mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-11-03 21:44:33 +00:00 
			
		
		
		
	Compare commits
	
		
			2 Commits
		
	
	
		
			feature/S2
			...
			aff3d50bae
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 
						 | 
					aff3d50bae | ||
| 32e6d58356 | 
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							@@ -1,2 +0,0 @@
 | 
			
		||||
 | 
			
		||||
mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench -DGRID_SYCL
 | 
			
		||||
@@ -1,5 +0,0 @@
 | 
			
		||||
CXX=hipcc
 | 
			
		||||
MPICXX=mpicxx 
 | 
			
		||||
CXXFLAGS="-fPIC -I{$ROCM_PATH}/include/ -I${MPICH_DIR}/include -L/lib64 -I/opt/cray/pe/mpich/8.1.28/ofi/gnu/12.3/include -DGRID_HIP"
 | 
			
		||||
LDFLAGS="-L/lib64 -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lamdhip64 -lhipblas -lrocblas -lmpi_gnu_123"
 | 
			
		||||
hipcc $CXXFLAGS $LDFLAGS BatchBlasBench.cc -o BatchBlasBench
 | 
			
		||||
@@ -1,2 +0,0 @@
 | 
			
		||||
 | 
			
		||||
mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench -DGRID_SYCL
 | 
			
		||||
@@ -59,7 +59,6 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#include <Grid/lattice/Lattice.h>      
 | 
			
		||||
#include <Grid/cshift/Cshift.h>       
 | 
			
		||||
#include <Grid/stencil/Stencil.h>      
 | 
			
		||||
#include <Grid/stencil/GeneralLocalStencil.h>      
 | 
			
		||||
#include <Grid/parallelIO/BinaryIO.h>
 | 
			
		||||
#include <Grid/algorithms/Algorithms.h>   
 | 
			
		||||
NAMESPACE_CHECK(GridCore)
 | 
			
		||||
 
 | 
			
		||||
@@ -37,7 +37,6 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#include <Grid/qcd/QCD.h>
 | 
			
		||||
#include <Grid/qcd/spin/Spin.h>
 | 
			
		||||
#include <Grid/qcd/gparity/Gparity.h>
 | 
			
		||||
#include <Grid/qcd/spin/Pauli.h> // depends on Gparity
 | 
			
		||||
#include <Grid/qcd/utils/Utils.h>
 | 
			
		||||
#include <Grid/qcd/representations/Representations.h>
 | 
			
		||||
NAMESPACE_CHECK(GridQCDCore);
 | 
			
		||||
 
 | 
			
		||||
@@ -30,14 +30,9 @@ directory
 | 
			
		||||
 | 
			
		||||
#include <type_traits>
 | 
			
		||||
#include <cassert>
 | 
			
		||||
#include <exception>
 | 
			
		||||
 | 
			
		||||
#define NAMESPACE_BEGIN(A) namespace A {
 | 
			
		||||
#define NAMESPACE_END(A)   }
 | 
			
		||||
#define GRID_NAMESPACE_BEGIN NAMESPACE_BEGIN(Grid)
 | 
			
		||||
#define GRID_NAMESPACE_END   NAMESPACE_END(Grid)
 | 
			
		||||
#define NAMESPACE_CHECK(x) struct namespaceTEST##x {};  static_assert(std::is_same<namespaceTEST##x, ::namespaceTEST##x>::value,"Not in :: at"  ); 
 | 
			
		||||
 | 
			
		||||
#define EXCEPTION_CHECK_BEGIN(A) try {
 | 
			
		||||
#define EXCEPTION_CHECK_END(A)   } catch ( std::exception e ) { BACKTRACEFP(stderr); std::cerr << __PRETTY_FUNCTION__ << " : " <<__LINE__<< " Caught exception "<<e.what()<<std::endl; throw; }
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -29,9 +29,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#ifndef GRID_ALGORITHMS_H
 | 
			
		||||
#define GRID_ALGORITHMS_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_CHECK(blas);
 | 
			
		||||
#include <Grid/algorithms/blas/BatchedBlas.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_CHECK(algorithms);
 | 
			
		||||
#include <Grid/algorithms/SparseMatrix.h>
 | 
			
		||||
#include <Grid/algorithms/LinearOperator.h>
 | 
			
		||||
@@ -47,11 +44,7 @@ NAMESPACE_CHECK(SparseMatrix);
 | 
			
		||||
#include <Grid/algorithms/approx/RemezGeneral.h>
 | 
			
		||||
#include <Grid/algorithms/approx/ZMobius.h>
 | 
			
		||||
NAMESPACE_CHECK(approx);
 | 
			
		||||
#include <Grid/algorithms/deflation/Deflation.h>
 | 
			
		||||
#include <Grid/algorithms/deflation/MultiRHSBlockProject.h>
 | 
			
		||||
#include <Grid/algorithms/deflation/MultiRHSDeflation.h>
 | 
			
		||||
#include <Grid/algorithms/deflation/MultiRHSBlockCGLinalg.h>
 | 
			
		||||
NAMESPACE_CHECK(deflation);
 | 
			
		||||
#include <Grid/algorithms/iterative/Deflation.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/ConjugateGradient.h>
 | 
			
		||||
NAMESPACE_CHECK(ConjGrad);
 | 
			
		||||
#include <Grid/algorithms/iterative/BiCGSTAB.h>
 | 
			
		||||
@@ -74,11 +67,10 @@ NAMESPACE_CHECK(BiCGSTAB);
 | 
			
		||||
#include <Grid/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/PowerMethod.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/AdefGeneric.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/AdefMrhs.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_CHECK(PowerMethod);
 | 
			
		||||
#include <Grid/algorithms/multigrid/MultiGrid.h>
 | 
			
		||||
NAMESPACE_CHECK(multigrid);
 | 
			
		||||
#include <Grid/algorithms/CoarsenedMatrix.h>
 | 
			
		||||
NAMESPACE_CHECK(CoarsendMatrix);
 | 
			
		||||
#include <Grid/algorithms/FFT.h>
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -56,6 +56,243 @@ inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner,
 | 
			
		||||
  blockSum(CoarseInner,fine_inner_msk);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Geometry {
 | 
			
		||||
public:
 | 
			
		||||
  int npoint;
 | 
			
		||||
  int base;
 | 
			
		||||
  std::vector<int> directions   ;
 | 
			
		||||
  std::vector<int> displacements;
 | 
			
		||||
  std::vector<int> points_dagger;
 | 
			
		||||
 | 
			
		||||
  Geometry(int _d)  {
 | 
			
		||||
    
 | 
			
		||||
    base = (_d==5) ? 1:0;
 | 
			
		||||
 | 
			
		||||
    // make coarse grid stencil for 4d , not 5d
 | 
			
		||||
    if ( _d==5 ) _d=4;
 | 
			
		||||
 | 
			
		||||
    npoint = 2*_d+1;
 | 
			
		||||
    directions.resize(npoint);
 | 
			
		||||
    displacements.resize(npoint);
 | 
			
		||||
    points_dagger.resize(npoint);
 | 
			
		||||
    for(int d=0;d<_d;d++){
 | 
			
		||||
      directions[d   ] = d+base;
 | 
			
		||||
      directions[d+_d] = d+base;
 | 
			
		||||
      displacements[d  ] = +1;
 | 
			
		||||
      displacements[d+_d]= -1;
 | 
			
		||||
      points_dagger[d   ] = d+_d;
 | 
			
		||||
      points_dagger[d+_d] = d;
 | 
			
		||||
    }
 | 
			
		||||
    directions   [2*_d]=0;
 | 
			
		||||
    displacements[2*_d]=0;
 | 
			
		||||
    points_dagger[2*_d]=2*_d;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int point(int dir, int disp) {
 | 
			
		||||
    assert(disp == -1 || disp == 0 || disp == 1);
 | 
			
		||||
    assert(base+0 <= dir && dir < base+4);
 | 
			
		||||
 | 
			
		||||
    // directions faster index = new indexing
 | 
			
		||||
    // 4d (base = 0):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   0  1  2  3  0  1  2  3  0
 | 
			
		||||
    // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | 
			
		||||
    // 5d (base = 1):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   1  2  3  4  1  2  3  4  0
 | 
			
		||||
    // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | 
			
		||||
 | 
			
		||||
    // displacements faster index = old indexing
 | 
			
		||||
    // 4d (base = 0):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   0  0  1  1  2  2  3  3  0
 | 
			
		||||
    // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | 
			
		||||
    // 5d (base = 1):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   1  1  2  2  3  3  4  4  0
 | 
			
		||||
    // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | 
			
		||||
 | 
			
		||||
    if(dir == 0 and disp == 0)
 | 
			
		||||
      return 8;
 | 
			
		||||
    else // New indexing
 | 
			
		||||
      return (1 - disp) / 2 * 4 + dir - base;
 | 
			
		||||
    // else // Old indexing
 | 
			
		||||
    //   return (4 * (dir - base) + 1 - disp) / 2;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
  
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class Aggregation   {
 | 
			
		||||
public:
 | 
			
		||||
  typedef iVector<CComplex,nbasis >             siteVector;
 | 
			
		||||
  typedef Lattice<siteVector>                 CoarseVector;
 | 
			
		||||
  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<Fobj >        FineField;
 | 
			
		||||
 | 
			
		||||
  GridBase *CoarseGrid;
 | 
			
		||||
  GridBase *FineGrid;
 | 
			
		||||
  std::vector<Lattice<Fobj> > subspace;
 | 
			
		||||
  int checkerboard;
 | 
			
		||||
  int Checkerboard(void){return checkerboard;}
 | 
			
		||||
  Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) : 
 | 
			
		||||
    CoarseGrid(_CoarseGrid),
 | 
			
		||||
    FineGrid(_FineGrid),
 | 
			
		||||
    subspace(nbasis,_FineGrid),
 | 
			
		||||
    checkerboard(_checkerboard)
 | 
			
		||||
  {
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
  void Orthogonalise(void){
 | 
			
		||||
    CoarseScalar InnerProd(CoarseGrid); 
 | 
			
		||||
    std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
 | 
			
		||||
    blockOrthogonalise(InnerProd,subspace);
 | 
			
		||||
  } 
 | 
			
		||||
  void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
 | 
			
		||||
    blockProject(CoarseVec,FineVec,subspace);
 | 
			
		||||
  }
 | 
			
		||||
  void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
 | 
			
		||||
    FineVec.Checkerboard() = subspace[0].Checkerboard();
 | 
			
		||||
    blockPromote(CoarseVec,FineVec,subspace);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspace(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    ConjugateGradient<FineField> CG(1.0e-2,100,false);
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
 | 
			
		||||
    for(int b=0;b<nn;b++){
 | 
			
		||||
      
 | 
			
		||||
      subspace[b] = Zero();
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
      
 | 
			
		||||
      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<1;i++){
 | 
			
		||||
 | 
			
		||||
	CG(hermop,noise,subspace[b]);
 | 
			
		||||
 | 
			
		||||
	noise = subspace[b];
 | 
			
		||||
	scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
	noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
      subspace[b]   = noise;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
 | 
			
		||||
  // and this is the best I found
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
				       int nn,
 | 
			
		||||
				       double hi,
 | 
			
		||||
				       double lo,
 | 
			
		||||
				       int orderfilter,
 | 
			
		||||
				       int ordermin,
 | 
			
		||||
				       int orderstep,
 | 
			
		||||
				       double filterlo
 | 
			
		||||
				       ) {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
 | 
			
		||||
    // New normalised noise
 | 
			
		||||
    gaussian(RNG,noise);
 | 
			
		||||
    scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
    noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
    // Initial matrix element
 | 
			
		||||
    hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
    int b =0;
 | 
			
		||||
    {
 | 
			
		||||
      // Filter
 | 
			
		||||
      Chebyshev<FineField> Cheb(lo,hi,orderfilter);
 | 
			
		||||
      Cheb(hermop,noise,Mn);
 | 
			
		||||
      // normalise
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
			
		||||
      subspace[b]   = Mn;
 | 
			
		||||
      hermop.Op(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
      b++;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Generate a full sequence of Chebyshevs
 | 
			
		||||
    {
 | 
			
		||||
      lo=filterlo;
 | 
			
		||||
      noise=Mn;
 | 
			
		||||
 | 
			
		||||
      FineField T0(FineGrid); T0 = noise;  
 | 
			
		||||
      FineField T1(FineGrid); 
 | 
			
		||||
      FineField T2(FineGrid);
 | 
			
		||||
      FineField y(FineGrid);
 | 
			
		||||
      
 | 
			
		||||
      FineField *Tnm = &T0;
 | 
			
		||||
      FineField *Tn  = &T1;
 | 
			
		||||
      FineField *Tnp = &T2;
 | 
			
		||||
 | 
			
		||||
      // Tn=T1 = (xscale M + mscale)in
 | 
			
		||||
      RealD xscale = 2.0/(hi-lo);
 | 
			
		||||
      RealD mscale = -(hi+lo)/(hi-lo);
 | 
			
		||||
      hermop.HermOp(T0,y);
 | 
			
		||||
      T1=y*xscale+noise*mscale;
 | 
			
		||||
 | 
			
		||||
      for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
 | 
			
		||||
	
 | 
			
		||||
	hermop.HermOp(*Tn,y);
 | 
			
		||||
 | 
			
		||||
	autoView( y_v , y, AcceleratorWrite);
 | 
			
		||||
	autoView( Tn_v , (*Tn), AcceleratorWrite);
 | 
			
		||||
	autoView( Tnp_v , (*Tnp), AcceleratorWrite);
 | 
			
		||||
	autoView( Tnm_v , (*Tnm), AcceleratorWrite);
 | 
			
		||||
	const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
	accelerator_for(ss, FineGrid->oSites(), Nsimd, {
 | 
			
		||||
	  coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
 | 
			
		||||
	  coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
 | 
			
		||||
        });
 | 
			
		||||
 | 
			
		||||
	// Possible more fine grained control is needed than a linear sweep,
 | 
			
		||||
	// but huge productivity gain if this is simple algorithm and not a tunable
 | 
			
		||||
	int m =1;
 | 
			
		||||
	if ( n>=ordermin ) m=n-ordermin;
 | 
			
		||||
	if ( (m%orderstep)==0 ) { 
 | 
			
		||||
	  Mn=*Tnp;
 | 
			
		||||
	  scale = std::pow(norm2(Mn),-0.5);         Mn=Mn*scale;
 | 
			
		||||
	  subspace[b] = Mn;
 | 
			
		||||
	  hermop.Op(Mn,tmp); 
 | 
			
		||||
	  std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
	  b++;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Cycle pointers to avoid copies
 | 
			
		||||
	FineField *swizzle = Tnm;
 | 
			
		||||
	Tnm    =Tn;
 | 
			
		||||
	Tn     =Tnp;
 | 
			
		||||
	Tnp    =swizzle;
 | 
			
		||||
	  
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    assert(b==nn);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// Fine Object == (per site) type of fine field
 | 
			
		||||
// nbasis      == number of deflation vectors
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
@@ -99,7 +336,7 @@ public:
 | 
			
		||||
  CoarseMatrix AselfInvEven;
 | 
			
		||||
  CoarseMatrix AselfInvOdd;
 | 
			
		||||
 | 
			
		||||
  deviceVector<RealD> dag_factor;
 | 
			
		||||
  Vector<RealD> dag_factor;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////
 | 
			
		||||
  // Interface
 | 
			
		||||
@@ -124,13 +361,9 @@ public:
 | 
			
		||||
    int npoint = geom.npoint;
 | 
			
		||||
    typedef LatticeView<Cobj> Aview;
 | 
			
		||||
      
 | 
			
		||||
    deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
 | 
			
		||||
    hostVector<Aview>   hAcceleratorViewContainer(geom.npoint);
 | 
			
		||||
    Vector<Aview> AcceleratorViewContainer;
 | 
			
		||||
  
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) {
 | 
			
		||||
      hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
 | 
			
		||||
      acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
 | 
			
		||||
    }
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
 | 
			
		||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
			
		||||
 | 
			
		||||
    const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
@@ -165,7 +398,7 @@ public:
 | 
			
		||||
      coalescedWrite(out_v[ss](b),res);
 | 
			
		||||
      });
 | 
			
		||||
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void Mdag (const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
@@ -194,14 +427,9 @@ public:
 | 
			
		||||
    int npoint = geom.npoint;
 | 
			
		||||
    typedef LatticeView<Cobj> Aview;
 | 
			
		||||
 | 
			
		||||
    Vector<Aview> AcceleratorViewContainer;
 | 
			
		||||
 | 
			
		||||
    deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
 | 
			
		||||
    hostVector<Aview>   hAcceleratorViewContainer(geom.npoint);
 | 
			
		||||
  
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) {
 | 
			
		||||
      hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
 | 
			
		||||
      acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
 | 
			
		||||
    }
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
 | 
			
		||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
			
		||||
 | 
			
		||||
    const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
@@ -210,10 +438,10 @@ public:
 | 
			
		||||
 | 
			
		||||
    int osites=Grid()->oSites();
 | 
			
		||||
 | 
			
		||||
    deviceVector<int> points(geom.npoint);
 | 
			
		||||
    for(int p=0; p<geom.npoint; p++) { 
 | 
			
		||||
      acceleratorPut(points[p],geom.points_dagger[p]);
 | 
			
		||||
    }
 | 
			
		||||
    Vector<int> points(geom.npoint, 0);
 | 
			
		||||
    for(int p=0; p<geom.npoint; p++)
 | 
			
		||||
      points[p] = geom.points_dagger[p];
 | 
			
		||||
 | 
			
		||||
    auto points_p = &points[0];
 | 
			
		||||
 | 
			
		||||
    RealD* dag_factor_p = &dag_factor[0];
 | 
			
		||||
@@ -245,7 +473,7 @@ public:
 | 
			
		||||
      coalescedWrite(out_v[ss](b),res);
 | 
			
		||||
      });
 | 
			
		||||
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MdirComms(const CoarseVector &in)
 | 
			
		||||
@@ -260,14 +488,8 @@ public:
 | 
			
		||||
    out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
 | 
			
		||||
    typedef LatticeView<Cobj> Aview;
 | 
			
		||||
 | 
			
		||||
    deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
 | 
			
		||||
    hostVector<Aview>   hAcceleratorViewContainer(geom.npoint);
 | 
			
		||||
  
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) {
 | 
			
		||||
      hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
 | 
			
		||||
      acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
 | 
			
		||||
    }
 | 
			
		||||
    Vector<Aview> AcceleratorViewContainer;
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
 | 
			
		||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
			
		||||
 | 
			
		||||
    autoView( out_v , out, AcceleratorWrite);
 | 
			
		||||
@@ -300,7 +522,7 @@ public:
 | 
			
		||||
      }
 | 
			
		||||
      coalescedWrite(out_v[ss](b),res);
 | 
			
		||||
    });
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
  }
 | 
			
		||||
  void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out)
 | 
			
		||||
  {
 | 
			
		||||
@@ -484,20 +706,14 @@ public:
 | 
			
		||||
 | 
			
		||||
    // determine in what order we need the points
 | 
			
		||||
    int npoint = geom.npoint-1;
 | 
			
		||||
    deviceVector<int> points(npoint);
 | 
			
		||||
    for(int p=0; p<npoint; p++) {
 | 
			
		||||
      int val = (dag && !hermitian) ? geom.points_dagger[p] : p;
 | 
			
		||||
      acceleratorPut(points[p], val);
 | 
			
		||||
    }
 | 
			
		||||
    Vector<int> points(npoint, 0);
 | 
			
		||||
    for(int p=0; p<npoint; p++)
 | 
			
		||||
      points[p] = (dag && !hermitian) ? geom.points_dagger[p] : p;
 | 
			
		||||
 | 
			
		||||
    auto points_p = &points[0];
 | 
			
		||||
 | 
			
		||||
    deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
 | 
			
		||||
    hostVector<Aview>   hAcceleratorViewContainer(geom.npoint);
 | 
			
		||||
  
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) {
 | 
			
		||||
      hAcceleratorViewContainer[p] = a[p].View(AcceleratorRead);
 | 
			
		||||
      acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
 | 
			
		||||
    }
 | 
			
		||||
    Vector<Aview> AcceleratorViewContainer;
 | 
			
		||||
    for(int p=0;p<npoint;p++) AcceleratorViewContainer.push_back(a[p].View(AcceleratorRead));
 | 
			
		||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
			
		||||
 | 
			
		||||
    const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
@@ -560,7 +776,7 @@ public:
 | 
			
		||||
      });
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for(int p=0;p<npoint;p++) hAcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
    for(int p=0;p<npoint;p++) AcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) 	:
 | 
			
		||||
@@ -611,13 +827,11 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // GPU readable prefactor
 | 
			
		||||
    std::vector<RealD> h_dag_factor(nbasis*nbasis);
 | 
			
		||||
    thread_for(i, nbasis*nbasis, {
 | 
			
		||||
      int j = i/nbasis;
 | 
			
		||||
      int k = i%nbasis;
 | 
			
		||||
      h_dag_factor[i] = dag_factor_eigen(j, k);
 | 
			
		||||
      dag_factor[i] = dag_factor_eigen(j, k);
 | 
			
		||||
    });
 | 
			
		||||
    acceleratorCopyToDevice(&h_dag_factor[0],&dag_factor[0],dag_factor.size()*sizeof(RealD));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
			
		||||
@@ -168,7 +168,6 @@ public:
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int sign){
 | 
			
		||||
#ifndef HAVE_FFTW
 | 
			
		||||
    std::cerr << "FFTW is not compiled but is called"<<std::endl;
 | 
			
		||||
    assert(0);
 | 
			
		||||
#else
 | 
			
		||||
    conformable(result.Grid(),vgrid);
 | 
			
		||||
@@ -191,7 +190,6 @@ public:
 | 
			
		||||
      
 | 
			
		||||
    Lattice<sobj> pgbuf(&pencil_g);
 | 
			
		||||
    autoView(pgbuf_v , pgbuf, CpuWrite);
 | 
			
		||||
    //std::cout << "CPU view" << std::endl;
 | 
			
		||||
 | 
			
		||||
    typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
 | 
			
		||||
    typedef typename FFTW<scalar>::FFTW_plan   FFTW_plan;
 | 
			
		||||
@@ -215,7 +213,6 @@ public:
 | 
			
		||||
    else if ( sign == forward ) div = 1.0;
 | 
			
		||||
    else assert(0);
 | 
			
		||||
      
 | 
			
		||||
    //std::cout << GridLogPerformance<<"Making FFTW plan" << std::endl;
 | 
			
		||||
    FFTW_plan p;
 | 
			
		||||
    {
 | 
			
		||||
      FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0];
 | 
			
		||||
@@ -229,7 +226,6 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
      
 | 
			
		||||
    // Barrel shift and collect global pencil
 | 
			
		||||
    //std::cout << GridLogPerformance<<"Making pencil" << std::endl;
 | 
			
		||||
    Coordinate lcoor(Nd), gcoor(Nd);
 | 
			
		||||
    result = source;
 | 
			
		||||
    int pc = processor_coor[dim];
 | 
			
		||||
@@ -251,7 +247,6 @@ public:
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
      
