mirror of
https://github.com/paboyle/Grid.git
synced 2025-10-26 01:29:34 +00:00
Compare commits
14 Commits
develop
...
feature/bl
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b2493d6d25 | ||
|
|
8fd16686dc | ||
|
|
23b9c6b5f5 | ||
|
|
43943008bf | ||
|
|
8ee26f9112 | ||
|
|
f91e3af97f | ||
|
|
43298ef681 | ||
|
|
7e70df27e4 | ||
|
|
c55d657736 | ||
|
|
b89b1280d5 | ||
|
|
ac7090e6d3 | ||
|
|
02edbe624f | ||
|
|
9266b89ad8 | ||
|
|
2db7e6f8ab |
54
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
54
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
@@ -1,54 +0,0 @@
|
|||||||
name: Bug report
|
|
||||||
description: Report a bug.
|
|
||||||
title: "<insert title>"
|
|
||||||
labels: [bug]
|
|
||||||
|
|
||||||
body:
|
|
||||||
- type: markdown
|
|
||||||
attributes:
|
|
||||||
value: >
|
|
||||||
Thank you for taking the time to file a bug report.
|
|
||||||
Please check that the code is pointing to the HEAD of develop
|
|
||||||
or any commit in master which is tagged with a version number.
|
|
||||||
|
|
||||||
- type: textarea
|
|
||||||
attributes:
|
|
||||||
label: "Describe the issue:"
|
|
||||||
description: >
|
|
||||||
Describe the issue and any previous attempt to solve it.
|
|
||||||
validations:
|
|
||||||
required: true
|
|
||||||
|
|
||||||
- type: textarea
|
|
||||||
attributes:
|
|
||||||
label: "Code example:"
|
|
||||||
description: >
|
|
||||||
If relevant, show how to reproduce the issue using a minimal working
|
|
||||||
example.
|
|
||||||
placeholder: |
|
|
||||||
<< your code here >>
|
|
||||||
render: shell
|
|
||||||
validations:
|
|
||||||
required: false
|
|
||||||
|
|
||||||
- type: textarea
|
|
||||||
attributes:
|
|
||||||
label: "Target platform:"
|
|
||||||
description: >
|
|
||||||
Give a description of the target platform (CPU, network, compiler).
|
|
||||||
Please give the full CPU part description, using for example
|
|
||||||
`cat /proc/cpuinfo | grep 'model name' | uniq` (Linux)
|
|
||||||
or `sysctl machdep.cpu.brand_string` (macOS) and the full output
|
|
||||||
the `--version` option of your compiler.
|
|
||||||
validations:
|
|
||||||
required: true
|
|
||||||
|
|
||||||
- type: textarea
|
|
||||||
attributes:
|
|
||||||
label: "Configure options:"
|
|
||||||
description: >
|
|
||||||
Please give the exact configure command used and attach
|
|
||||||
`config.log`, `grid.config.summary` and the output of `make V=1`.
|
|
||||||
render: shell
|
|
||||||
validations:
|
|
||||||
required: true
|
|
||||||
7
.gitignore
vendored
7
.gitignore
vendored
@@ -1,7 +1,3 @@
|
|||||||
# Doxygen stuff
|
|
||||||
html/*
|
|
||||||
latex/*
|
|
||||||
|
|
||||||
# Compiled Object files #
|
# Compiled Object files #
|
||||||
#########################
|
#########################
|
||||||
*.slo
|
*.slo
|
||||||
@@ -14,6 +10,8 @@ latex/*
|
|||||||
*~
|
*~
|
||||||
*#
|
*#
|
||||||
*.sublime-*
|
*.sublime-*
|
||||||
|
.ctags
|
||||||
|
tags
|
||||||
|
|
||||||
# Precompiled Headers #
|
# Precompiled Headers #
|
||||||
#######################
|
#######################
|
||||||
@@ -92,7 +90,6 @@ Thumbs.db
|
|||||||
# build directory #
|
# build directory #
|
||||||
###################
|
###################
|
||||||
build*/*
|
build*/*
|
||||||
Documentation/_build
|
|
||||||
|
|
||||||
# IDE related files #
|
# IDE related files #
|
||||||
#####################
|
#####################
|
||||||
|
|||||||
File diff suppressed because it is too large
Load Diff
@@ -1,2 +0,0 @@
|
|||||||
|
|
||||||
mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench -DGRID_SYCL
|
|
||||||
@@ -1,5 +0,0 @@
|
|||||||
CXX=hipcc
|
|
||||||
MPICXX=mpicxx
|
|
||||||
CXXFLAGS="-fPIC -I{$ROCM_PATH}/include/ -I${MPICH_DIR}/include -L/lib64 -I/opt/cray/pe/mpich/8.1.28/ofi/gnu/12.3/include -DGRID_HIP"
|
|
||||||
LDFLAGS="-L/lib64 -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lamdhip64 -lhipblas -lrocblas -lmpi_gnu_123"
|
|
||||||
hipcc $CXXFLAGS $LDFLAGS BatchBlasBench.cc -o BatchBlasBench
|
|
||||||
@@ -1,2 +0,0 @@
|
|||||||
|
|
||||||
mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench -DGRID_SYCL
|
|
||||||
@@ -44,24 +44,14 @@ directory
|
|||||||
#ifdef __NVCC__
|
#ifdef __NVCC__
|
||||||
//disables nvcc specific warning in json.hpp
|
//disables nvcc specific warning in json.hpp
|
||||||
#pragma clang diagnostic ignored "-Wdeprecated-register"
|
#pragma clang diagnostic ignored "-Wdeprecated-register"
|
||||||
|
|
||||||
#ifdef __NVCC_DIAG_PRAGMA_SUPPORT__
|
|
||||||
//disables nvcc specific warning in json.hpp
|
|
||||||
#pragma nv_diag_suppress unsigned_compare_with_zero
|
|
||||||
#pragma nv_diag_suppress cast_to_qualified_type
|
|
||||||
//disables nvcc specific warning in many files
|
|
||||||
#pragma nv_diag_suppress esa_on_defaulted_function_ignored
|
|
||||||
#pragma nv_diag_suppress declared_but_not_referenced
|
|
||||||
#pragma nv_diag_suppress extra_semicolon
|
|
||||||
#else
|
|
||||||
//disables nvcc specific warning in json.hpp
|
|
||||||
#pragma diag_suppress unsigned_compare_with_zero
|
#pragma diag_suppress unsigned_compare_with_zero
|
||||||
#pragma diag_suppress cast_to_qualified_type
|
#pragma diag_suppress cast_to_qualified_type
|
||||||
#pragma diag_suppress declared_but_not_referenced
|
|
||||||
//disables nvcc specific warning in many files
|
//disables nvcc specific warning in many files
|
||||||
#pragma diag_suppress esa_on_defaulted_function_ignored
|
#pragma diag_suppress esa_on_defaulted_function_ignored
|
||||||
#pragma diag_suppress extra_semicolon
|
#pragma diag_suppress extra_semicolon
|
||||||
#endif
|
|
||||||
|
//Eigen only
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// Disable vectorisation in Eigen on the Power8/9 and PowerPC
|
// Disable vectorisation in Eigen on the Power8/9 and PowerPC
|
||||||
|
|||||||
@@ -44,10 +44,9 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
|||||||
#include <Grid/GridStd.h>
|
#include <Grid/GridStd.h>
|
||||||
#include <Grid/threads/Pragmas.h>
|
#include <Grid/threads/Pragmas.h>
|
||||||
#include <Grid/perfmon/Timer.h>
|
#include <Grid/perfmon/Timer.h>
|
||||||
//#include <Grid/perfmon/PerfCount.h>
|
#include <Grid/perfmon/PerfCount.h>
|
||||||
#include <Grid/util/Util.h>
|
#include <Grid/util/Util.h>
|
||||||
#include <Grid/log/Log.h>
|
#include <Grid/log/Log.h>
|
||||||
#include <Grid/perfmon/Tracing.h>
|
|
||||||
#include <Grid/allocator/Allocator.h>
|
#include <Grid/allocator/Allocator.h>
|
||||||
#include <Grid/simd/Simd.h>
|
#include <Grid/simd/Simd.h>
|
||||||
#include <Grid/threads/ThreadReduction.h>
|
#include <Grid/threads/ThreadReduction.h>
|
||||||
@@ -59,7 +58,6 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
|||||||
#include <Grid/lattice/Lattice.h>
|
#include <Grid/lattice/Lattice.h>
|
||||||
#include <Grid/cshift/Cshift.h>
|
#include <Grid/cshift/Cshift.h>
|
||||||
#include <Grid/stencil/Stencil.h>
|
#include <Grid/stencil/Stencil.h>
|
||||||
#include <Grid/stencil/GeneralLocalStencil.h>
|
|
||||||
#include <Grid/parallelIO/BinaryIO.h>
|
#include <Grid/parallelIO/BinaryIO.h>
|
||||||
#include <Grid/algorithms/Algorithms.h>
|
#include <Grid/algorithms/Algorithms.h>
|
||||||
NAMESPACE_CHECK(GridCore)
|
NAMESPACE_CHECK(GridCore)
|
||||||
|
|||||||
@@ -36,7 +36,6 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
|||||||
#include <Grid/GridCore.h>
|
#include <Grid/GridCore.h>
|
||||||
#include <Grid/qcd/QCD.h>
|
#include <Grid/qcd/QCD.h>
|
||||||
#include <Grid/qcd/spin/Spin.h>
|
#include <Grid/qcd/spin/Spin.h>
|
||||||
#include <Grid/qcd/gparity/Gparity.h>
|
|
||||||
#include <Grid/qcd/utils/Utils.h>
|
#include <Grid/qcd/utils/Utils.h>
|
||||||
#include <Grid/qcd/representations/Representations.h>
|
#include <Grid/qcd/representations/Representations.h>
|
||||||
NAMESPACE_CHECK(GridQCDCore);
|
NAMESPACE_CHECK(GridQCDCore);
|
||||||
|
|||||||
@@ -1,17 +1,9 @@
|
|||||||
#ifndef GRID_STD_H
|
#ifndef GRID_STD_H
|
||||||
#define GRID_STD_H
|
#define GRID_STD_H
|
||||||
|
|
||||||
///////////////////
|
|
||||||
// Grid config
|
|
||||||
///////////////////
|
|
||||||
#include "Config.h"
|
|
||||||
|
|
||||||
///////////////////
|
///////////////////
|
||||||
// Std C++ dependencies
|
// Std C++ dependencies
|
||||||
///////////////////
|
///////////////////
|
||||||
#define _NBACKTRACE (256)
|
|
||||||
extern void * Grid_backtrace_buffer[_NBACKTRACE];
|
|
||||||
|
|
||||||
#include <cassert>
|
#include <cassert>
|
||||||
#include <complex>
|
#include <complex>
|
||||||
#include <memory>
|
#include <memory>
|
||||||
@@ -23,46 +15,18 @@ extern void * Grid_backtrace_buffer[_NBACKTRACE];
|
|||||||
#include <random>
|
#include <random>
|
||||||
#include <functional>
|
#include <functional>
|
||||||
#include <stdio.h>
|
#include <stdio.h>
|
||||||
#include <string.h>
|
|
||||||
#include <stdlib.h>
|
#include <stdlib.h>
|
||||||
#include <unistd.h>
|
|
||||||
#include <strings.h>
|
|
||||||
#include <stdio.h>
|
#include <stdio.h>
|
||||||
#include <signal.h>
|
#include <signal.h>
|
||||||
#include <ctime>
|
#include <ctime>
|
||||||
#include <sys/time.h>
|
#include <sys/time.h>
|
||||||
#include <chrono>
|
#include <chrono>
|
||||||
#include <zlib.h>
|
#include <zlib.h>
|
||||||
#ifdef HAVE_EXECINFO_H
|
|
||||||
#include <execinfo.h>
|
|
||||||
#endif
|
|
||||||
|
|
||||||
void GridAbort(void);
|
|
||||||
|
|
||||||
#define ASSLOG(A) ::write(STDERR_FILENO,A,::strlen(A));
|
|
||||||
#ifdef HAVE_EXECINFO_H
|
|
||||||
#define GRID_ASSERT(b) if(!(b)) { \
|
|
||||||
fflush(stdout); \
|
|
||||||
ASSLOG(" GRID_ASSERT failure: "); \
|
|
||||||
ASSLOG(__FILE__); \
|
|
||||||
ASSLOG(" : "); \
|
|
||||||
ASSLOG(#b); \
|
|
||||||
ASSLOG(" : "); \
|
|
||||||
int symbols = backtrace(Grid_backtrace_buffer,_NBACKTRACE); \
|
|
||||||
backtrace_symbols_fd(Grid_backtrace_buffer,symbols,STDERR_FILENO); \
|
|
||||||
GridAbort(); \
|
|
||||||
};
|
|
||||||
#else
|
|
||||||
#define GRID_ASSERT(b) if(!(b)) { \
|
|
||||||
ASSLOG(" GRID_ASSERT failure: "); \
|
|
||||||
ASSLOG(__FILE__); \
|
|
||||||
ASSLOG(" : "); \
|
|
||||||
ASSLOG(#b); \
|
|
||||||
ASSLOG(" : "); \
|
|
||||||
GridAbort(); \
|
|
||||||
};
|
|
||||||
#endif
|
|
||||||
|
|
||||||
|
///////////////////
|
||||||
|
// Grid config
|
||||||
|
///////////////////
|
||||||
|
#include "Config.h"
|
||||||
|
|
||||||
#ifdef TOFU
|
#ifdef TOFU
|
||||||
#undef GRID_COMMS_THREADS
|
#undef GRID_COMMS_THREADS
|
||||||
|
|||||||
@@ -14,11 +14,7 @@
|
|||||||
/* NVCC save and restore compile environment*/
|
/* NVCC save and restore compile environment*/
|
||||||
#ifdef __NVCC__
|
#ifdef __NVCC__
|
||||||
#pragma push
|
#pragma push
|
||||||
#ifdef __NVCC_DIAG_PRAGMA_SUPPORT__
|
|
||||||
#pragma nv_diag_suppress code_is_unreachable
|
|
||||||
#else
|
|
||||||
#pragma diag_suppress code_is_unreachable
|
#pragma diag_suppress code_is_unreachable
|
||||||
#endif
|
|
||||||
#pragma push_macro("__CUDA_ARCH__")
|
#pragma push_macro("__CUDA_ARCH__")
|
||||||
#pragma push_macro("__NVCC__")
|
#pragma push_macro("__NVCC__")
|
||||||
#pragma push_macro("__CUDACC__")
|
#pragma push_macro("__CUDACC__")
|
||||||
@@ -34,7 +30,7 @@
|
|||||||
#pragma push_macro("__SYCL_DEVICE_ONLY__")
|
#pragma push_macro("__SYCL_DEVICE_ONLY__")
|
||||||
#undef __SYCL_DEVICE_ONLY__
|
#undef __SYCL_DEVICE_ONLY__
|
||||||
#define EIGEN_DONT_VECTORIZE
|
#define EIGEN_DONT_VECTORIZE
|
||||||
#undef EIGEN_USE_SYCL
|
//#undef EIGEN_USE_SYCL
|
||||||
#define __SYCL__REDEFINE__
|
#define __SYCL__REDEFINE__
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|||||||
@@ -66,12 +66,6 @@ if BUILD_FERMION_REPS
|
|||||||
extra_sources+=$(ADJ_FERMION_FILES)
|
extra_sources+=$(ADJ_FERMION_FILES)
|
||||||
extra_sources+=$(TWOIND_FERMION_FILES)
|
extra_sources+=$(TWOIND_FERMION_FILES)
|
||||||
endif
|
endif
|
||||||
if BUILD_SP
|
|
||||||
extra_sources+=$(SP_FERMION_FILES)
|
|
||||||
if BUILD_FERMION_REPS
|
|
||||||
extra_sources+=$(SP_TWOIND_FERMION_FILES)
|
|
||||||
endif
|
|
||||||
endif
|
|
||||||
|
|
||||||
lib_LIBRARIES = libGrid.a
|
lib_LIBRARIES = libGrid.a
|
||||||
|
|
||||||
|
|||||||
@@ -29,7 +29,6 @@ directory
|
|||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
#include <type_traits>
|
#include <type_traits>
|
||||||
#include <exception>
|
|
||||||
#include <cassert>
|
#include <cassert>
|
||||||
|
|
||||||
#define NAMESPACE_BEGIN(A) namespace A {
|
#define NAMESPACE_BEGIN(A) namespace A {
|
||||||
@@ -37,7 +36,3 @@ directory
|
|||||||
#define GRID_NAMESPACE_BEGIN NAMESPACE_BEGIN(Grid)
|
#define GRID_NAMESPACE_BEGIN NAMESPACE_BEGIN(Grid)
|
||||||
#define GRID_NAMESPACE_END NAMESPACE_END(Grid)
|
#define GRID_NAMESPACE_END NAMESPACE_END(Grid)
|
||||||
#define NAMESPACE_CHECK(x) struct namespaceTEST##x {}; static_assert(std::is_same<namespaceTEST##x, ::namespaceTEST##x>::value,"Not in :: at" );
|
#define NAMESPACE_CHECK(x) struct namespaceTEST##x {}; static_assert(std::is_same<namespaceTEST##x, ::namespaceTEST##x>::value,"Not in :: at" );
|
||||||
|
|
||||||
#define EXCEPTION_CHECK_BEGIN(A) try {
|
|
||||||
#define EXCEPTION_CHECK_END(A) } catch ( std::exception e ) { BACKTRACEFP(stderr); std::cerr << __PRETTY_FUNCTION__ << " : " <<__LINE__<< " Caught exception "<<e.what()<<std::endl; throw; }
|
|
||||||
|
|
||||||
|
|||||||
@@ -29,9 +29,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|||||||
#ifndef GRID_ALGORITHMS_H
|
#ifndef GRID_ALGORITHMS_H
|
||||||
#define GRID_ALGORITHMS_H
|
#define GRID_ALGORITHMS_H
|
||||||
|
|
||||||
NAMESPACE_CHECK(blas);
|
|
||||||
#include <Grid/algorithms/blas/BatchedBlas.h>
|
|
||||||
|
|
||||||
NAMESPACE_CHECK(algorithms);
|
NAMESPACE_CHECK(algorithms);
|
||||||
#include <Grid/algorithms/SparseMatrix.h>
|
#include <Grid/algorithms/SparseMatrix.h>
|
||||||
#include <Grid/algorithms/LinearOperator.h>
|
#include <Grid/algorithms/LinearOperator.h>
|
||||||
@@ -47,13 +44,7 @@ NAMESPACE_CHECK(SparseMatrix);
|
|||||||
#include <Grid/algorithms/approx/RemezGeneral.h>
|
#include <Grid/algorithms/approx/RemezGeneral.h>
|
||||||
#include <Grid/algorithms/approx/ZMobius.h>
|
#include <Grid/algorithms/approx/ZMobius.h>
|
||||||
NAMESPACE_CHECK(approx);
|
NAMESPACE_CHECK(approx);
|
||||||
#include <Grid/algorithms/deflation/Deflation.h>
|
#include <Grid/algorithms/iterative/Deflation.h>
|
||||||
#include <Grid/algorithms/deflation/MultiRHSBlockProject.h>
|
|
||||||
#include <Grid/algorithms/deflation/MultiRHSDeflation.h>
|
|
||||||
#include <Grid/algorithms/deflation/MultiRHSBlockCGLinalg.h>
|
|
||||||
// Not really deflation, but useful
|
|
||||||
#include <Grid/algorithms/blas/MomentumProject.h>
|
|
||||||
NAMESPACE_CHECK(deflation);
|
|
||||||
#include <Grid/algorithms/iterative/ConjugateGradient.h>
|
#include <Grid/algorithms/iterative/ConjugateGradient.h>
|
||||||
NAMESPACE_CHECK(ConjGrad);
|
NAMESPACE_CHECK(ConjGrad);
|
||||||
#include <Grid/algorithms/iterative/BiCGSTAB.h>
|
#include <Grid/algorithms/iterative/BiCGSTAB.h>
|
||||||
@@ -63,8 +54,6 @@ NAMESPACE_CHECK(BiCGSTAB);
|
|||||||
#include <Grid/algorithms/iterative/SchurRedBlack.h>
|
#include <Grid/algorithms/iterative/SchurRedBlack.h>
|
||||||
#include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h>
|
#include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h>
|
||||||
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
|
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
|
||||||
#include <Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h>
|
|
||||||
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrecBatched.h>
|
|
||||||
#include <Grid/algorithms/iterative/BiCGSTABMixedPrec.h>
|
#include <Grid/algorithms/iterative/BiCGSTABMixedPrec.h>
|
||||||
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
|
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
|
||||||
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>
|
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>
|
||||||
@@ -76,11 +65,10 @@ NAMESPACE_CHECK(BiCGSTAB);
|
|||||||
#include <Grid/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h>
|
#include <Grid/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h>
|
||||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
|
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
|
||||||
#include <Grid/algorithms/iterative/PowerMethod.h>
|
#include <Grid/algorithms/iterative/PowerMethod.h>
|
||||||
#include <Grid/algorithms/iterative/AdefGeneric.h>
|
|
||||||
#include <Grid/algorithms/iterative/AdefMrhs.h>
|
|
||||||
NAMESPACE_CHECK(PowerMethod);
|
NAMESPACE_CHECK(PowerMethod);
|
||||||
#include <Grid/algorithms/multigrid/MultiGrid.h>
|
#include <Grid/algorithms/CoarsenedMatrix.h>
|
||||||
NAMESPACE_CHECK(multigrid);
|
NAMESPACE_CHECK(CoarsendMatrix);
|
||||||
#include <Grid/algorithms/FFT.h>
|
#include <Grid/algorithms/FFT.h>
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|||||||
@@ -56,6 +56,243 @@ inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner,
|
|||||||
blockSum(CoarseInner,fine_inner_msk);
|
blockSum(CoarseInner,fine_inner_msk);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class Geometry {
|
||||||
|
public:
|
||||||
|
int npoint;
|
||||||
|
int base;
|
||||||
|
std::vector<int> directions ;
|
||||||
|
std::vector<int> displacements;
|
||||||
|
std::vector<int> points_dagger;
|
||||||
|
|
||||||
|
Geometry(int _d) {
|
||||||
|
|
||||||
|
base = (_d==5) ? 1:0;
|
||||||
|
|
||||||
|
// make coarse grid stencil for 4d , not 5d
|
||||||
|
if ( _d==5 ) _d=4;
|
||||||
|
|
||||||
|
npoint = 2*_d+1;
|
||||||
|
directions.resize(npoint);
|
||||||
|
displacements.resize(npoint);
|
||||||
|
points_dagger.resize(npoint);
|
||||||
|
for(int d=0;d<_d;d++){
|
||||||
|
directions[d ] = d+base;
|
||||||
|
directions[d+_d] = d+base;
|
||||||
|
displacements[d ] = +1;
|
||||||
|
displacements[d+_d]= -1;
|
||||||
|
points_dagger[d ] = d+_d;
|
||||||
|
points_dagger[d+_d] = d;
|
||||||
|
}
|
||||||
|
directions [2*_d]=0;
|
||||||
|
displacements[2*_d]=0;
|
||||||
|
points_dagger[2*_d]=2*_d;
|
||||||
|
}
|
||||||
|
|
||||||
|
int point(int dir, int disp) {
|
||||||
|
assert(disp == -1 || disp == 0 || disp == 1);
|
||||||
|
assert(base+0 <= dir && dir < base+4);
|
||||||
|
|
||||||
|
// directions faster index = new indexing
|
||||||
|
// 4d (base = 0):
|
||||||
|
// point 0 1 2 3 4 5 6 7 8
|
||||||
|
// dir 0 1 2 3 0 1 2 3 0
|
||||||
|
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
|
||||||
|
// 5d (base = 1):
|
||||||
|
// point 0 1 2 3 4 5 6 7 8
|
||||||
|
// dir 1 2 3 4 1 2 3 4 0
|
||||||
|
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
|
||||||
|
|
||||||
|
// displacements faster index = old indexing
|
||||||
|
// 4d (base = 0):
|
||||||
|
// point 0 1 2 3 4 5 6 7 8
|
||||||
|
// dir 0 0 1 1 2 2 3 3 0
|
||||||
|
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
|
||||||
|
// 5d (base = 1):
|
||||||
|
// point 0 1 2 3 4 5 6 7 8
|
||||||
|
// dir 1 1 2 2 3 3 4 4 0
|
||||||
|
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
|
||||||
|
|
||||||
|
if(dir == 0 and disp == 0)
|
||||||
|
return 8;
|
||||||
|
else // New indexing
|
||||||
|
return (1 - disp) / 2 * 4 + dir - base;
|
||||||
|
// else // Old indexing
|
||||||
|
// return (4 * (dir - base) + 1 - disp) / 2;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template<class Fobj,class CComplex,int nbasis>
|
||||||
|
class Aggregation {
|
||||||
|
public:
|
||||||
|
typedef iVector<CComplex,nbasis > siteVector;
|
||||||
|
typedef Lattice<siteVector> CoarseVector;
|
||||||
|
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
||||||
|
|
||||||
|
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
||||||
|
typedef Lattice<Fobj > FineField;
|
||||||
|
|
||||||
|
GridBase *CoarseGrid;
|
||||||
|
GridBase *FineGrid;
|
||||||
|
std::vector<Lattice<Fobj> > subspace;
|
||||||
|
int checkerboard;
|
||||||
|
int Checkerboard(void){return checkerboard;}
|
||||||
|
Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :
|
||||||
|
CoarseGrid(_CoarseGrid),
|
||||||
|
FineGrid(_FineGrid),
|
||||||
|
subspace(nbasis,_FineGrid),
|
||||||
|
checkerboard(_checkerboard)
|
||||||
|
{
|
||||||
|
};
|
||||||
|
|
||||||
|
void Orthogonalise(void){
|
||||||
|
CoarseScalar InnerProd(CoarseGrid);
|
||||||
|
std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
|
||||||
|
blockOrthogonalise(InnerProd,subspace);
|
||||||
|
}
|
||||||
|
void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
|
||||||
|
blockProject(CoarseVec,FineVec,subspace);
|
||||||
|
}
|
||||||
|
void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
|
||||||
|
FineVec.Checkerboard() = subspace[0].Checkerboard();
|
||||||
|
blockPromote(CoarseVec,FineVec,subspace);
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual void CreateSubspace(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) {
|
||||||
|
|
||||||
|
RealD scale;
|
||||||
|
|
||||||
|
ConjugateGradient<FineField> CG(1.0e-2,100,false);
|
||||||
|
FineField noise(FineGrid);
|
||||||
|
FineField Mn(FineGrid);
|
||||||
|
|
||||||
|
for(int b=0;b<nn;b++){
|
||||||
|
|
||||||
|
subspace[b] = Zero();
|
||||||
|
gaussian(RNG,noise);
|
||||||
|
scale = std::pow(norm2(noise),-0.5);
|
||||||
|
noise=noise*scale;
|
||||||
|
|
||||||
|
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||||
|
|
||||||
|
for(int i=0;i<1;i++){
|
||||||
|
|
||||||
|
CG(hermop,noise,subspace[b]);
|
||||||
|
|
||||||
|
noise = subspace[b];
|
||||||
|
scale = std::pow(norm2(noise),-0.5);
|
||||||
|
noise=noise*scale;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
|
||||||
|
subspace[b] = noise;
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
// World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
|
||||||
|
// and this is the best I found
|
||||||
|
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||||
|
int nn,
|
||||||
|
double hi,
|
||||||
|
double lo,
|
||||||
|
int orderfilter,
|
||||||
|
int ordermin,
|
||||||
|
int orderstep,
|
||||||
|
double filterlo
|
||||||
|
) {
|
||||||
|
|
||||||
|
RealD scale;
|
||||||
|
|
||||||
|
FineField noise(FineGrid);
|
||||||
|
FineField Mn(FineGrid);
|
||||||
|
FineField tmp(FineGrid);
|
||||||
|
|
||||||
|
// New normalised noise
|
||||||
|
gaussian(RNG,noise);
|
||||||
|
scale = std::pow(norm2(noise),-0.5);
|
||||||
|
noise=noise*scale;
|
||||||
|
|
||||||
|
// Initial matrix element
|
||||||
|
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||||
|
|
||||||
|
int b =0;
|
||||||
|
{
|
||||||
|
// Filter
|
||||||
|
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
|
||||||
|
Cheb(hermop,noise,Mn);
|
||||||
|
// normalise
|
||||||
|
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||||
|
subspace[b] = Mn;
|
||||||
|
hermop.Op(Mn,tmp);
|
||||||
|
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||||
|
b++;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Generate a full sequence of Chebyshevs
|
||||||
|
{
|
||||||
|
lo=filterlo;
|
||||||
|
noise=Mn;
|
||||||
|
|
||||||
|
FineField T0(FineGrid); T0 = noise;
|
||||||
|
FineField T1(FineGrid);
|
||||||
|
FineField T2(FineGrid);
|
||||||
|
FineField y(FineGrid);
|
||||||
|
|
||||||
|
FineField *Tnm = &T0;
|
||||||
|
FineField *Tn = &T1;
|
||||||
|
FineField *Tnp = &T2;
|
||||||
|
|
||||||
|
// Tn=T1 = (xscale M + mscale)in
|
||||||
|
RealD xscale = 2.0/(hi-lo);
|
||||||
|
RealD mscale = -(hi+lo)/(hi-lo);
|
||||||
|
hermop.HermOp(T0,y);
|
||||||
|
T1=y*xscale+noise*mscale;
|
||||||
|
|
||||||
|
for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
|
||||||
|
|
||||||
|
hermop.HermOp(*Tn,y);
|
||||||
|
|
||||||
|
autoView( y_v , y, AcceleratorWrite);
|
||||||
|
autoView( Tn_v , (*Tn), AcceleratorWrite);
|
||||||
|
autoView( Tnp_v , (*Tnp), AcceleratorWrite);
|
||||||
|
autoView( Tnm_v , (*Tnm), AcceleratorWrite);
|
||||||
|
const int Nsimd = CComplex::Nsimd();
|
||||||
|
accelerator_forNB(ss, FineGrid->oSites(), Nsimd, {
|
||||||
|
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
|
||||||
|
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
|
||||||
|
});
|
||||||
|
|
||||||
|
// Possible more fine grained control is needed than a linear sweep,
|
||||||
|
// but huge productivity gain if this is simple algorithm and not a tunable
|
||||||
|
int m =1;
|
||||||
|
if ( n>=ordermin ) m=n-ordermin;
|
||||||
|
if ( (m%orderstep)==0 ) {
|
||||||
|
Mn=*Tnp;
|
||||||
|
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||||
|
subspace[b] = Mn;
|
||||||
|
hermop.Op(Mn,tmp);
|
||||||
|
std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||||
|
b++;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Cycle pointers to avoid copies
|
||||||
|
FineField *swizzle = Tnm;
|
||||||
|
Tnm =Tn;
|
||||||
|
Tn =Tnp;
|
||||||
|
Tnp =swizzle;
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
assert(b==nn);
|
||||||
|
}
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
// Fine Object == (per site) type of fine field
|
// Fine Object == (per site) type of fine field
|
||||||
// nbasis == number of deflation vectors
|
// nbasis == number of deflation vectors
|
||||||
template<class Fobj,class CComplex,int nbasis>
|
template<class Fobj,class CComplex,int nbasis>
|
||||||
@@ -87,9 +324,9 @@ public:
|
|||||||
GridBase* _cbgrid;
|
GridBase* _cbgrid;
|
||||||
int hermitian;
|
int hermitian;
|
||||||
|
|
||||||
CartesianStencil<siteVector,siteVector,DefaultImplParams> Stencil;
|
CartesianStencil<siteVector,siteVector,int> Stencil;
|
||||||
CartesianStencil<siteVector,siteVector,DefaultImplParams> StencilEven;
|
CartesianStencil<siteVector,siteVector,int> StencilEven;
|
||||||
CartesianStencil<siteVector,siteVector,DefaultImplParams> StencilOdd;
|
CartesianStencil<siteVector,siteVector,int> StencilOdd;
|
||||||
|
|
||||||
std::vector<CoarseMatrix> A;
|
std::vector<CoarseMatrix> A;
|
||||||
std::vector<CoarseMatrix> Aeven;
|
std::vector<CoarseMatrix> Aeven;
|
||||||
@@ -99,7 +336,7 @@ public:
|
|||||||
CoarseMatrix AselfInvEven;
|
CoarseMatrix AselfInvEven;
|
||||||
CoarseMatrix AselfInvOdd;
|
CoarseMatrix AselfInvOdd;
|
||||||
|
|
||||||
deviceVector<RealD> dag_factor;
|
Vector<RealD> dag_factor;
|
||||||
|
|
||||||
///////////////////////
|
///////////////////////
|
||||||
// Interface
|
// Interface
|
||||||
@@ -121,16 +358,12 @@ public:
|
|||||||
autoView( in_v , in, AcceleratorRead);
|
autoView( in_v , in, AcceleratorRead);
|
||||||
autoView( out_v , out, AcceleratorWrite);
|
autoView( out_v , out, AcceleratorWrite);
|
||||||
autoView( Stencil_v , Stencil, AcceleratorRead);
|
autoView( Stencil_v , Stencil, AcceleratorRead);
|
||||||
int npoint = geom.npoint;
|
auto& geom_v = geom;
|
||||||
typedef LatticeView<Cobj> Aview;
|
typedef LatticeView<Cobj> Aview;
|
||||||
|
|
||||||
deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
|
Vector<Aview> AcceleratorViewContainer;
|
||||||
hostVector<Aview> hAcceleratorViewContainer(geom.npoint);
|
|
||||||
|
|
||||||
for(int p=0;p<geom.npoint;p++) {
|
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
|
||||||
hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
|
|
||||||
acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
|
|
||||||
}
|
|
||||||
Aview *Aview_p = & AcceleratorViewContainer[0];
|
Aview *Aview_p = & AcceleratorViewContainer[0];
|
||||||
|
|
||||||
const int Nsimd = CComplex::Nsimd();
|
const int Nsimd = CComplex::Nsimd();
|
||||||
@@ -147,7 +380,7 @@ public:
|
|||||||
int ptype;
|
int ptype;
|
||||||
StencilEntry *SE;
|
StencilEntry *SE;
|
||||||
|
|
||||||
for(int point=0;point<npoint;point++){
|
for(int point=0;point<geom_v.npoint;point++){
|
||||||
|
|
||||||
SE=Stencil_v.GetEntry(ptype,point,ss);
|
SE=Stencil_v.GetEntry(ptype,point,ss);
|
||||||
|
|
||||||
@@ -165,7 +398,7 @@ public:
|
|||||||
coalescedWrite(out_v[ss](b),res);
|
coalescedWrite(out_v[ss](b),res);
|
||||||
});
|
});
|
||||||
|
|
||||||
for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
|
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
|
||||||
};
|
};
|
||||||
|
|
||||||
void Mdag (const CoarseVector &in, CoarseVector &out)
|
void Mdag (const CoarseVector &in, CoarseVector &out)
|
||||||
@@ -191,17 +424,12 @@ public:
|
|||||||
autoView( in_v , in, AcceleratorRead);
|
autoView( in_v , in, AcceleratorRead);
|
||||||
autoView( out_v , out, AcceleratorWrite);
|
autoView( out_v , out, AcceleratorWrite);
|
||||||
autoView( Stencil_v , Stencil, AcceleratorRead);
|
autoView( Stencil_v , Stencil, AcceleratorRead);
|
||||||
int npoint = geom.npoint;
|
auto& geom_v = geom;
|
||||||
typedef LatticeView<Cobj> Aview;
|
typedef LatticeView<Cobj> Aview;
|
||||||
|
|
||||||
|
Vector<Aview> AcceleratorViewContainer;
|
||||||
|
|
||||||
deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
|
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
|
||||||
hostVector<Aview> hAcceleratorViewContainer(geom.npoint);
|
|
||||||
|
|
||||||
for(int p=0;p<geom.npoint;p++) {
|
|
||||||
hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
|
|
||||||
acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
|
|
||||||
}
|
|
||||||
Aview *Aview_p = & AcceleratorViewContainer[0];
|
Aview *Aview_p = & AcceleratorViewContainer[0];
|
||||||
|
|
||||||
const int Nsimd = CComplex::Nsimd();
|
const int Nsimd = CComplex::Nsimd();
|
||||||
@@ -210,11 +438,9 @@ public:
|
|||||||
|
|
||||||
int osites=Grid()->oSites();
|
int osites=Grid()->oSites();
|
||||||
|
|
||||||
deviceVector<int> points(geom.npoint);
|
Vector<int> points(geom.npoint, 0);
|
||||||
for(int p=0; p<geom.npoint; p++) {
|
for(int p=0; p<geom.npoint; p++)
|
||||||
acceleratorPut(points[p],geom.points_dagger[p]);
|
points[p] = geom.points_dagger[p];
|
||||||
}
|
|
||||||
auto points_p = &points[0];
|
|
||||||
|
|
||||||
RealD* dag_factor_p = &dag_factor[0];
|
RealD* dag_factor_p = &dag_factor[0];
|
||||||
|
|
||||||
@@ -226,8 +452,8 @@ public:
|
|||||||
int ptype;
|
int ptype;
|
||||||
StencilEntry *SE;
|
StencilEntry *SE;
|
||||||
|
|
||||||
for(int p=0;p<npoint;p++){
|
for(int p=0;p<geom_v.npoint;p++){
|
||||||
int point = points_p[p];
|
int point = points[p];
|
||||||
|
|
||||||
SE=Stencil_v.GetEntry(ptype,point,ss);
|
SE=Stencil_v.GetEntry(ptype,point,ss);
|
||||||
|
|
||||||
@@ -245,7 +471,7 @@ public:
|
|||||||
coalescedWrite(out_v[ss](b),res);
|
coalescedWrite(out_v[ss](b),res);
|
||||||
});
|
});
|
||||||
|
|
||||||
for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
|
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
|
||||||
}
|
}
|
||||||
|
|
||||||
void MdirComms(const CoarseVector &in)
|
void MdirComms(const CoarseVector &in)
|
||||||
@@ -260,14 +486,8 @@ public:
|
|||||||
out.Checkerboard() = in.Checkerboard();
|
out.Checkerboard() = in.Checkerboard();
|
||||||
|
|
||||||
typedef LatticeView<Cobj> Aview;
|
typedef LatticeView<Cobj> Aview;
|
||||||
|
Vector<Aview> AcceleratorViewContainer;
|
||||||
deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
|
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
|
||||||
hostVector<Aview> hAcceleratorViewContainer(geom.npoint);
|
|
||||||
|
|
||||||
for(int p=0;p<geom.npoint;p++) {
|
|
||||||
hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
|
|
||||||
acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
|
|
||||||
}
|
|
||||||
Aview *Aview_p = & AcceleratorViewContainer[0];
|
Aview *Aview_p = & AcceleratorViewContainer[0];
|
||||||
|
|
||||||
autoView( out_v , out, AcceleratorWrite);
|
autoView( out_v , out, AcceleratorWrite);
|
||||||
@@ -300,7 +520,7 @@ public:
|
|||||||
}
|
}
|
||||||
coalescedWrite(out_v[ss](b),res);
|
coalescedWrite(out_v[ss](b),res);
|
||||||
});
|
});
|
||||||
for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
|
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
|
||||||
}
|
}
|
||||||
void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out)
|
void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out)
|
||||||
{
|
{
|
||||||
@@ -309,7 +529,7 @@ public:
|
|||||||
if ((out.size()!=ndir)&&(out.size()!=ndir+1)) {
|
if ((out.size()!=ndir)&&(out.size()!=ndir+1)) {
|
||||||
std::cout <<"MdirAll out size "<< out.size()<<std::endl;
|
std::cout <<"MdirAll out size "<< out.size()<<std::endl;
|
||||||
std::cout <<"MdirAll ndir "<< ndir<<std::endl;
|
std::cout <<"MdirAll ndir "<< ndir<<std::endl;
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
}
|
}
|
||||||
for(int p=0;p<ndir;p++){
|
for(int p=0;p<ndir;p++){
|
||||||
MdirCalc(in,out[p],p);
|
MdirCalc(in,out[p],p);
|
||||||
@@ -373,7 +593,7 @@ public:
|
|||||||
conformable(in.Grid(), _cbgrid); // verifies half grid
|
conformable(in.Grid(), _cbgrid); // verifies half grid
|
||||||
conformable(in.Grid(), out.Grid()); // drops the cb check
|
conformable(in.Grid(), out.Grid()); // drops the cb check
|
||||||
|
|
||||||
GRID_ASSERT(in.Checkerboard() == Even);
|
assert(in.Checkerboard() == Even);
|
||||||
out.Checkerboard() = Odd;
|
out.Checkerboard() = Odd;
|
||||||
|
|
||||||
DhopInternal(StencilEven, Aodd, in, out, dag);
|
DhopInternal(StencilEven, Aodd, in, out, dag);
|
||||||
@@ -383,7 +603,7 @@ public:
|
|||||||
conformable(in.Grid(), _cbgrid); // verifies half grid
|
conformable(in.Grid(), _cbgrid); // verifies half grid
|
||||||
conformable(in.Grid(), out.Grid()); // drops the cb check
|
conformable(in.Grid(), out.Grid()); // drops the cb check
|
||||||
|
|
||||||
GRID_ASSERT(in.Checkerboard() == Odd);
|
assert(in.Checkerboard() == Odd);
|
||||||
out.Checkerboard() = Even;
|
out.Checkerboard() = Even;
|
||||||
|
|
||||||
DhopInternal(StencilOdd, Aeven, in, out, dag);
|
DhopInternal(StencilOdd, Aeven, in, out, dag);
|
||||||
@@ -391,7 +611,7 @@ public:
|
|||||||
|
|
||||||
void MooeeInternal(const CoarseVector &in, CoarseVector &out, int dag, int inv) {
|
void MooeeInternal(const CoarseVector &in, CoarseVector &out, int dag, int inv) {
|
||||||
out.Checkerboard() = in.Checkerboard();
|
out.Checkerboard() = in.Checkerboard();
|
||||||
GRID_ASSERT(in.Checkerboard() == Odd || in.Checkerboard() == Even);
|
assert(in.Checkerboard() == Odd || in.Checkerboard() == Even);
|
||||||
|
|
||||||
CoarseMatrix *Aself = nullptr;
|
CoarseMatrix *Aself = nullptr;
|
||||||
if(in.Grid()->_isCheckerBoarded) {
|
if(in.Grid()->_isCheckerBoarded) {
|
||||||
@@ -406,10 +626,10 @@ public:
|
|||||||
Aself = (inv) ? &AselfInv : &A[geom.npoint-1];
|
Aself = (inv) ? &AselfInv : &A[geom.npoint-1];
|
||||||
DselfInternal(Stencil, *Aself, in, out, dag);
|
DselfInternal(Stencil, *Aself, in, out, dag);
|
||||||
}
|
}
|
||||||
GRID_ASSERT(Aself != nullptr);
|
assert(Aself != nullptr);
|
||||||
}
|
}
|
||||||
|
|
||||||
void DselfInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, CoarseMatrix &a,
|
void DselfInternal(CartesianStencil<siteVector,siteVector,int> &st, CoarseMatrix &a,
|
||||||
const CoarseVector &in, CoarseVector &out, int dag) {
|
const CoarseVector &in, CoarseVector &out, int dag) {
|
||||||
int point = geom.npoint-1;
|
int point = geom.npoint-1;
|
||||||
autoView( out_v, out, AcceleratorWrite);
|
autoView( out_v, out, AcceleratorWrite);
|
||||||
@@ -472,7 +692,7 @@ public:
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void DhopInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, std::vector<CoarseMatrix> &a,
|
void DhopInternal(CartesianStencil<siteVector,siteVector,int> &st, std::vector<CoarseMatrix> &a,
|
||||||
const CoarseVector &in, CoarseVector &out, int dag) {
|
const CoarseVector &in, CoarseVector &out, int dag) {
|
||||||
SimpleCompressor<siteVector> compressor;
|
SimpleCompressor<siteVector> compressor;
|
||||||
|
|
||||||
@@ -484,20 +704,12 @@ public:
|
|||||||
|
|
||||||
// determine in what order we need the points
|
// determine in what order we need the points
|
||||||
int npoint = geom.npoint-1;
|
int npoint = geom.npoint-1;
|
||||||
deviceVector<int> points(npoint);
|
Vector<int> points(npoint, 0);
|
||||||
for(int p=0; p<npoint; p++) {
|
for(int p=0; p<npoint; p++)
|
||||||
int val = (dag && !hermitian) ? geom.points_dagger[p] : p;
|
points[p] = (dag && !hermitian) ? geom.points_dagger[p] : p;
|
||||||
acceleratorPut(points[p], val);
|
|
||||||
}
|
|
||||||
auto points_p = &points[0];
|
|
||||||
|
|
||||||
deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
|
Vector<Aview> AcceleratorViewContainer;
|
||||||
hostVector<Aview> hAcceleratorViewContainer(geom.npoint);
|
for(int p=0;p<npoint;p++) AcceleratorViewContainer.push_back(a[p].View(AcceleratorRead));
|
||||||
|
|
||||||
for(int p=0;p<geom.npoint;p++) {
|
|
||||||
hAcceleratorViewContainer[p] = a[p].View(AcceleratorRead);
|
|
||||||
acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
|
|
||||||
}
|
|
||||||
Aview *Aview_p = & AcceleratorViewContainer[0];
|
Aview *Aview_p = & AcceleratorViewContainer[0];
|
||||||
|
|
||||||
const int Nsimd = CComplex::Nsimd();
|
const int Nsimd = CComplex::Nsimd();
|
||||||
@@ -516,7 +728,7 @@ public:
|
|||||||
StencilEntry *SE;
|
StencilEntry *SE;
|
||||||
|
|
||||||
for(int p=0;p<npoint;p++){
|
for(int p=0;p<npoint;p++){
|
||||||
int point = points_p[p];
|
int point = points[p];
|
||||||
SE=st_v.GetEntry(ptype,point,ss);
|
SE=st_v.GetEntry(ptype,point,ss);
|
||||||
|
|
||||||
if(SE->_is_local) {
|
if(SE->_is_local) {
|
||||||
@@ -542,7 +754,7 @@ public:
|
|||||||
StencilEntry *SE;
|
StencilEntry *SE;
|
||||||
|
|
||||||
for(int p=0;p<npoint;p++){
|
for(int p=0;p<npoint;p++){
|
||||||
int point = points_p[p];
|
int point = points[p];
|
||||||
SE=st_v.GetEntry(ptype,point,ss);
|
SE=st_v.GetEntry(ptype,point,ss);
|
||||||
|
|
||||||
if(SE->_is_local) {
|
if(SE->_is_local) {
|
||||||
@@ -560,7 +772,7 @@ public:
|
|||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
for(int p=0;p<npoint;p++) hAcceleratorViewContainer[p].ViewClose();
|
for(int p=0;p<npoint;p++) AcceleratorViewContainer[p].ViewClose();
|
||||||
}
|
}
|
||||||
|
|
||||||
CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) :
|
CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) :
|
||||||
@@ -568,9 +780,9 @@ public:
|
|||||||
_cbgrid(new GridRedBlackCartesian(&CoarseGrid)),
|
_cbgrid(new GridRedBlackCartesian(&CoarseGrid)),
|
||||||
geom(CoarseGrid._ndimension),
|
geom(CoarseGrid._ndimension),
|
||||||
hermitian(hermitian_),
|
hermitian(hermitian_),
|
||||||
Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements),
|
Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements,0),
|
||||||
StencilEven(_cbgrid,geom.npoint,Even,geom.directions,geom.displacements),
|
StencilEven(_cbgrid,geom.npoint,Even,geom.directions,geom.displacements,0),
|
||||||
StencilOdd(_cbgrid,geom.npoint,Odd,geom.directions,geom.displacements),
|
StencilOdd(_cbgrid,geom.npoint,Odd,geom.directions,geom.displacements,0),
|
||||||
A(geom.npoint,&CoarseGrid),
|
A(geom.npoint,&CoarseGrid),
|
||||||
Aeven(geom.npoint,_cbgrid),
|
Aeven(geom.npoint,_cbgrid),
|
||||||
Aodd(geom.npoint,_cbgrid),
|
Aodd(geom.npoint,_cbgrid),
|
||||||
@@ -588,9 +800,9 @@ public:
|
|||||||
_cbgrid(&CoarseRBGrid),
|
_cbgrid(&CoarseRBGrid),
|
||||||
geom(CoarseGrid._ndimension),
|
geom(CoarseGrid._ndimension),
|
||||||
hermitian(hermitian_),
|
hermitian(hermitian_),
|
||||||
Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements),
|
Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements,0),
|
||||||
StencilEven(&CoarseRBGrid,geom.npoint,Even,geom.directions,geom.displacements),
|
StencilEven(&CoarseRBGrid,geom.npoint,Even,geom.directions,geom.displacements,0),
|
||||||
StencilOdd(&CoarseRBGrid,geom.npoint,Odd,geom.directions,geom.displacements),
|
StencilOdd(&CoarseRBGrid,geom.npoint,Odd,geom.directions,geom.displacements,0),
|
||||||
A(geom.npoint,&CoarseGrid),
|
A(geom.npoint,&CoarseGrid),
|
||||||
Aeven(geom.npoint,&CoarseRBGrid),
|
Aeven(geom.npoint,&CoarseRBGrid),
|
||||||
Aodd(geom.npoint,&CoarseRBGrid),
|
Aodd(geom.npoint,&CoarseRBGrid),
|
||||||
@@ -611,13 +823,11 @@ public:
|
|||||||
}
|
}
|
||||||
|
|
||||||
// GPU readable prefactor
|
// GPU readable prefactor
|
||||||
std::vector<RealD> h_dag_factor(nbasis*nbasis);
|
|
||||||
thread_for(i, nbasis*nbasis, {
|
thread_for(i, nbasis*nbasis, {
|
||||||
int j = i/nbasis;
|
int j = i/nbasis;
|
||||||
int k = i%nbasis;
|
int k = i%nbasis;
|
||||||
h_dag_factor[i] = dag_factor_eigen(j, k);
|
dag_factor[i] = dag_factor_eigen(j, k);
|
||||||
});
|
});
|
||||||
acceleratorCopyToDevice(&h_dag_factor[0],&dag_factor[0],dag_factor.size()*sizeof(RealD));
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,
|
void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,
|
||||||
@@ -697,7 +907,7 @@ public:
|
|||||||
evenmask = where(mod(bcb,2)==(Integer)0,one,zero);
|
evenmask = where(mod(bcb,2)==(Integer)0,one,zero);
|
||||||
oddmask = one-evenmask;
|
oddmask = one-evenmask;
|
||||||
|
|
||||||
GRID_ASSERT(self_stencil!=-1);
|
assert(self_stencil!=-1);
|
||||||
|
|
||||||
for(int i=0;i<nbasis;i++){
|
for(int i=0;i<nbasis;i++){
|
||||||
|
|
||||||
@@ -28,206 +28,95 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|||||||
#ifndef _GRID_FFT_H_
|
#ifndef _GRID_FFT_H_
|
||||||
#define _GRID_FFT_H_
|
#define _GRID_FFT_H_
|
||||||
|
|
||||||
#ifdef GRID_CUDA
|
|
||||||
#include <cufft.h>
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef GRID_HIP
|
|
||||||
#include <hipfft/hipfft.h>
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if !defined(GRID_CUDA) && !defined(GRID_HIP)
|
|
||||||
#ifdef HAVE_FFTW
|
#ifdef HAVE_FFTW
|
||||||
#if defined(USE_MKL) || defined(GRID_SYCL)
|
#ifdef USE_MKL
|
||||||
#include <fftw/fftw3.h>
|
#include <fftw/fftw3.h>
|
||||||
#else
|
#else
|
||||||
#include <fftw3.h>
|
#include <fftw3.h>
|
||||||
#endif
|
#endif
|
||||||
#endif
|
#endif
|
||||||
#endif
|
|
||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
#ifndef FFTW_FORWARD
|
template<class scalar> struct FFTW { };
|
||||||
#define FFTW_FORWARD (-1)
|
|
||||||
#define FFTW_BACKWARD (+1)
|
|
||||||
#define FFTW_ESTIMATE (0)
|
|
||||||
#endif
|
|
||||||
|
|
||||||
template<class scalar> struct FFTW {
|
|
||||||
};
|
|
||||||
|
|
||||||
#ifdef GRID_HIP
|
|
||||||
template<> struct FFTW<ComplexD> {
|
|
||||||
public:
|
|
||||||
static const int forward=FFTW_FORWARD;
|
|
||||||
static const int backward=FFTW_BACKWARD;
|
|
||||||
typedef hipfftDoubleComplex FFTW_scalar;
|
|
||||||
typedef hipfftHandle FFTW_plan;
|
|
||||||
static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany,
|
|
||||||
FFTW_scalar *in, int *inembed,
|
|
||||||
int istride, int idist,
|
|
||||||
FFTW_scalar *out, int *onembed,
|
|
||||||
int ostride, int odist,
|
|
||||||
int sign, unsigned flags) {
|
|
||||||
FFTW_plan p;
|
|
||||||
auto rv = hipfftPlanMany(&p,rank,n,n,istride,idist,n,ostride,odist,HIPFFT_Z2Z,howmany);
|
|
||||||
GRID_ASSERT(rv==HIPFFT_SUCCESS);
|
|
||||||
return p;
|
|
||||||
}
|
|
||||||
|
|
||||||
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) {
|
|
||||||
hipfftResult rv;
|
|
||||||
if ( sign == forward ) rv =hipfftExecZ2Z(p,in,out,HIPFFT_FORWARD);
|
|
||||||
else rv =hipfftExecZ2Z(p,in,out,HIPFFT_BACKWARD);
|
|
||||||
accelerator_barrier();
|
|
||||||
GRID_ASSERT(rv==HIPFFT_SUCCESS);
|
|
||||||
}
|
|
||||||
inline static void fftw_destroy_plan(const FFTW_plan p) {
|
|
||||||
hipfftDestroy(p);
|
|
||||||
}
|
|
||||||
};
|
|
||||||
template<> struct FFTW<ComplexF> {
|
|
||||||
public:
|
|
||||||
static const int forward=FFTW_FORWARD;
|
|
||||||
static const int backward=FFTW_BACKWARD;
|
|
||||||
typedef hipfftComplex FFTW_scalar;
|
|
||||||
typedef hipfftHandle FFTW_plan;
|
|
||||||
|
|
||||||
static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany,
|
|
||||||
FFTW_scalar *in, int *inembed,
|
|
||||||
int istride, int idist,
|
|
||||||
FFTW_scalar *out, int *onembed,
|
|
||||||
int ostride, int odist,
|
|
||||||
int sign, unsigned flags) {
|
|
||||||
FFTW_plan p;
|
|
||||||
auto rv = hipfftPlanMany(&p,rank,n,n,istride,idist,n,ostride,odist,HIPFFT_C2C,howmany);
|
|
||||||
GRID_ASSERT(rv==HIPFFT_SUCCESS);
|
|
||||||
return p;
|
|
||||||
}
|
|
||||||
|
|
||||||
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) {
|
|
||||||
hipfftResult rv;
|
|
||||||
if ( sign == forward ) rv =hipfftExecC2C(p,in,out,HIPFFT_FORWARD);
|
|
||||||
else rv =hipfftExecC2C(p,in,out,HIPFFT_BACKWARD);
|
|
||||||
accelerator_barrier();
|
|
||||||
GRID_ASSERT(rv==HIPFFT_SUCCESS);
|
|
||||||
}
|
|
||||||
inline static void fftw_destroy_plan(const FFTW_plan p) {
|
|
||||||
hipfftDestroy(p);
|
|
||||||
}
|
|
||||||
};
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef GRID_CUDA
|
|
||||||
template<> struct FFTW<ComplexD> {
|
|
||||||
public:
|
|
||||||
static const int forward=FFTW_FORWARD;
|
|
||||||
static const int backward=FFTW_BACKWARD;
|
|
||||||
typedef cufftDoubleComplex FFTW_scalar;
|
|
||||||
typedef cufftHandle FFTW_plan;
|
|
||||||
|
|
||||||
static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany,
|
|
||||||
FFTW_scalar *in, int *inembed,
|
|
||||||
int istride, int idist,
|
|
||||||
FFTW_scalar *out, int *onembed,
|
|
||||||
int ostride, int odist,
|
|
||||||
int sign, unsigned flags) {
|
|
||||||
FFTW_plan p;
|
|
||||||
cufftPlanMany(&p,rank,n,n,istride,idist,n,ostride,odist,CUFFT_Z2Z,howmany);
|
|
||||||
return p;
|
|
||||||
}
|
|
||||||
|
|
||||||
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) {
|
|
||||||
if ( sign == forward ) cufftExecZ2Z(p,in,out,CUFFT_FORWARD);
|
|
||||||
else cufftExecZ2Z(p,in,out,CUFFT_INVERSE);
|
|
||||||
accelerator_barrier();
|
|
||||||
}
|
|
||||||
inline static void fftw_destroy_plan(const FFTW_plan p) {
|
|
||||||
cufftDestroy(p);
|
|
||||||
}
|
|
||||||
};
|
|
||||||
template<> struct FFTW<ComplexF> {
|
|
||||||
public:
|
|
||||||
static const int forward=FFTW_FORWARD;
|
|
||||||
static const int backward=FFTW_BACKWARD;
|
|
||||||
typedef cufftComplex FFTW_scalar;
|
|
||||||
typedef cufftHandle FFTW_plan;
|
|
||||||
|
|
||||||
static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany,
|
|
||||||
FFTW_scalar *in, int *inembed,
|
|
||||||
int istride, int idist,
|
|
||||||
FFTW_scalar *out, int *onembed,
|
|
||||||
int ostride, int odist,
|
|
||||||
int sign, unsigned flags) {
|
|
||||||
FFTW_plan p;
|
|
||||||
cufftPlanMany(&p,rank,n,n,istride,idist,n,ostride,odist,CUFFT_C2C,howmany);
|
|
||||||
return p;
|
|
||||||
}
|
|
||||||
|
|
||||||
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) {
|
|
||||||
if ( sign == forward ) cufftExecC2C(p,in,out,CUFFT_FORWARD);
|
|
||||||
else cufftExecC2C(p,in,out,CUFFT_INVERSE);
|
|
||||||
accelerator_barrier();
|
|
||||||
}
|
|
||||||
inline static void fftw_destroy_plan(const FFTW_plan p) {
|
|
||||||
cufftDestroy(p);
|
|
||||||
}
|
|
||||||
};
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if !defined(GRID_CUDA) && !defined(GRID_HIP)
|
|
||||||
#ifdef HAVE_FFTW
|
#ifdef HAVE_FFTW
|
||||||
template<> struct FFTW<ComplexD> {
|
template<> struct FFTW<ComplexD> {
|
||||||
public:
|
public:
|
||||||
|
|
||||||
typedef fftw_complex FFTW_scalar;
|
typedef fftw_complex FFTW_scalar;
|
||||||
typedef fftw_plan FFTW_plan;
|
typedef fftw_plan FFTW_plan;
|
||||||
static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany,
|
|
||||||
FFTW_scalar *in, int *inembed,
|
static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany,
|
||||||
|
FFTW_scalar *in, const int *inembed,
|
||||||
int istride, int idist,
|
int istride, int idist,
|
||||||
FFTW_scalar *out, int *onembed,
|
FFTW_scalar *out, const int *onembed,
|
||||||
int ostride, int odist,
|
int ostride, int odist,
|
||||||
int sign, unsigned flags) {
|
int sign, unsigned flags) {
|
||||||
return ::fftw_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
|
return ::fftw_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
|
||||||
}
|
}
|
||||||
|
|
||||||
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) {
|
static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){
|
||||||
|
::fftw_flops(p,add,mul,fmas);
|
||||||
|
}
|
||||||
|
|
||||||
|
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) {
|
||||||
::fftw_execute_dft(p,in,out);
|
::fftw_execute_dft(p,in,out);
|
||||||
}
|
}
|
||||||
inline static void fftw_destroy_plan(const FFTW_plan p) {
|
inline static void fftw_destroy_plan(const FFTW_plan p) {
|
||||||
::fftw_destroy_plan(p);
|
::fftw_destroy_plan(p);
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
template<> struct FFTW<ComplexF> {
|
template<> struct FFTW<ComplexF> {
|
||||||
public:
|
public:
|
||||||
|
|
||||||
typedef fftwf_complex FFTW_scalar;
|
typedef fftwf_complex FFTW_scalar;
|
||||||
typedef fftwf_plan FFTW_plan;
|
typedef fftwf_plan FFTW_plan;
|
||||||
static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany,
|
|
||||||
FFTW_scalar *in, int *inembed,
|
static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany,
|
||||||
|
FFTW_scalar *in, const int *inembed,
|
||||||
int istride, int idist,
|
int istride, int idist,
|
||||||
FFTW_scalar *out, int *onembed,
|
FFTW_scalar *out, const int *onembed,
|
||||||
int ostride, int odist,
|
int ostride, int odist,
|
||||||
int sign, unsigned flags) {
|
int sign, unsigned flags) {
|
||||||
return ::fftwf_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
|
return ::fftwf_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
|
||||||
}
|
}
|
||||||
|
|
||||||
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) {
|
static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){
|
||||||
|
::fftwf_flops(p,add,mul,fmas);
|
||||||
|
}
|
||||||
|
|
||||||
|
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) {
|
||||||
::fftwf_execute_dft(p,in,out);
|
::fftwf_execute_dft(p,in,out);
|
||||||
}
|
}
|
||||||
inline static void fftw_destroy_plan(const FFTW_plan p) {
|
inline static void fftw_destroy_plan(const FFTW_plan p) {
|
||||||
::fftwf_destroy_plan(p);
|
::fftwf_destroy_plan(p);
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
#ifndef FFTW_FORWARD
|
||||||
|
#define FFTW_FORWARD (-1)
|
||||||
|
#define FFTW_BACKWARD (+1)
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
class FFT {
|
class FFT {
|
||||||
private:
|
private:
|
||||||
|
|
||||||
|
GridCartesian *vgrid;
|
||||||
|
GridCartesian *sgrid;
|
||||||
|
|
||||||
|
int Nd;
|
||||||
double flops;
|
double flops;
|
||||||
double flops_call;
|
double flops_call;
|
||||||
uint64_t usec;
|
uint64_t usec;
|
||||||
|
|
||||||
|
Coordinate dimensions;
|
||||||
|
Coordinate processors;
|
||||||
|
Coordinate processor_coor;
|
||||||
|
|
||||||
public:
|
public:
|
||||||
|
|
||||||
static const int forward=FFTW_FORWARD;
|
static const int forward=FFTW_FORWARD;
|
||||||
@@ -237,25 +126,31 @@ public:
|
|||||||
double MFlops(void) {return flops/usec;}
|
double MFlops(void) {return flops/usec;}
|
||||||
double USec(void) {return (double)usec;}
|
double USec(void) {return (double)usec;}
|
||||||
|
|
||||||
FFT ( GridCartesian * grid )
|
FFT ( GridCartesian * grid ) :
|
||||||
|
vgrid(grid),
|
||||||
|
Nd(grid->_ndimension),
|
||||||
|
dimensions(grid->_fdimensions),
|
||||||
|
processors(grid->_processors),
|
||||||
|
processor_coor(grid->_processor_coor)
|
||||||
{
|
{
|
||||||
flops=0;
|
flops=0;
|
||||||
usec =0;
|
usec =0;
|
||||||
|
Coordinate layout(Nd,1);
|
||||||
|
sgrid = new GridCartesian(dimensions,layout,processors);
|
||||||
};
|
};
|
||||||
|
|
||||||
~FFT ( void) {
|
~FFT ( void) {
|
||||||
// delete sgrid;
|
delete sgrid;
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class vobj>
|
template<class vobj>
|
||||||
void FFT_dim_mask(Lattice<vobj> &result,const Lattice<vobj> &source,Coordinate mask,int sign){
|
void FFT_dim_mask(Lattice<vobj> &result,const Lattice<vobj> &source,Coordinate mask,int sign){
|
||||||
|
|
||||||
// vgrid=result.Grid();
|
conformable(result.Grid(),vgrid);
|
||||||
// conformable(result.Grid(),vgrid);
|
conformable(source.Grid(),vgrid);
|
||||||
// conformable(source.Grid(),vgrid);
|
Lattice<vobj> tmp(vgrid);
|
||||||
const int Ndim = source.Grid()->Nd();
|
tmp = source;
|
||||||
Lattice<vobj> tmp = source;
|
for(int d=0;d<Nd;d++){
|
||||||
for(int d=0;d<Ndim;d++){
|
|
||||||
if( mask[d] ) {
|
if( mask[d] ) {
|
||||||
FFT_dim(result,tmp,d,sign);
|
FFT_dim(result,tmp,d,sign);
|
||||||
tmp=result;
|
tmp=result;
|
||||||
@@ -265,70 +160,59 @@ public:
|
|||||||
|
|
||||||
template<class vobj>
|
template<class vobj>
|
||||||
void FFT_all_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int sign){
|
void FFT_all_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int sign){
|
||||||
const int Ndim = source.Grid()->Nd();
|
Coordinate mask(Nd,1);
|
||||||
Coordinate mask(Ndim,1);
|
|
||||||
FFT_dim_mask(result,source,mask,sign);
|
FFT_dim_mask(result,source,mask,sign);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
template<class vobj>
|
template<class vobj>
|
||||||
void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int sign){
|
void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int sign){
|
||||||
const int Ndim = source.Grid()->Nd();
|
#ifndef HAVE_FFTW
|
||||||
GridBase *grid = source.Grid();
|
assert(0);
|
||||||
conformable(result.Grid(),source.Grid());
|
#else
|
||||||
|
conformable(result.Grid(),vgrid);
|
||||||
|
conformable(source.Grid(),vgrid);
|
||||||
|
|
||||||
int L = grid->_ldimensions[dim];
|
int L = vgrid->_ldimensions[dim];
|
||||||
int G = grid->_fdimensions[dim];
|
int G = vgrid->_fdimensions[dim];
|
||||||
|
|
||||||
Coordinate layout(Ndim,1);
|
Coordinate layout(Nd,1);
|
||||||
|
Coordinate pencil_gd(vgrid->_fdimensions);
|
||||||
|
|
||||||
|
pencil_gd[dim] = G*processors[dim];
|
||||||
|
|
||||||
|
// Pencil global vol LxLxGxLxL per node
|
||||||
|
GridCartesian pencil_g(pencil_gd,layout,processors);
|
||||||
|
|
||||||
// Construct pencils
|
// Construct pencils
|
||||||
typedef typename vobj::scalar_object sobj;
|
typedef typename vobj::scalar_object sobj;
|
||||||
typedef typename vobj::scalar_type scalar;
|
typedef typename sobj::scalar_type scalar;
|
||||||
typedef typename vobj::scalar_type scalar_type;
|
|
||||||
typedef typename vobj::vector_type vector_type;
|
|
||||||
|
|
||||||
//std::cout << "CPU view" << std::endl;
|
Lattice<sobj> pgbuf(&pencil_g);
|
||||||
|
autoView(pgbuf_v , pgbuf, CpuWrite);
|
||||||
|
|
||||||
typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
|
typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
|
||||||
typedef typename FFTW<scalar>::FFTW_plan FFTW_plan;
|
typedef typename FFTW<scalar>::FFTW_plan FFTW_plan;
|
||||||
|
|
||||||
int Ncomp = sizeof(sobj)/sizeof(scalar);
|
int Ncomp = sizeof(sobj)/sizeof(scalar);
|
||||||
int64_t Nlow = 1;
|
int Nlow = 1;
|
||||||
int64_t Nhigh = 1;
|
|
||||||
|
|
||||||
for(int d=0;d<dim;d++){
|
for(int d=0;d<dim;d++){
|
||||||
Nlow*=grid->_ldimensions[d];
|
Nlow*=vgrid->_ldimensions[d];
|
||||||
}
|
}
|
||||||
for(int d=dim+1;d<Ndim;d++){
|
|
||||||
Nhigh*=grid->_ldimensions[d];
|
|
||||||
}
|
|
||||||
int64_t Nperp=Nlow*Nhigh;
|
|
||||||
|
|
||||||
deviceVector<scalar> pgbuf; // Layout is [perp][component][dim]
|
|
||||||
pgbuf.resize(Nperp*Ncomp*G);
|
|
||||||
scalar *pgbuf_v = &pgbuf[0];
|
|
||||||
|
|
||||||
int rank = 1; /* 1d transforms */
|
int rank = 1; /* 1d transforms */
|
||||||
int n[] = {G}; /* 1d transforms of length G */
|
int n[] = {G}; /* 1d transforms of length G */
|
||||||
int howmany = Ncomp * Nperp;
|
int howmany = Ncomp;
|
||||||
int odist,idist,istride,ostride;
|
int odist,idist,istride,ostride;
|
||||||
idist = odist = G; /* Distance between consecutive FT's */
|
idist = odist = 1; /* Distance between consecutive FT's */
|
||||||
istride = ostride = 1; /* Distance between two elements in the same FT */
|
istride = ostride = Ncomp*Nlow; /* distance between two elements in the same FT */
|
||||||
int *inembed = n, *onembed = n;
|
int *inembed = n, *onembed = n;
|
||||||
|
|
||||||
scalar div;
|
scalar div;
|
||||||
if ( sign == backward ) div = 1.0/G;
|
if ( sign == backward ) div = 1.0/G;
|
||||||
else if ( sign == forward ) div = 1.0;
|
else if ( sign == forward ) div = 1.0;
|
||||||
else GRID_ASSERT(0);
|
else assert(0);
|
||||||
|
|
||||||
double t_pencil=0;
|
|
||||||
double t_fft =0;
|
|
||||||
double t_total =-usecond();
|
|
||||||
// std::cout << GridLogPerformance<<"Making FFTW plan" << std::endl;
|
|
||||||
/*
|
|
||||||
*
|
|
||||||
*/
|
|
||||||
FFTW_plan p;
|
FFTW_plan p;
|
||||||
{
|
{
|
||||||
FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0];
|
FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0];
|
||||||
@@ -342,154 +226,68 @@ public:
|
|||||||
}
|
}
|
||||||
|
|
||||||
// Barrel shift and collect global pencil
|
// Barrel shift and collect global pencil
|
||||||
// std::cout << GridLogPerformance<<"Making pencil" << std::endl;
|
Coordinate lcoor(Nd), gcoor(Nd);
|
||||||
Coordinate lcoor(Ndim), gcoor(Ndim);
|
|
||||||
double t_copy=0;
|
|
||||||
double t_shift=0;
|
|
||||||
t_pencil = -usecond();
|
|
||||||
result = source;
|
result = source;
|
||||||
int pc = grid->_processor_coor[dim];
|
int pc = processor_coor[dim];
|
||||||
|
|
||||||
const Coordinate ldims = grid->_ldimensions;
|
|
||||||
const Coordinate rdims = grid->_rdimensions;
|
|
||||||
const Coordinate sdims = grid->_simd_layout;
|
|
||||||
|
|
||||||
Coordinate processors = grid->_processors;
|
|
||||||
Coordinate pgdims(Ndim);
|
|
||||||
pgdims[0] = G;
|
|
||||||
for(int d=0, dd=1;d<Ndim;d++){
|
|
||||||
if ( d!=dim ) pgdims[dd++] = ldims[d];
|
|
||||||
}
|
|
||||||
int64_t pgvol=1;
|
|
||||||
for(int d=0;d<Ndim;d++) pgvol*=pgdims[d];
|
|
||||||
|
|
||||||
const int Nsimd = vobj::Nsimd();
|
|
||||||
for(int p=0;p<processors[dim];p++) {
|
for(int p=0;p<processors[dim];p++) {
|
||||||
t_copy-=usecond();
|
|
||||||
autoView(r_v,result,AcceleratorRead);
|
|
||||||
accelerator_for(idx, grid->oSites(), vobj::Nsimd(), {
|
|
||||||
#ifdef GRID_SIMT
|
|
||||||
{
|
{
|
||||||
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
|
autoView(r_v,result,CpuRead);
|
||||||
#else
|
autoView(p_v,pgbuf,CpuWrite);
|
||||||
for(int lane=0;lane<Nsimd;lane++) {
|
thread_for(idx, sgrid->lSites(),{
|
||||||
#endif
|
Coordinate cbuf(Nd);
|
||||||
Coordinate icoor;
|
sobj s;
|
||||||
Coordinate ocoor;
|
sgrid->LocalIndexToLocalCoor(idx,cbuf);
|
||||||
Coordinate pgcoor;
|
peekLocalSite(s,r_v,cbuf);
|
||||||
|
cbuf[dim]+=((pc+p) % processors[dim])*L;
|
||||||
Lexicographic::CoorFromIndex(icoor,lane,sdims);
|
pokeLocalSite(s,p_v,cbuf);
|
||||||
Lexicographic::CoorFromIndex(ocoor,idx,rdims);
|
});
|
||||||
|
|
||||||
pgcoor[0] = ocoor[dim] + icoor[dim]*rdims[dim] + ((pc+p)%processors[dim])*L;
|
|
||||||
for(int d=0,dd=1;d<Ndim;d++){
|
|
||||||
if ( d!=dim ) {
|
|
||||||
pgcoor[dd] = ocoor[d] + icoor[d]*rdims[d];
|
|
||||||
dd++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Map coordinates in lattice layout to FFTW index
|
|
||||||
int64_t pgidx;
|
|
||||||
Lexicographic::IndexFromCoor(pgcoor,pgidx,pgdims);
|
|
||||||
|
|
||||||
vector_type *from = (vector_type *)&r_v[idx];
|
|
||||||
scalar_type stmp;
|
|
||||||
for(int w=0;w<Ncomp;w++){
|
|
||||||
int64_t pg_idx = pgidx + w*pgvol;
|
|
||||||
stmp = getlane(from[w], lane);
|
|
||||||
pgbuf_v[pg_idx] = stmp;
|
|
||||||
}
|
|
||||||
#ifdef GRID_SIMT
|
|
||||||
}
|
}
|
||||||
#else
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
});
|
|
||||||
|
|
||||||
t_copy+=usecond();
|
|
||||||
if (p != processors[dim] - 1) {
|
if (p != processors[dim] - 1) {
|
||||||
Lattice<vobj> temp(grid);
|
result = Cshift(result,dim,L);
|
||||||
t_shift-=usecond();
|
|
||||||
temp = Cshift(result,dim,L); result = temp;
|
|
||||||
t_shift+=usecond();
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
t_pencil += usecond();
|
|
||||||
|
|
||||||
FFTW_scalar *in = (FFTW_scalar *)pgbuf_v;
|
// Loop over orthog coords
|
||||||
FFTW_scalar *out= (FFTW_scalar *)pgbuf_v;
|
int NN=pencil_g.lSites();
|
||||||
t_fft = -usecond();
|
GridStopWatch timer;
|
||||||
FFTW<scalar>::fftw_execute_dft(p,in,out,sign);
|
timer.Start();
|
||||||
t_fft += usecond();
|
thread_for( idx,NN,{
|
||||||
|
Coordinate cbuf(Nd);
|
||||||
|
pencil_g.LocalIndexToLocalCoor(idx, cbuf);
|
||||||
|
if ( cbuf[dim] == 0 ) { // restricts loop to plane at lcoor[dim]==0
|
||||||
|
FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[idx];
|
||||||
|
FFTW_scalar *out= (FFTW_scalar *)&pgbuf_v[idx];
|
||||||
|
FFTW<scalar>::fftw_execute_dft(p,in,out);
|
||||||
|
}
|
||||||
|
});
|
||||||
|
timer.Stop();
|
||||||
|
|
||||||
// performance counting
|
// performance counting
|
||||||
flops_call = 5.0*howmany*G*log2(G);
|
double add,mul,fma;
|
||||||
usec = t_fft;
|
FFTW<scalar>::fftw_flops(p,&add,&mul,&fma);
|
||||||
flops= flops_call;
|
flops_call = add+mul+2.0*fma;
|
||||||
|
usec += timer.useconds();
|
||||||
|
flops+= flops_call*NN;
|
||||||
|
|
||||||
result = Zero();
|
// writing out result
|
||||||
|
|
||||||
double t_insert = -usecond();
|
|
||||||
{
|
{
|
||||||
autoView(r_v,result,AcceleratorWrite);
|
autoView(pgbuf_v,pgbuf,CpuRead);
|
||||||
accelerator_for(idx,grid->oSites(),Nsimd,{
|
autoView(result_v,result,CpuWrite);
|
||||||
#ifdef GRID_SIMT
|
thread_for(idx,sgrid->lSites(),{
|
||||||
{
|
Coordinate clbuf(Nd), cgbuf(Nd);
|
||||||
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
|
sobj s;
|
||||||
#else
|
sgrid->LocalIndexToLocalCoor(idx,clbuf);
|
||||||
for(int lane=0;lane<Nsimd;lane++) {
|
cgbuf = clbuf;
|
||||||
#endif
|
cgbuf[dim] = clbuf[dim]+L*pc;
|
||||||
Coordinate icoor(Ndim);
|
peekLocalSite(s,pgbuf_v,cgbuf);
|
||||||
Coordinate ocoor(Ndim);
|
pokeLocalSite(s,result_v,clbuf);
|
||||||
Coordinate pgcoor(Ndim);
|
|
||||||
|
|
||||||
Lexicographic::CoorFromIndex(icoor,lane,sdims);
|
|
||||||
Lexicographic::CoorFromIndex(ocoor,idx,rdims);
|
|
||||||
|
|
||||||
pgcoor[0] = ocoor[dim] + icoor[dim]*rdims[dim] + pc*L;
|
|
||||||
for(int d=0,dd=1;d<Ndim;d++){
|
|
||||||
if ( d!=dim ) {
|
|
||||||
pgcoor[dd] = ocoor[d] + icoor[d]*rdims[d];
|
|
||||||
dd++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// Map coordinates in lattice layout to FFTW index
|
|
||||||
int64_t pgidx;
|
|
||||||
Lexicographic::IndexFromCoor(pgcoor,pgidx,pgdims);
|
|
||||||
|
|
||||||
vector_type *to = (vector_type *)&r_v[idx];
|
|
||||||
scalar_type stmp;
|
|
||||||
for(int w=0;w<Ncomp;w++){
|
|
||||||
int64_t pg_idx = pgidx + w*pgvol;
|
|
||||||
stmp = pgbuf_v[pg_idx];
|
|
||||||
putlane(to[w], stmp, lane);
|
|
||||||
}
|
|
||||||
|
|
||||||
#ifdef GRID_SIMT
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
result = result*div;
|
result = result*div;
|
||||||
|
|
||||||
t_insert +=usecond();
|
|
||||||
|
|
||||||
// destroying plan
|
// destroying plan
|
||||||
FFTW<scalar>::fftw_destroy_plan(p);
|
FFTW<scalar>::fftw_destroy_plan(p);
|
||||||
|
#endif
|
||||||
t_total +=usecond();
|
|
||||||
|
|
||||||
std::cout <<GridLogPerformance<< " FFT took "<<t_total/1.0e6 <<" s" << std::endl;
|
|
||||||
std::cout <<GridLogPerformance<< " FFT pencil "<<t_pencil/1.0e6 <<" s" << std::endl;
|
|
||||||
std::cout <<GridLogPerformance<< " of which copy "<<t_copy/1.0e6 <<" s" << std::endl;
|
|
||||||
std::cout <<GridLogPerformance<< " of which shift"<<t_shift/1.0e6 <<" s" << std::endl;
|
|
||||||
std::cout <<GridLogPerformance<< " FFT kernels "<<t_fft/1.0e6 <<" s" << std::endl;
|
|
||||||
std::cout <<GridLogPerformance<< " FFT insert "<<t_insert/1.0e6 <<" s" << std::endl;
|
|
||||||
|
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|||||||
@@ -52,7 +52,6 @@ public:
|
|||||||
virtual void AdjOp (const Field &in, Field &out) = 0; // Abstract base
|
virtual void AdjOp (const Field &in, Field &out) = 0; // Abstract base
|
||||||
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2)=0;
|
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2)=0;
|
||||||
virtual void HermOp(const Field &in, Field &out)=0;
|
virtual void HermOp(const Field &in, Field &out)=0;
|
||||||
virtual ~LinearOperatorBase(){};
|
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
@@ -64,7 +63,7 @@ public:
|
|||||||
//
|
//
|
||||||
// I'm not entirely happy with implementation; to share the Schur code between herm and non-herm
|
// I'm not entirely happy with implementation; to share the Schur code between herm and non-herm
|
||||||
// while still having a "OpAndNorm" in the abstract base I had to implement it in both cases
|
// while still having a "OpAndNorm" in the abstract base I had to implement it in both cases
|
||||||
// with an GRID_ASSERT trap in the non-herm. This isn't right; there must be a better C++ way to
|
// with an assert trap in the non-herm. This isn't right; there must be a better C++ way to
|
||||||
// do it, but I fear it required multiple inheritance and mixed in abstract base classes
|
// do it, but I fear it required multiple inheritance and mixed in abstract base classes
|
||||||
/////////////////////////////////////////////////////////////////////////////////////////////
|
/////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
@@ -103,38 +102,6 @@ public:
|
|||||||
_Mat.MdagM(in,out);
|
_Mat.MdagM(in,out);
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
template<class Matrix,class Field>
|
|
||||||
class MMdagLinearOperator : public LinearOperatorBase<Field> {
|
|
||||||
Matrix &_Mat;
|
|
||||||
public:
|
|
||||||
MMdagLinearOperator(Matrix &Mat): _Mat(Mat){};
|
|
||||||
|
|
||||||
// Support for coarsening to a multigrid
|
|
||||||
void OpDiag (const Field &in, Field &out) {
|
|
||||||
_Mat.Mdiag(in,out);
|
|
||||||
}
|
|
||||||
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
|
||||||
_Mat.Mdir(in,out,dir,disp);
|
|
||||||
}
|
|
||||||
void OpDirAll (const Field &in, std::vector<Field> &out){
|
|
||||||
_Mat.MdirAll(in,out);
|
|
||||||
};
|
|
||||||
void Op (const Field &in, Field &out){
|
|
||||||
_Mat.M(in,out);
|
|
||||||
}
|
|
||||||
void AdjOp (const Field &in, Field &out){
|
|
||||||
_Mat.Mdag(in,out);
|
|
||||||
}
|
|
||||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
|
||||||
_Mat.MMdag(in,out);
|
|
||||||
ComplexD dot = innerProduct(in,out);
|
|
||||||
n1=real(dot);
|
|
||||||
n2=norm2(out);
|
|
||||||
}
|
|
||||||
void HermOp(const Field &in, Field &out){
|
|
||||||
_Mat.MMdag(in,out);
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////
|
||||||
// Construct herm op and shift it for mgrid smoother
|
// Construct herm op and shift it for mgrid smoother
|
||||||
@@ -148,22 +115,22 @@ public:
|
|||||||
// Support for coarsening to a multigrid
|
// Support for coarsening to a multigrid
|
||||||
void OpDiag (const Field &in, Field &out) {
|
void OpDiag (const Field &in, Field &out) {
|
||||||
_Mat.Mdiag(in,out);
|
_Mat.Mdiag(in,out);
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
}
|
}
|
||||||
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
||||||
_Mat.Mdir(in,out,dir,disp);
|
_Mat.Mdir(in,out,dir,disp);
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
}
|
}
|
||||||
void OpDirAll (const Field &in, std::vector<Field> &out){
|
void OpDirAll (const Field &in, std::vector<Field> &out){
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
};
|
};
|
||||||
void Op (const Field &in, Field &out){
|
void Op (const Field &in, Field &out){
|
||||||
_Mat.M(in,out);
|
_Mat.M(in,out);
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
}
|
}
|
||||||
void AdjOp (const Field &in, Field &out){
|
void AdjOp (const Field &in, Field &out){
|
||||||
_Mat.Mdag(in,out);
|
_Mat.Mdag(in,out);
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
}
|
}
|
||||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||||
HermOp(in,out);
|
HermOp(in,out);
|
||||||
@@ -177,44 +144,6 @@ public:
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////
|
|
||||||
// Create a shifted HermOp
|
|
||||||
////////////////////////////////////////////////////////////////////
|
|
||||||
template<class Field>
|
|
||||||
class ShiftedHermOpLinearOperator : public LinearOperatorBase<Field> {
|
|
||||||
LinearOperatorBase<Field> &_Mat;
|
|
||||||
RealD _shift;
|
|
||||||
public:
|
|
||||||
ShiftedHermOpLinearOperator(LinearOperatorBase<Field> &Mat,RealD shift): _Mat(Mat), _shift(shift){};
|
|
||||||
// Support for coarsening to a multigrid
|
|
||||||
void OpDiag (const Field &in, Field &out) {
|
|
||||||
GRID_ASSERT(0);
|
|
||||||
}
|
|
||||||
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
|
||||||
GRID_ASSERT(0);
|
|
||||||
}
|
|
||||||
void OpDirAll (const Field &in, std::vector<Field> &out){
|
|
||||||
GRID_ASSERT(0);
|
|
||||||
};
|
|
||||||
void Op (const Field &in, Field &out){
|
|
||||||
HermOp(in,out);
|
|
||||||
}
|
|
||||||
void AdjOp (const Field &in, Field &out){
|
|
||||||
HermOp(in,out);
|
|
||||||
}
|
|
||||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
|
||||||
HermOp(in,out);
|
|
||||||
ComplexD dot = innerProduct(in,out);
|
|
||||||
n1=real(dot);
|
|
||||||
n2=norm2(out);
|
|
||||||
}
|
|
||||||
void HermOp(const Field &in, Field &out){
|
|
||||||
_Mat.HermOp(in,out);
|
|
||||||
out = out + _shift*in;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////
|
||||||
// Wrap an already herm matrix
|
// Wrap an already herm matrix
|
||||||
////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////
|
||||||
@@ -271,42 +200,10 @@ public:
|
|||||||
_Mat.Mdag(in,out);
|
_Mat.Mdag(in,out);
|
||||||
}
|
}
|
||||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
}
|
}
|
||||||
void HermOp(const Field &in, Field &out){
|
void HermOp(const Field &in, Field &out){
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
}
|
|
||||||
};
|
|
||||||
template<class Matrix,class Field>
|
|
||||||
class ShiftedNonHermitianLinearOperator : public LinearOperatorBase<Field> {
|
|
||||||
Matrix &_Mat;
|
|
||||||
RealD shift;
|
|
||||||
public:
|
|
||||||
ShiftedNonHermitianLinearOperator(Matrix &Mat,RealD shft): _Mat(Mat),shift(shft){};
|
|
||||||
// Support for coarsening to a multigrid
|
|
||||||
void OpDiag (const Field &in, Field &out) {
|
|
||||||
_Mat.Mdiag(in,out);
|
|
||||||
out = out + shift*in;
|
|
||||||
}
|
|
||||||
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
|
||||||
_Mat.Mdir(in,out,dir,disp);
|
|
||||||
}
|
|
||||||
void OpDirAll (const Field &in, std::vector<Field> &out){
|
|
||||||
_Mat.MdirAll(in,out);
|
|
||||||
};
|
|
||||||
void Op (const Field &in, Field &out){
|
|
||||||
_Mat.M(in,out);
|
|
||||||
out = out + shift * in;
|
|
||||||
}
|
|
||||||
void AdjOp (const Field &in, Field &out){
|
|
||||||
_Mat.Mdag(in,out);
|
|
||||||
out = out + shift * in;
|
|
||||||
}
|
|
||||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
|
||||||
GRID_ASSERT(0);
|
|
||||||
}
|
|
||||||
void HermOp(const Field &in, Field &out){
|
|
||||||
GRID_ASSERT(0);
|
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
@@ -345,13 +242,13 @@ class SchurOperatorBase : public LinearOperatorBase<Field> {
|
|||||||
}
|
}
|
||||||
// Support for coarsening to a multigrid
|
// Support for coarsening to a multigrid
|
||||||
void OpDiag (const Field &in, Field &out) {
|
void OpDiag (const Field &in, Field &out) {
|
||||||
GRID_ASSERT(0); // must coarsen the unpreconditioned system
|
assert(0); // must coarsen the unpreconditioned system
|
||||||
}
|
}
|
||||||
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
}
|
}
|
||||||
void OpDirAll (const Field &in, std::vector<Field> &out){
|
void OpDirAll (const Field &in, std::vector<Field> &out){
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
template<class Matrix,class Field>
|
template<class Matrix,class Field>
|
||||||
@@ -447,10 +344,10 @@ class NonHermitianSchurOperatorBase : public LinearOperatorBase<Field>
|
|||||||
MpcDag(tmp,out);
|
MpcDag(tmp,out);
|
||||||
}
|
}
|
||||||
virtual void HermOpAndNorm(const Field& in, Field& out, RealD& n1, RealD& n2) {
|
virtual void HermOpAndNorm(const Field& in, Field& out, RealD& n1, RealD& n2) {
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
}
|
}
|
||||||
virtual void HermOp(const Field& in, Field& out) {
|
virtual void HermOp(const Field& in, Field& out) {
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
}
|
}
|
||||||
void Op(const Field& in, Field& out) {
|
void Op(const Field& in, Field& out) {
|
||||||
Mpc(in, out);
|
Mpc(in, out);
|
||||||
@@ -460,13 +357,13 @@ class NonHermitianSchurOperatorBase : public LinearOperatorBase<Field>
|
|||||||
}
|
}
|
||||||
// Support for coarsening to a multigrid
|
// Support for coarsening to a multigrid
|
||||||
void OpDiag(const Field& in, Field& out) {
|
void OpDiag(const Field& in, Field& out) {
|
||||||
GRID_ASSERT(0); // must coarsen the unpreconditioned system
|
assert(0); // must coarsen the unpreconditioned system
|
||||||
}
|
}
|
||||||
void OpDir(const Field& in, Field& out, int dir, int disp) {
|
void OpDir(const Field& in, Field& out, int dir, int disp) {
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
}
|
}
|
||||||
void OpDirAll(const Field& in, std::vector<Field>& out){
|
void OpDirAll(const Field& in, std::vector<Field>& out){
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
|
|
||||||
@@ -580,7 +477,7 @@ class SchurStaggeredOperator : public SchurOperatorBase<Field> {
|
|||||||
public:
|
public:
|
||||||
SchurStaggeredOperator (Matrix &Mat): _Mat(Mat), tmp(_Mat.RedBlackGrid())
|
SchurStaggeredOperator (Matrix &Mat): _Mat(Mat), tmp(_Mat.RedBlackGrid())
|
||||||
{
|
{
|
||||||
GRID_ASSERT( _Mat.isTrivialEE() );
|
assert( _Mat.isTrivialEE() );
|
||||||
mass = _Mat.Mass();
|
mass = _Mat.Mass();
|
||||||
}
|
}
|
||||||
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||||
@@ -610,8 +507,8 @@ class SchurStaggeredOperator : public SchurOperatorBase<Field> {
|
|||||||
virtual void MpcDag (const Field &in, Field &out){
|
virtual void MpcDag (const Field &in, Field &out){
|
||||||
Mpc(in,out);
|
Mpc(in,out);
|
||||||
}
|
}
|
||||||
virtual void MpcDagMpc(const Field &in, Field &out) {
|
virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
|
||||||
GRID_ASSERT(0);// Never need with staggered
|
assert(0);// Never need with staggered
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
template<class Matrix,class Field> using SchurStagOperator = SchurStaggeredOperator<Matrix,Field>;
|
template<class Matrix,class Field> using SchurStagOperator = SchurStaggeredOperator<Matrix,Field>;
|
||||||
@@ -623,28 +520,16 @@ template<class Field> class OperatorFunction {
|
|||||||
public:
|
public:
|
||||||
virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) = 0;
|
virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) = 0;
|
||||||
virtual void operator() (LinearOperatorBase<Field> &Linop, const std::vector<Field> &in,std::vector<Field> &out) {
|
virtual void operator() (LinearOperatorBase<Field> &Linop, const std::vector<Field> &in,std::vector<Field> &out) {
|
||||||
GRID_ASSERT(in.size()==out.size());
|
assert(in.size()==out.size());
|
||||||
for(int k=0;k<in.size();k++){
|
for(int k=0;k<in.size();k++){
|
||||||
(*this)(Linop,in[k],out[k]);
|
(*this)(Linop,in[k],out[k]);
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
virtual ~OperatorFunction(){};
|
|
||||||
};
|
};
|
||||||
|
|
||||||
template<class Field> class LinearFunction {
|
template<class Field> class LinearFunction {
|
||||||
public:
|
public:
|
||||||
virtual void operator() (const Field &in, Field &out) = 0;
|
virtual void operator() (const Field &in, Field &out) = 0;
|
||||||
|
|
||||||
virtual void operator() (const std::vector<Field> &in, std::vector<Field> &out)
|
|
||||||
{
|
|
||||||
GRID_ASSERT(in.size() == out.size());
|
|
||||||
|
|
||||||
for (unsigned int i = 0; i < in.size(); ++i)
|
|
||||||
{
|
|
||||||
(*this)(in[i], out[i]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
virtual ~LinearFunction(){};
|
|
||||||
};
|
};
|
||||||
|
|
||||||
template<class Field> class IdentityLinearFunction : public LinearFunction<Field> {
|
template<class Field> class IdentityLinearFunction : public LinearFunction<Field> {
|
||||||
@@ -690,7 +575,6 @@ class HermOpOperatorFunction : public OperatorFunction<Field> {
|
|||||||
template<typename Field>
|
template<typename Field>
|
||||||
class PlainHermOp : public LinearFunction<Field> {
|
class PlainHermOp : public LinearFunction<Field> {
|
||||||
public:
|
public:
|
||||||
using LinearFunction<Field>::operator();
|
|
||||||
LinearOperatorBase<Field> &_Linop;
|
LinearOperatorBase<Field> &_Linop;
|
||||||
|
|
||||||
PlainHermOp(LinearOperatorBase<Field>& linop) : _Linop(linop)
|
PlainHermOp(LinearOperatorBase<Field>& linop) : _Linop(linop)
|
||||||
@@ -704,7 +588,6 @@ public:
|
|||||||
template<typename Field>
|
template<typename Field>
|
||||||
class FunctionHermOp : public LinearFunction<Field> {
|
class FunctionHermOp : public LinearFunction<Field> {
|
||||||
public:
|
public:
|
||||||
using LinearFunction<Field>::operator();
|
|
||||||
OperatorFunction<Field> & _poly;
|
OperatorFunction<Field> & _poly;
|
||||||
LinearOperatorBase<Field> &_Linop;
|
LinearOperatorBase<Field> &_Linop;
|
||||||
|
|
||||||
|
|||||||
@@ -30,19 +30,13 @@ Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
|||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
template<class Field> using Preconditioner = LinearFunction<Field> ;
|
|
||||||
|
|
||||||
/*
|
|
||||||
template<class Field> class Preconditioner : public LinearFunction<Field> {
|
template<class Field> class Preconditioner : public LinearFunction<Field> {
|
||||||
using LinearFunction<Field>::operator();
|
|
||||||
virtual void operator()(const Field &src, Field & psi)=0;
|
virtual void operator()(const Field &src, Field & psi)=0;
|
||||||
};
|
};
|
||||||
*/
|
|
||||||
|
|
||||||
template<class Field> class TrivialPrecon : public Preconditioner<Field> {
|
template<class Field> class TrivialPrecon : public Preconditioner<Field> {
|
||||||
public:
|
public:
|
||||||
using Preconditioner<Field>::operator();
|
void operator()(const Field &src, Field & psi){
|
||||||
virtual void operator()(const Field &src, Field & psi){
|
|
||||||
psi = src;
|
psi = src;
|
||||||
}
|
}
|
||||||
TrivialPrecon(void){};
|
TrivialPrecon(void){};
|
||||||
|
|||||||
@@ -45,15 +45,9 @@ public:
|
|||||||
M(in,tmp);
|
M(in,tmp);
|
||||||
Mdag(tmp,out);
|
Mdag(tmp,out);
|
||||||
}
|
}
|
||||||
virtual void MMdag(const Field &in, Field &out) {
|
|
||||||
Field tmp (in.Grid());
|
|
||||||
Mdag(in,tmp);
|
|
||||||
M(tmp,out);
|
|
||||||
}
|
|
||||||
virtual void Mdiag (const Field &in, Field &out)=0;
|
virtual void Mdiag (const Field &in, Field &out)=0;
|
||||||
virtual void Mdir (const Field &in, Field &out,int dir, int disp)=0;
|
virtual void Mdir (const Field &in, Field &out,int dir, int disp)=0;
|
||||||
virtual void MdirAll (const Field &in, std::vector<Field> &out)=0;
|
virtual void MdirAll (const Field &in, std::vector<Field> &out)=0;
|
||||||
virtual ~SparseMatrixBase() {};
|
|
||||||
};
|
};
|
||||||
|
|
||||||
/////////////////////////////////////////////////////////////////////////////////////////////
|
/////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
@@ -78,7 +72,7 @@ public:
|
|||||||
virtual void MeooeDag (const Field &in, Field &out)=0;
|
virtual void MeooeDag (const Field &in, Field &out)=0;
|
||||||
virtual void MooeeDag (const Field &in, Field &out)=0;
|
virtual void MooeeDag (const Field &in, Field &out)=0;
|
||||||
virtual void MooeeInvDag (const Field &in, Field &out)=0;
|
virtual void MooeeInvDag (const Field &in, Field &out)=0;
|
||||||
virtual ~CheckerBoardedSparseMatrixBase() {};
|
|
||||||
};
|
};
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
|||||||
@@ -59,7 +59,7 @@ public:
|
|||||||
RealD diff = hi-lo;
|
RealD diff = hi-lo;
|
||||||
RealD delta = diff*1.0e-9;
|
RealD delta = diff*1.0e-9;
|
||||||
for (RealD x=lo; x<hi; x+=delta) {
|
for (RealD x=lo; x<hi; x+=delta) {
|
||||||
delta*=1.02;
|
delta*=1.1;
|
||||||
RealD f = approx(x);
|
RealD f = approx(x);
|
||||||
out<< x<<" "<<f<<std::endl;
|
out<< x<<" "<<f<<std::endl;
|
||||||
}
|
}
|
||||||
@@ -90,8 +90,9 @@ public:
|
|||||||
order=_order;
|
order=_order;
|
||||||
|
|
||||||
if(order < 2) exit(-1);
|
if(order < 2) exit(-1);
|
||||||
Coeffs.resize(order,0.0);
|
Coeffs.resize(order);
|
||||||
Coeffs[order-1] = 1.0;
|
Coeffs.assign(0.,order);
|
||||||
|
Coeffs[order-1] = 1.;
|
||||||
};
|
};
|
||||||
|
|
||||||
// PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's.
|
// PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's.
