1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-09 23:45:36 +00:00

Compare commits

..

3 Commits

Author SHA1 Message Date
Peter Boyle
25f71913b7 MultiRHS coarse 2024-01-04 12:01:17 -05:00
Peter Boyle
34ddd2b7b1 MultiRHS coarse space 2024-01-04 12:00:53 -05:00
Peter Boyle
d5fd90b2f3 Add 48^3 rtest 2024-01-04 12:00:01 -05:00
3 changed files with 1114 additions and 211 deletions

View File

@ -69,36 +69,54 @@ class TwoLevelCG : public LinearFunction<Field>
virtual void operator() (const Field &src, Field &x)
{
#if 0
Field resid(grid);
std::cout << GridLogMessage<<"HDCG: fPcg starting"<<std::endl;
RealD f;
RealD rtzp,rtz,a,d,b;
RealD rptzp;
Field p(grid);
/////////////////////////////
// Set up history vectors
/////////////////////////////
int mmax = 5;
std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
std::vector<Field> p(mmax,grid);
std::vector<Field> mmp(mmax,grid);
std::vector<RealD> pAp(mmax);
Field z(grid);
Field tmp(grid);
Field mmp(grid);
Field r (grid);
Field mu (grid);
Field rp (grid);
Field mp (grid);
Field r (grid);
Field mu (grid);
std::cout << GridLogMessage<<"HDCG: fPcg allocated"<<std::endl;
//Initial residual computation & set up
double tn;
RealD guess = norm2(x);
std::cout << GridLogMessage<<"HDCG: fPcg guess nrm "<<guess<<std::endl;
RealD src_nrm = norm2(src);
std::cout << GridLogMessage<<"HDCG: fPcg src nrm "<<src_nrm<<std::endl;
if ( src_nrm == 0.0 ) {
std::cout << GridLogMessage<<"HDCG: fPcg given trivial source norm "<<src_nrm<<std::endl;
x=Zero();
}
RealD tn;
GridStopWatch HDCGTimer;
HDCGTimer.Start();
//////////////////////////
// x0 = Vstart -- possibly modify guess
//////////////////////////
x=Zero();
Vstart(x,src);
// r0 = b -A x0
_FineLinop.HermOp(x,mmp);
axpy(r, -1.0, mmp, src); // Recomputes r=src-x0
rp=r;
_FineLinop.HermOp(x,mmp[0]);
axpy (r, -1.0,mmp[0], src); // Recomputes r=src-Ax0
{
double n1 = norm2(x);
double n2 = norm2(mmp[0]);
double n3 = norm2(r);
std::cout<<GridLogMessage<<"x,vstart,r = "<<n1<<" "<<n2<<" "<<n3<<std::endl;
}
//////////////////////////////////
// Compute z = M1 x
@ -107,241 +125,283 @@ class TwoLevelCG : public LinearFunction<Field>
rtzp =real(innerProduct(r,z));
///////////////////////////////////////
// Except Def2, M2 is trivial
// Solve for Mss mu = P A z and set p = z-mu
// Def2 p = 1 - Q Az = Pright z
// Other algos M2 is trivial
///////////////////////////////////////
p=z;
PcgM2(z,p[0]);
RealD ssq = norm2(src);
RealD rsq = ssq*Tolerance*Tolerance;
GRID_TRACE("MultiGrid TwoLevel ");
std::cout<<GridLogMessage<<"HDCG: k=0 residual "<<rtzp<<" target rsq "<<rsq<<" ssq "<<ssq<<std::endl;
std::cout << GridLogMessage<<"HDCG: k=0 residual "<<rtzp<<" rsq "<<rsq<<"\n";
for (int k=1;k<=MaxIterations;k++){
Field pp(grid);
for (int k=0;k<=MaxIterations;k++){
int peri_k = k % mmax;
int peri_kp = (k+1) % mmax;
rtz=rtzp;
d= PcgM3(p,mmp);
d= PcgM3(p[peri_k],mmp[peri_k]);
a = rtz/d;
axpy(x,a,p,x);
RealD rn = axpy_norm(r,-a,mmp,r);
// Memorise this
pAp[peri_k] = d;
axpy(x,a,p[peri_k],x);
RealD rn = axpy_norm(r,-a,mmp[peri_k],r);
// Compute z = M x
PcgM1(r,z);
rtzp =real(innerProduct(r,z));
int ipcg=1; // almost free inexact preconditioned CG
if (ipcg) {
rptzp =real(innerProduct(rp,z));
} else {
rptzp =0;
{
RealD n1,n2;
n1=norm2(r);
n2=norm2(z);
std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : vector r,z "<<n1<<" "<<n2<<"\n";
}
b = (rtzp-rptzp)/rtz;
rtzp =real(innerProduct(r,z));
std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : inner rtzp "<<rtzp<<"\n";
// PcgM2(z,p[0]);
PcgM2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
axpy(p,b,p,mu); // mu = A r
p[peri_kp]=mu;
// Standard search direction p -> z + b p
b = (rtzp)/rtz;
int northog;
// k=zero <=> peri_kp=1; northog = 1
// k=1 <=> peri_kp=2; northog = 2
// ... ... ...
