1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-24 18:52:02 +01:00

Compare commits

..

20 Commits

Author SHA1 Message Date
3aab983760 Flop count set as in DiRAC-ITT-2020 (mistaken 20% low, but must maintain consistency) 2020-11-16 17:13:58 +01:00
9c4dcc5ea3 Merge branch 'master' into develop 2020-11-16 16:34:57 +01:00
a0ccbb3bd6 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2020-11-01 01:16:35 +00:00
5eeabaa2bb HIP fix 2020-11-01 01:16:01 +00:00
00d0d6d008 Hip Free managed 2020-10-31 18:14:31 -04:00
537a9f7030 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2020-10-31 18:13:30 -04:00
cc9c993f74 Project on group fix on GPU tracked to reciprocal sqrt collision between CUDA and Grid rsqrt 2020-10-31 18:12:47 -04:00
d10422ded8 Test project on group 2020-10-31 18:12:30 -04:00
f313565a3c HiP compile 2020-10-31 12:12:40 +00:00
61d5860b46 Merge pull request #318 from rrhodgson/feature/BaryonSpinMat
Added untraced baryon contraction code
2020-10-28 18:39:59 +00:00
52d17987dc BaryonUtils.h updated debug output 2020-10-23 11:41:08 +01:00
19d8bba97d BaryonUtils function naming change 2020-10-21 11:58:53 +01:00
463d72d322 Added untraced baryon contraction code 2020-10-19 16:13:28 +01:00
3362f8dfa0 happy compile 2020-10-14 22:59:41 -04:00
bf3c9857e0 Closure changes 2020-10-14 21:37:14 -04:00
a88b3ceca5 Closure cases 2020-10-14 21:33:51 -04:00
aa135412f5 toComplex, toReal 2020-10-13 22:25:01 -04:00
9945399e60 Reaality issues fix by drop from ET 2020-10-13 22:24:32 -04:00
5eeffa49e8 Reality forced included 2020-10-13 22:23:57 -04:00
3f06209720 Pretty print 2020-10-13 22:18:51 -04:00
15 changed files with 504 additions and 151 deletions

View File

@ -36,7 +36,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/lattice/Lattice_local.h>
#include <Grid/lattice/Lattice_reduction.h>
#include <Grid/lattice/Lattice_peekpoke.h>
//#include <Grid/lattice/Lattice_reality.h>
#include <Grid/lattice/Lattice_reality.h>
#include <Grid/lattice/Lattice_real_imag.h>
#include <Grid/lattice/Lattice_comparison_utils.h>
#include <Grid/lattice/Lattice_comparison.h>

View File

@ -342,19 +342,14 @@ inline void ExpressionViewClose(LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
GridUnopClass(UnarySub, -a);
GridUnopClass(UnaryNot, Not(a));
GridUnopClass(UnaryAdj, adj(a));
GridUnopClass(UnaryConj, conjugate(a));
GridUnopClass(UnaryTrace, trace(a));
GridUnopClass(UnaryTranspose, transpose(a));
GridUnopClass(UnaryTa, Ta(a));
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
GridUnopClass(UnaryToReal, toReal(a));
GridUnopClass(UnaryToComplex, toComplex(a));
GridUnopClass(UnaryTimesI, timesI(a));
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
GridUnopClass(UnaryAbs, abs(a));
GridUnopClass(UnarySqrt, sqrt(a));
GridUnopClass(UnaryRsqrt, rsqrt(a));
GridUnopClass(UnarySin, sin(a));
GridUnopClass(UnaryCos, cos(a));
GridUnopClass(UnaryAsin, asin(a));
@ -456,20 +451,17 @@ GridTrinOpClass(TrinaryWhere,
GRID_DEF_UNOP(operator-, UnarySub);
GRID_DEF_UNOP(Not, UnaryNot);
GRID_DEF_UNOP(operator!, UnaryNot);
GRID_DEF_UNOP(adj, UnaryAdj);
GRID_DEF_UNOP(conjugate, UnaryConj);
//GRID_DEF_UNOP(adj, UnaryAdj);
//GRID_DEF_UNOP(conjugate, UnaryConj);
GRID_DEF_UNOP(trace, UnaryTrace);
GRID_DEF_UNOP(transpose, UnaryTranspose);
GRID_DEF_UNOP(Ta, UnaryTa);
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
GRID_DEF_UNOP(toReal, UnaryToReal);
GRID_DEF_UNOP(toComplex, UnaryToComplex);
GRID_DEF_UNOP(timesI, UnaryTimesI);
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
GRID_DEF_UNOP(abs, UnaryAbs); // abs overloaded in cmath C++98; DON'T do the
// abs-fabs-dabs-labs thing
GRID_DEF_UNOP(sqrt, UnarySqrt);
GRID_DEF_UNOP(rsqrt, UnaryRsqrt);
GRID_DEF_UNOP(sin, UnarySin);
GRID_DEF_UNOP(cos, UnaryCos);
GRID_DEF_UNOP(asin, UnaryAsin);
@ -494,27 +486,27 @@ GRID_DEF_TRINOP(where, TrinaryWhere);
/////////////////////////////////////////////////////////////
template <class Op, class T1>
auto closure(const LatticeUnaryExpression<Op, T1> &expr)
-> Lattice<decltype(expr.op.func(vecEval(0, expr.arg1)))>
-> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1)))>::type >
{
Lattice<decltype(expr.op.func(vecEval(0, expr.arg1)))> ret(expr);
Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1)))>::type > ret(expr);
return ret;
}
template <class Op, class T1, class T2>
auto closure(const LatticeBinaryExpression<Op, T1, T2> &expr)
-> Lattice<decltype(expr.op.func(vecEval(0, expr.arg1),vecEval(0, expr.arg2)))>
-> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),vecEval(0, expr.arg2)))>::type >
{
Lattice<decltype(expr.op.func(vecEval(0, expr.arg1),vecEval(0, expr.arg2)))> ret(expr);
Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),vecEval(0, expr.arg2)))>::type > ret(expr);
return ret;
}
template <class Op, class T1, class T2, class T3>
auto closure(const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
-> Lattice<decltype(expr.op.func(vecEval(0, expr.arg1),
-> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),
vecEval(0, expr.arg2),
vecEval(0, expr.arg3)))>
vecEval(0, expr.arg3)))>::type >
{
Lattice<decltype(expr.op.func(vecEval(0, expr.arg1),
Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),
vecEval(0, expr.arg2),
vecEval(0, expr.arg3)))> ret(expr);
vecEval(0, expr.arg3)))>::type > ret(expr);
return ret;
}
#define EXPRESSION_CLOSURE(function) \

View File

@ -62,7 +62,7 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
basis_v.push_back(basis[k].View(AcceleratorWrite));
}
#if ( (!defined(GRID_SYCL)) && (!defined(GRID_CUDA)) && (!defined(GRID_HIP)) )
#if ( (!defined(GRID_SYCL)) && (!defined(GRID_CUDA)) )
int max_threads = thread_max();
Vector < vobj > Bt(Nm * max_threads);
thread_region
@ -161,11 +161,12 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in
double * Qt_j = & Qt_jv[0];
for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k);
auto basis_vp=& basis_v[0];
autoView(result_v,result,AcceleratorWrite);
accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
auto B=coalescedRead(zz);
for(int k=k0; k<k1; ++k){
B +=Qt_j[k] * coalescedRead(basis_v[k][ss]);
B +=Qt_j[k] * coalescedRead(basis_vp[k][ss]);
}
coalescedWrite(result_v[ss], B);
});

