1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-24 02:32:02 +01:00

Compare commits

..

2 Commits

56 changed files with 857 additions and 3402 deletions

View File

@ -114,6 +114,11 @@ private:
static uint64_t HostToDeviceXfer;
static uint64_t DeviceToHostXfer;
static uint64_t DeviceAccesses;
static uint64_t HostAccesses;
static uint64_t DeviceAccessBytes;
static uint64_t HostAccessBytes;
private:
#ifndef GRID_UVM
//////////////////////////////////////////////////////////////////////
@ -152,6 +157,7 @@ private:
// static void LRUupdate(AcceleratorViewEntry &AccCache);
static void LRUinsert(AcceleratorViewEntry &AccCache);
static void LRUinsertback(AcceleratorViewEntry &AccCache);
static void LRUremove(AcceleratorViewEntry &AccCache);
// manage entries in the table

View File

@ -23,6 +23,11 @@ uint64_t MemoryManager::HostToDeviceBytes;
uint64_t MemoryManager::DeviceToHostBytes;
uint64_t MemoryManager::HostToDeviceXfer;
uint64_t MemoryManager::DeviceToHostXfer;
uint64_t MemoryManager::DeviceAccesses;
uint64_t MemoryManager::HostAccesses;
uint64_t MemoryManager::DeviceAccessBytes;
uint64_t MemoryManager::HostAccessBytes;
////////////////////////////////////
// Priority ordering for unlocked entries
@ -86,6 +91,14 @@ void MemoryManager::LRUinsert(AcceleratorViewEntry &AccCache)
AccCache.LRU_valid = 1;
DeviceLRUBytes+=AccCache.bytes;
}
void MemoryManager::LRUinsertback(AcceleratorViewEntry &AccCache)
{
assert(AccCache.LRU_valid==0);
LRU.push_back(AccCache.CpuPtr);
AccCache.LRU_entry = --LRU.end();
AccCache.LRU_valid = 1;
DeviceLRUBytes+=AccCache.bytes;
}
void MemoryManager::LRUremove(AcceleratorViewEntry &AccCache)
{
assert(AccCache.LRU_valid==1);
@ -129,6 +142,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
dprintf("MemoryManager: Evict(%llx) %llx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
assert(AccCache.accLock==0);
assert(AccCache.cpuLock==0);
if(AccCache.state==AccDirty) {
Flush(AccCache);
}
@ -231,6 +245,9 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
EntryCreate(CpuPtr,bytes,mode,hint);
}
DeviceAccesses++;
DeviceAccessBytes+=bytes;
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
if (!AccCache.AccPtr) {
@ -349,6 +366,10 @@ void MemoryManager::CpuViewClose(uint64_t CpuPtr)
assert(AccCache.accLock==0);
AccCache.cpuLock--;
if(AccCache.cpuLock==0) {
LRUinsertback(AccCache);
}
}
/*
* Action State StateNext Flush Clone
@ -371,6 +392,9 @@ uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,V
EntryCreate(CpuPtr,bytes,mode,transient);
}
HostAccesses++;
HostAccessBytes+=bytes;
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
@ -416,6 +440,12 @@ uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,V
AccCache.transient= transient? EvictNext : 0;
// If view is opened on host remove from LRU
// Host close says evict next from device
if(AccCache.LRU_valid==1){
LRUremove(AccCache);
}
return AccCache.CpuPtr;
}
void MemoryManager::NotifyDeletion(void *_ptr)

View File

@ -12,6 +12,10 @@ uint64_t MemoryManager::HostToDeviceBytes;
uint64_t MemoryManager::DeviceToHostBytes;
uint64_t MemoryManager::HostToDeviceXfer;
uint64_t MemoryManager::DeviceToHostXfer;
uint64_t MemoryManager::DeviceAccesses;
uint64_t MemoryManager::HostAccesses;
uint64_t MemoryManager::DeviceAccessBytes;
uint64_t MemoryManager::HostAccessBytes;
void MemoryManager::ViewClose(void* AccPtr,ViewMode mode){};
void *MemoryManager::ViewOpen(void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint){ return CpuPtr; };

View File

@ -53,11 +53,10 @@ public:
// Communicator should know nothing of the physics grid, only processor grid.
////////////////////////////////////////////
int _Nprocessors; // How many in all
int _processor; // linear processor rank
unsigned long _ndimension;
Coordinate _shm_processors; // Which dimensions get relayed out over processors lanes.
Coordinate _processors; // Which dimensions get relayed out over processors lanes.
int _processor; // linear processor rank
Coordinate _processor_coor; // linear processor coordinate
unsigned long _ndimension;
static Grid_MPI_Comm communicator_world;
Grid_MPI_Comm communicator;
std::vector<Grid_MPI_Comm> communicator_halo;
@ -98,9 +97,8 @@ public:
int BossRank(void) ;
int ThisRank(void) ;
const Coordinate & ThisProcessorCoor(void) ;
const Coordinate & ShmGrid(void) { return _shm_processors; } ;
const Coordinate & ProcessorGrid(void) ;
int ProcessorCount(void) ;
int ProcessorCount(void) ;
////////////////////////////////////////////////////////////////////////////////
// very VERY rarely (Log, serial RNG) we need world without a grid
@ -144,16 +142,16 @@ public:
int bytes);
double StencilSendToRecvFrom(void *xmit,
int xmit_to_rank,int do_xmit,
int xmit_to_rank,
void *recv,
int recv_from_rank,int do_recv,
int recv_from_rank,
int bytes,int dir);
double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,int do_xmit,
int xmit_to_rank,
void *recv,
int recv_from_rank,int do_recv,
int recv_from_rank,
int bytes,int dir);

View File

@ -106,7 +106,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
// Remap using the shared memory optimising routine
// The remap creates a comm which must be freed
////////////////////////////////////////////////////
GlobalSharedMemory::OptimalCommunicator (processors,optimal_comm,_shm_processors);
GlobalSharedMemory::OptimalCommunicator (processors,optimal_comm);
InitFromMPICommunicator(processors,optimal_comm);
SetCommunicator(optimal_comm);
///////////////////////////////////////////////////
@ -124,13 +124,12 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
int parent_ndimension = parent._ndimension; assert(_ndimension >= parent._ndimension);
Coordinate parent_processor_coor(_ndimension,0);
Coordinate parent_processors (_ndimension,1);
Coordinate shm_processors (_ndimension,1);
// Can make 5d grid from 4d etc...
int pad = _ndimension-parent_ndimension;
for(int d=0;d<parent_ndimension;d++){
parent_processor_coor[pad+d]=parent._processor_coor[d];
parent_processors [pad+d]=parent._processors[d];
shm_processors [pad+d]=parent._shm_processors[d];
}
//////////////////////////////////////////////////////////////////////////////////////////////////////
@ -155,7 +154,6 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
ccoor[d] = parent_processor_coor[d] % processors[d];
scoor[d] = parent_processor_coor[d] / processors[d];
ssize[d] = parent_processors[d] / processors[d];
if ( processors[d] < shm_processors[d] ) shm_processors[d] = processors[d]; // subnode splitting.
}
// rank within subcomm ; srank is rank of subcomm within blocks of subcomms
@ -337,22 +335,22 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
}
// Basic Halo comms primitive
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
int dest, int dox,
int dest,
void *recv,
int from, int dor,
int from,
int bytes,int dir)
{
std::vector<CommsRequest_t> list;
double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,dir);
double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,recv,from,bytes,dir);
StencilSendToRecvFromComplete(list,dir);
return offbytes;
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,int dox,
int dest,
void *recv,
int from,int dor,
int from,
int bytes,int dir)
{
int ncomm =communicator_halo.size();
@ -372,30 +370,26 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
double off_node_bytes=0.0;
int tag;
if ( dox ) {
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+from*32;
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
assert(ierr==0);
list.push_back(rrq);
off_node_bytes+=bytes;
}
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+from*32;
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
assert(ierr==0);
list.push_back(rrq);
off_node_bytes+=bytes;
}
if (dor) {
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+_processor*32;
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
assert(ierr==0);
list.push_back(xrq);
off_node_bytes+=bytes;
} else {
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+_processor*32;
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
assert(ierr==0);
list.push_back(xrq);
off_node_bytes+=bytes;
} else {
// TODO : make a OMP loop on CPU, call threaded bcopy
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
assert(shm!=NULL);
// std::cout <<"acceleratorCopyDeviceToDeviceAsynch"<< std::endl;
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,bytes);
}
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
assert(shm!=NULL);
// std::cout <<"acceleratorCopyDeviceToDeviceAsynch"<< std::endl;
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,bytes);
}
if ( CommunicatorPolicy == CommunicatorPolicySequential ) {

View File

@ -45,14 +45,12 @@ void CartesianCommunicator::Init(int *argc, char *** arv)
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)
: CartesianCommunicator(processors)
{
_shm_processors = Coordinate(processors.size(),1);
srank=0;
SetCommunicator(communicator_world);
}
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
{
_shm_processors = Coordinate(processors.size(),1);
_processors = processors;
_ndimension = processors.size(); assert(_ndimension>=1);
_processor_coor.resize(_ndimension);
@ -113,18 +111,18 @@ void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest
}
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
int xmit_to_rank,int dox,
int xmit_to_rank,
void *recv,
int recv_from_rank,int dor,
int recv_from_rank,
int bytes, int dir)
{
return 2.0*bytes;
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,int dox,
int xmit_to_rank,
void *recv,
int recv_from_rank,int dor,
int recv_from_rank,
int bytes, int dir)
{
return 2.0*bytes;

View File

@ -93,10 +93,9 @@ public:
// Create an optimal reordered communicator that makes MPI_Cart_create get it right
//////////////////////////////////////////////////////////////////////////////////////
static void Init(Grid_MPI_Comm comm); // Typically MPI_COMM_WORLD
// Turns MPI_COMM_WORLD into right layout for Cartesian
static void OptimalCommunicator (const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims);
static void OptimalCommunicatorHypercube (const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims);
static void OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims);
static void OptimalCommunicator (const Coordinate &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
static void OptimalCommunicatorHypercube (const Coordinate &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
static void OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
static void GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims);
///////////////////////////////////////////////////
// Provide shared memory facilities off comm world

View File

@ -152,7 +152,7 @@ int Log2Size(int TwoToPower,int MAXLOG2)
}
return log2size;
}
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
{
//////////////////////////////////////////////////////////////////////////////
// Look and see if it looks like an HPE 8600 based on hostname conventions
@ -165,8 +165,8 @@ void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_M
gethostname(name,namelen);
int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ;
if(nscan==3 && HPEhypercube ) OptimalCommunicatorHypercube(processors,optimal_comm,SHM);
else OptimalCommunicatorSharedMemory(processors,optimal_comm,SHM);
if(nscan==3 && HPEhypercube ) OptimalCommunicatorHypercube(processors,optimal_comm);
else OptimalCommunicatorSharedMemory(processors,optimal_comm);
}
static inline int divides(int a,int b)
{
@ -221,7 +221,7 @@ void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmD
dim=(dim+1) %ndimension;
}
}
void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
{
////////////////////////////////////////////////////////////////
// Assert power of two shm_size.
@ -294,7 +294,6 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
Coordinate HyperCoor(ndimension);
GetShmDims(WorldDims,ShmDims);
SHM = ShmDims;
////////////////////////////////////////////////////////////////
// Establish torus of processes and nodes with sub-blockings
@ -342,7 +341,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
assert(ierr==0);
}
void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
{
////////////////////////////////////////////////////////////////
// Identify subblock of ranks on node spreading across dims
@ -354,8 +353,6 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
Coordinate ShmCoor(ndimension); Coordinate NodeCoor(ndimension); Coordinate WorldCoor(ndimension);
GetShmDims(WorldDims,ShmDims);
SHM=ShmDims;
////////////////////////////////////////////////////////////////
// Establish torus of processes and nodes with sub-blockings
////////////////////////////////////////////////////////////////

View File

@ -48,10 +48,9 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
_ShmSetup=1;
}
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
{
optimal_comm = WorldComm;
SHM = Coordinate(processors.size(),1);
}
////////////////////////////////////////////////////////////////////////////////////////////

View File

@ -46,4 +46,3 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/lattice/Lattice_unary.h>
#include <Grid/lattice/Lattice_transfer.h>
#include <Grid/lattice/Lattice_basis.h>
#include <Grid/lattice/Lattice_crc.h>

View File

@ -1,55 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_crc.h
Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template<class vobj> void DumpSliceNorm(std::string s,Lattice<vobj> &f,int mu=-1)
{
auto ff = localNorm2(f);
if ( mu==-1 ) mu = f.Grid()->Nd()-1;
typedef typename vobj::tensor_reduced normtype;
typedef typename normtype::scalar_object scalar;
std::vector<scalar> sff;
sliceSum(ff,sff,mu);
for(int t=0;t<sff.size();t++){
std::cout << s<<" "<<t<<" "<<sff[t]<<std::endl;
}
}
template<class vobj> uint32_t crc(Lattice<vobj> & buf)
{
autoView( buf_v , buf, CpuRead);
return ::crc32(0L,(unsigned char *)&buf_v[0],(size_t)sizeof(vobj)*buf.oSites());
}
#define CRC(U) std::cout << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
NAMESPACE_END(Grid);

View File

@ -69,7 +69,6 @@ GridLogger GridLogDebug (1, "Debug", GridLogColours, "PURPLE");
GridLogger GridLogPerformance(1, "Performance", GridLogColours, "GREEN");
GridLogger GridLogIterative (1, "Iterative", GridLogColours, "BLUE");
GridLogger GridLogIntegrator (1, "Integrator", GridLogColours, "BLUE");
GridLogger GridLogHMC (1, "HMC", GridLogColours, "BLUE");
void GridLogConfigure(std::vector<std::string> &logstreams) {
GridLogError.Active(0);
@ -80,7 +79,6 @@ void GridLogConfigure(std::vector<std::string> &logstreams) {
GridLogPerformance.Active(0);
GridLogIntegrator.Active(1);
GridLogColours.Active(0);
GridLogHMC.Active(1);
for (int i = 0; i < logstreams.size(); i++) {
if (logstreams[i] == std::string("Error")) GridLogError.Active(1);
@ -89,8 +87,7 @@ void GridLogConfigure(std::vector<std::string> &logstreams) {
if (logstreams[i] == std::string("Iterative")) GridLogIterative.Active(1);
if (logstreams[i] == std::string("Debug")) GridLogDebug.Active(1);
if (logstreams[i] == std::string("Performance")) GridLogPerformance.Active(1);
if (logstreams[i] == std::string("NoIntegrator")) GridLogIntegrator.Active(0);
if (logstreams[i] == std::string("NoHMC")) GridLogHMC.Active(0);
if (logstreams[i] == std::string("Integrator")) GridLogIntegrator.Active(1);
if (logstreams[i] == std::string("Colours")) GridLogColours.Active(1);
}
}

View File

@ -182,7 +182,6 @@ extern GridLogger GridLogDebug ;
extern GridLogger GridLogPerformance;
extern GridLogger GridLogIterative ;
extern GridLogger GridLogIntegrator ;
extern GridLogger GridLogHMC;
extern Colours GridLogColours;
std::string demangle(const char* name) ;

View File

@ -40,29 +40,6 @@ class Action
public:
bool is_smeared = false;
RealD deriv_norm_sum;
RealD deriv_max_sum;
int deriv_num;
RealD deriv_us;
RealD S_us;
RealD refresh_us;
void reset_timer(void) {
deriv_us = S_us = refresh_us = 0.0;
deriv_num=0;
deriv_norm_sum = deriv_max_sum=0.0;
}
void deriv_log(RealD nrm, RealD max) { deriv_max_sum+=max; deriv_norm_sum+=nrm; deriv_num++;}
RealD deriv_max_average(void) { return deriv_max_sum/deriv_num; };
RealD deriv_norm_average(void) { return deriv_norm_sum/deriv_num; };
RealD deriv_timer(void) { return deriv_us; };
RealD S_timer(void) { return deriv_us; };
RealD refresh_timer(void) { return deriv_us; };
void deriv_timer_start(void) { deriv_us-=usecond(); }
void deriv_timer_stop(void) { deriv_us+=usecond(); }
void refresh_timer_start(void) { refresh_us-=usecond(); }
void refresh_timer_stop(void) { refresh_us+=usecond(); }
void S_timer_start(void) { S_us-=usecond(); }
void S_timer_stop(void) { S_us+=usecond(); }
// Heatbath?
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) = 0; // refresh pseudofermions
virtual RealD S(const GaugeField& U) = 0; // evaluate the action

View File

@ -37,10 +37,6 @@ NAMESPACE_CHECK(ActionSet);
#include <Grid/qcd/action/ActionParams.h>
NAMESPACE_CHECK(ActionParams);
#include <Grid/qcd/action/filters/MomentumFilter.h>
#include <Grid/qcd/action/filters/DirichletFilter.h>
#include <Grid/qcd/action/filters/DDHMCFilter.h>
////////////////////////////////////////////
// Gauge Actions
////////////////////////////////////////////

View File

@ -1,240 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/CompactWilsonCloverFermion.h
Copyright (C) 2020 - 2022
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
Author: Nils Meyer <nils.meyer@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/qcd/action/fermion/WilsonCloverTypes.h>
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
NAMESPACE_BEGIN(Grid);
// see Grid/qcd/action/fermion/WilsonCloverFermion.h for description
//
// Modifications done here:
//
// Original: clover term = 12x12 matrix per site
//
// But: Only two diagonal 6x6 hermitian blocks are non-zero (also true for original, verified by running)
// Sufficient to store/transfer only the real parts of the diagonal and one triangular part
// 2 * (6 + 15 * 2) = 72 real or 36 complex words to be stored/transfered
//
// Here: Above but diagonal as complex numbers, i.e., need to store/transfer
// 2 * (6 * 2 + 15 * 2) = 84 real or 42 complex words
//
// Words per site and improvement compared to original (combined with the input and output spinors):
//
// - Original: 2*12 + 12*12 = 168 words -> 1.00 x less
// - Minimal: 2*12 + 36 = 60 words -> 2.80 x less
// - Here: 2*12 + 42 = 66 words -> 2.55 x less
//
// These improvements directly translate to wall-clock time
//
// Data layout:
//
// - diagonal and triangle part as separate lattice fields,
// this was faster than as 1 combined field on all tested machines
// - diagonal: as expected
// - triangle: store upper right triangle in row major order
// - graphical:
// 0 1 2 3 4
// 5 6 7 8
// 9 10 11 = upper right triangle indices
// 12 13
// 14
// 0
// 1
// 2
// 3 = diagonal indices
// 4
// 5
// 0
// 1 5
// 2 6 9 = lower left triangle indices
// 3 7 10 12
// 4 8 11 13 14
//
// Impact on total memory consumption:
// - Original: (2 * 1 + 8 * 1/2) 12x12 matrices = 6 12x12 matrices = 864 complex words per site
// - Here: (2 * 1 + 4 * 1/2) diagonal parts = 4 diagonal parts = 24 complex words per site
// + (2 * 1 + 4 * 1/2) triangle parts = 4 triangle parts = 60 complex words per site
// = 84 complex words per site
template<class Impl>
class CompactWilsonCloverFermion : public WilsonFermion<Impl>,
public WilsonCloverHelpers<Impl>,
public CompactWilsonCloverHelpers<Impl> {
/////////////////////////////////////////////
// Sizes
/////////////////////////////////////////////
public:
INHERIT_COMPACT_CLOVER_SIZES(Impl);
/////////////////////////////////////////////
// Type definitions
/////////////////////////////////////////////
public:
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
INHERIT_COMPACT_CLOVER_TYPES(Impl);
typedef WilsonFermion<Impl> WilsonBase;
typedef WilsonCloverHelpers<Impl> Helpers;
typedef CompactWilsonCloverHelpers<Impl> CompactHelpers;
/////////////////////////////////////////////
// Constructors
/////////////////////////////////////////////
public:
CompactWilsonCloverFermion(GaugeField& _Umu,
GridCartesian& Fgrid,
GridRedBlackCartesian& Hgrid,
const RealD _mass,
const RealD _csw_r = 0.0,
const RealD _csw_t = 0.0,
const RealD _cF = 1.0,
const WilsonAnisotropyCoefficients& clover_anisotropy = WilsonAnisotropyCoefficients(),
const ImplParams& impl_p = ImplParams());
/////////////////////////////////////////////
// Member functions (implementing interface)
/////////////////////////////////////////////
public:
virtual void Instantiatable() {};
int ConstEE() override { return 0; };
int isTrivialEE() override { return 0; };
void Dhop(const FermionField& in, FermionField& out, int dag) override;
void DhopOE(const FermionField& in, FermionField& out, int dag) override;
void DhopEO(const FermionField& in, FermionField& out, int dag) override;
void DhopDir(const FermionField& in, FermionField& out, int dir, int disp) override;
void DhopDirAll(const FermionField& in, std::vector<FermionField>& out) /* override */;
void M(const FermionField& in, FermionField& out) override;
void Mdag(const FermionField& in, FermionField& out) override;
void Meooe(const FermionField& in, FermionField& out) override;
void MeooeDag(const FermionField& in, FermionField& out) override;
void Mooee(const FermionField& in, FermionField& out) override;
void MooeeDag(const FermionField& in, FermionField& out) override;
void MooeeInv(const FermionField& in, FermionField& out) override;
void MooeeInvDag(const FermionField& in, FermionField& out) override;
void Mdir(const FermionField& in, FermionField& out, int dir, int disp) override;
void MdirAll(const FermionField& in, std::vector<FermionField>& out) override;
void MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) override;
void MooDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override;
void MeeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override;
/////////////////////////////////////////////
// Member functions (internals)
/////////////////////////////////////////////
void MooeeInternal(const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle);
/////////////////////////////////////////////
// Helpers
/////////////////////////////////////////////
void ImportGauge(const GaugeField& _Umu) override;
/////////////////////////////////////////////
// Helpers
/////////////////////////////////////////////
private:
template<class Field>
const MaskField* getCorrectMaskField(const Field &in) const {
if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) {
return &this->BoundaryMaskOdd;
} else {
return &this->BoundaryMaskEven;
}
} else {
return &this->BoundaryMask;
}
}
template<class Field>
void ApplyBoundaryMask(Field& f) {
const MaskField* m = getCorrectMaskField(f); assert(m != nullptr);
assert(m != nullptr);
CompactHelpers::ApplyBoundaryMask(f, *m);
}
/////////////////////////////////////////////
// Member Data
/////////////////////////////////////////////
public:
RealD csw_r;
RealD csw_t;
RealD cF;
bool open_boundaries;
CloverDiagonalField Diagonal, DiagonalEven, DiagonalOdd;
CloverDiagonalField DiagonalInv, DiagonalInvEven, DiagonalInvOdd;
CloverTriangleField Triangle, TriangleEven, TriangleOdd;
CloverTriangleField TriangleInv, TriangleInvEven, TriangleInvOdd;
FermionField Tmp;
MaskField BoundaryMask, BoundaryMaskEven, BoundaryMaskOdd;
};
NAMESPACE_END(Grid);

View File

@ -53,7 +53,6 @@ NAMESPACE_CHECK(Wilson);
#include <Grid/qcd/action/fermion/WilsonTMFermion.h> // 4d wilson like
NAMESPACE_CHECK(WilsonTM);
#include <Grid/qcd/action/fermion/WilsonCloverFermion.h> // 4d wilson clover fermions
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h> // 4d compact wilson clover fermions
NAMESPACE_CHECK(WilsonClover);
#include <Grid/qcd/action/fermion/WilsonFermion5D.h> // 5d base used by all 5d overlap types
NAMESPACE_CHECK(Wilson5D);
@ -154,23 +153,6 @@ typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplR> WilsonCloverTwoInd
typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonCloverTwoIndexAntiSymmetricFermionF;
typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiSymmetricFermionD;
// Compact Clover fermions
typedef CompactWilsonCloverFermion<WilsonImplR> CompactWilsonCloverFermionR;
typedef CompactWilsonCloverFermion<WilsonImplF> CompactWilsonCloverFermionF;
typedef CompactWilsonCloverFermion<WilsonImplD> CompactWilsonCloverFermionD;
typedef CompactWilsonCloverFermion<WilsonAdjImplR> CompactWilsonCloverAdjFermionR;
typedef CompactWilsonCloverFermion<WilsonAdjImplF> CompactWilsonCloverAdjFermionF;
typedef CompactWilsonCloverFermion<WilsonAdjImplD> CompactWilsonCloverAdjFermionD;
typedef CompactWilsonCloverFermion<WilsonTwoIndexSymmetricImplR> CompactWilsonCloverTwoIndexSymmetricFermionR;
typedef CompactWilsonCloverFermion<WilsonTwoIndexSymmetricImplF> CompactWilsonCloverTwoIndexSymmetricFermionF;
typedef CompactWilsonCloverFermion<WilsonTwoIndexSymmetricImplD> CompactWilsonCloverTwoIndexSymmetricFermionD;
typedef CompactWilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplR> CompactWilsonCloverTwoIndexAntiSymmetricFermionR;
typedef CompactWilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplF> CompactWilsonCloverTwoIndexAntiSymmetricFermionF;
typedef CompactWilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplD> CompactWilsonCloverTwoIndexAntiSymmetricFermionD;
// Domain Wall fermions
typedef DomainWallFermion<WilsonImplR> DomainWallFermionR;
typedef DomainWallFermion<WilsonImplF> DomainWallFermionF;

View File

@ -49,8 +49,6 @@ public:
virtual FermionField &tmp(void) = 0;
virtual void DirichletBlock(Coordinate & _Block) { assert(0); };
GridBase * Grid(void) { return FermionGrid(); }; // this is all the linalg routines need to know
GridBase * RedBlackGrid(void) { return FermionRedBlackGrid(); };