// k=mmax-2<=> peri_kp=mmax-1; northog = mmax-1
// k=mmax-1<=> peri_kp=0; northog = 1
// northog = (peri_kp==0)?1:peri_kp; // This is the fCG(mmax) algorithm
northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
for(int back=0; back < northog; back++){
int peri_back = (k-back)%mmax;
RealD pbApk= real(innerProduct(mmp[peri_back],p[peri_kp]));
RealD beta = -pbApk/pAp[peri_back];
axpy(p[peri_kp],beta,p[peri_back],p[peri_kp]);
}
RealD rrn=sqrt(rn/ssq);
RealD rtn=sqrt(rtz/ssq);
std::cout<<GridLogMessage<<"HDCG: Pcg k= "<<k<<" residual = "<<rrn<<std::endl;
RealD rtnp=sqrt(rtzp/ssq);
if ( ipcg ) {
axpy(rp,0.0,r,r);
}
std::cout<<GridLogMessage<<"HDCG: fPcg k= "<<k<<" residual = "<<rrn<<"\n";
// Stopping condition
if ( rn <= rsq ) {
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: Pcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
_FineLinop.HermOp(x,mmp);
axpy(tmp,-1.0,src,mmp);
_FineLinop.HermOp(x,mmp[0]);
axpy(tmp,-1.0,src,mmp[0]);
RealD mmpnorm = sqrt(norm2(mmp));
RealD mmpnorm = sqrt(norm2(mmp[0]));
RealD xnorm = sqrt(norm2(x));
RealD srcnorm = sqrt(norm2(src));
RealD tmpnorm = sqrt(norm2(tmp));
RealD true_residual = tmpnorm/srcnorm;
std::cout<<GridLogMessage
<<"HDCG: true residual is "<<true_residual
<<" solution "<<xnorm
<<" source "<<srcnorm
<<" mmp "<<mmpnorm
<<std::endl;
return;
}
}
std::cout<<GridLogMessage<<"HDCG: not converged"<<std::endl;
RealD xnorm = sqrt(norm2(x));
RealD srcnorm = sqrt(norm2(src));
std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
return ;
#else
RealD f;
RealD rtzp,rtz,a,d,b;
RealD rptzp;
/////////////////////////////
// Set up history vectors
/////////////////////////////
int mmax = 20;
std::vector<Field> p(mmax,grid);
std::vector<Field> mmp(mmax,grid);
std::vector<RealD> pAp(mmax);
Field z(grid);
Field tmp(grid);
Field mp (grid);
Field r (grid);
Field mu (grid);
//Initial residual computation & set up
RealD guess = norm2(x);
RealD src_nrm = norm2(src);
if ( src_nrm == 0.0 ) {
std::cout << GridLogMessage<<"HDCG: fPcg given trivial source norm "<<src_nrm<<std::endl;
x=Zero();
}
RealD tn;
GridStopWatch HDCGTimer;
HDCGTimer.Start();
//////////////////////////
// x0 = Vstart -- possibly modify guess
//////////////////////////
Vstart(x,src);
// r0 = b -A x0
_FineLinop.HermOp(x,mmp[0]);
axpy (r, -1.0,mmp[0], src); // Recomputes r=src-Ax0
{
double n1 = norm2(x);
double n2 = norm2(mmp[0]);
double n3 = norm2(r);
std::cout<<GridLogMessage<<"x,vstart,r = "<<n1<<" "<<n2<<" "<<n3<<std::endl;
}
//////////////////////////////////
// Compute z = M1 x
//////////////////////////////////
PcgM1(r,z);
rtzp =real(innerProduct(r,z));
///////////////////////////////////////
// Solve for Mss mu = P A z and set p = z-mu
// Def2: p = 1 - Q Az = Pright z
// Other algos M2 is trivial
///////////////////////////////////////
PcgM2(z,p[0]);
RealD ssq = norm2(src);
RealD rsq = ssq*Tolerance*Tolerance;
std::cout << GridLogMessage<<"HDCG: k=0 residual "<<rtzp<<" rsq "<<rsq<<"\n";
Field pp(grid);
for (int k=0;k<=MaxIterations;k++){
int peri_k = k % mmax;
int peri_kp = (k+1) % mmax;
rtz=rtzp;
d= PcgM3(p[peri_k],mmp[peri_k]);
a = rtz/d;
// Memorise this
pAp[peri_k] = d;
axpy(x,a,p[peri_k],x);
RealD rn = axpy_norm(r,-a,mmp[peri_k],r);
// Compute z = M x
PcgM1(r,z);
{
RealD n1,n2;
n1=norm2(r);
n2=norm2(z);
std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : vector r,z "<<n1<<" "<<n2<<"\n";
}
rtzp =real(innerProduct(r,z));
std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : inner rtzp "<<rtzp<<"\n";
// PcgM2(z,p[0]);
PcgM2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
p[peri_kp]=mu;
// Standard search direction p -> z + b p ; b =
b = (rtzp)/rtz;
int northog;
// k=zero <=> peri_kp=1; northog = 1
// k=1 <=> peri_kp=2; northog = 2
// ... ... ...
// k=mmax-2<=> peri_kp=mmax-1; northog = mmax-1
// k=mmax-1<=> peri_kp=0; northog = 1
// northog = (peri_kp==0)?1:peri_kp; // This is the fCG(mmax) algorithm
northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
for(int back=0; back < northog; back++){
int peri_back = (k-back)%mmax;
RealD pbApk= real(innerProduct(mmp[peri_back],p[peri_kp]));
RealD beta = -pbApk/pAp[peri_back];
axpy(p[peri_kp],beta,p[peri_back],p[peri_kp]);
}
RealD rrn=sqrt(rn/ssq);
RealD rtn=sqrt(rtz/ssq);
RealD rtnp=sqrt(rtzp/ssq);
std::cout<<GridLogMessage<<"HDCG: fPcg k= "<<k<<" residual = "<<rrn<<"\n";
// Stopping condition
if ( rn <= rsq ) {
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
_FineLinop.HermOp(x,mmp[0]);
axpy(tmp,-1.0,src,mmp[0]);
RealD mmpnorm = sqrt(norm2(mmp[0]));
RealD xnorm = sqrt(norm2(x));
RealD srcnorm = sqrt(norm2(src));
RealD tmpnorm = sqrt(norm2(tmp));
RealD true_residual = tmpnorm/srcnorm;
std::cout<<GridLogMessage
<<"HDCG: true residual is "<<true_residual
<<" solution "<<xnorm
<<" source "<<srcnorm
<<" mmp "<<mmpnorm
<<std::endl;
return;
return;
}
}
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
RealD xnorm = sqrt(norm2(x));
RealD srcnorm = sqrt(norm2(src));
std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
}
virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
{
std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
src[0].Grid()->Barrier();
int nrhs = src.size();
std::vector<RealD> f(nrhs);
std::vector<RealD> rtzp(nrhs);
std::vector<RealD> rtz(nrhs);
std::vector<RealD> a(nrhs);
std::vector<RealD> d(nrhs);
std::vector<RealD> b(nrhs);
std::vector<RealD> rptzp(nrhs);
/////////////////////////////
// Set up history vectors
/////////////////////////////
int mmax = 2;
std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
src[0].Grid()->Barrier();
std::vector<std::vector<Field> > p(nrhs); for(int r=0;r<nrhs;r++) p[r].resize(mmax,grid);