 | 
			
		||||
    //std::cout <<GridLogPerformance<< "Looping orthog" << std::endl;
 | 
			
		||||
    // Loop over orthog coords
 | 
			
		||||
    int NN=pencil_g.lSites();
 | 
			
		||||
    GridStopWatch timer;
 | 
			
		||||
@@ -274,7 +269,6 @@ public:
 | 
			
		||||
    usec += timer.useconds();
 | 
			
		||||
    flops+= flops_call*NN;
 | 
			
		||||
      
 | 
			
		||||
    //std::cout <<GridLogPerformance<< "Writing back results " << std::endl;
 | 
			
		||||
    // writing out result
 | 
			
		||||
    {
 | 
			
		||||
      autoView(pgbuf_v,pgbuf,CpuRead);
 | 
			
		||||
@@ -291,7 +285,6 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
    result = result*div;
 | 
			
		||||
      
 | 
			
		||||
    //std::cout <<GridLogPerformance<< "Destroying plan " << std::endl;
 | 
			
		||||
    // destroying plan
 | 
			
		||||
    FFTW<scalar>::fftw_destroy_plan(p);
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -103,38 +103,6 @@ public:
 | 
			
		||||
    _Mat.MdagM(in,out);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
template<class Matrix,class Field>
 | 
			
		||||
class MMdagLinearOperator : public LinearOperatorBase<Field> {
 | 
			
		||||
  Matrix &_Mat;
 | 
			
		||||
public:
 | 
			
		||||
  MMdagLinearOperator(Matrix &Mat): _Mat(Mat){};
 | 
			
		||||
 | 
			
		||||
  // Support for coarsening to a multigrid
 | 
			
		||||
  void OpDiag (const Field &in, Field &out) {
 | 
			
		||||
    _Mat.Mdiag(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
			
		||||
    _Mat.Mdir(in,out,dir,disp);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
			
		||||
    _Mat.MdirAll(in,out);
 | 
			
		||||
  };
 | 
			
		||||
  void Op     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.M(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void AdjOp     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.Mdag(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
    _Mat.MMdag(in,out);
 | 
			
		||||
    ComplexD dot = innerProduct(in,out);
 | 
			
		||||
    n1=real(dot);
 | 
			
		||||
    n2=norm2(out);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){
 | 
			
		||||
    _Mat.MMdag(in,out);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Construct herm op and shift it for mgrid smoother
 | 
			
		||||
@@ -177,44 +145,6 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Create a shifted HermOp
 | 
			
		||||
////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Field>
 | 
			
		||||
class ShiftedHermOpLinearOperator : public LinearOperatorBase<Field> {
 | 
			
		||||
  LinearOperatorBase<Field> &_Mat;
 | 
			
		||||
  RealD _shift;
 | 
			
		||||
public:
 | 
			
		||||
  ShiftedHermOpLinearOperator(LinearOperatorBase<Field> &Mat,RealD shift): _Mat(Mat), _shift(shift){};
 | 
			
		||||
  // Support for coarsening to a multigrid
 | 
			
		||||
  void OpDiag (const Field &in, Field &out) {
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
			
		||||
    assert(0);
 | 
			
		||||
  };
 | 
			
		||||
  void Op     (const Field &in, Field &out){
 | 
			
		||||
    HermOp(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void AdjOp     (const Field &in, Field &out){
 | 
			
		||||
    HermOp(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
    HermOp(in,out);
 | 
			
		||||
    ComplexD dot = innerProduct(in,out);
 | 
			
		||||
    n1=real(dot);
 | 
			
		||||
    n2=norm2(out);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){
 | 
			
		||||
    _Mat.HermOp(in,out);
 | 
			
		||||
    out = out + _shift*in;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Wrap an already herm matrix
 | 
			
		||||
////////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -277,38 +207,6 @@ public:
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
template<class Matrix,class Field>
 | 
			
		||||
class ShiftedNonHermitianLinearOperator : public LinearOperatorBase<Field> {
 | 
			
		||||
  Matrix &_Mat;
 | 
			
		||||
  RealD shift;
 | 
			
		||||
public:
 | 
			
		||||
  ShiftedNonHermitianLinearOperator(Matrix &Mat,RealD shft): _Mat(Mat),shift(shft){};
 | 
			
		||||
  // Support for coarsening to a multigrid
 | 
			
		||||
  void OpDiag (const Field &in, Field &out) {
 | 
			
		||||
    _Mat.Mdiag(in,out);
 | 
			
		||||
    out = out + shift*in;
 | 
			
		||||
  }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
			
		||||
    _Mat.Mdir(in,out,dir,disp);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
			
		||||
    _Mat.MdirAll(in,out);
 | 
			
		||||
  };
 | 
			
		||||
  void Op     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.M(in,out);
 | 
			
		||||
    out = out + shift * in;
 | 
			
		||||
  }
 | 
			
		||||
  void AdjOp     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.Mdag(in,out);
 | 
			
		||||
    out = out + shift * in;
 | 
			
		||||
  }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////
 | 
			
		||||
// Even Odd Schur decomp operators; there are several
 | 
			
		||||
 
 | 
			
		||||
@@ -45,11 +45,6 @@ public:
 | 
			
		||||
    M(in,tmp);
 | 
			
		||||
    Mdag(tmp,out);
 | 
			
		||||
  }
 | 
			
		||||
  virtual void  MMdag(const Field &in, Field &out) {
 | 
			
		||||
    Field tmp (in.Grid());
 | 
			
		||||
    Mdag(in,tmp);
 | 
			
		||||
    M(tmp,out);
 | 
			
		||||
  }
 | 
			
		||||
  virtual  void Mdiag    (const Field &in, Field &out)=0;
 | 
			
		||||
  virtual  void Mdir     (const Field &in, Field &out,int dir, int disp)=0;
 | 
			
		||||
  virtual  void MdirAll  (const Field &in, std::vector<Field> &out)=0;
 | 
			
		||||
 
 | 
			
		||||
@@ -59,7 +59,7 @@ public:
 | 
			
		||||
    RealD diff = hi-lo;
 | 
			
		||||
    RealD delta = diff*1.0e-9;
 | 
			
		||||
    for (RealD x=lo; x<hi; x+=delta) {
 | 
			
		||||
      delta*=1.02;
 | 
			
		||||
      delta*=1.1;
 | 
			
		||||
      RealD f = approx(x);
 | 
			
		||||
      out<< x<<" "<<f<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
@@ -90,8 +90,9 @@ public:
 | 
			
		||||
    order=_order;
 | 
			
		||||
      
 | 
			
		||||
    if(order < 2) exit(-1);
 | 
			
		||||
    Coeffs.resize(order,0.0);
 | 
			
		||||
    Coeffs[order-1] = 1.0;
 | 
			
		||||
    Coeffs.resize(order);
 | 
			
		||||
    Coeffs.assign(0.,order);
 | 
			
		||||
    Coeffs[order-1] = 1.;
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
  // PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's.
 | 
			
		||||
@@ -131,26 +132,6 @@ public:
 | 
			
		||||
      Coeffs[j] = s * 2.0/order;
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
  template<class functor>
 | 
			
		||||
  void Init(RealD _lo,RealD _hi,int _order, functor & func)
 | 
			
		||||
  {
 | 
			
		||||
    lo=_lo;
 | 
			
		||||
    hi=_hi;
 | 
			
		||||
    order=_order;
 | 
			
		||||
      
 | 
			
		||||
    if(order < 2) exit(-1);
 | 
			
		||||
    Coeffs.resize(order);
 | 
			
		||||
    for(int j=0;j<order;j++){
 | 
			
		||||
      RealD s=0;
 | 
			
		||||
      for(int k=0;k<order;k++){
 | 
			
		||||
	RealD y=std::cos(M_PI*(k+0.5)/order);
 | 
			
		||||
	RealD x=0.5*(y*(hi-lo)+(hi+lo));
 | 
			
		||||
	RealD f=func(x);
 | 
			
		||||
	s=s+f*std::cos( j*M_PI*(k+0.5)/order );
 | 
			
		||||
      }
 | 
			
		||||
      Coeffs[j] = s * 2.0/order;
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
  void JacksonSmooth(void){
 | 
			
		||||
@@ -269,9 +250,7 @@ public:
 | 
			
		||||
    RealD xscale = 2.0/(hi-lo);
 | 
			
		||||
    RealD mscale = -(hi+lo)/(hi-lo);
 | 
			
		||||
    Linop.HermOp(T0,y);
 | 
			
		||||
    grid->Barrier();
 | 
			
		||||
    axpby(T1,xscale,mscale,y,in);
 | 
			
		||||
    grid->Barrier();
 | 
			
		||||
 | 
			
		||||
    // sum = .5 c[0] T0 + c[1] T1
 | 
			
		||||
    //    out = ()*T0 + Coeffs[1]*T1;
 | 
			
		||||
 
 | 
			
		||||
@@ -40,7 +40,7 @@ public:
 | 
			
		||||
  RealD norm;
 | 
			
		||||
  RealD lo,hi;
 | 
			
		||||
 | 
			
		||||
  MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), tolerances(n), lo(_lo), hi(_hi) {;};
 | 
			
		||||
  MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), lo(_lo), hi(_hi) {;};
 | 
			
		||||
  RealD approx(RealD x);
 | 
			
		||||
  void csv(std::ostream &out);
 | 
			
		||||
  void gnuplot(std::ostream &out);
 | 
			
		||||
 
 | 
			
		||||
@@ -42,7 +42,6 @@ Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
#ifdef GRID_ONE_MKL
 | 
			
		||||
#include <oneapi/mkl.hpp>
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////////////////////////	  
 | 
			
		||||
// Need to rearrange lattice data to be in the right format for a
 | 
			
		||||
// batched multiply. Might as well make these static, dense packed
 | 
			
		||||
@@ -55,10 +54,10 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
  typedef cublasHandle_t gridblasHandle_t;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
  typedef sycl::queue *gridblasHandle_t;
 | 
			
		||||
  typedef cl::sycl::queue *gridblasHandle_t;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_ONE_MKL
 | 
			
		||||
  typedef sycl::queue *gridblasHandle_t;
 | 
			
		||||
  typedef cl::sycl::queue *gridblasHandle_t;
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
 | 
			
		||||
  typedef int32_t gridblasHandle_t;
 | 
			
		||||
@@ -89,10 +88,9 @@ public:
 | 
			
		||||
      gridblasHandle = theGridAccelerator;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_ONE_MKL
 | 
			
		||||
      sycl::gpu_selector selector;
 | 
			
		||||
      sycl::device selectedDevice { selector };
 | 
			
		||||
      sycl::property_list q_prop{sycl::property::queue::in_order()};
 | 
			
		||||
      gridblasHandle =new sycl::queue (selectedDevice,q_prop);
 | 
			
		||||
      cl::sycl::cpu_selector selector;
 | 
			
		||||
      cl::sycl::device selectedDevice { selector };
 | 
			
		||||
      gridblasHandle =new sycl::queue (selectedDevice);
 | 
			
		||||
#endif
 | 
			
		||||
      gridblasInit=1;
 | 
			
		||||
    }
 | 
			
		||||
@@ -208,9 +206,6 @@ public:
 | 
			
		||||
    assert(Bkn.size()==batchCount);
 | 
			
		||||
    assert(Cmn.size()==batchCount);
 | 
			
		||||
 | 
			
		||||
    //assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
 | 
			
		||||
    //assert(OpB!=GridBLAS_OP_T);
 | 
			
		||||
 | 
			
		||||
    int lda = m; // m x k column major
 | 
			
		||||
    int ldb = k; // k x n column major
 | 
			
		||||
    int ldc = m; // m x b column major
 | 
			
		||||
@@ -270,169 +265,26 @@ public:
 | 
			
		||||
    assert(err==CUBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
      int64_t m64=m;
 | 
			
		||||
      int64_t n64=n;
 | 
			
		||||
      int64_t k64=k;
 | 
			
		||||
      int64_t lda64=lda;
 | 
			
		||||
      int64_t ldb64=ldb;
 | 
			
		||||
      int64_t ldc64=ldc;
 | 
			
		||||
      int64_t batchCount64=batchCount;
 | 
			
		||||
 | 
			
		||||
      oneapi::mkl::transpose iOpA;
 | 
			
		||||
      oneapi::mkl::transpose iOpB;
 | 
			
		||||
      
 | 
			
		||||
      if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
 | 
			
		||||
      if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
 | 
			
		||||
      if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
 | 
			
		||||
 | 
			
		||||
      oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
 | 
			
		||||
						  &iOpA,
 | 
			
		||||
						  &iOpB,
 | 
			
		||||
						  &m64,&n64,&k64,
 | 
			
		||||
						  (ComplexD *) &alpha_p[0],
 | 
			
		||||
						  (const ComplexD **)&Amk[0], (const int64_t *)&lda64,
 | 
			
		||||
						  (const ComplexD **)&Bkn[0], (const int64_t *)&ldb64,
 | 
			
		||||
						  (ComplexD *) &beta_p[0],
 | 
			
		||||
						  (ComplexD **)&Cmn[0], (const int64_t *)&ldc64,
 | 
			
		||||
						  (int64_t)1,&batchCount64,std::vector<sycl::event>());
 | 
			
		||||
      synchronise();
 | 
			
		||||
#if 0
 | 
			
		||||
      // This code was used to check the mat mul on Sunspot/OneMKL
 | 
			
		||||
      std::cerr << " Called SYCL batched ZGEMM OpA "<< OpA << " OpB "<<OpB <<std::endl;
 | 
			
		||||
      std::vector<ComplexD> A(m*k);  // pointer list to matrices
 | 
			
		||||
      std::vector<ComplexD> B(k*n);
 | 
			
		||||
      std::vector<ComplexD> C(m*n);
 | 
			
		||||
      //      int sda = lda*k;
 | 
			
		||||
      //      int sdb = ldb*k;
 | 
			
		||||
      //      int sdc = ldc*n;
 | 
			
		||||
      std::cerr << " Checking the GEMM results "<<std::endl;
 | 
			
		||||
      for (int p = 0; p < 1; ++p) {
 | 
			
		||||
	ComplexD * Amk_p;  // pointer list to matrices
 | 
			
		||||
	ComplexD * Bkn_p;  // pointer list to matrices
 | 
			
		||||
	ComplexD * Cmn_p;  // pointer list to matrices
 | 
			
		||||
	acceleratorCopyFromDevice((void *)&Amk[p],(void *)&Amk_p,sizeof(ComplexD*));
 | 
			
		||||
	acceleratorCopyFromDevice((void *)&Bkn[p],(void *)&Bkn_p,sizeof(ComplexD*));
 | 
			
		||||
	acceleratorCopyFromDevice((void *)&Cmn[p],(void *)&Cmn_p,sizeof(ComplexD*));
 | 
			
		||||
	std::cerr << " p " << p << " copied pointers "<<std::endl;
 | 
			
		||||
	acceleratorCopyFromDevice((void *)Amk_p,(void *)&A[0],m*k*sizeof(ComplexD));
 | 
			
		||||
	acceleratorCopyFromDevice((void *)Bkn_p,(void *)&B[0],k*n*sizeof(ComplexD));
 | 
			
		||||
	acceleratorCopyFromDevice((void *)Cmn_p,(void *)&C[0],m*n*sizeof(ComplexD));
 | 
			
		||||
	std::cerr << " p " << p << " copied matrices "<<std::endl;
 | 
			
		||||
	std::cerr << " C[0] "<<C[0]<<std::endl;
 | 
			
		||||
	std::cerr << " A[0] "<<A[0]<<std::endl;
 | 
			
		||||
	std::cerr << " B[0] "<<B[0]<<std::endl;
 | 
			
		||||
	std::cerr << " m "<<m<<std::endl;
 | 
			
		||||
	std::cerr << " n "<<n<<std::endl;
 | 
			
		||||
	std::cerr << " k "<<k<<std::endl;
 | 
			
		||||
	for (int mm = 0; mm < m; ++mm) {
 | 
			
		||||
	  for (int nn = 0; nn < n; ++nn) {
 | 
			
		||||
	    ComplexD c_mn(0.0);
 | 
			
		||||
	    for (int kk = 0; kk < k; ++kk) {
 | 
			
		||||
	      int idx_a, idx_b;
 | 
			
		||||
	      //    int lda = m; // m x k column major
 | 
			
		||||
	      //    int ldb = k; // k x n column major
 | 
			
		||||
	      //    int ldc = m; // m x b column major
 | 
			
		||||
	      if(OpA!=GridBLAS_OP_N) {
 | 
			
		||||
		idx_a =kk + mm*lda;
 | 
			
		||||
	      } else {
 | 
			
		||||
		idx_a =mm + kk*lda;
 | 
			
		||||
	      }
 | 
			
		||||
	      if(OpB!=GridBLAS_OP_N) {
 | 
			
		||||
		idx_b =nn + kk*ldb;
 | 
			
		||||
	      } else {
 | 
			
		||||
		idx_b =kk + nn*ldb;
 | 
			
		||||
	      }
 | 
			
		||||
	      //	      std::cerr << " idx_a "<<idx_a<<" idx_b "<<idx_b<<std::endl;
 | 
			
		||||
 | 
			
		||||
	      ComplexD Ac = A[idx_a];
 | 
			
		||||
	      ComplexD Bc = B[idx_b];
 | 
			
		||||
	      if(OpA==GridBLAS_OP_C) Ac = conjugate(Ac);
 | 
			
		||||
	      if(OpB==GridBLAS_OP_C) Bc = conjugate(Bc);
 | 
			
		||||
	      
 | 
			
		||||
	      c_mn += Ac*Bc;
 | 
			
		||||
	    }
 | 
			
		||||
	    std::cerr << " beta "<<beta<<" alpha "<<alpha<<" C_"<<mm<<","<<nn<<" "<<c_mn<<" "<<C[mm + nn*ldc]<<std::endl;
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
#endif
 | 
			
		||||
    //MKL’s cblas_<T>gemm_batch & OneAPI
 | 
			
		||||
#warning "oneMKL implementation not built "
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
 | 
			
		||||
    // Need a default/reference implementation; use Eigen
 | 
			
		||||
      if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk * eBkn ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk * eBkn ;
 | 
			
		||||
        });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk.adjoint() * eBkn ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk.transpose() * eBkn ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk * eBkn.adjoint() ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk.adjoint() * eBkn.adjoint() ;
 | 
			
		||||
	  } );
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
 | 
			
		||||
	  } );
 | 
			
		||||
      } else { 
 | 
			
		||||
	assert(0);
 | 
			
		||||
    // Need a default/reference implementation
 | 
			
		||||
    int sda = lda*k;
 | 
			
		||||
    int sdb = ldb*k;
 | 
			
		||||
    int sdc = ldc*n;
 | 
			
		||||
    for (int p = 0; p < batchCount; ++p) {
 | 
			
		||||
      for (int mm = 0; mm < m; ++mm) {
 | 
			
		||||
	for (int nn = 0; nn < n; ++nn) {
 | 
			
		||||
	  ComplexD c_mn(0.0);
 | 
			
		||||
	  for (int kk = 0; kk < k; ++kk)
 | 
			
		||||
	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
 | 
			
		||||
	  Cmn[p][mm + nn*ldc] =  (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
    //    synchronise();
 | 
			
		||||
     RealD t1=usecond();
 | 
			
		||||
     RealD flops = 8.0*m*n*k*batchCount;
 | 
			
		||||
     RealD bytes = 1.0*sizeof(ComplexD)*(m*k+k*n+m*n)*batchCount;
 | 
			
		||||
@@ -453,9 +305,6 @@ public:
 | 
			
		||||
    RealD t2=usecond();
 | 
			
		||||
    int32_t batchCount = Amk.size();
 | 
			
		||||
 | 
			
		||||
    //assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
 | 
			
		||||
    //assert(OpB!=GridBLAS_OP_T);
 | 
			
		||||
 | 
			
		||||
    int lda = m; // m x k column major
 | 
			
		||||
    int ldb = k; // k x n column major
 | 
			
		||||
    int ldc = m; // m x b column major
 | 
			
		||||
@@ -516,111 +365,26 @@ public:
 | 
			
		||||
    assert(err==CUBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
      int64_t m64=m;
 | 
			
		||||
      int64_t n64=n;
 | 
			
		||||
      int64_t k64=k;
 | 
			
		||||
      int64_t lda64=lda;
 | 
			
		||||
      int64_t ldb64=ldb;
 | 
			
		||||
      int64_t ldc64=ldc;
 | 
			
		||||
      int64_t batchCount64=batchCount;
 | 
			
		||||
 | 
			
		||||
      oneapi::mkl::transpose iOpA;
 | 
			
		||||
      oneapi::mkl::transpose iOpB;
 | 
			
		||||
      
 | 
			
		||||
      if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
 | 
			
		||||
      if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
 | 
			
		||||
      if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
 | 
			
		||||
 | 
			
		||||
      oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
 | 
			
		||||
						  &iOpA,
 | 
			
		||||
						  &iOpB,
 | 
			
		||||
						  &m64,&n64,&k64,
 | 
			
		||||
						  (ComplexF *) &alpha_p[0],
 | 
			
		||||
						  (const ComplexF **)&Amk[0], (const int64_t *)&lda64,
 | 
			
		||||
						  (const ComplexF **)&Bkn[0], (const int64_t *)&ldb64,
 | 
			
		||||
						  (ComplexF *) &beta_p[0],
 | 
			
		||||
						  (ComplexF **)&Cmn[0], (const int64_t *)&ldc64,
 | 
			
		||||
						  (int64_t)1,&batchCount64,std::vector<sycl::event>());
 | 
			
		||||
    synchronise();
 | 
			
		||||
    //MKL’s cblas_<T>gemm_batch & OneAPI
 | 
			
		||||
#warning "oneMKL implementation not built "
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
 | 
			
		||||
    // Need a default/reference implementation; use Eigen
 | 
			
		||||
      if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk * eBkn ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk * eBkn ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk.adjoint() * eBkn ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk.transpose() * eBkn ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk * eBkn.adjoint() ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk * eBkn.transpose() ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk.adjoint() * eBkn.adjoint() ;
 | 
			
		||||
	  } );
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
 | 
			
		||||
	  } );
 | 
			
		||||
      } else { 
 | 
			
		||||
	assert(0);
 | 
			
		||||
    int sda = lda*k;
 | 
			
		||||
    int sdb = ldb*k;
 | 
			
		||||
    int sdc = ldc*n;
 | 
			
		||||
    ComplexF alphaf(real(alpha),imag(alpha));
 | 
			
		||||
    ComplexF betaf(real(beta),imag(beta));
 | 
			
		||||
    // Need a default/reference implementation
 | 
			
		||||
    for (int p = 0; p < batchCount; ++p) {
 | 
			
		||||
      for (int mm = 0; mm < m; ++mm) {
 | 
			
		||||
	for (int nn = 0; nn < n; ++nn) {
 | 
			
		||||
	  ComplexF c_mn(0.0);
 | 
			
		||||
	  for (int kk = 0; kk < k; ++kk)
 | 
			
		||||
	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
 | 
			
		||||
	  Cmn[p][mm + nn*ldc] =  (alphaf)*c_mn + (betaf)*Cmn[p][mm + nn*ldc ];
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
     RealD t1=usecond();
 | 
			