View File

@ -4,11 +4,10 @@
Source file: ./lib/qcd/action/fermion/WilsonCloverFermion.h
Copyright (C) 2017 - 2022
Copyright (C) 2017
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: David Preti <>
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -30,8 +29,7 @@
#pragma once
#include <Grid/qcd/action/fermion/WilsonCloverTypes.h>
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
#include <Grid/Grid.h>
NAMESPACE_BEGIN(Grid);
@ -52,15 +50,18 @@ NAMESPACE_BEGIN(Grid);
//////////////////////////////////////////////////////////////////
template <class Impl>
class WilsonCloverFermion : public WilsonFermion<Impl>,
public WilsonCloverHelpers<Impl>
class WilsonCloverFermion : public WilsonFermion<Impl>
{
public:
// Types definitions
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
template <typename vtype>
using iImplClover = iScalar<iMatrix<iMatrix<vtype, Impl::Dimension>, Ns>>;
typedef iImplClover<Simd> SiteCloverType;
typedef Lattice<SiteCloverType> CloverFieldType;
typedef WilsonFermion<Impl> WilsonBase;
typedef WilsonCloverHelpers<Impl> Helpers;
public:
typedef WilsonFermion<Impl> WilsonBase;
virtual int ConstEE(void) { return 0; };
virtual void Instantiatable(void){};
@ -71,7 +72,42 @@ public:
const RealD _csw_r = 0.0,
const RealD _csw_t = 0.0,
const WilsonAnisotropyCoefficients &clover_anisotropy = WilsonAnisotropyCoefficients(),
const ImplParams &impl_p = ImplParams());
const ImplParams &impl_p = ImplParams()) : WilsonFermion<Impl>(_Umu,
Fgrid,
Hgrid,
_mass, impl_p, clover_anisotropy),
CloverTerm(&Fgrid),
CloverTermInv(&Fgrid),
CloverTermEven(&Hgrid),
CloverTermOdd(&Hgrid),
CloverTermInvEven(&Hgrid),
CloverTermInvOdd(&Hgrid),
CloverTermDagEven(&Hgrid),
CloverTermDagOdd(&Hgrid),
CloverTermInvDagEven(&Hgrid),
CloverTermInvDagOdd(&Hgrid)
{
assert(Nd == 4); // require 4 dimensions
if (clover_anisotropy.isAnisotropic)
{
csw_r = _csw_r * 0.5 / clover_anisotropy.xi_0;
diag_mass = _mass + 1.0 + (Nd - 1) * (clover_anisotropy.nu / clover_anisotropy.xi_0);
}
else
{
csw_r = _csw_r * 0.5;
diag_mass = 4.0 + _mass;
}
csw_t = _csw_t * 0.5;
if (csw_r == 0)
std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_r = 0" << std::endl;
if (csw_t == 0)
std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_t = 0" << std::endl;
ImportGauge(_Umu);
}
virtual void M(const FermionField &in, FermionField &out);
virtual void Mdag(const FermionField &in, FermionField &out);
@ -88,21 +124,250 @@ public:
void ImportGauge(const GaugeField &_Umu);
// Derivative parts unpreconditioned pseudofermions
void MDeriv(GaugeField &force, const FermionField &X, const FermionField &Y, int dag);
void MDeriv(GaugeField &force, const FermionField &X, const FermionField &Y, int dag)
{
conformable(X.Grid(), Y.Grid());
conformable(X.Grid(), force.Grid());
GaugeLinkField force_mu(force.Grid()), lambda(force.Grid());
GaugeField clover_force(force.Grid());
PropagatorField Lambda(force.Grid());
public:
// Guido: Here we are hitting some performance issues:
// need to extract the components of the DoubledGaugeField
// for each call
// Possible solution
// Create a vector object to store them? (cons: wasting space)
std::vector<GaugeLinkField> U(Nd, this->Umu.Grid());
Impl::extractLinkField(U, this->Umu);
force = Zero();
// Derivative of the Wilson hopping term
this->DhopDeriv(force, X, Y, dag);
///////////////////////////////////////////////////////////
// Clover term derivative
///////////////////////////////////////////////////////////
Impl::outerProductImpl(Lambda, X, Y);
//std::cout << "Lambda:" << Lambda << std::endl;
Gamma::Algebra sigma[] = {
Gamma::Algebra::SigmaXY,
Gamma::Algebra::SigmaXZ,
Gamma::Algebra::SigmaXT,
Gamma::Algebra::MinusSigmaXY,
Gamma::Algebra::SigmaYZ,
Gamma::Algebra::SigmaYT,
Gamma::Algebra::MinusSigmaXZ,
Gamma::Algebra::MinusSigmaYZ,
Gamma::Algebra::SigmaZT,
Gamma::Algebra::MinusSigmaXT,
Gamma::Algebra::MinusSigmaYT,
Gamma::Algebra::MinusSigmaZT};
/*
sigma_{\mu \nu}=
| 0 sigma[0] sigma[1] sigma[2] |
| sigma[3] 0 sigma[4] sigma[5] |
| sigma[6] sigma[7] 0 sigma[8] |
| sigma[9] sigma[10] sigma[11] 0 |
*/
int count = 0;
clover_force = Zero();
for (int mu = 0; mu < 4; mu++)
{
force_mu = Zero();
for (int nu = 0; nu < 4; nu++)
{
if (mu == nu)
continue;
RealD factor;
if (nu == 4 || mu == 4)
{
factor = 2.0 * csw_t;
}
else
{
factor = 2.0 * csw_r;
}
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
force_mu -= factor*Cmunu(U, lambda, mu, nu); // checked
count++;
}
pokeLorentz(clover_force, U[mu] * force_mu, mu);
}
//clover_force *= csw;
force += clover_force;
}
// Computing C_{\mu \nu}(x) as in Eq.(B.39) in Zbigniew Sroczynski's PhD thesis
GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu)
{
conformable(lambda.Grid(), U[0].Grid());
GaugeLinkField out(lambda.Grid()), tmp(lambda.Grid());
// insertion in upper staple
// please check redundancy of shift operations
// C1+
tmp = lambda * U[nu];
out = Impl::ShiftStaple(Impl::CovShiftForward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
// C2+
tmp = U[mu] * Impl::ShiftStaple(adj(lambda), mu);
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(tmp, mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
// C3+
tmp = U[nu] * Impl::ShiftStaple(adj(lambda), nu);
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(tmp, nu))), mu);
// C4+
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu) * lambda;
// insertion in lower staple
// C1-
out -= Impl::ShiftStaple(lambda, mu) * Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu);
// C2-
tmp = adj(lambda) * U[nu];
out -= Impl::ShiftStaple(Impl::CovShiftBackward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu);
// C3-
tmp = lambda * U[nu];
out -= Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, tmp)), mu);
// C4-
out -= Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu) * lambda;
return out;
}
protected:
// here fixing the 4 dimensions, make it more general?
RealD csw_r; // Clover coefficient - spatial
RealD csw_t; // Clover coefficient - temporal
RealD diag_mass; // Mass term
CloverField CloverTerm, CloverTermInv; // Clover term
CloverField CloverTermEven, CloverTermOdd; // Clover term EO
CloverField CloverTermInvEven, CloverTermInvOdd; // Clover term Inv EO
CloverField CloverTermDagEven, CloverTermDagOdd; // Clover term Dag EO
CloverField CloverTermInvDagEven, CloverTermInvDagOdd; // Clover term Inv Dag EO
};
CloverFieldType CloverTerm, CloverTermInv; // Clover term
CloverFieldType CloverTermEven, CloverTermOdd; // Clover term EO
CloverFieldType CloverTermInvEven, CloverTermInvOdd; // Clover term Inv EO
CloverFieldType CloverTermDagEven, CloverTermDagOdd; // Clover term Dag EO
CloverFieldType CloverTermInvDagEven, CloverTermInvDagOdd; // Clover term Inv Dag EO
public:
// eventually these can be compressed into 6x6 blocks instead of the 12x12
// using the DeGrand-Rossi basis for the gamma matrices
CloverFieldType fillCloverYZ(const GaugeLinkField &F)
{
CloverFieldType T(F.Grid());
T = Zero();
autoView(T_v,T,AcceleratorWrite);
autoView(F_v,F,AcceleratorRead);
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
{
T_v[i]()(0, 1) = timesMinusI(F_v[i]()());
T_v[i]()(1, 0) = timesMinusI(F_v[i]()());
T_v[i]()(2, 3) = timesMinusI(F_v[i]()());
T_v[i]()(3, 2) = timesMinusI(F_v[i]()());
});
return T;
}
CloverFieldType fillCloverXZ(const GaugeLinkField &F)
{
CloverFieldType T(F.Grid());
T = Zero();
autoView(T_v, T,AcceleratorWrite);
autoView(F_v, F,AcceleratorRead);
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
{
T_v[i]()(0, 1) = -F_v[i]()();
T_v[i]()(1, 0) = F_v[i]()();
T_v[i]()(2, 3) = -F_v[i]()();
T_v[i]()(3, 2) = F_v[i]()();
});
return T;
}
CloverFieldType fillCloverXY(const GaugeLinkField &F)
{
CloverFieldType T(F.Grid());
T = Zero();
autoView(T_v,T,AcceleratorWrite);
autoView(F_v,F,AcceleratorRead);
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
{
T_v[i]()(0, 0) = timesMinusI(F_v[i]()());
T_v[i]()(1, 1) = timesI(F_v[i]()());
T_v[i]()(2, 2) = timesMinusI(F_v[i]()());
T_v[i]()(3, 3) = timesI(F_v[i]()());
});
return T;
}
CloverFieldType fillCloverXT(const GaugeLinkField &F)
{
CloverFieldType T(F.Grid());
T = Zero();
autoView( T_v , T, AcceleratorWrite);
autoView( F_v , F, AcceleratorRead);
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
{
T_v[i]()(0, 1) = timesI(F_v[i]()());
T_v[i]()(1, 0) = timesI(F_v[i]()());
T_v[i]()(2, 3) = timesMinusI(F_v[i]()());
T_v[i]()(3, 2) = timesMinusI(F_v[i]()());
});
return T;
}
CloverFieldType fillCloverYT(const GaugeLinkField &F)
{
CloverFieldType T(F.Grid());
T = Zero();
autoView( T_v ,T,AcceleratorWrite);
autoView( F_v ,F,AcceleratorRead);
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
{
T_v[i]()(0, 1) = -(F_v[i]()());
T_v[i]()(1, 0) = (F_v[i]()());
T_v[i]()(2, 3) = (F_v[i]()());
T_v[i]()(3, 2) = -(F_v[i]()());
});
return T;
}
CloverFieldType fillCloverZT(const GaugeLinkField &F)
{
CloverFieldType T(F.Grid());
T = Zero();
autoView( T_v , T,AcceleratorWrite);
autoView( F_v , F,AcceleratorRead);
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
{
T_v[i]()(0, 0) = timesI(F_v[i]()());
T_v[i]()(1, 1) = timesMinusI(F_v[i]()());
T_v[i]()(2, 2) = timesMinusI(F_v[i]()());
T_v[i]()(3, 3) = timesI(F_v[i]()());
});
return T;
}
};
NAMESPACE_END(Grid);

View File

@ -1,761 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonCloverHelpers.h
Copyright (C) 2021 - 2022
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
// Helper routines that implement common clover functionality
NAMESPACE_BEGIN(Grid);
template<class Impl> class WilsonCloverHelpers {
public:
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
// Computing C_{\mu \nu}(x) as in Eq.(B.39) in Zbigniew Sroczynski's PhD thesis
static GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu)
{
conformable(lambda.Grid(), U[0].Grid());
GaugeLinkField out(lambda.Grid()), tmp(lambda.Grid());
// insertion in upper staple
// please check redundancy of shift operations
// C1+
tmp = lambda * U[nu];
out = Impl::ShiftStaple(Impl::CovShiftForward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
// C2+
tmp = U[mu] * Impl::ShiftStaple(adj(lambda), mu);
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(tmp, mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
// C3+
tmp = U[nu] * Impl::ShiftStaple(adj(lambda), nu);
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(tmp, nu))), mu);
// C4+
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu) * lambda;
// insertion in lower staple
// C1-
out -= Impl::ShiftStaple(lambda, mu) * Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu);
// C2-
tmp = adj(lambda) * U[nu];
out -= Impl::ShiftStaple(Impl::CovShiftBackward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu);
// C3-
tmp = lambda * U[nu];
out -= Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, tmp)), mu);
// C4-
out -= Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu) * lambda;
return out;
}
static CloverField fillCloverYZ(const GaugeLinkField &F)
{
CloverField T(F.Grid());
T = Zero();
autoView(T_v,T,AcceleratorWrite);
autoView(F_v,F,AcceleratorRead);
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
{
coalescedWrite(T_v[i]()(0, 1), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(1, 0), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(2, 3), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(3, 2), coalescedRead(timesMinusI(F_v[i]()())));
});
return T;
}
static CloverField fillCloverXZ(const GaugeLinkField &F)
{
CloverField T(F.Grid());
T = Zero();
autoView(T_v, T,AcceleratorWrite);
autoView(F_v, F,AcceleratorRead);
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
{
coalescedWrite(T_v[i]()(0, 1), coalescedRead(-F_v[i]()()));
coalescedWrite(T_v[i]()(1, 0), coalescedRead(F_v[i]()()));
coalescedWrite(T_v[i]()(2, 3), coalescedRead(-F_v[i]()()));
coalescedWrite(T_v[i]()(3, 2), coalescedRead(F_v[i]()()));
});
return T;
}
static CloverField fillCloverXY(const GaugeLinkField &F)
{
CloverField T(F.Grid());
T = Zero();
autoView(T_v,T,AcceleratorWrite);
autoView(F_v,F,AcceleratorRead);
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
{
coalescedWrite(T_v[i]()(0, 0), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(1, 1), coalescedRead(timesI(F_v[i]()())));
coalescedWrite(T_v[i]()(2, 2), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(3, 3), coalescedRead(timesI(F_v[i]()())));
});
return T;
}
static CloverField fillCloverXT(const GaugeLinkField &F)
{
CloverField T(F.Grid());
T = Zero();
autoView( T_v , T, AcceleratorWrite);
autoView( F_v , F, AcceleratorRead);
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
{
coalescedWrite(T_v[i]()(0, 1), coalescedRead(timesI(F_v[i]()())));
coalescedWrite(T_v[i]()(1, 0), coalescedRead(timesI(F_v[i]()())));
coalescedWrite(T_v[i]()(2, 3), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(3, 2), coalescedRead(timesMinusI(F_v[i]()())));
});
return T;
}
static CloverField fillCloverYT(const GaugeLinkField &F)
{
CloverField T(F.Grid());
T = Zero();
autoView( T_v ,T,AcceleratorWrite);
autoView( F_v ,F,AcceleratorRead);
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
{
coalescedWrite(T_v[i]()(0, 1), coalescedRead(-(F_v[i]()())));
coalescedWrite(T_v[i]()(1, 0), coalescedRead((F_v[i]()())));
coalescedWrite(T_v[i]()(2, 3), coalescedRead((F_v[i]()())));
coalescedWrite(T_v[i]()(3, 2), coalescedRead(-(F_v[i]()())));
});
return T;
}
static CloverField fillCloverZT(const GaugeLinkField &F)
{
CloverField T(F.Grid());
T = Zero();
autoView( T_v , T,AcceleratorWrite);
autoView( F_v , F,AcceleratorRead);
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
{
coalescedWrite(T_v[i]()(0, 0), coalescedRead(timesI(F_v[i]()())));
coalescedWrite(T_v[i]()(1, 1), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(2, 2), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(3, 3), coalescedRead(timesI(F_v[i]()())));
});
return T;
}
template<class _Spinor>
static accelerator_inline void multClover(_Spinor& phi, const SiteClover& C, const _Spinor& chi) {
auto CC = coalescedRead(C);
mult(&phi, &CC, &chi);
}
template<class _SpinorField>
inline void multCloverField(_SpinorField& out, const CloverField& C, const _SpinorField& phi) {
const int Nsimd = SiteSpinor::Nsimd();
autoView(out_v, out, AcceleratorWrite);
autoView(phi_v, phi, AcceleratorRead);
autoView(C_v, C, AcceleratorRead);
typedef decltype(coalescedRead(out_v[0])) calcSpinor;
accelerator_for(sss,out.Grid()->oSites(),Nsimd,{
calcSpinor tmp;
multClover(tmp,C_v[sss],phi_v(sss));
coalescedWrite(out_v[sss],tmp);
});
}
};
template<class Impl> class CompactWilsonCloverHelpers {
public:
INHERIT_COMPACT_CLOVER_SIZES(Impl);
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
INHERIT_COMPACT_CLOVER_TYPES(Impl);
#if 0
static accelerator_inline typename SiteCloverTriangle::vector_type triangle_elem(const SiteCloverTriangle& triangle, int block, int i, int j) {
assert(i != j);
if(i < j) {
return triangle()(block)(triangle_index(i, j));
} else { // i > j
return conjugate(triangle()(block)(triangle_index(i, j)));
}
}
#else
template<typename vobj>
static accelerator_inline vobj triangle_elem(const iImplCloverTriangle<vobj>& triangle, int block, int i, int j) {
assert(i != j);
if(i < j) {
return triangle()(block)(triangle_index(i, j));
} else { // i > j
return conjugate(triangle()(block)(triangle_index(i, j)));
}
}
#endif
static accelerator_inline int triangle_index(int i, int j) {
if(i == j)
return 0;
else if(i < j)
return Nred * (Nred - 1) / 2 - (Nred - i) * (Nred - i - 1) / 2 + j - i - 1;
else // i > j
return Nred * (Nred - 1) / 2 - (Nred - j) * (Nred - j - 1) / 2 + i - j - 1;
}
static void MooeeKernel_gpu(int Nsite,
int Ls,
const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle) {
autoView(diagonal_v, diagonal, AcceleratorRead);
autoView(triangle_v, triangle, AcceleratorRead);
autoView(in_v, in, AcceleratorRead);
autoView(out_v, out, AcceleratorWrite);
typedef decltype(coalescedRead(out_v[0])) CalcSpinor;
const uint64_t NN = Nsite * Ls;
accelerator_for(ss, NN, Simd::Nsimd(), {
int sF = ss;
int sU = ss/Ls;
CalcSpinor res;
CalcSpinor in_t = in_v(sF);
auto diagonal_t = diagonal_v(sU);
auto triangle_t = triangle_v(sU);
for(int block=0; block<Nhs; block++) {
int s_start = block*Nhs;
for(int i=0; i<Nred; i++) {
int si = s_start + i/Nc, ci = i%Nc;
res()(si)(ci) = diagonal_t()(block)(i) * in_t()(si)(ci);
for(int j=0; j<Nred; j++) {
if (j == i) continue;
int sj = s_start + j/Nc, cj = j%Nc;
res()(si)(ci) = res()(si)(ci) + triangle_elem(triangle_t, block, i, j) * in_t()(sj)(cj);
};
};
};
coalescedWrite(out_v[sF], res);
});
}
static void MooeeKernel_cpu(int Nsite,
int Ls,
const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle) {
autoView(diagonal_v, diagonal, CpuRead);
autoView(triangle_v, triangle, CpuRead);
autoView(in_v, in, CpuRead);
autoView(out_v, out, CpuWrite);
typedef SiteSpinor CalcSpinor;
#if defined(A64FX) || defined(A64FXFIXEDSIZE)
#define PREFETCH_CLOVER(BASE) { \
uint64_t base; \
int pf_dist_L1 = 1; \
int pf_dist_L2 = -5; /* -> penalty -> disable */ \
\
if ((pf_dist_L1 >= 0) && (sU + pf_dist_L1 < Nsite)) { \
base = (uint64_t)&diag_t()(pf_dist_L1+BASE)(0); \
svprfd(svptrue_b64(), (int64_t*)(base + 0), SV_PLDL1STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 256), SV_PLDL1STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 512), SV_PLDL1STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 768), SV_PLDL1STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 1024), SV_PLDL1STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 1280), SV_PLDL1STRM); \
} \
\
if ((pf_dist_L2 >= 0) && (sU + pf_dist_L2 < Nsite)) { \
base = (uint64_t)&diag_t()(pf_dist_L2+BASE)(0); \
svprfd(svptrue_b64(), (int64_t*)(base + 0), SV_PLDL2STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 256), SV_PLDL2STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 512), SV_PLDL2STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 768), SV_PLDL2STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 1024), SV_PLDL2STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 1280), SV_PLDL2STRM); \
} \
}
// TODO: Implement/generalize this for other architectures
// I played around a bit on KNL (see below) but didn't bring anything
// #elif defined(AVX512)
// #define PREFETCH_CLOVER(BASE) { \
// uint64_t base; \
// int pf_dist_L1 = 1; \
// int pf_dist_L2 = +4; \
// \
// if ((pf_dist_L1 >= 0) && (sU + pf_dist_L1 < Nsite)) { \
// base = (uint64_t)&diag_t()(pf_dist_L1+BASE)(0); \
// _mm_prefetch((const char*)(base + 0), _MM_HINT_T0); \
// _mm_prefetch((const char*)(base + 64), _MM_HINT_T0); \
// _mm_prefetch((const char*)(base + 128), _MM_HINT_T0); \
// _mm_prefetch((const char*)(base + 192), _MM_HINT_T0); \
// _mm_prefetch((const char*)(base + 256), _MM_HINT_T0); \
// _mm_prefetch((const char*)(base + 320), _MM_HINT_T0); \
// } \
// \
// if ((pf_dist_L2 >= 0) && (sU + pf_dist_L2 < Nsite)) { \
// base = (uint64_t)&diag_t()(pf_dist_L2+BASE)(0); \
// _mm_prefetch((const char*)(base + 0), _MM_HINT_T1); \
// _mm_prefetch((const char*)(base + 64), _MM_HINT_T1); \
// _mm_prefetch((const char*)(base + 128), _MM_HINT_T1); \
// _mm_prefetch((const char*)(base + 192), _MM_HINT_T1); \
// _mm_prefetch((const char*)(base + 256), _MM_HINT_T1); \
// _mm_prefetch((const char*)(base + 320), _MM_HINT_T1); \
// } \
// }
#else
#define PREFETCH_CLOVER(BASE)
#endif
const uint64_t NN = Nsite * Ls;
thread_for(ss, NN, {
int sF = ss;
int sU = ss/Ls;
CalcSpinor res;
CalcSpinor in_t = in_v[sF];
auto diag_t = diagonal_v[sU]; // "diag" instead of "diagonal" here to make code below easier to read
auto triangle_t = triangle_v[sU];
// upper half
PREFETCH_CLOVER(0);
auto in_cc_0_0 = conjugate(in_t()(0)(0)); // Nils: reduces number
auto in_cc_0_1 = conjugate(in_t()(0)(1)); // of conjugates from
auto in_cc_0_2 = conjugate(in_t()(0)(2)); // 30 to 20
auto in_cc_1_0 = conjugate(in_t()(1)(0));
auto in_cc_1_1 = conjugate(in_t()(1)(1));
res()(0)(0) = diag_t()(0)( 0) * in_t()(0)(0)
+ triangle_t()(0)( 0) * in_t()(0)(1)
+ triangle_t()(0)( 1) * in_t()(0)(2)
+ triangle_t()(0)( 2) * in_t()(1)(0)
+ triangle_t()(0)( 3) * in_t()(1)(1)
+ triangle_t()(0)( 4) * in_t()(1)(2);
res()(0)(1) = triangle_t()(0)( 0) * in_cc_0_0;
res()(0)(1) = diag_t()(0)( 1) * in_t()(0)(1)
+ triangle_t()(0)( 5) * in_t()(0)(2)
+ triangle_t()(0)( 6) * in_t()(1)(0)
+ triangle_t()(0)( 7) * in_t()(1)(1)
+ triangle_t()(0)( 8) * in_t()(1)(2)
+ conjugate( res()(0)( 1));
res()(0)(2) = triangle_t()(0)( 1) * in_cc_0_0
+ triangle_t()(0)( 5) * in_cc_0_1;
res()(0)(2) = diag_t()(0)( 2) * in_t()(0)(2)
+ triangle_t()(0)( 9) * in_t()(1)(0)
+ triangle_t()(0)(10) * in_t()(1)(1)
+ triangle_t()(0)(11) * in_t()(1)(2)
+ conjugate( res()(0)( 2));
res()(1)(0) = triangle_t()(0)( 2) * in_cc_0_0
+ triangle_t()(0)( 6) * in_cc_0_1
+ triangle_t()(0)( 9) * in_cc_0_2;
res()(1)(0) = diag_t()(0)( 3) * in_t()(1)(0)
+ triangle_t()(0)(12) * in_t()(1)(1)
+ triangle_t()(0)(13) * in_t()(1)(2)
+ conjugate( res()(1)( 0));
res()(1)(1) = triangle_t()(0)( 3) * in_cc_0_0
+ triangle_t()(0)( 7) * in_cc_0_1
+ triangle_t()(0)(10) * in_cc_0_2
+ triangle_t()(0)(12) * in_cc_1_0;
res()(1)(1) = diag_t()(0)( 4) * in_t()(1)(1)
+ triangle_t()(0)(14) * in_t()(1)(2)
+ conjugate( res()(1)( 1));
res()(1)(2) = triangle_t()(0)( 4) * in_cc_0_0
+ triangle_t()(0)( 8) * in_cc_0_1
+ triangle_t()(0)(11) * in_cc_0_2
+ triangle_t()(0)(13) * in_cc_1_0
+ triangle_t()(0)(14) * in_cc_1_1;
res()(1)(2) = diag_t()(0)( 5) * in_t()(1)(2)
+ conjugate( res()(1)( 2));
vstream(out_v[sF]()(0)(0), res()(0)(0));
vstream(out_v[sF]()(0)(1), res()(0)(1));
vstream(out_v[sF]()(0)(2), res()(0)(2));
vstream(out_v[sF]()(1)(0), res()(1)(0));
vstream(out_v[sF]()(1)(1), res()(1)(1));
vstream(out_v[sF]()(1)(2), res()(1)(2));
// lower half
PREFETCH_CLOVER(1);
auto in_cc_2_0 = conjugate(in_t()(2)(0));
auto in_cc_2_1 = conjugate(in_t()(2)(1));
auto in_cc_2_2 = conjugate(in_t()(2)(2));
auto in_cc_3_0 = conjugate(in_t()(3)(0));
auto in_cc_3_1 = conjugate(in_t()(3)(1));
res()(2)(0) = diag_t()(1)( 0) * in_t()(2)(0)
+ triangle_t()(1)( 0) * in_t()(2)(1)
+ triangle_t()(1)( 1) * in_t()(2)(2)
+ triangle_t()(1)( 2) * in_t()(3)(0)
+ triangle_t()(1)( 3) * in_t()(3)(1)
+ triangle_t()(1)( 4) * in_t()(3)(2);
res()(2)(1) = triangle_t()(1)( 0) * in_cc_2_0;
res()(2)(1) = diag_t()(1)( 1) * in_t()(2)(1)
+ triangle_t()(1)( 5) * in_t()(2)(2)
+ triangle_t()(1)( 6) * in_t()(3)(0)
+ triangle_t()(1)( 7) * in_t()(3)(1)
+ triangle_t()(1)( 8) * in_t()(3)(2)
+ conjugate( res()(2)( 1));
res()(2)(2) = triangle_t()(1)( 1) * in_cc_2_0
+ triangle_t()(1)( 5) * in_cc_2_1;
res()(2)(2) = diag_t()(1)( 2) * in_t()(2)(2)
+ triangle_t()(1)( 9) * in_t()(3)(0)
+ triangle_t()(1)(10) * in_t()(3)(1)
+ triangle_t()(1)(11) * in_t()(3)(2)
+ conjugate( res()(2)( 2));
res()(3)(0) = triangle_t()(1)( 2) * in_cc_2_0
+ triangle_t()(1)( 6) * in_cc_2_1
+ triangle_t()(1)( 9) * in_cc_2_2;
res()(3)(0) = diag_t()(1)( 3) * in_t()(3)(0)
+ triangle_t()(1)(12) * in_t()(3)(1)
+ triangle_t()(1)(13) * in_t()(3)(2)
+ conjugate( res()(3)( 0));
res()(3)(1) = triangle_t()(1)( 3) * in_cc_2_0
+ triangle_t()(1)( 7) * in_cc_2_1
+ triangle_t()(1)(10) * in_cc_2_2
+ triangle_t()(1)(12) * in_cc_3_0;
res()(3)(1) = diag_t()(1)( 4) * in_t()(3)(1)
+ triangle_t()(1)(14) * in_t()(3)(2)
+ conjugate( res()(3)( 1));
res()(3)(2) = triangle_t()(1)( 4) * in_cc_2_0
+ triangle_t()(1)( 8) * in_cc_2_1
+ triangle_t()(1)(11) * in_cc_2_2
+ triangle_t()(1)(13) * in_cc_3_0
+ triangle_t()(1)(14) * in_cc_3_1;
res()(3)(2) = diag_t()(1)( 5) * in_t()(3)(2)
+ conjugate( res()(3)( 2));
vstream(out_v[sF]()(2)(0), res()(2)(0));
vstream(out_v[sF]()(2)(1), res()(2)(1));
vstream(out_v[sF]()(2)(2), res()(2)(2));
vstream(out_v[sF]()(3)(0), res()(3)(0));
vstream(out_v[sF]()(3)(1), res()(3)(1));
vstream(out_v[sF]()(3)(2), res()(3)(2));
});
}
static void MooeeKernel(int Nsite,
int Ls,
const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle) {
#if defined(GRID_CUDA) || defined(GRID_HIP)
MooeeKernel_gpu(Nsite, Ls, in, out, diagonal, triangle);
#else
MooeeKernel_cpu(Nsite, Ls, in, out, diagonal, triangle);
#endif
}
static void Invert(const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle,
CloverDiagonalField& diagonalInv,
CloverTriangleField& triangleInv) {
conformable(diagonal, diagonalInv);
conformable(triangle, triangleInv);
conformable(diagonal, triangle);
diagonalInv.Checkerboard() = diagonal.Checkerboard();
triangleInv.Checkerboard() = triangle.Checkerboard();
GridBase* grid = diagonal.Grid();
long lsites = grid->lSites();
typedef typename SiteCloverDiagonal::scalar_object scalar_object_diagonal;
typedef typename SiteCloverTriangle::scalar_object scalar_object_triangle;
autoView(diagonal_v, diagonal, CpuRead);
autoView(triangle_v, triangle, CpuRead);
autoView(diagonalInv_v, diagonalInv, CpuWrite);
autoView(triangleInv_v, triangleInv, CpuWrite);
thread_for(site, lsites, { // NOTE: Not on GPU because of Eigen & (peek/poke)LocalSite
Eigen::MatrixXcd clover_inv_eigen = Eigen::MatrixXcd::Zero(Ns*Nc, Ns*Nc);
Eigen::MatrixXcd clover_eigen = Eigen::MatrixXcd::Zero(Ns*Nc, Ns*Nc);
scalar_object_diagonal diagonal_tmp = Zero();
scalar_object_diagonal diagonal_inv_tmp = Zero();
scalar_object_triangle triangle_tmp = Zero();
scalar_object_triangle triangle_inv_tmp = Zero();
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
peekLocalSite(diagonal_tmp, diagonal_v, lcoor);
peekLocalSite(triangle_tmp, triangle_v, lcoor);
// TODO: can we save time here by inverting the two 6x6 hermitian matrices separately?
for (long s_row=0;s_row<Ns;s_row++) {
for (long s_col=0;s_col<Ns;s_col++) {
if(abs(s_row - s_col) > 1 || s_row + s_col == 3) continue;
int block = s_row / Nhs;
int s_row_block = s_row % Nhs;
int s_col_block = s_col % Nhs;
for (long c_row=0;c_row<Nc;c_row++) {
for (long c_col=0;c_col<Nc;c_col++) {
int i = s_row_block * Nc + c_row;
int j = s_col_block * Nc + c_col;
if(i == j)
clover_eigen(s_row*Nc+c_row, s_col*Nc+c_col) = static_cast<ComplexD>(TensorRemove(diagonal_tmp()(block)(i)));
else
clover_eigen(s_row*Nc+c_row, s_col*Nc+c_col) = static_cast<ComplexD>(TensorRemove(triangle_elem(triangle_tmp, block, i, j)));
}
}
}
}
clover_inv_eigen = clover_eigen.inverse();
for (long s_row=0;s_row<Ns;s_row++) {
for (long s_col=0;s_col<Ns;s_col++) {
if(abs(s_row - s_col) > 1 || s_row + s_col == 3) continue;
int block = s_row / Nhs;
int s_row_block = s_row % Nhs;
int s_col_block = s_col % Nhs;
for (long c_row=0;c_row<Nc;c_row++) {
for (long c_col=0;c_col<Nc;c_col++) {
int i = s_row_block * Nc + c_row;
int j = s_col_block * Nc + c_col;
if(i == j)
diagonal_inv_tmp()(block)(i) = clover_inv_eigen(s_row*Nc+c_row, s_col*Nc+c_col);
else if(i < j)
triangle_inv_tmp()(block)(triangle_index(i, j)) = clover_inv_eigen(s_row*Nc+c_row, s_col*Nc+c_col);
else
continue;
}
}
}
}
pokeLocalSite(diagonal_inv_tmp, diagonalInv_v, lcoor);
pokeLocalSite(triangle_inv_tmp, triangleInv_v, lcoor);
});
}
static void ConvertLayout(const CloverField& full,
CloverDiagonalField& diagonal,
CloverTriangleField& triangle) {
conformable(full, diagonal);
conformable(full, triangle);
diagonal.Checkerboard() = full.Checkerboard();
triangle.Checkerboard() = full.Checkerboard();
autoView(full_v, full, AcceleratorRead);
autoView(diagonal_v, diagonal, AcceleratorWrite);
autoView(triangle_v, triangle, AcceleratorWrite);
// NOTE: this function cannot be 'private' since nvcc forbids this for kernels
accelerator_for(ss, full.Grid()->oSites(), 1, {
for(int s_row = 0; s_row < Ns; s_row++) {
for(int s_col = 0; s_col < Ns; s_col++) {
if(abs(s_row - s_col) > 1 || s_row + s_col == 3) continue;
int block = s_row / Nhs;
int s_row_block = s_row % Nhs;
int s_col_block = s_col % Nhs;
for(int c_row = 0; c_row < Nc; c_row++) {
for(int c_col = 0; c_col < Nc; c_col++) {
int i = s_row_block * Nc + c_row;
int j = s_col_block * Nc + c_col;
if(i == j)
diagonal_v[ss]()(block)(i) = full_v[ss]()(s_row, s_col)(c_row, c_col);
else if(i < j)
triangle_v[ss]()(block)(triangle_index(i, j)) = full_v[ss]()(s_row, s_col)(c_row, c_col);
else
continue;
}
}
}
}
});
}
static void ConvertLayout(const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle,
CloverField& full) {
conformable(full, diagonal);
conformable(full, triangle);
full.Checkerboard() = diagonal.Checkerboard();
full = Zero();
autoView(diagonal_v, diagonal, AcceleratorRead);
autoView(triangle_v, triangle, AcceleratorRead);
autoView(full_v, full, AcceleratorWrite);
// NOTE: this function cannot be 'private' since nvcc forbids this for kernels
accelerator_for(ss, full.Grid()->oSites(), 1, {
for(int s_row = 0; s_row < Ns; s_row++) {
for(int s_col = 0; s_col < Ns; s_col++) {
if(abs(s_row - s_col) > 1 || s_row + s_col == 3) continue;
int block = s_row / Nhs;
int s_row_block = s_row % Nhs;
int s_col_block = s_col % Nhs;
for(int c_row = 0; c_row < Nc; c_row++) {
for(int c_col = 0; c_col < Nc; c_col++) {
int i = s_row_block * Nc + c_row;
int j = s_col_block * Nc + c_col;
if(i == j)
full_v[ss]()(s_row, s_col)(c_row, c_col) = diagonal_v[ss]()(block)(i);
else
full_v[ss]()(s_row, s_col)(c_row, c_col) = triangle_elem(triangle_v[ss], block, i, j);
}
}
}
}
});
}
static void ModifyBoundaries(CloverDiagonalField& diagonal, CloverTriangleField& triangle, RealD csw_t, RealD cF, RealD diag_mass) {
// Checks/grid
double t0 = usecond();
conformable(diagonal, triangle);
GridBase* grid = diagonal.Grid();
// Determine the boundary coordinates/sites
double t1 = usecond();
int t_dir = Nd - 1;
Lattice<iScalar<vInteger>> t_coor(grid);
LatticeCoordinate(t_coor, t_dir);
int T = grid->GlobalDimensions()[t_dir];
// Set off-diagonal parts at boundary to zero -- OK
double t2 = usecond();
CloverTriangleField zeroTriangle(grid);
zeroTriangle.Checkerboard() = triangle.Checkerboard();
zeroTriangle = Zero();
triangle = where(t_coor == 0, zeroTriangle, triangle);
triangle = where(t_coor == T-1, zeroTriangle, triangle);
// Set diagonal to unity (scaled correctly) -- OK
double t3 = usecond();
CloverDiagonalField tmp(grid);
tmp.Checkerboard() = diagonal.Checkerboard();
tmp = -1.0 * csw_t + diag_mass;
diagonal = where(t_coor == 0, tmp, diagonal);
diagonal = where(t_coor == T-1, tmp, diagonal);
// Correct values next to boundary
double t4 = usecond();
if(cF != 1.0) {
tmp = cF - 1.0;
tmp += diagonal;
diagonal = where(t_coor == 1, tmp, diagonal);
diagonal = where(t_coor == T-2, tmp, diagonal);
}
// Report timings
double t5 = usecond();
#if 0
std::cout << GridLogMessage << "CompactWilsonCloverHelpers::ModifyBoundaries timings:"
<< " checks = " << (t1 - t0) / 1e6
<< ", coordinate = " << (t2 - t1) / 1e6
<< ", off-diag zero = " << (t3 - t2) / 1e6
<< ", diagonal unity = " << (t4 - t3) / 1e6
<< ", near-boundary = " << (t5 - t4) / 1e6
<< ", total = " << (t5 - t0) / 1e6
<< std::endl;
#endif
}
template<class Field, class Mask>
static strong_inline void ApplyBoundaryMask(Field& f, const Mask& m) {
conformable(f, m);
auto grid = f.Grid();
const int Nsite = grid->oSites();
const int Nsimd = grid->Nsimd();
autoView(f_v, f, AcceleratorWrite);
autoView(m_v, m, AcceleratorRead);
// NOTE: this function cannot be 'private' since nvcc forbids this for kernels
accelerator_for(ss, Nsite, Nsimd, {
coalescedWrite(f_v[ss], m_v(ss) * f_v(ss));
});
}
template<class MaskField>
static void SetupMasks(MaskField& full, MaskField& even, MaskField& odd) {
assert(even.Grid()->_isCheckerBoarded && even.Checkerboard() == Even);
assert(odd.Grid()->_isCheckerBoarded && odd.Checkerboard() == Odd);
assert(!full.Grid()->_isCheckerBoarded);
GridBase* grid = full.Grid();
int t_dir = Nd-1;
Lattice<iScalar<vInteger>> t_coor(grid);
LatticeCoordinate(t_coor, t_dir);
int T = grid->GlobalDimensions()[t_dir];
MaskField zeroMask(grid); zeroMask = Zero();
full = 1.0;
full = where(t_coor == 0, zeroMask, full);
full = where(t_coor == T-1, zeroMask, full);
pickCheckerboard(Even, even, full);
pickCheckerboard(Odd, odd, full);
}
};
NAMESPACE_END(Grid);