std::cout << GridLogMessage<<"HDCG: fPcg allocated p"<<std::endl;
src[0].Grid()->Barrier();
std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid);
std::cout << GridLogMessage<<"HDCG: fPcg allocated mmp"<<std::endl;
src[0].Grid()->Barrier();
std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax);
std::cout << GridLogMessage<<"HDCG: fPcg allocated pAp"<<std::endl;
src[0].Grid()->Barrier();
std::vector<Field> z(nrhs,grid);
std::vector<Field> mp (nrhs,grid);
std::vector<Field> r (nrhs,grid);
std::vector<Field> mu (nrhs,grid);
std::cout << GridLogMessage<<"HDCG: fPcg allocated z,mp,r,mu"<<std::endl;
src[0].Grid()->Barrier();
//Initial residual computation & set up
std::vector<RealD> src_nrm(nrhs);
for(int rhs=0;rhs<nrhs;rhs++) {
src_nrm[rhs]=norm2(src[rhs]);
assert(src_nrm[rhs]!=0.0);
}
std::vector<RealD> tn(nrhs);
GridStopWatch HDCGTimer;
HDCGTimer.Start();
//////////////////////////
// x0 = Vstart -- possibly modify guess
//////////////////////////
for(int rhs=0;rhs<nrhs;rhs++){
Vstart(x[rhs],src[rhs]);
// r0 = b -A x0
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]); // Recomputes r=src-Ax0
}
}
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
RealD xnorm = sqrt(norm2(x));
RealD srcnorm = sqrt(norm2(src));
std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
#endif
//////////////////////////////////
// Compute z = M1 x
//////////////////////////////////
// This needs a multiRHS version for acceleration
PcgM1(r,z);
std::vector<RealD> ssq(nrhs);
std::vector<RealD> rsq(nrhs);
std::vector<Field> pp(nrhs,grid);
for(int rhs=0;rhs<nrhs;rhs++){
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
p[rhs][0]=z[rhs];
ssq[rhs]=norm2(src[rhs]);
rsq[rhs]= ssq[rhs]*Tolerance*Tolerance;
std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n";
}
std::vector<RealD> rn(nrhs);
for (int k=0;k<=MaxIterations;k++){
int peri_k = k % mmax;
int peri_kp = (k+1) % mmax;
for(int rhs=0;rhs<nrhs;rhs++){
rtz[rhs]=rtzp[rhs];
d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]);
a[rhs] = rtz[rhs]/d[rhs];
// Memorise this
pAp[rhs][peri_k] = d[rhs];
axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]);
rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]);
}
// Compute z = M x (for *all* RHS)
PcgM1(r,z);
RealD max_rn=0.0;
for(int rhs=0;rhs<nrhs;rhs++){
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n";
mu[rhs]=z[rhs];
p[rhs][peri_kp]=mu[rhs];
// Standard search direction p == z + b p
b[rhs] = (rtzp[rhs])/rtz[rhs];
int northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
for(int back=0; back < northog; back++){
int peri_back = (k-back)%mmax;
RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp]));
RealD beta = -pbApk/pAp[rhs][peri_back];
axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]);
}
RealD rrn=sqrt(rn[rhs]/ssq[rhs]);
RealD rtn=sqrt(rtz[rhs]/ssq[rhs]);
RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]);
std::cout<<GridLogMessage<<"HDCG: rhs "<<rhs<<"fPcg k= "<<k<<" residual = "<<rrn<<"\n";
if ( rrn > max_rn ) max_rn = rrn;
}
// Stopping condition based on worst case
if ( max_rn <= Tolerance ) {
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
for(int rhs=0;rhs<nrhs;rhs++){
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
Field tmp(grid);
axpy(tmp,-1.0,src[rhs],mmp[rhs][0]);
RealD mmpnorm = sqrt(norm2(mmp[rhs][0]));
RealD xnorm = sqrt(norm2(x[rhs]));
RealD srcnorm = sqrt(norm2(src[rhs]));
RealD tmpnorm = sqrt(norm2(tmp));
RealD true_residual = tmpnorm/srcnorm;
std::cout<<GridLogMessage
<<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
<<" solution "<<xnorm
<<" source "<<srcnorm
<<" mmp "<<mmpnorm
<<std::endl;
}
return;
}
}
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
for(int rhs=0;rhs<nrhs;rhs++){
RealD xnorm = sqrt(norm2(x[rhs]));
RealD srcnorm = sqrt(norm2(src[rhs]));
std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
}
}
public:
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out)
{
std::cout << "PcgM1 default (cheat) mrhs versoin"<<std::endl;
for(int rhs=0;rhs<in.size();rhs++){
this->PcgM1(in[rhs],out[rhs]);
}
}
virtual void PcgM1(Field & in, Field & out) =0;
virtual void Vstart(Field & x,const Field & src)=0;
@ -440,6 +500,7 @@ class TwoLevelADEF2 : public TwoLevelCG<Field>
virtual void Vstart(Field & x,const Field & src)
{
std::cout << GridLogMessage<<"HDCG: fPcg Vstart "<<std::endl;
///////////////////////////////////
// Choose x_0 such that
// x_0 = guess + (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
@ -456,14 +517,97 @@ class TwoLevelADEF2 : public TwoLevelCG<Field>
CoarseField PleftProj(this->coarsegrid);
CoarseField PleftMss_proj(this->coarsegrid);
std::cout << GridLogMessage<<"HDCG: fPcg Vstart projecting "<<std::endl;
this->_Aggregates.ProjectToSubspace(PleftProj,src);
std::cout << GridLogMessage<<"HDCG: fPcg Vstart coarse solve "<<std::endl;
this->_CoarseSolverPrecise(PleftProj,PleftMss_proj); // Ass^{-1} r_s
std::cout << GridLogMessage<<"HDCG: fPcg Vstart promote "<<std::endl;
this->_Aggregates.PromoteFromSubspace(PleftMss_proj,x);
}
};
template<class Field, class CoarseField, class Aggregation>
class TwoLevelADEF2mrhs : public TwoLevelADEF2<Field,CoarseField,Aggregation>
{
public:
GridBase *coarsegridmrhs;
LinearFunction<CoarseField> &_CoarseSolverMrhs;
LinearFunction<CoarseField> &_CoarseGuesser;
TwoLevelADEF2mrhs(RealD tol,
Integer maxit,
LinearOperatorBase<Field> &FineLinop,
LinearFunction<Field> &Smoother,
LinearFunction<CoarseField> &CoarseSolver,
LinearFunction<CoarseField> &CoarseSolverPrecise,
LinearFunction<CoarseField> &CoarseSolverMrhs,
LinearFunction<CoarseField> &CoarseGuesser,
GridBase *rhsgrid,