|
||||||
@@ -131,26 +132,6 @@ public:
|
|||||||
Coeffs[j] = s * 2.0/order;
|
Coeffs[j] = s * 2.0/order;
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
template<class functor>
|
|
||||||
void Init(RealD _lo,RealD _hi,int _order, functor & func)
|
|
||||||
{
|
|
||||||
lo=_lo;
|
|
||||||
hi=_hi;
|
|
||||||
order=_order;
|
|
||||||
|
|
||||||
if(order < 2) exit(-1);
|
|
||||||
Coeffs.resize(order);
|
|
||||||
for(int j=0;j<order;j++){
|
|
||||||
RealD s=0;
|
|
||||||
for(int k=0;k<order;k++){
|
|
||||||
RealD y=std::cos(M_PI*(k+0.5)/order);
|
|
||||||
RealD x=0.5*(y*(hi-lo)+(hi+lo));
|
|
||||||
RealD f=func(x);
|
|
||||||
s=s+f*std::cos( j*M_PI*(k+0.5)/order );
|
|
||||||
}
|
|
||||||
Coeffs[j] = s * 2.0/order;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
void JacksonSmooth(void){
|
void JacksonSmooth(void){
|
||||||
@@ -259,32 +240,46 @@ public:
|
|||||||
Field T0(grid); T0 = in;
|
Field T0(grid); T0 = in;
|
||||||
Field T1(grid);
|
Field T1(grid);
|
||||||
Field T2(grid);
|
Field T2(grid);
|
||||||
|
Field Tout(grid);
|
||||||
Field y(grid);
|
Field y(grid);
|
||||||
|
|
||||||
Field *Tnm = &T0;
|
Field *Tnm = &T0;
|
||||||
Field *Tn = &T1;
|
Field *Tn = &T1;
|
||||||
Field *Tnp = &T2;
|
Field *Tnp = &T2;
|
||||||
|
|
||||||
|
std::cout << GridLogMessage << "Chebyshev() starts"<<std::endl;
|
||||||
// Tn=T1 = (xscale M + mscale)in
|
// Tn=T1 = (xscale M + mscale)in
|
||||||
RealD xscale = 2.0/(hi-lo);
|
RealD xscale = 2.0/(hi-lo);
|
||||||
RealD mscale = -(hi+lo)/(hi-lo);
|
RealD mscale = -(hi+lo)/(hi-lo);
|
||||||
Linop.HermOp(T0,y);
|
Linop.HermOp(T0,y);
|
||||||
grid->Barrier();
|
|
||||||
axpby(T1,xscale,mscale,y,in);
|
axpby(T1,xscale,mscale,y,in);
|
||||||
grid->Barrier();
|
|
||||||
|
|
||||||
// sum = .5 c[0] T0 + c[1] T1
|
// sum = .5 c[0] T0 + c[1] T1
|
||||||
// out = ()*T0 + Coeffs[1]*T1;
|
// out = ()*T0 + Coeffs[1]*T1;
|
||||||
axpby(out,0.5*Coeffs[0],Coeffs[1],T0,T1);
|
axpby(Tout,0.5*Coeffs[0],Coeffs[1],T0,T1);
|
||||||
for(int n=2;n<order;n++){
|
for(int n=2;n<order;n++){
|
||||||
|
|
||||||
Linop.HermOp(*Tn,y);
|
Linop.HermOp(*Tn,y);
|
||||||
axpby(y,xscale,mscale,y,(*Tn));
|
#if 0
|
||||||
axpby(*Tnp,2.0,-1.0,y,(*Tnm));
|
auto y_v = y.View();
|
||||||
|
auto Tn_v = Tn->View();
|
||||||
|
auto Tnp_v = Tnp->View();
|
||||||
|
auto Tnm_v = Tnm->View();
|
||||||
|
constexpr int Nsimd = vector_type::Nsimd();
|
||||||
|
accelerator_forNB(ss, in.Grid()->oSites(), Nsimd, {
|
||||||
|
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
|
||||||
|
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
|
||||||
|
});
|
||||||
if ( Coeffs[n] != 0.0) {
|
if ( Coeffs[n] != 0.0) {
|
||||||
axpy(out,Coeffs[n],*Tnp,out);
|
axpy(out,Coeffs[n],*Tnp,out);
|
||||||
}
|
}
|
||||||
|
#else
|
||||||
|
axpby(y,xscale,mscale,y,(*Tn));
|
||||||
|
axpby(*Tnp,2.0,-1.0,y,(*Tnm));
|
||||||
|
if ( Coeffs[n] != 0.0) {
|
||||||
|
axpy(Tout,Coeffs[n],*Tnp,Tout);
|
||||||
|
}
|
||||||
|
#endif
|
||||||
// Cycle pointers to avoid copies
|
// Cycle pointers to avoid copies
|
||||||
Field *swizzle = Tnm;
|
Field *swizzle = Tnm;
|
||||||
Tnm =Tn;
|
Tnm =Tn;
|
||||||
@@ -292,6 +287,8 @@ public:
|
|||||||
Tnp =swizzle;
|
Tnp =swizzle;
|
||||||
|
|
||||||
}
|
}
|
||||||
|
out = Tout;
|
||||||
|
std::cout << GridLogMessage << "Chebyshev() ends"<<std::endl;
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
@@ -384,24 +381,26 @@ public:
|
|||||||
Field T0(grid); T0 = in;
|
Field T0(grid); T0 = in;
|
||||||
Field T1(grid);
|
Field T1(grid);
|
||||||
Field T2(grid);
|
Field T2(grid);
|
||||||
|
Field Tout(grid);
|
||||||
Field y(grid);
|
Field y(grid);
|
||||||
|
|
||||||
Field *Tnm = &T0;
|
Field *Tnm = &T0;
|
||||||
Field *Tn = &T1;
|
Field *Tn = &T1;
|
||||||
Field *Tnp = &T2;
|
Field *Tnp = &T2;
|
||||||
|
|
||||||
|
std::cout << GridLogMessage << "ChebyshevLanczos() starts"<<std::endl;
|
||||||
// Tn=T1 = (xscale M )*in
|
// Tn=T1 = (xscale M )*in
|
||||||
AminusMuSq(Linop,T0,T1);
|
AminusMuSq(Linop,T0,T1);
|
||||||
|
|
||||||
// sum = .5 c[0] T0 + c[1] T1
|
// sum = .5 c[0] T0 + c[1] T1
|
||||||
out = (0.5*Coeffs[0])*T0 + Coeffs[1]*T1;
|
Tout = (0.5*Coeffs[0])*T0 + Coeffs[1]*T1;
|
||||||
for(int n=2;n<order;n++){
|
for(int n=2;n<order;n++){
|
||||||
|
|
||||||
AminusMuSq(Linop,*Tn,y);
|
AminusMuSq(Linop,*Tn,y);
|
||||||
|
|
||||||
*Tnp=2.0*y-(*Tnm);
|
*Tnp=2.0*y-(*Tnm);
|
||||||
|
|
||||||
out=out+Coeffs[n]* (*Tnp);
|
Tout=Tout+Coeffs[n]* (*Tnp);
|
||||||
|
|
||||||
// Cycle pointers to avoid copies
|
// Cycle pointers to avoid copies
|
||||||
Field *swizzle = Tnm;
|
Field *swizzle = Tnm;
|
||||||
@@ -410,6 +409,8 @@ public:
|
|||||||
Tnp =swizzle;
|
Tnp =swizzle;
|
||||||
|
|
||||||
}
|
}
|
||||||
|
out=Tout;
|
||||||
|
std::cout << GridLogMessage << "ChebyshevLanczos() ends"<<std::endl;
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
|||||||
@@ -40,7 +40,7 @@ public:
|
|||||||
RealD norm;
|
RealD norm;
|
||||||
RealD lo,hi;
|
RealD lo,hi;
|
||||||
|
|
||||||
MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), tolerances(n), lo(_lo), hi(_hi) {;};
|
MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), lo(_lo), hi(_hi) {;};
|
||||||
RealD approx(RealD x);
|
RealD approx(RealD x);
|
||||||
void csv(std::ostream &out);
|
void csv(std::ostream &out);
|
||||||
void gnuplot(std::ostream &out);
|
void gnuplot(std::ostream &out);
|
||||||
|
|||||||
@@ -121,7 +121,7 @@ double AlgRemez::generateApprox(int num_degree, int den_degree,
|
|||||||
// Reallocate arrays, since degree has changed
|
// Reallocate arrays, since degree has changed
|
||||||
if (num_degree != n || den_degree != d) allocate(num_degree,den_degree);
|
if (num_degree != n || den_degree != d) allocate(num_degree,den_degree);
|
||||||
|
|
||||||
GRID_ASSERT(a_len<=SUM_MAX);
|
assert(a_len<=SUM_MAX);
|
||||||
|
|
||||||
step = new bigfloat[num_degree+den_degree+2];
|
step = new bigfloat[num_degree+den_degree+2];
|
||||||
|
|
||||||
@@ -151,9 +151,9 @@ double AlgRemez::generateApprox(int num_degree, int den_degree,
|
|||||||
equations();
|
equations();
|
||||||
if (delta < tolerance) {
|
if (delta < tolerance) {
|
||||||
std::cout<<"Delta too small, try increasing precision\n";
|
std::cout<<"Delta too small, try increasing precision\n";
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
};
|
};
|
||||||
GRID_ASSERT( delta>= tolerance);
|
assert( delta>= tolerance);
|
||||||
|
|
||||||
search(step);
|
search(step);
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -134,7 +134,7 @@ class AlgRemez
|
|||||||
virtual ~AlgRemez();
|
virtual ~AlgRemez();
|
||||||
|
|
||||||
int getDegree(void){
|
int getDegree(void){
|
||||||
GRID_ASSERT(n==d);
|
assert(n==d);
|
||||||
return n;
|
return n;
|
||||||
}
|
}
|
||||||
// Reset the bounds of the approximation
|
// Reset the bounds of the approximation
|
||||||
|
|||||||
@@ -28,11 +28,11 @@ void AlgRemezGeneral::setupPolyProperties(int num_degree, int den_degree, PolyTy
|
|||||||
pow_n = num_degree;
|
pow_n = num_degree;
|
||||||
pow_d = den_degree;
|
pow_d = den_degree;
|
||||||
|
|
||||||
if(pow_n % 2 == 0 && num_type_in == PolyType::Odd) GRID_ASSERT(0);
|
if(pow_n % 2 == 0 && num_type_in == PolyType::Odd) assert(0);
|
||||||
if(pow_n % 2 == 1 && num_type_in == PolyType::Even) GRID_ASSERT(0);
|
if(pow_n % 2 == 1 && num_type_in == PolyType::Even) assert(0);
|
||||||
|
|
||||||
if(pow_d % 2 == 0 && den_type_in == PolyType::Odd) GRID_ASSERT(0);
|
if(pow_d % 2 == 0 && den_type_in == PolyType::Odd) assert(0);
|
||||||
if(pow_d % 2 == 1 && den_type_in == PolyType::Even) GRID_ASSERT(0);
|
if(pow_d % 2 == 1 && den_type_in == PolyType::Even) assert(0);
|
||||||
|
|
||||||
num_type = num_type_in;
|
num_type = num_type_in;
|
||||||
den_type = den_type_in;
|
den_type = den_type_in;
|
||||||
@@ -112,9 +112,9 @@ double AlgRemezGeneral::generateApprox(const int num_degree, const int den_degre
|
|||||||
equations();
|
equations();
|
||||||
if (delta < tolerance) {
|
if (delta < tolerance) {
|
||||||
std::cout<<"Iteration " << iter-1 << " delta too small (" << delta << "<" << tolerance << "), try increasing precision\n";
|
std::cout<<"Iteration " << iter-1 << " delta too small (" << delta << "<" << tolerance << "), try increasing precision\n";
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
};
|
};
|
||||||
GRID_ASSERT( delta>= tolerance );
|
assert( delta>= tolerance );
|
||||||
|
|
||||||
search();
|
search();
|
||||||
}
|
}
|
||||||
@@ -278,7 +278,7 @@ void AlgRemezGeneral::equations(){
|
|||||||
if(num_pows[j] != -1){ *aa++ = z; t++; }
|
if(num_pows[j] != -1){ *aa++ = z; t++; }
|
||||||
z *= x;
|
z *= x;
|
||||||
}
|
}
|
||||||
GRID_ASSERT(t == n+1);
|
assert(t == n+1);
|
||||||
|
|
||||||
z = (bigfloat)1l;
|
z = (bigfloat)1l;
|
||||||
t = 0;
|
t = 0;
|
||||||
@@ -286,7 +286,7 @@ void AlgRemezGeneral::equations(){
|
|||||||
if(den_pows[j] != -1){ *aa++ = -y * z; t++; }
|
if(den_pows[j] != -1){ *aa++ = -y * z; t++; }
|
||||||
z *= x;
|
z *= x;
|
||||||
}
|
}
|
||||||
GRID_ASSERT(t == d);
|
assert(t == d);
|
||||||
|
|
||||||
B[i] = y * z; // Right hand side vector
|
B[i] = y * z; // Right hand side vector
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -106,7 +106,7 @@ class AlgRemezGeneral{
|
|||||||
bigfloat (*f)(bigfloat x, void *data), void *data);
|
bigfloat (*f)(bigfloat x, void *data), void *data);
|
||||||
|
|
||||||
inline int getDegree(void) const{
|
inline int getDegree(void) const{
|
||||||
GRID_ASSERT(n==d);
|
assert(n==d);
|
||||||
return n;
|
return n;
|
||||||
}
|
}
|
||||||
// Reset the bounds of the approximation
|
// Reset the bounds of the approximation
|
||||||
|
|||||||
@@ -74,7 +74,7 @@ bigfloat epsilonMobius(bigfloat x, void* data){
|
|||||||
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out,
|
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out,
|
||||||
const std::vector<RealD> &omega_in, const int Ls_in,
|
const std::vector<RealD> &omega_in, const int Ls_in,
|
||||||
const RealD lambda_bound){
|
const RealD lambda_bound){
|
||||||
GRID_ASSERT(omega_in.size() == Ls_in);
|
assert(omega_in.size() == Ls_in);
|
||||||
omega_out.resize(Ls_out);
|
omega_out.resize(Ls_out);
|
||||||
|
|
||||||
//Use the Remez algorithm to generate the appropriate rational polynomial
|
//Use the Remez algorithm to generate the appropriate rational polynomial
|
||||||
|
|||||||
@@ -293,7 +293,7 @@ static void sncndnFK(INTERNAL_PRECISION u, INTERNAL_PRECISION k,
|
|||||||
* Set type = 0 for the Zolotarev approximation, which is zero at x = 0, and
|
* Set type = 0 for the Zolotarev approximation, which is zero at x = 0, and
|
||||||
* type = 1 for the approximation which is infinite at x = 0. */
|
* type = 1 for the approximation which is infinite at x = 0. */
|
||||||
|
|
||||||
zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) {
|
zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) {
|
||||||
INTERNAL_PRECISION A, c, cp, kp, ksq, sn, cn, dn, Kp, Kj, z, z0, t, M, F,
|
INTERNAL_PRECISION A, c, cp, kp, ksq, sn, cn, dn, Kp, Kj, z, z0, t, M, F,
|
||||||
l, invlambda, xi, xisq, *tv, s, opl;
|
l, invlambda, xi, xisq, *tv, s, opl;
|
||||||
int m, czero, ts;
|
int m, czero, ts;
|
||||||
@@ -375,12 +375,12 @@ zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) {
|
|||||||
construct_partfrac(d);
|
construct_partfrac(d);
|
||||||
construct_contfrac(d);
|
construct_contfrac(d);
|
||||||
|
|
||||||
/* Converting everything to ZOLO_PRECISION for external use only */
|
/* Converting everything to PRECISION for external use only */
|
||||||
|
|
||||||
zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
|
zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
|
||||||
zd -> A = (ZOLO_PRECISION) d -> A;
|
zd -> A = (PRECISION) d -> A;
|
||||||
zd -> Delta = (ZOLO_PRECISION) d -> Delta;
|
zd -> Delta = (PRECISION) d -> Delta;
|
||||||
zd -> epsilon = (ZOLO_PRECISION) d -> epsilon;
|
zd -> epsilon = (PRECISION) d -> epsilon;
|
||||||
zd -> n = d -> n;
|
zd -> n = d -> n;
|
||||||
zd -> type = d -> type;
|
zd -> type = d -> type;
|
||||||
zd -> dn = d -> dn;
|
zd -> dn = d -> dn;
|
||||||
@@ -390,24 +390,24 @@ zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) {
|
|||||||
zd -> deg_num = d -> deg_num;
|
zd -> deg_num = d -> deg_num;
|
||||||
zd -> deg_denom = d -> deg_denom;
|
zd -> deg_denom = d -> deg_denom;
|
||||||
|
|
||||||
zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION));
|
zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION));
|
||||||
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m];
|
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m];
|
||||||
free(d -> a);
|
free(d -> a);
|
||||||
|
|
||||||
zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION));
|
zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION));
|
||||||
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m];
|
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m];
|
||||||
free(d -> ap);
|
free(d -> ap);
|
||||||
|
|
||||||
zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION));
|
zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION));
|
||||||
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m];
|
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m];
|
||||||
free(d -> alpha);
|
free(d -> alpha);
|
||||||
|
|
||||||
zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION));
|
zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION));
|
||||||
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m];
|
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m];
|
||||||
free(d -> beta);
|
free(d -> beta);
|
||||||
|
|
||||||
zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION));
|
zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION));
|
||||||
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m];
|
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m];
|
||||||
free(d -> gamma);
|
free(d -> gamma);
|
||||||
|
|
||||||
free(d);
|
free(d);
|
||||||
@@ -426,7 +426,7 @@ void zolotarev_free(zolotarev_data *zdata)
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) {
|
zolotarev_data* higham(PRECISION epsilon, int n) {
|
||||||
INTERNAL_PRECISION A, M, c, cp, z, z0, t, epssq;
|
INTERNAL_PRECISION A, M, c, cp, z, z0, t, epssq;
|
||||||
int m, czero;
|
int m, czero;
|
||||||
zolotarev_data *zd;
|
zolotarev_data *zd;
|
||||||
@@ -481,9 +481,9 @@ zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) {
|
|||||||
/* Converting everything to PRECISION for external use only */
|
/* Converting everything to PRECISION for external use only */
|
||||||
|
|
||||||
zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
|
zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
|
||||||
zd -> A = (ZOLO_PRECISION) d -> A;
|
zd -> A = (PRECISION) d -> A;
|
||||||
zd -> Delta = (ZOLO_PRECISION) d -> Delta;
|
zd -> Delta = (PRECISION) d -> Delta;
|
||||||
zd -> epsilon = (ZOLO_PRECISION) d -> epsilon;
|
zd -> epsilon = (PRECISION) d -> epsilon;
|
||||||
zd -> n = d -> n;
|
zd -> n = d -> n;
|
||||||
zd -> type = d -> type;
|
zd -> type = d -> type;
|
||||||
zd -> dn = d -> dn;
|
zd -> dn = d -> dn;
|
||||||
@@ -493,24 +493,24 @@ zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) {
|
|||||||
zd -> deg_num = d -> deg_num;
|
zd -> deg_num = d -> deg_num;
|
||||||
zd -> deg_denom = d -> deg_denom;
|
zd -> deg_denom = d -> deg_denom;
|
||||||
|
|
||||||
zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION));
|
zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION));
|
||||||
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m];
|
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m];
|
||||||
free(d -> a);
|
free(d -> a);
|
||||||
|
|
||||||
zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION));
|
zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION));
|
||||||
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m];
|
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m];
|
||||||
free(d -> ap);
|
free(d -> ap);
|
||||||
|
|
||||||
zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION));
|
zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION));
|
||||||
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m];
|
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m];
|
||||||
free(d -> alpha);
|
free(d -> alpha);
|
||||||
|
|
||||||
zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION));
|
zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION));
|
||||||
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m];
|
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m];
|
||||||
free(d -> beta);
|
free(d -> beta);
|
||||||
|
|
||||||
zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION));
|
zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION));
|
||||||
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m];
|
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m];
|
||||||
free(d -> gamma);
|
free(d -> gamma);
|
||||||
|
|
||||||
free(d);
|
free(d);
|
||||||
@@ -523,17 +523,17 @@ NAMESPACE_END(Grid);
|
|||||||
#ifdef TEST
|
#ifdef TEST
|
||||||
|
|
||||||
#undef ZERO
|
#undef ZERO
|
||||||
#define ZERO ((ZOLO_PRECISION) 0)
|
#define ZERO ((PRECISION) 0)
|
||||||
#undef ONE
|
#undef ONE
|
||||||
#define ONE ((ZOLO_PRECISION) 1)
|
#define ONE ((PRECISION) 1)
|
||||||
#undef TWO
|
#undef TWO
|
||||||
#define TWO ((ZOLO_PRECISION) 2)
|
#define TWO ((PRECISION) 2)
|
||||||
|
|
||||||
/* Evaluate the rational approximation R(x) using the factored form */
|
/* Evaluate the rational approximation R(x) using the factored form */
|
||||||
|
|
||||||
static ZOLO_PRECISION zolotarev_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
|
static PRECISION zolotarev_eval(PRECISION x, zolotarev_data* rdata) {
|
||||||
int m;
|
int m;
|
||||||
ZOLO_PRECISION R;
|
PRECISION R;
|
||||||
|
|
||||||
if (rdata -> type == 0) {
|
if (rdata -> type == 0) {
|
||||||
R = rdata -> A * x;
|
R = rdata -> A * x;
|
||||||
@@ -551,9 +551,9 @@ static ZOLO_PRECISION zolotarev_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
|
|||||||
|
|
||||||
/* Evaluate the rational approximation R(x) using the partial fraction form */
|
/* Evaluate the rational approximation R(x) using the partial fraction form */
|
||||||
|
|
||||||
static ZOLO_PRECISION zolotarev_partfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
|
static PRECISION zolotarev_partfrac_eval(PRECISION x, zolotarev_data* rdata) {
|
||||||
int m;
|
int m;
|
||||||
ZOLO_PRECISION R = rdata -> alpha[rdata -> da - 1];
|
PRECISION R = rdata -> alpha[rdata -> da - 1];
|
||||||
for (m = 0; m < rdata -> dd; m++)
|
for (m = 0; m < rdata -> dd; m++)
|
||||||
R += rdata -> alpha[m] / (x * x - rdata -> ap[m]);
|
R += rdata -> alpha[m] / (x * x - rdata -> ap[m]);
|
||||||
if (rdata -> type == 1) R += rdata -> alpha[rdata -> dd] / (x * x);
|
if (rdata -> type == 1) R += rdata -> alpha[rdata -> dd] / (x * x);
|
||||||
@@ -568,18 +568,18 @@ static ZOLO_PRECISION zolotarev_partfrac_eval(ZOLO_PRECISION x, zolotarev_data*
|
|||||||
* non-signalling overflow this will work correctly since 1/(1/0) = 1/INF = 0,
|
* non-signalling overflow this will work correctly since 1/(1/0) = 1/INF = 0,
|
||||||
* but with signalling overflow you will get an error message. */
|
* but with signalling overflow you will get an error message. */
|
||||||
|
|
||||||
static ZOLO_PRECISION zolotarev_contfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
|
static PRECISION zolotarev_contfrac_eval(PRECISION x, zolotarev_data* rdata) {
|
||||||
int m;
|
int m;
|
||||||
ZOLO_PRECISION R = rdata -> beta[0] * x;
|
PRECISION R = rdata -> beta[0] * x;
|
||||||
for (m = 1; m < rdata -> db; m++) R = rdata -> beta[m] * x + ONE / R;
|
for (m = 1; m < rdata -> db; m++) R = rdata -> beta[m] * x + ONE / R;
|
||||||
return R;
|
return R;
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Evaluate the rational approximation R(x) using Cayley form */
|
/* Evaluate the rational approximation R(x) using Cayley form */
|
||||||
|
|
||||||
static ZOLO_PRECISION zolotarev_cayley_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
|
static PRECISION zolotarev_cayley_eval(PRECISION x, zolotarev_data* rdata) {
|
||||||
int m;
|
int m;
|
||||||
ZOLO_PRECISION T;
|
PRECISION T;
|
||||||
|
|
||||||
T = rdata -> type == 0 ? ONE : -ONE;
|
T = rdata -> type == 0 ? ONE : -ONE;
|
||||||
for (m = 0; m < rdata -> n; m++)
|
for (m = 0; m < rdata -> n; m++)
|
||||||
@@ -607,7 +607,7 @@ int main(int argc, char** argv) {
|
|||||||
int m, n, plotpts = 5000, type = 0;
|
int m, n, plotpts = 5000, type = 0;
|
||||||
float eps, x, ypferr, ycferr, ycaylerr, maxypferr, maxycferr, maxycaylerr;
|
float eps, x, ypferr, ycferr, ycaylerr, maxypferr, maxycferr, maxycaylerr;
|
||||||
zolotarev_data *rdata;
|
zolotarev_data *rdata;
|
||||||
ZOLO_PRECISION y;
|
PRECISION y;
|
||||||
FILE *plot_function, *plot_error,
|
FILE *plot_function, *plot_error,
|
||||||
*plot_partfrac, *plot_contfrac, *plot_cayley;
|
*plot_partfrac, *plot_contfrac, *plot_cayley;
|
||||||
|
|
||||||
@@ -626,13 +626,13 @@ int main(int argc, char** argv) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
rdata = type == 2
|
rdata = type == 2
|
||||||
? higham((ZOLO_PRECISION) eps, n)
|
? higham((PRECISION) eps, n)
|
||||||
: zolotarev((ZOLO_PRECISION) eps, n, type);
|
: zolotarev((PRECISION) eps, n, type);
|
||||||
|
|
||||||
printf("Zolotarev Test: R(epsilon = %g, n = %d, type = %d)\n\t"
|
printf("Zolotarev Test: R(epsilon = %g, n = %d, type = %d)\n\t"
|
||||||
STRINGIFY(VERSION) "\n\t" STRINGIFY(HVERSION)
|
STRINGIFY(VERSION) "\n\t" STRINGIFY(HVERSION)
|
||||||
"\n\tINTERNAL_PRECISION = " STRINGIFY(INTERNAL_PRECISION)
|
"\n\tINTERNAL_PRECISION = " STRINGIFY(INTERNAL_PRECISION)
|
||||||
"\tZOLO_PRECISION = " STRINGIFY(ZOLO_PRECISION)
|
"\tPRECISION = " STRINGIFY(PRECISION)
|
||||||
"\n\n\tRational approximation of degree (%d,%d), %s at x = 0\n"
|
"\n\n\tRational approximation of degree (%d,%d), %s at x = 0\n"
|
||||||
"\tDelta = %g (maximum error)\n\n"
|
"\tDelta = %g (maximum error)\n\n"
|
||||||
"\tA = %g (overall factor)\n",
|
"\tA = %g (overall factor)\n",
|
||||||
@@ -681,15 +681,15 @@ int main(int argc, char** argv) {
|
|||||||
x = 2.4 * (float) m / plotpts - 1.2;
|
x = 2.4 * (float) m / plotpts - 1.2;
|
||||||
if (rdata -> type == 0 || fabs(x) * (float) plotpts > 1.0) {
|
if (rdata -> type == 0 || fabs(x) * (float) plotpts > 1.0) {
|
||||||
/* skip x = 0 for type 1, as R(0) is singular */
|
/* skip x = 0 for type 1, as R(0) is singular */
|
||||||
y = zolotarev_eval((ZOLO_PRECISION) x, rdata);
|
y = zolotarev_eval((PRECISION) x, rdata);
|
||||||
fprintf(plot_function, "%g %g\n", x, (float) y);
|
fprintf(plot_function, "%g %g\n", x, (float) y);
|
||||||
fprintf(plot_error, "%g %g\n",
|
fprintf(plot_error, "%g %g\n",
|
||||||
x, (float)((y - ((x > 0.0 ? ONE : -ONE))) / rdata -> Delta));
|
x, (float)((y - ((x > 0.0 ? ONE : -ONE))) / rdata -> Delta));
|
||||||
ypferr = (float)((zolotarev_partfrac_eval((ZOLO_PRECISION) x, rdata) - y)
|
ypferr = (float)((zolotarev_partfrac_eval((PRECISION) x, rdata) - y)
|
||||||
/ rdata -> Delta);
|
/ rdata -> Delta);
|
||||||
ycferr = (float)((zolotarev_contfrac_eval((ZOLO_PRECISION) x, rdata) - y)
|
ycferr = (float)((zolotarev_contfrac_eval((PRECISION) x, rdata) - y)
|
||||||
/ rdata -> Delta);
|
/ rdata -> Delta);
|
||||||
ycaylerr = (float)((zolotarev_cayley_eval((ZOLO_PRECISION) x, rdata) - y)
|
ycaylerr = (float)((zolotarev_cayley_eval((PRECISION) x, rdata) - y)
|
||||||
/ rdata -> Delta);
|
/ rdata -> Delta);
|
||||||
if (fabs(x) < 1.0 && fabs(x) > rdata -> epsilon) {
|
if (fabs(x) < 1.0 && fabs(x) > rdata -> epsilon) {
|
||||||
maxypferr = MAX(maxypferr, fabs(ypferr));
|
maxypferr = MAX(maxypferr, fabs(ypferr));
|
||||||
|
|||||||
@@ -9,10 +9,10 @@ NAMESPACE_BEGIN(Approx);
|
|||||||
#define HVERSION Header Time-stamp: <14-OCT-2004 09:26:51.00 adk@MISSCONTRARY>
|
#define HVERSION Header Time-stamp: <14-OCT-2004 09:26:51.00 adk@MISSCONTRARY>
|
||||||
|
|
||||||
#ifndef ZOLOTAREV_INTERNAL
|
#ifndef ZOLOTAREV_INTERNAL
|
||||||
#ifndef ZOLO_PRECISION
|
#ifndef PRECISION
|
||||||
#define ZOLO_PRECISION double
|
#define PRECISION double
|
||||||
#endif
|
#endif
|
||||||
#define ZPRECISION ZOLO_PRECISION
|
#define ZPRECISION PRECISION
|
||||||
#define ZOLOTAREV_DATA zolotarev_data
|
#define ZOLOTAREV_DATA zolotarev_data
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
@@ -77,8 +77,8 @@ typedef struct {
|
|||||||
* zolotarev_data structure. The arguments must satisfy the constraints that
|
* zolotarev_data structure. The arguments must satisfy the constraints that
|
||||||
* epsilon > 0, n > 0, and type = 0 or 1. */
|
* epsilon > 0, n > 0, and type = 0 or 1. */
|
||||||
|
|
||||||
ZOLOTAREV_DATA* higham(ZOLO_PRECISION epsilon, int n) ;
|
ZOLOTAREV_DATA* higham(PRECISION epsilon, int n) ;
|
||||||
ZOLOTAREV_DATA* zolotarev(ZOLO_PRECISION epsilon, int n, int type);
|
ZOLOTAREV_DATA* zolotarev(PRECISION epsilon, int n, int type);
|
||||||
void zolotarev_free(zolotarev_data *zdata);
|
void zolotarev_free(zolotarev_data *zdata);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
@@ -86,4 +86,3 @@ void zolotarev_free(zolotarev_data *zdata);
|
|||||||
NAMESPACE_END(Approx);
|
NAMESPACE_END(Approx);
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|||||||
@@ -1,34 +0,0 @@
|
|||||||
/*************************************************************************************
|
|
||||||
|
|
||||||
Grid physics library, www.github.com/paboyle/Grid
|
|
||||||
|
|
||||||
Source file: BatchedBlas.h
|
|
||||||
|
|
||||||
Copyright (C) 2023
|
|
||||||
|
|
||||||
Author: Peter Boyle <pboyle@bnl.gov>
|
|
||||||
|
|
||||||
This program is free software; you can redistribute it and/or modify
|
|
||||||
it under the terms of the GNU General Public License as published by
|
|
||||||
the Free Software Foundation; either version 2 of the License, or
|
|
||||||
(at your option) any later version.
|
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License along
|
|
||||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
||||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
||||||
|
|
||||||
See the full license in the file "LICENSE" in the top level distribution directory
|
|
||||||
*************************************************************************************/
|
|
||||||
/* END LEGAL */
|
|
||||||
#include <Grid/GridCore.h>
|
|
||||||
#include <Grid/algorithms/blas/BatchedBlas.h>
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
|
||||||
gridblasHandle_t GridBLAS::gridblasHandle;
|
|
||||||
int GridBLAS::gridblasInit;
|
|
||||||
NAMESPACE_END(Grid);
|
|
||||||
|
|
||||||
File diff suppressed because it is too large
Load Diff
@@ -1,300 +0,0 @@
|
|||||||
/*************************************************************************************
|
|
||||||
|
|
||||||
Grid physics library, www.github.com/paboyle/Grid
|
|
||||||
|
|
||||||
Source file: MomentumProject.h
|
|
||||||
|
|
||||||
Copyright (C) 2025
|
|
||||||
|
|
||||||
Author: Peter Boyle <pboyle@bnl.gov>
|
|
||||||
|
|
||||||
This program is free software; you can redistribute it and/or modify
|
|
||||||
it under the terms of the GNU General Public License as published by
|
|
||||||
the Free Software Foundation; either version 2 of the License, or
|
|
||||||
(at your option) any later version.
|
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License along
|
|
||||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
||||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
||||||
|
|
||||||
See the full license in the file "LICENSE" in the top level distribution directory
|
|
||||||
*************************************************************************************/
|
|
||||||
/* END LEGAL */
|
|
||||||
#pragma once
|
|
||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
|
||||||
/*
|
|
||||||
MultiMomProject
|
|
||||||
|
|
||||||
Import vectors -> nxyz x (ncomponent x nt)
|
|
||||||
Import complex phases -> nmom x nxy
|
|
||||||
|
|
||||||
apply = via (possibly batched) GEMM
|
|
||||||
*/
|
|
||||||
template<class Field, class ComplexField>
|
|
||||||
class MomentumProject
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
|
|
||||||
typedef typename Field::scalar_type scalar;
|
|
||||||
typedef typename Field::scalar_object scalar_object;
|
|
||||||
|
|
||||||
GridBase *grid;
|
|
||||||
uint64_t nmom;
|
|
||||||
uint64_t nxyz;
|
|
||||||
uint64_t nt;
|
|
||||||
uint64_t nbtw;
|
|
||||||
uint64_t words;
|
|
||||||
|
|
||||||
deviceVector<scalar> BLAS_V; //
|
|
||||||
deviceVector<scalar> BLAS_M; //
|
|
||||||
deviceVector<scalar> BLAS_P; //
|
|
||||||
|
|
||||||
MomentumProject(){};
|
|
||||||
~MomentumProject(){ Deallocate(); };
|
|
||||||
|
|
||||||
void Deallocate(void)
|
|
||||||
{
|
|
||||||
grid=nullptr;
|
|
||||||
nmom=0;
|
|
||||||
nxyz=0;
|
|
||||||
nt=0;
|
|
||||||
nbtw=0;
|
|
||||||
words=0;
|
|
||||||
BLAS_V.resize(0);
|
|
||||||
BLAS_M.resize(0);
|
|
||||||
BLAS_P.resize(0);
|
|
||||||
}
|
|
||||||
void Allocate(int _nmom,GridBase *_grid)
|
|
||||||
{
|
|
||||||
grid=_grid;
|
|
||||||
Coordinate ldims = grid->LocalDimensions();
|
|
||||||
|
|
||||||
nmom=_nmom;
|
|
||||||
nt = ldims[grid->Nd()-1];
|
|
||||||
nxyz = grid->lSites()/nt;
|
|
||||||
words = sizeof(scalar_object)/sizeof(scalar);
|
|
||||||
nbtw = nt * words;
|
|
||||||
|
|
||||||
BLAS_V.resize (nxyz * nt * words );
|
|
||||||
BLAS_M.resize (nmom * nxyz );
|
|
||||||
BLAS_P.resize (nmom * nt * words );
|
|
||||||
}
|
|
||||||
void ImportMomenta(const std::vector <ComplexField> &momenta)
|
|
||||||
{
|
|
||||||
GRID_ASSERT(momenta.size()==nmom);
|
|
||||||
// might as well just make the momenta here
|
|
||||||
typedef typename Field::vector_object vobj;
|
|
||||||
|
|
||||||
int nd = grid->_ndimension;
|
|
||||||
|
|
||||||
uint64_t sz = BLAS_M.size();
|
|
||||||
|
|
||||||
GRID_ASSERT(momenta.size()==nmom)
|
|
||||||
GRID_ASSERT(momenta[0].Grid()==grid);
|
|
||||||
GRID_ASSERT(sz = nxyz * nmom);
|
|
||||||
|
|
||||||
Coordinate rdimensions = grid->_rdimensions;
|
|
||||||
Coordinate ldims = grid->LocalDimensions();
|
|
||||||
int64_t osites = grid->oSites();
|
|
||||||
Coordinate simd = grid->_simd_layout;
|
|
||||||
const int Nsimd = vobj::Nsimd();
|
|
||||||
uint64_t lwords = words; // local variable for copy in to GPU
|
|
||||||
int64_t Nxyz = nxyz;
|
|
||||||
auto blasData_p = &BLAS_M[0];
|
|
||||||
for(int m=0;m<momenta.size();m++){
|
|
||||||
|
|
||||||
autoView( Data , momenta[m], AcceleratorRead);
|
|
||||||
auto Data_p = &Data[0];
|
|
||||||
|
|
||||||
accelerator_for(xyz,nxyz,1,{
|
|
||||||
//////////////////////////////////////////
|
|
||||||
// isite -- map lane within buffer to lane within lattice
|
|
||||||
////////////////////////////////////////////
|
|
||||||
Coordinate lcoor(nd,0);
|
|
||||||
Lexicographic::CoorFromIndex(lcoor,xyz,ldims);
|
|
||||||
|
|
||||||
Coordinate icoor(nd);
|
|
||||||
Coordinate ocoor(nd);
|
|
||||||
for (int d = 0; d < nd; d++) {
|
|
||||||
icoor[d] = lcoor[d]/rdimensions[d];
|
|
||||||
ocoor[d] = lcoor[d]%rdimensions[d];
|
|
||||||
}
|
|
||||||
int64_t osite;
|
|
||||||
int64_t isite;
|
|
||||||
Lexicographic::IndexFromCoor(ocoor,osite,rdimensions);
|
|
||||||
Lexicographic::IndexFromCoor(icoor,isite,simd);
|
|
||||||
|
|
||||||
// BLAS_M[nmom][slice_vol]
|
|
||||||
// Fortran Column major BLAS layout is M_xyz,mom
|
|
||||||
scalar data = extractLane(isite,Data[osite]);
|
|
||||||
uint64_t idx = xyz+m*Nxyz;
|
|
||||||
blasData_p[idx] = data;
|
|
||||||
});
|
|
||||||
}
|
|
||||||
}
|
|
||||||
void ImportVector(Field &vec)
|
|
||||||
{
|
|
||||||
typedef typename Field::vector_object vobj;
|
|
||||||
|
|
||||||
int nd = grid->_ndimension;
|
|
||||||
|
|
||||||
uint64_t sz = BLAS_V.size();
|
|
||||||
|
|
||||||
GRID_ASSERT(sz = nxyz * words * nt);
|
|
||||||
|
|
||||||
Coordinate rdimensions = grid->_rdimensions;
|
|
||||||
Coordinate ldims= grid->LocalDimensions();
|
|
||||||
int64_t osites = grid->oSites();
|
|
||||||
Coordinate simd = grid->_simd_layout;
|
|
||||||
const int Nsimd = vobj::Nsimd();
|
|
||||||
uint64_t lwords= words; // local variable for copy in to GPU
|
|
||||||
|
|
||||||
auto blasData_p = &BLAS_V[0];
|
|
||||||
autoView( Data , vec, AcceleratorRead);
|
|
||||||
auto Data_p = &Data[0];
|
|
||||||
|
|
||||||
int64_t nwords = words;// for capture
|
|
||||||
int64_t Nt = nt;// for capture
|
|
||||||
|
|
||||||
accelerator_for(sf,osites,Nsimd,{
|
|
||||||
#ifdef GRID_SIMT
|
|
||||||
{
|
|
||||||
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
|
|
||||||
#else
|
|
||||||
for(int lane=0;lane<Nsimd;lane++) {
|
|
||||||
#endif
|
|
||||||
//////////////////////////////////////////
|
|
||||||
// isite -- map lane within buffer to lane within lattice
|
|
||||||
////////////////////////////////////////////
|
|
||||||
Coordinate lcoor(nd,0);
|
|
||||||
Coordinate icoor(nd);
|
|
||||||
Coordinate ocoor(nd);
|
|
||||||
|
|
||||||
Lexicographic::CoorFromIndex(icoor,lane,simd);
|
|
||||||
Lexicographic::CoorFromIndex(ocoor,sf,rdimensions);
|
|
||||||
|
|
||||||
|
|
||||||
int64_t l_xyz = 0;
|
|
||||||
for (int d = 0; d < nd; d++) {
|
|
||||||
lcoor[d] = rdimensions[d]*icoor[d] + ocoor[d];
|
|
||||||
}
|
|
||||||
uint64_t l_t = lcoor[nd-1];
|
|
||||||
|
|
||||||
Coordinate xyz_coor = lcoor;
|
|
||||||
xyz_coor[nd-1] =0;
|
|
||||||
Lexicographic::IndexFromCoor(xyz_coor,l_xyz,ldims);
|
|
||||||
|
|
||||||
|
|
||||||
scalar_object data = extractLane(lane,Data[sf]);
|
|
||||||
scalar *data_words = (scalar *) &data;
|
|
||||||
for(int w = 0 ; w < nwords; w++) {
|
|
||||||
// BLAS_V[slice_vol][nt][words]
|
|
||||||
// Fortran Column major BLAS layout is V_(t,w)_xyz
|
|
||||||
uint64_t idx = w+l_t*nwords + l_xyz * nwords * Nt;
|
|
||||||
blasData_p[idx] = data_words[w];
|
|
||||||
}
|
|
||||||
#ifdef GRID_SIMT
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
});
|
|
||||||
}
|
|
||||||
void ExportMomentumProjection(std::vector<typename Field::scalar_object> &projection)
|
|
||||||
{
|
|
||||||
projection.resize(nmom*nt);
|
|
||||||
acceleratorCopyFromDevice(&BLAS_P[0],(scalar *)&projection[0],BLAS_P.size()*sizeof(scalar));
|
|
||||||
// Could decide on a layout late?
|
|
||||||
}
|
|
||||||
|
|
||||||
// Row major layout "C" order:
|
|
||||||
// BLAS_V[slice_vol][nt][words]
|
|
||||||
// BLAS_M[nmom][slice_vol]
|
|
||||||
// BLAS_P[nmom][nt][words]
|
|
||||||
//
|
|
||||||
// Fortran Column major BLAS layout is V_(w,t)_xyz
|
|
||||||
// Fortran Column major BLAS layout is M_xyz,mom
|
|
||||||
// Fortran Column major BLAS layout is P_(w,t),mom
|
|
||||||
//
|
|
||||||
// Projected
|
|
||||||
//
|
|
||||||
// P = (V * M)_(w,t),mom
|
|
||||||
//
|
|
||||||
void Project(Field &data,std::vector< typename Field::scalar_object > & projected_gdata)
|
|
||||||
{
|
|
||||||
double t_import=0;
|
|
||||||
double t_export=0;
|
|
||||||
double t_gemm =0;
|
|
||||||
double t_allreduce=0;
|
|
||||||
t_import-=usecond();
|
|
||||||
this->ImportVector(data);
|
|
||||||
|
|
||||||
std::vector< typename Field::scalar_object > projected_planes;
|
|
||||||
|
|
||||||
deviceVector<scalar *> Vd(1);
|
|
||||||
deviceVector<scalar *> Md(1);
|
|
||||||
deviceVector<scalar *> Pd(1);
|
|
||||||
|
|
||||||
scalar * Vh = & BLAS_V[0];
|
|
||||||
scalar * Mh = & BLAS_M[0];
|
|
||||||
scalar * Ph = & BLAS_P[0];
|
|
||||||
|
|
||||||
acceleratorPut(Vd[0],Vh);
|
|
||||||
acceleratorPut(Md[0],Mh);
|
|
||||||
acceleratorPut(Pd[0],Ph);
|
|
||||||
t_import+=usecond();
|
|
||||||
|
|
||||||
GridBLAS BLAS;
|
|
||||||
|
|
||||||
/////////////////////////////////////////
|
|
||||||
// P_im = VMmx . Vxi
|
|
||||||
/////////////////////////////////////////
|
|
||||||
t_gemm-=usecond();
|
|
||||||
BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
|
||||||
words*nt,nmom,nxyz,
|
|
||||||
scalar(1.0),
|
|
||||||
Vd,
|
|
||||||
Md,
|
|
||||||
scalar(0.0), // wipe out result
|
|
||||||
Pd);
|
|
||||||
BLAS.synchronise();
|
|
||||||
t_gemm+=usecond();
|
|
||||||
|
|
||||||
t_export-=usecond();
|
|
||||||
ExportMomentumProjection(projected_planes); // resizes
|
|
||||||
t_export+=usecond();
|
|
||||||
|
|
||||||
/////////////////////////////////
|
|
||||||
// Reduce across MPI ranks
|
|
||||||
/////////////////////////////////
|
|
||||||
int nd = grid->Nd();
|
|
||||||
int gt = grid->GlobalDimensions()[nd-1];
|
|
||||||
int lt = grid->LocalDimensions()[nd-1];
|
|
||||||
projected_gdata.resize(gt*nmom);
|
|
||||||
for(int t=0;t<gt*nmom;t++){ // global Nt array with zeroes for stuff not on this node
|
|
||||||
projected_gdata[t]=Zero();
|
|
||||||
}
|
|
||||||
for(int t=0;t<lt;t++){
|
|
||||||
for(int m=0;m<nmom;m++){
|
|
||||||
int st = grid->LocalStarts()[nd-1];
|
|
||||||
projected_gdata[t+st + gt*m] = projected_planes[t+lt*m];
|
|
||||||
}}
|
|
||||||
t_allreduce-=usecond();
|
|
||||||
grid->GlobalSumVector((scalar *)&projected_gdata[0],gt*nmom*words);
|
|
||||||
t_allreduce+=usecond();
|
|
||||||
|
|
||||||
std::cout << GridLogPerformance<<" MomentumProject t_import "<<t_import<<"us"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance<<" MomentumProject t_export "<<t_export<<"us"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance<<" MomentumProject t_gemm "<<t_gemm<<"us"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance<<" MomentumProject t_reduce "<<t_allreduce<<"us"<<std::endl;
|
|
||||||
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
|
||||||
@@ -1,376 +0,0 @@
|
|||||||
/*************************************************************************************
|
|
||||||
|
|
||||||
Grid physics library, www.github.com/paboyle/Grid
|
|
||||||
|
|
||||||
Source file: MultiRHSBlockCGLinalg.h
|
|
||||||
|
|
||||||
Copyright (C) 2024
|
|
||||||
|
|
||||||
Author: Peter Boyle <pboyle@bnl.gov>
|
|
||||||
|
|
||||||
This program is free software; you can redistribute it and/or modify
|
|
||||||
it under the terms of the GNU General Public License as published by
|
|
||||||
the Free Software Foundation; either version 2 of the License, or
|
|
||||||
(at your option) any later version.
|
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License along
|
|
||||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
||||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
||||||
|
|
||||||
See the full license in the file "LICENSE" in the top level distribution directory
|
|
||||||
*************************************************************************************/
|
|
||||||
/* END LEGAL */
|
|
||||||
#pragma once
|
|
||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
|
||||||
|
|
||||||
|
|
||||||
/* Need helper object for BLAS accelerated mrhs blockCG */
|
|
||||||
template<class Field>
|
|
||||||
class MultiRHSBlockCGLinalg
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
|
|
||||||
typedef typename Field::scalar_type scalar;
|
|
||||||
typedef typename Field::scalar_object scalar_object;
|
|
||||||
typedef typename Field::vector_object vector_object;
|
|
||||||
|
|
||||||
deviceVector<scalar> BLAS_X; // nrhs x vol -- the sources
|
|
||||||
deviceVector<scalar> BLAS_Y; // nrhs x vol -- the result
|
|
||||||
deviceVector<scalar> BLAS_C; // nrhs x nrhs -- the coefficients
|
|
||||||
deviceVector<scalar> BLAS_Cred; // nrhs x nrhs x oSites -- reduction buffer
|
|
||||||
deviceVector<scalar *> Xdip;
|
|
||||||
deviceVector<scalar *> Ydip;
|
|
||||||
deviceVector<scalar *> Cdip;
|
|
||||||
|
|
||||||
MultiRHSBlockCGLinalg() {};
|
|
||||||
~MultiRHSBlockCGLinalg(){ Deallocate(); };
|
|
||||||
|
|
||||||
void Deallocate(void)
|
|
||||||
{
|
|
||||||
Xdip.resize(0);
|
|
||||||
Ydip.resize(0);
|
|
||||||
Cdip.resize(0);
|
|
||||||
BLAS_Cred.resize(0);
|
|
||||||
BLAS_C.resize(0);
|
|
||||||
BLAS_X.resize(0);
|
|
||||||
BLAS_Y.resize(0);
|
|
||||||
}
|
|
||||||
void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0)
|
|
||||||
{
|
|
||||||
std::vector<Field> Y_copy(AP.size(),AP[0].Grid());
|
|
||||||
for(int r=0;r<AP.size();r++){
|
|
||||||
Y_copy[r] = Y[r];
|
|
||||||
}
|
|
||||||
MulMatrix(AP,m,X);
|
|
||||||
for(int r=0;r<AP.size();r++){
|
|
||||||
AP[r] = scale*AP[r]+Y_copy[r];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
void MulMatrix(std::vector<Field> &Y, Eigen::MatrixXcd &m , const std::vector<Field> &X)
|
|
||||||
{
|
|
||||||
typedef typename Field::scalar_type scomplex;
|
|
||||||
GridBase *grid;
|
|
||||||
uint64_t vol;
|
|
||||||
uint64_t words;
|
|
||||||
|
|
||||||
int nrhs = Y.size();
|
|
||||||
grid = X[0].Grid();
|
|
||||||
vol = grid->lSites();
|
|
||||||
words = sizeof(scalar_object)/sizeof(scalar);
|
|
||||||
int64_t vw = vol * words;
|
|
||||||
|
|
||||||
RealD t0 = usecond();
|
|
||||||
BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
|
|
||||||
BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
|
|
||||||
BLAS_C.resize(nrhs * nrhs);// cost free if size doesn't change
|
|
||||||
RealD t1 = usecond();
|
|
||||||
|
|
||||||
/////////////////////////////////////////////
|
|
||||||
// Copy in the multi-rhs sources
|
|
||||||
/////////////////////////////////////////////
|
|
||||||
for(int r=0;r<nrhs;r++){
|
|
||||||
int64_t offset = r*vw;
|
|
||||||
autoView(x_v,X[r],AcceleratorRead);
|
|
||||||
acceleratorCopyDeviceToDevice(&x_v[0],&BLAS_X[offset],sizeof(scalar_object)*vol);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Assumes Eigen storage contiguous
|
|
||||||
acceleratorCopyToDevice(&m(0,0),&BLAS_C[0],BLAS_C.size()*sizeof(scalar));
|
|
||||||
|
|
||||||
/*
|
|
||||||
* in Fortran column major notation (cuBlas order)
|
|
||||||
*
|
|
||||||
* Xxr = [X1(x)][..][Xn(x)]
|
|
||||||
* Yxr = [Y1(x)][..][Ym(x)]
|
|
||||||
* Y = X . C
|
|
||||||
*/
|
|
||||||
deviceVector<scalar *> Xd(1);
|
|
||||||
deviceVector<scalar *> Yd(1);
|
|
||||||
deviceVector<scalar *> Cd(1);
|
|
||||||
|
|
||||||
scalar * Xh = & BLAS_X[0];
|
|
||||||
scalar * Yh = & BLAS_Y[0];
|
|
||||||
scalar * Ch = & BLAS_C[0];
|
|
||||||
|
|
||||||
acceleratorPut(Xd[0],Xh);
|
|
||||||
acceleratorPut(Yd[0],Yh);
|
|
||||||
acceleratorPut(Cd[0],Ch);
|
|
||||||
|
|
||||||
RealD t2 = usecond();
|
|
||||||
GridBLAS BLAS;
|
|
||||||
/////////////////////////////////////////
|
|
||||||
// Y = X*C (transpose?)
|
|
||||||
/////////////////////////////////////////
|
|
||||||
BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
|
||||||
vw,nrhs,nrhs,
|
|
||||||
scalar(1.0),
|
|
||||||
Xd,
|
|
||||||
Cd,
|
|
||||||
scalar(0.0), // wipe out Y
|
|
||||||
Yd);
|
|
||||||
BLAS.synchronise();
|
|
||||||
RealD t3 = usecond();
|
|
||||||
|
|
||||||
// Copy back Y = m X
|
|
||||||
for(int r=0;r<nrhs;r++){
|
|
||||||
int64_t offset = r*vw;
|
|
||||||
autoView(y_v,Y[r],AcceleratorWrite);
|
|
||||||
acceleratorCopyDeviceToDevice(&BLAS_Y[offset],&y_v[0],sizeof(scalar_object)*vol);
|
|
||||||
}
|
|
||||||
RealD t4 = usecond();
|
|
||||||
std::cout <<GridLogPerformance << "MulMatrix alloc took "<< t1-t0<<" us"<<std::endl;
|
|
||||||
std::cout <<GridLogPerformance<< "MulMatrix preamble took "<< t2-t1<<" us"<<std::endl;
|
|
||||||
std::cout <<GridLogPerformance<< "MulMatrix blas took "<< t3-t2<<" us"<<std::endl;
|
|
||||||
std::cout <<GridLogPerformance<< "MulMatrix copy took "<< t4-t3<<" us"<<std::endl;
|
|
||||||
std::cout <<GridLogPerformance<< "MulMatrix total "<< t4-t0<<" us"<<std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y)
|
|
||||||
{
|
|
||||||
#if 0
|
|
||||||
int nrhs;
|
|
||||||
GridBase *grid;
|
|
||||||
uint64_t vol;
|
|
||||||
uint64_t words;
|
|
||||||
|
|
||||||
nrhs = X.size();
|
|
||||||
GRID_ASSERT(X.size()==Y.size());
|
|
||||||
conformable(X[0],Y[0]);
|
|
||||||
|
|
||||||
grid = X[0].Grid();
|
|
||||||
vol = grid->lSites();
|
|
||||||
words = sizeof(scalar_object)/sizeof(scalar);
|
|
||||||
int64_t vw = vol * words;
|
|
||||||
|
|
||||||
RealD t0 = usecond();
|
|
||||||
BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
|
|
||||||
BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
|
|
||||||
BLAS_C.resize(nrhs * nrhs);// cost free if size doesn't change
|
|
||||||
RealD t1 = usecond();
|
|
||||||
|
|
||||||
/////////////////////////////////////////////
|
|
||||||
// Copy in the multi-rhs sources
|
|
||||||
/////////////////////////////////////////////
|
|
||||||
for(int r=0;r<nrhs;r++){
|
|
||||||
int64_t offset = r*vw;
|
|
||||||
autoView(x_v,X[r],AcceleratorRead);
|
|
||||||
acceleratorCopyDeviceToDevice(&x_v[0],&BLAS_X[offset],sizeof(scalar_object)*vol);
|
|
||||||
autoView(y_v,Y[r],AcceleratorRead);
|
|
||||||
acceleratorCopyDeviceToDevice(&y_v[0],&BLAS_Y[offset],sizeof(scalar_object)*vol);
|
|
||||||
}
|
|
||||||
RealD t2 = usecond();
|
|
||||||
|
|
||||||
/*
|
|
||||||
* in Fortran column major notation (cuBlas order)
|
|
||||||
*
|
|
||||||
* Xxr = [X1(x)][..][Xn(x)]
|
|
||||||
*
|
|
||||||
* Yxr = [Y1(x)][..][Ym(x)]
|
|
||||||
*
|
|
||||||
* C_rs = X^dag Y
|
|
||||||
*/
|
|
||||||
deviceVector<scalar *> Xd(1);
|
|
||||||
deviceVector<scalar *> Yd(1);
|
|
||||||
deviceVector<scalar *> Cd(1);
|
|
||||||
|
|
||||||
scalar * Xh = & BLAS_X[0];
|
|
||||||
scalar * Yh = & BLAS_Y[0];
|
|
||||||
scalar * Ch = & BLAS_C[0];
|
|
||||||
|
|
||||||
acceleratorPut(Xd[0],Xh);
|
|
||||||
acceleratorPut(Yd[0],Yh);
|
|
||||||
acceleratorPut(Cd[0],Ch);
|
|
||||||
|
|
||||||
GridBLAS BLAS;
|
|
||||||
|
|
||||||
RealD t3 = usecond();
|
|
||||||
/////////////////////////////////////////
|
|
||||||
// C_rs = X^dag Y
|
|
||||||
/////////////////////////////////////////
|
|
||||||
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
|
|
||||||
nrhs,nrhs,vw,
|
|
||||||
ComplexD(1.0),
|
|
||||||
Xd,
|
|
||||||
Yd,
|
|
||||||
ComplexD(0.0), // wipe out C
|
|
||||||
Cd);
|
|
||||||
BLAS.synchronise();
|
|
||||||
RealD t4 = usecond();
|
|
||||||
|
|
||||||
std::vector<scalar> HOST_C(BLAS_C.size()); // nrhs . nrhs -- the coefficients
|
|
||||||
acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar));
|
|
||||||
grid->GlobalSumVector(&HOST_C[0],nrhs*nrhs);
|
|
||||||
|
|
||||||
RealD t5 = usecond();
|
|
||||||
for(int rr=0;rr<nrhs;rr++){
|
|
||||||
for(int r=0;r<nrhs;r++){
|
|
||||||
int off = r+nrhs*rr;
|
|
||||||
m(r,rr)=HOST_C[off];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
RealD t6 = usecond();
|
|
||||||
uint64_t M=nrhs;
|
|
||||||
uint64_t N=nrhs;
|
|
||||||
uint64_t K=vw;
|
|
||||||
RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K);
|
|
||||||
RealD flops = 8.0*M*N*K;
|
|
||||||
flops = flops/(t4-t3)/1.e3;
|
|
||||||
bytes = bytes/(t4-t3)/1.e3;
|
|
||||||
std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
|
|
||||||
std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
|
|
||||||
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t2 "<< t2-t1<<" us"<<std::endl;
|
|
||||||
std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
|
|
||||||
std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
|
|
||||||
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< flops<<" GF/s"<<std::endl;
|
|
||||||
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< bytes<<" GB/s"<<std::endl;
|
|
||||||
std::cout <<GridLogPerformance<< "InnerProductMatrix gsum t5 "<< t5-t4<<" us"<<std::endl;
|
|
||||||
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t6 "<< t6-t5<<" us"<<std::endl;
|
|
||||||
std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
|
|
||||||
#else
|
|
||||||
int nrhs;
|
|
||||||
GridBase *grid;
|
|
||||||
uint64_t vol;
|
|
||||||
uint64_t words;
|
|
||||||
|
|
||||||
nrhs = X.size();
|
|
||||||
GRID_ASSERT(X.size()==Y.size());
|
|
||||||
conformable(X[0],Y[0]);
|
|
||||||
|
|
||||||
grid = X[0].Grid();
|
|
||||||
int rd0 = grid->_rdimensions[0] * grid->_rdimensions[1];
|
|
||||||
vol = grid->oSites()/rd0;
|
|
||||||
words = rd0*sizeof(vector_object)/sizeof(scalar);
|
|
||||||
int64_t vw = vol * words;
|
|
||||||
GRID_ASSERT(vw == grid->lSites()*sizeof(scalar_object)/sizeof(scalar));
|
|
||||||
|
|
||||||
RealD t0 = usecond();
|
|
||||||
BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
|
|
||||||
BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
|
|
||||||
BLAS_Cred.resize(nrhs * nrhs * vol);// cost free if size doesn't change
|
|
||||||
RealD t1 = usecond();
|
|
||||||
|
|
||||||
/////////////////////////////////////////////
|
|
||||||
// Copy in the multi-rhs sources -- layout batched BLAS ready
|
|
||||||
/////////////////////////////////////////////
|
|
||||||
for(int r=0;r<nrhs;r++){
|
|
||||||
autoView(x_v,X[r],AcceleratorRead);
|
|
||||||
autoView(y_v,Y[r],AcceleratorRead);
|
|
||||||
scalar *from_x=(scalar *)&x_v[0];
|
|
||||||
scalar *from_y=(scalar *)&y_v[0];
|
|
||||||
scalar *BX = &BLAS_X[0];
|
|
||||||
scalar *BY = &BLAS_Y[0];
|
|
||||||
accelerator_for(ssw,vw,1,{
|
|
||||||
uint64_t ss=ssw/words;
|
|
||||||
uint64_t w=ssw%words;
|
|
||||||
uint64_t offset = w+r*words+ss*nrhs*words; // [ss][rhs][words]
|
|
||||||
BX[offset] = from_x[ssw];
|
|
||||||
BY[offset] = from_y[ssw];
|
|
||||||
});
|
|
||||||
}
|
|
||||||
RealD t2 = usecond();
|
|
||||||
|
|
||||||
/*
|
|
||||||
* in Fortran column major notation (cuBlas order)
|
|
||||||
*
|
|
||||||
* Xxr = [X1(x)][..][Xn(x)]
|
|
||||||
*
|
|
||||||
* Yxr = [Y1(x)][..][Ym(x)]
|
|
||||||
*
|
|
||||||
* C_rs = X^dag Y
|
|
||||||
*/
|
|
||||||
Xdip.resize(vol);
|
|
||||||
Ydip.resize(vol);
|
|
||||||
Cdip.resize(vol);
|
|
||||||
std::vector<scalar *> Xh(vol);
|
|
||||||
std::vector<scalar *> Yh(vol);
|
|
||||||
std::vector<scalar *> Ch(vol);
|
|
||||||
for(uint64_t ss=0;ss<vol;ss++){
|
|
||||||
|
|
||||||
Xh[ss] = & BLAS_X[ss*nrhs*words];
|
|
||||||
Yh[ss] = & BLAS_Y[ss*nrhs*words];
|
|
||||||
Ch[ss] = & BLAS_Cred[ss*nrhs*nrhs];
|
|
||||||
|
|
||||||
}
|
|
||||||
acceleratorCopyToDevice(&Xh[0],&Xdip[0],vol*sizeof(scalar *));
|
|
||||||
acceleratorCopyToDevice(&Yh[0],&Ydip[0],vol*sizeof(scalar *));
|
|
||||||
acceleratorCopyToDevice(&Ch[0],&Cdip[0],vol*sizeof(scalar *));
|
|
||||||
|
|
||||||
GridBLAS BLAS;
|
|
||||||
|
|
||||||
RealD t3 = usecond();
|
|
||||||
/////////////////////////////////////////
|
|
||||||
// C_rs = X^dag Y
|
|
||||||
/////////////////////////////////////////
|
|
||||||
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
|
|
||||||
nrhs,nrhs,words,
|
|
||||||
ComplexD(1.0),
|
|
||||||
Xdip,
|
|
||||||
Ydip,
|
|
||||||
ComplexD(0.0), // wipe out C
|
|
||||||
Cdip);
|
|
||||||
BLAS.synchronise();
|
|
||||||
RealD t4 = usecond();
|
|
||||||
|
|
||||||
std::vector<scalar> HOST_C(BLAS_Cred.size()); // nrhs . nrhs -- the coefficients
|
|
||||||
acceleratorCopyFromDevice(&BLAS_Cred[0],&HOST_C[0],BLAS_Cred.size()*sizeof(scalar));
|
|
||||||
|
|
||||||
RealD t5 = usecond();
|
|
||||||
m = Eigen::MatrixXcd::Zero(nrhs,nrhs);
|
|
||||||
for(int ss=0;ss<vol;ss++){
|
|
||||||
Eigen::Map<Eigen::MatrixXcd> eC((std::complex<double> *)&HOST_C[ss*nrhs*nrhs],nrhs,nrhs);
|
|
||||||
m = m + eC;
|
|
||||||
}
|
|
||||||
RealD t6l = usecond();
|
|
||||||
grid->GlobalSumVector((scalar *) &m(0,0),nrhs*nrhs);
|
|
||||||
RealD t6 = usecond();
|
|
||||||
uint64_t M=nrhs;
|
|
||||||
uint64_t N=nrhs;
|
|
||||||
uint64_t K=vw;
|
|
||||||
RealD xybytes = grid->lSites()*sizeof(scalar_object);
|
|
||||||
RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K);
|
|
||||||
RealD flops = 8.0*M*N*K;
|
|
||||||
flops = flops/(t4-t3)/1.e3;
|
|
||||||
bytes = bytes/(t4-t3)/1.e3;
|
|
||||||
xybytes = 4*xybytes/(t2-t1)/1.e3;
|
|
||||||
std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
|
|
||||||
std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
|
|
||||||
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t2 "<< t2-t1<<" us "<<xybytes<<" GB/s"<<std::endl;
|
|
||||||
std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
|
|
||||||
std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
|
|
||||||
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< flops<<" GF/s"<<std::endl;
|
|
||||||
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< bytes<<" GB/s"<<std::endl;
|
|
||||||
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t5 "<< t5-t4<<" us"<<std::endl;
|
|
||||||
std::cout <<GridLogPerformance<< "InnerProductMatrix lsum t6l "<< t6l-t5<<" us"<<std::endl;
|
|
||||||
std::cout <<GridLogPerformance<< "InnerProductMatrix gsum t6 "<< t6-t6l<<" us"<<std::endl;
|
|
||||||
std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
|
||||||
@@ -1,513 +0,0 @@
|
|||||||
/*************************************************************************************
|
|
||||||
|
|
||||||
Grid physics library, www.github.com/paboyle/Grid
|
|
||||||
|
|
||||||
Source file: MultiRHSDeflation.h
|
|
||||||
|
|
||||||
Copyright (C) 2023
|
|
||||||
|
|
||||||
Author: Peter Boyle <pboyle@bnl.gov>
|
|
||||||
|
|
||||||
This program is free software; you can redistribute it and/or modify
|
|
||||||
it under the terms of the GNU General Public License as published by
|
|
||||||
the Free Software Foundation; either version 2 of the License, or
|
|
||||||
(at your option) any later version.
|
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License along
|
|
||||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
||||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
||||||
|
|
||||||
See the full license in the file "LICENSE" in the top level distribution directory
|
|
||||||
*************************************************************************************/
|
|
||||||
/* END LEGAL */
|
|
||||||
#pragma once
|
|
||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
|
||||||
|
|
||||||
|
|
||||||
/*
|
|
||||||
MultiRHS block projection
|
|
||||||
|
|
||||||
Import basis -> nblock x nbasis x (block x internal)
|
|
||||||
Import vector of fine lattice objects -> nblock x nrhs x (block x internal)
|
|
||||||
|
|
||||||
=> coarse_(nrhs x nbasis )^block = via batched GEMM
|
|
||||||
|
|
||||||
//template<class vobj,class CComplex,int nbasis,class VLattice>
|
|
||||||
//inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
|
|
||||||
// const VLattice &fineData,
|
|
||||||
// const VLattice &Basis)
|
|
||||||
*/
|
|
||||||
|
|
||||||
template<class Field>
|
|
||||||
class MultiRHSBlockProject
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
|
|
||||||
typedef typename Field::scalar_type scalar;
|
|
||||||
typedef typename Field::scalar_object scalar_object;
|
|
||||||
typedef Field Fermion;
|
|
||||||
|
|
||||||
int nbasis;
|
|
||||||
GridBase *coarse_grid;
|
|
||||||
GridBase *fine_grid;
|
|
||||||
uint64_t block_vol;
|
|
||||||
uint64_t fine_vol;
|
|
||||||
uint64_t coarse_vol;
|
|
||||||
uint64_t words;
|
|
||||||
|
|
||||||
// Row major layout "C" order:
|
|
||||||
// BLAS_V[coarse_vol][nbasis][block_vol][words]
|
|
||||||
// BLAS_F[coarse_vol][nrhs][block_vol][words]
|
|
||||||
// BLAS_C[coarse_vol][nrhs][nbasis]
|
|
||||||
/*
|
|
||||||
* in Fortran column major notation (cuBlas order)
|
|
||||||
*
|
|
||||||
* Vxb = [v1(x)][..][vn(x)] ... x coarse vol
|
|
||||||
*
|
|
||||||
* Fxr = [r1(x)][..][rm(x)] ... x coarse vol
|
|
||||||
*
|
|
||||||
* Block project:
|
|
||||||
* C_br = V^dag F x coarse vol
|
|
||||||
*
|
|
||||||
* Block promote:
|
|
||||||
* F_xr = Vxb Cbr x coarse_vol
|
|
||||||
*/
|
|
||||||
deviceVector<scalar> BLAS_V; // words * block_vol * nbasis x coarse_vol
|
|
||||||
deviceVector<scalar> BLAS_F; // nrhs x fine_vol * words -- the sources
|
|
||||||
deviceVector<scalar> BLAS_C; // nrhs x coarse_vol * nbasis -- the coarse coeffs
|
|
||||||
|
|
||||||
RealD blasNorm2(deviceVector<scalar> &blas)
|
|
||||||
{
|
|
||||||
scalar ss(0.0);
|
|
||||||
std::vector<scalar> tmp(blas.size());
|
|
||||||
acceleratorCopyFromDevice(&blas[0],&tmp[0],blas.size()*sizeof(scalar));
|
|
||||||
for(int64_t s=0;s<blas.size();s++){
|
|
||||||
ss=ss+tmp[s]*adj(tmp[s]);
|
|
||||||
}
|
|
||||||
coarse_grid->GlobalSum(ss);
|
|
||||||
return real(ss);
|
|
||||||
}
|
|
||||||
|
|
||||||
MultiRHSBlockProject(){};
|
|
||||||
~MultiRHSBlockProject(){ Deallocate(); };
|
|
||||||
|
|
||||||
void Deallocate(void)
|
|
||||||
{
|
|
||||||
nbasis=0;
|
|
||||||
coarse_grid=nullptr;
|
|
||||||
fine_grid=nullptr;
|
|
||||||
fine_vol=0;
|
|
||||||
block_vol=0;
|
|
||||||
coarse_vol=0;
|
|
||||||
words=0;
|
|
||||||
BLAS_V.resize(0);
|
|
||||||
BLAS_F.resize(0);
|
|
||||||
BLAS_C.resize(0);
|
|
||||||
}
|
|
||||||
void Allocate(int _nbasis,GridBase *_fgrid,GridBase *_cgrid)
|
|
||||||
{
|
|
||||||
nbasis=_nbasis;
|
|
||||||
|
|
||||||
fine_grid=_fgrid;
|
|
||||||
coarse_grid=_cgrid;
|
|
||||||
|
|
||||||
fine_vol = fine_grid->lSites();
|
|
||||||
coarse_vol = coarse_grid->lSites();
|
|
||||||
block_vol = fine_vol/coarse_vol;
|
|
||||||
|
|
||||||
words = sizeof(scalar_object)/sizeof(scalar);
|
|
||||||
|
|
||||||
BLAS_V.resize (fine_vol * words * nbasis );
|
|
||||||
}
|
|
||||||
void ImportFineGridVectors(std::vector <Field > &vecs, deviceVector<scalar> &blas)
|
|
||||||
{
|
|
||||||
int nvec = vecs.size();
|
|
||||||
typedef typename Field::vector_object vobj;
|
|
||||||
// std::cout << GridLogMessage <<" BlockProjector importing "<<nvec<< " fine grid vectors" <<std::endl;
|
|
||||||
|
|
||||||
GRID_ASSERT(vecs[0].Grid()==fine_grid);
|
|
||||||
|
|
||||||
subdivides(coarse_grid,fine_grid); // require they map
|
|
||||||
|
|
||||||
int _ndimension = coarse_grid->_ndimension;
|
|
||||||
GRID_ASSERT(block_vol == fine_grid->oSites() / coarse_grid->oSites());
|
|
||||||
|
|
||||||
Coordinate block_r (_ndimension);
|
|
||||||
for(int d=0 ; d<_ndimension;d++){
|
|
||||||
block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d];
|
|
||||||
}
|
|
||||||
|
|
||||||
uint64_t sz = blas.size();
|
|
||||||
|
|
||||||
acceleratorMemSet(&blas[0],0,blas.size()*sizeof(scalar));
|
|
||||||
|
|
||||||
Coordinate fine_rdimensions = fine_grid->_rdimensions;
|
|
||||||
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
|
|
||||||
int64_t bv= block_vol;
|
|
||||||
for(int v=0;v<vecs.size();v++){
|
|
||||||
|
|
||||||
// std::cout << " BlockProjector importing vector"<<v<<" "<<norm2(vecs[v])<<std::endl;
|
|
||||||
autoView( fineData , vecs[v], AcceleratorRead);
|
|
||||||
|
|
||||||
auto blasData_p = &blas[0];
|
|
||||||
auto fineData_p = &fineData[0];
|
|
||||||
|
|
||||||
int64_t osites = fine_grid->oSites();
|
|
||||||
|
|
||||||
// loop over fine sites
|
|
||||||
const int Nsimd = vobj::Nsimd();
|
|
||||||
// std::cout << "sz "<<sz<<std::endl;
|
|
||||||
// std::cout << "prod "<<Nsimd * coarse_grid->oSites() * block_vol * nvec * words<<std::endl;
|
|
||||||
GRID_ASSERT(sz == Nsimd * coarse_grid->oSites() * block_vol * nvec * words);
|
|
||||||
uint64_t lwords= words; // local variable for copy in to GPU
|
|
||||||
accelerator_for(sf,osites,Nsimd,{
|
|
||||||
#ifdef GRID_SIMT
|
|
||||||
{
|
|
||||||
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
|
|
||||||
#else
|
|
||||||
for(int lane=0;lane<Nsimd;lane++) {
|
|
||||||
#endif
|
|
||||||
// One thread per fine site
|
|
||||||
Coordinate coor_f(_ndimension);
|
|
||||||
Coordinate coor_b(_ndimension);
|
|
||||||
Coordinate coor_c(_ndimension);
|
|
||||||
|
|
||||||
// Fine site to fine coor
|
|
||||||
Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions);
|
|
||||||
|
|
||||||
for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d];
|
|
||||||
for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d];
|
|
||||||
|
|
||||||
int sc;// coarse site
|
|
||||||
int sb;// block site
|
|
||||||
Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions);
|
|
||||||
Lexicographic::IndexFromCoor(coor_b,sb,block_r);
|
|
||||||
|
|
||||||
scalar_object data = extractLane(lane,fineData[sf]);
|
|
||||||
|
|
||||||
// BLAS layout address calculation
|
|
||||||
// words * block_vol * nbasis x coarse_vol
|
|
||||||
// coarse oSite x block vole x lanes
|
|
||||||
int64_t site = (lane*osites + sc*bv)*nvec
|
|
||||||
+ v*bv
|
|
||||||
+ sb;
|
|
||||||
|
|
||||||
// GRID_ASSERT(site*lwords<sz);
|
|
||||||
|
|
||||||
scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords];
|
|
||||||
|
|
||||||
*ptr = data;
|
|
||||||
#ifdef GRID_SIMT
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
});
|
|
||||||
// std::cout << " import fine Blas norm "<<blasNorm2(blas)<<std::endl;
|
|
||||||
// std::cout << " BlockProjector imported vector"<<v<<std::endl;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
void ExportFineGridVectors(std::vector <Field> &vecs, deviceVector<scalar> &blas)
|
|
||||||
{
|
|
||||||
typedef typename Field::vector_object vobj;
|
|
||||||
|
|
||||||
int nvec = vecs.size();
|
|
||||||
|
|
||||||
GRID_ASSERT(vecs[0].Grid()==fine_grid);
|
|
||||||
|
|
||||||
subdivides(coarse_grid,fine_grid); // require they map
|
|
||||||
|
|
||||||
int _ndimension = coarse_grid->_ndimension;
|
|
||||||
GRID_ASSERT(block_vol == fine_grid->oSites() / coarse_grid->oSites());
|
|
||||||
|
|
||||||
Coordinate block_r (_ndimension);
|
|
||||||
for(int d=0 ; d<_ndimension;d++){
|
|
||||||
block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d];
|
|
||||||
}
|
|
||||||
Coordinate fine_rdimensions = fine_grid->_rdimensions;
|
|
||||||
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
|
|
||||||
|
|
||||||
// std::cout << " export fine Blas norm "<<blasNorm2(blas)<<std::endl;
|
|
||||||
|
|
||||||
int64_t bv= block_vol;
|
|
||||||
for(int v=0;v<vecs.size();v++){
|
|
||||||
|
|
||||||
autoView( fineData , vecs[v], AcceleratorWrite);
|
|
||||||
|
|
||||||
auto blasData_p = &blas[0];
|
|
||||||
auto fineData_p = &fineData[0];
|
|
||||||
|
|
||||||
int64_t osites = fine_grid->oSites();
|
|
||||||
uint64_t lwords = words;
|
|
||||||
// std::cout << " Nsimd is "<<vobj::Nsimd() << std::endl;
|
|
||||||
// std::cout << " lwords is "<<lwords << std::endl;
|
|
||||||
// std::cout << " sizeof(scalar_object) is "<<sizeof(scalar_object) << std::endl;
|
|
||||||
// loop over fine sites
|
|
||||||
accelerator_for(sf,osites,vobj::Nsimd(),{
|
|
||||||
|
|
||||||
#ifdef GRID_SIMT
|
|
||||||
{
|
|
||||||
int lane=acceleratorSIMTlane(vobj::Nsimd()); // buffer lane
|
|
||||||
#else
|
|
||||||
for(int lane=0;lane<vobj::Nsimd();lane++) {
|
|
||||||
#endif
|
|
||||||
// One thread per fine site
|
|
||||||
Coordinate coor_f(_ndimension);
|
|
||||||
Coordinate coor_b(_ndimension);
|
|
||||||
Coordinate coor_c(_ndimension);
|
|
||||||
|
|
||||||
Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions);
|
|
||||||
|
|
||||||
for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d];
|
|
||||||
for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d];
|
|
||||||
|
|
||||||
int sc;
|
|
||||||
int sb;
|
|
||||||
Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions);
|
|
||||||
Lexicographic::IndexFromCoor(coor_b,sb,block_r);
|
|
||||||
|
|
||||||
// BLAS layout address calculation
|
|
||||||
// words * block_vol * nbasis x coarse_vol
|
|
||||||
int64_t site = (lane*osites + sc*bv)*nvec
|
|
||||||
+ v*bv
|
|
||||||
+ sb;
|
|
||||||
|
|
||||||
scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords];
|
|
||||||
|
|
||||||
scalar_object data = *ptr;
|
|
||||||
|
|
||||||
insertLane(lane,fineData[sf],data);
|
|
||||||
#ifdef GRID_SIMT
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
});
|
|
||||||
}
|
|
||||||
}
|
|
||||||
template<class vobj>
|
|
||||||
void ImportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas)
|
|
||||||
{
|
|
||||||
int nvec = vecs.size();
|
|
||||||
typedef typename vobj::scalar_object coarse_scalar_object;
|
|
||||||
|
|
||||||
// std::cout << " BlockProjector importing "<<nvec<< " coarse grid vectors" <<std::endl;
|
|
||||||
|
|
||||||
GRID_ASSERT(vecs[0].Grid()==coarse_grid);
|
|
||||||
|
|
||||||
int _ndimension = coarse_grid->_ndimension;
|
|
||||||
|
|
||||||
uint64_t sz = blas.size();
|
|
||||||
|
|
||||||
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
|
|
||||||
|
|
||||||
for(int v=0;v<vecs.size();v++){
|
|
||||||
|
|
||||||
// std::cout << " BlockProjector importing coarse vector"<<v<<" "<<norm2(vecs[v])<<std::endl;
|
|
||||||
autoView( coarseData , vecs[v], AcceleratorRead);
|
|
||||||
|
|
||||||
auto blasData_p = &blas[0];
|
|
||||||
auto coarseData_p = &coarseData[0];
|
|
||||||
|
|
||||||
int64_t osites = coarse_grid->oSites();
|
|
||||||
|
|
||||||
// loop over fine sites
|
|
||||||
const int Nsimd = vobj::Nsimd();
|
|
||||||
uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar);
|
|
||||||
GRID_ASSERT(cwords==nbasis);
|
|
||||||
|
|
||||||
accelerator_for(sc,osites,Nsimd,{
|
|
||||||
#ifdef GRID_SIMT
|
|
||||||
{
|
|
||||||
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
|
|
||||||
#else
|
|
||||||
for(int lane=0;lane<Nsimd;lane++) {
|
|
||||||
#endif
|
|
||||||
// C_br per site
|
|
||||||
int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords;
|
|
||||||
|
|
||||||
coarse_scalar_object data = extractLane(lane,coarseData[sc]);
|
|
||||||
|
|
||||||
coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site];
|
|
||||||
|
|
||||||
*ptr = data;
|
|
||||||
#ifdef GRID_SIMT
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
});
|
|
||||||
// std::cout << " import coarsee Blas norm "<<blasNorm2(blas)<<std::endl;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
template<class vobj>
|
|
||||||
void ExportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas)
|
|
||||||
{
|
|
||||||
int nvec = vecs.size();
|
|
||||||
typedef typename vobj::scalar_object coarse_scalar_object;
|
|
||||||
// std::cout << GridLogMessage<<" BlockProjector exporting "<<nvec<< " coarse grid vectors" <<std::endl;
|
|
||||||
|
|
||||||
GRID_ASSERT(vecs[0].Grid()==coarse_grid);
|
|
||||||
|
|
||||||
int _ndimension = coarse_grid->_ndimension;
|
|
||||||
|
|
||||||
uint64_t sz = blas.size();
|
|
||||||
|
|
||||||
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
|
|
||||||
|
|
||||||
// std::cout << " export coarsee Blas norm "<<blasNorm2(blas)<<std::endl;
|
|
||||||
for(int v=0;v<vecs.size();v++){
|
|
||||||
|
|
||||||
// std::cout << " BlockProjector exporting coarse vector"<<v<<std::endl;
|
|
||||||
autoView( coarseData , vecs[v], AcceleratorWrite);
|
|
||||||
|
|
||||||
auto blasData_p = &blas[0];
|
|
||||||
auto coarseData_p = &coarseData[0];
|
|
||||||
|
|
||||||
int64_t osites = coarse_grid->oSites();
|
|
||||||
|
|
||||||
// loop over fine sites
|
|
||||||
const int Nsimd = vobj::Nsimd();
|
|
||||||
uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar);
|
|
||||||
GRID_ASSERT(cwords==nbasis);
|
|
||||||
|
|
||||||
accelerator_for(sc,osites,Nsimd,{
|
|
||||||
// Wrap in a macro "FOR_ALL_LANES(lane,{ ... });
|
|
||||||
#ifdef GRID_SIMT
|
|
||||||
{
|
|
||||||
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
|
|
||||||
#else
|
|
||||||
for(int lane=0;lane<Nsimd;lane++) {
|
|
||||||
#endif
|
|
||||||
int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords;
|
|
||||||
coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site];
|
|
||||||
coarse_scalar_object data = *ptr;
|
|
||||||
insertLane(lane,coarseData[sc],data);
|
|
||||||
#ifdef GRID_SIMT
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
});
|
|
||||||
}
|
|
||||||
}
|
|
||||||
void ImportBasis(std::vector < Field > &vecs)
|
|
||||||
{
|
|
||||||
// std::cout << " BlockProjector Import basis size "<<vecs.size()<<std::endl;
|
|
||||||
ImportFineGridVectors(vecs,BLAS_V);
|
|
||||||
}
|
|
||||||
|
|
||||||
template<class cobj>
|
|
||||||
void blockProject(std::vector<Field> &fine,std::vector< Lattice<cobj> > & coarse)
|
|
||||||
{
|
|
||||||
int nrhs=fine.size();
|
|
||||||
int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar);
|
|
||||||
// std::cout << "blockProject nbasis " <<nbasis<<" " << _nbasis<<std::endl;
|
|
||||||
GRID_ASSERT(nbasis==_nbasis);
|
|
||||||
|
|
||||||
BLAS_F.resize (fine_vol * words * nrhs );
|
|
||||||
BLAS_C.resize (coarse_vol * nbasis * nrhs );
|
|
||||||
|
|
||||||
/////////////////////////////////////////////
|
|
||||||
// Copy in the multi-rhs sources to same data layout
|
|
||||||
/////////////////////////////////////////////
|
|
||||||
// std::cout << "BlockProject import fine"<<std::endl;
|
|
||||||
ImportFineGridVectors(fine,BLAS_F);
|
|
||||||
|
|
||||||
deviceVector<scalar *> Vd(coarse_vol);
|
|
||||||
deviceVector<scalar *> Fd(coarse_vol);
|
|
||||||
deviceVector<scalar *> Cd(coarse_vol);
|
|
||||||
|
|
||||||
// std::cout << "BlockProject pointers"<<std::endl;
|
|
||||||
for(int c=0;c<coarse_vol;c++){
|
|
||||||
// BLAS_V[coarse_vol][nbasis][block_vol][words]
|
|
||||||
// BLAS_F[coarse_vol][nrhs][block_vol][words]
|
|
||||||
// BLAS_C[coarse_vol][nrhs][nbasis]
|
|
||||||
scalar * Vh = & BLAS_V[c*nbasis*block_vol*words];
|
|
||||||
scalar * Fh = & BLAS_F[c*nrhs*block_vol*words];
|
|
||||||
scalar * Ch = & BLAS_C[c*nrhs*nbasis];
|
|
||||||
|
|
||||||
acceleratorPut(Vd[c],Vh);
|
|
||||||
acceleratorPut(Fd[c],Fh);
|
|
||||||
acceleratorPut(Cd[c],Ch);
|
|
||||||
}
|
|
||||||
|
|
||||||
GridBLAS BLAS;
|
|
||||||
|
|
||||||
// std::cout << "BlockProject BLAS"<<std::endl;
|
|
||||||
int64_t vw = block_vol * words;
|
|
||||||
/////////////////////////////////////////
|
|
||||||
// C_br = V^dag R
|
|
||||||
/////////////////////////////////////////
|
|
||||||
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
|
|
||||||
nbasis,nrhs,vw,
|
|
||||||
scalar(1.0),
|
|
||||||
Vd,
|
|
||||||
Fd,
|
|
||||||
scalar(0.0), // wipe out C
|
|
||||||
Cd);
|
|
||||||
BLAS.synchronise();
|
|
||||||
// std::cout << "BlockProject done"<<std::endl;
|
|
||||||
ExportCoarseGridVectors(coarse, BLAS_C);
|
|
||||||
// std::cout << "BlockProject done"<<std::endl;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
template<class cobj>
|
|
||||||
void blockPromote(std::vector<Field> &fine,std::vector<Lattice<cobj> > & coarse)
|
|
||||||
{
|
|
||||||
int nrhs=fine.size();
|
|
||||||
int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar);
|
|
||||||
GRID_ASSERT(nbasis==_nbasis);
|
|
||||||
|
|
||||||
BLAS_F.resize (fine_vol * words * nrhs );
|
|
||||||
BLAS_C.resize (coarse_vol * nbasis * nrhs );
|
|
||||||
|
|
||||||
ImportCoarseGridVectors(coarse, BLAS_C);
|
|
||||||
|
|
||||||
GridBLAS BLAS;
|
|
||||||
|
|
||||||
deviceVector<scalar *> Vd(coarse_vol);
|
|
||||||
deviceVector<scalar *> Fd(coarse_vol);
|
|
||||||
deviceVector<scalar *> Cd(coarse_vol);
|
|
||||||
|
|
||||||
for(int c=0;c<coarse_vol;c++){
|
|
||||||
// BLAS_V[coarse_vol][nbasis][block_vol][words]
|
|
||||||
// BLAS_F[coarse_vol][nrhs][block_vol][words]
|
|
||||||
// BLAS_C[coarse_vol][nrhs][nbasis]
|
|
||||||
scalar * Vh = & BLAS_V[c*nbasis*block_vol*words];
|
|
||||||
scalar * Fh = & BLAS_F[c*nrhs*block_vol*words];
|
|
||||||
scalar * Ch = & BLAS_C[c*nrhs*nbasis];
|
|
||||||
acceleratorPut(Vd[c],Vh);
|
|
||||||
acceleratorPut(Fd[c],Fh);
|
|
||||||
acceleratorPut(Cd[c],Ch);
|
|
||||||
}
|
|
||||||
|
|
||||||
/////////////////////////////////////////
|
|
||||||
// Block promote:
|
|
||||||
// F_xr = Vxb Cbr (x coarse_vol)
|
|
||||||
/////////////////////////////////////////
|
|
||||||
|
|
||||||
int64_t vw = block_vol * words;
|
|
||||||
BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
|
||||||
vw,nrhs,nbasis,
|
|
||||||
scalar(1.0),
|
|
||||||
Vd,
|
|
||||||
Cd,
|
|
||||||
scalar(0.0), // wipe out C
|
|
||||||
Fd);
|
|
||||||
BLAS.synchronise();
|
|
||||||
// std::cout << " blas call done"<<std::endl;
|
|
||||||
|
|
||||||
ExportFineGridVectors(fine, BLAS_F);
|
|
||||||
// std::cout << " exported "<<std::endl;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
|
||||||
@@ -1,233 +0,0 @@
|
|||||||
/*************************************************************************************
|
|
||||||
|
|
||||||
Grid physics library, www.github.com/paboyle/Grid
|
|
||||||
|
|
||||||
Source file: MultiRHSDeflation.h
|
|
||||||
|
|
||||||
Copyright (C) 2023
|
|
||||||
|
|
||||||
Author: Peter Boyle <pboyle@bnl.gov>
|
|
||||||
|
|
||||||
This program is free software; you can redistribute it and/or modify
|
|
||||||
it under the terms of the GNU General Public License as published by
|
|
||||||
the Free Software Foundation; either version 2 of the License, or
|
|
||||||
(at your option) any later version.
|
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License along
|
|
||||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
||||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
||||||
|
|
||||||
See the full license in the file "LICENSE" in the top level distribution directory
|
|
||||||
*************************************************************************************/
|
|
||||||
/* END LEGAL */
|
|
||||||
#pragma once
|
|
||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
|
||||||
|
|
||||||
|
|
||||||
/* Need helper object for BLAS accelerated mrhs projection
|
|
||||||
|
|
||||||
i) MultiRHS Deflation
|
|
||||||
|
|
||||||
Import Evecs -> nev x vol x internal
|
|
||||||
Import vector of Lattice objects -> nrhs x vol x internal
|
|
||||||
=> Cij (nrhs x Nev) via GEMM.
|
|
||||||
=> Guess (nrhs x vol x internal) = C x evecs (via GEMM)
|
|
||||||
Export
|
|
||||||
|
|
||||||
|
|
||||||
ii) MultiRHS block projection
|
|
||||||
|
|
||||||
Import basis -> nblock x nbasis x (block x internal)
|
|
||||||
Import vector of fine lattice objects -> nblock x nrhs x (block x internal)
|
|
||||||
|
|
||||||
=> coarse_(nrhs x nbasis )^block = via batched GEMM
|
|
||||||
|
|
||||||
iii) Alternate interface:
|
|
||||||
Import higher dim Lattice object-> vol x nrhs layout
|
|
||||||
|
|
||||||
*/
|
|
||||||
template<class Field>
|
|
||||||
class MultiRHSDeflation
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
|
|
||||||
typedef typename Field::scalar_type scalar;
|
|
||||||
typedef typename Field::scalar_object scalar_object;
|
|
||||||
|
|
||||||
int nev;
|
|
||||||
std::vector<RealD> eval;
|
|
||||||
GridBase *grid;
|
|
||||||
uint64_t vol;
|
|
||||||
uint64_t words;
|
|
||||||
|
|
||||||
deviceVector<scalar> BLAS_E; // nev x vol -- the eigenbasis (up to a 1/sqrt(lambda))
|
|
||||||
deviceVector<scalar> BLAS_R; // nrhs x vol -- the sources
|
|
||||||
deviceVector<scalar> BLAS_G; // nrhs x vol -- the guess
|
|
||||||
deviceVector<scalar> BLAS_C; // nrhs x nev -- the coefficients
|
|
||||||
|
|
||||||
MultiRHSDeflation(){};
|
|
||||||
~MultiRHSDeflation(){ Deallocate(); };
|
|
||||||
|
|
||||||
void Deallocate(void)
|
|
||||||
{
|
|
||||||
nev=0;
|
|
||||||
grid=nullptr;
|
|
||||||
vol=0;
|
|
||||||
words=0;
|
|
||||||
BLAS_E.resize(0);
|
|
||||||
BLAS_R.resize(0);
|
|
||||||
BLAS_C.resize(0);
|
|
||||||
BLAS_G.resize(0);
|
|
||||||
}
|
|
||||||
void Allocate(int _nev,GridBase *_grid)
|
|
||||||
{
|
|
||||||
nev=_nev;
|
|
||||||
grid=_grid;
|
|
||||||
vol = grid->lSites();
|
|
||||||
words = sizeof(scalar_object)/sizeof(scalar);
|
|
||||||
eval.resize(nev);
|
|
||||||
BLAS_E.resize (vol * words * nev );
|
|
||||||
std::cout << GridLogMessage << " Allocate for "<<nev<<" eigenvectors and volume "<<vol<<std::endl;
|
|
||||||
}
|
|
||||||
void ImportEigenVector(Field &evec,RealD &_eval, int ev)
|
|
||||||
{
|
|
||||||
// std::cout << " ev " <<ev<<" eval "<<_eval<< std::endl;
|
|
||||||
GRID_ASSERT(ev<eval.size());
|
|
||||||
eval[ev] = _eval;
|
|
||||||
|
|
||||||
int64_t offset = ev*vol*words;
|
|
||||||
autoView(v,evec,AcceleratorRead);
|
|
||||||
acceleratorCopyDeviceToDevice(&v[0],&BLAS_E[offset],sizeof(scalar_object)*vol);
|
|
||||||
|
|
||||||
}
|
|
||||||
void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval)
|
|
||||||
{
|
|
||||||
ImportEigenBasis(evec,_eval,0,evec.size());
|
|
||||||
}
|
|
||||||
// Could use to import a batch of eigenvectors
|
|
||||||
void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval, int _ev0, int _nev)
|
|
||||||
{
|
|
||||||
GRID_ASSERT(_ev0+_nev<=evec.size());
|
|
||||||
|
|
||||||
Allocate(_nev,evec[0].Grid());
|
|
||||||
|
|
||||||
// Imports a sub-batch of eigenvectors, _ev0, ..., _ev0+_nev-1
|
|
||||||
for(int e=0;e<nev;e++){
|
|
||||||
std::cout << "Importing eigenvector "<<e<<" evalue "<<_eval[_ev0+e]<<std::endl;
|
|
||||||
ImportEigenVector(evec[_ev0+e],_eval[_ev0+e],e);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
void DeflateSources(std::vector<Field> &source,std::vector<Field> & guess)
|
|
||||||
{
|
|
||||||
int nrhs = source.size();
|
|
||||||
GRID_ASSERT(source.size()==guess.size());
|
|
||||||
GRID_ASSERT(grid == guess[0].Grid());
|
|
||||||
conformable(guess[0],source[0]);
|
|
||||||
|
|
||||||
int64_t vw = vol * words;
|
|
||||||
|
|
||||||
RealD t0 = usecond();
|
|
||||||
BLAS_R.resize(nrhs * vw); // cost free if size doesn't change
|
|
||||||
BLAS_G.resize(nrhs * vw); // cost free if size doesn't change
|
|
||||||
BLAS_C.resize(nev * nrhs);// cost free if size doesn't change
|
|
||||||
|
|
||||||
/////////////////////////////////////////////
|
|
||||||
// Copy in the multi-rhs sources
|
|
||||||
/////////////////////////////////////////////
|
|
||||||
// for(int r=0;r<nrhs;r++){
|
|
||||||
// std::cout << " source["<<r<<"] = "<<norm2(source[r])<<std::endl;
|
|
||||||
// }
|
|
||||||
for(int r=0;r<nrhs;r++){
|
|
||||||
int64_t offset = r*vw;
|
|
||||||
autoView(v,source[r],AcceleratorRead);
|
|
||||||
acceleratorCopyDeviceToDevice(&v[0],&BLAS_R[offset],sizeof(scalar_object)*vol);
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
* in Fortran column major notation (cuBlas order)
|
|
||||||
*
|
|
||||||
* Exe = [e1(x)][..][en(x)]
|
|
||||||
*
|
|
||||||
* Rxr = [r1(x)][..][rm(x)]
|
|
||||||
*
|
|
||||||
* C_er = E^dag R
|
|
||||||
* C_er = C_er / lambda_e
|
|
||||||
* G_xr = Exe Cer
|
|
||||||
*/
|
|
||||||
deviceVector<scalar *> Ed(1);
|
|
||||||
deviceVector<scalar *> Rd(1);
|
|
||||||
deviceVector<scalar *> Cd(1);
|
|
||||||
deviceVector<scalar *> Gd(1);
|
|
||||||
|
|
||||||
scalar * Eh = & BLAS_E[0];
|
|
||||||
scalar * Rh = & BLAS_R[0];
|
|
||||||
scalar * Ch = & BLAS_C[0];
|
|
||||||
scalar * Gh = & BLAS_G[0];
|
|
||||||
|
|
||||||
acceleratorPut(Ed[0],Eh);
|
|
||||||
acceleratorPut(Rd[0],Rh);
|
|
||||||
acceleratorPut(Cd[0],Ch);
|
|
||||||
acceleratorPut(Gd[0],Gh);
|
|
||||||
|
|
||||||
GridBLAS BLAS;
|
|
||||||
|
|
||||||
/////////////////////////////////////////
|
|
||||||
// C_er = E^dag R
|
|
||||||
/////////////////////////////////////////
|
|
||||||
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
|
|
||||||
nev,nrhs,vw,
|
|
||||||
scalar(1.0),
|
|
||||||
Ed,
|
|
||||||
Rd,
|
|
||||||
scalar(0.0), // wipe out C
|
|
||||||
Cd);
|
|
||||||
BLAS.synchronise();
|
|
||||||
|
|
||||||
GRID_ASSERT(BLAS_C.size()==nev*nrhs);
|
|
||||||
|
|
||||||
std::vector<scalar> HOST_C(BLAS_C.size()); // nrhs . nev -- the coefficients
|
|
||||||
acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar));
|
|
||||||
grid->GlobalSumVector(&HOST_C[0],nev*nrhs);
|
|
||||||
for(int e=0;e<nev;e++){
|
|
||||||
RealD lam(1.0/eval[e]);
|
|
||||||
for(int r=0;r<nrhs;r++){
|
|
||||||
int off = e+nev*r;
|
|
||||||
HOST_C[off]=HOST_C[off] * lam;
|
|
||||||
// std::cout << "C["<<e<<"]["<<r<<"] ="<<HOST_C[off]<< " eval[e] "<<eval[e] <<std::endl;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
acceleratorCopyToDevice(&HOST_C[0],&BLAS_C[0],BLAS_C.size()*sizeof(scalar));
|
|
||||||
|
|
||||||
|
|
||||||
/////////////////////////////////////////
|
|
||||||
// Guess G_xr = Exe Cer
|
|
||||||
/////////////////////////////////////////
|
|
||||||
BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
|
||||||
vw,nrhs,nev,
|
|
||||||
scalar(1.0),
|
|
||||||
Ed, // x . nev
|
|
||||||
Cd, // nev . nrhs
|
|
||||||
scalar(0.0),
|
|
||||||
Gd);
|
|
||||||
BLAS.synchronise();
|
|
||||||
|
|
||||||
///////////////////////////////////////
|
|
||||||
// Copy out the multirhs
|
|
||||||
///////////////////////////////////////
|
|
||||||
for(int r=0;r<nrhs;r++){
|
|
||||||
int64_t offset = r*vw;
|
|
||||||
autoView(v,guess[r],AcceleratorWrite);
|
|
||||||
acceleratorCopyDeviceToDevice(&BLAS_G[offset],&v[0],sizeof(scalar_object)*vol);
|
|
||||||
}
|
|
||||||
RealD t1 = usecond();
|
|
||||||
std::cout << GridLogMessage << "MultiRHSDeflation for "<<nrhs<<" sources with "<<nev<<" eigenvectors took " << (t1-t0)/1e3 <<" ms"<<std::endl;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
|
||||||
@@ -33,111 +33,109 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|||||||
* Script A = SolverMatrix
|
* Script A = SolverMatrix
|
||||||
* Script P = Preconditioner
|
* Script P = Preconditioner
|
||||||
*
|
*
|
||||||
|
* Deflation methods considered
|
||||||
|
* -- Solve P A x = P b [ like Luscher ]
|
||||||
|
* DEF-1 M P A x = M P b [i.e. left precon]
|
||||||
|
* DEF-2 P^T M A x = P^T M b
|
||||||
|
* ADEF-1 Preconditioner = M P + Q [ Q + M + M A Q]
|
||||||
|
* ADEF-2 Preconditioner = P^T M + Q
|
||||||
|
* BNN Preconditioner = P^T M P + Q
|
||||||
|
* BNN2 Preconditioner = M P + P^TM +Q - M P A M
|
||||||
|
*
|
||||||
* Implement ADEF-2
|
* Implement ADEF-2
|
||||||
*
|
*
|
||||||
* Vstart = P^Tx + Qb
|
* Vstart = P^Tx + Qb
|
||||||
* M1 = P^TM + Q
|
* M1 = P^TM + Q
|
||||||
* M2=M3=1
|
* M2=M3=1
|
||||||
|
* Vout = x
|
||||||
*/
|
*/
|
||||||
NAMESPACE_BEGIN(Grid);
|
|
||||||
|
|
||||||
|
// abstract base
|
||||||
template<class Field>
|
template<class Field, class CoarseField>
|
||||||
class TwoLevelCG : public LinearFunction<Field>
|
class TwoLevelFlexiblePcg : public LinearFunction<Field>
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
|
int verbose;
|
||||||
RealD Tolerance;
|
RealD Tolerance;
|
||||||
Integer MaxIterations;
|
Integer MaxIterations;
|
||||||
|
const int mmax = 5;
|
||||||
GridBase *grid;
|
GridBase *grid;
|
||||||
|
GridBase *coarsegrid;
|
||||||
|
|
||||||
// Fine operator, Smoother, CoarseSolver
|
LinearOperatorBase<Field> *_Linop
|
||||||
LinearOperatorBase<Field> &_FineLinop;
|
OperatorFunction<Field> *_Smoother,
|
||||||
LinearFunction<Field> &_Smoother;
|
LinearFunction<CoarseField> *_CoarseSolver;
|
||||||
|
|
||||||
|
// Need somthing that knows how to get from Coarse to fine and back again
|
||||||
|
|
||||||
// more most opertor functions
|
// more most opertor functions
|
||||||
TwoLevelCG(RealD tol,
|
TwoLevelFlexiblePcg(RealD tol,
|
||||||
Integer maxit,
|
Integer maxit,
|
||||||
LinearOperatorBase<Field> &FineLinop,
|
LinearOperatorBase<Field> *Linop,
|
||||||
LinearFunction<Field> &Smoother,
|
LinearOperatorBase<Field> *SmootherLinop,
|
||||||
GridBase *fine) :
|
OperatorFunction<Field> *Smoother,
|
||||||
|
OperatorFunction<CoarseField> CoarseLinop
|
||||||
|
) :
|
||||||
Tolerance(tol),
|
Tolerance(tol),
|
||||||
MaxIterations(maxit),
|
MaxIterations(maxit),
|
||||||
_FineLinop(FineLinop),
|
_Linop(Linop),
|
||||||
_Smoother(Smoother)
|
_PreconditionerLinop(PrecLinop),
|
||||||
|
_Preconditioner(Preconditioner)
|
||||||
{
|
{
|
||||||
grid = fine;
|
verbose=0;
|
||||||
};
|
};
|
||||||
|
|
||||||
virtual void operator() (const Field &src, Field &x)
|
// The Pcg routine is common to all, but the various matrices differ from derived
|
||||||
{
|
// implementation to derived implmentation
|
||||||
std::cout << GridLogMessage<<"HDCG: fPcg starting single RHS"<<std::endl;
|
void operator() (const Field &src, Field &psi){
|
||||||
|
void operator() (const Field &src, Field &psi){
|
||||||
|
|
||||||
|
psi.Checkerboard() = src.Checkerboard();
|
||||||
|
grid = src.Grid();
|
||||||
|
|
||||||
RealD f;
|
RealD f;
|
||||||
RealD rtzp,rtz,a,d,b;
|
RealD rtzp,rtz,a,d,b;
|
||||||
RealD rptzp;
|
RealD rptzp;
|
||||||
|
RealD tn;
|
||||||
|
RealD guess = norm2(psi);
|
||||||
|
RealD ssq = norm2(src);
|
||||||
|
RealD rsq = ssq*Tolerance*Tolerance;
|
||||||
|
|
||||||
/////////////////////////////
|
/////////////////////////////
|
||||||
// Set up history vectors
|
// Set up history vectors
|
||||||
/////////////////////////////
|
/////////////////////////////
|
||||||
int mmax = 5;
|
std::vector<Field> p (mmax,grid);
|
||||||
std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
|
|
||||||
std::vector<Field> p(mmax,grid);
|
|
||||||
std::vector<Field> mmp(mmax,grid);
|
std::vector<Field> mmp(mmax,grid);
|
||||||
std::vector<RealD> pAp(mmax);
|
std::vector<RealD> pAp(mmax);
|
||||||
Field z(grid);
|
|
||||||
|
Field x (grid); x = psi;
|
||||||
|
Field z (grid);
|
||||||
Field tmp(grid);
|
Field tmp(grid);
|
||||||
Field mp (grid);
|
Field r (grid);
|
||||||
Field r (grid);
|
Field mu (grid);
|
||||||
Field mu (grid);
|
|
||||||
|
|
||||||
std::cout << GridLogMessage<<"HDCG: fPcg allocated"<<std::endl;
|
|
||||||
//Initial residual computation & set up
|
|
||||||
RealD guess = norm2(x);
|
|
||||||
std::cout << GridLogMessage<<"HDCG: fPcg guess nrm "<<guess<<std::endl;
|
|
||||||
RealD src_nrm = norm2(src);
|
|
||||||
std::cout << GridLogMessage<<"HDCG: fPcg src nrm "<<src_nrm<<std::endl;
|
|
||||||
|
|
||||||
if ( src_nrm == 0.0 ) {
|
|
||||||
std::cout << GridLogMessage<<"HDCG: fPcg given trivial source norm "<<src_nrm<<std::endl;
|
|
||||||
x=Zero();
|
|
||||||
}
|
|
||||||
RealD tn;
|
|
||||||
|
|
||||||
GridStopWatch HDCGTimer;
|
|
||||||
HDCGTimer.Start();
|
|
||||||
//////////////////////////
|
//////////////////////////
|
||||||
// x0 = Vstart -- possibly modify guess
|
// x0 = Vstart -- possibly modify guess
|
||||||
//////////////////////////
|
//////////////////////////
|
||||||
|
x=src;
|
||||||
Vstart(x,src);
|
Vstart(x,src);
|
||||||
|
|
||||||
// r0 = b -A x0
|
// r0 = b -A x0
|
||||||
_FineLinop.HermOp(x,mmp[0]);
|
HermOp(x,mmp); // Shouldn't this be something else?
|
||||||
axpy (r, -1.0,mmp[0], src); // Recomputes r=src-Ax0
|
axpy (r, -1.0,mmp[0], src); // Recomputes r=src-Ax0
|
||||||
{
|
|
||||||
double n1 = norm2(x);
|
|
||||||
double n2 = norm2(mmp[0]);
|
|
||||||
double n3 = norm2(r);
|
|
||||||
std::cout<<GridLogMessage<<"x,vstart,r = "<<n1<<" "<<n2<<" "<<n3<<std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
//////////////////////////////////
|
//////////////////////////////////
|
||||||
// Compute z = M1 x
|
// Compute z = M1 x
|
||||||
//////////////////////////////////
|
//////////////////////////////////
|
||||||
PcgM1(r,z);
|
M1(r,z,tmp,mp,SmootherMirs);
|
||||||
rtzp =real(innerProduct(r,z));
|
rtzp =real(innerProduct(r,z));
|
||||||
|
|
||||||
///////////////////////////////////////
|
///////////////////////////////////////
|
||||||
// Solve for Mss mu = P A z and set p = z-mu
|
// Solve for Mss mu = P A z and set p = z-mu
|
||||||
// Def2 p = 1 - Q Az = Pright z
|
// Def2: p = 1 - Q Az = Pright z
|
||||||
// Other algos M2 is trivial
|
// Other algos M2 is trivial
|
||||||
///////////////////////////////////////
|
///////////////////////////////////////
|
||||||
PcgM2(z,p[0]);
|
M2(z,p[0]);
|
||||||
|
|
||||||
RealD ssq = norm2(src);
|
|
||||||
RealD rsq = ssq*Tolerance*Tolerance;
|
|
||||||
|
|
||||||
std::cout << GridLogMessage<<"HDCG: k=0 residual "<<rtzp<<" rsq "<<rsq<<"\n";
|
|
||||||
|
|
||||||
Field pp(grid);
|
|
||||||
|
|
||||||
for (int k=0;k<=MaxIterations;k++){
|
for (int k=0;k<=MaxIterations;k++){
|
||||||
|
|
||||||
@@ -145,7 +143,7 @@ class TwoLevelCG : public LinearFunction<Field>
|
|||||||
int peri_kp = (k+1) % mmax;
|
int peri_kp = (k+1) % mmax;
|
||||||
|
|
||||||
rtz=rtzp;
|
rtz=rtzp;
|
||||||
d= PcgM3(p[peri_k],mmp[peri_k]);
|
d= M3(p[peri_k],mp,mmp[peri_k],tmp);
|
||||||
a = rtz/d;
|
a = rtz/d;
|
||||||
|
|
||||||
// Memorise this
|
// Memorise this
|
||||||
@@ -155,36 +153,21 @@ class TwoLevelCG : public LinearFunction<Field>
|
|||||||
RealD rn = axpy_norm(r,-a,mmp[peri_k],r);
|
RealD rn = axpy_norm(r,-a,mmp[peri_k],r);
|
||||||
|
|
||||||
// Compute z = M x
|
// Compute z = M x
|
||||||
PcgM1(r,z);
|
M1(r,z,tmp,mp);
|
||||||
|
|
||||||
{
|
|
||||||
RealD n1,n2;
|
|
||||||
n1=norm2(r);
|
|
||||||
n2=norm2(z);
|
|
||||||
std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : vector r,z "<<n1<<" "<<n2<<"\n";
|
|
||||||
}
|
|
||||||
rtzp =real(innerProduct(r,z));
|
rtzp =real(innerProduct(r,z));
|
||||||
std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : inner rtzp "<<rtzp<<"\n";
|
|
||||||
|
|
||||||
// PcgM2(z,p[0]);
|
M2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
|
||||||
PcgM2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
|
|
||||||
|
|
||||||
p[peri_kp]=mu;
|
p[peri_kp]=p[peri_k];
|
||||||
|
|
||||||
// Standard search direction p -> z + b p
|
// Standard search direction p -> z + b p ; b =
|
||||||
b = (rtzp)/rtz;
|
b = (rtzp)/rtz;
|
||||||
|
|
||||||
int northog;
|
int northog;
|
||||||
// k=zero <=> peri_kp=1; northog = 1
|
|
||||||
// k=1 <=> peri_kp=2; northog = 2
|
|
||||||
// ... ... ...
|
|
||||||
// k=mmax-2<=> peri_kp=mmax-1; northog = mmax-1
|
|
||||||
// k=mmax-1<=> peri_kp=0; northog = 1
|
|
||||||
|
|
||||||
// northog = (peri_kp==0)?1:peri_kp; // This is the fCG(mmax) algorithm
|
// northog = (peri_kp==0)?1:peri_kp; // This is the fCG(mmax) algorithm
|
||||||
northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
|
northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
|
||||||
|
|
||||||
std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
|
|
||||||
for(int back=0; back < northog; back++){
|
for(int back=0; back < northog; back++){
|
||||||
int peri_back = (k-back)%mmax;
|
int peri_back = (k-back)%mmax;
|
||||||
RealD pbApk= real(innerProduct(mmp[peri_back],p[peri_kp]));
|
RealD pbApk= real(innerProduct(mmp[peri_back],p[peri_kp]));
|
||||||
@@ -193,324 +176,75 @@ class TwoLevelCG : public LinearFunction<Field>
|
|||||||
}
|
}
|
||||||
|
|
||||||
RealD rrn=sqrt(rn/ssq);
|
RealD rrn=sqrt(rn/ssq);
|
||||||
RealD rtn=sqrt(rtz/ssq);
|
std::cout<<GridLogMessage<<"TwoLevelfPcg: k= "<<k<<" residual = "<<rrn<<std::endl;
|
||||||
RealD rtnp=sqrt(rtzp/ssq);
|
|
||||||
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: fPcg k= "<<k<<" residual = "<<rrn<<"\n";
|
|
||||||
|
|
||||||
// Stopping condition
|
// Stopping condition
|
||||||
if ( rn <= rsq ) {
|
if ( rn <= rsq ) {
|
||||||
|
|
||||||
HDCGTimer.Stop();
|
HermOp(x,mmp); // Shouldn't this be something else?
|
||||||
std::cout<<GridLogMessage<<"HDCG: fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
|
|
||||||
|
|
||||||
_FineLinop.HermOp(x,mmp[0]);
|
|
||||||
axpy(tmp,-1.0,src,mmp[0]);
|
axpy(tmp,-1.0,src,mmp[0]);
|
||||||
|
|
||||||
RealD mmpnorm = sqrt(norm2(mmp[0]));
|
RealD psinorm = sqrt(norm2(x));
|
||||||
RealD xnorm = sqrt(norm2(x));
|
RealD srcnorm = sqrt(norm2(src));
|
||||||
RealD srcnorm = sqrt(norm2(src));
|
RealD tmpnorm = sqrt(norm2(tmp));
|
||||||
RealD tmpnorm = sqrt(norm2(tmp));
|
RealD true_residual = tmpnorm/srcnorm;
|
||||||
RealD true_residual = tmpnorm/srcnorm;
|
std::cout<<GridLogMessage<<"TwoLevelfPcg: true residual is "<<true_residual<<std::endl;
|
||||||
std::cout<<GridLogMessage
|
std::cout<<GridLogMessage<<"TwoLevelfPcg: target residual was"<<Tolerance<<std::endl;
|
||||||
<<"HDCG: true residual is "<<true_residual
|
return k;
|
||||||
<<" solution "<<xnorm
|
|
||||||
<<" source "<<srcnorm
|
|
||||||
<<" mmp "<<mmpnorm
|
|
||||||
<<std::endl;
|
|
||||||
|
|
||||||
return;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
HDCGTimer.Stop();
|
// Non-convergence
|
||||||
std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
|
assert(0);
|
||||||
RealD xnorm = sqrt(norm2(x));
|
|
||||||
RealD srcnorm = sqrt(norm2(src));
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
|
|
||||||
{
|
|
||||||
std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
|
|
||||||
src[0].Grid()->Barrier();
|
|
||||||
int nrhs = src.size();
|
|
||||||
std::vector<RealD> f(nrhs);
|
|
||||||
std::vector<RealD> rtzp(nrhs);
|
|
||||||
std::vector<RealD> rtz(nrhs);
|
|
||||||
std::vector<RealD> a(nrhs);
|
|
||||||
std::vector<RealD> d(nrhs);
|
|
||||||
std::vector<RealD> b(nrhs);
|
|
||||||
std::vector<RealD> rptzp(nrhs);
|
|
||||||
/////////////////////////////
|
|
||||||
// Set up history vectors
|
|
||||||
/////////////////////////////
|
|
||||||
int mmax = 3;
|
|
||||||
std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
|
|
||||||
src[0].Grid()->Barrier();
|
|
||||||
std::vector<std::vector<Field> > p(nrhs); for(int r=0;r<nrhs;r++) p[r].resize(mmax,grid);
|
|
||||||
std::cout << GridLogMessage<<"HDCG: fPcg allocated p"<<std::endl;
|
|
||||||
src[0].Grid()->Barrier();
|
|
||||||
std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid);
|
|
||||||
std::cout << GridLogMessage<<"HDCG: fPcg allocated mmp"<<std::endl;
|
|
||||||
src[0].Grid()->Barrier();
|
|
||||||
std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax);
|
|
||||||
std::cout << GridLogMessage<<"HDCG: fPcg allocated pAp"<<std::endl;
|
|
||||||
src[0].Grid()->Barrier();
|
|
||||||
std::vector<Field> z(nrhs,grid);
|
|
||||||
std::vector<Field> mp (nrhs,grid);
|
|
||||||
std::vector<Field> r (nrhs,grid);
|
|
||||||
std::vector<Field> mu (nrhs,grid);
|
|
||||||
std::cout << GridLogMessage<<"HDCG: fPcg allocated z,mp,r,mu"<<std::endl;
|
|
||||||
src[0].Grid()->Barrier();
|
|
||||||
|
|
||||||
//Initial residual computation & set up
|
|
||||||
std::vector<RealD> src_nrm(nrhs);
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
|
||||||
src_nrm[rhs]=norm2(src[rhs]);
|
|
||||||
GRID_ASSERT(src_nrm[rhs]!=0.0);
|
|
||||||
}
|
|
||||||
std::vector<RealD> tn(nrhs);
|
|
||||||
|
|
||||||
GridStopWatch HDCGTimer;
|
|
||||||
HDCGTimer.Start();
|
|
||||||
//////////////////////////
|
|
||||||
// x0 = Vstart -- possibly modify guess
|
|
||||||
//////////////////////////
|
|
||||||
Vstart(x,src);
|
|
||||||
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++){
|
|
||||||
// r0 = b -A x0
|
|
||||||
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
|
|
||||||
axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]); // Recomputes r=src-Ax0
|
|
||||||
}
|
|
||||||
|
|
||||||
//////////////////////////////////
|
|
||||||
// Compute z = M1 x
|
|
||||||
//////////////////////////////////
|
|
||||||
// This needs a multiRHS version for acceleration
|
|
||||||
PcgM1(r,z);
|
|
||||||
|
|
||||||
std::vector<RealD> ssq(nrhs);
|
|
||||||
std::vector<RealD> rsq(nrhs);
|
|
||||||
std::vector<Field> pp(nrhs,grid);
|
|
||||||
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++){
|
|
||||||
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
|
|
||||||
p[rhs][0]=z[rhs];
|
|
||||||
ssq[rhs]=norm2(src[rhs]);
|
|
||||||
rsq[rhs]= ssq[rhs]*Tolerance*Tolerance;
|
|
||||||
std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n";
|
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<RealD> rn(nrhs);
|
|
||||||
for (int k=0;k<=MaxIterations;k++){
|
|
||||||
|
|
||||||
int peri_k = k % mmax;
|
|
||||||
int peri_kp = (k+1) % mmax;
|
|
||||||
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++){
|
|
||||||
rtz[rhs]=rtzp[rhs];
|
|
||||||
d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]);
|
|
||||||
a[rhs] = rtz[rhs]/d[rhs];
|
|
||||||
|
|
||||||
// Memorise this
|
|
||||||
pAp[rhs][peri_k] = d[rhs];
|
|
||||||
|
|
||||||
axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]);
|
|
||||||
rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Compute z = M x (for *all* RHS)
|
|
||||||
PcgM1(r,z);
|
|
||||||
std::cout << GridLogMessage<<"HDCG::fPcg M1 complete"<<std::endl;
|
|
||||||
grid->Barrier();
|
|
||||||
|
|
||||||
RealD max_rn=0.0;
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++){
|
|
||||||
|
|
||||||
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
|
|
||||||
|
|
||||||
std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n";
|
|
||||||
|
|
||||||
mu[rhs]=z[rhs];
|
|
||||||
|
|
||||||
p[rhs][peri_kp]=mu[rhs];
|
|
||||||
|
|
||||||
// Standard search direction p == z + b p
|
|
||||||
b[rhs] = (rtzp[rhs])/rtz[rhs];
|
|
||||||
|
|
||||||
int northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
|
|
||||||
std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
|
|
||||||
for(int back=0; back < northog; back++){
|
|
||||||
int peri_back = (k-back)%mmax;
|
|
||||||
RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp]));
|
|
||||||
RealD beta = -pbApk/pAp[rhs][peri_back];
|
|
||||||
axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]);
|
|
||||||
}
|
|
||||||
|
|
||||||
RealD rrn=sqrt(rn[rhs]/ssq[rhs]);
|
|
||||||
RealD rtn=sqrt(rtz[rhs]/ssq[rhs]);
|
|
||||||
RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]);
|
|
||||||
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: rhs "<<rhs<<"fPcg k= "<<k<<" residual = "<<rrn<<"\n";
|
|
||||||
if ( rrn > max_rn ) max_rn = rrn;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Stopping condition based on worst case
|
|
||||||
if ( max_rn <= Tolerance ) {
|
|
||||||
|
|
||||||
HDCGTimer.Stop();
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
|
|
||||||
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++){
|
|
||||||
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
|
|
||||||
Field tmp(grid);
|
|
||||||
axpy(tmp,-1.0,src[rhs],mmp[rhs][0]);
|
|
||||||
|
|
||||||
RealD mmpnorm = sqrt(norm2(mmp[rhs][0]));
|
|
||||||
RealD xnorm = sqrt(norm2(x[rhs]));
|
|
||||||
RealD srcnorm = sqrt(norm2(src[rhs]));
|
|
||||||
RealD tmpnorm = sqrt(norm2(tmp));
|
|
||||||
RealD true_residual = tmpnorm/srcnorm;
|
|
||||||
std::cout<<GridLogMessage
|
|
||||||
<<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
|
|
||||||
<<" solution "<<xnorm
|
|
||||||
<<" source "<<srcnorm
|
|
||||||
<<" mmp "<<mmpnorm
|
|
||||||
<<std::endl;
|
|
||||||
}
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
HDCGTimer.Stop();
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++){
|
|
||||||
RealD xnorm = sqrt(norm2(x[rhs]));
|
|
||||||
RealD srcnorm = sqrt(norm2(src[rhs]));
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
public:
|
public:
|
||||||
|
|
||||||
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out)
|
virtual void M(Field & in,Field & out,Field & tmp) {
|
||||||
{
|
|
||||||
std::cout << "PcgM1 default (cheat) mrhs version"<<std::endl;
|
|
||||||
for(int rhs=0;rhs<in.size();rhs++){
|
|
||||||
this->PcgM1(in[rhs],out[rhs]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
virtual void PcgM1(Field & in, Field & out) =0;
|
|
||||||
virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src)
|
|
||||||
{
|
|
||||||
std::cout << "Vstart default (cheat) mrhs version"<<std::endl;
|
|
||||||
for(int rhs=0;rhs<x.size();rhs++){
|
|
||||||
this->Vstart(x[rhs],src[rhs]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
virtual void Vstart(Field & x,const Field & src)=0;
|
|
||||||
|
|
||||||
virtual void PcgM2(const Field & in, Field & out) {
|
|
||||||
out=in;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
virtual RealD PcgM3(const Field & p, Field & mmp){
|
virtual void M1(Field & in, Field & out) {// the smoother
|
||||||
RealD dd;
|
|
||||||
_FineLinop.HermOp(p,mmp);
|
|
||||||
ComplexD dot = innerProduct(p,mmp);
|
|
||||||
dd=real(dot);
|
|
||||||
return dd;
|
|
||||||
}
|
|
||||||
|
|
||||||
/////////////////////////////////////////////////////////////////////
|
|
||||||
// Only Def1 has non-trivial Vout.
