotarevFermionD; typedef MobiusZolotarevFermion<WilsonImplD> MobiusZolotarevFermionD;
typedef ShamirZolotarevFermion<WilsonImplD2> ShamirZolotarevFermionD2; typedef ShamirZolotarevFermion<WilsonImplR> ShamirZolotarevFermionR;
typedef ShamirZolotarevFermion<WilsonImplF> ShamirZolotarevFermionF; typedef ShamirZolotarevFermion<WilsonImplF> ShamirZolotarevFermionF;
typedef ShamirZolotarevFermion<WilsonImplD> ShamirZolotarevFermionD; typedef ShamirZolotarevFermion<WilsonImplD> ShamirZolotarevFermionD;
typedef OverlapWilsonCayleyTanhFermion<WilsonImplD2> OverlapWilsonCayleyTanhFermionD2; typedef OverlapWilsonCayleyTanhFermion<WilsonImplR> OverlapWilsonCayleyTanhFermionR;
typedef OverlapWilsonCayleyTanhFermion<WilsonImplF> OverlapWilsonCayleyTanhFermionF; typedef OverlapWilsonCayleyTanhFermion<WilsonImplF> OverlapWilsonCayleyTanhFermionF;
typedef OverlapWilsonCayleyTanhFermion<WilsonImplD> OverlapWilsonCayleyTanhFermionD; typedef OverlapWilsonCayleyTanhFermion<WilsonImplD> OverlapWilsonCayleyTanhFermionD;
typedef OverlapWilsonCayleyZolotarevFermion<WilsonImplD2> OverlapWilsonCayleyZolotarevFermionD2; typedef OverlapWilsonCayleyZolotarevFermion<WilsonImplR> OverlapWilsonCayleyZolotarevFermionR;
typedef OverlapWilsonCayleyZolotarevFermion<WilsonImplF> OverlapWilsonCayleyZolotarevFermionF; typedef OverlapWilsonCayleyZolotarevFermion<WilsonImplF> OverlapWilsonCayleyZolotarevFermionF;
typedef OverlapWilsonCayleyZolotarevFermion<WilsonImplD> OverlapWilsonCayleyZolotarevFermionD; typedef OverlapWilsonCayleyZolotarevFermion<WilsonImplD> OverlapWilsonCayleyZolotarevFermionD;
// Continued fraction // Continued fraction
typedef OverlapWilsonContFracTanhFermion<WilsonImplD2> OverlapWilsonContFracTanhFermionD2; typedef OverlapWilsonContFracTanhFermion<WilsonImplR> OverlapWilsonContFracTanhFermionR;
typedef OverlapWilsonContFracTanhFermion<WilsonImplF> OverlapWilsonContFracTanhFermionF; typedef OverlapWilsonContFracTanhFermion<WilsonImplF> OverlapWilsonContFracTanhFermionF;
typedef OverlapWilsonContFracTanhFermion<WilsonImplD> OverlapWilsonContFracTanhFermionD; typedef OverlapWilsonContFracTanhFermion<WilsonImplD> OverlapWilsonContFracTanhFermionD;
typedef OverlapWilsonContFracZolotarevFermion<WilsonImplD2> OverlapWilsonContFracZolotarevFermionD2; typedef OverlapWilsonContFracZolotarevFermion<WilsonImplR> OverlapWilsonContFracZolotarevFermionR;
typedef OverlapWilsonContFracZolotarevFermion<WilsonImplF> OverlapWilsonContFracZolotarevFermionF; typedef OverlapWilsonContFracZolotarevFermion<WilsonImplF> OverlapWilsonContFracZolotarevFermionF;
typedef OverlapWilsonContFracZolotarevFermion<WilsonImplD> OverlapWilsonContFracZolotarevFermionD; typedef OverlapWilsonContFracZolotarevFermion<WilsonImplD> OverlapWilsonContFracZolotarevFermionD;
// Partial fraction // Partial fraction
typedef OverlapWilsonPartialFractionTanhFermion<WilsonImplD2> OverlapWilsonPartialFractionTanhFermionD2; typedef OverlapWilsonPartialFractionTanhFermion<WilsonImplR> OverlapWilsonPartialFractionTanhFermionR;
typedef OverlapWilsonPartialFractionTanhFermion<WilsonImplF> OverlapWilsonPartialFractionTanhFermionF; typedef OverlapWilsonPartialFractionTanhFermion<WilsonImplF> OverlapWilsonPartialFractionTanhFermionF;