Aggregation &Aggregates) :
TwoLevelADEF2<Field,CoarseField,Aggregation>(tol, maxit,FineLinop,Smoother,CoarseSolver,CoarseSolverPrecise,Aggregates),
_CoarseSolverMrhs(CoarseSolverMrhs),
_CoarseGuesser(CoarseGuesser)
{
coarsegridmrhs = rhsgrid;
};
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out){
int nrhs=in.size();
std::cout << " mrhs PcgM1 for "<<nrhs<<" right hand sides"<<std::endl;
// [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
Field tmp(this->grid);
std::vector<Field> Min(nrhs,this->grid);
CoarseField PleftProj(this->coarsegrid);
CoarseField PleftMss_proj(this->coarsegrid);
CoarseField PleftProjMrhs(this->coarsegridmrhs);
CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
for(int rhs=0;rhs<nrhs;rhs++) {
this->grid->Barrier();
std::cout << " Calling smoother for "<<rhs<<std::endl;
this->grid->Barrier();
this->_Smoother(in[rhs],Min[rhs]);
this->grid->Barrier();
std::cout << " smoother done "<<rhs<<std::endl;
this->grid->Barrier();
this->_FineLinop.HermOp(Min[rhs],out[rhs]);
this->grid->Barrier();
std::cout << " Hermop for "<<rhs<<std::endl;
this->grid->Barrier();
axpy(tmp,-1.0,out[rhs],in[rhs]); // tmp = in - A Min
this->grid->Barrier();
std::cout << " axpy "<<rhs<<std::endl;
this->grid->Barrier();
this->_Aggregates.ProjectToSubspace(PleftProj,tmp); // can optimise later
this->grid->Barrier();
std::cout << " project "<<rhs<<std::endl;
this->grid->Barrier();
InsertSlice(PleftProj,PleftProjMrhs,rhs,0);
this->grid->Barrier();
std::cout << " insert rhs "<<rhs<<std::endl;
this->grid->Barrier();
this->_CoarseGuesser(PleftProj,PleftMss_proj);
this->grid->Barrier();
std::cout << " insert guess "<<rhs<<std::endl;
this->grid->Barrier();
InsertSlice(PleftMss_proj,PleftMss_projMrhs,rhs,0);
}
std::cout << " Coarse solve "<<std::endl;
this->_CoarseSolverMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} [in - A Min]_s
for(int rhs=0;rhs<nrhs;rhs++) {
ExtractSlice(PleftMss_proj,PleftMss_projMrhs,rhs,0);
this->_Aggregates.PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]
axpy(out[rhs],1.0,Min[rhs],tmp); // Min+tmp
}
std::cout << " Extracted "<<std::endl;
}
};
template<class Field>
class TwoLevelADEF1defl : public TwoLevelCG<Field>
{

View File

@ -244,8 +244,13 @@ int main (int argc, char ** argv)
GridCartesian *CoarseMrhs = new GridCartesian(rhLatt,rhSimd,rhMpi);
MultiGeneralCoarsenedMatrix mrhs(LittleDiracOp,CoarseMrhs);
MultiGeneralCoarsenedMatrix mrhs(LittleDiracOp,CoarseMrhs);
typedef decltype(mrhs) MultiGeneralCoarsenedMatrix_t;
//////////////////////////////////////////
// Test against single RHS
//////////////////////////////////////////
{
GridParallelRNG rh_CRNG(CoarseMrhs);rh_CRNG.SeedFixedIntegers(cseeds);
CoarseVector rh_phi(CoarseMrhs);
@ -287,6 +292,21 @@ int main (int argc, char ** argv)
std::cout << nrhs<< " srhs " << t1/ncall/nrhs <<" us"<<std::endl;
}
//////////////////////////////////////////
// Test against single RHS
//////////////////////////////////////////
{
typedef HermitianLinearOperator<MultiGeneralCoarsenedMatrix_t,CoarseVector> HermMatrix;
HermMatrix MrhsCoarseOp (mrhs);
GridParallelRNG rh_CRNG(CoarseMrhs);rh_CRNG.SeedFixedIntegers(cseeds);
ConjugateGradient<CoarseVector> mrhsCG(1.0e-8,2000,true);
CoarseVector rh_res(CoarseMrhs);
CoarseVector rh_src(CoarseMrhs);
random(rh_CRNG,rh_src);
rh_res= Zero();
mrhsCG(MrhsCoarseOp,rh_src,rh_res);
}
std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage<<std::endl;

View File

@ -0,0 +1,739 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_general_coarse_hdcg.cc
Copyright (C) 2023
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/lattice/PaddedCell.h>
#include <Grid/stencil/GeneralLocalStencil.h>
//#include <Grid/algorithms/GeneralCoarsenedMatrix.h>
#include <Grid/algorithms/iterative/AdefGeneric.h>
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
using namespace std;
using namespace Grid;
template<class Coarsened>
void SaveOperator(Coarsened &Operator,std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacWriter WR(Operator.Grid()->IsBoss());
assert(Operator._A.size()==Operator.geom.npoint);
WR.open(file);
for(int p=0;p<Operator._A.size();p++){
auto tmp = Operator.Cell.Extract(Operator._A[p]);
WR.writeScidacFieldRecord(tmp,record,0,0);
// WR.writeScidacFieldRecord(tmp,record,0,BINARYIO_LEXICOGRAPHIC);
}
WR.close();
#endif
}
template<class Coarsened>
void LoadOperator(Coarsened &Operator,std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
Grid::ScidacReader RD ;
RD.open(file);
assert(Operator._A.size()==Operator.geom.npoint);
for(int p=0;p<Operator.geom.npoint;p++){
conformable(Operator._A[p].Grid(),Operator.CoarseGrid());
// RD.readScidacFieldRecord(Operator._A[p],record,BINARYIO_LEXICOGRAPHIC);
RD.readScidacFieldRecord(Operator._A[p],record,0);
}
RD.close();
Operator.ExchangeCoarseLinks();
#endif
}
template<class Coarsened>
void ReLoadOperator(Coarsened &Operator,std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
Grid::ScidacReader RD ;
RD.open(file);
assert(Operator._A.size()==Operator.geom.npoint);
for(int p=0;p<Operator.geom.npoint;p++){
auto tmp=Operator.Cell.Extract(Operator._A[p]);
RD.readScidacFieldRecord(tmp,record,0);
Operator._A[p] = Operator.Cell.ExchangePeriodic(tmp);
}
RD.close();
#endif
}
template<class aggregation>
void SaveBasis(aggregation &Agg,std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacWriter WR(Agg.FineGrid->IsBoss());
WR.open(file);
for(int b=0;b<Agg.subspace.size();b++){
//WR.writeScidacFieldRecord(Agg.subspace[b],record,0,BINARYIO_LEXICOGRAPHIC);
WR.writeScidacFieldRecord(Agg.subspace[b],record,0,0);
}
WR.close();
#endif
}
template<class aggregation>