		||||
     RealD flops = 8.0*m*n*k*batchCount;
 | 
			
		||||
@@ -643,9 +407,6 @@ public:
 | 
			
		||||
    RealD t2=usecond();
 | 
			
		||||
    int32_t batchCount = Amk.size();
 | 
			
		||||
 | 
			
		||||
    assert(OpA!=GridBLAS_OP_C); // Real case no conjugate
 | 
			
		||||
    assert(OpB!=GridBLAS_OP_C);
 | 
			
		||||
 | 
			
		||||
    int lda = m; // m x k column major
 | 
			
		||||
    int ldb = k; // k x n column major
 | 
			
		||||
    int ldc = m; // m x b column major
 | 
			
		||||
@@ -705,81 +466,24 @@ public:
 | 
			
		||||
    assert(err==CUBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
      int64_t m64=m;
 | 
			
		||||
      int64_t n64=n;
 | 
			
		||||
      int64_t k64=k;
 | 
			
		||||
      int64_t lda64=lda;
 | 
			
		||||
      int64_t ldb64=ldb;
 | 
			
		||||
      int64_t ldc64=ldc;
 | 
			
		||||
      int64_t batchCount64=batchCount;
 | 
			
		||||
 | 
			
		||||
      oneapi::mkl::transpose iOpA;
 | 
			
		||||
      oneapi::mkl::transpose iOpB;
 | 
			
		||||
      
 | 
			
		||||
      if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
 | 
			
		||||
      if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
 | 
			
		||||
      if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
 | 
			
		||||
 | 
			
		||||
      oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
 | 
			
		||||
						  &iOpA,
 | 
			
		||||
						  &iOpB,
 | 
			
		||||
						  &m64,&n64,&k64,
 | 
			
		||||
						  (float *) &alpha_p[0],
 | 
			
		||||
						  (const float **)&Amk[0], (const int64_t *)&lda64,
 | 
			
		||||
						  (const float **)&Bkn[0], (const int64_t *)&ldb64,
 | 
			
		||||
						  (float *) &beta_p[0],
 | 
			
		||||
						  (float **)&Cmn[0], (const int64_t *)&ldc64,
 | 
			
		||||
						  (int64_t)1,&batchCount64,std::vector<sycl::event>());
 | 
			
		||||
      synchronise();
 | 
			
		||||
    //MKL’s cblas_<T>gemm_batch & OneAPI
 | 
			
		||||
#warning "oneMKL implementation not built "
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
 | 
			
		||||
    // Need a default/reference implementation; use Eigen
 | 
			
		||||
      if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk * eBkn ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk * eBkn ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk.transpose() * eBkn ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk * eBkn.transpose() ;	  
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else { 
 | 
			
		||||
	assert(0);
 | 
			
		||||
    int sda = lda*k;
 | 
			
		||||
    int sdb = ldb*k;
 | 
			
		||||
    int sdc = ldc*n;
 | 
			
		||||
    // Need a default/reference implementation
 | 
			
		||||
    for (int p = 0; p < batchCount; ++p) {
 | 
			
		||||
      for (int mm = 0; mm < m; ++mm) {
 | 
			
		||||
	for (int nn = 0; nn < n; ++nn) {
 | 
			
		||||
	  RealD c_mn(0.0);
 | 
			
		||||
	  for (int kk = 0; kk < k; ++kk)
 | 
			
		||||
	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
 | 
			
		||||
	  Cmn[p][mm + nn*ldc] =  (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
     RealD t1=usecond();
 | 
			
		||||
     RealD flops = 2.0*m*n*k*batchCount;
 | 
			
		||||
@@ -790,6 +494,7 @@ public:
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Double precision real GEMM
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  void gemmBatched(GridBLASOperation_t OpA,
 | 
			
		||||
		   GridBLASOperation_t OpB,
 | 
			
		||||
		   int m,int n, int k,
 | 
			
		||||
@@ -802,9 +507,6 @@ public:
 | 
			
		||||
    RealD t2=usecond();
 | 
			
		||||
    int32_t batchCount = Amk.size();
 | 
			
		||||
 | 
			
		||||
    assert(OpA!=GridBLAS_OP_C); // Real case no conjugate
 | 
			
		||||
    assert(OpB!=GridBLAS_OP_C);
 | 
			
		||||
 | 
			
		||||
    int lda = m; // m x k column major
 | 
			
		||||
    int ldb = k; // k x n column major
 | 
			
		||||
    int ldc = m; // m x b column major
 | 
			
		||||
@@ -865,136 +567,161 @@ public:
 | 
			
		||||
    assert(err==CUBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
    /*
 | 
			
		||||
      int64_t m64=m;
 | 
			
		||||
      int64_t n64=n;
 | 
			
		||||
      int64_t k64=k;
 | 
			
		||||
      int64_t lda64=lda;
 | 
			
		||||
      int64_t ldb64=ldb;
 | 
			
		||||
      int64_t ldc64=ldc;
 | 
			
		||||
      int64_t batchCount64=batchCount;
 | 
			
		||||
 | 
			
		||||
      oneapi::mkl::transpose iOpA;
 | 
			
		||||
      oneapi::mkl::transpose iOpB;
 | 
			
		||||
      
 | 
			
		||||
      if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
 | 
			
		||||
      if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
 | 
			
		||||
      if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
 | 
			
		||||
 | 
			
		||||
      oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
 | 
			
		||||
						  &iOpA,
 | 
			
		||||
						  &iOpB,
 | 
			
		||||
						  &m64,&n64,&k64,
 | 
			
		||||
						  (double *) &alpha_p[0],
 | 
			
		||||
						  (const double **)&Amk[0], (const int64_t *)&lda64,
 | 
			
		||||
						  (const double **)&Bkn[0], (const int64_t *)&ldb64,
 | 
			
		||||
						  (double *) &beta_p[0],
 | 
			
		||||
						  (double **)&Cmn[0], (const int64_t *)&ldc64,
 | 
			
		||||
						  (int64_t)1,&batchCount64,std::vector<sycl::event>());
 | 
			
		||||
      synchronise();
 | 
			
		||||
      oneapi::mkl::blas::column_major::gemm_batch(*theGridAccelerator,
 | 
			
		||||
      onemkl::transpose::N,
 | 
			
		||||
      onemkl::transpose::N,
 | 
			
		||||
      &m64,&n64,&k64,
 | 
			
		||||
      (double *) &alpha_p[0],
 | 
			
		||||
      (double **)&Amk[0], lda,
 | 
			
		||||
      (double **)&Bkn[0], ldb,
 | 
			
		||||
      (double *) &beta_p[0],
 | 
			
		||||
      (double **)&Cmn[0], ldc,
 | 
			
		||||
      1,&batchCount64);
 | 
			
		||||
     */
 | 
			
		||||
    //MKL’s cblas_<T>gemm_batch & OneAPI
 | 
			
		||||
#warning "oneMKL implementation not built "
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
 | 
			
		||||
    // Need a default/reference implementation; use Eigen
 | 
			
		||||
      if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk * eBkn ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk * eBkn ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk.transpose() * eBkn ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk * eBkn.transpose() ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else { 
 | 
			
		||||
	assert(0);
 | 
			
		||||
    int sda = lda*k;
 | 
			
		||||
    int sdb = ldb*k;
 | 
			
		||||
    int sdc = ldc*n;
 | 
			
		||||
    // Need a default/reference implementation
 | 
			
		||||
    for (int p = 0; p < batchCount; ++p) {
 | 
			
		||||
      for (int mm = 0; mm < m; ++mm) {
 | 
			
		||||
	for (int nn = 0; nn < n; ++nn) {
 | 
			
		||||
	  RealD c_mn(0.0);
 | 
			
		||||
	  for (int kk = 0; kk < k; ++kk)
 | 
			
		||||
	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
 | 
			
		||||
	  Cmn[p][mm + nn*ldc] =  (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
     RealD t1=usecond();
 | 
			
		||||
     RealD flops = 2.0*m*n*k*batchCount;
 | 
			
		||||
     RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  template<class CComplex>
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Strided case used by benchmark, but generally unused in Grid
 | 
			
		||||
  // Keep a code example in double complex, but don't generate the single and real variants for now
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  
 | 
			
		||||
  void gemmStridedBatched(int m,int n, int k,
 | 
			
		||||
			  ComplexD alpha,
 | 
			
		||||
			  ComplexD* Amk,  // pointer list to matrices
 | 
			
		||||
			  ComplexD* Bkn,
 | 
			
		||||
			  ComplexD beta,
 | 
			
		||||
			  ComplexD* Cmn,
 | 
			
		||||
			  int batchCount)
 | 
			
		||||
  {
 | 
			
		||||
    // Use C-row major storage, so transpose calls
 | 
			
		||||
    int lda = m; // m x k column major
 | 
			
		||||
    int ldb = k; // k x n column major
 | 
			
		||||
    int ldc = m; // m x b column major
 | 
			
		||||
    int sda = m*k;
 | 
			
		||||
    int sdb = k*n;
 | 
			
		||||
    int sdc = m*n;
 | 
			
		||||
    deviceVector<ComplexD> alpha_p(1);
 | 
			
		||||
    deviceVector<ComplexD> beta_p(1);
 | 
			
		||||
    acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
 | 
			
		||||
    acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
 | 
			
		||||
 | 
			
		||||
    //    std::cout << "blasZgemmStridedBatched mnk  "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
 | 
			
		||||
    //    std::cout << "blasZgemmStridedBatched ld   "<<lda<<","<<ldb<<","<<ldc<<std::endl;
 | 
			
		||||
    //    std::cout << "blasZgemmStridedBatched sd   "<<sda<<","<<sdb<<","<<sdc<<std::endl;
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
    auto err = hipblasZgemmStridedBatched(gridblasHandle,
 | 
			
		||||
					  HIPBLAS_OP_N,
 | 
			
		||||
					  HIPBLAS_OP_N,
 | 
			
		||||
					  m,n,k,
 | 
			
		||||
					  (hipblasDoubleComplex *) &alpha_p[0],
 | 
			
		||||
					  (hipblasDoubleComplex *) Amk, lda, sda,
 | 
			
		||||
					  (hipblasDoubleComplex *) Bkn, ldb, sdb,
 | 
			
		||||
					  (hipblasDoubleComplex *) &beta_p[0],
 | 
			
		||||
					  (hipblasDoubleComplex *) Cmn, ldc, sdc,
 | 
			
		||||
					  batchCount);
 | 
			
		||||
    assert(err==HIPBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
    cublasZgemmStridedBatched(gridblasHandle,
 | 
			
		||||
			      CUBLAS_OP_N,
 | 
			
		||||
			      CUBLAS_OP_N,
 | 
			
		||||
			      m,n,k,
 | 
			
		||||
			      (cuDoubleComplex *) &alpha_p[0],
 | 
			
		||||
			      (cuDoubleComplex *) Amk, lda, sda,
 | 
			
		||||
			      (cuDoubleComplex *) Bkn, ldb, sdb,
 | 
			
		||||
			      (cuDoubleComplex *) &beta_p[0],
 | 
			
		||||
			      (cuDoubleComplex *) Cmn, ldc, sdc,
 | 
			
		||||
			      batchCount);
 | 
			
		||||
#endif
 | 
			
		||||
#if defined(GRID_SYCL) || defined(GRID_ONE_MKL)
 | 
			
		||||
    oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
 | 
			
		||||
						oneapi::mkl::transpose::N,
 | 
			
		||||
						oneapi::mkl::transpose::N,
 | 
			
		||||
						m,n,k,
 | 
			
		||||
						alpha,
 | 
			
		||||
						(const ComplexD *)Amk,lda,sda,
 | 
			
		||||
						(const ComplexD *)Bkn,ldb,sdb,
 | 
			
		||||
						beta,
 | 
			
		||||
						(ComplexD *)Cmn,ldc,sdc,
 | 
			
		||||
						batchCount);
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
 | 
			
		||||
     // Need a default/reference implementation
 | 
			
		||||
     for (int p = 0; p < batchCount; ++p) {
 | 
			
		||||
       for (int mm = 0; mm < m; ++mm) {
 | 
			
		||||
	 for (int nn = 0; nn < n; ++nn) {
 | 
			
		||||
	   ComplexD c_mn(0.0);
 | 
			
		||||
	   for (int kk = 0; kk < k; ++kk)
 | 
			
		||||
	     c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
 | 
			
		||||
	   Cmn[mm + nn*ldc + p*sdc] =  (alpha)*c_mn + (beta)*Cmn[mm + nn*ldc + p*sdc];
 | 
			
		||||
	 }
 | 
			
		||||
       }
 | 
			
		||||
     }
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  double benchmark(int M, int N, int K, int BATCH)
 | 
			
		||||
  {
 | 
			
		||||
    int32_t N_A = M*K*BATCH;
 | 
			
		||||
    int32_t N_B = K*N*BATCH;
 | 
			
		||||
    int32_t N_C = M*N*BATCH;
 | 
			
		||||
    deviceVector<CComplex> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(CComplex));
 | 
			
		||||
    deviceVector<CComplex> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(CComplex));
 | 
			
		||||
    deviceVector<CComplex> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(CComplex));
 | 
			
		||||
    CComplex alpha(1.0);
 | 
			
		||||
    CComplex beta (1.0);
 | 
			
		||||
    deviceVector<ComplexD> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(ComplexD));
 | 
			
		||||
    deviceVector<ComplexD> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(ComplexD));
 | 
			
		||||
    deviceVector<ComplexD> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(ComplexD));
 | 
			
		||||
    ComplexD alpha(1.0);
 | 
			
		||||
    ComplexD beta (1.0);
 | 
			
		||||
    RealD flops = 8.0*M*N*K*BATCH;
 | 
			
		||||
    int ncall=1000;
 | 
			
		||||
    deviceVector<CComplex *> As(BATCH);
 | 
			
		||||
    deviceVector<CComplex *> Bs(BATCH);
 | 
			
		||||
    deviceVector<CComplex *> Cs(BATCH);
 | 
			
		||||
    for(int b = 0 ; b < BATCH;b++) {
 | 
			
		||||
      CComplex *ptr;
 | 
			
		||||
      ptr = &A[b*M*K];      acceleratorPut(As[b],ptr);
 | 
			
		||||
      ptr = &B[b*K*N];      acceleratorPut(Bs[b],ptr);
 | 
			
		||||
      ptr = &C[b*M*N];      acceleratorPut(Cs[b],ptr);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Warm up call
 | 
			
		||||
    gemmBatched(M,N,K,
 | 
			
		||||
		alpha,
 | 
			
		||||
		As, // m x k 
 | 
			
		||||
		Bs, // k x n
 | 
			
		||||
		beta, 
 | 
			
		||||
		Cs);
 | 
			
		||||
    synchronise();
 | 
			
		||||
 | 
			
		||||
    int ncall=10;
 | 
			
		||||
    RealD t0 = usecond();
 | 
			
		||||
    for(int i=0;i<ncall;i++){
 | 
			
		||||
      gemmBatched(M,N,K,
 | 
			
		||||
		  alpha,
 | 
			
		||||
		  As, // m x k 
 | 
			
		||||
		  Bs, // k x n
 | 
			
		||||
		  beta, 
 | 
			
		||||
		  Cs);
 | 
			
		||||
      synchronise();
 | 
			
		||||
      gemmStridedBatched(M,N,K,
 | 
			
		||||
			 alpha,
 | 
			
		||||
			 &A[0], // m x k 
 | 
			
		||||
			 &B[0], // k x n
 | 
			
		||||
			 beta, 
 | 
			
		||||
			 &C[0], // m x n
 | 
			
		||||
			 BATCH);
 | 
			
		||||
    }
 | 
			
		||||
    synchronise();
 | 
			
		||||
    RealD t1 = usecond();
 | 
			
		||||
    RealD bytes = 1.0*sizeof(CComplex)*(M*N*2+N*K+M*K)*BATCH;
 | 
			
		||||
    RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K)*BATCH;
 | 
			
		||||
    flops = 8.0*M*N*K*BATCH*ncall;
 | 
			
		||||
    flops = flops/(t1-t0)/1.e3;
 | 
			
		||||
    return flops; // Returns gigaflops
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -1,376 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: MultiRHSBlockCGLinalg.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2024
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/* Need helper object for BLAS accelerated mrhs blockCG */
 | 
			
		||||
template<class Field>
 | 
			
		||||
class MultiRHSBlockCGLinalg
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  typedef typename Field::scalar_type   scalar;
 | 
			
		||||
  typedef typename Field::scalar_object scalar_object;
 | 
			
		||||
  typedef typename Field::vector_object vector_object;
 | 
			
		||||
 | 
			
		||||
  deviceVector<scalar> BLAS_X;      // nrhs x vol -- the sources
 | 
			
		||||
  deviceVector<scalar> BLAS_Y;      // nrhs x vol -- the result
 | 
			
		||||
  deviceVector<scalar> BLAS_C;      // nrhs x nrhs -- the coefficients 
 | 
			
		||||
  deviceVector<scalar> BLAS_Cred;   // nrhs x nrhs x oSites -- reduction buffer
 | 
			
		||||
  deviceVector<scalar *> Xdip;
 | 
			
		||||
  deviceVector<scalar *> Ydip;
 | 
			
		||||
  deviceVector<scalar *> Cdip;
 | 
			
		||||
  
 | 
			
		||||
  MultiRHSBlockCGLinalg() {};
 | 
			
		||||
  ~MultiRHSBlockCGLinalg(){ Deallocate(); };
 | 
			
		||||
  
 | 
			
		||||
  void Deallocate(void)
 | 
			
		||||
  {
 | 
			
		||||
    Xdip.resize(0);
 | 
			
		||||
    Ydip.resize(0);
 | 
			
		||||
    Cdip.resize(0);
 | 
			
		||||
    BLAS_Cred.resize(0);
 | 
			
		||||
    BLAS_C.resize(0);
 | 
			
		||||
    BLAS_X.resize(0);
 | 
			
		||||
    BLAS_Y.resize(0);
 | 
			
		||||
  }
 | 
			
		||||
  void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0)
 | 
			
		||||
  {
 | 
			
		||||
    std::vector<Field> Y_copy(AP.size(),AP[0].Grid());
 | 
			
		||||
    for(int r=0;r<AP.size();r++){
 | 
			
		||||
      Y_copy[r] = Y[r];
 | 
			
		||||
    }
 | 
			
		||||
    MulMatrix(AP,m,X);
 | 
			
		||||
    for(int r=0;r<AP.size();r++){
 | 
			
		||||
      AP[r] = scale*AP[r]+Y_copy[r];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void MulMatrix(std::vector<Field> &Y, Eigen::MatrixXcd &m , const std::vector<Field> &X)
 | 
			
		||||
  {
 | 
			
		||||
    typedef typename Field::scalar_type scomplex;
 | 
			
		||||
    GridBase *grid;
 | 
			
		||||
    uint64_t vol;
 | 
			
		||||
    uint64_t words;
 | 
			
		||||
 | 
			
		||||
    int nrhs = Y.size();
 | 
			
		||||
    grid  = X[0].Grid();
 | 
			
		||||
    vol   = grid->lSites();
 | 
			
		||||
    words = sizeof(scalar_object)/sizeof(scalar);
 | 
			
		||||
    int64_t vw = vol * words;
 | 
			
		||||
 | 
			
		||||
    RealD t0 = usecond();
 | 
			
		||||
    BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
 | 
			
		||||
    BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
 | 
			
		||||
    BLAS_C.resize(nrhs * nrhs);// cost free if size doesn't change
 | 
			
		||||
    RealD t1 = usecond();
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    // Copy in the multi-rhs sources
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    for(int r=0;r<nrhs;r++){
 | 
			
		||||
      int64_t offset = r*vw;
 | 
			
		||||
      autoView(x_v,X[r],AcceleratorRead);
 | 
			
		||||
      acceleratorCopyDeviceToDevice(&x_v[0],&BLAS_X[offset],sizeof(scalar_object)*vol);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Assumes Eigen storage contiguous
 | 
			
		||||
    acceleratorCopyToDevice(&m(0,0),&BLAS_C[0],BLAS_C.size()*sizeof(scalar));
 | 
			
		||||
    
 | 
			
		||||
  /*
 | 
			
		||||
   * in Fortran column major notation (cuBlas order)
 | 
			
		||||
   *
 | 
			
		||||
   * Xxr = [X1(x)][..][Xn(x)]
 | 
			
		||||
   * Yxr = [Y1(x)][..][Ym(x)]
 | 
			
		||||
   * Y = X . C
 | 
			
		||||
   */
 | 
			
		||||
    deviceVector<scalar *> Xd(1);
 | 
			
		||||
    deviceVector<scalar *> Yd(1);
 | 
			
		||||
    deviceVector<scalar *> Cd(1);
 | 
			
		||||
 | 
			
		||||
    scalar * Xh = & BLAS_X[0];
 | 
			
		||||
    scalar * Yh = & BLAS_Y[0];
 | 
			
		||||
    scalar * Ch = & BLAS_C[0];
 | 
			
		||||
 | 
			
		||||
    acceleratorPut(Xd[0],Xh);
 | 
			
		||||
    acceleratorPut(Yd[0],Yh);
 | 
			
		||||
    acceleratorPut(Cd[0],Ch);
 | 
			
		||||
 | 
			
		||||
    RealD t2 = usecond();
 | 
			
		||||
    GridBLAS BLAS;
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    // Y = X*C (transpose?)
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, 
 | 
			
		||||
    		     vw,nrhs,nrhs,
 | 
			
		||||
		     scalar(1.0),
 | 
			
		||||
		     Xd,
 | 
			
		||||
		     Cd,
 | 
			
		||||
		     scalar(0.0),  // wipe out Y
 | 
			
		||||
		     Yd);
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
    RealD t3 = usecond();
 | 
			
		||||
 | 
			
		||||
    // Copy back Y = m X 
 | 
			
		||||
    for(int r=0;r<nrhs;r++){
 | 
			
		||||
      int64_t offset = r*vw;
 | 
			
		||||
      autoView(y_v,Y[r],AcceleratorWrite);
 | 
			
		||||
      acceleratorCopyDeviceToDevice(&BLAS_Y[offset],&y_v[0],sizeof(scalar_object)*vol);
 | 
			
		||||
    }    
 | 
			
		||||
    RealD t4 = usecond();
 | 
			
		||||
    std::cout <<GridLogPerformance << "MulMatrix alloc    took "<< t1-t0<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "MulMatrix preamble took "<< t2-t1<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "MulMatrix blas     took "<< t3-t2<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "MulMatrix copy     took "<< t4-t3<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "MulMatrix total "<< t4-t0<<" us"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y)
 | 
			