|
|
||||||
/////////////////////////////////////////////////////////////////////
|
|
||||||
|
|
||||||
};
|
|
||||||
|
|
||||||
template<class Field, class CoarseField, class Aggregation>
|
|
||||||
class TwoLevelADEF2 : public TwoLevelCG<Field>
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
///////////////////////////////////////////////////////////////////////////////////
|
|
||||||
// Need something that knows how to get from Coarse to fine and back again
|
|
||||||
// void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
|
|
||||||
// void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
|
|
||||||
///////////////////////////////////////////////////////////////////////////////////
|
|
||||||
GridBase *coarsegrid;
|
|
||||||
Aggregation &_Aggregates;
|
|
||||||
LinearFunction<CoarseField> &_CoarseSolver;
|
|
||||||
LinearFunction<CoarseField> &_CoarseSolverPrecise;
|
|
||||||
///////////////////////////////////////////////////////////////////////////////////
|
|
||||||
|
|
||||||
// more most opertor functions
|
|
||||||
TwoLevelADEF2(RealD tol,
|
|
||||||
Integer maxit,
|
|
||||||
LinearOperatorBase<Field> &FineLinop,
|
|
||||||
LinearFunction<Field> &Smoother,
|
|
||||||
LinearFunction<CoarseField> &CoarseSolver,
|
|
||||||
LinearFunction<CoarseField> &CoarseSolverPrecise,
|
|
||||||
Aggregation &Aggregates
|
|
||||||
) :
|
|
||||||
TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,Aggregates.FineGrid),
|
|
||||||
_CoarseSolver(CoarseSolver),
|
|
||||||
_CoarseSolverPrecise(CoarseSolverPrecise),
|
|
||||||
_Aggregates(Aggregates)
|
|
||||||
{
|
|
||||||
coarsegrid = Aggregates.CoarseGrid;
|
|
||||||
};
|
|
||||||
|
|
||||||
virtual void PcgM1(Field & in, Field & out)
|
|
||||||
{
|
|
||||||
GRID_TRACE("MultiGridPreconditioner ");
|
|
||||||
// [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
|
// [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
|
||||||
|
Field tmp(grid);
|
||||||
|
Field Min(grid);
|
||||||
|
|
||||||
Field tmp(this->grid);
|
PcgM(in,Min); // Smoother call
|
||||||
Field Min(this->grid);
|
|
||||||
CoarseField PleftProj(this->coarsegrid);
|
|
||||||
CoarseField PleftMss_proj(this->coarsegrid);
|
|
||||||
|
|
||||||
GridStopWatch SmootherTimer;
|
HermOp(Min,out);
|
||||||
GridStopWatch MatrixTimer;
|
|
||||||
SmootherTimer.Start();
|
|
||||||
this->_Smoother(in,Min);
|
|
||||||
SmootherTimer.Stop();
|
|
||||||
|
|
||||||
MatrixTimer.Start();
|
|
||||||
this->_FineLinop.HermOp(Min,out);
|
|
||||||
MatrixTimer.Stop();
|
|
||||||
axpy(tmp,-1.0,out,in); // tmp = in - A Min
|
axpy(tmp,-1.0,out,in); // tmp = in - A Min
|
||||||
|
|
||||||
GridStopWatch ProjTimer;
|
ProjectToSubspace(tmp,PleftProj);
|
||||||
GridStopWatch CoarseTimer;
|
ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
|
||||||
GridStopWatch PromTimer;
|
PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]
|
||||||
ProjTimer.Start();
|
|
||||||
this->_Aggregates.ProjectToSubspace(PleftProj,tmp);
|
|
||||||
ProjTimer.Stop();
|
|
||||||
CoarseTimer.Start();
|
|
||||||
this->_CoarseSolver(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
|
|
||||||
CoarseTimer.Stop();
|
|
||||||
PromTimer.Start();
|
|
||||||
this->_Aggregates.PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]
|
|
||||||
PromTimer.Stop();
|
|
||||||
std::cout << GridLogPerformance << "PcgM1 breakdown "<<std::endl;
|
|
||||||
std::cout << GridLogPerformance << "\tSmoother " << SmootherTimer.Elapsed() <<std::endl;
|
|
||||||
std::cout << GridLogPerformance << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
|
||||||
std::cout << GridLogPerformance << "\tProj " << ProjTimer.Elapsed() <<std::endl;
|
|
||||||
std::cout << GridLogPerformance << "\tCoarse " << CoarseTimer.Elapsed() <<std::endl;
|
|
||||||
std::cout << GridLogPerformance << "\tProm " << PromTimer.Elapsed() <<std::endl;
|
|
||||||
|
|
||||||
axpy(out,1.0,Min,tmp); // Min+tmp
|
axpy(out,1.0,Min,tmp); // Min+tmp
|
||||||
}
|
}
|
||||||
|
|
||||||
virtual void Vstart(Field & x,const Field & src)
|
virtual void M2(const Field & in, Field & out) {
|
||||||
{
|
out=in;
|
||||||
std::cout << GridLogMessage<<"HDCG: fPcg Vstart "<<std::endl;
|
// Must override for Def2 only
|
||||||
|
// case PcgDef2:
|
||||||
|
// Pright(in,out);
|
||||||
|
// break;
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual RealD M3(const Field & p, Field & mmp){
|
||||||
|
double d,dd;
|
||||||
|
HermOpAndNorm(p,mmp,d,dd);
|
||||||
|
return dd;
|
||||||
|
// Must override for Def1 only
|
||||||
|
// case PcgDef1:
|
||||||
|
// d=linop_d->Mprec(p,mmp,tmp,0,1);// Dag no
|
||||||
|
// linop_d->Mprec(mmp,mp,tmp,1);// Dag yes
|
||||||
|
// Pleft(mp,mmp);
|
||||||
|
// d=real(linop_d->inner(p,mmp));
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual void VstartDef2(Field & xconst Field & src){
|
||||||
|
//case PcgDef2:
|
||||||
|
//case PcgAdef2:
|
||||||
|
//case PcgAdef2f:
|
||||||
|
//case PcgV11f:
|
||||||
///////////////////////////////////
|
///////////////////////////////////
|
||||||
// Choose x_0 such that
|
// Choose x_0 such that
|
||||||
// x_0 = guess + (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
|
// x_0 = guess + (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
|
||||||
@@ -522,78 +256,142 @@ class TwoLevelADEF2 : public TwoLevelCG<Field>
|
|||||||
// = src_s - (A guess)_s - src_s + (A guess)_s
|
// = src_s - (A guess)_s - src_s + (A guess)_s
|
||||||
// = 0
|
// = 0
|
||||||
///////////////////////////////////
|
///////////////////////////////////
|
||||||
Field r(this->grid);
|
Field r(grid);
|
||||||
Field mmp(this->grid);
|
Field mmp(grid);
|
||||||
CoarseField PleftProj(this->coarsegrid);
|
|
||||||
CoarseField PleftMss_proj(this->coarsegrid);
|
|
||||||
|
|
||||||
std::cout << GridLogMessage<<"HDCG: fPcg Vstart projecting "<<std::endl;
|
HermOp(x,mmp);
|
||||||
this->_Aggregates.ProjectToSubspace(PleftProj,src);
|
axpy (r, -1.0, mmp, src); // r_{-1} = src - A x
|
||||||
std::cout << GridLogMessage<<"HDCG: fPcg Vstart coarse solve "<<std::endl;
|
ProjectToSubspace(r,PleftProj);
|
||||||
this->_CoarseSolverPrecise(PleftProj,PleftMss_proj); // Ass^{-1} r_s
|
ApplyInverseCG(PleftProj,PleftMss_proj); // Ass^{-1} r_s
|
||||||
std::cout << GridLogMessage<<"HDCG: fPcg Vstart promote "<<std::endl;
|
PromoteFromSubspace(PleftMss_proj,mmp);
|
||||||
this->_Aggregates.PromoteFromSubspace(PleftMss_proj,x);
|
x=x+mmp;
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
};
|
virtual void Vstart(Field & x,const Field & src){
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
/////////////////////////////////////////////////////////////////////
|
||||||
|
// Only Def1 has non-trivial Vout. Override in Def1
|
||||||
|
/////////////////////////////////////////////////////////////////////
|
||||||
|
virtual void Vout (Field & in, Field & out,Field & src){
|
||||||
|
out = in;
|
||||||
|
//case PcgDef1:
|
||||||
|
// //Qb + PT x
|
||||||
|
// ProjectToSubspace(src,PleftProj);
|
||||||
|
// ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} r_s
|
||||||
|
// PromoteFromSubspace(PleftMss_proj,tmp);
|
||||||
|
//
|
||||||
|
// Pright(in,out);
|
||||||
|
//
|
||||||
|
// linop_d->axpy(out,tmp,out,1.0);
|
||||||
|
// break;
|
||||||
|
}
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
// Pright and Pleft are common to all implementations
|
||||||
|
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
virtual void Pright(Field & in,Field & out){
|
||||||
|
// P_R = [ 1 0 ]
|
||||||
|
// [ -Mss^-1 Msb 0 ]
|
||||||
|
Field in_sbar(grid);
|
||||||
|
|
||||||
|
ProjectToSubspace(in,PleftProj);
|
||||||
|
PromoteFromSubspace(PleftProj,out);
|
||||||
|
axpy(in_sbar,-1.0,out,in); // in_sbar = in - in_s
|
||||||
|
|
||||||
|
HermOp(in_sbar,out);
|
||||||
|
ProjectToSubspace(out,PleftProj); // Mssbar in_sbar (project)
|
||||||
|
|
||||||
|
ApplyInverse (PleftProj,PleftMss_proj); // Mss^{-1} Mssbar
|
||||||
|
PromoteFromSubspace(PleftMss_proj,out); //
|
||||||
|
|
||||||
|
axpy(out,-1.0,out,in_sbar); // in_sbar - Mss^{-1} Mssbar in_sbar
|
||||||
|
}
|
||||||
|
virtual void Pleft (Field & in,Field & out){
|
||||||
|
// P_L = [ 1 -Mbs Mss^-1]
|
||||||
|
// [ 0 0 ]
|
||||||
|
Field in_sbar(grid);
|
||||||
|
Field tmp2(grid);
|
||||||
|
Field Mtmp(grid);
|
||||||
|
|
||||||
|
ProjectToSubspace(in,PleftProj);
|
||||||
|
PromoteFromSubspace(PleftProj,out);
|
||||||
|
axpy(in_sbar,-1.0,out,in); // in_sbar = in - in_s
|
||||||
|
|
||||||
|
ApplyInverse(PleftProj,PleftMss_proj); // Mss^{-1} in_s
|
||||||
|
PromoteFromSubspace(PleftMss_proj,out);
|
||||||
|
|
||||||
|
HermOp(out,Mtmp);
|
||||||
|
|
||||||
|
ProjectToSubspace(Mtmp,PleftProj); // Msbar s Mss^{-1}
|
||||||
|
PromoteFromSubspace(PleftProj,tmp2);
|
||||||
|
|
||||||
|
axpy(out,-1.0,tmp2,Mtmp);
|
||||||
|
axpy(out,-1.0,out,in_sbar); // in_sbar - Msbars Mss^{-1} in_s
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
template<class Field>
|
template<class Field>
|
||||||
class TwoLevelADEF1defl : public TwoLevelCG<Field>
|
class TwoLevelFlexiblePcgADef2 : public TwoLevelFlexiblePcg<Field> {
|
||||||
{
|
public:
|
||||||
public:
|
virtual void M(Field & in,Field & out,Field & tmp){
|
||||||
const std::vector<Field> &evec;
|
|
||||||
const std::vector<RealD> &eval;
|
|
||||||
|
|
||||||
TwoLevelADEF1defl(RealD tol,
|
|
||||||
Integer maxit,
|
|
||||||
LinearOperatorBase<Field> &FineLinop,
|
|
||||||
LinearFunction<Field> &Smoother,
|
|
||||||
std::vector<Field> &_evec,
|
|
||||||
std::vector<RealD> &_eval) :
|
|
||||||
TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,_evec[0].Grid()),
|
|
||||||
evec(_evec),
|
|
||||||
eval(_eval)
|
|
||||||
{};
|
|
||||||
|
|
||||||
// Can just inherit existing M2
|
|
||||||
// Can just inherit existing M3
|
|
||||||
|
|
||||||
// Simple vstart - do nothing
|
|
||||||
virtual void Vstart(Field & x,const Field & src){
|
|
||||||
x=src; // Could apply Q
|
|
||||||
};
|
|
||||||
|
|
||||||
// Override PcgM1
|
|
||||||
virtual void PcgM1(Field & in, Field & out)
|
|
||||||
{
|
|
||||||
GRID_TRACE("EvecPreconditioner ");
|
|
||||||
int N=evec.size();
|
|
||||||
Field Pin(this->grid);
|
|
||||||
Field Qin(this->grid);
|
|
||||||
|
|
||||||
//MP + Q = M(1-AQ) + Q = M
|
|
||||||
// // If we are eigenvector deflating in coarse space
|
|
||||||
// // Q = Sum_i |phi_i> 1/lambda_i <phi_i|
|
|
||||||
// // A Q = Sum_i |phi_i> <phi_i|
|
|
||||||
// // M(1-AQ) = M(1-proj) + Q
|
|
||||||
Qin.Checkerboard()=in.Checkerboard();
|
|
||||||
Qin = Zero();
|
|
||||||
Pin = in;
|
|
||||||
for (int i=0;i<N;i++) {
|
|
||||||
const Field& tmp = evec[i];
|
|
||||||
auto ip = TensorRemove(innerProduct(tmp,in));
|
|
||||||
axpy(Qin, ip / eval[i],tmp,Qin);
|
|
||||||
axpy(Pin, -ip ,tmp,Pin);
|
|
||||||
}
|
|
||||||
|
|
||||||
this->_Smoother(Pin,out);
|
|
||||||
|
|
||||||
out = out + Qin;
|
|
||||||
}
|
}
|
||||||
};
|
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp){
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
}
|
||||||
|
virtual void M2(Field & in, Field & out){
|
||||||
|
|
||||||
|
}
|
||||||
|
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp){
|
||||||
|
|
||||||
|
}
|
||||||
|
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp){
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/*
|
||||||
|
template<class Field>
|
||||||
|
class TwoLevelFlexiblePcgAD : public TwoLevelFlexiblePcg<Field> {
|
||||||
|
public:
|
||||||
|
virtual void M(Field & in,Field & out,Field & tmp);
|
||||||
|
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
|
||||||
|
virtual void M2(Field & in, Field & out);
|
||||||
|
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
|
||||||
|
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<class Field>
|
||||||
|
class TwoLevelFlexiblePcgDef1 : public TwoLevelFlexiblePcg<Field> {
|
||||||
|
public:
|
||||||
|
virtual void M(Field & in,Field & out,Field & tmp);
|
||||||
|
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
|
||||||
|
virtual void M2(Field & in, Field & out);
|
||||||
|
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
|
||||||
|
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
|
||||||
|
virtual void Vout (Field & in, Field & out,Field & src,Field & tmp);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<class Field>
|
||||||
|
class TwoLevelFlexiblePcgDef2 : public TwoLevelFlexiblePcg<Field> {
|
||||||
|
public:
|
||||||
|
virtual void M(Field & in,Field & out,Field & tmp);
|
||||||
|
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
|
||||||
|
virtual void M2(Field & in, Field & out);
|
||||||
|
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
|
||||||
|
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<class Field>
|
||||||
|
class TwoLevelFlexiblePcgV11: public TwoLevelFlexiblePcg<Field> {
|
||||||
|
public:
|
||||||
|
virtual void M(Field & in,Field & out,Field & tmp);
|
||||||
|
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
|
||||||
|
virtual void M2(Field & in, Field & out);
|
||||||
|
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
|
||||||
|
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
|
||||||
|
}
|
||||||
|
*/
|
||||||
#endif
|
#endif
|
||||||
|
|||||||
@@ -1,734 +0,0 @@
|
|||||||
/*************************************************************************************
|
|
||||||
|
|
||||||
Grid physics library, www.github.com/paboyle/Grid
|
|
||||||
|
|
||||||
Source file: ./lib/algorithms/iterative/AdefGeneric.h
|
|
||||||
|
|
||||||
Copyright (C) 2015
|
|
||||||
|
|
||||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
||||||
|
|
||||||
This program is free software; you can redistribute it and/or modify
|
|
||||||
it under the terms of the GNU General Public License as published by
|
|
||||||
the Free Software Foundation; either version 2 of the License, or
|
|
||||||
(at your option) any later version.
|
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License along
|
|
||||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
||||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
||||||
|
|
||||||
See the full license in the file "LICENSE" in the top level distribution directory
|
|
||||||
*************************************************************************************/
|
|
||||||
/* END LEGAL */
|
|
||||||
#pragma once
|
|
||||||
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Compared to Tang-2009: P=Pleft. P^T = PRight Q=MssInv.
|
|
||||||
* Script A = SolverMatrix
|
|
||||||
* Script P = Preconditioner
|
|
||||||
*
|
|
||||||
* Implement ADEF-2
|
|
||||||
*
|
|
||||||
* Vstart = P^Tx + Qb
|
|
||||||
* M1 = P^TM + Q
|
|
||||||
* M2=M3=1
|
|
||||||
*/
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
|
||||||
|
|
||||||
|
|
||||||
template<class Field>
|
|
||||||
class TwoLevelCGmrhs
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
RealD Tolerance;
|
|
||||||
Integer MaxIterations;
|
|
||||||
GridBase *grid;
|
|
||||||
|
|
||||||
// Fine operator, Smoother, CoarseSolver
|
|
||||||
LinearOperatorBase<Field> &_FineLinop;
|
|
||||||
LinearFunction<Field> &_Smoother;
|
|
||||||
MultiRHSBlockCGLinalg<Field> _BlockCGLinalg;
|
|
||||||
|
|
||||||
GridStopWatch ProjectTimer;
|
|
||||||
GridStopWatch PromoteTimer;
|
|
||||||
GridStopWatch DeflateTimer;
|
|
||||||
GridStopWatch CoarseTimer;
|
|
||||||
GridStopWatch FineTimer;
|
|
||||||
GridStopWatch SmoothTimer;
|
|
||||||
GridStopWatch InsertTimer;
|
|
||||||
|
|
||||||
/*
|
|
||||||
Field rrr;
|
|
||||||
Field sss;
|
|
||||||
Field qqq;
|
|
||||||
Field zzz;
|
|
||||||
*/
|
|
||||||
// more most opertor functions
|
|
||||||
TwoLevelCGmrhs(RealD tol,
|
|
||||||
Integer maxit,
|
|
||||||
LinearOperatorBase<Field> &FineLinop,
|
|
||||||
LinearFunction<Field> &Smoother,
|
|
||||||
GridBase *fine) :
|
|
||||||
Tolerance(tol),
|
|
||||||
MaxIterations(maxit),
|
|
||||||
_FineLinop(FineLinop),
|
|
||||||
_Smoother(Smoother)
|
|
||||||
/*
|
|
||||||
rrr(fine),
|
|
||||||
sss(fine),
|
|
||||||
qqq(fine),
|
|
||||||
zzz(fine)
|
|
||||||
*/
|
|
||||||
{
|
|
||||||
grid = fine;
|
|
||||||
};
|
|
||||||
|
|
||||||
// Vector case
|
|
||||||
virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
|
|
||||||
{
|
|
||||||
// SolveSingleSystem(src,x);
|
|
||||||
SolvePrecBlockCG(src,x);
|
|
||||||
}
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
// Thin QR factorisation (google it)
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
//Dimensions
|
|
||||||
// R_{ferm x Nblock} = Q_{ferm x Nblock} x C_{Nblock x Nblock} -> ferm x Nblock
|
|
||||||
//
|
|
||||||
// Rdag R = m_rr = Herm = L L^dag <-- Cholesky decomposition (LLT routine in Eigen)
|
|
||||||
//
|
|
||||||
// Q C = R => Q = R C^{-1}
|
|
||||||
//
|
|
||||||
// Want Ident = Q^dag Q = C^{-dag} R^dag R C^{-1} = C^{-dag} L L^dag C^{-1} = 1_{Nblock x Nblock}
|
|
||||||
//
|
|
||||||
// Set C = L^{dag}, and then Q^dag Q = ident
|
|
||||||
//
|
|
||||||
// Checks:
|
|
||||||
// Cdag C = Rdag R ; passes.
|
|
||||||
// QdagQ = 1 ; passes
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
void ThinQRfact (Eigen::MatrixXcd &m_zz,
|
|
||||||
Eigen::MatrixXcd &C,
|
|
||||||
Eigen::MatrixXcd &Cinv,
|
|
||||||
std::vector<Field> & Q,
|
|
||||||
std::vector<Field> & MQ,
|
|
||||||
const std::vector<Field> & Z,
|
|
||||||
const std::vector<Field> & MZ)
|
|
||||||
{
|
|
||||||
RealD t0=usecond();
|
|
||||||
_BlockCGLinalg.InnerProductMatrix(m_zz,MZ,Z);
|
|
||||||
RealD t1=usecond();
|
|
||||||
|
|
||||||
m_zz = 0.5*(m_zz+m_zz.adjoint());
|
|
||||||
|
|
||||||
Eigen::MatrixXcd L = m_zz.llt().matrixL();
|
|
||||||
|
|
||||||
C = L.adjoint();
|
|
||||||
Cinv = C.inverse();
|
|
||||||
|
|
||||||
RealD t3=usecond();
|
|
||||||
_BlockCGLinalg.MulMatrix( Q,Cinv,Z);
|
|
||||||
_BlockCGLinalg.MulMatrix(MQ,Cinv,MZ);
|
|
||||||
RealD t4=usecond();
|
|
||||||
std::cout << " ThinQRfact IP :"<< t1-t0<<" us"<<std::endl;
|
|
||||||
std::cout << " ThinQRfact Eigen :"<< t3-t1<<" us"<<std::endl;
|
|
||||||
std::cout << " ThinQRfact MulMat:"<< t4-t3<<" us"<<std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual void SolvePrecBlockCG (std::vector<Field> &src, std::vector<Field> &X)
|
|
||||||
{
|
|
||||||
std::cout << GridLogMessage<<"HDCG: mrhs fPrecBlockcg starting"<<std::endl;
|
|
||||||
src[0].Grid()->Barrier();
|
|
||||||
int nrhs = src.size();
|
|
||||||
// std::vector<RealD> f(nrhs);
|
|
||||||
// std::vector<RealD> rtzp(nrhs);
|
|
||||||
// std::vector<RealD> rtz(nrhs);
|
|
||||||
// std::vector<RealD> a(nrhs);
|
|
||||||
// std::vector<RealD> d(nrhs);
|
|
||||||
// std::vector<RealD> b(nrhs);
|
|
||||||
// std::vector<RealD> rptzp(nrhs);
|
|
||||||
|
|
||||||
////////////////////////////////////////////
|
|
||||||
//Initial residual computation & set up
|
|
||||||
////////////////////////////////////////////
|
|
||||||
std::vector<RealD> ssq(nrhs);
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++){
|
|
||||||
ssq[rhs]=norm2(src[rhs]); GRID_ASSERT(ssq[rhs]!=0.0);
|
|
||||||
}
|
|
||||||
|
|
||||||
///////////////////////////
|
|
||||||
// Fields -- eliminate duplicates between fPcg and block cg
|
|
||||||
///////////////////////////
|
|
||||||
std::vector<Field> Mtmp(nrhs,grid);
|
|
||||||
std::vector<Field> tmp(nrhs,grid);
|
|
||||||
std::vector<Field> Z(nrhs,grid); // Rename Z to R
|
|
||||||
std::vector<Field> MZ(nrhs,grid); // Rename MZ to Z
|
|
||||||
std::vector<Field> Q(nrhs,grid); //
|
|
||||||
std::vector<Field> MQ(nrhs,grid); // Rename to P
|
|
||||||
std::vector<Field> D(nrhs,grid);
|
|
||||||
std::vector<Field> AD(nrhs,grid);
|
|
||||||
|
|
||||||
/************************************************************************
|
|
||||||
* Preconditioned Block conjugate gradient rQ
|
|
||||||
* Generalise Sebastien Birk Thesis, after Dubrulle 2001.
|
|
||||||
* Introduce preconditioning following Saad Ch9
|
|
||||||
************************************************************************
|
|
||||||
* Dimensions:
|
|
||||||
*
|
|
||||||
* X,B etc... ==(Nferm x nrhs)
|
|
||||||
* Matrix A==(Nferm x Nferm)
|
|
||||||
*
|
|
||||||
* Nferm = Nspin x Ncolour x Ncomplex x Nlattice_site
|
|
||||||
* QC => Thin QR factorisation (google it)
|
|
||||||
*
|
|
||||||
* R = B-AX
|
|
||||||
* Z = Mi R
|
|
||||||
* QC = Z
|
|
||||||
* D = Q
|
|
||||||
* for k:
|
|
||||||
* R = AD
|
|
||||||
* Z = Mi R
|
|
||||||
* M = [D^dag R]^{-1}
|
|
||||||
* X = X + D M C
|
|
||||||
* QS = Q - Z.M
|
|
||||||
* D = Q + D S^dag
|
|
||||||
* C = S C
|
|
||||||
*/
|
|
||||||
Eigen::MatrixXcd m_DZ = Eigen::MatrixXcd::Identity(nrhs,nrhs);
|
|
||||||
Eigen::MatrixXcd m_M = Eigen::MatrixXcd::Identity(nrhs,nrhs);
|
|
||||||
Eigen::MatrixXcd m_zz = Eigen::MatrixXcd::Zero(nrhs,nrhs);
|
|
||||||
Eigen::MatrixXcd m_rr = Eigen::MatrixXcd::Zero(nrhs,nrhs);
|
|
||||||
|
|
||||||
Eigen::MatrixXcd m_C = Eigen::MatrixXcd::Zero(nrhs,nrhs);
|
|
||||||
Eigen::MatrixXcd m_Cinv = Eigen::MatrixXcd::Zero(nrhs,nrhs);
|
|
||||||
Eigen::MatrixXcd m_S = Eigen::MatrixXcd::Zero(nrhs,nrhs);
|
|
||||||
Eigen::MatrixXcd m_Sinv = Eigen::MatrixXcd::Zero(nrhs,nrhs);
|
|
||||||
|
|
||||||
Eigen::MatrixXcd m_tmp = Eigen::MatrixXcd::Identity(nrhs,nrhs);
|
|
||||||
Eigen::MatrixXcd m_tmp1 = Eigen::MatrixXcd::Identity(nrhs,nrhs);
|
|
||||||
|
|
||||||
GridStopWatch HDCGTimer;
|
|
||||||
|
|
||||||
//////////////////////////
|
|
||||||
// x0 = Vstart -- possibly modify guess
|
|
||||||
//////////////////////////
|
|
||||||
Vstart(X,src);
|
|
||||||
|
|
||||||
//////////////////////////
|
|
||||||
// R = B-AX
|
|
||||||
//////////////////////////
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++){
|
|
||||||
// r0 = b -A x0
|
|
||||||
_FineLinop.HermOp(X[rhs],tmp[rhs]);
|
|
||||||
axpy (Z[rhs], -1.0,tmp[rhs], src[rhs]); // Computes R=Z=src - A X0
|
|
||||||
}
|
|
||||||
|
|
||||||
//////////////////////////////////
|
|
||||||
// Compute MZ = M1 Z = M1 B - M1 A x0
|
|
||||||
//////////////////////////////////
|
|
||||||
PcgM1(Z,MZ);
|
|
||||||
|
|
||||||
//////////////////////////////////
|
|
||||||
// QC = Z
|
|
||||||
//////////////////////////////////
|
|
||||||
ThinQRfact (m_zz, m_C, m_Cinv, Q, MQ, Z, MZ);
|
|
||||||
|
|
||||||
//////////////////////////////////
|
|
||||||
// D=MQ
|
|
||||||
//////////////////////////////////
|
|
||||||
for(int b=0;b<nrhs;b++) D[b]=MQ[b]; // LLT rotation of the MZ basis of search dirs
|
|
||||||
|
|
||||||
std::cout << GridLogMessage<<"PrecBlockCGrQ vec computed initial residual and QR fact " <<std::endl;
|
|
||||||
|
|
||||||
ProjectTimer.Reset();
|
|
||||||
PromoteTimer.Reset();
|
|
||||||
DeflateTimer.Reset();
|
|
||||||
CoarseTimer.Reset();
|
|
||||||
SmoothTimer.Reset();
|
|
||||||
FineTimer.Reset();
|
|
||||||
InsertTimer.Reset();
|
|
||||||
|
|
||||||
GridStopWatch M1Timer;
|
|
||||||
GridStopWatch M2Timer;
|
|
||||||
GridStopWatch M3Timer;
|
|
||||||
GridStopWatch LinalgTimer;
|
|
||||||
GridStopWatch InnerProdTimer;
|
|
||||||
|
|
||||||
HDCGTimer.Start();
|
|
||||||
|
|
||||||
std::vector<RealD> rn(nrhs);
|
|
||||||
for (int k=0;k<=MaxIterations;k++){
|
|
||||||
|
|
||||||
////////////////////
|
|
||||||
// Z = AD
|
|
||||||
////////////////////
|
|
||||||
M3Timer.Start();
|
|
||||||
for(int b=0;b<nrhs;b++) _FineLinop.HermOp(D[b], Z[b]);
|
|
||||||
M3Timer.Stop();
|
|
||||||
|
|
||||||
////////////////////
|
|
||||||
// MZ = M1 Z <==== the Multigrid preconditioner
|
|
||||||
////////////////////
|
|
||||||
M1Timer.Start();
|
|
||||||
PcgM1(Z,MZ);
|
|
||||||
M1Timer.Stop();
|
|
||||||
|
|
||||||
FineTimer.Start();
|
|
||||||
////////////////////
|
|
||||||
// M = [D^dag Z]^{-1} = (<Ddag MZ>_M)^{-1} inner prod, generalising Saad derivation of Precon CG
|
|
||||||
////////////////////
|
|
||||||
InnerProdTimer.Start();
|
|
||||||
_BlockCGLinalg.InnerProductMatrix(m_DZ,D,Z);
|
|
||||||
InnerProdTimer.Stop();
|
|
||||||
m_M = m_DZ.inverse();
|
|
||||||
|
|
||||||
///////////////////////////
|
|
||||||
// X = X + D MC
|
|
||||||
///////////////////////////
|
|
||||||
m_tmp = m_M * m_C;
|
|
||||||
LinalgTimer.Start();
|
|
||||||
_BlockCGLinalg.MaddMatrix(X,m_tmp, D,X); // D are the search directions and X takes the updates
|
|
||||||
LinalgTimer.Stop();
|
|
||||||
|
|
||||||
///////////////////////////
|
|
||||||
// QS = Q - M Z
|
|
||||||
// (MQ) S = MQ - M (M1Z)
|
|
||||||
///////////////////////////
|
|
||||||
LinalgTimer.Start();
|
|
||||||
_BlockCGLinalg.MaddMatrix(tmp ,m_M, Z, Q,-1.0);
|
|
||||||
_BlockCGLinalg.MaddMatrix(Mtmp,m_M,MZ,MQ,-1.0);
|
|
||||||
ThinQRfact (m_zz, m_S, m_Sinv, Q, MQ, tmp, Mtmp);
|
|
||||||
LinalgTimer.Stop();
|
|
||||||
|
|
||||||
////////////////////////////
|
|
||||||
// D = MQ + D S^dag
|
|
||||||
////////////////////////////
|
|
||||||
m_tmp = m_S.adjoint();
|
|
||||||
LinalgTimer.Start();
|
|
||||||
_BlockCGLinalg.MaddMatrix(D,m_tmp,D,MQ);
|
|
||||||
LinalgTimer.Stop();
|
|
||||||
|
|
||||||
////////////////////////////
|
|
||||||
// C = S C
|
|
||||||
////////////////////////////
|
|
||||||
m_C = m_S*m_C;
|
|
||||||
|
|
||||||
////////////////////////////
|
|
||||||
// convergence monitor
|
|
||||||
////////////////////////////
|
|
||||||
m_rr = m_C.adjoint() * m_C;
|
|
||||||
|
|
||||||
FineTimer.Stop();
|
|
||||||
|
|
||||||
RealD max_resid=0;
|
|
||||||
RealD rrsum=0;
|
|
||||||
RealD sssum=0;
|
|
||||||
RealD rr;
|
|
||||||
|
|
||||||
for(int b=0;b<nrhs;b++) {
|
|
||||||
rrsum+=real(m_rr(b,b));
|
|
||||||
sssum+=ssq[b];
|
|
||||||
rr = real(m_rr(b,b))/ssq[b];
|
|
||||||
if ( rr > max_resid ) max_resid = rr;
|
|
||||||
}
|
|
||||||
std::cout << GridLogMessage <<
|
|
||||||
"\t Prec BlockCGrQ Iteration "<<k<<" ave resid "<< std::sqrt(rrsum/sssum) << " max "<< std::sqrt(max_resid) <<std::endl;
|
|
||||||
|
|
||||||
|
|
||||||
if ( max_resid < Tolerance*Tolerance ) {
|
|
||||||
|
|
||||||
HDCGTimer.Stop();
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Linalg "<<LinalgTimer.Elapsed()<<std::endl;;
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : fine H "<<M3Timer.Elapsed()<<std::endl;;
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : prec M1 "<<M1Timer.Elapsed()<<std::endl;;
|
|
||||||
std::cout<<GridLogMessage<<"**** M1 breakdown:"<<std::endl;
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Project "<<ProjectTimer.Elapsed()<<std::endl;;
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Promote "<<PromoteTimer.Elapsed()<<std::endl;;
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Deflate "<<DeflateTimer.Elapsed()<<std::endl;;
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Coarse "<<CoarseTimer.Elapsed()<<std::endl;;
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Fine "<<FineTimer.Elapsed()<<std::endl;;
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Smooth "<<SmoothTimer.Elapsed()<<std::endl;;
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Insert "<<InsertTimer.Elapsed()<<std::endl;;
|
|
||||||
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++){
|
|
||||||
|
|
||||||
_FineLinop.HermOp(X[rhs],tmp[rhs]);
|
|
||||||
|
|
||||||
Field mytmp(grid);
|
|
||||||
axpy(mytmp,-1.0,src[rhs],tmp[rhs]);
|
|
||||||
|
|
||||||
RealD xnorm = sqrt(norm2(X[rhs]));
|
|
||||||
RealD srcnorm = sqrt(norm2(src[rhs]));
|
|
||||||
RealD tmpnorm = sqrt(norm2(mytmp));
|
|
||||||
RealD true_residual = tmpnorm/srcnorm;
|
|
||||||
std::cout<<GridLogMessage
|
|
||||||
<<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
|
|
||||||
<<" solution "<<xnorm
|
|
||||||
<<" source "<<srcnorm
|
|
||||||
<<std::endl;
|
|
||||||
}
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
HDCGTimer.Stop();
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: PrecBlockCGrQ not converged "<<HDCGTimer.Elapsed()<<std::endl;
|
|
||||||
GRID_ASSERT(0);
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual void SolveSingleSystem (std::vector<Field> &src, std::vector<Field> &x)
|
|
||||||
{
|
|
||||||
std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
|
|
||||||
src[0].Grid()->Barrier();
|
|
||||||
int nrhs = src.size();
|
|
||||||
std::vector<RealD> f(nrhs);
|
|
||||||
std::vector<RealD> rtzp(nrhs);
|
|
||||||
std::vector<RealD> rtz(nrhs);
|
|
||||||
std::vector<RealD> a(nrhs);
|
|
||||||
std::vector<RealD> d(nrhs);
|
|
||||||
std::vector<RealD> b(nrhs);
|
|
||||||
std::vector<RealD> rptzp(nrhs);
|
|
||||||
/////////////////////////////
|
|
||||||
// Set up history vectors
|
|
||||||
/////////////////////////////
|
|
||||||
int mmax = 3;
|
|
||||||
|
|
||||||
std::vector<std::vector<Field> > p(nrhs); for(int r=0;r<nrhs;r++) p[r].resize(mmax,grid);
|
|
||||||
std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid);
|
|
||||||
std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax);
|
|
||||||
|
|
||||||
std::vector<Field> z(nrhs,grid);
|
|
||||||
std::vector<Field> mp (nrhs,grid);
|
|
||||||
std::vector<Field> r (nrhs,grid);
|
|
||||||
std::vector<Field> mu (nrhs,grid);
|
|
||||||
|
|
||||||
//Initial residual computation & set up
|
|
||||||
std::vector<RealD> src_nrm(nrhs);
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
|
||||||
src_nrm[rhs]=norm2(src[rhs]);
|
|
||||||
GRID_ASSERT(src_nrm[rhs]!=0.0);
|
|
||||||
}
|
|
||||||
std::vector<RealD> tn(nrhs);
|
|
||||||
|
|
||||||
GridStopWatch HDCGTimer;
|
|
||||||
//////////////////////////
|
|
||||||
// x0 = Vstart -- possibly modify guess
|
|
||||||
//////////////////////////
|
|
||||||
Vstart(x,src);
|
|
||||||
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++){
|
|
||||||
// r0 = b -A x0
|
|
||||||
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
|
|
||||||
axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]); // Recomputes r=src-Ax0
|
|
||||||
}
|
|
||||||
|
|
||||||
//////////////////////////////////
|
|
||||||
// Compute z = M1 x
|
|
||||||
//////////////////////////////////
|
|
||||||
// This needs a multiRHS version for acceleration
|
|
||||||
PcgM1(r,z);
|
|
||||||
|
|
||||||
std::vector<RealD> ssq(nrhs);
|
|
||||||
std::vector<RealD> rsq(nrhs);
|
|
||||||
std::vector<Field> pp(nrhs,grid);
|
|
||||||
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++){
|
|
||||||
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
|
|
||||||
p[rhs][0]=z[rhs];
|
|
||||||
ssq[rhs]=norm2(src[rhs]);
|
|
||||||
rsq[rhs]= ssq[rhs]*Tolerance*Tolerance;
|
|
||||||
// std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n";
|
|
||||||
}
|
|
||||||
|
|
||||||
ProjectTimer.Reset();
|
|
||||||
PromoteTimer.Reset();
|
|
||||||
DeflateTimer.Reset();
|
|
||||||
CoarseTimer.Reset();
|
|
||||||
SmoothTimer.Reset();
|
|
||||||
FineTimer.Reset();
|
|
||||||
InsertTimer.Reset();
|
|
||||||
|
|
||||||
GridStopWatch M1Timer;
|
|
||||||
GridStopWatch M2Timer;
|
|
||||||
GridStopWatch M3Timer;
|
|
||||||
GridStopWatch LinalgTimer;
|
|
||||||
|
|
||||||
HDCGTimer.Start();
|
|
||||||
|
|
||||||
std::vector<RealD> rn(nrhs);
|
|
||||||
for (int k=0;k<=MaxIterations;k++){
|
|
||||||
|
|
||||||
int peri_k = k % mmax;
|
|
||||||
int peri_kp = (k+1) % mmax;
|
|
||||||
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++){
|
|
||||||
rtz[rhs]=rtzp[rhs];
|
|
||||||
M3Timer.Start();
|
|
||||||
d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]);
|
|
||||||
M3Timer.Stop();
|
|
||||||
a[rhs] = rtz[rhs]/d[rhs];
|
|
||||||
|
|
||||||
LinalgTimer.Start();
|
|
||||||
// Memorise this
|
|
||||||
pAp[rhs][peri_k] = d[rhs];
|
|
||||||
|
|
||||||
axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]);
|
|
||||||
rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]);
|
|
||||||
LinalgTimer.Stop();
|
|
||||||
}
|
|
||||||
|
|
||||||
// Compute z = M x (for *all* RHS)
|
|
||||||
M1Timer.Start();
|
|
||||||
PcgM1(r,z);
|
|
||||||
M1Timer.Stop();
|
|
||||||
|
|
||||||
RealD max_rn=0.0;
|
|
||||||
LinalgTimer.Start();
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++){
|
|
||||||
|
|
||||||
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
|
|
||||||
|
|
||||||
// std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n";
|
|
||||||
mu[rhs]=z[rhs];
|
|
||||||
|
|
||||||
p[rhs][peri_kp]=mu[rhs];
|
|
||||||
|
|
||||||
// Standard search direction p == z + b p
|
|
||||||
b[rhs] = (rtzp[rhs])/rtz[rhs];
|
|
||||||
|
|
||||||
int northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
|
|
||||||
for(int back=0; back < northog; back++){
|
|
||||||
int peri_back = (k-back)%mmax;
|
|
||||||
RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp]));
|
|
||||||
RealD beta = -pbApk/pAp[rhs][peri_back];
|
|
||||||
axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]);
|
|
||||||
}
|
|
||||||
|
|
||||||
RealD rrn=sqrt(rn[rhs]/ssq[rhs]);
|
|
||||||
RealD rtn=sqrt(rtz[rhs]/ssq[rhs]);
|
|
||||||
RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]);
|
|
||||||
|
|
||||||
std::cout<<GridLogMessage<<"HDCG:fPcg rhs "<<rhs<<" k= "<<k<<" residual = "<<rrn<<"\n";
|
|
||||||
if ( rrn > max_rn ) max_rn = rrn;
|
|
||||||
}
|
|
||||||
LinalgTimer.Stop();
|
|
||||||
|
|
||||||
// Stopping condition based on worst case
|
|
||||||
if ( max_rn <= Tolerance ) {
|
|
||||||
|
|
||||||
HDCGTimer.Stop();
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Linalg "<<LinalgTimer.Elapsed()<<std::endl;;
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : fine M3 "<<M3Timer.Elapsed()<<std::endl;;
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : prec M1 "<<M1Timer.Elapsed()<<std::endl;;
|
|
||||||
std::cout<<GridLogMessage<<"**** M1 breakdown:"<<std::endl;
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Project "<<ProjectTimer.Elapsed()<<std::endl;;
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Promote "<<PromoteTimer.Elapsed()<<std::endl;;
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Deflate "<<DeflateTimer.Elapsed()<<std::endl;;
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Coarse "<<CoarseTimer.Elapsed()<<std::endl;;
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Fine "<<FineTimer.Elapsed()<<std::endl;;
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Smooth "<<SmoothTimer.Elapsed()<<std::endl;;
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Insert "<<InsertTimer.Elapsed()<<std::endl;;
|
|
||||||
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++){
|
|
||||||
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
|
|
||||||
Field tmp(grid);
|
|
||||||
axpy(tmp,-1.0,src[rhs],mmp[rhs][0]);
|
|
||||||
|
|
||||||
RealD mmpnorm = sqrt(norm2(mmp[rhs][0]));
|
|
||||||
RealD xnorm = sqrt(norm2(x[rhs]));
|
|
||||||
RealD srcnorm = sqrt(norm2(src[rhs]));
|
|
||||||
RealD tmpnorm = sqrt(norm2(tmp));
|
|
||||||
RealD true_residual = tmpnorm/srcnorm;
|
|
||||||
std::cout<<GridLogMessage
|
|
||||||
<<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
|
|
||||||
<<" solution "<<xnorm
|
|
||||||
<<" source "<<srcnorm
|
|
||||||
<<" mmp "<<mmpnorm
|
|
||||||
<<std::endl;
|
|
||||||
}
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
HDCGTimer.Stop();
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++){
|
|
||||||
RealD xnorm = sqrt(norm2(x[rhs]));
|
|
||||||
RealD srcnorm = sqrt(norm2(src[rhs]));
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
public:
|
|
||||||
|
|
||||||
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out) = 0;
|
|
||||||
virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src) = 0;
|
|
||||||
virtual void PcgM2(const Field & in, Field & out) {
|
|
||||||
out=in;
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual RealD PcgM3(const Field & p, Field & mmp){
|
|
||||||
RealD dd;
|
|
||||||
_FineLinop.HermOp(p,mmp);
|
|
||||||
ComplexD dot = innerProduct(p,mmp);
|
|
||||||
dd=real(dot);
|
|
||||||
return dd;
|
|
||||||
}
|
|
||||||
|
|
||||||
};
|
|
||||||
|
|
||||||
template<class Field, class CoarseField>
|
|
||||||
class TwoLevelADEF2mrhs : public TwoLevelCGmrhs<Field>
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
GridBase *coarsegrid;
|
|
||||||
GridBase *coarsegridmrhs;
|
|
||||||
LinearFunction<CoarseField> &_CoarseSolverMrhs;
|
|
||||||
LinearFunction<CoarseField> &_CoarseSolverPreciseMrhs;
|
|
||||||
MultiRHSBlockProject<Field> &_Projector;
|
|
||||||
MultiRHSDeflation<CoarseField> &_Deflator;
|
|
||||||
|
|
||||||
|
|
||||||
TwoLevelADEF2mrhs(RealD tol,
|
|
||||||
Integer maxit,
|
|
||||||
LinearOperatorBase<Field> &FineLinop,
|
|
||||||
LinearFunction<Field> &Smoother,
|
|
||||||
LinearFunction<CoarseField> &CoarseSolverMrhs,
|
|
||||||
LinearFunction<CoarseField> &CoarseSolverPreciseMrhs,
|
|
||||||
MultiRHSBlockProject<Field> &Projector,
|
|
||||||
MultiRHSDeflation<CoarseField> &Deflator,
|
|
||||||
GridBase *_coarsemrhsgrid) :
|
|
||||||
TwoLevelCGmrhs<Field>(tol, maxit,FineLinop,Smoother,Projector.fine_grid),
|
|
||||||
_CoarseSolverMrhs(CoarseSolverMrhs),
|
|
||||||
_CoarseSolverPreciseMrhs(CoarseSolverPreciseMrhs),
|
|
||||||
_Projector(Projector),
|
|
||||||
_Deflator(Deflator)
|
|
||||||
{
|
|
||||||
coarsegrid = Projector.coarse_grid;
|
|
||||||
coarsegridmrhs = _coarsemrhsgrid;// Thi could be in projector
|
|
||||||
};
|
|
||||||
|
|
||||||
// Override Vstart
|
|
||||||
virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src)
|
|
||||||
{
|
|
||||||
int nrhs=x.size();
|
|
||||||
///////////////////////////////////
|
|
||||||
// Choose x_0 such that
|
|
||||||
// x_0 = guess + (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
|
|
||||||
// = [1 - Ass_inv A] Guess + Assinv src
|
|
||||||
// = P^T guess + Assinv src
|
|
||||||
// = Vstart [Tang notation]
|
|
||||||
// This gives:
|
|
||||||
// W^T (src - A x_0) = src_s - A guess_s - r_s
|
|
||||||
// = src_s - (A guess)_s - src_s + (A guess)_s
|
|
||||||
// = 0
|
|
||||||
///////////////////////////////////
|
|
||||||
std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid);
|
|
||||||
std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid);
|
|
||||||
CoarseField PleftProjMrhs(this->coarsegridmrhs);
|
|
||||||
CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
|
|
||||||
|
|
||||||
this->_Projector.blockProject(src,PleftProj);
|
|
||||||
this->_Deflator.DeflateSources(PleftProj,PleftMss_proj);
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
|
||||||
InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0);
|
|
||||||
InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess
|
|
||||||
}
|
|
||||||
|
|
||||||
this->_CoarseSolverPreciseMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} r_s
|
|
||||||
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
|
||||||
ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0);
|
|
||||||
}
|
|
||||||
this->_Projector.blockPromote(x,PleftMss_proj);
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out){
|
|
||||||
|
|
||||||
int nrhs=in.size();
|
|
||||||
|
|
||||||
// [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
|
|
||||||
std::vector<Field> tmp(nrhs,this->grid);
|
|
||||||
std::vector<Field> Min(nrhs,this->grid);
|
|
||||||
|
|
||||||
std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid);
|
|
||||||
std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid);
|
|
||||||
|
|
||||||
CoarseField PleftProjMrhs(this->coarsegridmrhs);
|
|
||||||
CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
|
|
||||||
|
|
||||||
// this->rrr=in[0];
|
|
||||||
|
|
||||||
#undef SMOOTHER_BLOCK_SOLVE
|
|
||||||
#if SMOOTHER_BLOCK_SOLVE
|
|
||||||
this->SmoothTimer.Start();
|
|
||||||
this->_Smoother(in,Min);
|
|
||||||
this->SmoothTimer.Stop();
|
|
||||||
#else
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
|
||||||
this->SmoothTimer.Start();
|
|
||||||
this->_Smoother(in[rhs],Min[rhs]);
|
|
||||||
this->SmoothTimer.Stop();
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
// this->sss=Min[0];
|
|
||||||
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
|
||||||
|
|
||||||
this->FineTimer.Start();
|
|
||||||
this->_FineLinop.HermOp(Min[rhs],out[rhs]);
|
|
||||||
axpy(tmp[rhs],-1.0,out[rhs],in[rhs]); // resid = in - A Min
|
|
||||||
this->FineTimer.Stop();
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
this->ProjectTimer.Start();
|
|
||||||
this->_Projector.blockProject(tmp,PleftProj);
|
|
||||||
this->ProjectTimer.Stop();
|
|
||||||
this->DeflateTimer.Start();
|
|
||||||
this->_Deflator.DeflateSources(PleftProj,PleftMss_proj);
|
|
||||||
this->DeflateTimer.Stop();
|
|
||||||
this->InsertTimer.Start();
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
|
||||||
InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0);
|
|
||||||
InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess
|
|
||||||
}
|
|
||||||
this->InsertTimer.Stop();
|
|
||||||
|
|
||||||
this->CoarseTimer.Start();
|
|
||||||
this->_CoarseSolverMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} [in - A Min]_s
|
|
||||||
this->CoarseTimer.Stop();
|
|
||||||
|
|
||||||
this->InsertTimer.Start();
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
|
||||||
ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0);
|
|
||||||
}
|
|
||||||
this->InsertTimer.Stop();
|
|
||||||
this->PromoteTimer.Start();
|
|
||||||
this->_Projector.blockPromote(tmp,PleftMss_proj);// tmp= Q[in - A Min]
|
|
||||||
this->PromoteTimer.Stop();
|
|
||||||
this->FineTimer.Start();
|
|
||||||
// this->qqq=tmp[0];
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
|
||||||
axpy(out[rhs],1.0,Min[rhs],tmp[rhs]); // Min+tmp
|
|
||||||
}
|
|
||||||
// this->zzz=out[0];
|
|
||||||
this->FineTimer.Stop();
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
|
||||||
|
|
||||||
|
|
||||||
@@ -47,7 +47,7 @@ class BiCGSTAB : public OperatorFunction<Field>
|
|||||||
public:
|
public:
|
||||||
using OperatorFunction<Field>::operator();
|
using OperatorFunction<Field>::operator();
|
||||||
|
|
||||||
bool ErrorOnNoConverge; // throw an GRID_ASSERT when the CG fails to converge.
|
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
|
||||||
// Defaults true.
|
// Defaults true.
|
||||||
RealD Tolerance;
|
RealD Tolerance;
|
||||||
Integer MaxIterations;
|
Integer MaxIterations;
|
||||||
@@ -77,7 +77,7 @@ class BiCGSTAB : public OperatorFunction<Field>
|
|||||||
|
|
||||||
// Initial residual computation & set up
|
// Initial residual computation & set up
|
||||||
RealD guess = norm2(psi);
|
RealD guess = norm2(psi);
|
||||||
GRID_ASSERT(std::isnan(guess) == 0);
|
assert(std::isnan(guess) == 0);
|
||||||
|
|
||||||
Linop.Op(psi, v);
|
Linop.Op(psi, v);
|
||||||
b = norm2(v);
|
b = norm2(v);
|
||||||
@@ -214,7 +214,7 @@ class BiCGSTAB : public OperatorFunction<Field>
|
|||||||
std::cout << GridLogMessage << "\tAxpyNorm " << AxpyNormTimer.Elapsed() << std::endl;
|
std::cout << GridLogMessage << "\tAxpyNorm " << AxpyNormTimer.Elapsed() << std::endl;
|
||||||
std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() << std::endl;
|
std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() << std::endl;
|
||||||
|
|
||||||
if(ErrorOnNoConverge){ GRID_ASSERT(true_residual / Tolerance < 10000.0); }
|
if(ErrorOnNoConverge){ assert(true_residual / Tolerance < 10000.0); }
|
||||||
|
|
||||||
IterationsToComplete = k;
|
IterationsToComplete = k;
|
||||||
|
|
||||||
@@ -224,7 +224,7 @@ class BiCGSTAB : public OperatorFunction<Field>
|
|||||||
|
|
||||||
std::cout << GridLogMessage << "BiCGSTAB did NOT converge" << std::endl;
|
std::cout << GridLogMessage << "BiCGSTAB did NOT converge" << std::endl;
|
||||||
|
|
||||||
if(ErrorOnNoConverge){ GRID_ASSERT(0); }
|
if(ErrorOnNoConverge){ assert(0); }
|
||||||
IterationsToComplete = k;
|
IterationsToComplete = k;
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|||||||
@@ -37,7 +37,6 @@ template<class FieldD, class FieldF, typename std::enable_if< getPrecision<Field
|
|||||||
class MixedPrecisionBiCGSTAB : public LinearFunction<FieldD>
|
class MixedPrecisionBiCGSTAB : public LinearFunction<FieldD>
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
using LinearFunction<FieldD>::operator();
|
|
||||||
RealD Tolerance;
|
RealD Tolerance;
|
||||||
RealD InnerTolerance; // Initial tolerance for inner CG. Defaults to Tolerance but can be changed
|
RealD InnerTolerance; // Initial tolerance for inner CG. Defaults to Tolerance but can be changed
|
||||||
Integer MaxInnerIterations;
|
Integer MaxInnerIterations;
|
||||||
|
|||||||
@@ -31,58 +31,6 @@ directory
|
|||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
template<class Field>
|
|
||||||
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){
|
|
||||||
typedef typename Field::scalar_type scomplex;
|
|
||||||
int Nblock = X.size();
|
|
||||||
for(int b=0;b<Nblock;b++){
|
|
||||||
for(int bp=0;bp<Nblock;bp++) {
|
|
||||||
m(b,bp) = innerProduct(X[b],Y[bp]);
|
|
||||||
}}
|
|
||||||
}
|
|
||||||
template<class Field>
|
|
||||||
void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){
|
|
||||||
// Should make this cache friendly with site outermost, parallel_for
|
|
||||||
// Deal with case AP aliases with either Y or X
|
|
||||||
//
|
|
||||||
//Could pack "X" and "AP" into a Nblock x Volume dense array.
|
|
||||||
// AP(Nrhs x vol) = Y(Nrhs x vol) + scale * m(nrhs x nrhs) * X(nrhs*vol)
|
|
||||||
typedef typename Field::scalar_type scomplex;
|
|
||||||
int Nblock = AP.size();
|
|
||||||
std::vector<Field> tmp(Nblock,X[0]);
|
|
||||||
for(int b=0;b<Nblock;b++){
|
|
||||||
tmp[b] = Y[b];
|
|
||||||
for(int bp=0;bp<Nblock;bp++) {
|
|
||||||
tmp[b] = tmp[b] +scomplex(scale*m(bp,b))*X[bp];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
for(int b=0;b<Nblock;b++){
|
|
||||||
AP[b] = tmp[b];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
template<class Field>
|
|
||||||
void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){
|
|
||||||
// Should make this cache friendly with site outermost, parallel_for
|
|
||||||
typedef typename Field::scalar_type scomplex;
|
|
||||||
int Nblock = AP.size();
|
|
||||||
for(int b=0;b<Nblock;b++){
|
|
||||||
AP[b] = Zero();
|
|
||||||
for(int bp=0;bp<Nblock;bp++) {
|
|
||||||
AP[b] += scomplex(m(bp,b))*X[bp];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
template<class Field>
|
|
||||||
double normv(const std::vector<Field> &P){
|
|
||||||
int Nblock = P.size();
|
|
||||||
double nn = 0.0;
|
|
||||||
for(int b=0;b<Nblock;b++) {
|
|
||||||
nn+=norm2(P[b]);
|
|
||||||
}
|
|
||||||
return nn;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS, BlockCGVec, BlockCGrQVec };
|
enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS, BlockCGVec, BlockCGrQVec };
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////
|
||||||
@@ -98,7 +46,7 @@ class BlockConjugateGradient : public OperatorFunction<Field> {
|
|||||||
int Nblock;
|
int Nblock;
|
||||||
|
|
||||||
BlockCGtype CGtype;
|
BlockCGtype CGtype;
|
||||||
bool ErrorOnNoConverge; // throw an GRID_ASSERT when the CG fails to converge.
|
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
|
||||||
// Defaults true.
|
// Defaults true.
|
||||||
RealD Tolerance;
|
RealD Tolerance;
|
||||||
Integer MaxIterations;
|
Integer MaxIterations;
|
||||||
@@ -139,19 +87,10 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
|
|||||||
sliceInnerProductMatrix(m_rr,R,R,Orthog);
|
sliceInnerProductMatrix(m_rr,R,R,Orthog);
|
||||||
|
|
||||||
// Force manifest hermitian to avoid rounding related
|
// Force manifest hermitian to avoid rounding related
|
||||||
/*
|
|
||||||
int rank=m_rr.rows();
|
|
||||||
for(int r=0;r<rank;r++){
|
|
||||||
for(int s=0;s<rank;s++){
|
|
||||||
std::cout << "QR m_rr["<<r<<","<<s<<"] "<<m_rr(r,s)<<std::endl;
|
|
||||||
}}
|
|
||||||
*/
|
|
||||||
m_rr = 0.5*(m_rr+m_rr.adjoint());
|
m_rr = 0.5*(m_rr+m_rr.adjoint());
|
||||||
|
|
||||||
Eigen::MatrixXcd L = m_rr.llt().matrixL();
|
Eigen::MatrixXcd L = m_rr.llt().matrixL();
|
||||||
|
|
||||||
// ComplexD det = L.determinant();
|
|
||||||
// std::cout << " Det m_rr "<<det<<std::endl;
|
|
||||||
C = L.adjoint();
|
C = L.adjoint();
|
||||||
Cinv = C.inverse();
|
Cinv = C.inverse();
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
@@ -171,20 +110,11 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
|
|||||||
const std::vector<Field> & R)
|
const std::vector<Field> & R)
|
||||||
{
|
{
|
||||||
InnerProductMatrix(m_rr,R,R);
|
InnerProductMatrix(m_rr,R,R);
|
||||||
/*
|
|
||||||
int rank=m_rr.rows();
|
|
||||||
for(int r=0;r<rank;r++){
|
|
||||||
for(int s=0;s<rank;s++){
|
|
||||||
std::cout << "QRvec m_rr["<<r<<","<<s<<"] "<<m_rr(r,s)<<std::endl;
|
|
||||||
}}
|
|
||||||
*/
|
|
||||||
m_rr = 0.5*(m_rr+m_rr.adjoint());
|
m_rr = 0.5*(m_rr+m_rr.adjoint());
|
||||||
|
|
||||||
Eigen::MatrixXcd L = m_rr.llt().matrixL();
|
Eigen::MatrixXcd L = m_rr.llt().matrixL();
|
||||||
|
|
||||||
// ComplexD det = L.determinant();
|
|
||||||
// std::cout << " Det m_rr "<<det<<std::endl;
|
|
||||||
|
|
||||||
C = L.adjoint();
|
C = L.adjoint();
|
||||||
Cinv = C.inverse();
|
Cinv = C.inverse();
|
||||||
|
|
||||||
@@ -201,7 +131,7 @@ void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
|
|||||||
} else if (CGtype == CGmultiRHS ) {
|
} else if (CGtype == CGmultiRHS ) {
|
||||||
CGmultiRHSsolve(Linop,Src,Psi);
|
CGmultiRHSsolve(Linop,Src,Psi);
|
||||||
} else {
|
} else {
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
virtual void operator()(LinearOperatorBase<Field> &Linop, const std::vector<Field> &Src, std::vector<Field> &Psi)
|
virtual void operator()(LinearOperatorBase<Field> &Linop, const std::vector<Field> &Src, std::vector<Field> &Psi)
|
||||||
@@ -209,7 +139,7 @@ virtual void operator()(LinearOperatorBase<Field> &Linop, const std::vector<Fiel
|
|||||||
if ( CGtype == BlockCGrQVec ) {
|
if ( CGtype == BlockCGrQVec ) {
|
||||||
BlockCGrQsolveVec(Linop,Src,Psi);
|
BlockCGrQsolveVec(Linop,Src,Psi);
|
||||||
} else {
|
} else {
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -256,13 +186,12 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
|
|||||||
sliceNorm(ssq,B,Orthog);
|
sliceNorm(ssq,B,Orthog);
|
||||||
RealD sssum=0;
|
RealD sssum=0;
|
||||||
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
|
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
|
||||||
for(int b=0;b<Nblock;b++) std::cout << "src["<<b<<"]" << ssq[b] <<std::endl;
|
|
||||||
|
|
||||||
sliceNorm(residuals,B,Orthog);
|
sliceNorm(residuals,B,Orthog);
|
||||||
for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); }
|
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
|
||||||
|
|
||||||
sliceNorm(residuals,X,Orthog);
|
sliceNorm(residuals,X,Orthog);
|
||||||
for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); }
|
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
|
||||||
|
|
||||||
/************************************************************************
|
/************************************************************************
|
||||||
* Block conjugate gradient rQ (Sebastien Birk Thesis, after Dubrulle 2001)
|
* Block conjugate gradient rQ (Sebastien Birk Thesis, after Dubrulle 2001)
|
||||||
@@ -292,9 +221,6 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
|
|||||||
Linop.HermOp(X, AD);
|
Linop.HermOp(X, AD);
|
||||||
tmp = B - AD;
|
tmp = B - AD;
|
||||||
|
|
||||||
sliceNorm(residuals,tmp,Orthog);
|
|
||||||
for(int b=0;b<Nblock;b++) std::cout << "res["<<b<<"]" << residuals[b] <<std::endl;
|
|
||||||
|
|
||||||
ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
|
ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
|
||||||
D=Q;
|
D=Q;
|
||||||
|
|
||||||
@@ -310,8 +236,6 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
|
|||||||
GridStopWatch SolverTimer;
|
GridStopWatch SolverTimer;
|
||||||
SolverTimer.Start();
|
SolverTimer.Start();
|
||||||
|
|
||||||
RealD max_resid=0;
|
|
||||||
|
|
||||||
int k;
|
int k;
|
||||||
for (k = 1; k <= MaxIterations; k++) {
|
for (k = 1; k <= MaxIterations; k++) {
|
||||||
|
|
||||||
@@ -356,7 +280,7 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
|
|||||||
*/
|
*/
|
||||||
m_rr = m_C.adjoint() * m_C;
|
m_rr = m_C.adjoint() * m_C;
|
||||||
|
|
||||||
max_resid=0;
|
RealD max_resid=0;
|
||||||
RealD rrsum=0;
|
RealD rrsum=0;
|
||||||
RealD rr;
|
RealD rr;
|
||||||
|
|
||||||
@@ -398,11 +322,9 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
|
|||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge" << std::endl;
|
||||||
|
|
||||||
std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge "<<k<<" / "<<MaxIterations
|
if (ErrorOnNoConverge) assert(0);
|
||||||
<<" residual "<< std::sqrt(max_resid)<< std::endl;
|
|
||||||
|
|
||||||
if (ErrorOnNoConverge) GRID_ASSERT(0);
|
|
||||||
IterationsToComplete = k;
|
IterationsToComplete = k;
|
||||||
}
|
}
|
||||||
//////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////
|
||||||
@@ -438,10 +360,10 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &
|
|||||||
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
|
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
|
||||||
|
|
||||||
sliceNorm(residuals,Src,Orthog);
|
sliceNorm(residuals,Src,Orthog);
|
||||||
for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); }
|
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
|
||||||
|
|
||||||
sliceNorm(residuals,Psi,Orthog);
|
sliceNorm(residuals,Psi,Orthog);
|
||||||
for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); }
|
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
|
||||||
|
|
||||||
// Initial search dir is guess
|
// Initial search dir is guess
|
||||||
Linop.HermOp(Psi, AP);
|
Linop.HermOp(Psi, AP);
|
||||||
@@ -540,10 +462,47 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &
|
|||||||
}
|
}
|
||||||
std::cout << GridLogMessage << "MultiRHSConjugateGradient did NOT converge" << std::endl;
|
std::cout << GridLogMessage << "MultiRHSConjugateGradient did NOT converge" << std::endl;
|
||||||
|
|
||||||
if (ErrorOnNoConverge) GRID_ASSERT(0);
|
if (ErrorOnNoConverge) assert(0);
|
||||||
IterationsToComplete = k;
|
IterationsToComplete = k;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){
|
||||||
|
for(int b=0;b<Nblock;b++){
|
||||||
|
for(int bp=0;bp<Nblock;bp++) {
|
||||||
|
m(b,bp) = innerProduct(X[b],Y[bp]);
|
||||||
|
}}
|
||||||
|
}
|
||||||
|
void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){
|
||||||
|
// Should make this cache friendly with site outermost, parallel_for
|
||||||
|
// Deal with case AP aliases with either Y or X
|
||||||
|
std::vector<Field> tmp(Nblock,X[0]);
|
||||||
|
for(int b=0;b<Nblock;b++){
|
||||||
|
tmp[b] = Y[b];
|
||||||
|
for(int bp=0;bp<Nblock;bp++) {
|
||||||
|
tmp[b] = tmp[b] + scomplex(scale*m(bp,b))*X[bp];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for(int b=0;b<Nblock;b++){
|
||||||
|
AP[b] = tmp[b];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){
|
||||||
|
// Should make this cache friendly with site outermost, parallel_for
|
||||||
|
for(int b=0;b<Nblock;b++){
|
||||||
|
AP[b] = Zero();
|
||||||
|
for(int bp=0;bp<Nblock;bp++) {
|
||||||
|
AP[b] += scomplex(m(bp,b))*X[bp];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
double normv(const std::vector<Field> &P){
|
||||||
|
double nn = 0.0;
|
||||||
|
for(int b=0;b<Nblock;b++) {
|
||||||
|
nn+=norm2(P[b]);
|
||||||
|
}
|
||||||
|
return nn;
|
||||||
|
}
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////
|
||||||
// BlockCGrQvec implementation:
|
// BlockCGrQvec implementation:
|
||||||
//--------------------------
|
//--------------------------
|
||||||
@@ -554,7 +513,7 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &
|
|||||||
void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field> &B, std::vector<Field> &X)
|
void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field> &B, std::vector<Field> &X)
|
||||||
{
|
{
|
||||||
Nblock = B.size();
|
Nblock = B.size();
|
||||||
GRID_ASSERT(Nblock == X.size());
|
assert(Nblock == X.size());
|
||||||
|
|
||||||
std::cout<<GridLogMessage<<" Block Conjugate Gradient Vec rQ : Nblock "<<Nblock<<std::endl;
|
std::cout<<GridLogMessage<<" Block Conjugate Gradient Vec rQ : Nblock "<<Nblock<<std::endl;
|
||||||
|
|
||||||
@@ -590,14 +549,13 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
|
|||||||
|
|
||||||
RealD sssum=0;
|
RealD sssum=0;
|
||||||
for(int b=0;b<Nblock;b++){ ssq[b] = norm2(B[b]);}
|
for(int b=0;b<Nblock;b++){ ssq[b] = norm2(B[b]);}
|
||||||
for(int b=0;b<Nblock;b++){ std::cout << "ssq["<<b<<"] "<<ssq[b]<<std::endl;}
|
|
||||||
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
|
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
|
||||||
|
|
||||||
for(int b=0;b<Nblock;b++){ residuals[b] = norm2(B[b]);}
|
for(int b=0;b<Nblock;b++){ residuals[b] = norm2(B[b]);}
|
||||||
for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); }
|
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
|
||||||
|
|
||||||
for(int b=0;b<Nblock;b++){ residuals[b] = norm2(X[b]);}
|
for(int b=0;b<Nblock;b++){ residuals[b] = norm2(X[b]);}
|
||||||
for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); }
|
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
|
||||||
|
|
||||||
/************************************************************************
|
/************************************************************************
|
||||||
* Block conjugate gradient rQ (Sebastien Birk Thesis, after Dubrulle 2001)
|
* Block conjugate gradient rQ (Sebastien Birk Thesis, after Dubrulle 2001)
|
||||||
@@ -627,7 +585,6 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
|
|||||||
for(int b=0;b<Nblock;b++) {
|
for(int b=0;b<Nblock;b++) {
|
||||||
Linop.HermOp(X[b], AD[b]);
|
Linop.HermOp(X[b], AD[b]);
|
||||||
tmp[b] = B[b] - AD[b];
|
tmp[b] = B[b] - AD[b];
|
||||||
std::cout << "r0["<<b<<"] "<<norm2(tmp[b])<<std::endl;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
|
ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
|
||||||
@@ -731,7 +688,7 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
|
|||||||
}
|
}
|
||||||
std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge" << std::endl;
|
std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge" << std::endl;
|
||||||
|
|
||||||
if (ErrorOnNoConverge) GRID_ASSERT(0);
|
if (ErrorOnNoConverge) assert(0);
|
||||||
IterationsToComplete = k;
|
IterationsToComplete = k;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@@ -36,7 +36,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<
|
|||||||
public:
|
public:
|
||||||
using OperatorFunction<Field>::operator();
|
using OperatorFunction<Field>::operator();
|
||||||
|
|
||||||
bool ErrorOnNoConverge; // Throw an GRID_ASSERT when CAGMRES fails to converge,
|
bool ErrorOnNoConverge; // Throw an assert when CAGMRES fails to converge,
|
||||||
// defaults to true
|
// defaults to true
|
||||||
|
|
||||||
RealD Tolerance;
|
RealD Tolerance;
|
||||||
@@ -82,7 +82,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<
|
|||||||
conformable(psi, src);
|
conformable(psi, src);
|
||||||
|
|
||||||
RealD guess = norm2(psi);
|
RealD guess = norm2(psi);
|
||||||
GRID_ASSERT(std::isnan(guess) == 0);
|
assert(std::isnan(guess) == 0);
|
||||||
|
|
||||||
RealD cp;
|
RealD cp;
|
||||||
RealD ssq = norm2(src);
|
RealD ssq = norm2(src);
|
||||||
@@ -137,7 +137,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<
|
|||||||
std::cout << GridLogMessage << "CommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
|
std::cout << GridLogMessage << "CommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
|
||||||
|
|
||||||
if (ErrorOnNoConverge)
|
if (ErrorOnNoConverge)
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
}
|
}
|
||||||
|
|
||||||
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
|
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
|
||||||
@@ -185,7 +185,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
GRID_ASSERT(0); // Never reached
|
assert(0); // Never reached
|
||||||
return cp;
|
return cp;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@@ -38,14 +38,13 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
// single input vec, single output vec.
|
// single input vec, single output vec.
|
||||||
/////////////////////////////////////////////////////////////
|
/////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
|
||||||
template <class Field>
|
template <class Field>
|
||||||
class ConjugateGradient : public OperatorFunction<Field> {
|
class ConjugateGradient : public OperatorFunction<Field> {
|
||||||
public:
|
public:
|
||||||
|
|
||||||
using OperatorFunction<Field>::operator();
|
using OperatorFunction<Field>::operator();
|
||||||
|
|
||||||
bool ErrorOnNoConverge; // throw an GRID_ASSERT when the CG fails to converge.
|
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
|
||||||
// Defaults true.
|
// Defaults true.
|
||||||
RealD Tolerance;
|
RealD Tolerance;
|
||||||
Integer MaxIterations;
|
Integer MaxIterations;
|
||||||
@@ -55,26 +54,10 @@ public:
|
|||||||
ConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
|
ConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
|
||||||
: Tolerance(tol),
|
: Tolerance(tol),
|
||||||
MaxIterations(maxit),
|
MaxIterations(maxit),
|
||||||
ErrorOnNoConverge(err_on_no_conv)
|
ErrorOnNoConverge(err_on_no_conv){};
|
||||||
{};
|
|
||||||
|
|
||||||
virtual void LogIteration(int k,RealD a,RealD b){
|
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
|
||||||
// std::cout << "ConjugageGradient::LogIteration() "<<std::endl;
|
|
||||||
};
|
|
||||||
virtual void LogBegin(void){
|
|
||||||
std::cout << "ConjugageGradient::LogBegin() "<<std::endl;
|
|
||||||
};
|
|
||||||
|
|
||||||
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
|
|
||||||
|
|
||||||
this->LogBegin();
|
|
||||||
|
|
||||||
GRID_TRACE("ConjugateGradient");
|
|
||||||
GridStopWatch PreambleTimer;
|
|
||||||
GridStopWatch ConstructTimer;
|
|
||||||
GridStopWatch NormTimer;
|
|
||||||
GridStopWatch AssignTimer;
|
|
||||||
PreambleTimer.Start();
|
|
||||||
psi.Checkerboard() = src.Checkerboard();
|
psi.Checkerboard() = src.Checkerboard();
|
||||||
|
|
||||||
conformable(psi, src);
|
conformable(psi, src);
|
||||||
@@ -82,32 +65,22 @@ public:
|
|||||||
RealD cp, c, a, d, b, ssq, qq;
|
RealD cp, c, a, d, b, ssq, qq;
|
||||||
//RealD b_pred;
|
//RealD b_pred;
|
||||||
|
|
||||||
// Was doing copies
|
Field p(src);
|
||||||
ConstructTimer.Start();
|
Field mmp(src);
|
||||||
Field p (src.Grid());
|
Field r(src);
|
||||||
Field mmp(src.Grid());
|
|
||||||
Field r (src.Grid());
|
|
||||||
ConstructTimer.Stop();
|
|
||||||
|
|
||||||
// Initial residual computation & set up
|
// Initial residual computation & set up
|
||||||
NormTimer.Start();
|
|
||||||
ssq = norm2(src);
|
|
||||||
RealD guess = norm2(psi);
|
RealD guess = norm2(psi);
|
||||||
NormTimer.Stop();
|
assert(std::isnan(guess) == 0);
|
||||||
GRID_ASSERT(std::isnan(guess) == 0);
|
|
||||||
AssignTimer.Start();
|
Linop.HermOpAndNorm(psi, mmp, d, b);
|
||||||
if ( guess == 0.0 ) {
|
|
||||||
r = src;
|
r = src - mmp;
|
||||||
p = r;
|
p = r;
|
||||||
a = ssq;
|
|
||||||
} else {
|
a = norm2(p);
|
||||||
Linop.HermOpAndNorm(psi, mmp, d, b);
|
|
||||||
r = src - mmp;
|
|
||||||
p = r;
|
|
||||||
a = norm2(p);
|
|
||||||
}
|
|
||||||
cp = a;
|
cp = a;
|
||||||
AssignTimer.Stop();
|
ssq = norm2(src);
|
||||||
|
|
||||||
// Handle trivial case of zero src
|
// Handle trivial case of zero src
|
||||||
if (ssq == 0.){
|
if (ssq == 0.){
|
||||||
@@ -137,7 +110,6 @@ public:
|
|||||||
std::cout << GridLogIterative << std::setprecision(8)
|
std::cout << GridLogIterative << std::setprecision(8)
|
||||||
<< "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
|
<< "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
|
||||||
|
|
||||||
PreambleTimer.Stop();
|
|
||||||
GridStopWatch LinalgTimer;
|
GridStopWatch LinalgTimer;
|
||||||
GridStopWatch InnerTimer;
|
GridStopWatch InnerTimer;
|
||||||
GridStopWatch AxpyNormTimer;
|
GridStopWatch AxpyNormTimer;
|
||||||
@@ -145,13 +117,9 @@ public:
|
|||||||
GridStopWatch MatrixTimer;
|
GridStopWatch MatrixTimer;
|
||||||
GridStopWatch SolverTimer;
|
GridStopWatch SolverTimer;
|
||||||
|
|
||||||
RealD usecs = -usecond();
|
|
||||||
SolverTimer.Start();
|
SolverTimer.Start();
|
||||||
int k;
|
int k;
|
||||||
for (k = 1; k <= MaxIterations; k++) {
|
for (k = 1; k <= MaxIterations; k++) {
|
||||||
|
|
||||||
GridStopWatch IterationTimer;
|
|
||||||
IterationTimer.Start();
|
|
||||||
c = cp;
|
c = cp;
|
||||||
|
|
||||||
MatrixTimer.Start();
|
MatrixTimer.Start();
|
||||||
@@ -183,46 +151,34 @@ public:
|
|||||||
}
|
}
|
||||||
LinearCombTimer.Stop();
|
LinearCombTimer.Stop();
|
||||||
LinalgTimer.Stop();
|
LinalgTimer.Stop();
|
||||||
LogIteration(k,a,b);
|
|
||||||
|
|
||||||
IterationTimer.Stop();
|
std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k
|
||||||
if ( (k % 500) == 0 ) {
|
|
||||||
std::cout << GridLogMessage << "ConjugateGradient: Iteration " << k
|
|
||||||
<< " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl;
|
<< " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl;
|
||||||
} else {
|
|
||||||
std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k
|
|
||||||
<< " residual " << sqrt(cp/ssq) << " target " << Tolerance << " took " << IterationTimer.Elapsed() << std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Stopping condition
|
// Stopping condition
|
||||||
if (cp <= rsq) {
|
if (cp <= rsq) {
|
||||||
usecs +=usecond();
|
|
||||||
SolverTimer.Stop();
|
SolverTimer.Stop();
|
||||||
Linop.HermOpAndNorm(psi, mmp, d, qq);
|
Linop.HermOpAndNorm(psi, mmp, d, qq);
|
||||||
p = mmp - src;
|
p = mmp - src;
|
||||||
GridBase *grid = src.Grid();
|
|
||||||
RealD DwfFlops = (1452. )*grid->gSites()*4*k
|
|
||||||
+ (8+4+8+4+4)*12*grid->gSites()*k; // CG linear algebra
|
|
||||||
RealD srcnorm = std::sqrt(norm2(src));
|
RealD srcnorm = std::sqrt(norm2(src));
|
||||||
RealD resnorm = std::sqrt(norm2(p));
|
RealD resnorm = std::sqrt(norm2(p));
|
||||||
RealD true_residual = resnorm / srcnorm;
|
RealD true_residual = resnorm / srcnorm;
|
||||||
|
|
||||||
std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k
|
std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k
|
||||||
<< "\tComputed residual " << std::sqrt(cp / ssq)
|
<< "\tComputed residual " << std::sqrt(cp / ssq)
|
||||||
<< "\tTrue residual " << true_residual
|
<< "\tTrue residual " << true_residual
|
||||||
<< "\tTarget " << Tolerance << std::endl;
|
<< "\tTarget " << Tolerance << std::endl;
|
||||||
|
|
||||||
// std::cout << GridLogMessage << "\tPreamble " << PreambleTimer.Elapsed() <<std::endl;
|
std::cout << GridLogIterative << "Time breakdown "<<std::endl;
|
||||||
std::cout << GridLogMessage << "\tSolver Elapsed " << SolverTimer.Elapsed() <<std::endl;
|
std::cout << GridLogIterative << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||||
std::cout << GridLogPerformance << "Time breakdown "<<std::endl;
|
std::cout << GridLogIterative << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||||
std::cout << GridLogPerformance << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
std::cout << GridLogIterative << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
||||||
std::cout << GridLogPerformance << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
std::cout << GridLogIterative << "\tInner " << InnerTimer.Elapsed() <<std::endl;
|
||||||
std::cout << GridLogPerformance << "\t\tInner " << InnerTimer.Elapsed() <<std::endl;
|
std::cout << GridLogIterative << "\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
|
||||||
std::cout << GridLogPerformance << "\t\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
|
std::cout << GridLogIterative << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
|
||||||
std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
|
|
||||||
|
|
||||||
std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl;
|
if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
|
||||||
|
|
||||||
if (ErrorOnNoConverge) GRID_ASSERT(true_residual / Tolerance < 10000.0);
|
|
||||||
|
|
||||||
IterationsToComplete = k;
|
IterationsToComplete = k;
|
||||||
TrueResidual = true_residual;
|
TrueResidual = true_residual;
|
||||||
@@ -231,143 +187,17 @@ public:
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
// Failed. Calculate true residual before giving up
|
// Failed. Calculate true residual before giving up
|
||||||
// Linop.HermOpAndNorm(psi, mmp, d, qq);
|
Linop.HermOpAndNorm(psi, mmp, d, qq);
|
||||||
// p = mmp - src;
|
p = mmp - src;
|
||||||
//TrueResidual = sqrt(norm2(p)/ssq);
|
|
||||||
// TrueResidual = 1;
|
|
||||||
|
|
||||||
std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations
|
TrueResidual = sqrt(norm2(p)/ssq);
|
||||||
<<" residual "<< std::sqrt(cp / ssq)<< std::endl;
|
|
||||||
SolverTimer.Stop();
|
|
||||||
std::cout << GridLogMessage << "\tPreamble " << PreambleTimer.Elapsed() <<std::endl;
|
|
||||||
std::cout << GridLogMessage << "\tConstruct " << ConstructTimer.Elapsed() <<std::endl;
|
|
||||||
std::cout << GridLogMessage << "\tNorm " << NormTimer.Elapsed() <<std::endl;
|
|
||||||
std::cout << GridLogMessage << "\tAssign " << AssignTimer.Elapsed() <<std::endl;
|
|
||||||
std::cout << GridLogMessage << "\tSolver " << SolverTimer.Elapsed() <<std::endl;
|
|
||||||
std::cout << GridLogMessage << "Solver breakdown "<<std::endl;
|
|
||||||
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
|
||||||
std::cout << GridLogMessage<< "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
|
||||||
std::cout << GridLogPerformance << "\t\tInner " << InnerTimer.Elapsed() <<std::endl;
|
|
||||||
std::cout << GridLogPerformance << "\t\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
|
|
||||||
std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
|
|
||||||
|
|
||||||
if (ErrorOnNoConverge) GRID_ASSERT(0);
|
std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations<< std::endl;
|
||||||
|
|
||||||
|
if (ErrorOnNoConverge) assert(0);
|
||||||
IterationsToComplete = k;
|
IterationsToComplete = k;
|
||||||
|
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
template <class Field>
|
|
||||||
class ConjugateGradientPolynomial : public ConjugateGradient<Field> {
|
|
||||||
public:
|
|
||||||
// Optionally record the CG polynomial
|
|
||||||
std::vector<double> ak;
|
|
||||||
std::vector<double> bk;
|
|
||||||
std::vector<double> poly_p;
|
|
||||||
std::vector<double> poly_r;
|
|
||||||
std::vector<double> poly_Ap;
|
|
||||||
std::vector<double> polynomial;
|
|
||||||
|
|
||||||
public:
|
|
||||||
ConjugateGradientPolynomial(RealD tol, Integer maxit, bool err_on_no_conv = true)
|
|
||||||
: ConjugateGradient<Field>(tol,maxit,err_on_no_conv)
|
|
||||||
{ };
|
|
||||||
void PolyHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
|
|
||||||
{
|
|
||||||
Field tmp(src.Grid());
|
|
||||||
Field AtoN(src.Grid());
|
|
||||||
AtoN = src;
|
|
||||||
psi=AtoN*polynomial[0];
|
|
||||||
for(int n=1;n<polynomial.size();n++){
|
|
||||||
tmp = AtoN;
|
|
||||||
Linop.HermOp(tmp,AtoN);
|
|
||||||
psi = psi + polynomial[n]*AtoN;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
void CGsequenceHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &x)
|
|
||||||
{
|
|
||||||
Field Ap(src.Grid());
|
|
||||||
Field r(src.Grid());
|
|
||||||
Field p(src.Grid());
|
|
||||||
p=src;
|
|
||||||
r=src;
|
|
||||||
x=Zero();
|
|
||||||
x.Checkerboard()=src.Checkerboard();
|
|
||||||
for(int k=0;k<ak.size();k++){
|
|
||||||
x = x + ak[k]*p;
|
|
||||||
Linop.HermOp(p,Ap);
|
|
||||||
r = r - ak[k] * Ap;
|
|
||||||
p = r + bk[k] * p;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
void Solve(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
|
|
||||||
{
|
|
||||||
psi=Zero();
|
|
||||||
this->operator ()(Linop,src,psi);
|
|
||||||
}
|
|
||||||
virtual void LogBegin(void)
|
|
||||||
{
|
|
||||||
std::cout << "ConjugageGradientPolynomial::LogBegin() "<<std::endl;
|
|
||||||
ak.resize(0);
|
|
||||||
bk.resize(0);
|
|
||||||
polynomial.resize(0);
|
|
||||||
poly_Ap.resize(0);
|
|
||||||
poly_Ap.resize(0);
|
|
||||||
poly_p.resize(1);
|
|
||||||
poly_r.resize(1);
|
|
||||||
poly_p[0]=1.0;
|
|
||||||
poly_r[0]=1.0;
|
|
||||||
};
|
|
||||||
virtual void LogIteration(int k,RealD a,RealD b)
|
|
||||||
{
|
|
||||||
// With zero guess,
|
|
||||||
// p = r = src
|
|
||||||
//
|
|
||||||
// iterate:
|
|
||||||
// x = x + a p
|
|
||||||
// r = r - a A p
|
|
||||||
// p = r + b p
|
|
||||||
//
|
|
||||||
// [0]
|
|
||||||
// r = x
|
|
||||||
// p = x
|
|
||||||
// Ap=0
|
|
||||||
//
|
|
||||||
// [1]
|
|
||||||
// Ap = A x + 0 ==> shift poly P right by 1 and add 0.
|
|
||||||
// x = x + a p ==> add polynomials term by term
|
|
||||||
// r = r - a A p ==> add polynomials term by term
|
|
||||||
// p = r + b p ==> add polynomials term by term
|
|
||||||
//
|
|
||||||
std::cout << "ConjugageGradientPolynomial::LogIteration() "<<k<<std::endl;
|
|
||||||
ak.push_back(a);
|
|
||||||
bk.push_back(b);
|
|
||||||
// Ap= right_shift(p)
|
|
||||||
poly_Ap.resize(k+1);
|
|
||||||
poly_Ap[0]=0.0;
|
|
||||||
for(int i=0;i<k;i++){
|
|
||||||
poly_Ap[i+1]=poly_p[i];
|
|
||||||
}
|
|
||||||
|
|
||||||
// x = x + a p
|
|
||||||
polynomial.resize(k);
|
|
||||||
polynomial[k-1]=0.0;
|
|
||||||
for(int i=0;i<k;i++){
|
|
||||||
polynomial[i] = polynomial[i] + a * poly_p[i];
|
|
||||||
}
|
|
||||||
|
|
||||||
// r = r - a Ap
|
|
||||||
// p = r + b p
|
|
||||||
poly_r.resize(k+1);
|
|
||||||
poly_p.resize(k+1);
|
|
||||||
poly_r[k] = poly_p[k] = 0.0;
|
|
||||||
for(int i=0;i<k+1;i++){
|
|
||||||
poly_r[i] = poly_r[i] - a * poly_Ap[i];
|
|
||||||
poly_p[i] = poly_r[i] + b * poly_p[i];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
#endif
|
#endif
|
||||||
|
|||||||
@@ -36,7 +36,6 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
||||||
class MixedPrecisionConjugateGradient : public LinearFunction<FieldD> {
|
class MixedPrecisionConjugateGradient : public LinearFunction<FieldD> {
|
||||||
public:
|
public:
|
||||||
using LinearFunction<FieldD>::operator();
|
|
||||||
RealD Tolerance;
|
RealD Tolerance;
|
||||||
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
|
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
|
||||||
Integer MaxInnerIterations;
|
Integer MaxInnerIterations;
|
||||||
@@ -49,7 +48,6 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
Integer TotalInnerIterations; //Number of inner CG iterations
|
Integer TotalInnerIterations; //Number of inner CG iterations
|
||||||
Integer TotalOuterIterations; //Number of restarts
|
Integer TotalOuterIterations; //Number of restarts
|
||||||
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
|
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
|
||||||
RealD TrueResidual;
|
|
||||||
|
|
||||||
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
|
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
|
||||||
LinearFunction<FieldF> *guesser;
|
LinearFunction<FieldF> *guesser;
|
||||||
@@ -69,7 +67,6 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
}
|
}
|
||||||
|
|
||||||
void operator() (const FieldD &src_d_in, FieldD &sol_d){
|
void operator() (const FieldD &src_d_in, FieldD &sol_d){
|
||||||
std::cout << GridLogMessage << "MixedPrecisionConjugateGradient: Starting mixed precision CG with outer tolerance " << Tolerance << " and inner tolerance " << InnerTolerance << std::endl;
|
|
||||||
TotalInnerIterations = 0;
|
TotalInnerIterations = 0;
|
||||||
|
|
||||||
GridStopWatch TotalTimer;
|
GridStopWatch TotalTimer;
|
||||||
@@ -99,7 +96,6 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
FieldF sol_f(SinglePrecGrid);
|
FieldF sol_f(SinglePrecGrid);
|
||||||
sol_f.Checkerboard() = cb;
|
sol_f.Checkerboard() = cb;
|
||||||
|
|
||||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Starting initial inner CG with tolerance " << inner_tol << std::endl;
|
|
||||||
ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
|
ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
|
||||||
CG_f.ErrorOnNoConverge = false;
|
CG_f.ErrorOnNoConverge = false;
|
||||||
|
|
||||||
@@ -109,24 +105,21 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
|
|
||||||
Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
|
Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
|
||||||
|
|
||||||
precisionChangeWorkspace pc_wk_sp_to_dp(DoublePrecGrid, SinglePrecGrid);
|
|
||||||
precisionChangeWorkspace pc_wk_dp_to_sp(SinglePrecGrid, DoublePrecGrid);
|
|
||||||
|
|
||||||
for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){
|
for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){
|
||||||
//Compute double precision rsd and also new RHS vector.
|
//Compute double precision rsd and also new RHS vector.
|
||||||
Linop_d.HermOp(sol_d, tmp_d);
|
Linop_d.HermOp(sol_d, tmp_d);
|
||||||
RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector
|
RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector
|
||||||
std::cout<<GridLogMessage<<" rsd norm "<<norm<<std::endl;
|
|
||||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " <<outer_iter<<" residual "<< norm<< " target "<< stop<<std::endl;
|
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " <<outer_iter<<" residual "<< norm<< " target "<< stop<<std::endl;
|
||||||
|
|
||||||
if(norm < OuterLoopNormMult * stop){
|
if(norm < OuterLoopNormMult * stop){
|
||||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration converged on iteration " <<outer_iter <<std::endl;
|
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration converged on iteration " <<outer_iter <<std::endl;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
while(norm * inner_tol * inner_tol < stop*1.01) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
|
while(norm * inner_tol * inner_tol < stop) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
|
||||||
|
|
||||||
PrecChangeTimer.Start();
|
PrecChangeTimer.Start();
|
||||||
precisionChange(src_f, src_d, pc_wk_dp_to_sp);
|
precisionChange(src_f, src_d);
|
||||||
PrecChangeTimer.Stop();
|
PrecChangeTimer.Stop();
|
||||||
|
|
||||||
sol_f = Zero();
|
sol_f = Zero();
|
||||||
@@ -136,7 +129,6 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
(*guesser)(src_f, sol_f);
|
(*guesser)(src_f, sol_f);
|
||||||
|
|
||||||
//Inner CG
|
//Inner CG
|
||||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " << outer_iter << " starting inner CG with tolerance " << inner_tol << std::endl;
|
|
||||||
CG_f.Tolerance = inner_tol;
|
CG_f.Tolerance = inner_tol;
|
||||||
InnerCGtimer.Start();
|
InnerCGtimer.Start();
|
||||||
CG_f(Linop_f, src_f, sol_f);
|
CG_f(Linop_f, src_f, sol_f);
|
||||||
@@ -145,7 +137,7 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
|
|
||||||
//Convert sol back to double and add to double prec solution
|
//Convert sol back to double and add to double prec solution
|
||||||
PrecChangeTimer.Start();
|
PrecChangeTimer.Start();
|
||||||
precisionChange(tmp_d, sol_f, pc_wk_sp_to_dp);
|
precisionChange(tmp_d, sol_f);
|
||||||
PrecChangeTimer.Stop();
|
PrecChangeTimer.Stop();
|
||||||
|
|
||||||
axpy(sol_d, 1.0, tmp_d, sol_d);
|
axpy(sol_d, 1.0, tmp_d, sol_d);
|
||||||
@@ -157,7 +149,6 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations);
|
ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations);
|
||||||
CG_d(Linop_d, src_d_in, sol_d);
|
CG_d(Linop_d, src_d_in, sol_d);
|
||||||
TotalFinalStepIterations = CG_d.IterationsToComplete;
|
TotalFinalStepIterations = CG_d.IterationsToComplete;
|
||||||
TrueResidual = CG_d.TrueResidual;
|
|
||||||
|
|
||||||
TotalTimer.Stop();
|
TotalTimer.Stop();
|
||||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;
|
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;
|
||||||
|
|||||||
@@ -1,213 +0,0 @@
|
|||||||
/*************************************************************************************
|
|
||||||
|
|
||||||
Grid physics library, www.github.com/paboyle/Grid
|
|
||||||
|
|
||||||
Source file: ./lib/algorithms/iterative/ConjugateGradientMixedPrecBatched.h
|
|
||||||
|
|
||||||
Copyright (C) 2015
|
|
||||||
|
|
||||||
Author: Raoul Hodgson <raoul.hodgson@ed.ac.uk>
|
|
||||||
|
|
||||||
This program is free software; you can redistribute it and/or modify
|
|
||||||
it under the terms of the GNU General Public License as published by
|
|
||||||
the Free Software Foundation; either version 2 of the License, or
|
|
||||||
(at your option) any later version.
|
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License along
|
|
||||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
||||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
||||||
|
|
||||||
See the full license in the file "LICENSE" in the top level distribution directory
|
|
||||||
*************************************************************************************/
|
|
||||||
/* END LEGAL */
|
|
||||||
#ifndef GRID_CONJUGATE_GRADIENT_MIXED_PREC_BATCHED_H
|
|
||||||
#define GRID_CONJUGATE_GRADIENT_MIXED_PREC_BATCHED_H
|
|
||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
|
||||||
|
|
||||||
//Mixed precision restarted defect correction CG
|
|
||||||
template<class FieldD,class FieldF,
|
|
||||||
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
|
|
||||||
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
|
||||||
class MixedPrecisionConjugateGradientBatched : public LinearFunction<FieldD> {
|
|
||||||
public:
|
|
||||||
using LinearFunction<FieldD>::operator();
|
|
||||||
RealD Tolerance;
|
|
||||||
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
|
|
||||||
Integer MaxInnerIterations;
|
|
||||||
Integer MaxOuterIterations;
|
|
||||||
Integer MaxPatchupIterations;
|
|
||||||
GridBase* SinglePrecGrid; //Grid for single-precision fields
|
|
||||||
RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
|
|
||||||
LinearOperatorBase<FieldF> &Linop_f;
|
|
||||||
LinearOperatorBase<FieldD> &Linop_d;
|
|
||||||
|
|
||||||
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
|
|
||||||
LinearFunction<FieldF> *guesser;
|
|
||||||
bool updateResidual;
|
|
||||||
|
|
||||||
MixedPrecisionConjugateGradientBatched(RealD tol,
|
|
||||||
Integer maxinnerit,
|
|
||||||
Integer maxouterit,
|
|
||||||
Integer maxpatchit,
|
|
||||||
GridBase* _sp_grid,
|
|
||||||
LinearOperatorBase<FieldF> &_Linop_f,
|
|
||||||
LinearOperatorBase<FieldD> &_Linop_d,
|
|
||||||
bool _updateResidual=true) :
|
|
||||||
Linop_f(_Linop_f), Linop_d(_Linop_d),
|
|
||||||
Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit), MaxOuterIterations(maxouterit), MaxPatchupIterations(maxpatchit), SinglePrecGrid(_sp_grid),
|
|
||||||
OuterLoopNormMult(100.), guesser(NULL), updateResidual(_updateResidual) { };
|
|
||||||
|
|
||||||
void useGuesser(LinearFunction<FieldF> &g){
|
|
||||||
guesser = &g;
|
|
||||||
}
|
|
||||||
|
|
||||||
void operator() (const FieldD &src_d_in, FieldD &sol_d){
|
|
||||||
std::vector<FieldD> srcs_d_in{src_d_in};
|
|
||||||
std::vector<FieldD> sols_d{sol_d};
|
|
||||||
|
|
||||||
(*this)(srcs_d_in,sols_d);
|
|
||||||
|
|
||||||
sol_d = sols_d[0];
|
|
||||||
}
|
|
||||||
|
|
||||||
void operator() (const std::vector<FieldD> &src_d_in, std::vector<FieldD> &sol_d){
|
|
||||||
GRID_ASSERT(src_d_in.size() == sol_d.size());
|
|
||||||
int NBatch = src_d_in.size();
|
|
||||||
|
|
||||||
std::cout << GridLogMessage << "NBatch = " << NBatch << std::endl;
|
|
||||||
|
|
||||||
Integer TotalOuterIterations = 0; //Number of restarts
|
|
||||||
std::vector<Integer> TotalInnerIterations(NBatch,0); //Number of inner CG iterations
|
|
||||||
std::vector<Integer> TotalFinalStepIterations(NBatch,0); //Number of CG iterations in final patch-up step
|
|
||||||
|
|
||||||
GridStopWatch TotalTimer;
|
|
||||||
TotalTimer.Start();
|
|
||||||
|
|
||||||
GridStopWatch InnerCGtimer;
|
|
||||||
GridStopWatch PrecChangeTimer;
|
|
||||||
|
|
||||||
int cb = src_d_in[0].Checkerboard();
|
|
||||||
|
|
||||||
std::vector<RealD> src_norm;
|
|
||||||
std::vector<RealD> norm;
|
|
||||||
std::vector<RealD> stop;
|
|
||||||
|
|
||||||
GridBase* DoublePrecGrid = src_d_in[0].Grid();
|
|
||||||
FieldD tmp_d(DoublePrecGrid);
|
|
||||||
tmp_d.Checkerboard() = cb;
|
|
||||||
|
|
||||||
FieldD tmp2_d(DoublePrecGrid);
|
|
||||||
tmp2_d.Checkerboard() = cb;
|
|
||||||
|
|
||||||
std::vector<FieldD> src_d;
|
|
||||||
std::vector<FieldF> src_f;
|
|
||||||
std::vector<FieldF> sol_f;
|
|
||||||
|
|
||||||
for (int i=0; i<NBatch; i++) {
|
|
||||||
sol_d[i].Checkerboard() = cb;
|
|
||||||
|
|
||||||
src_norm.push_back(norm2(src_d_in[i]));
|
|
||||||
norm.push_back(0.);
|
|
||||||
stop.push_back(src_norm[i] * Tolerance*Tolerance);
|
|
||||||
|
|
||||||
src_d.push_back(src_d_in[i]); //source for next inner iteration, computed from residual during operation
|
|
||||||
|
|
||||||
src_f.push_back(SinglePrecGrid);
|
|
||||||
src_f[i].Checkerboard() = cb;
|
|
||||||
|
|
||||||
sol_f.push_back(SinglePrecGrid);
|
|
||||||
sol_f[i].Checkerboard() = cb;
|
|
||||||
}
|
|
||||||
|
|
||||||
RealD inner_tol = InnerTolerance;
|
|
||||||
|
|
||||||
ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
|
|
||||||
CG_f.ErrorOnNoConverge = false;
|
|
||||||
|
|
||||||
Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
|
|
||||||
|
|
||||||
for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){
|
|
||||||
std::cout << GridLogMessage << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Outer iteration " << outer_iter << std::endl;
|
|
||||||
|
|
||||||
bool allConverged = true;
|
|
||||||
|
|
||||||
for (int i=0; i<NBatch; i++) {
|
|
||||||
//Compute double precision rsd and also new RHS vector.
|
|
||||||
Linop_d.HermOp(sol_d[i], tmp_d);
|
|
||||||
norm[i] = axpy_norm(src_d[i], -1., tmp_d, src_d_in[i]); //src_d is residual vector
|
|
||||||
|
|
||||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Outer iteration " << outer_iter <<" solve " << i << " residual "<< norm[i] << " target "<< stop[i] <<std::endl;
|
|
||||||
|
|
||||||
PrecChangeTimer.Start();
|
|
||||||
precisionChange(src_f[i], src_d[i]);
|
|
||||||
PrecChangeTimer.Stop();
|
|
||||||
|
|
||||||
sol_f[i] = Zero();
|
|
||||||
|
|
||||||
if(norm[i] > OuterLoopNormMult * stop[i]) {
|
|
||||||
allConverged = false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if (allConverged) break;
|
|
||||||
|
|
||||||
if (updateResidual) {
|
|
||||||
RealD normMax = *std::max_element(std::begin(norm), std::end(norm));
|
|
||||||
RealD stopMax = *std::max_element(std::begin(stop), std::end(stop));
|
|
||||||
while( normMax * inner_tol * inner_tol < stopMax) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
|
|
||||||
CG_f.Tolerance = inner_tol;
|
|
||||||
}
|
|
||||||
|
|
||||||
//Optionally improve inner solver guess (eg using known eigenvectors)
|
|
||||||
if(guesser != NULL) {
|
|
||||||
(*guesser)(src_f, sol_f);
|
|
||||||
}
|
|
||||||
|
|
||||||
for (int i=0; i<NBatch; i++) {
|
|
||||||
//Inner CG
|
|
||||||
InnerCGtimer.Start();
|
|
||||||
CG_f(Linop_f, src_f[i], sol_f[i]);
|
|
||||||
InnerCGtimer.Stop();
|
|
||||||
TotalInnerIterations[i] += CG_f.IterationsToComplete;
|
|
||||||
|
|
||||||
//Convert sol back to double and add to double prec solution
|
|
||||||
PrecChangeTimer.Start();
|
|
||||||
precisionChange(tmp_d, sol_f[i]);
|
|
||||||
PrecChangeTimer.Stop();
|
|
||||||
|
|
||||||
axpy(sol_d[i], 1.0, tmp_d, sol_d[i]);
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
//Final trial CG
|
|
||||||
std::cout << GridLogMessage << std::endl;
|
|
||||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Starting final patch-up double-precision solve"<<std::endl;
|
|
||||||
|
|
||||||
for (int i=0; i<NBatch; i++) {
|
|
||||||
ConjugateGradient<FieldD> CG_d(Tolerance, MaxPatchupIterations);
|
|
||||||
CG_d(Linop_d, src_d_in[i], sol_d[i]);
|
|
||||||
TotalFinalStepIterations[i] += CG_d.IterationsToComplete;
|
|
||||||
}
|
|
||||||
|
|
||||||
TotalTimer.Stop();
|
|
||||||
|
|
||||||
std::cout << GridLogMessage << std::endl;
|
|
||||||
for (int i=0; i<NBatch; i++) {
|
|
||||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: solve " << i << " Inner CG iterations " << TotalInnerIterations[i] << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations[i] << std::endl;
|
|
||||||
}
|
|
||||||
std::cout << GridLogMessage << std::endl;
|
|
||||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Total time " << TotalTimer.Elapsed() << " Precision change " << PrecChangeTimer.Elapsed() << " Inner CG total " << InnerCGtimer.Elapsed() << std::endl;
|
|
||||||
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
|
||||||
|
|
||||||
#endif
|
|
||||||
@@ -44,7 +44,7 @@ public:
|
|||||||
|
|
||||||
using OperatorFunction<Field>::operator();
|
using OperatorFunction<Field>::operator();
|
||||||
|
|
||||||
// RealD Tolerance;
|
RealD Tolerance;
|
||||||
Integer MaxIterations;
|
Integer MaxIterations;
|
||||||
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
||||||
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
|
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
|
||||||
@@ -52,7 +52,7 @@ public:
|
|||||||
MultiShiftFunction shifts;
|
MultiShiftFunction shifts;
|
||||||
std::vector<RealD> TrueResidualShift;
|
std::vector<RealD> TrueResidualShift;
|
||||||
|
|
||||||
ConjugateGradientMultiShift(Integer maxit, const MultiShiftFunction &_shifts) :
|
ConjugateGradientMultiShift(Integer maxit,MultiShiftFunction &_shifts) :
|
||||||
MaxIterations(maxit),
|
MaxIterations(maxit),
|
||||||
shifts(_shifts)
|
shifts(_shifts)
|
||||||
{
|
{
|
||||||
@@ -84,7 +84,6 @@ public:
|
|||||||
|
|
||||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &psi)
|
void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &psi)
|
||||||
{
|
{
|
||||||
GRID_TRACE("ConjugateGradientMultiShift");
|
|
||||||
|
|
||||||
GridBase *grid = src.Grid();
|
GridBase *grid = src.Grid();
|
||||||
|
|
||||||
@@ -98,15 +97,15 @@ public:
|
|||||||
std::vector<RealD> alpha(nshift,1.0);
|
std::vector<RealD> alpha(nshift,1.0);
|
||||||
std::vector<Field> ps(nshift,grid);// Search directions
|
std::vector<Field> ps(nshift,grid);// Search directions
|
||||||
|
|
||||||
GRID_ASSERT(psi.size()==nshift);
|
assert(psi.size()==nshift);
|
||||||
GRID_ASSERT(mass.size()==nshift);
|
assert(mass.size()==nshift);
|
||||||
GRID_ASSERT(mresidual.size()==nshift);
|
assert(mresidual.size()==nshift);
|
||||||
|
|
||||||
// remove dynamic sized arrays on stack; 2d is a pain with vector
|
// dynamic sized arrays on stack; 2d is a pain with vector
|
||||||
std::vector<RealD> bs(nshift);
|
RealD bs[nshift];
|
||||||
std::vector<RealD> rsq(nshift);
|
RealD rsq[nshift];
|
||||||
std::vector<std::array<RealD,2> > z(nshift);
|
RealD z[nshift][2];
|
||||||
std::vector<int> converged(nshift);
|
int converged[nshift];
|
||||||
|
|
||||||
const int primary =0;
|
const int primary =0;
|
||||||
|
|
||||||
@@ -122,7 +121,7 @@ public:
|
|||||||
|
|
||||||
// Check lightest mass
|
// Check lightest mass
|
||||||
for(int s=0;s<nshift;s++){
|
for(int s=0;s<nshift;s++){
|
||||||
GRID_ASSERT( mass[s]>= mass[primary] );
|
assert( mass[s]>= mass[primary] );
|
||||||
converged[s]=0;
|
converged[s]=0;
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -144,7 +143,7 @@ public:
|
|||||||
for(int s=0;s<nshift;s++){
|
for(int s=0;s<nshift;s++){
|
||||||
rsq[s] = cp * mresidual[s] * mresidual[s];
|
rsq[s] = cp * mresidual[s] * mresidual[s];
|
||||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s
|
std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s
|
||||||
<<" target resid^2 "<<rsq[s]<<std::endl;
|
<<" target resid "<<rsq[s]<<std::endl;
|
||||||
ps[s] = src;
|
ps[s] = src;
|
||||||
}
|
}
|
||||||
// r and p for primary
|
// r and p for primary
|
||||||
@@ -184,9 +183,6 @@ public:
|
|||||||
axpby(psi[s],0.,-bs[s]*alpha[s],src,src);
|
axpby(psi[s],0.,-bs[s]*alpha[s],src,src);
|
||||||
}
|
}
|
||||||
|
|
||||||
std::cout << GridLogIterative << "ConjugateGradientMultiShift: initial rn (|src|^2) =" << rn << " qq (|MdagM src|^2) =" << qq << " d ( dot(src, [MdagM + m_0]src) ) =" << d << " c=" << c << std::endl;
|
|
||||||
|
|
||||||
|
|
||||||
///////////////////////////////////////
|
///////////////////////////////////////
|
||||||
// Timers
|
// Timers
|
||||||
///////////////////////////////////////
|
///////////////////////////////////////
|
||||||
@@ -325,8 +321,8 @@ public:
|
|||||||
|
|
||||||
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
|
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
|
||||||
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||||
std::cout << GridLogMessage << "\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
|
std::cout << GridLogMessage << "\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
|
||||||
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
std::cout << GridLogMessage << "\tMarix " << MatrixTimer.Elapsed() <<std::endl;
|
||||||
std::cout << GridLogMessage << "\tShift " << ShiftTimer.Elapsed() <<std::endl;
|
std::cout << GridLogMessage << "\tShift " << ShiftTimer.Elapsed() <<std::endl;
|
||||||
|
|
||||||
IterationsToComplete = k;
|
IterationsToComplete = k;
|
||||||
@@ -338,7 +334,7 @@ public:
|
|||||||
}
|
}
|
||||||
// ugly hack
|
// ugly hack
|
||||||
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
|
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
|
||||||
// GRID_ASSERT(0);
|
// assert(0);
|
||||||
}
|
}
|
||||||
|
|
||||||
};
|
};
|
||||||
|
|||||||
@@ -1,373 +0,0 @@
|
|||||||
/*************************************************************************************
|
|
||||||
|
|
||||||
Grid physics library, www.github.com/paboyle/Grid
|
|
||||||
|
|
||||||
Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
|
|
||||||
|
|
||||||
Copyright (C) 2015
|
|
||||||
|
|
||||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
|
||||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
||||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
|
||||||
|
|
||||||
This program is free software; you can redistribute it and/or modify
|
|
||||||
it under the terms of the GNU General Public License as published by
|
|
||||||
the Free Software Foundation; either version 2 of the License, or
|
|
||||||
(at your option) any later version.