void LoadBasis(aggregation &Agg, std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacReader RD ;
RD.open(file);
for(int b=0;b<Agg.subspace.size();b++){
// RD.readScidacFieldRecord(Agg.subspace[b],record,BINARYIO_LEXICOGRAPHIC);
RD.readScidacFieldRecord(Agg.subspace[b],record,0);
}
RD.close();
#endif
}
RealD InverseApproximation(RealD x){
return 1.0/x;
}
// Want Op in CoarsenOp to call MatPcDagMatPc
template<class Field>
class HermOpAdaptor : public LinearOperatorBase<Field>
{
LinearOperatorBase<Field> & wrapped;
public:
HermOpAdaptor(LinearOperatorBase<Field> &wrapme) : wrapped(wrapme) {};
void Op (const Field &in, Field &out) { wrapped.HermOp(in,out); }
void HermOp(const Field &in, Field &out) { wrapped.HermOp(in,out); }
void AdjOp (const Field &in, Field &out){ wrapped.HermOp(in,out); }
void OpDiag (const Field &in, Field &out) { assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out) { assert(0); };
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
};
template<class Field> class ChebyshevSmoother : public LinearFunction<Field>
{
public:
using LinearFunction<Field>::operator();
typedef LinearOperatorBase<Field> FineOperator;
FineOperator & _SmootherOperator;
Chebyshev<Field> Cheby;
ChebyshevSmoother(RealD _lo,RealD _hi,int _ord, FineOperator &SmootherOperator) :
_SmootherOperator(SmootherOperator),
Cheby(_lo,_hi,_ord,InverseApproximation)
{
std::cout << GridLogMessage<<" Chebyshev smoother order "<<_ord<<" ["<<_lo<<","<<_hi<<"]"<<std::endl;
};
void operator() (const Field &in, Field &out)
{
Field tmp(in.Grid());
tmp = in;
Cheby(_SmootherOperator,tmp,out);
}
};
template<class Field> class CGSmoother : public LinearFunction<Field>
{
public:
using LinearFunction<Field>::operator();
typedef LinearOperatorBase<Field> FineOperator;
FineOperator & _SmootherOperator;
int iters;
CGSmoother(int _iters, FineOperator &SmootherOperator) :
_SmootherOperator(SmootherOperator),
iters(_iters)
{
std::cout << GridLogMessage<<" Mirs smoother order "<<iters<<std::endl;
};
void operator() (const Field &in, Field &out)
{
ConjugateGradient<Field> CG(0.0,iters,false); // non-converge is just fine in a smoother
CG(_SmootherOperator,in,out);
}
};
gridblasHandle_t GridBLAS::gridblasHandle;
int GridBLAS::gridblasInit;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
const int Ls=24;
// const int nbasis = 62;
// const int nbasis = 56;
const int nbasis = 36;
const int cb = 0 ;
RealD mass=0.00078;
RealD M5=1.8;
RealD b=1.5;
RealD c=0.5;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
// Construct a coarsened grid with 4^4 cell
Coordinate Block({4,4,6,4});
Coordinate clatt = GridDefaultLatt();
for(int d=0;d<clatt.size();d++){
clatt[d] = clatt[d]/Block[d];
}
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt,
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());;
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
///////////////////////// RNGs /////////////////////////////////
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
std::vector<int> cseeds({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds);
///////////////////////// Configuration /////////////////////////////////
LatticeGaugeField Umu(UGrid);
MemoryManager::Print();
FieldMetaData header;
std::string file("ckpoint_lat.1000");
NerscIO::readConfiguration(Umu,header,file);
MemoryManager::Print();
//////////////////////// Fermion action //////////////////////////////////
MobiusFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c);
SchurDiagMooeeOperator<MobiusFermionD, LatticeFermion> HermOpEO(Ddwf);
typedef HermOpAdaptor<LatticeFermionD> HermFineMatrix;
HermFineMatrix FineHermOp(HermOpEO);
LatticeFermion result(FrbGrid); result=Zero();
LatticeFermion src(FrbGrid); random(RNG5,src);
// Run power method on FineHermOp
PowerMethod<LatticeFermion> PM; PM(HermOpEO,src);
////////////////////////////////////////////////////////////
///////////// Coarse basis and Little Dirac Operator ///////
////////////////////////////////////////////////////////////
typedef GeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LittleDiracOperator;
typedef LittleDiracOperator::CoarseVector CoarseVector;
NextToNextToNextToNearestStencilGeometry5D geom(Coarse5d);
NearestStencilGeometry5D geom_nn(Coarse5d);
// Warning: This routine calls PVdagM.Op, not PVdagM.HermOp
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
Subspace Aggregates(Coarse5d,FrbGrid,cb);
////////////////////////////////////////////////////////////
// Need to check about red-black grid coarsening
////////////////////////////////////////////////////////////
LittleDiracOperator LittleDiracOp(geom,FrbGrid,Coarse5d);
std::string subspace_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.phys48.rat.scidac.62");
std::string refine_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Refine.phys48.rat.scidac.62");
std::string ldop_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/LittleDiracOp.phys48.rat.scidac.62");
bool load_agg=true;
bool load_refine=true;
bool load_mat=false;
MemoryManager::Print();
if ( load_agg ) {
LoadBasis(Aggregates,subspace_file);
} else {
// NBASIS=40
// Best so far: ord 2000 [0.01,95], 500,500 -- 466 iters
// slurm-398626.out:Grid : Message : 141.295253 s : 500 filt [1] <n|MdagM|n> 0.000103622063
//Grid : Message : 33.870465 s : Chebyshev subspace pass-1 : ord 2000 [0.001,95]
//Grid : Message : 33.870485 s : Chebyshev subspace pass-2 : nbasis40 min 1000 step 1000 lo0
//slurm-1482200.out : filt ~ 0.004 -- not as low mode projecting -- took 626 iters
// To try: 2000 [0.1,95] ,2000,500,500 -- slurm-1482213.out 586 iterations
// To try: 2000 [0.01,95] ,2000,500,500 -- 469 (think I bumped 92 to 95) (??)