View File

@ -45,8 +45,8 @@ template<class vobj> inline Lattice<vobj> adj(const Lattice<vobj> &lhs){
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard()=lhs.Checkerboard();
accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), {
coalescedWrite(ret_v[ss], adj(lhs_v(ss)));
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] = adj(lhs_v[ss]);
});
return ret;
};
@ -64,6 +64,53 @@ template<class vobj> inline Lattice<vobj> conjugate(const Lattice<vobj> &lhs){
return ret;
};
template<class vobj> inline Lattice<typename vobj::Complexified> toComplex(const Lattice<vobj> &lhs){
Lattice<typename vobj::Complexified> ret(lhs.Grid());
autoView( lhs_v, lhs, AcceleratorRead);
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard() = lhs.Checkerboard();
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] = toComplex(lhs_v[ss]);
});
return ret;
};
template<class vobj> inline Lattice<typename vobj::Realified> toReal(const Lattice<vobj> &lhs){
Lattice<typename vobj::Realified> ret(lhs.Grid());
autoView( lhs_v, lhs, AcceleratorRead);
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard() = lhs.Checkerboard();
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] = toReal(lhs_v[ss]);
});
return ret;
};
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto toComplex(const Expression &expr) -> decltype(closure(expr))
{
return toComplex(closure(expr));
}
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto toReal(const Expression &expr) -> decltype(closure(expr))
{
return toReal(closure(expr));
}
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto adj(const Expression &expr) -> decltype(closure(expr))
{
return adj(closure(expr));
}
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto conjugate(const Expression &expr) -> decltype(closure(expr))
{
return conjugate(closure(expr));
}
NAMESPACE_END(Grid);
#endif

View File

@ -133,14 +133,14 @@ void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
pickCheckerboard(Even, CloverTermEven, CloverTerm);
pickCheckerboard(Odd, CloverTermOdd, CloverTerm);
pickCheckerboard(Even, CloverTermDagEven, closure(adj(CloverTerm)));
pickCheckerboard(Odd, CloverTermDagOdd, closure(adj(CloverTerm)));
pickCheckerboard(Even, CloverTermDagEven, adj(CloverTerm));
pickCheckerboard(Odd, CloverTermDagOdd, adj(CloverTerm));
pickCheckerboard(Even, CloverTermInvEven, CloverTermInv);
pickCheckerboard(Odd, CloverTermInvOdd, CloverTermInv);
pickCheckerboard(Even, CloverTermInvDagEven, closure(adj(CloverTermInv)));
pickCheckerboard(Odd, CloverTermInvDagOdd, closure(adj(CloverTermInv)));
pickCheckerboard(Even, CloverTermInvDagEven, adj(CloverTermInv));
pickCheckerboard(Odd, CloverTermInvDagOdd, adj(CloverTermInv));
}
template <class Impl>