View File

@ -1,92 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonCloverTypes.h
Copyright (C) 2021 - 2022
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template<class Impl>
class WilsonCloverTypes {
public:
INHERIT_IMPL_TYPES(Impl);
template <typename vtype> using iImplClover = iScalar<iMatrix<iMatrix<vtype, Impl::Dimension>, Ns>>;
typedef iImplClover<Simd> SiteClover;
typedef Lattice<SiteClover> CloverField;
};
template<class Impl>
class CompactWilsonCloverTypes {
public:
INHERIT_IMPL_TYPES(Impl);
static_assert(Nd == 4 && Nc == 3 && Ns == 4 && Impl::Dimension == 3, "Wrong dimensions");
static constexpr int Nred = Nc * Nhs; // 6
static constexpr int Nblock = Nhs; // 2
static constexpr int Ndiagonal = Nred; // 6
static constexpr int Ntriangle = (Nred - 1) * Nc; // 15
template<typename vtype> using iImplCloverDiagonal = iScalar<iVector<iVector<vtype, Ndiagonal>, Nblock>>;
template<typename vtype> using iImplCloverTriangle = iScalar<iVector<iVector<vtype, Ntriangle>, Nblock>>;
typedef iImplCloverDiagonal<Simd> SiteCloverDiagonal;
typedef iImplCloverTriangle<Simd> SiteCloverTriangle;
typedef iSinglet<Simd> SiteMask;
typedef Lattice<SiteCloverDiagonal> CloverDiagonalField;
typedef Lattice<SiteCloverTriangle> CloverTriangleField;
typedef Lattice<SiteMask> MaskField;
};
#define INHERIT_CLOVER_TYPES(Impl) \
typedef typename WilsonCloverTypes<Impl>::SiteClover SiteClover; \
typedef typename WilsonCloverTypes<Impl>::CloverField CloverField;
#define INHERIT_COMPACT_CLOVER_TYPES(Impl) \
typedef typename CompactWilsonCloverTypes<Impl>::SiteCloverDiagonal SiteCloverDiagonal; \
typedef typename CompactWilsonCloverTypes<Impl>::SiteCloverTriangle SiteCloverTriangle; \
typedef typename CompactWilsonCloverTypes<Impl>::SiteMask SiteMask; \
typedef typename CompactWilsonCloverTypes<Impl>::CloverDiagonalField CloverDiagonalField; \
typedef typename CompactWilsonCloverTypes<Impl>::CloverTriangleField CloverTriangleField; \
typedef typename CompactWilsonCloverTypes<Impl>::MaskField MaskField; \
/* ugly duplication but needed inside functionality classes */ \
template<typename vtype> using iImplCloverDiagonal = \
iScalar<iVector<iVector<vtype, CompactWilsonCloverTypes<Impl>::Ndiagonal>, CompactWilsonCloverTypes<Impl>::Nblock>>; \
template<typename vtype> using iImplCloverTriangle = \
iScalar<iVector<iVector<vtype, CompactWilsonCloverTypes<Impl>::Ntriangle>, CompactWilsonCloverTypes<Impl>::Nblock>>;
#define INHERIT_COMPACT_CLOVER_SIZES(Impl) \
static constexpr int Nred = CompactWilsonCloverTypes<Impl>::Nred; \
static constexpr int Nblock = CompactWilsonCloverTypes<Impl>::Nblock; \
static constexpr int Ndiagonal = CompactWilsonCloverTypes<Impl>::Ndiagonal; \
static constexpr int Ntriangle = CompactWilsonCloverTypes<Impl>::Ntriangle;
NAMESPACE_END(Grid);

View File

@ -75,10 +75,6 @@ public:
FermionField _tmp;
FermionField &tmp(void) { return _tmp; }
int Dirichlet;
Coordinate Block;
/********** Deprecate timers **********/
void Report(void);
void ZeroCounters(void);
double DhopCalls;
@ -178,17 +174,6 @@ public:
GridRedBlackCartesian &FourDimRedBlackGrid,
double _M5,const ImplParams &p= ImplParams());
virtual void DirichletBlock(Coordinate & block)
{
assert(block.size()==Nd+1);
if ( block[0] || block[1] || block[2] || block[3] || block[4] ){
Dirichlet = 1;
Block = block;
Stencil.DirichletBlock(block);
StencilEven.DirichletBlock(block);
StencilOdd.DirichletBlock(block);
}
}
// Constructors
/*
WilsonFermion5D(int simd,

View File

@ -1,363 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/CompactWilsonCloverFermionImplementation.h
Copyright (C) 2017 - 2022
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/qcd/spin/Dirac.h>
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h>
NAMESPACE_BEGIN(Grid);
template<class Impl>
CompactWilsonCloverFermion<Impl>::CompactWilsonCloverFermion(GaugeField& _Umu,
GridCartesian& Fgrid,
GridRedBlackCartesian& Hgrid,
const RealD _mass,
const RealD _csw_r,
const RealD _csw_t,
const RealD _cF,
const WilsonAnisotropyCoefficients& clover_anisotropy,
const ImplParams& impl_p)
: WilsonBase(_Umu, Fgrid, Hgrid, _mass, impl_p, clover_anisotropy)
, csw_r(_csw_r)
, csw_t(_csw_t)
, cF(_cF)
, open_boundaries(impl_p.boundary_phases[Nd-1] == 0.0)
, Diagonal(&Fgrid), Triangle(&Fgrid)
, DiagonalEven(&Hgrid), TriangleEven(&Hgrid)
, DiagonalOdd(&Hgrid), TriangleOdd(&Hgrid)
, DiagonalInv(&Fgrid), TriangleInv(&Fgrid)
, DiagonalInvEven(&Hgrid), TriangleInvEven(&Hgrid)
, DiagonalInvOdd(&Hgrid), TriangleInvOdd(&Hgrid)
, Tmp(&Fgrid)
, BoundaryMask(&Fgrid)
, BoundaryMaskEven(&Hgrid), BoundaryMaskOdd(&Hgrid)
{
csw_r *= 0.5;
csw_t *= 0.5;
if (clover_anisotropy.isAnisotropic)
csw_r /= clover_anisotropy.xi_0;
ImportGauge(_Umu);
if (open_boundaries)
CompactHelpers::SetupMasks(this->BoundaryMask, this->BoundaryMaskEven, this->BoundaryMaskOdd);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::Dhop(const FermionField& in, FermionField& out, int dag) {
WilsonBase::Dhop(in, out, dag);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::DhopOE(const FermionField& in, FermionField& out, int dag) {
WilsonBase::DhopOE(in, out, dag);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::DhopEO(const FermionField& in, FermionField& out, int dag) {
WilsonBase::DhopEO(in, out, dag);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::DhopDir(const FermionField& in, FermionField& out, int dir, int disp) {
WilsonBase::DhopDir(in, out, dir, disp);
if(this->open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::DhopDirAll(const FermionField& in, std::vector<FermionField>& out) {
WilsonBase::DhopDirAll(in, out);
if(this->open_boundaries) {
for(auto& o : out) ApplyBoundaryMask(o);
}
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::M(const FermionField& in, FermionField& out) {
out.Checkerboard() = in.Checkerboard();
WilsonBase::Dhop(in, out, DaggerNo); // call base to save applying bc
Mooee(in, Tmp);
axpy(out, 1.0, out, Tmp);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::Mdag(const FermionField& in, FermionField& out) {
out.Checkerboard() = in.Checkerboard();
WilsonBase::Dhop(in, out, DaggerYes); // call base to save applying bc
MooeeDag(in, Tmp);
axpy(out, 1.0, out, Tmp);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::Meooe(const FermionField& in, FermionField& out) {
WilsonBase::Meooe(in, out);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MeooeDag(const FermionField& in, FermionField& out) {
WilsonBase::MeooeDag(in, out);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::Mooee(const FermionField& in, FermionField& out) {
if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) {
MooeeInternal(in, out, DiagonalOdd, TriangleOdd);
} else {
MooeeInternal(in, out, DiagonalEven, TriangleEven);
}
} else {
MooeeInternal(in, out, Diagonal, Triangle);
}
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MooeeDag(const FermionField& in, FermionField& out) {
Mooee(in, out); // blocks are hermitian
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MooeeInv(const FermionField& in, FermionField& out) {
if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) {
MooeeInternal(in, out, DiagonalInvOdd, TriangleInvOdd);
} else {
MooeeInternal(in, out, DiagonalInvEven, TriangleInvEven);
}
} else {
MooeeInternal(in, out, DiagonalInv, TriangleInv);
}
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MooeeInvDag(const FermionField& in, FermionField& out) {
MooeeInv(in, out); // blocks are hermitian
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::Mdir(const FermionField& in, FermionField& out, int dir, int disp) {
DhopDir(in, out, dir, disp);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MdirAll(const FermionField& in, std::vector<FermionField>& out) {
DhopDirAll(in, out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) {
assert(!open_boundaries); // TODO check for changes required for open bc
// NOTE: code copied from original clover term
conformable(X.Grid(), Y.Grid());
conformable(X.Grid(), force.Grid());
GaugeLinkField force_mu(force.Grid()), lambda(force.Grid());
GaugeField clover_force(force.Grid());
PropagatorField Lambda(force.Grid());
// Guido: Here we are hitting some performance issues:
// need to extract the components of the DoubledGaugeField
// for each call
// Possible solution
// Create a vector object to store them? (cons: wasting space)
std::vector<GaugeLinkField> U(Nd, this->Umu.Grid());
Impl::extractLinkField(U, this->Umu);
force = Zero();
// Derivative of the Wilson hopping term
this->DhopDeriv(force, X, Y, dag);
///////////////////////////////////////////////////////////
// Clover term derivative
///////////////////////////////////////////////////////////
Impl::outerProductImpl(Lambda, X, Y);
//std::cout << "Lambda:" << Lambda << std::endl;
Gamma::Algebra sigma[] = {
Gamma::Algebra::SigmaXY,
Gamma::Algebra::SigmaXZ,
Gamma::Algebra::SigmaXT,
Gamma::Algebra::MinusSigmaXY,
Gamma::Algebra::SigmaYZ,
Gamma::Algebra::SigmaYT,
Gamma::Algebra::MinusSigmaXZ,
Gamma::Algebra::MinusSigmaYZ,
Gamma::Algebra::SigmaZT,
Gamma::Algebra::MinusSigmaXT,
Gamma::Algebra::MinusSigmaYT,
Gamma::Algebra::MinusSigmaZT};
/*
sigma_{\mu \nu}=
| 0 sigma[0] sigma[1] sigma[2] |
| sigma[3] 0 sigma[4] sigma[5] |
| sigma[6] sigma[7] 0 sigma[8] |
| sigma[9] sigma[10] sigma[11] 0 |
*/
int count = 0;
clover_force = Zero();
for (int mu = 0; mu < 4; mu++)
{
force_mu = Zero();
for (int nu = 0; nu < 4; nu++)
{
if (mu == nu)
continue;
RealD factor;
if (nu == 4 || mu == 4)
{
factor = 2.0 * csw_t;
}
else
{
factor = 2.0 * csw_r;
}
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
force_mu -= factor*Helpers::Cmunu(U, lambda, mu, nu); // checked
count++;
}
pokeLorentz(clover_force, U[mu] * force_mu, mu);
}
//clover_force *= csw;
force += clover_force;
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MooDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) {
assert(0);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MeeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) {
assert(0);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MooeeInternal(const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle) {
assert(in.Checkerboard() == Odd || in.Checkerboard() == Even);
out.Checkerboard() = in.Checkerboard();
conformable(in, out);
conformable(in, diagonal);
conformable(in, triangle);
CompactHelpers::MooeeKernel(diagonal.oSites(), 1, in, out, diagonal, triangle);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::ImportGauge(const GaugeField& _Umu) {
// NOTE: parts copied from original implementation
// Import gauge into base class
double t0 = usecond();
WilsonBase::ImportGauge(_Umu); // NOTE: called here and in wilson constructor -> performed twice, but can't avoid that
// Initialize temporary variables
double t1 = usecond();
conformable(_Umu.Grid(), this->GaugeGrid());
GridBase* grid = _Umu.Grid();
typename Impl::GaugeLinkField Bx(grid), By(grid), Bz(grid), Ex(grid), Ey(grid), Ez(grid);
CloverField TmpOriginal(grid);
// Compute the field strength terms mu>nu
double t2 = usecond();
WilsonLoops<Impl>::FieldStrength(Bx, _Umu, Zdir, Ydir);
WilsonLoops<Impl>::FieldStrength(By, _Umu, Zdir, Xdir);
WilsonLoops<Impl>::FieldStrength(Bz, _Umu, Ydir, Xdir);
WilsonLoops<Impl>::FieldStrength(Ex, _Umu, Tdir, Xdir);
WilsonLoops<Impl>::FieldStrength(Ey, _Umu, Tdir, Ydir);
WilsonLoops<Impl>::FieldStrength(Ez, _Umu, Tdir, Zdir);
// Compute the Clover Operator acting on Colour and Spin
// multiply here by the clover coefficients for the anisotropy
double t3 = usecond();
TmpOriginal = Helpers::fillCloverYZ(Bx) * csw_r;
TmpOriginal += Helpers::fillCloverXZ(By) * csw_r;
TmpOriginal += Helpers::fillCloverXY(Bz) * csw_r;
TmpOriginal += Helpers::fillCloverXT(Ex) * csw_t;
TmpOriginal += Helpers::fillCloverYT(Ey) * csw_t;
TmpOriginal += Helpers::fillCloverZT(Ez) * csw_t;
TmpOriginal += this->diag_mass;
// Convert the data layout of the clover term
double t4 = usecond();
CompactHelpers::ConvertLayout(TmpOriginal, Diagonal, Triangle);
// Possible modify the boundary values
double t5 = usecond();
if(open_boundaries) CompactHelpers::ModifyBoundaries(Diagonal, Triangle, csw_t, cF, this->diag_mass);
// Invert the clover term in the improved layout
double t6 = usecond();
CompactHelpers::Invert(Diagonal, Triangle, DiagonalInv, TriangleInv);
// Fill the remaining clover fields
double t7 = usecond();
pickCheckerboard(Even, DiagonalEven, Diagonal);
pickCheckerboard(Even, TriangleEven, Triangle);
pickCheckerboard(Odd, DiagonalOdd, Diagonal);
pickCheckerboard(Odd, TriangleOdd, Triangle);
pickCheckerboard(Even, DiagonalInvEven, DiagonalInv);
pickCheckerboard(Even, TriangleInvEven, TriangleInv);
pickCheckerboard(Odd, DiagonalInvOdd, DiagonalInv);
pickCheckerboard(Odd, TriangleInvOdd, TriangleInv);
// Report timings
double t8 = usecond();
#if 0
std::cout << GridLogMessage << "CompactWilsonCloverFermion::ImportGauge timings:"
<< " WilsonFermion::Importgauge = " << (t1 - t0) / 1e6
<< ", allocations = " << (t2 - t1) / 1e6
<< ", field strength = " << (t3 - t2) / 1e6
<< ", fill clover = " << (t4 - t3) / 1e6
<< ", convert = " << (t5 - t4) / 1e6
<< ", boundaries = " << (t6 - t5) / 1e6
<< ", inversions = " << (t7 - t6) / 1e6
<< ", pick cbs = " << (t8 - t7) / 1e6
<< ", total = " << (t8 - t0) / 1e6
<< std::endl;
#endif
}
NAMESPACE_END(Grid);