|
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License along
|
|
||||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
||||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
||||||
|
|
||||||
See the full license in the file "LICENSE" in the top level distribution directory
|
|
||||||
*************************************************************************************/
|
|
||||||
/* END LEGAL */
|
|
||||||
#pragma once
|
|
||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
|
||||||
|
|
||||||
//CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision.
|
|
||||||
//The residual is stored in single precision, but the search directions and solution are stored in double precision.
|
|
||||||
//Every update_freq iterations the residual is corrected in double precision.
|
|
||||||
//For safety the a final regular CG is applied to clean up if necessary
|
|
||||||
|
|
||||||
//PB Pure single, then double fixup
|
|
||||||
|
|
||||||
template<class FieldD, class FieldF,
|
|
||||||
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
|
|
||||||
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
|
||||||
class ConjugateGradientMultiShiftMixedPrecCleanup : public OperatorMultiFunction<FieldD>,
|
|
||||||
public OperatorFunction<FieldD>
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
|
|
||||||
using OperatorFunction<FieldD>::operator();
|
|
||||||
|
|
||||||
RealD Tolerance;
|
|
||||||
Integer MaxIterationsMshift;
|
|
||||||
Integer MaxIterations;
|
|
||||||
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
|
||||||
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
|
|
||||||
int verbose;
|
|
||||||
MultiShiftFunction shifts;
|
|
||||||
std::vector<RealD> TrueResidualShift;
|
|
||||||
|
|
||||||
int ReliableUpdateFreq; //number of iterations between reliable updates
|
|
||||||
|
|
||||||
GridBase* SinglePrecGrid; //Grid for single-precision fields
|
|
||||||
LinearOperatorBase<FieldF> &Linop_f; //single precision
|
|
||||||
|
|
||||||
ConjugateGradientMultiShiftMixedPrecCleanup(Integer maxit, const MultiShiftFunction &_shifts,
|
|
||||||
GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
|
|
||||||
int _ReliableUpdateFreq) :
|
|
||||||
MaxIterationsMshift(maxit), shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq),
|
|
||||||
MaxIterations(20000)
|
|
||||||
{
|
|
||||||
verbose=1;
|
|
||||||
IterationsToCompleteShift.resize(_shifts.order);
|
|
||||||
TrueResidualShift.resize(_shifts.order);
|
|
||||||
}
|
|
||||||
|
|
||||||
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi)
|
|
||||||
{
|
|
||||||
GridBase *grid = src.Grid();
|
|
||||||
int nshift = shifts.order;
|
|
||||||
std::vector<FieldD> results(nshift,grid);
|
|
||||||
(*this)(Linop,src,results,psi);
|
|
||||||
}
|
|
||||||
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi)
|
|
||||||
{
|
|
||||||
int nshift = shifts.order;
|
|
||||||
|
|
||||||
(*this)(Linop,src,results);
|
|
||||||
|
|
||||||
psi = shifts.norm*src;
|
|
||||||
for(int i=0;i<nshift;i++){
|
|
||||||
psi = psi + shifts.residues[i]*results[i];
|
|
||||||
}
|
|
||||||
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d)
|
|
||||||
{
|
|
||||||
GRID_TRACE("ConjugateGradientMultiShiftMixedPrecCleanup");
|
|
||||||
GridBase *DoublePrecGrid = src_d.Grid();
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////
|
|
||||||
// Convenience references to the info stored in "MultiShiftFunction"
|
|
||||||
////////////////////////////////////////////////////////////////////////
|
|
||||||
int nshift = shifts.order;
|
|
||||||
|
|
||||||
std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
|
|
||||||
std::vector<RealD> &mresidual(shifts.tolerances);
|
|
||||||
std::vector<RealD> alpha(nshift,1.0);
|
|
||||||
|
|
||||||
//Double precision search directions
|
|
||||||
FieldD p_d(DoublePrecGrid);
|
|
||||||
std::vector<FieldF> ps_f (nshift, SinglePrecGrid);// Search directions (single precision)
|
|
||||||
std::vector<FieldF> psi_f(nshift, SinglePrecGrid);// solutions (single precision)
|
|
||||||
|
|
||||||
FieldD tmp_d(DoublePrecGrid);
|
|
||||||
FieldD r_d(DoublePrecGrid);
|
|
||||||
FieldF r_f(SinglePrecGrid);
|
|
||||||
FieldD mmp_d(DoublePrecGrid);
|
|
||||||
|
|
||||||
GRID_ASSERT(psi_d.size()==nshift);
|
|
||||||
GRID_ASSERT(mass.size()==nshift);
|
|
||||||
GRID_ASSERT(mresidual.size()==nshift);
|
|
||||||
|
|
||||||
// dynamic sized arrays on stack; 2d is a pain with vector
|
|
||||||
std::vector<RealD> bs(nshift);
|
|
||||||
std::vector<RealD> rsq(nshift);
|
|
||||||
std::vector<RealD> rsqf(nshift);
|
|
||||||
std::vector<std::array<RealD,2> > z(nshift);
|
|
||||||
std::vector<int> converged(nshift);
|
|
||||||
|
|
||||||
const int primary =0;
|
|
||||||
|
|
||||||
//Primary shift fields CG iteration
|
|
||||||
RealD a,b,c,d;
|
|
||||||
RealD cp,bp,qq; //prev
|
|
||||||
|
|
||||||
// Matrix mult fields
|
|
||||||
FieldF p_f(SinglePrecGrid);
|
|
||||||
FieldF mmp_f(SinglePrecGrid);
|
|
||||||
|
|
||||||
// Check lightest mass
|
|
||||||
for(int s=0;s<nshift;s++){
|
|
||||||
GRID_ASSERT( mass[s]>= mass[primary] );
|
|
||||||
converged[s]=0;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Wire guess to zero
|
|
||||||
// Residuals "r" are src
|
|
||||||
// First search direction "p" is also src
|
|
||||||
cp = norm2(src_d);
|
|
||||||
|
|
||||||
// Handle trivial case of zero src.
|
|
||||||
if( cp == 0. ){
|
|
||||||
for(int s=0;s<nshift;s++){
|
|
||||||
psi_d[s] = Zero();
|
|
||||||
psi_f[s] = Zero();
|
|
||||||
IterationsToCompleteShift[s] = 1;
|
|
||||||
TrueResidualShift[s] = 0.;
|
|
||||||
}
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
for(int s=0;s<nshift;s++){
|
|
||||||
rsq[s] = cp * mresidual[s] * mresidual[s];
|
|
||||||
rsqf[s] =rsq[s];
|
|
||||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
|
|
||||||
// ps_d[s] = src_d;
|
|
||||||
precisionChange(ps_f[s],src_d);
|
|
||||||
}
|
|
||||||
// r and p for primary
|
|
||||||
p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
|
|
||||||
r_d = p_d;
|
|
||||||
|
|
||||||
//MdagM+m[0]
|
|
||||||
precisionChange(p_f,p_d);
|
|
||||||
Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
|
|
||||||
precisionChange(tmp_d,mmp_f);
|
|
||||||
Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
|
|
||||||
tmp_d = tmp_d - mmp_d;
|
|
||||||
std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
|
|
||||||
// GRID_ASSERT(norm2(tmp_d)< 1.0e-4);
|
|
||||||
|
|
||||||
axpy(mmp_d,mass[0],p_d,mmp_d);
|
|
||||||
RealD rn = norm2(p_d);
|
|
||||||
d += rn*mass[0];
|
|
||||||
|
|
||||||
b = -cp /d;
|
|
||||||
|
|
||||||
// Set up the various shift variables
|
|
||||||
int iz=0;
|
|
||||||
z[0][1-iz] = 1.0;
|
|
||||||
z[0][iz] = 1.0;
|
|
||||||
bs[0] = b;
|
|
||||||
for(int s=1;s<nshift;s++){
|
|
||||||
z[s][1-iz] = 1.0;
|
|
||||||
z[s][iz] = 1.0/( 1.0 - b*(mass[s]-mass[0]));
|
|
||||||
bs[s] = b*z[s][iz];
|
|
||||||
}
|
|
||||||
|
|
||||||
// r += b[0] A.p[0]
|
|
||||||
// c= norm(r)
|
|
||||||
c=axpy_norm(r_d,b,mmp_d,r_d);
|
|
||||||
|
|
||||||
for(int s=0;s<nshift;s++) {
|
|
||||||
axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
|
|
||||||
precisionChange(psi_f[s],psi_d[s]);
|
|
||||||
}
|
|
||||||
|
|
||||||
///////////////////////////////////////
|
|
||||||
// Timers
|
|
||||||
///////////////////////////////////////
|
|
||||||
GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer;
|
|
||||||
|
|
||||||
SolverTimer.Start();
|
|
||||||
|
|
||||||
// Iteration loop
|
|
||||||
int k;
|
|
||||||
|
|
||||||
for (k=1;k<=MaxIterationsMshift;k++){
|
|
||||||
|
|
||||||
a = c /cp;
|
|
||||||
AXPYTimer.Start();
|
|
||||||
axpy(p_d,a,p_d,r_d);
|
|
||||||
AXPYTimer.Stop();
|
|
||||||
|
|
||||||
PrecChangeTimer.Start();
|
|
||||||
precisionChange(r_f, r_d);
|
|
||||||
PrecChangeTimer.Stop();
|
|
||||||
|
|
||||||
AXPYTimer.Start();
|
|
||||||
for(int s=0;s<nshift;s++){
|
|
||||||
if ( ! converged[s] ) {
|
|
||||||
if (s==0){
|
|
||||||
axpy(ps_f[s],a,ps_f[s],r_f);
|
|
||||||
} else{
|
|
||||||
RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
|
|
||||||
axpby(ps_f[s],z[s][iz],as,r_f,ps_f[s]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
AXPYTimer.Stop();
|
|
||||||
|
|
||||||
cp=c;
|
|
||||||
PrecChangeTimer.Start();
|
|
||||||
precisionChange(p_f, p_d); //get back single prec search direction for linop
|
|
||||||
PrecChangeTimer.Stop();
|
|
||||||
MatrixTimer.Start();
|
|
||||||
Linop_f.HermOp(p_f,mmp_f);
|
|
||||||
MatrixTimer.Stop();
|
|
||||||
PrecChangeTimer.Start();
|
|
||||||
precisionChange(mmp_d, mmp_f); // From Float to Double
|
|
||||||
PrecChangeTimer.Stop();
|
|
||||||
|
|
||||||
d=real(innerProduct(p_d,mmp_d));
|
|
||||||
axpy(mmp_d,mass[0],p_d,mmp_d);
|
|
||||||
RealD rn = norm2(p_d);
|
|
||||||
d += rn*mass[0];
|
|
||||||
|
|
||||||
bp=b;
|
|
||||||
b=-cp/d;
|
|
||||||
|
|
||||||
// Toggle the recurrence history
|
|
||||||
bs[0] = b;
|
|
||||||
iz = 1-iz;
|
|
||||||
ShiftTimer.Start();
|
|
||||||
for(int s=1;s<nshift;s++){
|
|
||||||
if((!converged[s])){
|
|
||||||
RealD z0 = z[s][1-iz];
|
|
||||||
RealD z1 = z[s][iz];
|
|
||||||
z[s][iz] = z0*z1*bp
|
|
||||||
/ (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));
|
|
||||||
bs[s] = b*z[s][iz]/z0; // NB sign rel to Mike
|
|
||||||
}
|
|
||||||
}
|
|
||||||
ShiftTimer.Stop();
|
|
||||||
|
|
||||||
//Update single precision solutions
|
|
||||||
AXPYTimer.Start();
|
|
||||||
for(int s=0;s<nshift;s++){
|
|
||||||
int ss = s;
|
|
||||||
if( (!converged[s]) ) {
|
|
||||||
axpy(psi_f[ss],-bs[s]*alpha[s],ps_f[s],psi_f[ss]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
c = axpy_norm(r_d,b,mmp_d,r_d);
|
|
||||||
AXPYTimer.Stop();
|
|
||||||
|
|
||||||
// Convergence checks
|
|
||||||
int all_converged = 1;
|
|
||||||
for(int s=0;s<nshift;s++){
|
|
||||||
|
|
||||||
if ( (!converged[s]) ){
|
|
||||||
IterationsToCompleteShift[s] = k;
|
|
||||||
|
|
||||||
RealD css = c * z[s][iz]* z[s][iz];
|
|
||||||
|
|
||||||
if(css<rsqf[s]){
|
|
||||||
if ( ! converged[s] )
|
|
||||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
|
|
||||||
converged[s]=1;
|
|
||||||
} else {
|
|
||||||
all_converged=0;
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if ( all_converged || k == MaxIterationsMshift-1){
|
|
||||||
|
|
||||||
SolverTimer.Stop();
|
|
||||||
|
|
||||||
for(int s=0;s<nshift;s++){
|
|
||||||
precisionChange(psi_d[s],psi_f[s]);
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
if ( all_converged ){
|
|
||||||
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: All shifts have converged iteration "<<k<<std::endl;
|
|
||||||
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: Checking solutions"<<std::endl;
|
|
||||||
} else {
|
|
||||||
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: Not all shifts have converged iteration "<<k<<std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Check answers
|
|
||||||
for(int s=0; s < nshift; s++) {
|
|
||||||
Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq);
|
|
||||||
axpy(tmp_d,mass[s],psi_d[s],mmp_d);
|
|
||||||
axpy(r_d,-alpha[s],src_d,tmp_d);
|
|
||||||
RealD rn = norm2(r_d);
|
|
||||||
RealD cn = norm2(src_d);
|
|
||||||
TrueResidualShift[s] = std::sqrt(rn/cn);
|
|
||||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl;
|
|
||||||
|
|
||||||
//If we have not reached the desired tolerance, do a (mixed precision) CG cleanup
|
|
||||||
if(rn >= rsq[s]){
|
|
||||||
CleanupTimer.Start();
|
|
||||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: performing cleanup step for shift " << s << std::endl;
|
|
||||||
|
|
||||||
//Setup linear operators for final cleanup
|
|
||||||
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]);
|
|
||||||
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]);
|
|
||||||
|
|
||||||
MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d);
|
|
||||||
cg(src_d, psi_d[s]);
|
|
||||||
|
|
||||||
TrueResidualShift[s] = cg.TrueResidual;
|
|
||||||
CleanupTimer.Stop();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrecCleanup: Time Breakdown for body"<<std::endl;
|
|
||||||
std::cout << GridLogMessage << "\tSolver " << SolverTimer.Elapsed() <<std::endl;
|
|
||||||
std::cout << GridLogMessage << "\t\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
|
|
||||||
std::cout << GridLogMessage << "\t\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
|
||||||
std::cout << GridLogMessage << "\t\tShift " << ShiftTimer.Elapsed() <<std::endl;
|
|
||||||
std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed() <<std::endl;
|
|
||||||
std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed() <<std::endl;
|
|
||||||
std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl;
|
|
||||||
|
|
||||||
IterationsToComplete = k;
|
|
||||||
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
|
|
||||||
GRID_ASSERT(0);
|
|
||||||
}
|
|
||||||
|
|
||||||
};
|
|
||||||
NAMESPACE_END(Grid);
|
|
||||||
|
|
||||||
@@ -1,416 +0,0 @@
|
|||||||
/*************************************************************************************
|
|
||||||
|
|
||||||
Grid physics library, www.github.com/paboyle/Grid
|
|
||||||
|
|
||||||
Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
|
|
||||||
|
|
||||||
Copyright (C) 2015
|
|
||||||
|
|
||||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
|
||||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
||||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
|
||||||
|
|
||||||
This program is free software; you can redistribute it and/or modify
|
|
||||||
it under the terms of the GNU General Public License as published by
|
|
||||||
the Free Software Foundation; either version 2 of the License, or
|
|
||||||
(at your option) any later version.
|
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License along
|
|
||||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
||||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
||||||
|
|
||||||
See the full license in the file "LICENSE" in the top level distribution directory
|
|
||||||
*************************************************************************************/
|
|
||||||
/* END LEGAL */
|
|
||||||
#ifndef GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
|
|
||||||
#define GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
|
|
||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
|
||||||
|
|
||||||
//CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision.
|
|
||||||
//The residual is stored in single precision, but the search directions and solution are stored in double precision.
|
|
||||||
//Every update_freq iterations the residual is corrected in double precision.
|
|
||||||
|
|
||||||
//For safety the a final regular CG is applied to clean up if necessary
|
|
||||||
|
|
||||||
//Linop to add shift to input linop, used in cleanup CG
|
|
||||||
namespace ConjugateGradientMultiShiftMixedPrecSupport{
|
|
||||||
template<typename Field>
|
|
||||||
class ShiftedLinop: public LinearOperatorBase<Field>{
|
|
||||||
public:
|
|
||||||
LinearOperatorBase<Field> &linop_base;
|
|
||||||
RealD shift;
|
|
||||||
|
|
||||||
ShiftedLinop(LinearOperatorBase<Field> &_linop_base, RealD _shift): linop_base(_linop_base), shift(_shift){}
|
|
||||||
|
|
||||||
void OpDiag (const Field &in, Field &out){ GRID_ASSERT(0); }
|
|
||||||
void OpDir (const Field &in, Field &out,int dir,int disp){ GRID_ASSERT(0); }
|
|
||||||
void OpDirAll (const Field &in, std::vector<Field> &out){ GRID_ASSERT(0); }
|
|
||||||
|
|
||||||
void Op (const Field &in, Field &out){ GRID_ASSERT(0); }
|
|
||||||
void AdjOp (const Field &in, Field &out){ GRID_ASSERT(0); }
|
|
||||||
|
|
||||||
void HermOp(const Field &in, Field &out){
|
|
||||||
linop_base.HermOp(in, out);
|
|
||||||
axpy(out, shift, in, out);
|
|
||||||
}
|
|
||||||
|
|
||||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
|
||||||
HermOp(in,out);
|
|
||||||
ComplexD dot = innerProduct(in,out);
|
|
||||||
n1=real(dot);
|
|
||||||
n2=norm2(out);
|
|
||||||
}
|
|
||||||
};
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
template<class FieldD, class FieldF,
|
|
||||||
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
|
|
||||||
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
|
||||||
class ConjugateGradientMultiShiftMixedPrec : public OperatorMultiFunction<FieldD>,
|
|
||||||
public OperatorFunction<FieldD>
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
|
|
||||||
using OperatorFunction<FieldD>::operator();
|
|
||||||
|
|
||||||
RealD Tolerance;
|
|
||||||
Integer MaxIterationsMshift;
|
|
||||||
Integer MaxIterations;
|
|
||||||
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
|
||||||
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
|
|
||||||
int verbose;
|
|
||||||
MultiShiftFunction shifts;
|
|
||||||
std::vector<RealD> TrueResidualShift;
|
|
||||||
|
|
||||||
int ReliableUpdateFreq; //number of iterations between reliable updates
|
|
||||||
|
|
||||||
GridBase* SinglePrecGrid; //Grid for single-precision fields
|
|
||||||
LinearOperatorBase<FieldF> &Linop_f; //single precision
|
|
||||||
|
|
||||||
ConjugateGradientMultiShiftMixedPrec(Integer maxit, const MultiShiftFunction &_shifts,
|
|
||||||
GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
|
|
||||||
int _ReliableUpdateFreq) :
|
|
||||||
MaxIterationsMshift(maxit), shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq),
|
|
||||||
MaxIterations(20000)
|
|
||||||
{
|
|
||||||
verbose=1;
|
|
||||||
IterationsToCompleteShift.resize(_shifts.order);
|
|
||||||
TrueResidualShift.resize(_shifts.order);
|
|
||||||
}
|
|
||||||
|
|
||||||
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi)
|
|
||||||
{
|
|
||||||
GridBase *grid = src.Grid();
|
|
||||||
int nshift = shifts.order;
|
|
||||||
std::vector<FieldD> results(nshift,grid);
|
|
||||||
(*this)(Linop,src,results,psi);
|
|
||||||
}
|
|
||||||
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi)
|
|
||||||
{
|
|
||||||
int nshift = shifts.order;
|
|
||||||
|
|
||||||
(*this)(Linop,src,results);
|
|
||||||
|
|
||||||
psi = shifts.norm*src;
|
|
||||||
for(int i=0;i<nshift;i++){
|
|
||||||
psi = psi + shifts.residues[i]*results[i];
|
|
||||||
}
|
|
||||||
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d)
|
|
||||||
{
|
|
||||||
GRID_TRACE("ConjugateGradientMultiShiftMixedPrec");
|
|
||||||
GridBase *DoublePrecGrid = src_d.Grid();
|
|
||||||
|
|
||||||
precisionChangeWorkspace pc_wk_s_to_d(DoublePrecGrid,SinglePrecGrid);
|
|
||||||
precisionChangeWorkspace pc_wk_d_to_s(SinglePrecGrid,DoublePrecGrid);
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////
|
|
||||||
// Convenience references to the info stored in "MultiShiftFunction"
|
|
||||||
////////////////////////////////////////////////////////////////////////
|
|
||||||
int nshift = shifts.order;
|
|
||||||
|
|
||||||
std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
|
|
||||||
std::vector<RealD> &mresidual(shifts.tolerances);
|
|
||||||
std::vector<RealD> alpha(nshift,1.0);
|
|
||||||
|
|
||||||
//Double precision search directions
|
|
||||||
FieldD p_d(DoublePrecGrid);
|
|
||||||
std::vector<FieldD> ps_d(nshift, DoublePrecGrid);// Search directions (double precision)
|
|
||||||
|
|
||||||
FieldD tmp_d(DoublePrecGrid);
|
|
||||||
FieldD r_d(DoublePrecGrid);
|
|
||||||
FieldD mmp_d(DoublePrecGrid);
|
|
||||||
|
|
||||||
GRID_ASSERT(psi_d.size()==nshift);
|
|
||||||
GRID_ASSERT(mass.size()==nshift);
|
|
||||||
GRID_ASSERT(mresidual.size()==nshift);
|
|
||||||
|
|
||||||
// dynamic sized arrays on stack; 2d is a pain with vector
|
|
||||||
std::vector<RealD> bs(nshift);
|
|
||||||
std::vector<RealD> rsq(nshift);
|
|
||||||
std::vector<RealD> rsqf(nshift);
|
|
||||||
std::vector<std::array<RealD,2> > z(nshift);
|
|
||||||
std::vector<int> converged(nshift);
|
|
||||||
|
|
||||||
const int primary =0;
|
|
||||||
|
|
||||||
//Primary shift fields CG iteration
|
|
||||||
RealD a,b,c,d;
|
|
||||||
RealD cp,bp,qq; //prev
|
|
||||||
|
|
||||||
// Matrix mult fields
|
|
||||||
FieldF p_f(SinglePrecGrid);
|
|
||||||
FieldF mmp_f(SinglePrecGrid);
|
|
||||||
|
|
||||||
// Check lightest mass
|
|
||||||
for(int s=0;s<nshift;s++){
|
|
||||||
GRID_ASSERT( mass[s]>= mass[primary] );
|
|
||||||
converged[s]=0;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Wire guess to zero
|
|
||||||
// Residuals "r" are src
|
|
||||||
// First search direction "p" is also src
|
|
||||||
cp = norm2(src_d);
|
|
||||||
|
|
||||||
// Handle trivial case of zero src.
|
|
||||||
if( cp == 0. ){
|
|
||||||
for(int s=0;s<nshift;s++){
|
|
||||||
psi_d[s] = Zero();
|
|
||||||
IterationsToCompleteShift[s] = 1;
|
|
||||||
TrueResidualShift[s] = 0.;
|
|
||||||
}
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
for(int s=0;s<nshift;s++){
|
|
||||||
rsq[s] = cp * mresidual[s] * mresidual[s];
|
|
||||||
rsqf[s] =rsq[s];
|
|
||||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
|
|
||||||
ps_d[s] = src_d;
|
|
||||||
}
|
|
||||||
// r and p for primary
|
|
||||||
p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
|
|
||||||
r_d = p_d;
|
|
||||||
|
|
||||||
//MdagM+m[0]
|
|
||||||
precisionChange(p_f, p_d, pc_wk_d_to_s);
|
|
||||||
|
|
||||||
Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
|
|
||||||
precisionChange(tmp_d, mmp_f, pc_wk_s_to_d);
|
|
||||||
Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
|
|
||||||
tmp_d = tmp_d - mmp_d;
|
|
||||||
std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
|
|
||||||
GRID_ASSERT(norm2(tmp_d)< 1.0);
|
|
||||||
|
|
||||||
axpy(mmp_d,mass[0],p_d,mmp_d);
|
|
||||||
RealD rn = norm2(p_d);
|
|
||||||
d += rn*mass[0];
|
|
||||||
|
|
||||||
b = -cp /d;
|
|
||||||
|
|
||||||
// Set up the various shift variables
|
|
||||||
int iz=0;
|
|
||||||
z[0][1-iz] = 1.0;
|
|
||||||
z[0][iz] = 1.0;
|
|
||||||
bs[0] = b;
|
|
||||||
for(int s=1;s<nshift;s++){
|
|
||||||
z[s][1-iz] = 1.0;
|
|
||||||
z[s][iz] = 1.0/( 1.0 - b*(mass[s]-mass[0]));
|
|
||||||
bs[s] = b*z[s][iz];
|
|
||||||
}
|
|
||||||
|
|
||||||
// r += b[0] A.p[0]
|
|
||||||
// c= norm(r)
|
|
||||||
c=axpy_norm(r_d,b,mmp_d,r_d);
|
|
||||||
|
|
||||||
for(int s=0;s<nshift;s++) {
|
|
||||||
axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
|
|
||||||
}
|
|
||||||
|
|
||||||
///////////////////////////////////////
|
|
||||||
// Timers
|
|
||||||
///////////////////////////////////////
|
|
||||||
GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer;
|
|
||||||
|
|
||||||
SolverTimer.Start();
|
|
||||||
|
|
||||||
// Iteration loop
|
|
||||||
int k;
|
|
||||||
|
|
||||||
for (k=1;k<=MaxIterationsMshift;k++){
|
|
||||||
|
|
||||||
a = c /cp;
|
|
||||||
AXPYTimer.Start();
|
|
||||||
axpy(p_d,a,p_d,r_d);
|
|
||||||
|
|
||||||
for(int s=0;s<nshift;s++){
|
|
||||||
if ( ! converged[s] ) {
|
|
||||||
if (s==0){
|
|
||||||
axpy(ps_d[s],a,ps_d[s],r_d);
|
|
||||||
} else{
|
|
||||||
RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
|
|
||||||
axpby(ps_d[s],z[s][iz],as,r_d,ps_d[s]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
AXPYTimer.Stop();
|
|
||||||
|
|
||||||
PrecChangeTimer.Start();
|
|
||||||
precisionChange(p_f, p_d, pc_wk_d_to_s); //get back single prec search direction for linop
|
|
||||||
PrecChangeTimer.Stop();
|
|
||||||
|
|
||||||
cp=c;
|
|
||||||
MatrixTimer.Start();
|
|
||||||
Linop_f.HermOp(p_f,mmp_f);
|
|
||||||
MatrixTimer.Stop();
|
|
||||||
|
|
||||||
PrecChangeTimer.Start();
|
|
||||||
precisionChange(mmp_d, mmp_f, pc_wk_s_to_d); // From Float to Double
|
|
||||||
PrecChangeTimer.Stop();
|
|
||||||
|
|
||||||
AXPYTimer.Start();
|
|
||||||
d=real(innerProduct(p_d,mmp_d));
|
|
||||||
axpy(mmp_d,mass[0],p_d,mmp_d);
|
|
||||||
AXPYTimer.Stop();
|
|
||||||
RealD rn = norm2(p_d);
|
|
||||||
d += rn*mass[0];
|
|
||||||
|
|
||||||
bp=b;
|
|
||||||
b=-cp/d;
|
|
||||||
|
|
||||||
// Toggle the recurrence history
|
|
||||||
bs[0] = b;
|
|
||||||
iz = 1-iz;
|
|
||||||
ShiftTimer.Start();
|
|
||||||
for(int s=1;s<nshift;s++){
|
|
||||||
if((!converged[s])){
|
|
||||||
RealD z0 = z[s][1-iz];
|
|
||||||
RealD z1 = z[s][iz];
|
|
||||||
z[s][iz] = z0*z1*bp
|
|
||||||
/ (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));
|
|
||||||
bs[s] = b*z[s][iz]/z0; // NB sign rel to Mike
|
|
||||||
}
|
|
||||||
}
|
|
||||||
ShiftTimer.Stop();
|
|
||||||
|
|
||||||
//Update double precision solutions
|
|
||||||
AXPYTimer.Start();
|
|
||||||
for(int s=0;s<nshift;s++){
|
|
||||||
int ss = s;
|
|
||||||
if( (!converged[s]) ) {
|
|
||||||
axpy(psi_d[ss],-bs[s]*alpha[s],ps_d[s],psi_d[ss]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
//Perform reliable update if necessary; otherwise update residual from single-prec mmp
|
|
||||||
c = axpy_norm(r_d,b,mmp_d,r_d);
|
|
||||||
|
|
||||||
AXPYTimer.Stop();
|
|
||||||
|
|
||||||
if(k % ReliableUpdateFreq == 0){
|
|
||||||
RealD c_old = c;
|
|
||||||
//Replace r with true residual
|
|
||||||
MatrixTimer.Start();
|
|
||||||
Linop_d.HermOp(psi_d[0],mmp_d);
|
|
||||||
MatrixTimer.Stop();
|
|
||||||
|
|
||||||
AXPYTimer.Start();
|
|
||||||
axpy(mmp_d,mass[0],psi_d[0],mmp_d);
|
|
||||||
|
|
||||||
c = axpy_norm(r_d, -1.0, mmp_d, src_d);
|
|
||||||
AXPYTimer.Stop();
|
|
||||||
|
|
||||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<< ", replaced |r|^2 = "<<c_old <<" with |r|^2 = "<<c<<std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Convergence checks
|
|
||||||
int all_converged = 1;
|
|
||||||
for(int s=0;s<nshift;s++){
|
|
||||||
|
|
||||||
if ( (!converged[s]) ){
|
|
||||||
IterationsToCompleteShift[s] = k;
|
|
||||||
|
|
||||||
RealD css = c * z[s][iz]* z[s][iz];
|
|
||||||
|
|
||||||
if(css<rsqf[s]){
|
|
||||||
if ( ! converged[s] )
|
|
||||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
|
|
||||||
converged[s]=1;
|
|
||||||
} else {
|
|
||||||
all_converged=0;
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if ( all_converged || k == MaxIterationsMshift-1){
|
|
||||||
|
|
||||||
SolverTimer.Stop();
|
|
||||||
|
|
||||||
if ( all_converged ){
|
|
||||||
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: All shifts have converged iteration "<<k<<std::endl;
|
|
||||||
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Checking solutions"<<std::endl;
|
|
||||||
} else {
|
|
||||||
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Not all shifts have converged iteration "<<k<<std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Check answers
|
|
||||||
for(int s=0; s < nshift; s++) {
|
|
||||||
Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq);
|
|
||||||
axpy(tmp_d,mass[s],psi_d[s],mmp_d);
|
|
||||||
axpy(r_d,-alpha[s],src_d,tmp_d);
|
|
||||||
RealD rn = norm2(r_d);
|
|
||||||
RealD cn = norm2(src_d);
|
|
||||||
TrueResidualShift[s] = std::sqrt(rn/cn);
|
|
||||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl;
|
|
||||||
|
|
||||||
//If we have not reached the desired tolerance, do a (mixed precision) CG cleanup
|
|
||||||
if(rn >= rsq[s]){
|
|
||||||
CleanupTimer.Start();
|
|
||||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: performing cleanup step for shift " << s << std::endl;
|
|
||||||
|
|
||||||
//Setup linear operators for final cleanup
|
|
||||||
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]);
|
|
||||||
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]);
|
|
||||||
|
|
||||||
MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d);
|
|
||||||
cg(src_d, psi_d[s]);
|
|
||||||
|
|
||||||
TrueResidualShift[s] = cg.TrueResidual;
|
|
||||||
CleanupTimer.Stop();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrec: Time Breakdown for body"<<std::endl;
|
|
||||||
std::cout << GridLogMessage << "\tSolver " << SolverTimer.Elapsed() <<std::endl;
|
|
||||||
std::cout << GridLogMessage << "\t\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
|
|
||||||
std::cout << GridLogMessage << "\t\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
|
||||||
std::cout << GridLogMessage << "\t\tShift " << ShiftTimer.Elapsed() <<std::endl;
|
|
||||||
std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed() <<std::endl;
|
|
||||||
std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed() <<std::endl;
|
|
||||||
std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl;
|
|
||||||
|
|
||||||
IterationsToComplete = k;
|
|
||||||
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
|
|
||||||
GRID_ASSERT(0);
|
|
||||||
}
|
|
||||||
|
|
||||||
};
|
|
||||||
NAMESPACE_END(Grid);
|
|
||||||
#endif
|
|
||||||
@@ -35,7 +35,7 @@ template<class FieldD,class FieldF,
|
|||||||
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
||||||
class ConjugateGradientReliableUpdate : public LinearFunction<FieldD> {
|
class ConjugateGradientReliableUpdate : public LinearFunction<FieldD> {
|
||||||
public:
|
public:
|
||||||
bool ErrorOnNoConverge; // throw an GRID_ASSERT when the CG fails to converge.
|
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
|
||||||
// Defaults true.
|
// Defaults true.
|
||||||
RealD Tolerance;
|
RealD Tolerance;
|
||||||
Integer MaxIterations;
|
Integer MaxIterations;
|
||||||
@@ -48,7 +48,7 @@ public:
|
|||||||
LinearOperatorBase<FieldF> &Linop_f;
|
LinearOperatorBase<FieldF> &Linop_f;
|
||||||
LinearOperatorBase<FieldD> &Linop_d;
|
LinearOperatorBase<FieldD> &Linop_d;
|
||||||
GridBase* SinglePrecGrid;
|
GridBase* SinglePrecGrid;
|
||||||
RealD Delta; //reliable update parameter. A reliable update is performed when the residual drops by a factor of Delta relative to its value at the last update
|
RealD Delta; //reliable update parameter
|
||||||
|
|
||||||
//Optional ability to switch to a different linear operator once the tolerance reaches a certain point. Useful for single/half -> single/single
|
//Optional ability to switch to a different linear operator once the tolerance reaches a certain point. Useful for single/half -> single/single
|
||||||
LinearOperatorBase<FieldF> *Linop_fallback;
|
LinearOperatorBase<FieldF> *Linop_fallback;
|
||||||
@@ -65,9 +65,7 @@ public:
|
|||||||
ErrorOnNoConverge(err_on_no_conv),
|
ErrorOnNoConverge(err_on_no_conv),
|
||||||
DoFinalCleanup(true),
|
DoFinalCleanup(true),
|
||||||
Linop_fallback(NULL)
|
Linop_fallback(NULL)
|
||||||
{
|
{};
|
||||||
GRID_ASSERT(Delta > 0. && Delta < 1. && "Expect 0 < Delta < 1");
|
|
||||||
};
|
|
||||||
|
|
||||||
void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){
|
void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){
|
||||||
Linop_fallback = &_Linop_fallback;
|
Linop_fallback = &_Linop_fallback;
|
||||||
@@ -75,7 +73,6 @@ public:
|
|||||||
}
|
}
|
||||||
|
|
||||||
void operator()(const FieldD &src, FieldD &psi) {
|
void operator()(const FieldD &src, FieldD &psi) {
|
||||||
GRID_TRACE("ConjugateGradientReliableUpdate");
|
|
||||||
LinearOperatorBase<FieldF> *Linop_f_use = &Linop_f;
|
LinearOperatorBase<FieldF> *Linop_f_use = &Linop_f;
|
||||||
bool using_fallback = false;
|
bool using_fallback = false;
|
||||||
|
|
||||||
@@ -90,7 +87,7 @@ public:
|
|||||||
|
|
||||||
// Initial residual computation & set up
|
// Initial residual computation & set up
|
||||||
RealD guess = norm2(psi);
|
RealD guess = norm2(psi);
|
||||||
GRID_ASSERT(std::isnan(guess) == 0);
|
assert(std::isnan(guess) == 0);
|
||||||
|
|
||||||
Linop_d.HermOpAndNorm(psi, mmp, d, b);
|
Linop_d.HermOpAndNorm(psi, mmp, d, b);
|
||||||
|
|
||||||
@@ -118,12 +115,9 @@ public:
|
|||||||
}
|
}
|
||||||
|
|
||||||
//Single prec initialization
|
//Single prec initialization
|
||||||
precisionChangeWorkspace pc_wk_sp_to_dp(src.Grid(), SinglePrecGrid);
|
|
||||||
precisionChangeWorkspace pc_wk_dp_to_sp(SinglePrecGrid, src.Grid());
|
|
||||||
|
|
||||||
FieldF r_f(SinglePrecGrid);
|
FieldF r_f(SinglePrecGrid);
|
||||||
r_f.Checkerboard() = r.Checkerboard();
|
r_f.Checkerboard() = r.Checkerboard();
|
||||||
precisionChange(r_f, r, pc_wk_dp_to_sp);
|
precisionChange(r_f, r);
|
||||||
|
|
||||||
FieldF psi_f(r_f);
|
FieldF psi_f(r_f);
|
||||||
psi_f = Zero();
|
psi_f = Zero();
|
||||||
@@ -139,7 +133,6 @@ public:
|
|||||||
GridStopWatch LinalgTimer;
|
GridStopWatch LinalgTimer;
|
||||||
GridStopWatch MatrixTimer;
|
GridStopWatch MatrixTimer;
|
||||||
GridStopWatch SolverTimer;
|
GridStopWatch SolverTimer;
|
||||||
GridStopWatch PrecChangeTimer;
|
|
||||||
|
|
||||||
SolverTimer.Start();
|
SolverTimer.Start();
|
||||||
int k = 0;
|
int k = 0;
|
||||||
@@ -179,9 +172,7 @@ public:
|
|||||||
// Stopping condition
|
// Stopping condition
|
||||||
if (cp <= rsq) {
|
if (cp <= rsq) {
|
||||||
//Although not written in the paper, I assume that I have to add on the final solution
|
//Although not written in the paper, I assume that I have to add on the final solution
|
||||||
PrecChangeTimer.Start();
|
precisionChange(mmp, psi_f);
|
||||||
precisionChange(mmp, psi_f, pc_wk_sp_to_dp);
|
|
||||||
PrecChangeTimer.Stop();
|
|
||||||
psi = psi + mmp;
|
psi = psi + mmp;
|
||||||
|
|
||||||
|
|
||||||
@@ -202,9 +193,6 @@ public:
|
|||||||
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||||
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||||
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
||||||
std::cout << GridLogMessage << "\tPrecChange " << PrecChangeTimer.Elapsed() <<std::endl;
|
|
||||||
std::cout << GridLogMessage << "\tPrecChange avg time " << PrecChangeTimer.Elapsed()/(2*l+1) <<std::endl;
|
|
||||||
|
|
||||||
|
|
||||||
IterationsToComplete = k;
|
IterationsToComplete = k;
|
||||||
ReliableUpdatesPerformed = l;
|
ReliableUpdatesPerformed = l;
|
||||||
@@ -217,7 +205,7 @@ public:
|
|||||||
CG(Linop_d,src,psi);
|
CG(Linop_d,src,psi);
|
||||||
IterationsToCleanup = CG.IterationsToComplete;
|
IterationsToCleanup = CG.IterationsToComplete;
|
||||||
}
|
}
|
||||||
else if (ErrorOnNoConverge) GRID_ASSERT(true_residual / Tolerance < 10000.0);
|
else if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
|
||||||
|
|
||||||
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate complete.\n";
|
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate complete.\n";
|
||||||
return;
|
return;
|
||||||
@@ -225,21 +213,14 @@ public:
|
|||||||
else if(cp < Delta * MaxResidSinceLastRelUp) { //reliable update
|
else if(cp < Delta * MaxResidSinceLastRelUp) { //reliable update
|
||||||
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate "
|
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate "
|
||||||
<< cp << "(residual) < " << Delta << "(Delta) * " << MaxResidSinceLastRelUp << "(MaxResidSinceLastRelUp) on iteration " << k << " : performing reliable update\n";
|
<< cp << "(residual) < " << Delta << "(Delta) * " << MaxResidSinceLastRelUp << "(MaxResidSinceLastRelUp) on iteration " << k << " : performing reliable update\n";
|
||||||
PrecChangeTimer.Start();
|
precisionChange(mmp, psi_f);
|
||||||
precisionChange(mmp, psi_f, pc_wk_sp_to_dp);
|
|
||||||
PrecChangeTimer.Stop();
|
|
||||||
psi = psi + mmp;
|
psi = psi + mmp;
|
||||||
|
|
||||||
MatrixTimer.Start();
|
|
||||||
Linop_d.HermOpAndNorm(psi, mmp, d, qq);
|
Linop_d.HermOpAndNorm(psi, mmp, d, qq);
|
||||||
MatrixTimer.Stop();
|
|
||||||
|
|
||||||
r = src - mmp;
|
r = src - mmp;
|
||||||
|
|
||||||
psi_f = Zero();
|
psi_f = Zero();
|
||||||
PrecChangeTimer.Start();
|
precisionChange(r_f, r);
|
||||||
precisionChange(r_f, r, pc_wk_dp_to_sp);
|
|
||||||
PrecChangeTimer.Stop();
|
|
||||||
cp = norm2(r);
|
cp = norm2(r);
|
||||||
MaxResidSinceLastRelUp = cp;
|
MaxResidSinceLastRelUp = cp;
|
||||||
|
|
||||||
@@ -263,7 +244,7 @@ public:
|
|||||||
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate did NOT converge"
|
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate did NOT converge"
|
||||||
<< std::endl;
|
<< std::endl;
|
||||||
|
|
||||||
if (ErrorOnNoConverge) GRID_ASSERT(0);
|
if (ErrorOnNoConverge) assert(0);
|
||||||
IterationsToComplete = k;
|
IterationsToComplete = k;
|
||||||
ReliableUpdatesPerformed = l;
|
ReliableUpdatesPerformed = l;
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -106,7 +106,7 @@ public:
|
|||||||
}
|
}
|
||||||
|
|
||||||
std::cout<<GridLogMessage<<"ConjugateResidual did NOT converge"<<std::endl;
|
std::cout<<GridLogMessage<<"ConjugateResidual did NOT converge"<<std::endl;
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
|||||||
@@ -33,19 +33,16 @@ namespace Grid {
|
|||||||
template<class Field>
|
template<class Field>
|
||||||
class ZeroGuesser: public LinearFunction<Field> {
|
class ZeroGuesser: public LinearFunction<Field> {
|
||||||
public:
|
public:
|
||||||
using LinearFunction<Field>::operator();
|
|
||||||
virtual void operator()(const Field &src, Field &guess) { guess = Zero(); };
|
virtual void operator()(const Field &src, Field &guess) { guess = Zero(); };
|
||||||
};
|
};
|
||||||
template<class Field>
|
template<class Field>
|
||||||
class DoNothingGuesser: public LinearFunction<Field> {
|
class DoNothingGuesser: public LinearFunction<Field> {
|
||||||
public:
|
public:
|
||||||
using LinearFunction<Field>::operator();
|
|
||||||
virtual void operator()(const Field &src, Field &guess) { };
|
virtual void operator()(const Field &src, Field &guess) { };
|
||||||
};
|
};
|
||||||
template<class Field>
|
template<class Field>
|
||||||
class SourceGuesser: public LinearFunction<Field> {
|
class SourceGuesser: public LinearFunction<Field> {
|
||||||
public:
|
public:
|
||||||
using LinearFunction<Field>::operator();
|
|
||||||
virtual void operator()(const Field &src, Field &guess) { guess = src; };
|
virtual void operator()(const Field &src, Field &guess) { guess = src; };
|
||||||
};
|
};
|
||||||
|
|
||||||
@@ -57,24 +54,15 @@ class DeflatedGuesser: public LinearFunction<Field> {
|
|||||||
private:
|
private:
|
||||||
const std::vector<Field> &evec;
|
const std::vector<Field> &evec;
|
||||||
const std::vector<RealD> &eval;
|
const std::vector<RealD> &eval;
|
||||||
const unsigned int N;
|
|
||||||
|
|
||||||
public:
|
public:
|
||||||
using LinearFunction<Field>::operator();
|
|
||||||
|
|
||||||
DeflatedGuesser(const std::vector<Field> & _evec,const std::vector<RealD> & _eval)
|
DeflatedGuesser(const std::vector<Field> & _evec,const std::vector<RealD> & _eval) : evec(_evec), eval(_eval) {};
|
||||||
: DeflatedGuesser(_evec, _eval, _evec.size())
|
|
||||||
{}
|
|
||||||
|
|
||||||
DeflatedGuesser(const std::vector<Field> & _evec, const std::vector<RealD> & _eval, const unsigned int _N)
|
|
||||||
: evec(_evec), eval(_eval), N(_N)
|
|
||||||
{
|
|
||||||
GRID_ASSERT(evec.size()==eval.size());
|
|
||||||
GRID_ASSERT(N <= evec.size());
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual void operator()(const Field &src,Field &guess) {
|
virtual void operator()(const Field &src,Field &guess) {
|
||||||
guess = Zero();
|
guess = Zero();
|
||||||
|
assert(evec.size()==eval.size());
|
||||||
|
auto N = evec.size();
|
||||||
for (int i=0;i<N;i++) {
|
for (int i=0;i<N;i++) {
|
||||||
const Field& tmp = evec[i];
|
const Field& tmp = evec[i];
|
||||||
axpy(guess,TensorRemove(innerProduct(tmp,src)) / eval[i],tmp,guess);
|
axpy(guess,TensorRemove(innerProduct(tmp,src)) / eval[i],tmp,guess);
|
||||||
@@ -91,7 +79,6 @@ private:
|
|||||||
const std::vector<RealD> &eval_coarse;
|
const std::vector<RealD> &eval_coarse;
|
||||||
public:
|
public:
|
||||||
|
|
||||||
using LinearFunction<FineField>::operator();
|
|
||||||
LocalCoherenceDeflatedGuesser(const std::vector<FineField> &_subspace,
|
LocalCoherenceDeflatedGuesser(const std::vector<FineField> &_subspace,
|
||||||
const std::vector<CoarseField> &_evec_coarse,
|
const std::vector<CoarseField> &_evec_coarse,
|
||||||
const std::vector<RealD> &_eval_coarse)
|
const std::vector<RealD> &_eval_coarse)
|
||||||
@@ -113,42 +100,7 @@ public:
|
|||||||
blockPromote(guess_coarse,guess,subspace);
|
blockPromote(guess_coarse,guess,subspace);
|
||||||
guess.Checkerboard() = src.Checkerboard();
|
guess.Checkerboard() = src.Checkerboard();
|
||||||
};
|
};
|
||||||
|
};
|
||||||
void operator()(const std::vector<FineField> &src,std::vector<FineField> &guess) {
|
|
||||||
int Nevec = (int)evec_coarse.size();
|
|
||||||
int Nsrc = (int)src.size();
|
|
||||||
// make temp variables
|
|
||||||
std::vector<CoarseField> src_coarse(Nsrc,evec_coarse[0].Grid());
|
|
||||||
std::vector<CoarseField> guess_coarse(Nsrc,evec_coarse[0].Grid());
|
|
||||||
//Preporcessing
|
|
||||||
std::cout << GridLogMessage << "Start BlockProject for loop" << std::endl;
|
|
||||||
for (int j=0;j<Nsrc;j++)
|
|
||||||
{
|
|
||||||
guess_coarse[j] = Zero();
|
|
||||||
std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl;
|
|
||||||
blockProject(src_coarse[j],src[j],subspace);
|
|
||||||
}
|
|
||||||
//deflation set up for eigen vector batchsize 1 and source batch size equal number of sources
|
|
||||||
std::cout << GridLogMessage << "Start ProjectAccum for loop" << std::endl;
|
|
||||||
for (int i=0;i<Nevec;i++)
|
|
||||||
{
|
|
||||||
std::cout << GridLogMessage << "ProjectAccum Nvec: " << i << std::endl;
|
|
||||||
const CoarseField & tmp = evec_coarse[i];
|
|
||||||
for (int j=0;j<Nsrc;j++)
|
|
||||||
{
|
|
||||||
axpy(guess_coarse[j],TensorRemove(innerProduct(tmp,src_coarse[j])) / eval_coarse[i],tmp,guess_coarse[j]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
//postprocessing
|
|
||||||
std::cout << GridLogMessage << "Start BlockPromote for loop" << std::endl;
|
|
||||||
for (int j=0;j<Nsrc;j++) {
|
|
||||||
std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl;
|
|
||||||
blockPromote(guess_coarse[j],guess[j],subspace);
|
|
||||||
guess[j].Checkerboard() = src[j].Checkerboard();
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@@ -36,7 +36,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF
|
|||||||
public:
|
public:
|
||||||
using OperatorFunction<Field>::operator();
|
using OperatorFunction<Field>::operator();
|
||||||
|
|
||||||
bool ErrorOnNoConverge; // Throw an GRID_ASSERT when FCAGMRES fails to converge,
|
bool ErrorOnNoConverge; // Throw an assert when FCAGMRES fails to converge,
|
||||||
// defaults to true
|
// defaults to true
|
||||||
|
|
||||||
RealD Tolerance;
|
RealD Tolerance;
|
||||||
@@ -87,7 +87,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF
|
|||||||
conformable(psi, src);
|
conformable(psi, src);
|
||||||
|
|
||||||
RealD guess = norm2(psi);
|
RealD guess = norm2(psi);
|
||||||
GRID_ASSERT(std::isnan(guess) == 0);
|
assert(std::isnan(guess) == 0);
|
||||||
|
|
||||||
RealD cp;
|
RealD cp;
|
||||||
RealD ssq = norm2(src);
|
RealD ssq = norm2(src);
|
||||||
@@ -144,7 +144,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF
|
|||||||
std::cout << GridLogMessage << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
|
std::cout << GridLogMessage << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
|
||||||
|
|
||||||
if (ErrorOnNoConverge)
|
if (ErrorOnNoConverge)
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
}
|
}
|
||||||
|
|
||||||
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
|
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
|
||||||
@@ -191,7 +191,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
GRID_ASSERT(0); // Never reached
|
assert(0); // Never reached
|
||||||
return cp;
|
return cp;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@@ -36,7 +36,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
|
|||||||
public:
|
public:
|
||||||
using OperatorFunction<Field>::operator();
|
using OperatorFunction<Field>::operator();
|
||||||
|
|
||||||
bool ErrorOnNoConverge; // Throw an GRID_ASSERT when FGMRES fails to converge,
|
bool ErrorOnNoConverge; // Throw an assert when FGMRES fails to converge,
|
||||||
// defaults to true
|
// defaults to true
|
||||||
|
|
||||||
RealD Tolerance;
|
RealD Tolerance;
|
||||||
@@ -85,7 +85,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
|
|||||||
conformable(psi, src);
|
conformable(psi, src);
|
||||||
|
|
||||||
RealD guess = norm2(psi);
|
RealD guess = norm2(psi);
|
||||||
GRID_ASSERT(std::isnan(guess) == 0);
|
assert(std::isnan(guess) == 0);
|
||||||
|
|
||||||
RealD cp;
|
RealD cp;
|
||||||
RealD ssq = norm2(src);
|
RealD ssq = norm2(src);
|
||||||
@@ -142,7 +142,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
|
|||||||
std::cout << GridLogMessage << "FlexibleGeneralisedMinimalResidual did NOT converge" << std::endl;
|
std::cout << GridLogMessage << "FlexibleGeneralisedMinimalResidual did NOT converge" << std::endl;
|
||||||
|
|
||||||
if (ErrorOnNoConverge)
|
if (ErrorOnNoConverge)
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
}
|
}
|
||||||
|
|
||||||
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
|
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
|
||||||
@@ -189,7 +189,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
GRID_ASSERT(0); // Never reached
|
assert(0); // Never reached
|
||||||
return cp;
|
return cp;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@@ -36,7 +36,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> {
|
|||||||
public:
|
public:
|
||||||
using OperatorFunction<Field>::operator();
|
using OperatorFunction<Field>::operator();
|
||||||
|
|
||||||
bool ErrorOnNoConverge; // Throw an GRID_ASSERT when GMRES fails to converge,
|
bool ErrorOnNoConverge; // Throw an assert when GMRES fails to converge,
|
||||||
// defaults to true
|
// defaults to true
|
||||||
|
|
||||||
RealD Tolerance;
|
RealD Tolerance;
|
||||||
@@ -80,7 +80,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> {
|
|||||||
conformable(psi, src);
|
conformable(psi, src);
|
||||||
|
|
||||||
RealD guess = norm2(psi);
|
RealD guess = norm2(psi);
|
||||||
GRID_ASSERT(std::isnan(guess) == 0);
|
assert(std::isnan(guess) == 0);
|
||||||
|
|
||||||
RealD cp;
|
RealD cp;
|
||||||
RealD ssq = norm2(src);
|
RealD ssq = norm2(src);
|
||||||
@@ -135,7 +135,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> {
|
|||||||
std::cout << GridLogMessage << "GeneralisedMinimalResidual did NOT converge" << std::endl;
|
std::cout << GridLogMessage << "GeneralisedMinimalResidual did NOT converge" << std::endl;
|
||||||
|
|
||||||
if (ErrorOnNoConverge)
|
if (ErrorOnNoConverge)
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
}
|
}
|
||||||
|
|
||||||
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
|
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
|
||||||
@@ -181,7 +181,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
GRID_ASSERT(0); // Never reached
|
assert(0); // Never reached
|
||||||
return cp;
|
return cp;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@@ -7,8 +7,9 @@
|
|||||||
Copyright (C) 2015
|
Copyright (C) 2015
|
||||||
|
|
||||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||||
|
Author: Chulwoo Jung
|
||||||
Author: Yong-Chull Jang <ypj@quark.phy.bnl.gov>
|
Author: Yong-Chull Jang <ypj@quark.phy.bnl.gov>
|
||||||
Author: Chulwoo Jung <chulwoo@bnl.gov>
|
Author: Guido Cossu
|
||||||
|
|
||||||
This program is free software; you can redistribute it and/or modify
|
This program is free software; you can redistribute it and/or modify
|
||||||
it under the terms of the GNU General Public License as published by
|
it under the terms of the GNU General Public License as published by
|
||||||
@@ -175,7 +176,7 @@ public:
|
|||||||
eresid(_eresid), MaxIter(_MaxIter),
|
eresid(_eresid), MaxIter(_MaxIter),
|
||||||
diagonalisation(_diagonalisation),split_test(0),
|
diagonalisation(_diagonalisation),split_test(0),
|
||||||
Nevec_acc(_Nu)
|
Nevec_acc(_Nu)
|
||||||
{ GRID_ASSERT( (Nk%Nu==0) && (Nm%Nu==0) ); };
|
{ assert( (Nk%Nu==0) && (Nm%Nu==0) ); };
|
||||||
|
|
||||||
////////////////////////////////
|
////////////////////////////////
|
||||||
// Helpers
|
// Helpers
|
||||||
@@ -184,6 +185,10 @@ public:
|
|||||||
{
|
{
|
||||||
RealD nn = norm2(v);
|
RealD nn = norm2(v);
|
||||||
nn = sqrt(nn);
|
nn = sqrt(nn);
|
||||||
|
#if 0
|
||||||
|
if(if_print && nn < 1e20)
|
||||||
|
Glog<<"normalize: "<<nn<<std::endl;
|
||||||
|
#endif
|
||||||
v = v * (1.0/nn);
|
v = v * (1.0/nn);
|
||||||
return nn;
|
return nn;
|
||||||
}
|
}
|
||||||
@@ -206,7 +211,7 @@ public:
|
|||||||
Glog<<"orthogonalize after: "<<j<<" of "<<k<<" "<< ip <<std::endl;
|
Glog<<"orthogonalize after: "<<j<<" of "<<k<<" "<< ip <<std::endl;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
GRID_ASSERT(normalize(w,if_print) != 0);
|
assert(normalize(w,if_print) != 0);
|
||||||
}
|
}
|
||||||
void reorthogonalize(Field& w, std::vector<Field>& evec, int k)
|
void reorthogonalize(Field& w, std::vector<Field>& evec, int k)
|
||||||
{
|
{
|
||||||
@@ -222,10 +227,22 @@ public:
|
|||||||
for(int j=0; j<k; ++j){
|
for(int j=0; j<k; ++j){
|
||||||
for(int i=0; i<_Nu; ++i){
|
for(int i=0; i<_Nu; ++i){
|
||||||
ip = innerProduct(evec[j],w[i]);
|
ip = innerProduct(evec[j],w[i]);
|
||||||
|
#if 0
|
||||||
|
if(if_print)
|
||||||
|
if( norm(ip)/norm2(w[i]) > 1e-14)
|
||||||
|
Glog<<"orthogonalize before: "<<i<<" "<<j<<" of "<<k<<" "<< ip <<std::endl;
|
||||||
|
#endif
|
||||||
w[i] = w[i] - ip * evec[j];
|
w[i] = w[i] - ip * evec[j];
|
||||||
|
#if 0
|
||||||
|
if(if_print) {
|
||||||
|
ip = innerProduct(evec[j],w[i]);
|
||||||
|
if( norm(ip)/norm2(w[i]) > 1e-14)
|
||||||
|
Glog<<"orthogonalize after: "<<i<<" "<<j<<" of "<<k<<" "<< ip <<std::endl;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
}}
|
}}
|
||||||
for(int i=0; i<_Nu; ++i)
|
for(int i=0; i<_Nu; ++i)
|
||||||
GRID_ASSERT(normalize(w[i],if_print) !=0);
|
assert(normalize(w[i],if_print) !=0);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@@ -244,10 +261,18 @@ public:
|
|||||||
const uint64_t sites = grid->lSites();
|
const uint64_t sites = grid->lSites();
|
||||||
|
|
||||||
int Nbatch = R/Nevec_acc;
|
int Nbatch = R/Nevec_acc;
|
||||||
GRID_ASSERT( R%Nevec_acc == 0 );
|
assert( R%Nevec_acc == 0 );
|
||||||
// Glog << "nBatch, Nevec_acc, R, Nu = "
|
// Glog << "nBatch, Nevec_acc, R, Nu = "
|
||||||
// << Nbatch << "," << Nevec_acc << "," << R << "," << Nu << std::endl;
|
// << Nbatch << "," << Nevec_acc << "," << R << "," << Nu << std::endl;
|
||||||
|
|
||||||
|
#if 0 // a trivial test
|
||||||
|
for (int col=0; col<Nu; ++col) {
|
||||||
|
for (size_t row=0; row<sites*12; ++row) {
|
||||||
|
w_acc[col*sites*12+row].x = 1.0;
|
||||||
|
w_acc[col*sites*12+row].y = 0.0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#else
|
||||||
for (int col=0; col<Nu; ++col) {
|
for (int col=0; col<Nu; ++col) {
|
||||||
// auto w_v = w[col].View();
|
// auto w_v = w[col].View();
|
||||||
autoView( w_v,w[col], AcceleratorWrite);
|
autoView( w_v,w[col], AcceleratorWrite);
|
||||||
@@ -257,6 +282,7 @@ public:
|
|||||||
w_acc[col*sites*12+row] = z[row];
|
w_acc[col*sites*12+row] = z[row];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
#endif
|
||||||
cublasHandle_t handle;
|
cublasHandle_t handle;
|
||||||
cublasStatus_t stat;
|
cublasStatus_t stat;
|
||||||
|
|
||||||
@@ -265,6 +291,14 @@ public:
|
|||||||
Glog << "cuBLAS Zgemm"<< std::endl;
|
Glog << "cuBLAS Zgemm"<< std::endl;
|
||||||
|
|
||||||
for (int b=0; b<Nbatch; ++b) {
|
for (int b=0; b<Nbatch; ++b) {
|
||||||
|
#if 0 // a trivial test
|
||||||
|
for (int col=0; col<Nevec_acc; ++col) {
|
||||||
|
for (size_t row=0; row<sites*12; ++row) {
|
||||||
|
evec_acc[col*sites*12+row].x = 1.0;
|
||||||
|
evec_acc[col*sites*12+row].y = 0.0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#else
|
||||||
for (int col=0; col<Nevec_acc; ++col) {
|
for (int col=0; col<Nevec_acc; ++col) {
|
||||||
// auto evec_v = evec[b*Nevec_acc+col].View();
|
// auto evec_v = evec[b*Nevec_acc+col].View();
|
||||||
autoView( evec_v,evec[b*Nevec_acc+col], AcceleratorWrite);
|
autoView( evec_v,evec[b*Nevec_acc+col], AcceleratorWrite);
|
||||||
@@ -274,6 +308,7 @@ public:
|
|||||||
evec_acc[col*sites*12+row] = z[row];
|
evec_acc[col*sites*12+row] = z[row];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
#endif
|
||||||
CUDA_COMPLEX alpha = MAKE_CUDA_COMPLEX(1.0,0.0);
|
CUDA_COMPLEX alpha = MAKE_CUDA_COMPLEX(1.0,0.0);
|
||||||
CUDA_COMPLEX beta = MAKE_CUDA_COMPLEX(0.0,0.0);
|
CUDA_COMPLEX beta = MAKE_CUDA_COMPLEX(0.0,0.0);
|
||||||
stat = CUDA_GEMM(handle, CUBLAS_OP_C, CUBLAS_OP_N, Nevec_acc, Nu, 12*sites,
|
stat = CUDA_GEMM(handle, CUBLAS_OP_C, CUBLAS_OP_N, Nevec_acc, Nu, 12*sites,
|
||||||
@@ -284,6 +319,19 @@ public:
|
|||||||
//Glog << stat << std::endl;
|
//Glog << stat << std::endl;
|
||||||
|
|
||||||
grid->GlobalSumVector((CUDA_FLOAT*)c_acc,2*Nu*Nevec_acc);
|
grid->GlobalSumVector((CUDA_FLOAT*)c_acc,2*Nu*Nevec_acc);
|
||||||
|
#if 0
|
||||||
|
for (int i=0; i<Nu; ++i) {
|
||||||
|
for (size_t j=0; j<Nevec_acc; ++j) {
|
||||||
|
CUDA_COMPLEX z = c_acc[i*Nevec_acc+j];
|
||||||
|
MyComplex ip(z.x,z.y);
|
||||||
|
if (do_print) {
|
||||||
|
Glog << "<evec,w>[" << j << "," << i << "] = "
|
||||||
|
<< z.x << " + i " << z.y << std::endl;
|
||||||
|
}
|
||||||
|
w[i] = w[i] - ip * evec[b*Nevec_acc+j];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#else
|
||||||
alpha = MAKE_CUDA_COMPLEX(-1.0,0.0);
|
alpha = MAKE_CUDA_COMPLEX(-1.0,0.0);
|
||||||
beta = MAKE_CUDA_COMPLEX(1.0,0.0);
|
beta = MAKE_CUDA_COMPLEX(1.0,0.0);
|
||||||
stat = CUDA_GEMM(handle, CUBLAS_OP_N, CUBLAS_OP_N, 12*sites, Nu, Nevec_acc,
|
stat = CUDA_GEMM(handle, CUBLAS_OP_N, CUBLAS_OP_N, 12*sites, Nu, Nevec_acc,
|
||||||
@@ -292,7 +340,9 @@ public:
|
|||||||
&beta,
|
&beta,
|
||||||
w_acc, 12*sites);
|
w_acc, 12*sites);
|
||||||
//Glog << stat << std::endl;
|
//Glog << stat << std::endl;
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
|
#if 1
|
||||||
for (int col=0; col<Nu; ++col) {
|
for (int col=0; col<Nu; ++col) {
|
||||||
// auto w_v = w[col].View();
|
// auto w_v = w[col].View();
|
||||||
autoView( w_v,w[col], AcceleratorWrite);
|
autoView( w_v,w[col], AcceleratorWrite);
|
||||||
@@ -301,8 +351,9 @@ public:
|
|||||||
z[row] = w_acc[col*sites*12+row];
|
z[row] = w_acc[col*sites*12+row];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
#endif
|
||||||
for (int i=0; i<Nu; ++i) {
|
for (int i=0; i<Nu; ++i) {
|
||||||
GRID_ASSERT(normalize(w[i],do_print)!=0);
|
assert(normalize(w[i],do_print)!=0);
|
||||||
}
|
}
|
||||||
|
|
||||||
Glog << "cuBLAS Zgemm done"<< std::endl;
|
Glog << "cuBLAS Zgemm done"<< std::endl;
|
||||||
@@ -317,6 +368,56 @@ public:
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
#if 0
|
||||||
|
void innerProductD (std::vector<ComplexD> &inner, std::vector<Field>& lhs, int llhs, std::vector<Field>& rhs, int lrhs)
|
||||||
|
{
|
||||||
|
typedef typename Field:vector_object vobj;
|
||||||
|
typedef typename vobj::scalar_type scalar_type;
|
||||||
|
typedef typename vobj::vector_typeD vector_type;
|
||||||
|
GridBase *grid = lhs[0]._grid;
|
||||||
|
assert(grid == rhs[0]._grid;
|
||||||
|
const int pad = 8;
|
||||||
|
int total = llhs*lrhs;
|
||||||
|
assert(inner.size()==total);
|
||||||
|
int sum_size=grid->SumArraySize();
|
||||||
|
|
||||||
|
// std::vector<ComplexD> inner(total);
|
||||||
|
Vector<ComplexD> sumarray(sum_size*pad*total);
|
||||||
|
|
||||||
|
parallel_for(int thr=0;thr<sum_size;thr++){
|
||||||
|
int nwork, mywork, myoff;
|
||||||
|
GridThread::GetWork(grid->oSites(),thr,mywork,myoff);
|
||||||
|
|
||||||
|
std::vector< decltype(innerProductD(lhs[0]._odata[0],rhs[0]._odata[0])) > vinner(total,zero); // private to thread; sub summation
|
||||||
|
for(int ss=myoff;ss<mywork+myoff; ss++){
|
||||||
|
for(int i=0; i<llhs; ++i){
|
||||||
|
for(int j=0; j<lrhs; ++j){
|
||||||
|
vinner[i*k+j] += innerProductD(lhs[i]._odata[ss],rhs[j]._odata[ss]);
|
||||||
|
}}
|
||||||
|
}
|
||||||
|
// All threads sum across SIMD; reduce serial work at end
|
||||||
|
// one write per cacheline with streaming store
|
||||||
|
for(int i=0; i<total; ++i){
|
||||||
|
ComplexD tmp = Reduce(TensorRemove(vinner[i])) ;
|
||||||
|
vstream(sumarray[(i*sum_size+thr)*pad],tmp);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for( int i =0;i<total;i++){
|
||||||
|
inner[i]=0.0;
|
||||||
|
for(int j=0;j<sum_size;j++){
|
||||||
|
inner[i] += sumarray[(i*sum_size+j)*pad];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for( int i =0;i<total;i++){
|
||||||
|
ComplexD tmp=inner[i];
|
||||||
|
evec[0]._grid->GlobalSum(tmp);
|
||||||
|
inner[i]=tmp;
|
||||||
|
}
|
||||||
|
// return inner;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
void orthogonalize_blockhead(Field& w, std::vector<Field>& evec, int k, int Nu)
|
void orthogonalize_blockhead(Field& w, std::vector<Field>& evec, int k, int Nu)
|
||||||
{
|
{
|
||||||
@@ -374,8 +475,8 @@ cudaStat = cudaMallocManaged((void **)&evec_acc, Nevec_acc*sites*12*sizeof(CUDA_
|
|||||||
{
|
{
|
||||||
std::string fname = std::string(cname+"::calc_irbl()");
|
std::string fname = std::string(cname+"::calc_irbl()");
|
||||||
GridBase *grid = evec[0].Grid();
|
GridBase *grid = evec[0].Grid();
|
||||||
GRID_ASSERT(grid == src[0].Grid());
|
assert(grid == src[0].Grid());
|
||||||
GRID_ASSERT( Nu = src.size() );
|
assert( Nu = src.size() );
|
||||||
|
|
||||||
Glog << std::string(74,'*') << std::endl;
|
Glog << std::string(74,'*') << std::endl;
|
||||||
Glog << fname + " starting iteration 0 / "<< MaxIter<< std::endl;
|
Glog << fname + " starting iteration 0 / "<< MaxIter<< std::endl;
|
||||||
@@ -396,7 +497,7 @@ cudaStat = cudaMallocManaged((void **)&evec_acc, Nevec_acc*sites*12*sizeof(CUDA_
|
|||||||
}
|
}
|
||||||
Glog << std::string(74,'*') << std::endl;
|
Glog << std::string(74,'*') << std::endl;
|
||||||
|
|
||||||
GRID_ASSERT(Nm == evec.size() && Nm == eval.size());
|
assert(Nm == evec.size() && Nm == eval.size());
|
||||||
|
|
||||||
std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));
|
std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));
|
||||||
std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));
|
std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));
|
||||||
@@ -579,8 +680,8 @@ cudaStat = cudaMallocManaged((void **)&evec_acc, Nevec_acc*sites*12*sizeof(CUDA_
|
|||||||
{
|
{
|
||||||
std::string fname = std::string(cname+"::calc_rbl()");
|
std::string fname = std::string(cname+"::calc_rbl()");
|
||||||
GridBase *grid = evec[0].Grid();
|
GridBase *grid = evec[0].Grid();
|
||||||
GRID_ASSERT(grid == src[0].Grid());
|
assert(grid == src[0].Grid());
|
||||||
GRID_ASSERT( Nu = src.size() );
|
assert( Nu = src.size() );
|
||||||
|
|
||||||
int Np = (Nm-Nk);
|
int Np = (Nm-Nk);
|
||||||
if (Np > 0 && MaxIter > 1) Np /= MaxIter;
|
if (Np > 0 && MaxIter > 1) Np /= MaxIter;
|
||||||
@@ -607,7 +708,7 @@ cudaStat = cudaMallocManaged((void **)&evec_acc, Nevec_acc*sites*12*sizeof(CUDA_
|
|||||||
}
|
}
|
||||||
Glog << std::string(74,'*') << std::endl;
|
Glog << std::string(74,'*') << std::endl;
|
||||||
|
|
||||||
GRID_ASSERT(Nm == evec.size() && Nm == eval.size());
|
assert(Nm == evec.size() && Nm == eval.size());
|
||||||
|
|
||||||
std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));
|
std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));
|
||||||
std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));
|
std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));
|
||||||
@@ -738,6 +839,14 @@ cudaStat = cudaMallocManaged((void **)&evec_acc, Nevec_acc*sites*12*sizeof(CUDA_
|
|||||||
Glog << fname + " CONVERGED ; Summary :\n";
|
Glog << fname + " CONVERGED ; Summary :\n";
|
||||||
// Sort convered eigenpairs.
|
// Sort convered eigenpairs.
|
||||||
std::vector<Field> Btmp(Nstop,grid); // waste of space replicating
|
std::vector<Field> Btmp(Nstop,grid); // waste of space replicating
|
||||||
|
#if 0
|
||||||
|
for(int i=0; i<Nconv; ++i) Btmp[i]=0;
|
||||||
|
for(int i=0; i<Nconv; ++i)
|
||||||
|
for(int k = 0; k<Nr; ++k){
|
||||||
|
Btmp[i].Checkerboard() = evec[k].Checkerboard();
|
||||||
|
Btmp[i] += evec[k]*Qt(k,i);
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
for(int i=0; i<Nstop; ++i){
|
for(int i=0; i<Nstop; ++i){
|
||||||
Btmp[i]=0.;
|
Btmp[i]=0.;
|
||||||
@@ -755,7 +864,7 @@ cudaStat = cudaMallocManaged((void **)&evec_acc, Nevec_acc*sites*12*sizeof(CUDA_
|
|||||||
|
|
||||||
std::cout.precision(13);
|
std::cout.precision(13);
|
||||||
std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
|
std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
|
||||||
std::cout << "eval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< vnum/vden;
|
std::cout << "eval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< vnum/vden<<" "<<eval2[i];;
|
||||||
std::cout << " resid^2 = "<< std::setw(20)<< std::setiosflags(std::ios_base::right)<< vv<< std::endl;
|
std::cout << " resid^2 = "<< std::setw(20)<< std::setiosflags(std::ios_base::right)<< vv<< std::endl;
|
||||||
eval[i] = vnum/vden;
|
eval[i] = vnum/vden;
|
||||||
}
|
}
|
||||||
@@ -785,7 +894,7 @@ private:
|
|||||||
|
|
||||||
int Nu = w.size();
|
int Nu = w.size();
|
||||||
int Nm = evec.size();
|
int Nm = evec.size();
|
||||||
GRID_ASSERT( b < Nm/Nu );
|
assert( b < Nm/Nu );
|
||||||
// GridCartesian *grid = evec[0]._grid;
|
// GridCartesian *grid = evec[0]._grid;
|
||||||
|
|
||||||
// converts block index to full indicies for an interval [L,R)
|
// converts block index to full indicies for an interval [L,R)
|
||||||
@@ -796,7 +905,7 @@ private:
|
|||||||
|
|
||||||
Glog << "Using split grid"<< std::endl;
|
Glog << "Using split grid"<< std::endl;
|
||||||
// LatticeGaugeField s_Umu(SGrid);
|
// LatticeGaugeField s_Umu(SGrid);
|
||||||
GRID_ASSERT((Nu%mrhs)==0);
|
assert((Nu%mrhs)==0);
|
||||||
std::vector<Field> in(mrhs,f_grid);
|
std::vector<Field> in(mrhs,f_grid);
|
||||||
|
|
||||||
Field s_in(sf_grid);
|
Field s_in(sf_grid);
|
||||||
@@ -906,12 +1015,31 @@ if(split_test){
|
|||||||
|
|
||||||
for (int u=0; u<Nu; ++u) {
|
for (int u=0; u<Nu; ++u) {
|
||||||
// Glog << "norm2(w[" << u << "])= "<< norm2(w[u]) << std::endl;
|
// Glog << "norm2(w[" << u << "])= "<< norm2(w[u]) << std::endl;
|
||||||
GRID_ASSERT (!isnan(norm2(w[u])));
|
assert (!isnan(norm2(w[u])));
|
||||||
for (int k=L+u; k<R; ++k) {
|
for (int k=L+u; k<R; ++k) {
|
||||||
Glog <<" In block "<< b << "," <<" beta[" << u << "," << k-L << "] = " << lme[u][k] << std::endl;
|
Glog <<" In block "<< b << "," <<" beta[" << u << "," << k-L << "] = " << lme[u][k] << std::endl;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
Glog << "LinAlg done "<< std::endl;
|
Glog << "LinAlg done "<< std::endl;
|
||||||
|
#if 0
|
||||||
|
Glog << "Gram Schmidt "<< std::endl;
|
||||||
|
// re-orthogonalization for numerical stability
|
||||||
|
if (b>0) {
|
||||||
|
for (int u=0; u<Nu; ++u) {
|
||||||
|
orthogonalize(w[u],evec,R);
|
||||||
|
}
|
||||||
|
for (int u=1; u<Nu; ++u) {
|
||||||
|
orthogonalize(w[u],w,u);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
//if (b>0) {
|
||||||
|
// orthogonalize_blockhead(w[0],evec,b,Nu);
|
||||||
|
// for (int u=1; u<Nu; ++u) {
|
||||||
|
// orthogonalize(w[u],w,u);
|
||||||
|
// }
|
||||||
|
//}
|
||||||
|
Glog << "Gram Schmidt done "<< std::endl;
|
||||||
|
#endif
|
||||||
|
|
||||||
if (b < Nm/Nu-1) {
|
if (b < Nm/Nu-1) {
|
||||||
for (int u=0; u<Nu; ++u) {
|
for (int u=0; u<Nu; ++u) {
|
||||||
@@ -929,8 +1057,8 @@ if(split_test){
|
|||||||
Eigen::MatrixXcd & Qt, // Nm x Nm
|
Eigen::MatrixXcd & Qt, // Nm x Nm
|
||||||
GridBase *grid)
|
GridBase *grid)
|
||||||
{
|
{
|
||||||
GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 );
|
assert( Nk%Nu == 0 && Nm%Nu == 0 );
|
||||||
GRID_ASSERT( Nk <= Nm );
|
assert( Nk <= Nm );
|
||||||
Eigen::MatrixXcd BlockTriDiag = Eigen::MatrixXcd::Zero(Nk,Nk);
|
Eigen::MatrixXcd BlockTriDiag = Eigen::MatrixXcd::Zero(Nk,Nk);
|
||||||
|
|
||||||
for ( int u=0; u<Nu; ++u ) {
|
for ( int u=0; u<Nu; ++u ) {
|
||||||
@@ -970,8 +1098,8 @@ if(split_test){
|
|||||||
GridBase *grid)
|
GridBase *grid)
|
||||||
{
|
{
|
||||||
Glog << "diagonalize_lapack: Nu= "<<Nu<<" Nk= "<<Nk<<" Nm= "<<std::endl;
|
Glog << "diagonalize_lapack: Nu= "<<Nu<<" Nk= "<<Nk<<" Nm= "<<std::endl;
|
||||||
GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 );
|
assert( Nk%Nu == 0 && Nm%Nu == 0 );
|
||||||
GRID_ASSERT( Nk <= Nm );
|
assert( Nk <= Nm );
|
||||||
Eigen::MatrixXcd BlockTriDiag = Eigen::MatrixXcd::Zero(Nk,Nk);
|
Eigen::MatrixXcd BlockTriDiag = Eigen::MatrixXcd::Zero(Nk,Nk);
|
||||||
|
|
||||||
for ( int u=0; u<Nu; ++u ) {
|
for ( int u=0; u<Nu; ++u ) {
|
||||||
@@ -990,6 +1118,7 @@ if(split_test){
|
|||||||
}
|
}
|
||||||
//std::cout << BlockTriDiag << std::endl;
|
//std::cout << BlockTriDiag << std::endl;
|
||||||
//#ifdef USE_LAPACK
|
//#ifdef USE_LAPACK
|
||||||
|
#if 1
|
||||||
const int size = Nm;
|
const int size = Nm;
|
||||||
MKL_INT NN = Nk;
|
MKL_INT NN = Nk;
|
||||||
// double evals_tmp[NN];
|
// double evals_tmp[NN];
|
||||||
@@ -1060,6 +1189,20 @@ if(split_test){
|
|||||||
grid->GlobalSumVector((double*)evec_tmp,2*NN*NN);
|
grid->GlobalSumVector((double*)evec_tmp,2*NN*NN);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
// Safer to sort instead of just reversing it,
|
||||||
|
// but the document of the routine says evals are sorted in increasing order.
|
||||||
|
// qr gives evals in decreasing order.
|
||||||
|
// for(int i=0;i<NN;i++){
|
||||||
|
// lmd [NN-1-i]=evals_tmp[i];
|
||||||
|
// for(int j=0;j<NN;j++){
|
||||||
|
// Qt((NN-1-i),j)=evec_tmp[i][j];
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
|
||||||
|
// MKL_Complex16 *eval_tmp = malloc(NN*sizeof(MKL_Complex16));
|
||||||
|
// MKL_Complex16 *evec_tmp = malloc(NN*NN*sizeof(MKL_Complex16));
|
||||||
|
// MKL_Complex16 *DD = malloc(NN*NN*sizeof(MKL_Complex16));
|
||||||
|
#endif
|
||||||
for (int i = 0; i < Nk; i++)
|
for (int i = 0; i < Nk; i++)
|
||||||
eval[Nk-1-i] = evals_tmp[i];
|
eval[Nk-1-i] = evals_tmp[i];
|
||||||
for (int i = 0; i < Nk; i++) {
|
for (int i = 0; i < Nk; i++) {
|
||||||
@@ -1119,7 +1262,7 @@ if (1){
|
|||||||
diagonalize_lapack(eval,lmd,lme,Nu,Nk,Nm,Qt,grid);
|
diagonalize_lapack(eval,lmd,lme,Nu,Nk,Nm,Qt,grid);
|
||||||
#endif
|
#endif
|
||||||
} else {
|
} else {
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -1131,8 +1274,8 @@ if (1){
|
|||||||
Eigen::MatrixXcd& M)
|
Eigen::MatrixXcd& M)
|
||||||
{
|
{
|
||||||
//Glog << "unpackHermitBlockTriDiagMatToEigen() begin" << '\n';
|
//Glog << "unpackHermitBlockTriDiagMatToEigen() begin" << '\n';
|
||||||
GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 );
|
assert( Nk%Nu == 0 && Nm%Nu == 0 );
|
||||||
GRID_ASSERT( Nk <= Nm );
|
assert( Nk <= Nm );
|
||||||
M = Eigen::MatrixXcd::Zero(Nk,Nk);
|
M = Eigen::MatrixXcd::Zero(Nk,Nk);
|
||||||
|
|
||||||
// rearrange
|
// rearrange
|
||||||
@@ -1159,8 +1302,8 @@ if (1){
|
|||||||
Eigen::MatrixXcd& M)
|
Eigen::MatrixXcd& M)
|
||||||
{
|
{
|
||||||
//Glog << "packHermitBlockTriDiagMatfromEigen() begin" << '\n';
|
//Glog << "packHermitBlockTriDiagMatfromEigen() begin" << '\n';
|
||||||
GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 );
|
assert( Nk%Nu == 0 && Nm%Nu == 0 );
|
||||||
GRID_ASSERT( Nk <= Nm );
|
assert( Nk <= Nm );
|
||||||
|
|
||||||
// rearrange
|
// rearrange
|
||||||
for ( int u=0; u<Nu; ++u ) {
|
for ( int u=0; u<Nu; ++u ) {
|
||||||
|
|||||||
File diff suppressed because it is too large
Load Diff
@@ -79,16 +79,14 @@ template<class Field> class ImplicitlyRestartedLanczosHermOpTester : public Imp
|
|||||||
RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
|
RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
|
||||||
|
|
||||||
std::cout.precision(13);
|
std::cout.precision(13);
|
||||||
|
|
||||||
int conv=0;
|
|
||||||
if( (vv<eresid*eresid) ) conv = 1;
|
|
||||||
|
|
||||||
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
|
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
|
||||||
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
|
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
|
||||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
||||||
<<" target " << eresid*eresid << " conv " <<conv
|
|
||||||
<<std::endl;
|
<<std::endl;
|
||||||
|
|
||||||
|
int conv=0;
|
||||||
|
if( (vv<eresid*eresid) ) conv = 1;
|
||||||
|
|
||||||
return conv;
|
return conv;
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
@@ -211,7 +209,7 @@ until convergence
|
|||||||
void calc(std::vector<RealD>& eval, std::vector<Field>& evec, const Field& src, int& Nconv, bool reverse=false)
|
void calc(std::vector<RealD>& eval, std::vector<Field>& evec, const Field& src, int& Nconv, bool reverse=false)
|
||||||
{
|
{
|
||||||
GridBase *grid = src.Grid();
|
GridBase *grid = src.Grid();
|
||||||
GRID_ASSERT(grid == evec[0].Grid());
|
assert(grid == evec[0].Grid());
|
||||||
|
|
||||||
// GridLogIRL.TimingMode(1);
|
// GridLogIRL.TimingMode(1);
|
||||||
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
||||||
@@ -231,7 +229,7 @@ until convergence
|
|||||||
}
|
}
|
||||||
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
||||||
|
|
||||||
GRID_ASSERT(Nm <= evec.size() && Nm <= eval.size());
|
assert(Nm <= evec.size() && Nm <= eval.size());
|
||||||
|
|
||||||
// quickly get an idea of the largest eigenvalue to more properly normalize the residuum
|
// quickly get an idea of the largest eigenvalue to more properly normalize the residuum
|
||||||
RealD evalMaxApprox = 0.0;
|
RealD evalMaxApprox = 0.0;
|
||||||
@@ -245,10 +243,9 @@ until convergence
|
|||||||
_HermOp(src_n,tmp);
|
_HermOp(src_n,tmp);
|
||||||
// std::cout << GridLogMessage<< tmp<<std::endl; exit(0);
|
// std::cout << GridLogMessage<< tmp<<std::endl; exit(0);
|
||||||
// std::cout << GridLogIRL << " _HermOp " << norm2(tmp) << std::endl;
|
// std::cout << GridLogIRL << " _HermOp " << norm2(tmp) << std::endl;
|
||||||
// RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
|
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
|
||||||
RealD vnum = real(innerProduct(tmp,tmp)); // HermOp^2.
|
|
||||||
RealD vden = norm2(src_n);
|
RealD vden = norm2(src_n);
|
||||||
RealD na = std::sqrt(vnum/vden);
|
RealD na = vnum/vden;
|
||||||
if (fabs(evalMaxApprox/na - 1.0) < 0.0001)
|
if (fabs(evalMaxApprox/na - 1.0) < 0.0001)
|
||||||
i=_MAX_ITER_IRL_MEVAPP_;
|
i=_MAX_ITER_IRL_MEVAPP_;
|
||||||
evalMaxApprox = na;
|
evalMaxApprox = na;
|
||||||
@@ -256,7 +253,6 @@ until convergence
|
|||||||
src_n = tmp;
|
src_n = tmp;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
std::cout << GridLogIRL << " Final evalMaxApprox " << evalMaxApprox << std::endl;
|
|
||||||
|
|
||||||
std::vector<RealD> lme(Nm);
|
std::vector<RealD> lme(Nm);
|
||||||
std::vector<RealD> lme2(Nm);
|
std::vector<RealD> lme2(Nm);
|
||||||
@@ -337,7 +333,7 @@ until convergence
|
|||||||
}
|
}
|
||||||
std::cout<<GridLogIRL <<"QR decomposed "<<std::endl;
|
std::cout<<GridLogIRL <<"QR decomposed "<<std::endl;
|
||||||
|
|
||||||
GRID_ASSERT(k2<Nm); GRID_ASSERT(k2<Nm); GRID_ASSERT(k1>0);
|
assert(k2<Nm); assert(k2<Nm); assert(k1>0);
|
||||||
|
|
||||||
basisRotate(evec,Qt,k1-1,k2+1,0,Nm,Nm); /// big constraint on the basis
|
basisRotate(evec,Qt,k1-1,k2+1,0,Nm,Nm); /// big constraint on the basis
|
||||||
std::cout<<GridLogIRL <<"basisRotated by Qt *"<<k1-1<<","<<k2+1<<")"<<std::endl;
|
std::cout<<GridLogIRL <<"basisRotated by Qt *"<<k1-1<<","<<k2+1<<")"<<std::endl;
|
||||||
@@ -423,15 +419,14 @@ until convergence
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if ( Nconv < Nstop ) {
|
if ( Nconv < Nstop )
|
||||||
std::cout << GridLogIRL << "Nconv ("<<Nconv<<") < Nstop ("<<Nstop<<")"<<std::endl;
|
std::cout << GridLogIRL << "Nconv ("<<Nconv<<") < Nstop ("<<Nstop<<")"<<std::endl;
|
||||||
std::cout << GridLogIRL << "returning Nstop vectors, the last "<< Nstop-Nconv << "of which might meet convergence criterion only approximately" <<std::endl;
|
|
||||||
}
|
|
||||||
eval=eval2;
|
eval=eval2;
|
||||||
|
|
||||||
//Keep only converged
|
//Keep only converged
|
||||||
eval.resize(Nstop);// was Nconv
|
eval.resize(Nconv);// Nstop?
|
||||||
evec.resize(Nstop,grid);// was Nconv
|
evec.resize(Nconv,grid);// Nstop?
|
||||||
basisSortInPlace(evec,eval,reverse);
|
basisSortInPlace(evec,eval,reverse);
|
||||||
|
|
||||||
}
|
}
|
||||||
@@ -461,15 +456,15 @@ until convergence
|
|||||||
std::vector<Field>& evec,
|
std::vector<Field>& evec,
|
||||||
Field& w,int Nm,int k)
|
Field& w,int Nm,int k)
|
||||||
{
|
{
|
||||||
std::cout<<GridLogDebug << "Lanczos step " <<k<<std::endl;
|
std::cout<<GridLogIRL << "Lanczos step " <<k<<std::endl;
|
||||||
const RealD tiny = 1.0e-20;
|
const RealD tiny = 1.0e-20;
|
||||||
GRID_ASSERT( k< Nm );
|
assert( k< Nm );
|
||||||
|
|
||||||
GridStopWatch gsw_op,gsw_o;
|
GridStopWatch gsw_op,gsw_o;
|
||||||
|
|
||||||
Field& evec_k = evec[k];
|
Field& evec_k = evec[k];
|
||||||
|
|
||||||
_PolyOp(evec_k,w); std::cout<<GridLogDebug << "PolyOp" <<std::endl;
|
_PolyOp(evec_k,w); std::cout<<GridLogIRL << "PolyOp" <<std::endl;
|
||||||
|
|
||||||
if(k>0) w -= lme[k-1] * evec[k-1];
|
if(k>0) w -= lme[k-1] * evec[k-1];
|
||||||
|
|
||||||
@@ -484,18 +479,18 @@ until convergence
|
|||||||
lme[k] = beta;
|
lme[k] = beta;
|
||||||
|
|
||||||
if ( (k>0) && ( (k % orth_period) == 0 )) {
|
if ( (k>0) && ( (k % orth_period) == 0 )) {
|
||||||
std::cout<<GridLogDebug << "Orthogonalising " <<k<<std::endl;
|
std::cout<<GridLogIRL << "Orthogonalising " <<k<<std::endl;
|
||||||
orthogonalize(w,evec,k); // orthonormalise
|
orthogonalize(w,evec,k); // orthonormalise
|
||||||
std::cout<<GridLogDebug << "Orthogonalised " <<k<<std::endl;
|
std::cout<<GridLogIRL << "Orthogonalised " <<k<<std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
if(k < Nm-1) evec[k+1] = w;
|
if(k < Nm-1) evec[k+1] = w;
|
||||||
|
|
||||||
std::cout<<GridLogIRL << "Lanczos step alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
|
std::cout<<GridLogIRL << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
|
||||||
if ( beta < tiny )
|
if ( beta < tiny )
|
||||||
std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
|
std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
|
||||||
|
|
||||||
std::cout<<GridLogDebug << "Lanczos step complete " <<k<<std::endl;
|
std::cout<<GridLogIRL << "Lanczos step complete " <<k<<std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||||||
@@ -597,7 +592,7 @@ until convergence
|
|||||||
} else if ( diagonalisation == IRLdiagonaliseWithEigen ) {
|
} else if ( diagonalisation == IRLdiagonaliseWithEigen ) {
|
||||||
diagonalize_Eigen(lmd,lme,Nk,Nm,Qt,grid);
|
diagonalize_Eigen(lmd,lme,Nk,Nm,Qt,grid);
|
||||||
} else {
|
} else {
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -687,7 +682,7 @@ void diagonalize_lapack(std::vector<RealD>& lmd,
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@@ -44,7 +44,6 @@ public:
|
|||||||
int, MinRes); // Must restart
|
int, MinRes); // Must restart
|
||||||
};
|
};
|
||||||
|
|
||||||
//This class is the input parameter class for some testing programs
|
|
||||||
struct LocalCoherenceLanczosParams : Serializable {
|
struct LocalCoherenceLanczosParams : Serializable {
|
||||||
public:
|
public:
|
||||||
GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
|
GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
|
||||||
@@ -68,7 +67,6 @@ public:
|
|||||||
template<class Fobj,class CComplex,int nbasis>
|
template<class Fobj,class CComplex,int nbasis>
|
||||||
class ProjectedHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
|
class ProjectedHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
|
||||||
public:
|
public:
|
||||||
using LinearFunction<Lattice<iVector<CComplex,nbasis > > >::operator();
|
|
||||||
typedef iVector<CComplex,nbasis > CoarseSiteVector;
|
typedef iVector<CComplex,nbasis > CoarseSiteVector;
|
||||||
typedef Lattice<CoarseSiteVector> CoarseField;
|
typedef Lattice<CoarseSiteVector> CoarseField;
|
||||||
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
|
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
|
||||||
@@ -80,7 +78,7 @@ public:
|
|||||||
ProjectedHermOp(LinearOperatorBase<FineField>& linop, std::vector<FineField> & _subspace) :
|
ProjectedHermOp(LinearOperatorBase<FineField>& linop, std::vector<FineField> & _subspace) :
|
||||||
_Linop(linop), subspace(_subspace)
|
_Linop(linop), subspace(_subspace)
|
||||||
{
|
{
|
||||||
GRID_ASSERT(subspace.size() >0);
|
assert(subspace.size() >0);
|
||||||
};
|
};
|
||||||
|
|
||||||
void operator()(const CoarseField& in, CoarseField& out) {
|
void operator()(const CoarseField& in, CoarseField& out) {
|
||||||
@@ -99,7 +97,6 @@ public:
|
|||||||
template<class Fobj,class CComplex,int nbasis>
|
template<class Fobj,class CComplex,int nbasis>
|
||||||
class ProjectedFunctionHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
|
class ProjectedFunctionHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
|
||||||
public:
|
public:
|
||||||
using LinearFunction<Lattice<iVector<CComplex,nbasis > > >::operator();
|
|
||||||
typedef iVector<CComplex,nbasis > CoarseSiteVector;
|
typedef iVector<CComplex,nbasis > CoarseSiteVector;
|
||||||
typedef Lattice<CoarseSiteVector> CoarseField;
|
typedef Lattice<CoarseSiteVector> CoarseField;
|
||||||
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
|
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
|
||||||
@@ -147,23 +144,15 @@ public:
|
|||||||
RealD _coarse_relax_tol;
|
RealD _coarse_relax_tol;
|
||||||
std::vector<FineField> &_subspace;
|
std::vector<FineField> &_subspace;
|
||||||
|
|
||||||
int _largestEvalIdxForReport; //The convergence of the LCL is based on the evals of the coarse grid operator, not those of the underlying fine grid operator
|
|
||||||
//As a result we do not know what the eval range of the fine operator is until the very end, making tuning the Cheby bounds very difficult
|
|
||||||
//To work around this issue, every restart we separately reconstruct the fine operator eval for the lowest and highest evec and print these
|
|
||||||
//out alongside the evals of the coarse operator. To do so we need to know the index of the largest eval (i.e. Nstop-1)
|
|
||||||
//NOTE: If largestEvalIdxForReport=-1 (default) then this is not performed
|
|
||||||
|
|
||||||
ImplicitlyRestartedLanczosSmoothedTester(LinearFunction<CoarseField> &Poly,
|
ImplicitlyRestartedLanczosSmoothedTester(LinearFunction<CoarseField> &Poly,
|
||||||
OperatorFunction<FineField> &smoother,
|
OperatorFunction<FineField> &smoother,
|
||||||
LinearOperatorBase<FineField> &Linop,
|
LinearOperatorBase<FineField> &Linop,
|
||||||
std::vector<FineField> &subspace,
|
std::vector<FineField> &subspace,
|
||||||
RealD coarse_relax_tol=5.0e3,
|
RealD coarse_relax_tol=5.0e3)
|
||||||
int largestEvalIdxForReport=-1)
|
|
||||||
: _smoother(smoother), _Linop(Linop), _Poly(Poly), _subspace(subspace),
|
: _smoother(smoother), _Linop(Linop), _Poly(Poly), _subspace(subspace),
|
||||||
_coarse_relax_tol(coarse_relax_tol), _largestEvalIdxForReport(largestEvalIdxForReport)
|
_coarse_relax_tol(coarse_relax_tol)
|
||||||
{ };
|
{ };
|
||||||
|
|
||||||
//evalMaxApprox: approximation of largest eval of the fine Chebyshev operator (suitably wrapped by block projection)
|
|
||||||
int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
|
int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
|
||||||
{
|
{
|
||||||
CoarseField v(B);
|
CoarseField v(B);
|
||||||
@@ -186,26 +175,12 @@ public:
|
|||||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
||||||
<<std::endl;
|
<<std::endl;
|
||||||
|
|
||||||
if(_largestEvalIdxForReport != -1 && (j==0 || j==_largestEvalIdxForReport)){
|
|
||||||
std::cout<<GridLogIRL << "Estimating true eval of fine grid operator for eval idx " << j << std::endl;
|
|
||||||
RealD tmp_eval;
|
|
||||||
ReconstructEval(j,eresid,B,tmp_eval,1.0); //don't use evalMaxApprox of coarse operator! (cf below)
|
|
||||||
}
|
|
||||||
|
|
||||||
int conv=0;
|
int conv=0;
|
||||||
if( (vv<eresid*eresid) ) conv = 1;
|
if( (vv<eresid*eresid) ) conv = 1;
|
||||||
return conv;
|
return conv;
|
||||||
}
|
}
|
||||||
|
|
||||||
//This function is called at the end of the coarse grid Lanczos. It promotes the coarse eigenvector 'B' to the fine grid,
|
|
||||||
//applies a smoother to the result then computes the computes the *fine grid* eigenvalue (output as 'eval').
|
|
||||||
|
|
||||||
//evalMaxApprox should be the approximation of the largest eval of the fine Hermop. However when this function is called by IRL it actually passes the largest eval of the *Chebyshev* operator (as this is the max approx used for the TestConvergence above)
|
|
||||||
//As the largest eval of the Chebyshev is typically several orders of magnitude larger this makes the convergence test pass even when it should not.
|
|
||||||
//We therefore ignore evalMaxApprox here and use a value of 1.0 (note this value is already used by TestCoarse)
|
|
||||||
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
|
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
|
||||||
{
|
{
|
||||||
evalMaxApprox = 1.0; //cf above
|
|
||||||
GridBase *FineGrid = _subspace[0].Grid();
|
GridBase *FineGrid = _subspace[0].Grid();
|
||||||
int checkerboard = _subspace[0].Checkerboard();
|
int checkerboard = _subspace[0].Checkerboard();
|
||||||
FineField fB(FineGrid);fB.Checkerboard() =checkerboard;
|
FineField fB(FineGrid);fB.Checkerboard() =checkerboard;
|
||||||
@@ -224,13 +199,13 @@ public:
|
|||||||
eval = vnum/vden;
|
eval = vnum/vden;
|
||||||
fv -= eval*fB;
|
fv -= eval*fB;
|
||||||
RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
|
RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
|
||||||
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
|
|
||||||
|
|
||||||
std::cout.precision(13);
|
std::cout.precision(13);
|
||||||
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
|
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
|
||||||
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
|
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
|
||||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv << " target " << eresid*eresid
|
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
||||||
<<std::endl;
|
<<std::endl;
|
||||||
|
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
|
||||||
if( (vv<eresid*eresid) ) return 1;
|
if( (vv<eresid*eresid) ) return 1;
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
@@ -308,10 +283,6 @@ public:
|
|||||||
evals_coarse.resize(0);
|
evals_coarse.resize(0);
|
||||||
};
|
};
|
||||||
|
|
||||||
//The block inner product is the inner product on the fine grid locally summed over the blocks
|
|
||||||
//to give a Lattice<Scalar> on the coarse grid. This function orthnormalizes the fine-grid subspace
|
|
||||||
//vectors under the block inner product. This step must be performed after computing the fine grid
|
|
||||||
//eigenvectors and before computing the coarse grid eigenvectors.
|
|
||||||
void Orthogonalise(void ) {
|
void Orthogonalise(void ) {
|
||||||
CoarseScalar InnerProd(_CoarseGrid);
|
CoarseScalar InnerProd(_CoarseGrid);
|
||||||
std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
|
std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
|
||||||
@@ -346,21 +317,19 @@ public:
|
|||||||
|
|
||||||
void testFine(RealD resid)
|
void testFine(RealD resid)
|
||||||
{
|
{
|
||||||
GRID_ASSERT(evals_fine.size() == nbasis);
|
assert(evals_fine.size() == nbasis);
|
||||||
GRID_ASSERT(subspace.size() == nbasis);
|
assert(subspace.size() == nbasis);
|
||||||
PlainHermOp<FineField> Op(_FineOp);
|
PlainHermOp<FineField> Op(_FineOp);
|
||||||
ImplicitlyRestartedLanczosHermOpTester<FineField> SimpleTester(Op);
|
ImplicitlyRestartedLanczosHermOpTester<FineField> SimpleTester(Op);
|
||||||
for(int k=0;k<nbasis;k++){
|
for(int k=0;k<nbasis;k++){
|
||||||
GRID_ASSERT(SimpleTester.ReconstructEval(k,resid,subspace[k],evals_fine[k],1.0)==1);
|
assert(SimpleTester.ReconstructEval(k,resid,subspace[k],evals_fine[k],1.0)==1);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
//While this method serves to check the coarse eigenvectors, it also recomputes the eigenvalues from the smoothed reconstructed eigenvectors
|
|
||||||
//hence the smoother can be tuned after running the coarse Lanczos by using a different smoother here
|
|
||||||
void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax)
|
void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax)
|
||||||
{
|
{
|
||||||
GRID_ASSERT(evals_fine.size() == nbasis);
|
assert(evals_fine.size() == nbasis);
|
||||||
GRID_ASSERT(subspace.size() == nbasis);
|
assert(subspace.size() == nbasis);
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
|
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
@@ -380,7 +349,7 @@ public:
|
|||||||
void calcFine(ChebyParams cheby_parms,int Nstop,int Nk,int Nm,RealD resid,
|
void calcFine(ChebyParams cheby_parms,int Nstop,int Nk,int Nm,RealD resid,
|
||||||
RealD MaxIt, RealD betastp, int MinRes)
|
RealD MaxIt, RealD betastp, int MinRes)
|
||||||
{
|
{
|
||||||
GRID_ASSERT(nbasis<=Nm);
|
assert(nbasis<=Nm);
|
||||||
Chebyshev<FineField> Cheby(cheby_parms);
|
Chebyshev<FineField> Cheby(cheby_parms);
|
||||||
FunctionHermOp<FineField> ChebyOp(Cheby,_FineOp);
|
FunctionHermOp<FineField> ChebyOp(Cheby,_FineOp);
|
||||||
PlainHermOp<FineField> Op(_FineOp);
|
PlainHermOp<FineField> Op(_FineOp);
|
||||||
@@ -400,54 +369,40 @@ public:
|
|||||||
IRL.calc(evals_fine,subspace,src,Nconv,false);
|
IRL.calc(evals_fine,subspace,src,Nconv,false);
|
||||||
|
|
||||||
// Shrink down to number saved
|
// Shrink down to number saved
|
||||||
GRID_ASSERT(Nstop>=nbasis);
|
assert(Nstop>=nbasis);
|
||||||
GRID_ASSERT(Nconv>=nbasis);
|
assert(Nconv>=nbasis);
|
||||||
evals_fine.resize(nbasis);
|
evals_fine.resize(nbasis);
|
||||||
subspace.resize(nbasis,_FineGrid);
|
subspace.resize(nbasis,_FineGrid);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
//cheby_op: Parameters of the fine grid Chebyshev polynomial used for the Lanczos acceleration
|
|
||||||
//cheby_smooth: Parameters of a separate Chebyshev polynomial used after the Lanczos has completed to smooth out high frequency noise in the reconstructed fine grid eigenvectors prior to computing the eigenvalue
|
|
||||||
//relax: Reconstructed eigenvectors (post smoothing) are naturally not as precise as true eigenvectors. This factor acts as a multiplier on the stopping condition when determining whether the results satisfy the user provided stopping condition
|
|
||||||
void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
|
void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
|
||||||
int Nstop, int Nk, int Nm,RealD resid,
|
int Nstop, int Nk, int Nm,RealD resid,
|
||||||
RealD MaxIt, RealD betastp, int MinRes)
|
RealD MaxIt, RealD betastp, int MinRes)
|
||||||
{
|
{
|
||||||
Chebyshev<FineField> Cheby(cheby_op); //Chebyshev of fine operator on fine grid
|
Chebyshev<FineField> Cheby(cheby_op);
|
||||||
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,subspace); //Fine operator on coarse grid with intermediate fine grid conversion
|
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,subspace);
|
||||||
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace); //Chebyshev of fine operator on coarse grid with intermediate fine grid conversion
|
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace);
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
|
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
Chebyshev<FineField> ChebySmooth(cheby_smooth); //lower order Chebyshev of fine operator on fine grid used to smooth regenerated eigenvectors
|
Chebyshev<FineField> ChebySmooth(cheby_smooth);
|
||||||
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax,Nstop-1);
|
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
|
||||||
|
|
||||||
evals_coarse.resize(Nm);
|
evals_coarse.resize(Nm);
|
||||||
evec_coarse.resize(Nm,_CoarseGrid);
|
evec_coarse.resize(Nm,_CoarseGrid);
|
||||||
|
|
||||||
CoarseField src(_CoarseGrid); src=1.0;
|
CoarseField src(_CoarseGrid); src=1.0;
|
||||||
|
|
||||||
//Note the "tester" here is also responsible for generating the fine grid eigenvalues which are output into the "evals_coarse" array
|
|
||||||
ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
|
ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
|
||||||
int Nconv=0;
|
int Nconv=0;
|
||||||
IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
|
IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
|
||||||
GRID_ASSERT(Nconv>=Nstop);
|
assert(Nconv>=Nstop);
|
||||||
evals_coarse.resize(Nstop);
|
evals_coarse.resize(Nstop);
|
||||||
evec_coarse.resize (Nstop,_CoarseGrid);
|
evec_coarse.resize (Nstop,_CoarseGrid);
|
||||||
for (int i=0;i<Nstop;i++){
|
for (int i=0;i<Nstop;i++){
|
||||||
std::cout << i << " Coarse eval = " << evals_coarse[i] << std::endl;
|
std::cout << i << " Coarse eval = " << evals_coarse[i] << std::endl;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
//Get the fine eigenvector 'i' by reconstruction
|
|
||||||
void getFineEvecEval(FineField &evec, RealD &eval, const int i) const{
|
|
||||||
blockPromote(evec_coarse[i],evec,subspace);
|
|
||||||
eval = evals_coarse[i];
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
|||||||
@@ -35,7 +35,7 @@ template<class Field> class MinimalResidual : public OperatorFunction<Field> {
|
|||||||
public:
|
public:
|
||||||
using OperatorFunction<Field>::operator();
|
using OperatorFunction<Field>::operator();
|
||||||
|
|
||||||
bool ErrorOnNoConverge; // throw an GRID_ASSERT when the MR fails to converge.
|
bool ErrorOnNoConverge; // throw an assert when the MR fails to converge.
|
||||||
// Defaults true.
|
// Defaults true.