View File

@ -51,7 +51,7 @@ public:
private:
template <class mobj, class robj>
static void baryon_site(const mobj &D1,
static void BaryonSite(const mobj &D1,
const mobj &D2,
const mobj &D3,
const Gamma GammaA_left,
@ -61,8 +61,18 @@ public:
const int parity,
const bool * wick_contractions,
robj &result);
template <class mobj, class robj>
static void BaryonSiteMatrix(const mobj &D1,
const mobj &D2,
const mobj &D3,
const Gamma GammaA_left,
const Gamma GammaB_left,
const Gamma GammaA_right,
const Gamma GammaB_right,
const bool * wick_contractions,
robj &result);
public:
static void Wick_Contractions(std::string qi,
static void WickContractions(std::string qi,
std::string qf,
bool* wick_contractions);
static void ContractBaryons(const PropagatorField &q1_left,
@ -75,8 +85,17 @@ public:
const bool* wick_contractions,
const int parity,
ComplexField &baryon_corr);
static void ContractBaryonsMatrix(const PropagatorField &q1_left,
const PropagatorField &q2_left,
const PropagatorField &q3_left,
const Gamma GammaA_left,
const Gamma GammaB_left,
const Gamma GammaA_right,
const Gamma GammaB_right,
const bool* wick_contractions,
SpinMatrixField &baryon_corr);
template <class mobj, class robj>
static void ContractBaryons_Sliced(const mobj &D1,
static void ContractBaryonsSliced(const mobj &D1,
const mobj &D2,
const mobj &D3,
const Gamma GammaA_left,
@ -87,9 +106,20 @@ public:
const int parity,
const int nt,
robj &result);
template <class mobj, class robj>
static void ContractBaryonsSlicedMatrix(const mobj &D1,
const mobj &D2,
const mobj &D3,
const Gamma GammaA_left,
const Gamma GammaB_left,
const Gamma GammaA_right,
const Gamma GammaB_right,
const bool* wick_contractions,
const int nt,
robj &result);
private:
template <class mobj, class mobj2, class robj>
static void Baryon_Gamma_3pt_Group1_Site(
static void BaryonGamma3ptGroup1Site(
const mobj &Dq1_ti,
const mobj2 &Dq2_spec,
const mobj2 &Dq3_spec,
@ -101,7 +131,7 @@ public:
robj &result);
template <class mobj, class mobj2, class robj>
static void Baryon_Gamma_3pt_Group2_Site(
static void BaryonGamma3ptGroup2Site(
const mobj2 &Dq1_spec,
const mobj &Dq2_ti,
const mobj2 &Dq3_spec,
@ -113,7 +143,7 @@ public:
robj &result);
template <class mobj, class mobj2, class robj>
static void Baryon_Gamma_3pt_Group3_Site(
static void BaryonGamma3ptGroup3Site(
const mobj2 &Dq1_spec,
const mobj2 &Dq2_spec,
const mobj &Dq3_ti,
@ -125,7 +155,7 @@ public:
robj &result);
public:
template <class mobj>
static void Baryon_Gamma_3pt(
static void BaryonGamma3pt(
const PropagatorField &q_ti,
const mobj &Dq_spec1,
const mobj &Dq_spec2,
@ -138,7 +168,7 @@ public:
SpinMatrixField &stn_corr);
private:
template <class mobj, class mobj2, class robj>
static void Sigma_to_Nucleon_Q1_Eye_site(const mobj &Dq_loop,
static void SigmaToNucleonQ1EyeSite(const mobj &Dq_loop,
const mobj2 &Du_spec,
const mobj &Dd_tf,
const mobj &Ds_ti,
@ -147,7 +177,7 @@ public:
const Gamma GammaB_nucl,
robj &result);
template <class mobj, class mobj2, class robj>
static void Sigma_to_Nucleon_Q1_NonEye_site(const mobj &Du_ti,
static void SigmaToNucleonQ1NonEyeSite(const mobj &Du_ti,
const mobj &Du_tf,
const mobj2 &Du_spec,
const mobj &Dd_tf,
@ -159,7 +189,7 @@ public:
template <class mobj, class mobj2, class robj>
static void Sigma_to_Nucleon_Q2_Eye_site(const mobj &Dq_loop,
static void SigmaToNucleonQ2EyeSite(const mobj &Dq_loop,
const mobj2 &Du_spec,
const mobj &Dd_tf,
const mobj &Ds_ti,
@ -168,7 +198,7 @@ public:
const Gamma GammaB_nucl,
robj &result);
template <class mobj, class mobj2, class robj>
static void Sigma_to_Nucleon_Q2_NonEye_site(const mobj &Du_ti,
static void SigmaToNucleonQ2NonEyeSite(const mobj &Du_ti,
const mobj &Du_tf,
const mobj2 &Du_spec,
const mobj &Dd_tf,
@ -179,7 +209,7 @@ public:
robj &result);
public:
template <class mobj>
static void Sigma_to_Nucleon_Eye(const PropagatorField &qq_loop,
static void SigmaToNucleonEye(const PropagatorField &qq_loop,
const mobj &Du_spec,
const PropagatorField &qd_tf,
const PropagatorField &qs_ti,
@ -189,7 +219,7 @@ public:
const std::string op,
SpinMatrixField &stn_corr);
template <class mobj>
static void Sigma_to_Nucleon_NonEye(const PropagatorField &qq_ti,
static void SigmaToNucleonNonEye(const PropagatorField &qq_ti,
const PropagatorField &qq_tf,
const mobj &Du_spec,
const PropagatorField &qd_tf,
@ -217,7 +247,7 @@ const Real BaryonUtils<FImpl>::epsilon_sgn[6] = {1.,1.,1.,-1.,-1.,-1.};
//This is the old version
template <class FImpl>
template <class mobj, class robj>
void BaryonUtils<FImpl>::baryon_site(const mobj &D1,
void BaryonUtils<FImpl>::BaryonSite(const mobj &D1,
const mobj &D2,
const mobj &D3,
const Gamma GammaA_i,
@ -329,12 +359,132 @@ void BaryonUtils<FImpl>::baryon_site(const mobj &D1,
}}
}
//New version without parity projection or trace
template <class FImpl>
template <class mobj, class robj>
void BaryonUtils<FImpl>::BaryonSiteMatrix(const mobj &D1,
const mobj &D2,
const mobj &D3,
const Gamma GammaA_i,
const Gamma GammaB_i,
const Gamma GammaA_f,
const Gamma GammaB_f,
const bool * wick_contraction,
robj &result)
{
auto D1_GAi = D1 * GammaA_i;
auto GAf_D1_GAi = GammaA_f * D1_GAi;
auto GBf_D1_GAi = GammaB_f * D1_GAi;
auto D2_GBi = D2 * GammaB_i;
auto GBf_D2_GBi = GammaB_f * D2_GBi;
auto GAf_D2_GBi = GammaA_f * D2_GBi;
auto GBf_D3 = GammaB_f * D3;
auto GAf_D3 = GammaA_f * D3;
for (int ie_f=0; ie_f < 6 ; ie_f++){
int a_f = epsilon[ie_f][0]; //a
int b_f = epsilon[ie_f][1]; //b
int c_f = epsilon[ie_f][2]; //c
for (int ie_i=0; ie_i < 6 ; ie_i++){
int a_i = epsilon[ie_i][0]; //a'
int b_i = epsilon[ie_i][1]; //b'
int c_i = epsilon[ie_i][2]; //c'
Real ee = epsilon_sgn[ie_f] * epsilon_sgn[ie_i];
//This is the \delta_{456}^{123} part
if (wick_contraction[0]){
for (int rho_i=0; rho_i<Ns; rho_i++){
for (int rho_f=0; rho_f<Ns; rho_f++){
auto GAf_D1_GAi_rr_cc = GAf_D1_GAi()(rho_f,rho_i)(c_f,c_i);
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
for (int beta_i=0; beta_i<Ns; beta_i++){
result()(rho_f,rho_i)() += ee * GAf_D1_GAi_rr_cc
* D2_GBi ()(alpha_f,beta_i)(a_f,a_i)
* GBf_D3 ()(alpha_f,beta_i)(b_f,b_i);
}}
}}
}
//This is the \delta_{456}^{231} part
if (wick_contraction[1]){
for (int rho_i=0; rho_i<Ns; rho_i++){
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
auto D1_GAi_ar_ac = D1_GAi()(alpha_f,rho_i)(a_f,c_i);
for (int beta_i=0; beta_i<Ns; beta_i++){
auto GBf_D2_GBi_ab_ba = GBf_D2_GBi ()(alpha_f,beta_i)(b_f,a_i);
for (int rho_f=0; rho_f<Ns; rho_f++){
result()(rho_f,rho_i)() += ee * D1_GAi_ar_ac
* GBf_D2_GBi_ab_ba
* GAf_D3 ()(rho_f,beta_i)(c_f,b_i);
}}
}}
}
//This is the \delta_{456}^{312} part