typedef OverlapWilsonPartialFractionTanhFermion<WilsonImplD> OverlapWilsonPartialFractionTanhFermionD; typedef OverlapWilsonPartialFractionTanhFermion<WilsonImplD> OverlapWilsonPartialFractionTanhFermionD;
typedef OverlapWilsonPartialFractionZolotarevFermion<WilsonImplD2> OverlapWilsonPartialFractionZolotarevFermionD2; typedef OverlapWilsonPartialFractionZolotarevFermion<WilsonImplR> OverlapWilsonPartialFractionZolotarevFermionR;
typedef OverlapWilsonPartialFractionZolotarevFermion<WilsonImplF> OverlapWilsonPartialFractionZolotarevFermionF; typedef OverlapWilsonPartialFractionZolotarevFermion<WilsonImplF> OverlapWilsonPartialFractionZolotarevFermionF;
typedef OverlapWilsonPartialFractionZolotarevFermion<WilsonImplD> OverlapWilsonPartialFractionZolotarevFermionD; typedef OverlapWilsonPartialFractionZolotarevFermion<WilsonImplD> OverlapWilsonPartialFractionZolotarevFermionD;
// Gparity cases; partial list until tested // Gparity cases; partial list until tested
typedef WilsonFermion<GparityWilsonImplR> GparityWilsonFermionR;
typedef WilsonFermion<GparityWilsonImplF> GparityWilsonFermionF; typedef WilsonFermion<GparityWilsonImplF> GparityWilsonFermionF;
typedef WilsonFermion<GparityWilsonImplD> GparityWilsonFermionD; typedef WilsonFermion<GparityWilsonImplD> GparityWilsonFermionD;
typedef WilsonFermion<GparityWilsonImplRL> GparityWilsonFermionRL;
typedef WilsonFermion<GparityWilsonImplFH> GparityWilsonFermionFH;
typedef WilsonFermion<GparityWilsonImplDF> GparityWilsonFermionDF;
typedef DomainWallFermion<GparityWilsonImplR> GparityDomainWallFermionR;
typedef DomainWallFermion<GparityWilsonImplF> GparityDomainWallFermionF; typedef DomainWallFermion<GparityWilsonImplF> GparityDomainWallFermionF;
typedef DomainWallFermion<GparityWilsonImplD> GparityDomainWallFermionD; typedef DomainWallFermion<GparityWilsonImplD> GparityDomainWallFermionD;
typedef DomainWallEOFAFermion<GparityWilsonImplR> GparityDomainWallEOFAFermionD2; typedef DomainWallFermion<GparityWilsonImplRL> GparityDomainWallFermionRL;
typedef DomainWallFermion<GparityWilsonImplFH> GparityDomainWallFermionFH;
typedef DomainWallFermion<GparityWilsonImplDF> GparityDomainWallFermionDF;
typedef DomainWallEOFAFermion<GparityWilsonImplR> GparityDomainWallEOFAFermionR;
typedef DomainWallEOFAFermion<GparityWilsonImplF> GparityDomainWallEOFAFermionF; typedef DomainWallEOFAFermion<GparityWilsonImplF> GparityDomainWallEOFAFermionF;
typedef DomainWallEOFAFermion<GparityWilsonImplD> GparityDomainWallEOFAFermionD; typedef DomainWallEOFAFermion<GparityWilsonImplD> GparityDomainWallEOFAFermionD;
typedef WilsonTMFermion<GparityWilsonImplR> GparityWilsonTMFermionD2; typedef DomainWallEOFAFermion<GparityWilsonImplRL> GparityDomainWallEOFAFermionRL;
typedef DomainWallEOFAFermion<GparityWilsonImplFH> GparityDomainWallEOFAFermionFH;
typedef DomainWallEOFAFermion<GparityWilsonImplDF> GparityDomainWallEOFAFermionDF;
typedef WilsonTMFermion<GparityWilsonImplR> GparityWilsonTMFermionR;
typedef WilsonTMFermion<GparityWilsonImplF> GparityWilsonTMFermionF; typedef WilsonTMFermion<GparityWilsonImplF> GparityWilsonTMFermionF;