|
||||||
RealD Tolerance;
|
RealD Tolerance;
|
||||||
Integer MaxIterations;
|
Integer MaxIterations;
|
||||||
@@ -59,7 +59,7 @@ template<class Field> class MinimalResidual : public OperatorFunction<Field> {
|
|||||||
|
|
||||||
// Initial residual computation & set up
|
// Initial residual computation & set up
|
||||||
RealD guess = norm2(psi);
|
RealD guess = norm2(psi);
|
||||||
GRID_ASSERT(std::isnan(guess) == 0);
|
assert(std::isnan(guess) == 0);
|
||||||
|
|
||||||
RealD ssq = norm2(src);
|
RealD ssq = norm2(src);
|
||||||
RealD rsq = Tolerance * Tolerance * ssq;
|
RealD rsq = Tolerance * Tolerance * ssq;
|
||||||
@@ -136,7 +136,7 @@ template<class Field> class MinimalResidual : public OperatorFunction<Field> {
|
|||||||
std::cout << GridLogMessage << "MR Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
|
std::cout << GridLogMessage << "MR Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
|
||||||
|
|
||||||
if (ErrorOnNoConverge)
|
if (ErrorOnNoConverge)
|
||||||
GRID_ASSERT(true_residual / Tolerance < 10000.0);
|
assert(true_residual / Tolerance < 10000.0);
|
||||||
|
|
||||||
IterationsToComplete = k;
|
IterationsToComplete = k;
|
||||||
|
|
||||||
@@ -148,7 +148,7 @@ template<class Field> class MinimalResidual : public OperatorFunction<Field> {
|
|||||||
<< std::endl;
|
<< std::endl;
|
||||||
|
|
||||||
if (ErrorOnNoConverge)
|
if (ErrorOnNoConverge)
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
|
|
||||||
IterationsToComplete = k;
|
IterationsToComplete = k;
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -37,7 +37,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction
|
|||||||
|
|
||||||
using OperatorFunction<FieldD>::operator();
|
using OperatorFunction<FieldD>::operator();
|
||||||
|
|
||||||
bool ErrorOnNoConverge; // Throw an GRID_ASSERT when MPFGMRES fails to converge,
|
bool ErrorOnNoConverge; // Throw an assert when MPFGMRES fails to converge,
|
||||||
// defaults to true
|
// defaults to true
|
||||||
|
|
||||||
RealD Tolerance;
|
RealD Tolerance;
|
||||||
@@ -91,7 +91,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction
|
|||||||
conformable(psi, src);
|
conformable(psi, src);
|
||||||
|
|
||||||
RealD guess = norm2(psi);
|
RealD guess = norm2(psi);
|
||||||
GRID_ASSERT(std::isnan(guess) == 0);
|
assert(std::isnan(guess) == 0);
|
||||||
|
|
||||||
RealD cp;
|
RealD cp;
|
||||||
RealD ssq = norm2(src);
|
RealD ssq = norm2(src);
|
||||||
@@ -150,7 +150,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction
|
|||||||
std::cout << GridLogMessage << "MPFGMRES did NOT converge" << std::endl;
|
std::cout << GridLogMessage << "MPFGMRES did NOT converge" << std::endl;
|
||||||
|
|
||||||
if (ErrorOnNoConverge)
|
if (ErrorOnNoConverge)
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
}
|
}
|
||||||
|
|
||||||
RealD outerLoopBody(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi, RealD rsq) {
|
RealD outerLoopBody(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi, RealD rsq) {
|
||||||
@@ -197,7 +197,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
GRID_ASSERT(0); // Never reached
|
assert(0); // Never reached
|
||||||
return cp;
|
return cp;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@@ -33,7 +33,7 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
// Take a matrix and form an NE solver calling a Herm solver
|
// Take a matrix and form an NE solver calling a Herm solver
|
||||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
template<class Field> class NormalEquations : public LinearFunction<Field>{
|
template<class Field> class NormalEquations {
|
||||||
private:
|
private:
|
||||||
SparseMatrixBase<Field> & _Matrix;
|
SparseMatrixBase<Field> & _Matrix;
|
||||||
OperatorFunction<Field> & _HermitianSolver;
|
OperatorFunction<Field> & _HermitianSolver;
|
||||||
@@ -60,33 +60,7 @@ public:
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
template<class Field> class NormalResidual : public LinearFunction<Field>{
|
template<class Field> class HPDSolver {
|
||||||
private:
|
|
||||||
SparseMatrixBase<Field> & _Matrix;
|
|
||||||
OperatorFunction<Field> & _HermitianSolver;
|
|
||||||
LinearFunction<Field> & _Guess;
|
|
||||||
public:
|
|
||||||
|
|
||||||
/////////////////////////////////////////////////////
|
|
||||||
// Wrap the usual normal equations trick
|
|
||||||
/////////////////////////////////////////////////////
|
|
||||||
NormalResidual(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver,
|
|
||||||
LinearFunction<Field> &Guess)
|
|
||||||
: _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};
|
|
||||||
|
|
||||||
void operator() (const Field &in, Field &out){
|
|
||||||
|
|
||||||
Field res(in.Grid());
|
|
||||||
Field tmp(in.Grid());
|
|
||||||
|
|
||||||
MMdagLinearOperator<SparseMatrixBase<Field>,Field> MMdagOp(_Matrix);
|
|
||||||
_Guess(in,res);
|
|
||||||
_HermitianSolver(MMdagOp,in,res); // M Mdag res = in ;
|
|
||||||
_Matrix.Mdag(res,out); // out = Mdag res
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
template<class Field> class HPDSolver : public LinearFunction<Field> {
|
|
||||||
private:
|
private:
|
||||||
LinearOperatorBase<Field> & _Matrix;
|
LinearOperatorBase<Field> & _Matrix;
|
||||||
OperatorFunction<Field> & _HermitianSolver;
|
OperatorFunction<Field> & _HermitianSolver;
|
||||||
@@ -104,13 +78,13 @@ public:
|
|||||||
void operator() (const Field &in, Field &out){
|
void operator() (const Field &in, Field &out){
|
||||||
|
|
||||||
_Guess(in,out);
|
_Guess(in,out);
|
||||||
_HermitianSolver(_Matrix,in,out); //M out = in
|
_HermitianSolver(_Matrix,in,out); // Mdag M out = Mdag in
|
||||||
|
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
template<class Field> class MdagMSolver : public LinearFunction<Field> {
|
template<class Field> class MdagMSolver {
|
||||||
private:
|
private:
|
||||||
SparseMatrixBase<Field> & _Matrix;
|
SparseMatrixBase<Field> & _Matrix;
|
||||||
OperatorFunction<Field> & _HermitianSolver;
|
OperatorFunction<Field> & _HermitianSolver;
|
||||||
|
|||||||
@@ -20,7 +20,7 @@ template<class Field> class PowerMethod
|
|||||||
RealD evalMaxApprox = 0.0;
|
RealD evalMaxApprox = 0.0;
|
||||||
auto src_n = src;
|
auto src_n = src;
|
||||||
auto tmp = src;
|
auto tmp = src;
|
||||||
const int _MAX_ITER_EST_ = 200;
|
const int _MAX_ITER_EST_ = 50;
|
||||||
|
|
||||||
for (int i=0;i<_MAX_ITER_EST_;i++) {
|
for (int i=0;i<_MAX_ITER_EST_;i++) {
|
||||||
|
|
||||||
@@ -30,17 +30,16 @@ template<class Field> class PowerMethod
|
|||||||
RealD vden = norm2(src_n);
|
RealD vden = norm2(src_n);
|
||||||
RealD na = vnum/vden;
|
RealD na = vnum/vden;
|
||||||
|
|
||||||
std::cout << GridLogMessage << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
|
if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) {
|
||||||
|
evalMaxApprox = na;
|
||||||
// if ( (fabs(evalMaxApprox/na - 1.0) < 0.0001) || (i==_MAX_ITER_EST_-1) ) {
|
std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
|
||||||
// evalMaxApprox = na;
|
return evalMaxApprox;
|
||||||
// return evalMaxApprox;
|
}
|
||||||
// }
|
|
||||||
evalMaxApprox = na;
|
evalMaxApprox = na;
|
||||||
src_n = tmp;
|
src_n = tmp;
|
||||||
}
|
}
|
||||||
std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
|
assert(0);
|
||||||
return evalMaxApprox;
|
return 0;
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -1,76 +0,0 @@
|
|||||||
#pragma once
|
|
||||||
namespace Grid {
|
|
||||||
|
|
||||||
class Band
|
|
||||||
{
|
|
||||||
RealD lo, hi;
|
|
||||||
public:
|
|
||||||
Band(RealD _lo,RealD _hi)
|
|
||||||
{
|
|
||||||
lo=_lo;
|
|
||||||
hi=_hi;
|
|
||||||
}
|
|
||||||
RealD operator() (RealD x){
|
|
||||||
if ( x>lo && x<hi ){
|
|
||||||
return 1.0;
|
|
||||||
} else {
|
|
||||||
return 0.0;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
class PowerSpectrum
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
|
|
||||||
template<typename T> static RealD normalise(T& v)
|
|
||||||
{
|
|
||||||
RealD nn = norm2(v);
|
|
||||||
nn = sqrt(nn);
|
|
||||||
v = v * (1.0/nn);
|
|
||||||
return nn;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<RealD> ranges;
|
|
||||||
std::vector<int> order;
|
|
||||||
|
|
||||||
PowerSpectrum( std::vector<RealD> &bins, std::vector<int> &_order ) : ranges(bins), order(_order) { };
|
|
||||||
|
|
||||||
template<class Field>
|
|
||||||
RealD operator()(LinearOperatorBase<Field> &HermOp, const Field &src)
|
|
||||||
{
|
|
||||||
GridBase *grid = src.Grid();
|
|
||||||
int N=ranges.size();
|
|
||||||
RealD hi = ranges[N-1];
|
|
||||||
|
|
||||||
RealD lo_band = 0.0;
|
|
||||||
RealD hi_band;
|
|
||||||
RealD nn=norm2(src);
|
|
||||||
RealD ss=0.0;
|
|
||||||
|
|
||||||
Field tmp = src;
|
|
||||||
|
|
||||||
for(int b=0;b<N;b++){
|
|
||||||
hi_band = ranges[b];
|
|
||||||
Band Notch(lo_band,hi_band);
|
|
||||||
|
|
||||||
Chebyshev<Field> polynomial;
|
|
||||||
polynomial.Init(0.0,hi,order[b],Notch);
|
|
||||||
polynomial.JacksonSmooth();
|
|
||||||
|
|
||||||
polynomial(HermOp,src,tmp) ;
|
|
||||||
|
|
||||||
RealD p=norm2(tmp);
|
|
||||||
ss=ss+p;
|
|
||||||
std::cout << GridLogMessage << " PowerSpectrum Band["<<lo_band<<","<<hi_band<<"] power "<<norm2(tmp)/nn<<std::endl;
|
|
||||||
|
|
||||||
lo_band=hi_band;
|
|
||||||
}
|
|
||||||
std::cout << GridLogMessage << " PowerSpectrum total power "<<ss/nn<<std::endl;
|
|
||||||
std::cout << GridLogMessage << " PowerSpectrum total power (unnormalised) "<<nn<<std::endl;
|
|
||||||
|
|
||||||
return 0;
|
|
||||||
};
|
|
||||||
};
|
|
||||||
|
|
||||||
}
|
|
||||||
@@ -112,7 +112,7 @@ public:
|
|||||||
}
|
}
|
||||||
|
|
||||||
std::cout<<GridLogMessage<<"PrecConjugateResidual did NOT converge"<<std::endl;
|
std::cout<<GridLogMessage<<"PrecConjugateResidual did NOT converge"<<std::endl;
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
|||||||
@@ -43,7 +43,7 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
template<class Field>
|
template<class Field>
|
||||||
class PrecGeneralisedConjugateResidual : public LinearFunction<Field> {
|
class PrecGeneralisedConjugateResidual : public LinearFunction<Field> {
|
||||||
public:
|
public:
|
||||||
using LinearFunction<Field>::operator();
|
|
||||||
RealD Tolerance;
|
RealD Tolerance;
|
||||||
Integer MaxIterations;
|
Integer MaxIterations;
|
||||||
int verbose;
|
int verbose;
|
||||||
@@ -118,7 +118,7 @@ public:
|
|||||||
|
|
||||||
}
|
}
|
||||||
GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl;
|
GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl;
|
||||||
// GRID_ASSERT(0);
|
// assert(0);
|
||||||
}
|
}
|
||||||
|
|
||||||
RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
|
RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
|
||||||
@@ -221,7 +221,7 @@ public:
|
|||||||
int northog = ((kp)>(mmax-1))?(mmax-1):(kp); // if more than mmax done, we orthog all mmax history.
|
int northog = ((kp)>(mmax-1))?(mmax-1):(kp); // if more than mmax done, we orthog all mmax history.
|
||||||
for(int back=0;back<northog;back++){
|
for(int back=0;back<northog;back++){
|
||||||
|
|
||||||
int peri_back=(k-back)%mmax; GRID_ASSERT((k-back)>=0);
|
int peri_back=(k-back)%mmax; assert((k-back)>=0);
|
||||||
|
|
||||||
b=-real(innerProduct(q[peri_back],Az))/qq[peri_back];
|
b=-real(innerProduct(q[peri_back],Az))/qq[peri_back];
|
||||||
p[peri_kp]=p[peri_kp]+b*p[peri_back];
|
p[peri_kp]=p[peri_kp]+b*p[peri_back];
|
||||||
@@ -231,7 +231,7 @@ public:
|
|||||||
qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
|
qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
|
||||||
LinalgTimer.Stop();
|
LinalgTimer.Stop();
|
||||||
}
|
}
|
||||||
GRID_ASSERT(0); // never reached
|
assert(0); // never reached
|
||||||
return cp;
|
return cp;
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|||||||
@@ -43,7 +43,7 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
template<class Field>
|
template<class Field>
|
||||||
class PrecGeneralisedConjugateResidualNonHermitian : public LinearFunction<Field> {
|
class PrecGeneralisedConjugateResidualNonHermitian : public LinearFunction<Field> {
|
||||||
public:
|
public:
|
||||||
using LinearFunction<Field>::operator();
|
|
||||||
RealD Tolerance;
|
RealD Tolerance;
|
||||||
Integer MaxIterations;
|
Integer MaxIterations;
|
||||||
int verbose;
|
int verbose;
|
||||||
@@ -74,7 +74,7 @@ public:
|
|||||||
|
|
||||||
void operator() (const Field &src, Field &psi){
|
void operator() (const Field &src, Field &psi){
|
||||||
|
|
||||||
// psi=Zero();
|
psi=Zero();
|
||||||
RealD cp, ssq,rsq;
|
RealD cp, ssq,rsq;
|
||||||
ssq=norm2(src);
|
ssq=norm2(src);
|
||||||
rsq=Tolerance*Tolerance*ssq;
|
rsq=Tolerance*Tolerance*ssq;
|
||||||
@@ -113,14 +113,13 @@ public:
|
|||||||
|
|
||||||
}
|
}
|
||||||
GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl;
|
GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl;
|
||||||
// GRID_ASSERT(0);
|
// assert(0);
|
||||||
}
|
}
|
||||||
|
|
||||||
RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
|
RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
|
||||||
|
|
||||||
RealD cp;
|
RealD cp;
|
||||||
ComplexD a, b;
|
ComplexD a, b, zAz;
|
||||||
// ComplexD zAz;
|
|
||||||
RealD zAAz;
|
RealD zAAz;
|
||||||
ComplexD rq;
|
ComplexD rq;
|
||||||
|
|
||||||
@@ -147,7 +146,7 @@ public:
|
|||||||
//////////////////////////////////
|
//////////////////////////////////
|
||||||
MatTimer.Start();
|
MatTimer.Start();
|
||||||
Linop.Op(psi,Az);
|
Linop.Op(psi,Az);
|
||||||
// zAz = innerProduct(Az,psi);
|
zAz = innerProduct(Az,psi);
|
||||||
zAAz= norm2(Az);
|
zAAz= norm2(Az);
|
||||||
MatTimer.Stop();
|
MatTimer.Stop();
|
||||||
|
|
||||||
@@ -171,7 +170,7 @@ public:
|
|||||||
|
|
||||||
LinalgTimer.Start();
|
LinalgTimer.Start();
|
||||||
|
|
||||||
// zAz = innerProduct(Az,psi);
|
zAz = innerProduct(Az,psi);
|
||||||
zAAz= norm2(Az);
|
zAAz= norm2(Az);
|
||||||
|
|
||||||
//p[0],q[0],qq[0]
|
//p[0],q[0],qq[0]
|
||||||
@@ -213,7 +212,7 @@ public:
|
|||||||
MatTimer.Start();
|
MatTimer.Start();
|
||||||
Linop.Op(z,Az);
|
Linop.Op(z,Az);
|
||||||
MatTimer.Stop();
|
MatTimer.Stop();
|
||||||
// zAz = innerProduct(Az,psi);
|
zAz = innerProduct(Az,psi);
|
||||||
zAAz= norm2(Az);
|
zAAz= norm2(Az);
|
||||||
|
|
||||||
LinalgTimer.Start();
|
LinalgTimer.Start();
|
||||||
@@ -224,7 +223,7 @@ public:
|
|||||||
int northog = ((kp)>(mmax-1))?(mmax-1):(kp); // if more than mmax done, we orthog all mmax history.
|
int northog = ((kp)>(mmax-1))?(mmax-1):(kp); // if more than mmax done, we orthog all mmax history.
|
||||||
for(int back=0;back<northog;back++){
|
for(int back=0;back<northog;back++){
|
||||||
|
|
||||||
int peri_back=(k-back)%mmax; GRID_ASSERT((k-back)>=0);
|
int peri_back=(k-back)%mmax; assert((k-back)>=0);
|
||||||
|
|
||||||
b=-real(innerProduct(q[peri_back],Az))/qq[peri_back];
|
b=-real(innerProduct(q[peri_back],Az))/qq[peri_back];
|
||||||
p[peri_kp]=p[peri_kp]+b*p[peri_back];
|
p[peri_kp]=p[peri_kp]+b*p[peri_back];
|
||||||
@@ -234,7 +233,7 @@ public:
|
|||||||
qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
|
qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
|
||||||
LinalgTimer.Stop();
|
LinalgTimer.Stop();
|
||||||
}
|
}
|
||||||
GRID_ASSERT(0); // never reached
|
assert(0); // never reached
|
||||||
return cp;
|
return cp;
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|||||||
@@ -79,7 +79,7 @@ class QuasiMinimalResidual : public OperatorFunction<Field> {
|
|||||||
|
|
||||||
LinOp.Op(x,r); r = b - r;
|
LinOp.Op(x,r); r = b - r;
|
||||||
|
|
||||||
GRID_ASSERT(normb> 0.0);
|
assert(normb> 0.0);
|
||||||
|
|
||||||
resid = norm2(r)/normb;
|
resid = norm2(r)/normb;
|
||||||
if (resid <= Tolerance) {
|
if (resid <= Tolerance) {
|
||||||
@@ -105,8 +105,8 @@ class QuasiMinimalResidual : public OperatorFunction<Field> {
|
|||||||
for (int i = 1; i <= MaxIterations; i++) {
|
for (int i = 1; i <= MaxIterations; i++) {
|
||||||
|
|
||||||
// Breakdown tests
|
// Breakdown tests
|
||||||
GRID_ASSERT( rho != 0.0);
|
assert( rho != 0.0);
|
||||||
GRID_ASSERT( xi != 0.0);
|
assert( xi != 0.0);
|
||||||
|
|
||||||
v = (1. / rho) * v_tld;
|
v = (1. / rho) * v_tld;
|
||||||
y = (1. / rho) * y;
|
y = (1. / rho) * y;
|
||||||
@@ -134,10 +134,10 @@ class QuasiMinimalResidual : public OperatorFunction<Field> {
|
|||||||
ep=Zep.real();
|
ep=Zep.real();
|
||||||
std::cout << "Zep "<<Zep <<std::endl;
|
std::cout << "Zep "<<Zep <<std::endl;
|
||||||
// Complex Audit
|
// Complex Audit
|
||||||
GRID_ASSERT(abs(ep)>0);
|
assert(abs(ep)>0);
|
||||||
|
|
||||||
beta = ep / delta;
|
beta = ep / delta;
|
||||||
GRID_ASSERT(abs(beta)>0);
|
assert(abs(beta)>0);
|
||||||
|
|
||||||
v_tld = p_tld - beta * v;
|
v_tld = p_tld - beta * v;
|
||||||
y = v_tld;
|
y = v_tld;
|
||||||
@@ -158,7 +158,7 @@ class QuasiMinimalResidual : public OperatorFunction<Field> {
|
|||||||
std::cout << "theta "<<theta<<std::endl;
|
std::cout << "theta "<<theta<<std::endl;
|
||||||
std::cout << "gamma "<<gamma<<std::endl;
|
std::cout << "gamma "<<gamma<<std::endl;
|
||||||
|
|
||||||
GRID_ASSERT(abs(gamma)> 0.0);
|
assert(abs(gamma)> 0.0);
|
||||||
|
|
||||||
eta = -eta * rho_1 * gamma* gamma / (beta * gamma_1 * gamma_1);
|
eta = -eta * rho_1 * gamma* gamma / (beta * gamma_1 * gamma_1);
|
||||||
|
|
||||||
@@ -178,7 +178,7 @@ class QuasiMinimalResidual : public OperatorFunction<Field> {
|
|||||||
}
|
}
|
||||||
std::cout << "Iteration "<<i<<" resid " << resid<<std::endl;
|
std::cout << "Iteration "<<i<<" resid " << resid<<std::endl;
|
||||||
}
|
}
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
return; // no convergence
|
return; // no convergence
|
||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
|
|||||||
@@ -132,31 +132,6 @@ namespace Grid {
|
|||||||
(*this)(_Matrix,in,out,guess);
|
(*this)(_Matrix,in,out,guess);
|
||||||
}
|
}
|
||||||
|
|
||||||
void RedBlackSource(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &src_o)
|
|
||||||
{
|
|
||||||
GridBase *grid = _Matrix.RedBlackGrid();
|
|
||||||
Field tmp(grid);
|
|
||||||
int nblock = in.size();
|
|
||||||
for(int b=0;b<nblock;b++){
|
|
||||||
RedBlackSource(_Matrix,in[b],tmp,src_o[b]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// James can write his own deflated guesser
|
|
||||||
// with optimised code for the inner products
|
|
||||||
// RedBlackSolveSplitGrid();
|
|
||||||
// RedBlackSolve(_Matrix,src_o,sol_o);
|
|
||||||
|
|
||||||
void RedBlackSolution(Matrix &_Matrix, const std::vector<Field> &in, const std::vector<Field> &sol_o, std::vector<Field> &out)
|
|
||||||
{
|
|
||||||
GridBase *grid = _Matrix.RedBlackGrid();
|
|
||||||
Field tmp(grid);
|
|
||||||
int nblock = in.size();
|
|
||||||
for(int b=0;b<nblock;b++) {
|
|
||||||
pickCheckerboard(Even,tmp,in[b]);
|
|
||||||
RedBlackSolution(_Matrix,sol_o[b],tmp,out[b]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template<class Guesser>
|
template<class Guesser>
|
||||||
void operator()(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &out,Guesser &guess)
|
void operator()(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &out,Guesser &guess)
|
||||||
{
|
{
|
||||||
@@ -175,29 +150,24 @@ namespace Grid {
|
|||||||
////////////////////////////////////////////////
|
////////////////////////////////////////////////
|
||||||
// Prepare RedBlack source
|
// Prepare RedBlack source
|
||||||
////////////////////////////////////////////////
|
////////////////////////////////////////////////
|
||||||
RedBlackSource(_Matrix,in,src_o);
|
for(int b=0;b<nblock;b++){
|
||||||
// for(int b=0;b<nblock;b++){
|
RedBlackSource(_Matrix,in[b],tmp,src_o[b]);
|
||||||
// RedBlackSource(_Matrix,in[b],tmp,src_o[b]);
|
}
|
||||||
// }
|
|
||||||
|
|
||||||
////////////////////////////////////////////////
|
////////////////////////////////////////////////
|
||||||
// Make the guesses
|
// Make the guesses
|
||||||
////////////////////////////////////////////////
|
////////////////////////////////////////////////
|
||||||
if ( subGuess ) guess_save.resize(nblock,grid);
|
if ( subGuess ) guess_save.resize(nblock,grid);
|
||||||
|
|
||||||
|
for(int b=0;b<nblock;b++){
|
||||||
if(useSolnAsInitGuess) {
|
if(useSolnAsInitGuess) {
|
||||||
for(int b=0;b<nblock;b++){
|
|
||||||
pickCheckerboard(Odd, sol_o[b], out[b]);
|
pickCheckerboard(Odd, sol_o[b], out[b]);
|
||||||
|
} else {
|
||||||
|
guess(src_o[b],sol_o[b]);
|
||||||
}
|
}
|
||||||
} else {
|
|
||||||
guess(src_o, sol_o);
|
|
||||||
}
|
|
||||||
|
|
||||||
if ( subGuess ) {
|
if ( subGuess ) {
|
||||||
for(int b=0;b<nblock;b++){
|
guess_save[b] = sol_o[b];
|
||||||
guess_save[b] = sol_o[b];
|
}
|
||||||
}
|
|
||||||
}
|
}
|
||||||
//////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////
|
||||||
// Call the block solver
|
// Call the block solver
|
||||||
@@ -327,9 +297,9 @@ namespace Grid {
|
|||||||
/////////////////////////////////////////////////////
|
/////////////////////////////////////////////////////
|
||||||
// src_o = (source_o - Moe MeeInv source_e)
|
// src_o = (source_o - Moe MeeInv source_e)
|
||||||
/////////////////////////////////////////////////////
|
/////////////////////////////////////////////////////
|
||||||
_Matrix.MooeeInv(src_e,tmp); GRID_ASSERT( tmp.Checkerboard() ==Even);
|
_Matrix.MooeeInv(src_e,tmp); assert( tmp.Checkerboard() ==Even);
|
||||||
_Matrix.Meooe (tmp,Mtmp); GRID_ASSERT( Mtmp.Checkerboard() ==Odd);
|
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.Checkerboard() ==Odd);
|
||||||
tmp=src_o-Mtmp; GRID_ASSERT( tmp.Checkerboard() ==Odd);
|
tmp=src_o-Mtmp; assert( tmp.Checkerboard() ==Odd);
|
||||||
|
|
||||||
_Matrix.Mooee(tmp,src_o); // Extra factor of "m" in source from dumb choice of matrix norm.
|
_Matrix.Mooee(tmp,src_o); // Extra factor of "m" in source from dumb choice of matrix norm.
|
||||||
}
|
}
|
||||||
@@ -347,17 +317,17 @@ namespace Grid {
|
|||||||
///////////////////////////////////////////////////
|
///////////////////////////////////////////////////
|
||||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||||
///////////////////////////////////////////////////
|
///////////////////////////////////////////////////
|
||||||
_Matrix.Meooe(sol_o,tmp); GRID_ASSERT( tmp.Checkerboard() ==Even);
|
_Matrix.Meooe(sol_o,tmp); assert( tmp.Checkerboard() ==Even);
|
||||||
src_e = src_e-tmp; GRID_ASSERT( src_e.Checkerboard() ==Even);
|
src_e = src_e-tmp; assert( src_e.Checkerboard() ==Even);
|
||||||
_Matrix.MooeeInv(src_e,sol_e); GRID_ASSERT( sol_e.Checkerboard() ==Even);
|
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.Checkerboard() ==Even);
|
||||||
|
|
||||||
setCheckerboard(sol,sol_e); GRID_ASSERT( sol_e.Checkerboard() ==Even);
|
setCheckerboard(sol,sol_e); assert( sol_e.Checkerboard() ==Even);
|
||||||
setCheckerboard(sol,sol_o); GRID_ASSERT( sol_o.Checkerboard() ==Odd );
|
setCheckerboard(sol,sol_o); assert( sol_o.Checkerboard() ==Odd );
|
||||||
}
|
}
|
||||||
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
|
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
|
||||||
{
|
{
|
||||||
SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
|
SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||||
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); GRID_ASSERT(sol_o.Checkerboard()==Odd);
|
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.Checkerboard()==Odd);
|
||||||
};
|
};
|
||||||
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
|
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
|
||||||
{
|
{
|
||||||
@@ -396,13 +366,13 @@ namespace Grid {
|
|||||||
/////////////////////////////////////////////////////
|
/////////////////////////////////////////////////////
|
||||||
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
||||||
/////////////////////////////////////////////////////
|
/////////////////////////////////////////////////////
|
||||||
_Matrix.MooeeInv(src_e,tmp); GRID_ASSERT( tmp.Checkerboard() ==Even);
|
_Matrix.MooeeInv(src_e,tmp); assert( tmp.Checkerboard() ==Even);
|
||||||
_Matrix.Meooe (tmp,Mtmp); GRID_ASSERT( Mtmp.Checkerboard() ==Odd);
|
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.Checkerboard() ==Odd);
|
||||||
tmp=src_o-Mtmp; GRID_ASSERT( tmp.Checkerboard() ==Odd);
|
tmp=src_o-Mtmp; assert( tmp.Checkerboard() ==Odd);
|
||||||
|
|
||||||
// get the right MpcDag
|
// get the right MpcDag
|
||||||
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
|
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||||
_HermOpEO.MpcDag(tmp,src_o); GRID_ASSERT(src_o.Checkerboard() ==Odd);
|
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.Checkerboard() ==Odd);
|
||||||
|
|
||||||
}
|
}
|
||||||
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
|
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
|
||||||
@@ -416,17 +386,17 @@ namespace Grid {
|
|||||||
///////////////////////////////////////////////////
|
///////////////////////////////////////////////////
|
||||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||||
///////////////////////////////////////////////////
|
///////////////////////////////////////////////////
|
||||||
_Matrix.Meooe(sol_o,tmp); GRID_ASSERT( tmp.Checkerboard() ==Even);
|
_Matrix.Meooe(sol_o,tmp); assert( tmp.Checkerboard() ==Even);
|
||||||
src_e_i = src_e-tmp; GRID_ASSERT( src_e_i.Checkerboard() ==Even);
|
src_e_i = src_e-tmp; assert( src_e_i.Checkerboard() ==Even);
|
||||||
_Matrix.MooeeInv(src_e_i,sol_e); GRID_ASSERT( sol_e.Checkerboard() ==Even);
|
_Matrix.MooeeInv(src_e_i,sol_e); assert( sol_e.Checkerboard() ==Even);
|
||||||
|
|
||||||
setCheckerboard(sol,sol_e); GRID_ASSERT( sol_e.Checkerboard() ==Even);
|
setCheckerboard(sol,sol_e); assert( sol_e.Checkerboard() ==Even);
|
||||||
setCheckerboard(sol,sol_o); GRID_ASSERT( sol_o.Checkerboard() ==Odd );
|
setCheckerboard(sol,sol_o); assert( sol_o.Checkerboard() ==Odd );
|
||||||
}
|
}
|
||||||
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
|
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
|
||||||
{
|
{
|
||||||
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
|
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||||
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); GRID_ASSERT(sol_o.Checkerboard()==Odd);
|
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.Checkerboard()==Odd);
|
||||||
};
|
};
|
||||||
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
|
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
|
||||||
{
|
{
|
||||||
@@ -461,9 +431,9 @@ namespace Grid {
|
|||||||
/////////////////////////////////////////////////////
|
/////////////////////////////////////////////////////
|
||||||
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
||||||
/////////////////////////////////////////////////////
|
/////////////////////////////////////////////////////
|
||||||
_Matrix.MooeeInv(src_e, tmp); GRID_ASSERT( tmp.Checkerboard() == Even );
|
_Matrix.MooeeInv(src_e, tmp); assert( tmp.Checkerboard() == Even );
|
||||||
_Matrix.Meooe (tmp, Mtmp); GRID_ASSERT( Mtmp.Checkerboard() == Odd );
|
_Matrix.Meooe (tmp, Mtmp); assert( Mtmp.Checkerboard() == Odd );
|
||||||
src_o -= Mtmp; GRID_ASSERT( src_o.Checkerboard() == Odd );
|
src_o -= Mtmp; assert( src_o.Checkerboard() == Odd );
|
||||||
}
|
}
|
||||||
|
|
||||||
virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol)
|
virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol)
|
||||||
@@ -478,18 +448,18 @@ namespace Grid {
|
|||||||
///////////////////////////////////////////////////
|
///////////////////////////////////////////////////
|
||||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||||
///////////////////////////////////////////////////
|
///////////////////////////////////////////////////
|
||||||
_Matrix.Meooe(sol_o, tmp); GRID_ASSERT( tmp.Checkerboard() == Even );
|
_Matrix.Meooe(sol_o, tmp); assert( tmp.Checkerboard() == Even );
|
||||||
src_e_i = src_e - tmp; GRID_ASSERT( src_e_i.Checkerboard() == Even );
|
src_e_i = src_e - tmp; assert( src_e_i.Checkerboard() == Even );
|
||||||
_Matrix.MooeeInv(src_e_i, sol_e); GRID_ASSERT( sol_e.Checkerboard() == Even );
|
_Matrix.MooeeInv(src_e_i, sol_e); assert( sol_e.Checkerboard() == Even );
|
||||||
|
|
||||||
setCheckerboard(sol, sol_e); GRID_ASSERT( sol_e.Checkerboard() == Even );
|
setCheckerboard(sol, sol_e); assert( sol_e.Checkerboard() == Even );
|
||||||
setCheckerboard(sol, sol_o); GRID_ASSERT( sol_o.Checkerboard() == Odd );
|
setCheckerboard(sol, sol_o); assert( sol_o.Checkerboard() == Odd );
|
||||||
}
|
}
|
||||||
|
|
||||||
virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o)
|
virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o)
|
||||||
{
|
{
|
||||||
NonHermitianSchurDiagMooeeOperator<Matrix,Field> _OpEO(_Matrix);
|
NonHermitianSchurDiagMooeeOperator<Matrix,Field> _OpEO(_Matrix);
|
||||||
this->_HermitianRBSolver(_OpEO, src_o, sol_o); GRID_ASSERT(sol_o.Checkerboard() == Odd);
|
this->_HermitianRBSolver(_OpEO, src_o, sol_o); assert(sol_o.Checkerboard() == Odd);
|
||||||
}
|
}
|
||||||
|
|
||||||
virtual void RedBlackSolve(Matrix& _Matrix, const std::vector<Field>& src_o, std::vector<Field>& sol_o)
|
virtual void RedBlackSolve(Matrix& _Matrix, const std::vector<Field>& src_o, std::vector<Field>& sol_o)
|
||||||
@@ -499,87 +469,6 @@ namespace Grid {
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
// Site diagonal is identity, left preconditioned by Mee^inv
|
|
||||||
// ( 1 - Mee^inv Meo Moo^inv Moe ) phi = Mee_inv ( Mee - Meo Moo^inv Moe Mee^inv ) phi = Mee_inv eta
|
|
||||||
//
|
|
||||||
// Solve:
|
|
||||||
// ( 1 - Mee^inv Meo Moo^inv Moe )^dag ( 1 - Mee^inv Meo Moo^inv Moe ) phi = ( 1 - Mee^inv Meo Moo^inv Moe )^dag Mee_inv eta
|
|
||||||
//
|
|
||||||
// Old notation e<->o
|
|
||||||
//
|
|
||||||
// Left precon by Moo^-1
|
|
||||||
// b) (Doo^{dag} M_oo^-dag) (Moo^-1 Doo) psi_o = [ (D_oo)^dag M_oo^-dag ] Moo^-1 L^{-1} eta_o
|
|
||||||
// eta_o' = (D_oo)^dag M_oo^-dag Moo^-1 (eta_o - Moe Mee^{-1} eta_e)
|
|
||||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
template<class Field> class SchurRedBlackDiagOneSolve : public SchurRedBlackBase<Field> {
|
|
||||||
public:
|
|
||||||
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
|
|
||||||
|
|
||||||
/////////////////////////////////////////////////////
|
|
||||||
// Wrap the usual normal equations Schur trick
|
|
||||||
/////////////////////////////////////////////////////
|
|
||||||
SchurRedBlackDiagOneSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
|
|
||||||
const bool _solnAsInitGuess = false)
|
|
||||||
: SchurRedBlackBase<Field>(HermitianRBSolver,initSubGuess,_solnAsInitGuess) {};
|
|
||||||
|
|
||||||
virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
|
|
||||||
{
|
|
||||||
GridBase *grid = _Matrix.RedBlackGrid();
|
|
||||||
GridBase *fgrid= _Matrix.Grid();
|
|
||||||
|
|
||||||
SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix);
|
|
||||||
|
|
||||||
Field tmp(grid);
|
|
||||||
Field Mtmp(grid);
|
|
||||||
|
|
||||||
pickCheckerboard(Even,src_e,src);
|
|
||||||
pickCheckerboard(Odd ,src_o,src);
|
|
||||||
|
|
||||||
/////////////////////////////////////////////////////
|
|
||||||
// src_o = Mpcdag *MooeeInv * (source_o - Moe MeeInv source_e)
|
|
||||||
/////////////////////////////////////////////////////
|
|
||||||
_Matrix.MooeeInv(src_e,tmp); GRID_ASSERT( tmp.Checkerboard() ==Even);
|
|
||||||
_Matrix.Meooe (tmp,Mtmp); GRID_ASSERT( Mtmp.Checkerboard() ==Odd);
|
|
||||||
Mtmp=src_o-Mtmp;
|
|
||||||
_Matrix.MooeeInv(Mtmp,tmp); GRID_ASSERT( tmp.Checkerboard() ==Odd);
|
|
||||||
|
|
||||||
// get the right MpcDag
|
|
||||||
_HermOpEO.MpcDag(tmp,src_o); GRID_ASSERT(src_o.Checkerboard() ==Odd);
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
|
|
||||||
{
|
|
||||||
GridBase *grid = _Matrix.RedBlackGrid();
|
|
||||||
GridBase *fgrid= _Matrix.Grid();
|
|
||||||
|
|
||||||
Field tmp(grid);
|
|
||||||
Field sol_e(grid);
|
|
||||||
|
|
||||||
|
|
||||||
///////////////////////////////////////////////////
|
|
||||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
|
||||||
///////////////////////////////////////////////////
|
|
||||||
_Matrix.Meooe(sol_o,tmp); GRID_ASSERT( tmp.Checkerboard() ==Even);
|
|
||||||
tmp = src_e-tmp; GRID_ASSERT( src_e.Checkerboard() ==Even);
|
|
||||||
_Matrix.MooeeInv(tmp,sol_e); GRID_ASSERT( sol_e.Checkerboard() ==Even);
|
|
||||||
|
|
||||||
setCheckerboard(sol,sol_e); GRID_ASSERT( sol_e.Checkerboard() ==Even);
|
|
||||||
setCheckerboard(sol,sol_o); GRID_ASSERT( sol_o.Checkerboard() ==Odd );
|
|
||||||
};
|
|
||||||
|
|
||||||
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
|
|
||||||
{
|
|
||||||
SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix);
|
|
||||||
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
|
|
||||||
};
|
|
||||||
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
|
|
||||||
{
|
|
||||||
SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix);
|
|
||||||
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
// Site diagonal is identity, right preconditioned by Mee^inv
|
// Site diagonal is identity, right preconditioned by Mee^inv
|
||||||
// ( 1 - Meo Moo^inv Moe Mee^inv ) phi =( 1 - Meo Moo^inv Moe Mee^inv ) Mee psi = = eta = eta
|
// ( 1 - Meo Moo^inv Moe Mee^inv ) phi =( 1 - Meo Moo^inv Moe Mee^inv ) Mee psi = = eta = eta
|
||||||
@@ -612,12 +501,12 @@ namespace Grid {
|
|||||||
/////////////////////////////////////////////////////
|
/////////////////////////////////////////////////////
|
||||||
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
||||||
/////////////////////////////////////////////////////
|
/////////////////////////////////////////////////////
|
||||||
_Matrix.MooeeInv(src_e,tmp); GRID_ASSERT( tmp.Checkerboard() ==Even);
|
_Matrix.MooeeInv(src_e,tmp); assert( tmp.Checkerboard() ==Even);
|
||||||
_Matrix.Meooe (tmp,Mtmp); GRID_ASSERT( Mtmp.Checkerboard() ==Odd);
|
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.Checkerboard() ==Odd);
|
||||||
tmp=src_o-Mtmp; GRID_ASSERT( tmp.Checkerboard() ==Odd);
|
tmp=src_o-Mtmp; assert( tmp.Checkerboard() ==Odd);
|
||||||
|
|
||||||
// get the right MpcDag
|
// get the right MpcDag
|
||||||
_HermOpEO.MpcDag(tmp,src_o); GRID_ASSERT(src_o.Checkerboard() ==Odd);
|
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.Checkerboard() ==Odd);
|
||||||
}
|
}
|
||||||
|
|
||||||
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
|
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
|
||||||
@@ -638,12 +527,12 @@ namespace Grid {
|
|||||||
///////////////////////////////////////////////////
|
///////////////////////////////////////////////////
|
||||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||||
///////////////////////////////////////////////////
|
///////////////////////////////////////////////////
|
||||||
_Matrix.Meooe(sol_o_i,tmp); GRID_ASSERT( tmp.Checkerboard() ==Even);
|
_Matrix.Meooe(sol_o_i,tmp); assert( tmp.Checkerboard() ==Even);
|
||||||
tmp = src_e-tmp; GRID_ASSERT( src_e.Checkerboard() ==Even);
|
tmp = src_e-tmp; assert( src_e.Checkerboard() ==Even);
|
||||||
_Matrix.MooeeInv(tmp,sol_e); GRID_ASSERT( sol_e.Checkerboard() ==Even);
|
_Matrix.MooeeInv(tmp,sol_e); assert( sol_e.Checkerboard() ==Even);
|
||||||
|
|
||||||
setCheckerboard(sol,sol_e); GRID_ASSERT( sol_e.Checkerboard() ==Even);
|
setCheckerboard(sol,sol_e); assert( sol_e.Checkerboard() ==Even);
|
||||||
setCheckerboard(sol,sol_o_i); GRID_ASSERT( sol_o_i.Checkerboard() ==Odd );
|
setCheckerboard(sol,sol_o_i); assert( sol_o_i.Checkerboard() ==Odd );
|
||||||
};
|
};
|
||||||
|
|
||||||
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
|
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
|
||||||
@@ -684,9 +573,9 @@ namespace Grid {
|
|||||||
/////////////////////////////////////////////////////
|
/////////////////////////////////////////////////////
|
||||||
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
||||||
/////////////////////////////////////////////////////
|
/////////////////////////////////////////////////////
|
||||||
_Matrix.MooeeInv(src_e, tmp); GRID_ASSERT( tmp.Checkerboard() == Even );
|
_Matrix.MooeeInv(src_e, tmp); assert( tmp.Checkerboard() == Even );
|
||||||
_Matrix.Meooe (tmp, Mtmp); GRID_ASSERT( Mtmp.Checkerboard() == Odd );
|
_Matrix.Meooe (tmp, Mtmp); assert( Mtmp.Checkerboard() == Odd );
|
||||||
src_o -= Mtmp; GRID_ASSERT( src_o.Checkerboard() == Odd );
|
src_o -= Mtmp; assert( src_o.Checkerboard() == Odd );
|
||||||
}
|
}
|
||||||
|
|
||||||
virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol)
|
virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol)
|
||||||
@@ -707,12 +596,12 @@ namespace Grid {
|
|||||||
///////////////////////////////////////////////////
|
///////////////////////////////////////////////////
|
||||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||||
///////////////////////////////////////////////////
|
///////////////////////////////////////////////////
|
||||||
_Matrix.Meooe(sol_o_i, tmp); GRID_ASSERT( tmp.Checkerboard() == Even );
|
_Matrix.Meooe(sol_o_i, tmp); assert( tmp.Checkerboard() == Even );
|
||||||
tmp = src_e - tmp; GRID_ASSERT( src_e.Checkerboard() == Even );
|
tmp = src_e - tmp; assert( src_e.Checkerboard() == Even );
|
||||||
_Matrix.MooeeInv(tmp, sol_e); GRID_ASSERT( sol_e.Checkerboard() == Even );
|
_Matrix.MooeeInv(tmp, sol_e); assert( sol_e.Checkerboard() == Even );
|
||||||
|
|
||||||
setCheckerboard(sol, sol_e); GRID_ASSERT( sol_e.Checkerboard() == Even );
|
setCheckerboard(sol, sol_e); assert( sol_e.Checkerboard() == Even );
|
||||||
setCheckerboard(sol, sol_o_i); GRID_ASSERT( sol_o_i.Checkerboard() == Odd );
|
setCheckerboard(sol, sol_o_i); assert( sol_o_i.Checkerboard() == Odd );
|
||||||
};
|
};
|
||||||
|
|
||||||
virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o)
|
virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o)
|
||||||
|
|||||||
@@ -1,608 +0,0 @@
|
|||||||
/*************************************************************************************
|
|
||||||
|
|
||||||
Grid physics library, www.github.com/paboyle/Grid
|
|
||||||
|
|
||||||
Source file: ./lib/algorithms/Aggregates.h
|
|
||||||
|
|
||||||
Copyright (C) 2015
|
|
||||||
|
|
||||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
|
||||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
||||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
|
||||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
|
||||||
|
|
||||||
This program is free software; you can redistribute it and/or modify
|
|
||||||
it under the terms of the GNU General Public License as published by
|
|
||||||
the Free Software Foundation; either version 2 of the License, or
|
|
||||||
(at your option) any later version.
|
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License along
|
|
||||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
||||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
||||||
|
|
||||||
See the full license in the file "LICENSE" in the top level distribution directory
|
|
||||||
*************************************************************************************/
|
|
||||||
/* END LEGAL */
|
|
||||||
#pragma once
|
|
||||||
|
|
||||||
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidualNonHermitian.h>
|
|
||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
|
||||||
|
|
||||||
inline RealD AggregatePowerLaw(RealD x)
|
|
||||||
{
|
|
||||||
// return std::pow(x,-4);
|
|
||||||
// return std::pow(x,-3);
|
|
||||||
return std::pow(x,-5);
|
|
||||||
}
|
|
||||||
|
|
||||||
template<class Fobj,class CComplex,int nbasis>
|
|
||||||
class Aggregation {
|
|
||||||
public:
|
|
||||||
constexpr int Nbasis(void) { return nbasis; };
|
|
||||||
|
|
||||||
typedef iVector<CComplex,nbasis > siteVector;
|
|
||||||
typedef Lattice<siteVector> CoarseVector;
|
|
||||||
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
|
||||||
|
|
||||||
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
|
||||||
typedef Lattice<Fobj > FineField;
|
|
||||||
|
|
||||||
GridBase *CoarseGrid;
|
|
||||||
GridBase *FineGrid;
|
|
||||||
std::vector<Lattice<Fobj> > subspace;
|
|
||||||
int checkerboard;
|
|
||||||
int Checkerboard(void){return checkerboard;}
|
|
||||||
Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :
|
|
||||||
CoarseGrid(_CoarseGrid),
|
|
||||||
FineGrid(_FineGrid),
|
|
||||||
subspace(nbasis,_FineGrid),
|
|
||||||
checkerboard(_checkerboard)
|
|
||||||
{
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
void Orthogonalise(void){
|
|
||||||
CoarseScalar InnerProd(CoarseGrid);
|
|
||||||
// std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
|
|
||||||
blockOrthogonalise(InnerProd,subspace);
|
|
||||||
}
|
|
||||||
void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
|
|
||||||
blockProject(CoarseVec,FineVec,subspace);
|
|
||||||
}
|
|
||||||
void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
|
|
||||||
FineVec.Checkerboard() = subspace[0].Checkerboard();
|
|
||||||
blockPromote(CoarseVec,FineVec,subspace);
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual void CreateSubspaceRandom(GridParallelRNG &RNG) {
|
|
||||||
int nn=nbasis;
|
|
||||||
RealD scale;
|
|
||||||
FineField noise(FineGrid);
|
|
||||||
for(int b=0;b<nn;b++){
|
|
||||||
subspace[b] = Zero();
|
|
||||||
gaussian(RNG,noise);
|
|
||||||
scale = std::pow(norm2(noise),-0.5);
|
|
||||||
noise=noise*scale;
|
|
||||||
subspace[b] = noise;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
virtual void CreateSubspace(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis)
|
|
||||||
{
|
|
||||||
|
|
||||||
RealD scale;
|
|
||||||
|
|
||||||
ConjugateGradient<FineField> CG(1.0e-3,400,false);
|
|
||||||
FineField noise(FineGrid);
|
|
||||||
FineField Mn(FineGrid);
|
|
||||||
|
|
||||||
for(int b=0;b<nn;b++){
|
|
||||||
|
|
||||||
subspace[b] = Zero();
|
|
||||||
gaussian(RNG,noise);
|
|
||||||
scale = std::pow(norm2(noise),-0.5);
|
|
||||||
noise=noise*scale;
|
|
||||||
|
|
||||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
|
||||||
|
|
||||||
for(int i=0;i<4;i++){
|
|
||||||
|
|
||||||
CG(hermop,noise,subspace[b]);
|
|
||||||
|
|
||||||
noise = subspace[b];
|
|
||||||
scale = std::pow(norm2(noise),-0.5);
|
|
||||||
noise=noise*scale;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
|
|
||||||
subspace[b] = noise;
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual void CreateSubspaceGCR(GridParallelRNG &RNG,LinearOperatorBase<FineField> &DiracOp,int nn=nbasis)
|
|
||||||
{
|
|
||||||
RealD scale;
|
|
||||||
|
|
||||||
TrivialPrecon<FineField> simple_fine;
|
|
||||||
PrecGeneralisedConjugateResidualNonHermitian<FineField> GCR(0.001,30,DiracOp,simple_fine,12,12);
|
|
||||||
FineField noise(FineGrid);
|
|
||||||
FineField src(FineGrid);
|
|
||||||
FineField guess(FineGrid);
|
|
||||||
FineField Mn(FineGrid);
|
|
||||||
|
|
||||||
for(int b=0;b<nn;b++){
|
|
||||||
|
|
||||||
subspace[b] = Zero();
|
|
||||||
gaussian(RNG,noise);
|
|
||||||
scale = std::pow(norm2(noise),-0.5);
|
|
||||||
noise=noise*scale;
|
|
||||||
|
|
||||||
DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|Op|n> "<<innerProduct(noise,Mn)<<std::endl;
|
|
||||||
|
|
||||||
for(int i=0;i<2;i++){
|
|
||||||
// void operator() (const Field &src, Field &psi){
|
|
||||||
#if 1
|
|
||||||
std::cout << GridLogMessage << " inverting on noise "<<std::endl;
|
|
||||||
src = noise;
|
|
||||||
guess=Zero();
|
|
||||||
GCR(src,guess);
|
|
||||||
subspace[b] = guess;
|
|
||||||
#else
|
|
||||||
std::cout << GridLogMessage << " inverting on zero "<<std::endl;
|
|
||||||
src=Zero();
|
|
||||||
guess = noise;
|
|
||||||
GCR(src,guess);
|
|
||||||
subspace[b] = guess;
|
|
||||||
#endif
|
|
||||||
noise = subspace[b];
|
|
||||||
scale = std::pow(norm2(noise),-0.5);
|
|
||||||
noise=noise*scale;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|Op|f> "<<innerProduct(noise,Mn)<<std::endl;
|
|
||||||
subspace[b] = noise;
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
// World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
|
|
||||||
// and this is the best I found
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
|
|
||||||
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
|
||||||
int nn,
|
|
||||||
double hi,
|
|
||||||
double lo,
|
|
||||||
int orderfilter,
|
|
||||||
int ordermin,
|
|
||||||
int orderstep,
|
|
||||||
double filterlo
|
|
||||||
) {
|
|
||||||
|
|
||||||
RealD scale;
|
|
||||||
|
|
||||||
FineField noise(FineGrid);
|
|
||||||
FineField Mn(FineGrid);
|
|
||||||
FineField tmp(FineGrid);
|
|
||||||
|
|
||||||
// New normalised noise
|
|
||||||
gaussian(RNG,noise);
|
|
||||||
scale = std::pow(norm2(noise),-0.5);
|
|
||||||
noise=noise*scale;
|
|
||||||
|
|
||||||
std::cout << GridLogMessage<<" Chebyshev subspace pass-1 : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<" Chebyshev subspace pass-2 : nbasis"<<nn<<" min "
|
|
||||||
<<ordermin<<" step "<<orderstep
|
|
||||||
<<" lo"<<filterlo<<std::endl;
|
|
||||||
|
|
||||||
// Initial matrix element
|
|
||||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
|
||||||
|
|
||||||
int b =0;
|
|
||||||
{
|
|
||||||
ComplexD ip;
|
|
||||||
// Filter
|
|
||||||
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
|
|
||||||
Cheb(hermop,noise,Mn);
|
|
||||||
// normalise
|
|
||||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
|
||||||
subspace[b] = Mn;
|
|
||||||
|
|
||||||
hermop.Op(Mn,tmp);
|
|
||||||
ip= innerProduct(Mn,tmp);
|
|
||||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
|
|
||||||
|
|
||||||
hermop.AdjOp(Mn,tmp);
|
|
||||||
ip = innerProduct(Mn,tmp);
|
|
||||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
|
|
||||||
b++;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Generate a full sequence of Chebyshevs
|
|
||||||
{
|
|
||||||
lo=filterlo;
|
|
||||||
noise=Mn;
|
|
||||||
|
|
||||||
FineField T0(FineGrid); T0 = noise;
|
|
||||||
FineField T1(FineGrid);
|
|
||||||
FineField T2(FineGrid);
|
|
||||||
FineField y(FineGrid);
|
|
||||||
|
|
||||||
FineField *Tnm = &T0;
|
|
||||||
FineField *Tn = &T1;
|
|
||||||
FineField *Tnp = &T2;
|
|
||||||
|
|
||||||
// Tn=T1 = (xscale M + mscale)in
|
|
||||||
RealD xscale = 2.0/(hi-lo);
|
|
||||||
RealD mscale = -(hi+lo)/(hi-lo);
|
|
||||||
hermop.HermOp(T0,y);
|
|
||||||
T1=y*xscale+noise*mscale;
|
|
||||||
|
|
||||||
for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
|
|
||||||
|
|
||||||
hermop.HermOp(*Tn,y);
|
|
||||||
|
|
||||||
autoView( y_v , y, AcceleratorWrite);
|
|
||||||
autoView( Tn_v , (*Tn), AcceleratorWrite);
|
|
||||||
autoView( Tnp_v , (*Tnp), AcceleratorWrite);
|
|
||||||
autoView( Tnm_v , (*Tnm), AcceleratorWrite);
|
|
||||||
const int Nsimd = CComplex::Nsimd();
|
|
||||||
accelerator_for(ss, FineGrid->oSites(), Nsimd, {
|
|
||||||
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
|
|
||||||
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
|
|
||||||
});
|
|
||||||
|
|
||||||
// Possible more fine grained control is needed than a linear sweep,
|
|
||||||
// but huge productivity gain if this is simple algorithm and not a tunable
|
|
||||||
int m =1;
|
|
||||||
if ( n>=ordermin ) m=n-ordermin;
|
|
||||||
if ( (m%orderstep)==0 ) {
|
|
||||||
Mn=*Tnp;
|
|
||||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
|
||||||
subspace[b] = Mn;
|
|
||||||
|
|
||||||
|
|
||||||
ComplexD ip;
|
|
||||||
|
|
||||||
hermop.Op(Mn,tmp);
|
|
||||||
ip= innerProduct(Mn,tmp);
|
|
||||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
|
|
||||||
|
|
||||||
hermop.AdjOp(Mn,tmp);
|
|
||||||
ip = innerProduct(Mn,tmp);
|
|
||||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
|
|
||||||
|
|
||||||
b++;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Cycle pointers to avoid copies
|
|
||||||
FineField *swizzle = Tnm;
|
|
||||||
Tnm =Tn;
|
|
||||||
Tn =Tnp;
|
|
||||||
Tnp =swizzle;
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
|
||||||
GRID_ASSERT(b==nn);
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
virtual void CreateSubspacePolyCheby(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
|
||||||
int nn,
|
|
||||||
double hi,
|
|
||||||
double lo1,
|
|
||||||
int orderfilter,
|
|
||||||
double lo2,
|
|
||||||
int orderstep)
|
|
||||||
{
|
|
||||||
RealD scale;
|
|
||||||
|
|
||||||
FineField noise(FineGrid);
|
|
||||||
FineField Mn(FineGrid);
|
|
||||||
FineField tmp(FineGrid);
|
|
||||||
|
|
||||||
// New normalised noise
|
|
||||||
gaussian(RNG,noise);
|
|
||||||
scale = std::pow(norm2(noise),-0.5);
|
|
||||||
noise=noise*scale;
|
|
||||||
|
|
||||||
std::cout << GridLogMessage<<" CreateSubspacePolyCheby "<<std::endl;
|
|
||||||
// Initial matrix element
|
|
||||||
hermop.Op(noise,Mn);
|
|
||||||
std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
|
||||||
|
|
||||||
int b =0;
|
|
||||||
{
|
|
||||||
// Filter
|
|
||||||
std::cout << GridLogMessage << "Cheby "<<lo1<<","<<hi<<" "<<orderstep<<std::endl;
|
|
||||||
Chebyshev<FineField> Cheb(lo1,hi,orderfilter);
|
|
||||||
Cheb(hermop,noise,Mn);
|
|
||||||
// normalise
|
|
||||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
|
||||||
subspace[b] = Mn;
|
|
||||||
hermop.Op(Mn,tmp);
|
|
||||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
|
||||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|n> "<<norm2(Mn)<<std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Generate a full sequence of Chebyshevs
|
|
||||||
for(int n=1;n<nn;n++){
|
|
||||||
std::cout << GridLogMessage << "Cheby "<<lo2<<","<<hi<<" "<<orderstep<<std::endl;
|
|
||||||
Chebyshev<FineField> Cheb(lo2,hi,orderstep);
|
|
||||||
Cheb(hermop,subspace[n-1],Mn);
|
|
||||||
|
|
||||||
for(int m=0;m<n;m++){
|
|
||||||
ComplexD c = innerProduct(subspace[m],Mn);
|
|
||||||
Mn = Mn - c*subspace[m];
|
|
||||||
}
|
|
||||||
|
|
||||||
// normalise
|
|
||||||
scale = std::pow(norm2(Mn),-0.5);
|
|
||||||
Mn=Mn*scale;
|
|
||||||
|
|
||||||
subspace[n]=Mn;
|
|
||||||
|
|
||||||
hermop.Op(Mn,tmp);
|
|
||||||
std::cout<<GridLogMessage << "filt ["<<n<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
|
||||||
std::cout<<GridLogMessage << "filt ["<<n<<"] <n|n> "<<norm2(Mn)<<std::endl;
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
|
||||||
int nn,
|
|
||||||
double hi,
|
|
||||||
double lo,
|
|
||||||
int orderfilter
|
|
||||||
) {
|
|
||||||
|
|
||||||
RealD scale;
|
|
||||||
|
|
||||||
FineField noise(FineGrid);
|
|
||||||
FineField Mn(FineGrid);
|
|
||||||
FineField tmp(FineGrid);
|
|
||||||
|
|
||||||
// New normalised noise
|
|
||||||
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : nbasis "<<nn<<std::endl;
|
|
||||||
|
|
||||||
|
|
||||||
for(int b =0;b<nbasis;b++)
|
|
||||||
{
|
|
||||||
gaussian(RNG,noise);
|
|
||||||
scale = std::pow(norm2(noise),-0.5);
|
|
||||||
noise=noise*scale;
|
|
||||||
|
|
||||||
// Initial matrix element
|
|
||||||
hermop.Op(noise,Mn);
|
|
||||||
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
|
||||||
|
|
||||||
// Filter
|
|
||||||
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
|
|
||||||
Cheb(hermop,noise,Mn);
|
|
||||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
|
||||||
|
|
||||||
// Refine
|
|
||||||
Chebyshev<FineField> PowerLaw(lo,hi,1000,AggregatePowerLaw);
|
|
||||||
noise = Mn;
|
|
||||||
PowerLaw(hermop,noise,Mn);
|
|
||||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
|
||||||
|
|
||||||
// normalise
|
|
||||||
subspace[b] = Mn;
|
|
||||||
hermop.Op(Mn,tmp);
|
|
||||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual void CreateSubspaceChebyshevPowerLaw(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
|
||||||
int nn,
|
|
||||||
double hi,
|
|
||||||
int orderfilter
|
|
||||||
) {
|
|
||||||
|
|
||||||
RealD scale;
|
|
||||||
|
|
||||||
FineField noise(FineGrid);
|
|
||||||
FineField Mn(FineGrid);
|
|
||||||
FineField tmp(FineGrid);
|
|
||||||
|
|
||||||
// New normalised noise
|
|
||||||
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" [0,"<<hi<<"]"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : nbasis "<<nn<<std::endl;
|
|
||||||
|
|
||||||
for(int b =0;b<nbasis;b++)
|
|
||||||
{
|
|
||||||
gaussian(RNG,noise);
|
|
||||||
scale = std::pow(norm2(noise),-0.5);
|
|
||||||
noise=noise*scale;
|
|
||||||
|
|
||||||
// Initial matrix element
|
|
||||||
hermop.Op(noise,Mn);
|
|
||||||
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
|
||||||
// Filter
|
|
||||||
Chebyshev<FineField> Cheb(0.0,hi,orderfilter,AggregatePowerLaw);
|
|
||||||
Cheb(hermop,noise,Mn);
|
|
||||||
// normalise
|
|
||||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
|
||||||
subspace[b] = Mn;
|
|
||||||
hermop.Op(Mn,tmp);
|
|
||||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
virtual void CreateSubspaceChebyshevNew(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
|
||||||
double hi
|
|
||||||
) {
|
|
||||||
|
|
||||||
RealD scale;
|
|
||||||
|
|
||||||
FineField noise(FineGrid);
|
|
||||||
FineField Mn(FineGrid);
|
|
||||||
FineField tmp(FineGrid);
|
|
||||||
|
|
||||||
// New normalised noise
|
|
||||||
for(int b =0;b<nbasis;b++)
|
|
||||||
{
|
|
||||||
gaussian(RNG,noise);
|
|
||||||
scale = std::pow(norm2(noise),-0.5);
|
|
||||||
noise=noise*scale;
|
|
||||||
|
|
||||||
// Initial matrix element
|
|
||||||
hermop.Op(noise,Mn);
|
|
||||||
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
|
||||||
// Filter
|
|
||||||
//#opt2(x) = acheb(x,3,90,300)* acheb(x,1,90,50) * acheb(x,0.5,90,200) * acheb(x,0.05,90,400) * acheb(x,0.01,90,1500)
|
|
||||||
/*266
|
|
||||||
Chebyshev<FineField> Cheb1(3.0,hi,300);
|
|
||||||
Chebyshev<FineField> Cheb2(1.0,hi,50);
|
|
||||||
Chebyshev<FineField> Cheb3(0.5,hi,300);
|
|
||||||
Chebyshev<FineField> Cheb4(0.05,hi,500);
|
|
||||||
Chebyshev<FineField> Cheb5(0.01,hi,2000);
|
|
||||||
*/
|
|
||||||
/* 242 */
|
|
||||||
/*
|
|
||||||
Chebyshev<FineField> Cheb3(0.1,hi,300);
|
|
||||||
Chebyshev<FineField> Cheb2(0.02,hi,1000);
|
|
||||||
Chebyshev<FineField> Cheb1(0.003,hi,2000);
|
|
||||||
8?
|
|
||||||
*/
|
|
||||||
/* How many??
|
|
||||||
*/
|
|
||||||
Chebyshev<FineField> Cheb2(0.001,hi,2500); // 169 iters on HDCG after refine
|
|
||||||
Chebyshev<FineField> Cheb1(0.02,hi,600);
|
|
||||||
|
|
||||||
// Chebyshev<FineField> Cheb2(0.001,hi,1500);
|
|
||||||
// Chebyshev<FineField> Cheb1(0.02,hi,600);
|
|
||||||
Cheb1(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
|
|
||||||
hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb1 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
|
||||||
Cheb2(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
|
|
||||||
hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb2 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
|
||||||
// Cheb3(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
|
|
||||||
// hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb3 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
|
||||||
// Cheb4(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
|
|
||||||
// hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb4 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
|
||||||
// Cheb5(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
|
|
||||||
// hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb5 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
|
||||||
subspace[b] = noise;
|
|
||||||
hermop.Op(subspace[b],tmp);
|
|
||||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<< " norm " << norm2(noise)<<std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual void CreateSubspaceMultishift(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
|
||||||
double Lo,double tol,int maxit)
|
|
||||||
{
|
|
||||||
|
|
||||||
RealD scale;
|
|
||||||
|
|
||||||
FineField noise(FineGrid);
|
|
||||||
FineField Mn(FineGrid);
|
|
||||||
FineField tmp(FineGrid);
|
|
||||||
|
|
||||||
// New normalised noise
|
|
||||||
std::cout << GridLogMessage<<" Multishift subspace : Lo "<<Lo<<std::endl;
|
|
||||||
|
|
||||||
// Filter
|
|
||||||
// [ 1/6(x+Lo) - 1/2(x+2Lo) + 1/2(x+3Lo) -1/6(x+4Lo) = Lo^3 /[ (x+1Lo)(x+2Lo)(x+3Lo)(x+4Lo) ]
|
|
||||||
//
|
|
||||||
// 1/(x+Lo) - 1/(x+2 Lo)
|
|
||||||
double epsilon = Lo/3;
|
|
||||||
std::vector<RealD> alpha({1.0/6.0,-1.0/2.0,1.0/2.0,-1.0/6.0});
|
|
||||||
std::vector<RealD> shifts({Lo,Lo+epsilon,Lo+2*epsilon,Lo+3*epsilon});
|
|
||||||
std::vector<RealD> tols({tol,tol,tol,tol});
|
|
||||||
std::cout << "sizes "<<alpha.size()<<" "<<shifts.size()<<" "<<tols.size()<<std::endl;
|
|
||||||
|
|
||||||
MultiShiftFunction msf(4,0.0,95.0);
|
|
||||||
std::cout << "msf constructed "<<std::endl;
|
|
||||||
msf.poles=shifts;
|
|
||||||
msf.residues=alpha;
|
|
||||||
msf.tolerances=tols;
|
|
||||||
msf.norm=0.0;
|
|
||||||
msf.order=alpha.size();
|
|
||||||
ConjugateGradientMultiShift<FineField> MSCG(maxit,msf);
|
|
||||||
|
|
||||||
for(int b =0;b<nbasis;b++)
|
|
||||||
{
|
|
||||||
gaussian(RNG,noise);
|
|
||||||
scale = std::pow(norm2(noise),-0.5);
|
|
||||||
noise=noise*scale;
|
|
||||||
|
|
||||||
// Initial matrix element
|
|
||||||
hermop.Op(noise,Mn);
|
|
||||||
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
|
||||||
|
|
||||||
MSCG(hermop,noise,Mn);
|
|
||||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
|
||||||
subspace[b] = Mn;
|
|
||||||
hermop.Op(Mn,tmp);
|
|
||||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
virtual void RefineSubspace(LinearOperatorBase<FineField> &hermop,
|
|
||||||
double Lo,double tol,int maxit)
|
|
||||||
{
|
|
||||||
FineField tmp(FineGrid);
|
|
||||||
for(int b =0;b<nbasis;b++)
|
|
||||||
{
|
|
||||||
ConjugateGradient<FineField> CGsloppy(tol,maxit,false);
|
|
||||||
ShiftedHermOpLinearOperator<FineField> ShiftedFineHermOp(hermop,Lo);
|
|
||||||
tmp=Zero();
|
|
||||||
CGsloppy(hermop,subspace[b],tmp);
|
|
||||||
RealD scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
|
|
||||||
subspace[b]=tmp;
|
|
||||||
hermop.Op(subspace[b],tmp);
|
|
||||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
virtual void RefineSubspaceHDCG(LinearOperatorBase<FineField> &hermop,
|
|
||||||
TwoLevelADEF2mrhs<FineField,CoarseVector> & theHDCG,
|
|
||||||
int nrhs)
|
|
||||||
{
|
|
||||||
std::vector<FineField> src_mrhs(nrhs,FineGrid);
|
|
||||||
std::vector<FineField> res_mrhs(nrhs,FineGrid);
|
|
||||||
FineField tmp(FineGrid);
|
|
||||||
for(int b =0;b<nbasis;b+=nrhs)
|
|
||||||
{
|
|
||||||
tmp = subspace[b];
|
|
||||||
RealD scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
|
|
||||||
subspace[b] =tmp;
|
|
||||||
hermop.Op(subspace[b],tmp);
|
|
||||||
std::cout<<GridLogMessage << "before filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
|
||||||
|
|
||||||
for(int r=0;r<MIN(nbasis-b,nrhs);r++){
|
|
||||||
src_mrhs[r] = subspace[b+r];
|
|
||||||
}
|
|
||||||
for(int r=0;r<nrhs;r++){
|
|
||||||
res_mrhs[r] = Zero();
|
|
||||||
}
|
|
||||||
theHDCG(src_mrhs,res_mrhs);
|
|
||||||
|
|
||||||
for(int r=0;r<MIN(nbasis-b,nrhs);r++){
|
|
||||||
tmp = res_mrhs[r];
|
|
||||||
RealD scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
|
|
||||||
subspace[b+r]=tmp;
|
|
||||||
}
|
|
||||||
hermop.Op(subspace[b],tmp);
|
|
||||||
std::cout<<GridLogMessage << "after filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
};
|
|
||||||
NAMESPACE_END(Grid);
|
|
||||||
|
|
||||||
@@ -1,629 +0,0 @@
|
|||||||
/*************************************************************************************
|
|
||||||
|
|
||||||
Grid physics library, www.github.com/paboyle/Grid
|
|
||||||
|
|
||||||
Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
|
|
||||||
|
|
||||||
Copyright (C) 2015
|
|
||||||
|
|
||||||
Author: Peter Boyle <pboyle@bnl.gov>
|
|
||||||
|
|
||||||
This program is free software; you can redistribute it and/or modify
|
|
||||||
it under the terms of the GNU General Public License as published by
|
|
||||||
the Free Software Foundation; either version 2 of the License, or
|
|
||||||
(at your option) any later version.
|
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License along
|
|
||||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
||||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
||||||
|
|
||||||
See the full license in the file "LICENSE" in the top level distribution directory
|
|
||||||
*************************************************************************************/
|
|
||||||
/* END LEGAL */
|
|
||||||
#pragma once
|
|
||||||
|
|
||||||
#include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No)
|
|
||||||
|
|
||||||
#include <Grid/lattice/PaddedCell.h>
|
|
||||||
#include <Grid/stencil/GeneralLocalStencil.h>
|
|
||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
|
||||||
|
|
||||||
// Fine Object == (per site) type of fine field
|
|
||||||
// nbasis == number of deflation vectors
|
|
||||||
template<class Fobj,class CComplex,int nbasis>
|
|
||||||
class GeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
|
|
||||||
public:
|
|
||||||
|
|
||||||
typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
|
|
||||||
typedef iVector<CComplex,nbasis > siteVector;
|
|
||||||
typedef iMatrix<CComplex,nbasis > siteMatrix;
|
|
||||||
typedef Lattice<iScalar<CComplex> > CoarseComplexField;
|
|
||||||
typedef Lattice<siteVector> CoarseVector;
|
|
||||||
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
|
||||||
typedef iMatrix<CComplex,nbasis > Cobj;
|
|
||||||
typedef iVector<CComplex,nbasis > Cvec;
|
|
||||||
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
|
||||||
typedef Lattice<Fobj > FineField;
|
|
||||||
typedef Lattice<CComplex > FineComplexField;
|
|
||||||
typedef CoarseVector Field;
|
|
||||||
////////////////////
|
|
||||||
// Data members
|
|
||||||
////////////////////
|
|
||||||
int hermitian;
|
|
||||||
GridBase * _FineGrid;
|
|
||||||
GridCartesian * _CoarseGrid;
|
|
||||||
NonLocalStencilGeometry &geom;
|
|
||||||
PaddedCell Cell;
|
|
||||||
GeneralLocalStencil Stencil;
|
|
||||||
|
|
||||||
std::vector<CoarseMatrix> _A;
|
|
||||||
std::vector<CoarseMatrix> _Adag;
|
|
||||||
std::vector<CoarseVector> MultTemporaries;
|
|
||||||
|
|
||||||
///////////////////////
|
|
||||||
// Interface
|
|
||||||
///////////////////////
|
|
||||||
GridBase * Grid(void) { return _CoarseGrid; }; // this is all the linalg routines need to know
|
|
||||||
GridBase * FineGrid(void) { return _FineGrid; }; // this is all the linalg routines need to know
|
|
||||||
GridCartesian * CoarseGrid(void) { return _CoarseGrid; }; // this is all the linalg routines need to know
|
|
||||||
|
|
||||||
/* void ShiftMatrix(RealD shift)
|
|
||||||
{
|
|
||||||
int Nd=_FineGrid->Nd();
|
|
||||||
Coordinate zero_shift(Nd,0);
|
|
||||||
for(int p=0;p<geom.npoint;p++){
|
|
||||||
if ( zero_shift==geom.shifts[p] ) {
|
|
||||||
_A[p] = _A[p]+shift;
|
|
||||||
// _Adag[p] = _Adag[p]+shift;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
void ProjectNearestNeighbour(RealD shift, GeneralCoarseOp &CopyMe)
|
|
||||||
{
|
|
||||||
int nfound=0;
|
|
||||||
std::cout << GridLogMessage <<"GeneralCoarsenedMatrix::ProjectNearestNeighbour "<< CopyMe._A[0].Grid()<<std::endl;
|
|
||||||
for(int p=0;p<geom.npoint;p++){
|
|
||||||
for(int pp=0;pp<CopyMe.geom.npoint;pp++){
|
|
||||||
// Search for the same relative shift
|
|
||||||
// Avoids brutal handling of Grid pointers
|
|
||||||
if ( CopyMe.geom.shifts[pp]==geom.shifts[p] ) {
|
|
||||||
_A[p] = CopyMe.Cell.Extract(CopyMe._A[pp]);
|
|
||||||
// _Adag[p] = CopyMe.Cell.Extract(CopyMe._Adag[pp]);
|
|
||||||
nfound++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
GRID_ASSERT(nfound==geom.npoint);
|
|
||||||
ExchangeCoarseLinks();
|
|
||||||
}
|
|
||||||
*/
|
|
||||||
|
|
||||||
GeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridBase *FineGrid, GridCartesian * CoarseGrid)
|
|
||||||
: geom(_geom),
|
|
||||||
_FineGrid(FineGrid),
|
|
||||||
_CoarseGrid(CoarseGrid),
|
|
||||||
hermitian(1),
|
|
||||||
Cell(_geom.Depth(),_CoarseGrid),
|
|
||||||
Stencil(Cell.grids.back(),geom.shifts)
|
|
||||||
{
|
|
||||||
{
|
|
||||||
int npoint = _geom.npoint;
|
|
||||||
}
|
|
||||||
_A.resize(geom.npoint,CoarseGrid);
|
|
||||||
// _Adag.resize(geom.npoint,CoarseGrid);
|
|
||||||
}
|
|
||||||
void M (const CoarseVector &in, CoarseVector &out)
|
|
||||||
{
|
|
||||||
Mult(_A,in,out);
|
|
||||||
}
|
|
||||||
void Mdag (const CoarseVector &in, CoarseVector &out)
|
|
||||||
{
|
|
||||||
GRID_ASSERT(hermitian);
|
|
||||||
Mult(_A,in,out);
|
|
||||||
// if ( hermitian ) M(in,out);
|
|
||||||
// else Mult(_Adag,in,out);
|
|
||||||
}
|
|
||||||
void Mult (std::vector<CoarseMatrix> &A,const CoarseVector &in, CoarseVector &out)
|
|
||||||
{
|
|
||||||
RealD tviews=0; RealD ttot=0; RealD tmult=0; RealD texch=0; RealD text=0; RealD ttemps=0; RealD tcopy=0;
|
|
||||||
RealD tmult2=0;
|
|
||||||
|
|
||||||
ttot=-usecond();
|
|
||||||
conformable(CoarseGrid(),in.Grid());
|
|
||||||
conformable(in.Grid(),out.Grid());
|
|
||||||
out.Checkerboard() = in.Checkerboard();
|
|
||||||
CoarseVector tin=in;
|
|
||||||
|
|
||||||
texch-=usecond();
|
|
||||||
CoarseVector pin = Cell.ExchangePeriodic(tin);
|
|
||||||
texch+=usecond();
|
|
||||||
|
|
||||||
CoarseVector pout(pin.Grid());
|
|
||||||
|
|
||||||
int npoint = geom.npoint;
|
|
||||||
typedef LatticeView<Cobj> Aview;
|
|
||||||
typedef LatticeView<Cvec> Vview;
|
|
||||||
|
|
||||||
const int Nsimd = CComplex::Nsimd();
|
|
||||||
|
|
||||||
int64_t osites=pin.Grid()->oSites();
|
|
||||||
|
|
||||||
RealD flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
|
|
||||||
RealD bytes = 1.0*osites*sizeof(siteMatrix)*npoint
|
|
||||||
+ 2.0*osites*sizeof(siteVector)*npoint;
|
|
||||||
|
|
||||||
{
|
|
||||||
tviews-=usecond();
|
|
||||||
autoView( in_v , pin, AcceleratorRead);
|
|
||||||
autoView( out_v , pout, AcceleratorWriteDiscard);
|
|
||||||
autoView( Stencil_v , Stencil, AcceleratorRead);
|
|
||||||
tviews+=usecond();
|
|
||||||
|
|
||||||
// Static and prereserve to keep UVM region live and not resized across multiple calls
|
|
||||||
ttemps-=usecond();
|
|
||||||
MultTemporaries.resize(npoint,pin.Grid());
|
|
||||||
ttemps+=usecond();
|
|
||||||
std::vector<Aview> AcceleratorViewContainer_h;
|
|
||||||
std::vector<Vview> AcceleratorVecViewContainer_h;
|
|
||||||
|
|
||||||
tviews-=usecond();
|
|
||||||
for(int p=0;p<npoint;p++) {
|
|
||||||
AcceleratorViewContainer_h.push_back( A[p].View(AcceleratorRead));
|
|
||||||
AcceleratorVecViewContainer_h.push_back(MultTemporaries[p].View(AcceleratorWrite));
|
|
||||||
}
|
|
||||||
tviews+=usecond();
|
|
||||||
|
|
||||||
static deviceVector<Aview> AcceleratorViewContainer; AcceleratorViewContainer.resize(npoint);
|
|
||||||
static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(npoint);
|
|
||||||
|
|
||||||
auto Aview_p = &AcceleratorViewContainer[0];
|
|
||||||
auto Vview_p = &AcceleratorVecViewContainer[0];
|
|
||||||
tcopy-=usecond();
|
|
||||||
acceleratorCopyToDevice(&AcceleratorViewContainer_h[0],&AcceleratorViewContainer[0],npoint *sizeof(Aview));
|
|
||||||
acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],npoint *sizeof(Vview));
|
|
||||||
tcopy+=usecond();
|
|
||||||
|
|
||||||
tmult-=usecond();
|
|
||||||
accelerator_for(spb, osites*nbasis*npoint, Nsimd, {
|
|
||||||
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
|
|
||||||
int32_t ss = spb/(nbasis*npoint);
|
|
||||||
int32_t bp = spb%(nbasis*npoint);
|
|
||||||
int32_t point= bp/nbasis;
|
|
||||||
int32_t b = bp%nbasis;
|
|
||||||
auto SE = Stencil_v.GetEntry(point,ss);
|
|
||||||
auto nbr = coalescedReadGeneralPermute(in_v[SE->_offset],SE->_permute,Nd);
|
|
||||||
auto res = coalescedRead(Aview_p[point][ss](0,b))*nbr(0);
|
|
||||||
for(int bb=1;bb<nbasis;bb++) {
|
|
||||||
res = res + coalescedRead(Aview_p[point][ss](bb,b))*nbr(bb);
|
|
||||||
}
|
|
||||||
coalescedWrite(Vview_p[point][ss](b),res);
|
|
||||||
});
|
|
||||||
tmult2-=usecond();
|
|
||||||
accelerator_for(sb, osites*nbasis, Nsimd, {
|
|
||||||
int ss = sb/nbasis;
|
|
||||||
int b = sb%nbasis;
|
|
||||||
auto res = coalescedRead(Vview_p[0][ss](b));
|
|
||||||
for(int point=1;point<npoint;point++){
|
|
||||||
res = res + coalescedRead(Vview_p[point][ss](b));
|
|
||||||
}
|
|
||||||
coalescedWrite(out_v[ss](b),res);
|
|
||||||
});
|
|
||||||
tmult2+=usecond();
|
|
||||||
tmult+=usecond();
|
|
||||||
for(int p=0;p<npoint;p++) {
|
|
||||||
AcceleratorViewContainer_h[p].ViewClose();
|
|
||||||
AcceleratorVecViewContainer_h[p].ViewClose();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
text-=usecond();
|
|
||||||
out = Cell.Extract(pout);
|
|
||||||
text+=usecond();
|
|
||||||
ttot+=usecond();
|
|
||||||
|
|
||||||
std::cout << GridLogPerformance<<"Coarse 1rhs Mult Aviews "<<tviews<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance<<"Coarse Mult exch "<<texch<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance<<"Coarse Mult mult "<<tmult<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance<<" of which mult2 "<<tmult2<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance<<"Coarse Mult ext "<<text<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance<<"Coarse Mult temps "<<ttemps<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance<<"Coarse Mult copy "<<tcopy<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance<<"Coarse Mult tot "<<ttot<<" us"<<std::endl;
|
|
||||||
// std::cout << GridLogPerformance<<std::endl;
|
|
||||||
std::cout << GridLogPerformance<<"Coarse Kernel flops "<< flops<<std::endl;
|
|
||||||
std::cout << GridLogPerformance<<"Coarse Kernel flop/s "<< flops/tmult<<" mflop/s"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance<<"Coarse Kernel bytes/s "<< bytes/tmult<<" MB/s"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance<<"Coarse overall flops/s "<< flops/ttot<<" mflop/s"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance<<"Coarse total bytes "<< bytes/1e6<<" MB"<<std::endl;
|
|
||||||
|
|
||||||
};
|
|
||||||
|
|
||||||
void PopulateAdag(void)
|
|
||||||
{
|
|
||||||
for(int64_t bidx=0;bidx<CoarseGrid()->gSites() ;bidx++){
|
|
||||||
Coordinate bcoor;
|
|
||||||
CoarseGrid()->GlobalIndexToGlobalCoor(bidx,bcoor);
|
|
||||||
|
|
||||||
for(int p=0;p<geom.npoint;p++){
|
|
||||||
Coordinate scoor = bcoor;
|
|
||||||
for(int mu=0;mu<bcoor.size();mu++){
|
|
||||||
int L = CoarseGrid()->GlobalDimensions()[mu];
|
|
||||||
scoor[mu] = (bcoor[mu] - geom.shifts[p][mu] + L) % L; // Modulo arithmetic
|
|
||||||
}
|
|
||||||
// Flip to poke/peekLocalSite and not too bad
|
|
||||||
auto link = peekSite(_A[p],scoor);
|
|
||||||
int pp = geom.Reverse(p);
|
|
||||||
pokeSite(adj(link),_Adag[pp],bcoor);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
/////////////////////////////////////////////////////////////
|
|
||||||
//
|
|
||||||
// A) Only reduced flops option is to use a padded cell of depth 4
|
|
||||||
// and apply MpcDagMpc in the padded cell.
|
|
||||||
//
|
|
||||||
// Makes for ONE application of MpcDagMpc per vector instead of 30 or 80.
|
|
||||||
// With the effective cell size around (B+8)^4 perhaps 12^4/4^4 ratio
|
|
||||||
// Cost is 81x more, same as stencil size.
|
|
||||||
//
|
|
||||||
// But: can eliminate comms and do as local dirichlet.
|
|
||||||
//
|
|
||||||
// Local exchange gauge field once.
|
|
||||||
// Apply to all vectors, local only computation.
|
|
||||||
// Must exchange ghost subcells in reverse process of PaddedCell to take inner products
|
|
||||||
//
|
|
||||||
// B) Can reduce cost: pad by 1, apply Deo (4^4+6^4+8^4+8^4 )/ (4x 4^4)
|
|
||||||
// pad by 2, apply Doe
|
|
||||||
// pad by 3, apply Deo
|
|
||||||
// then break out 8x directions; cost is ~10x MpcDagMpc per vector
|
|
||||||
//
|
|
||||||
// => almost factor of 10 in setup cost, excluding data rearrangement
|
|
||||||
//
|
|
||||||
// Intermediates -- ignore the corner terms, leave approximate and force Hermitian
|
|
||||||
// Intermediates -- pad by 2 and apply 1+8+24 = 33 times.
|
|
||||||
/////////////////////////////////////////////////////////////
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////
|
|
||||||
// BFM HDCG style approach: Solve a system of equations to get Aij
|
|
||||||
//////////////////////////////////////////////////////////
|
|
||||||
/*
|
|
||||||
* Here, k,l index which possible shift within the 3^Nd "ball" connected by MdagM.
|
|
||||||
*
|
|
||||||
* conj(phases[block]) proj[k][ block*Nvec+j ] = \sum_ball e^{i q_k . delta} < phi_{block,j} | MdagM | phi_{(block+delta),i} >
|
|
||||||
* = \sum_ball e^{iqk.delta} A_ji
|
|
||||||
*
|
|
||||||
* Must invert matrix M_k,l = e^[i q_k . delta_l]
|
|
||||||
*
|
|
||||||
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
|
||||||
*/
|
|
||||||
#if 0
|
|
||||||
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
|
|
||||||
Aggregation<Fobj,CComplex,nbasis> & Subspace)
|
|
||||||
{
|
|
||||||
std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
|
|
||||||
GridBase *grid = FineGrid();
|
|
||||||
|
|
||||||
RealD tproj=0.0;
|
|
||||||
RealD teigen=0.0;
|
|
||||||
RealD tmat=0.0;
|
|
||||||
RealD tphase=0.0;
|
|
||||||
RealD tinv=0.0;
|
|
||||||
|
|
||||||
/////////////////////////////////////////////////////////////
|
|
||||||
// Orthogonalise the subblocks over the basis
|
|
||||||
/////////////////////////////////////////////////////////////
|
|
||||||
CoarseScalar InnerProd(CoarseGrid());
|
|
||||||
blockOrthogonalise(InnerProd,Subspace.subspace);
|
|
||||||
|
|
||||||
const int npoint = geom.npoint;
|
|
||||||
|
|
||||||
Coordinate clatt = CoarseGrid()->GlobalDimensions();
|
|
||||||
int Nd = CoarseGrid()->Nd();
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
|
|
||||||
* Matrix index i is mapped to this shift via
|
|
||||||
* geom.shifts[i]
|
|
||||||
*
|
|
||||||
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
|
|
||||||
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
|
|
||||||
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
|
|
||||||
* = M_{kl} A_ji^{b.b+l}
|
|
||||||
*
|
|
||||||
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
|
|
||||||
*
|
|
||||||
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
|
||||||
*
|
|
||||||
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
|
|
||||||
*/
|
|
||||||
teigen-=usecond();
|
|
||||||
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
|
||||||
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
|
||||||
ComplexD ci(0.0,1.0);
|
|
||||||
for(int k=0;k<npoint;k++){ // Loop over momenta
|
|
||||||
|
|
||||||
for(int l=0;l<npoint;l++){ // Loop over nbr relative
|
|
||||||
ComplexD phase(0.0,0.0);
|
|
||||||
for(int mu=0;mu<Nd;mu++){
|
|
||||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
|
||||||
phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
|
|
||||||
}
|
|
||||||
phase=exp(phase*ci);
|
|
||||||
Mkl(k,l) = phase;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
invMkl = Mkl.inverse();
|
|
||||||
teigen+=usecond();
|
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////////
|
|
||||||
// Now compute the matrix elements of linop between the orthonormal
|
|
||||||
// set of vectors.
|
|
||||||
///////////////////////////////////////////////////////////////////////
|
|
||||||
FineField phaV(grid); // Phased block basis vector
|
|
||||||
FineField MphaV(grid);// Matrix applied
|
|
||||||
CoarseVector coarseInner(CoarseGrid());
|
|
||||||
|
|
||||||
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
|
|
||||||
std::vector<CoarseVector> FT(npoint,CoarseGrid());
|
|
||||||
for(int i=0;i<nbasis;i++){// Loop over basis vectors
|
|
||||||
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
|
|
||||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
|
||||||
/////////////////////////////////////////////////////
|
|
||||||
// Stick a phase on every block
|
|
||||||
/////////////////////////////////////////////////////
|
|
||||||
tphase-=usecond();
|
|
||||||
CoarseComplexField coor(CoarseGrid());
|
|
||||||
CoarseComplexField pha(CoarseGrid()); pha=Zero();
|
|
||||||
for(int mu=0;mu<Nd;mu++){
|
|
||||||
LatticeCoordinate(coor,mu);
|
|
||||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
|
||||||
pha = pha + (TwoPiL * geom.shifts[p][mu]) * coor;
|
|
||||||
}
|
|
||||||
pha =exp(pha*ci);
|
|
||||||
phaV=Zero();
|
|
||||||
blockZAXPY(phaV,pha,Subspace.subspace[i],phaV);
|
|
||||||
tphase+=usecond();
|
|
||||||
|
|
||||||
/////////////////////////////////////////////////////////////////////
|
|
||||||
// Multiple phased subspace vector by matrix and project to subspace
|
|
||||||
// Remove local bulk phase to leave relative phases
|
|
||||||
/////////////////////////////////////////////////////////////////////
|
|
||||||
tmat-=usecond();
|
|
||||||
linop.Op(phaV,MphaV);
|
|
||||||
tmat+=usecond();
|
|
||||||
|
|
||||||
tproj-=usecond();
|
|
||||||
blockProject(coarseInner,MphaV,Subspace.subspace);
|
|
||||||
coarseInner = conjugate(pha) * coarseInner;
|
|
||||||
|
|
||||||
ComputeProj[p] = coarseInner;
|
|
||||||
tproj+=usecond();
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
tinv-=usecond();
|
|
||||||
for(int k=0;k<npoint;k++){
|
|
||||||
FT[k] = Zero();
|
|
||||||
for(int l=0;l<npoint;l++){
|
|
||||||
FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
|
|
||||||
}
|
|
||||||
|
|
||||||
int osites=CoarseGrid()->oSites();
|
|
||||||
autoView( A_v , _A[k], AcceleratorWrite);
|
|
||||||
autoView( FT_v , FT[k], AcceleratorRead);
|
|
||||||
accelerator_for(sss, osites, 1, {
|
|
||||||
for(int j=0;j<nbasis;j++){
|
|
||||||
A_v[sss](i,j) = FT_v[sss](j);
|
|
||||||
}
|
|
||||||
});
|
|
||||||
}
|
|
||||||
tinv+=usecond();
|
|
||||||
}
|
|
||||||
|
|
||||||
// Only needed if nonhermitian
|
|
||||||
if ( ! hermitian ) {
|
|
||||||
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
|
|
||||||
// PopulateAdag();
|
|
||||||
}
|
|
||||||
|
|
||||||
// Need to write something to populate Adag from A
|
|
||||||
ExchangeCoarseLinks();
|
|
||||||
std::cout << GridLogMessage<<"CoarsenOperator eigen "<<teigen<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"CoarsenOperator phase "<<tphase<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"CoarsenOperator mat "<<tmat <<" us"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
//////////////////////////////////////////////////////////////////////
|
|
||||||
// Galerkin projection of matrix
|
|
||||||
//////////////////////////////////////////////////////////////////////
|
|
||||||
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
|
|
||||||
Aggregation<Fobj,CComplex,nbasis> & Subspace)
|
|
||||||
{
|
|
||||||
CoarsenOperator(linop,Subspace,Subspace);
|
|
||||||
}
|
|
||||||
//////////////////////////////////////////////////////////////////////
|
|
||||||
// Petrov - Galerkin projection of matrix
|
|
||||||
//////////////////////////////////////////////////////////////////////
|
|
||||||
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
|
|
||||||
Aggregation<Fobj,CComplex,nbasis> & U,
|
|
||||||
Aggregation<Fobj,CComplex,nbasis> & V)
|
|
||||||
{
|
|
||||||
std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
|
|
||||||
GridBase *grid = FineGrid();
|
|
||||||
|
|
||||||
RealD tproj=0.0;
|
|
||||||
RealD teigen=0.0;
|
|
||||||
RealD tmat=0.0;
|
|
||||||
RealD tphase=0.0;
|
|
||||||
RealD tphaseBZ=0.0;
|
|
||||||
RealD tinv=0.0;
|
|
||||||
|
|
||||||
/////////////////////////////////////////////////////////////
|
|
||||||
// Orthogonalise the subblocks over the basis
|
|
||||||
/////////////////////////////////////////////////////////////
|
|
||||||
CoarseScalar InnerProd(CoarseGrid());
|
|
||||||
blockOrthogonalise(InnerProd,V.subspace);
|
|
||||||
blockOrthogonalise(InnerProd,U.subspace);
|
|
||||||
|
|
||||||
const int npoint = geom.npoint;
|
|
||||||
|
|
||||||
Coordinate clatt = CoarseGrid()->GlobalDimensions();
|
|
||||||
int Nd = CoarseGrid()->Nd();
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
|
|
||||||
* Matrix index i is mapped to this shift via
|
|
||||||
* geom.shifts[i]
|
|
||||||
*
|
|
||||||
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
|
|
||||||
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
|
|
||||||
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
|
|
||||||
* = M_{kl} A_ji^{b.b+l}
|
|
||||||
*
|
|
||||||
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
|
|
||||||
*
|
|
||||||
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
|
||||||
*
|
|
||||||
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
|
|
||||||
*/
|
|
||||||
teigen-=usecond();
|
|
||||||
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
|
||||||
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
|
||||||
ComplexD ci(0.0,1.0);
|
|
||||||
for(int k=0;k<npoint;k++){ // Loop over momenta
|
|
||||||
|
|
||||||
for(int l=0;l<npoint;l++){ // Loop over nbr relative
|
|
||||||
ComplexD phase(0.0,0.0);
|
|
||||||
for(int mu=0;mu<Nd;mu++){
|
|
||||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
|
||||||
phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
|
|
||||||
}
|
|
||||||
phase=exp(phase*ci);
|
|
||||||
Mkl(k,l) = phase;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
invMkl = Mkl.inverse();
|
|
||||||
teigen+=usecond();
|
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////////
|
|
||||||
// Now compute the matrix elements of linop between the orthonormal
|
|
||||||
// set of vectors.
|
|
||||||
///////////////////////////////////////////////////////////////////////
|
|
||||||
FineField phaV(grid); // Phased block basis vector
|
|
||||||
FineField MphaV(grid);// Matrix applied
|
|
||||||
std::vector<FineComplexField> phaF(npoint,grid);
|
|
||||||
std::vector<CoarseComplexField> pha(npoint,CoarseGrid());
|
|
||||||
|
|
||||||
CoarseVector coarseInner(CoarseGrid());
|
|
||||||
|
|
||||||
typedef typename CComplex::scalar_type SComplex;
|
|
||||||
FineComplexField one(grid); one=SComplex(1.0);
|
|
||||||
FineComplexField zz(grid); zz = Zero();
|
|
||||||
tphase=-usecond();
|
|
||||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
|
||||||
/////////////////////////////////////////////////////
|
|
||||||
// Stick a phase on every block
|
|
||||||
/////////////////////////////////////////////////////
|
|
||||||
CoarseComplexField coor(CoarseGrid());
|
|
||||||
pha[p]=Zero();
|
|
||||||
for(int mu=0;mu<Nd;mu++){
|
|
||||||
LatticeCoordinate(coor,mu);
|
|
||||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
|
||||||
pha[p] = pha[p] + (TwoPiL * geom.shifts[p][mu]) * coor;
|
|
||||||
}
|
|
||||||
pha[p] =exp(pha[p]*ci);
|
|
||||||
|
|
||||||
blockZAXPY(phaF[p],pha[p],one,zz);
|
|
||||||
|
|
||||||
}
|
|
||||||
tphase+=usecond();
|
|
||||||
|
|
||||||
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
|
|
||||||
std::vector<CoarseVector> FT(npoint,CoarseGrid());
|
|
||||||
for(int i=0;i<nbasis;i++){// Loop over basis vectors
|
|
||||||
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
|
|
||||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
|
||||||
tphaseBZ-=usecond();
|
|
||||||
phaV = phaF[p]*V.subspace[i];
|
|
||||||
tphaseBZ+=usecond();
|
|
||||||
|
|
||||||
/////////////////////////////////////////////////////////////////////
|
|
||||||
// Multiple phased subspace vector by matrix and project to subspace
|
|
||||||
// Remove local bulk phase to leave relative phases
|
|
||||||
/////////////////////////////////////////////////////////////////////
|
|
||||||
tmat-=usecond();
|
|
||||||
linop.Op(phaV,MphaV);
|
|
||||||
tmat+=usecond();
|
|
||||||
// std::cout << i << " " <<p << " MphaV "<<norm2(MphaV)<<" "<<norm2(phaV)<<std::endl;
|
|
||||||
|
|
||||||
tproj-=usecond();
|
|
||||||
blockProject(coarseInner,MphaV,U.subspace);
|
|
||||||
coarseInner = conjugate(pha[p]) * coarseInner;
|
|
||||||
|
|
||||||
ComputeProj[p] = coarseInner;
|
|
||||||
tproj+=usecond();
|
|
||||||
// std::cout << i << " " <<p << " ComputeProj "<<norm2(ComputeProj[p])<<std::endl;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
tinv-=usecond();
|
|
||||||
for(int k=0;k<npoint;k++){
|
|
||||||
FT[k] = Zero();
|
|
||||||
for(int l=0;l<npoint;l++){
|
|
||||||
FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
|
|
||||||
}
|
|
||||||
|
|
||||||
int osites=CoarseGrid()->oSites();
|
|
||||||
autoView( A_v , _A[k], AcceleratorWrite);
|
|
||||||
autoView( FT_v , FT[k], AcceleratorRead);
|
|
||||||
accelerator_for(sss, osites, 1, {
|
|
||||||
for(int j=0;j<nbasis;j++){
|
|
||||||
A_v[sss](i,j) = FT_v[sss](j);
|
|
||||||
}
|
|
||||||
});
|
|
||||||
}
|
|
||||||
tinv+=usecond();
|
|
||||||
}
|
|
||||||
|
|
||||||
// Only needed if nonhermitian
|
|
||||||
if ( ! hermitian ) {
|
|
||||||
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
|
|
||||||
// PopulateAdag();
|
|
||||||
}
|
|
||||||
|
|
||||||
for(int p=0;p<geom.npoint;p++){
|
|
||||||
std::cout << " _A["<<p<<"] "<<norm2(_A[p])<<std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Need to write something to populate Adag from A
|
|
||||||
ExchangeCoarseLinks();
|
|
||||||
std::cout << GridLogMessage<<"CoarsenOperator eigen "<<teigen<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"CoarsenOperator phase "<<tphase<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"CoarsenOperator mat "<<tmat <<" us"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
void ExchangeCoarseLinks(void){
|
|
||||||
for(int p=0;p<geom.npoint;p++){
|
|
||||||
_A[p] = Cell.ExchangePeriodic(_A[p]);
|
|
||||||
// _Adag[p]= Cell.ExchangePeriodic(_Adag[p]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
virtual void Mdiag (const Field &in, Field &out){ GRID_ASSERT(0);};
|
|
||||||
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);};
|
|
||||||
virtual void MdirAll (const Field &in, std::vector<Field> &out){assert(0);};
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
|
||||||
@@ -1,729 +0,0 @@
|
|||||||
/*************************************************************************************
|
|
||||||
|
|
||||||
Grid physics library, www.github.com/paboyle/Grid
|
|
||||||
|
|
||||||
Source file: ./lib/algorithms/GeneralCoarsenedMatrixMultiRHS.h
|
|
||||||
|
|
||||||
Copyright (C) 2015
|
|
||||||
|
|
||||||
Author: Peter Boyle <pboyle@bnl.gov>
|
|
||||||
|
|
||||||
This program is free software; you can redistribute it and/or modify
|
|
||||||
it under the terms of the GNU General Public License as published by
|
|
||||||
the Free Software Foundation; either version 2 of the License, or
|
|
||||||
(at your option) any later version.
|
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License along
|
|
||||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
||||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
||||||
|
|
||||||
See the full license in the file "LICENSE" in the top level distribution directory
|
|
||||||
*************************************************************************************/
|
|
||||||
/* END LEGAL */
|
|
||||||
#pragma once
|
|
||||||
|
|
||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
|
||||||
|
|
||||||
|
|
||||||
// Fine Object == (per site) type of fine field
|
|
||||||
// nbasis == number of deflation vectors
|
|
||||||
template<class Fobj,class CComplex,int nbasis>
|
|
||||||
class MultiGeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
|
|
||||||
public:
|
|
||||||
typedef typename CComplex::scalar_object SComplex;
|
|
||||||
typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
|
|
||||||
typedef MultiGeneralCoarsenedMatrix<Fobj,CComplex,nbasis> MultiGeneralCoarseOp;
|
|
||||||
|
|
||||||
typedef iVector<CComplex,nbasis > siteVector;
|
|
||||||
typedef iMatrix<CComplex,nbasis > siteMatrix;
|
|
||||||
typedef iVector<SComplex,nbasis > calcVector;
|
|
||||||
typedef iMatrix<SComplex,nbasis > calcMatrix;
|
|
||||||
typedef Lattice<iScalar<CComplex> > CoarseComplexField;
|
|
||||||
typedef Lattice<siteVector> CoarseVector;
|
|
||||||
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
|
||||||
typedef iMatrix<CComplex,nbasis > Cobj;
|
|
||||||
typedef iVector<CComplex,nbasis > Cvec;
|
|
||||||
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
|
||||||
typedef Lattice<Fobj > FineField;
|
|
||||||
typedef Lattice<CComplex > FineComplexField;
|
|
||||||
typedef CoarseVector Field;
|
|
||||||
|
|
||||||
////////////////////
|
|
||||||
// Data members
|
|
||||||
////////////////////
|
|
||||||
GridCartesian * _CoarseGridMulti;
|
|
||||||
NonLocalStencilGeometry geom;
|
|
||||||
NonLocalStencilGeometry geom_srhs;
|
|
||||||
PaddedCell Cell;
|
|
||||||
GeneralLocalStencil Stencil;
|
|
||||||
|
|
||||||
deviceVector<calcVector> BLAS_B;
|
|
||||||
deviceVector<calcVector> BLAS_C;
|
|
||||||
std::vector<deviceVector<calcMatrix> > BLAS_A;
|
|
||||||
|
|
||||||
std::vector<deviceVector<ComplexD *> > BLAS_AP;
|
|
||||||
std::vector<deviceVector<ComplexD *> > BLAS_BP;
|
|
||||||
deviceVector<ComplexD *> BLAS_CP;
|
|
||||||
|
|
||||||
///////////////////////
|
|
||||||
// Interface
|
|
||||||
///////////////////////
|
|
||||||
GridBase * Grid(void) { return _CoarseGridMulti; }; // this is all the linalg routines need to know
|
|
||||||
GridCartesian * CoarseGrid(void) { return _CoarseGridMulti; }; // this is all the linalg routines need to know
|
|
||||||
|
|
||||||
// Can be used to do I/O on the operator matrices externally
|
|
||||||
void SetMatrix (int p,CoarseMatrix & A)
|
|
||||||
{
|
|
||||||
GRID_ASSERT(A.size()==geom_srhs.npoint);
|
|
||||||
GridtoBLAS(A[p],BLAS_A[p]);
|
|
||||||
}
|
|
||||||
void GetMatrix (int p,CoarseMatrix & A)
|
|
||||||
{
|
|
||||||
GRID_ASSERT(A.size()==geom_srhs.npoint);
|
|
||||||
BLAStoGrid(A[p],BLAS_A[p]);
|
|
||||||
}
|
|
||||||
void CopyMatrix (GeneralCoarseOp &_Op)
|
|
||||||
{
|
|
||||||
for(int p=0;p<geom.npoint;p++){
|
|
||||||
auto Aup = _Op.Cell.Extract(_Op._A[p]);
|
|
||||||
//Unpadded
|
|
||||||
GridtoBLAS(Aup,BLAS_A[p]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
/*
|
|
||||||
void CheckMatrix (GeneralCoarseOp &_Op)
|
|
||||||
{
|
|
||||||
std::cout <<"************* Checking the little direc operator mRHS"<<std::endl;
|
|
||||||
for(int p=0;p<geom.npoint;p++){
|
|
||||||
//Unpadded
|
|
||||||
auto Aup = _Op.Cell.Extract(_Op._A[p]);
|
|
||||||
auto Ack = Aup;
|
|
||||||
BLAStoGrid(Ack,BLAS_A[p]);
|
|
||||||
std::cout << p<<" Ack "<<norm2(Ack)<<std::endl;
|
|
||||||
std::cout << p<<" Aup "<<norm2(Aup)<<std::endl;
|
|
||||||
}
|
|
||||||
std::cout <<"************* "<<std::endl;
|
|
||||||
}
|
|
||||||
*/
|
|
||||||
|
|
||||||
MultiGeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridCartesian *CoarseGridMulti) :
|
|
||||||
_CoarseGridMulti(CoarseGridMulti),
|
|
||||||
geom_srhs(_geom),
|
|
||||||
geom(_CoarseGridMulti,_geom.hops,_geom.skip+1),
|
|
||||||
Cell(geom.Depth(),_CoarseGridMulti),
|
|
||||||
Stencil(Cell.grids.back(),geom.shifts) // padded cell stencil
|
|
||||||
{
|
|
||||||
int32_t padded_sites = Cell.grids.back()->lSites();
|
|
||||||
int32_t unpadded_sites = CoarseGridMulti->lSites();
|
|
||||||
|
|
||||||
int32_t nrhs = CoarseGridMulti->FullDimensions()[0]; // # RHS
|
|
||||||
int32_t orhs = nrhs/CComplex::Nsimd();
|
|
||||||
|
|
||||||
padded_sites = padded_sites/nrhs;
|
|
||||||
unpadded_sites = unpadded_sites/nrhs;
|
|
||||||
|
|
||||||
/////////////////////////////////////////////////
|
|
||||||
// Device data vector storage
|
|
||||||
/////////////////////////////////////////////////
|
|
||||||
BLAS_A.resize(geom.npoint);
|
|
||||||
for(int p=0;p<geom.npoint;p++){
|
|
||||||
BLAS_A[p].resize (unpadded_sites); // no ghost zone, npoint elements
|
|
||||||
}
|
|
||||||
|
|
||||||
BLAS_B.resize(nrhs *padded_sites); // includes ghost zone
|
|
||||||
BLAS_C.resize(nrhs *unpadded_sites); // no ghost zone
|
|
||||||
BLAS_AP.resize(geom.npoint);
|
|
||||||
BLAS_BP.resize(geom.npoint);
|
|
||||||
for(int p=0;p<geom.npoint;p++){
|
|
||||||
BLAS_AP[p].resize(unpadded_sites);
|
|
||||||
BLAS_BP[p].resize(unpadded_sites);
|
|
||||||
}
|
|
||||||
BLAS_CP.resize(unpadded_sites);
|
|
||||||
|
|
||||||
/////////////////////////////////////////////////
|
|
||||||
// Pointers to data
|
|
||||||
/////////////////////////////////////////////////
|
|
||||||
|
|
||||||
// Site identity mapping for A
|
|
||||||
for(int p=0;p<geom.npoint;p++){
|
|
||||||
for(int ss=0;ss<unpadded_sites;ss++){
|
|
||||||
ComplexD *ptr = (ComplexD *)&BLAS_A[p][ss];
|
|
||||||
acceleratorPut(BLAS_AP[p][ss],ptr);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// Site identity mapping for C
|
|
||||||
for(int ss=0;ss<unpadded_sites;ss++){
|
|
||||||
ComplexD *ptr = (ComplexD *)&BLAS_C[ss*nrhs];
|
|
||||||
acceleratorPut(BLAS_CP[ss],ptr);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Neighbour table is more complicated
|
|
||||||
int32_t j=0; // Interior point counter (unpadded)
|
|
||||||
for(int32_t s=0;s<padded_sites;s++){ // 4 volume, padded
|
|
||||||
int ghost_zone=0;
|
|
||||||
for(int32_t point = 0 ; point < geom.npoint; point++){
|
|
||||||
int i=s*orhs*geom.npoint+point;
|
|
||||||
if( Stencil._entries[i]._wrap ) { // stencil is indexed by the oSite of the CoarseGridMulti, hence orhs factor
|
|
||||||
ghost_zone=1; // If general stencil wrapped in any direction, wrap=1
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if( ghost_zone==0) {
|
|
||||||
for(int32_t point = 0 ; point < geom.npoint; point++){
|
|
||||||
int i=s*orhs*geom.npoint+point;
|
|
||||||
int32_t nbr = Stencil._entries[i]._offset*CComplex::Nsimd(); // oSite -> lSite
|
|
||||||
GRID_ASSERT(nbr<BLAS_B.size());
|
|
||||||
ComplexD * ptr = (ComplexD *)&BLAS_B[nbr];
|
|
||||||
acceleratorPut(BLAS_BP[point][j],ptr); // neighbour indexing in ghost zone volume
|
|
||||||
}
|
|
||||||
j++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
GRID_ASSERT(j==unpadded_sites);
|
|
||||||
}
|
|
||||||
template<class vobj> void GridtoBLAS(const Lattice<vobj> &from,deviceVector<typename vobj::scalar_object> &to)
|
|
||||||
{
|
|
||||||
typedef typename vobj::scalar_object sobj;
|
|
||||||
typedef typename vobj::scalar_type scalar_type;
|
|
||||||
typedef typename vobj::vector_type vector_type;
|
|
||||||
|
|
||||||
GridBase *Fg = from.Grid();
|
|
||||||
GRID_ASSERT(!Fg->_isCheckerBoarded);
|
|
||||||
int nd = Fg->_ndimension;
|
|
||||||
|
|
||||||
to.resize(Fg->lSites());
|
|
||||||
|
|
||||||
Coordinate LocalLatt = Fg->LocalDimensions();
|
|
||||||
size_t nsite = 1;
|
|
||||||
for(int i=0;i<nd;i++) nsite *= LocalLatt[i];
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
// do the index calc on the GPU
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
Coordinate f_ostride = Fg->_ostride;
|
|
||||||
Coordinate f_istride = Fg->_istride;
|
|
||||||
Coordinate f_rdimensions = Fg->_rdimensions;
|
|
||||||
|
|
||||||
autoView(from_v,from,AcceleratorRead);
|
|
||||||
auto to_v = &to[0];
|
|
||||||
|
|
||||||
const int words=sizeof(vobj)/sizeof(vector_type);
|
|
||||||
accelerator_for(idx,nsite,1,{
|
|
||||||
|
|
||||||
Coordinate from_coor, base;
|
|
||||||
Lexicographic::CoorFromIndex(base,idx,LocalLatt);
|
|
||||||
for(int i=0;i<nd;i++){
|
|
||||||
from_coor[i] = base[i];
|
|
||||||
}
|
|
||||||
int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
|
|
||||||
int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
|
|
||||||
|
|
||||||
const vector_type* from = (const vector_type *)&from_v[from_oidx];
|
|
||||||
scalar_type* to = (scalar_type *)&to_v[idx];
|
|
||||||
|
|
||||||
scalar_type stmp;
|
|
||||||
for(int w=0;w<words;w++){
|
|
||||||
stmp = getlane(from[w], from_lane);
|
|
||||||
to[w] = stmp;
|
|
||||||
}
|
|
||||||
});
|
|
||||||
}
|
|
||||||
template<class vobj> void BLAStoGrid(Lattice<vobj> &grid,deviceVector<typename vobj::scalar_object> &in)
|
|
||||||
{
|
|
||||||
typedef typename vobj::scalar_object sobj;
|
|
||||||
typedef typename vobj::scalar_type scalar_type;
|
|
||||||
typedef typename vobj::vector_type vector_type;
|
|
||||||
|
|
||||||
GridBase *Tg = grid.Grid();
|
|
||||||
GRID_ASSERT(!Tg->_isCheckerBoarded);
|
|
||||||
int nd = Tg->_ndimension;
|
|
||||||
|
|
||||||
GRID_ASSERT(in.size()==Tg->lSites());
|
|
||||||
|
|
||||||
Coordinate LocalLatt = Tg->LocalDimensions();
|
|
||||||
size_t nsite = 1;
|
|
||||||
for(int i=0;i<nd;i++) nsite *= LocalLatt[i];
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
// do the index calc on the GPU
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
Coordinate t_ostride = Tg->_ostride;
|
|
||||||
Coordinate t_istride = Tg->_istride;
|
|
||||||
Coordinate t_rdimensions = Tg->_rdimensions;
|
|
||||||
|
|
||||||
autoView(to_v,grid,AcceleratorWrite);
|
|
||||||
auto from_v = &in[0];
|
|
||||||
|
|
||||||
const int words=sizeof(vobj)/sizeof(vector_type);
|
|
||||||
accelerator_for(idx,nsite,1,{
|
|
||||||
|
|
||||||
Coordinate to_coor, base;
|
|
||||||
Lexicographic::CoorFromIndex(base,idx,LocalLatt);
|
|
||||||
for(int i=0;i<nd;i++){
|
|
||||||
to_coor[i] = base[i];
|
|
||||||
}
|
|
||||||
int to_oidx = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
|
|
||||||
int to_lane = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
|
|
||||||
|
|
||||||
vector_type* to = (vector_type *)&to_v[to_oidx];
|
|
||||||
scalar_type* from = (scalar_type *)&from_v[idx];
|
|
||||||
|
|
||||||
scalar_type stmp;
|
|
||||||
for(int w=0;w<words;w++){
|
|
||||||
stmp=from[w];
|
|
||||||
putlane(to[w], stmp, to_lane);
|
|
||||||
}
|
|
||||||
});
|
|
||||||
}
|
|
||||||
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
|
|
||||||
Aggregation<Fobj,CComplex,nbasis> & Subspace,
|
|
||||||
GridBase *CoarseGrid)
|
|
||||||
{
|
|
||||||
#if 0
|
|
||||||
std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl;
|
|
||||||
|
|
||||||
GridBase *grid = Subspace.FineGrid;
|
|
||||||
|
|
||||||
/////////////////////////////////////////////////////////////
|
|
||||||
// Orthogonalise the subblocks over the basis
|
|
||||||
/////////////////////////////////////////////////////////////
|
|
||||||
CoarseScalar InnerProd(CoarseGrid);
|
|
||||||
blockOrthogonalise(InnerProd,Subspace.subspace);
|
|
||||||
|
|
||||||
const int npoint = geom_srhs.npoint;
|
|
||||||
|
|
||||||
Coordinate clatt = CoarseGrid->GlobalDimensions();
|
|
||||||
int Nd = CoarseGrid->Nd();
|
|
||||||
/*
|
|
||||||
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
|
|
||||||
* Matrix index i is mapped to this shift via
|
|
||||||
* geom.shifts[i]
|
|
||||||
*
|
|
||||||
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
|
|
||||||
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
|
|
||||||
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
|
|
||||||
* = M_{kl} A_ji^{b.b+l}
|
|
||||||
*
|
|
||||||
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
|
|
||||||
*
|
|
||||||
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
|
||||||
*
|
|
||||||
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
|
|
||||||
*/
|
|
||||||
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
|
||||||
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
|
||||||
ComplexD ci(0.0,1.0);
|
|
||||||
for(int k=0;k<npoint;k++){ // Loop over momenta
|
|
||||||
|
|
||||||
for(int l=0;l<npoint;l++){ // Loop over nbr relative
|
|
||||||
ComplexD phase(0.0,0.0);
|
|
||||||
for(int mu=0;mu<Nd;mu++){
|
|
||||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
|
||||||
phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu];
|
|
||||||
}
|
|
||||||
phase=exp(phase*ci);
|
|
||||||
Mkl(k,l) = phase;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
invMkl = Mkl.inverse();
|
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////////
|
|
||||||
// Now compute the matrix elements of linop between the orthonormal
|
|
||||||
// set of vectors.