if (wick_contraction[2]){
for (int rho_i=0; rho_i<Ns; rho_i++){
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
auto GBf_D1_GAi_ar_bc = GBf_D1_GAi()(alpha_f,rho_i)(b_f,c_i);
for (int beta_i=0; beta_i<Ns; beta_i++){
auto D3_ab_ab = D3 ()(alpha_f,beta_i)(a_f,b_i);
for (int rho_f=0; rho_f<Ns; rho_f++){
result()(rho_f,rho_i)() += ee * GBf_D1_GAi_ar_bc
* GAf_D2_GBi ()(rho_f,beta_i)(c_f,a_i)
* D3_ab_ab;
}}
}}
}
//This is the \delta_{456}^{132} part
if (wick_contraction[3]){
for (int rho_i=0; rho_i<Ns; rho_i++){
for (int rho_f=0; rho_f<Ns; rho_f++){
auto GAf_D1_GAi_rr_cc = GAf_D1_GAi()(rho_f,rho_i)(c_f,c_i);
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
for (int beta_i=0; beta_i<Ns; beta_i++){
result()(rho_f,rho_i)() -= ee * GAf_D1_GAi_rr_cc
* GBf_D2_GBi ()(alpha_f,beta_i)(b_f,a_i)
* D3 ()(alpha_f,beta_i)(a_f,b_i);
}}
}}
}
//This is the \delta_{456}^{321} part
if (wick_contraction[4]){
for (int rho_i=0; rho_i<Ns; rho_i++){
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
auto GBf_D1_GAi_ar_bc = GBf_D1_GAi()(alpha_f,rho_i)(b_f,c_i);
for (int beta_i=0; beta_i<Ns; beta_i++){
auto D2_GBi_ab_aa = D2_GBi()(alpha_f,beta_i)(a_f,a_i);
for (int rho_f=0; rho_f<Ns; rho_f++){
result()(rho_f,rho_i)() -= ee * GBf_D1_GAi_ar_bc
* D2_GBi_ab_aa
* GAf_D3 ()(rho_f,beta_i)(c_f,b_i);
}}
}}
}
//This is the \delta_{456}^{213} part
if (wick_contraction[5]){
for (int rho_i=0; rho_i<Ns; rho_i++){
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
auto D1_GAi_ar_ac = D1_GAi()(alpha_f,rho_i)(a_f,c_i);
for (int beta_i=0; beta_i<Ns; beta_i++){
auto GBf_D3_ab_bb = GBf_D3()(alpha_f,beta_i)(b_f,b_i);
for (int rho_f=0; rho_f<Ns; rho_f++){
result()(rho_f,rho_i)() -= ee * D1_GAi_ar_ac
* GAf_D2_GBi ()(rho_f,beta_i)(c_f,a_i)
* GBf_D3_ab_bb;
}}
}}
}
}}
}
/* Computes which wick contractions should be performed for a *
* baryon 2pt function given the initial and finals state quark *
* flavours. *
* The array wick_contractions must be of length 6 */
template<class FImpl>
void BaryonUtils<FImpl>::Wick_Contractions(std::string qi, std::string qf, bool* wick_contractions) {
void BaryonUtils<FImpl>::WickContractions(std::string qi, std::string qf, bool* wick_contractions) {
const int epsilon[6][3] = {{0,1,2},{1,2,0},{2,0,1},{0,2,1},{2,1,0},{1,0,2}};
for (int ie=0; ie < 6 ; ie++) {
wick_contractions[ie] = (qi.size() == 3 && qf.size() == 3
@ -365,11 +515,6 @@ void BaryonUtils<FImpl>::ContractBaryons(const PropagatorField &q1_left,
assert(Ns==4 && "Baryon code only implemented for N_spin = 4");
assert(Nc==3 && "Baryon code only implemented for N_colour = 3");
std::cout << "GammaA (left) " << (GammaA_left.g) << std::endl;
std::cout << "GammaB (left) " << (GammaB_left.g) << std::endl;
std::cout << "GammaA (right) " << (GammaA_right.g) << std::endl;
std::cout << "GammaB (right) " << (GammaB_right.g) << std::endl;
assert(parity==1 || parity == -1 && "Parity must be +1 or -1");
GridBase *grid = q1_left.Grid();
@ -397,13 +542,62 @@ void BaryonUtils<FImpl>::ContractBaryons(const PropagatorField &q1_left,
auto D2 = v2[ss];
auto D3 = v3[ss];
vobj result=Zero();
baryon_site(D1,D2,D3,GammaA_left,GammaB_left,GammaA_right,GammaB_right,parity,wick_contractions,result);
BaryonSite(D1,D2,D3,GammaA_left,GammaB_left,GammaA_right,GammaB_right,parity,wick_contractions,result);
vbaryon_corr[ss] = result;
} );//end loop over lattice sites
t += usecond();
std::cout << std::setw(10) << bytes/t*1.0e6/1024/1024/1024 << " GB/s " << std::endl;
std::cout << GridLogDebug << std::setw(10) << bytes/t*1.0e6/1024/1024/1024 << " GB/s " << std::endl;
}
template<class FImpl>
void BaryonUtils<FImpl>::ContractBaryonsMatrix(const PropagatorField &q1_left,
const PropagatorField &q2_left,
const PropagatorField &q3_left,
const Gamma GammaA_left,
const Gamma GammaB_left,
const Gamma GammaA_right,
const Gamma GammaB_right,
const bool* wick_contractions,
SpinMatrixField &baryon_corr)
{
assert(Ns==4 && "Baryon code only implemented for N_spin = 4");
assert(Nc==3 && "Baryon code only implemented for N_colour = 3");
GridBase *grid = q1_left.Grid();
autoView(vbaryon_corr, baryon_corr,CpuWrite);
autoView( v1 , q1_left, CpuRead);
autoView( v2 , q2_left, CpuRead);
autoView( v3 , q3_left, CpuRead);
// Real bytes =0.;
// bytes += grid->oSites() * (432.*sizeof(vComplex) + 126.*sizeof(int) + 36.*sizeof(Real));
// for (int ie=0; ie < 6 ; ie++){
// if(ie==0 or ie==3){
// bytes += grid->oSites() * (4.*sizeof(int) + 4752.*sizeof(vComplex)) * wick_contractions[ie];
// }
// else{
// bytes += grid->oSites() * (64.*sizeof(int) + 5184.*sizeof(vComplex)) * wick_contractions[ie];
// }
// }
// Real t=0.;
// t =-usecond();
accelerator_for(ss, grid->oSites(), grid->Nsimd(), {
auto D1 = v1[ss];
auto D2 = v2[ss];
auto D3 = v3[ss];
sobj result=Zero();
BaryonSiteMatrix(D1,D2,D3,GammaA_left,GammaB_left,GammaA_right,GammaB_right,wick_contractions,result);
vbaryon_corr[ss] = result;
} );//end loop over lattice sites
// t += usecond();
// std::cout << GridLogDebug << std::setw(10) << bytes/t*1.0e6/1024/1024/1024 << " GB/s " << std::endl;
}
@ -414,7 +608,7 @@ void BaryonUtils<FImpl>::ContractBaryons(const PropagatorField &q1_left,
* Wick_Contractions function above */
template <class FImpl>
template <class mobj, class robj>
void BaryonUtils<FImpl>::ContractBaryons_Sliced(const mobj &D1,
void BaryonUtils<FImpl>::ContractBaryonsSliced(const mobj &D1,
const mobj &D2,
const mobj &D3,
const Gamma GammaA_left,
@ -430,15 +624,32 @@ void BaryonUtils<FImpl>::ContractBaryons_Sliced(const mobj &D1,
assert(Ns==4 && "Baryon code only implemented for N_spin = 4");
assert(Nc==3 && "Baryon code only implemented for N_colour = 3");
std::cout << "GammaA (left) " << (GammaA_left.g) << std::endl;
std::cout << "GammaB (left) " << (GammaB_left.g) << std::endl;
std::cout << "GammaA (right) " << (GammaA_right.g) << std::endl;
std::cout << "GammaB (right) " << (GammaB_right.g) << std::endl;
assert(parity==1 || parity == -1 && "Parity must be +1 or -1");
for (int t=0; t<nt; t++) {
baryon_site(D1[t],D2[t],D3[t],GammaA_left,GammaB_left,GammaA_right,GammaB_right,parity,wick_contractions,result[t]);
BaryonSite(D1[t],D2[t],D3[t],GammaA_left,GammaB_left,GammaA_right,GammaB_right,parity,wick_contractions,result[t]);
}
}
template <class FImpl>
template <class mobj, class robj>
void BaryonUtils<FImpl>::ContractBaryonsSlicedMatrix(const mobj &D1,
const mobj &D2,
const mobj &D3,
const Gamma GammaA_left,
const Gamma GammaB_left,
const Gamma GammaA_right,
const Gamma GammaB_right,
const bool* wick_contractions,
const int nt,
robj &result)
{
assert(Ns==4 && "Baryon code only implemented for N_spin = 4");