typedef WilsonTMFermion<GparityWilsonImplD> GparityWilsonTMFermionD; typedef WilsonTMFermion<GparityWilsonImplD> GparityWilsonTMFermionD;
typedef MobiusFermion<GparityWilsonImplR> GparityMobiusFermionD2; typedef WilsonTMFermion<GparityWilsonImplRL> GparityWilsonTMFermionRL;
typedef WilsonTMFermion<GparityWilsonImplFH> GparityWilsonTMFermionFH;
typedef WilsonTMFermion<GparityWilsonImplDF> GparityWilsonTMFermionDF;
typedef MobiusFermion<GparityWilsonImplR> GparityMobiusFermionR;
typedef MobiusFermion<GparityWilsonImplF> GparityMobiusFermionF; typedef MobiusFermion<GparityWilsonImplF> GparityMobiusFermionF;
typedef MobiusFermion<GparityWilsonImplD> GparityMobiusFermionD; typedef MobiusFermion<GparityWilsonImplD> GparityMobiusFermionD;
typedef MobiusEOFAFermion<GparityWilsonImplR> GparityMobiusEOFAFermionD2; typedef MobiusFermion<GparityWilsonImplRL> GparityMobiusFermionRL;
typedef MobiusFermion<GparityWilsonImplFH> GparityMobiusFermionFH;
typedef MobiusFermion<GparityWilsonImplDF> GparityMobiusFermionDF;
typedef MobiusEOFAFermion<GparityWilsonImplR> GparityMobiusEOFAFermionR;
typedef MobiusEOFAFermion<GparityWilsonImplF> GparityMobiusEOFAFermionF; typedef MobiusEOFAFermion<GparityWilsonImplF> GparityMobiusEOFAFermionF;
typedef MobiusEOFAFermion<GparityWilsonImplD> GparityMobiusEOFAFermionD; typedef MobiusEOFAFermion<GparityWilsonImplD> GparityMobiusEOFAFermionD;
typedef MobiusEOFAFermion<GparityWilsonImplRL> GparityMobiusEOFAFermionRL;
typedef MobiusEOFAFermion<GparityWilsonImplFH> GparityMobiusEOFAFermionFH;
typedef MobiusEOFAFermion<GparityWilsonImplDF> GparityMobiusEOFAFermionDF;
typedef ImprovedStaggeredFermion<StaggeredImplR> ImprovedStaggeredFermionR;
typedef ImprovedStaggeredFermion<StaggeredImplF> ImprovedStaggeredFermionF; typedef ImprovedStaggeredFermion<StaggeredImplF> ImprovedStaggeredFermionF;
typedef ImprovedStaggeredFermion<StaggeredImplD> ImprovedStaggeredFermionD; typedef ImprovedStaggeredFermion<StaggeredImplD> ImprovedStaggeredFermionD;
typedef NaiveStaggeredFermion<StaggeredImplR> NaiveStaggeredFermionR;
typedef NaiveStaggeredFermion<StaggeredImplF> NaiveStaggeredFermionF; typedef NaiveStaggeredFermion<StaggeredImplF> NaiveStaggeredFermionF;
typedef NaiveStaggeredFermion<StaggeredImplD> NaiveStaggeredFermionD; typedef NaiveStaggeredFermion<StaggeredImplD> NaiveStaggeredFermionD;
typedef ImprovedStaggeredFermion5D<StaggeredImplR> ImprovedStaggeredFermion5DR;
typedef ImprovedStaggeredFermion5D<StaggeredImplF> ImprovedStaggeredFermion5DF; typedef ImprovedStaggeredFermion5D<StaggeredImplF> ImprovedStaggeredFermion5DF;
typedef ImprovedStaggeredFermion5D<StaggeredImplD> ImprovedStaggeredFermion5DD; typedef ImprovedStaggeredFermion5D<StaggeredImplD> ImprovedStaggeredFermion5DD;
#ifndef GRID_CUDA
typedef ImprovedStaggeredFermion5D<StaggeredVec5dImplR> ImprovedStaggeredFermionVec5dR;
typedef ImprovedStaggeredFermion5D<StaggeredVec5dImplF> ImprovedStaggeredFermionVec5dF;
typedef ImprovedStaggeredFermion5D<StaggeredVec5dImplD> ImprovedStaggeredFermionVec5dD;
#endif
NAMESPACE_END(Grid); NAMESPACE_END(Grid);
//////////////////// ////////////////////

Some files were not shown because too many files have changed in this diff Show More