|
|
||||||
///////////////////////////////////////////////////////////////////////
|
|
||||||
FineField phaV(grid); // Phased block basis vector
|
|
||||||
FineField MphaV(grid);// Matrix applied
|
|
||||||
std::vector<FineComplexField> phaF(npoint,grid);
|
|
||||||
std::vector<CoarseComplexField> pha(npoint,CoarseGrid);
|
|
||||||
|
|
||||||
CoarseVector coarseInner(CoarseGrid);
|
|
||||||
|
|
||||||
typedef typename CComplex::scalar_type SComplex;
|
|
||||||
FineComplexField one(grid); one=SComplex(1.0);
|
|
||||||
FineComplexField zz(grid); zz = Zero();
|
|
||||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
|
||||||
/////////////////////////////////////////////////////
|
|
||||||
// Stick a phase on every block
|
|
||||||
/////////////////////////////////////////////////////
|
|
||||||
CoarseComplexField coor(CoarseGrid);
|
|
||||||
pha[p]=Zero();
|
|
||||||
for(int mu=0;mu<Nd;mu++){
|
|
||||||
LatticeCoordinate(coor,mu);
|
|
||||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
|
||||||
pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor;
|
|
||||||
}
|
|
||||||
pha[p] =exp(pha[p]*ci);
|
|
||||||
|
|
||||||
blockZAXPY(phaF[p],pha[p],one,zz);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Could save on temporary storage here
|
|
||||||
std::vector<CoarseMatrix> _A;
|
|
||||||
_A.resize(geom_srhs.npoint,CoarseGrid);
|
|
||||||
|
|
||||||
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid);
|
|
||||||
CoarseVector FT(CoarseGrid);
|
|
||||||
for(int i=0;i<nbasis;i++){// Loop over basis vectors
|
|
||||||
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
|
|
||||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
|
||||||
|
|
||||||
phaV = phaF[p]*Subspace.subspace[i];
|
|
||||||
|
|
||||||
/////////////////////////////////////////////////////////////////////
|
|
||||||
// Multiple phased subspace vector by matrix and project to subspace
|
|
||||||
// Remove local bulk phase to leave relative phases
|
|
||||||
/////////////////////////////////////////////////////////////////////
|
|
||||||
linop.Op(phaV,MphaV);
|
|
||||||
|
|
||||||
// Fixme, could use batched block projector here
|
|
||||||
blockProject(coarseInner,MphaV,Subspace.subspace);
|
|
||||||
|
|
||||||
coarseInner = conjugate(pha[p]) * coarseInner;
|
|
||||||
|
|
||||||
ComputeProj[p] = coarseInner;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix.
|
|
||||||
for(int k=0;k<npoint;k++){
|
|
||||||
|
|
||||||
FT = Zero();
|
|
||||||
for(int l=0;l<npoint;l++){
|
|
||||||
FT= FT+ invMkl(l,k)*ComputeProj[l];
|
|
||||||
}
|
|
||||||
|
|
||||||
int osites=CoarseGrid->oSites();
|
|
||||||
autoView( A_v , _A[k], AcceleratorWrite);
|
|
||||||
autoView( FT_v , FT, AcceleratorRead);
|
|
||||||
accelerator_for(sss, osites, 1, {
|
|
||||||
for(int j=0;j<nbasis;j++){
|
|
||||||
A_v[sss](i,j) = FT_v[sss](j);
|
|
||||||
}
|
|
||||||
});
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Only needed if nonhermitian
|
|
||||||
// if ( ! hermitian ) {
|
|
||||||
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
|
|
||||||
// PopulateAdag();
|
|
||||||
// }
|
|
||||||
// Need to write something to populate Adag from A
|
|
||||||
|
|
||||||
for(int p=0;p<geom_srhs.npoint;p++){
|
|
||||||
GridtoBLAS(_A[p],BLAS_A[p]);
|
|
||||||
}
|
|
||||||
/*
|
|
||||||
Grid : Message : 11698.730546 s : CoarsenOperator eigen 1334 us
|
|
||||||
Grid : Message : 11698.730563 s : CoarsenOperator phase 34729 us
|
|
||||||
Grid : Message : 11698.730565 s : CoarsenOperator phaseBZ 2423814 us
|
|
||||||
Grid : Message : 11698.730566 s : CoarsenOperator mat 127890998 us
|
|
||||||
Grid : Message : 11698.730567 s : CoarsenOperator proj 515840840 us
|
|
||||||
Grid : Message : 11698.730568 s : CoarsenOperator inv 103948313 us
|
|
||||||
Takes 600s to compute matrix elements, DOMINATED by the block project.
|
|
||||||
Easy to speed up with the batched block project.
|
|
||||||
Store npoint vectors, get npoint x Nbasis block projection, and 81 fold faster.
|
|
||||||
|
|
||||||
// Block project below taks to 240s
|
|
||||||
Grid : Message : 328.193418 s : CoarsenOperator phase 38338 us
|
|
||||||
Grid : Message : 328.193434 s : CoarsenOperator phaseBZ 1711226 us
|
|
||||||
Grid : Message : 328.193436 s : CoarsenOperator mat 122213270 us
|
|
||||||
//Grid : Message : 328.193438 s : CoarsenOperator proj 1181154 us <-- this is mistimed
|
|
||||||
//Grid : Message : 11698.730568 s : CoarsenOperator inv 103948313 us <-- Cut this ~10x if lucky by loop fusion
|
|
||||||
*/
|
|
||||||
#else
|
|
||||||
RealD tproj=0.0;
|
|
||||||
RealD tmat=0.0;
|
|
||||||
RealD tphase=0.0;
|
|
||||||
RealD tphaseBZ=0.0;
|
|
||||||
RealD tinv=0.0;
|
|
||||||
|
|
||||||
std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl;
|
|
||||||
|
|
||||||
GridBase *grid = Subspace.FineGrid;
|
|
||||||
|
|
||||||
/////////////////////////////////////////////////////////////
|
|
||||||
// Orthogonalise the subblocks over the basis
|
|
||||||
/////////////////////////////////////////////////////////////
|
|
||||||
CoarseScalar InnerProd(CoarseGrid);
|
|
||||||
blockOrthogonalise(InnerProd,Subspace.subspace);
|
|
||||||
|
|
||||||
|
|
||||||
MultiRHSBlockProject<Lattice<Fobj> > Projector;
|
|
||||||
Projector.Allocate(nbasis,grid,CoarseGrid);
|
|
||||||
Projector.ImportBasis(Subspace.subspace);
|
|
||||||
|
|
||||||
const int npoint = geom_srhs.npoint;
|
|
||||||
|
|
||||||
Coordinate clatt = CoarseGrid->GlobalDimensions();
|
|
||||||
int Nd = CoarseGrid->Nd();
|
|
||||||
/*
|
|
||||||
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
|
|
||||||
* Matrix index i is mapped to this shift via
|
|
||||||
* geom.shifts[i]
|
|
||||||
*
|
|
||||||
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
|
|
||||||
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
|
|
||||||
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
|
|
||||||
* = M_{kl} A_ji^{b.b+l}
|
|
||||||
*
|
|
||||||
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
|
|
||||||
*
|
|
||||||
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
|
||||||
*
|
|
||||||
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
|
|
||||||
*/
|
|
||||||
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
|
||||||
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
|
||||||
ComplexD ci(0.0,1.0);
|
|
||||||
for(int k=0;k<npoint;k++){ // Loop over momenta
|
|
||||||
|
|
||||||
for(int l=0;l<npoint;l++){ // Loop over nbr relative
|
|
||||||
ComplexD phase(0.0,0.0);
|
|
||||||
for(int mu=0;mu<Nd;mu++){
|
|
||||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
|
||||||
phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu];
|
|
||||||
}
|
|
||||||
phase=exp(phase*ci);
|
|
||||||
Mkl(k,l) = phase;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
invMkl = Mkl.inverse();
|
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////////
|
|
||||||
// Now compute the matrix elements of linop between the orthonormal
|
|
||||||
// set of vectors.
|
|
||||||
///////////////////////////////////////////////////////////////////////
|
|
||||||
FineField phaV(grid); // Phased block basis vector
|
|
||||||
FineField MphaV(grid);// Matrix applied
|
|
||||||
std::vector<FineComplexField> phaF(npoint,grid);
|
|
||||||
std::vector<CoarseComplexField> pha(npoint,CoarseGrid);
|
|
||||||
|
|
||||||
CoarseVector coarseInner(CoarseGrid);
|
|
||||||
|
|
||||||
tphase=-usecond();
|
|
||||||
typedef typename CComplex::scalar_type SComplex;
|
|
||||||
FineComplexField one(grid); one=SComplex(1.0);
|
|
||||||
FineComplexField zz(grid); zz = Zero();
|
|
||||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
|
||||||
/////////////////////////////////////////////////////
|
|
||||||
// Stick a phase on every block
|
|
||||||
/////////////////////////////////////////////////////
|
|
||||||
CoarseComplexField coor(CoarseGrid);
|
|
||||||
pha[p]=Zero();
|
|
||||||
for(int mu=0;mu<Nd;mu++){
|
|
||||||
LatticeCoordinate(coor,mu);
|
|
||||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
|
||||||
pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor;
|
|
||||||
}
|
|
||||||
pha[p] =exp(pha[p]*ci);
|
|
||||||
|
|
||||||
blockZAXPY(phaF[p],pha[p],one,zz);
|
|
||||||
}
|
|
||||||
tphase+=usecond();
|
|
||||||
|
|
||||||
// Could save on temporary storage here
|
|
||||||
std::vector<CoarseMatrix> _A;
|
|
||||||
_A.resize(geom_srhs.npoint,CoarseGrid);
|
|
||||||
|
|
||||||
// Count use small chunks than npoint == 81 and save memory
|
|
||||||
int batch = 9;
|
|
||||||
std::vector<FineField> _MphaV(batch,grid);
|
|
||||||
std::vector<CoarseVector> TmpProj(batch,CoarseGrid);
|
|
||||||
|
|
||||||
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid);
|
|
||||||
CoarseVector FT(CoarseGrid);
|
|
||||||
for(int i=0;i<nbasis;i++){// Loop over basis vectors
|
|
||||||
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
|
|
||||||
|
|
||||||
// std::cout << GridLogMessage << " phasing the fine vector "<<std::endl;
|
|
||||||
// Fixme : do this in batches
|
|
||||||
for(int p=0;p<npoint;p+=batch){ // Loop over momenta in npoint
|
|
||||||
|
|
||||||
for(int b=0;b<MIN(batch,npoint-p);b++){
|
|
||||||
tphaseBZ-=usecond();
|
|
||||||
phaV = phaF[p+b]*Subspace.subspace[i];
|
|
||||||
tphaseBZ+=usecond();
|
|
||||||
|
|
||||||
/////////////////////////////////////////////////////////////////////
|
|
||||||
// Multiple phased subspace vector by matrix and project to subspace
|
|
||||||
// Remove local bulk phase to leave relative phases
|
|
||||||
/////////////////////////////////////////////////////////////////////
|
|
||||||
// Memory footprint was an issue
|
|
||||||
tmat-=usecond();
|
|
||||||
linop.Op(phaV,MphaV);
|
|
||||||
_MphaV[b] = MphaV;
|
|
||||||
tmat+=usecond();
|
|
||||||
}
|
|
||||||
|
|
||||||
// std::cout << GridLogMessage << " Calling block project "<<std::endl;
|
|
||||||
tproj-=usecond();
|
|
||||||
Projector.blockProject(_MphaV,TmpProj);
|
|
||||||
tproj+=usecond();
|
|
||||||
|
|
||||||
// std::cout << GridLogMessage << " conj phasing the coarse vectors "<<std::endl;
|
|
||||||
for(int b=0;b<MIN(batch,npoint-p);b++){
|
|
||||||
ComputeProj[p+b] = conjugate(pha[p+b])*TmpProj[b];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix.
|
|
||||||
|
|
||||||
// std::cout << GridLogMessage << " Starting FT inv "<<std::endl;
|
|
||||||
tinv-=usecond();
|
|
||||||
for(int k=0;k<npoint;k++){
|
|
||||||
FT = Zero();
|
|
||||||
// 81 kernel calls as many ComputeProj vectors
|
|
||||||
// Could fuse with a vector of views, but ugly
|
|
||||||
// Could unroll the expression and run fewer kernels -- much more attractive
|
|
||||||
// Could also do non blocking.
|
|
||||||
#if 0
|
|
||||||
for(int l=0;l<npoint;l++){
|
|
||||||
FT= FT+ invMkl(l,k)*ComputeProj[l];
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
const int radix = 9;
|
|
||||||
int ll;
|
|
||||||
for(ll=0;ll+radix-1<npoint;ll+=radix){
|
|
||||||
// When ll = npoint-radix, ll+radix-1 = npoint-1, and we do it all.
|
|
||||||
FT = FT
|
|
||||||
+ invMkl(ll+0,k)*ComputeProj[ll+0]
|
|
||||||
+ invMkl(ll+1,k)*ComputeProj[ll+1]
|
|
||||||
+ invMkl(ll+2,k)*ComputeProj[ll+2]
|
|
||||||
+ invMkl(ll+3,k)*ComputeProj[ll+3]
|
|
||||||
+ invMkl(ll+4,k)*ComputeProj[ll+4]
|
|
||||||
+ invMkl(ll+5,k)*ComputeProj[ll+5]
|
|
||||||
+ invMkl(ll+6,k)*ComputeProj[ll+6]
|
|
||||||
+ invMkl(ll+7,k)*ComputeProj[ll+7]
|
|
||||||
+ invMkl(ll+8,k)*ComputeProj[ll+8];
|
|
||||||
}
|
|
||||||
for(int l=ll;l<npoint;l++){
|
|
||||||
FT= FT+ invMkl(l,k)*ComputeProj[l];
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// 1 kernel call -- must be cheaper
|
|
||||||
int osites=CoarseGrid->oSites();
|
|
||||||
autoView( A_v , _A[k], AcceleratorWrite);
|
|
||||||
autoView( FT_v , FT, AcceleratorRead);
|
|
||||||
accelerator_for(sss, osites, 1, {
|
|
||||||
for(int j=0;j<nbasis;j++){
|
|
||||||
A_v[sss](i,j) = FT_v[sss](j);
|
|
||||||
}
|
|
||||||
});
|
|
||||||
}
|
|
||||||
tinv+=usecond();
|
|
||||||
}
|
|
||||||
|
|
||||||
// Only needed if nonhermitian
|
|
||||||
// if ( ! hermitian ) {
|
|
||||||
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
|
|
||||||
// PopulateAdag();
|
|
||||||
// }
|
|
||||||
// Need to write something to populate Adag from A
|
|
||||||
// std::cout << GridLogMessage << " Calling GridtoBLAS "<<std::endl;
|
|
||||||
for(int p=0;p<geom_srhs.npoint;p++){
|
|
||||||
GridtoBLAS(_A[p],BLAS_A[p]);
|
|
||||||
}
|
|
||||||
std::cout << GridLogMessage<<"CoarsenOperator phase "<<tphase<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"CoarsenOperator mat "<<tmat <<" us"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
void Mdag(const CoarseVector &in, CoarseVector &out)
|
|
||||||
{
|
|
||||||
this->M(in,out);
|
|
||||||
}
|
|
||||||
void M (const CoarseVector &in, CoarseVector &out)
|
|
||||||
{
|
|
||||||
// std::cout << GridLogMessage << "New Mrhs coarse"<<std::endl;
|
|
||||||
conformable(CoarseGrid(),in.Grid());
|
|
||||||
conformable(in.Grid(),out.Grid());
|
|
||||||
out.Checkerboard() = in.Checkerboard();
|
|
||||||
|
|
||||||
RealD t_tot;
|
|
||||||
RealD t_exch;
|
|
||||||
RealD t_GtoB;
|
|
||||||
RealD t_BtoG;
|
|
||||||
RealD t_mult;
|
|
||||||
|
|
||||||
t_tot=-usecond();
|
|
||||||
CoarseVector tin=in;
|
|
||||||
t_exch=-usecond();
|
|
||||||
CoarseVector pin = Cell.ExchangePeriodic(tin); //padded input
|
|
||||||
t_exch+=usecond();
|
|
||||||
|
|
||||||
CoarseVector pout(pin.Grid());
|
|
||||||
|
|
||||||
int npoint = geom.npoint;
|
|
||||||
typedef calcMatrix* Aview;
|
|
||||||
typedef LatticeView<Cvec> Vview;
|
|
||||||
|
|
||||||
const int Nsimd = CComplex::Nsimd();
|
|
||||||
|
|
||||||
int64_t nrhs =pin.Grid()->GlobalDimensions()[0];
|
|
||||||
GRID_ASSERT(nrhs>=1);
|
|
||||||
|
|
||||||
RealD flops,bytes;
|
|
||||||
int64_t osites=in.Grid()->oSites(); // unpadded
|
|
||||||
int64_t unpadded_vol = CoarseGrid()->lSites()/nrhs;
|
|
||||||
|
|
||||||
flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
|
|
||||||
bytes = 1.0*osites*sizeof(siteMatrix)*npoint/pin.Grid()->GlobalDimensions()[0]
|
|
||||||
+ 2.0*osites*sizeof(siteVector)*npoint;
|
|
||||||
|
|
||||||
|
|
||||||
t_GtoB=-usecond();
|
|
||||||
GridtoBLAS(pin,BLAS_B);
|
|
||||||
t_GtoB+=usecond();
|
|
||||||
|
|
||||||
GridBLAS BLAS;
|
|
||||||
|
|
||||||
t_mult=-usecond();
|
|
||||||
for(int p=0;p<geom.npoint;p++){
|
|
||||||
RealD c = 1.0;
|
|
||||||
if (p==0) c = 0.0;
|
|
||||||
ComplexD beta(c);
|
|
||||||
|
|
||||||
BLAS.gemmBatched(nbasis,nrhs,nbasis,
|
|
||||||
ComplexD(1.0),
|
|
||||||
BLAS_AP[p],
|
|
||||||
BLAS_BP[p],
|
|
||||||
ComplexD(c),
|
|
||||||
BLAS_CP);
|
|
||||||
}
|
|
||||||
BLAS.synchronise();
|
|
||||||
t_mult+=usecond();
|
|
||||||
|
|
||||||
t_BtoG=-usecond();
|
|
||||||
BLAStoGrid(out,BLAS_C);
|
|
||||||
t_BtoG+=usecond();
|
|
||||||
t_tot+=usecond();
|
|
||||||
/*
|
|
||||||
std::cout << GridLogMessage << "New Mrhs coarse DONE "<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"Coarse Mult exch "<<t_exch<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"Coarse Mult mult "<<t_mult<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"Coarse Mult GtoB "<<t_GtoB<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"Coarse Mult BtoG "<<t_BtoG<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"Coarse Mult tot "<<t_tot<<" us"<<std::endl;
|
|
||||||
*/
|
|
||||||
// std::cout << GridLogMessage<<std::endl;
|
|
||||||
// std::cout << GridLogMessage<<"Coarse Kernel flops "<< flops<<std::endl;
|
|
||||||
// std::cout << GridLogMessage<<"Coarse Kernel flop/s "<< flops/t_mult<<" mflop/s"<<std::endl;
|
|
||||||
// std::cout << GridLogMessage<<"Coarse Kernel bytes/s "<< bytes/t_mult/1000<<" GB/s"<<std::endl;
|
|
||||||
// std::cout << GridLogMessage<<"Coarse overall flops/s "<< flops/t_tot<<" mflop/s"<<std::endl;
|
|
||||||
// std::cout << GridLogMessage<<"Coarse total bytes "<< bytes/1e6<<" MB"<<std::endl;
|
|
||||||
};
|
|
||||||
virtual void Mdiag (const Field &in, Field &out){ GRID_ASSERT(0);};
|
|
||||||
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);};
|
|
||||||
virtual void MdirAll (const Field &in, std::vector<Field> &out){assert(0);};
|
|
||||||
};
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
|
||||||
@@ -1,238 +0,0 @@
|
|||||||
/*************************************************************************************
|
|
||||||
|
|
||||||
Grid physics library, www.github.com/paboyle/Grid
|
|
||||||
|
|
||||||
Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
|
|
||||||
|
|
||||||
Copyright (C) 2015
|
|
||||||
|
|
||||||
Author: Peter Boyle <pboyle@bnl.gov>
|
|
||||||
|
|
||||||
This program is free software; you can redistribute it and/or modify
|
|
||||||
it under the terms of the GNU General Public License as published by
|
|
||||||
the Free Software Foundation; either version 2 of the License, or
|
|
||||||
(at your option) any later version.
|
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License along
|
|
||||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
||||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
||||||
|
|
||||||
See the full license in the file "LICENSE" in the top level distribution directory
|
|
||||||
*************************************************************************************/
|
|
||||||
/* END LEGAL */
|
|
||||||
#pragma once
|
|
||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
|
||||||
|
|
||||||
|
|
||||||
/////////////////////////////////////////////////////////////////
|
|
||||||
// Geometry class in cartesian case
|
|
||||||
/////////////////////////////////////////////////////////////////
|
|
||||||
|
|
||||||
class Geometry {
|
|
||||||
public:
|
|
||||||
int npoint;
|
|
||||||
int base;
|
|
||||||
std::vector<int> directions ;
|
|
||||||
std::vector<int> displacements;
|
|
||||||
std::vector<int> points_dagger;
|
|
||||||
|
|
||||||
Geometry(int _d) {
|
|
||||||
|
|
||||||
base = (_d==5) ? 1:0;
|
|
||||||
|
|
||||||
// make coarse grid stencil for 4d , not 5d
|
|
||||||
if ( _d==5 ) _d=4;
|
|
||||||
|
|
||||||
npoint = 2*_d+1;
|
|
||||||
directions.resize(npoint);
|
|
||||||
displacements.resize(npoint);
|
|
||||||
points_dagger.resize(npoint);
|
|
||||||
for(int d=0;d<_d;d++){
|
|
||||||
directions[d ] = d+base;
|
|
||||||
directions[d+_d] = d+base;
|
|
||||||
displacements[d ] = +1;
|
|
||||||
displacements[d+_d]= -1;
|
|
||||||
points_dagger[d ] = d+_d;
|
|
||||||
points_dagger[d+_d] = d;
|
|
||||||
}
|
|
||||||
directions [2*_d]=0;
|
|
||||||
displacements[2*_d]=0;
|
|
||||||
points_dagger[2*_d]=2*_d;
|
|
||||||
}
|
|
||||||
|
|
||||||
int point(int dir, int disp) {
|
|
||||||
GRID_ASSERT(disp == -1 || disp == 0 || disp == 1);
|
|
||||||
GRID_ASSERT(base+0 <= dir && dir < base+4);
|
|
||||||
|
|
||||||
// directions faster index = new indexing
|
|
||||||
// 4d (base = 0):
|
|
||||||
// point 0 1 2 3 4 5 6 7 8
|
|
||||||
// dir 0 1 2 3 0 1 2 3 0
|
|
||||||
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
|
|
||||||
// 5d (base = 1):
|
|
||||||
// point 0 1 2 3 4 5 6 7 8
|
|
||||||
// dir 1 2 3 4 1 2 3 4 0
|
|
||||||
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
|
|
||||||
|
|
||||||
// displacements faster index = old indexing
|
|
||||||
// 4d (base = 0):
|
|
||||||
// point 0 1 2 3 4 5 6 7 8
|
|
||||||
// dir 0 0 1 1 2 2 3 3 0
|
|
||||||
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
|
|
||||||
// 5d (base = 1):
|
|
||||||
// point 0 1 2 3 4 5 6 7 8
|
|
||||||
// dir 1 1 2 2 3 3 4 4 0
|
|
||||||
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
|
|
||||||
|
|
||||||
if(dir == 0 and disp == 0)
|
|
||||||
return 8;
|
|
||||||
else // New indexing
|
|
||||||
return (1 - disp) / 2 * 4 + dir - base;
|
|
||||||
// else // Old indexing
|
|
||||||
// return (4 * (dir - base) + 1 - disp) / 2;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
/////////////////////////////////////////////////////////////////
|
|
||||||
// Less local equivalent of Geometry class in cartesian case
|
|
||||||
/////////////////////////////////////////////////////////////////
|
|
||||||
class NonLocalStencilGeometry {
|
|
||||||
public:
|
|
||||||
// int depth;
|
|
||||||
int skip;
|
|
||||||
int hops;
|
|
||||||
int npoint;
|
|
||||||
std::vector<Coordinate> shifts;
|
|
||||||
Coordinate stencil_size;
|
|
||||||
Coordinate stencil_lo;
|
|
||||||
Coordinate stencil_hi;
|
|
||||||
GridCartesian *grid;
|
|
||||||
GridCartesian *Grid() {return grid;};
|
|
||||||
int Depth(void){return 1;}; // Ghost zone depth
|
|
||||||
int Hops(void){return hops;}; // # of hops=> level of corner fill in in stencil
|
|
||||||
int DimSkip(void){return skip;};
|
|
||||||
|
|
||||||
virtual ~NonLocalStencilGeometry() {};
|
|
||||||
|
|
||||||
int Reverse(int point)
|
|
||||||
{
|
|
||||||
int Nd = Grid()->Nd();
|
|
||||||
Coordinate shft = shifts[point];
|
|
||||||
Coordinate rev(Nd);
|
|
||||||
for(int mu=0;mu<Nd;mu++) rev[mu]= -shft[mu];
|
|
||||||
for(int p=0;p<npoint;p++){
|
|
||||||
if(rev==shifts[p]){
|
|
||||||
return p;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
GRID_ASSERT(0);
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
void BuildShifts(void)
|
|
||||||
{
|
|
||||||
this->shifts.resize(0);
|
|
||||||
int Nd = this->grid->Nd();
|
|
||||||
|
|
||||||
int dd = this->DimSkip();
|
|
||||||
for(int s0=this->stencil_lo[dd+0];s0<=this->stencil_hi[dd+0];s0++){
|
|
||||||
for(int s1=this->stencil_lo[dd+1];s1<=this->stencil_hi[dd+1];s1++){
|
|
||||||
for(int s2=this->stencil_lo[dd+2];s2<=this->stencil_hi[dd+2];s2++){
|
|
||||||
for(int s3=this->stencil_lo[dd+3];s3<=this->stencil_hi[dd+3];s3++){
|
|
||||||
Coordinate sft(Nd,0);
|
|
||||||
sft[dd+0] = s0;
|
|
||||||
sft[dd+1] = s1;
|
|
||||||
sft[dd+2] = s2;
|
|
||||||
sft[dd+3] = s3;
|
|
||||||
int nhops = abs(s0)+abs(s1)+abs(s2)+abs(s3);
|
|
||||||
if(nhops<=this->hops) this->shifts.push_back(sft);
|
|
||||||
}}}}
|
|
||||||
this->npoint = this->shifts.size();
|
|
||||||
std::cout << GridLogMessage << "NonLocalStencilGeometry has "<< this->npoint << " terms in stencil "<<std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
NonLocalStencilGeometry(GridCartesian *_coarse_grid,int _hops,int _skip) : grid(_coarse_grid), hops(_hops), skip(_skip)
|
|
||||||
{
|
|
||||||
Coordinate latt = grid->GlobalDimensions();
|
|
||||||
stencil_size.resize(grid->Nd());
|
|
||||||
stencil_lo.resize(grid->Nd());
|
|
||||||
stencil_hi.resize(grid->Nd());
|
|
||||||
for(int d=0;d<grid->Nd();d++){
|
|
||||||
if ( latt[d] == 1 ) {
|
|
||||||
stencil_lo[d] = 0;
|
|
||||||
stencil_hi[d] = 0;
|
|
||||||
stencil_size[d]= 1;
|
|
||||||
} else if ( latt[d] == 2 ) {
|
|
||||||
stencil_lo[d] = -1;
|
|
||||||
stencil_hi[d] = 0;
|
|
||||||
stencil_size[d]= 2;
|
|
||||||
} else if ( latt[d] > 2 ) {
|
|
||||||
stencil_lo[d] = -1;
|
|
||||||
stencil_hi[d] = 1;
|
|
||||||
stencil_size[d]= 3;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
this->BuildShifts();
|
|
||||||
};
|
|
||||||
|
|
||||||
};
|
|
||||||
|
|
||||||
// Need to worry about red-black now
|
|
||||||
class NonLocalStencilGeometry4D : public NonLocalStencilGeometry {
|
|
||||||
public:
|
|
||||||
virtual int DerivedDimSkip(void) { return 0;};
|
|
||||||
NonLocalStencilGeometry4D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,0) { };
|
|
||||||
virtual ~NonLocalStencilGeometry4D() {};
|
|
||||||
};
|
|
||||||
class NonLocalStencilGeometry5D : public NonLocalStencilGeometry {
|
|
||||||
public:
|
|
||||||
virtual int DerivedDimSkip(void) { return 1; };
|
|
||||||
NonLocalStencilGeometry5D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,1) { };
|
|
||||||
virtual ~NonLocalStencilGeometry5D() {};
|
|
||||||
};
|
|
||||||
/*
|
|
||||||
* Bunch of different options classes
|
|
||||||
*/
|
|
||||||
class NextToNextToNextToNearestStencilGeometry4D : public NonLocalStencilGeometry4D {
|
|
||||||
public:
|
|
||||||
NextToNextToNextToNearestStencilGeometry4D(GridCartesian *Coarse) : NonLocalStencilGeometry4D(Coarse,4)
|
|
||||||
{
|
|
||||||
};
|
|
||||||
};
|
|
||||||
class NextToNextToNextToNearestStencilGeometry5D : public NonLocalStencilGeometry5D {
|
|
||||||
public:
|
|
||||||
NextToNextToNextToNearestStencilGeometry5D(GridCartesian *Coarse) : NonLocalStencilGeometry5D(Coarse,4)
|
|
||||||
{
|
|
||||||
};
|
|
||||||
};
|
|
||||||
class NextToNearestStencilGeometry4D : public NonLocalStencilGeometry4D {
|
|
||||||
public:
|
|
||||||
NextToNearestStencilGeometry4D(GridCartesian *Coarse) : NonLocalStencilGeometry4D(Coarse,2)
|
|
||||||
{
|
|
||||||
};
|
|
||||||
};
|
|
||||||
class NextToNearestStencilGeometry5D : public NonLocalStencilGeometry5D {
|
|
||||||
public:
|
|
||||||
NextToNearestStencilGeometry5D(GridCartesian *Coarse) : NonLocalStencilGeometry5D(Coarse,2)
|
|
||||||
{
|
|
||||||
};
|
|
||||||
};
|
|
||||||
class NearestStencilGeometry4D : public NonLocalStencilGeometry4D {
|
|
||||||
public:
|
|
||||||
NearestStencilGeometry4D(GridCartesian *Coarse) : NonLocalStencilGeometry4D(Coarse,1)
|
|
||||||
{
|
|
||||||
};
|
|
||||||
};
|
|
||||||
class NearestStencilGeometry5D : public NonLocalStencilGeometry5D {
|
|
||||||
public:
|
|
||||||
NearestStencilGeometry5D(GridCartesian *Coarse) : NonLocalStencilGeometry5D(Coarse,1)
|
|
||||||
{
|
|
||||||
};
|
|
||||||
};
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
|
||||||
@@ -1,34 +0,0 @@
|
|||||||
/*************************************************************************************
|
|
||||||
|
|
||||||
Grid physics library, www.github.com/paboyle/Grid
|
|
||||||
|
|
||||||
Source file: Grid/algorithms/multigrid/MultiGrid.h
|
|
||||||
|
|
||||||
Copyright (C) 2023
|
|
||||||
|
|
||||||
Author: Peter Boyle <pboyle@bnl.gov>
|
|
||||||
|
|
||||||
This program is free software; you can redistribute it and/or modify
|
|
||||||
it under the terms of the GNU General Public License as published by
|
|
||||||
the Free Software Foundation; either version 2 of the License, or
|
|
||||||
(at your option) any later version.
|
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License along
|
|
||||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
||||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
||||||
|
|
||||||
See the full license in the file "LICENSE" in the top level distribution directory
|
|
||||||
*************************************************************************************/
|
|
||||||
/* END LEGAL */
|
|
||||||
#pragma once
|
|
||||||
|
|
||||||
#include <Grid/algorithms/multigrid/Aggregates.h>
|
|
||||||
#include <Grid/algorithms/multigrid/Geometry.h>
|
|
||||||
#include <Grid/algorithms/multigrid/CoarsenedMatrix.h>
|
|
||||||
#include <Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h>
|
|
||||||
#include <Grid/algorithms/multigrid/GeneralCoarsenedMatrixMultiRHS.h>
|
|
||||||
@@ -54,10 +54,7 @@ public:
|
|||||||
size_type bytes = __n*sizeof(_Tp);
|
size_type bytes = __n*sizeof(_Tp);
|
||||||
profilerAllocate(bytes);
|
profilerAllocate(bytes);
|
||||||
_Tp *ptr = (_Tp*) MemoryManager::CpuAllocate(bytes);
|
_Tp *ptr = (_Tp*) MemoryManager::CpuAllocate(bytes);
|
||||||
if ( (_Tp*)ptr == (_Tp *) NULL ) {
|
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
|
||||||
printf("Grid CPU Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
|
|
||||||
}
|
|
||||||
GRID_ASSERT( ( (_Tp*)ptr != (_Tp *)NULL ) );
|
|
||||||
return ptr;
|
return ptr;
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -69,7 +66,7 @@ public:
|
|||||||
}
|
}
|
||||||
|
|
||||||
// FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop
|
// FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop
|
||||||
void construct(pointer __p, const _Tp& __val) { };
|
void construct(pointer __p, const _Tp& __val) { assert(0);};
|
||||||
void construct(pointer __p) { };
|
void construct(pointer __p) { };
|
||||||
void destroy(pointer __p) { };
|
void destroy(pointer __p) { };
|
||||||
};
|
};
|
||||||
@@ -103,10 +100,7 @@ public:
|
|||||||
size_type bytes = __n*sizeof(_Tp);
|
size_type bytes = __n*sizeof(_Tp);
|
||||||
profilerAllocate(bytes);
|
profilerAllocate(bytes);
|
||||||
_Tp *ptr = (_Tp*) MemoryManager::SharedAllocate(bytes);
|
_Tp *ptr = (_Tp*) MemoryManager::SharedAllocate(bytes);
|
||||||
if ( (_Tp*)ptr == (_Tp *) NULL ) {
|
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
|
||||||
printf("Grid Shared Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
|
|
||||||
}
|
|
||||||
GRID_ASSERT( ( (_Tp*)ptr != (_Tp *)NULL ) );
|
|
||||||
return ptr;
|
return ptr;
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -151,10 +145,7 @@ public:
|
|||||||
size_type bytes = __n*sizeof(_Tp);
|
size_type bytes = __n*sizeof(_Tp);
|
||||||
profilerAllocate(bytes);
|
profilerAllocate(bytes);
|
||||||
_Tp *ptr = (_Tp*) MemoryManager::AcceleratorAllocate(bytes);
|
_Tp *ptr = (_Tp*) MemoryManager::AcceleratorAllocate(bytes);
|
||||||
if ( (_Tp*)ptr == (_Tp *) NULL ) {
|
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
|
||||||
printf("Grid Device Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
|
|
||||||
}
|
|
||||||
GRID_ASSERT( ( (_Tp*)ptr != (_Tp *)NULL ) );
|
|
||||||
return ptr;
|
return ptr;
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -174,48 +165,18 @@ template<typename _Tp> inline bool operator!=(const devAllocator<_Tp>&, const d
|
|||||||
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
||||||
// Template typedefs
|
// Template typedefs
|
||||||
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
||||||
template<class T> using hostVector = std::vector<T,alignedAllocator<T> >; // Needs autoview
|
#ifdef ACCELERATOR_CSHIFT
|
||||||
template<class T> using Vector = std::vector<T,uvmAllocator<T> >; // Really want to deprecate
|
// Cshift on device
|
||||||
template<class T> using uvmVector = std::vector<T,uvmAllocator<T> >; // auto migrating page
|
template<class T> using cshiftAllocator = devAllocator<T>;
|
||||||
template<class T> using deviceVector = std::vector<T,devAllocator<T> >; // device vector
|
#else
|
||||||
|
// Cshift on host
|
||||||
|
template<class T> using cshiftAllocator = std::allocator<T>;
|
||||||
|
#endif
|
||||||
|
|
||||||
/*
|
template<class T> using Vector = std::vector<T,uvmAllocator<T> >;
|
||||||
template<class T> class vecView
|
template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;
|
||||||
{
|
template<class T> using commVector = std::vector<T,devAllocator<T> >;
|
||||||
protected:
|
template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
|
||||||
T * data;
|
|
||||||
uint64_t size;
|
|
||||||
ViewMode mode;
|
|
||||||
void * cpu_ptr;
|
|
||||||
public:
|
|
||||||
// Rvalue accessor
|
|
||||||
accelerator_inline T & operator[](size_t i) const { return this->data[i]; };
|
|
||||||
vecView(Vector<T> &refer_to_me,ViewMode _mode)
|
|
||||||
{
|
|
||||||
cpu_ptr = &refer_to_me[0];
|
|
||||||
size = refer_to_me.size();
|
|
||||||
mode = _mode;
|
|
||||||
data =(T *) MemoryManager::ViewOpen(cpu_ptr,
|
|
||||||
size*sizeof(T),
|
|
||||||
mode,
|
|
||||||
AdviseDefault);
|
|
||||||
}
|
|
||||||
void ViewClose(void)
|
|
||||||
{ // Inform the manager
|
|
||||||
MemoryManager::ViewClose(this->cpu_ptr,this->mode);
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
template<class T> vecView<T> VectorView(Vector<T> &vec,ViewMode _mode)
|
|
||||||
{
|
|
||||||
vecView<T> ret(vec,_mode); // does the open
|
|
||||||
return ret; // must be closed
|
|
||||||
}
|
|
||||||
|
|
||||||
#define autoVecView(v_v,v,mode) \
|
|
||||||
auto v_v = VectorView(v,mode); \
|
|
||||||
ViewCloser<decltype(v_v)> _autoView##v_v(v_v);
|
|
||||||
*/
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
|
||||||
|
|||||||
@@ -4,194 +4,108 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
|
|
||||||
/*Allocation types, saying which pointer cache should be used*/
|
/*Allocation types, saying which pointer cache should be used*/
|
||||||
#define Cpu (0)
|
#define Cpu (0)
|
||||||
#define CpuHuge (1)
|
#define CpuSmall (1)
|
||||||
#define CpuSmall (2)
|
#define Acc (2)
|
||||||
#define Acc (3)
|
#define AccSmall (3)
|
||||||
#define AccHuge (4)
|
#define Shared (4)
|
||||||
#define AccSmall (5)
|
#define SharedSmall (5)
|
||||||
#define Shared (6)
|
|
||||||
#define SharedHuge (7)
|
|
||||||
#define SharedSmall (8)
|
|
||||||
#undef GRID_MM_VERBOSE
|
|
||||||
uint64_t total_shared;
|
uint64_t total_shared;
|
||||||
uint64_t total_device;
|
uint64_t total_device;
|
||||||
uint64_t total_host;;
|
uint64_t total_host;;
|
||||||
|
|
||||||
#if defined(__has_feature)
|
|
||||||
#if __has_feature(leak_sanitizer)
|
|
||||||
#define ASAN_LEAK_CHECK
|
|
||||||
#endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef ASAN_LEAK_CHECK
|
|
||||||
#include <sanitizer/asan_interface.h>
|
|
||||||
#include <sanitizer/common_interface_defs.h>
|
|
||||||
#include <sanitizer/lsan_interface.h>
|
|
||||||
#define LEAK_CHECK(A) { __lsan_do_recoverable_leak_check(); }
|
|
||||||
#else
|
|
||||||
#define LEAK_CHECK(A) { }
|
|
||||||
#endif
|
|
||||||
|
|
||||||
void MemoryManager::DisplayMallinfo(void)
|
|
||||||
{
|
|
||||||
#ifdef __linux__
|
|
||||||
struct mallinfo mi; // really want mallinfo2, but glibc version isn't uniform
|
|
||||||
|
|
||||||
mi = mallinfo();
|
|
||||||
|
|
||||||
std::cout << "MemoryManager: Total non-mmapped bytes (arena): "<< (size_t)mi.arena<<std::endl;
|
|
||||||
std::cout << "MemoryManager: # of free chunks (ordblks): "<< (size_t)mi.ordblks<<std::endl;
|
|
||||||
std::cout << "MemoryManager: # of free fastbin blocks (smblks): "<< (size_t)mi.smblks<<std::endl;
|
|
||||||
std::cout << "MemoryManager: # of mapped regions (hblks): "<< (size_t)mi.hblks<<std::endl;
|
|
||||||
std::cout << "MemoryManager: Bytes in mapped regions (hblkhd): "<< (size_t)mi.hblkhd<<std::endl;
|
|
||||||
std::cout << "MemoryManager: Max. total allocated space (usmblks): "<< (size_t)mi.usmblks<<std::endl;
|
|
||||||
std::cout << "MemoryManager: Free bytes held in fastbins (fsmblks): "<< (size_t)mi.fsmblks<<std::endl;
|
|
||||||
std::cout << "MemoryManager: Total allocated space (uordblks): "<< (size_t)mi.uordblks<<std::endl;
|
|
||||||
std::cout << "MemoryManager: Total free space (fordblks): "<< (size_t)mi.fordblks<<std::endl;
|
|
||||||
std::cout << "MemoryManager: Topmost releasable block (keepcost): "<< (size_t)mi.keepcost<<std::endl;
|
|
||||||
#endif
|
|
||||||
LEAK_CHECK();
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
void MemoryManager::PrintBytes(void)
|
void MemoryManager::PrintBytes(void)
|
||||||
{
|
{
|
||||||
std::cout << " MemoryManager : ------------------------------------ "<<std::endl;
|
std::cout << " MemoryManager : "<<total_shared<<" shared bytes "<<std::endl;
|
||||||
std::cout << " MemoryManager : PrintBytes "<<std::endl;
|
std::cout << " MemoryManager : "<<total_device<<" accelerator bytes "<<std::endl;
|
||||||
std::cout << " MemoryManager : ------------------------------------ "<<std::endl;
|
std::cout << " MemoryManager : "<<total_host <<" cpu bytes "<<std::endl;
|
||||||
std::cout << " MemoryManager : "<<(total_shared>>20)<<" shared Mbytes "<<std::endl;
|
|
||||||
std::cout << " MemoryManager : "<<(total_device>>20)<<" accelerator Mbytes "<<std::endl;
|
|
||||||
std::cout << " MemoryManager : "<<(total_host>>20) <<" cpu Mbytes "<<std::endl;
|
|
||||||
uint64_t cacheBytes;
|
|
||||||
cacheBytes = CacheBytes[Cpu];
|
|
||||||
std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" cpu cache Mbytes "<<std::endl;
|
|
||||||
cacheBytes = CacheBytes[Acc];
|
|
||||||
std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" acc cache Mbytes "<<std::endl;
|
|
||||||
cacheBytes = CacheBytes[Shared];
|
|
||||||
std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" shared cache Mbytes "<<std::endl;
|
|
||||||
|
|
||||||
#ifdef GRID_CUDA
|
|
||||||
cuda_mem();
|
|
||||||
#endif
|
|
||||||
DisplayMallinfo();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
uint64_t MemoryManager::DeviceCacheBytes() { return CacheBytes[Acc] + CacheBytes[AccHuge] + CacheBytes[AccSmall]; }
|
|
||||||
uint64_t MemoryManager::HostCacheBytes() { return CacheBytes[Cpu] + CacheBytes[CpuHuge] + CacheBytes[CpuSmall]; }
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////
|
||||||
// Data tables for recently freed pooiniter caches
|
// Data tables for recently freed pooiniter caches
|
||||||
//////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////
|
||||||
MemoryManager::AllocationCacheEntry MemoryManager::Entries[MemoryManager::NallocType][MemoryManager::NallocCacheMax];
|
MemoryManager::AllocationCacheEntry MemoryManager::Entries[MemoryManager::NallocType][MemoryManager::NallocCacheMax];
|
||||||
int MemoryManager::Victim[MemoryManager::NallocType];
|
int MemoryManager::Victim[MemoryManager::NallocType];
|
||||||
int MemoryManager::Ncache[MemoryManager::NallocType] = { 2, 0, 8, 8, 0, 16, 8, 0, 16 };
|
int MemoryManager::Ncache[MemoryManager::NallocType] = { 8, 32, 8, 32, 8, 32 };
|
||||||
uint64_t MemoryManager::CacheBytes[MemoryManager::NallocType];
|
|
||||||
//////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////
|
||||||
// Actual allocation and deallocation utils
|
// Actual allocation and deallocation utils
|
||||||
//////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////
|
||||||
void *MemoryManager::AcceleratorAllocate(size_t bytes)
|
void *MemoryManager::AcceleratorAllocate(size_t bytes)
|
||||||
{
|
{
|
||||||
total_device+=bytes;
|
|
||||||
void *ptr = (void *) Lookup(bytes,Acc);
|
void *ptr = (void *) Lookup(bytes,Acc);
|
||||||
if ( ptr == (void *) NULL ) {
|
if ( ptr == (void *) NULL ) {
|
||||||
ptr = (void *) acceleratorAllocDevice(bytes);
|
ptr = (void *) acceleratorAllocDevice(bytes);
|
||||||
|
total_device+=bytes;
|
||||||
}
|
}
|
||||||
#ifdef GRID_MM_VERBOSE
|
|
||||||
std::cout <<"AcceleratorAllocate "<<std::endl;
|
|
||||||
PrintBytes();
|
|
||||||
#endif
|
|
||||||
return ptr;
|
return ptr;
|
||||||
}
|
}
|
||||||
void MemoryManager::AcceleratorFree (void *ptr,size_t bytes)
|
void MemoryManager::AcceleratorFree (void *ptr,size_t bytes)
|
||||||
{
|
{
|
||||||
total_device-=bytes;
|
|
||||||
void *__freeme = Insert(ptr,bytes,Acc);
|
void *__freeme = Insert(ptr,bytes,Acc);
|
||||||
if ( __freeme ) {
|
if ( __freeme ) {
|
||||||
acceleratorFreeDevice(__freeme);
|
acceleratorFreeDevice(__freeme);
|
||||||
|
total_device-=bytes;
|
||||||
|
// PrintBytes();
|
||||||
}
|
}
|
||||||
#ifdef GRID_MM_VERBOSE
|
|
||||||
std::cout <<"AcceleratorFree "<<std::endl;
|
|
||||||
PrintBytes();
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
void *MemoryManager::SharedAllocate(size_t bytes)
|
void *MemoryManager::SharedAllocate(size_t bytes)
|
||||||
{
|
{
|
||||||
total_shared+=bytes;
|
|
||||||
void *ptr = (void *) Lookup(bytes,Shared);
|
void *ptr = (void *) Lookup(bytes,Shared);
|
||||||
if ( ptr == (void *) NULL ) {
|
if ( ptr == (void *) NULL ) {
|
||||||
ptr = (void *) acceleratorAllocShared(bytes);
|
ptr = (void *) acceleratorAllocShared(bytes);
|
||||||
|
total_shared+=bytes;
|
||||||
|
std::cout <<GridLogMessage<<"AcceleratorAllocate: allocated Shared pointer "<<std::hex<<ptr<<std::dec<<std::endl;
|
||||||
|
// PrintBytes();
|
||||||
}
|
}
|
||||||
#ifdef GRID_MM_VERBOSE
|
|
||||||
std::cout <<"SharedAllocate "<<std::endl;
|
|
||||||
PrintBytes();
|
|
||||||
#endif
|
|
||||||
return ptr;
|
return ptr;
|
||||||
}
|
}
|
||||||
void MemoryManager::SharedFree (void *ptr,size_t bytes)
|
void MemoryManager::SharedFree (void *ptr,size_t bytes)
|
||||||
{
|
{
|
||||||
total_shared-=bytes;
|
|
||||||
void *__freeme = Insert(ptr,bytes,Shared);
|
void *__freeme = Insert(ptr,bytes,Shared);
|
||||||
if ( __freeme ) {
|
if ( __freeme ) {
|
||||||
acceleratorFreeShared(__freeme);
|
acceleratorFreeShared(__freeme);
|
||||||
|
total_shared-=bytes;
|
||||||
|
// PrintBytes();
|
||||||
}
|
}
|
||||||
#ifdef GRID_MM_VERBOSE
|
|
||||||
std::cout <<"SharedFree "<<std::endl;
|
|
||||||
PrintBytes();
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
#ifdef GRID_UVM
|
#ifdef GRID_UVM
|
||||||
void *MemoryManager::CpuAllocate(size_t bytes)
|
void *MemoryManager::CpuAllocate(size_t bytes)
|
||||||
{
|
{
|
||||||
total_host+=bytes;
|
|
||||||
void *ptr = (void *) Lookup(bytes,Cpu);
|
void *ptr = (void *) Lookup(bytes,Cpu);
|
||||||
if ( ptr == (void *) NULL ) {
|
if ( ptr == (void *) NULL ) {
|
||||||
ptr = (void *) acceleratorAllocShared(bytes);
|
ptr = (void *) acceleratorAllocShared(bytes);
|
||||||
|
total_host+=bytes;
|
||||||
|
// std::cout << GridLogMessage<< "MemoryManager:: CpuAllocate total_host= "<<total_host<<" "<< ptr << std::endl;
|
||||||
}
|
}
|
||||||
#ifdef GRID_MM_VERBOSE
|
|
||||||
std::cout <<"CpuAllocate "<<std::endl;
|
|
||||||
PrintBytes();
|
|
||||||
#endif
|
|
||||||
return ptr;
|
return ptr;
|
||||||
}
|
}
|
||||||
void MemoryManager::CpuFree (void *_ptr,size_t bytes)
|
void MemoryManager::CpuFree (void *_ptr,size_t bytes)
|
||||||
{
|
{
|
||||||
total_host-=bytes;
|
|
||||||
NotifyDeletion(_ptr);
|
NotifyDeletion(_ptr);
|
||||||
void *__freeme = Insert(_ptr,bytes,Cpu);
|
void *__freeme = Insert(_ptr,bytes,Cpu);
|
||||||
if ( __freeme ) {
|
if ( __freeme ) {
|
||||||
acceleratorFreeShared(__freeme);
|
acceleratorFreeShared(__freeme);
|
||||||
|
// std::cout << GridLogMessage<< "MemoryManager:: CpuFree total_host= "<<total_host<<" "<< __freeme << std::endl;
|
||||||
|
total_host-=bytes;
|
||||||
}
|
}
|
||||||
#ifdef GRID_MM_VERBOSE
|
|
||||||
std::cout <<"CpuFree "<<std::endl;
|
|
||||||
PrintBytes();
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
void *MemoryManager::CpuAllocate(size_t bytes)
|
void *MemoryManager::CpuAllocate(size_t bytes)
|
||||||
{
|
{
|
||||||
total_host+=bytes;
|
|
||||||
void *ptr = (void *) Lookup(bytes,Cpu);
|
void *ptr = (void *) Lookup(bytes,Cpu);
|
||||||
if ( ptr == (void *) NULL ) {
|
if ( ptr == (void *) NULL ) {
|
||||||
ptr = (void *) acceleratorAllocCpu(bytes);
|
ptr = (void *) acceleratorAllocCpu(bytes);
|
||||||
|
total_host+=bytes;
|
||||||
}
|
}
|
||||||
#ifdef GRID_MM_VERBOSE
|
|
||||||
std::cout <<"CpuAllocate "<<std::endl;
|
|
||||||
PrintBytes();
|
|
||||||
#endif
|
|
||||||
return ptr;
|
return ptr;
|
||||||
}
|
}
|
||||||
void MemoryManager::CpuFree (void *_ptr,size_t bytes)
|
void MemoryManager::CpuFree (void *_ptr,size_t bytes)
|
||||||
{
|
{
|
||||||
total_host-=bytes;
|
|
||||||
NotifyDeletion(_ptr);
|
NotifyDeletion(_ptr);
|
||||||
void *__freeme = Insert(_ptr,bytes,Cpu);
|
void *__freeme = Insert(_ptr,bytes,Cpu);
|
||||||
if ( __freeme ) {
|
if ( __freeme ) {
|
||||||
acceleratorFreeCpu(__freeme);
|
acceleratorFreeCpu(__freeme);
|
||||||
|
total_host-=bytes;
|
||||||
}
|
}
|
||||||
#ifdef GRID_MM_VERBOSE
|
|
||||||
std::cout <<"CpuFree "<<std::endl;
|
|
||||||
PrintBytes();
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
@@ -203,6 +117,7 @@ void MemoryManager::Init(void)
|
|||||||
|
|
||||||
char * str;
|
char * str;
|
||||||
int Nc;
|
int Nc;
|
||||||
|
int NcS;
|
||||||
|
|
||||||
str= getenv("GRID_ALLOC_NCACHE_LARGE");
|
str= getenv("GRID_ALLOC_NCACHE_LARGE");
|
||||||
if ( str ) {
|
if ( str ) {
|
||||||
@@ -214,16 +129,6 @@ void MemoryManager::Init(void)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
str= getenv("GRID_ALLOC_NCACHE_HUGE");
|
|
||||||
if ( str ) {
|
|
||||||
Nc = atoi(str);
|
|
||||||
if ( (Nc>=0) && (Nc < NallocCacheMax)) {
|
|
||||||
Ncache[CpuHuge]=Nc;
|
|
||||||
Ncache[AccHuge]=Nc;
|
|
||||||
Ncache[SharedHuge]=Nc;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
str= getenv("GRID_ALLOC_NCACHE_SMALL");
|
str= getenv("GRID_ALLOC_NCACHE_SMALL");
|
||||||
if ( str ) {
|
if ( str ) {
|
||||||
Nc = atoi(str);
|
Nc = atoi(str);
|
||||||
@@ -244,9 +149,7 @@ void MemoryManager::InitMessage(void) {
|
|||||||
|
|
||||||
std::cout << GridLogMessage<< "MemoryManager::Init() setting up"<<std::endl;
|
std::cout << GridLogMessage<< "MemoryManager::Init() setting up"<<std::endl;
|
||||||
#ifdef ALLOCATION_CACHE
|
#ifdef ALLOCATION_CACHE
|
||||||
std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent host allocations: SMALL "<<Ncache[CpuSmall]<<" LARGE "<<Ncache[Cpu]<<" HUGE "<<Ncache[CpuHuge]<<std::endl;
|
std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent allocations: SMALL "<<Ncache[CpuSmall]<<" LARGE "<<Ncache[Cpu]<<std::endl;
|
||||||
std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent device allocations: SMALL "<<Ncache[AccSmall]<<" LARGE "<<Ncache[Acc]<<" Huge "<<Ncache[AccHuge]<<std::endl;
|
|
||||||
std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent shared allocations: SMALL "<<Ncache[SharedSmall]<<" LARGE "<<Ncache[Shared]<<" Huge "<<Ncache[SharedHuge]<<std::endl;
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifdef GRID_UVM
|
#ifdef GRID_UVM
|
||||||
@@ -278,25 +181,21 @@ void MemoryManager::InitMessage(void) {
|
|||||||
void *MemoryManager::Insert(void *ptr,size_t bytes,int type)
|
void *MemoryManager::Insert(void *ptr,size_t bytes,int type)
|
||||||
{
|
{
|
||||||
#ifdef ALLOCATION_CACHE
|
#ifdef ALLOCATION_CACHE
|
||||||
int cache;
|
bool small = (bytes < GRID_ALLOC_SMALL_LIMIT);
|
||||||
if (bytes < GRID_ALLOC_SMALL_LIMIT) cache = type + 2;
|
int cache = type + small;
|
||||||
else if (bytes >= GRID_ALLOC_HUGE_LIMIT) cache = type + 1;
|
return Insert(ptr,bytes,Entries[cache],Ncache[cache],Victim[cache]);
|
||||||
else cache = type;
|
|
||||||
|
|
||||||
return Insert(ptr,bytes,Entries[cache],Ncache[cache],Victim[cache],CacheBytes[cache]);
|
|
||||||
#else
|
#else
|
||||||
return ptr;
|
return ptr;
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim, uint64_t &cacheBytes)
|
void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim)
|
||||||
{
|
{
|
||||||
|
assert(ncache>0);
|
||||||
#ifdef GRID_OMP
|
#ifdef GRID_OMP
|
||||||
GRID_ASSERT(omp_in_parallel()==0);
|
assert(omp_in_parallel()==0);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
if (ncache == 0) return ptr;
|
|
||||||
|
|
||||||
void * ret = NULL;
|
void * ret = NULL;
|
||||||
int v = -1;
|
int v = -1;
|
||||||
|
|
||||||
@@ -314,7 +213,6 @@ void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries
|
|||||||
|
|
||||||
if ( entries[v].valid ) {
|
if ( entries[v].valid ) {
|
||||||
ret = entries[v].address;
|
ret = entries[v].address;
|
||||||
cacheBytes -= entries[v].bytes;
|
|
||||||
entries[v].valid = 0;
|
entries[v].valid = 0;
|
||||||
entries[v].address = NULL;
|
entries[v].address = NULL;
|
||||||
entries[v].bytes = 0;
|
entries[v].bytes = 0;
|
||||||
@@ -323,7 +221,6 @@ void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries
|
|||||||
entries[v].address=ptr;
|
entries[v].address=ptr;
|
||||||
entries[v].bytes =bytes;
|
entries[v].bytes =bytes;
|
||||||
entries[v].valid =1;
|
entries[v].valid =1;
|
||||||
cacheBytes += bytes;
|
|
||||||
|
|
||||||
return ret;
|
return ret;
|
||||||
}
|
}
|
||||||
@@ -331,26 +228,23 @@ void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries
|
|||||||
void *MemoryManager::Lookup(size_t bytes,int type)
|
void *MemoryManager::Lookup(size_t bytes,int type)
|
||||||
{
|
{
|
||||||
#ifdef ALLOCATION_CACHE
|
#ifdef ALLOCATION_CACHE
|
||||||
int cache;
|
bool small = (bytes < GRID_ALLOC_SMALL_LIMIT);
|
||||||
if (bytes < GRID_ALLOC_SMALL_LIMIT) cache = type + 2;
|
int cache = type+small;
|
||||||
else if (bytes >= GRID_ALLOC_HUGE_LIMIT) cache = type + 1;
|
return Lookup(bytes,Entries[cache],Ncache[cache]);
|
||||||
else cache = type;
|
|
||||||
|
|
||||||
return Lookup(bytes,Entries[cache],Ncache[cache],CacheBytes[cache]);
|
|
||||||
#else
|
#else
|
||||||
return NULL;
|
return NULL;
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
void *MemoryManager::Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t & cacheBytes)
|
void *MemoryManager::Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache)
|
||||||
{
|
{
|
||||||
|
assert(ncache>0);
|
||||||
#ifdef GRID_OMP
|
#ifdef GRID_OMP
|
||||||
GRID_ASSERT(omp_in_parallel()==0);
|
assert(omp_in_parallel()==0);
|
||||||
#endif
|
#endif
|
||||||
for(int e=0;e<ncache;e++){
|
for(int e=0;e<ncache;e++){
|
||||||
if ( entries[e].valid && ( entries[e].bytes == bytes ) ) {
|
if ( entries[e].valid && ( entries[e].bytes == bytes ) ) {
|
||||||
entries[e].valid = 0;
|
entries[e].valid = 0;
|
||||||
cacheBytes -= entries[e].bytes;
|
|
||||||
return entries[e].address;
|
return entries[e].address;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -35,12 +35,6 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
// Move control to configure.ac and Config.h?
|
// Move control to configure.ac and Config.h?
|
||||||
|
|
||||||
#define GRID_ALLOC_SMALL_LIMIT (4096)
|
#define GRID_ALLOC_SMALL_LIMIT (4096)
|
||||||
#define GRID_ALLOC_HUGE_LIMIT (2147483648)
|
|
||||||
|
|
||||||
#define STRINGIFY(x) #x
|
|
||||||
#define TOSTRING(x) STRINGIFY(x)
|
|
||||||
#define FILE_LINE __FILE__ ":" TOSTRING(__LINE__)
|
|
||||||
#define AUDIT(a) MemoryManager::Audit(FILE_LINE)
|
|
||||||
|
|
||||||
/*Pinning pages is costly*/
|
/*Pinning pages is costly*/
|
||||||
////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////
|
||||||
@@ -71,21 +65,6 @@ enum ViewMode {
|
|||||||
CpuWriteDiscard = 0x10 // same for now
|
CpuWriteDiscard = 0x10 // same for now
|
||||||
};
|
};
|
||||||
|
|
||||||
struct MemoryStatus {
|
|
||||||
uint64_t DeviceBytes;
|
|
||||||
uint64_t DeviceLRUBytes;
|
|
||||||
uint64_t DeviceMaxBytes;
|
|
||||||
uint64_t HostToDeviceBytes;
|
|
||||||
uint64_t DeviceToHostBytes;
|
|
||||||
uint64_t HostToDeviceXfer;
|
|
||||||
uint64_t DeviceToHostXfer;
|
|
||||||
uint64_t DeviceEvictions;
|
|
||||||
uint64_t DeviceDestroy;
|
|
||||||
uint64_t DeviceAllocCacheBytes;
|
|
||||||
uint64_t HostAllocCacheBytes;
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
class MemoryManager {
|
class MemoryManager {
|
||||||
private:
|
private:
|
||||||
|
|
||||||
@@ -99,23 +78,21 @@ private:
|
|||||||
} AllocationCacheEntry;
|
} AllocationCacheEntry;
|
||||||
|
|
||||||
static const int NallocCacheMax=128;
|
static const int NallocCacheMax=128;
|
||||||
static const int NallocType=9;
|
static const int NallocType=6;
|
||||||
static AllocationCacheEntry Entries[NallocType][NallocCacheMax];
|
static AllocationCacheEntry Entries[NallocType][NallocCacheMax];
|
||||||
static int Victim[NallocType];
|
static int Victim[NallocType];
|
||||||
static int Ncache[NallocType];
|
static int Ncache[NallocType];
|
||||||
static uint64_t CacheBytes[NallocType];
|
|
||||||
|
|
||||||
/////////////////////////////////////////////////
|
/////////////////////////////////////////////////
|
||||||
// Free pool
|
// Free pool
|
||||||
/////////////////////////////////////////////////
|
/////////////////////////////////////////////////
|
||||||
static void *Insert(void *ptr,size_t bytes,int type) ;
|
static void *Insert(void *ptr,size_t bytes,int type) ;
|
||||||
static void *Lookup(size_t bytes,int type) ;
|
static void *Lookup(size_t bytes,int type) ;
|
||||||
static void *Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim,uint64_t &cbytes) ;
|
static void *Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim) ;
|
||||||
static void *Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t &cbytes) ;
|
static void *Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache) ;
|
||||||
|
|
||||||
public:
|
|
||||||
static void PrintBytes(void);
|
static void PrintBytes(void);
|
||||||
static void Audit(std::string s);
|
public:
|
||||||
static void Init(void);
|
static void Init(void);
|
||||||
static void InitMessage(void);
|
static void InitMessage(void);
|
||||||
static void *AcceleratorAllocate(size_t bytes);
|
static void *AcceleratorAllocate(size_t bytes);
|
||||||
@@ -135,27 +112,6 @@ private:
|
|||||||
static uint64_t DeviceToHostBytes;
|
static uint64_t DeviceToHostBytes;
|
||||||
static uint64_t HostToDeviceXfer;
|
static uint64_t HostToDeviceXfer;
|
||||||
static uint64_t DeviceToHostXfer;
|
static uint64_t DeviceToHostXfer;
|
||||||
static uint64_t DeviceEvictions;
|
|
||||||
static uint64_t DeviceDestroy;
|
|
||||||
|
|
||||||
static uint64_t DeviceCacheBytes();
|
|
||||||
static uint64_t HostCacheBytes();
|
|
||||||
|
|
||||||
static MemoryStatus GetFootprint(void) {
|
|
||||||
MemoryStatus stat;
|
|
||||||
stat.DeviceBytes = DeviceBytes;
|
|
||||||
stat.DeviceLRUBytes = DeviceLRUBytes;
|
|
||||||
stat.DeviceMaxBytes = DeviceMaxBytes;
|
|
||||||
stat.HostToDeviceBytes = HostToDeviceBytes;
|
|
||||||
stat.DeviceToHostBytes = DeviceToHostBytes;
|
|
||||||
stat.HostToDeviceXfer = HostToDeviceXfer;
|
|
||||||
stat.DeviceToHostXfer = DeviceToHostXfer;
|
|
||||||
stat.DeviceEvictions = DeviceEvictions;
|
|
||||||
stat.DeviceDestroy = DeviceDestroy;
|
|
||||||
stat.DeviceAllocCacheBytes = DeviceCacheBytes();
|
|
||||||
stat.HostAllocCacheBytes = HostCacheBytes();
|
|
||||||
return stat;
|
|
||||||
};
|
|
||||||
|
|
||||||
private:
|
private:
|
||||||
#ifndef GRID_UVM
|
#ifndef GRID_UVM
|
||||||
@@ -209,13 +165,10 @@ private:
|
|||||||
static void CpuViewClose(uint64_t Ptr);
|
static void CpuViewClose(uint64_t Ptr);
|
||||||
static uint64_t CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
|
static uint64_t CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
|
||||||
#endif
|
#endif
|
||||||
|
static void NotifyDeletion(void * CpuPtr);
|
||||||
|
|
||||||
public:
|
public:
|
||||||
static void DisplayMallinfo(void);
|
|
||||||
static void NotifyDeletion(void * CpuPtr);
|
|
||||||
static void Print(void);
|
static void Print(void);
|
||||||
static void PrintAll(void);
|
|
||||||
static void PrintState( void* CpuPtr);
|
|
||||||
static int isOpen (void* CpuPtr);
|
static int isOpen (void* CpuPtr);
|
||||||
static void ViewClose(void* CpuPtr,ViewMode mode);
|
static void ViewClose(void* CpuPtr,ViewMode mode);
|
||||||
static void *ViewOpen (void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
|
static void *ViewOpen (void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
|
||||||
|
|||||||
@@ -1,15 +1,11 @@
|
|||||||
#include <Grid/GridCore.h>
|
#include <Grid/GridCore.h>
|
||||||
#ifndef GRID_UVM
|
#ifndef GRID_UVM
|
||||||
|
|
||||||
|
#warning "Using explicit device memory copies"
|
||||||
NAMESPACE_BEGIN(Grid);
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
//define dprintf(...) printf ( __VA_ARGS__ ); fflush(stdout);
|
||||||
|
#define dprintf(...)
|
||||||
|
|
||||||
#define MAXLINE 512
|
|
||||||
static char print_buffer [ MAXLINE ];
|
|
||||||
|
|
||||||
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer << std::endl;
|
|
||||||
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug << print_buffer << std::endl;
|
|
||||||
//#define dprintf(...)
|
|
||||||
//#define mprintf(...)
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////
|
||||||
// For caching copies of data on device
|
// For caching copies of data on device
|
||||||
@@ -27,8 +23,6 @@ uint64_t MemoryManager::HostToDeviceBytes;
|
|||||||
uint64_t MemoryManager::DeviceToHostBytes;
|
uint64_t MemoryManager::DeviceToHostBytes;
|
||||||
uint64_t MemoryManager::HostToDeviceXfer;
|
uint64_t MemoryManager::HostToDeviceXfer;
|
||||||
uint64_t MemoryManager::DeviceToHostXfer;
|
uint64_t MemoryManager::DeviceToHostXfer;
|
||||||
uint64_t MemoryManager::DeviceEvictions;
|
|
||||||
uint64_t MemoryManager::DeviceDestroy;
|
|
||||||
|
|
||||||
////////////////////////////////////
|
////////////////////////////////////
|
||||||
// Priority ordering for unlocked entries
|
// Priority ordering for unlocked entries
|
||||||
@@ -50,12 +44,12 @@ int MemoryManager::EntryPresent(uint64_t CpuPtr)
|
|||||||
{
|
{
|
||||||
if(AccViewTable.empty()) return 0;
|
if(AccViewTable.empty()) return 0;
|
||||||
|
|
||||||
auto count = AccViewTable.count(CpuPtr); GRID_ASSERT((count==0)||(count==1));
|
auto count = AccViewTable.count(CpuPtr); assert((count==0)||(count==1));
|
||||||
return count;
|
return count;
|
||||||
}
|
}
|
||||||
void MemoryManager::EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
|
void MemoryManager::EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
|
||||||
{
|
{
|
||||||
GRID_ASSERT(!EntryPresent(CpuPtr));
|
assert(!EntryPresent(CpuPtr));
|
||||||
AcceleratorViewEntry AccCache;
|
AcceleratorViewEntry AccCache;
|
||||||
AccCache.CpuPtr = CpuPtr;
|
AccCache.CpuPtr = CpuPtr;
|
||||||
AccCache.AccPtr = (uint64_t)NULL;
|
AccCache.AccPtr = (uint64_t)NULL;
|
||||||
@@ -69,9 +63,9 @@ void MemoryManager::EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,View
|
|||||||
}
|
}
|
||||||
MemoryManager::AccViewTableIterator MemoryManager::EntryLookup(uint64_t CpuPtr)
|
MemoryManager::AccViewTableIterator MemoryManager::EntryLookup(uint64_t CpuPtr)
|
||||||
{
|
{
|
||||||
GRID_ASSERT(EntryPresent(CpuPtr));
|
assert(EntryPresent(CpuPtr));
|
||||||
auto AccCacheIterator = AccViewTable.find(CpuPtr);
|
auto AccCacheIterator = AccViewTable.find(CpuPtr);
|
||||||
GRID_ASSERT(AccCacheIterator!=AccViewTable.end());
|
assert(AccCacheIterator!=AccViewTable.end());
|
||||||
return AccCacheIterator;
|
return AccCacheIterator;
|
||||||
}
|
}
|
||||||
void MemoryManager::EntryErase(uint64_t CpuPtr)
|
void MemoryManager::EntryErase(uint64_t CpuPtr)
|
||||||
@@ -81,7 +75,7 @@ void MemoryManager::EntryErase(uint64_t CpuPtr)
|
|||||||
}
|
}
|
||||||
void MemoryManager::LRUinsert(AcceleratorViewEntry &AccCache)
|
void MemoryManager::LRUinsert(AcceleratorViewEntry &AccCache)
|
||||||
{
|
{
|
||||||
GRID_ASSERT(AccCache.LRU_valid==0);
|
assert(AccCache.LRU_valid==0);
|
||||||
if (AccCache.transient) {
|
if (AccCache.transient) {
|
||||||
LRU.push_back(AccCache.CpuPtr);
|
LRU.push_back(AccCache.CpuPtr);
|
||||||
AccCache.LRU_entry = --LRU.end();
|
AccCache.LRU_entry = --LRU.end();
|
||||||
@@ -94,7 +88,7 @@ void MemoryManager::LRUinsert(AcceleratorViewEntry &AccCache)
|
|||||||
}
|
}
|
||||||
void MemoryManager::LRUremove(AcceleratorViewEntry &AccCache)
|
void MemoryManager::LRUremove(AcceleratorViewEntry &AccCache)
|
||||||
{
|
{
|
||||||
GRID_ASSERT(AccCache.LRU_valid==1);
|
assert(AccCache.LRU_valid==1);
|
||||||
LRU.erase(AccCache.LRU_entry);
|
LRU.erase(AccCache.LRU_entry);
|
||||||
AccCache.LRU_valid = 0;
|
AccCache.LRU_valid = 0;
|
||||||
DeviceLRUBytes-=AccCache.bytes;
|
DeviceLRUBytes-=AccCache.bytes;
|
||||||
@@ -108,19 +102,17 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
|
|||||||
// Remove from Accelerator, remove entry, without flush
|
// Remove from Accelerator, remove entry, without flush
|
||||||
// Cannot be locked. If allocated Must be in LRU pool.
|
// Cannot be locked. If allocated Must be in LRU pool.
|
||||||
///////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////
|
||||||
GRID_ASSERT(AccCache.state!=Empty);
|
assert(AccCache.state!=Empty);
|
||||||
|
|
||||||
dprintf("MemoryManager: Discard(%lx) %lx",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
|
dprintf("MemoryManager: Discard(%llx) %llx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
|
||||||
GRID_ASSERT(AccCache.accLock==0);
|
assert(AccCache.accLock==0);
|
||||||
GRID_ASSERT(AccCache.cpuLock==0);
|
assert(AccCache.cpuLock==0);
|
||||||
GRID_ASSERT(AccCache.CpuPtr!=(uint64_t)NULL);
|
assert(AccCache.CpuPtr!=(uint64_t)NULL);
|
||||||
if(AccCache.AccPtr) {
|
if(AccCache.AccPtr) {
|
||||||
AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
|
AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
|
||||||
DeviceDestroy++;
|
|
||||||
DeviceBytes -=AccCache.bytes;
|
DeviceBytes -=AccCache.bytes;
|
||||||
LRUremove(AccCache);
|
LRUremove(AccCache);
|
||||||
AccCache.AccPtr=(uint64_t) NULL;
|
dprintf("MemoryManager: Free(%llx) LRU %lld Total %lld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);
|
||||||
dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);
|
|
||||||
}
|
}
|
||||||
uint64_t CpuPtr = AccCache.CpuPtr;
|
uint64_t CpuPtr = AccCache.CpuPtr;
|
||||||
EntryErase(CpuPtr);
|
EntryErase(CpuPtr);
|
||||||
@@ -129,63 +121,51 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
|
|||||||
void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
|
void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
|
||||||
{
|
{
|
||||||
///////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////
|
||||||
// Make CPU consistent, remove from Accelerator, remove from LRU, LEAVE CPU only entry
|
// Make CPU consistent, remove from Accelerator, remove entry
|
||||||
// Cannot be acclocked. If allocated must be in LRU pool.
|
// Cannot be locked. If allocated must be in LRU pool.
|
||||||
//
|
|
||||||
// Nov 2022... Felix issue: Allocating two CpuPtrs, can have an entry in LRU-q with CPUlock.
|
|
||||||
// and require to evict the AccPtr copy. Eviction was a mistake in CpuViewOpen
|
|
||||||
// but there is a weakness where CpuLock entries are attempted for erase
|
|
||||||
// Take these OUT LRU queue when CPU locked?
|
|
||||||
// Cannot take out the table as cpuLock data is important.
|
|
||||||
///////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////
|
||||||
GRID_ASSERT(AccCache.state!=Empty);
|
assert(AccCache.state!=Empty);
|
||||||
|
|
||||||
mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld",
|
dprintf("MemoryManager: Evict(%llx) %llx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
|
||||||
(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr,
|
assert(AccCache.accLock==0);
|
||||||
(uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock);
|
assert(AccCache.cpuLock==0);
|
||||||
if (AccCache.accLock!=0) return;
|
|
||||||
if (AccCache.cpuLock!=0) return;
|
|
||||||
if(AccCache.state==AccDirty) {
|
if(AccCache.state==AccDirty) {
|
||||||
Flush(AccCache);
|
Flush(AccCache);
|
||||||
}
|
}
|
||||||
|
assert(AccCache.CpuPtr!=(uint64_t)NULL);
|
||||||
if(AccCache.AccPtr) {
|
if(AccCache.AccPtr) {
|
||||||
AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
|
AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
|
||||||
LRUremove(AccCache);
|
|
||||||
AccCache.AccPtr=(uint64_t)NULL;
|
|
||||||
AccCache.state=CpuDirty; // CPU primary now
|
|
||||||
DeviceBytes -=AccCache.bytes;
|
DeviceBytes -=AccCache.bytes;
|
||||||
dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld ",(uint64_t)AccCache.AccPtr,DeviceBytes);
|
LRUremove(AccCache);
|
||||||
|
dprintf("MemoryManager: Free(%llx) footprint now %lld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);
|
||||||
}
|
}
|
||||||
// uint64_t CpuPtr = AccCache.CpuPtr;
|
uint64_t CpuPtr = AccCache.CpuPtr;
|
||||||
DeviceEvictions++;
|
EntryErase(CpuPtr);
|
||||||
// EntryErase(CpuPtr);
|
|
||||||
}
|
}
|
||||||
void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
|
void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
|
||||||
{
|
{
|
||||||
GRID_ASSERT(AccCache.state==AccDirty);
|
assert(AccCache.state==AccDirty);
|
||||||
GRID_ASSERT(AccCache.cpuLock==0);
|
assert(AccCache.cpuLock==0);
|
||||||
GRID_ASSERT(AccCache.accLock==0);
|
assert(AccCache.accLock==0);
|
||||||
GRID_ASSERT(AccCache.AccPtr!=(uint64_t)NULL);
|
assert(AccCache.AccPtr!=(uint64_t)NULL);
|
||||||
GRID_ASSERT(AccCache.CpuPtr!=(uint64_t)NULL);
|
assert(AccCache.CpuPtr!=(uint64_t)NULL);
|
||||||
acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
|
acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
|
||||||
mprintf("MemoryManager: acceleratorCopyFromDevice Flush size %ld AccPtr %lx -> CpuPtr %lx",(uint64_t)AccCache.bytes,(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
|
dprintf("MemoryManager: Flush %llx -> %llx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
|
||||||
DeviceToHostBytes+=AccCache.bytes;
|
DeviceToHostBytes+=AccCache.bytes;
|
||||||
DeviceToHostXfer++;
|
DeviceToHostXfer++;
|
||||||
AccCache.state=Consistent;
|
AccCache.state=Consistent;
|
||||||
}
|
}
|
||||||
void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
|
void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
|
||||||
{
|
{
|
||||||
GRID_ASSERT(AccCache.state==CpuDirty);
|
assert(AccCache.state==CpuDirty);
|
||||||
GRID_ASSERT(AccCache.cpuLock==0);
|
assert(AccCache.cpuLock==0);
|
||||||
GRID_ASSERT(AccCache.accLock==0);
|
assert(AccCache.accLock==0);
|
||||||
GRID_ASSERT(AccCache.CpuPtr!=(uint64_t)NULL);
|
assert(AccCache.CpuPtr!=(uint64_t)NULL);
|
||||||
if(AccCache.AccPtr==(uint64_t)NULL){
|
if(AccCache.AccPtr==(uint64_t)NULL){
|
||||||
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
|
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
|
||||||
DeviceBytes+=AccCache.bytes;
|
DeviceBytes+=AccCache.bytes;
|
||||||
}
|
}
|
||||||
mprintf("MemoryManager: acceleratorCopyToDevice Clone size %ld AccPtr %lx <- CpuPtr %lx",
|
dprintf("MemoryManager: Clone %llx <- %llx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
|
||||||
(uint64_t)AccCache.bytes,
|
|
||||||
(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
|
|
||||||
acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
|
acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
|
||||||
HostToDeviceBytes+=AccCache.bytes;
|
HostToDeviceBytes+=AccCache.bytes;
|
||||||
HostToDeviceXfer++;
|
HostToDeviceXfer++;
|
||||||
@@ -194,10 +174,10 @@ void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
|
|||||||
|
|
||||||
void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache)
|
void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache)
|
||||||
{
|
{
|
||||||
GRID_ASSERT(AccCache.state!=Empty);
|
assert(AccCache.state!=Empty);
|
||||||
GRID_ASSERT(AccCache.cpuLock==0);
|
assert(AccCache.cpuLock==0);
|
||||||
GRID_ASSERT(AccCache.accLock==0);
|
assert(AccCache.accLock==0);
|
||||||
GRID_ASSERT(AccCache.CpuPtr!=(uint64_t)NULL);
|
assert(AccCache.CpuPtr!=(uint64_t)NULL);
|
||||||
if(AccCache.AccPtr==(uint64_t)NULL){
|
if(AccCache.AccPtr==(uint64_t)NULL){
|
||||||
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
|
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
|
||||||
DeviceBytes+=AccCache.bytes;
|
DeviceBytes+=AccCache.bytes;
|
||||||
@@ -211,42 +191,34 @@ void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache)
|
|||||||
void MemoryManager::ViewClose(void* Ptr,ViewMode mode)
|
void MemoryManager::ViewClose(void* Ptr,ViewMode mode)
|
||||||
{
|
{
|
||||||
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
|
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
|
||||||
dprintf("AcceleratorViewClose %lx",(uint64_t)Ptr);
|
|
||||||
AcceleratorViewClose((uint64_t)Ptr);
|
AcceleratorViewClose((uint64_t)Ptr);
|
||||||
} else if( (mode==CpuRead)||(mode==CpuWrite)){
|
} else if( (mode==CpuRead)||(mode==CpuWrite)){
|
||||||
CpuViewClose((uint64_t)Ptr);
|
CpuViewClose((uint64_t)Ptr);
|
||||||
} else {
|
} else {
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
|
void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
|
||||||
{
|
{
|
||||||
uint64_t CpuPtr = (uint64_t)_CpuPtr;
|
uint64_t CpuPtr = (uint64_t)_CpuPtr;
|
||||||
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
|
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
|
||||||
dprintf("AcceleratorViewOpen %lx",(uint64_t)CpuPtr);
|
|
||||||
return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint);
|
return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint);
|
||||||
} else if( (mode==CpuRead)||(mode==CpuWrite)){
|
} else if( (mode==CpuRead)||(mode==CpuWrite)){
|
||||||
return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint);
|
return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint);
|
||||||
} else {
|
} else {
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
return NULL;
|
return NULL;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
void MemoryManager::EvictVictims(uint64_t bytes)
|
void MemoryManager::EvictVictims(uint64_t bytes)
|
||||||
{
|
{
|
||||||
if(bytes>=DeviceMaxBytes) {
|
|
||||||
printf("EvictVictims bytes %ld DeviceMaxBytes %ld\n",bytes,DeviceMaxBytes);
|
|
||||||
}
|
|
||||||
GRID_ASSERT(bytes<DeviceMaxBytes);
|
|
||||||
while(bytes+DeviceLRUBytes > DeviceMaxBytes){
|
while(bytes+DeviceLRUBytes > DeviceMaxBytes){
|
||||||
if ( DeviceLRUBytes > 0){
|
if ( DeviceLRUBytes > 0){
|
||||||
GRID_ASSERT(LRU.size()>0);
|
assert(LRU.size()>0);
|
||||||
uint64_t victim = LRU.back(); // From the LRU
|
uint64_t victim = LRU.back();
|
||||||
auto AccCacheIterator = EntryLookup(victim);
|
auto AccCacheIterator = EntryLookup(victim);
|
||||||
auto & AccCache = AccCacheIterator->second;
|
auto & AccCache = AccCacheIterator->second;
|
||||||
Evict(AccCache);
|
Evict(AccCache);
|
||||||
} else {
|
|
||||||
return;
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -264,19 +236,18 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
|
|||||||
if (!AccCache.AccPtr) {
|
if (!AccCache.AccPtr) {
|
||||||
EvictVictims(bytes);
|
EvictVictims(bytes);
|
||||||
}
|
}
|
||||||
GRID_ASSERT((mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard));
|
assert((mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard));
|
||||||
|
|
||||||
GRID_ASSERT(AccCache.cpuLock==0); // Programming error
|
assert(AccCache.cpuLock==0); // Programming error
|
||||||
|
|
||||||
if(AccCache.state!=Empty) {
|
if(AccCache.state!=Empty) {
|
||||||
dprintf("ViewOpen found entry %lx %lx : sizes %ld %ld accLock %ld",
|
dprintf("ViewOpen found entry %llx %llx : %lld %lld\n",
|
||||||
(uint64_t)AccCache.CpuPtr,
|
(uint64_t)AccCache.CpuPtr,
|
||||||
(uint64_t)CpuPtr,
|
(uint64_t)CpuPtr,
|
||||||
(uint64_t)AccCache.bytes,
|
(uint64_t)AccCache.bytes,
|
||||||
(uint64_t)bytes,
|
(uint64_t)bytes);
|
||||||
(uint64_t)AccCache.accLock);
|
assert(AccCache.CpuPtr == CpuPtr);
|
||||||
GRID_ASSERT(AccCache.CpuPtr == CpuPtr);
|
assert(AccCache.bytes ==bytes);
|
||||||
GRID_ASSERT(AccCache.bytes ==bytes);
|
|
||||||
}
|
}
|
||||||
/*
|
/*
|
||||||
* State transitions and actions
|
* State transitions and actions
|
||||||
@@ -293,7 +264,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
|
|||||||
* AccWrite AccDirty AccDirty - -
|
* AccWrite AccDirty AccDirty - -
|
||||||
*/
|
*/
|
||||||
if(AccCache.state==Empty) {
|
if(AccCache.state==Empty) {
|
||||||
GRID_ASSERT(AccCache.LRU_valid==0);
|
assert(AccCache.LRU_valid==0);
|
||||||
AccCache.CpuPtr = CpuPtr;
|
AccCache.CpuPtr = CpuPtr;
|
||||||
AccCache.AccPtr = (uint64_t)NULL;
|
AccCache.AccPtr = (uint64_t)NULL;
|
||||||
AccCache.bytes = bytes;
|
AccCache.bytes = bytes;
|
||||||
@@ -309,7 +280,6 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
|
|||||||
AccCache.state = Consistent; // Empty + AccRead => Consistent
|
AccCache.state = Consistent; // Empty + AccRead => Consistent
|
||||||
}
|
}
|
||||||
AccCache.accLock= 1;
|
AccCache.accLock= 1;
|
||||||
dprintf("Copied Empty entry into device accLock= %d",AccCache.accLock);
|
|
||||||
} else if(AccCache.state==CpuDirty ){
|
} else if(AccCache.state==CpuDirty ){
|
||||||
if(mode==AcceleratorWriteDiscard) {
|
if(mode==AcceleratorWriteDiscard) {
|
||||||
CpuDiscard(AccCache);
|
CpuDiscard(AccCache);
|
||||||
@@ -322,30 +292,28 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
|
|||||||
AccCache.state = Consistent; // CpuDirty + AccRead => Consistent
|
AccCache.state = Consistent; // CpuDirty + AccRead => Consistent
|
||||||
}
|
}
|
||||||
AccCache.accLock++;
|
AccCache.accLock++;
|
||||||
dprintf("CpuDirty entry into device ++accLock= %d",AccCache.accLock);
|
dprintf("Copied CpuDirty entry into device accLock %d\n",AccCache.accLock);
|
||||||
} else if(AccCache.state==Consistent) {
|
} else if(AccCache.state==Consistent) {
|
||||||
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
|
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
|
||||||
AccCache.state = AccDirty; // Consistent + AcceleratorWrite=> AccDirty
|
AccCache.state = AccDirty; // Consistent + AcceleratorWrite=> AccDirty
|
||||||
else
|
else
|
||||||
AccCache.state = Consistent; // Consistent + AccRead => Consistent
|
AccCache.state = Consistent; // Consistent + AccRead => Consistent
|
||||||
AccCache.accLock++;
|
AccCache.accLock++;
|
||||||
dprintf("Consistent entry into device ++accLock= %d",AccCache.accLock);
|
dprintf("Consistent entry into device accLock %d\n",AccCache.accLock);
|
||||||
} else if(AccCache.state==AccDirty) {
|
} else if(AccCache.state==AccDirty) {
|
||||||
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
|
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
|
||||||
AccCache.state = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty
|
AccCache.state = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty
|
||||||
else
|
else
|
||||||
AccCache.state = AccDirty; // AccDirty + AccRead => AccDirty
|
AccCache.state = AccDirty; // AccDirty + AccRead => AccDirty
|
||||||
AccCache.accLock++;
|
AccCache.accLock++;
|
||||||
dprintf("AccDirty entry ++accLock= %d",AccCache.accLock);
|
dprintf("AccDirty entry into device accLock %d\n",AccCache.accLock);
|
||||||
} else {
|
} else {
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
}
|
}
|
||||||
|
|
||||||
GRID_ASSERT(AccCache.accLock>0);
|
// If view is opened on device remove from LRU
|
||||||
// If view is opened on device must remove from LRU
|
|
||||||
if(AccCache.LRU_valid==1){
|
if(AccCache.LRU_valid==1){
|
||||||
// must possibly remove from LRU as now locked on GPU
|
// must possibly remove from LRU as now locked on GPU
|
||||||
dprintf("AccCache entry removed from LRU ");
|
|
||||||
LRUremove(AccCache);
|
LRUremove(AccCache);
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -362,16 +330,14 @@ void MemoryManager::AcceleratorViewClose(uint64_t CpuPtr)
|
|||||||
auto AccCacheIterator = EntryLookup(CpuPtr);
|
auto AccCacheIterator = EntryLookup(CpuPtr);
|
||||||
auto & AccCache = AccCacheIterator->second;
|
auto & AccCache = AccCacheIterator->second;
|
||||||
|
|
||||||
GRID_ASSERT(AccCache.cpuLock==0);
|
assert(AccCache.cpuLock==0);
|
||||||
GRID_ASSERT(AccCache.accLock>0);
|
assert(AccCache.accLock>0);
|
||||||
|
|
||||||
AccCache.accLock--;
|
AccCache.accLock--;
|
||||||
|
|
||||||
// Move to LRU queue if not locked and close on device
|
// Move to LRU queue if not locked and close on device
|
||||||
if(AccCache.accLock==0) {
|
if(AccCache.accLock==0) {
|
||||||
dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
|
|
||||||
LRUinsert(AccCache);
|
LRUinsert(AccCache);
|
||||||
} else {
|
|
||||||
dprintf("AccleratorViewClose %lx AccLock decremented to %ld",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
void MemoryManager::CpuViewClose(uint64_t CpuPtr)
|
void MemoryManager::CpuViewClose(uint64_t CpuPtr)
|
||||||
@@ -379,8 +345,8 @@ void MemoryManager::CpuViewClose(uint64_t CpuPtr)
|
|||||||
auto AccCacheIterator = EntryLookup(CpuPtr);
|
auto AccCacheIterator = EntryLookup(CpuPtr);
|
||||||
auto & AccCache = AccCacheIterator->second;
|
auto & AccCache = AccCacheIterator->second;
|
||||||
|
|
||||||
GRID_ASSERT(AccCache.cpuLock>0);
|
assert(AccCache.cpuLock>0);
|
||||||
GRID_ASSERT(AccCache.accLock==0);
|
assert(AccCache.accLock==0);
|
||||||
|
|
||||||
AccCache.cpuLock--;
|
AccCache.cpuLock--;
|
||||||
}
|
}
|
||||||
@@ -408,17 +374,16 @@ uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,V
|
|||||||
auto AccCacheIterator = EntryLookup(CpuPtr);
|
auto AccCacheIterator = EntryLookup(CpuPtr);
|
||||||
auto & AccCache = AccCacheIterator->second;
|
auto & AccCache = AccCacheIterator->second;
|
||||||
|
|
||||||
// CPU doesn't need to free space
|
if (!AccCache.AccPtr) {
|
||||||
// if (!AccCache.AccPtr) {
|
EvictVictims(bytes);
|
||||||
// EvictVictims(bytes);
|
}
|
||||||
// }
|
|
||||||
|
|
||||||
GRID_ASSERT((mode==CpuRead)||(mode==CpuWrite));
|
assert((mode==CpuRead)||(mode==CpuWrite));
|
||||||
GRID_ASSERT(AccCache.accLock==0); // Programming error
|
assert(AccCache.accLock==0); // Programming error
|
||||||
|
|
||||||
if(AccCache.state!=Empty) {
|
if(AccCache.state!=Empty) {
|
||||||
GRID_ASSERT(AccCache.CpuPtr == CpuPtr);
|
assert(AccCache.CpuPtr == CpuPtr);
|
||||||
GRID_ASSERT(AccCache.bytes==bytes);
|
assert(AccCache.bytes==bytes);
|
||||||
}
|
}
|
||||||
|
|
||||||
if(AccCache.state==Empty) {
|
if(AccCache.state==Empty) {
|
||||||
@@ -433,20 +398,20 @@ uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,V
|
|||||||
AccCache.state = CpuDirty; // CpuDirty +CpuRead/CpuWrite => CpuDirty
|
AccCache.state = CpuDirty; // CpuDirty +CpuRead/CpuWrite => CpuDirty
|
||||||
AccCache.cpuLock++;
|
AccCache.cpuLock++;
|
||||||
} else if(AccCache.state==Consistent) {
|
} else if(AccCache.state==Consistent) {
|
||||||
GRID_ASSERT(AccCache.AccPtr != (uint64_t)NULL);
|
assert(AccCache.AccPtr != (uint64_t)NULL);
|
||||||
if(mode==CpuWrite)
|
if(mode==CpuWrite)
|
||||||
AccCache.state = CpuDirty; // Consistent +CpuWrite => CpuDirty
|
AccCache.state = CpuDirty; // Consistent +CpuWrite => CpuDirty
|
||||||
else
|
else
|
||||||
AccCache.state = Consistent; // Consistent +CpuRead => Consistent
|
AccCache.state = Consistent; // Consistent +CpuRead => Consistent
|
||||||
AccCache.cpuLock++;
|
AccCache.cpuLock++;
|
||||||
} else if(AccCache.state==AccDirty) {
|
} else if(AccCache.state==AccDirty) {
|
||||||
GRID_ASSERT(AccCache.AccPtr != (uint64_t)NULL);
|
assert(AccCache.AccPtr != (uint64_t)NULL);
|
||||||
Flush(AccCache);
|
Flush(AccCache);
|
||||||
if(mode==CpuWrite) AccCache.state = CpuDirty; // AccDirty +CpuWrite => CpuDirty, Flush
|
if(mode==CpuWrite) AccCache.state = CpuDirty; // AccDirty +CpuWrite => CpuDirty, Flush
|
||||||
else AccCache.state = Consistent; // AccDirty +CpuRead => Consistent, Flush
|
else AccCache.state = Consistent; // AccDirty +CpuRead => Consistent, Flush
|
||||||
AccCache.cpuLock++;
|
AccCache.cpuLock++;
|
||||||
} else {
|
} else {
|
||||||
GRID_ASSERT(0); // should be unreachable
|
assert(0); // should be unreachable
|
||||||
}
|
}
|
||||||
|
|
||||||
AccCache.transient= transient? EvictNext : 0;
|
AccCache.transient= transient? EvictNext : 0;
|
||||||
@@ -464,30 +429,20 @@ void MemoryManager::NotifyDeletion(void *_ptr)
|
|||||||
}
|
}
|
||||||
void MemoryManager::Print(void)
|
void MemoryManager::Print(void)
|
||||||
{
|
{
|
||||||
PrintBytes();
|
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
|
||||||
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
|
std::cout << GridLogDebug << "Memory Manager " << std::endl;
|
||||||
std::cout << GridLogMessage << "Memory Manager " << std::endl;
|
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
|
||||||
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
|
std::cout << GridLogDebug << DeviceBytes << " bytes allocated on device " << std::endl;
|
||||||
std::cout << GridLogMessage << DeviceBytes << " bytes allocated on device " << std::endl;
|
std::cout << GridLogDebug << DeviceLRUBytes<< " bytes evictable on device " << std::endl;
|
||||||
std::cout << GridLogMessage << DeviceLRUBytes<< " bytes evictable on device " << std::endl;
|
std::cout << GridLogDebug << DeviceMaxBytes<< " bytes max on device " << std::endl;
|
||||||
std::cout << GridLogMessage << DeviceMaxBytes<< " bytes max on device " << std::endl;
|
std::cout << GridLogDebug << HostToDeviceXfer << " transfers to device " << std::endl;
|
||||||
std::cout << GridLogMessage << HostToDeviceXfer << " transfers to device " << std::endl;
|
std::cout << GridLogDebug << DeviceToHostXfer << " transfers from device " << std::endl;
|
||||||
std::cout << GridLogMessage << DeviceToHostXfer << " transfers from device " << std::endl;
|
std::cout << GridLogDebug << HostToDeviceBytes<< " bytes transfered to device " << std::endl;
|
||||||
std::cout << GridLogMessage << HostToDeviceBytes<< " bytes transfered to device " << std::endl;
|
std::cout << GridLogDebug << DeviceToHostBytes<< " bytes transfered from device " << std::endl;
|
||||||
std::cout << GridLogMessage << DeviceToHostBytes<< " bytes transfered from device " << std::endl;
|
std::cout << GridLogDebug << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl;
|
||||||
std::cout << GridLogMessage << DeviceEvictions << " Evictions from device " << std::endl;
|
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
|
||||||
std::cout << GridLogMessage << DeviceDestroy << " Destroyed vectors on device " << std::endl;
|
std::cout << GridLogDebug << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl;
|
||||||
std::cout << GridLogMessage << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl;
|
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
|
||||||
acceleratorMem();
|
|
||||||
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
|
|
||||||
}
|
|
||||||
void MemoryManager::PrintAll(void)
|
|
||||||
{
|
|
||||||
Print();
|
|
||||||
std::cout << GridLogMessage << std::endl;
|
|
||||||
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
|
|
||||||
std::cout << GridLogMessage << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl;
|
|
||||||
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
|
|
||||||
for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){
|
for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){
|
||||||
auto &AccCache = it->second;
|
auto &AccCache = it->second;
|
||||||
|
|
||||||
@@ -497,13 +452,13 @@ void MemoryManager::PrintAll(void)
|
|||||||
if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
|
if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
|
||||||
if ( AccCache.state==Consistent)str = std::string("Consistent");
|
if ( AccCache.state==Consistent)str = std::string("Consistent");
|
||||||
|
|
||||||
std::cout << GridLogMessage << "0x"<<std::hex<<AccCache.CpuPtr<<std::dec
|
std::cout << GridLogDebug << "0x"<<std::hex<<AccCache.CpuPtr<<std::dec
|
||||||
<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
|
<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
|
||||||
<< "\t" << AccCache.cpuLock
|
<< "\t" << AccCache.cpuLock
|
||||||
<< "\t" << AccCache.accLock
|
<< "\t" << AccCache.accLock
|
||||||
<< "\t" << AccCache.LRU_valid<<std::endl;
|
<< "\t" << AccCache.LRU_valid<<std::endl;
|
||||||
}
|
}
|
||||||
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
|
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
|
||||||
|
|
||||||
};
|
};
|
||||||
int MemoryManager::isOpen (void* _CpuPtr)
|
int MemoryManager::isOpen (void* _CpuPtr)
|
||||||
@@ -517,89 +472,6 @@ int MemoryManager::isOpen (void* _CpuPtr)
|
|||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
void MemoryManager::Audit(std::string s)
|
|
||||||
{
|
|
||||||
uint64_t CpuBytes=0;
|
|
||||||
uint64_t AccBytes=0;
|
|
||||||
uint64_t LruBytes1=0;
|
|
||||||
uint64_t LruBytes2=0;
|
|
||||||
uint64_t LruCnt=0;
|
|
||||||
|
|
||||||
std::cout << " Memory Manager::Audit() from "<<s<<std::endl;
|
|
||||||
for(auto it=LRU.begin();it!=LRU.end();it++){
|
|
||||||
uint64_t cpuPtr = *it;
|
|
||||||
GRID_ASSERT(EntryPresent(cpuPtr));
|
|
||||||
auto AccCacheIterator = EntryLookup(cpuPtr);
|
|
||||||
auto & AccCache = AccCacheIterator->second;
|
|
||||||
LruBytes2+=AccCache.bytes;
|
|
||||||
GRID_ASSERT(AccCache.LRU_valid==1);
|
|
||||||
GRID_ASSERT(AccCache.LRU_entry==it);
|
|
||||||
}
|
|
||||||
std::cout << " Memory Manager::Audit() LRU queue matches table entries "<<std::endl;
|
|
||||||
|
|
||||||
for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){
|
|
||||||
auto &AccCache = it->second;
|
|
||||||
|
|
||||||
std::string str;
|
|
||||||
if ( AccCache.state==Empty ) str = std::string("Empty");
|
|
||||||
if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty");
|
|
||||||
if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
|
|
||||||
if ( AccCache.state==Consistent)str = std::string("Consistent");
|
|
||||||
|
|
||||||
CpuBytes+=AccCache.bytes;
|
|
||||||
if( AccCache.AccPtr ) AccBytes+=AccCache.bytes;
|
|
||||||
if( AccCache.LRU_valid ) LruBytes1+=AccCache.bytes;
|
|
||||||
if( AccCache.LRU_valid ) LruCnt++;
|
|
||||||
|
|
||||||
if ( AccCache.cpuLock || AccCache.accLock ) {
|
|
||||||
GRID_ASSERT(AccCache.LRU_valid==0);
|
|
||||||
|
|
||||||
std::cout << GridLogError << s<< "\n\t 0x"<<std::hex<<AccCache.CpuPtr<<std::dec
|
|
||||||
<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
|
|
||||||
<< "\t cpuLock " << AccCache.cpuLock
|
|
||||||
<< "\t accLock " << AccCache.accLock
|
|
||||||
<< "\t LRUvalid " << AccCache.LRU_valid<<std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
GRID_ASSERT( AccCache.cpuLock== 0 ) ;
|
|
||||||
GRID_ASSERT( AccCache.accLock== 0 ) ;
|
|
||||||
}
|
|
||||||
std::cout << " Memory Manager::Audit() no locked table entries "<<std::endl;
|
|
||||||
GRID_ASSERT(LruBytes1==LruBytes2);
|
|
||||||
GRID_ASSERT(LruBytes1==DeviceLRUBytes);
|
|
||||||
std::cout << " Memory Manager::Audit() evictable bytes matches sum over table "<<std::endl;
|
|
||||||
GRID_ASSERT(AccBytes==DeviceBytes);
|
|
||||||
std::cout << " Memory Manager::Audit() device bytes matches sum over table "<<std::endl;
|
|
||||||
GRID_ASSERT(LruCnt == LRU.size());
|
|
||||||
std::cout << " Memory Manager::Audit() LRU entry count matches "<<std::endl;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
void MemoryManager::PrintState(void* _CpuPtr)
|
|
||||||
{
|
|
||||||
uint64_t CpuPtr = (uint64_t)_CpuPtr;
|
|
||||||
|
|
||||||
if ( EntryPresent(CpuPtr) ){
|
|
||||||
auto AccCacheIterator = EntryLookup(CpuPtr);
|
|
||||||
auto & AccCache = AccCacheIterator->second;
|
|
||||||
std::string str;
|
|
||||||
if ( AccCache.state==Empty ) str = std::string("Empty");
|
|
||||||
if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty");
|
|
||||||
if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
|
|
||||||
if ( AccCache.state==Consistent)str = std::string("Consistent");
|
|
||||||
if ( AccCache.state==EvictNext) str = std::string("EvictNext");
|
|
||||||
|
|
||||||
std::cout << GridLogMessage << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl;
|
|
||||||
std::cout << GridLogMessage << "\tx"<<std::hex<<AccCache.CpuPtr<<std::dec
|
|
||||||
<< "\tx"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
|
|
||||||
<< "\t" << AccCache.cpuLock
|
|
||||||
<< "\t" << AccCache.accLock
|
|
||||||
<< "\t" << AccCache.LRU_valid<<std::endl;
|
|
||||||
|
|
||||||
} else {
|
|
||||||
std::cout << GridLogMessage << "No Entry in AccCache table." << std::endl;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
|
||||||
|
|||||||
@@ -12,19 +12,11 @@ uint64_t MemoryManager::HostToDeviceBytes;
|
|||||||
uint64_t MemoryManager::DeviceToHostBytes;
|
uint64_t MemoryManager::DeviceToHostBytes;
|
||||||
uint64_t MemoryManager::HostToDeviceXfer;
|
uint64_t MemoryManager::HostToDeviceXfer;
|
||||||
uint64_t MemoryManager::DeviceToHostXfer;
|
uint64_t MemoryManager::DeviceToHostXfer;
|
||||||
uint64_t MemoryManager::DeviceEvictions;
|
|
||||||
uint64_t MemoryManager::DeviceDestroy;
|
|
||||||
|
|
||||||
void MemoryManager::Audit(std::string s){};
|
|
||||||
void MemoryManager::ViewClose(void* AccPtr,ViewMode mode){};
|
void MemoryManager::ViewClose(void* AccPtr,ViewMode mode){};
|
||||||
void *MemoryManager::ViewOpen(void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint){ return CpuPtr; };
|
void *MemoryManager::ViewOpen(void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint){ return CpuPtr; };
|
||||||
int MemoryManager::isOpen (void* CpuPtr) { return 0;}
|
int MemoryManager::isOpen (void* CpuPtr) { return 0;}
|
||||||
void MemoryManager::PrintState(void* CpuPtr)
|
|
||||||
{
|
|
||||||
std::cout << GridLogMessage << "Host<->Device memory movement not currently managed by Grid." << std::endl;
|
|
||||||
};
|
|
||||||
void MemoryManager::Print(void){};
|
void MemoryManager::Print(void){};
|
||||||
void MemoryManager::PrintAll(void){};
|
|
||||||
void MemoryManager::NotifyDeletion(void *ptr){};
|
void MemoryManager::NotifyDeletion(void *ptr){};
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
|||||||
@@ -10,16 +10,16 @@ void check_huge_pages(void *Buf,uint64_t BYTES)
|
|||||||
{
|
{
|
||||||
#ifdef __linux__
|
#ifdef __linux__
|
||||||
int fd = open("/proc/self/pagemap", O_RDONLY);
|
int fd = open("/proc/self/pagemap", O_RDONLY);
|
||||||
GRID_ASSERT(fd >= 0);
|
assert(fd >= 0);
|
||||||
const int page_size = 4096;
|
const int page_size = 4096;
|
||||||
uint64_t virt_pfn = (uint64_t)Buf / page_size;
|
uint64_t virt_pfn = (uint64_t)Buf / page_size;
|
||||||
off_t offset = sizeof(uint64_t) * virt_pfn;
|
off_t offset = sizeof(uint64_t) * virt_pfn;
|
||||||
uint64_t npages = (BYTES + page_size-1) / page_size;
|
uint64_t npages = (BYTES + page_size-1) / page_size;
|
||||||
std::vector<uint64_t> pagedata(npages);
|
uint64_t pagedata[npages];
|
||||||
uint64_t ret = lseek(fd, offset, SEEK_SET);
|
uint64_t ret = lseek(fd, offset, SEEK_SET);
|
||||||
GRID_ASSERT(ret == offset);
|
assert(ret == offset);
|
||||||
ret = ::read(fd, &pagedata[0], sizeof(uint64_t)*npages);
|
ret = ::read(fd, pagedata, sizeof(uint64_t)*npages);
|
||||||
GRID_ASSERT(ret == sizeof(uint64_t) * npages);
|
assert(ret == sizeof(uint64_t) * npages);
|
||||||
int nhugepages = npages / 512;
|
int nhugepages = npages / 512;
|
||||||
int n4ktotal, nnothuge;
|
int n4ktotal, nnothuge;
|
||||||
n4ktotal = 0;
|
n4ktotal = 0;
|
||||||
|
|||||||
@@ -70,8 +70,8 @@ public:
|
|||||||
Coordinate _istride; // Inner stride i.e. within simd lane
|
Coordinate _istride; // Inner stride i.e. within simd lane
|
||||||
int _osites; // _isites*_osites = product(dimensions).
|
int _osites; // _isites*_osites = product(dimensions).
|
||||||
int _isites;
|
int _isites;
|
||||||
int64_t _fsites; // _isites*_osites = product(dimensions).
|
int _fsites; // _isites*_osites = product(dimensions).
|
||||||
int64_t _gsites;
|
int _gsites;
|
||||||
Coordinate _slice_block;// subslice information
|
Coordinate _slice_block;// subslice information
|
||||||
Coordinate _slice_stride;
|
Coordinate _slice_stride;
|
||||||
Coordinate _slice_nblock;
|
Coordinate _slice_nblock;
|
||||||
@@ -82,7 +82,6 @@ public:
|
|||||||
bool _isCheckerBoarded;
|
bool _isCheckerBoarded;
|
||||||
int LocallyPeriodic;
|
int LocallyPeriodic;
|
||||||
Coordinate _checker_dim_mask;
|
Coordinate _checker_dim_mask;
|
||||||
int _checker_dim;
|
|
||||||
|
|
||||||
public:
|
public:
|
||||||
|
|
||||||
@@ -90,7 +89,7 @@ public:
|
|||||||
// Checkerboarding interface is virtual and overridden by
|
// Checkerboarding interface is virtual and overridden by
|
||||||
// GridCartesian / GridRedBlackCartesian
|
// GridCartesian / GridRedBlackCartesian
|
||||||
////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////
|
||||||
virtual int CheckerBoarded(int dim) =0;
|
virtual int CheckerBoarded(int dim)=0;
|
||||||
virtual int CheckerBoard(const Coordinate &site)=0;
|
virtual int CheckerBoard(const Coordinate &site)=0;
|
||||||
virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0;
|
virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0;
|
||||||
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0;
|
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0;
|
||||||
@@ -165,7 +164,7 @@ public:
|
|||||||
//
|
//
|
||||||
if ( _simd_layout[dimension] > 2 ) {
|
if ( _simd_layout[dimension] > 2 ) {
|
||||||
for(int d=0;d<_ndimension;d++){
|
for(int d=0;d<_ndimension;d++){
|
||||||
if ( d != dimension ) GRID_ASSERT ( (_simd_layout[d]==1) );
|
if ( d != dimension ) assert ( (_simd_layout[d]==1) );
|
||||||
}
|
}
|
||||||
permute_type = RotateBit; // How to specify distance; this is not just direction.