		||||
  {
 | 
			
		||||
#if 0    
 | 
			
		||||
    int nrhs;
 | 
			
		||||
    GridBase *grid;
 | 
			
		||||
    uint64_t vol;
 | 
			
		||||
    uint64_t words;
 | 
			
		||||
 | 
			
		||||
    nrhs = X.size();
 | 
			
		||||
    assert(X.size()==Y.size());
 | 
			
		||||
    conformable(X[0],Y[0]);
 | 
			
		||||
 | 
			
		||||
    grid  = X[0].Grid();
 | 
			
		||||
    vol   = grid->lSites();
 | 
			
		||||
    words = sizeof(scalar_object)/sizeof(scalar);
 | 
			
		||||
    int64_t vw = vol * words;
 | 
			
		||||
 | 
			
		||||
    RealD t0 = usecond();
 | 
			
		||||
    BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
 | 
			
		||||
    BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
 | 
			
		||||
    BLAS_C.resize(nrhs * nrhs);// cost free if size doesn't change
 | 
			
		||||
    RealD t1 = usecond();
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    // Copy in the multi-rhs sources
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    for(int r=0;r<nrhs;r++){
 | 
			
		||||
      int64_t offset = r*vw;
 | 
			
		||||
      autoView(x_v,X[r],AcceleratorRead);
 | 
			
		||||
      acceleratorCopyDeviceToDevice(&x_v[0],&BLAS_X[offset],sizeof(scalar_object)*vol);
 | 
			
		||||
      autoView(y_v,Y[r],AcceleratorRead);
 | 
			
		||||
      acceleratorCopyDeviceToDevice(&y_v[0],&BLAS_Y[offset],sizeof(scalar_object)*vol);
 | 
			
		||||
    }
 | 
			
		||||
    RealD t2 = usecond();
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
   * in Fortran column major notation (cuBlas order)
 | 
			
		||||
   *
 | 
			
		||||
   * Xxr = [X1(x)][..][Xn(x)]
 | 
			
		||||
   *
 | 
			
		||||
   * Yxr = [Y1(x)][..][Ym(x)]
 | 
			
		||||
   *
 | 
			
		||||
   * C_rs = X^dag Y
 | 
			
		||||
   */
 | 
			
		||||
    deviceVector<scalar *> Xd(1);
 | 
			
		||||
    deviceVector<scalar *> Yd(1);
 | 
			
		||||
    deviceVector<scalar *> Cd(1);
 | 
			
		||||
 | 
			
		||||
    scalar * Xh = & BLAS_X[0];
 | 
			
		||||
    scalar * Yh = & BLAS_Y[0];
 | 
			
		||||
    scalar * Ch = & BLAS_C[0];
 | 
			
		||||
 | 
			
		||||
    acceleratorPut(Xd[0],Xh);
 | 
			
		||||
    acceleratorPut(Yd[0],Yh);
 | 
			
		||||
    acceleratorPut(Cd[0],Ch);
 | 
			
		||||
 | 
			
		||||
    GridBLAS BLAS;
 | 
			
		||||
 | 
			
		||||
    RealD t3 = usecond();
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    // C_rs = X^dag Y
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N, 
 | 
			
		||||
    		     nrhs,nrhs,vw,
 | 
			
		||||
		     ComplexD(1.0),
 | 
			
		||||
		     Xd,
 | 
			
		||||
		     Yd,
 | 
			
		||||
		     ComplexD(0.0),  // wipe out C
 | 
			
		||||
		     Cd);
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
    RealD t4 = usecond();
 | 
			
		||||
 | 
			
		||||
    std::vector<scalar> HOST_C(BLAS_C.size());      // nrhs . nrhs -- the coefficients 
 | 
			
		||||
    acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar));
 | 
			
		||||
    grid->GlobalSumVector(&HOST_C[0],nrhs*nrhs);
 | 
			
		||||
 | 
			
		||||
    RealD t5 = usecond();
 | 
			
		||||
    for(int rr=0;rr<nrhs;rr++){
 | 
			
		||||
      for(int r=0;r<nrhs;r++){
 | 
			
		||||
	int off = r+nrhs*rr;
 | 
			
		||||
	m(r,rr)=HOST_C[off];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    RealD t6 = usecond();
 | 
			
		||||
    uint64_t M=nrhs;
 | 
			
		||||
    uint64_t N=nrhs;
 | 
			
		||||
    uint64_t K=vw;
 | 
			
		||||
    RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K);
 | 
			
		||||
    RealD flops = 8.0*M*N*K;
 | 
			
		||||
    flops = flops/(t4-t3)/1.e3;
 | 
			
		||||
    bytes = bytes/(t4-t3)/1.e3;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix cp    t2 "<< t2-t1<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< flops<<" GF/s"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< bytes<<" GB/s"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix gsum t5 "<< t5-t4<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix cp   t6 "<< t6-t5<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
 | 
			
		||||
#else
 | 
			
		||||
    int nrhs;
 | 
			
		||||
    GridBase *grid;
 | 
			
		||||
    uint64_t vol;
 | 
			
		||||
    uint64_t words;
 | 
			
		||||
 | 
			
		||||
    nrhs = X.size();
 | 
			
		||||
    assert(X.size()==Y.size());
 | 
			
		||||
    conformable(X[0],Y[0]);
 | 
			
		||||
 | 
			
		||||
    grid  = X[0].Grid();
 | 
			
		||||
    int rd0 =  grid->_rdimensions[0] * grid->_rdimensions[1];
 | 
			
		||||
    vol   = grid->oSites()/rd0;
 | 
			
		||||
    words = rd0*sizeof(vector_object)/sizeof(scalar);
 | 
			
		||||
    int64_t vw = vol * words;
 | 
			
		||||
    assert(vw == grid->lSites()*sizeof(scalar_object)/sizeof(scalar));
 | 
			
		||||
 | 
			
		||||
    RealD t0 = usecond();
 | 
			
		||||
    BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
 | 
			
		||||
    BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
 | 
			
		||||
    BLAS_Cred.resize(nrhs * nrhs * vol);// cost free if size doesn't change
 | 
			
		||||
    RealD t1 = usecond();
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    // Copy in the multi-rhs sources -- layout batched BLAS ready
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    for(int r=0;r<nrhs;r++){
 | 
			
		||||
      autoView(x_v,X[r],AcceleratorRead);
 | 
			
		||||
      autoView(y_v,Y[r],AcceleratorRead);
 | 
			
		||||
      scalar *from_x=(scalar *)&x_v[0];
 | 
			
		||||
      scalar *from_y=(scalar *)&y_v[0];
 | 
			
		||||
      scalar *BX = &BLAS_X[0];
 | 
			
		||||
      scalar *BY = &BLAS_Y[0];
 | 
			
		||||
      accelerator_for(ssw,vw,1,{
 | 
			
		||||
	  uint64_t ss=ssw/words;
 | 
			
		||||
	  uint64_t  w=ssw%words;
 | 
			
		||||
	  uint64_t offset = w+r*words+ss*nrhs*words; // [ss][rhs][words]
 | 
			
		||||
	  BX[offset] = from_x[ssw];
 | 
			
		||||
	  BY[offset] = from_y[ssw];
 | 
			
		||||
	});
 | 
			
		||||
    }
 | 
			
		||||
    RealD t2 = usecond();
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
   * in Fortran column major notation (cuBlas order)
 | 
			
		||||
   *
 | 
			
		||||
   * Xxr = [X1(x)][..][Xn(x)]
 | 
			
		||||
   *
 | 
			
		||||
   * Yxr = [Y1(x)][..][Ym(x)]
 | 
			
		||||
   *
 | 
			
		||||
   * C_rs = X^dag Y
 | 
			
		||||
   */
 | 
			
		||||
    Xdip.resize(vol);
 | 
			
		||||
    Ydip.resize(vol);
 | 
			
		||||
    Cdip.resize(vol);
 | 
			
		||||
    std::vector<scalar *> Xh(vol);
 | 
			
		||||
    std::vector<scalar *> Yh(vol);
 | 
			
		||||
    std::vector<scalar *> Ch(vol);
 | 
			
		||||
    for(uint64_t ss=0;ss<vol;ss++){
 | 
			
		||||
 | 
			
		||||
      Xh[ss] = & BLAS_X[ss*nrhs*words];
 | 
			
		||||
      Yh[ss] = & BLAS_Y[ss*nrhs*words];
 | 
			
		||||
      Ch[ss] = & BLAS_Cred[ss*nrhs*nrhs];
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    acceleratorCopyToDevice(&Xh[0],&Xdip[0],vol*sizeof(scalar *));
 | 
			
		||||
    acceleratorCopyToDevice(&Yh[0],&Ydip[0],vol*sizeof(scalar *));
 | 
			
		||||
    acceleratorCopyToDevice(&Ch[0],&Cdip[0],vol*sizeof(scalar *));
 | 
			
		||||
    
 | 
			
		||||
    GridBLAS BLAS;
 | 
			
		||||
 | 
			
		||||
    RealD t3 = usecond();
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    // C_rs = X^dag Y
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N, 
 | 
			
		||||
    		     nrhs,nrhs,words,
 | 
			
		||||
		     ComplexD(1.0),
 | 
			
		||||
		     Xdip,
 | 
			
		||||
		     Ydip,
 | 
			
		||||
		     ComplexD(0.0),  // wipe out C
 | 
			
		||||
		     Cdip);
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
    RealD t4 = usecond();
 | 
			
		||||
 | 
			
		||||
    std::vector<scalar> HOST_C(BLAS_Cred.size());      // nrhs . nrhs -- the coefficients 
 | 
			
		||||
    acceleratorCopyFromDevice(&BLAS_Cred[0],&HOST_C[0],BLAS_Cred.size()*sizeof(scalar));
 | 
			
		||||
 | 
			
		||||
    RealD t5 = usecond();
 | 
			
		||||
    m = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
			
		||||
    for(int ss=0;ss<vol;ss++){
 | 
			
		||||
      Eigen::Map<Eigen::MatrixXcd> eC((std::complex<double> *)&HOST_C[ss*nrhs*nrhs],nrhs,nrhs);
 | 
			
		||||
      m = m + eC;
 | 
			
		||||
    }
 | 
			
		||||
    RealD t6l = usecond();
 | 
			
		||||
    grid->GlobalSumVector((scalar *) &m(0,0),nrhs*nrhs);
 | 
			
		||||
    RealD t6 = usecond();
 | 
			
		||||
    uint64_t M=nrhs;
 | 
			
		||||
    uint64_t N=nrhs;
 | 
			
		||||
    uint64_t K=vw;
 | 
			
		||||
    RealD xybytes = grid->lSites()*sizeof(scalar_object);
 | 
			
		||||
    RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K);
 | 
			
		||||
    RealD flops = 8.0*M*N*K;
 | 
			
		||||
    flops = flops/(t4-t3)/1.e3;
 | 
			
		||||
    bytes = bytes/(t4-t3)/1.e3;
 | 
			
		||||
    xybytes = 4*xybytes/(t2-t1)/1.e3;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix cp    t2 "<< t2-t1<<" us "<<xybytes<<" GB/s"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< flops<<" GF/s"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< bytes<<" GB/s"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix cp     t5 "<< t5-t4<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix lsum   t6l "<< t6l-t5<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix gsum   t6 "<< t6-t6l<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -1,513 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: MultiRHSDeflation.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2023
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/* 
 | 
			
		||||
   MultiRHS block projection
 | 
			
		||||
 | 
			
		||||
   Import basis -> nblock x nbasis x  (block x internal) 
 | 
			
		||||
   Import vector of fine lattice objects -> nblock x nrhs x (block x internal) 
 | 
			
		||||
 | 
			
		||||
   => coarse_(nrhs x nbasis )^block = via batched GEMM
 | 
			
		||||
 | 
			
		||||
//template<class vobj,class CComplex,int nbasis,class VLattice>
 | 
			
		||||
//inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
			
		||||
//			   const VLattice &fineData,
 | 
			
		||||
//			   const VLattice &Basis)
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class MultiRHSBlockProject
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  typedef typename Field::scalar_type   scalar;
 | 
			
		||||
  typedef typename Field::scalar_object scalar_object;
 | 
			
		||||
  typedef Field Fermion;
 | 
			
		||||
 | 
			
		||||
  int nbasis;
 | 
			
		||||
  GridBase *coarse_grid;
 | 
			
		||||
  GridBase *fine_grid;
 | 
			
		||||
  uint64_t block_vol;
 | 
			
		||||
  uint64_t fine_vol;
 | 
			
		||||
  uint64_t coarse_vol;
 | 
			
		||||
  uint64_t words;
 | 
			
		||||
 | 
			
		||||
  // Row major layout "C" order:
 | 
			
		||||
  // BLAS_V[coarse_vol][nbasis][block_vol][words]
 | 
			
		||||
  // BLAS_F[coarse_vol][nrhs][block_vol][words]
 | 
			
		||||
  // BLAS_C[coarse_vol][nrhs][nbasis]
 | 
			
		||||
  /*
 | 
			
		||||
   * in Fortran column major notation (cuBlas order)
 | 
			
		||||
   *
 | 
			
		||||
   * Vxb = [v1(x)][..][vn(x)] ... x coarse vol
 | 
			
		||||
   *
 | 
			
		||||
   * Fxr = [r1(x)][..][rm(x)] ... x coarse vol
 | 
			
		||||
   *
 | 
			
		||||
   * Block project:
 | 
			
		||||
   * C_br = V^dag F x coarse vol
 | 
			
		||||
   *
 | 
			
		||||
   * Block promote:
 | 
			
		||||
   * F_xr = Vxb Cbr x coarse_vol
 | 
			
		||||
   */  
 | 
			
		||||
  deviceVector<scalar> BLAS_V;      // words * block_vol * nbasis x coarse_vol 
 | 
			
		||||
  deviceVector<scalar> BLAS_F;      // nrhs x fine_vol * words   -- the sources
 | 
			
		||||
  deviceVector<scalar> BLAS_C;      // nrhs x coarse_vol * nbasis -- the coarse coeffs
 | 
			
		||||
 | 
			
		||||
  RealD blasNorm2(deviceVector<scalar> &blas)
 | 
			
		||||
  {
 | 
			
		||||
    scalar ss(0.0);
 | 
			
		||||
    std::vector<scalar> tmp(blas.size());
 | 
			
		||||
    acceleratorCopyFromDevice(&blas[0],&tmp[0],blas.size()*sizeof(scalar));
 | 
			
		||||
    for(int64_t s=0;s<blas.size();s++){
 | 
			
		||||
      ss=ss+tmp[s]*adj(tmp[s]);
 | 
			
		||||
    }
 | 
			
		||||
    coarse_grid->GlobalSum(ss);
 | 
			
		||||
    return real(ss);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  MultiRHSBlockProject(){};
 | 
			
		||||
 ~MultiRHSBlockProject(){ Deallocate(); };
 | 
			
		||||
  
 | 
			
		||||
  void Deallocate(void)
 | 
			
		||||
  {
 | 
			
		||||
    nbasis=0;
 | 
			
		||||
    coarse_grid=nullptr;
 | 
			
		||||
    fine_grid=nullptr;
 | 
			
		||||
    fine_vol=0;
 | 
			
		||||
    block_vol=0;
 | 
			
		||||
    coarse_vol=0;
 | 
			
		||||
    words=0;
 | 
			
		||||
    BLAS_V.resize(0);
 | 
			
		||||
    BLAS_F.resize(0);
 | 
			
		||||
    BLAS_C.resize(0);
 | 
			
		||||
  }
 | 
			
		||||
  void Allocate(int _nbasis,GridBase *_fgrid,GridBase *_cgrid)
 | 
			
		||||
  {
 | 
			
		||||
    nbasis=_nbasis;
 | 
			
		||||
 | 
			
		||||
    fine_grid=_fgrid;
 | 
			
		||||
    coarse_grid=_cgrid;
 | 
			
		||||
 | 
			
		||||
    fine_vol   = fine_grid->lSites();
 | 
			
		||||
    coarse_vol = coarse_grid->lSites();
 | 
			
		||||
    block_vol = fine_vol/coarse_vol;
 | 
			
		||||
    
 | 
			
		||||
    words = sizeof(scalar_object)/sizeof(scalar);
 | 
			
		||||
 | 
			
		||||
    BLAS_V.resize (fine_vol * words * nbasis );
 | 
			
		||||
  }
 | 
			
		||||
  void ImportFineGridVectors(std::vector <Field > &vecs, deviceVector<scalar> &blas)
 | 
			
		||||
  {
 | 
			
		||||
    int nvec = vecs.size();
 | 
			
		||||
    typedef typename Field::vector_object vobj;
 | 
			
		||||
    //    std::cout << GridLogMessage <<" BlockProjector importing "<<nvec<< " fine grid vectors" <<std::endl;
 | 
			
		||||
 | 
			
		||||
    assert(vecs[0].Grid()==fine_grid);
 | 
			
		||||
 | 
			
		||||
    subdivides(coarse_grid,fine_grid); // require they map
 | 
			
		||||
 | 
			
		||||
    int _ndimension = coarse_grid->_ndimension;
 | 
			
		||||
    assert(block_vol == fine_grid->oSites() / coarse_grid->oSites());
 | 
			
		||||
    
 | 
			
		||||
    Coordinate  block_r      (_ndimension);
 | 
			
		||||
    for(int d=0 ; d<_ndimension;d++){
 | 
			
		||||
      block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    uint64_t sz = blas.size();
 | 
			
		||||
 | 
			
		||||
    acceleratorMemSet(&blas[0],0,blas.size()*sizeof(scalar));
 | 
			
		||||
 | 
			
		||||
    Coordinate fine_rdimensions = fine_grid->_rdimensions;
 | 
			
		||||
    Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
 | 
			
		||||
    int64_t bv= block_vol;
 | 
			
		||||
    for(int v=0;v<vecs.size();v++){
 | 
			
		||||
 | 
			
		||||
      //      std::cout << " BlockProjector importing vector"<<v<<" "<<norm2(vecs[v])<<std::endl;
 | 
			
		||||
      autoView( fineData   , vecs[v], AcceleratorRead);
 | 
			
		||||
 | 
			
		||||
      auto blasData_p  = &blas[0];
 | 
			
		||||
      auto fineData_p  = &fineData[0];
 | 
			
		||||
 | 
			
		||||
      int64_t osites = fine_grid->oSites();
 | 
			
		||||
 | 
			
		||||
      // loop over fine sites
 | 
			
		||||
      const int Nsimd = vobj::Nsimd();
 | 
			
		||||
      //      std::cout << "sz "<<sz<<std::endl;
 | 
			
		||||
      //      std::cout << "prod "<<Nsimd * coarse_grid->oSites() * block_vol * nvec * words<<std::endl;
 | 
			
		||||
      assert(sz == Nsimd * coarse_grid->oSites() * block_vol * nvec * words);
 | 
			
		||||
      uint64_t lwords= words; // local variable for copy in to GPU
 | 
			
		||||
      accelerator_for(sf,osites,Nsimd,{
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
        {
 | 
			
		||||
	  int lane=acceleratorSIMTlane(Nsimd); // buffer lane
 | 
			
		||||
#else
 | 
			
		||||
	  for(int lane=0;lane<Nsimd;lane++) {
 | 
			
		||||
#endif
 | 
			
		||||
	  // One thread per fine site
 | 
			
		||||
	  Coordinate coor_f(_ndimension);
 | 
			
		||||
	  Coordinate coor_b(_ndimension);
 | 
			
		||||
	  Coordinate coor_c(_ndimension);
 | 
			
		||||
 | 
			
		||||
	  // Fine site to fine coor
 | 
			
		||||
	  Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions);
 | 
			
		||||
 | 
			
		||||
	  for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d];
 | 
			
		||||
	  for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d];
 | 
			
		||||
	  
 | 
			
		||||
	  int sc;// coarse site
 | 
			
		||||
	  int sb;// block site
 | 
			
		||||
	  Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions);
 | 
			
		||||
	  Lexicographic::IndexFromCoor(coor_b,sb,block_r);
 | 
			
		||||
 | 
			
		||||
          scalar_object data = extractLane(lane,fineData[sf]);
 | 
			
		||||
 | 
			
		||||
	  // BLAS layout address calculation
 | 
			
		||||
	  // words * block_vol * nbasis x coarse_vol
 | 
			
		||||
	  // coarse oSite x block vole x lanes
 | 
			
		||||
	  int64_t site = (lane*osites + sc*bv)*nvec
 | 
			
		||||
   	               + v*bv
 | 
			
		||||
	               + sb;
 | 
			
		||||
 | 
			
		||||
	  //	  assert(site*lwords<sz);
 | 
			
		||||
 | 
			
		||||
	  scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords];
 | 
			
		||||
 | 
			
		||||
	  *ptr = data;
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
	}
 | 
			
		||||
#else
 | 
			
		||||
	}
 | 
			
		||||
#endif
 | 
			
		||||
      });
 | 
			
		||||
      //      std::cout << " import fine Blas norm "<<blasNorm2(blas)<<std::endl;
 | 
			
		||||
      //      std::cout << " BlockProjector imported vector"<<v<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void ExportFineGridVectors(std::vector <Field> &vecs, deviceVector<scalar> &blas)
 | 
			
		||||
  {
 | 
			
		||||
    typedef typename Field::vector_object vobj;
 | 
			
		||||
 | 
			
		||||
    int nvec = vecs.size();
 | 
			
		||||
 | 
			
		||||
    assert(vecs[0].Grid()==fine_grid);
 | 
			
		||||
 | 
			
		||||
    subdivides(coarse_grid,fine_grid); // require they map
 | 
			
		||||
 | 
			
		||||
    int _ndimension = coarse_grid->_ndimension;
 | 
			
		||||
    assert(block_vol == fine_grid->oSites() / coarse_grid->oSites());
 | 
			
		||||
    
 | 
			
		||||
    Coordinate  block_r      (_ndimension);
 | 
			
		||||
    for(int d=0 ; d<_ndimension;d++){
 | 
			
		||||
      block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d];
 | 
			
		||||
    }
 | 
			
		||||
    Coordinate fine_rdimensions = fine_grid->_rdimensions;
 | 
			
		||||
    Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
 | 
			
		||||
 | 
			
		||||
    //    std::cout << " export fine Blas norm "<<blasNorm2(blas)<<std::endl;
 | 
			
		||||
 | 
			
		||||
    int64_t bv= block_vol;
 | 
			
		||||
    for(int v=0;v<vecs.size();v++){
 | 
			
		||||
 | 
			
		||||
      autoView( fineData   , vecs[v], AcceleratorWrite);
 | 
			
		||||
 | 
			
		||||
      auto blasData_p  = &blas[0];
 | 
			
		||||
      auto fineData_p    = &fineData[0];
 | 
			
		||||
 | 
			
		||||
      int64_t osites = fine_grid->oSites();
 | 
			
		||||
      uint64_t lwords = words;
 | 
			
		||||
      //      std::cout << " Nsimd is "<<vobj::Nsimd() << std::endl;
 | 
			
		||||
      //      std::cout << " lwords is "<<lwords << std::endl;
 | 
			
		||||
      //      std::cout << " sizeof(scalar_object) is "<<sizeof(scalar_object) << std::endl;
 | 
			