View File

@ -2,13 +2,12 @@
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonCloverFermionImplementation.h
Source file: ./lib/qcd/action/fermion/WilsonCloverFermion.cc
Copyright (C) 2017 - 2022
Copyright (C) 2017
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -34,45 +33,6 @@
NAMESPACE_BEGIN(Grid);
template<class Impl>
WilsonCloverFermion<Impl>::WilsonCloverFermion(GaugeField& _Umu,
GridCartesian& Fgrid,
GridRedBlackCartesian& Hgrid,
const RealD _mass,
const RealD _csw_r,
const RealD _csw_t,
const WilsonAnisotropyCoefficients& clover_anisotropy,
const ImplParams& impl_p)
: WilsonFermion<Impl>(_Umu, Fgrid, Hgrid, _mass, impl_p, clover_anisotropy)
, CloverTerm(&Fgrid)
, CloverTermInv(&Fgrid)
, CloverTermEven(&Hgrid)
, CloverTermOdd(&Hgrid)
, CloverTermInvEven(&Hgrid)
, CloverTermInvOdd(&Hgrid)
, CloverTermDagEven(&Hgrid)
, CloverTermDagOdd(&Hgrid)
, CloverTermInvDagEven(&Hgrid)
, CloverTermInvDagOdd(&Hgrid) {
assert(Nd == 4); // require 4 dimensions
if(clover_anisotropy.isAnisotropic) {
csw_r = _csw_r * 0.5 / clover_anisotropy.xi_0;
diag_mass = _mass + 1.0 + (Nd - 1) * (clover_anisotropy.nu / clover_anisotropy.xi_0);
} else {
csw_r = _csw_r * 0.5;
diag_mass = 4.0 + _mass;
}
csw_t = _csw_t * 0.5;
if(csw_r == 0)
std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_r = 0" << std::endl;
if(csw_t == 0)
std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_t = 0" << std::endl;
ImportGauge(_Umu);
}
// *NOT* EO
template <class Impl>
void WilsonCloverFermion<Impl>::M(const FermionField &in, FermionField &out)
@ -107,13 +67,10 @@ void WilsonCloverFermion<Impl>::Mdag(const FermionField &in, FermionField &out)
template <class Impl>
void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
{
double t0 = usecond();
WilsonFermion<Impl>::ImportGauge(_Umu);
double t1 = usecond();
GridBase *grid = _Umu.Grid();
typename Impl::GaugeLinkField Bx(grid), By(grid), Bz(grid), Ex(grid), Ey(grid), Ez(grid);
double t2 = usecond();
// Compute the field strength terms mu>nu
WilsonLoops<Impl>::FieldStrength(Bx, _Umu, Zdir, Ydir);
WilsonLoops<Impl>::FieldStrength(By, _Umu, Zdir, Xdir);
@ -122,22 +79,19 @@ void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
WilsonLoops<Impl>::FieldStrength(Ey, _Umu, Tdir, Ydir);
WilsonLoops<Impl>::FieldStrength(Ez, _Umu, Tdir, Zdir);
double t3 = usecond();
// Compute the Clover Operator acting on Colour and Spin
// multiply here by the clover coefficients for the anisotropy
CloverTerm = Helpers::fillCloverYZ(Bx) * csw_r;
CloverTerm += Helpers::fillCloverXZ(By) * csw_r;
CloverTerm += Helpers::fillCloverXY(Bz) * csw_r;
CloverTerm += Helpers::fillCloverXT(Ex) * csw_t;
CloverTerm += Helpers::fillCloverYT(Ey) * csw_t;
CloverTerm += Helpers::fillCloverZT(Ez) * csw_t;
CloverTerm = fillCloverYZ(Bx) * csw_r;
CloverTerm += fillCloverXZ(By) * csw_r;
CloverTerm += fillCloverXY(Bz) * csw_r;
CloverTerm += fillCloverXT(Ex) * csw_t;
CloverTerm += fillCloverYT(Ey) * csw_t;
CloverTerm += fillCloverZT(Ez) * csw_t;
CloverTerm += diag_mass;
double t4 = usecond();
int lvol = _Umu.Grid()->lSites();
int DimRep = Impl::Dimension;
double t5 = usecond();
{
autoView(CTv,CloverTerm,CpuRead);
autoView(CTIv,CloverTermInv,CpuWrite);
@ -146,7 +100,7 @@ void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
grid->LocalIndexToLocalCoor(site, lcoor);
Eigen::MatrixXcd EigenCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
Eigen::MatrixXcd EigenInvCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
typename SiteClover::scalar_object Qx = Zero(), Qxinv = Zero();
typename SiteCloverType::scalar_object Qx = Zero(), Qxinv = Zero();
peekLocalSite(Qx, CTv, lcoor);
//if (csw!=0){
for (int j = 0; j < Ns; j++)
@ -171,7 +125,6 @@ void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
});
}
double t6 = usecond();
// Separate the even and odd parts
pickCheckerboard(Even, CloverTermEven, CloverTerm);
pickCheckerboard(Odd, CloverTermOdd, CloverTerm);
@ -184,20 +137,6 @@ void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
pickCheckerboard(Even, CloverTermInvDagEven, adj(CloverTermInv));
pickCheckerboard(Odd, CloverTermInvDagOdd, adj(CloverTermInv));
double t7 = usecond();
#if 0
std::cout << GridLogMessage << "WilsonCloverFermion::ImportGauge timings:"
<< " WilsonFermion::Importgauge = " << (t1 - t0) / 1e6
<< ", allocations = " << (t2 - t1) / 1e6
<< ", field strength = " << (t3 - t2) / 1e6
<< ", fill clover = " << (t4 - t3) / 1e6
<< ", misc = " << (t5 - t4) / 1e6
<< ", inversions = " << (t6 - t5) / 1e6
<< ", pick cbs = " << (t7 - t6) / 1e6
<< ", total = " << (t7 - t0) / 1e6
<< std::endl;
#endif
}
template <class Impl>
@ -228,7 +167,7 @@ template <class Impl>
void WilsonCloverFermion<Impl>::MooeeInternal(const FermionField &in, FermionField &out, int dag, int inv)
{
out.Checkerboard() = in.Checkerboard();
CloverField *Clover;
CloverFieldType *Clover;
assert(in.Checkerboard() == Odd || in.Checkerboard() == Even);
if (dag)
@ -243,12 +182,12 @@ void WilsonCloverFermion<Impl>::MooeeInternal(const FermionField &in, FermionFie
{
Clover = (inv) ? &CloverTermInvDagEven : &CloverTermDagEven;
}
Helpers::multCloverField(out, *Clover, in);
out = *Clover * in;
}
else
{
Clover = (inv) ? &CloverTermInv : &CloverTerm;
Helpers::multCloverField(out, *Clover, in); // don't bother with adj, hermitian anyway
out = adj(*Clover) * in;
}
}
else
@ -266,98 +205,18 @@ void WilsonCloverFermion<Impl>::MooeeInternal(const FermionField &in, FermionFie
// std::cout << "Calling clover term Even" << std::endl;
Clover = (inv) ? &CloverTermInvEven : &CloverTermEven;
}
Helpers::multCloverField(out, *Clover, in);
out = *Clover * in;
// std::cout << GridLogMessage << "*Clover.Checkerboard() " << (*Clover).Checkerboard() << std::endl;
}
else
{
Clover = (inv) ? &CloverTermInv : &CloverTerm;
Helpers::multCloverField(out, *Clover, in);
out = *Clover * in;
}
}
} // MooeeInternal
// Derivative parts unpreconditioned pseudofermions
template <class Impl>
void WilsonCloverFermion<Impl>::MDeriv(GaugeField &force, const FermionField &X, const FermionField &Y, int dag)
{
conformable(X.Grid(), Y.Grid());
conformable(X.Grid(), force.Grid());
GaugeLinkField force_mu(force.Grid()), lambda(force.Grid());
GaugeField clover_force(force.Grid());
PropagatorField Lambda(force.Grid());
// Guido: Here we are hitting some performance issues:
// need to extract the components of the DoubledGaugeField
// for each call
// Possible solution
// Create a vector object to store them? (cons: wasting space)
std::vector<GaugeLinkField> U(Nd, this->Umu.Grid());
Impl::extractLinkField(U, this->Umu);
force = Zero();
// Derivative of the Wilson hopping term
this->DhopDeriv(force, X, Y, dag);
///////////////////////////////////////////////////////////
// Clover term derivative
///////////////////////////////////////////////////////////
Impl::outerProductImpl(Lambda, X, Y);
//std::cout << "Lambda:" << Lambda << std::endl;
Gamma::Algebra sigma[] = {
Gamma::Algebra::SigmaXY,
Gamma::Algebra::SigmaXZ,
Gamma::Algebra::SigmaXT,
Gamma::Algebra::MinusSigmaXY,
Gamma::Algebra::SigmaYZ,
Gamma::Algebra::SigmaYT,
Gamma::Algebra::MinusSigmaXZ,
Gamma::Algebra::MinusSigmaYZ,
Gamma::Algebra::SigmaZT,
Gamma::Algebra::MinusSigmaXT,
Gamma::Algebra::MinusSigmaYT,
Gamma::Algebra::MinusSigmaZT};
/*
sigma_{\mu \nu}=
| 0 sigma[0] sigma[1] sigma[2] |
| sigma[3] 0 sigma[4] sigma[5] |
| sigma[6] sigma[7] 0 sigma[8] |
| sigma[9] sigma[10] sigma[11] 0 |
*/
int count = 0;
clover_force = Zero();
for (int mu = 0; mu < 4; mu++)
{
force_mu = Zero();
for (int nu = 0; nu < 4; nu++)
{
if (mu == nu)
continue;
RealD factor;
if (nu == 4 || mu == 4)
{
factor = 2.0 * csw_t;
}
else
{
factor = 2.0 * csw_r;
}
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
force_mu -= factor*Helpers::Cmunu(U, lambda, mu, nu); // checked
count++;
}
pokeLorentz(clover_force, U[mu] * force_mu, mu);
}
//clover_force *= csw;
force += clover_force;
}
// Derivative parts
template <class Impl>

View File

@ -60,8 +60,7 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
UmuOdd (_FourDimRedBlackGrid),
Lebesgue(_FourDimGrid),
LebesgueEvenOdd(_FourDimRedBlackGrid),
_tmp(&FiveDimRedBlackGrid),
Dirichlet(0)
_tmp(&FiveDimRedBlackGrid)
{
// some assertions
assert(FiveDimGrid._ndimension==5);
@ -219,14 +218,6 @@ void WilsonFermion5D<Impl>::ImportGauge(const GaugeField &_Umu)
{
GaugeField HUmu(_Umu.Grid());
HUmu = _Umu*(-0.5);
if ( Dirichlet ) {
std::cout << GridLogMessage << " Dirichlet BCs 5d " <<Block<<std::endl;
Coordinate GaugeBlock(Nd);
for(int d=0;d<Nd;d++) GaugeBlock[d] = Block[d+1];
std::cout << GridLogMessage << " Dirichlet BCs 4d " <<GaugeBlock<<std::endl;
DirichletFilter<GaugeField> Filter(GaugeBlock);
Filter.applyFilter(HUmu);
}
Impl::DoubleStore(GaugeGrid(),Umu,HUmu);
pickCheckerboard(Even,UmuEven,Umu);
pickCheckerboard(Odd ,UmuOdd,Umu);

View File

@ -1,41 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/ qcd/action/fermion/instantiation/CompactWilsonCloverFermionInstantiation.cc.master
Copyright (C) 2017 - 2022
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/qcd/spin/Dirac.h>
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h>
#include <Grid/qcd/action/fermion/implementation/CompactWilsonCloverFermionImplementation.h>
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class CompactWilsonCloverFermion<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -1 +0,0 @@
../CompactWilsonCloverFermionInstantiation.cc.master

View File

@ -1 +0,0 @@
../CompactWilsonCloverFermionInstantiation.cc.master

View File

@ -40,7 +40,7 @@ EOF
done
CC_LIST="WilsonCloverFermionInstantiation CompactWilsonCloverFermionInstantiation WilsonFermionInstantiation WilsonKernelsInstantiation WilsonTMFermionInstantiation"
CC_LIST="WilsonCloverFermionInstantiation WilsonFermionInstantiation WilsonKernelsInstantiation WilsonTMFermionInstantiation"
for impl in $WILSON_IMPL_LIST
do

View File

@ -1,102 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/hmc/integrators/DirichletFilter.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
//--------------------------------------------------------------------
#pragma once
NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////
// DDHMC filter with sub-block size B[mu]
////////////////////////////////////////////////////
template<typename GaugeField>
struct DDHMCFilter: public MomentumFilterBase<GaugeField>
{
Coordinate Block;
int Width;
DDHMCFilter(const Coordinate &_Block,int _Width=2): Block(_Block) { Width=_Width; }
void applyFilter(GaugeField &U) const override
{
GridBase *grid = U.Grid();
Coordinate Global=grid->GlobalDimensions();
GaugeField zzz(grid); zzz = Zero();
LatticeInteger coor(grid);
auto zzz_mu = PeekIndex<LorentzIndex>(zzz,0);
////////////////////////////////////////////////////
// Zero BDY layers
////////////////////////////////////////////////////
std::cout<<GridLogMessage<<" DDHMC Force Filter Block "<<Block<<" width " <<Width<<std::endl;
for(int mu=0;mu<Nd;mu++) {
Integer B1 = Block[mu];
if ( B1 && (B1 <= Global[mu]) ) {
LatticeCoordinate(coor,mu);
////////////////////////////////
// OmegaBar - zero all links contained in slice B-1,0 and
// mu links connecting to Omega
////////////////////////////////
if ( Width==1) {
U = where(mod(coor,B1)==Integer(B1-1),zzz,U);
U = where(mod(coor,B1)==Integer(0) ,zzz,U);
auto U_mu = PeekIndex<LorentzIndex>(U,mu);
U_mu = where(mod(coor,B1)==Integer(B1-2),zzz_mu,U_mu);
PokeIndex<LorentzIndex>(U, U_mu, mu);
}
if ( Width==2) {
U = where(mod(coor,B1)==Integer(B1-2),zzz,U);
U = where(mod(coor,B1)==Integer(B1-1),zzz,U);
U = where(mod(coor,B1)==Integer(0) ,zzz,U);
U = where(mod(coor,B1)==Integer(1) ,zzz,U);
auto U_mu = PeekIndex<LorentzIndex>(U,mu);
U_mu = where(mod(coor,B1)==Integer(B1-3),zzz_mu,U_mu);
PokeIndex<LorentzIndex>(U, U_mu, mu);
}
if ( Width==3) {
U = where(mod(coor,B1)==Integer(B1-3),zzz,U);
U = where(mod(coor,B1)==Integer(B1-2),zzz,U);
U = where(mod(coor,B1)==Integer(B1-1),zzz,U);
U = where(mod(coor,B1)==Integer(0) ,zzz,U);
U = where(mod(coor,B1)==Integer(1) ,zzz,U);
U = where(mod(coor,B1)==Integer(2) ,zzz,U);
auto U_mu = PeekIndex<LorentzIndex>(U,mu);
U_mu = where(mod(coor,B1)==Integer(B1-4),zzz_mu,U_mu);
PokeIndex<LorentzIndex>(U, U_mu, mu);
}
}
}
}
};
NAMESPACE_END(Grid);

View File

@ -1,71 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/hmc/integrators/DirichletFilter.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
//--------------------------------------------------------------------
#pragma once
NAMESPACE_BEGIN(Grid);
template<typename MomentaField>
struct DirichletFilter: public MomentumFilterBase<MomentaField>
{
typedef typename MomentaField::vector_type vector_type; //SIMD-vectorized complex type
typedef typename MomentaField::scalar_type scalar_type; //scalar complex type
typedef iScalar<iScalar<iScalar<vector_type> > > ScalarType; //complex phase for each site
Coordinate Block;
DirichletFilter(const Coordinate &_Block): Block(_Block){}
void applyFilter(MomentaField &P) const override
{
GridBase *grid = P.Grid();
typedef decltype(PeekIndex<LorentzIndex>(P, 0)) LatCM;
////////////////////////////////////////////////////
// Zero strictly links crossing between domains
////////////////////////////////////////////////////
LatticeInteger coor(grid);
LatCM zz(grid); zz = Zero();
for(int mu=0;mu<Nd;mu++) {
if ( (Block[mu]) && (Block[mu] < grid->GlobalDimensions()[mu] ) ) {
// If costly could provide Grid earlier and precompute masks
std::cout << " Dirichlet in mu="<<mu<<std::endl;
LatticeCoordinate(coor,mu);
auto P_mu = PeekIndex<LorentzIndex>(P, mu);
P_mu = where(mod(coor,Block[mu])==Integer(Block[mu]-1),zz,P_mu);
PokeIndex<LorentzIndex>(P, P_mu, mu);
}
}
}
};
NAMESPACE_END(Grid);

View File

@ -129,10 +129,18 @@ public:
Runner(S);
}
//Use the checkpointer to initialize the RNGs and the gauge field, writing the resulting gauge field into U.
//This is called automatically by Run but may be useful elsewhere, e.g. for integrator tuning experiments
void initializeGaugeFieldAndRNGs(Field &U){
if(!Resources.haveRNGs()) Resources.AddRNGs();
//////////////////////////////////////////////////////////////////
private:
template <class SmearingPolicy>
void Runner(SmearingPolicy &Smearing) {
auto UGrid = Resources.GetCartesian();
Resources.AddRNGs();
Field U(UGrid);
// Can move this outside?
typedef IntegratorType<SmearingPolicy> TheIntegrator;
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing);
if (Parameters.StartingType == "HotStart") {
// Hot start
@ -159,25 +167,6 @@ public:
<< "Valid [HotStart, ColdStart, TepidStart, CheckpointStart]\n";
exit(1);
}
}
//////////////////////////////////////////////////////////////////
private:
template <class SmearingPolicy>
void Runner(SmearingPolicy &Smearing) {
auto UGrid = Resources.GetCartesian();
Field U(UGrid);
initializeGaugeFieldAndRNGs(U);
typedef IntegratorType<SmearingPolicy> TheIntegrator;
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing);
// Sets the momentum filter
MDynamics.setMomentumFilter(*(Resources.GetMomentumFilter()));
Smearing.set_Field(U);

View File

@ -34,7 +34,6 @@ directory
* @brief Classes for Hybrid Monte Carlo update
*
* @author Guido Cossu
* @author Peter Boyle
*/
//--------------------------------------------------------------------
#pragma once
@ -116,17 +115,22 @@ private:
random(sRNG, rn_test);
std::cout << GridLogHMC << "--------------------------------------------------\n";
std::cout << GridLogHMC << "exp(-dH) = " << prob << " Random = " << rn_test << "\n";
std::cout << GridLogHMC << "Acc. Probability = " << ((prob < 1.0) ? prob : 1.0) << "\n";
std::cout << GridLogMessage
<< "--------------------------------------------------\n";
std::cout << GridLogMessage << "exp(-dH) = " << prob
<< " Random = " << rn_test << "\n";
std::cout << GridLogMessage
<< "Acc. Probability = " << ((prob < 1.0) ? prob : 1.0) << "\n";
if ((prob > 1.0) || (rn_test <= prob)) { // accepted
std::cout << GridLogHMC << "Metropolis_test -- ACCEPTED\n";
std::cout << GridLogHMC << "--------------------------------------------------\n";
std::cout << GridLogMessage << "Metropolis_test -- ACCEPTED\n";
std::cout << GridLogMessage
<< "--------------------------------------------------\n";
return true;
} else { // rejected
std::cout << GridLogHMC << "Metropolis_test -- REJECTED\n";
std::cout << GridLogHMC << "--------------------------------------------------\n";
std::cout << GridLogMessage << "Metropolis_test -- REJECTED\n";
std::cout << GridLogMessage
<< "--------------------------------------------------\n";
return false;
}
}
@ -135,67 +139,18 @@ private:
// Evolution
/////////////////////////////////////////////////////////
RealD evolve_hmc_step(Field &U) {
TheIntegrator.refresh(U, sRNG, pRNG); // set U and initialize P and phi's
GridBase *Grid = U.Grid();
//////////////////////////////////////////////////////////////////////////////////////////////////////
// Mainly for DDHMC perform a random translation of U modulo volume
//////////////////////////////////////////////////////////////////////////////////////////////////////
std::cout << GridLogMessage << "--------------------------------------------------\n";
std::cout << GridLogMessage << "Random shifting gauge field by [";
for(int d=0;d<Grid->Nd();d++) {
int L = Grid->GlobalDimensions()[d];
RealD rn_uniform; random(sRNG, rn_uniform);
int shift = (int) (rn_uniform*L);
std::cout << shift;
if(d<Grid->Nd()-1) std::cout <<",";
else std::cout <<"]\n";
U = Cshift(U,d,shift);
}
std::cout << GridLogMessage << "--------------------------------------------------\n";
TheIntegrator.reset_timer();
//////////////////////////////////////////////////////////////////////////////////////////////////////
// set U and initialize P and phi's
//////////////////////////////////////////////////////////////////////////////////////////////////////
std::cout << GridLogMessage << "--------------------------------------------------\n";
std::cout << GridLogMessage << "Refresh momenta and pseudofermions";
TheIntegrator.refresh(U, sRNG, pRNG);
std::cout << GridLogMessage << "--------------------------------------------------\n";
//////////////////////////////////////////////////////////////////////////////////////////////////////
// initial state action
//////////////////////////////////////////////////////////////////////////////////////////////////////
std::cout << GridLogMessage << "--------------------------------------------------\n";
std::cout << GridLogMessage << "Compute initial action";
RealD H0 = TheIntegrator.S(U);
std::cout << GridLogMessage << "--------------------------------------------------\n";
RealD H0 = TheIntegrator.S(U); // initial state action
std::streamsize current_precision = std::cout.precision();
std::cout.precision(15);
std::cout << GridLogHMC << "Total H before trajectory = " << H0 << "\n";
std::cout << GridLogMessage << "Total H before trajectory = " << H0 << "\n";
std::cout.precision(current_precision);
std::cout << GridLogMessage << "--------------------------------------------------\n";
std::cout << GridLogMessage << " Molecular Dynamics evolution ";
TheIntegrator.integrate(U);
std::cout << GridLogMessage << "--------------------------------------------------\n";
//////////////////////////////////////////////////////////////////////////////////////////////////////
// updated state action
//////////////////////////////////////////////////////////////////////////////////////////////////////
std::cout << GridLogMessage << "--------------------------------------------------\n";
std::cout << GridLogMessage << "Compute final action";
RealD H1 = TheIntegrator.S(U);
std::cout << GridLogMessage << "--------------------------------------------------\n";
RealD H1 = TheIntegrator.S(U); // updated state action
///////////////////////////////////////////////////////////
if(0){
@ -208,17 +163,18 @@ private:
}
///////////////////////////////////////////////////////////
std::cout.precision(15);
std::cout << GridLogHMC << "--------------------------------------------------\n";
std::cout << GridLogHMC << "Total H after trajectory = " << H1 << " dH = " << H1 - H0 << "\n";
std::cout << GridLogHMC << "--------------------------------------------------\n";
std::cout << GridLogMessage << "Total H after trajectory = " << H1
<< " dH = " << H1 - H0 << "\n";
std::cout.precision(current_precision);
return (H1 - H0);
}
public:
/////////////////////////////////////////
// Constructor
@ -239,13 +195,10 @@ public:
// Actual updates (evolve a copy Ucopy then copy back eventually)
unsigned int FinalTrajectory = Params.Trajectories + Params.NoMetropolisUntil + Params.StartTrajectory;
for (int traj = Params.StartTrajectory; traj < FinalTrajectory; ++traj) {
std::cout << GridLogHMC << "-- # Trajectory = " << traj << "\n";
std::cout << GridLogMessage << "-- # Trajectory = " << traj << "\n";
if (traj < Params.StartTrajectory + Params.NoMetropolisUntil) {
std::cout << GridLogHMC << "-- Thermalization" << std::endl;
std::cout << GridLogMessage << "-- Thermalization" << std::endl;
}
double t0=usecond();
@ -254,19 +207,20 @@ public:
DeltaH = evolve_hmc_step(Ucopy);
// Metropolis-Hastings test
bool accept = true;
if (Params.MetropolisTest && traj >= Params.StartTrajectory + Params.NoMetropolisUntil) {
if (traj >= Params.StartTrajectory + Params.NoMetropolisUntil) {
accept = metropolis_test(DeltaH);
} else {
std::cout << GridLogHMC << "Skipping Metropolis test" << std::endl;
std::cout << GridLogMessage << "Skipping Metropolis test" << std::endl;
}
if (accept)
Ucur = Ucopy;
double t1=usecond();
std::cout << GridLogHMC << "Total time for trajectory (s): " << (t1-t0)/1e6 << std::endl;
TheIntegrator.print_timer();
double t1=usecond();
std::cout << GridLogMessage << "Total time for trajectory (s): " << (t1-t0)/1e6 << std::endl;
for (int obs = 0; obs < Observables.size(); obs++) {
std::cout << GridLogDebug << "Observables # " << obs << std::endl;
@ -274,7 +228,7 @@ public:
std::cout << GridLogDebug << "Observables pointer " << Observables[obs] << std::endl;
Observables[obs]->TrajectoryComplete(traj + 1, Ucur, sRNG, pRNG);
}
std::cout << GridLogHMC << ":::::::::::::::::::::::::::::::::::::::::::" << std::endl;
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::::" << std::endl;
}
}