|
permute_type = RotateBit; // How to specify distance; this is not just direction.
|
||||||
return permute_type;
|
return permute_type;
|
||||||
@@ -184,10 +183,10 @@ public:
|
|||||||
inline int Nsimd(void) const { return _isites; };// Synonymous with iSites
|
inline int Nsimd(void) const { return _isites; };// Synonymous with iSites
|
||||||
inline int oSites(void) const { return _osites; };
|
inline int oSites(void) const { return _osites; };
|
||||||
inline int lSites(void) const { return _isites*_osites; };
|
inline int lSites(void) const { return _isites*_osites; };
|
||||||
inline int64_t gSites(void) const { return (int64_t)_isites*(int64_t)_osites*(int64_t)_Nprocessors; };
|
inline int gSites(void) const { return _isites*_osites*_Nprocessors; };
|
||||||
inline int Nd (void) const { return _ndimension;};
|
inline int Nd (void) const { return _ndimension;};
|
||||||
|
|
||||||
inline const Coordinate &LocalStarts(void) { return _lstart; };
|
inline const Coordinate LocalStarts(void) { return _lstart; };
|
||||||
inline const Coordinate &FullDimensions(void) { return _fdimensions;};
|
inline const Coordinate &FullDimensions(void) { return _fdimensions;};
|
||||||
inline const Coordinate &GlobalDimensions(void) { return _gdimensions;};
|
inline const Coordinate &GlobalDimensions(void) { return _gdimensions;};
|
||||||
inline const Coordinate &LocalDimensions(void) { return _ldimensions;};
|
inline const Coordinate &LocalDimensions(void) { return _ldimensions;};
|
||||||
@@ -215,15 +214,15 @@ public:
|
|||||||
////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////
|
||||||
// Global addressing
|
// Global addressing
|
||||||
////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////
|
||||||
void GlobalIndexToGlobalCoor(int64_t gidx,Coordinate &gcoor){
|
void GlobalIndexToGlobalCoor(int gidx,Coordinate &gcoor){
|
||||||
GRID_ASSERT(gidx< gSites());
|
assert(gidx< gSites());
|
||||||
Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
|
Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
|
||||||
}
|
}
|
||||||
void LocalIndexToLocalCoor(int lidx,Coordinate &lcoor){
|
void LocalIndexToLocalCoor(int lidx,Coordinate &lcoor){
|
||||||
GRID_ASSERT(lidx<lSites());
|
assert(lidx<lSites());
|
||||||
Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
|
Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
|
||||||
}
|
}
|
||||||
void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int64_t & gidx){
|
void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int & gidx){
|
||||||
gidx=0;
|
gidx=0;
|
||||||
int mult=1;
|
int mult=1;
|
||||||
for(int mu=0;mu<_ndimension;mu++) {
|
for(int mu=0;mu<_ndimension;mu++) {
|
||||||
|
|||||||
@@ -38,7 +38,7 @@ class GridCartesian: public GridBase {
|
|||||||
|
|
||||||
public:
|
public:
|
||||||
int dummy;
|
int dummy;
|
||||||
// Coordinate _checker_dim_mask;
|
Coordinate _checker_dim_mask;
|
||||||
virtual int CheckerBoardFromOindexTable (int Oindex) {
|
virtual int CheckerBoardFromOindexTable (int Oindex) {
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
@@ -46,7 +46,7 @@ public:
|
|||||||
{
|
{
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
virtual int CheckerBoarded(int dim) {
|
virtual int CheckerBoarded(int dim){
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
virtual int CheckerBoard(const Coordinate &site){
|
virtual int CheckerBoard(const Coordinate &site){
|
||||||
@@ -106,7 +106,6 @@ public:
|
|||||||
_rdimensions.resize(_ndimension);
|
_rdimensions.resize(_ndimension);
|
||||||
_simd_layout.resize(_ndimension);
|
_simd_layout.resize(_ndimension);
|
||||||
_checker_dim_mask.resize(_ndimension);;
|
_checker_dim_mask.resize(_ndimension);;
|
||||||
_checker_dim = -1;
|
|
||||||
_lstart.resize(_ndimension);
|
_lstart.resize(_ndimension);
|
||||||
_lend.resize(_ndimension);
|
_lend.resize(_ndimension);
|
||||||
|
|
||||||
@@ -128,10 +127,10 @@ public:
|
|||||||
// Use a reduced simd grid
|
// Use a reduced simd grid
|
||||||
_ldimensions[d] = _gdimensions[d] / _processors[d]; //local dimensions
|
_ldimensions[d] = _gdimensions[d] / _processors[d]; //local dimensions
|
||||||
//std::cout << _ldimensions[d] << " " << _gdimensions[d] << " " << _processors[d] << std::endl;
|
//std::cout << _ldimensions[d] << " " << _gdimensions[d] << " " << _processors[d] << std::endl;
|
||||||
GRID_ASSERT(_ldimensions[d] * _processors[d] == _gdimensions[d]);
|
assert(_ldimensions[d] * _processors[d] == _gdimensions[d]);
|
||||||
|
|
||||||
_rdimensions[d] = _ldimensions[d] / _simd_layout[d]; //overdecomposition
|
_rdimensions[d] = _ldimensions[d] / _simd_layout[d]; //overdecomposition
|
||||||
GRID_ASSERT(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
|
assert(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
|
||||||
|
|
||||||
_lstart[d] = _processor_coor[d] * _ldimensions[d];
|
_lstart[d] = _processor_coor[d] * _ldimensions[d];
|
||||||
_lend[d] = _processor_coor[d] * _ldimensions[d] + _ldimensions[d] - 1;
|
_lend[d] = _processor_coor[d] * _ldimensions[d] + _ldimensions[d] - 1;
|
||||||
|
|||||||
@@ -57,17 +57,16 @@ class GridRedBlackCartesian : public GridBase
|
|||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
// Coordinate _checker_dim_mask;
|
// Coordinate _checker_dim_mask;
|
||||||
// int _checker_dim;
|
int _checker_dim;
|
||||||
std::vector<int> _checker_board;
|
std::vector<int> _checker_board;
|
||||||
|
|
||||||
virtual int isCheckerBoarded(void) const { return 1; };
|
|
||||||
virtual int CheckerBoarded(int dim){
|
virtual int CheckerBoarded(int dim){
|
||||||
if( dim==_checker_dim) return 1;
|
if( dim==_checker_dim) return 1;
|
||||||
else return 0;
|
else return 0;
|
||||||
}
|
}
|
||||||
virtual int CheckerBoard(const Coordinate &site){
|
virtual int CheckerBoard(const Coordinate &site){
|
||||||
int linear=0;
|
int linear=0;
|
||||||
GRID_ASSERT(site.size()==_ndimension);
|
assert(site.size()==_ndimension);
|
||||||
for(int d=0;d<_ndimension;d++){
|
for(int d=0;d<_ndimension;d++){
|
||||||
if(_checker_dim_mask[d])
|
if(_checker_dim_mask[d])
|
||||||
linear=linear+site[d];
|
linear=linear+site[d];
|
||||||
@@ -160,11 +159,11 @@ public:
|
|||||||
|
|
||||||
_isCheckerBoarded = true;
|
_isCheckerBoarded = true;
|
||||||
_checker_dim = checker_dim;
|
_checker_dim = checker_dim;
|
||||||
GRID_ASSERT(checker_dim_mask[checker_dim] == 1);
|
assert(checker_dim_mask[checker_dim] == 1);
|
||||||
_ndimension = dimensions.size();
|
_ndimension = dimensions.size();
|
||||||
GRID_ASSERT(checker_dim_mask.size() == _ndimension);
|
assert(checker_dim_mask.size() == _ndimension);
|
||||||
GRID_ASSERT(processor_grid.size() == _ndimension);
|
assert(processor_grid.size() == _ndimension);
|
||||||
GRID_ASSERT(simd_layout.size() == _ndimension);
|
assert(simd_layout.size() == _ndimension);
|
||||||
|
|
||||||
_fdimensions.resize(_ndimension);
|
_fdimensions.resize(_ndimension);
|
||||||
_gdimensions.resize(_ndimension);
|
_gdimensions.resize(_ndimension);
|
||||||
@@ -190,20 +189,20 @@ public:
|
|||||||
|
|
||||||
if (d == _checker_dim)
|
if (d == _checker_dim)
|
||||||
{
|
{
|
||||||
GRID_ASSERT((_gdimensions[d] & 0x1) == 0);
|
assert((_gdimensions[d] & 0x1) == 0);
|
||||||
_gdimensions[d] = _gdimensions[d] / 2; // Remove a checkerboard
|
_gdimensions[d] = _gdimensions[d] / 2; // Remove a checkerboard
|
||||||
_gsites /= 2;
|
_gsites /= 2;
|
||||||
}
|
}
|
||||||
_ldimensions[d] = _gdimensions[d] / _processors[d];
|
_ldimensions[d] = _gdimensions[d] / _processors[d];
|
||||||
GRID_ASSERT(_ldimensions[d] * _processors[d] == _gdimensions[d]);
|
assert(_ldimensions[d] * _processors[d] == _gdimensions[d]);
|
||||||
_lstart[d] = _processor_coor[d] * _ldimensions[d];
|
_lstart[d] = _processor_coor[d] * _ldimensions[d];
|
||||||
_lend[d] = _processor_coor[d] * _ldimensions[d] + _ldimensions[d] - 1;
|
_lend[d] = _processor_coor[d] * _ldimensions[d] + _ldimensions[d] - 1;
|
||||||
|
|
||||||
// Use a reduced simd grid
|
// Use a reduced simd grid
|
||||||
_simd_layout[d] = simd_layout[d];
|
_simd_layout[d] = simd_layout[d];
|
||||||
_rdimensions[d] = _ldimensions[d] / _simd_layout[d]; // this is not checking if this is integer
|
_rdimensions[d] = _ldimensions[d] / _simd_layout[d]; // this is not checking if this is integer
|
||||||
GRID_ASSERT(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
|
assert(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
|
||||||
GRID_ASSERT(_rdimensions[d] > 0);
|
assert(_rdimensions[d] > 0);
|
||||||
|
|
||||||
// all elements of a simd vector must have same checkerboard.
|
// all elements of a simd vector must have same checkerboard.
|
||||||
// If Ls vectorised, this must still be the case; e.g. dwf rb5d
|
// If Ls vectorised, this must still be the case; e.g. dwf rb5d
|
||||||
|
|||||||
@@ -33,8 +33,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
bool Stencil_force_mpi = true;
|
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////
|
||||||
// Info that is setup once and indept of cartesian layout
|
// Info that is setup once and indept of cartesian layout
|
||||||
///////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////
|
||||||
@@ -57,29 +55,18 @@ int CartesianCommunicator::ProcessorCount(void) { return
|
|||||||
// very VERY rarely (Log, serial RNG) we need world without a grid
|
// very VERY rarely (Log, serial RNG) we need world without a grid
|
||||||
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
#ifdef USE_GRID_REDUCTION
|
|
||||||
void CartesianCommunicator::GlobalSum(ComplexF &c)
|
|
||||||
{
|
|
||||||
GlobalSumP2P(c);
|
|
||||||
}
|
|
||||||
void CartesianCommunicator::GlobalSum(ComplexD &c)
|
|
||||||
{
|
|
||||||
GlobalSumP2P(c);
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
void CartesianCommunicator::GlobalSum(ComplexF &c)
|
void CartesianCommunicator::GlobalSum(ComplexF &c)
|
||||||
{
|
{
|
||||||
GlobalSumVector((float *)&c,2);
|
GlobalSumVector((float *)&c,2);
|
||||||
}
|
}
|
||||||
void CartesianCommunicator::GlobalSum(ComplexD &c)
|
|
||||||
{
|
|
||||||
GlobalSumVector((double *)&c,2);
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
void CartesianCommunicator::GlobalSumVector(ComplexF *c,int N)
|
void CartesianCommunicator::GlobalSumVector(ComplexF *c,int N)
|
||||||
{
|
{
|
||||||
GlobalSumVector((float *)c,2*N);
|
GlobalSumVector((float *)c,2*N);
|
||||||
}
|
}
|
||||||
|
void CartesianCommunicator::GlobalSum(ComplexD &c)
|
||||||
|
{
|
||||||
|
GlobalSumVector((double *)&c,2);
|
||||||
|
}
|
||||||
void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N)
|
void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N)
|
||||||
{
|
{
|
||||||
GlobalSumVector((double *)c,2*N);
|
GlobalSumVector((double *)c,2*N);
|
||||||
|
|||||||
@@ -33,12 +33,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|||||||
///////////////////////////////////
|
///////////////////////////////////
|
||||||
#include <Grid/communicator/SharedMemory.h>
|
#include <Grid/communicator/SharedMemory.h>
|
||||||
|
|
||||||
#define NVLINK_GET
|
|
||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
extern bool Stencil_force_mpi ;
|
|
||||||
|
|
||||||
class CartesianCommunicator : public SharedMemory {
|
class CartesianCommunicator : public SharedMemory {
|
||||||
|
|
||||||
public:
|
public:
|
||||||
@@ -55,11 +51,10 @@ public:
|
|||||||
// Communicator should know nothing of the physics grid, only processor grid.
|
// Communicator should know nothing of the physics grid, only processor grid.
|
||||||
////////////////////////////////////////////
|
////////////////////////////////////////////
|
||||||
int _Nprocessors; // How many in all
|
int _Nprocessors; // How many in all
|
||||||
int _processor; // linear processor rank
|
|
||||||
unsigned long _ndimension;
|
|
||||||
Coordinate _shm_processors; // Which dimensions get relayed out over processors lanes.
|
|
||||||
Coordinate _processors; // Which dimensions get relayed out over processors lanes.
|
Coordinate _processors; // Which dimensions get relayed out over processors lanes.
|
||||||
|
int _processor; // linear processor rank
|
||||||
Coordinate _processor_coor; // linear processor coordinate
|
Coordinate _processor_coor; // linear processor coordinate
|
||||||
|
unsigned long _ndimension;
|
||||||
static Grid_MPI_Comm communicator_world;
|
static Grid_MPI_Comm communicator_world;
|
||||||
Grid_MPI_Comm communicator;
|
Grid_MPI_Comm communicator;
|
||||||
std::vector<Grid_MPI_Comm> communicator_halo;
|
std::vector<Grid_MPI_Comm> communicator_halo;
|
||||||
@@ -100,16 +95,14 @@ public:
|
|||||||
int BossRank(void) ;
|
int BossRank(void) ;
|
||||||
int ThisRank(void) ;
|
int ThisRank(void) ;
|
||||||
const Coordinate & ThisProcessorCoor(void) ;
|
const Coordinate & ThisProcessorCoor(void) ;
|
||||||
const Coordinate & ShmGrid(void) { return _shm_processors; } ;
|
|
||||||
const Coordinate & ProcessorGrid(void) ;
|
const Coordinate & ProcessorGrid(void) ;
|
||||||
int ProcessorCount(void) ;
|
int ProcessorCount(void) ;
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
||||||
// very VERY rarely (Log, serial RNG) we need world without a grid
|
// very VERY rarely (Log, serial RNG) we need world without a grid
|
||||||
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
||||||
static int RankWorld(void) ;
|
static int RankWorld(void) ;
|
||||||
static void BroadcastWorld(int root,void* data, uint64_t bytes);
|
static void BroadcastWorld(int root,void* data, int bytes);
|
||||||
static void BarrierWorld(void);
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////
|
||||||
// Reduction
|
// Reduction
|
||||||
@@ -130,83 +123,34 @@ public:
|
|||||||
void GlobalXOR(uint32_t &);
|
void GlobalXOR(uint32_t &);
|
||||||
void GlobalXOR(uint64_t &);
|
void GlobalXOR(uint64_t &);
|
||||||
|
|
||||||
template<class obj> void GlobalSumP2P(obj &o)
|
|
||||||
{
|
|
||||||
std::vector<obj> column;
|
|
||||||
obj accum = o;
|
|
||||||
int source,dest;
|
|
||||||
for(int d=0;d<_ndimension;d++){
|
|
||||||
column.resize(_processors[d]);
|
|
||||||
column[0] = accum;
|
|
||||||
std::vector<MpiCommsRequest_t> list;
|
|
||||||
for(int p=1;p<_processors[d];p++){
|
|
||||||
ShiftedRanks(d,p,source,dest);
|
|
||||||
SendToRecvFromBegin(list,
|
|
||||||
&column[0],
|
|
||||||
dest,
|
|
||||||
&column[p],
|
|
||||||
source,
|
|
||||||
sizeof(obj),d*100+p);
|
|
||||||
|
|
||||||
}
|
|
||||||
if (!list.empty()) // avoid triggering GRID_ASSERT in comms == none
|
|
||||||
CommsComplete(list);
|
|
||||||
for(int p=1;p<_processors[d];p++){
|
|
||||||
accum = accum + column[p];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
Broadcast(0,accum);
|
|
||||||
o=accum;
|
|
||||||
}
|
|
||||||
|
|
||||||
template<class obj> void GlobalSum(obj &o){
|
template<class obj> void GlobalSum(obj &o){
|
||||||
typedef typename obj::scalar_type scalar_type;
|
typedef typename obj::scalar_type scalar_type;
|
||||||
int words = sizeof(obj)/sizeof(scalar_type);
|
int words = sizeof(obj)/sizeof(scalar_type);
|
||||||
scalar_type * ptr = (scalar_type *)& o; // Safe alias
|
scalar_type * ptr = (scalar_type *)& o;
|
||||||
GlobalSumVector(ptr,words);
|
GlobalSumVector(ptr,words);
|
||||||
}
|
}
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////
|
||||||
// Face exchange, buffer swap in translational invariant way
|
// Face exchange, buffer swap in translational invariant way
|
||||||
////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////
|
||||||
void CommsComplete(std::vector<MpiCommsRequest_t> &list);
|
|
||||||
void SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list,
|
|
||||||
void *xmit,
|
|
||||||
int dest,
|
|
||||||
void *recv,
|
|
||||||
int from,
|
|
||||||
uint64_t bytes,int dir);
|
|
||||||
|
|
||||||
void SendToRecvFrom(void *xmit,
|
void SendToRecvFrom(void *xmit,
|
||||||
int xmit_to_rank,
|
int xmit_to_rank,
|
||||||
void *recv,
|
void *recv,
|
||||||
int recv_from_rank,
|
int recv_from_rank,
|
||||||
uint64_t bytes);
|
int bytes);
|
||||||
|
|
||||||
int IsOffNode(int rank);
|
|
||||||
double StencilSendToRecvFrom(void *xmit,
|
double StencilSendToRecvFrom(void *xmit,
|
||||||
int xmit_to_rank,int do_xmit,
|
int xmit_to_rank,
|
||||||
void *recv,
|
void *recv,
|
||||||
int recv_from_rank,int do_recv,
|
int recv_from_rank,
|
||||||
uint64_t bytes,int dir);
|
int bytes,int dir);
|
||||||
|
|
||||||
double StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
|
|
||||||
void *xmit,
|
|
||||||
int xmit_to_rank,int do_xmit,
|
|
||||||
void *recv,
|
|
||||||
int recv_from_rank,int do_recv,
|
|
||||||
uint64_t xbytes,uint64_t rbytes,int dir);
|
|
||||||
|
|
||||||
// Could do a PollHtoD and have a CommsMerge dependence
|
|
||||||
void StencilSendToRecvFromPollDtoH (std::vector<CommsRequest_t> &list);
|
|
||||||
void StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list);
|
|
||||||
|
|
||||||
double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||||
void *xmit,void *xmit_comp,
|
void *xmit,
|
||||||
int xmit_to_rank,int do_xmit,
|
int xmit_to_rank,
|
||||||
void *recv,void *recv_comp,
|
void *recv,
|
||||||
int recv_from_rank,int do_recv,
|
int recv_from_rank,
|
||||||
uint64_t xbytes,uint64_t rbytes,int dir);
|
int bytes,int dir);
|
||||||
|
|
||||||
|
|
||||||
void StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int i);
|
void StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int i);
|
||||||
@@ -220,20 +164,20 @@ public:
|
|||||||
////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////
|
||||||
// Broadcast a buffer and composite larger
|
// Broadcast a buffer and composite larger
|
||||||
////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////
|
||||||
void Broadcast(int root,void* data, uint64_t bytes);
|
void Broadcast(int root,void* data, int bytes);
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////
|
||||||
// All2All down one dimension
|
// All2All down one dimension
|
||||||
////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////
|
||||||
template<class T> void AllToAll(int dim,std::vector<T> &in, std::vector<T> &out){
|
template<class T> void AllToAll(int dim,std::vector<T> &in, std::vector<T> &out){
|
||||||
GRID_ASSERT(dim>=0);
|
assert(dim>=0);
|
||||||
GRID_ASSERT(dim<_ndimension);
|
assert(dim<_ndimension);
|
||||||
GRID_ASSERT(in.size()==out.size());
|
assert(in.size()==out.size());
|
||||||
int numnode = _processors[dim];
|
int numnode = _processors[dim];
|
||||||
uint64_t bytes=sizeof(T);
|
uint64_t bytes=sizeof(T);
|
||||||
uint64_t words=in.size()/numnode;
|
uint64_t words=in.size()/numnode;
|
||||||
GRID_ASSERT(numnode * words == in.size());
|
assert(numnode * words == in.size());
|
||||||
GRID_ASSERT(words < (1ULL<<31));
|
assert(words < (1ULL<<31));
|
||||||
AllToAll(dim,(void *)&in[0],(void *)&out[0],words,bytes);
|
AllToAll(dim,(void *)&in[0],(void *)&out[0],words,bytes);
|
||||||
}
|
}
|
||||||
void AllToAll(int dim ,void *in,void *out,uint64_t words,uint64_t bytes);
|
void AllToAll(int dim ,void *in,void *out,uint64_t words,uint64_t bytes);
|
||||||
|
|||||||
@@ -28,17 +28,9 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|||||||
#include <Grid/GridCore.h>
|
#include <Grid/GridCore.h>
|
||||||
#include <Grid/communicator/SharedMemory.h>
|
#include <Grid/communicator/SharedMemory.h>
|
||||||
|
|
||||||
void GridAbort(void) { MPI_Abort(MPI_COMM_WORLD,SIGABRT); }
|
|
||||||
extern void * Grid_backtrace_buffer[_NBACKTRACE];
|
|
||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
|
|
||||||
Grid_MPI_Comm CartesianCommunicator::communicator_world;
|
Grid_MPI_Comm CartesianCommunicator::communicator_world;
|
||||||
#ifdef GRID_CHECKSUM_COMMS
|
|
||||||
uint64_t checksum_index = 1;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
|
|
||||||
////////////////////////////////////////////
|
////////////////////////////////////////////
|
||||||
// First initialise of comms system
|
// First initialise of comms system
|
||||||
@@ -63,11 +55,11 @@ void CartesianCommunicator::Init(int *argc, char ***argv)
|
|||||||
#endif
|
#endif
|
||||||
//If only 1 comms thread we require any threading mode other than SINGLE, but for multiple comms threads we need MULTIPLE
|
//If only 1 comms thread we require any threading mode other than SINGLE, but for multiple comms threads we need MULTIPLE
|
||||||
if( (nCommThreads == 1) && (provided == MPI_THREAD_SINGLE) ) {
|
if( (nCommThreads == 1) && (provided == MPI_THREAD_SINGLE) ) {
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
}
|
}
|
||||||
|
|
||||||
if( (nCommThreads > 1) && (provided != MPI_THREAD_MULTIPLE) ) {
|
if( (nCommThreads > 1) && (provided != MPI_THREAD_MULTIPLE) ) {
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -88,20 +80,20 @@ void CartesianCommunicator::Init(int *argc, char ***argv)
|
|||||||
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
|
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
|
||||||
{
|
{
|
||||||
int ierr=MPI_Cart_shift(communicator,dim,shift,&source,&dest);
|
int ierr=MPI_Cart_shift(communicator,dim,shift,&source,&dest);
|
||||||
GRID_ASSERT(ierr==0);
|
assert(ierr==0);
|
||||||
}
|
}
|
||||||
int CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor)
|
int CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor)
|
||||||
{
|
{
|
||||||
int rank;
|
int rank;
|
||||||
int ierr=MPI_Cart_rank (communicator, &coor[0], &rank);
|
int ierr=MPI_Cart_rank (communicator, &coor[0], &rank);
|
||||||
GRID_ASSERT(ierr==0);
|
assert(ierr==0);
|
||||||
return rank;
|
return rank;
|
||||||
}
|
}
|
||||||
void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor)
|
void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor)
|
||||||
{
|
{
|
||||||
coor.resize(_ndimension);
|
coor.resize(_ndimension);
|
||||||
int ierr=MPI_Cart_coords (communicator, rank, _ndimension,&coor[0]);
|
int ierr=MPI_Cart_coords (communicator, rank, _ndimension,&coor[0]);
|
||||||
GRID_ASSERT(ierr==0);
|
assert(ierr==0);
|
||||||
}
|
}
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
@@ -114,7 +106,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
|
|||||||
// Remap using the shared memory optimising routine
|
// Remap using the shared memory optimising routine
|
||||||
// The remap creates a comm which must be freed
|
// The remap creates a comm which must be freed
|
||||||
////////////////////////////////////////////////////
|
////////////////////////////////////////////////////
|
||||||
GlobalSharedMemory::OptimalCommunicator (processors,optimal_comm,_shm_processors);
|
GlobalSharedMemory::OptimalCommunicator (processors,optimal_comm);
|
||||||
InitFromMPICommunicator(processors,optimal_comm);
|
InitFromMPICommunicator(processors,optimal_comm);
|
||||||
SetCommunicator(optimal_comm);
|
SetCommunicator(optimal_comm);
|
||||||
///////////////////////////////////////////////////
|
///////////////////////////////////////////////////
|
||||||
@@ -128,17 +120,16 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
|
|||||||
//////////////////////////////////
|
//////////////////////////////////
|
||||||
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)
|
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)
|
||||||
{
|
{
|
||||||
_ndimension = processors.size(); GRID_ASSERT(_ndimension>=1);
|
_ndimension = processors.size(); assert(_ndimension>=1);
|
||||||
int parent_ndimension = parent._ndimension; GRID_ASSERT(_ndimension >= parent._ndimension);
|
int parent_ndimension = parent._ndimension; assert(_ndimension >= parent._ndimension);
|
||||||
Coordinate parent_processor_coor(_ndimension,0);
|
Coordinate parent_processor_coor(_ndimension,0);
|
||||||
Coordinate parent_processors (_ndimension,1);
|
Coordinate parent_processors (_ndimension,1);
|
||||||
Coordinate shm_processors (_ndimension,1);
|
|
||||||
// Can make 5d grid from 4d etc...
|
// Can make 5d grid from 4d etc...
|
||||||
int pad = _ndimension-parent_ndimension;
|
int pad = _ndimension-parent_ndimension;
|
||||||
for(int d=0;d<parent_ndimension;d++){
|
for(int d=0;d<parent_ndimension;d++){
|
||||||
parent_processor_coor[pad+d]=parent._processor_coor[d];
|
parent_processor_coor[pad+d]=parent._processor_coor[d];
|
||||||
parent_processors [pad+d]=parent._processors[d];
|
parent_processors [pad+d]=parent._processors[d];
|
||||||
shm_processors [pad+d]=parent._shm_processors[d];
|
|
||||||
}
|
}
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
@@ -153,7 +144,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
|
|||||||
childsize *= processors[d];
|
childsize *= processors[d];
|
||||||
}
|
}
|
||||||
int Nchild = Nparent/childsize;
|
int Nchild = Nparent/childsize;
|
||||||
GRID_ASSERT (childsize * Nchild == Nparent);
|
assert (childsize * Nchild == Nparent);
|
||||||
|
|
||||||
Coordinate ccoor(_ndimension); // coor within subcommunicator
|
Coordinate ccoor(_ndimension); // coor within subcommunicator
|
||||||
Coordinate scoor(_ndimension); // coor of split within parent
|
Coordinate scoor(_ndimension); // coor of split within parent
|
||||||
@@ -163,7 +154,6 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
|
|||||||
ccoor[d] = parent_processor_coor[d] % processors[d];
|
ccoor[d] = parent_processor_coor[d] % processors[d];
|
||||||
scoor[d] = parent_processor_coor[d] / processors[d];
|
scoor[d] = parent_processor_coor[d] / processors[d];
|
||||||
ssize[d] = parent_processors[d] / processors[d];
|
ssize[d] = parent_processors[d] / processors[d];
|
||||||
if ( processors[d] < shm_processors[d] ) shm_processors[d] = processors[d]; // subnode splitting.
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// rank within subcomm ; srank is rank of subcomm within blocks of subcomms
|
// rank within subcomm ; srank is rank of subcomm within blocks of subcomms
|
||||||
@@ -179,12 +169,12 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
|
|||||||
// Split the communicator
|
// Split the communicator
|
||||||
////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////
|
||||||
int ierr= MPI_Comm_split(parent.communicator,srank,crank,&comm_split);
|
int ierr= MPI_Comm_split(parent.communicator,srank,crank,&comm_split);
|
||||||
GRID_ASSERT(ierr==0);
|
assert(ierr==0);
|
||||||
|
|
||||||
} else {
|
} else {
|
||||||
srank = 0;
|
srank = 0;
|
||||||
int ierr = MPI_Comm_dup (parent.communicator,&comm_split);
|
int ierr = MPI_Comm_dup (parent.communicator,&comm_split);
|
||||||
GRID_ASSERT(ierr==0);
|
assert(ierr==0);
|
||||||
}
|
}
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
@@ -209,7 +199,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
for(int d=0;d<processors.size();d++){
|
for(int d=0;d<processors.size();d++){
|
||||||
GRID_ASSERT(_processor_coor[d] == ccoor[d] );
|
assert(_processor_coor[d] == ccoor[d] );
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -251,7 +241,7 @@ void CartesianCommunicator::InitFromMPICommunicator(const Coordinate &processors
|
|||||||
for(int i=0;i<_ndimension*2;i++){
|
for(int i=0;i<_ndimension*2;i++){
|
||||||
MPI_Comm_dup(communicator,&communicator_halo[i]);
|
MPI_Comm_dup(communicator,&communicator_halo[i]);
|
||||||
}
|
}
|
||||||
GRID_ASSERT(Size==_Nprocessors);
|
assert(Size==_Nprocessors);
|
||||||
}
|
}
|
||||||
|
|
||||||
CartesianCommunicator::~CartesianCommunicator()
|
CartesianCommunicator::~CartesianCommunicator()
|
||||||
@@ -265,176 +255,103 @@ CartesianCommunicator::~CartesianCommunicator()
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#ifdef USE_GRID_REDUCTION
|
|
||||||
void CartesianCommunicator::GlobalSum(float &f){
|
|
||||||
FlightRecorder::StepLog("GlobalSumP2P");
|
|
||||||
CartesianCommunicator::GlobalSumP2P(f);
|
|
||||||
}
|
|
||||||
void CartesianCommunicator::GlobalSum(double &d)
|
|
||||||
{
|
|
||||||
FlightRecorder::StepLog("GlobalSumP2P");
|
|
||||||
CartesianCommunicator::GlobalSumP2P(d);
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
void CartesianCommunicator::GlobalSum(float &f){
|
|
||||||
FlightRecorder::StepLog("AllReduce float");
|
|
||||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
|
|
||||||
GRID_ASSERT(ierr==0);
|
|
||||||
}
|
|
||||||
void CartesianCommunicator::GlobalSum(double &d)
|
|
||||||
{
|
|
||||||
FlightRecorder::StepLog("AllReduce double");
|
|
||||||
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
|
|
||||||
GRID_ASSERT(ierr==0);
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
void CartesianCommunicator::GlobalSum(uint32_t &u){
|
void CartesianCommunicator::GlobalSum(uint32_t &u){
|
||||||
FlightRecorder::StepLog("AllReduce uint32_t");
|
|
||||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
|
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
|
||||||
GRID_ASSERT(ierr==0);
|
assert(ierr==0);
|
||||||
}
|
}
|
||||||
void CartesianCommunicator::GlobalSum(uint64_t &u){
|
void CartesianCommunicator::GlobalSum(uint64_t &u){
|
||||||
FlightRecorder::StepLog("AllReduce uint64_t");
|
|
||||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator);
|
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator);
|
||||||
GRID_ASSERT(ierr==0);
|
assert(ierr==0);
|
||||||
}
|
}
|
||||||
void CartesianCommunicator::GlobalSumVector(uint64_t* u,int N){
|
void CartesianCommunicator::GlobalSumVector(uint64_t* u,int N){
|
||||||
FlightRecorder::StepLog("AllReduceVector");
|
|
||||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,u,N,MPI_UINT64_T,MPI_SUM,communicator);
|
int ierr=MPI_Allreduce(MPI_IN_PLACE,u,N,MPI_UINT64_T,MPI_SUM,communicator);
|
||||||
GRID_ASSERT(ierr==0);
|
assert(ierr==0);
|
||||||
}
|
}
|
||||||
void CartesianCommunicator::GlobalXOR(uint32_t &u){
|
void CartesianCommunicator::GlobalXOR(uint32_t &u){
|
||||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_BXOR,communicator);
|
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_BXOR,communicator);
|
||||||
GRID_ASSERT(ierr==0);
|
assert(ierr==0);
|
||||||
}
|
}
|
||||||
void CartesianCommunicator::GlobalXOR(uint64_t &u){
|
void CartesianCommunicator::GlobalXOR(uint64_t &u){
|
||||||
FlightRecorder::StepLog("GlobalXOR");
|
|
||||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_BXOR,communicator);
|
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_BXOR,communicator);
|
||||||
GRID_ASSERT(ierr==0);
|
assert(ierr==0);
|
||||||
}
|
}
|
||||||
void CartesianCommunicator::GlobalMax(float &f)
|
void CartesianCommunicator::GlobalMax(float &f)
|
||||||
{
|
{
|
||||||
FlightRecorder::StepLog("GlobalMax");
|
|
||||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_MAX,communicator);
|
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_MAX,communicator);
|
||||||
GRID_ASSERT(ierr==0);
|
assert(ierr==0);
|
||||||
}
|
}
|
||||||
void CartesianCommunicator::GlobalMax(double &d)
|
void CartesianCommunicator::GlobalMax(double &d)
|
||||||
{
|
{
|
||||||
FlightRecorder::StepLog("GlobalMax");
|
|
||||||
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator);
|
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator);
|
||||||
GRID_ASSERT(ierr==0);
|
assert(ierr==0);
|
||||||
|
}
|
||||||
|
void CartesianCommunicator::GlobalSum(float &f){
|
||||||
|
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
|
||||||
|
assert(ierr==0);
|
||||||
}
|
}
|
||||||
void CartesianCommunicator::GlobalSumVector(float *f,int N)
|
void CartesianCommunicator::GlobalSumVector(float *f,int N)
|
||||||
{
|
{
|
||||||
FlightRecorder::StepLog("GlobalSumVector(float *)");
|
|
||||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator);
|
int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator);
|
||||||
GRID_ASSERT(ierr==0);
|
assert(ierr==0);
|
||||||
|
}
|
||||||
|
void CartesianCommunicator::GlobalSum(double &d)
|
||||||
|
{
|
||||||
|
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
|
||||||
|
assert(ierr==0);
|
||||||
}
|
}
|
||||||
void CartesianCommunicator::GlobalSumVector(double *d,int N)
|
void CartesianCommunicator::GlobalSumVector(double *d,int N)
|
||||||
{
|
{
|
||||||
FlightRecorder::StepLog("GlobalSumVector(double *)");
|
|
||||||
int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
|
int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
|
||||||
GRID_ASSERT(ierr==0);
|
assert(ierr==0);
|
||||||
}
|
}
|
||||||
|
|
||||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list,
|
|
||||||
void *xmit,
|
|
||||||
int dest,
|
|
||||||
void *recv,
|
|
||||||
int from,
|
|
||||||
uint64_t bytes,int dir)
|
|
||||||
{
|
|
||||||
MPI_Request xrq;
|
|
||||||
MPI_Request rrq;
|
|
||||||
|
|
||||||
GRID_ASSERT(dest != _processor);
|
|
||||||
GRID_ASSERT(from != _processor);
|
|
||||||
int tag;
|
|
||||||
|
|
||||||
tag= dir+from*32;
|
|
||||||
int ierr=MPI_Irecv(recv,(int)( bytes/sizeof(int32_t)), MPI_INT32_T,from,tag,communicator,&rrq);
|
|
||||||
GRID_ASSERT(ierr==0);
|
|
||||||
list.push_back(rrq);
|
|
||||||
|
|
||||||
tag= dir+_processor*32;
|
|
||||||
ierr =MPI_Isend(xmit,(int)(bytes/sizeof(int32_t)), MPI_INT32_T,dest,tag,communicator,&xrq);
|
|
||||||
GRID_ASSERT(ierr==0);
|
|
||||||
list.push_back(xrq);
|
|
||||||
}
|
|
||||||
void CartesianCommunicator::CommsComplete(std::vector<MpiCommsRequest_t> &list)
|
|
||||||
{
|
|
||||||
int nreq=list.size();
|
|
||||||
|
|
||||||
if (nreq==0) return;
|
|
||||||
|
|
||||||
std::vector<MPI_Status> status(nreq);
|
|
||||||
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
|
|
||||||
GRID_ASSERT(ierr==0);
|
|
||||||
list.resize(0);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Basic Halo comms primitive
|
// Basic Halo comms primitive
|
||||||
void CartesianCommunicator::SendToRecvFrom(void *xmit,
|
void CartesianCommunicator::SendToRecvFrom(void *xmit,
|
||||||
int dest,
|
int dest,
|
||||||
void *recv,
|
void *recv,
|
||||||
int from,
|
int from,
|
||||||
uint64_t bytes)
|
int bytes)
|
||||||
{
|
{
|
||||||
std::vector<MpiCommsRequest_t> reqs(0);
|
std::vector<CommsRequest_t> reqs(0);
|
||||||
|
unsigned long xcrc = crc32(0L, Z_NULL, 0);
|
||||||
|
unsigned long rcrc = crc32(0L, Z_NULL, 0);
|
||||||
|
|
||||||
int myrank = _processor;
|
int myrank = _processor;
|
||||||
int ierr;
|
int ierr;
|
||||||
|
|
||||||
// Enforce no UVM in comms, device or host OK
|
// Enforce no UVM in comms, device or host OK
|
||||||
GRID_ASSERT(acceleratorIsCommunicable(xmit));
|
assert(acceleratorIsCommunicable(xmit));
|
||||||
GRID_ASSERT(acceleratorIsCommunicable(recv));
|
assert(acceleratorIsCommunicable(recv));
|
||||||
|
|
||||||
// Give the CPU to MPI immediately; can use threads to overlap optionally
|
// Give the CPU to MPI immediately; can use threads to overlap optionally
|
||||||
// printf("proc %d SendToRecvFrom %d bytes Sendrecv \n",_processor,bytes);
|
// printf("proc %d SendToRecvFrom %d bytes Sendrecv \n",_processor,bytes);
|
||||||
ierr=MPI_Sendrecv(xmit,(int)(bytes/sizeof(int32_t)),MPI_INT32_T,dest,myrank,
|
ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,dest,myrank,
|
||||||
recv,(int)(bytes/sizeof(int32_t)),MPI_INT32_T,from, from,
|
recv,bytes,MPI_CHAR,from, from,
|
||||||
communicator,MPI_STATUS_IGNORE);
|
communicator,MPI_STATUS_IGNORE);
|
||||||
GRID_ASSERT(ierr==0);
|
assert(ierr==0);
|
||||||
|
|
||||||
|
// xcrc = crc32(xcrc,(unsigned char *)xmit,bytes);
|
||||||
|
// rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
|
||||||
|
// printf("proc %d SendToRecvFrom %d bytes xcrc %lx rcrc %lx\n",_processor,bytes,xcrc,rcrc); fflush
|
||||||
}
|
}
|
||||||
// Basic Halo comms primitive
|
// Basic Halo comms primitive
|
||||||
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
|
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
|
||||||
int dest, int dox,
|
int dest,
|
||||||
void *recv,
|
void *recv,
|
||||||
int from, int dor,
|
int from,
|
||||||
uint64_t bytes,int dir)
|
int bytes,int dir)
|
||||||
{
|
{
|
||||||
std::vector<CommsRequest_t> list;
|
std::vector<CommsRequest_t> list;
|
||||||
double offbytes = StencilSendToRecvFromPrepare(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
|
double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,recv,from,bytes,dir);
|
||||||
offbytes += StencilSendToRecvFromBegin(list,xmit,xmit,dest,dox,recv,recv,from,dor,bytes,bytes,dir);
|
|
||||||
StencilSendToRecvFromComplete(list,dir);
|
StencilSendToRecvFromComplete(list,dir);
|
||||||
return offbytes;
|
return offbytes;
|
||||||
}
|
}
|
||||||
int CartesianCommunicator::IsOffNode(int rank)
|
|
||||||
{
|
|
||||||
int grank = ShmRanks[rank];
|
|
||||||
if ( grank == MPI_UNDEFINED ) return true;
|
|
||||||
else return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
#ifdef ACCELERATOR_AWARE_MPI
|
|
||||||
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {};
|
|
||||||
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {};
|
|
||||||
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
|
|
||||||
void *xmit,
|
|
||||||
int dest,int dox,
|
|
||||||
void *recv,
|
|
||||||
int from,int dor,
|
|
||||||
uint64_t xbytes,uint64_t rbytes,int dir)
|
|
||||||
{
|
|
||||||
return 0.0; // Do nothing -- no preparation required
|
|
||||||
}
|
|
||||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||||
void *xmit,void *xmit_comp,
|
void *xmit,
|
||||||
int dest,int dox,
|
int dest,
|
||||||
void *recv,void *recv_comp,
|
void *recv,
|
||||||
int from,int dor,
|
int from,
|
||||||
uint64_t xbytes,uint64_t rbytes,int dir)
|
int bytes,int dir)
|
||||||
{
|
{
|
||||||
int ncomm =communicator_halo.size();
|
int ncomm =communicator_halo.size();
|
||||||
int commdir=dir%ncomm;
|
int commdir=dir%ncomm;
|
||||||
@@ -447,431 +364,47 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
|
|||||||
int gfrom = ShmRanks[from];
|
int gfrom = ShmRanks[from];
|
||||||
int gme = ShmRanks[_processor];
|
int gme = ShmRanks[_processor];
|
||||||
|
|
||||||
GRID_ASSERT(dest != _processor);
|
assert(dest != _processor);
|
||||||
GRID_ASSERT(from != _processor);
|
assert(from != _processor);
|
||||||
GRID_ASSERT(gme == ShmRank);
|
assert(gme == ShmRank);
|
||||||
double off_node_bytes=0.0;
|
double off_node_bytes=0.0;
|
||||||
int tag;
|
int tag;
|
||||||
|
|
||||||
if ( dor ) {
|
if ( gfrom ==MPI_UNDEFINED) {
|
||||||
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
|
tag= dir+from*32;
|
||||||
tag= dir+from*32;
|
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
|
||||||
// std::cout << " StencilSendToRecvFrom "<<dir<<" MPI_Irecv "<<std::hex<<recv<<std::dec<<std::endl;
|
assert(ierr==0);
|
||||||
ierr=MPI_Irecv(recv_comp,(int)(rbytes/sizeof(int32_t)), MPI_INT32_T,from,tag,communicator_halo[commdir],&rrq);
|
list.push_back(rrq);
|
||||||
GRID_ASSERT(ierr==0);
|
off_node_bytes+=bytes;
|
||||||
list.push_back(rrq);
|
|
||||||
off_node_bytes+=rbytes;
|
|
||||||
}
|
|
||||||
#ifdef NVLINK_GET
|
|
||||||
else {
|
|
||||||
void *shm = (void *) this->ShmBufferTranslate(from,xmit);
|
|
||||||
GRID_ASSERT(shm!=NULL);
|
|
||||||
// std::cout << " StencilSendToRecvFrom "<<dir<<" CopyDeviceToDevice recv "<<std::hex<<recv<<" remote "<<shm <<std::dec<<std::endl;
|
|
||||||
acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
// This is a NVLINK PUT
|
|
||||||
if (dox) {
|
if ( gdest == MPI_UNDEFINED ) {
|
||||||
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
|
tag= dir+_processor*32;
|
||||||
tag= dir+_processor*32;
|
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
|
||||||
ierr =MPI_Isend(xmit_comp,(int)(xbytes/sizeof(int32_t)), MPI_INT32_T,dest,tag,communicator_halo[commdir],&xrq);
|
assert(ierr==0);
|
||||||
GRID_ASSERT(ierr==0);
|
list.push_back(xrq);
|
||||||
list.push_back(xrq);
|
off_node_bytes+=bytes;
|
||||||
off_node_bytes+=xbytes;
|
|
||||||
} else {
|
|
||||||
#ifndef NVLINK_GET
|
|
||||||
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
|
|
||||||
GRID_ASSERT(shm!=NULL);
|
|
||||||
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if ( CommunicatorPolicy == CommunicatorPolicySequential ) {
|
||||||
|
this->StencilSendToRecvFromComplete(list,dir);
|
||||||
|
}
|
||||||
|
|
||||||
return off_node_bytes;
|
return off_node_bytes;
|
||||||
}
|
}
|
||||||
|
|
||||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
|
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
|
||||||
{
|
{
|
||||||
int nreq=list.size();
|
int nreq=list.size();
|
||||||
/*finishes Get/Put*/
|
|
||||||
acceleratorCopySynchronise();
|
|
||||||
|
|
||||||
if (nreq==0) return;
|
if (nreq==0) return;
|
||||||
|
|
||||||
std::vector<MPI_Status> status(nreq);
|
std::vector<MPI_Status> status(nreq);
|
||||||
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
|
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
|
||||||
GRID_ASSERT(ierr==0);
|
assert(ierr==0);
|
||||||
list.resize(0);
|
list.resize(0);
|
||||||
this->StencilBarrier();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
#else /* NOT ... ACCELERATOR_AWARE_MPI */
|
|
||||||
///////////////////////////////////////////
|
|
||||||
// Pipeline mode through host memory
|
|
||||||
///////////////////////////////////////////
|
|
||||||
/*
|
|
||||||
* In prepare (phase 1):
|
|
||||||
* PHASE 1: (prepare)
|
|
||||||
* - post MPI receive buffers asynch
|
|
||||||
* - post device - host send buffer transfer asynch
|
|
||||||
* PHASE 2: (Begin)
|
|
||||||
* - complete all copies
|
|
||||||
* - post MPI send asynch
|
|
||||||
* - post device - device transfers
|
|
||||||
* PHASE 3: (Complete)
|
|
||||||
* - MPI_waitall
|
|
||||||
* - host-device transfers
|
|
||||||
*
|
|
||||||
*********************************
|
|
||||||
* NB could split this further:
|
|
||||||
*--------------------------------
|
|
||||||
* PHASE 1: (Prepare)
|
|
||||||
* - post MPI receive buffers asynch
|
|
||||||
* - post device - host send buffer transfer asynch
|
|
||||||
* PHASE 2: (BeginInterNode)
|
|
||||||
* - complete all copies
|
|
||||||
* - post MPI send asynch
|
|
||||||
* PHASE 3: (BeginIntraNode)
|
|
||||||
* - post device - device transfers
|
|
||||||
* PHASE 4: (Complete)
|
|
||||||
* - MPI_waitall
|
|
||||||
* - host-device transfers asynch
|
|
||||||
* - (complete all copies)
|
|
||||||
*/
|
|
||||||
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
|
|
||||||
void *xmit,
|
|
||||||
int dest,int dox,
|
|
||||||
void *recv,
|
|
||||||
int from,int dor,
|
|
||||||
uint64_t xbytes,uint64_t rbytes,int dir)
|
|
||||||
{
|
|
||||||
/*
|
|
||||||
* Bring sequence from Stencil.h down to lower level.
|
|
||||||
* Assume using XeLink is ok
|
|
||||||
*/
|
|
||||||
int ncomm =communicator_halo.size();
|
|
||||||
int commdir=dir%ncomm;
|
|
||||||
|
|
||||||
MPI_Request xrq;
|
|
||||||
MPI_Request rrq;
|
|
||||||
|
|
||||||
int ierr;
|
|
||||||
int gdest = ShmRanks[dest];
|
|
||||||
int gfrom = ShmRanks[from];
|
|
||||||
int gme = ShmRanks[_processor];
|
|
||||||
|
|
||||||
GRID_ASSERT(dest != _processor);
|
|
||||||
GRID_ASSERT(from != _processor);
|
|
||||||
GRID_ASSERT(gme == ShmRank);
|
|
||||||
double off_node_bytes=0.0;
|
|
||||||
int tag;
|
|
||||||
|
|
||||||
void * host_recv = NULL;
|
|
||||||
void * host_xmit = NULL;
|
|
||||||
|
|
||||||
/*
|
|
||||||
* PHASE 1: (Prepare)
|
|
||||||
* - post MPI receive buffers asynch
|
|
||||||
* - post device - host send buffer transfer asynch
|
|
||||||
*/
|
|
||||||
|
|
||||||
#ifdef GRID_CHECKSUM_COMMS
|
|
||||||
rbytes += 8;
|
|
||||||
xbytes += 8;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
if ( dor ) {
|
|
||||||
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
|
|
||||||
tag= dir+from*32;
|
|
||||||
host_recv = this->HostBufferMalloc(rbytes);
|
|
||||||
ierr=MPI_Irecv(host_recv,(int)(rbytes/sizeof(int32_t)), MPI_INT32_T,from,tag,communicator_halo[commdir],&rrq);
|
|
||||||
GRID_ASSERT(ierr==0);
|
|
||||||
CommsRequest_t srq;
|
|
||||||
srq.PacketType = InterNodeRecv;
|
|
||||||
srq.bytes = rbytes;
|
|
||||||
srq.req = rrq;
|
|
||||||
srq.host_buf = host_recv;
|
|
||||||
srq.device_buf = recv;
|
|
||||||
srq.tag = tag;
|
|
||||||
list.push_back(srq);
|
|
||||||
off_node_bytes+=rbytes;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (dox) {
|
|
||||||
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
|
|
||||||
|
|
||||||
tag= dir+_processor*32;
|
|
||||||
|
|
||||||
host_xmit = this->HostBufferMalloc(xbytes);
|
|
||||||
CommsRequest_t srq;
|
|
||||||
|
|
||||||
#ifdef GRID_CHECKSUM_COMMS
|
|
||||||
uint64_t xbytes_data = xbytes - 8;
|
|
||||||
srq.ev = acceleratorCopyFromDeviceAsynch(xmit, host_xmit,xbytes_data); // Make this Asynch
|
|
||||||
GRID_ASSERT(xbytes % 8 == 0);
|
|
||||||
// flip one bit so that a zero buffer is not consistent
|
|
||||||
uint64_t xsum = checksum_gpu((uint64_t*)xmit, xbytes_data / 8) ^ (checksum_index + 1 + 1000 * tag);
|
|
||||||
*(uint64_t*)(((char*)host_xmit) + xbytes_data) = xsum;
|
|
||||||
#else
|
|
||||||
srq.ev = acceleratorCopyFromDeviceAsynch(xmit, host_xmit,xbytes); // Make this Asynch
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
|
|
||||||
// GRID_ASSERT(ierr==0);
|
|
||||||
// off_node_bytes+=xbytes;
|
|
||||||
|
|
||||||
srq.PacketType = InterNodeXmit;
|
|
||||||
srq.bytes = xbytes;
|
|
||||||
// srq.req = xrq;
|
|
||||||
srq.host_buf = host_xmit;
|
|
||||||
srq.device_buf = xmit;
|
|
||||||
srq.tag = tag;
|
|
||||||
srq.dest = dest;
|
|
||||||
srq.commdir = commdir;
|
|
||||||
list.push_back(srq);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return off_node_bytes;
|
|
||||||
}
|
|
||||||
/*
|
|
||||||
* In the interest of better pipelining, poll for completion on each DtoH and
|
|
||||||
* start MPI_ISend in the meantime
|
|
||||||
*/
|
|
||||||
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list)
|
|
||||||
{
|
|
||||||
int pending = 0;
|
|
||||||
do {
|
|
||||||
|
|
||||||
pending = 0;
|
|
||||||
|
|
||||||
for(int idx = 0; idx<list.size();idx++){
|
|
||||||
|
|
||||||
if ( list[idx].PacketType==InterNodeRecv ) {
|
|
||||||
|
|
||||||
int flag = 0;
|
|
||||||
MPI_Status status;
|
|
||||||
int ierr = MPI_Test(&list[idx].req,&flag,&status);
|
|
||||||
assert(ierr==0);
|
|
||||||
|
|
||||||
if ( flag ) {
|
|
||||||
// std::cout << " PollIrecv "<<idx<<" flag "<<flag<<std::endl;
|
|
||||||
#ifdef GRID_CHECKSUM_COMMS
|
|
||||||
acceleratorCopyToDeviceAsynch(list[idx].host_buf,list[idx].device_buf,list[idx].bytes - 8);
|
|
||||||
#else
|
|
||||||
acceleratorCopyToDeviceAsynch(list[idx].host_buf,list[idx].device_buf,list[idx].bytes);
|
|
||||||
#endif
|
|
||||||
list[idx].PacketType=InterNodeReceiveHtoD;
|
|
||||||
} else {
|
|
||||||
pending ++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// std::cout << " PollIrecv "<<pending<<" pending requests"<<std::endl;
|
|
||||||
} while ( pending );
|
|
||||||
|
|
||||||
}
|
|
||||||
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list)
|
|
||||||
{
|
|
||||||
int pending = 0;
|
|
||||||
do {
|
|
||||||
|
|
||||||
pending = 0;
|
|
||||||
|
|
||||||
for(int idx = 0; idx<list.size();idx++){
|
|
||||||
|
|
||||||
if ( list[idx].PacketType==InterNodeXmit ) {
|
|
||||||
|
|
||||||
if ( acceleratorEventIsComplete(list[idx].ev) ) {
|
|
||||||
|
|
||||||
void *host_xmit = list[idx].host_buf;
|
|
||||||
uint64_t xbytes = list[idx].bytes;
|
|
||||||
int dest = list[idx].dest;
|
|
||||||
int tag = list[idx].tag;
|
|
||||||
int commdir = list[idx].commdir;
|
|
||||||
///////////////////
|
|
||||||
// Send packet
|
|
||||||
///////////////////
|
|
||||||
|
|
||||||
// std::cout << " DtoH is complete for index "<<idx<<" calling MPI_Isend "<<std::endl;
|
|
||||||
|
|
||||||
MPI_Request xrq;
|
|
||||||
int ierr =MPI_Isend(host_xmit, (int)(xbytes/sizeof(int32_t)), MPI_INT32_T,dest,tag,communicator_halo[commdir],&xrq);
|
|
||||||
GRID_ASSERT(ierr==0);
|
|
||||||
|
|
||||||
list[idx].req = xrq; // Update the MPI request in the list
|
|
||||||
|
|
||||||
list[idx].PacketType=InterNodeXmitISend;
|
|
||||||
|
|
||||||
} else {
|
|
||||||
// not done, so return to polling loop
|
|
||||||
pending++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} while (pending);
|
|
||||||
}
|
|
||||||
|
|
||||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
|
||||||
void *xmit,void *xmit_comp,
|
|
||||||
int dest,int dox,
|
|
||||||
void *recv,void *recv_comp,
|
|
||||||
int from,int dor,
|
|
||||||
uint64_t xbytes,uint64_t rbytes,int dir)
|
|
||||||
{
|
|
||||||
int ncomm =communicator_halo.size();
|
|
||||||
int commdir=dir%ncomm;
|
|
||||||
|
|
||||||
MPI_Request xrq;
|
|
||||||
MPI_Request rrq;
|
|
||||||
|
|
||||||
int ierr;
|
|
||||||
int gdest = ShmRanks[dest];
|
|
||||||
int gfrom = ShmRanks[from];
|
|
||||||
int gme = ShmRanks[_processor];
|
|
||||||
|
|
||||||
GRID_ASSERT(dest != _processor);
|
|
||||||
GRID_ASSERT(from != _processor);
|
|
||||||
GRID_ASSERT(gme == ShmRank);
|
|
||||||
double off_node_bytes=0.0;
|
|
||||||
int tag;
|
|
||||||
|
|
||||||
void * host_xmit = NULL;
|
|
||||||
|
|
||||||
////////////////////////////////
|
|
||||||
// Receives already posted
|
|
||||||
// Copies already started
|
|
||||||
////////////////////////////////
|
|
||||||
/*
|
|
||||||
* PHASE 2: (Begin)
|
|
||||||
* - complete all copies
|
|
||||||
* - post MPI send asynch
|
|
||||||
*/
|
|
||||||
#ifdef NVLINK_GET
|
|
||||||
if ( dor ) {
|
|
||||||
|
|
||||||
if ( ! ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) ) {
|
|
||||||
// Intranode
|
|
||||||
void *shm = (void *) this->ShmBufferTranslate(from,xmit);
|
|
||||||
GRID_ASSERT(shm!=NULL);
|
|
||||||
|
|
||||||
CommsRequest_t srq;
|
|
||||||
|
|
||||||
srq.ev = acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
|
|
||||||
|
|
||||||
srq.PacketType = IntraNodeRecv;
|
|
||||||
srq.bytes = xbytes;
|
|
||||||
// srq.req = xrq;
|
|
||||||
srq.host_buf = NULL;
|
|
||||||
srq.device_buf = xmit;
|
|
||||||
srq.tag = -1;
|
|
||||||
srq.dest = dest;
|
|
||||||
srq.commdir = dir;
|
|
||||||
list.push_back(srq);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
if (dox) {
|
|
||||||
|
|
||||||
if ( !( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) ) {
|
|
||||||
// Intranode
|
|
||||||
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
|
|
||||||
GRID_ASSERT(shm!=NULL);
|
|
||||||
|
|
||||||
CommsRequest_t srq;
|
|
||||||
|
|
||||||
srq.ev = acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
|
|
||||||
|
|
||||||
srq.PacketType = IntraNodeXmit;
|
|
||||||
srq.bytes = xbytes;
|
|
||||||
// srq.req = xrq;
|
|
||||||
srq.host_buf = NULL;
|
|
||||||
srq.device_buf = xmit;
|
|
||||||
srq.tag = -1;
|
|
||||||
srq.dest = dest;
|
|
||||||
srq.commdir = dir;
|
|
||||||
list.push_back(srq);
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
return off_node_bytes;
|
|
||||||
}
|
|
||||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
|
|
||||||
{
|
|
||||||
acceleratorCopySynchronise(); // Complete all pending copy transfers D2D
|
|
||||||
|
|
||||||
std::vector<MPI_Status> status;
|
|
||||||
std::vector<MPI_Request> MpiRequests;
|
|
||||||
|
|
||||||
for(int r=0;r<list.size();r++){
|
|
||||||
// Must check each Send buf is clear to reuse
|
|
||||||
if ( list[r].PacketType == InterNodeXmitISend ) MpiRequests.push_back(list[r].req);
|
|
||||||
// if ( list[r].PacketType == InterNodeRecv ) MpiRequests.push_back(list[r].req); // Already "Test" passed
|
|
||||||
}
|
|
||||||
|
|
||||||
int nreq=MpiRequests.size();
|
|
||||||
|
|
||||||
if (nreq>0) {
|
|
||||||
status.resize(MpiRequests.size());
|
|
||||||
int ierr = MPI_Waitall(MpiRequests.size(),&MpiRequests[0],&status[0]); // Sends are guaranteed in order. No harm in not completing.
|
|
||||||
GRID_ASSERT(ierr==0);
|
|
||||||
}
|
|
||||||
|
|
||||||
// for(int r=0;r<nreq;r++){
|
|
||||||
// if ( list[r].PacketType==InterNodeRecv ) {
|
|
||||||
// acceleratorCopyToDeviceAsynch(list[r].host_buf,list[r].device_buf,list[r].bytes);
|
|
||||||
// }
|
|
||||||
// }
|
|
||||||
#ifdef GRID_CHECKSUM_COMMS
|
|
||||||
for(int r=0;r<list.size();r++){
|
|
||||||
if ( list[r].PacketType == InterNodeReceiveHtoD ) {
|
|
||||||
uint64_t rbytes_data = list[r].bytes - 8;
|
|
||||||
uint64_t expected_cs = *(uint64_t*)(((char*)list[r].host_buf) + rbytes_data);
|
|
||||||
uint64_t computed_cs = checksum_gpu((uint64_t*)list[r].device_buf, rbytes_data / 8) ^ (checksum_index + 1 + 1000 * list[r].tag); //
|
|
||||||
if (expected_cs != computed_cs) {
|
|
||||||
// TODO: error message, backtrace, quit
|
|
||||||
|
|
||||||
fprintf(stderr, "GRID_CHECKSUM_COMMS error:\n");
|
|
||||||
fprintf(stderr, " processor = %d\n", (int)_processor);
|
|
||||||
for(int d=0;d<_processors.size();d++)
|
|
||||||
fprintf(stderr, " processor_coord[%d] = %d\n", d, _processor_coor[d]);
|
|
||||||
fprintf(stderr, " hostname: %s\n", GridHostname());
|
|
||||||
fprintf(stderr, " expected_cs: %ld\n", expected_cs);
|
|
||||||
fprintf(stderr, " computed_cs: %ld\n", computed_cs);
|
|
||||||
fprintf(stderr, " dest: %d\n", list[r].dest);
|
|
||||||
fprintf(stderr, " tag: %d\n", list[r].tag);
|
|
||||||
fprintf(stderr, " commdir: %d\n", list[r].commdir);
|
|
||||||
fprintf(stderr, " bytes: %ld\n", (uint64_t)list[r].bytes);
|
|
||||||
|
|
||||||
fflush(stderr);
|
|
||||||
|
|
||||||
// backtrace
|
|
||||||
int symbols = backtrace(Grid_backtrace_buffer,_NBACKTRACE);
|
|
||||||
backtrace_symbols_fd(Grid_backtrace_buffer,symbols, 2);
|
|
||||||
|
|
||||||
exit(1);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
checksum_index += 1;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
list.resize(0); // Delete the list
|
|
||||||
this->HostBufferFreeAll(); // Clean up the buffer allocs
|
|
||||||
#ifndef NVLINK_GET
|
|
||||||
this->StencilBarrier(); // if PUT must check our nbrs have filled our receive buffers.
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
////////////////////////////////////////////
|
|
||||||
// END PIPELINE MODE / NO CUDA AWARE MPI
|
|
||||||
////////////////////////////////////////////
|
|
||||||
|
|
||||||
void CartesianCommunicator::StencilBarrier(void)
|
void CartesianCommunicator::StencilBarrier(void)
|
||||||
{
|
{
|
||||||
FlightRecorder::StepLog("NodeBarrier");
|
|
||||||
MPI_Barrier (ShmComm);
|
MPI_Barrier (ShmComm);
|
||||||
}
|
}
|
||||||
//void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
|
//void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
|
||||||
@@ -879,45 +412,37 @@ void CartesianCommunicator::StencilBarrier(void)
|
|||||||
//}
|
//}
|
||||||
void CartesianCommunicator::Barrier(void)
|
void CartesianCommunicator::Barrier(void)
|
||||||
{
|
{
|
||||||
FlightRecorder::StepLog("GridBarrier");
|
|
||||||
int ierr = MPI_Barrier(communicator);
|
int ierr = MPI_Barrier(communicator);
|
||||||
GRID_ASSERT(ierr==0);
|
assert(ierr==0);
|
||||||
}
|
}
|
||||||
void CartesianCommunicator::Broadcast(int root,void* data,uint64_t bytes)
|
void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
|
||||||
{
|
{
|
||||||
FlightRecorder::StepLog("Broadcast");
|
|
||||||
int ierr=MPI_Bcast(data,
|
int ierr=MPI_Bcast(data,
|
||||||
(int)bytes,
|
bytes,
|
||||||
MPI_BYTE,
|
MPI_BYTE,
|
||||||
root,
|
root,
|
||||||
communicator);
|
communicator);
|
||||||
GRID_ASSERT(ierr==0);
|
assert(ierr==0);
|
||||||
}
|
}
|
||||||
int CartesianCommunicator::RankWorld(void){
|
int CartesianCommunicator::RankWorld(void){
|
||||||
int r;
|
int r;
|
||||||
MPI_Comm_rank(communicator_world,&r);
|
MPI_Comm_rank(communicator_world,&r);
|
||||||
return r;
|
return r;
|
||||||
}
|
}
|
||||||
void CartesianCommunicator::BarrierWorld(void){
|
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
|
||||||
FlightRecorder::StepLog("BarrierWorld");
|
|
||||||
int ierr = MPI_Barrier(communicator_world);
|
|
||||||
GRID_ASSERT(ierr==0);
|
|
||||||
}
|
|
||||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, uint64_t bytes)
|
|
||||||
{
|
{
|
||||||
FlightRecorder::StepLog("BroadcastWorld");
|
|
||||||
int ierr= MPI_Bcast(data,
|
int ierr= MPI_Bcast(data,
|
||||||
(int)bytes,
|
bytes,
|
||||||
MPI_BYTE,
|
MPI_BYTE,
|
||||||
root,
|
root,
|
||||||
communicator_world);
|
communicator_world);
|
||||||
GRID_ASSERT(ierr==0);
|
assert(ierr==0);
|
||||||
}
|
}
|
||||||
|
|
||||||
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
|
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
|
||||||
{
|
{
|
||||||
Coordinate row(_ndimension,1);
|
Coordinate row(_ndimension,1);
|
||||||
GRID_ASSERT(dim>=0 && dim<_ndimension);
|
assert(dim>=0 && dim<_ndimension);
|
||||||
|
|
||||||
// Split the communicator
|
// Split the communicator
|
||||||
row[dim] = _processors[dim];
|
row[dim] = _processors[dim];
|
||||||
@@ -928,7 +453,6 @@ void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,
|
|||||||
}
|
}
|
||||||
void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t bytes)
|
void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t bytes)
|
||||||
{
|
{
|
||||||
FlightRecorder::StepLog("AllToAll");
|
|
||||||
// MPI is a pain and uses "int" arguments
|
// MPI is a pain and uses "int" arguments
|
||||||
// 64*64*64*128*16 == 500Million elements of data.
|
// 64*64*64*128*16 == 500Million elements of data.
|
||||||
// When 24*4 bytes multiples get 50x 10^9 >>> 2x10^9 Y2K bug.
|
// When 24*4 bytes multiples get 50x 10^9 >>> 2x10^9 Y2K bug.
|
||||||
@@ -938,8 +462,8 @@ void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t
|
|||||||
int ibytes;
|
int ibytes;
|
||||||
iwords = words;
|
iwords = words;
|
||||||
ibytes = bytes;
|
ibytes = bytes;
|
||||||
GRID_ASSERT(words == iwords); // safe to cast to int ?
|
assert(words == iwords); // safe to cast to int ?
|
||||||
GRID_ASSERT(bytes == ibytes); // safe to cast to int ?
|
assert(bytes == ibytes); // safe to cast to int ?
|
||||||
MPI_Type_contiguous(ibytes,MPI_BYTE,&object);
|
MPI_Type_contiguous(ibytes,MPI_BYTE,&object);
|
||||||
MPI_Type_commit(&object);
|
MPI_Type_commit(&object);
|
||||||
MPI_Alltoall(in,iwords,object,out,iwords,object,communicator);
|
MPI_Alltoall(in,iwords,object,out,iwords,object,communicator);
|
||||||
|
|||||||
@@ -34,8 +34,6 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
Grid_MPI_Comm CartesianCommunicator::communicator_world;
|
Grid_MPI_Comm CartesianCommunicator::communicator_world;
|
||||||
|
|
||||||
void GridAbort(void) { abort(); }
|
|
||||||
|
|
||||||
void CartesianCommunicator::Init(int *argc, char *** arv)
|
void CartesianCommunicator::Init(int *argc, char *** arv)
|
||||||
{
|
{
|
||||||
GlobalSharedMemory::Init(communicator_world);
|
GlobalSharedMemory::Init(communicator_world);
|
||||||
@@ -47,23 +45,21 @@ void CartesianCommunicator::Init(int *argc, char *** arv)
|
|||||||
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)
|
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)
|
||||||
: CartesianCommunicator(processors)
|
: CartesianCommunicator(processors)
|
||||||
{
|
{
|
||||||
_shm_processors = Coordinate(processors.size(),1);
|
|
||||||
srank=0;
|
srank=0;
|
||||||
SetCommunicator(communicator_world);
|
SetCommunicator(communicator_world);
|
||||||
}
|
}
|
||||||
|
|
||||||
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
|
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
|
||||||
{
|
{
|
||||||
_shm_processors = Coordinate(processors.size(),1);
|
|
||||||
_processors = processors;
|
_processors = processors;
|
||||||
_ndimension = processors.size(); GRID_ASSERT(_ndimension>=1);
|
_ndimension = processors.size(); assert(_ndimension>=1);
|
||||||
_processor_coor.resize(_ndimension);
|
_processor_coor.resize(_ndimension);
|
||||||
|
|
||||||
// Require 1^N processor grid for fake
|
// Require 1^N processor grid for fake
|
||||||
_Nprocessors=1;
|
_Nprocessors=1;
|
||||||
_processor = 0;
|
_processor = 0;
|
||||||
for(int d=0;d<_ndimension;d++) {
|
for(int d=0;d<_ndimension;d++) {
|
||||||
GRID_ASSERT(_processors[d]==1);
|
assert(_processors[d]==1);
|
||||||
_processor_coor[d] = 0;
|
_processor_coor[d] = 0;
|
||||||
}
|
}
|
||||||
SetCommunicator(communicator_world);
|
SetCommunicator(communicator_world);
|
||||||
@@ -89,21 +85,10 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
|
|||||||
int dest,
|
int dest,
|
||||||
void *recv,
|
void *recv,
|
||||||
int from,
|
int from,
|
||||||
uint64_t bytes)
|
int bytes)
|
||||||
{
|
{
|
||||||
GRID_ASSERT(0);
|
assert(0);
|
||||||
}
|
}
|
||||||
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ GRID_ASSERT(list.size()==0);}
|
|
||||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
|
||||||
void *xmit,
|
|
||||||
int dest,
|
|
||||||
void *recv,
|
|
||||||
int from,
|
|
||||||
uint64_t bytes,int dir)
|
|
||||||
{
|
|
||||||
GRID_ASSERT(0);
|
|
||||||
}
|
|
||||||
|
|
||||||
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
|
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
|
||||||
{
|
{
|
||||||
bcopy(in,out,bytes*words);
|
bcopy(in,out,bytes*words);
|
||||||
@@ -115,9 +100,8 @@ void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t
|
|||||||
|
|
||||||
int CartesianCommunicator::RankWorld(void){return 0;}
|
int CartesianCommunicator::RankWorld(void){return 0;}
|
||||||
void CartesianCommunicator::Barrier(void){}
|
void CartesianCommunicator::Barrier(void){}
|
||||||
void CartesianCommunicator::Broadcast(int root,void* data, uint64_t bytes) {}
|
void CartesianCommunicator::Broadcast(int root,void* data, int bytes) {}
|
||||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, uint64_t bytes) { }
|
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) { }
|
||||||
void CartesianCommunicator::BarrierWorld(void) { }
|
|
||||||
int CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor) { return 0;}
|
int CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor) { return 0;}
|
||||||
void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor){ coor = _processor_coor; }
|
void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor){ coor = _processor_coor; }
|
||||||
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
|
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
|
||||||
@@ -126,35 +110,22 @@ void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest
|
|||||||
dest=0;
|
dest=0;
|
||||||
}
|
}
|
||||||
|
|
||||||
int CartesianCommunicator::IsOffNode(int rank) { return false; }
|
|
||||||
|
|
||||||
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
|
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
|
||||||
int xmit_to_rank,int dox,
|
int xmit_to_rank,
|
||||||
void *recv,
|
void *recv,
|
||||||
int recv_from_rank,int dor,
|
int recv_from_rank,
|
||||||
uint64_t bytes, int dir)
|
int bytes, int dir)
|
||||||
{
|
{
|
||||||
return 2.0*bytes;
|
return 2.0*bytes;
|
||||||
}
|
}
|
||||||
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {};
|
|
||||||
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {};
|
|
||||||
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
|
|
||||||
void *xmit,
|
|
||||||
int xmit_to_rank,int dox,
|
|
||||||
void *recv,
|
|
||||||
int recv_from_rank,int dor,
|
|
||||||
uint64_t xbytes,uint64_t rbytes, int dir)
|
|
||||||
{
|
|
||||||
return 0.0;
|
|
||||||
}
|
|
||||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||||
void *xmit, void *xmit_comp,
|
void *xmit,
|
||||||
int xmit_to_rank,int dox,
|
int xmit_to_rank,
|
||||||
void *recv, void *recv_comp,
|
void *recv,
|
||||||
int recv_from_rank,int dor,
|
int recv_from_rank,
|
||||||
uint64_t xbytes,uint64_t rbytes, int dir)
|
int bytes, int dir)
|
||||||
{
|
{
|
||||||
return xbytes+rbytes;
|
return 2.0*bytes;
|
||||||
}
|
}
|
||||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
|
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
|
||||||
{
|
{
|
||||||
|
|||||||
@@ -40,9 +40,6 @@ int GlobalSharedMemory::_ShmAlloc;
|
|||||||
uint64_t GlobalSharedMemory::_ShmAllocBytes;
|
uint64_t GlobalSharedMemory::_ShmAllocBytes;
|
||||||
|
|
||||||
std::vector<void *> GlobalSharedMemory::WorldShmCommBufs;
|
std::vector<void *> GlobalSharedMemory::WorldShmCommBufs;
|
||||||
#ifndef ACCELERATOR_AWARE_MPI
|
|
||||||
void * GlobalSharedMemory::HostCommBuf;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
Grid_MPI_Comm GlobalSharedMemory::WorldShmComm;
|
Grid_MPI_Comm GlobalSharedMemory::WorldShmComm;
|
||||||
int GlobalSharedMemory::WorldShmRank;
|
int GlobalSharedMemory::WorldShmRank;
|
||||||
@@ -58,8 +55,8 @@ int GlobalSharedMemory::WorldNode;
|
|||||||
|
|
||||||
void GlobalSharedMemory::SharedMemoryFree(void)
|
void GlobalSharedMemory::SharedMemoryFree(void)
|
||||||
{
|
{
|
||||||
GRID_ASSERT(_ShmAlloc);
|
assert(_ShmAlloc);
|
||||||
GRID_ASSERT(_ShmAllocBytes>0);
|
assert(_ShmAllocBytes>0);
|
||||||
for(int r=0;r<WorldShmSize;r++){
|
for(int r=0;r<WorldShmSize;r++){
|
||||||
munmap(WorldShmCommBufs[r],_ShmAllocBytes);
|
munmap(WorldShmCommBufs[r],_ShmAllocBytes);
|
||||||
}
|
}
|
||||||
@@ -69,26 +66,6 @@ void GlobalSharedMemory::SharedMemoryFree(void)
|
|||||||
/////////////////////////////////
|
/////////////////////////////////
|
||||||
// Alloc, free shmem region
|
// Alloc, free shmem region
|
||||||
/////////////////////////////////
|
/////////////////////////////////
|
||||||
#ifndef ACCELERATOR_AWARE_MPI
|
|
||||||
void *SharedMemory::HostBufferMalloc(size_t bytes){
|
|
||||||
void *ptr = (void *)host_heap_top;
|
|
||||||
host_heap_top += bytes;
|
|
||||||
host_heap_bytes+= bytes;
|
|
||||||
if (host_heap_bytes >= host_heap_size) {
|
|
||||||
std::cout<< " HostBufferMalloc exceeded heap size -- try increasing with --shm <MB> flag" <<std::endl;
|
|
||||||
std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl;
|
|
||||||
std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl;
|
|
||||||
std::cout<< " Current bytes is " << (host_heap_bytes/(1024*1024)) <<"MB"<<std::endl;
|
|
||||||
std::cout<< " Current heap is " << (host_heap_size/(1024*1024)) <<"MB"<<std::endl;
|
|
||||||
GRID_ASSERT(host_heap_bytes<host_heap_size);
|
|
||||||
}
|
|
||||||
return ptr;
|
|
||||||
}
|
|
||||||
void SharedMemory::HostBufferFreeAll(void) {
|
|
||||||
host_heap_top =(size_t)HostCommBuf;
|
|
||||||
host_heap_bytes=0;
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
void *SharedMemory::ShmBufferMalloc(size_t bytes){
|
void *SharedMemory::ShmBufferMalloc(size_t bytes){
|
||||||
// bytes = (bytes+sizeof(vRealD))&(~(sizeof(vRealD)-1));// align up bytes
|
// bytes = (bytes+sizeof(vRealD))&(~(sizeof(vRealD)-1));// align up bytes
|
||||||
void *ptr = (void *)heap_top;
|
void *ptr = (void *)heap_top;
|
||||||
@@ -100,7 +77,7 @@ void *SharedMemory::ShmBufferMalloc(size_t bytes){
|
|||||||
std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl;
|
std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl;
|
||||||
std::cout<< " Current bytes is " << (heap_bytes/(1024*1024)) <<"MB"<<std::endl;
|
std::cout<< " Current bytes is " << (heap_bytes/(1024*1024)) <<"MB"<<std::endl;
|
||||||
std::cout<< " Current heap is " << (heap_size/(1024*1024)) <<"MB"<<std::endl;
|
std::cout<< " Current heap is " << (heap_size/(1024*1024)) <<"MB"<<std::endl;
|
||||||
GRID_ASSERT(heap_bytes<heap_size);
|
assert(heap_bytes<heap_size);
|
||||||
}
|
}
|
||||||
//std::cerr << "ShmBufferMalloc "<<std::hex<< ptr<<" - "<<((uint64_t)ptr+bytes)<<std::dec<<std::endl;
|
//std::cerr << "ShmBufferMalloc "<<std::hex<< ptr<<" - "<<((uint64_t)ptr+bytes)<<std::dec<<std::endl;
|
||||||
return ptr;
|
return ptr;
|
||||||
@@ -114,59 +91,6 @@ void *SharedMemory::ShmBufferSelf(void)
|
|||||||
//std::cerr << "ShmBufferSelf "<<ShmRank<<" "<<std::hex<< ShmCommBufs[ShmRank] <<std::dec<<std::endl;
|
//std::cerr << "ShmBufferSelf "<<ShmRank<<" "<<std::hex<< ShmCommBufs[ShmRank] <<std::dec<<std::endl;
|
||||||
return ShmCommBufs[ShmRank];
|
return ShmCommBufs[ShmRank];
|
||||||
}
|
}
|
||||||
static inline int divides(int a,int b)
|
|
||||||
{
|
|
||||||
return ( b == ( (b/a)*a ) );
|
|
||||||
}
|
|
||||||
void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims)
|
|
||||||
{
|
|
||||||
////////////////////////////////////////////////////////////////
|
|
||||||
// Allow user to configure through environment variable
|
|
||||||
////////////////////////////////////////////////////////////////
|
|
||||||
char* str = getenv(("GRID_SHM_DIMS_" + std::to_string(ShmDims.size())).c_str());
|
|
||||||
if ( str ) {
|
|
||||||
std::vector<int> IntShmDims;
|
|
||||||
GridCmdOptionIntVector(std::string(str),IntShmDims);
|
|
||||||
GRID_ASSERT(IntShmDims.size() == WorldDims.size());
|
|
||||||
long ShmSize = 1;
|
|
||||||
for (int dim=0;dim<WorldDims.size();dim++) {
|
|
||||||
ShmSize *= (ShmDims[dim] = IntShmDims[dim]);
|
|
||||||
GRID_ASSERT(divides(ShmDims[dim],WorldDims[dim]));
|
|
||||||
}
|
|
||||||
GRID_ASSERT(ShmSize == WorldShmSize);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////
|
|
||||||
// Powers of 2,3,5 only in prime decomposition for now
|
|
||||||
////////////////////////////////////////////////////////////////
|
|
||||||
int ndimension = WorldDims.size();
|
|
||||||
ShmDims=Coordinate(ndimension,1);
|
|
||||||
|
|
||||||
std::vector<int> primes({2,3,5});
|
|
||||||
|
|
||||||
int dim = 0;
|
|
||||||
int last_dim = ndimension - 1;
|
|
||||||
int AutoShmSize = 1;
|
|
||||||
while(AutoShmSize != WorldShmSize) {
|
|
||||||
int p;
|
|
||||||
for(p=0;p<primes.size();p++) {
|
|
||||||
int prime=primes[p];
|
|
||||||
if ( divides(prime,WorldDims[dim]/ShmDims[dim])
|
|
||||||
&& divides(prime,WorldShmSize/AutoShmSize) ) {
|
|
||||||
AutoShmSize*=prime;
|
|
||||||
ShmDims[dim]*=prime;
|
|
||||||
last_dim = dim;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if (p == primes.size() && last_dim == dim) {
|
|
||||||
std::cerr << "GlobalSharedMemory::GetShmDims failed" << std::endl;
|
|
||||||
exit(EXIT_FAILURE);
|
|
||||||
}
|
|
||||||
dim=(dim+1) %ndimension;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
|
||||||
|
|||||||
@@ -46,40 +46,8 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
|
|
||||||
#if defined (GRID_COMMS_MPI3)
|
#if defined (GRID_COMMS_MPI3)
|
||||||
typedef MPI_Comm Grid_MPI_Comm;
|
typedef MPI_Comm Grid_MPI_Comm;
|
||||||
typedef MPI_Request MpiCommsRequest_t;
|
|
||||||
#ifdef ACCELERATOR_AWARE_MPI
|
|
||||||
typedef MPI_Request CommsRequest_t;
|
typedef MPI_Request CommsRequest_t;
|
||||||
#else
|
#else
|
||||||
/*
|
|
||||||
* Enable state transitions as each packet flows.
|
|
||||||
*/
|
|
||||||
enum PacketType_t {
|
|
||||||
FaceGather,
|
|
||||||
InterNodeXmit,
|
|
||||||
InterNodeRecv,
|
|
||||||
IntraNodeXmit,
|
|
||||||
IntraNodeRecv,
|
|
||||||
InterNodeXmitISend,
|
|
||||||
InterNodeReceiveHtoD
|
|
||||||
};
|
|
||||||
/*
|
|
||||||
*Package arguments needed for various actions along packet flow
|
|
||||||
*/
|
|
||||||
typedef struct {
|
|
||||||
PacketType_t PacketType;
|
|
||||||
void *host_buf;
|
|
||||||
void *device_buf;
|
|
||||||
int dest;
|
|
||||||
int tag;
|
|
||||||
int commdir;
|
|
||||||
unsigned long bytes;
|
|
||||||
acceleratorEvent_t ev;
|
|
||||||
MpiCommsRequest_t req;
|
|
||||||
} CommsRequest_t;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#else
|
|
||||||
typedef int MpiCommsRequest_t;
|
|
||||||
typedef int CommsRequest_t;
|
typedef int CommsRequest_t;
|
||||||
typedef int Grid_MPI_Comm;
|
typedef int Grid_MPI_Comm;
|
||||||
#endif
|
#endif
|
||||||
@@ -107,9 +75,7 @@ public:
|
|||||||
static int Hugepages;
|
static int Hugepages;
|
||||||
|
|
||||||
static std::vector<void *> WorldShmCommBufs;
|
static std::vector<void *> WorldShmCommBufs;
|
||||||
#ifndef ACCELERATOR_AWARE_MPI
|
|
||||||
static void *HostCommBuf;
|
|
||||||
#endif
|
|
||||||
static Grid_MPI_Comm WorldComm;
|
static Grid_MPI_Comm WorldComm;
|
||||||
static int WorldRank;
|
static int WorldRank;
|
||||||
static int WorldSize;
|
static int WorldSize;
|
||||||
@@ -127,17 +93,16 @@ public:
|
|||||||
// Create an optimal reordered communicator that makes MPI_Cart_create get it right
|
// Create an optimal reordered communicator that makes MPI_Cart_create get it right
|
||||||
//////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////
|
||||||
static void Init(Grid_MPI_Comm comm); // Typically MPI_COMM_WORLD
|
static void Init(Grid_MPI_Comm comm); // Typically MPI_COMM_WORLD
|
||||||
// Turns MPI_COMM_WORLD into right layout for Cartesian
|
static void OptimalCommunicator (const Coordinate &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
|
||||||
static void OptimalCommunicator (const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims);
|
static void OptimalCommunicatorHypercube (const Coordinate &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
|
||||||
static void OptimalCommunicatorHypercube (const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims);
|
static void OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
|
||||||
static void OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims);
|
|
||||||
static void GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims);
|
static void GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims);
|
||||||
///////////////////////////////////////////////////
|
///////////////////////////////////////////////////
|
||||||
// Provide shared memory facilities off comm world
|
// Provide shared memory facilities off comm world
|
||||||
///////////////////////////////////////////////////
|
///////////////////////////////////////////////////
|
||||||
static void SharedMemoryAllocate(uint64_t bytes, int flags);
|
static void SharedMemoryAllocate(uint64_t bytes, int flags);
|
||||||
static void SharedMemoryFree(void);
|
static void SharedMemoryFree(void);
|
||||||
// static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
|
static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
|
||||||
static void SharedMemoryZero(void *dest,size_t bytes);
|
static void SharedMemoryZero(void *dest,size_t bytes);
|
||||||
|
|
||||||
};
|
};
|
||||||
@@ -154,13 +119,6 @@ private:
|
|||||||
size_t heap_bytes;
|
size_t heap_bytes;
|
||||||
size_t heap_size;
|
size_t heap_size;
|
||||||
|
|
||||||
#ifndef ACCELERATOR_AWARE_MPI
|
|
||||||
size_t host_heap_top; // set in free all
|
|
||||||
size_t host_heap_bytes;// set in free all
|
|
||||||
void *HostCommBuf; // set in SetCommunicator
|
|
||||||
size_t host_heap_size; // set in SetCommunicator
|
|
||||||
#endif
|
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
|
|
||||||
Grid_MPI_Comm ShmComm; // for barriers
|
Grid_MPI_Comm ShmComm; // for barriers
|
||||||
@@ -192,10 +150,7 @@ public:
|
|||||||
void *ShmBufferTranslate(int rank,void * local_p);
|
void *ShmBufferTranslate(int rank,void * local_p);
|
||||||
void *ShmBufferMalloc(size_t bytes);
|
void *ShmBufferMalloc(size_t bytes);
|
||||||
void ShmBufferFreeAll(void) ;
|
void ShmBufferFreeAll(void) ;
|
||||||
#ifndef ACCELERATOR_AWARE_MPI
|
|
||||||
void *HostBufferMalloc(size_t bytes);
|
|
||||||
void HostBufferFreeAll(void);
|
|
||||||
#endif
|
|
||||||
//////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////
|
||||||
// Make info on Nodes & ranks and Shared memory available
|
// Make info on Nodes & ranks and Shared memory available
|
||||||
//////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////
|
||||||
|
|||||||
@@ -27,8 +27,6 @@ Author: Christoph Lehner <christoph@lhnr.de>
|
|||||||
*************************************************************************************/
|
*************************************************************************************/
|
||||||
/* END LEGAL */
|
/* END LEGAL */
|
||||||
|
|
||||||
#define Mheader "SharedMemoryMpi: "
|
|
||||||
|
|
||||||
#include <Grid/GridCore.h>
|
#include <Grid/GridCore.h>
|
||||||
#include <pwd.h>
|
#include <pwd.h>
|
||||||
|
|
||||||
@@ -38,127 +36,16 @@ Author: Christoph Lehner <christoph@lhnr.de>
|
|||||||
#ifdef GRID_HIP
|
#ifdef GRID_HIP
|
||||||
#include <hip/hip_runtime_api.h>
|
#include <hip/hip_runtime_api.h>
|
||||||
#endif
|
#endif
|
||||||
#ifdef GRID_SYCL
|
#ifdef GRID_SYCl
|
||||||
#ifdef ACCELERATOR_AWARE_MPI
|
|
||||||
#define GRID_SYCL_LEVEL_ZERO_IPC
|
|
||||||
#define SHM_SOCKETS
|
|
||||||
#else
|
|
||||||
#endif
|
|
||||||
#include <syscall.h>
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#include <sys/socket.h>
|
#endif
|
||||||
#include <sys/un.h>
|
|
||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
#define header "SharedMemoryMpi: "
|
||||||
#ifdef SHM_SOCKETS
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Barbaric extra intranode communication route in case we need sockets to pass FDs
|
|
||||||
* Forced by level_zero not being nicely designed
|
|
||||||
*/
|
|
||||||
static int sock;
|
|
||||||
static const char *sock_path_fmt = "/tmp/GridUnixSocket.%d";
|
|
||||||
static char sock_path[256];
|
|
||||||
class UnixSockets {
|
|
||||||
public:
|
|
||||||
static void Open(int rank)
|
|
||||||
{
|
|
||||||
int errnum;
|
|
||||||
|
|
||||||
sock = socket(AF_UNIX, SOCK_DGRAM, 0); GRID_ASSERT(sock>0);
|
|
||||||
|
|
||||||
struct sockaddr_un sa_un = { 0 };
|
|
||||||
sa_un.sun_family = AF_UNIX;
|
|
||||||
snprintf(sa_un.sun_path, sizeof(sa_un.sun_path),sock_path_fmt,rank);
|
|
||||||
unlink(sa_un.sun_path);
|
|
||||||
if (bind(sock, (struct sockaddr *)&sa_un, sizeof(sa_un))) {
|
|
||||||
perror("bind failure");
|
|
||||||
exit(EXIT_FAILURE);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
static int RecvFileDescriptor(void)
|
|
||||||
{
|
|
||||||
int n;
|
|
||||||
int fd;
|
|
||||||
char buf[1];
|
|
||||||
struct iovec iov;
|
|
||||||
struct msghdr msg;
|
|
||||||
struct cmsghdr *cmsg;
|
|
||||||
char cms[CMSG_SPACE(sizeof(int))];
|
|
||||||
|
|
||||||
iov.iov_base = buf;
|
|
||||||
iov.iov_len = 1;
|
|
||||||
|
|
||||||
memset(&msg, 0, sizeof msg);
|
|
||||||
msg.msg_name = 0;
|
|
||||||
msg.msg_namelen = 0;
|
|
||||||
msg.msg_iov = &iov;
|
|
||||||
msg.msg_iovlen = 1;
|
|
||||||
|
|
||||||
msg.msg_control = (caddr_t)cms;
|
|
||||||
msg.msg_controllen = sizeof cms;
|
|
||||||
|
|
||||||
if((n=recvmsg(sock, &msg, 0)) < 0) {
|
|
||||||
perror("recvmsg failed");
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
if(n == 0){
|
|
||||||
perror("recvmsg returned 0");
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
cmsg = CMSG_FIRSTHDR(&msg);
|
|
||||||
|
|
||||||
memmove(&fd, CMSG_DATA(cmsg), sizeof(int));
|
|
||||||
|
|
||||||
return fd;
|
|
||||||
}
|
|
||||||
|
|
||||||
static void SendFileDescriptor(int fildes,int xmit_to_rank)
|
|
||||||
{
|
|
||||||
struct msghdr msg;
|
|
||||||
struct iovec iov;
|
|
||||||
struct cmsghdr *cmsg = NULL;
|
|
||||||
char ctrl[CMSG_SPACE(sizeof(int))];
|
|
||||||
char data = ' ';
|
|
||||||
|
|
||||||
memset(&msg, 0, sizeof(struct msghdr));
|
|
||||||
memset(ctrl, 0, CMSG_SPACE(sizeof(int)));
|
|
||||||
iov.iov_base = &data;
|
|
||||||
iov.iov_len = sizeof(data);
|
|
||||||
|
|
||||||
sprintf(sock_path,sock_path_fmt,xmit_to_rank);
|
|
||||||
|
|
||||||
struct sockaddr_un sa_un = { 0 };
|
|
||||||
sa_un.sun_family = AF_UNIX;
|
|
||||||
snprintf(sa_un.sun_path, sizeof(sa_un.sun_path),sock_path_fmt,xmit_to_rank);
|
|
||||||
|
|
||||||
msg.msg_name = (void *)&sa_un;
|
|
||||||
msg.msg_namelen = sizeof(sa_un);
|
|
||||||
msg.msg_iov = &iov;
|
|
||||||
msg.msg_iovlen = 1;
|
|
||||||
msg.msg_controllen = CMSG_SPACE(sizeof(int));
|
|
||||||
msg.msg_control = ctrl;
|
|
||||||
|
|
||||||
cmsg = CMSG_FIRSTHDR(&msg);
|
|
||||||
cmsg->cmsg_level = SOL_SOCKET;
|
|
||||||
cmsg->cmsg_type = SCM_RIGHTS;
|
|
||||||
cmsg->cmsg_len = CMSG_LEN(sizeof(int));
|
|
||||||
|
|
||||||
*((int *) CMSG_DATA(cmsg)) = fildes;
|
|
||||||
|
|
||||||
sendmsg(sock, &msg, 0);
|
|
||||||
};
|
|
||||||
};
|
|
||||||
#endif
|
|
||||||
|
|
||||||
|
|
||||||
/*Construct from an MPI communicator*/
|
/*Construct from an MPI communicator*/
|
||||||
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
|
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
|
||||||
{
|
{
|
||||||
GRID_ASSERT(_ShmSetup==0);
|
assert(_ShmSetup==0);
|
||||||
WorldComm = comm;
|
WorldComm = comm;
|
||||||
MPI_Comm_rank(WorldComm,&WorldRank);
|
MPI_Comm_rank(WorldComm,&WorldRank);
|
||||||
MPI_Comm_size(WorldComm,&WorldSize);
|
MPI_Comm_size(WorldComm,&WorldSize);
|
||||||
@@ -177,14 +64,14 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
|
|||||||
MPI_Comm_size(WorldShmComm ,&WorldShmSize);
|
MPI_Comm_size(WorldShmComm ,&WorldShmSize);
|
||||||
|
|
||||||
if ( WorldRank == 0) {
|
if ( WorldRank == 0) {
|
||||||
std::cout << Mheader " World communicator of size " <<WorldSize << std::endl;
|
std::cout << header " World communicator of size " <<WorldSize << std::endl;
|
||||||
std::cout << Mheader " Node communicator of size " <<WorldShmSize << std::endl;
|
std::cout << header " Node communicator of size " <<WorldShmSize << std::endl;
|
||||||
}
|
}
|
||||||
// WorldShmComm, WorldShmSize, WorldShmRank
|
// WorldShmComm, WorldShmSize, WorldShmRank
|
||||||
|
|
||||||
// WorldNodes
|
// WorldNodes
|
||||||
WorldNodes = WorldSize/WorldShmSize;
|
WorldNodes = WorldSize/WorldShmSize;
|
||||||
GRID_ASSERT( (WorldNodes * WorldShmSize) == WorldSize );
|
assert( (WorldNodes * WorldShmSize) == WorldSize );
|
||||||
|
|
||||||
|
|
||||||
// FIXME: Check all WorldShmSize are the same ?
|
// FIXME: Check all WorldShmSize are the same ?
|
||||||
@@ -209,7 +96,7 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
|
|||||||
MyGroup.resize(WorldShmSize);
|
MyGroup.resize(WorldShmSize);
|
||||||
for(int rank=0;rank<WorldSize;rank++){
|
for(int rank=0;rank<WorldSize;rank++){
|
||||||
if(WorldShmRanks[rank]!=MPI_UNDEFINED){
|
if(WorldShmRanks[rank]!=MPI_UNDEFINED){
|
||||||
GRID_ASSERT(g<WorldShmSize);
|
assert(g<WorldShmSize);
|
||||||
MyGroup[g++] = rank;
|
MyGroup[g++] = rank;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -225,7 +112,7 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
|
|||||||
// global sum leaders over comm world
|
// global sum leaders over comm world
|
||||||
///////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////
|
||||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&leaders_1hot[0],WorldSize,MPI_INT,MPI_SUM,WorldComm);
|
int ierr=MPI_Allreduce(MPI_IN_PLACE,&leaders_1hot[0],WorldSize,MPI_INT,MPI_SUM,WorldComm);
|
||||||
GRID_ASSERT(ierr==0);
|
assert(ierr==0);
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////
|
||||||
// find the group leaders world rank
|
// find the group leaders world rank
|
||||||
@@ -246,7 +133,7 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
|
|||||||
WorldNode=g;
|
WorldNode=g;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
GRID_ASSERT(WorldNode!=-1);
|
assert(WorldNode!=-1);
|
||||||
_ShmSetup=1;
|
_ShmSetup=1;
|
||||||
}
|
}
|
||||||
// Gray encode support
|
// Gray encode support
|
||||||
@@ -265,7 +152,7 @@ int Log2Size(int TwoToPower,int MAXLOG2)
|
|||||||
}
|
}
|
||||||
return log2size;
|
return log2size;
|
||||||
}
|
}
|
||||||
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
|
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
|
||||||
{
|
{
|
||||||
//////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////
|
||||||
// Look and see if it looks like an HPE 8600 based on hostname conventions
|
// Look and see if it looks like an HPE 8600 based on hostname conventions
|
||||||
@@ -278,17 +165,69 @@ void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_M
|
|||||||
gethostname(name,namelen);
|
gethostname(name,namelen);
|
||||||
int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ;
|
int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ;
|
||||||
|
|
||||||
if(nscan==3 && HPEhypercube ) OptimalCommunicatorHypercube(processors,optimal_comm,SHM);
|
if(nscan==3 && HPEhypercube ) OptimalCommunicatorHypercube(processors,optimal_comm);
|
||||||
else OptimalCommunicatorSharedMemory(processors,optimal_comm,SHM);
|
else OptimalCommunicatorSharedMemory(processors,optimal_comm);
|
||||||
}
|
}
|
||||||
|
static inline int divides(int a,int b)
|
||||||
|
{
|
||||||
|
return ( b == ( (b/a)*a ) );
|
||||||
|
}
|
||||||
|
void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims)
|
||||||
|
{
|
||||||
|
////////////////////////////////////////////////////////////////
|
||||||
|
// Allow user to configure through environment variable
|
||||||
|
////////////////////////////////////////////////////////////////
|
||||||
|
char* str = getenv(("GRID_SHM_DIMS_" + std::to_string(ShmDims.size())).c_str());
|
||||||
|
if ( str ) {
|
||||||
|
std::vector<int> IntShmDims;
|
||||||
|
GridCmdOptionIntVector(std::string(str),IntShmDims);
|
||||||
|
assert(IntShmDims.size() == WorldDims.size());
|
||||||
|
long ShmSize = 1;
|
||||||
|
for (int dim=0;dim<WorldDims.size();dim++) {
|
||||||
|
ShmSize *= (ShmDims[dim] = IntShmDims[dim]);
|
||||||
|
assert(divides(ShmDims[dim],WorldDims[dim]));
|
||||||
|
}
|
||||||
|
assert(ShmSize == WorldShmSize);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
|
////////////////////////////////////////////////////////////////
|
||||||
|
// Powers of 2,3,5 only in prime decomposition for now
|
||||||
|
////////////////////////////////////////////////////////////////
|
||||||
|
int ndimension = WorldDims.size();
|
||||||
|
ShmDims=Coordinate(ndimension,1);
|
||||||
|
|
||||||
|
std::vector<int> primes({2,3,5});
|
||||||
|
|
||||||
|
int dim = 0;
|
||||||
|
int last_dim = ndimension - 1;
|
||||||
|
int AutoShmSize = 1;
|
||||||
|
while(AutoShmSize != WorldShmSize) {
|
||||||
|
int p;
|
||||||
|
for(p=0;p<primes.size();p++) {
|
||||||
|
int prime=primes[p];
|
||||||
|
if ( divides(prime,WorldDims[dim]/ShmDims[dim])
|
||||||
|
&& divides(prime,WorldShmSize/AutoShmSize) ) {
|
||||||
|
AutoShmSize*=prime;
|
||||||
|
ShmDims[dim]*=prime;
|
||||||
|
last_dim = dim;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (p == primes.size() && last_dim == dim) {
|
||||||
|
std::cerr << "GlobalSharedMemory::GetShmDims failed" << std::endl;
|
||||||
|
exit(EXIT_FAILURE);
|
||||||
|
}
|
||||||
|
dim=(dim+1) %ndimension;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
|
||||||
{
|
{
|
||||||
////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////
|
||||||
// Assert power of two shm_size.
|
// Assert power of two shm_size.