assert(Nc==3 && "Baryon code only implemented for N_colour = 3");
for (int t=0; t<nt; t++) {
BaryonSiteMatrix(D1[t],D2[t],D3[t],GammaA_left,GammaB_left,GammaA_right,GammaB_right,wick_contractions,result[t]);
}
}
@ -454,7 +665,7 @@ void BaryonUtils<FImpl>::ContractBaryons_Sliced(const mobj &D1,
* Dq4_tf is a quark line from t_f to t_J */
template<class FImpl>
template <class mobj, class mobj2, class robj>
void BaryonUtils<FImpl>::Baryon_Gamma_3pt_Group1_Site(
void BaryonUtils<FImpl>::BaryonGamma3ptGroup1Site(
const mobj &Dq1_ti,
const mobj2 &Dq2_spec,
const mobj2 &Dq3_spec,
@ -546,7 +757,7 @@ void BaryonUtils<FImpl>::Baryon_Gamma_3pt_Group1_Site(
* Dq4_tf is a quark line from t_f to t_J */
template<class FImpl>
template <class mobj, class mobj2, class robj>
void BaryonUtils<FImpl>::Baryon_Gamma_3pt_Group2_Site(
void BaryonUtils<FImpl>::BaryonGamma3ptGroup2Site(
const mobj2 &Dq1_spec,
const mobj &Dq2_ti,
const mobj2 &Dq3_spec,
@ -636,7 +847,7 @@ void BaryonUtils<FImpl>::Baryon_Gamma_3pt_Group2_Site(
* Dq4_tf is a quark line from t_f to t_J */
template<class FImpl>
template <class mobj, class mobj2, class robj>
void BaryonUtils<FImpl>::Baryon_Gamma_3pt_Group3_Site(
void BaryonUtils<FImpl>::BaryonGamma3ptGroup3Site(
const mobj2 &Dq1_spec,
const mobj2 &Dq2_spec,
const mobj &Dq3_ti,
@ -728,7 +939,7 @@ void BaryonUtils<FImpl>::Baryon_Gamma_3pt_Group3_Site(
* https://aportelli.github.io/Hadrons-doc/#/mcontraction */
template<class FImpl>
template <class mobj>
void BaryonUtils<FImpl>::Baryon_Gamma_3pt(
void BaryonUtils<FImpl>::BaryonGamma3pt(
const PropagatorField &q_ti,
const mobj &Dq_spec1,
const mobj &Dq_spec2,
@ -751,7 +962,7 @@ void BaryonUtils<FImpl>::Baryon_Gamma_3pt(
auto Dq_ti = vq_ti[ss];
auto Dq_tf = vq_tf[ss];
sobj result=Zero();
Baryon_Gamma_3pt_Group1_Site(Dq_ti,Dq_spec1,Dq_spec2,Dq_tf,GammaJ,GammaBi,GammaBf,wick_contraction,result);
BaryonGamma3ptGroup1Site(Dq_ti,Dq_spec1,Dq_spec2,Dq_tf,GammaJ,GammaBi,GammaBf,wick_contraction,result);
vcorr[ss] += result;
});//end loop over lattice sites
} else if (group == 2) {
@ -759,7 +970,7 @@ void BaryonUtils<FImpl>::Baryon_Gamma_3pt(
auto Dq_ti = vq_ti[ss];
auto Dq_tf = vq_tf[ss];
sobj result=Zero();
Baryon_Gamma_3pt_Group2_Site(Dq_spec1,Dq_ti,Dq_spec2,Dq_tf,GammaJ,GammaBi,GammaBf,wick_contraction,result);
BaryonGamma3ptGroup2Site(Dq_spec1,Dq_ti,Dq_spec2,Dq_tf,GammaJ,GammaBi,GammaBf,wick_contraction,result);
vcorr[ss] += result;
});//end loop over lattice sites
} else if (group == 3) {
@ -767,7 +978,7 @@ void BaryonUtils<FImpl>::Baryon_Gamma_3pt(
auto Dq_ti = vq_ti[ss];
auto Dq_tf = vq_tf[ss];
sobj result=Zero();
Baryon_Gamma_3pt_Group3_Site(Dq_spec1,Dq_spec2,Dq_ti,Dq_tf,GammaJ,GammaBi,GammaBf,wick_contraction,result);
BaryonGamma3ptGroup3Site(Dq_spec1,Dq_spec2,Dq_ti,Dq_tf,GammaJ,GammaBi,GammaBf,wick_contraction,result);
vcorr[ss] += result;
});//end loop over lattice sites
@ -787,7 +998,7 @@ void BaryonUtils<FImpl>::Baryon_Gamma_3pt(
* Ds_ti is a quark line from t_i to t_H */
template <class FImpl>
template <class mobj, class mobj2, class robj>
void BaryonUtils<FImpl>::Sigma_to_Nucleon_Q1_Eye_site(const mobj &Dq_loop,
void BaryonUtils<FImpl>::SigmaToNucleonQ1EyeSite(const mobj &Dq_loop,
const mobj2 &Du_spec,
const mobj &Dd_tf,
const mobj &Ds_ti,
@ -838,7 +1049,7 @@ void BaryonUtils<FImpl>::Sigma_to_Nucleon_Q1_Eye_site(const mobj &Dq_loop,
* Ds_ti is a quark line from t_i to t_H */
template <class FImpl>
template <class mobj, class mobj2, class robj>
void BaryonUtils<FImpl>::Sigma_to_Nucleon_Q1_NonEye_site(const mobj &Du_ti,
void BaryonUtils<FImpl>::SigmaToNucleonQ1NonEyeSite(const mobj &Du_ti,
const mobj &Du_tf,
const mobj2 &Du_spec,
const mobj &Dd_tf,
@ -897,7 +1108,7 @@ void BaryonUtils<FImpl>::Sigma_to_Nucleon_Q1_NonEye_site(const mobj &Du_ti,
* Ds_ti is a quark line from t_i to t_H */
template <class FImpl>
template <class mobj, class mobj2, class robj>
void BaryonUtils<FImpl>::Sigma_to_Nucleon_Q2_Eye_site(const mobj &Dq_loop,
void BaryonUtils<FImpl>::SigmaToNucleonQ2EyeSite(const mobj &Dq_loop,
const mobj2 &Du_spec,
const mobj &Dd_tf,
const mobj &Ds_ti,
@ -948,7 +1159,7 @@ void BaryonUtils<FImpl>::Sigma_to_Nucleon_Q2_Eye_site(const mobj &Dq_loop,
* Ds_ti is a quark line from t_i to t_H */
template <class FImpl>
template <class mobj, class mobj2, class robj>
void BaryonUtils<FImpl>::Sigma_to_Nucleon_Q2_NonEye_site(const mobj &Du_ti,
void BaryonUtils<FImpl>::SigmaToNucleonQ2NonEyeSite(const mobj &Du_ti,
const mobj &Du_tf,
const mobj2 &Du_spec,
const mobj &Dd_tf,
@ -1002,7 +1213,7 @@ void BaryonUtils<FImpl>::Sigma_to_Nucleon_Q2_NonEye_site(const mobj &Du_ti,
template<class FImpl>
template <class mobj>
void BaryonUtils<FImpl>::Sigma_to_Nucleon_Eye(const PropagatorField &qq_loop,
void BaryonUtils<FImpl>::SigmaToNucleonEye(const PropagatorField &qq_loop,
const mobj &Du_spec,
const PropagatorField &qd_tf,
const PropagatorField &qs_ti,
@ -1029,9 +1240,9 @@ void BaryonUtils<FImpl>::Sigma_to_Nucleon_Eye(const PropagatorField &qq_loop,
auto Ds_ti = vs_ti[ss];
sobj result=Zero();
if(op == "Q1"){
Sigma_to_Nucleon_Q1_Eye_site(Dq_loop,Du_spec,Dd_tf,Ds_ti,Gamma_H,GammaB_sigma,GammaB_nucl,result);
SigmaToNucleonQ1EyeSite(Dq_loop,Du_spec,Dd_tf,Ds_ti,Gamma_H,GammaB_sigma,GammaB_nucl,result);
} else if(op == "Q2"){
Sigma_to_Nucleon_Q2_Eye_site(Dq_loop,Du_spec,Dd_tf,Ds_ti,Gamma_H,GammaB_sigma,GammaB_nucl,result);
SigmaToNucleonQ2EyeSite(Dq_loop,Du_spec,Dd_tf,Ds_ti,Gamma_H,GammaB_sigma,GammaB_nucl,result);
} else {
assert(0 && "Weak Operator not correctly specified");
}
@ -1041,7 +1252,7 @@ void BaryonUtils<FImpl>::Sigma_to_Nucleon_Eye(const PropagatorField &qq_loop,
template<class FImpl>
template <class mobj>
void BaryonUtils<FImpl>::Sigma_to_Nucleon_NonEye(const PropagatorField &qq_ti,
void BaryonUtils<FImpl>::SigmaToNucleonNonEye(const PropagatorField &qq_ti,
const PropagatorField &qq_tf,
const mobj &Du_spec,
const PropagatorField &qd_tf,
@ -1071,9 +1282,9 @@ void BaryonUtils<FImpl>::Sigma_to_Nucleon_NonEye(const PropagatorField &qq_ti,
auto Ds_ti = vs_ti[ss];
sobj result=Zero();
if(op == "Q1"){
Sigma_to_Nucleon_Q1_NonEye_site(Dq_ti,Dq_tf,Du_spec,Dd_tf,Ds_ti,Gamma_H,GammaB_sigma,GammaB_nucl,result);
SigmaToNucleonQ1NonEyeSite(Dq_ti,Dq_tf,Du_spec,Dd_tf,Ds_ti,Gamma_H,GammaB_sigma,GammaB_nucl,result);
} else if(op == "Q2"){
Sigma_to_Nucleon_Q2_NonEye_site(Dq_ti,Dq_tf,Du_spec,Dd_tf,Ds_ti,Gamma_H,GammaB_sigma,GammaB_nucl,result);
SigmaToNucleonQ2NonEyeSite(Dq_ti,Dq_tf,Du_spec,Dd_tf,Ds_ti,Gamma_H,GammaB_sigma,GammaB_nucl,result);
} else {
assert(0 && "Weak Operator not correctly specified");
}