// To try: 2000 [0.025,95],2000,500,500
// To try: 2000 [0.005,95],2000,500,500
// NBASIS=44 -- HDCG paper was 64 vectors; AMD compiler craps out at 48
// To try: 2000 [0.01,95] ,2000,500,500 -- 419 lowest slurm-1482355.out
// To try: 2000 [0.025,95] ,2000,500,500 -- 487
// To try: 2000 [0.005,95] ,2000,500,500
/*
Smoother [3,92] order 16
slurm-1482355.out:Grid : Message : 35.239686 s : Chebyshev subspace pass-1 : ord 2000 [0.01,95]
slurm-1482355.out:Grid : Message : 35.239714 s : Chebyshev subspace pass-2 : nbasis44 min 500 step 500 lo0
slurm-1482355.out:Grid : Message : 5561.305552 s : HDCG: Pcg converged in 419 iterations and 2616.202598 s
slurm-1482367.out:Grid : Message : 43.157235 s : Chebyshev subspace pass-1 : ord 2000 [0.025,95]
slurm-1482367.out:Grid : Message : 43.157257 s : Chebyshev subspace pass-2 : nbasis44 min 500 step 500 lo0
slurm-1482367.out:Grid : Message : 6169.469330 s : HDCG: Pcg converged in 487 iterations and 3131.185821 s
*/
/*
Aggregates.CreateSubspaceChebyshev(RNG5,HermOpEO,nbasis,
95.0,0.0075,
2500,
500,
500,
0.0);
*/
/*
Aggregates.CreateSubspaceChebyshevPowerLaw(RNG5,HermOpEO,nbasis,
95.0,
2000);
*/
Aggregates.CreateSubspaceMultishift(RNG5,HermOpEO,
0.0003,1.0e-5,2000); // Lo, tol, maxit
/*
Aggregates.CreateSubspaceChebyshev(RNG5,HermOpEO,nbasis,
95.0,0.05,
2000,
500,
500,
0.0);
*/
/*
Aggregates.CreateSubspaceChebyshev(RNG5,HermOpEO,nbasis,
95.0,0.01,
2000,
500,
500,
0.0);
*/
// Aggregates.CreateSubspaceChebyshev(RNG5,HermOpEO,nbasis,95.,0.01,1500); -- running slurm-1484934.out nbasis 56
// Aggregates.CreateSubspaceChebyshev(RNG5,HermOpEO,nbasis,95.,0.01,1500); <== last run
SaveBasis(Aggregates,subspace_file);
}
MemoryManager::Print();
int refine=1;
if(refine){
if ( load_refine ) {
LoadBasis(Aggregates,refine_file);
} else {
// HDCG used Pcg to refine
Aggregates.RefineSubspace(HermOpEO,0.001,1.0e-3,3000);
SaveBasis(Aggregates,refine_file);
}
}
MemoryManager::Print();
Aggregates.Orthogonalise();
if ( load_mat ) {
LoadOperator(LittleDiracOp,ldop_file);
} else {
LittleDiracOp.CoarsenOperator(FineHermOp,Aggregates);
SaveOperator(LittleDiracOp,ldop_file);
}
// I/O test:
CoarseVector c_src(Coarse5d); random(CRNG,c_src);
CoarseVector c_res(Coarse5d);
CoarseVector c_ref(Coarse5d);
// Try projecting to one hop only
// LittleDiracOp.ShiftMatrix(1.0e-4);
LittleDiracOperator LittleDiracOpProj(geom_nn,FrbGrid,Coarse5d);
LittleDiracOpProj.ProjectNearestNeighbour(0.01,LittleDiracOp); // smaller shift 0.02? n
typedef HermitianLinearOperator<LittleDiracOperator,CoarseVector> HermMatrix;
HermMatrix CoarseOp (LittleDiracOp);
HermMatrix CoarseOpProj (LittleDiracOpProj);
MemoryManager::Print();
//////////////////////////////////////////
// Build a coarse lanczos
//////////////////////////////////////////
// Chebyshev<CoarseVector> IRLCheby(0.012,40.0,201); //500 HDCG iters
// int Nk=512; // Didn't save much
// int Nm=640;
// int Nstop=400;
// Chebyshev<CoarseVector> IRLCheby(0.005,40.0,201); //319 HDCG iters @ 128//160 nk.
// int Nk=128;
// int Nm=160;
// Chebyshev<CoarseVector> IRLCheby(0.005,40.0,201); //319 HDCG iters @ 128//160 nk.
Chebyshev<CoarseVector> IRLCheby(0.04,40.0,201); //319 HDCG iters @ 128//160 nk.
int Nk=192;
int Nm=256;
int Nstop=Nk;
// Chebyshev<CoarseVector> IRLCheby(0.010,45.0,201); // 1 iter
FunctionHermOp<CoarseVector> IRLOpCheby(IRLCheby,CoarseOp);
PlainHermOp<CoarseVector> IRLOp (CoarseOp);
ImplicitlyRestartedLanczos<CoarseVector> IRL(IRLOpCheby,IRLOp,Nstop,Nk,Nm,1e-5,10);
int Nconv;
std::vector<RealD> eval(Nm);
std::vector<CoarseVector> evec(Nm,Coarse5d);
PowerMethod<CoarseVector> cPM; cPM(CoarseOp,c_src);
IRL.calc(eval,evec,c_src,Nconv);
DeflatedGuesser<CoarseVector> DeflCoarseGuesser(evec,eval);
//////////////////////////////////////////
// Build a coarse space solver
//////////////////////////////////////////
int maxit=30000;
ConjugateGradient<CoarseVector> CG(1.0e-8,maxit,false);
ConjugateGradient<LatticeFermionD> CGfine(1.0e-8,30000,false);
ZeroGuesser<CoarseVector> CoarseZeroGuesser;
// HPDSolver<CoarseVector> HPDSolve(CoarseOp,CG,CoarseZeroGuesser);
HPDSolver<CoarseVector> HPDSolve(CoarseOp,CG,DeflCoarseGuesser);
c_res=Zero();
// HPDSolve(c_src,c_res); c_ref = c_res;
// std::cout << GridLogMessage<<"src norm "<<norm2(c_src)<<std::endl;
// std::cout << GridLogMessage<<"ref norm "<<norm2(c_ref)<<std::endl;
//////////////////////////////////////////////////////////////////////////
// Deflated (with real op EV's) solve for the projected coarse op
// Work towards ADEF1 in the coarse space
//////////////////////////////////////////////////////////////////////////
HPDSolver<CoarseVector> HPDSolveProj(CoarseOpProj,CG,DeflCoarseGuesser);
c_res=Zero();
// HPDSolveProj(c_src,c_res);
// std::cout << GridLogMessage<<"src norm "<<norm2(c_src)<<std::endl;
// std::cout << GridLogMessage<<"res norm "<<norm2(c_res)<<std::endl;
// c_res = c_res - c_ref;
// std::cout << "Projected solver error "<<norm2(c_res)<<std::endl;
//////////////////////////////////////////////////////////////////////
// Coarse ADEF1 with deflation space
//////////////////////////////////////////////////////////////////////
ChebyshevSmoother<CoarseVector > CoarseSmoother(1.0,37.,8,CoarseOpProj); // just go to sloppy 0.1 convergence