View File

@ -72,8 +72,6 @@ class HMCResourceManager {
typedef HMCModuleBase< BaseHmcCheckpointer<ImplementationPolicy> > CheckpointerBaseModule;
typedef HMCModuleBase< HmcObservable<typename ImplementationPolicy::Field> > ObservableBaseModule;
typedef ActionModuleBase< Action<typename ImplementationPolicy::Field>, GridModule > ActionBaseModule;
typedef typename ImplementationPolicy::Field MomentaField;
typedef typename ImplementationPolicy::Field Field;
// Named storage for grid pairs (std + red-black)
std::unordered_map<std::string, GridModule> Grids;
@ -82,9 +80,6 @@ class HMCResourceManager {
// SmearingModule<ImplementationPolicy> Smearing;
std::unique_ptr<CheckpointerBaseModule> CP;
// Momentum filter
std::unique_ptr<MomentumFilterBase<typename ImplementationPolicy::Field> > Filter;
// A vector of HmcObservable modules
std::vector<std::unique_ptr<ObservableBaseModule> > ObservablesList;
@ -95,7 +90,6 @@ class HMCResourceManager {
bool have_RNG;
bool have_CheckPointer;
bool have_Filter;
// NOTE: operator << is not overloaded for std::vector<string>
// so this function is necessary
@ -107,7 +101,7 @@ class HMCResourceManager {
public:
HMCResourceManager() : have_RNG(false), have_CheckPointer(false), have_Filter(false) {}
HMCResourceManager() : have_RNG(false), have_CheckPointer(false) {}
template <class ReaderClass, class vector_type = vComplex >
void initialize(ReaderClass &Read){
@ -135,7 +129,6 @@ public:
RNGModuleParameters RNGpar(Read);
SetRNGSeeds(RNGpar);
// Observables
auto &ObsFactory = HMC_ObservablesModuleFactory<observable_string, typename ImplementationPolicy::Field, ReaderClass>::getInstance();
Read.push(observable_string);// here must check if existing...
@ -215,16 +208,6 @@ public:
AddGrid(s, Mod);
}
void SetMomentumFilter( MomentumFilterBase<typename ImplementationPolicy::Field> * MomFilter) {
assert(have_Filter==false);
Filter = std::unique_ptr<MomentumFilterBase<typename ImplementationPolicy::Field> >(MomFilter);
have_Filter = true;
}
MomentumFilterBase<typename ImplementationPolicy::Field> *GetMomentumFilter(void) {
if ( !have_Filter)
SetMomentumFilter(new MomentumFilterNone<typename ImplementationPolicy::Field>());
return Filter.get();
}
GridCartesian* GetCartesian(std::string s = "") {
if (s.empty()) s = Grids.begin()->first;
@ -244,9 +227,6 @@ public:
// Random number generators
//////////////////////////////////////////////////////
//Return true if the RNG objects have been instantiated
bool haveRNGs() const{ return have_RNG; }
void AddRNGs(std::string s = "") {
// Couple the RNGs to the GridModule tagged by s
// the default is the first grid registered

View File

@ -33,6 +33,7 @@ directory
#define INTEGRATOR_INCLUDED
#include <memory>
#include "MomentumFilter.h"
NAMESPACE_BEGIN(Grid);
@ -66,7 +67,6 @@ public:
template <class FieldImplementation, class SmearingPolicy, class RepresentationPolicy>
class Integrator {
protected:
typedef typename FieldImplementation::Field MomentaField; //for readability
typedef typename FieldImplementation::Field Field;
@ -119,58 +119,36 @@ protected:
}
} update_P_hireps{};
void update_P(MomentaField& Mom, Field& U, int level, double ep) {
// input U actually not used in the fundamental case
// Fundamental updates, include smearing
for (int a = 0; a < as[level].actions.size(); ++a) {
double start_full = usecond();
Field force(U.Grid());
conformable(U.Grid(), Mom.Grid());
Field& Us = Smearer.get_U(as[level].actions.at(a)->is_smeared);
double start_force = usecond();
as[level].actions.at(a)->deriv_timer_start();
as[level].actions.at(a)->deriv(Us, force); // deriv should NOT include Ta
as[level].actions.at(a)->deriv_timer_stop();
std::cout << GridLogIntegrator << "Smearing (on/off): " << as[level].actions.at(a)->is_smeared << std::endl;
auto name = as[level].actions.at(a)->action_name();
if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force);
force = FieldImplementation::projectForce(force); // Ta for gauge fields
double end_force = usecond();
MomFilter->applyFilter(force);
std::cout << GridLogIntegrator << " update_P : Level [" << level <<"]["<<a <<"] "<<name<< std::endl;
DumpSliceNorm("force ",force,Nd-1);
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites()); //average per-site norm. nb. norm2(latt) = \sum_x norm2(latt[x])
Real impulse_abs = force_abs * ep * HMC_MOMENTUM_DENOMINATOR;
Real force_max = std::sqrt(maxLocalNorm2(force));
Real impulse_max = force_max * ep * HMC_MOMENTUM_DENOMINATOR;
as[level].actions.at(a)->deriv_log(force_abs,force_max);
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Force average: " << force_abs <<" "<<name<<std::endl;
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Force max : " << force_max <<" "<<name<<std::endl;
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Fdt average : " << impulse_abs <<" "<<name<<std::endl;
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Fdt max : " << impulse_max <<" "<<name<<std::endl;
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites());
std::cout << GridLogIntegrator << "["<<level<<"]["<<a<<"] Force average: " << force_abs << std::endl;
Mom -= force * ep* HMC_MOMENTUM_DENOMINATOR;;
double end_full = usecond();
double time_full = (end_full - start_full) / 1e3;
double time_force = (end_force - start_force) / 1e3;
std::cout << GridLogMessage << "["<<level<<"]["<<a<<"] P update elapsed time: " << time_full << " ms (force: " << time_force << " ms)" << std::endl;
}
// Force from the other representations
as[level].apply(update_P_hireps, Representations, Mom, U, ep);
MomFilter->applyFilter(Mom);
}
void update_U(Field& U, double ep)
@ -184,12 +162,8 @@ protected:
void update_U(MomentaField& Mom, Field& U, double ep)
{
MomentaField MomFiltered(Mom.Grid());
MomFiltered = Mom;
MomFilter->applyFilter(MomFiltered);
// exponential of Mom*U in the gauge fields case
FieldImplementation::update_field(MomFiltered, U, ep);
FieldImplementation::update_field(Mom, U, ep);
// Update the smeared fields, can be implemented as observer
Smearer.set_Field(U);
@ -232,66 +206,6 @@ public:
const MomentaField & getMomentum() const{ return P; }
void reset_timer(void)
{
for (int level = 0; level < as.size(); ++level) {
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
as[level].actions.at(actionID)->reset_timer();
}
}
}
void print_timer(void)
{
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::" << std::endl;
std::cout << GridLogMessage << " Refresh cumulative timings "<<std::endl;
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
for (int level = 0; level < as.size(); ++level) {
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
std::cout << GridLogMessage
<< as[level].actions.at(actionID)->action_name()
<<"["<<level<<"]["<< actionID<<"] "
<< as[level].actions.at(actionID)->refresh_us*1.0e-6<<" s"<< std::endl;
}
}
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
std::cout << GridLogMessage << " Action cumulative timings "<<std::endl;
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
for (int level = 0; level < as.size(); ++level) {
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
std::cout << GridLogMessage
<< as[level].actions.at(actionID)->action_name()
<<"["<<level<<"]["<< actionID<<"] "
<< as[level].actions.at(actionID)->S_us*1.0e-6<<" s"<< std::endl;
}
}
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
std::cout << GridLogMessage << " Force cumulative timings "<<std::endl;
std::cout << GridLogMessage << "------------------------- "<<std::endl;
for (int level = 0; level < as.size(); ++level) {
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
std::cout << GridLogMessage
<< as[level].actions.at(actionID)->action_name()
<<"["<<level<<"]["<< actionID<<"] "
<< as[level].actions.at(actionID)->deriv_us*1.0e-6<<" s"<< std::endl;
}
}
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
std::cout << GridLogMessage << " Force average size "<<std::endl;
std::cout << GridLogMessage << "------------------------- "<<std::endl;
for (int level = 0; level < as.size(); ++level) {
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
std::cout << GridLogMessage
<< as[level].actions.at(actionID)->action_name()
<<"["<<level<<"]["<< actionID<<"] : "
<<" force max " << as[level].actions.at(actionID)->deriv_max_average()
<<" norm " << as[level].actions.at(actionID)->deriv_norm_average()
<<" calls " << as[level].actions.at(actionID)->deriv_num
<< std::endl;
}
}
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::"<< std::endl;
}
void print_parameters()
{
std::cout << GridLogMessage << "[Integrator] Name : "<< integrator_name() << std::endl;
@ -310,6 +224,7 @@ public:
}
}
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::"<< std::endl;
}
void reverse_momenta()
@ -352,19 +267,15 @@ public:
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
// get gauge field from the SmearingPolicy and
// based on the boolean is_smeared in actionID
auto name = as[level].actions.at(actionID)->action_name();
std::cout << GridLogMessage << "refresh [" << level << "][" << actionID << "] "<<name << std::endl;
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
as[level].actions.at(actionID)->refresh_timer_start();
as[level].actions.at(actionID)->refresh(Us, sRNG, pRNG);
as[level].actions.at(actionID)->refresh_timer_stop();
}
// Refresh the higher representation actions
as[level].apply(refresh_hireps, Representations, sRNG, pRNG);
}
MomFilter->applyFilter(P);
}
// to be used by the actionlevel class to iterate
@ -399,9 +310,7 @@ public:
// based on the boolean is_smeared in actionID
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] action eval " << std::endl;
as[level].actions.at(actionID)->S_timer_start();
Hterm = as[level].actions.at(actionID)->S(Us);
as[level].actions.at(actionID)->S_timer_stop();
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] H = " << Hterm << std::endl;
H += Hterm;
}

View File

@ -131,11 +131,8 @@ class CartesianStencilAccelerator {
int _checkerboard;
int _npoints; // Move to template param?
int _osites;
int _dirichlet;
StencilVector _directions;
StencilVector _distances;
StencilVector _comms_send;
StencilVector _comms_recv;
StencilVector _comm_buf_size;
StencilVector _permute_type;
StencilVector same_node;
@ -229,8 +226,6 @@ public:
void * recv_buf;
Integer to_rank;
Integer from_rank;
Integer do_send;
Integer do_recv;
Integer bytes;
};
struct Merge {
@ -245,20 +240,7 @@ public:
cobj * mpi_p;
Integer buffer_size;
};
struct CopyReceiveBuffer {
void * from_p;
void * to_p;
Integer bytes;
};
struct CachedTransfer {
Integer direction;
Integer OrthogPlane;
Integer DestProc;
Integer bytes;
Integer lane;
Integer cb;
void *recv_buf;
};
protected:
GridBase * _grid;
@ -289,8 +271,7 @@ public:
std::vector<Merge> MergersSHM;
std::vector<Decompress> Decompressions;
std::vector<Decompress> DecompressionsSHM;
std::vector<CopyReceiveBuffer> CopyReceiveBuffers ;
std::vector<CachedTransfer> CachedTransfers;
///////////////////////////////////////////////////////////
// Unified Comms buffers for all directions
///////////////////////////////////////////////////////////
@ -303,6 +284,29 @@ public:
int u_comm_offset;
int _unified_buffer_size;
/////////////////////////////////////////
// Timing info; ugly; possibly temporary
/////////////////////////////////////////
double commtime;
double mpi3synctime;
double mpi3synctime_g;
double shmmergetime;
double gathertime;
double gathermtime;
double halogtime;
double mergetime;
double decompresstime;
double comms_bytes;
double shm_bytes;
double splicetime;
double nosplicetime;
double calls;
std::vector<double> comm_bytes_thr;
std::vector<double> shm_bytes_thr;
std::vector<double> comm_time_thr;
std::vector<double> comm_enter_thr;
std::vector<double> comm_leave_thr;
////////////////////////////////////////
// Stencil query
////////////////////////////////////////
@ -329,12 +333,11 @@ public:
//////////////////////////////////////////
// Comms packet queue for asynch thread
// Use OpenMP Tasks for cleaner ???
// must be called *inside* parallel region
//////////////////////////////////////////
/*
void CommunicateThreaded()
{
#ifdef GRID_OMP
// must be called in parallel region
int mythread = omp_get_thread_num();
int nthreads = CartesianCommunicator::nCommThreads;
#else
@ -343,29 +346,65 @@ public:
#endif
if (nthreads == -1) nthreads = 1;
if (mythread < nthreads) {
comm_enter_thr[mythread] = usecond();
for (int i = mythread; i < Packets.size(); i += nthreads) {
uint64_t bytes = _grid->StencilSendToRecvFrom(Packets[i].send_buf,
Packets[i].to_rank,
Packets[i].recv_buf,
Packets[i].from_rank,
Packets[i].bytes,i);
comm_bytes_thr[mythread] += bytes;
shm_bytes_thr[mythread] += 2*Packets[i].bytes-bytes; // Send + Recv.
}
comm_leave_thr[mythread]= usecond();
comm_time_thr[mythread] += comm_leave_thr[mythread] - comm_enter_thr[mythread];
}
}
*/
void CollateThreads(void)
{
int nthreads = CartesianCommunicator::nCommThreads;
double first=0.0;
double last =0.0;
for(int t=0;t<nthreads;t++) {
double t0 = comm_enter_thr[t];
double t1 = comm_leave_thr[t];
comms_bytes+=comm_bytes_thr[t];
shm_bytes +=shm_bytes_thr[t];
comm_enter_thr[t] = 0.0;
comm_leave_thr[t] = 0.0;
comm_time_thr[t] = 0.0;
comm_bytes_thr[t]=0;
shm_bytes_thr[t]=0;
if ( first == 0.0 ) first = t0; // first is t0
if ( (t0 > 0.0) && ( t0 < first ) ) first = t0; // min time seen
if ( t1 > last ) last = t1; // max time seen
}
commtime+= last-first;
}
////////////////////////////////////////////////////////////////////////
// Non blocking send and receive. Necessarily parallel.
////////////////////////////////////////////////////////////////////////
void CommunicateBegin(std::vector<std::vector<CommsRequest_t> > &reqs)
{
reqs.resize(Packets.size());
commtime-=usecond();
for(int i=0;i<Packets.size();i++){
_grid->StencilSendToRecvFromBegin(reqs[i],
Packets[i].send_buf,
Packets[i].to_rank,Packets[i].do_send,
Packets[i].recv_buf,
Packets[i].from_rank,Packets[i].do_recv,
Packets[i].bytes,i);
uint64_t bytes=_grid->StencilSendToRecvFromBegin(reqs[i],
Packets[i].send_buf,
Packets[i].to_rank,
Packets[i].recv_buf,
Packets[i].from_rank,
Packets[i].bytes,i);
comms_bytes+=bytes;
shm_bytes +=2*Packets[i].bytes-bytes;
}
}
@ -374,6 +413,7 @@ public:
for(int i=0;i<Packets.size();i++){
_grid->StencilSendToRecvFromComplete(reqs[i],i);
}
commtime+=usecond();
}
////////////////////////////////////////////////////////////////////////
// Blocking send and receive. Either sequential or parallel.
@ -381,27 +421,28 @@ public:
void Communicate(void)
{
if ( CartesianCommunicator::CommunicatorPolicy == CartesianCommunicator::CommunicatorPolicySequential ){
/////////////////////////////////////////////////////////
// several way threaded on different communicators.
// Cannot combine with Dirichlet operators
// This scheme is needed on Intel Omnipath for best performance
// Deprecate once there are very few omnipath clusters
/////////////////////////////////////////////////////////
int nthreads = CartesianCommunicator::nCommThreads;
int old = GridThread::GetThreads();
GridThread::SetThreads(nthreads);
thread_for(i,Packets.size(),{
_grid->StencilSendToRecvFrom(Packets[i].send_buf,
Packets[i].to_rank,Packets[i].do_send,
Packets[i].recv_buf,
Packets[i].from_rank,Packets[i].do_recv,
Packets[i].bytes,i);
});
GridThread::SetThreads(old);
} else {
/////////////////////////////////////////////////////////
// Concurrent and non-threaded asynch calls to MPI
/////////////////////////////////////////////////////////
thread_region {
// must be called in parallel region
int mythread = thread_num();
int maxthreads= thread_max();
int nthreads = CartesianCommunicator::nCommThreads;
assert(nthreads <= maxthreads);
if (nthreads == -1) nthreads = 1;
if (mythread < nthreads) {
for (int i = mythread; i < Packets.size(); i += nthreads) {
double start = usecond();
uint64_t bytes= _grid->StencilSendToRecvFrom(Packets[i].send_buf,
Packets[i].to_rank,
Packets[i].recv_buf,
Packets[i].from_rank,
Packets[i].bytes,i);
comm_bytes_thr[mythread] += bytes;
shm_bytes_thr[mythread] += Packets[i].bytes - bytes;
comm_time_thr[mythread] += usecond() - start;
}
}
}
} else { // Concurrent and non-threaded asynch calls to MPI
std::vector<std::vector<CommsRequest_t> > reqs;
this->CommunicateBegin(reqs);
this->CommunicateComplete(reqs);
@ -443,23 +484,31 @@ public:
sshift[1] = _grid->CheckerBoardShiftForCB(this->_checkerboard,dimension,shift,Odd);
if ( sshift[0] == sshift[1] ) {
if (splice_dim) {
auto tmp = GatherSimd(source,dimension,shift,0x3,compress,face_idx,point);
splicetime-=usecond();
auto tmp = GatherSimd(source,dimension,shift,0x3,compress,face_idx);
is_same_node = is_same_node && tmp;
splicetime+=usecond();
} else {
auto tmp = Gather(source,dimension,shift,0x3,compress,face_idx,point);
nosplicetime-=usecond();
auto tmp = Gather(source,dimension,shift,0x3,compress,face_idx);
is_same_node = is_same_node && tmp;
nosplicetime+=usecond();
}
} else {
if(splice_dim){
splicetime-=usecond();
// if checkerboard is unfavourable take two passes
// both with block stride loop iteration
auto tmp1 = GatherSimd(source,dimension,shift,0x1,compress,face_idx,point);
auto tmp2 = GatherSimd(source,dimension,shift,0x2,compress,face_idx,point);
auto tmp1 = GatherSimd(source,dimension,shift,0x1,compress,face_idx);
auto tmp2 = GatherSimd(source,dimension,shift,0x2,compress,face_idx);
is_same_node = is_same_node && tmp1 && tmp2;
splicetime+=usecond();
} else {
auto tmp1 = Gather(source,dimension,shift,0x1,compress,face_idx,point);
auto tmp2 = Gather(source,dimension,shift,0x2,compress,face_idx,point);
nosplicetime-=usecond();
auto tmp1 = Gather(source,dimension,shift,0x1,compress,face_idx);
auto tmp2 = Gather(source,dimension,shift,0x2,compress,face_idx);
is_same_node = is_same_node && tmp1 && tmp2;
nosplicetime+=usecond();
}
}
}
@ -469,10 +518,13 @@ public:
template<class compressor>
void HaloGather(const Lattice<vobj> &source,compressor &compress)
{
mpi3synctime_g-=usecond();
_grid->StencilBarrier();// Synch shared memory on a single nodes
mpi3synctime_g+=usecond();
// conformable(source.Grid(),_grid);
assert(source.Grid()==_grid);
halogtime-=usecond();
u_comm_offset=0;
@ -486,6 +538,7 @@ public:
assert(u_comm_offset==_unified_buffer_size);
accelerator_barrier();
halogtime+=usecond();
}
/////////////////////////
@ -498,72 +551,14 @@ public:
Mergers.resize(0);
MergersSHM.resize(0);
Packets.resize(0);
CopyReceiveBuffers.resize(0);
CachedTransfers.resize(0);
calls++;
}
void AddCopy(void *from,void * to, Integer bytes)
{
// std::cout << "Adding CopyReceiveBuffer "<<std::hex<<from<<" "<<to<<std::dec<<" "<<bytes<<std::endl;
CopyReceiveBuffer obj;
obj.from_p = from;
obj.to_p = to;
obj.bytes= bytes;
CopyReceiveBuffers.push_back(obj);
}
void CommsCopy()
{
// These are device resident MPI buffers.
for(int i=0;i<CopyReceiveBuffers.size();i++){
cobj *from=(cobj *)CopyReceiveBuffers[i].from_p;
cobj *to =(cobj *)CopyReceiveBuffers[i].to_p;
Integer words = CopyReceiveBuffers[i].bytes/sizeof(cobj);
// std::cout << "CopyReceiveBuffer "<<std::hex<<from<<" "<<to<<std::dec<<" "<<words*sizeof(cobj)<<std::endl;
accelerator_forNB(j, words, cobj::Nsimd(), {
coalescedWrite(to[j] ,coalescedRead(from [j]));
});
}
}
Integer CheckForDuplicate(Integer direction, Integer OrthogPlane, Integer DestProc, void *recv_buf,Integer lane,Integer bytes,Integer cb)
{
CachedTransfer obj;
obj.direction = direction;
obj.OrthogPlane = OrthogPlane;
obj.DestProc = DestProc;
obj.recv_buf = recv_buf;
obj.lane = lane;
obj.bytes = bytes;
obj.cb = cb;
for(int i=0;i<CachedTransfers.size();i++){
if ( (CachedTransfers[i].direction ==direction)
&&(CachedTransfers[i].OrthogPlane==OrthogPlane)
&&(CachedTransfers[i].DestProc ==DestProc)
&&(CachedTransfers[i].bytes ==bytes)
&&(CachedTransfers[i].lane ==lane)
&&(CachedTransfers[i].cb ==cb)
){
// std::cout << "Found duplicate plane dir "<<direction<<" plane "<< OrthogPlane<< " simd "<<lane << " relproc "<<DestProc<< " bytes "<<bytes <<std::endl;
AddCopy(CachedTransfers[i].recv_buf,recv_buf,bytes);
return 1;
}
}
// std::cout << "No duplicate plane dir "<<direction<<" plane "<< OrthogPlane<< " simd "<<lane << " relproc "<<DestProc<<" bytes "<<bytes<<std::endl;
CachedTransfers.push_back(obj);
return 0;
}
void AddPacket(void *xmit,void * rcv,
Integer to, Integer do_send,
Integer from, Integer do_recv,
Integer bytes){
void AddPacket(void *xmit,void * rcv, Integer to,Integer from,Integer bytes){
Packet p;
p.send_buf = xmit;
p.recv_buf = rcv;
p.to_rank = to;
p.from_rank= from;
p.do_send = do_send;
p.do_recv = do_recv;
p.bytes = bytes;
Packets.push_back(p);
}
@ -583,17 +578,22 @@ public:
mv.push_back(m);
}
template<class decompressor> void CommsMerge(decompressor decompress) {
CommsCopy();
CommsMerge(decompress,Mergers,Decompressions);
}
template<class decompressor> void CommsMergeSHM(decompressor decompress) {
mpi3synctime-=usecond();
_grid->StencilBarrier();// Synch shared memory on a single nodes
mpi3synctime+=usecond();
shmmergetime-=usecond();
CommsMerge(decompress,MergersSHM,DecompressionsSHM);
shmmergetime+=usecond();
}
template<class decompressor>
void CommsMerge(decompressor decompress,std::vector<Merge> &mm,std::vector<Decompress> &dd)
{
void CommsMerge(decompressor decompress,std::vector<Merge> &mm,std::vector<Decompress> &dd) {
mergetime-=usecond();
for(int i=0;i<mm.size();i++){
auto mp = &mm[i].mpointer[0];
auto vp0= &mm[i].vpointers[0][0];
@ -603,7 +603,9 @@ public:
decompress.Exchange(mp,vp0,vp1,type,o);
});
}
mergetime+=usecond();
decompresstime-=usecond();
for(int i=0;i<dd.size();i++){
auto kp = dd[i].kernel_p;
auto mp = dd[i].mpi_p;
@ -611,6 +613,7 @@ public:
decompress.Decompress(kp,mp,o);
});
}
decompresstime+=usecond();
}
////////////////////////////////////////
// Set up routines
@ -647,58 +650,19 @@ public:
}
}
}
/// Introduce a block structure and switch off comms on boundaries
void DirichletBlock(const Coordinate &dirichlet_block)
{
this->_dirichlet = 1;
for(int ii=0;ii<this->_npoints;ii++){
int dimension = this->_directions[ii];
int displacement = this->_distances[ii];
int shift = displacement;
int gd = _grid->_gdimensions[dimension];
int fd = _grid->_fdimensions[dimension];
int pd = _grid->_processors [dimension];
int ld = gd/pd;
int pc = _grid->_processor_coor[dimension];
///////////////////////////////////////////
// Figure out dirichlet send and receive
// on this leg of stencil.
///////////////////////////////////////////
int comm_dim = _grid->_processors[dimension] >1 ;
int block = dirichlet_block[dimension];
this->_comms_send[ii] = comm_dim;
this->_comms_recv[ii] = comm_dim;
if ( block ) {
assert(abs(displacement) < ld );
if( displacement > 0 ) {
// High side, low side
// | <--B--->|
// | | |
// noR
// noS
if ( (ld*(pc+1) ) % block == 0 ) this->_comms_recv[ii] = 0;
if ( ( ld*pc ) % block == 0 ) this->_comms_send[ii] = 0;
} else {
// High side, low side
// | <--B--->|
// | | |
// noS
// noR
if ( (ld*(pc+1) ) % block == 0 ) this->_comms_send[ii] = 0;
if ( ( ld*pc ) % block == 0 ) this->_comms_recv[ii] = 0;
}
}
}
}
CartesianStencil(GridBase *grid,
int npoints,
int checkerboard,
const std::vector<int> &directions,
const std::vector<int> &distances,
Parameters p)
: shm_bytes_thr(npoints),
comm_bytes_thr(npoints),
comm_enter_thr(npoints),
comm_leave_thr(npoints),
comm_time_thr(npoints)
{
this->_dirichlet = 0;
face_table_computed=0;
_grid = grid;
this->parameters=p;
@ -711,8 +675,6 @@ public:
this->_simd_layout = _grid->_simd_layout; // copy simd_layout to give access to Accelerator Kernels
this->_directions = StencilVector(directions);
this->_distances = StencilVector(distances);
this->_comms_send.resize(npoints);
this->_comms_recv.resize(npoints);
this->same_node.resize(npoints);
_unified_buffer_size=0;
@ -731,27 +693,24 @@ public:
int displacement = distances[i];
int shift = displacement;
int gd = _grid->_gdimensions[dimension];
int fd = _grid->_fdimensions[dimension];
int pd = _grid->_processors [dimension];
int ld = gd/pd;
int rd = _grid->_rdimensions[dimension];
int pc = _grid->_processor_coor[dimension];
this->_permute_type[point]=_grid->PermuteType(dimension);
this->_checkerboard = checkerboard;
//////////////////////////
// the permute type
//////////////////////////
int simd_layout = _grid->_simd_layout[dimension];
int comm_dim = _grid->_processors[dimension] >1 ;
int splice_dim = _grid->_simd_layout[dimension]>1 && (comm_dim);
int rotate_dim = _grid->_simd_layout[dimension]>2;
this->_comms_send[ii] = comm_dim;
this->_comms_recv[ii] = comm_dim;
assert ( (rotate_dim && comm_dim) == false) ; // Do not think spread out is supported
int sshift[2];
//////////////////////////
// Underlying approach. For each local site build
// up a table containing the npoint "neighbours" and whether they
@ -852,7 +811,6 @@ public:
GridBase *grid=_grid;
const int Nsimd = grid->Nsimd();
int comms_recv = this->_comms_recv[point];
int fd = _grid->_fdimensions[dimension];
int ld = _grid->_ldimensions[dimension];
int rd = _grid->_rdimensions[dimension];
@ -909,9 +867,7 @@ public:
if ( (shiftpm== 1) && (sx<x) && (grid->_processor_coor[dimension]==grid->_processors[dimension]-1) ) {
wraparound = 1;
}
// Wrap locally dirichlet support case OR node local
if ( (offnode==0) || (comms_recv==0) ) {
if (!offnode) {
int permute_slice=0;
CopyPlane(point,dimension,x,sx,cbmask,permute_slice,wraparound);
@ -1028,14 +984,11 @@ public:
}
template<class compressor>
int Gather(const Lattice<vobj> &rhs,int dimension,int shift,int cbmask,compressor & compress,int &face_idx, int point)
int Gather(const Lattice<vobj> &rhs,int dimension,int shift,int cbmask,compressor & compress,int &face_idx)
{
typedef typename cobj::vector_type vector_type;
typedef typename cobj::scalar_type scalar_type;
int comms_send = this->_comms_send[point] ;
int comms_recv = this->_comms_recv[point] ;
assert(rhs.Grid()==_grid);
// conformable(_grid,rhs.Grid());
@ -1061,8 +1014,6 @@ public:
if (comm_proc) {
int words = buffer_size;
if (cbmask != 0x3) words=words>>1;
@ -1094,53 +1045,44 @@ public:
recv_buf=this->u_recv_buf_p;
}
cobj *send_buf;
send_buf = this->u_send_buf_p; // Gather locally, must send
////////////////////////////////////////////////////////
// Gather locally
////////////////////////////////////////////////////////
gathertime-=usecond();
assert(send_buf!=NULL);
if ( comms_send )
Gather_plane_simple_table(face_table[face_idx],rhs,send_buf,compress,u_comm_offset,so);
face_idx++;
Gather_plane_simple_table(face_table[face_idx],rhs,send_buf,compress,u_comm_offset,so); face_idx++;
gathertime+=usecond();
int duplicate = CheckForDuplicate(dimension,sx,comm_proc,(void *)&recv_buf[u_comm_offset],0,bytes,cbmask);
if ( (!duplicate) ) { // Force comms for now
///////////////////////////////////////////////////////////
// Build a list of things to do after we synchronise GPUs
// Start comms now???
///////////////////////////////////////////////////////////
AddPacket((void *)&send_buf[u_comm_offset],
(void *)&recv_buf[u_comm_offset],
xmit_to_rank,
recv_from_rank,
bytes);
///////////////////////////////////////////////////////////
// Build a list of things to do after we synchronise GPUs
// Start comms now???
///////////////////////////////////////////////////////////
AddPacket((void *)&send_buf[u_comm_offset],
(void *)&recv_buf[u_comm_offset],
xmit_to_rank, comms_send,
recv_from_rank, comms_recv,
bytes);
}
if ( compress.DecompressionStep() ) {
if ( compress.DecompressionStep() ) {
AddDecompress(&this->u_recv_buf_p[u_comm_offset],
&recv_buf[u_comm_offset],
words,Decompressions);
}
u_comm_offset+=words;
}
}
}
return 0;
}
template<class compressor>
int GatherSimd(const Lattice<vobj> &rhs,int dimension,int shift,int cbmask,compressor &compress,int & face_idx,int point)
int GatherSimd(const Lattice<vobj> &rhs,int dimension,int shift,int cbmask,compressor &compress,int & face_idx)
{
const int Nsimd = _grid->Nsimd();
const int maxl =2;// max layout in a direction
int comms_send = this->_comms_send[point] ;
int comms_recv = this->_comms_recv[point] ;
int fd = _grid->_fdimensions[dimension];
int rd = _grid->_rdimensions[dimension];
int ld = _grid->_ldimensions[dimension];
@ -1205,11 +1147,12 @@ public:
&face_table[face_idx][0],
face_table[face_idx].size()*sizeof(face_table_host[0]));
}
gathermtime-=usecond();
// if ( comms_send )
Gather_plane_exchange_table(face_table[face_idx],rhs,spointers,dimension,sx,cbmask,compress,permute_type);
face_idx++;
gathermtime+=usecond();
//spointers[0] -- low
//spointers[1] -- high
@ -1238,13 +1181,8 @@ public:
rpointers[i] = rp;
int duplicate = CheckForDuplicate(dimension,sx,nbr_proc,(void *)rp,i,bytes,cbmask);
if ( !duplicate ) {
AddPacket((void *)sp,(void *)rp,
xmit_to_rank,comms_send,
recv_from_rank,comms_recv,
bytes);
}
AddPacket((void *)sp,(void *)rp,xmit_to_rank,recv_from_rank,bytes);
} else {