View File

@ -449,7 +449,8 @@ public:
LatticeReal alpha(grid);
// std::cout<<GridLogMessage<<"xi "<<xi <<std::endl;
alpha = toReal(2.0 * xi);
xi = 2.0 *xi;
alpha = toReal(xi);
do {
// A. Generate two uniformly distributed pseudo-random numbers R and R',

View File

@ -26,7 +26,7 @@
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#ifndef __NVCC__
#if (!defined(GRID_CUDA)) && (!defined(GRID_HIP))
NAMESPACE_BEGIN(Grid);

View File

@ -125,14 +125,6 @@ accelerator_inline Grid_simd<S, V> sqrt(const Grid_simd<S, V> &r) {
return SimdApply(SqrtRealFunctor<S>(), r);
}
template <class S, class V>
accelerator_inline Grid_simd<S, V> rsqrt(const Grid_simd<S, V> &r) {
return SimdApply(RSqrtRealFunctor<S>(), r);
}
template <class Scalar>
accelerator_inline Scalar rsqrt(const Scalar &r) {
return (RSqrtRealFunctor<Scalar>(), r);
}
template <class S, class V>
accelerator_inline Grid_simd<S, V> cos(const Grid_simd<S, V> &r) {
return SimdApply(CosRealFunctor<S>(), r);
}

View File

@ -92,17 +92,22 @@ accelerator_inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
{
// need a check for the group type?
iMatrix<vtype,N> ret(arg);
vtype rnrm;
vtype nrm;
vtype inner;
for(int c1=0;c1<N;c1++){
// Normalises row c1
zeroit(inner);
for(int c2=0;c2<N;c2++)
inner += innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]);
nrm = rsqrt(inner);
nrm = sqrt(inner);
nrm = 1.0/nrm;
for(int c2=0;c2<N;c2++)
ret._internal[c1][c2]*= nrm;
// Remove c1 from rows c1+1...N-1
for (int b=c1+1; b<N; ++b){
decltype(ret._internal[b][b]*ret._internal[b][b]) pr;
zeroit(pr);

View File

@ -84,7 +84,6 @@ NAMESPACE_BEGIN(Grid);
}
UNARY(sqrt);
UNARY(rsqrt);
UNARY(sin);
UNARY(cos);
UNARY(asin);

View File

@ -333,7 +333,7 @@ inline void *acceleratorAllocDevice(size_t bytes)
return ptr;
};
inline void acceleratorFreeShared(void *ptr){ free(ptr);};
inline void acceleratorFreeShared(void *ptr){ hipFree(ptr);};
inline void acceleratorFreeDevice(void *ptr){ hipFree(ptr);};
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { hipMemcpy(to,from,bytes, hipMemcpyHostToDevice);}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ hipMemcpy(to,from,bytes, hipMemcpyDeviceToHost);}

View File

@ -62,7 +62,7 @@ struct time_statistics{
void comms_header(){
std::cout <<GridLogMessage << " L "<<"\t"<<" Ls "<<"\t"
<<std::setw(11)<<"bytes"<<"MB/s uni (err/min/max)"<<"\t\t"<<"MB/s bidi (err/min/max)"<<std::endl;
<<"bytes\t MB/s uni (err/min/max) \t\t MB/s bidi (err/min/max)"<<std::endl;
};
Gamma::Algebra Gmu [] = {
@ -189,11 +189,11 @@ public:
// double rbytes = dbytes*0.5;
double bidibytes = dbytes;
std::cout<<GridLogMessage << std::setw(4) << lat<<"\t"<<Ls<<"\t"
<<std::setw(11) << bytes<< std::fixed << std::setprecision(1) << std::setw(7)
<<std::right<< xbytes/timestat.mean<<" "<< xbytes*timestat.err/(timestat.mean*timestat.mean)<< " "
std::cout<<GridLogMessage << lat<<"\t"<<Ls<<"\t "
<< bytes << " \t "
<<xbytes/timestat.mean<<" \t "<< xbytes*timestat.err/(timestat.mean*timestat.mean)<< " \t "
<<xbytes/timestat.max <<" "<< xbytes/timestat.min
<< "\t\t"<<std::setw(7)<< bidibytes/timestat.mean<< " " << bidibytes*timestat.err/(timestat.mean*timestat.mean) << " "
<< "\t\t"<< bidibytes/timestat.mean<< " " << bidibytes*timestat.err/(timestat.mean*timestat.mean) << " "
<< bidibytes/timestat.max << " " << bidibytes/timestat.min << std::endl;
}
@ -512,7 +512,6 @@ public:
NN_global=NN;
uint64_t SHM=NP/NN;
Coordinate latt4({local[0]*mpi[0],local[1]*mpi[1],local[2]*mpi[2],local[3]*mpi[3]});
///////// Welcome message ////////////
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
@ -701,7 +700,7 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Summary table Ls="<<Ls <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "L \t\t Wilson \t\t DWF4 \t\tt Staggered" <<std::endl;
std::cout<<GridLogMessage << "L \t\t Wilson \t\t DWF4 \t\t Staggered" <<std::endl;
for(int l=0;l<L_list.size();l++){
std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< wilson[l]<<" \t\t "<<dwf4[l] << " \t\t "<< staggered[l]<<std::endl;
}
@ -732,9 +731,9 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Per Node Summary table Ls="<<Ls <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L \t\t Wilson\t\t DWF4 " <<std::endl;
std::cout<<GridLogMessage << " L \t\t Wilson\t\t DWF4\t\t Staggered " <<std::endl;
for(int l=0;l<L_list.size();l++){
std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< wilson[l]/NN<<" \t "<<dwf4[l]/NN<<std::endl;
std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< wilson[l]/NN<<" \t "<<dwf4[l]/NN<< " \t "<<staggered[l]/NN<<std::endl;
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;