|
||||||
////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////
|
||||||
int log2size = Log2Size(WorldShmSize,MAXLOG2RANKSPERNODE);
|
int log2size = Log2Size(WorldShmSize,MAXLOG2RANKSPERNODE);
|
||||||
GRID_ASSERT(log2size != -1);
|
assert(log2size != -1);
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////
|
||||||
// Identify the hypercube coordinate of this node using hostname
|
// Identify the hypercube coordinate of this node using hostname
|
||||||
@@ -309,7 +248,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
|
|||||||
// Parse ICE-XA hostname to get hypercube location
|
// Parse ICE-XA hostname to get hypercube location
|
||||||
gethostname(name,namelen);
|
gethostname(name,namelen);
|
||||||
int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ;
|
int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ;
|
||||||
GRID_ASSERT(nscan==3);
|
assert(nscan==3);
|
||||||
|
|
||||||
int nlo = N%9;
|
int nlo = N%9;
|
||||||
int nhi = N/9;
|
int nhi = N/9;
|
||||||
@@ -333,8 +272,8 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
|
|||||||
//////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////
|
||||||
MPI_Bcast(&rootcoor, sizeof(rootcoor), MPI_BYTE, 0, WorldComm);
|
MPI_Bcast(&rootcoor, sizeof(rootcoor), MPI_BYTE, 0, WorldComm);
|
||||||
hypercoor=hypercoor-rootcoor;
|
hypercoor=hypercoor-rootcoor;
|
||||||
GRID_ASSERT(hypercoor<WorldSize);
|
assert(hypercoor<WorldSize);
|
||||||
GRID_ASSERT(hypercoor>=0);
|
assert(hypercoor>=0);
|
||||||
|
|
||||||
//////////////////////////////////////
|
//////////////////////////////////////
|
||||||
// Printing
|
// Printing
|
||||||
@@ -355,7 +294,6 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
|
|||||||
Coordinate HyperCoor(ndimension);
|
Coordinate HyperCoor(ndimension);
|
||||||
|
|
||||||
GetShmDims(WorldDims,ShmDims);
|
GetShmDims(WorldDims,ShmDims);
|
||||||
SHM = ShmDims;
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////
|
||||||
// Establish torus of processes and nodes with sub-blockings
|
// Establish torus of processes and nodes with sub-blockings
|
||||||
@@ -382,7 +320,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
|
|||||||
for(int i=0;i<ndimension;i++){
|
for(int i=0;i<ndimension;i++){
|
||||||
Nprocessors*=processors[i];
|
Nprocessors*=processors[i];
|
||||||
}
|
}
|
||||||
GRID_ASSERT(WorldSize==Nprocessors);
|
assert(WorldSize==Nprocessors);
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////
|
||||||
// Establish mapping between lexico physics coord and WorldRank
|
// Establish mapping between lexico physics coord and WorldRank
|
||||||
@@ -401,9 +339,9 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
|
|||||||
// Build the new communicator
|
// Build the new communicator
|
||||||
/////////////////////////////////////////////////////////////////
|
/////////////////////////////////////////////////////////////////
|
||||||
int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
|
int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
|
||||||
GRID_ASSERT(ierr==0);
|
assert(ierr==0);
|
||||||
}
|
}
|
||||||
void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
|
void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
|
||||||
{
|
{
|
||||||
////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////
|
||||||
// Identify subblock of ranks on node spreading across dims
|
// Identify subblock of ranks on node spreading across dims
|
||||||
@@ -415,8 +353,6 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
|
|||||||
Coordinate ShmCoor(ndimension); Coordinate NodeCoor(ndimension); Coordinate WorldCoor(ndimension);
|
Coordinate ShmCoor(ndimension); Coordinate NodeCoor(ndimension); Coordinate WorldCoor(ndimension);
|
||||||
|
|
||||||
GetShmDims(WorldDims,ShmDims);
|
GetShmDims(WorldDims,ShmDims);
|
||||||
SHM=ShmDims;
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////
|
||||||
// Establish torus of processes and nodes with sub-blockings
|
// Establish torus of processes and nodes with sub-blockings
|
||||||
////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////
|
||||||
@@ -431,8 +367,7 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
|
|||||||
for(int i=0;i<ndimension;i++){
|
for(int i=0;i<ndimension;i++){
|
||||||
Nprocessors*=processors[i];
|
Nprocessors*=processors[i];
|
||||||
}
|
}
|
||||||
// std::cerr << " WorldSize "<<WorldSize << " Nprocessors "<<Nprocessors<<" "<<processors<<std::endl;
|
assert(WorldSize==Nprocessors);
|
||||||
GRID_ASSERT(WorldSize==Nprocessors);
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////
|
||||||
// Establish mapping between lexico physics coord and WorldRank
|
// Establish mapping between lexico physics coord and WorldRank
|
||||||
@@ -448,7 +383,7 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
|
|||||||
// Build the new communicator
|
// Build the new communicator
|
||||||
/////////////////////////////////////////////////////////////////
|
/////////////////////////////////////////////////////////////////
|
||||||
int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
|
int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
|
||||||
GRID_ASSERT(ierr==0);
|
assert(ierr==0);
|
||||||
}
|
}
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
// SHMGET
|
// SHMGET
|
||||||
@@ -456,9 +391,9 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
|
|||||||
#ifdef GRID_MPI3_SHMGET
|
#ifdef GRID_MPI3_SHMGET
|
||||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||||
{
|
{
|
||||||
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl;
|
std::cout << header "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl;
|
||||||
GRID_ASSERT(_ShmSetup==1);
|
assert(_ShmSetup==1);
|
||||||
GRID_ASSERT(_ShmAlloc==0);
|
assert(_ShmAlloc==0);
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
// allocate the shared windows for our group
|
// allocate the shared windows for our group
|
||||||
@@ -516,11 +451,51 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
|||||||
// Hugetlbfs mapping intended
|
// Hugetlbfs mapping intended
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
#if defined(GRID_CUDA) ||defined(GRID_HIP) || defined(GRID_SYCL)
|
#if defined(GRID_CUDA) ||defined(GRID_HIP) || defined(GRID_SYCL)
|
||||||
|
|
||||||
|
//if defined(GRID_SYCL)
|
||||||
|
#if 0
|
||||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||||
{
|
{
|
||||||
void * ShmCommBuf ;
|
void * ShmCommBuf ;
|
||||||
GRID_ASSERT(_ShmSetup==1);
|
assert(_ShmSetup==1);
|
||||||
GRID_ASSERT(_ShmAlloc==0);
|
assert(_ShmAlloc==0);
|
||||||
|
|
||||||
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
// allocate the pointer array for shared windows for our group
|
||||||
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
MPI_Barrier(WorldShmComm);
|
||||||
|
WorldShmCommBufs.resize(WorldShmSize);
|
||||||
|
|
||||||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
// Each MPI rank should allocate our own buffer
|
||||||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
ShmCommBuf = acceleratorAllocDevice(bytes);
|
||||||
|
|
||||||
|
if (ShmCommBuf == (void *)NULL ) {
|
||||||
|
std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
|
||||||
|
exit(EXIT_FAILURE);
|
||||||
|
}
|
||||||
|
|
||||||
|
std::cout << WorldRank << header " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
|
||||||
|
<< "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
|
||||||
|
|
||||||
|
SharedMemoryZero(ShmCommBuf,bytes);
|
||||||
|
|
||||||
|
assert(WorldShmSize == 1);
|
||||||
|
for(int r=0;r<WorldShmSize;r++){
|
||||||
|
WorldShmCommBufs[r] = ShmCommBuf;
|
||||||
|
}
|
||||||
|
_ShmAllocBytes=bytes;
|
||||||
|
_ShmAlloc=1;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#if defined(GRID_CUDA) ||defined(GRID_HIP) ||defined(GRID_SYCL)
|
||||||
|
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||||
|
{
|
||||||
|
void * ShmCommBuf ;
|
||||||
|
assert(_ShmSetup==1);
|
||||||
|
assert(_ShmAlloc==0);
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
// allocate the pointer array for shared windows for our group
|
// allocate the pointer array for shared windows for our group
|
||||||
@@ -538,64 +513,51 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
|||||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
// Each MPI rank should allocate our own buffer
|
// Each MPI rank should allocate our own buffer
|
||||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
#ifndef ACCELERATOR_AWARE_MPI
|
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
|
||||||
// printf("Host buffer allocate for GPU non-aware MPI\n");
|
auto zeDevice = cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_device());
|
||||||
HostCommBuf= malloc(bytes); /// CHANGE THIS TO malloc_host
|
auto zeContext= cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_context());
|
||||||
#endif
|
ze_device_mem_alloc_desc_t zeDesc = {};
|
||||||
|
zeMemAllocDevice(zeContext,&zeDesc,bytes,2*1024*1024,zeDevice,&ShmCommBuf);
|
||||||
|
std::cout << WorldRank << header " SharedMemoryMPI.cc zeMemAllocDevice "<< bytes
|
||||||
|
<< "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
|
||||||
|
#else
|
||||||
ShmCommBuf = acceleratorAllocDevice(bytes);
|
ShmCommBuf = acceleratorAllocDevice(bytes);
|
||||||
|
#endif
|
||||||
if (ShmCommBuf == (void *)NULL ) {
|
if (ShmCommBuf == (void *)NULL ) {
|
||||||
std::cerr << "SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
|
std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
|
||||||
exit(EXIT_FAILURE);
|
exit(EXIT_FAILURE);
|
||||||
}
|
}
|
||||||
if ( WorldRank == 0 ){
|
// if ( WorldRank == 0 ){
|
||||||
std::cout << Mheader " acceleratorAllocDevice "<< bytes
|
if ( 1 ){
|
||||||
<< "bytes at "<< std::hex<< ShmCommBuf << " - "<<(bytes-1+(uint64_t)ShmCommBuf) <<std::dec<<" for comms buffers " <<std::endl;
|
std::cout << WorldRank << header " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
|
||||||
}
|
<< "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
|
||||||
SharedMemoryZero(ShmCommBuf,bytes);
|
|
||||||
if ( WorldRank == 0 ){
|
|
||||||
std::cout<< Mheader "Setting up IPC"<<std::endl;
|
|
||||||
}
|
}
|
||||||
|
// SharedMemoryZero(ShmCommBuf,bytes);
|
||||||
|
std::cout<< "Setting up IPC"<<std::endl;
|
||||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
// Loop over ranks/gpu's on our node
|
// Loop over ranks/gpu's on our node
|
||||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
#ifdef SHM_SOCKETS
|
|
||||||
UnixSockets::Open(WorldShmRank);
|
|
||||||
#endif
|
|
||||||
for(int r=0;r<WorldShmSize;r++){
|
for(int r=0;r<WorldShmSize;r++){
|
||||||
|
|
||||||
MPI_Barrier(WorldShmComm);
|
|
||||||
|
|
||||||
#ifndef GRID_MPI3_SHM_NONE
|
#ifndef GRID_MPI3_SHM_NONE
|
||||||
//////////////////////////////////////////////////
|
//////////////////////////////////////////////////
|
||||||
// If it is me, pass around the IPC access key
|
// If it is me, pass around the IPC access key
|
||||||
//////////////////////////////////////////////////
|
//////////////////////////////////////////////////
|
||||||
void * thisBuf = ShmCommBuf;
|
|
||||||
if(!Stencil_force_mpi) {
|
|
||||||
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
|
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
|
||||||
typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t;
|
ze_ipc_mem_handle_t handle;
|
||||||
|
|
||||||
auto zeDevice = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
|
|
||||||
auto zeContext = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
|
|
||||||
|
|
||||||
ze_ipc_mem_handle_t ihandle;
|
|
||||||
clone_mem_t handle;
|
|
||||||
|
|
||||||
if ( r==WorldShmRank ) {
|
if ( r==WorldShmRank ) {
|
||||||
auto err = zeMemGetIpcHandle(zeContext,ShmCommBuf,&ihandle);
|
auto err = zeMemGetIpcHandle(zeContext,ShmCommBuf,&handle);
|
||||||
if ( err != ZE_RESULT_SUCCESS ) {
|
if ( err != ZE_RESULT_SUCCESS ) {
|
||||||
std::cerr << "SharedMemoryMPI.cc zeMemGetIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
|
std::cerr << "SharedMemoryMPI.cc zeMemGetIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
|
||||||
exit(EXIT_FAILURE);
|
exit(EXIT_FAILURE);
|
||||||
|
} else {
|
||||||
|
std::cerr << "SharedMemoryMPI.cc zeMemGetIpcHandle succeeded for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
|
||||||
}
|
}
|
||||||
memcpy((void *)&handle.fd,(void *)&ihandle,sizeof(int));
|
std::cerr<<"Allocated IpcHandle rank "<<r<<" (hex) ";
|
||||||
handle.pid = getpid();
|
for(int c=0;c<ZE_MAX_IPC_HANDLE_SIZE;c++){
|
||||||
memcpy((void *)&handle.ze,(void *)&ihandle,sizeof(ihandle));
|
std::cerr<<std::hex<<(uint32_t)((uint8_t)handle.data[c])<<std::dec;
|
||||||
#ifdef SHM_SOCKETS
|
|
||||||
for(int rr=0;rr<WorldShmSize;rr++){
|
|
||||||
if(rr!=r){
|
|
||||||
UnixSockets::SendFileDescriptor(handle.fd,rr);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
#endif
|
std::cerr<<std::endl;
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
#ifdef GRID_CUDA
|
#ifdef GRID_CUDA
|
||||||
@@ -618,57 +580,39 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
//////////////////////////////////////////////////
|
//////////////////////////////////////////////////
|
||||||
// Share this IPC handle across the Shm Comm
|
// Share this IPC handle across the Shm Comm
|
||||||
//////////////////////////////////////////////////
|
//////////////////////////////////////////////////
|
||||||
{
|
{
|
||||||
MPI_Barrier(WorldShmComm);
|
|
||||||
int ierr=MPI_Bcast(&handle,
|
int ierr=MPI_Bcast(&handle,
|
||||||
sizeof(handle),
|
sizeof(handle),
|
||||||
MPI_BYTE,
|
MPI_BYTE,
|
||||||
r,
|
r,
|
||||||
WorldShmComm);
|
WorldShmComm);
|
||||||
GRID_ASSERT(ierr==0);
|
assert(ierr==0);
|
||||||
}
|
}
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////
|
||||||
// If I am not the source, overwrite thisBuf with remote buffer
|
// If I am not the source, overwrite thisBuf with remote buffer
|
||||||
///////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////
|
||||||
|
void * thisBuf = ShmCommBuf;
|
||||||
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
|
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
|
||||||
if ( r!=WorldShmRank ) {
|
if ( r!=WorldShmRank ) {
|
||||||
thisBuf = nullptr;
|
thisBuf = nullptr;
|
||||||
int myfd;
|
std::cerr<<"Using IpcHandle rank "<<r<<" ";
|
||||||
#ifdef SHM_SOCKETS
|
for(int c=0;c<ZE_MAX_IPC_HANDLE_SIZE;c++){
|
||||||
myfd=UnixSockets::RecvFileDescriptor();
|
std::cerr<<std::hex<<(uint32_t)((uint8_t)handle.data[c])<<std::dec;
|
||||||
#else
|
|
||||||
// std::cout<<"mapping seeking remote pid/fd "
|
|
||||||
// <<handle.pid<<"/"
|
|
||||||
// <<handle.fd<<std::endl;
|
|
||||||
|
|
||||||
int pidfd = syscall(SYS_pidfd_open,handle.pid,0);
|
|
||||||
// std::cout<<"Using IpcHandle pidfd "<<pidfd<<"\n";
|
|
||||||
// int myfd = syscall(SYS_pidfd_getfd,pidfd,handle.fd,0);
|
|
||||||
myfd = syscall(438,pidfd,handle.fd,0);
|
|
||||||
int err_t = errno;
|
|
||||||
if (myfd < 0) {
|
|
||||||
fprintf(stderr,"pidfd_getfd returned %d errno was %d\n", myfd,err_t); fflush(stderr);
|
|
||||||
perror("pidfd_getfd failed ");
|
|
||||||
assert(0);
|
|
||||||
}
|
}
|
||||||
#endif
|
std::cerr<<std::endl;
|
||||||
// std::cout<<"Using IpcHandle mapped remote pid "<<handle.pid <<" FD "<<handle.fd <<" to myfd "<<myfd<<"\n";
|
auto err = zeMemOpenIpcHandle(zeContext,zeDevice,handle,0,&thisBuf);
|
||||||
memcpy((void *)&ihandle,(void *)&handle.ze,sizeof(ihandle));
|
|
||||||
memcpy((void *)&ihandle,(void *)&myfd,sizeof(int));
|
|
||||||
|
|
||||||
auto err = zeMemOpenIpcHandle(zeContext,zeDevice,ihandle,0,&thisBuf);
|
|
||||||
if ( err != ZE_RESULT_SUCCESS ) {
|
if ( err != ZE_RESULT_SUCCESS ) {
|
||||||
std::cerr << "SharedMemoryMPI.cc "<<zeContext<<" "<<zeDevice<<std::endl;
|
std::cerr << "SharedMemoryMPI.cc "<<zeContext<<" "<<zeDevice<<std::endl;
|
||||||
std::cerr << "SharedMemoryMPI.cc zeMemOpenIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
|
std::cerr << "SharedMemoryMPI.cc zeMemOpenIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
|
||||||
exit(EXIT_FAILURE);
|
exit(EXIT_FAILURE);
|
||||||
|
} else {
|
||||||
|
std::cerr << "SharedMemoryMPI.cc zeMemOpenIpcHandle succeeded for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
|
||||||
}
|
}
|
||||||
GRID_ASSERT(thisBuf!=nullptr);
|
assert(thisBuf!=nullptr);
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
#ifdef GRID_CUDA
|
#ifdef GRID_CUDA
|
||||||
@@ -692,25 +636,24 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
|||||||
///////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////
|
||||||
// Save a copy of the device buffers
|
// Save a copy of the device buffers
|
||||||
///////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////
|
||||||
}
|
|
||||||
WorldShmCommBufs[r] = thisBuf;
|
WorldShmCommBufs[r] = thisBuf;
|
||||||
#else
|
#else
|
||||||
WorldShmCommBufs[r] = ShmCommBuf;
|
WorldShmCommBufs[r] = ShmCommBuf;
|
||||||
#endif
|
#endif
|
||||||
MPI_Barrier(WorldShmComm);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
_ShmAllocBytes=bytes;
|
_ShmAllocBytes=bytes;
|
||||||
_ShmAlloc=1;
|
_ShmAlloc=1;
|
||||||
}
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
#else
|
#else
|
||||||
#ifdef GRID_MPI3_SHMMMAP
|
#ifdef GRID_MPI3_SHMMMAP
|
||||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||||
{
|
{
|
||||||
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl;
|
std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl;
|
||||||
GRID_ASSERT(_ShmSetup==1);
|
assert(_ShmSetup==1);
|
||||||
GRID_ASSERT(_ShmAlloc==0);
|
assert(_ShmAlloc==0);
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
// allocate the shared windows for our group
|
// allocate the shared windows for our group
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
@@ -740,14 +683,13 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
|||||||
void *ptr = (void *) mmap(NULL, bytes, PROT_READ | PROT_WRITE, mmap_flag,fd, 0);
|
void *ptr = (void *) mmap(NULL, bytes, PROT_READ | PROT_WRITE, mmap_flag,fd, 0);
|
||||||
if ( ptr == (void *)MAP_FAILED ) {
|
if ( ptr == (void *)MAP_FAILED ) {
|
||||||
printf("mmap %s failed\n",shm_name);
|
printf("mmap %s failed\n",shm_name);
|
||||||
perror("failed mmap"); GRID_ASSERT(0);
|
perror("failed mmap"); assert(0);
|
||||||
}
|
}
|
||||||
GRID_ASSERT(((uint64_t)ptr&0x3F)==0);
|
assert(((uint64_t)ptr&0x3F)==0);
|
||||||
close(fd);
|
close(fd);
|
||||||
WorldShmCommBufs[r] =ptr;
|
WorldShmCommBufs[r] =ptr;
|
||||||
// std::cout << Mheader "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
|
// std::cout << header "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
|
||||||
}
|
}
|
||||||
std::cout<< Mheader " Intra-node IPC setup is complete "<<std::endl;
|
|
||||||
_ShmAlloc=1;
|
_ShmAlloc=1;
|
||||||
_ShmAllocBytes = bytes;
|
_ShmAllocBytes = bytes;
|
||||||
};
|
};
|
||||||
@@ -756,9 +698,9 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
|||||||
#ifdef GRID_MPI3_SHM_NONE
|
#ifdef GRID_MPI3_SHM_NONE
|
||||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||||
{
|
{
|
||||||
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl;
|
std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl;
|
||||||
GRID_ASSERT(_ShmSetup==1);
|
assert(_ShmSetup==1);
|
||||||
GRID_ASSERT(_ShmAlloc==0);
|
assert(_ShmAlloc==0);
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
// allocate the shared windows for our group
|
// allocate the shared windows for our group
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
@@ -769,7 +711,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
|||||||
// Hugetlbf and others map filesystems as mappable huge pages
|
// Hugetlbf and others map filesystems as mappable huge pages
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
char shm_name [NAME_MAX];
|
char shm_name [NAME_MAX];
|
||||||
GRID_ASSERT(WorldShmSize == 1);
|
assert(WorldShmSize == 1);
|
||||||
for(int r=0;r<WorldShmSize;r++){
|
for(int r=0;r<WorldShmSize;r++){
|
||||||
|
|
||||||
int fd=-1;
|
int fd=-1;
|
||||||
@@ -783,9 +725,9 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
|||||||
void *ptr = (void *) mmap(NULL, bytes, PROT_READ | PROT_WRITE, mmap_flag,fd, 0);
|
void *ptr = (void *) mmap(NULL, bytes, PROT_READ | PROT_WRITE, mmap_flag,fd, 0);
|
||||||
if ( ptr == (void *)MAP_FAILED ) {
|
if ( ptr == (void *)MAP_FAILED ) {
|
||||||
printf("mmap %s failed\n",shm_name);
|
printf("mmap %s failed\n",shm_name);
|
||||||
perror("failed mmap"); GRID_ASSERT(0);
|
perror("failed mmap"); assert(0);
|
||||||
}
|
}
|
||||||
GRID_ASSERT(((uint64_t)ptr&0x3F)==0);
|
assert(((uint64_t)ptr&0x3F)==0);
|
||||||
close(fd);
|
close(fd);
|
||||||
WorldShmCommBufs[r] =ptr;
|
WorldShmCommBufs[r] =ptr;
|
||||||
// std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
|
// std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
|
||||||
@@ -803,9 +745,9 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
|||||||
////////////////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||||
{
|
{
|
||||||
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl;
|
std::cout << header "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl;
|
||||||
GRID_ASSERT(_ShmSetup==1);
|
assert(_ShmSetup==1);
|
||||||
GRID_ASSERT(_ShmAlloc==0);
|
assert(_ShmAlloc==0);
|
||||||
MPI_Barrier(WorldShmComm);
|
MPI_Barrier(WorldShmComm);
|
||||||
WorldShmCommBufs.resize(WorldShmSize);
|
WorldShmCommBufs.resize(WorldShmSize);
|
||||||
|
|
||||||
@@ -836,7 +778,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
|||||||
perror("failed mmap");
|
perror("failed mmap");
|
||||||
assert(0);
|
assert(0);
|
||||||
}
|
}
|
||||||
GRID_ASSERT(((uint64_t)ptr&0x3F)==0);
|
assert(((uint64_t)ptr&0x3F)==0);
|
||||||
|
|
||||||
WorldShmCommBufs[r] =ptr;
|
WorldShmCommBufs[r] =ptr;
|
||||||
close(fd);
|
close(fd);
|
||||||
@@ -857,8 +799,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
|||||||
if ( fd<0 ) { perror("failed shm_open"); assert(0); }
|
if ( fd<0 ) { perror("failed shm_open"); assert(0); }
|
||||||
|
|
||||||
void * ptr = mmap(NULL,size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
|
void * ptr = mmap(NULL,size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
|
||||||
if ( ptr == MAP_FAILED ) { perror("failed mmap"); GRID_ASSERT(0); }
|
if ( ptr == MAP_FAILED ) { perror("failed mmap"); assert(0); }
|
||||||
GRID_ASSERT(((uint64_t)ptr&0x3F)==0);
|
assert(((uint64_t)ptr&0x3F)==0);
|
||||||
WorldShmCommBufs[r] =ptr;
|
WorldShmCommBufs[r] =ptr;
|
||||||
|
|
||||||
close(fd);
|
close(fd);
|
||||||
@@ -881,14 +823,14 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
|
|||||||
bzero(dest,bytes);
|
bzero(dest,bytes);
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
//void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
|
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
|
||||||
//{
|
{
|
||||||
//#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
|
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
|
||||||
// acceleratorCopyToDevice(src,dest,bytes);
|
acceleratorCopyToDevice(src,dest,bytes);
|
||||||
//#else
|
#else
|
||||||
// bcopy(src,dest,bytes);
|
bcopy(src,dest,bytes);
|
||||||
//#endif
|
#endif
|
||||||
//}
|
}
|
||||||
////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////
|
||||||
// Global shared functionality finished
|
// Global shared functionality finished
|
||||||
// Now move to per communicator functionality
|
// Now move to per communicator functionality
|
||||||
@@ -915,7 +857,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
|
|||||||
//////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////
|
||||||
// Map ShmRank to WorldShmRank and use the right buffer
|
// Map ShmRank to WorldShmRank and use the right buffer
|
||||||
//////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////
|
||||||
GRID_ASSERT (GlobalSharedMemory::ShmAlloc()==1);
|
assert (GlobalSharedMemory::ShmAlloc()==1);
|
||||||
heap_size = GlobalSharedMemory::ShmAllocBytes();
|
heap_size = GlobalSharedMemory::ShmAllocBytes();
|
||||||
for(int r=0;r<ShmSize;r++){
|
for(int r=0;r<ShmSize;r++){
|
||||||
|
|
||||||
@@ -924,16 +866,9 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
|
|||||||
MPI_Allreduce(MPI_IN_PLACE,&wsr,1,MPI_UINT32_T,MPI_SUM,ShmComm);
|
MPI_Allreduce(MPI_IN_PLACE,&wsr,1,MPI_UINT32_T,MPI_SUM,ShmComm);
|
||||||
|
|
||||||
ShmCommBufs[r] = GlobalSharedMemory::WorldShmCommBufs[wsr];
|
ShmCommBufs[r] = GlobalSharedMemory::WorldShmCommBufs[wsr];
|
||||||
// std::cerr << " SetCommunicator rank "<<r<<" comm "<<ShmCommBufs[r] <<std::endl;
|
|
||||||
}
|
}
|
||||||
ShmBufferFreeAll();
|
ShmBufferFreeAll();
|
||||||
|
|
||||||
#ifndef ACCELERATOR_AWARE_MPI
|
|
||||||
host_heap_size = heap_size;
|
|
||||||
HostCommBuf= GlobalSharedMemory::HostCommBuf;
|
|
||||||
HostBufferFreeAll();
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/////////////////////////////////////////////////////////////////////
|
/////////////////////////////////////////////////////////////////////
|
||||||
// find comm ranks in our SHM group (i.e. which ranks are on our node)
|
// find comm ranks in our SHM group (i.e. which ranks are on our node)
|
||||||
/////////////////////////////////////////////////////////////////////
|
/////////////////////////////////////////////////////////////////////
|
||||||
@@ -955,7 +890,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
|
|||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// SharedMemoryTest();
|
//SharedMemoryTest();
|
||||||
}
|
}
|
||||||
//////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////
|
||||||
// On node barrier
|
// On node barrier
|
||||||
@@ -977,18 +912,19 @@ void SharedMemory::SharedMemoryTest(void)
|
|||||||
check[0]=GlobalSharedMemory::WorldNode;
|
check[0]=GlobalSharedMemory::WorldNode;
|
||||||
check[1]=r;
|
check[1]=r;
|
||||||
check[2]=magic;
|
check[2]=magic;
|
||||||
acceleratorCopyToDevice(check,ShmCommBufs[r],3*sizeof(uint64_t));
|
GlobalSharedMemory::SharedMemoryCopy( ShmCommBufs[r], check, 3*sizeof(uint64_t));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
ShmBarrier();
|
ShmBarrier();
|
||||||
for(uint64_t r=0;r<ShmSize;r++){
|
for(uint64_t r=0;r<ShmSize;r++){
|
||||||
acceleratorCopyFromDevice(ShmCommBufs[r],check,3*sizeof(uint64_t));
|
ShmBarrier();
|
||||||
GRID_ASSERT(check[0]==GlobalSharedMemory::WorldNode);
|
GlobalSharedMemory::SharedMemoryCopy(check,ShmCommBufs[r], 3*sizeof(uint64_t));
|
||||||
GRID_ASSERT(check[1]==r);
|
ShmBarrier();
|
||||||
GRID_ASSERT(check[2]==magic);
|
assert(check[0]==GlobalSharedMemory::WorldNode);
|
||||||
|
assert(check[1]==r);
|
||||||
|
assert(check[2]==magic);
|
||||||
|
ShmBarrier();
|
||||||
}
|
}
|
||||||
ShmBarrier();
|
|
||||||
std::cout << GridLogDebug << " SharedMemoryTest has passed "<<std::endl;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void *SharedMemory::ShmBuffer(int rank)
|
void *SharedMemory::ShmBuffer(int rank)
|
||||||
@@ -1003,14 +939,12 @@ void *SharedMemory::ShmBuffer(int rank)
|
|||||||
void *SharedMemory::ShmBufferTranslate(int rank,void * local_p)
|
void *SharedMemory::ShmBufferTranslate(int rank,void * local_p)
|
||||||
{
|
{
|
||||||
int gpeer = ShmRanks[rank];
|
int gpeer = ShmRanks[rank];
|
||||||
GRID_ASSERT(gpeer!=ShmRank); // never send to self
|
assert(gpeer!=ShmRank); // never send to self
|
||||||
// std::cout << "ShmBufferTranslate for rank " << rank<<" peer "<<gpeer<<std::endl;
|
|
||||||
if (gpeer == MPI_UNDEFINED){
|
if (gpeer == MPI_UNDEFINED){
|
||||||
return NULL;
|
return NULL;
|
||||||
} else {
|
} else {
|
||||||
uint64_t offset = (uint64_t)local_p - (uint64_t)ShmCommBufs[ShmRank];
|
uint64_t offset = (uint64_t)local_p - (uint64_t)ShmCommBufs[ShmRank];
|
||||||
uint64_t remote = (uint64_t)ShmCommBufs[gpeer]+offset;
|
uint64_t remote = (uint64_t)ShmCommBufs[gpeer]+offset;
|
||||||
// std::cout << "ShmBufferTranslate : local,offset,remote "<<std::hex<<local_p<<" "<<offset<<" "<<remote<<std::dec<<std::endl;
|
|
||||||
return (void *) remote;
|
return (void *) remote;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -34,7 +34,7 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
/*Construct from an MPI communicator*/
|
/*Construct from an MPI communicator*/
|
||||||
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
|
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
|
||||||
{
|
{
|
||||||
GRID_ASSERT(_ShmSetup==0);
|
assert(_ShmSetup==0);
|
||||||
WorldComm = 0;
|
WorldComm = 0;
|
||||||
WorldRank = 0;
|
WorldRank = 0;
|
||||||
WorldSize = 1;
|
WorldSize = 1;
|
||||||
@@ -48,10 +48,9 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
|
|||||||
_ShmSetup=1;
|
_ShmSetup=1;
|
||||||
}
|
}
|
||||||
|
|
||||||
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
|
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
|
||||||
{
|
{
|
||||||
optimal_comm = WorldComm;
|
optimal_comm = WorldComm;
|
||||||
SHM = Coordinate(processors.size(),1);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
@@ -62,8 +61,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
|||||||
{
|
{
|
||||||
std::cout << header "SharedMemoryAllocate "<< bytes<< " GPU implementation "<<std::endl;
|
std::cout << header "SharedMemoryAllocate "<< bytes<< " GPU implementation "<<std::endl;
|
||||||
void * ShmCommBuf ;
|
void * ShmCommBuf ;
|
||||||
GRID_ASSERT(_ShmSetup==1);
|
assert(_ShmSetup==1);
|
||||||
GRID_ASSERT(_ShmAlloc==0);
|
assert(_ShmAlloc==0);
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
// Each MPI rank should allocate our own buffer
|
// Each MPI rank should allocate our own buffer
|
||||||
@@ -92,8 +91,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
|||||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||||
{
|
{
|
||||||
void * ShmCommBuf ;
|
void * ShmCommBuf ;
|
||||||
GRID_ASSERT(_ShmSetup==1);
|
assert(_ShmSetup==1);
|
||||||
GRID_ASSERT(_ShmAlloc==0);
|
assert(_ShmAlloc==0);
|
||||||
int mmap_flag =0;
|
int mmap_flag =0;
|
||||||
#ifdef MAP_ANONYMOUS
|
#ifdef MAP_ANONYMOUS
|
||||||
mmap_flag = mmap_flag| MAP_SHARED | MAP_ANONYMOUS;
|
mmap_flag = mmap_flag| MAP_SHARED | MAP_ANONYMOUS;
|
||||||
@@ -122,17 +121,17 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
|
|||||||
{
|
{
|
||||||
acceleratorMemSet(dest,0,bytes);
|
acceleratorMemSet(dest,0,bytes);
|
||||||
}
|
}
|
||||||
//void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
|
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
|
||||||
//{
|
{
|
||||||
// acceleratorCopyToDevice(src,dest,bytes);
|
acceleratorCopyToDevice(src,dest,bytes);
|
||||||
//}
|
}
|
||||||
////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////
|
||||||
// Global shared functionality finished
|
// Global shared functionality finished
|
||||||
// Now move to per communicator functionality
|
// Now move to per communicator functionality
|
||||||
////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////
|
||||||
void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
|
void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
|
||||||
{
|
{
|
||||||
GRID_ASSERT(GlobalSharedMemory::ShmAlloc()==1);
|
assert(GlobalSharedMemory::ShmAlloc()==1);
|
||||||
ShmRanks.resize(1);
|
ShmRanks.resize(1);
|
||||||
ShmCommBufs.resize(1);
|
ShmCommBufs.resize(1);
|
||||||
ShmRanks[0] = 0;
|
ShmRanks[0] = 0;
|
||||||
|
|||||||
@@ -51,6 +51,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|||||||
#endif
|
#endif
|
||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
|
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
|
||||||
auto Cshift(const Expression &expr,int dim,int shift) -> decltype(closure(expr))
|
auto Cshift(const Expression &expr,int dim,int shift) -> decltype(closure(expr))
|
||||||
{
|
{
|
||||||
|
|||||||
@@ -29,28 +29,13 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
extern std::vector<std::pair<int,int> > Cshift_table;
|
extern Vector<std::pair<int,int> > Cshift_table;
|
||||||
extern deviceVector<std::pair<int,int> > Cshift_table_device;
|
|
||||||
|
|
||||||
inline std::pair<int,int> *MapCshiftTable(void)
|
|
||||||
{
|
|
||||||
// GPU version
|
|
||||||
uint64_t sz=Cshift_table.size();
|
|
||||||
if (Cshift_table_device.size()!=sz ) {
|
|
||||||
Cshift_table_device.resize(sz);
|
|
||||||
}
|
|
||||||
acceleratorCopyToDevice((void *)&Cshift_table[0],
|
|
||||||
(void *)&Cshift_table_device[0],
|
|
||||||
sizeof(Cshift_table[0])*sz);
|
|
||||||
|
|
||||||
return &Cshift_table_device[0];
|
|
||||||
// CPU version use identify map
|
|
||||||
}
|
|
||||||
///////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////
|
||||||
// Gather for when there is no need to SIMD split
|
// Gather for when there is no need to SIMD split
|
||||||
///////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////
|
||||||
template<class vobj> void
|
template<class vobj> void
|
||||||
Gather_plane_simple (const Lattice<vobj> &rhs,deviceVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
|
Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
|
||||||
{
|
{
|
||||||
int rd = rhs.Grid()->_rdimensions[dimension];
|
int rd = rhs.Grid()->_rdimensions[dimension];
|
||||||
|
|
||||||
@@ -89,11 +74,18 @@ Gather_plane_simple (const Lattice<vobj> &rhs,deviceVector<vobj> &buffer,int dim
|
|||||||
}
|
}
|
||||||
{
|
{
|
||||||
auto buffer_p = & buffer[0];
|
auto buffer_p = & buffer[0];
|
||||||
auto table = MapCshiftTable();
|
auto table = &Cshift_table[0];
|
||||||
|
#ifdef ACCELERATOR_CSHIFT
|
||||||
autoView(rhs_v , rhs, AcceleratorRead);
|
autoView(rhs_v , rhs, AcceleratorRead);
|
||||||
accelerator_for(i,ent,vobj::Nsimd(),{
|
accelerator_for(i,ent,vobj::Nsimd(),{
|
||||||
coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second]));
|
coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second]));
|
||||||
});
|
});
|
||||||
|
#else
|
||||||
|
autoView(rhs_v , rhs, CpuRead);
|
||||||
|
thread_for(i,ent,{
|
||||||
|
buffer_p[table[i].first]=rhs_v[table[i].second];
|
||||||
|
});
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -118,6 +110,7 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
|
|||||||
int n1=rhs.Grid()->_slice_stride[dimension];
|
int n1=rhs.Grid()->_slice_stride[dimension];
|
||||||
|
|
||||||
if ( cbmask ==0x3){
|
if ( cbmask ==0x3){
|
||||||
|
#ifdef ACCELERATOR_CSHIFT
|
||||||
autoView(rhs_v , rhs, AcceleratorRead);
|
autoView(rhs_v , rhs, AcceleratorRead);
|
||||||
accelerator_for(nn,e1*e2,1,{
|
accelerator_for(nn,e1*e2,1,{
|
||||||
int n = nn%e1;
|
int n = nn%e1;
|
||||||
@@ -128,10 +121,21 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
|
|||||||
vobj temp =rhs_v[so+o+b];
|
vobj temp =rhs_v[so+o+b];
|
||||||
extract<vobj>(temp,pointers,offset);
|
extract<vobj>(temp,pointers,offset);
|
||||||
});
|
});
|
||||||
|
#else
|
||||||
|
autoView(rhs_v , rhs, CpuRead);
|
||||||
|
thread_for2d(n,e1,b,e2,{
|
||||||
|
int o = n*n1;
|
||||||
|
int offset = b+n*e2;
|
||||||
|
|
||||||
|
vobj temp =rhs_v[so+o+b];
|
||||||
|
extract<vobj>(temp,pointers,offset);
|
||||||
|
});
|
||||||
|
#endif
|
||||||
} else {
|
} else {
|
||||||
Coordinate rdim=rhs.Grid()->_rdimensions;
|
Coordinate rdim=rhs.Grid()->_rdimensions;
|
||||||
Coordinate cdm =rhs.Grid()->_checker_dim_mask;
|
Coordinate cdm =rhs.Grid()->_checker_dim_mask;
|
||||||
std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb?
|
std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb?
|
||||||
|
#ifdef ACCELERATOR_CSHIFT
|
||||||
autoView(rhs_v , rhs, AcceleratorRead);
|
autoView(rhs_v , rhs, AcceleratorRead);
|
||||||
accelerator_for(nn,e1*e2,1,{
|
accelerator_for(nn,e1*e2,1,{
|
||||||
int n = nn%e1;
|
int n = nn%e1;
|
||||||
@@ -152,13 +156,33 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
|
|||||||
extract<vobj>(temp,pointers,offset);
|
extract<vobj>(temp,pointers,offset);
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
|
#else
|
||||||
|
autoView(rhs_v , rhs, CpuRead);
|
||||||
|
thread_for2d(n,e1,b,e2,{
|
||||||
|
|
||||||
|
Coordinate coor;
|
||||||
|
|
||||||
|
int o=n*n1;
|
||||||
|
int oindex = o+b;
|
||||||
|
|
||||||
|
int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm);
|
||||||
|
|
||||||
|
int ocb=1<<cb;
|
||||||
|
int offset = b+n*e2;
|
||||||
|
|
||||||
|
if ( ocb & cbmask ) {
|
||||||
|
vobj temp =rhs_v[so+o+b];
|
||||||
|
extract<vobj>(temp,pointers,offset);
|
||||||
|
}
|
||||||
|
});
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
//////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////
|
||||||
// Scatter for when there is no need to SIMD split
|
// Scatter for when there is no need to SIMD split
|
||||||
//////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////
|
||||||
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,deviceVector<vobj> &buffer, int dimension,int plane,int cbmask)
|
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<vobj> &buffer, int dimension,int plane,int cbmask)
|
||||||
{
|
{
|
||||||
int rd = rhs.Grid()->_rdimensions[dimension];
|
int rd = rhs.Grid()->_rdimensions[dimension];
|
||||||
|
|
||||||
@@ -201,11 +225,18 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,deviceVector<
|
|||||||
|
|
||||||
{
|
{
|
||||||
auto buffer_p = & buffer[0];
|
auto buffer_p = & buffer[0];
|
||||||
auto table = MapCshiftTable();
|
auto table = &Cshift_table[0];
|
||||||
autoView( rhs_v, rhs, AcceleratorWriteDiscard);
|
#ifdef ACCELERATOR_CSHIFT
|
||||||
|
autoView( rhs_v, rhs, AcceleratorWrite);
|
||||||
accelerator_for(i,ent,vobj::Nsimd(),{
|
accelerator_for(i,ent,vobj::Nsimd(),{
|
||||||
coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second]));
|
coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second]));
|
||||||
});
|
});
|
||||||
|
#else
|
||||||
|
autoView( rhs_v, rhs, CpuWrite);
|
||||||
|
thread_for(i,ent,{
|
||||||
|
rhs_v[table[i].first]=buffer_p[table[i].second];
|
||||||
|
});
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -228,7 +259,8 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
|
|||||||
if(cbmask ==0x3 ) {
|
if(cbmask ==0x3 ) {
|
||||||
int _slice_stride = rhs.Grid()->_slice_stride[dimension];
|
int _slice_stride = rhs.Grid()->_slice_stride[dimension];
|
||||||
int _slice_block = rhs.Grid()->_slice_block[dimension];
|
int _slice_block = rhs.Grid()->_slice_block[dimension];
|
||||||
autoView( rhs_v , rhs, AcceleratorWriteDiscard);
|
#ifdef ACCELERATOR_CSHIFT
|
||||||
|
autoView( rhs_v , rhs, AcceleratorWrite);
|
||||||
accelerator_for(nn,e1*e2,1,{
|
accelerator_for(nn,e1*e2,1,{
|
||||||
int n = nn%e1;
|
int n = nn%e1;
|
||||||
int b = nn/e1;
|
int b = nn/e1;
|
||||||
@@ -236,13 +268,21 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
|
|||||||
int offset = b+n*_slice_block;
|
int offset = b+n*_slice_block;
|
||||||
merge(rhs_v[so+o+b],pointers,offset);
|
merge(rhs_v[so+o+b],pointers,offset);
|
||||||
});
|
});
|
||||||
|
#else
|
||||||
|
autoView( rhs_v , rhs, CpuWrite);
|
||||||
|
thread_for2d(n,e1,b,e2,{
|
||||||
|
int o = n*_slice_stride;
|
||||||
|
int offset = b+n*_slice_block;
|
||||||
|
merge(rhs_v[so+o+b],pointers,offset);
|
||||||
|
});
|
||||||
|
#endif
|
||||||
} else {
|
} else {
|
||||||
|
|
||||||
// Case of SIMD split AND checker dim cannot currently be hit, except in
|
// Case of SIMD split AND checker dim cannot currently be hit, except in
|
||||||
// Test_cshift_red_black code.
|
// Test_cshift_red_black code.
|
||||||
std::cout << "Scatter_plane merge GRID_ASSERT(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME
|
std::cout << "Scatter_plane merge assert(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME
|
||||||
std::cout<<" Unthreaded warning -- buffer is not densely packed ??"<<std::endl;
|
std::cout<<" Unthreaded warning -- buffer is not densely packed ??"<<std::endl;
|
||||||
GRID_ASSERT(0); // This will fail if hit on GPU
|
assert(0); // This will fail if hit on GPU
|
||||||
autoView( rhs_v, rhs, CpuWrite);
|
autoView( rhs_v, rhs, CpuWrite);
|
||||||
for(int n=0;n<e1;n++){
|
for(int n=0;n<e1;n++){
|
||||||
for(int b=0;b<e2;b++){
|
for(int b=0;b<e2;b++){
|
||||||
@@ -300,12 +340,20 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
|
|||||||
}
|
}
|
||||||
|
|
||||||
{
|
{
|
||||||
auto table = MapCshiftTable();
|
auto table = &Cshift_table[0];
|
||||||
|
#ifdef ACCELERATOR_CSHIFT
|
||||||
autoView(rhs_v , rhs, AcceleratorRead);
|
autoView(rhs_v , rhs, AcceleratorRead);
|
||||||
autoView(lhs_v , lhs, AcceleratorWriteDiscard);
|
autoView(lhs_v , lhs, AcceleratorWrite);
|
||||||
accelerator_for(i,ent,vobj::Nsimd(),{
|
accelerator_for(i,ent,vobj::Nsimd(),{
|
||||||
coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second]));
|
coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second]));
|
||||||
});
|
});
|
||||||
|
#else
|
||||||
|
autoView(rhs_v , rhs, CpuRead);
|
||||||
|
autoView(lhs_v , lhs, CpuWrite);
|
||||||
|
thread_for(i,ent,{
|
||||||
|
lhs_v[table[i].first]=rhs_v[table[i].second];
|
||||||
|
});
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -344,12 +392,20 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
|
|||||||
}
|
}
|
||||||
|
|
||||||
{
|
{
|
||||||
auto table = MapCshiftTable();
|
auto table = &Cshift_table[0];
|
||||||
|
#ifdef ACCELERATOR_CSHIFT
|
||||||
autoView( rhs_v, rhs, AcceleratorRead);
|
autoView( rhs_v, rhs, AcceleratorRead);
|
||||||
autoView( lhs_v, lhs, AcceleratorWrite);
|
autoView( lhs_v, lhs, AcceleratorWrite);
|
||||||
accelerator_for(i,ent,1,{
|
accelerator_for(i,ent,1,{
|
||||||
permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
|
permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
|
||||||
});
|
});
|
||||||
|
#else
|
||||||
|
autoView( rhs_v, rhs, CpuRead);
|
||||||
|
autoView( lhs_v, lhs, CpuWrite);
|
||||||
|
thread_for(i,ent,{
|
||||||
|
permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
|
||||||
|
});
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@@ -29,13 +29,9 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
|||||||
#ifndef _GRID_CSHIFT_MPI_H_
|
#ifndef _GRID_CSHIFT_MPI_H_
|
||||||
#define _GRID_CSHIFT_MPI_H_
|
#define _GRID_CSHIFT_MPI_H_
|
||||||
|
|
||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
#ifdef GRID_CHECKSUM_COMMS
|
|
||||||
extern uint64_t checksum_index;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
const int Cshift_verbose=0;
|
|
||||||
template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift)
|
template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift)
|
||||||
{
|
{
|
||||||
typedef typename vobj::vector_type vector_type;
|
typedef typename vobj::vector_type vector_type;
|
||||||
@@ -49,20 +45,6 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
|
|||||||
// Map to always positive shift modulo global full dimension.
|
// Map to always positive shift modulo global full dimension.
|
||||||
shift = (shift+fd)%fd;
|
shift = (shift+fd)%fd;
|
||||||
|
|
||||||
if( shift ==0 ) {
|
|
||||||
ret = rhs;
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
//
|
|
||||||
// Potential easy fast cases:
|
|
||||||
// Shift is a multiple of the local lattice extent.
|
|
||||||
// Then need only to shift whole subvolumes
|
|
||||||
int L = rhs.Grid()->_ldimensions[dimension];
|
|
||||||
if ( (shift%L )==0 && !rhs.Grid()->CheckerBoarded(dimension) ) {
|
|
||||||
Cshift_simple(ret,rhs,dimension,shift);
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
|
|
||||||
ret.Checkerboard() = rhs.Grid()->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension);
|
ret.Checkerboard() = rhs.Grid()->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension);
|
||||||
|
|
||||||
// the permute type
|
// the permute type
|
||||||
@@ -70,72 +52,20 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
|
|||||||
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
|
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
|
||||||
int splice_dim = rhs.Grid()->_simd_layout[dimension]>1 && (comm_dim);
|
int splice_dim = rhs.Grid()->_simd_layout[dimension]>1 && (comm_dim);
|
||||||
|
|
||||||
RealD t1,t0;
|
|
||||||
t0=usecond();
|
|
||||||
if ( !comm_dim ) {
|
if ( !comm_dim ) {
|
||||||
// std::cout << "CSHIFT: Cshift_local" <<std::endl;
|
//std::cout << "CSHIFT: Cshift_local" <<std::endl;
|
||||||
Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding
|
Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding
|
||||||
} else if ( splice_dim ) {
|
} else if ( splice_dim ) {
|
||||||
// std::cout << "CSHIFT: Cshift_comms_simd call - splice_dim = " << splice_dim << " shift " << shift << " dimension = " << dimension << std::endl;
|
//std::cout << "CSHIFT: Cshift_comms_simd call - splice_dim = " << splice_dim << " shift " << shift << " dimension = " << dimension << std::endl;
|
||||||
Cshift_comms_simd(ret,rhs,dimension,shift);
|
Cshift_comms_simd(ret,rhs,dimension,shift);
|
||||||
} else {
|
} else {
|
||||||
// std::cout << "CSHIFT: Cshift_comms" <<std::endl;
|
//std::cout << "CSHIFT: Cshift_comms" <<std::endl;
|
||||||
Cshift_comms(ret,rhs,dimension,shift);
|
Cshift_comms(ret,rhs,dimension,shift);
|
||||||
}
|
}
|
||||||
t1=usecond();
|
|
||||||
if(Cshift_verbose) std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl;
|
|
||||||
return ret;
|
return ret;
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class vobj> void Cshift_simple(Lattice<vobj>& ret,const Lattice<vobj> &rhs,int dimension,int shift)
|
|
||||||
{
|
|
||||||
GridBase *grid=rhs.Grid();
|
|
||||||
int comm_proc, xmit_to_rank, recv_from_rank;
|
|
||||||
|
|
||||||
int fd = rhs.Grid()->_fdimensions[dimension];
|
|
||||||
int rd = rhs.Grid()->_rdimensions[dimension];
|
|
||||||
int ld = rhs.Grid()->_ldimensions[dimension];
|
|
||||||
int pd = rhs.Grid()->_processors[dimension];
|
|
||||||
int simd_layout = rhs.Grid()->_simd_layout[dimension];
|
|
||||||
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
|
|
||||||
|
|
||||||
comm_proc = ((shift)/ld)%pd;
|
|
||||||
|
|
||||||
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
|
|
||||||
if(comm_dim) {
|
|
||||||
|
|
||||||
int64_t bytes = sizeof(vobj) * grid->oSites();
|
|
||||||
|
|
||||||
autoView(rhs_v , rhs, AcceleratorRead);
|
|
||||||
autoView(ret_v , ret, AcceleratorWrite);
|
|
||||||
void *send_buf = (void *)&rhs_v[0];
|
|
||||||
void *recv_buf = (void *)&ret_v[0];
|
|
||||||
|
|
||||||
#ifdef ACCELERATOR_AWARE_MPI
|
|
||||||
grid->SendToRecvFrom(send_buf,
|
|
||||||
xmit_to_rank,
|
|
||||||
recv_buf,
|
|
||||||
recv_from_rank,
|
|
||||||
bytes);
|
|
||||||
#else
|
|
||||||
static hostVector<vobj> hrhs; hrhs.resize(grid->oSites());
|
|
||||||
static hostVector<vobj> hret; hret.resize(grid->oSites());
|
|
||||||
|
|
||||||
void *hsend_buf = (void *)&hrhs[0];
|
|
||||||
void *hrecv_buf = (void *)&hret[0];
|
|
||||||
|
|
||||||
acceleratorCopyFromDevice(&send_buf[0],&hsend_buf[0],bytes);
|
|
||||||
|
|
||||||
grid->SendToRecvFrom(hsend_buf,
|
|
||||||
xmit_to_rank,
|
|
||||||
hrecv_buf,
|
|
||||||
recv_from_rank,
|
|
||||||
bytes);
|
|
||||||
|
|
||||||
acceleratorCopyToDevice(&hrecv_buf[0],&recv_buf[0],bytes);
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
}
|
|
||||||
template<class vobj> void Cshift_comms(Lattice<vobj>& ret,const Lattice<vobj> &rhs,int dimension,int shift)
|
template<class vobj> void Cshift_comms(Lattice<vobj>& ret,const Lattice<vobj> &rhs,int dimension,int shift)
|
||||||
{
|
{
|
||||||
int sshift[2];
|
int sshift[2];
|
||||||
@@ -161,16 +91,18 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob
|
|||||||
sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
|
sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
|
||||||
sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
|
sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
|
||||||
|
|
||||||
// std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.Checkerboard()<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
|
//std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.checkerboard<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
|
||||||
if ( sshift[0] == sshift[1] ) {
|
if ( sshift[0] == sshift[1] ) {
|
||||||
// std::cout << "Single pass Cshift_comms" <<std::endl;
|
//std::cout << "Single pass Cshift_comms" <<std::endl;
|
||||||
Cshift_comms_simd(ret,rhs,dimension,shift,0x3);
|
Cshift_comms_simd(ret,rhs,dimension,shift,0x3);
|
||||||
} else {
|
} else {
|
||||||
// std::cout << "Two pass Cshift_comms" <<std::endl;
|
//std::cout << "Two pass Cshift_comms" <<std::endl;
|
||||||
Cshift_comms_simd(ret,rhs,dimension,shift,0x1);// if checkerboard is unfavourable take two passes
|
Cshift_comms_simd(ret,rhs,dimension,shift,0x1);// if checkerboard is unfavourable take two passes
|
||||||
Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
|
Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
#define ACCELERATOR_CSHIFT_NO_COPY
|
||||||
|
#ifdef ACCELERATOR_CSHIFT_NO_COPY
|
||||||
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
|
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
|
||||||
{
|
{
|
||||||
typedef typename vobj::vector_type vector_type;
|
typedef typename vobj::vector_type vector_type;
|
||||||
@@ -184,38 +116,27 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
|
|||||||
int pd = rhs.Grid()->_processors[dimension];
|
int pd = rhs.Grid()->_processors[dimension];
|
||||||
int simd_layout = rhs.Grid()->_simd_layout[dimension];
|
int simd_layout = rhs.Grid()->_simd_layout[dimension];
|
||||||
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
|
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
|
||||||
GRID_ASSERT(simd_layout==1);
|
assert(simd_layout==1);
|
||||||
GRID_ASSERT(comm_dim==1);
|
assert(comm_dim==1);
|
||||||
GRID_ASSERT(shift>=0);
|
assert(shift>=0);
|
||||||
GRID_ASSERT(shift<fd);
|
assert(shift<fd);
|
||||||
|
|
||||||
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
|
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
|
||||||
static deviceVector<vobj> send_buf; send_buf.resize(buffer_size);
|
static cshiftVector<vobj> send_buf; send_buf.resize(buffer_size);
|
||||||
static deviceVector<vobj> recv_buf; recv_buf.resize(buffer_size);
|
static cshiftVector<vobj> recv_buf; recv_buf.resize(buffer_size);
|
||||||
#ifndef ACCELERATOR_AWARE_MPI
|
|
||||||
int pad = (8 + sizeof(vobj) - 1) / sizeof(vobj);
|
|
||||||
static hostVector<vobj> hsend_buf; hsend_buf.resize(buffer_size+pad);
|
|
||||||
static hostVector<vobj> hrecv_buf; hrecv_buf.resize(buffer_size+pad);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
int cb= (cbmask==0x2)? Odd : Even;
|
int cb= (cbmask==0x2)? Odd : Even;
|
||||||
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
|
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
|
||||||
RealD tcopy=0.0;
|
|
||||||
RealD tgather=0.0;
|
|
||||||
RealD tscatter=0.0;
|
|
||||||
RealD tcomms=0.0;
|
|
||||||
uint64_t xbytes=0;
|
|
||||||
for(int x=0;x<rd;x++){
|
for(int x=0;x<rd;x++){
|
||||||
|
|
||||||
int sx = (x+sshift)%rd;
|
int sx = (x+sshift)%rd;
|
||||||
int comm_proc = ((x+sshift)/rd)%pd;
|
int comm_proc = ((x+sshift)/rd)%pd;
|
||||||
|
|
||||||
if (comm_proc==0) {
|
if (comm_proc==0) {
|
||||||
FlightRecorder::StepLog("Cshift_Copy_plane");
|
|
||||||
tcopy-=usecond();
|
|
||||||
Copy_plane(ret,rhs,dimension,x,sx,cbmask);
|
Copy_plane(ret,rhs,dimension,x,sx,cbmask);
|
||||||
tcopy+=usecond();
|
|
||||||
FlightRecorder::StepLog("Cshift_Copy_plane_complete");
|
|
||||||
} else {
|
} else {
|
||||||
|
|
||||||
int words = buffer_size;
|
int words = buffer_size;
|
||||||
@@ -223,84 +144,26 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
|
|||||||
|
|
||||||
int bytes = words * sizeof(vobj);
|
int bytes = words * sizeof(vobj);
|
||||||
|
|
||||||
FlightRecorder::StepLog("Cshift_Gather_plane");
|
|
||||||
tgather-=usecond();
|
|
||||||
Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask);
|
Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask);
|
||||||
tgather+=usecond();
|
|
||||||
FlightRecorder::StepLog("Cshift_Gather_plane_complete");
|
|
||||||
|
|
||||||
// int rank = grid->_processor;
|
// int rank = grid->_processor;
|
||||||
int recv_from_rank;
|
int recv_from_rank;
|
||||||
int xmit_to_rank;
|
int xmit_to_rank;
|
||||||
|
|
||||||
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
|
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
|
||||||
|
|
||||||
tcomms-=usecond();
|
|
||||||
grid->Barrier();
|
grid->Barrier();
|
||||||
|
|
||||||
FlightRecorder::StepLog("Cshift_SendRecv");
|
|
||||||
#ifdef ACCELERATOR_AWARE_MPI
|
|
||||||
grid->SendToRecvFrom((void *)&send_buf[0],
|
grid->SendToRecvFrom((void *)&send_buf[0],
|
||||||
xmit_to_rank,
|
xmit_to_rank,
|
||||||
(void *)&recv_buf[0],
|
(void *)&recv_buf[0],
|
||||||
recv_from_rank,
|
recv_from_rank,
|
||||||
bytes);
|
bytes);
|
||||||
#else
|
|
||||||
// bouncy bouncy
|
|
||||||
acceleratorCopyFromDevice(&send_buf[0],&hsend_buf[0],bytes);
|
|
||||||
|
|
||||||
#ifdef GRID_CHECKSUM_COMMS
|
|
||||||
GRID_ASSERT(bytes % 8 == 0);
|
|
||||||
checksum_index++;
|
|
||||||
uint64_t xsum = checksum_gpu((uint64_t*)&send_buf[0], bytes / 8) ^ (1 + checksum_index);
|
|
||||||
*(uint64_t*)(((char*)&hsend_buf[0]) + bytes) = xsum;
|
|
||||||
bytes += 8;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
grid->SendToRecvFrom((void *)&hsend_buf[0],
|
|
||||||
xmit_to_rank,
|
|
||||||
(void *)&hrecv_buf[0],
|
|
||||||
recv_from_rank,
|
|
||||||
bytes);
|
|
||||||
|
|
||||||
#ifdef GRID_CHECKSUM_COMMS
|
|
||||||
bytes -= 8;
|
|
||||||
acceleratorCopyToDevice(&hrecv_buf[0],&recv_buf[0],bytes);
|
|
||||||
uint64_t expected_cs = *(uint64_t*)(((char*)&hrecv_buf[0]) + bytes);
|
|
||||||
uint64_t computed_cs = checksum_gpu((uint64_t*)&recv_buf[0], bytes / 8) ^ (1 + checksum_index);
|
|
||||||
std::cout << GridLogComms<< " Cshift: "
|
|
||||||
<<" dim"<<dimension
|
|
||||||
<<" shift "<<shift
|
|
||||||
<< " rank "<< grid->ThisRank()
|
|
||||||
<<" Coor "<<grid->ThisProcessorCoor()
|
|
||||||
<<" send "<<xsum<<" to "<<xmit_to_rank
|
|
||||||
<<" recv "<<computed_cs<<" from "<<recv_from_rank
|
|
||||||
<<std::endl;
|
|
||||||
GRID_ASSERT(expected_cs == computed_cs);
|
|
||||||
#else
|
|
||||||
acceleratorCopyToDevice(&hrecv_buf[0],&recv_buf[0],bytes);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#endif
|
|
||||||
FlightRecorder::StepLog("Cshift_SendRecv_complete");
|
|
||||||
|
|
||||||
xbytes+=bytes;
|
|
||||||
grid->Barrier();
|
grid->Barrier();
|
||||||
tcomms+=usecond();
|
|
||||||
FlightRecorder::StepLog("Cshift_barrier_complete");
|
|
||||||
|
|
||||||
tscatter-=usecond();
|
|
||||||
Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask);
|
Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask);
|
||||||
tscatter+=usecond();
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (Cshift_verbose){
|
|
||||||
std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
|
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
|
||||||
@@ -318,20 +181,14 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
|||||||
int simd_layout = grid->_simd_layout[dimension];
|
int simd_layout = grid->_simd_layout[dimension];
|
||||||
int comm_dim = grid->_processors[dimension] >1 ;
|
int comm_dim = grid->_processors[dimension] >1 ;
|
||||||
|
|
||||||
// std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
|
//std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
|
||||||
// << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout
|
// << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout
|
||||||
// << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
|
// << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
|
||||||
|
|
||||||
GRID_ASSERT(comm_dim==1);
|
assert(comm_dim==1);
|
||||||
GRID_ASSERT(simd_layout==2);
|
assert(simd_layout==2);
|
||||||
GRID_ASSERT(shift>=0);
|
assert(shift>=0);
|
||||||
GRID_ASSERT(shift<fd);
|
assert(shift<fd);
|
||||||
|
|
||||||
RealD tcopy=0.0;
|
|
||||||
RealD tgather=0.0;
|
|
||||||
RealD tscatter=0.0;
|
|
||||||
RealD tcomms=0.0;
|
|
||||||
uint64_t xbytes=0;
|
|
||||||
|
|
||||||
int permute_type=grid->PermuteType(dimension);
|
int permute_type=grid->PermuteType(dimension);
|
||||||
|
|
||||||
@@ -341,8 +198,8 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
|||||||
int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
|
int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
|
||||||
// int words = sizeof(vobj)/sizeof(vector_type);
|
// int words = sizeof(vobj)/sizeof(vector_type);
|
||||||
|
|
||||||
static std::vector<deviceVector<scalar_object> > send_buf_extract; send_buf_extract.resize(Nsimd);
|
static std::vector<cshiftVector<scalar_object> > send_buf_extract; send_buf_extract.resize(Nsimd);
|
||||||
static std::vector<deviceVector<scalar_object> > recv_buf_extract; recv_buf_extract.resize(Nsimd);
|
static std::vector<cshiftVector<scalar_object> > recv_buf_extract; recv_buf_extract.resize(Nsimd);
|
||||||
scalar_object * recv_buf_extract_mpi;
|
scalar_object * recv_buf_extract_mpi;
|
||||||
scalar_object * send_buf_extract_mpi;
|
scalar_object * send_buf_extract_mpi;
|
||||||
|
|
||||||
@@ -350,18 +207,6 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
|||||||
send_buf_extract[s].resize(buffer_size);
|
send_buf_extract[s].resize(buffer_size);
|
||||||
recv_buf_extract[s].resize(buffer_size);
|
recv_buf_extract[s].resize(buffer_size);
|
||||||
}
|
}
|
||||||
#ifndef ACCELERATOR_AWARE_MPI
|
|
||||||
#ifdef GRID_CHECKSUM_COMMS
|
|
||||||
buffer_size += (8 + sizeof(vobj) - 1) / sizeof(vobj);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
static hostVector<vobj> hsend_buf; hsend_buf.resize(buffer_size);
|
|
||||||
static hostVector<vobj> hrecv_buf; hrecv_buf.resize(buffer_size);
|
|
||||||
|
|
||||||
#ifdef GRID_CHECKSUM_COMMS
|
|
||||||
buffer_size -= (8 + sizeof(vobj) - 1) / sizeof(vobj);
|
|
||||||
#endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
int bytes = buffer_size*sizeof(scalar_object);
|
int bytes = buffer_size*sizeof(scalar_object);
|
||||||
|
|
||||||
@@ -382,9 +227,7 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
|||||||
pointers[i] = &send_buf_extract[i][0];
|
pointers[i] = &send_buf_extract[i][0];
|
||||||
}
|
}
|
||||||
int sx = (x+sshift)%rd;
|
int sx = (x+sshift)%rd;
|
||||||
tgather-=usecond();
|
|
||||||
Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
|
Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
|
||||||
tgather+=usecond();
|
|
||||||
|
|
||||||
for(int i=0;i<Nsimd;i++){
|
for(int i=0;i<Nsimd;i++){
|
||||||
|
|
||||||
@@ -404,61 +247,22 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
|||||||
|
|
||||||
if (nbr_ic) nbr_lane|=inner_bit;
|
if (nbr_ic) nbr_lane|=inner_bit;
|
||||||
|
|
||||||
GRID_ASSERT (sx == nbr_ox);
|
assert (sx == nbr_ox);
|
||||||
|
|
||||||
if(nbr_proc){
|
if(nbr_proc){
|
||||||
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
|
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
|
||||||
|
|
||||||
tcomms-=usecond();
|
|
||||||
grid->Barrier();
|
grid->Barrier();
|
||||||
|
|
||||||
send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
|
send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
|
||||||
recv_buf_extract_mpi = &recv_buf_extract[i][0];
|
recv_buf_extract_mpi = &recv_buf_extract[i][0];
|
||||||
#ifdef ACCELERATOR_AWARE_MPI
|
|
||||||
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
|
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
|
||||||
xmit_to_rank,
|
xmit_to_rank,
|
||||||
(void *)recv_buf_extract_mpi,
|
(void *)recv_buf_extract_mpi,
|
||||||
recv_from_rank,
|
recv_from_rank,
|
||||||
bytes);
|
bytes);
|
||||||
#else
|
|
||||||
// bouncy bouncy
|
|
||||||
acceleratorCopyFromDevice((void *)send_buf_extract_mpi,(void *)&hsend_buf[0],bytes);
|
|
||||||
#ifdef GRID_CHECKSUM_COMMS
|
|
||||||
assert(bytes % 8 == 0);
|
|
||||||
checksum_index++;
|
|
||||||
uint64_t xsum = checksum_gpu((uint64_t*)send_buf_extract_mpi, bytes / 8) ^ (1 + checksum_index);
|
|
||||||
*(uint64_t*)(((char*)&hsend_buf[0]) + bytes) = xsum;
|
|
||||||
bytes += 8;
|
|
||||||
#endif
|
|
||||||
grid->SendToRecvFrom((void *)&hsend_buf[0],
|
|
||||||
xmit_to_rank,
|
|
||||||
(void *)&hrecv_buf[0],
|
|
||||||
recv_from_rank,
|
|
||||||
bytes);
|
|
||||||
#ifdef GRID_CHECKSUM_COMMS
|
|
||||||
bytes -= 8;
|
|
||||||
acceleratorCopyToDevice((void *)&hrecv_buf[0],(void *)recv_buf_extract_mpi,bytes);
|
|
||||||
uint64_t expected_cs = *(uint64_t*)(((char*)&hrecv_buf[0]) + bytes);
|
|
||||||
uint64_t computed_cs = checksum_gpu((uint64_t*)recv_buf_extract_mpi, bytes / 8) ^ (1 + checksum_index);
|
|
||||||
|
|
||||||
std::cout << GridLogComms<< " Cshift_comms_simd: "
|
|
||||||
<<" dim"<<dimension
|
|
||||||
<<" shift "<<shift
|
|
||||||
<< " rank "<< grid->ThisRank()
|
|
||||||
<<" Coor "<<grid->ThisProcessorCoor()
|
|
||||||
<<" send "<<xsum<<" to "<<xmit_to_rank
|
|
||||||
<<" recv "<<computed_cs<<" from "<<recv_from_rank
|
|
||||||
<<std::endl;
|
|
||||||
assert(expected_cs == computed_cs);
|
|
||||||
#else
|
|
||||||
acceleratorCopyToDevice((void *)&hrecv_buf[0],(void *)recv_buf_extract_mpi,bytes);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#endif
|
|
||||||
|
|
||||||
xbytes+=bytes;
|
|
||||||
grid->Barrier();
|
grid->Barrier();
|
||||||
tcomms+=usecond();
|
|
||||||
|
|
||||||
rpointers[i] = &recv_buf_extract[i][0];
|
rpointers[i] = &recv_buf_extract[i][0];
|
||||||
} else {
|
} else {
|
||||||
@@ -466,19 +270,198 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
|||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
tscatter-=usecond();
|
|
||||||
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
|
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
|
||||||
tscatter+=usecond();
|
|
||||||
}
|
}
|
||||||
if(Cshift_verbose){
|
|
||||||
std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl;
|
}
|
||||||
std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl;
|
#else
|
||||||
std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
|
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
|
||||||
std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl;
|
{
|
||||||
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
|
typedef typename vobj::vector_type vector_type;
|
||||||
|
typedef typename vobj::scalar_type scalar_type;
|
||||||
|
|
||||||
|
GridBase *grid=rhs.Grid();
|
||||||
|
Lattice<vobj> temp(rhs.Grid());
|
||||||
|
|
||||||
|
int fd = rhs.Grid()->_fdimensions[dimension];
|
||||||
|
int rd = rhs.Grid()->_rdimensions[dimension];
|
||||||
|
int pd = rhs.Grid()->_processors[dimension];
|
||||||
|
int simd_layout = rhs.Grid()->_simd_layout[dimension];
|
||||||
|
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
|
||||||
|
assert(simd_layout==1);
|
||||||
|
assert(comm_dim==1);
|
||||||
|
assert(shift>=0);
|
||||||
|
assert(shift<fd);
|
||||||
|
|
||||||
|
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
|
||||||
|
static cshiftVector<vobj> send_buf_v; send_buf_v.resize(buffer_size);
|
||||||
|
static cshiftVector<vobj> recv_buf_v; recv_buf_v.resize(buffer_size);
|
||||||
|
vobj *send_buf;
|
||||||
|
vobj *recv_buf;
|
||||||
|
{
|
||||||
|
grid->ShmBufferFreeAll();
|
||||||
|
size_t bytes = buffer_size*sizeof(vobj);
|
||||||
|
send_buf=(vobj *)grid->ShmBufferMalloc(bytes);
|
||||||
|
recv_buf=(vobj *)grid->ShmBufferMalloc(bytes);
|
||||||
|
}
|
||||||
|
|
||||||
|
int cb= (cbmask==0x2)? Odd : Even;
|
||||||
|
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
|
||||||
|
|
||||||
|
for(int x=0;x<rd;x++){
|
||||||
|
|
||||||
|
int sx = (x+sshift)%rd;
|
||||||
|
int comm_proc = ((x+sshift)/rd)%pd;
|
||||||
|
|
||||||
|
if (comm_proc==0) {
|
||||||
|
|
||||||
|
Copy_plane(ret,rhs,dimension,x,sx,cbmask);
|
||||||
|
|
||||||
|
} else {
|
||||||
|
|
||||||
|
int words = buffer_size;
|
||||||
|
if (cbmask != 0x3) words=words>>1;
|
||||||
|
|
||||||
|
int bytes = words * sizeof(vobj);
|
||||||
|
|
||||||
|
Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask);
|
||||||
|
|
||||||
|
// int rank = grid->_processor;
|
||||||
|
int recv_from_rank;
|
||||||
|
int xmit_to_rank;
|
||||||
|
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
|
||||||
|
|
||||||
|
|
||||||
|
grid->Barrier();
|
||||||
|
|
||||||
|
acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes);
|
||||||
|
grid->SendToRecvFrom((void *)&send_buf[0],
|
||||||
|
xmit_to_rank,
|
||||||
|
(void *)&recv_buf[0],
|
||||||
|
recv_from_rank,
|
||||||
|
bytes);
|
||||||
|
acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes);
|
||||||
|
|
||||||
|
grid->Barrier();
|
||||||
|
|
||||||
|
Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
|
||||||
|
{
|
||||||
|
GridBase *grid=rhs.Grid();
|
||||||
|
const int Nsimd = grid->Nsimd();
|
||||||
|
typedef typename vobj::vector_type vector_type;
|
||||||
|
typedef typename vobj::scalar_object scalar_object;
|
||||||
|
typedef typename vobj::scalar_type scalar_type;
|
||||||
|
|
||||||
|
int fd = grid->_fdimensions[dimension];
|
||||||
|
int rd = grid->_rdimensions[dimension];
|
||||||
|
int ld = grid->_ldimensions[dimension];
|
||||||
|
int pd = grid->_processors[dimension];
|
||||||
|
int simd_layout = grid->_simd_layout[dimension];
|
||||||
|
int comm_dim = grid->_processors[dimension] >1 ;
|
||||||
|
|
||||||
|
//std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
|
||||||
|
// << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout
|
||||||
|
// << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
|
||||||
|
|
||||||
|
assert(comm_dim==1);
|
||||||
|
assert(simd_layout==2);
|
||||||
|
assert(shift>=0);
|
||||||
|
assert(shift<fd);
|
||||||
|
|
||||||
|
int permute_type=grid->PermuteType(dimension);
|
||||||
|
|
||||||
|
///////////////////////////////////////////////
|
||||||
|
// Simd direction uses an extract/merge pair
|
||||||
|
///////////////////////////////////////////////
|
||||||
|
int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
|
||||||
|
// int words = sizeof(vobj)/sizeof(vector_type);
|
||||||
|
|
||||||
|
static std::vector<cshiftVector<scalar_object> > send_buf_extract; send_buf_extract.resize(Nsimd);
|
||||||
|
static std::vector<cshiftVector<scalar_object> > recv_buf_extract; recv_buf_extract.resize(Nsimd);
|
||||||
|
scalar_object * recv_buf_extract_mpi;
|
||||||
|
scalar_object * send_buf_extract_mpi;
|
||||||
|
{
|
||||||
|
size_t bytes = sizeof(scalar_object)*buffer_size;
|
||||||
|
grid->ShmBufferFreeAll();
|
||||||
|
send_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
|
||||||
|
recv_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
|
||||||
|
}
|
||||||
|
for(int s=0;s<Nsimd;s++){
|
||||||
|
send_buf_extract[s].resize(buffer_size);
|
||||||
|
recv_buf_extract[s].resize(buffer_size);
|
||||||
|
}
|
||||||
|
|
||||||
|
int bytes = buffer_size*sizeof(scalar_object);
|
||||||
|
|
||||||
|
ExtractPointerArray<scalar_object> pointers(Nsimd); //
|
||||||
|
ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers
|
||||||
|
|
||||||
|
///////////////////////////////////////////
|
||||||
|
// Work out what to send where
|
||||||
|
///////////////////////////////////////////
|
||||||
|
int cb = (cbmask==0x2)? Odd : Even;
|
||||||
|
int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
|
||||||
|
|
||||||
|
// loop over outer coord planes orthog to dim
|
||||||
|
for(int x=0;x<rd;x++){
|
||||||
|
|
||||||
|
// FIXME call local permute copy if none are offnode.
|
||||||
|
for(int i=0;i<Nsimd;i++){
|
||||||
|
pointers[i] = &send_buf_extract[i][0];
|
||||||
|
}
|
||||||
|
int sx = (x+sshift)%rd;
|
||||||
|
Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
|
||||||
|
|
||||||
|
for(int i=0;i<Nsimd;i++){
|
||||||
|
|
||||||
|
int inner_bit = (Nsimd>>(permute_type+1));
|
||||||
|
int ic= (i&inner_bit)? 1:0;
|
||||||
|
|
||||||
|
int my_coor = rd*ic + x;
|
||||||
|
int nbr_coor = my_coor+sshift;
|
||||||
|
int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors
|
||||||
|
|
||||||
|
int nbr_ic = (nbr_coor%ld)/rd; // inner coord of peer
|
||||||
|
int nbr_ox = (nbr_coor%rd); // outer coord of peer
|
||||||
|
int nbr_lane = (i&(~inner_bit));
|
||||||
|
|
||||||
|
int recv_from_rank;
|
||||||
|
int xmit_to_rank;
|
||||||
|
|
||||||
|
if (nbr_ic) nbr_lane|=inner_bit;
|
||||||
|
|
||||||
|
assert (sx == nbr_ox);
|
||||||
|
|
||||||
|
if(nbr_proc){
|
||||||
|
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
|
||||||
|
|
||||||
|
grid->Barrier();
|
||||||
|
|
||||||
|
acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes);
|
||||||
|
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
|
||||||
|
xmit_to_rank,
|
||||||
|
(void *)recv_buf_extract_mpi,
|
||||||
|
recv_from_rank,
|
||||||
|
bytes);
|
||||||
|
acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes);
|
||||||
|
|
||||||
|
grid->Barrier();
|
||||||
|
rpointers[i] = &recv_buf_extract[i][0];
|
||||||
|
} else {
|
||||||
|
rpointers[i] = &send_buf_extract[nbr_lane][0];
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
#endif
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|||||||
@@ -1,5 +1,4 @@
|
|||||||
#include <Grid/GridCore.h>
|
#include <Grid/GridCore.h>
|
||||||
NAMESPACE_BEGIN(Grid);
|
NAMESPACE_BEGIN(Grid);
|
||||||
std::vector<std::pair<int,int> > Cshift_table;
|
Vector<std::pair<int,int> > Cshift_table;
|
||||||
deviceVector<std::pair<int,int> > Cshift_table_device;
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
|||||||
24231
Grid/json/json.hpp
24231
Grid/json/json.hpp
File diff suppressed because it is too large
Load Diff
@@ -35,7 +35,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|||||||
#include <Grid/lattice/Lattice_transpose.h>
|
#include <Grid/lattice/Lattice_transpose.h>
|
||||||
#include <Grid/lattice/Lattice_local.h>
|
#include <Grid/lattice/Lattice_local.h>
|
||||||
#include <Grid/lattice/Lattice_reduction.h>
|
#include <Grid/lattice/Lattice_reduction.h>
|
||||||
#include <Grid/lattice/Lattice_crc.h>
|
|
||||||
#include <Grid/lattice/Lattice_peekpoke.h>
|
#include <Grid/lattice/Lattice_peekpoke.h>
|
||||||
#include <Grid/lattice/Lattice_reality.h>
|
#include <Grid/lattice/Lattice_reality.h>
|
||||||
#include <Grid/lattice/Lattice_real_imag.h>
|
#include <Grid/lattice/Lattice_real_imag.h>
|
||||||
@@ -47,4 +46,3 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|||||||
#include <Grid/lattice/Lattice_unary.h>
|
#include <Grid/lattice/Lattice_unary.h>
|
||||||
#include <Grid/lattice/Lattice_transfer.h>
|
#include <Grid/lattice/Lattice_transfer.h>
|
||||||
#include <Grid/lattice/Lattice_basis.h>
|
#include <Grid/lattice/Lattice_basis.h>
|
||||||
#include <Grid/lattice/PaddedCell.h>
|
|
||||||
|
|||||||
@@ -63,7 +63,7 @@ accelerator_inline vobj predicatedWhere(const iobj &predicate,
|
|||||||
typename std::remove_const<vobj>::type ret;
|
typename std::remove_const<vobj>::type ret;
|
||||||
|
|
||||||
typedef typename vobj::scalar_object scalar_object;
|
typedef typename vobj::scalar_object scalar_object;
|
||||||
// typedef typename vobj::scalar_type scalar_type;
|
typedef typename vobj::scalar_type scalar_type;
|
||||||
typedef typename vobj::vector_type vector_type;
|
typedef typename vobj::vector_type vector_type;
|
||||||
|
|
||||||
const int Nsimd = vobj::vector_type::Nsimd();
|
const int Nsimd = vobj::vector_type::Nsimd();
|
||||||
@@ -245,7 +245,7 @@ template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * =
|
|||||||
inline void CBFromExpression(int &cb, const T1 &lat) // Lattice leaf
|
inline void CBFromExpression(int &cb, const T1 &lat) // Lattice leaf
|
||||||
{
|
{
|
||||||
if ((cb == Odd) || (cb == Even)) {
|
if ((cb == Odd) || (cb == Even)) {
|
||||||
GRID_ASSERT(cb == lat.Checkerboard());
|
assert(cb == lat.Checkerboard());
|
||||||
}
|
}
|
||||||
cb = lat.Checkerboard();
|
cb = lat.Checkerboard();
|
||||||
}
|
}
|
||||||
@@ -345,9 +345,7 @@ GridUnopClass(UnaryNot, Not(a));
|
|||||||
GridUnopClass(UnaryTrace, trace(a));
|
GridUnopClass(UnaryTrace, trace(a));
|
||||||
GridUnopClass(UnaryTranspose, transpose(a));
|
GridUnopClass(UnaryTranspose, transpose(a));
|
||||||
GridUnopClass(UnaryTa, Ta(a));
|
GridUnopClass(UnaryTa, Ta(a));
|
||||||
GridUnopClass(UnarySpTa, SpTa(a));
|
|
||||||
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
|
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
|
||||||
GridUnopClass(UnaryProjectOnSpGroup, ProjectOnSpGroup(a));
|
|
||||||
GridUnopClass(UnaryTimesI, timesI(a));
|
GridUnopClass(UnaryTimesI, timesI(a));
|
||||||
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
|
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
|
||||||
GridUnopClass(UnaryAbs, abs(a));
|
GridUnopClass(UnaryAbs, abs(a));
|
||||||
@@ -458,9 +456,7 @@ GRID_DEF_UNOP(operator!, UnaryNot);
|
|||||||
GRID_DEF_UNOP(trace, UnaryTrace);
|
GRID_DEF_UNOP(trace, UnaryTrace);
|
||||||
GRID_DEF_UNOP(transpose, UnaryTranspose);
|
GRID_DEF_UNOP(transpose, UnaryTranspose);
|
||||||
GRID_DEF_UNOP(Ta, UnaryTa);
|
GRID_DEF_UNOP(Ta, UnaryTa);
|
||||||
GRID_DEF_UNOP(SpTa, UnarySpTa);
|
|
||||||
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
|
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
|
||||||
GRID_DEF_UNOP(ProjectOnSpGroup, UnaryProjectOnSpGroup);
|
|
||||||
GRID_DEF_UNOP(timesI, UnaryTimesI);
|
GRID_DEF_UNOP(timesI, UnaryTimesI);
|
||||||
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
|
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
|
||||||
GRID_DEF_UNOP(abs, UnaryAbs); // abs overloaded in cmath C++98; DON'T do the
|
GRID_DEF_UNOP(abs, UnaryAbs); // abs overloaded in cmath C++98; DON'T do the
|
||||||
|
|||||||
@@ -36,7 +36,6 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
template<class obj1,class obj2,class obj3> inline
|
template<class obj1,class obj2,class obj3> inline
|
||||||
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
||||||
GRID_TRACE("mult");
|
|
||||||
ret.Checkerboard() = lhs.Checkerboard();
|
ret.Checkerboard() = lhs.Checkerboard();
|
||||||
autoView( ret_v , ret, AcceleratorWrite);
|
autoView( ret_v , ret, AcceleratorWrite);
|
||||||
autoView( lhs_v , lhs, AcceleratorRead);
|
autoView( lhs_v , lhs, AcceleratorRead);
|
||||||
@@ -54,7 +53,6 @@ void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
|||||||
|
|
||||||
template<class obj1,class obj2,class obj3> inline
|
template<class obj1,class obj2,class obj3> inline
|
||||||
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
||||||
GRID_TRACE("mac");
|
|
||||||
ret.Checkerboard() = lhs.Checkerboard();
|
ret.Checkerboard() = lhs.Checkerboard();
|
||||||
conformable(ret,rhs);
|
conformable(ret,rhs);
|
||||||
conformable(lhs,rhs);
|
conformable(lhs,rhs);
|
||||||
@@ -72,7 +70,6 @@ void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
|||||||
|
|
||||||
template<class obj1,class obj2,class obj3> inline
|
template<class obj1,class obj2,class obj3> inline
|
||||||
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
||||||
GRID_TRACE("sub");
|
|
||||||
ret.Checkerboard() = lhs.Checkerboard();
|
ret.Checkerboard() = lhs.Checkerboard();
|
||||||
conformable(ret,rhs);
|
conformable(ret,rhs);
|
||||||
conformable(lhs,rhs);
|
conformable(lhs,rhs);
|
||||||
@@ -89,7 +86,6 @@ void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
|||||||
}
|
}
|
||||||
template<class obj1,class obj2,class obj3> inline
|
template<class obj1,class obj2,class obj3> inline
|
||||||
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
||||||
GRID_TRACE("add");
|
|
||||||
ret.Checkerboard() = lhs.Checkerboard();
|
ret.Checkerboard() = lhs.Checkerboard();
|
||||||
conformable(ret,rhs);
|
conformable(ret,rhs);
|
||||||
conformable(lhs,rhs);
|
conformable(lhs,rhs);
|
||||||
@@ -110,7 +106,6 @@ void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
|||||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
template<class obj1,class obj2,class obj3> inline
|
template<class obj1,class obj2,class obj3> inline
|
||||||
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
||||||
GRID_TRACE("mult");
|
|
||||||
ret.Checkerboard() = lhs.Checkerboard();
|
ret.Checkerboard() = lhs.Checkerboard();
|
||||||
conformable(lhs,ret);
|
conformable(lhs,ret);
|
||||||
autoView( ret_v , ret, AcceleratorWrite);
|
autoView( ret_v , ret, AcceleratorWrite);
|
||||||
@@ -124,7 +119,6 @@ void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
|||||||
|
|
||||||
template<class obj1,class obj2,class obj3> inline
|
template<class obj1,class obj2,class obj3> inline
|
||||||
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
||||||
GRID_TRACE("mac");
|
|
||||||
ret.Checkerboard() = lhs.Checkerboard();
|
ret.Checkerboard() = lhs.Checkerboard();
|
||||||
conformable(ret,lhs);
|
conformable(ret,lhs);
|
||||||
autoView( ret_v , ret, AcceleratorWrite);
|
autoView( ret_v , ret, AcceleratorWrite);
|
||||||
@@ -139,7 +133,6 @@ void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
|||||||
|
|
||||||
template<class obj1,class obj2,class obj3> inline
|
template<class obj1,class obj2,class obj3> inline
|
||||||
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
||||||
GRID_TRACE("sub");
|
|
||||||
ret.Checkerboard() = lhs.Checkerboard();
|
ret.Checkerboard() = lhs.Checkerboard();
|
||||||
conformable(ret,lhs);
|
conformable(ret,lhs);
|
||||||
autoView( ret_v , ret, AcceleratorWrite);
|
autoView( ret_v , ret, AcceleratorWrite);
|
||||||
@@ -153,7 +146,6 @@ void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
|||||||
}
|
}
|
||||||
template<class obj1,class obj2,class obj3> inline
|
template<class obj1,class obj2,class obj3> inline
|
||||||
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
||||||
GRID_TRACE("add");
|
|
||||||
ret.Checkerboard() = lhs.Checkerboard();
|
ret.Checkerboard() = lhs.Checkerboard();
|
||||||
conformable(lhs,ret);
|
conformable(lhs,ret);
|
||||||
autoView( ret_v , ret, AcceleratorWrite);
|
autoView( ret_v , ret, AcceleratorWrite);
|
||||||
@@ -171,7 +163,6 @@ void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
|||||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
template<class obj1,class obj2,class obj3> inline
|
template<class obj1,class obj2,class obj3> inline
|
||||||
void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
||||||
GRID_TRACE("mult");
|
|
||||||
ret.Checkerboard() = rhs.Checkerboard();
|
ret.Checkerboard() = rhs.Checkerboard();
|
||||||
conformable(ret,rhs);
|
conformable(ret,rhs);
|
||||||
autoView( ret_v , ret, AcceleratorWrite);
|
autoView( ret_v , ret, AcceleratorWrite);
|
||||||
@@ -186,7 +177,6 @@ void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
|||||||
|
|
||||||
template<class obj1,class obj2,class obj3> inline
|
template<class obj1,class obj2,class obj3> inline
|
||||||
void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
||||||
GRID_TRACE("mac");
|
|
||||||
ret.Checkerboard() = rhs.Checkerboard();
|
ret.Checkerboard() = rhs.Checkerboard();
|
||||||
conformable(ret,rhs);
|
conformable(ret,rhs);
|
||||||
autoView( ret_v , ret, AcceleratorWrite);
|
autoView( ret_v , ret, AcceleratorWrite);
|
||||||
@@ -201,7 +191,6 @@ void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
|||||||
|
|
||||||
template<class obj1,class obj2,class obj3> inline
|
template<class obj1,class obj2,class obj3> inline
|
||||||
void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
||||||
GRID_TRACE("sub");
|
|
||||||
ret.Checkerboard() = rhs.Checkerboard();
|
ret.Checkerboard() = rhs.Checkerboard();
|
||||||
conformable(ret,rhs);
|
conformable(ret,rhs);
|
||||||
autoView( ret_v , ret, AcceleratorWrite);
|
autoView( ret_v , ret, AcceleratorWrite);
|
||||||
@@ -215,7 +204,6 @@ void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
|||||||
}
|
}
|
||||||
template<class obj1,class obj2,class obj3> inline
|
template<class obj1,class obj2,class obj3> inline
|
||||||
void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
||||||
GRID_TRACE("add");
|
|
||||||
ret.Checkerboard() = rhs.Checkerboard();
|
ret.Checkerboard() = rhs.Checkerboard();
|
||||||
conformable(ret,rhs);
|
conformable(ret,rhs);
|
||||||
autoView( ret_v , ret, AcceleratorWrite);
|
autoView( ret_v , ret, AcceleratorWrite);
|
||||||
@@ -230,7 +218,6 @@ void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
|||||||
|
|
||||||
template<class sobj,class vobj> inline
|
template<class sobj,class vobj> inline
|
||||||
void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){
|
void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){
|
||||||
GRID_TRACE("axpy");
|
|
||||||
ret.Checkerboard() = x.Checkerboard();
|
ret.Checkerboard() = x.Checkerboard();
|
||||||
conformable(ret,x);
|
conformable(ret,x);
|
||||||
conformable(x,y);
|
conformable(x,y);
|
||||||
@@ -238,13 +225,12 @@ void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &
|
|||||||
autoView( x_v , x, AcceleratorRead);
|
autoView( x_v , x, AcceleratorRead);
|
||||||
autoView( y_v , y, AcceleratorRead);
|
autoView( y_v , y, AcceleratorRead);
|
||||||
accelerator_for(ss,x_v.size(),vobj::Nsimd(),{
|
accelerator_for(ss,x_v.size(),vobj::Nsimd(),{
|
||||||
auto tmp = a*coalescedRead(x_v[ss])+coalescedRead(y_v[ss]);
|
auto tmp = a*x_v(ss)+y_v(ss);
|
||||||
coalescedWrite(ret_v[ss],tmp);
|
coalescedWrite(ret_v[ss],tmp);
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
template<class sobj,class vobj> inline
|
template<class sobj,class vobj> inline
|
||||||
void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y){
|
void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y){
|
||||||
GRID_TRACE("axpby");
|
|
||||||
ret.Checkerboard() = x.Checkerboard();
|
ret.Checkerboard() = x.Checkerboard();
|
||||||
conformable(ret,x);
|
conformable(ret,x);
|
||||||
conformable(x,y);
|
conformable(x,y);
|
||||||
@@ -257,68 +243,16 @@ void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice
|
|||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
#define FAST_AXPY_NORM
|
|
||||||
template<class sobj,class vobj> inline
|
template<class sobj,class vobj> inline
|
||||||
RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
|
RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
|
||||||
{
|
{
|
||||||
GRID_TRACE("axpy_norm");
|
return axpy_norm_fast(ret,a,x,y);
|
||||||
#ifdef FAST_AXPY_NORM
|
|
||||||
return axpy_norm_fast(ret,a,x,y);
|
|
||||||
#else
|
|
||||||
ret = a*x+y;
|
|
||||||
RealD nn=norm2(ret);
|
|
||||||
return nn;
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
template<class sobj,class vobj> inline
|
template<class sobj,class vobj> inline
|
||||||
RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
|
RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
|
||||||
{
|
{
|
||||||
GRID_TRACE("axpby_norm");
|
return axpby_norm_fast(ret,a,b,x,y);
|
||||||
#ifdef FAST_AXPY_NORM
|
|
||||||
return axpby_norm_fast(ret,a,b,x,y);
|
|
||||||
#else
|
|
||||||
ret = a*x+b*y;
|
|
||||||
RealD nn=norm2(ret);
|
|
||||||
return nn;
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Trace product
|
|
||||||
template<class obj> auto traceProduct(const Lattice<obj> &rhs_1,const Lattice<obj> &rhs_2)
|
|
||||||
-> Lattice<decltype(trace(obj()))>
|
|
||||||
{
|
|
||||||
typedef decltype(trace(obj())) robj;
|
|
||||||
Lattice<robj> ret_i(rhs_1.Grid());
|
|
||||||
autoView( rhs1 , rhs_1, AcceleratorRead);
|
|
||||||
autoView( rhs2 , rhs_2, AcceleratorRead);
|
|
||||||
autoView( ret , ret_i, AcceleratorWrite);
|
|
||||||
ret.Checkerboard() = rhs_1.Checkerboard();
|
|
||||||
accelerator_for(ss,rhs1.size(),obj::Nsimd(),{
|
|
||||||
coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2(ss)));
|
|
||||||
});
|
|
||||||
return ret_i;
|
|
||||||
}
|
|
||||||
|
|
||||||
template<class obj1,class obj2> auto traceProduct(const Lattice<obj1> &rhs_1,const obj2 &rhs2)
|
|
||||||
-> Lattice<decltype(trace(obj1()))>
|
|
||||||
{
|
|
||||||
typedef decltype(trace(obj1())) robj;
|
|
||||||
Lattice<robj> ret_i(rhs_1.Grid());
|
|
||||||
autoView( rhs1 , rhs_1, AcceleratorRead);
|
|
||||||
autoView( ret , ret_i, AcceleratorWrite);
|
|
||||||
ret.Checkerboard() = rhs_1.Checkerboard();
|
|
||||||
accelerator_for(ss,rhs1.size(),obj1::Nsimd(),{
|
|
||||||
coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2));
|
|
||||||
});
|
|
||||||
return ret_i;
|
|
||||||
}
|
|
||||||
template<class obj1,class obj2> auto traceProduct(const obj2 &rhs_2,const Lattice<obj1> &rhs_1)
|
|
||||||
-> Lattice<decltype(trace(obj1()))>
|
|
||||||
{
|
|
||||||
return traceProduct(rhs_1,rhs_2);
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
#endif
|
#endif
|
||||||
|
|||||||
@@ -88,13 +88,6 @@ public:
|
|||||||
LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this),mode);
|
LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this),mode);
|
||||||
accessor.ViewClose();
|
accessor.ViewClose();
|
||||||
}
|
}
|
||||||
|
|
||||||
// Helper function to print the state of this object in the AccCache
|
|
||||||
void PrintCacheState(void)
|
|
||||||
{
|
|
||||||
MemoryManager::PrintState(this->_odata);
|
|
||||||
}
|
|
||||||
|
|
||||||
/////////////////////////////////////////////////////////////////////////////////
|
/////////////////////////////////////////////////////////////////////////////////
|
||||||
// Return a view object that may be dereferenced in site loops.
|
// Return a view object that may be dereferenced in site loops.
|
||||||
// The view is trivially copy constructible and may be copied to an accelerator device
|
// The view is trivially copy constructible and may be copied to an accelerator device
|
||||||
@@ -117,15 +110,14 @@ public:
|
|||||||
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
||||||
template <typename Op, typename T1> inline Lattice<vobj> & operator=(const LatticeUnaryExpression<Op,T1> &expr)
|
template <typename Op, typename T1> inline Lattice<vobj> & operator=(const LatticeUnaryExpression<Op,T1> &expr)
|
||||||
{
|
{
|
||||||
GRID_TRACE("ExpressionTemplateEval");
|
|
||||||
GridBase *egrid(nullptr);
|
GridBase *egrid(nullptr);
|
||||||
GridFromExpression(egrid,expr);
|
GridFromExpression(egrid,expr);
|
||||||
GRID_ASSERT(egrid!=nullptr);
|
assert(egrid!=nullptr);
|
||||||
conformable(this->_grid,egrid);
|
conformable(this->_grid,egrid);
|
||||||
|
|
||||||
int cb=-1;
|
int cb=-1;
|
||||||
CBFromExpression(cb,expr);
|
CBFromExpression(cb,expr);
|
||||||
GRID_ASSERT( (cb==Odd) || (cb==Even));
|
assert( (cb==Odd) || (cb==Even));
|
||||||
this->checkerboard=cb;
|
this->checkerboard=cb;
|
||||||
|
|
||||||
auto exprCopy = expr;
|
auto exprCopy = expr;
|
||||||
@@ -141,15 +133,14 @@ public:
|
|||||||
}
|
}
|
||||||
template <typename Op, typename T1,typename T2> inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr)
|
template <typename Op, typename T1,typename T2> inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr)
|
||||||
{
|
{
|
||||||
GRID_TRACE("ExpressionTemplateEval");
|
|
||||||
GridBase *egrid(nullptr);
|
GridBase *egrid(nullptr);
|
||||||
GridFromExpression(egrid,expr);
|
GridFromExpression(egrid,expr);
|
||||||
GRID_ASSERT(egrid!=nullptr);
|
assert(egrid!=nullptr);
|
||||||
conformable(this->_grid,egrid);
|
conformable(this->_grid,egrid);
|
||||||
|
|
||||||
int cb=-1;
|
int cb=-1;
|
||||||
CBFromExpression(cb,expr);
|
CBFromExpression(cb,expr);
|
||||||
GRID_ASSERT( (cb==Odd) || (cb==Even));
|
assert( (cb==Odd) || (cb==Even));
|
||||||
this->checkerboard=cb;
|
this->checkerboard=cb;
|
||||||
|
|
||||||
auto exprCopy = expr;
|
auto exprCopy = expr;
|
||||||
@@ -165,15 +156,14 @@ public:
|
|||||||
}
|
}
|
||||||
template <typename Op, typename T1,typename T2,typename T3> inline Lattice<vobj> & operator=(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr)
|
template <typename Op, typename T1,typename T2,typename T3> inline Lattice<vobj> & operator=(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr)
|
||||||
{
|
{
|
||||||
GRID_TRACE("ExpressionTemplateEval");
|
|
||||||
GridBase *egrid(nullptr);
|
GridBase *egrid(nullptr);
|
||||||
GridFromExpression(egrid,expr);
|
GridFromExpression(egrid,expr);
|
||||||
GRID_ASSERT(egrid!=nullptr);
|
assert(egrid!=nullptr);
|
||||||
conformable(this->_grid,egrid);
|
conformable(this->_grid,egrid);
|
||||||
|
|
||||||
int cb=-1;
|
int cb=-1;
|
||||||
CBFromExpression(cb,expr);
|
CBFromExpression(cb,expr);
|
||||||
GRID_ASSERT( (cb==Odd) || (cb==Even));
|
assert( (cb==Odd) || (cb==Even));
|
||||||
this->checkerboard=cb;
|
this->checkerboard=cb;
|
||||||
auto exprCopy = expr;
|
auto exprCopy = expr;
|
||||||
ExpressionViewOpen(exprCopy);
|
ExpressionViewOpen(exprCopy);
|
||||||
@@ -191,11 +181,11 @@ public:
|
|||||||
Lattice(const LatticeUnaryExpression<Op,T1> & expr) {
|
Lattice(const LatticeUnaryExpression<Op,T1> & expr) {
|
||||||
this->_grid = nullptr;
|
this->_grid = nullptr;
|
||||||
GridFromExpression(this->_grid,expr);
|
GridFromExpression(this->_grid,expr);
|
||||||
GRID_ASSERT(this->_grid!=nullptr);
|
assert(this->_grid!=nullptr);
|
||||||
|
|
||||||
int cb=-1;
|
int cb=-1;
|
||||||
CBFromExpression(cb,expr);
|
CBFromExpression(cb,expr);
|
||||||
GRID_ASSERT( (cb==Odd) || (cb==Even));
|
assert( (cb==Odd) || (cb==Even));
|
||||||
this->checkerboard=cb;
|
this->checkerboard=cb;
|
||||||
|
|
||||||
resize(this->_grid->oSites());
|
resize(this->_grid->oSites());
|
||||||
@@ -206,11 +196,11 @@ public:
|
|||||||
Lattice(const LatticeBinaryExpression<Op,T1,T2> & expr) {
|
Lattice(const LatticeBinaryExpression<Op,T1,T2> & expr) {
|
||||||
this->_grid = nullptr;
|
this->_grid = nullptr;
|
||||||
GridFromExpression(this->_grid,expr);
|
GridFromExpression(this->_grid,expr);
|
||||||
GRID_ASSERT(this->_grid!=nullptr);
|
assert(this->_grid!=nullptr);
|
||||||
|
|
||||||
int cb=-1;
|
int cb=-1;
|
||||||
CBFromExpression(cb,expr);
|
CBFromExpression(cb,expr);
|
||||||
GRID_ASSERT( (cb==Odd) || (cb==Even));
|
assert( (cb==Odd) || (cb==Even));
|
||||||
this->checkerboard=cb;
|
this->checkerboard=cb;
|
||||||
|
|
||||||
resize(this->_grid->oSites());
|
resize(this->_grid->oSites());
|
||||||
@@ -221,11 +211,11 @@ public:
|
|||||||
Lattice(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr) {
|
Lattice(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr) {
|
||||||
this->_grid = nullptr;
|
this->_grid = nullptr;
|
||||||
GridFromExpression(this->_grid,expr);
|
GridFromExpression(this->_grid,expr);
|
||||||
GRID_ASSERT(this->_grid!=nullptr);
|
assert(this->_grid!=nullptr);
|
||||||
|
|
||||||
int cb=-1;
|
int cb=-1;
|
||||||
CBFromExpression(cb,expr);
|
CBFromExpression(cb,expr);
|
||||||
GRID_ASSERT( (cb==Odd) || (cb==Even));
|
assert( (cb==Odd) || (cb==Even));
|
||||||
this->checkerboard=cb;
|
this->checkerboard=cb;
|
||||||
|
|
||||||
resize(this->_grid->oSites());
|
resize(this->_grid->oSites());
|
||||||
@@ -234,23 +224,10 @@ public:
|
|||||||
}
|
}
|
||||||
|
|
||||||
template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){
|
template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){
|
||||||
vobj vtmp;
|
|
||||||
vtmp = r;
|
|
||||||
#if 1
|
|
||||||
deviceVector<vobj> vvtmp(1);
|
|
||||||
acceleratorPut(vvtmp[0],vtmp);
|
|
||||||
vobj *vvtmp_p = & vvtmp[0];
|
|
||||||
auto me = View(AcceleratorWrite);
|
|
||||||
accelerator_for(ss,me.size(),vobj::Nsimd(),{
|
|
||||||
auto stmp=coalescedRead(*vvtmp_p);
|
|
||||||
coalescedWrite(me[ss],stmp);
|
|
||||||
});
|
|
||||||
#else
|
|
||||||
auto me = View(CpuWrite);
|
auto me = View(CpuWrite);
|
||||||
thread_for(ss,me.size(),{
|
thread_for(ss,me.size(),{
|
||||||
me[ss]= r;
|
me[ss]= r;
|
||||||
});
|
});
|
||||||
#endif
|
|
||||||
me.ViewClose();
|
me.ViewClose();
|
||||||
return *this;
|
return *this;
|
||||||
}
|
}
|
||||||
@@ -264,7 +241,7 @@ public:
|
|||||||
Lattice(GridBase *grid,ViewMode mode=AcceleratorWriteDiscard) {
|
Lattice(GridBase *grid,ViewMode mode=AcceleratorWriteDiscard) {
|
||||||
this->_grid = grid;
|
this->_grid = grid;
|
||||||
resize(this->_grid->oSites());
|
resize(this->_grid->oSites());
|
||||||
GRID_ASSERT((((uint64_t)&this->_odata[0])&0xF) ==0);
|
assert((((uint64_t)&this->_odata[0])&0xF) ==0);
|
||||||
this->checkerboard=0;
|
this->checkerboard=0;
|
||||||
SetViewMode(mode);
|
SetViewMode(mode);
|
||||||
}
|
}
|
||||||
@@ -304,8 +281,8 @@ public:
|
|||||||
typename std::enable_if<!std::is_same<robj,vobj>::value,int>::type i=0;
|
typename std::enable_if<!std::is_same<robj,vobj>::value,int>::type i=0;
|
||||||
conformable(*this,r);
|
conformable(*this,r);
|
||||||
this->checkerboard = r.Checkerboard();
|
this->checkerboard = r.Checkerboard();
|
||||||
auto him= r.View(AcceleratorRead);
|
|
||||||
auto me = View(AcceleratorWriteDiscard);
|
auto me = View(AcceleratorWriteDiscard);
|
||||||
|
auto him= r.View(AcceleratorRead);
|
||||||
accelerator_for(ss,me.size(),vobj::Nsimd(),{
|
accelerator_for(ss,me.size(),vobj::Nsimd(),{
|
||||||
coalescedWrite(me[ss],him(ss));
|
coalescedWrite(me[ss],him(ss));
|
||||||
});
|
});
|
||||||
@@ -319,8 +296,8 @@ public:
|
|||||||
inline Lattice<vobj> & operator = (const Lattice<vobj> & r){
|
inline Lattice<vobj> & operator = (const Lattice<vobj> & r){
|
||||||
this->checkerboard = r.Checkerboard();
|
this->checkerboard = r.Checkerboard();
|
||||||
conformable(*this,r);
|
conformable(*this,r);
|
||||||
auto him= r.View(AcceleratorRead);
|
|
||||||
auto me = View(AcceleratorWriteDiscard);
|
auto me = View(AcceleratorWriteDiscard);
|
||||||
|
auto him= r.View(AcceleratorRead);
|
||||||
accelerator_for(ss,me.size(),vobj::Nsimd(),{
|
accelerator_for(ss,me.size(),vobj::Nsimd(),{
|
||||||
coalescedWrite(me[ss],him(ss));
|
coalescedWrite(me[ss],him(ss));
|
||||||
});
|
});
|
||||||
@@ -373,7 +350,7 @@ public:
|
|||||||
|
|
||||||
template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
|
template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
|
||||||
typedef typename vobj::scalar_object sobj;
|
typedef typename vobj::scalar_object sobj;
|
||||||
for(int64_t g=0;g<o.Grid()->_gsites;g++){
|
for(int g=0;g<o.Grid()->_gsites;g++){
|
||||||
|
|
||||||
Coordinate gcoor;
|
Coordinate gcoor;
|
||||||
o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);
|
o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);
|
||||||
|
|||||||
@@ -53,19 +53,36 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
|
|||||||
typedef decltype(basis[0]) Field;
|
typedef decltype(basis[0]) Field;
|
||||||
typedef decltype(basis[0].View(AcceleratorRead)) View;
|
typedef decltype(basis[0].View(AcceleratorRead)) View;
|
||||||
|
|
||||||
hostVector<View> h_basis_v(basis.size());
|
Vector<View> basis_v; basis_v.reserve(basis.size());
|
||||||
deviceVector<View> d_basis_v(basis.size());
|
typedef typename std::remove_reference<decltype(basis_v[0][0])>::type vobj;
|
||||||
typedef typename std::remove_reference<decltype(h_basis_v[0][0])>::type vobj;
|
|
||||||
typedef typename std::remove_reference<decltype(Qt(0,0))>::type Coeff_t;
|
typedef typename std::remove_reference<decltype(Qt(0,0))>::type Coeff_t;
|
||||||
|
|
||||||
GridBase* grid = basis[0].Grid();
|
GridBase* grid = basis[0].Grid();
|
||||||
|
|
||||||
for(int k=0;k<basis.size();k++){
|
for(int k=0;k<basis.size();k++){
|
||||||
h_basis_v[k] = basis[k].View(AcceleratorWrite);
|
basis_v.push_back(basis[k].View(AcceleratorWrite));
|
||||||
acceleratorPut(d_basis_v[k],h_basis_v[k]);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
View *basis_vp = &d_basis_v[0];
|
#if ( (!defined(GRID_CUDA)) )
|
||||||
|
int max_threads = thread_max();
|
||||||
|
Vector < vobj > Bt(Nm * max_threads);
|
||||||
|
thread_region
|
||||||
|
{
|
||||||
|
vobj* B = &Bt[Nm * thread_num()];
|
||||||
|
thread_for_in_region(ss, grid->oSites(),{
|
||||||
|
for(int j=j0; j<j1; ++j) B[j]=0.;
|
||||||
|
|
||||||
|
for(int j=j0; j<j1; ++j){
|
||||||
|
for(int k=k0; k<k1; ++k){
|
||||||
|
B[j] +=Qt(j,k) * basis_v[k][ss];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for(int j=j0; j<j1; ++j){
|
||||||
|
basis_v[j][ss] = B[j];
|
||||||
|
}
|
||||||
|
});
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
View *basis_vp = &basis_v[0];
|
||||||
|
|
||||||
int nrot = j1-j0;
|
int nrot = j1-j0;
|
||||||
if (!nrot) // edge case not handled gracefully by Cuda
|
if (!nrot) // edge case not handled gracefully by Cuda
|
||||||
@@ -74,19 +91,17 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
|
|||||||
uint64_t oSites =grid->oSites();
|
uint64_t oSites =grid->oSites();
|
||||||
uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead
|
uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead
|
||||||
|
|
||||||
deviceVector <vobj> Bt(siteBlock * nrot);
|
Vector <vobj> Bt(siteBlock * nrot);
|
||||||
auto Bp=&Bt[0];
|
auto Bp=&Bt[0];
|
||||||
|
|
||||||
// GPU readable copy of matrix
|
// GPU readable copy of matrix
|
||||||
hostVector<Coeff_t> h_Qt_jv(Nm*Nm);
|
Vector<Coeff_t> Qt_jv(Nm*Nm);
|
||||||
deviceVector<Coeff_t> Qt_jv(Nm*Nm);
|
|
||||||
Coeff_t *Qt_p = & Qt_jv[0];
|
Coeff_t *Qt_p = & Qt_jv[0];
|
||||||
thread_for(i,Nm*Nm,{
|
thread_for(i,Nm*Nm,{
|
||||||
int j = i/Nm;
|
int j = i/Nm;
|
||||||
int k = i%Nm;
|
int k = i%Nm;
|
||||||
h_Qt_jv[i]=Qt(j,k);
|
Qt_p[i]=Qt(j,k);
|
||||||
});
|
});
|
||||||
acceleratorCopyToDevice(&h_Qt_jv[0],Qt_p,Nm*Nm*sizeof(Coeff_t));
|
|
||||||
|
|
||||||
// Block the loop to keep storage footprint down
|
// Block the loop to keep storage footprint down
|
||||||
for(uint64_t s=0;s<oSites;s+=siteBlock){
|
for(uint64_t s=0;s<oSites;s+=siteBlock){
|
||||||
@@ -110,7 +125,7 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
|
|||||||
|
|
||||||
for(int k=k0; k<k1; ++k){
|
for(int k=k0; k<k1; ++k){
|
||||||
auto tmp = coalescedRead(Bp[ss*nrot+j]);
|
auto tmp = coalescedRead(Bp[ss*nrot+j]);
|
||||||
coalescedWrite(Bp[ss*nrot+j],tmp+ Qt_p[jj*Nm+k] * coalescedRead(basis_vp[k][sss]));
|
coalescedWrite(Bp[ss*nrot+j],tmp+ Qt_p[jj*Nm+k] * coalescedRead(basis_v[k][sss]));
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
|
|
||||||
@@ -119,11 +134,12 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
|
|||||||
int jj =j0+j;
|
int jj =j0+j;
|
||||||
int ss =sj/nrot;
|
int ss =sj/nrot;
|
||||||
int sss=ss+s;
|
int sss=ss+s;
|
||||||
coalescedWrite(basis_vp[jj][sss],coalescedRead(Bp[ss*nrot+j]));
|
coalescedWrite(basis_v[jj][sss],coalescedRead(Bp[ss*nrot+j]));
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose();
|
for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
|
||||||
}
|
}
|
||||||
|
|
||||||
// Extract a single rotated vector
|
// Extract a single rotated vector
|
||||||
@@ -136,19 +152,16 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in
|
|||||||
|
|
||||||
result.Checkerboard() = basis[0].Checkerboard();
|
result.Checkerboard() = basis[0].Checkerboard();
|
||||||
|
|
||||||
hostVector<View> h_basis_v(basis.size());
|
Vector<View> basis_v; basis_v.reserve(basis.size());
|
||||||
deviceVector<View> d_basis_v(basis.size());
|
|
||||||
for(int k=0;k<basis.size();k++){
|
for(int k=0;k<basis.size();k++){
|
||||||
h_basis_v[k]=basis[k].View(AcceleratorRead);
|
basis_v.push_back(basis[k].View(AcceleratorRead));
|
||||||
acceleratorPut(d_basis_v[k],h_basis_v[k]);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
vobj zz=Zero();
|
vobj zz=Zero();
|
||||||
deviceVector<double> Qt_jv(Nm);
|
Vector<double> Qt_jv(Nm);
|
||||||
double * Qt_j = & Qt_jv[0];
|
double * Qt_j = & Qt_jv[0];
|
||||||
for(int k=0;k<Nm;++k) acceleratorPut(Qt_j[k],Qt(j,k));
|
for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k);
|
||||||
|
|
||||||
auto basis_vp=& d_basis_v[0];
|
auto basis_vp=& basis_v[0];
|
||||||
autoView(result_v,result,AcceleratorWrite);
|
autoView(result_v,result,AcceleratorWrite);
|
||||||
accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
|
accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
|
||||||
vobj zzz=Zero();
|
vobj zzz=Zero();
|
||||||
@@ -158,7 +171,7 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in
|
|||||||
}
|
}
|
||||||
coalescedWrite(result_v[ss], B);
|
coalescedWrite(result_v[ss], B);
|
||||||
});
|
});
|
||||||
for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose();
|
for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class Field>
|
template<class Field>
|
||||||
@@ -166,9 +179,9 @@ void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, s
|
|||||||
{
|
{
|
||||||
int vlen = idx.size();
|
int vlen = idx.size();
|
||||||
|
|
||||||
GRID_ASSERT(vlen>=1);
|
assert(vlen>=1);
|
||||||
GRID_ASSERT(vlen<=sort_vals.size());
|
assert(vlen<=sort_vals.size());
|
||||||
GRID_ASSERT(vlen<=_v.size());
|
assert(vlen<=_v.size());
|
||||||
|
|
||||||
for (size_t i=0;i<vlen;i++) {
|
for (size_t i=0;i<vlen;i++) {
|
||||||
|
|
||||||
@@ -186,7 +199,7 @@ void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, s
|
|||||||
if (idx[j]==i)
|
if (idx[j]==i)
|
||||||
break;
|
break;
|
||||||
|
|
||||||
GRID_ASSERT(idx[i] > i); GRID_ASSERT(j!=idx.size()); GRID_ASSERT(idx[j]==i);
|
assert(idx[i] > i); assert(j!=idx.size()); assert(idx[j]==i);
|
||||||
|
|
||||||
swap(_v[i],_v[idx[i]]); // should use vector move constructor, no data copy
|
swap(_v[i],_v[idx[i]]); // should use vector move constructor, no data copy
|
||||||
std::swap(sort_vals[i],sort_vals[idx[i]]);
|
std::swap(sort_vals[i],sort_vals[idx[i]]);
|
||||||
@@ -224,7 +237,7 @@ void basisSortInPlace(std::vector<Field> & _v,std::vector<RealD>& sort_vals, boo
|
|||||||
template<class Field>
|
template<class Field>
|
||||||
void basisDeflate(const std::vector<Field> &_v,const std::vector<RealD>& eval,const Field& src_orig,Field& result) {
|
void basisDeflate(const std::vector<Field> &_v,const std::vector<RealD>& eval,const Field& src_orig,Field& result) {
|
||||||
result = Zero();
|
result = Zero();
|
||||||
GRID_ASSERT(_v.size()==eval.size());
|
assert(_v.size()==eval.size());
|
||||||
int N = (int)_v.size();
|
int N = (int)_v.size();
|
||||||
for (int i=0;i<N;i++) {
|
for (int i=0;i<N;i++) {
|
||||||
Field& tmp = _v[i];
|
Field& tmp = _v[i];
|
||||||
|
|||||||
@@ -32,8 +32,8 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
|
|
||||||
template<class obj1,class obj2> void conformable(const Lattice<obj1> &lhs,const Lattice<obj2> &rhs)
|
template<class obj1,class obj2> void conformable(const Lattice<obj1> &lhs,const Lattice<obj2> &rhs)
|
||||||
{
|
{
|
||||||
GRID_ASSERT(lhs.Grid() == rhs.Grid());
|
assert(lhs.Grid() == rhs.Grid());
|
||||||
GRID_ASSERT(lhs.Checkerboard() == rhs.Checkerboard());
|
assert(lhs.Checkerboard() == rhs.Checkerboard());
|
||||||
}
|
}
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
|||||||
@@ -1,55 +0,0 @@
|
|||||||
/*************************************************************************************
|
|
||||||
|
|
||||||
Grid physics library, www.github.com/paboyle/Grid
|
|
||||||
|
|
||||||
Source file: ./lib/lattice/Lattice_crc.h
|
|
||||||
|
|
||||||
Copyright (C) 2021
|
|
||||||
|
|
||||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
||||||
|
|
||||||
This program is free software; you can redistribute it and/or modify
|
|
||||||
it under the terms of the GNU General Public License as published by
|
|
||||||
the Free Software Foundation; either version 2 of the License, or
|
|
||||||
(at your option) any later version.
|
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License along
|
|
||||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
||||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
||||||
|
|
||||||
See the full license in the file "LICENSE" in the top level distribution directory
|
|
||||||
*************************************************************************************/
|
|
||||||
/* END LEGAL */
|
|
||||||
#pragma once
|
|
||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
|
||||||
|
|
||||||
template<class vobj> void DumpSliceNorm(std::string s,const Lattice<vobj> &f,int mu=-1)
|
|
||||||
{
|
|
||||||
auto ff = localNorm2(f);
|
|
||||||
if ( mu==-1 ) mu = f.Grid()->Nd()-1;
|
|
||||||
typedef typename vobj::tensor_reduced normtype;
|
|
||||||
typedef typename normtype::scalar_object scalar;
|
|
||||||
std::vector<scalar> sff;
|
|
||||||
sliceSum(ff,sff,mu);
|
|
||||||
for(int t=0;t<sff.size();t++){
|
|
||||||
std::cout << s<<" "<<t<<" "<<sff[t]<<std::endl;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template<class vobj> uint32_t crc(const Lattice<vobj> & buf)
|
|
||||||
{
|
|
||||||
autoView( buf_v , buf, CpuRead);
|
|
||||||
return ::crc32(0L,(unsigned char *)&buf_v[0],(size_t)sizeof(vobj)*buf.oSites());
|
|
||||||
}
|
|
||||||
|
|
||||||
#define CRC(U) std::cerr << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
|
||||||
|
|
||||||
|
|
||||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user