View File

@ -55,7 +55,7 @@ template<class vtype, int N> accelerator_inline iVector<vtype, N> Exponentiate(c
// Specialisation: Cayley-Hamilton exponential for SU(3)
#ifndef GRID_ACCELERATED
#ifndef GRID_CUDA
template<class vtype, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0>::type * =nullptr>
accelerator_inline iMatrix<vtype,3> Exponentiate(const iMatrix<vtype,3> &arg, RealD alpha , Integer Nexp = DEFAULT_MAT_EXP )
{

View File

@ -342,7 +342,7 @@ extern hipStream_t copyStream;
/*These routines define mapping from thread grid to loop & vector lane indexing */
accelerator_inline int acceleratorSIMTlane(int Nsimd) {
#ifdef GRID_SIMT
return hipThreadIdx_x;
return hipThreadIdx_z;
#else
return 0;
#endif
@ -356,41 +356,19 @@ accelerator_inline int acceleratorSIMTlane(int Nsimd) {
{ __VA_ARGS__;} \
}; \
int nt=acceleratorThreads(); \
dim3 hip_threads(nsimd, nt, 1); \
dim3 hip_blocks ((num1+nt-1)/nt,num2,1); \
if(hip_threads.x * hip_threads.y * hip_threads.z <= 64){ \
hipLaunchKernelGGL(LambdaApply64,hip_blocks,hip_threads, \
0,0, \
num1,num2,nsimd, lambda); \
} else { \
hipLaunchKernelGGL(LambdaApply,hip_blocks,hip_threads, \
0,0, \
num1,num2,nsimd, lambda); \
} \
dim3 hip_threads(nt,1,nsimd); \
dim3 hip_blocks ((num1+nt-1)/nt,num2,1); \
hipLaunchKernelGGL(LambdaApply,hip_blocks,hip_threads, \
0,0, \
num1,num2,nsimd,lambda); \
}
template<typename lambda> __global__
__launch_bounds__(64,1)
void LambdaApply64(uint64_t numx, uint64_t numy, uint64_t numz, lambda Lambda)
{
// Following the same scheme as CUDA for now
uint64_t x = threadIdx.y + blockDim.y*blockIdx.x;
uint64_t y = threadIdx.z + blockDim.z*blockIdx.y;
uint64_t z = threadIdx.x;
if ( (x < numx) && (y<numy) && (z<numz) ) {
Lambda(x,y,z);
}
}
template<typename lambda> __global__
__launch_bounds__(1024,1)
void LambdaApply(uint64_t numx, uint64_t numy, uint64_t numz, lambda Lambda)
{
// Following the same scheme as CUDA for now
uint64_t x = threadIdx.y + blockDim.y*blockIdx.x;
uint64_t y = threadIdx.z + blockDim.z*blockIdx.y;
uint64_t z = threadIdx.x;
uint64_t x = hipThreadIdx_x + hipBlockDim_x*hipBlockIdx_x;
uint64_t y = hipThreadIdx_y + hipBlockDim_y*hipBlockIdx_y;
uint64_t z = hipThreadIdx_z ;//+ hipBlockDim_z*hipBlockIdx_z;
if ( (x < numx) && (y<numy) && (z<numz) ) {
Lambda(x,y,z);
}
@ -441,7 +419,7 @@ inline void acceleratorMemSet(void *base,int value,size_t bytes) { hipMemset(bas
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) // Asynch
{
hipMemcpy(to,from,bytes, hipMemcpyDeviceToDevice);
hipMemcpyAsync(to,from,bytes, hipMemcpyDeviceToDevice,copyStream);
}
inline void acceleratorCopySynchronise(void) { hipStreamSynchronize(copyStream); };
@ -461,8 +439,6 @@ inline void acceleratorCopySynchronise(void) { hipStreamSynchronize(copyStream);
accelerator_for2dNB(iter1, num1, iter2, num2, nsimd, { __VA_ARGS__ } ); \
accelerator_barrier(dummy);
#define GRID_ACCELERATED
#endif
//////////////////////////////////////////////

View File

@ -167,13 +167,6 @@ void GridCmdOptionInt(std::string &str,int & val)
return;
}
void GridCmdOptionFloat(std::string &str,float & val)
{
std::stringstream ss(str);
ss>>val;
return;
}
void GridParseLayout(char **argv,int argc,
Coordinate &latt_c,

View File

@ -57,7 +57,6 @@ void GridCmdOptionCSL(std::string str,std::vector<std::string> & vec);
template<class VectorInt>
void GridCmdOptionIntVector(const std::string &str,VectorInt & vec);
void GridCmdOptionInt(std::string &str,int & val);
void GridCmdOptionFloat(std::string &str,float & val);
void GridParseLayout(char **argv,int argc,

View File

@ -1,232 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_hmc_EODWFRatio.cc
Copyright (C) 2015-2016
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
int main(int argc, char **argv) {
using namespace Grid;
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
// Typedefs to simplify notation
typedef WilsonImplR FermionImplPolicy;
typedef MobiusFermionR FermionAction;
typedef typename FermionAction::FermionField FermionField;
typedef Grid::XmlReader Serialiser;
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
IntegratorParameters MD;
// typedef GenericHMCRunner<LeapFrog> HMCWrapper;
// MD.name = std::string("Leap Frog");
// typedef GenericHMCRunner<ForceGradient> HMCWrapper;
// MD.name = std::string("Force Gradient");
typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;
MD.name = std::string("MinimumNorm2");
MD.MDsteps = 4;
MD.trajL = 1.0;
HMCparameters HMCparams;
HMCparams.StartTrajectory = 8;
HMCparams.Trajectories = 200;
HMCparams.NoMetropolisUntil= 0;
// "[HotStart, ColdStart, TepidStart, CheckpointStart]\n";
// HMCparams.StartingType =std::string("ColdStart");
HMCparams.StartingType =std::string("CheckpointStart");
HMCparams.MD = MD;
HMCWrapper TheHMC(HMCparams);
// Grid from the command line arguments --grid and --mpi
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
CheckpointerParameters CPparams;
CPparams.config_prefix = "ckpoint_EODWF_lat";
CPparams.rng_prefix = "ckpoint_EODWF_rng";
CPparams.saveInterval = 1;
CPparams.format = "IEEE64BIG";
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables
// here there is too much indirection
typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
TheHMC.Resources.AddObservable<PlaqObs>();
//////////////////////////////////////////////
const int Ls = 16;
Real beta = 2.13;
Real light_mass = 0.01;
Real strange_mass = 0.04;
Real pv_mass = 1.0;
RealD M5 = 1.8;
RealD b = 1.0;
RealD c = 0.0;
// FIXME:
// Same in MC and MD
// Need to mix precision too
OneFlavourRationalParams OFRp;
OFRp.lo = 4.0e-3;
OFRp.hi = 30.0;
OFRp.MaxIter = 10000;
OFRp.tolerance= 1.0e-10;
OFRp.degree = 16;
OFRp.precision= 50;
std::vector<Real> hasenbusch({ 0.01, 0.04, 0.2 , pv_mass });
std::vector<bool> dirichlet ({ true, true, true });
auto GridPtr = TheHMC.Resources.GetCartesian();
auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
////////////////////////////////////////////////////////////////
// Domain decomposed
////////////////////////////////////////////////////////////////
Coordinate latt4 = GridPtr->GlobalDimensions();
Coordinate mpi = GridPtr->ProcessorGrid();
Coordinate shm;
GlobalSharedMemory::GetShmDims(mpi,shm);
Coordinate CommDim(Nd);
for(int d=0;d<Nd;d++) CommDim[d]= (mpi[d]/shm[d])>1 ? 1 : 0;
Coordinate Dirichlet(Nd+1,0);
Dirichlet[1] = CommDim[0]*latt4[0]/mpi[0] * shm[0];
Dirichlet[2] = CommDim[1]*latt4[1]/mpi[1] * shm[1];
Dirichlet[3] = CommDim[2]*latt4[2]/mpi[2] * shm[2];
Dirichlet[4] = CommDim[3]*latt4[3]/mpi[3] * shm[3];
Coordinate Block4(Nd);
Block4[0] = Dirichlet[1];
Block4[1] = Dirichlet[2];
Block4[2] = Dirichlet[3];
Block4[3] = Dirichlet[4];
TheHMC.Resources.SetMomentumFilter(new DDHMCFilter<WilsonImplR::Field>(Block4));
//////////////////////////
// Fermion Grid
//////////////////////////
auto FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtr);
auto FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtr);
IwasakiGaugeActionR GaugeAction(beta);
// temporarily need a gauge field
LatticeGaugeField U(GridPtr);
// These lines are unecessary if BC are all periodic
std::vector<Complex> boundary = {1,1,1,-1};
FermionAction::ImplParams Params(boundary);
double StoppingCondition = 1e-10;
double MaxCGIterations = 30000;
ConjugateGradient<FermionField> CG(StoppingCondition,MaxCGIterations);
////////////////////////////////////
// Collect actions
////////////////////////////////////
ActionLevel<HMCWrapper::Field> Level1(1);
ActionLevel<HMCWrapper::Field> Level2(2);
ActionLevel<HMCWrapper::Field> Level3(8);
////////////////////////////////////
// Strange action
////////////////////////////////////
FermionAction StrangeOp (U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,strange_mass,M5,b,c, Params);
FermionAction StrangePauliVillarsOp(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,pv_mass, M5,b,c, Params);
OneFlavourEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy> StrangePseudoFermion(StrangePauliVillarsOp,StrangeOp,OFRp);
// Level1.push_back(&StrangePseudoFermion);
////////////////////////////////////
// up down action
////////////////////////////////////
std::vector<Real> light_den;
std::vector<Real> light_num;
std::vector<int> dirichlet_den;
std::vector<int> dirichlet_num;
int n_hasenbusch = hasenbusch.size();
light_den.push_back(light_mass);
dirichlet_den.push_back(0);
for(int h=0;h<n_hasenbusch;h++){
light_den.push_back(hasenbusch[h]);
light_num.push_back(hasenbusch[h]);
dirichlet_num.push_back(1);
dirichlet_den.push_back(1);
}
light_num.push_back(pv_mass);
dirichlet_num.push_back(0);
std::vector<FermionAction *> Numerators;
std::vector<FermionAction *> Denominators;
std::vector<TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy> *> Quotients;
for(int h=0;h<n_hasenbusch+1;h++){
std::cout << GridLogMessage << " 2f quotient Action "<< light_num[h]<< " (" << dirichlet_num[h]
<<") / " << light_den[h]<< " (" << dirichlet_den[h]<<")"<< std::endl;
Numerators.push_back (new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[h],M5,b,c, Params));
Denominators.push_back(new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[h],M5,b,c, Params));
Quotients.push_back (new TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],CG,CG));
if ( dirichlet_den[h]==1) Denominators[h]->DirichletBlock(Dirichlet);
if ( dirichlet_num[h]==1) Numerators[h]->DirichletBlock(Dirichlet);
}
int nquo=Quotients.size();
Level1.push_back(Quotients[0]);
Level1.push_back(Quotients[nquo-1]);
for(int h=1;h<nquo-1;h++){
Level2.push_back(Quotients[h]);
}
/////////////////////////////////////////////////////////////
// Gauge action
/////////////////////////////////////////////////////////////
Level3.push_back(&GaugeAction);
TheHMC.TheAction.push_back(Level1);
TheHMC.TheAction.push_back(Level2);
TheHMC.TheAction.push_back(Level3);
std::cout << GridLogMessage << " Action complete "<< std::endl;
/////////////////////////////////////////////////////////////
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
TheHMC.Run(); // no smearing
Grid_finalize();
} // main

View File

@ -217,9 +217,9 @@ int main (int argc, char ** argv)
dbytes+=
Grid.StencilSendToRecvFromBegin(requests,
(void *)&xbuf[mu][0],
xmit_to_rank,1,
xmit_to_rank,
(void *)&rbuf[mu][0],
recv_from_rank,1,
recv_from_rank,
bytes,mu);
comm_proc = mpi_layout[mu]-1;
@ -228,9 +228,9 @@ int main (int argc, char ** argv)
dbytes+=
Grid.StencilSendToRecvFromBegin(requests,
(void *)&xbuf[mu+4][0],
xmit_to_rank,1,
xmit_to_rank,
(void *)&rbuf[mu+4][0],
recv_from_rank,1,
recv_from_rank,
bytes,mu+4);
}
@ -309,9 +309,9 @@ int main (int argc, char ** argv)
dbytes+=
Grid.StencilSendToRecvFromBegin(requests,
(void *)&xbuf[mu][0],
xmit_to_rank,1,
xmit_to_rank,
(void *)&rbuf[mu][0],
recv_from_rank,1,
recv_from_rank,
bytes,mu);
Grid.StencilSendToRecvFromComplete(requests,mu);
requests.resize(0);
@ -322,9 +322,9 @@ int main (int argc, char ** argv)
dbytes+=
Grid.StencilSendToRecvFromBegin(requests,
(void *)&xbuf[mu+4][0],
xmit_to_rank,1,
xmit_to_rank,
(void *)&rbuf[mu+4][0],
recv_from_rank,1,
recv_from_rank,
bytes,mu+4);
Grid.StencilSendToRecvFromComplete(requests,mu+4);
requests.resize(0);
@ -411,8 +411,8 @@ int main (int argc, char ** argv)
Grid.ShiftedRanks(mu,comm_proc,xmit_to_rank,recv_from_rank);
}
int tid = omp_get_thread_num();
tbytes= Grid.StencilSendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank,1,
(void *)&rbuf[dir][0], recv_from_rank,1, bytes,tid);
tbytes= Grid.StencilSendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank,
(void *)&rbuf[dir][0], recv_from_rank, bytes,tid);
thread_critical { dbytes+=tbytes; }
}