View File

@ -69,11 +69,11 @@ int main(int argc, char** argv) {
std::cout << GridLogMessage << "* Generators for SU(Nc" << std::endl;
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
SU<Nc>::printGenerators();
std::cout << "Dimension of adjoint representation: "<< SU<Nc>Adjoint::Dimension << std::endl;
SU<Nc>Adjoint::printGenerators();
SU<Nc>::testGenerators();
SU<Nc>Adjoint::testGenerators();
SU3::printGenerators();
std::cout << "Dimension of adjoint representation: "<< SU3Adjoint::Dimension << std::endl;
SU3Adjoint::printGenerators();
SU3::testGenerators();
SU3Adjoint::testGenerators();
std::cout<<GridLogMessage<<"*********************************************"<<std::endl;
std::cout<<GridLogMessage<<"* Generators for SU(4)"<<std::endl;
@ -87,22 +87,22 @@ int main(int argc, char** argv) {
// Projectors
GridParallelRNG gridRNG(grid);
gridRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
SU<Nc>Adjoint::LatticeAdjMatrix Gauss(grid);
SU<Nc>::LatticeAlgebraVector ha(grid);
SU<Nc>::LatticeAlgebraVector hb(grid);
SU3Adjoint::LatticeAdjMatrix Gauss(grid);
SU3::LatticeAlgebraVector ha(grid);
SU3::LatticeAlgebraVector hb(grid);
random(gridRNG,Gauss);
std::cout << GridLogMessage << "Start projectOnAlgebra" << std::endl;
SU<Nc>Adjoint::projectOnAlgebra(ha, Gauss);
SU3Adjoint::projectOnAlgebra(ha, Gauss);
std::cout << GridLogMessage << "end projectOnAlgebra" << std::endl;
std::cout << GridLogMessage << "Start projector" << std::endl;
SU<Nc>Adjoint::projector(hb, Gauss);
SU3Adjoint::projector(hb, Gauss);
std::cout << GridLogMessage << "end projector" << std::endl;
std::cout << GridLogMessage << "ReStart projector" << std::endl;
SU<Nc>Adjoint::projector(hb, Gauss);
SU3Adjoint::projector(hb, Gauss);
std::cout << GridLogMessage << "end projector" << std::endl;
SU<Nc>::LatticeAlgebraVector diff = ha -hb;
SU3::LatticeAlgebraVector diff = ha -hb;
std::cout << GridLogMessage << "Difference: " << norm2(diff) << std::endl;
@ -114,8 +114,8 @@ int main(int argc, char** argv) {
LatticeGaugeField U(grid), V(grid);
SU<Nc>::HotConfiguration<LatticeGaugeField>(gridRNG, U);
SU<Nc>::HotConfiguration<LatticeGaugeField>(gridRNG, V);
SU3::HotConfiguration<LatticeGaugeField>(gridRNG, U);
SU3::HotConfiguration<LatticeGaugeField>(gridRNG, V);
// Adjoint representation
// Test group structure
@ -123,8 +123,8 @@ int main(int argc, char** argv) {
LatticeGaugeField UV(grid);
UV = Zero();
for (int mu = 0; mu < Nd; mu++) {
SU<Nc>::LatticeMatrix Umu = peekLorentz(U,mu);
SU<Nc>::LatticeMatrix Vmu = peekLorentz(V,mu);
SU3::LatticeMatrix Umu = peekLorentz(U,mu);
SU3::LatticeMatrix Vmu = peekLorentz(V,mu);
pokeLorentz(UV,Umu*Vmu, mu);
}
@ -151,16 +151,16 @@ int main(int argc, char** argv) {
// Check correspondence of algebra and group transformations
// Create a random vector
SU<Nc>::LatticeAlgebraVector h_adj(grid);
SU3::LatticeAlgebraVector h_adj(grid);
typename AdjointRep<Nc>::LatticeMatrix Ar(grid);
random(gridRNG,h_adj);
h_adj = real(h_adj);
SU_Adjoint<Nc>::AdjointLieAlgebraMatrix(h_adj,Ar);
// Re-extract h_adj
SU<Nc>::LatticeAlgebraVector h_adj2(grid);
SU3::LatticeAlgebraVector h_adj2(grid);
SU_Adjoint<Nc>::projectOnAlgebra(h_adj2, Ar);
SU<Nc>::LatticeAlgebraVector h_diff = h_adj - h_adj2;
SU3::LatticeAlgebraVector h_diff = h_adj - h_adj2;
std::cout << GridLogMessage << "Projections structure check vector difference (Adjoint representation) : " << norm2(h_diff) << std::endl;
// Exponentiate
@ -183,14 +183,14 @@ int main(int argc, char** argv) {
// Construct the fundamental matrix in the group
SU<Nc>::LatticeMatrix Af(grid);
SU<Nc>::FundamentalLieAlgebraMatrix(h_adj,Af);
SU<Nc>::LatticeMatrix Ufund(grid);
SU3::LatticeMatrix Af(grid);
SU3::FundamentalLieAlgebraMatrix(h_adj,Af);
SU3::LatticeMatrix Ufund(grid);
Ufund = expMat(Af, 1.0, 16);
// Check unitarity
SU<Nc>::LatticeMatrix uno_f(grid);
SU3::LatticeMatrix uno_f(grid);
uno_f = 1.0;
SU<Nc>::LatticeMatrix UnitCheck(grid);
SU3::LatticeMatrix UnitCheck(grid);
UnitCheck = Ufund * adj(Ufund) - uno_f;
std::cout << GridLogMessage << "unitarity check 1: " << norm2(UnitCheck)
<< std::endl;
@ -260,20 +260,20 @@ int main(int argc, char** argv) {
std::cout << GridLogMessage << "Test for the Two Index Symmetric projectors"
<< std::endl;
// Projectors
SU<Nc>TwoIndexSymm::LatticeTwoIndexMatrix Gauss2(grid);
SU3TwoIndexSymm::LatticeTwoIndexMatrix Gauss2(grid);
random(gridRNG,Gauss2);
std::cout << GridLogMessage << "Start projectOnAlgebra" << std::endl;
SU<Nc>TwoIndexSymm::projectOnAlgebra(ha, Gauss2);
SU3TwoIndexSymm::projectOnAlgebra(ha, Gauss2);
std::cout << GridLogMessage << "end projectOnAlgebra" << std::endl;
std::cout << GridLogMessage << "Start projector" << std::endl;
SU<Nc>TwoIndexSymm::projector(hb, Gauss2);
SU3TwoIndexSymm::projector(hb, Gauss2);
std::cout << GridLogMessage << "end projector" << std::endl;
std::cout << GridLogMessage << "ReStart projector" << std::endl;
SU<Nc>TwoIndexSymm::projector(hb, Gauss2);
SU3TwoIndexSymm::projector(hb, Gauss2);
std::cout << GridLogMessage << "end projector" << std::endl;
SU<Nc>::LatticeAlgebraVector diff2 = ha - hb;
SU3::LatticeAlgebraVector diff2 = ha - hb;
std::cout << GridLogMessage << "Difference: " << norm2(diff) << std::endl;
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
@ -284,20 +284,20 @@ int main(int argc, char** argv) {
std::cout << GridLogMessage << "Test for the Two index anti-Symmetric projectors"
<< std::endl;
// Projectors
SU<Nc>TwoIndexAntiSymm::LatticeTwoIndexMatrix Gauss2a(grid);
SU3TwoIndexAntiSymm::LatticeTwoIndexMatrix Gauss2a(grid);
random(gridRNG,Gauss2a);
std::cout << GridLogMessage << "Start projectOnAlgebra" << std::endl;
SU<Nc>TwoIndexAntiSymm::projectOnAlgebra(ha, Gauss2a);
SU3TwoIndexAntiSymm::projectOnAlgebra(ha, Gauss2a);
std::cout << GridLogMessage << "end projectOnAlgebra" << std::endl;
std::cout << GridLogMessage << "Start projector" << std::endl;
SU<Nc>TwoIndexAntiSymm::projector(hb, Gauss2a);
SU3TwoIndexAntiSymm::projector(hb, Gauss2a);
std::cout << GridLogMessage << "end projector" << std::endl;
std::cout << GridLogMessage << "ReStart projector" << std::endl;
SU<Nc>TwoIndexAntiSymm::projector(hb, Gauss2a);
SU3TwoIndexAntiSymm::projector(hb, Gauss2a);
std::cout << GridLogMessage << "end projector" << std::endl;
SU<Nc>::LatticeAlgebraVector diff2a = ha - hb;
SU3::LatticeAlgebraVector diff2a = ha - hb;
std::cout << GridLogMessage << "Difference: " << norm2(diff2a) << std::endl;
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
@ -311,14 +311,14 @@ int main(int argc, char** argv) {
// Test group structure
// (U_f * V_f)_r = U_r * V_r
LatticeGaugeField U2(grid), V2(grid);
SU<Nc>::HotConfiguration<LatticeGaugeField>(gridRNG, U2);
SU<Nc>::HotConfiguration<LatticeGaugeField>(gridRNG, V2);
SU3::HotConfiguration<LatticeGaugeField>(gridRNG, U2);
SU3::HotConfiguration<LatticeGaugeField>(gridRNG, V2);
LatticeGaugeField UV2(grid);
UV2 = Zero();
for (int mu = 0; mu < Nd; mu++) {
SU<Nc>::LatticeMatrix Umu2 = peekLorentz(U2,mu);
SU<Nc>::LatticeMatrix Vmu2 = peekLorentz(V2,mu);
SU3::LatticeMatrix Umu2 = peekLorentz(U2,mu);
SU3::LatticeMatrix Vmu2 = peekLorentz(V2,mu);
pokeLorentz(UV2,Umu2*Vmu2, mu);
}
@ -345,16 +345,16 @@ int main(int argc, char** argv) {
// Check correspondence of algebra and group transformations
// Create a random vector
SU<Nc>::LatticeAlgebraVector h_sym(grid);
SU3::LatticeAlgebraVector h_sym(grid);
typename TwoIndexRep< Nc, Symmetric>::LatticeMatrix Ar_sym(grid);
random(gridRNG,h_sym);
h_sym = real(h_sym);
SU_TwoIndex<Nc,Symmetric>::TwoIndexLieAlgebraMatrix(h_sym,Ar_sym);
// Re-extract h_sym
SU<Nc>::LatticeAlgebraVector h_sym2(grid);
SU3::LatticeAlgebraVector h_sym2(grid);
SU_TwoIndex< Nc, Symmetric>::projectOnAlgebra(h_sym2, Ar_sym);
SU<Nc>::LatticeAlgebraVector h_diff_sym = h_sym - h_sym2;
SU3::LatticeAlgebraVector h_diff_sym = h_sym - h_sym2;
std::cout << GridLogMessage << "Projections structure check vector difference (Two Index Symmetric): " << norm2(h_diff_sym) << std::endl;
@ -379,11 +379,11 @@ int main(int argc, char** argv) {
// Construct the fundamental matrix in the group
SU<Nc>::LatticeMatrix Af_sym(grid);
SU<Nc>::FundamentalLieAlgebraMatrix(h_sym,Af_sym);
SU<Nc>::LatticeMatrix Ufund2(grid);
SU3::LatticeMatrix Af_sym(grid);
SU3::FundamentalLieAlgebraMatrix(h_sym,Af_sym);
SU3::LatticeMatrix Ufund2(grid);
Ufund2 = expMat(Af_sym, 1.0, 16);
SU<Nc>::LatticeMatrix UnitCheck2(grid);
SU3::LatticeMatrix UnitCheck2(grid);
UnitCheck2 = Ufund2 * adj(Ufund2) - uno_f;
std::cout << GridLogMessage << "unitarity check 1: " << norm2(UnitCheck2)
<< std::endl;
@ -421,14 +421,14 @@ int main(int argc, char** argv) {
// Test group structure
// (U_f * V_f)_r = U_r * V_r
LatticeGaugeField U2A(grid), V2A(grid);
SU<Nc>::HotConfiguration<LatticeGaugeField>(gridRNG, U2A);
SU<Nc>::HotConfiguration<LatticeGaugeField>(gridRNG, V2A);
SU3::HotConfiguration<LatticeGaugeField>(gridRNG, U2A);
SU3::HotConfiguration<LatticeGaugeField>(gridRNG, V2A);
LatticeGaugeField UV2A(grid);
UV2A = Zero();
for (int mu = 0; mu < Nd; mu++) {
SU<Nc>::LatticeMatrix Umu2A = peekLorentz(U2,mu);
SU<Nc>::LatticeMatrix Vmu2A = peekLorentz(V2,mu);
SU3::LatticeMatrix Umu2A = peekLorentz(U2,mu);
SU3::LatticeMatrix Vmu2A = peekLorentz(V2,mu);
pokeLorentz(UV2A,Umu2A*Vmu2A, mu);
}
@ -455,16 +455,16 @@ int main(int argc, char** argv) {
// Check correspondence of algebra and group transformations
// Create a random vector
SU<Nc>::LatticeAlgebraVector h_Asym(grid);
SU3::LatticeAlgebraVector h_Asym(grid);
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix Ar_Asym(grid);
random(gridRNG,h_Asym);
h_Asym = real(h_Asym);
SU_TwoIndex< Nc, AntiSymmetric>::TwoIndexLieAlgebraMatrix(h_Asym,Ar_Asym);
// Re-extract h_sym
SU<Nc>::LatticeAlgebraVector h_Asym2(grid);
SU3::LatticeAlgebraVector h_Asym2(grid);
SU_TwoIndex< Nc, AntiSymmetric>::projectOnAlgebra(h_Asym2, Ar_Asym);
SU<Nc>::LatticeAlgebraVector h_diff_Asym = h_Asym - h_Asym2;
SU3::LatticeAlgebraVector h_diff_Asym = h_Asym - h_Asym2;
std::cout << GridLogMessage << "Projections structure check vector difference (Two Index anti-Symmetric): " << norm2(h_diff_Asym) << std::endl;
@ -489,11 +489,11 @@ int main(int argc, char** argv) {
// Construct the fundamental matrix in the group
SU<Nc>::LatticeMatrix Af_Asym(grid);
SU<Nc>::FundamentalLieAlgebraMatrix(h_Asym,Af_Asym);
SU<Nc>::LatticeMatrix Ufund2A(grid);
SU3::LatticeMatrix Af_Asym(grid);
SU3::FundamentalLieAlgebraMatrix(h_Asym,Af_Asym);
SU3::LatticeMatrix Ufund2A(grid);
Ufund2A = expMat(Af_Asym, 1.0, 16);
SU<Nc>::LatticeMatrix UnitCheck2A(grid);
SU3::LatticeMatrix UnitCheck2A(grid);
UnitCheck2A = Ufund2A * adj(Ufund2A) - uno_f;
std::cout << GridLogMessage << "unitarity check 1: " << norm2(UnitCheck2A)
<< std::endl;