		||||
      // loop over fine sites
 | 
			
		||||
      accelerator_for(sf,osites,vobj::Nsimd(),{
 | 
			
		||||
      
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
        {
 | 
			
		||||
	  int lane=acceleratorSIMTlane(vobj::Nsimd()); // buffer lane
 | 
			
		||||
#else
 | 
			
		||||
	  for(int lane=0;lane<vobj::Nsimd();lane++) {
 | 
			
		||||
#endif
 | 
			
		||||
	  // One thread per fine site
 | 
			
		||||
	  Coordinate coor_f(_ndimension);
 | 
			
		||||
	  Coordinate coor_b(_ndimension);
 | 
			
		||||
	  Coordinate coor_c(_ndimension);
 | 
			
		||||
 | 
			
		||||
	  Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions);
 | 
			
		||||
 | 
			
		||||
	  for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d];
 | 
			
		||||
	  for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d];
 | 
			
		||||
	  
 | 
			
		||||
	  int sc;
 | 
			
		||||
	  int sb;
 | 
			
		||||
	  Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions);
 | 
			
		||||
	  Lexicographic::IndexFromCoor(coor_b,sb,block_r);
 | 
			
		||||
 | 
			
		||||
	  // BLAS layout address calculation
 | 
			
		||||
	  // words * block_vol * nbasis x coarse_vol 	  
 | 
			
		||||
	  int64_t site = (lane*osites + sc*bv)*nvec
 | 
			
		||||
   	               + v*bv
 | 
			
		||||
	               + sb;
 | 
			
		||||
 | 
			
		||||
	  scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords];
 | 
			
		||||
 | 
			
		||||
	  scalar_object data = *ptr;
 | 
			
		||||
 | 
			
		||||
	  insertLane(lane,fineData[sf],data);
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
	}
 | 
			
		||||
#else
 | 
			
		||||
	}
 | 
			
		||||
#endif
 | 
			
		||||
      });
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  void ImportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas)
 | 
			
		||||
  {
 | 
			
		||||
    int nvec = vecs.size();
 | 
			
		||||
    typedef typename vobj::scalar_object coarse_scalar_object;
 | 
			
		||||
 | 
			
		||||
    //    std::cout << " BlockProjector importing "<<nvec<< " coarse grid vectors" <<std::endl;
 | 
			
		||||
 | 
			
		||||
    assert(vecs[0].Grid()==coarse_grid);
 | 
			
		||||
 | 
			
		||||
    int _ndimension = coarse_grid->_ndimension;
 | 
			
		||||
 | 
			
		||||
    uint64_t sz = blas.size();
 | 
			
		||||
 | 
			
		||||
    Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
 | 
			
		||||
    
 | 
			
		||||
    for(int v=0;v<vecs.size();v++){
 | 
			
		||||
 | 
			
		||||
      //      std::cout << " BlockProjector importing coarse vector"<<v<<" "<<norm2(vecs[v])<<std::endl;
 | 
			
		||||
      autoView( coarseData   , vecs[v], AcceleratorRead);
 | 
			
		||||
 | 
			
		||||
      auto blasData_p  = &blas[0];
 | 
			
		||||
      auto coarseData_p  = &coarseData[0];
 | 
			
		||||
 | 
			
		||||
      int64_t osites = coarse_grid->oSites();
 | 
			
		||||
 | 
			
		||||
      // loop over fine sites
 | 
			
		||||
      const int Nsimd = vobj::Nsimd();
 | 
			
		||||
      uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar);
 | 
			
		||||
      assert(cwords==nbasis);
 | 
			
		||||
      
 | 
			
		||||
      accelerator_for(sc,osites,Nsimd,{
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
        {
 | 
			
		||||
	  int lane=acceleratorSIMTlane(Nsimd); // buffer lane
 | 
			
		||||
#else
 | 
			
		||||
	  for(int lane=0;lane<Nsimd;lane++) {
 | 
			
		||||
#endif
 | 
			
		||||
           // C_br per site
 | 
			
		||||
	    int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords;
 | 
			
		||||
	    
 | 
			
		||||
	    coarse_scalar_object data = extractLane(lane,coarseData[sc]);
 | 
			
		||||
 | 
			
		||||
	    coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site];
 | 
			
		||||
 | 
			
		||||
	    *ptr = data;
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
	}
 | 
			
		||||
#else
 | 
			
		||||
	}
 | 
			
		||||
#endif
 | 
			
		||||
      });
 | 
			
		||||
      //      std::cout << " import coarsee Blas norm "<<blasNorm2(blas)<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  void ExportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas)
 | 
			
		||||
  {
 | 
			
		||||
    int nvec = vecs.size();
 | 
			
		||||
    typedef typename vobj::scalar_object coarse_scalar_object;
 | 
			
		||||
    //    std::cout << GridLogMessage<<" BlockProjector exporting "<<nvec<< " coarse grid vectors" <<std::endl;
 | 
			
		||||
 | 
			
		||||
    assert(vecs[0].Grid()==coarse_grid);
 | 
			
		||||
 | 
			
		||||
    int _ndimension = coarse_grid->_ndimension;
 | 
			
		||||
    
 | 
			
		||||
    uint64_t sz = blas.size();
 | 
			
		||||
 | 
			
		||||
    Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
 | 
			
		||||
    
 | 
			
		||||
    //    std::cout << " export coarsee Blas norm "<<blasNorm2(blas)<<std::endl;
 | 
			
		||||
    for(int v=0;v<vecs.size();v++){
 | 
			
		||||
 | 
			
		||||
      //  std::cout << " BlockProjector exporting coarse vector"<<v<<std::endl;
 | 
			
		||||
      autoView( coarseData   , vecs[v], AcceleratorWrite);
 | 
			
		||||
 | 
			
		||||
      auto blasData_p  = &blas[0];
 | 
			
		||||
      auto coarseData_p  = &coarseData[0];
 | 
			
		||||
 | 
			
		||||
      int64_t osites = coarse_grid->oSites();
 | 
			
		||||
 | 
			
		||||
      // loop over fine sites
 | 
			
		||||
      const int Nsimd = vobj::Nsimd();
 | 
			
		||||
      uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar);
 | 
			
		||||
      assert(cwords==nbasis);
 | 
			
		||||
      
 | 
			
		||||
      accelerator_for(sc,osites,Nsimd,{
 | 
			
		||||
	  // Wrap in a macro "FOR_ALL_LANES(lane,{ ... });
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
        {
 | 
			
		||||
	  int lane=acceleratorSIMTlane(Nsimd); // buffer lane
 | 
			
		||||
#else
 | 
			
		||||
	  for(int lane=0;lane<Nsimd;lane++) {
 | 
			
		||||
#endif
 | 
			
		||||
	    int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords;
 | 
			
		||||
	    coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site];
 | 
			
		||||
	    coarse_scalar_object data = *ptr;
 | 
			
		||||
	    insertLane(lane,coarseData[sc],data);
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
	}
 | 
			
		||||
#else
 | 
			
		||||
	}
 | 
			
		||||
#endif
 | 
			
		||||
      });
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void ImportBasis(std::vector < Field > &vecs)
 | 
			
		||||
  {
 | 
			
		||||
    //    std::cout << " BlockProjector Import basis size "<<vecs.size()<<std::endl;
 | 
			
		||||
    ImportFineGridVectors(vecs,BLAS_V);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class cobj>
 | 
			
		||||
  void blockProject(std::vector<Field> &fine,std::vector< Lattice<cobj> > & coarse)
 | 
			
		||||
  {
 | 
			
		||||
    int nrhs=fine.size();
 | 
			
		||||
    int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar);
 | 
			
		||||
    //    std::cout << "blockProject nbasis " <<nbasis<<" " << _nbasis<<std::endl;
 | 
			
		||||
    assert(nbasis==_nbasis);
 | 
			
		||||
    
 | 
			
		||||
    BLAS_F.resize (fine_vol * words * nrhs );
 | 
			
		||||
    BLAS_C.resize (coarse_vol * nbasis * nrhs );
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    // Copy in the multi-rhs sources to same data layout
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    //    std::cout << "BlockProject import fine"<<std::endl;
 | 
			
		||||
    ImportFineGridVectors(fine,BLAS_F);
 | 
			
		||||
    
 | 
			
		||||
    deviceVector<scalar *> Vd(coarse_vol);
 | 
			
		||||
    deviceVector<scalar *> Fd(coarse_vol);
 | 
			
		||||
    deviceVector<scalar *> Cd(coarse_vol);
 | 
			
		||||
 | 
			
		||||
    //    std::cout << "BlockProject pointers"<<std::endl;
 | 
			
		||||
    for(int c=0;c<coarse_vol;c++){
 | 
			
		||||
      // BLAS_V[coarse_vol][nbasis][block_vol][words]
 | 
			
		||||
      // BLAS_F[coarse_vol][nrhs][block_vol][words]
 | 
			
		||||
      // BLAS_C[coarse_vol][nrhs][nbasis]
 | 
			
		||||
      scalar * Vh = & BLAS_V[c*nbasis*block_vol*words];
 | 
			
		||||
      scalar * Fh = & BLAS_F[c*nrhs*block_vol*words];
 | 
			
		||||
      scalar * Ch = & BLAS_C[c*nrhs*nbasis];
 | 
			
		||||
 | 
			
		||||
      acceleratorPut(Vd[c],Vh);
 | 
			
		||||
      acceleratorPut(Fd[c],Fh);
 | 
			
		||||
      acceleratorPut(Cd[c],Ch);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    GridBLAS BLAS;
 | 
			
		||||
 | 
			
		||||
    //    std::cout << "BlockProject BLAS"<<std::endl;
 | 
			
		||||
    int64_t vw = block_vol * words;
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    // C_br = V^dag R
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N, 
 | 
			
		||||
    		     nbasis,nrhs,vw,
 | 
			
		||||
		     scalar(1.0),
 | 
			
		||||
		     Vd,
 | 
			
		||||
		     Fd,
 | 
			
		||||
		     scalar(0.0),  // wipe out C
 | 
			
		||||
		     Cd);
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
    //    std::cout << "BlockProject done"<<std::endl;
 | 
			
		||||
    ExportCoarseGridVectors(coarse, BLAS_C);
 | 
			
		||||
    //    std::cout << "BlockProject done"<<std::endl;
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class cobj>
 | 
			
		||||
  void blockPromote(std::vector<Field> &fine,std::vector<Lattice<cobj> > & coarse)
 | 
			
		||||
  {
 | 
			
		||||
    int nrhs=fine.size();
 | 
			
		||||
    int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar);
 | 
			
		||||
    assert(nbasis==_nbasis);
 | 
			
		||||
    
 | 
			
		||||
    BLAS_F.resize (fine_vol * words * nrhs );
 | 
			
		||||
    BLAS_C.resize (coarse_vol * nbasis * nrhs );
 | 
			
		||||
 | 
			
		||||
    ImportCoarseGridVectors(coarse, BLAS_C);
 | 
			
		||||
 | 
			
		||||
    GridBLAS BLAS;
 | 
			
		||||
 | 
			
		||||
    deviceVector<scalar *> Vd(coarse_vol);
 | 
			
		||||
    deviceVector<scalar *> Fd(coarse_vol);
 | 
			
		||||
    deviceVector<scalar *> Cd(coarse_vol);
 | 
			
		||||
 | 
			
		||||
    for(int c=0;c<coarse_vol;c++){
 | 
			
		||||
      // BLAS_V[coarse_vol][nbasis][block_vol][words]
 | 
			
		||||
      // BLAS_F[coarse_vol][nrhs][block_vol][words]
 | 
			
		||||
      // BLAS_C[coarse_vol][nrhs][nbasis]
 | 
			
		||||
      scalar * Vh = & BLAS_V[c*nbasis*block_vol*words];
 | 
			
		||||
      scalar * Fh = & BLAS_F[c*nrhs*block_vol*words];
 | 
			
		||||
      scalar * Ch = & BLAS_C[c*nrhs*nbasis];
 | 
			
		||||
      acceleratorPut(Vd[c],Vh);
 | 
			
		||||
      acceleratorPut(Fd[c],Fh);
 | 
			
		||||
      acceleratorPut(Cd[c],Ch);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    // Block promote:
 | 
			
		||||
    // F_xr = Vxb Cbr (x coarse_vol)
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    int64_t vw = block_vol * words;
 | 
			
		||||
    BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, 
 | 
			
		||||
    		     vw,nrhs,nbasis,
 | 
			
		||||
		     scalar(1.0),
 | 
			
		||||
		     Vd,
 | 
			
		||||
		     Cd,
 | 
			
		||||
		     scalar(0.0),  // wipe out C
 | 
			
		||||
		     Fd);
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
    //    std::cout << " blas call done"<<std::endl;
 | 
			
		||||
    
 | 
			
		||||
    ExportFineGridVectors(fine, BLAS_F);
 | 
			
		||||
    //    std::cout << " exported "<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -1,233 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: MultiRHSDeflation.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2023
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/* Need helper object for BLAS accelerated mrhs projection
 | 
			
		||||
 | 
			
		||||
   i) MultiRHS Deflation
 | 
			
		||||
 | 
			
		||||
   Import Evecs -> nev x vol x internal 
 | 
			
		||||
   Import vector of Lattice objects -> nrhs x vol x internal
 | 
			
		||||
   => Cij (nrhs x Nev) via GEMM.
 | 
			
		||||
   => Guess  (nrhs x vol x internal)  = C x evecs (via GEMM)
 | 
			
		||||
   Export
 | 
			
		||||
 | 
			
		||||
   
 | 
			
		||||
   ii) MultiRHS block projection
 | 
			
		||||
 | 
			
		||||
   Import basis -> nblock x nbasis x  (block x internal) 
 | 
			
		||||
   Import vector of fine lattice objects -> nblock x nrhs x (block x internal) 
 | 
			
		||||
 | 
			
		||||
   => coarse_(nrhs x nbasis )^block = via batched GEMM
 | 
			
		||||
 | 
			
		||||
   iii)   Alternate interface: 
 | 
			
		||||
   Import higher dim Lattice object-> vol x nrhs layout
 | 
			
		||||
   
 | 
			
		||||
*/
 | 
			
		||||
template<class Field>
 | 
			
		||||
class MultiRHSDeflation
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  typedef typename Field::scalar_type   scalar;
 | 
			
		||||
  typedef typename Field::scalar_object scalar_object;
 | 
			
		||||
 | 
			
		||||
  int nev;
 | 
			
		||||
  std::vector<RealD> eval;
 | 
			
		||||
  GridBase *grid;
 | 
			
		||||
  uint64_t vol;
 | 
			
		||||
  uint64_t words;
 | 
			
		||||
  
 | 
			
		||||
  deviceVector<scalar> BLAS_E;      //  nev x vol -- the eigenbasis   (up to a 1/sqrt(lambda))
 | 
			
		||||
  deviceVector<scalar> BLAS_R;      // nrhs x vol -- the sources
 | 
			
		||||
  deviceVector<scalar> BLAS_G;      // nrhs x vol -- the guess
 | 
			
		||||
  deviceVector<scalar> BLAS_C;      // nrhs x nev -- the coefficients 
 | 
			
		||||
  
 | 
			
		||||
  MultiRHSDeflation(){};
 | 
			
		||||
  ~MultiRHSDeflation(){ Deallocate(); };
 | 
			
		||||
  
 | 
			
		||||
  void Deallocate(void)
 | 
			
		||||
  {
 | 
			
		||||
    nev=0;
 | 
			
		||||
    grid=nullptr;
 | 
			
		||||
    vol=0;
 | 
			
		||||
    words=0;
 | 
			
		||||
    BLAS_E.resize(0);
 | 
			
		||||
    BLAS_R.resize(0);
 | 
			
		||||
    BLAS_C.resize(0);
 | 
			
		||||
    BLAS_G.resize(0);
 | 
			
		||||
  }
 | 
			
		||||
  void Allocate(int _nev,GridBase *_grid)
 | 
			
		||||
  {
 | 
			
		||||
    nev=_nev;
 | 
			
		||||
    grid=_grid;
 | 
			
		||||
    vol   = grid->lSites();
 | 
			
		||||
    words = sizeof(scalar_object)/sizeof(scalar);
 | 
			
		||||
    eval.resize(nev);
 | 
			
		||||
    BLAS_E.resize (vol * words * nev );
 | 
			
		||||
    std::cout << GridLogMessage << " Allocate for "<<nev<<" eigenvectors and volume "<<vol<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  void ImportEigenVector(Field &evec,RealD &_eval, int ev)
 | 
			
		||||
  {
 | 
			
		||||
    //    std::cout << " ev " <<ev<<" eval "<<_eval<< std::endl;
 | 
			
		||||
    assert(ev<eval.size());
 | 
			
		||||
    eval[ev] = _eval;
 | 
			
		||||
 | 
			
		||||
    int64_t offset = ev*vol*words;
 | 
			
		||||
    autoView(v,evec,AcceleratorRead);
 | 
			
		||||
    acceleratorCopyDeviceToDevice(&v[0],&BLAS_E[offset],sizeof(scalar_object)*vol);
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval)
 | 
			
		||||
  {
 | 
			
		||||
    ImportEigenBasis(evec,_eval,0,evec.size());
 | 
			
		||||
  }
 | 
			
		||||
  // Could use to import a batch of eigenvectors
 | 
			
		||||
  void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval, int _ev0, int _nev)
 | 
			
		||||
  {
 | 
			
		||||
    assert(_ev0+_nev<=evec.size());
 | 
			
		||||
 | 
			
		||||
    Allocate(_nev,evec[0].Grid());
 | 
			
		||||
    
 | 
			
		||||
    // Imports a sub-batch of eigenvectors, _ev0, ..., _ev0+_nev-1
 | 
			
		||||
    for(int e=0;e<nev;e++){
 | 
			
		||||
      std::cout << "Importing eigenvector "<<e<<" evalue "<<_eval[_ev0+e]<<std::endl;
 | 
			
		||||
      ImportEigenVector(evec[_ev0+e],_eval[_ev0+e],e);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void DeflateSources(std::vector<Field> &source,std::vector<Field> & guess)
 | 
			
		||||
  {
 | 
			
		||||
    int nrhs = source.size();
 | 
			
		||||
    assert(source.size()==guess.size());
 | 
			
		||||
    assert(grid == guess[0].Grid());
 | 
			
		||||
    conformable(guess[0],source[0]);
 | 
			
		||||
 | 
			
		||||
    int64_t vw = vol * words;
 | 
			
		||||
 | 
			
		||||
    RealD t0 = usecond();
 | 
			
		||||
    BLAS_R.resize(nrhs * vw); // cost free if size doesn't change
 | 
			
		||||
    BLAS_G.resize(nrhs * vw); // cost free if size doesn't change
 | 
			
		||||
    BLAS_C.resize(nev * nrhs);// cost free if size doesn't change
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    // Copy in the multi-rhs sources
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    //    for(int r=0;r<nrhs;r++){
 | 
			
		||||
    //      std::cout << " source["<<r<<"] = "<<norm2(source[r])<<std::endl;
 | 
			
		||||
    //    }
 | 
			
		||||
    for(int r=0;r<nrhs;r++){
 | 
			
		||||
      int64_t offset = r*vw;
 | 
			
		||||
      autoView(v,source[r],AcceleratorRead);
 | 
			
		||||
      acceleratorCopyDeviceToDevice(&v[0],&BLAS_R[offset],sizeof(scalar_object)*vol);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
   * in Fortran column major notation (cuBlas order)
 | 
			
		||||
   *
 | 
			
		||||
   * Exe = [e1(x)][..][en(x)]
 | 
			
		||||
   *
 | 
			
		||||
   * Rxr = [r1(x)][..][rm(x)]
 | 
			
		||||
   *
 | 
			
		||||
   * C_er = E^dag R
 | 
			
		||||
   * C_er = C_er / lambda_e 
 | 
			
		||||
   * G_xr = Exe Cer
 | 
			
		||||
   */
 | 
			
		||||
    deviceVector<scalar *> Ed(1);
 | 
			
		||||
    deviceVector<scalar *> Rd(1);
 | 
			
		||||
    deviceVector<scalar *> Cd(1);
 | 
			
		||||
    deviceVector<scalar *> Gd(1);
 | 
			
		||||
 | 
			
		||||
    scalar * Eh = & BLAS_E[0];
 | 
			
		||||
    scalar * Rh = & BLAS_R[0];
 | 
			
		||||
    scalar * Ch = & BLAS_C[0];
 | 
			
		||||
    scalar * Gh = & BLAS_G[0];
 | 
			
		||||
 | 
			
		||||
    acceleratorPut(Ed[0],Eh);
 | 
			
		||||
    acceleratorPut(Rd[0],Rh);
 | 
			
		||||
    acceleratorPut(Cd[0],Ch);
 | 
			
		||||
    acceleratorPut(Gd[0],Gh);
 | 
			
		||||
 | 
			
		||||
    GridBLAS BLAS;
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    // C_er = E^dag R
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N, 
 | 
			
		||||
    		     nev,nrhs,vw,
 | 
			
		||||
		     scalar(1.0),
 | 
			
		||||
		     Ed,
 | 
			
		||||
		     Rd,
 | 
			
		||||
		     scalar(0.0),  // wipe out C
 | 
			
		||||
		     Cd);
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
 | 
			
		||||
    assert(BLAS_C.size()==nev*nrhs);
 | 
			
		||||
 | 
			
		||||
    std::vector<scalar> HOST_C(BLAS_C.size());      // nrhs . nev -- the coefficients 
 | 
			
		||||
    acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar));
 | 
			
		||||
    grid->GlobalSumVector(&HOST_C[0],nev*nrhs);
 | 
			
		||||
    for(int e=0;e<nev;e++){
 | 
			
		||||
      RealD lam(1.0/eval[e]);
 | 
			
		||||
      for(int r=0;r<nrhs;r++){
 | 
			
		||||
	int off = e+nev*r;
 | 
			
		||||
	HOST_C[off]=HOST_C[off] * lam;
 | 
			
		||||
	//	std::cout << "C["<<e<<"]["<<r<<"] ="<<HOST_C[off]<< " eval[e] "<<eval[e] <<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    acceleratorCopyToDevice(&HOST_C[0],&BLAS_C[0],BLAS_C.size()*sizeof(scalar));
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    // Guess G_xr = Exe Cer
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, 
 | 
			
		||||
		     vw,nrhs,nev,
 | 
			
		||||
		     scalar(1.0),
 | 
			
		||||
		     Ed, // x . nev
 | 
			
		||||
		     Cd, // nev . nrhs
 | 
			
		||||
		     scalar(0.0),
 | 
			
		||||
		     Gd);
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    // Copy out the multirhs
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    for(int r=0;r<nrhs;r++){
 | 
			
		||||
      int64_t offset = r*vw;
 | 
			
		||||
      autoView(v,guess[r],AcceleratorWrite);
 | 
			
		||||
      acceleratorCopyDeviceToDevice(&BLAS_G[offset],&v[0],sizeof(scalar_object)*vol);
 | 
			
		||||
    }
 | 
			
		||||
    RealD t1 = usecond();
 | 
			
		||||
    std::cout << GridLogMessage << "MultiRHSDeflation for "<<nrhs<<" sources with "<<nev<<" eigenvectors took " << (t1-t0)/1e3 <<" ms"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -33,111 +33,109 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
   * Script A = SolverMatrix 
 | 
			