View File

@ -32,18 +32,18 @@
using namespace std;
using namespace Grid;
////////////////////////
/// Move to domains ////
////////////////////////
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
template<class d>
struct scal {
d internal;
};
void Benchmark(int Ls, Coordinate Dirichlet);
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
int main (int argc, char ** argv)
{
@ -52,82 +52,24 @@ int main (int argc, char ** argv)
int threads = GridThread::GetThreads();
Coordinate latt4 = GridDefaultLatt();
int Ls=16;
for(int i=0;i<argc;i++) {
for(int i=0;i<argc;i++)
if(std::string(argv[i]) == "-Ls"){
std::stringstream ss(argv[i+1]); ss >> Ls;
}
}
//////////////////
// With comms
//////////////////
Coordinate Dirichlet(Nd+1,0);
std::cout << "\n\n\n\n\n\n" <<std::endl;
std::cout << GridLogMessage<< "++++++++++++++++++++++++++++++++++++++++++++++++" <<std::endl;
std::cout << GridLogMessage<< " Testing with full communication " <<std::endl;
std::cout << GridLogMessage<< "++++++++++++++++++++++++++++++++++++++++++++++++" <<std::endl;
Benchmark(Ls,Dirichlet);
//////////////////
// Domain decomposed
//////////////////
Coordinate latt4 = GridDefaultLatt();
Coordinate mpi = GridDefaultMpi();
Coordinate CommDim(Nd);
Coordinate shm;
GlobalSharedMemory::GetShmDims(mpi,shm);
//////////////////////
// Node level
//////////////////////
std::cout << "\n\n\n\n\n\n" <<std::endl;
std::cout << GridLogMessage<< "++++++++++++++++++++++++++++++++++++++++++++++++" <<std::endl;
std::cout << GridLogMessage<< " Testing without internode communication " <<std::endl;
std::cout << GridLogMessage<< "++++++++++++++++++++++++++++++++++++++++++++++++" <<std::endl;
for(int d=0;d<Nd;d++) CommDim[d]= (mpi[d]/shm[d])>1 ? 1 : 0;
Dirichlet[0] = 0;
Dirichlet[1] = CommDim[0]*latt4[0]/mpi[0] * shm[0];
Dirichlet[2] = CommDim[1]*latt4[1]/mpi[1] * shm[1];
Dirichlet[3] = CommDim[2]*latt4[2]/mpi[2] * shm[2];
Dirichlet[4] = CommDim[3]*latt4[3]/mpi[3] * shm[3];
Benchmark(Ls,Dirichlet);
std::cout << "\n\n\n\n\n\n" <<std::endl;
std::cout << GridLogMessage<< "++++++++++++++++++++++++++++++++++++++++++++++++" <<std::endl;
std::cout << GridLogMessage<< " Testing without intranode communication " <<std::endl;
std::cout << GridLogMessage<< "++++++++++++++++++++++++++++++++++++++++++++++++" <<std::endl;
for(int d=0;d<Nd;d++) CommDim[d]= mpi[d]>1 ? 1 : 0;
Dirichlet[0] = 0;
Dirichlet[1] = CommDim[0]*latt4[0]/mpi[0];
Dirichlet[2] = CommDim[1]*latt4[1]/mpi[1];
Dirichlet[3] = CommDim[2]*latt4[2]/mpi[2];
Dirichlet[4] = CommDim[3]*latt4[3]/mpi[3];
Benchmark(Ls,Dirichlet);
Grid_finalize();
exit(0);
}
void Benchmark(int Ls, Coordinate Dirichlet)
{
Coordinate latt4 = GridDefaultLatt();
GridLogLayout();
long unsigned int single_site_flops = 8*Nc*(7+16*Nc);
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
std::cout << GridLogMessage << "Making s innermost grids"<<std::endl;
GridCartesian * sUGrid = SpaceTimeGrid::makeFourDimDWFGrid(GridDefaultLatt(),GridDefaultMpi());
GridRedBlackCartesian * sUrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(sUGrid);
GridCartesian * sFGrid = SpaceTimeGrid::makeFiveDimDWFGrid(Ls,UGrid);
@ -138,9 +80,9 @@ void Benchmark(int Ls, Coordinate Dirichlet)
std::cout << GridLogMessage << "Initialising 4d RNG" << std::endl;
GridParallelRNG RNG4(UGrid); RNG4.SeedUniqueString(std::string("The 4D RNG"));
std::cout << GridLogMessage << "Initialising 5d RNG" << std::endl;
GridParallelRNG RNG5(FGrid); RNG5.SeedUniqueString(std::string("The 5D RNG"));
std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
LatticeFermionF src (FGrid); random(RNG5,src);
#if 0
@ -158,6 +100,7 @@ void Benchmark(int Ls, Coordinate Dirichlet)
src = src*N2;
#endif
LatticeFermionF result(FGrid); result=Zero();
LatticeFermionF ref(FGrid); ref=Zero();
LatticeFermionF tmp(FGrid);
@ -165,31 +108,29 @@ void Benchmark(int Ls, Coordinate Dirichlet)
std::cout << GridLogMessage << "Drawing gauge field" << std::endl;
LatticeGaugeFieldF Umu(UGrid);
LatticeGaugeFieldF UmuCopy(UGrid);
SU<Nc>::HotConfiguration(RNG4,Umu);
UmuCopy=Umu;
std::cout << GridLogMessage << "Random gauge initialised " << std::endl;
////////////////////////////////////
// Apply BCs
////////////////////////////////////
Coordinate Block(4);
for(int d=0;d<4;d++) Block[d]= Dirichlet[d+1];
std::cout << GridLogMessage << "Applying BCs for Dirichlet Block5 " << Dirichlet << std::endl;
std::cout << GridLogMessage << "Applying BCs for Dirichlet Block4 " << Block << std::endl;
DirichletFilter<LatticeGaugeFieldF> Filter(Block);
Filter.applyFilter(Umu);
#if 0
Umu=1.0;
for(int mu=0;mu<Nd;mu++){
LatticeColourMatrixF ttmp(UGrid);
ttmp = PeekIndex<LorentzIndex>(Umu,mu);
// if (mu !=2 ) ttmp = 0;
// ttmp = ttmp* pow(10.0,mu);
PokeIndex<LorentzIndex>(Umu,ttmp,mu);
}
std::cout << GridLogMessage << "Forced to diagonal " << std::endl;
#endif
////////////////////////////////////
// Naive wilson implementation
////////////////////////////////////
// replicate across fifth dimension
// LatticeGaugeFieldF Umu5d(FGrid);
std::vector<LatticeColourMatrixF> U(4,UGrid);
for(int mu=0;mu<Nd;mu++){
U[mu] = PeekIndex<LorentzIndex>(Umu,mu);
}
std::cout << GridLogMessage << "Setting up Cshift based reference " << std::endl;
if (1)
@ -250,13 +191,11 @@ void Benchmark(int Ls, Coordinate Dirichlet)
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
DomainWallFermionF Dw(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
Dw.DirichletBlock(Dirichlet);
Dw.ImportGauge(Umu);
int ncall =300;
if (1) {
FGrid->Barrier();
Dw.ZeroCounters();
Dw.Dhop(src,result,0);
std::cout<<GridLogMessage<<"Called warmup"<<std::endl;
double t0=usecond();
@ -281,20 +220,29 @@ void Benchmark(int Ls, Coordinate Dirichlet)
double data_mem = (volume * (2*Nd+1)*Nd*Nc + (volume/Ls) *2*Nd*Nc*Nc) * simdwidth / nsimd * ncall / (1024.*1024.*1024.);
std::cout<<GridLogMessage << "Called Dw "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl;
// std::cout<<GridLogMessage << "norm result "<< norm2(result)<<std::endl;
// std::cout<<GridLogMessage << "norm ref "<< norm2(ref)<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "mflop/s per rank = "<< flops/(t1-t0)/NP<<std::endl;
std::cout<<GridLogMessage << "mflop/s per node = "<< flops/(t1-t0)/NN<<std::endl;
// std::cout<<GridLogMessage << "RF GiB/s (base 2) = "<< 1000000. * data_rf/((t1-t0))<<std::endl;
// std::cout<<GridLogMessage << "mem GiB/s (base 2) = "<< 1000000. * data_mem/((t1-t0))<<std::endl;
std::cout<<GridLogMessage << "RF GiB/s (base 2) = "<< 1000000. * data_rf/((t1-t0))<<std::endl;
std::cout<<GridLogMessage << "mem GiB/s (base 2) = "<< 1000000. * data_mem/((t1-t0))<<std::endl;
err = ref-result;
std::cout<<GridLogMessage << "norm diff "<< norm2(err)<<std::endl;
//exit(0);
if(( norm2(err)>1.0e-4) ) {
/*
std::cout << "RESULT\n " << result<<std::endl;
std::cout << "REF \n " << ref <<std::endl;
std::cout << "ERR \n " << err <<std::endl;
*/
std::cout<<GridLogMessage << "WRONG RESULT" << std::endl;
FGrid->Barrier();
exit(-1);
}
assert (norm2(err)< 1.0e-4 );
Dw.Report();
}
if (1)
@ -338,20 +286,21 @@ void Benchmark(int Ls, Coordinate Dirichlet)
}
ref = -0.5*ref;
}
Dw.Dhop(src,result,DaggerYes);
std::cout << GridLogMessage << "----------------------------------------------------------------" << std::endl;
// dump=1;
Dw.Dhop(src,result,1);
std::cout << GridLogMessage << "Compare to naive wilson implementation Dag to verify correctness" << std::endl;
std::cout << GridLogMessage << "----------------------------------------------------------------" << std::endl;
std::cout<<GridLogMessage << "Called DwDag"<<std::endl;
std::cout<<GridLogMessage << "norm dag result "<< norm2(result)<<std::endl;
std::cout<<GridLogMessage << "norm dag ref "<< norm2(ref)<<std::endl;
err = ref-result;
std::cout<<GridLogMessage << "norm dag diff "<< norm2(err)<<std::endl;
assert((norm2(err)<1.0e-4));
if((norm2(err)>1.0e-4)){
/*
std::cout<< "DAG RESULT\n " <<ref << std::endl;
std::cout<< "DAG sRESULT\n " <<result << std::endl;
std::cout<< "DAG ERR \n " << err <<std::endl;
*/
}
LatticeFermionF src_e (FrbGrid);
LatticeFermionF src_o (FrbGrid);
LatticeFermionF r_e (FrbGrid);
@ -381,6 +330,7 @@ void Benchmark(int Ls, Coordinate Dirichlet)
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm ) std::cout << GridLogMessage<< "* Using Asm Nc=3 WilsonKernels" <<std::endl;
std::cout << GridLogMessage<< "*********************************************************" <<std::endl;
{
Dw.ZeroCounters();
FGrid->Barrier();
Dw.DhopEO(src_o,r_e,DaggerNo);
double t0=usecond();
@ -402,6 +352,7 @@ void Benchmark(int Ls, Coordinate Dirichlet)
std::cout<<GridLogMessage << "Deo mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "Deo mflop/s per rank "<< flops/(t1-t0)/NP<<std::endl;
std::cout<<GridLogMessage << "Deo mflop/s per node "<< flops/(t1-t0)/NN<<std::endl;
Dw.Report();
}
Dw.DhopEO(src_o,r_e,DaggerNo);
Dw.DhopOE(src_e,r_o,DaggerNo);
@ -416,7 +367,13 @@ void Benchmark(int Ls, Coordinate Dirichlet)
err = r_eo-result;
std::cout<<GridLogMessage << "norm diff "<< norm2(err)<<std::endl;
assert(norm2(err)<1.0e-4);
if((norm2(err)>1.0e-4)){
/*
std::cout<< "Deo RESULT\n " <<r_eo << std::endl;
std::cout<< "Deo REF\n " <<result << std::endl;
std::cout<< "Deo ERR \n " << err <<std::endl;
*/
}
pickCheckerboard(Even,src_e,err);
pickCheckerboard(Odd,src_o,err);
@ -425,4 +382,6 @@ void Benchmark(int Ls, Coordinate Dirichlet)
assert(norm2(src_e)<1.0e-4);
assert(norm2(src_o)<1.0e-4);
Grid_finalize();
exit(0);
}

View File

@ -1,12 +0,0 @@
../../configure --enable-comms=mpi-auto \
--enable-unified=no \
--enable-shm=nvlink \
--enable-accelerator=hip \
--enable-gen-simd-width=64 \
--enable-simd=GPU \
--disable-fermion-reps \
--disable-gparity \
CXX=hipcc MPICXX=mpicxx \
CXXFLAGS="-fPIC -I/opt/rocm-4.5.0/include/ -std=c++14 -I${MPICH_DIR}/include " \
LDFLAGS=" -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa "
HIPFLAGS = --amdgpu-target=gfx90a

View File

@ -1,30 +0,0 @@
#!/bin/bash
# Begin LSF Directives
#SBATCH -A LGT104
#SBATCH -t 01:00:00
##SBATCH -U openmpThu
#SBATCH -J DWF
#SBATCH -o DWF.%J
#SBATCH -e DWF.%J
#SBATCH -N 1
#SBATCH -n 8
#SBATCH --exclusive
#SBATCH --gpu-bind=map_gpu:0,1,2,3,7,6,5,4
DIR=.
module list
export MPIR_CVAR_GPU_EAGER_DEVICE_MEM=0
export MPICH_GPU_SUPPORT_ENABLED=1
#export MPICH_SMP_SINGLE_COPY_MODE=XPMEM
export MPICH_SMP_SINGLE_COPY_MODE=NONE
#export MPICH_SMP_SINGLE_COPY_MODE=CMA
export OMP_NUM_THREADS=1
echo MPICH_SMP_SINGLE_COPY_MODE $MPICH_SMP_SINGLE_COPY_MODE
PARAMS=" --accelerator-threads 16 --grid 32.32.32.256 --mpi 1.1.1.8 --comms-overlap --shm 2048 --shm-mpi 0"
echo $PARAMS
srun --gpus-per-task 1 -n8 ./benchmarks/Benchmark_dwf_fp32 $PARAMS

View File

@ -1,27 +0,0 @@
#!/bin/bash
# Begin LSF Directives
#SBATCH -A LGT104
#SBATCH -t 01:00:00
##SBATCH -U openmpThu
#SBATCH -J DWF
#SBATCH -o DWF.%J
#SBATCH -e DWF.%J
#SBATCH -N 1
#SBATCH -n 4
#SBATCH --exclusive
DIR=.
module list
export MPIR_CVAR_GPU_EAGER_DEVICE_MEM=0
export MPICH_GPU_SUPPORT_ENABLED=1
#export MPICH_SMP_SINGLE_COPY_MODE=XPMEM
export MPICH_SMP_SINGLE_COPY_MODE=NONE
#export MPICH_SMP_SINGLE_COPY_MODE=CMA
export OMP_NUM_THREADS=4
echo MPICH_SMP_SINGLE_COPY_MODE $MPICH_SMP_SINGLE_COPY_MODE
PARAMS=" --accelerator-threads 8 --grid 32.32.64.64 --mpi 1.1.2.2 --comms-overlap --shm 2048 --shm-mpi 0"
srun --gpus-per-task 1 -n4 ./mpiwrapper.sh ./benchmarks/Benchmark_dwf_fp32 $PARAMS

View File

@ -1,48 +0,0 @@
#!/bin/bash
# Begin LSF Directives
#SBATCH -A LGT104
#SBATCH -t 01:00:00
##SBATCH -U openmpThu
#SBATCH -J DWF
#SBATCH -o DWF.%J
#SBATCH -e DWF.%J
#SBATCH -N 8
#SBATCH -n 64
#SBATCH --exclusive
#SBATCH --gpu-bind=map_gpu:0,1,2,3,7,6,5,4
DIR=.
module list
export MPICH_OFI_NIC_POLICY=GPU
export MPIR_CVAR_GPU_EAGER_DEVICE_MEM=0
export MPICH_GPU_SUPPORT_ENABLED=1
#export MPICH_SMP_SINGLE_COPY_MODE=XPMEM
#export MPICH_SMP_SINGLE_COPY_MODE=CMA
export MPICH_SMP_SINGLE_COPY_MODE=NONE
export OMP_NUM_THREADS=1
echo MPICH_SMP_SINGLE_COPY_MODE $MPICH_SMP_SINGLE_COPY_MODE
PARAMS=" --accelerator-threads 16 --grid 64.64.64.256 --mpi 2.2.2.8 --comms-overlap --shm 2048 --shm-mpi 0"
echo $PARAMS
#srun --gpus-per-task 1 -N8 -n64 ./benchmarks/Benchmark_dwf_fp32 $PARAMS > dwf.64.64.64.256.8node
PARAMS=" --accelerator-threads 16 --grid 64.64.64.32 --mpi 4.4.4.1 --comms-overlap --shm 2048 --shm-mpi 1"
echo $PARAMS
srun --gpus-per-task 1 -N8 -n64 ./benchmarks/Benchmark_dwf_fp32 $PARAMS > dwf.64.64.64.32.8node
PARAMS=" --accelerator-threads 16 --grid 64.64.64.32 --mpi 4.4.4.1 --comms-overlap --shm 2048 --shm-mpi 0"
echo $PARAMS
#srun --gpus-per-task 1 -N8 -n64 ./benchmarks/Benchmark_dwf_fp32 $PARAMS > dwf.64.64.64.32.8node.shm0
PARAMS=" --accelerator-threads 16 --grid 64.64.64.32 --mpi 2.2.2.8 --comms-overlap --shm 2048 --shm-mpi 1"
echo $PARAMS
#srun --gpus-per-task 1 -N8 -n64 ./benchmarks/Benchmark_ITT $PARAMS > itt.8node
PARAMS=" --accelerator-threads 16 --grid 64.64.64.32 --mpi 2.2.2.8 --comms-overlap --shm 2048 --shm-mpi 0"
echo $PARAMS
#srun --gpus-per-task 1 -N8 -n64 ./benchmarks/Benchmark_ITT $PARAMS > itt.8node_shm0

View File

@ -1,13 +0,0 @@
#!/bin/bash
lrank=$SLURM_LOCALID
lgpu=(0 1 2 3 7 6 5 4)
export ROCR_VISIBLE_DEVICES=${lgpu[$lrank]}
echo "`hostname` - $lrank device=$ROCR_VISIBLE_DEVICES "
$*

View File

@ -1,5 +0,0 @@
module load PrgEnv-gnu
module load rocm/4.5.0
module load gmp
module load cray-fftw
module load craype-accel-amd-gfx90a

View File

@ -6,8 +6,6 @@
--enable-simd=GPU \
--disable-fermion-reps \
--disable-gparity \
--with-gmp=$OLCF_GMP_ROOT \
--with-mpfr=/opt/cray/pe/gcc/mpfr/3.1.4/ \
CXX=hipcc MPICXX=mpicxx \
CXXFLAGS="-fPIC -I/opt/rocm-4.3.0/include/ -std=c++14 -I${MPICH_DIR}/include " \
--prefix=/ccs/home/chulwoo/Grid \

View File

@ -1,7 +1,8 @@
#!/bin/bash
# Begin LSF Directives
#SBATCH -A LGT104
#SBATCH -t 3:00:00
#SBATCH -t 01:00:00
##SBATCH -U openmpThu
#SBATCH -p ecp
#SBATCH -J DWF
#SBATCH -o DWF.%J
@ -13,12 +14,13 @@ DIR=.
module list
export MPIR_CVAR_GPU_EAGER_DEVICE_MEM=0
export MPICH_GPU_SUPPORT_ENABLED=1
export MPICH_SMP_SINGLE_COPY_MODE=CMA
#export MPICH_SMP_SINGLE_COPY_MODE=XPMEM
export MPICH_SMP_SINGLE_COPY_MODE=NONE
#export MPICH_SMP_SINGLE_COPY_MODE=CMA
export OMP_NUM_THREADS=8
AT=8
echo MPICH_SMP_SINGLE_COPY_MODE $MPICH_SMP_SINGLE_COPY_MODE
PARAMS=" --accelerator-threads ${AT} --grid 16.16.16.48 --mpi 1.2.2.2 --comms-overlap --shm 2048 --shm-mpi 0"
srun -N2 -n8 --label -c$OMP_NUM_THREADS --gpus-per-task=1 ./mpiwrapper.sh ./HMC/Mobius2p1f_DD_RHMC $PARAMS
PARAMS=" --accelerator-threads ${AT} --grid 32.64.64.64 --mpi 1.2.2.2 --comms-overlap --shm 2048 --shm-mpi 0"
srun -n8 --label -c$OMP_NUM_THREADS --gpus-per-task=1 ./mpiwrapper.sh ./benchmarks/Benchmark_dwf_fp32 $PARAMS

View File

@ -1,9 +1,5 @@
module load emacs
module load PrgEnv-gnu
module load rocm/4.5.0
module load rocm/4.3.0
module load gmp
module load cray-fftw
module load craype-accel-amd-gfx908
export MPIR_CVAR_GPU_EAGER_DEVICE_MEM=0
export MPICH_GPU_SUPPORT_ENABLED=1
export LD_LIBRARY_PATH=/opt/cray/pe/gcc/mpfr/3.1.4/lib/:$LD_LIBRARY_PATH