106
tests/core/Test_unary.cc Normal file
View File

@ -0,0 +1,106 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_quenched_update.cc
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
std::vector<int> latt({8,8,8,8});
GridCartesian * grid = SpaceTimeGrid::makeFourDimGrid(latt,
GridDefaultSimd(Nd,vComplexD::Nsimd()),
GridDefaultMpi());
GridCartesian * gridF = SpaceTimeGrid::makeFourDimGrid(latt,
GridDefaultSimd(Nd,vComplexF::Nsimd()),
GridDefaultMpi());
///////////////////////////////
// Configuration of known size
///////////////////////////////
LatticeColourMatrixD ident(grid);
LatticeColourMatrixD U(grid);
LatticeColourMatrixD tmp(grid);
LatticeColourMatrixD org(grid);
LatticeColourMatrixF UF(gridF);
LatticeGaugeField Umu(grid);
ident =1.0;
// RNG set up for test
std::vector<int> pseeds({1,2,3,4,5}); // once I caught a fish alive
std::vector<int> sseeds({6,7,8,9,10});// then i let it go again
GridParallelRNG pRNG(grid); pRNG.SeedFixedIntegers(pseeds);
GridSerialRNG sRNG; sRNG.SeedFixedIntegers(sseeds);
SU<Nc>::HotConfiguration(pRNG,Umu);
U = PeekIndex<LorentzIndex>(Umu,0);
org=U;
tmp= U*adj(U) - ident ;
RealD Def1 = norm2( tmp );
std::cout << " Defect1 "<<Def1<<std::endl;
tmp = U - org;
std::cout << "Diff1 "<<norm2(tmp)<<std::endl;
precisionChange(UF,U);
precisionChange(U,UF);
tmp= U*adj(U) - ident ;
RealD Def2 = norm2( tmp );
std::cout << " Defect2 "<<Def2<<std::endl;
tmp = U - org;
std::cout << "Diff2 "<<norm2(tmp)<<std::endl;
U = ProjectOnGroup(U);
tmp= U*adj(U) - ident ;
RealD Def3 = norm2( tmp);
std::cout << " Defect3 "<<Def3<<std::endl;
tmp = U - org;
std::cout << "Diff3 "<<norm2(tmp)<<std::endl;
Grid_finalize();
}