		||||
   * Script P = Preconditioner
 | 
			
		||||
   *
 | 
			
		||||
   * Deflation methods considered
 | 
			
		||||
   *      -- Solve P A x = P b        [ like Luscher ]
 | 
			
		||||
   * DEF-1        M P A x = M P b     [i.e. left precon]
 | 
			
		||||
   * DEF-2        P^T M A x = P^T M b
 | 
			
		||||
   * ADEF-1       Preconditioner = M P + Q      [ Q + M + M A Q]
 | 
			
		||||
   * ADEF-2       Preconditioner = P^T M + Q
 | 
			
		||||
   * BNN          Preconditioner = P^T M P + Q
 | 
			
		||||
   * BNN2         Preconditioner = M P + P^TM +Q - M P A M 
 | 
			
		||||
   * 
 | 
			
		||||
   * Implement ADEF-2
 | 
			
		||||
   *
 | 
			
		||||
   * Vstart = P^Tx + Qb
 | 
			
		||||
   * M1 = P^TM + Q
 | 
			
		||||
   * M2=M3=1
 | 
			
		||||
   * Vout = x
 | 
			
		||||
   */
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class TwoLevelCG : public LinearFunction<Field>
 | 
			
		||||
// abstract base
 | 
			
		||||
template<class Field, class CoarseField>
 | 
			
		||||
class TwoLevelFlexiblePcg : public LinearFunction<Field>
 | 
			
		||||
{
 | 
			
		||||
 public:
 | 
			
		||||
  int verbose;
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  const int mmax = 5;
 | 
			
		||||
  GridBase *grid;
 | 
			
		||||
  GridBase *coarsegrid;
 | 
			
		||||
 | 
			
		||||
  // Fine operator, Smoother, CoarseSolver
 | 
			
		||||
  LinearOperatorBase<Field>   &_FineLinop;
 | 
			
		||||
  LinearFunction<Field>   &_Smoother;
 | 
			
		||||
  LinearOperatorBase<Field>   *_Linop
 | 
			
		||||
  OperatorFunction<Field>     *_Smoother,
 | 
			
		||||
  LinearFunction<CoarseField> *_CoarseSolver;
 | 
			
		||||
 | 
			
		||||
  // Need somthing that knows how to get from Coarse to fine and back again
 | 
			
		||||
  
 | 
			
		||||
  // more most opertor functions
 | 
			
		||||
  TwoLevelCG(RealD tol,
 | 
			
		||||
	     Integer maxit,
 | 
			
		||||
	     LinearOperatorBase<Field>   &FineLinop,
 | 
			
		||||
	     LinearFunction<Field>       &Smoother,
 | 
			
		||||
	     GridBase *fine) : 
 | 
			
		||||
  TwoLevelFlexiblePcg(RealD tol,
 | 
			
		||||
		     Integer maxit,
 | 
			
		||||
		     LinearOperatorBase<Field> *Linop,
 | 
			
		||||
		     LinearOperatorBase<Field> *SmootherLinop,
 | 
			
		||||
		     OperatorFunction<Field>   *Smoother,
 | 
			
		||||
		     OperatorFunction<CoarseField>  CoarseLinop
 | 
			
		||||
		     ) : 
 | 
			
		||||
      Tolerance(tol), 
 | 
			
		||||
      MaxIterations(maxit),
 | 
			
		||||
      _FineLinop(FineLinop),
 | 
			
		||||
      _Smoother(Smoother)
 | 
			
		||||
      _Linop(Linop),
 | 
			
		||||
      _PreconditionerLinop(PrecLinop),
 | 
			
		||||
      _Preconditioner(Preconditioner)
 | 
			
		||||
  { 
 | 
			
		||||
    grid       = fine;
 | 
			
		||||
    verbose=0;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  virtual void operator() (const Field &src, Field &x)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg starting single RHS"<<std::endl;
 | 
			
		||||
  // The Pcg routine is common to all, but the various matrices differ from derived 
 | 
			
		||||
  // implementation to derived implmentation
 | 
			
		||||
  void operator() (const Field &src, Field &psi){
 | 
			
		||||
  void operator() (const Field &src, Field &psi){
 | 
			
		||||
 | 
			
		||||
    psi.Checkerboard() = src.Checkerboard();
 | 
			
		||||
    grid             = src.Grid();
 | 
			
		||||
 | 
			
		||||
    RealD f;
 | 
			
		||||
    RealD rtzp,rtz,a,d,b;
 | 
			
		||||
    RealD rptzp;
 | 
			
		||||
    RealD tn;
 | 
			
		||||
    RealD guess = norm2(psi);
 | 
			
		||||
    RealD ssq   = norm2(src);
 | 
			
		||||
    RealD rsq   = ssq*Tolerance*Tolerance;
 | 
			
		||||
    
 | 
			
		||||
    /////////////////////////////
 | 
			
		||||
    // Set up history vectors
 | 
			
		||||
    /////////////////////////////
 | 
			
		||||
    int mmax = 5;
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
 | 
			
		||||
    std::vector<Field> p(mmax,grid);
 | 
			
		||||
    std::vector<Field> p  (mmax,grid);
 | 
			
		||||
    std::vector<Field> mmp(mmax,grid);
 | 
			
		||||
    std::vector<RealD> pAp(mmax);
 | 
			
		||||
    Field z(grid);
 | 
			
		||||
 | 
			
		||||
    Field x  (grid); x = psi;
 | 
			
		||||
    Field z  (grid);
 | 
			
		||||
    Field tmp(grid);
 | 
			
		||||
    Field  mp (grid);
 | 
			
		||||
    Field  r  (grid);
 | 
			
		||||
    Field  mu (grid);
 | 
			
		||||
    Field r  (grid);
 | 
			
		||||
    Field mu (grid);
 | 
			
		||||
  
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocated"<<std::endl;
 | 
			
		||||
    //Initial residual computation & set up
 | 
			
		||||
    RealD guess   = norm2(x);
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg guess nrm "<<guess<<std::endl;
 | 
			
		||||
    RealD src_nrm = norm2(src);
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg src nrm "<<src_nrm<<std::endl;
 | 
			
		||||
    
 | 
			
		||||
    if ( src_nrm == 0.0 ) {
 | 
			
		||||
      std::cout << GridLogMessage<<"HDCG: fPcg given trivial source norm "<<src_nrm<<std::endl;
 | 
			
		||||
      x=Zero();
 | 
			
		||||
    }
 | 
			
		||||
    RealD tn;
 | 
			
		||||
    
 | 
			
		||||
    GridStopWatch HDCGTimer;
 | 
			
		||||
    HDCGTimer.Start();
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    // x0 = Vstart -- possibly modify guess
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    x=src;
 | 
			
		||||
    Vstart(x,src);
 | 
			
		||||
 | 
			
		||||
    // r0 = b -A x0
 | 
			
		||||
    _FineLinop.HermOp(x,mmp[0]);
 | 
			
		||||
    HermOp(x,mmp); // Shouldn't this be something else?
 | 
			
		||||
    axpy (r, -1.0,mmp[0], src);    // Recomputes r=src-Ax0
 | 
			
		||||
    {
 | 
			
		||||
      double n1 = norm2(x);
 | 
			
		||||
      double n2 = norm2(mmp[0]);
 | 
			
		||||
      double n3 = norm2(r);
 | 
			
		||||
      std::cout<<GridLogMessage<<"x,vstart,r = "<<n1<<" "<<n2<<" "<<n3<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // Compute z = M1 x
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    PcgM1(r,z);
 | 
			
		||||
    M1(r,z,tmp,mp,SmootherMirs);
 | 
			
		||||
    rtzp =real(innerProduct(r,z));
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    // Solve for Mss mu = P A z and set p = z-mu
 | 
			
		||||
    // Def2 p = 1 - Q Az = Pright z
 | 
			
		||||
    // Def2: p = 1 - Q Az = Pright z 
 | 
			
		||||
    // Other algos M2 is trivial
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    PcgM2(z,p[0]);
 | 
			
		||||
 | 
			
		||||
    RealD ssq =  norm2(src);
 | 
			
		||||
    RealD rsq =  ssq*Tolerance*Tolerance;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: k=0 residual "<<rtzp<<" rsq "<<rsq<<"\n";
 | 
			
		||||
 | 
			
		||||
    Field pp(grid);
 | 
			
		||||
    M2(z,p[0]);
 | 
			
		||||
 | 
			
		||||
    for (int k=0;k<=MaxIterations;k++){
 | 
			
		||||
    
 | 
			
		||||
@@ -145,7 +143,7 @@ class TwoLevelCG : public LinearFunction<Field>
 | 
			
		||||
      int peri_kp = (k+1) % mmax;
 | 
			
		||||
 | 
			
		||||
      rtz=rtzp;
 | 
			
		||||
      d= PcgM3(p[peri_k],mmp[peri_k]);
 | 
			
		||||
      d= M3(p[peri_k],mp,mmp[peri_k],tmp);
 | 
			
		||||
      a = rtz/d;
 | 
			
		||||
    
 | 
			
		||||
      // Memorise this
 | 
			
		||||
@@ -155,36 +153,21 @@ class TwoLevelCG : public LinearFunction<Field>
 | 
			
		||||
      RealD rn = axpy_norm(r,-a,mmp[peri_k],r);
 | 
			
		||||
 | 
			
		||||
      // Compute z = M x
 | 
			
		||||
      PcgM1(r,z);
 | 
			
		||||
      M1(r,z,tmp,mp);
 | 
			
		||||
 | 
			
		||||
      {
 | 
			
		||||
	RealD n1,n2;
 | 
			
		||||
	n1=norm2(r);
 | 
			
		||||
	n2=norm2(z);
 | 
			
		||||
	std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : vector r,z "<<n1<<" "<<n2<<"\n";
 | 
			
		||||
      }
 | 
			
		||||
      rtzp =real(innerProduct(r,z));
 | 
			
		||||
      std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : inner rtzp "<<rtzp<<"\n";
 | 
			
		||||
 | 
			
		||||
      //    PcgM2(z,p[0]);
 | 
			
		||||
      PcgM2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
 | 
			
		||||
      M2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
 | 
			
		||||
 | 
			
		||||
      p[peri_kp]=mu;
 | 
			
		||||
      p[peri_kp]=p[peri_k];
 | 
			
		||||
 | 
			
		||||
      // Standard search direction  p -> z + b p    
 | 
			
		||||
      // Standard search direction  p -> z + b p    ; b = 
 | 
			
		||||
      b = (rtzp)/rtz;
 | 
			
		||||
 | 
			
		||||
      int northog;
 | 
			
		||||
      // k=zero  <=> peri_kp=1;        northog = 1
 | 
			
		||||
      // k=1     <=> peri_kp=2;        northog = 2
 | 
			
		||||
      // ...               ...                  ...
 | 
			
		||||
      // k=mmax-2<=> peri_kp=mmax-1;   northog = mmax-1
 | 
			
		||||
      // k=mmax-1<=> peri_kp=0;        northog = 1
 | 
			
		||||
 | 
			
		||||
      //    northog     = (peri_kp==0)?1:peri_kp; // This is the fCG(mmax) algorithm
 | 
			
		||||
      northog     = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm
 | 
			
		||||
    
 | 
			
		||||
      std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
 | 
			
		||||
      for(int back=0; back < northog; back++){
 | 
			
		||||
	int peri_back = (k-back)%mmax;
 | 
			
		||||
	RealD pbApk= real(innerProduct(mmp[peri_back],p[peri_kp]));
 | 
			
		||||
@@ -193,324 +176,75 @@ class TwoLevelCG : public LinearFunction<Field>
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      RealD rrn=sqrt(rn/ssq);
 | 
			
		||||
      RealD rtn=sqrt(rtz/ssq);
 | 
			
		||||
      RealD rtnp=sqrt(rtzp/ssq);
 | 
			
		||||
 | 
			
		||||
      std::cout<<GridLogMessage<<"HDCG: fPcg k= "<<k<<" residual = "<<rrn<<"\n";
 | 
			
		||||
      std::cout<<GridLogMessage<<"TwoLevelfPcg: k= "<<k<<" residual = "<<rrn<<std::endl;
 | 
			
		||||
 | 
			
		||||
      // Stopping condition
 | 
			
		||||
      if ( rn <= rsq ) { 
 | 
			
		||||
 | 
			
		||||
	HDCGTimer.Stop();
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	
 | 
			
		||||
	_FineLinop.HermOp(x,mmp[0]);			  
 | 
			
		||||
	HermOp(x,mmp); // Shouldn't this be something else?
 | 
			
		||||
	axpy(tmp,-1.0,src,mmp[0]);
 | 
			
		||||
	
 | 
			
		||||
	RealD  mmpnorm = sqrt(norm2(mmp[0]));
 | 
			
		||||
	RealD  xnorm   = sqrt(norm2(x));
 | 
			
		||||
	RealD  srcnorm = sqrt(norm2(src));
 | 
			
		||||
	RealD  tmpnorm = sqrt(norm2(tmp));
 | 
			
		||||
	RealD  true_residual = tmpnorm/srcnorm;
 | 
			
		||||
	std::cout<<GridLogMessage
 | 
			
		||||
	       <<"HDCG: true residual is "<<true_residual
 | 
			
		||||
	       <<" solution "<<xnorm
 | 
			
		||||
	       <<" source "<<srcnorm
 | 
			
		||||
	       <<" mmp "<<mmpnorm	  
 | 
			
		||||
	       <<std::endl;
 | 
			
		||||
      
 | 
			
		||||
	return;
 | 
			
		||||
	RealD psinorm = sqrt(norm2(x));
 | 
			
		||||
	RealD srcnorm = sqrt(norm2(src));
 | 
			
		||||
	RealD tmpnorm = sqrt(norm2(tmp));
 | 
			
		||||
	RealD true_residual = tmpnorm/srcnorm;
 | 
			
		||||
	std::cout<<GridLogMessage<<"TwoLevelfPcg:   true residual is "<<true_residual<<std::endl;
 | 
			
		||||
	std::cout<<GridLogMessage<<"TwoLevelfPcg: target residual was"<<Tolerance<<std::endl;
 | 
			
		||||
	return k;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    HDCGTimer.Stop();
 | 
			
		||||
    std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
 | 
			
		||||
    RealD  xnorm   = sqrt(norm2(x));
 | 
			
		||||
    RealD  srcnorm = sqrt(norm2(src));
 | 
			
		||||
    std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
 | 
			
		||||
    // Non-convergence
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
 | 
			
		||||
    src[0].Grid()->Barrier();
 | 
			
		||||
    int nrhs = src.size();
 | 
			
		||||
    std::vector<RealD> f(nrhs);
 | 
			
		||||
    std::vector<RealD> rtzp(nrhs);
 | 
			
		||||
    std::vector<RealD> rtz(nrhs);
 | 
			
		||||
    std::vector<RealD> a(nrhs);
 | 
			
		||||
    std::vector<RealD> d(nrhs);
 | 
			
		||||
    std::vector<RealD> b(nrhs);
 | 
			
		||||
    std::vector<RealD> rptzp(nrhs);
 | 
			
		||||
    /////////////////////////////
 | 
			
		||||
    // Set up history vectors
 | 
			
		||||
    /////////////////////////////
 | 
			
		||||
    int mmax = 3;
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
 | 
			
		||||
    src[0].Grid()->Barrier();
 | 
			
		||||
    std::vector<std::vector<Field> > p(nrhs);   for(int r=0;r<nrhs;r++)  p[r].resize(mmax,grid);
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocated p"<<std::endl;
 | 
			
		||||
    src[0].Grid()->Barrier();
 | 
			
		||||
    std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid);
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocated mmp"<<std::endl;
 | 
			
		||||
    src[0].Grid()->Barrier();
 | 
			
		||||
    std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax);
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocated pAp"<<std::endl;
 | 
			
		||||
    src[0].Grid()->Barrier();
 | 
			
		||||
    std::vector<Field> z(nrhs,grid);
 | 
			
		||||
    std::vector<Field>  mp (nrhs,grid);
 | 
			
		||||
    std::vector<Field>  r  (nrhs,grid);
 | 
			
		||||
    std::vector<Field>  mu (nrhs,grid);
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocated z,mp,r,mu"<<std::endl;
 | 
			
		||||
    src[0].Grid()->Barrier();
 | 
			
		||||
 | 
			
		||||
    //Initial residual computation & set up
 | 
			
		||||
    std::vector<RealD> src_nrm(nrhs);
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
			
		||||
      src_nrm[rhs]=norm2(src[rhs]);
 | 
			
		||||
      assert(src_nrm[rhs]!=0.0);
 | 
			
		||||
    }
 | 
			
		||||
    std::vector<RealD> tn(nrhs);
 | 
			
		||||
 | 
			
		||||
    GridStopWatch HDCGTimer;
 | 
			
		||||
    HDCGTimer.Start();
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    // x0 = Vstart -- possibly modify guess
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    Vstart(x,src);
 | 
			
		||||
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
      // r0 = b -A x0
 | 
			
		||||
      _FineLinop.HermOp(x[rhs],mmp[rhs][0]);
 | 
			
		||||
      axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]);    // Recomputes r=src-Ax0
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // Compute z = M1 x
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // This needs a multiRHS version for acceleration
 | 
			
		||||
    PcgM1(r,z);
 | 
			
		||||
 | 
			
		||||
    std::vector<RealD> ssq(nrhs);
 | 
			
		||||
    std::vector<RealD> rsq(nrhs);
 | 
			
		||||
    std::vector<Field> pp(nrhs,grid);
 | 
			
		||||
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
      rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
 | 
			
		||||
      p[rhs][0]=z[rhs];
 | 
			
		||||
      ssq[rhs]=norm2(src[rhs]);
 | 
			
		||||
      rsq[rhs]=  ssq[rhs]*Tolerance*Tolerance;
 | 
			
		||||
      std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n";
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::vector<RealD> rn(nrhs);
 | 
			
		||||
    for (int k=0;k<=MaxIterations;k++){
 | 
			
		||||
    
 | 
			
		||||
      int peri_k  = k % mmax;
 | 
			
		||||
      int peri_kp = (k+1) % mmax;
 | 
			
		||||
 | 
			
		||||
      for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
	rtz[rhs]=rtzp[rhs];
 | 
			
		||||
	d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]);
 | 
			
		||||
	a[rhs] = rtz[rhs]/d[rhs];
 | 
			
		||||
    
 | 
			
		||||
	// Memorise this
 | 
			
		||||
	pAp[rhs][peri_k] = d[rhs];
 | 
			
		||||
 | 
			
		||||
	axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]);
 | 
			
		||||
	rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // Compute z = M x (for *all* RHS)
 | 
			
		||||
      PcgM1(r,z);
 | 
			
		||||
      std::cout << GridLogMessage<<"HDCG::fPcg M1 complete"<<std::endl;
 | 
			
		||||
      grid->Barrier();
 | 
			
		||||
      
 | 
			
		||||
      RealD max_rn=0.0;
 | 
			
		||||
      for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
 | 
			
		||||
	rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n";
 | 
			
		||||
	
 | 
			
		||||
	mu[rhs]=z[rhs];
 | 
			
		||||
 | 
			
		||||
	p[rhs][peri_kp]=mu[rhs];
 | 
			
		||||
 | 
			
		||||
	// Standard search direction p == z + b p 
 | 
			
		||||
	b[rhs] = (rtzp[rhs])/rtz[rhs];
 | 
			
		||||
 | 
			
		||||
	int northog = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
 | 
			
		||||
	for(int back=0; back < northog; back++){
 | 
			
		||||
	  int peri_back = (k-back)%mmax;
 | 
			
		||||
	  RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp]));
 | 
			
		||||
	  RealD beta = -pbApk/pAp[rhs][peri_back];
 | 
			
		||||
	  axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	RealD rrn=sqrt(rn[rhs]/ssq[rhs]);
 | 
			
		||||
	RealD rtn=sqrt(rtz[rhs]/ssq[rhs]);
 | 
			
		||||
	RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]);
 | 
			
		||||
	
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: rhs "<<rhs<<"fPcg k= "<<k<<" residual = "<<rrn<<"\n";
 | 
			
		||||
	if ( rrn > max_rn ) max_rn = rrn;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // Stopping condition based on worst case
 | 
			
		||||
      if ( max_rn <= Tolerance ) { 
 | 
			
		||||
 | 
			
		||||
	HDCGTimer.Stop();
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
 | 
			
		||||
 | 
			
		||||
	for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
	  _FineLinop.HermOp(x[rhs],mmp[rhs][0]);			  
 | 
			
		||||
	  Field tmp(grid);
 | 
			
		||||
	  axpy(tmp,-1.0,src[rhs],mmp[rhs][0]);
 | 
			
		||||
      
 | 
			
		||||
	  RealD  mmpnorm = sqrt(norm2(mmp[rhs][0]));
 | 
			
		||||
	  RealD  xnorm   = sqrt(norm2(x[rhs]));
 | 
			
		||||
	  RealD  srcnorm = sqrt(norm2(src[rhs]));
 | 
			
		||||
	  RealD  tmpnorm = sqrt(norm2(tmp));
 | 
			
		||||
	  RealD  true_residual = tmpnorm/srcnorm;
 | 
			
		||||
	  std::cout<<GridLogMessage
 | 
			
		||||
		   <<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
 | 
			
		||||
		   <<" solution "<<xnorm
 | 
			
		||||
		   <<" source "<<srcnorm
 | 
			
		||||
		   <<" mmp "<<mmpnorm	  
 | 
			
		||||
		   <<std::endl;
 | 
			
		||||
	}
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
    HDCGTimer.Stop();
 | 
			
		||||
    std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
      RealD  xnorm   = sqrt(norm2(x[rhs]));
 | 
			
		||||
      RealD  srcnorm = sqrt(norm2(src[rhs]));
 | 
			
		||||
      std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
 public:
 | 
			
		||||
 | 
			
		||||
  virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << "PcgM1 default (cheat) mrhs version"<<std::endl;
 | 
			
		||||
    for(int rhs=0;rhs<in.size();rhs++){
 | 
			
		||||
      this->PcgM1(in[rhs],out[rhs]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  virtual void PcgM1(Field & in, Field & out)     =0;
 | 
			
		||||
  virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << "Vstart default (cheat) mrhs version"<<std::endl;
 | 
			
		||||
    for(int rhs=0;rhs<x.size();rhs++){
 | 
			
		||||
      this->Vstart(x[rhs],src[rhs]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  virtual void Vstart(Field & x,const Field & src)=0;
 | 
			
		||||
  virtual void M(Field & in,Field & out,Field & tmp) {
 | 
			
		||||
 | 
			
		||||
  virtual void PcgM2(const Field & in, Field & out) {
 | 
			
		||||
    out=in;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual RealD PcgM3(const Field & p, Field & mmp){
 | 
			
		||||
    RealD dd;
 | 
			
		||||
    _FineLinop.HermOp(p,mmp);
 | 
			
		||||
    ComplexD dot = innerProduct(p,mmp);
 | 
			
		||||
    dd=real(dot);
 | 
			
		||||
    return dd;
 | 
			
		||||
  }
 | 
			
		||||
  virtual void M1(Field & in, Field & out) {// the smoother
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Only Def1 has non-trivial Vout.
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
  