// CoarseSmoother(0.1,37.,8,CoarseOpProj); //
// CoarseSmoother(0.5,37.,6,CoarseOpProj); // 8 iter 0.36s
// CoarseSmoother(0.5,37.,12,CoarseOpProj); // 8 iter, 0.55s
// CoarseSmoother(0.5,37.,8,CoarseOpProj);// 7-9 iter
// CoarseSmoother(1.0,37.,8,CoarseOpProj); // 0.4 - 0.5s solve to 0.04, 7-9 iter
// ChebyshevSmoother<CoarseVector,HermMatrix > CoarseSmoother(0.5,36.,10,CoarseOpProj); // 311
////////////////////////////////////////////////////////
// CG, Cheby mode spacing 200,200
// Unprojected Coarse CG solve to 1e-8 : 190 iters, 4.9s
// Unprojected Coarse CG solve to 4e-2 : 33 iters, 0.8s
// Projected Coarse CG solve to 1e-8 : 100 iters, 0.36s
////////////////////////////////////////////////////////
// CoarseSmoother(1.0,48.,8,CoarseOpProj); 48 evecs
////////////////////////////////////////////////////////
// ADEF1 Coarse solve to 1e-8 : 44 iters, 2.34s 2.1x gain
// ADEF1 Coarse solve to 4e-2 : 7 iters, 0.4s
// HDCG 38 iters 162s
//
// CoarseSmoother(1.0,40.,8,CoarseOpProj); 48 evecs
// ADEF1 Coarse solve to 1e-8 : 37 iters, 2.0s 2.1x gain
// ADEF1 Coarse solve to 4e-2 : 6 iters, 0.36s
// HDCG 38 iters 169s
/*
TwoLevelADEF1defl<CoarseVector>
cADEF1(1.0e-8, 500,
CoarseOp,
CoarseSmoother,
evec,eval);
*/
// c_res=Zero();
// cADEF1(c_src,c_res);
// std::cout << GridLogMessage<<"src norm "<<norm2(c_src)<<std::endl;
// std::cout << GridLogMessage<<"cADEF1 res norm "<<norm2(c_res)<<std::endl;
// c_res = c_res - c_ref;
// std::cout << "cADEF1 solver error "<<norm2(c_res)<<std::endl;
// cADEF1.Tolerance = 4.0e-2;
// cADEF1.Tolerance = 1.0e-1;
// cADEF1.Tolerance = 5.0e-2;
// c_res=Zero();
// cADEF1(c_src,c_res);
// std::cout << GridLogMessage<<"src norm "<<norm2(c_src)<<std::endl;
// std::cout << GridLogMessage<<"cADEF1 res norm "<<norm2(c_res)<<std::endl;
// c_res = c_res - c_ref;
// std::cout << "cADEF1 solver error "<<norm2(c_res)<<std::endl;
//////////////////////////////////////////
// Build a smoother
//////////////////////////////////////////
// ChebyshevSmoother<LatticeFermionD,HermFineMatrix > Smoother(10.0,100.0,10,FineHermOp); //499
// ChebyshevSmoother<LatticeFermionD,HermFineMatrix > Smoother(3.0,100.0,10,FineHermOp); //383
// ChebyshevSmoother<LatticeFermionD,HermFineMatrix > Smoother(1.0,100.0,10,FineHermOp); //328
// std::vector<RealD> los({0.5,1.0,3.0}); // 147/142/146 nbasis 1
// std::vector<RealD> los({1.0,2.0}); // Nbasis 24: 88,86 iterations
// std::vector<RealD> los({2.0,4.0}); // Nbasis 32 == 52, iters
// std::vector<RealD> los({2.0,4.0}); // Nbasis 40 == 36,36 iters
//
// Turns approx 2700 iterations into 340 fine multiplies with Nbasis 40
// Need to measure cost of coarse space.
//
// -- i) Reduce coarse residual -- 0.04
// -- ii) Lanczos on coarse space -- done
// -- iii) Possible 1 hop project and/or preconditioning it - easy - PrecCG it and
// use a limited stencil. Reread BFM code to check on evecs / deflation strategy with prec
//
//
//
//
MemoryManager::Print();
//////////////////////////////////////
// mrhs coarse solve
// Create a higher dim coarse grid
//////////////////////////////////////////////////////////////////////////////////////
ConjugateGradient<CoarseVector> coarseCG(2.0e-2,20000,true);
const int nrhs=vComplex::Nsimd();
Coordinate mpi=GridDefaultMpi();
Coordinate rhMpi ({1,1,mpi[0],mpi[1],mpi[2],mpi[3]});
Coordinate rhLatt({nrhs,1,clatt[0],clatt[1],clatt[2],clatt[3]});
Coordinate rhSimd({vComplex::Nsimd(),1, 1,1,1,1});
GridCartesian *CoarseMrhs = new GridCartesian(rhLatt,rhSimd,rhMpi);
MultiGeneralCoarsenedMatrix mrhs(LittleDiracOp,CoarseMrhs);
typedef decltype(mrhs) MultiGeneralCoarsenedMatrix_t;
typedef HermitianLinearOperator<MultiGeneralCoarsenedMatrix_t,CoarseVector> MrhsHermMatrix;
MrhsHermMatrix MrhsCoarseOp (mrhs);
MemoryManager::Print();
{
CoarseVector rh_res(CoarseMrhs);
CoarseVector rh_guess(CoarseMrhs);
CoarseVector rh_src(CoarseMrhs);
rh_res= Zero();
rh_guess= Zero();
for(int r=0;r<nrhs;r++){
random(CRNG,c_src);
DeflCoarseGuesser(c_src,c_res);
InsertSlice(c_res,rh_res,r,0);
InsertSlice(c_res,rh_guess,r,0);
InsertSlice(c_src,rh_src,r,0);
}
MemoryManager::Print();
coarseCG(MrhsCoarseOp,rh_src,rh_res);
MemoryManager::Print();
//redo with block CG
for(int r=0;r<nrhs;r++){
std::cout << " compare to single RHS "<<r<<"/"<<nrhs<<std::endl;
ExtractSlice(c_src,rh_src,r,0);
ExtractSlice(c_res,rh_res,r,0);
ExtractSlice(c_ref,rh_guess,r,0);
coarseCG(CoarseOp,c_src,c_ref);
std::cout << " mrhs [" <<r <<"] "<< norm2(c_res)<<std::endl;
std::cout << " srhs [" <<r <<"] "<< norm2(c_ref)<<std::endl;
c_ref=c_ref-c_res;
RealD diff =norm2(c_ref)/norm2(c_src);
std::cout << r << " diff " << diff<<std::endl;
assert(diff < 1.0e-1);
}
}
MemoryManager::Print();
//////////////////////////////////////
// fine solve
//////////////////////////////////////
// std::vector<RealD> los({2.0,2.5}); // Nbasis 40 == 36,36 iters
std::vector<RealD> los({2.0}); // Nbasis 40 == 36,36 iters
// std::vector<int> ords({7,8,10}); // Nbasis 40 == 40,38,36 iters (320,342,396 mults)
// std::vector<int> ords({7}); // Nbasis 40 == 40 iters (320 mults)
std::vector<int> ords({9}); // Nbasis 40 == 40 iters (320 mults)
/*
Smoother opt @56 nbasis, 0.04 convergence, 192 evs
ord lo
16 0.1 no converge -- likely sign indefinite
32 0.1 no converge -- likely sign indefinite(?)