View File

@ -1,25 +1,25 @@
tu-c0r3n00 - 0 device=0 binding=--interleave=0,1
tu-c0r3n00 - 1 device=1 binding=--interleave=2,3
tu-c0r3n00 - 2 device=2 binding=--interleave=4,5
tu-c0r3n00 - 3 device=3 binding=--interleave=6,7
tu-c0r3n06 - 1 device=1 binding=--interleave=2,3
tu-c0r3n06 - 3 device=3 binding=--interleave=6,7
tu-c0r3n06 - 0 device=0 binding=--interleave=0,1
tu-c0r3n06 - 2 device=2 binding=--interleave=4,5
tu-c0r3n03 - 1 device=1 binding=--interleave=2,3
tu-c0r3n03 - 2 device=2 binding=--interleave=4,5
tu-c0r3n03 - 0 device=0 binding=--interleave=0,1
tu-c0r3n03 - 3 device=3 binding=--interleave=6,7
tu-c0r3n09 - 0 device=0 binding=--interleave=0,1
tu-c0r3n09 - 1 device=1 binding=--interleave=2,3
tu-c0r3n09 - 2 device=2 binding=--interleave=4,5
tu-c0r3n09 - 3 device=3 binding=--interleave=6,7
tu-c0r0n00 - 0 device=0 binding=--interleave=0,1
tu-c0r0n00 - 1 device=1 binding=--interleave=2,3
tu-c0r0n09 - 1 device=1 binding=--interleave=2,3
tu-c0r0n00 - 2 device=2 binding=--interleave=4,5
tu-c0r0n06 - 0 device=0 binding=--interleave=0,1
tu-c0r0n06 - 1 device=1 binding=--interleave=2,3
tu-c0r0n09 - 0 device=0 binding=--interleave=0,1
tu-c0r0n09 - 2 device=2 binding=--interleave=4,5
tu-c0r0n03 - 1 device=1 binding=--interleave=2,3
tu-c0r0n06 - 2 device=2 binding=--interleave=4,5
tu-c0r0n09 - 3 device=3 binding=--interleave=6,7
tu-c0r0n00 - 3 device=3 binding=--interleave=6,7
tu-c0r0n03 - 0 device=0 binding=--interleave=0,1
tu-c0r0n03 - 2 device=2 binding=--interleave=4,5
tu-c0r0n06 - 3 device=3 binding=--interleave=6,7
tu-c0r0n03 - 3 device=3 binding=--interleave=6,7
OPENMPI detected
AcceleratorCudaInit: using default device
AcceleratorCudaInit: assume user either uses
AcceleratorCudaInit: a) IBM jsrun, or
AcceleratorCudaInit: assume user either uses a) IBM jsrun, or
AcceleratorCudaInit: b) invokes through a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding
AcceleratorCudaInit: Configure options --enable-setdevice=no
AcceleratorCudaInit: Configure options --enable-summit, --enable-select-gpu=no
AcceleratorCudaInit: ================================================
OPENMPI detected
AcceleratorCudaInit[0]: ========================
AcceleratorCudaInit[0]: Device Number : 0
@ -33,41 +33,11 @@ AcceleratorCudaInit[0]: pciBusID: 3
AcceleratorCudaInit[0]: pciDeviceID: 0
AcceleratorCudaInit[0]: maxGridSize (2147483647,65535,65535)
AcceleratorCudaInit: using default device
AcceleratorCudaInit: assume user either uses
AcceleratorCudaInit: a) IBM jsrun, or
AcceleratorCudaInit: assume user either uses a) IBM jsrun, or
AcceleratorCudaInit: b) invokes through a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding
AcceleratorCudaInit: Configure options --enable-setdevice=no
AcceleratorCudaInit: Configure options --enable-summit, --enable-select-gpu=no
AcceleratorCudaInit: ================================================
OPENMPI detected
AcceleratorCudaInit: using default device
AcceleratorCudaInit: assume user either uses
AcceleratorCudaInit: a) IBM jsrun, or
AcceleratorCudaInit: b) invokes through a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding
AcceleratorCudaInit: Configure options --enable-setdevice=no
OPENMPI detected
AcceleratorCudaInit: using default device
AcceleratorCudaInit: assume user either uses
AcceleratorCudaInit: a) IBM jsrun, or
AcceleratorCudaInit: b) invokes through a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding
AcceleratorCudaInit: Configure options --enable-setdevice=no
OPENMPI detected
AcceleratorCudaInit: using default device
AcceleratorCudaInit: assume user either uses
AcceleratorCudaInit: a) IBM jsrun, or
AcceleratorCudaInit: b) invokes through a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding
AcceleratorCudaInit: Configure options --enable-setdevice=no
OPENMPI detected
OPENMPI detected
AcceleratorCudaInit: using default device
AcceleratorCudaInit: assume user either uses
AcceleratorCudaInit: a) IBM jsrun, or
AcceleratorCudaInit: b) invokes through a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding
AcceleratorCudaInit: Configure options --enable-setdevice=no
OPENMPI detected
AcceleratorCudaInit: using default device
AcceleratorCudaInit: assume user either uses
AcceleratorCudaInit: a) IBM jsrun, or
AcceleratorCudaInit: b) invokes through a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding
AcceleratorCudaInit: Configure options --enable-setdevice=no
AcceleratorCudaInit[0]: ========================
AcceleratorCudaInit[0]: Device Number : 0
AcceleratorCudaInit[0]: ========================
@ -80,25 +50,43 @@ AcceleratorCudaInit[0]: pciBusID: 3
AcceleratorCudaInit[0]: pciDeviceID: 0
AcceleratorCudaInit[0]: maxGridSize (2147483647,65535,65535)
AcceleratorCudaInit: using default device
AcceleratorCudaInit: assume user either uses
AcceleratorCudaInit: a) IBM jsrun, or
AcceleratorCudaInit: assume user either uses a) IBM jsrun, or
AcceleratorCudaInit: b) invokes through a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding
AcceleratorCudaInit: Configure options --enable-setdevice=no
local rank 1 device 0 bus id: 0000:44:00.0
AcceleratorCudaInit: Configure options --enable-summit, --enable-select-gpu=no
AcceleratorCudaInit: ================================================
local rank 0 device 0 bus id: 0000:03:00.0
OPENMPI detected
AcceleratorCudaInit: using default device
AcceleratorCudaInit: assume user either uses a) IBM jsrun, or
AcceleratorCudaInit: b) invokes through a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding
AcceleratorCudaInit: Configure options --enable-summit, --enable-select-gpu=no
AcceleratorCudaInit: ================================================
OPENMPI detected
AcceleratorCudaInit: using default device
AcceleratorCudaInit: assume user either uses a) IBM jsrun, or
AcceleratorCudaInit: b) invokes through a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding
AcceleratorCudaInit: Configure options --enable-summit, --enable-select-gpu=no
AcceleratorCudaInit: ================================================
OPENMPI detected
AcceleratorCudaInit: using default device
AcceleratorCudaInit: assume user either uses a) IBM jsrun, or
AcceleratorCudaInit: b) invokes through a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding
AcceleratorCudaInit: Configure options --enable-summit, --enable-select-gpu=no
AcceleratorCudaInit: ================================================
OPENMPI detected
AcceleratorCudaInit: using default device
AcceleratorCudaInit: assume user either uses a) IBM jsrun, or
AcceleratorCudaInit: b) invokes through a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding
AcceleratorCudaInit: Configure options --enable-summit, --enable-select-gpu=no
AcceleratorCudaInit: ================================================
OPENMPI detected
AcceleratorCudaInit: using default device
AcceleratorCudaInit: assume user either uses a) IBM jsrun, or
AcceleratorCudaInit: b) invokes through a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding
AcceleratorCudaInit: Configure options --enable-summit, --enable-select-gpu=no
AcceleratorCudaInit: ================================================
local rank 0 device 0 bus id: 0000:03:00.0
AcceleratorCudaInit: ================================================
AcceleratorCudaInit: ================================================
local rank 2 device 0 bus id: 0000:84:00.0
SharedMemoryMpi: World communicator of size 16
SharedMemoryMpi: Node communicator of size 4
0SharedMemoryMpi: SharedMemoryMPI.cc acceleratorAllocDevice 2147483648bytes at 0x153960000000 for comms buffers
0SharedMemoryMpi: SharedMemoryMPI.cc acceleratorAllocDevice 2147483648bytes at 0x7fcd80000000 for comms buffers
Setting up IPC
__|__|__|__|__|__|__|__|__|__|__|__|__|__|__
@ -128,7 +116,7 @@ This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Current Grid git commit hash=da06d15f73184ceb15d66d4e7e702b02fed7b940: (HEAD -> feature/dirichlet, develop) uncommited changes
Current Grid git commit hash=9d2238148c56e3fbadfa95dcabf2b83d4bde14cd: (HEAD -> develop) uncommited changes
Grid : Message : ================================================
Grid : Message : MPI is initialised and logging filters activated
@ -136,102 +124,122 @@ Grid : Message : ================================================
Grid : Message : Requested 2147483648 byte stencil comms buffers
Grid : Message : MemoryManager Cache 34004218675 bytes
Grid : Message : MemoryManager::Init() setting up
Grid : Message : MemoryManager::Init() cache pool for recent allocations: SMALL 8 LARGE 2
Grid : Message : MemoryManager::Init() cache pool for recent allocations: SMALL 32 LARGE 8
Grid : Message : MemoryManager::Init() Non unified: Caching accelerator data in dedicated memory
Grid : Message : MemoryManager::Init() Using cudaMalloc
Grid : Message : 1.875883 s : Grid Layout
Grid : Message : 1.875893 s : Global lattice size : 64 64 64 64
Grid : Message : 1.875897 s : OpenMP threads : 4
Grid : Message : 1.875898 s : MPI tasks : 2 2 2 2
Grid : Message : 1.993571 s : Initialising 4d RNG
Grid : Message : 2.881990 s : Intialising parallel RNG with unique string 'The 4D RNG'
Grid : Message : 2.882370 s : Seed SHA256: 49db4542db694e3b1a74bf2592a8c1b83bfebbe18401693c2609a4c3af1
Grid : Message : 2.495044 s : Initialising 5d RNG
Grid : Message : 4.120900 s : Intialising parallel RNG with unique string 'The 5D RNG'
Grid : Message : 4.121350 s : Seed SHA256: b6316f2fac44ce14111f93e0296389330b077bfd0a7b359f781c58589f8a
Grid : Message : 15.268010 s : Drawing gauge field
Grid : Message : 16.234025 s : Random gauge initialised
Grid : Message : 16.234057 s : Applying BCs
Grid : Message : 16.365565 s : Setting up Cshift based reference
Grid : Message : 44.512418 s : *****************************************************************
Grid : Message : 44.512448 s : * Kernel options --dslash-generic, --dslash-unroll, --dslash-asm
Grid : Message : 44.512450 s : *****************************************************************
Grid : Message : 44.512451 s : *****************************************************************
Grid : Message : 44.512452 s : * Benchmarking DomainWallFermionR::Dhop
Grid : Message : 44.512453 s : * Vectorising space-time by 8
Grid : Message : 44.512454 s : * VComplexF size is 64 B
Grid : Message : 44.512456 s : * SINGLE precision
Grid : Message : 44.512459 s : * Using Overlapped Comms/Compute
Grid : Message : 44.512460 s : * Using GENERIC Nc WilsonKernels
Grid : Message : 44.512461 s : *****************************************************************
Grid : Message : 46.389070 s : Called warmup
Grid : Message : 49.211265 s : Called Dw 300 times in 2.82203e+06 us
Grid : Message : 49.211295 s : mflop/s = 3.76681e+07
Grid : Message : 49.211297 s : mflop/s per rank = 2.35425e+06
Grid : Message : 49.211299 s : mflop/s per node = 9.41702e+06
Grid : Message : 49.211301 s : RF GiB/s (base 2) = 76540.6
Grid : Message : 49.211308 s : mem GiB/s (base 2) = 47837.9
Grid : Message : 49.214868 s : norm diff 1.06409e-13
Grid : Message : 92.647781 s : Compare to naive wilson implementation Dag to verify correctness
Grid : Message : 92.647816 s : Called DwDag
Grid : Message : 92.647817 s : norm dag result 12.0421
Grid : Message : 92.801806 s : norm dag ref 12.0421
Grid : Message : 92.817724 s : norm dag diff 7.21921e-14
Grid : Message : 92.858973 s : Calling Deo and Doe and //assert Deo+Doe == Dunprec
Grid : Message : 93.210378 s : src_e0.499997
Grid : Message : 93.583286 s : src_o0.500003
Grid : Message : 93.682468 s : *********************************************************
Grid : Message : 93.682471 s : * Benchmarking DomainWallFermionF::DhopEO
Grid : Message : 93.682472 s : * Vectorising space-time by 8
Grid : Message : 93.682473 s : * SINGLE precision
Grid : Message : 93.682475 s : * Using Overlapped Comms/Compute
Grid : Message : 93.682476 s : * Using GENERIC Nc WilsonKernels
Grid : Message : 93.682477 s : *********************************************************
Grid : Message : 95.162342 s : Deo mflop/s = 3.92487e+07
Grid : Message : 95.162387 s : Deo mflop/s per rank 2.45305e+06
Grid : Message : 95.162389 s : Deo mflop/s per node 9.81219e+06
Grid : Message : 95.232801 s : r_e6.02111
Grid : Message : 95.240061 s : r_o6.02102
Grid : Message : 95.245975 s : res12.0421
Grid : Message : 95.833402 s : norm diff 0
Grid : Message : 96.573829 s : norm diff even 0
Grid : Message : 96.868272 s : norm diff odd 0
Dirichlet block [0 64 64 32 32]
Grid : Message : 97.756909 s : Grid Layout
Grid : Message : 97.756911 s : Global lattice size : 64 64 64 64
Grid : Message : 97.756921 s : OpenMP threads : 4
Grid : Message : 97.756922 s : MPI tasks : 2 2 2 2
Grid : Message : 97.897085 s : Initialising 4d RNG
Grid : Message : 97.965061 s : Intialising parallel RNG with unique string 'The 4D RNG'
Grid : Message : 97.965097 s : Seed SHA256: 49db4542db694e3b1a74bf2592a8c1b83bfebbe18401693c2609a4c3af1
Grid : Message : 98.367431 s : Initialising 5d RNG
Grid : Message : 99.752745 s : Intialising parallel RNG with unique string 'The 5D RNG'
Grid : Message : 99.752790 s : Seed SHA256: b6316f2fac44ce14111f93e0296389330b077bfd0a7b359f781c58589f8a
Grid : Message : 111.290148 s : Drawing gauge field
Grid : Message : 112.349289 s : Random gauge initialised
Grid : Message : 112.349320 s : Applying BCs
Grid : Message : 113.948740 s : Setting up Cshift based reference
Grid : Message : 140.320415 s : *****************************************************************
Grid : Message : 140.320443 s : * Kernel options --dslash-generic, --dslash-unroll, --dslash-asm
Grid : Message : 140.320444 s : *****************************************************************
Grid : Message : 140.320445 s : *****************************************************************
Grid : Message : 140.320446 s : * Benchmarking DomainWallFermionR::Dhop
Grid : Message : 140.320447 s : * Vectorising space-time by 8
Grid : Message : 140.320448 s : * VComplexF size is 64 B
Grid : Message : 140.320450 s : * SINGLE precision
Grid : Message : 140.320451 s : * Using Overlapped Comms/Compute
Grid : Message : 140.320452 s : * Using GENERIC Nc WilsonKernels
Grid : Message : 140.320453 s : *****************************************************************
Grid : Message : 142.296150 s : Called warmup
Grid : Message : 144.397678 s : Called Dw 300 times in 2.36719e+06 us
Grid : Message : 144.397700 s : mflop/s = 4.49058e+07
Grid : Message : 144.397702 s : mflop/s per rank = 2.80661e+06
Grid : Message : 144.397704 s : mflop/s per node = 1.12265e+07
Grid : Message : 144.397706 s : RF GiB/s (base 2) = 91247.6
Grid : Message : 144.397708 s : mem GiB/s (base 2) = 57029.7
Grid : Message : 144.401269 s : norm diff 9.78944e-14
Grid : Message : 186.885460 s : Compare to naive wilson implementation Dag to verify correctness
Grid : Message : 186.885492 s : Called DwDag
Grid : Message : 186.885493 s : norm dag result 10.4157
Grid : Message : 186.897154 s : norm dag ref 11.2266
Grid : Message : 186.912538 s : norm dag diff 0.484633
Grid : Message : 1.198523 s : Grid Layout
Grid : Message : 1.198530 s : Global lattice size : 64 64 64 64
Grid : Message : 1.198534 s : OpenMP threads : 4
Grid : Message : 1.198535 s : MPI tasks : 2 2 2 2
Grid : Message : 1.397615 s : Making s innermost grids
Grid : Message : 1.441828 s : Initialising 4d RNG
Grid : Message : 1.547973 s : Intialising parallel RNG with unique string 'The 4D RNG'
Grid : Message : 1.547998 s : Seed SHA256: 49db4542db694e3b1a74bf2592a8c1b83bfebbe18401693c2609a4c3af1
Grid : Message : 1.954777 s : Initialising 5d RNG
Grid : Message : 3.633825 s : Intialising parallel RNG with unique string 'The 5D RNG'
Grid : Message : 3.633869 s : Seed SHA256: b6316f2fac44ce14111f93e0296389330b077bfd0a7b359f781c58589f8a
Grid : Message : 12.162710 s : Initialised RNGs
Grid : Message : 15.882520 s : Drawing gauge field
Grid : Message : 15.816362 s : Random gauge initialised
Grid : Message : 17.279671 s : Setting up Cshift based reference
Grid : Message : 26.331426 s : *****************************************************************
Grid : Message : 26.331452 s : * Kernel options --dslash-generic, --dslash-unroll, --dslash-asm
Grid : Message : 26.331454 s : *****************************************************************
Grid : Message : 26.331456 s : *****************************************************************
Grid : Message : 26.331458 s : * Benchmarking DomainWallFermionR::Dhop
Grid : Message : 26.331459 s : * Vectorising space-time by 8
Grid : Message : 26.331463 s : * VComplexF size is 64 B
Grid : Message : 26.331465 s : * SINGLE precision
Grid : Message : 26.331467 s : * Using Overlapped Comms/Compute
Grid : Message : 26.331468 s : * Using GENERIC Nc WilsonKernels
Grid : Message : 26.331469 s : *****************************************************************
Grid : Message : 28.413717 s : Called warmup
Grid : Message : 56.418423 s : Called Dw 3000 times in 2.80047e+07 us
Grid : Message : 56.418476 s : mflop/s = 3.79581e+07
Grid : Message : 56.418479 s : mflop/s per rank = 2.37238e+06
Grid : Message : 56.418481 s : mflop/s per node = 9.48953e+06
Grid : Message : 56.418483 s : RF GiB/s (base 2) = 77130
Grid : Message : 56.418485 s : mem GiB/s (base 2) = 48206.3
Grid : Message : 56.422076 s : norm diff 1.03481e-13
Grid : Message : 56.456894 s : #### Dhop calls report
Grid : Message : 56.456899 s : WilsonFermion5D Number of DhopEO Calls : 6002
Grid : Message : 56.456903 s : WilsonFermion5D TotalTime /Calls : 4710.93 us
Grid : Message : 56.456905 s : WilsonFermion5D CommTime /Calls : 3196.15 us
Grid : Message : 56.456908 s : WilsonFermion5D FaceTime /Calls : 494.392 us
Grid : Message : 56.456910 s : WilsonFermion5D ComputeTime1/Calls : 44.4107 us
Grid : Message : 56.456912 s : WilsonFermion5D ComputeTime2/Calls : 1037.75 us
Grid : Message : 56.456921 s : Average mflops/s per call : 3.55691e+09
Grid : Message : 56.456925 s : Average mflops/s per call per rank : 2.22307e+08
Grid : Message : 56.456928 s : Average mflops/s per call per node : 8.89228e+08
Grid : Message : 56.456930 s : Average mflops/s per call (full) : 3.82915e+07
Grid : Message : 56.456933 s : Average mflops/s per call per rank (full): 2.39322e+06
Grid : Message : 56.456952 s : Average mflops/s per call per node (full): 9.57287e+06
Grid : Message : 56.456954 s : WilsonFermion5D Stencil
Grid : Message : 56.457016 s : Stencil calls 3001
Grid : Message : 56.457022 s : Stencil halogtime 0
Grid : Message : 56.457024 s : Stencil gathertime 55.9154
Grid : Message : 56.457026 s : Stencil gathermtime 20.1073
Grid : Message : 56.457028 s : Stencil mergetime 18.5585
Grid : Message : 56.457030 s : Stencil decompresstime 0.0639787
Grid : Message : 56.457032 s : Stencil comms_bytes 4.02653e+08
Grid : Message : 56.457034 s : Stencil commtime 6379.93
Grid : Message : 56.457036 s : Stencil 63.1124 GB/s per rank
Grid : Message : 56.457038 s : Stencil 252.45 GB/s per node
Grid : Message : 56.457040 s : WilsonFermion5D StencilEven
Grid : Message : 56.457048 s : WilsonFermion5D StencilOdd
Grid : Message : 56.457062 s : WilsonFermion5D Stencil Reporti()
Grid : Message : 56.457065 s : WilsonFermion5D StencilEven Reporti()
Grid : Message : 56.457066 s : WilsonFermion5D StencilOdd Reporti()
Grid : Message : 79.259261 s : Compare to naive wilson implementation Dag to verify correctness
Grid : Message : 79.259287 s : Called DwDag
Grid : Message : 79.259288 s : norm dag result 12.0421
Grid : Message : 79.271740 s : norm dag ref 12.0421
Grid : Message : 79.287759 s : norm dag diff 7.63236e-14
Grid : Message : 79.328100 s : Calling Deo and Doe and //assert Deo+Doe == Dunprec
Grid : Message : 79.955951 s : src_e0.499997
Grid : Message : 80.633620 s : src_o0.500003
Grid : Message : 80.164163 s : *********************************************************
Grid : Message : 80.164168 s : * Benchmarking DomainWallFermionF::DhopEO
Grid : Message : 80.164170 s : * Vectorising space-time by 8
Grid : Message : 80.164172 s : * SINGLE precision
Grid : Message : 80.164174 s : * Using Overlapped Comms/Compute
Grid : Message : 80.164177 s : * Using GENERIC Nc WilsonKernels
Grid : Message : 80.164178 s : *********************************************************
Grid : Message : 93.797635 s : Deo mflop/s = 3.93231e+07
Grid : Message : 93.797670 s : Deo mflop/s per rank 2.45769e+06
Grid : Message : 93.797672 s : Deo mflop/s per node 9.83077e+06
Grid : Message : 93.797674 s : #### Dhop calls report
Grid : Message : 93.797675 s : WilsonFermion5D Number of DhopEO Calls : 3001
Grid : Message : 93.797677 s : WilsonFermion5D TotalTime /Calls : 4542.83 us
Grid : Message : 93.797679 s : WilsonFermion5D CommTime /Calls : 2978.97 us
Grid : Message : 93.797681 s : WilsonFermion5D FaceTime /Calls : 602.287 us
Grid : Message : 93.797683 s : WilsonFermion5D ComputeTime1/Calls : 67.1416 us
Grid : Message : 93.797685 s : WilsonFermion5D ComputeTime2/Calls : 1004.07 us
Grid : Message : 93.797713 s : Average mflops/s per call : 3.30731e+09
Grid : Message : 93.797717 s : Average mflops/s per call per rank : 2.06707e+08
Grid : Message : 93.797719 s : Average mflops/s per call per node : 8.26827e+08
Grid : Message : 93.797721 s : Average mflops/s per call (full) : 3.97084e+07
Grid : Message : 93.797727 s : Average mflops/s per call per rank (full): 2.48178e+06
Grid : Message : 93.797732 s : Average mflops/s per call per node (full): 9.92711e+06
Grid : Message : 93.797735 s : WilsonFermion5D Stencil
Grid : Message : 93.797746 s : WilsonFermion5D StencilEven
Grid : Message : 93.797758 s : WilsonFermion5D StencilOdd
Grid : Message : 93.797769 s : Stencil calls 3001
Grid : Message : 93.797773 s : Stencil halogtime 0
Grid : Message : 93.797776 s : Stencil gathertime 56.7458
Grid : Message : 93.797780 s : Stencil gathermtime 22.6504
Grid : Message : 93.797782 s : Stencil mergetime 21.1913
Grid : Message : 93.797786 s : Stencil decompresstime 0.0556481
Grid : Message : 93.797788 s : Stencil comms_bytes 2.01327e+08
Grid : Message : 93.797791 s : Stencil commtime 2989.33
Grid : Message : 93.797795 s : Stencil 67.3484 GB/s per rank
Grid : Message : 93.797798 s : Stencil 269.394 GB/s per node
Grid : Message : 93.797801 s : WilsonFermion5D Stencil Reporti()
Grid : Message : 93.797803 s : WilsonFermion5D StencilEven Reporti()
Grid : Message : 93.797805 s : WilsonFermion5D StencilOdd Reporti()
Grid : Message : 93.873429 s : r_e6.02111
Grid : Message : 93.879931 s : r_o6.02102
Grid : Message : 93.885912 s : res12.0421
Grid : Message : 94.876555 s : norm diff 0
Grid : Message : 95.485643 s : norm diff even 0
Grid : Message : 95.581236 s : norm diff odd 0

View File

@ -1,13 +1,14 @@
#!/bin/bash
#SBATCH -J dslash
#SBATCH -A dp207
#SBATCH -A tc002
#SBATCH -t 2:20:00
#SBATCH --nodelist=tu-c0r0n[00,03,06,09]
#SBATCH --exclusive
#SBATCH --nodes=4
#SBATCH --ntasks=16
#SBATCH --qos=standard
#SBATCH --ntasks-per-node=4
#SBATCH --cpus-per-task=8
#SBATCH --time=0:05:00
#SBATCH --time=12:00:00
#SBATCH --partition=gpu
#SBATCH --gres=gpu:4
#SBATCH --output=%x.%j.out

View File

@ -1,226 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/core/Test_compact_wilson_clover_speedup.cc
Copyright (C) 2020 - 2022
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
Author: Nils Meyer <nils.meyer@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
NAMESPACE_BEGIN(CommandlineHelpers);
static bool checkPresent(int* argc, char*** argv, const std::string& option) {
return GridCmdOptionExists(*argv, *argv + *argc, option);
}
static std::string getContent(int* argc, char*** argv, const std::string& option) {
return GridCmdOptionPayload(*argv, *argv + *argc, option);
}
static int readInt(int* argc, char*** argv, std::string&& option, int defaultValue) {
std::string arg;
int ret = defaultValue;
if(checkPresent(argc, argv, option)) {
arg = getContent(argc, argv, option);
GridCmdOptionInt(arg, ret);
}
return ret;
}
static float readFloat(int* argc, char*** argv, std::string&& option, float defaultValue) {
std::string arg;
float ret = defaultValue;
if(checkPresent(argc, argv, option)) {
arg = getContent(argc, argv, option);
GridCmdOptionFloat(arg, ret);
}
return ret;
}
NAMESPACE_END(CommandlineHelpers);
#define _grid_printf(LOGGER, ...) \
{ \
if((LOGGER).isActive()) { /* this makes it safe to put, e.g., norm2 in the calling code w.r.t. performance */ \
char _printf_buf[1024]; \
std::sprintf(_printf_buf, __VA_ARGS__); \
std::cout << (LOGGER) << _printf_buf; \
fflush(stdout); \
} \
}
#define grid_printf_msg(...) _grid_printf(GridLogMessage, __VA_ARGS__)
template<typename Field>
bool resultsAgree(const Field& ref, const Field& res, const std::string& name) {
RealD checkTolerance = (getPrecision<Field>::value == 2) ? 1e-15 : 1e-7;
Field diff(ref.Grid());
diff = ref - res;
auto absDev = norm2(diff);
auto relDev = absDev / norm2(ref);
std::cout << GridLogMessage
<< "norm2(reference), norm2(" << name << "), abs. deviation, rel. deviation: " << norm2(ref) << " "
<< norm2(res) << " " << absDev << " " << relDev << " -> check "
<< ((relDev < checkTolerance) ? "passed" : "failed") << std::endl;
return relDev <= checkTolerance;
}
template<typename vCoeff_t>
void runBenchmark(int* argc, char*** argv) {
// read from command line
const int nIter = CommandlineHelpers::readInt( argc, argv, "--niter", 1000);
const RealD mass = CommandlineHelpers::readFloat( argc, argv, "--mass", 0.5);
const RealD csw = CommandlineHelpers::readFloat( argc, argv, "--csw", 1.0);
const RealD cF = CommandlineHelpers::readFloat( argc, argv, "--cF", 1.0);
const bool antiPeriodic = CommandlineHelpers::checkPresent(argc, argv, "--antiperiodic");
// precision
static_assert(getPrecision<vCoeff_t>::value == 2 || getPrecision<vCoeff_t>::value == 1, "Incorrect precision"); // double or single
std::string precision = (getPrecision<vCoeff_t>::value == 2 ? "double" : "single");
// setup grids
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vCoeff_t::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
// clang-format on
// setup rng
std::vector<int> seeds({1, 2, 3, 4});
GridParallelRNG pRNG(UGrid);
pRNG.SeedFixedIntegers(seeds);
// type definitions
typedef WilsonImpl<vCoeff_t, FundamentalRepresentation, CoeffReal> WImpl;
typedef WilsonCloverFermion<WImpl> WilsonCloverOperator;
typedef CompactWilsonCloverFermion<WImpl> CompactWilsonCloverOperator;
typedef typename WilsonCloverOperator::FermionField Fermion;
typedef typename WilsonCloverOperator::GaugeField Gauge;
// setup fields
Fermion src(UGrid); random(pRNG, src);
Fermion ref(UGrid); ref = Zero();
Fermion res(UGrid); res = Zero();
Fermion hop(UGrid); hop = Zero();
Fermion diff(UGrid); diff = Zero();
Gauge Umu(UGrid); SU3::HotConfiguration(pRNG, Umu);
// setup boundary phases
typename WilsonCloverOperator::ImplParams implParams;
std::vector<Complex> boundary_phases(Nd, 1.);
if(antiPeriodic) boundary_phases[Nd-1] = -1.;
implParams.boundary_phases = boundary_phases;
WilsonAnisotropyCoefficients anisParams;
// misc stuff needed for benchmarks
double volume=1.0; for(int mu=0; mu<Nd; mu++) volume*=UGrid->_fdimensions[mu];
// setup fermion operators
WilsonCloverOperator Dwc( Umu, *UGrid, *UrbGrid, mass, csw, csw, anisParams, implParams);
CompactWilsonCloverOperator Dwc_compact(Umu, *UGrid, *UrbGrid, mass, csw, csw, cF, anisParams, implParams);
// now test the conversions
typename CompactWilsonCloverOperator::CloverField tmp_ref(UGrid); tmp_ref = Dwc.CloverTerm;
typename CompactWilsonCloverOperator::CloverField tmp_res(UGrid); tmp_res = Zero();
typename CompactWilsonCloverOperator::CloverField tmp_diff(UGrid); tmp_diff = Zero();
typename CompactWilsonCloverOperator::CloverDiagonalField diagonal(UGrid); diagonal = Zero();
typename CompactWilsonCloverOperator::CloverTriangleField triangle(UGrid); diagonal = Zero();
CompactWilsonCloverOperator::CompactHelpers::ConvertLayout(tmp_ref, diagonal, triangle);
CompactWilsonCloverOperator::CompactHelpers::ConvertLayout(diagonal, triangle, tmp_res);
tmp_diff = tmp_ref - tmp_res;
std::cout << GridLogMessage << "conversion: ref, res, diff, eps"
<< " " << norm2(tmp_ref)
<< " " << norm2(tmp_res)
<< " " << norm2(tmp_diff)
<< " " << norm2(tmp_diff) / norm2(tmp_ref)
<< std::endl;
// performance per site (use minimal values necessary)
double hop_flop_per_site = 1320; // Rich's Talk + what Peter uses
double hop_byte_per_site = (8 * 9 + 9 * 12) * 2 * getPrecision<vCoeff_t>::value * 4;
double clov_flop_per_site = 504; // Rich's Talk and 1412.2629
double clov_byte_per_site = (2 * 18 + 12 + 12) * 2 * getPrecision<vCoeff_t>::value * 4;
double clov_flop_per_site_performed = 1128;
double clov_byte_per_site_performed = (12 * 12 + 12 + 12) * 2 * getPrecision<vCoeff_t>::value * 4;
// total performance numbers
double hop_gflop_total = volume * nIter * hop_flop_per_site / 1e9;
double hop_gbyte_total = volume * nIter * hop_byte_per_site / 1e9;
double clov_gflop_total = volume * nIter * clov_flop_per_site / 1e9;
double clov_gbyte_total = volume * nIter * clov_byte_per_site / 1e9;
double clov_gflop_performed_total = volume * nIter * clov_flop_per_site_performed / 1e9;
double clov_gbyte_performed_total = volume * nIter * clov_byte_per_site_performed / 1e9;
// warmup + measure dhop
for(auto n : {1, 2, 3, 4, 5}) Dwc.Dhop(src, hop, 0);
double t0 = usecond();
for(int n = 0; n < nIter; n++) Dwc.Dhop(src, hop, 0);
double t1 = usecond();
double secs_hop = (t1-t0)/1e6;
grid_printf_msg("Performance(%35s, %s): %2.4f s, %6.0f GFlop/s, %6.0f GByte/s, speedup vs ref = %.2f, fraction of hop = %.2f\n",
"hop", precision.c_str(), secs_hop, hop_gflop_total/secs_hop, hop_gbyte_total/secs_hop, 0.0, secs_hop/secs_hop);
#define BENCH_CLOVER_KERNEL(KERNEL) { \
/* warmup + measure reference clover */ \
for(auto n : {1, 2, 3, 4, 5}) Dwc.KERNEL(src, ref); \
double t2 = usecond(); \
for(int n = 0; n < nIter; n++) Dwc.KERNEL(src, ref); \
double t3 = usecond(); \
double secs_ref = (t3-t2)/1e6; \
grid_printf_msg("Performance(%35s, %s): %2.4f s, %6.0f GFlop/s, %6.0f GByte/s, speedup vs ref = %.2f, fraction of hop = %.2f\n", \
"reference_"#KERNEL, precision.c_str(), secs_ref, clov_gflop_total/secs_ref, clov_gbyte_total/secs_ref, secs_ref/secs_ref, secs_ref/secs_hop); \
grid_printf_msg("Performance(%35s, %s): %2.4f s, %6.0f GFlop/s, %6.0f GByte/s, speedup vs ref = %.2f, fraction of hop = %.2f\n", /* to see how well the ET performs */ \
"reference_"#KERNEL"_performed", precision.c_str(), secs_ref, clov_gflop_performed_total/secs_ref, clov_gbyte_performed_total/secs_ref, secs_ref/secs_ref, secs_ref/secs_hop); \
\
/* warmup + measure compact clover */ \
for(auto n : {1, 2, 3, 4, 5}) Dwc_compact.KERNEL(src, res); \
double t4 = usecond(); \
for(int n = 0; n < nIter; n++) Dwc_compact.KERNEL(src, res); \
double t5 = usecond(); \
double secs_res = (t5-t4)/1e6; \
grid_printf_msg("Performance(%35s, %s): %2.4f s, %6.0f GFlop/s, %6.0f GByte/s, speedup vs ref = %.2f, fraction of hop = %.2f\n", \
"compact_"#KERNEL, precision.c_str(), secs_res, clov_gflop_total/secs_res, clov_gbyte_total/secs_res, secs_ref/secs_res, secs_res/secs_hop); \
assert(resultsAgree(ref, res, #KERNEL)); \
}
BENCH_CLOVER_KERNEL(Mooee);
BENCH_CLOVER_KERNEL(MooeeDag);
BENCH_CLOVER_KERNEL(MooeeInv);
BENCH_CLOVER_KERNEL(MooeeInvDag);
grid_printf_msg("finalize %s\n", precision.c_str());
}
int main(int argc, char** argv) {
Grid_init(&argc, &argv);
runBenchmark<vComplexD>(&argc, &argv);
runBenchmark<vComplexF>(&argc, &argv);
Grid_finalize();
}