 | 
			
		||||
template<class Field, class CoarseField, class Aggregation>
 | 
			
		||||
class TwoLevelADEF2 : public TwoLevelCG<Field>
 | 
			
		||||
{
 | 
			
		||||
 public:
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Need something that knows how to get from Coarse to fine and back again
 | 
			
		||||
  //  void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
 | 
			
		||||
  //  void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  GridBase *coarsegrid;
 | 
			
		||||
  Aggregation &_Aggregates;                    
 | 
			
		||||
  LinearFunction<CoarseField> &_CoarseSolver;
 | 
			
		||||
  LinearFunction<CoarseField> &_CoarseSolverPrecise;
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  
 | 
			
		||||
  // more most opertor functions
 | 
			
		||||
  TwoLevelADEF2(RealD tol,
 | 
			
		||||
		Integer maxit,
 | 
			
		||||
		LinearOperatorBase<Field>    &FineLinop,
 | 
			
		||||
		LinearFunction<Field>        &Smoother,
 | 
			
		||||
		LinearFunction<CoarseField>  &CoarseSolver,
 | 
			
		||||
		LinearFunction<CoarseField>  &CoarseSolverPrecise,
 | 
			
		||||
		Aggregation &Aggregates
 | 
			
		||||
		) :
 | 
			
		||||
      TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,Aggregates.FineGrid),
 | 
			
		||||
      _CoarseSolver(CoarseSolver),
 | 
			
		||||
      _CoarseSolverPrecise(CoarseSolverPrecise),
 | 
			
		||||
      _Aggregates(Aggregates)
 | 
			
		||||
  {
 | 
			
		||||
    coarsegrid = Aggregates.CoarseGrid;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  virtual void PcgM1(Field & in, Field & out)
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("MultiGridPreconditioner ");
 | 
			
		||||
    // [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
 | 
			
		||||
    Field tmp(grid);
 | 
			
		||||
    Field Min(grid);
 | 
			
		||||
 | 
			
		||||
    Field tmp(this->grid);
 | 
			
		||||
    Field Min(this->grid);
 | 
			
		||||
    CoarseField PleftProj(this->coarsegrid);
 | 
			
		||||
    CoarseField PleftMss_proj(this->coarsegrid);
 | 
			
		||||
    PcgM(in,Min); // Smoother call
 | 
			
		||||
 | 
			
		||||
    GridStopWatch SmootherTimer;
 | 
			
		||||
    GridStopWatch MatrixTimer;
 | 
			
		||||
    SmootherTimer.Start();
 | 
			
		||||
    this->_Smoother(in,Min);
 | 
			
		||||
    SmootherTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    this->_FineLinop.HermOp(Min,out);
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
    HermOp(Min,out);
 | 
			
		||||
    axpy(tmp,-1.0,out,in);          // tmp  = in - A Min
 | 
			
		||||
 | 
			
		||||
    GridStopWatch ProjTimer;
 | 
			
		||||
    GridStopWatch CoarseTimer;
 | 
			
		||||
    GridStopWatch PromTimer;
 | 
			
		||||
    ProjTimer.Start();
 | 
			
		||||
    this->_Aggregates.ProjectToSubspace(PleftProj,tmp);     
 | 
			
		||||
    ProjTimer.Stop();
 | 
			
		||||
    CoarseTimer.Start();
 | 
			
		||||
    this->_CoarseSolver(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
 | 
			
		||||
    CoarseTimer.Stop();
 | 
			
		||||
    PromTimer.Start();
 | 
			
		||||
    this->_Aggregates.PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]  
 | 
			
		||||
    PromTimer.Stop();
 | 
			
		||||
    std::cout << GridLogPerformance << "PcgM1 breakdown "<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\tSmoother   " << SmootherTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\tProj       " << ProjTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\tCoarse     " << CoarseTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\tProm       " << PromTimer.Elapsed() <<std::endl;
 | 
			
		||||
 | 
			
		||||
    ProjectToSubspace(tmp,PleftProj);     
 | 
			
		||||
    ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
 | 
			
		||||
    PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]  
 | 
			
		||||
    axpy(out,1.0,Min,tmp); // Min+tmp
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void Vstart(Field & x,const Field & src)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg Vstart "<<std::endl;
 | 
			
		||||
  virtual void M2(const Field & in, Field & out) {
 | 
			
		||||
    out=in;
 | 
			
		||||
    // Must override for Def2 only
 | 
			
		||||
    //  case PcgDef2:
 | 
			
		||||
    //    Pright(in,out);
 | 
			
		||||
    //    break;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual RealD M3(const Field & p, Field & mmp){
 | 
			
		||||
    double d,dd;
 | 
			
		||||
    HermOpAndNorm(p,mmp,d,dd);
 | 
			
		||||
    return dd;
 | 
			
		||||
    // Must override for Def1 only
 | 
			
		||||
    //  case PcgDef1:
 | 
			
		||||
    //    d=linop_d->Mprec(p,mmp,tmp,0,1);// Dag no
 | 
			
		||||
    //      linop_d->Mprec(mmp,mp,tmp,1);// Dag yes
 | 
			
		||||
    //    Pleft(mp,mmp);
 | 
			
		||||
    //    d=real(linop_d->inner(p,mmp));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void VstartDef2(Field & xconst Field & src){
 | 
			
		||||
    //case PcgDef2:
 | 
			
		||||
    //case PcgAdef2: 
 | 
			
		||||
    //case PcgAdef2f:
 | 
			
		||||
    //case PcgV11f:
 | 
			
		||||
    ///////////////////////////////////
 | 
			
		||||
    // Choose x_0 such that 
 | 
			
		||||
    // x_0 = guess +  (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
 | 
			
		||||
@@ -522,78 +256,142 @@ class TwoLevelADEF2 : public TwoLevelCG<Field>
 | 
			
		||||
    //                   = src_s - (A guess)_s - src_s  + (A guess)_s 
 | 
			
		||||
    //                   = 0 
 | 
			
		||||
    ///////////////////////////////////
 | 
			
		||||
    Field r(this->grid);
 | 
			
		||||
    Field mmp(this->grid);
 | 
			
		||||
    CoarseField PleftProj(this->coarsegrid);
 | 
			
		||||
    CoarseField PleftMss_proj(this->coarsegrid);
 | 
			
		||||
    Field r(grid);
 | 
			
		||||
    Field mmp(grid);
 | 
			
		||||
    
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg Vstart projecting "<<std::endl;
 | 
			
		||||
    this->_Aggregates.ProjectToSubspace(PleftProj,src);     
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg Vstart coarse solve "<<std::endl;
 | 
			
		||||
    this->_CoarseSolverPrecise(PleftProj,PleftMss_proj); // Ass^{-1} r_s
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg Vstart promote "<<std::endl;
 | 
			
		||||
    this->_Aggregates.PromoteFromSubspace(PleftMss_proj,x);  
 | 
			
		||||
    HermOp(x,mmp);
 | 
			
		||||
    axpy (r, -1.0, mmp, src);        // r_{-1} = src - A x
 | 
			
		||||
    ProjectToSubspace(r,PleftProj);     
 | 
			
		||||
    ApplyInverseCG(PleftProj,PleftMss_proj); // Ass^{-1} r_s
 | 
			
		||||
    PromoteFromSubspace(PleftMss_proj,mmp);  
 | 
			
		||||
    x=x+mmp;
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
  virtual void Vstart(Field & x,const Field & src){
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Only Def1 has non-trivial Vout. Override in Def1
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
  virtual void   Vout  (Field & in, Field & out,Field & src){
 | 
			
		||||
    out = in;
 | 
			
		||||
    //case PcgDef1:
 | 
			
		||||
    //    //Qb + PT x
 | 
			
		||||
    //    ProjectToSubspace(src,PleftProj);     
 | 
			
		||||
    //    ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} r_s
 | 
			
		||||
    //    PromoteFromSubspace(PleftMss_proj,tmp);  
 | 
			
		||||
    //    
 | 
			
		||||
    //    Pright(in,out);
 | 
			
		||||
    //    
 | 
			
		||||
    //    linop_d->axpy(out,tmp,out,1.0);
 | 
			
		||||
    //    break;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Pright and Pleft are common to all implementations
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  virtual void Pright(Field & in,Field & out){
 | 
			
		||||
    // P_R  = [ 1              0 ] 
 | 
			
		||||
    //        [ -Mss^-1 Msb    0 ] 
 | 
			
		||||
    Field in_sbar(grid);
 | 
			
		||||
 | 
			
		||||
    ProjectToSubspace(in,PleftProj);     
 | 
			
		||||
    PromoteFromSubspace(PleftProj,out);  
 | 
			
		||||
    axpy(in_sbar,-1.0,out,in);       // in_sbar = in - in_s 
 | 
			
		||||
 | 
			
		||||
    HermOp(in_sbar,out);
 | 
			
		||||
    ProjectToSubspace(out,PleftProj);           // Mssbar in_sbar  (project)
 | 
			
		||||
 | 
			
		||||
    ApplyInverse     (PleftProj,PleftMss_proj); // Mss^{-1} Mssbar 
 | 
			
		||||
    PromoteFromSubspace(PleftMss_proj,out);     // 
 | 
			
		||||
 | 
			
		||||
    axpy(out,-1.0,out,in_sbar);     // in_sbar - Mss^{-1} Mssbar in_sbar
 | 
			
		||||
  }
 | 
			
		||||
  virtual void Pleft (Field & in,Field & out){
 | 
			
		||||
    // P_L  = [ 1  -Mbs Mss^-1] 
 | 
			
		||||
    //        [ 0   0         ] 
 | 
			
		||||
    Field in_sbar(grid);
 | 
			
		||||
    Field    tmp2(grid);
 | 
			
		||||
    Field    Mtmp(grid);
 | 
			
		||||
 | 
			
		||||
    ProjectToSubspace(in,PleftProj);     
 | 
			
		||||
    PromoteFromSubspace(PleftProj,out);  
 | 
			
		||||
    axpy(in_sbar,-1.0,out,in);      // in_sbar = in - in_s
 | 
			
		||||
 | 
			
		||||
    ApplyInverse(PleftProj,PleftMss_proj); // Mss^{-1} in_s
 | 
			
		||||
    PromoteFromSubspace(PleftMss_proj,out);
 | 
			
		||||
 | 
			
		||||
    HermOp(out,Mtmp);
 | 
			
		||||
 | 
			
		||||
    ProjectToSubspace(Mtmp,PleftProj);      // Msbar s Mss^{-1}
 | 
			
		||||
    PromoteFromSubspace(PleftProj,tmp2);
 | 
			
		||||
 | 
			
		||||
    axpy(out,-1.0,tmp2,Mtmp);
 | 
			
		||||
    axpy(out,-1.0,out,in_sbar);     // in_sbar - Msbars Mss^{-1} in_s
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class TwoLevelADEF1defl : public TwoLevelCG<Field>
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  const std::vector<Field> &evec;
 | 
			
		||||
  const std::vector<RealD> &eval;
 | 
			
		||||
class TwoLevelFlexiblePcgADef2 : public TwoLevelFlexiblePcg<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  virtual void M(Field & in,Field & out,Field & tmp){
 | 
			
		||||
 | 
			
		||||
  TwoLevelADEF1defl(RealD tol,
 | 
			
		||||
		   Integer maxit,
 | 
			
		||||
		   LinearOperatorBase<Field>   &FineLinop,
 | 
			
		||||
		   LinearFunction<Field>   &Smoother,
 | 
			
		||||
		   std::vector<Field> &_evec,
 | 
			
		||||
		   std::vector<RealD> &_eval) : 
 | 
			
		||||
    TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,_evec[0].Grid()),
 | 
			
		||||
    evec(_evec),
 | 
			
		||||
    eval(_eval)
 | 
			
		||||
  {};
 | 
			
		||||
 | 
			
		||||
  // Can just inherit existing M2
 | 
			
		||||
  // Can just inherit existing M3
 | 
			
		||||
 | 
			
		||||
  // Simple vstart - do nothing
 | 
			
		||||
  virtual void Vstart(Field & x,const Field & src){
 | 
			
		||||
    x=src; // Could apply Q
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  // Override PcgM1
 | 
			
		||||
  virtual void PcgM1(Field & in, Field & out)
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("EvecPreconditioner ");
 | 
			
		||||
    int N=evec.size();
 | 
			
		||||
    Field Pin(this->grid);
 | 
			
		||||
    Field Qin(this->grid);
 | 
			
		||||
 | 
			
		||||
    //MP  + Q = M(1-AQ) + Q = M
 | 
			
		||||
    // // If we are eigenvector deflating in coarse space
 | 
			
		||||
    // // Q   = Sum_i |phi_i> 1/lambda_i <phi_i|
 | 
			
		||||
    // // A Q = Sum_i |phi_i> <phi_i|
 | 
			
		||||
    // // M(1-AQ) = M(1-proj) + Q
 | 
			
		||||
    Qin.Checkerboard()=in.Checkerboard();
 | 
			
		||||
    Qin = Zero();
 | 
			
		||||
    Pin = in;
 | 
			
		||||
    for (int i=0;i<N;i++) {
 | 
			
		||||
      const Field& tmp = evec[i];
 | 
			
		||||
      auto ip = TensorRemove(innerProduct(tmp,in));
 | 
			
		||||
      axpy(Qin, ip / eval[i],tmp,Qin);
 | 
			
		||||
      axpy(Pin, -ip ,tmp,Pin);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    this->_Smoother(Pin,out);
 | 
			
		||||
 | 
			
		||||
    out = out + Qin;
 | 
			
		||||
  } 
 | 
			
		||||
};
 | 
			
		||||
  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp){
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
  }
 | 
			
		||||
  virtual void M2(Field & in, Field & out){
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp){
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp){
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
/*
 | 
			
		||||
template<class Field>
 | 
			
		||||
class TwoLevelFlexiblePcgAD : public TwoLevelFlexiblePcg<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  virtual void M(Field & in,Field & out,Field & tmp); 
 | 
			
		||||
  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
 | 
			
		||||
  virtual void M2(Field & in, Field & out);
 | 
			
		||||
  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
 | 
			
		||||
  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class TwoLevelFlexiblePcgDef1 : public TwoLevelFlexiblePcg<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  virtual void M(Field & in,Field & out,Field & tmp); 
 | 
			
		||||
  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
 | 
			
		||||
  virtual void M2(Field & in, Field & out);
 | 
			
		||||
  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
 | 
			
		||||
  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
 | 
			
		||||
  virtual void   Vout  (Field & in, Field & out,Field & src,Field & tmp);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class TwoLevelFlexiblePcgDef2 : public TwoLevelFlexiblePcg<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  virtual void M(Field & in,Field & out,Field & tmp); 
 | 
			
		||||
  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
 | 
			
		||||
  virtual void M2(Field & in, Field & out);
 | 
			
		||||
  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
 | 
			
		||||
  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class TwoLevelFlexiblePcgV11: public TwoLevelFlexiblePcg<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  virtual void M(Field & in,Field & out,Field & tmp); 
 | 
			
		||||
  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
 | 
			
		||||
  virtual void M2(Field & in, Field & out);
 | 
			
		||||
  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
 | 
			
		||||
  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
 | 
			
		||||
}
 | 
			
		||||
*/
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -1,734 +0,0 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/AdefGeneric.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
   * Compared to Tang-2009:  P=Pleft. P^T = PRight Q=MssInv. 
 | 
			
		||||
   * Script A = SolverMatrix 
 | 
			
		||||
   * Script P = Preconditioner
 | 
			
		||||
   *
 | 
			
		||||
   * Implement ADEF-2
 | 
			
		||||
   *
 | 
			
		||||
   * Vstart = P^Tx + Qb
 | 
			
		||||
   * M1 = P^TM + Q
 | 
			
		||||
   * M2=M3=1
 | 
			
		||||
   */
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class TwoLevelCGmrhs
 | 
			
		||||
{
 | 
			
		||||
 public:
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  GridBase *grid;
 | 
			
		||||
 | 
			
		||||
  // Fine operator, Smoother, CoarseSolver
 | 
			
		||||
  LinearOperatorBase<Field>   &_FineLinop;
 | 
			
		||||
  LinearFunction<Field>   &_Smoother;
 | 
			
		||||
  MultiRHSBlockCGLinalg<Field> _BlockCGLinalg;
 | 
			
		||||
 | 
			
		||||
  GridStopWatch ProjectTimer;
 | 
			
		||||
  GridStopWatch PromoteTimer;
 | 
			
		||||
  GridStopWatch DeflateTimer;
 | 
			
		||||
  GridStopWatch CoarseTimer;
 | 
			
		||||
  GridStopWatch FineTimer;
 | 
			
		||||
  GridStopWatch SmoothTimer;
 | 
			
		||||
  GridStopWatch InsertTimer;
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
    Field rrr;
 | 
			
		||||
  Field sss;
 | 
			
		||||
  Field qqq;
 | 
			
		||||
  Field zzz;
 | 
			
		||||
  */  
 | 
			
		||||
  // more most opertor functions
 | 
			
		||||
  TwoLevelCGmrhs(RealD tol,
 | 
			
		||||
		 Integer maxit,
 | 
			
		||||
		 LinearOperatorBase<Field>   &FineLinop,
 | 
			
		||||
		 LinearFunction<Field>       &Smoother,
 | 
			
		||||
		 GridBase *fine) : 
 | 
			
		||||
    Tolerance(tol), 
 | 
			
		||||
    MaxIterations(maxit),
 | 
			
		||||
    _FineLinop(FineLinop),
 | 
			
		||||
    _Smoother(Smoother)
 | 
			
		||||
    /*
 | 
			
		||||
    rrr(fine),
 | 
			
		||||
    sss(fine),
 | 
			
		||||
    qqq(fine),
 | 
			
		||||
    zzz(fine)
 | 
			
		||||
*/
 | 
			
		||||
  {
 | 
			
		||||
    grid       = fine;
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
  // Vector case
 | 
			
		||||
  virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
 | 
			
		||||
  {
 | 
			
		||||
    //    SolveSingleSystem(src,x);
 | 
			
		||||
    SolvePrecBlockCG(src,x);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Thin QR factorisation (google it)
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  //Dimensions
 | 
			
		||||
  // R_{ferm x Nblock} =  Q_{ferm x Nblock} x  C_{Nblock x Nblock} -> ferm x Nblock
 | 
			
		||||
  //
 | 
			
		||||
  // Rdag R = m_rr = Herm = L L^dag        <-- Cholesky decomposition (LLT routine in Eigen)
 | 
			
		||||
  //
 | 
			
		||||
  //   Q  C = R => Q = R C^{-1}
 | 
			
		||||
  //
 | 
			
		||||
  // Want  Ident = Q^dag Q = C^{-dag} R^dag R C^{-1} = C^{-dag} L L^dag C^{-1} = 1_{Nblock x Nblock} 
 | 
			
		||||
  //
 | 
			
		||||
  // Set C = L^{dag}, and then Q^dag Q = ident 
 | 
			
		||||
  //
 | 
			
		||||
  // Checks:
 | 
			
		||||
  // Cdag C = Rdag R ; passes.
 | 
			
		||||
  // QdagQ  = 1      ; passes
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  void ThinQRfact (Eigen::MatrixXcd &m_zz,
 | 
			
		||||
		   Eigen::MatrixXcd &C,
 | 
			
		||||
		   Eigen::MatrixXcd &Cinv,
 | 
			
		||||
		   std::vector<Field> &  Q,
 | 
			
		||||
		   std::vector<Field> & MQ,
 | 
			
		||||
		   const std::vector<Field> & Z,
 | 
			
		||||
		   const std::vector<Field> & MZ)
 | 
			
		||||
  {
 | 
			
		||||
    RealD t0=usecond();
 | 
			
		||||
    _BlockCGLinalg.InnerProductMatrix(m_zz,MZ,Z);
 | 
			
		||||
    RealD t1=usecond();
 | 
			
		||||
 | 
			
		||||
    m_zz = 0.5*(m_zz+m_zz.adjoint());
 | 
			
		||||
    
 | 
			
		||||
    Eigen::MatrixXcd L    = m_zz.llt().matrixL(); 
 | 
			
		||||
    
 | 
			
		||||
    C    = L.adjoint();
 | 
			
		||||
    Cinv = C.inverse();
 | 
			
		||||
    
 | 
			
		||||
    RealD t3=usecond();
 | 
			
		||||
    _BlockCGLinalg.MulMatrix( Q,Cinv,Z);
 | 
			
		||||
    _BlockCGLinalg.MulMatrix(MQ,Cinv,MZ);
 | 
			
		||||
    RealD t4=usecond();
 | 
			
		||||
    std::cout << " ThinQRfact IP    :"<< t1-t0<<" us"<<std::endl;
 | 
			
		||||
    std::cout << " ThinQRfact Eigen :"<< t3-t1<<" us"<<std::endl;
 | 
			
		||||
    std::cout << " ThinQRfact MulMat:"<< t4-t3<<" us"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void SolvePrecBlockCG (std::vector<Field> &src, std::vector<Field> &X)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: mrhs fPrecBlockcg starting"<<std::endl;
 | 
			
		||||
    src[0].Grid()->Barrier();
 | 
			
		||||
    int nrhs = src.size();
 | 
			
		||||
    //    std::vector<RealD> f(nrhs);
 | 
			
		||||
    //    std::vector<RealD> rtzp(nrhs);
 | 
			
		||||
    //    std::vector<RealD> rtz(nrhs);
 | 
			
		||||
    //    std::vector<RealD> a(nrhs);
 | 
			
		||||
    //    std::vector<RealD> d(nrhs);
 | 
			
		||||
    //    std::vector<RealD> b(nrhs);
 | 
			
		||||
    //    std::vector<RealD> rptzp(nrhs);
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////
 | 
			
		||||
    //Initial residual computation & set up
 | 
			
		||||
    ////////////////////////////////////////////
 | 
			
		||||
    std::vector<RealD> ssq(nrhs);
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
      ssq[rhs]=norm2(src[rhs]); assert(ssq[rhs]!=0.0);
 | 
			
		||||
    }      
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////
 | 
			
		||||
    // Fields -- eliminate duplicates between fPcg and block cg
 | 
			
		||||
    ///////////////////////////
 | 
			
		||||
    std::vector<Field> Mtmp(nrhs,grid);
 | 
			
		||||
    std::vector<Field> tmp(nrhs,grid);
 | 
			
		||||
    std::vector<Field>   Z(nrhs,grid); // Rename Z to R
 | 
			
		||||
    std::vector<Field>  MZ(nrhs,grid); // Rename MZ to Z
 | 
			
		||||
    std::vector<Field>   Q(nrhs,grid); // 
 | 
			
		||||
    std::vector<Field>  MQ(nrhs,grid); // Rename to P
 | 
			
		||||
    std::vector<Field>   D(nrhs,grid);
 | 
			
		||||
    std::vector<Field>  AD(nrhs,grid);
 | 
			
		||||
    
 | 
			
		||||
    /************************************************************************
 | 
			
		||||
     * Preconditioned Block conjugate gradient rQ
 | 
			
		||||
     * Generalise Sebastien Birk Thesis, after Dubrulle 2001.
 | 
			
		||||
     * Introduce preconditioning following Saad Ch9
 | 
			
		||||
     ************************************************************************
 | 
			