16 0.5 422
32 0.5 302
8 1.0 575
12 1.0 449
16 1.0 375
32 1.0 302
12 3.0 476
16 3.0 319
32 3.0 306
Powerlaw setup 62 vecs
slurm-1494943.out:Grid : Message : 4874.186617 s : HDCG: Pcg converged in 171 iterations and 1706.548006 s 1.0 32
slurm-1494943.out:Grid : Message : 6490.121648 s : HDCG: Pcg converged in 194 iterations and 1616.219654 s 1.0 16
Cheby setup: 56vecs
-- CG smoother O(16): 487
Power law setup, 56 vecs -- lambda^-5
slurm-1494383.out:Grid : Message : 4377.173265 s : HDCG: Pcg converged in 204 iterations and 1153.548935 s 1.0 32
Power law setup, 56 vecs -- lambda^-3
slurm-1494242.out:Grid : Message : 4370.464814 s : HDCG: Pcg converged in 204 iterations and 1143.494776 s 1.0 32
slurm-1494242.out:Grid : Message : 5432.414820 s : HDCG: Pcg converged in 237 iterations and 1061.455882 s 1.0 16
slurm-1494242.out:Grid : Message : 6588.727977 s : HDCG: Pcg converged in 205 iterations and 1156.565210 s 0.5 32
Power law setup, 56 vecs -- lambda^-4
-- CG smoother O(16): 290
-- Cheby smoother O(16): 218 -- getting close to the deflation level I expect 169 from BFM paper @O(7) smoother and 64 nbasis
Grid : Message : 2790.797194 s : HDCG: Pcg converged in 190 iterations and 1049.563182 s 1.0 32
Grid : Message : 3766.374396 s : HDCG: Pcg converged in 218 iterations and 975.455668 s 1.0 16
Grid : Message : 4888.746190 s : HDCG: Pcg converged in 191 iterations and 1122.252055 s 0.5 32
Grid : Message : 5956.679661 s : HDCG: Pcg converged in 231 iterations and 1067.812850 s 0.5 16
Grid : Message : 2767.405829 s : HDCG: Pcg converged in 218 iterations and 967.214067 s -- 16
Grid : Message : 3816.165905 s : HDCG: Pcg converged in 251 iterations and 1048.636269 s -- 12
Grid : Message : 5121.206572 s : HDCG: Pcg converged in 318 iterations and 1304.916168 s -- 8
[paboyle@login2.crusher debug]$ grep -v Memory slurm-402426.out | grep converged | grep HDCG -- [1.0,16] cheby
Grid : Message : 5185.521063 s : HDCG: Pcg converged in 377 iterations and 1595.843529 s
[paboyle@login2.crusher debug]$ grep HDCG slurm-402184.out | grep onver
Grid : Message : 3760.438160 s : HDCG: Pcg converged in 422 iterations and 2129.243141 s
Grid : Message : 5660.588015 s : HDCG: Pcg converged in 308 iterations and 1900.026821 s
Grid : Message : 4238.206528 s : HDCG: Pcg converged in 575 iterations and 2657.430676 s
Grid : Message : 6345.880344 s : HDCG: Pcg converged in 449 iterations and 2108.505208 s
grep onverg slurm-401663.out | grep HDCG
Grid : Message : 3900.817781 s : HDCG: Pcg converged in 476 iterations and 1992.591311 s
Grid : Message : 5647.202699 s : HDCG: Pcg converged in 306 iterations and 1746.838660 s
[paboyle@login2.crusher debug]$ grep converged slurm-401775.out | grep HDCG
Grid : Message : 3583.177025 s : HDCG: Pcg converged in 375 iterations and 1800.896037 s
Grid : Message : 5348.342243 s : HDCG: Pcg converged in 302 iterations and 1765.045018 s
Conclusion: higher order smoother is doing better. Much better. Use a Krylov smoother instead Mirs as in BFM version.
*/
//
MemoryManager::Print();
for(int l=0;l<los.size();l++){
RealD lo = los[l];
for(int o=0;o<ords.size();o++){
ConjugateGradient<CoarseVector> CGsloppy(4.0e-2,maxit,false);
HPDSolver<CoarseVector> HPDSolveSloppy(CoarseOp,CGsloppy,DeflCoarseGuesser);
// ChebyshevSmoother<LatticeFermionD,HermFineMatrix > Smoother(lo,92,10,FineHermOp); // 36 best case
ChebyshevSmoother<LatticeFermionD > ChebySmooth(lo,95,ords[o],FineHermOp); // 311
/*
* CG smooth 11 iter:
slurm-403825.out:Grid : Message : 4369.824339 s : HDCG: fPcg converged in 215 iterations 3.0
slurm-403908.out:Grid : Message : 3955.897470 s : HDCG: fPcg converged in 236 iterations 1.0
slurm-404273.out:Grid : Message : 3843.792191 s : HDCG: fPcg converged in 210 iterations 2.0
* CG smooth 9 iter:
*/
//
RealD MirsShift = lo;
ShiftedHermOpLinearOperator<LatticeFermionD> ShiftedFineHermOp(HermOpEO,MirsShift);
CGSmoother<LatticeFermionD> CGsmooth(ords[o],ShiftedFineHermOp) ;
//////////////////////////////////////////
// Build a HDCG solver
//////////////////////////////////////////
/* TwoLevelADEF2<LatticeFermion,CoarseVector,Subspace>
HDCG(1.0e-8, 700,
FineHermOp,
CGsmooth,
HPDSolveSloppy,
HPDSolve,
Aggregates);
result=Zero();
*/
// std::cout << "Calling HDCG"<<std::endl;
// HDCG(src,result);
//////////////////////////////////////////
// Build a HDCG mrhs solver
//////////////////////////////////////////
MemoryManager::Print();
DoNothingGuesser<CoarseVector> DoNothing;
HPDSolver<CoarseVector> HPDSolveMrhs(MrhsCoarseOp,coarseCG,DoNothing);
TwoLevelADEF2mrhs<LatticeFermion,CoarseVector,Subspace>
HDCGmrhs(1.0e-8, 700,
FineHermOp,
CGsmooth,
HPDSolveSloppy, // Never used
HPDSolve, // Used in Vstart
HPDSolveMrhs, // Used in M1
DeflCoarseGuesser, // single RHS guess used in M1
CoarseMrhs, // Grid needed to Mrhs grid
Aggregates);
MemoryManager::Print();
std::cout << "Calling mRHS HDCG"<<std::endl;
FrbGrid->Barrier();
MemoryManager::Print();
std::vector<LatticeFermionD> src_mrhs(nrhs,FrbGrid);
std::vector<LatticeFermionD> res_mrhs(nrhs,FrbGrid);
MemoryManager::Print();
for(int r=0;r<nrhs;r++){
random(RNG5,src_mrhs[r]);
res_mrhs[r]=Zero();
std::cout << "Setup mrhs source "<<r<<std::endl;
}
std::cout << "Calling the mRHS HDCG"<<std::endl;
MemoryManager::Print();
HDCGmrhs(src_mrhs,res_mrhs);
MemoryManager::Print();
}
}
// Standard CG
result=Zero();
CGfine(HermOpEO, src, result);
Grid_finalize();
return 0;
}