		||||
     * Dimensions:
 | 
			
		||||
     *
 | 
			
		||||
     *   X,B etc... ==(Nferm x nrhs)
 | 
			
		||||
     *  Matrix A==(Nferm x Nferm)
 | 
			
		||||
     *  
 | 
			
		||||
     * Nferm = Nspin x Ncolour x Ncomplex x Nlattice_site
 | 
			
		||||
     * QC => Thin QR factorisation (google it)
 | 
			
		||||
     *
 | 
			
		||||
     * R = B-AX
 | 
			
		||||
     * Z = Mi R
 | 
			
		||||
     * QC = Z
 | 
			
		||||
     * D = Q 
 | 
			
		||||
     * for k: 
 | 
			
		||||
     *   R  = AD
 | 
			
		||||
     *   Z  = Mi R
 | 
			
		||||
     *   M  = [D^dag R]^{-1}
 | 
			
		||||
     *   X  = X + D M C
 | 
			
		||||
     *   QS = Q - Z.M
 | 
			
		||||
     *   D  = Q + D S^dag
 | 
			
		||||
     *   C  = S C
 | 
			
		||||
     */
 | 
			
		||||
    Eigen::MatrixXcd m_DZ     = Eigen::MatrixXcd::Identity(nrhs,nrhs);
 | 
			
		||||
    Eigen::MatrixXcd m_M      = Eigen::MatrixXcd::Identity(nrhs,nrhs);
 | 
			
		||||
    Eigen::MatrixXcd m_zz     = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
			
		||||
    Eigen::MatrixXcd m_rr     = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
			
		||||
    
 | 
			
		||||
    Eigen::MatrixXcd m_C      = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
			
		||||
    Eigen::MatrixXcd m_Cinv   = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
			
		||||
    Eigen::MatrixXcd m_S      = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
			
		||||
    Eigen::MatrixXcd m_Sinv   = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
			
		||||
    
 | 
			
		||||
    Eigen::MatrixXcd m_tmp    = Eigen::MatrixXcd::Identity(nrhs,nrhs);
 | 
			
		||||
    Eigen::MatrixXcd m_tmp1   = Eigen::MatrixXcd::Identity(nrhs,nrhs);
 | 
			
		||||
 | 
			
		||||
    GridStopWatch HDCGTimer;
 | 
			
		||||
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    // x0 = Vstart -- possibly modify guess
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    Vstart(X,src);
 | 
			
		||||
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    // R = B-AX
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
      // r0 = b -A x0
 | 
			
		||||
      _FineLinop.HermOp(X[rhs],tmp[rhs]);
 | 
			
		||||
      axpy (Z[rhs], -1.0,tmp[rhs], src[rhs]);    // Computes R=Z=src - A X0
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // Compute MZ = M1 Z = M1 B - M1 A x0
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    PcgM1(Z,MZ);  
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // QC = Z
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    ThinQRfact (m_zz, m_C, m_Cinv, Q, MQ, Z, MZ);
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // D=MQ
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    for(int b=0;b<nrhs;b++) D[b]=MQ[b]; // LLT rotation of the MZ basis of search dirs
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage<<"PrecBlockCGrQ vec computed initial residual and QR fact " <<std::endl;
 | 
			
		||||
 | 
			
		||||
    ProjectTimer.Reset();
 | 
			
		||||
    PromoteTimer.Reset();
 | 
			
		||||
    DeflateTimer.Reset();
 | 
			
		||||
    CoarseTimer.Reset();
 | 
			
		||||
    SmoothTimer.Reset();
 | 
			
		||||
    FineTimer.Reset();
 | 
			
		||||
    InsertTimer.Reset();
 | 
			
		||||
 | 
			
		||||
    GridStopWatch M1Timer;
 | 
			
		||||
    GridStopWatch M2Timer;
 | 
			
		||||
    GridStopWatch M3Timer;
 | 
			
		||||
    GridStopWatch LinalgTimer;
 | 
			
		||||
    GridStopWatch InnerProdTimer;
 | 
			
		||||
 | 
			
		||||
    HDCGTimer.Start();
 | 
			
		||||
 | 
			
		||||
    std::vector<RealD> rn(nrhs);
 | 
			
		||||
    for (int k=0;k<=MaxIterations;k++){
 | 
			
		||||
 | 
			
		||||
      ////////////////////
 | 
			
		||||
      // Z  = AD
 | 
			
		||||
      ////////////////////
 | 
			
		||||
      M3Timer.Start();
 | 
			
		||||
      for(int b=0;b<nrhs;b++) _FineLinop.HermOp(D[b], Z[b]);      
 | 
			
		||||
      M3Timer.Stop();
 | 
			
		||||
 | 
			
		||||
      ////////////////////
 | 
			
		||||
      // MZ  = M1 Z <==== the Multigrid preconditioner
 | 
			
		||||
      ////////////////////
 | 
			
		||||
      M1Timer.Start();
 | 
			
		||||
      PcgM1(Z,MZ);
 | 
			
		||||
      M1Timer.Stop();
 | 
			
		||||
 | 
			
		||||
      FineTimer.Start();
 | 
			
		||||
      ////////////////////
 | 
			
		||||
      // M  = [D^dag Z]^{-1} = (<Ddag MZ>_M)^{-1} inner prod, generalising Saad derivation of Precon CG
 | 
			
		||||
      ////////////////////
 | 
			
		||||
      InnerProdTimer.Start();
 | 
			
		||||
      _BlockCGLinalg.InnerProductMatrix(m_DZ,D,Z);
 | 
			
		||||
      InnerProdTimer.Stop();
 | 
			
		||||
      m_M       = m_DZ.inverse();
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////
 | 
			
		||||
      // X  = X + D MC
 | 
			
		||||
      ///////////////////////////
 | 
			
		||||
      m_tmp     = m_M * m_C;
 | 
			
		||||
      LinalgTimer.Start();
 | 
			
		||||
      _BlockCGLinalg.MaddMatrix(X,m_tmp, D,X);     // D are the search directions and X takes the updates 
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////
 | 
			
		||||
      // QS = Q - M Z
 | 
			
		||||
      // (MQ) S = MQ - M (M1Z)
 | 
			
		||||
      ///////////////////////////
 | 
			
		||||
      LinalgTimer.Start();
 | 
			
		||||
      _BlockCGLinalg.MaddMatrix(tmp ,m_M, Z, Q,-1.0);
 | 
			
		||||
      _BlockCGLinalg.MaddMatrix(Mtmp,m_M,MZ,MQ,-1.0);
 | 
			
		||||
      ThinQRfact (m_zz, m_S, m_Sinv, Q, MQ, tmp, Mtmp);
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////
 | 
			
		||||
      // D  = MQ + D S^dag
 | 
			
		||||
      ////////////////////////////
 | 
			
		||||
      m_tmp = m_S.adjoint();
 | 
			
		||||
      LinalgTimer.Start();
 | 
			
		||||
      _BlockCGLinalg.MaddMatrix(D,m_tmp,D,MQ);
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////
 | 
			
		||||
      // C  = S C
 | 
			
		||||
      ////////////////////////////
 | 
			
		||||
      m_C = m_S*m_C;
 | 
			
		||||
      
 | 
			
		||||
      ////////////////////////////
 | 
			
		||||
      // convergence monitor
 | 
			
		||||
      ////////////////////////////
 | 
			
		||||
      m_rr = m_C.adjoint() * m_C;
 | 
			
		||||
      
 | 
			
		||||
      FineTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      RealD max_resid=0;
 | 
			
		||||
      RealD rrsum=0;
 | 
			
		||||
      RealD sssum=0;
 | 
			
		||||
      RealD rr;
 | 
			
		||||
 | 
			
		||||
      for(int b=0;b<nrhs;b++) {
 | 
			
		||||
	rrsum+=real(m_rr(b,b));
 | 
			
		||||
	sssum+=ssq[b];
 | 
			
		||||
	rr = real(m_rr(b,b))/ssq[b];
 | 
			
		||||
	if ( rr > max_resid ) max_resid = rr;
 | 
			
		||||
      }
 | 
			
		||||
      std::cout << GridLogMessage <<
 | 
			
		||||
	  "\t Prec BlockCGrQ Iteration "<<k<<" ave resid "<< std::sqrt(rrsum/sssum) << " max "<< std::sqrt(max_resid) <<std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      if ( max_resid < Tolerance*Tolerance ) { 
 | 
			
		||||
 | 
			
		||||
	HDCGTimer.Stop();
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Linalg  "<<LinalgTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : fine H  "<<M3Timer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : prec M1 "<<M1Timer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"**** M1 breakdown:"<<std::endl;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Project "<<ProjectTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Promote "<<PromoteTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Deflate "<<DeflateTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Coarse  "<<CoarseTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Fine    "<<FineTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Smooth  "<<SmoothTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Insert  "<<InsertTimer.Elapsed()<<std::endl;;
 | 
			
		||||
 | 
			
		||||
	for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
 | 
			
		||||
	  _FineLinop.HermOp(X[rhs],tmp[rhs]);			  
 | 
			
		||||
 | 
			
		||||
	  Field mytmp(grid);
 | 
			
		||||
	  axpy(mytmp,-1.0,src[rhs],tmp[rhs]);
 | 
			
		||||
      
 | 
			
		||||
	  RealD  xnorm   = sqrt(norm2(X[rhs]));
 | 
			
		||||
	  RealD  srcnorm = sqrt(norm2(src[rhs]));
 | 
			
		||||
	  RealD  tmpnorm = sqrt(norm2(mytmp));
 | 
			
		||||
	  RealD  true_residual = tmpnorm/srcnorm;
 | 
			
		||||
	  std::cout<<GridLogMessage
 | 
			
		||||
		   <<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
 | 
			
		||||
		   <<" solution "<<xnorm
 | 
			
		||||
		   <<" source "<<srcnorm
 | 
			
		||||
		   <<std::endl;
 | 
			
		||||
	}
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
    HDCGTimer.Stop();
 | 
			
		||||
    std::cout<<GridLogMessage<<"HDCG: PrecBlockCGrQ not converged "<<HDCGTimer.Elapsed()<<std::endl;
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void SolveSingleSystem (std::vector<Field> &src, std::vector<Field> &x)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
 | 
			
		||||
    src[0].Grid()->Barrier();
 | 
			
		||||
    int nrhs = src.size();
 | 
			
		||||
    std::vector<RealD> f(nrhs);
 | 
			
		||||
    std::vector<RealD> rtzp(nrhs);
 | 
			
		||||
    std::vector<RealD> rtz(nrhs);
 | 
			
		||||
    std::vector<RealD> a(nrhs);
 | 
			
		||||
    std::vector<RealD> d(nrhs);
 | 
			
		||||
    std::vector<RealD> b(nrhs);
 | 
			
		||||
    std::vector<RealD> rptzp(nrhs);
 | 
			
		||||
    /////////////////////////////
 | 
			
		||||
    // Set up history vectors
 | 
			
		||||
    /////////////////////////////
 | 
			
		||||
    int mmax = 3;
 | 
			
		||||
 | 
			
		||||
    std::vector<std::vector<Field> > p(nrhs);   for(int r=0;r<nrhs;r++)  p[r].resize(mmax,grid);
 | 
			
		||||
    std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid);
 | 
			
		||||
    std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax);
 | 
			
		||||
 | 
			
		||||
    std::vector<Field> z(nrhs,grid);
 | 
			
		||||
    std::vector<Field>  mp (nrhs,grid);
 | 
			
		||||
    std::vector<Field>  r  (nrhs,grid);
 | 
			
		||||
    std::vector<Field>  mu (nrhs,grid);
 | 
			
		||||
 | 
			
		||||
    //Initial residual computation & set up
 | 
			
		||||
    std::vector<RealD> src_nrm(nrhs);
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
			
		||||
      src_nrm[rhs]=norm2(src[rhs]);
 | 
			
		||||
      assert(src_nrm[rhs]!=0.0);
 | 
			
		||||
    }
 | 
			
		||||
    std::vector<RealD> tn(nrhs);
 | 
			
		||||
 | 
			
		||||
    GridStopWatch HDCGTimer;
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    // x0 = Vstart -- possibly modify guess
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    Vstart(x,src);
 | 
			
		||||
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
      // r0 = b -A x0
 | 
			
		||||
      _FineLinop.HermOp(x[rhs],mmp[rhs][0]);
 | 
			
		||||
      axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]);    // Recomputes r=src-Ax0
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // Compute z = M1 x
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // This needs a multiRHS version for acceleration
 | 
			
		||||
    PcgM1(r,z);
 | 
			
		||||
 | 
			
		||||
    std::vector<RealD> ssq(nrhs);
 | 
			
		||||
    std::vector<RealD> rsq(nrhs);
 | 
			
		||||
    std::vector<Field> pp(nrhs,grid);
 | 
			
		||||
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
      rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
 | 
			
		||||
      p[rhs][0]=z[rhs];
 | 
			
		||||
      ssq[rhs]=norm2(src[rhs]);
 | 
			
		||||
      rsq[rhs]=  ssq[rhs]*Tolerance*Tolerance;
 | 
			
		||||
      //      std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n";
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    ProjectTimer.Reset();
 | 
			
		||||
    PromoteTimer.Reset();
 | 
			
		||||
    DeflateTimer.Reset();
 | 
			
		||||
    CoarseTimer.Reset();
 | 
			
		||||
    SmoothTimer.Reset();
 | 
			
		||||
    FineTimer.Reset();
 | 
			
		||||
    InsertTimer.Reset();
 | 
			
		||||
 | 
			
		||||
    GridStopWatch M1Timer;
 | 
			
		||||
    GridStopWatch M2Timer;
 | 
			
		||||
    GridStopWatch M3Timer;
 | 
			
		||||
    GridStopWatch LinalgTimer;
 | 
			
		||||
 | 
			
		||||
    HDCGTimer.Start();
 | 
			
		||||
 | 
			
		||||
    std::vector<RealD> rn(nrhs);
 | 
			
		||||
    for (int k=0;k<=MaxIterations;k++){
 | 
			
		||||
    
 | 
			
		||||
      int peri_k  = k % mmax;
 | 
			
		||||
      int peri_kp = (k+1) % mmax;
 | 
			
		||||
 | 
			
		||||
      for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
	rtz[rhs]=rtzp[rhs];
 | 
			
		||||
	M3Timer.Start();
 | 
			
		||||
	d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]);
 | 
			
		||||
	M3Timer.Stop();
 | 
			
		||||
	a[rhs] = rtz[rhs]/d[rhs];
 | 
			
		||||
 | 
			
		||||
	LinalgTimer.Start();
 | 
			
		||||
	// Memorise this
 | 
			
		||||
	pAp[rhs][peri_k] = d[rhs];
 | 
			
		||||
 | 
			
		||||
	axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]);
 | 
			
		||||
	rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]);
 | 
			
		||||
	LinalgTimer.Stop();
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // Compute z = M x (for *all* RHS)
 | 
			
		||||
      M1Timer.Start();
 | 
			
		||||
      PcgM1(r,z);
 | 
			
		||||
      M1Timer.Stop();
 | 
			
		||||
      
 | 
			
		||||
      RealD max_rn=0.0;
 | 
			
		||||
      LinalgTimer.Start();
 | 
			
		||||
      for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
 | 
			
		||||
	rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
 | 
			
		||||
 | 
			
		||||
	//	std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n";
 | 
			
		||||
	mu[rhs]=z[rhs];
 | 
			
		||||
 | 
			
		||||
	p[rhs][peri_kp]=mu[rhs];
 | 
			
		||||
 | 
			
		||||
	// Standard search direction p == z + b p 
 | 
			
		||||
	b[rhs] = (rtzp[rhs])/rtz[rhs];
 | 
			
		||||
 | 
			
		||||
	int northog = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm
 | 
			
		||||
	for(int back=0; back < northog; back++){
 | 
			
		||||
	  int peri_back = (k-back)%mmax;
 | 
			
		||||
	  RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp]));
 | 
			
		||||
	  RealD beta = -pbApk/pAp[rhs][peri_back];
 | 
			
		||||
	  axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	RealD rrn=sqrt(rn[rhs]/ssq[rhs]);
 | 
			
		||||
	RealD rtn=sqrt(rtz[rhs]/ssq[rhs]);
 | 
			
		||||
	RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]);
 | 
			
		||||
	
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG:fPcg rhs "<<rhs<<" k= "<<k<<" residual = "<<rrn<<"\n";
 | 
			
		||||
	if ( rrn > max_rn ) max_rn = rrn;
 | 
			
		||||
      }
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      // Stopping condition based on worst case
 | 
			
		||||
      if ( max_rn <= Tolerance ) { 
 | 
			
		||||
 | 
			
		||||
	HDCGTimer.Stop();
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Linalg  "<<LinalgTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : fine M3 "<<M3Timer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : prec M1 "<<M1Timer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"**** M1 breakdown:"<<std::endl;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Project "<<ProjectTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Promote "<<PromoteTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Deflate "<<DeflateTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Coarse  "<<CoarseTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Fine    "<<FineTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Smooth  "<<SmoothTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Insert  "<<InsertTimer.Elapsed()<<std::endl;;
 | 
			
		||||
 | 
			
		||||
	for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
	  _FineLinop.HermOp(x[rhs],mmp[rhs][0]);			  
 | 
			
		||||
	  Field tmp(grid);
 | 
			
		||||
	  axpy(tmp,-1.0,src[rhs],mmp[rhs][0]);
 | 
			
		||||
      
 | 
			
		||||
	  RealD  mmpnorm = sqrt(norm2(mmp[rhs][0]));
 | 
			
		||||
	  RealD  xnorm   = sqrt(norm2(x[rhs]));
 | 
			
		||||
	  RealD  srcnorm = sqrt(norm2(src[rhs]));
 | 
			
		||||
	  RealD  tmpnorm = sqrt(norm2(tmp));
 | 
			
		||||
	  RealD  true_residual = tmpnorm/srcnorm;
 | 
			
		||||
	  std::cout<<GridLogMessage
 | 
			
		||||
		   <<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
 | 
			
		||||
		   <<" solution "<<xnorm
 | 
			
		||||
		   <<" source "<<srcnorm
 | 
			
		||||
		   <<" mmp "<<mmpnorm	  
 | 
			
		||||
		   <<std::endl;
 | 
			
		||||
	}
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
    HDCGTimer.Stop();
 | 
			
		||||
    std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
      RealD  xnorm   = sqrt(norm2(x[rhs]));
 | 
			
		||||
      RealD  srcnorm = sqrt(norm2(src[rhs]));
 | 
			
		||||
      std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
 public:
 | 
			
		||||
 | 
			
		||||
  virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out) = 0;
 | 
			
		||||
  virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src) = 0;
 | 
			
		||||
  virtual void PcgM2(const Field & in, Field & out) {
 | 
			
		||||
    out=in;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual RealD PcgM3(const Field & p, Field & mmp){
 | 
			
		||||
    RealD dd;
 | 
			
		||||
    _FineLinop.HermOp(p,mmp);
 | 
			
		||||
    ComplexD dot = innerProduct(p,mmp);
 | 
			
		||||
    dd=real(dot);
 | 
			
		||||
    return dd;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field, class CoarseField>
 | 
			
		||||
class TwoLevelADEF2mrhs : public TwoLevelCGmrhs<Field>
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  GridBase *coarsegrid;
 | 
			
		||||
  GridBase *coarsegridmrhs;
 | 
			
		||||
  LinearFunction<CoarseField> &_CoarseSolverMrhs;
 | 
			
		||||
  LinearFunction<CoarseField> &_CoarseSolverPreciseMrhs;
 | 
			
		||||
  MultiRHSBlockProject<Field>    &_Projector;
 | 
			
		||||
  MultiRHSDeflation<CoarseField> &_Deflator;
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  TwoLevelADEF2mrhs(RealD tol,
 | 
			
		||||
		    Integer maxit,
 | 
			
		||||
		    LinearOperatorBase<Field>    &FineLinop,
 | 
			
		||||
		    LinearFunction<Field>        &Smoother,
 | 
			
		||||
		    LinearFunction<CoarseField>  &CoarseSolverMrhs,
 | 
			
		||||
		    LinearFunction<CoarseField>  &CoarseSolverPreciseMrhs,
 | 
			
		||||
		    MultiRHSBlockProject<Field>    &Projector,
 | 
			
		||||
		    MultiRHSDeflation<CoarseField> &Deflator,
 | 
			
		||||
		    GridBase *_coarsemrhsgrid) :
 | 
			
		||||
    TwoLevelCGmrhs<Field>(tol, maxit,FineLinop,Smoother,Projector.fine_grid),
 | 
			
		||||
    _CoarseSolverMrhs(CoarseSolverMrhs),
 | 
			
		||||
    _CoarseSolverPreciseMrhs(CoarseSolverPreciseMrhs),
 | 
			
		||||
    _Projector(Projector),
 | 
			
		||||
    _Deflator(Deflator)
 | 
			
		||||
  {
 | 
			
		||||
    coarsegrid = Projector.coarse_grid;
 | 
			
		||||
    coarsegridmrhs = _coarsemrhsgrid;// Thi could be in projector
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  // Override Vstart
 | 
			
		||||
  virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src)
 | 
			
		||||
  {
 | 
			
		||||
    int nrhs=x.size();
 | 
			
		||||
    ///////////////////////////////////
 | 
			
		||||
    // Choose x_0 such that 
 | 
			
		||||
    // x_0 = guess +  (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
 | 
			
		||||
    //                               = [1 - Ass_inv A] Guess + Assinv src
 | 
			
		||||
    //                               = P^T guess + Assinv src 
 | 
			
		||||
    //                               = Vstart  [Tang notation]
 | 
			
		||||
    // This gives:
 | 
			
		||||
    // W^T (src - A x_0) = src_s - A guess_s - r_s
 | 
			
		||||
    //                   = src_s - (A guess)_s - src_s  + (A guess)_s 
 | 
			
		||||
    //                   = 0 
 | 
			
		||||
    ///////////////////////////////////
 | 
			
		||||
    std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid);
 | 
			
		||||
    std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid);
 | 
			
		||||
    CoarseField PleftProjMrhs(this->coarsegridmrhs);
 | 
			
		||||
    CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
 | 
			
		||||
 | 
			
		||||
    this->_Projector.blockProject(src,PleftProj);
 | 
			
		||||
    this->_Deflator.DeflateSources(PleftProj,PleftMss_proj);
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
			
		||||
      InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0);
 | 
			
		||||
      InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    this->_CoarseSolverPreciseMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} r_s
 | 
			
		||||
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
			
		||||
      ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0);
 | 
			
		||||
    }
 | 
			
		||||
    this->_Projector.blockPromote(x,PleftMss_proj);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out){
 | 
			
		||||
 | 
			
		||||
    int nrhs=in.size();
 | 
			
		||||
 | 
			
		||||
    // [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
 | 
			
		||||
    std::vector<Field> tmp(nrhs,this->grid);
 | 
			
		||||
    std::vector<Field> Min(nrhs,this->grid);
 | 
			
		||||
 | 
			
		||||
    std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid);
 | 
			
		||||
    std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid);
 | 
			
		||||
 | 
			
		||||
    CoarseField PleftProjMrhs(this->coarsegridmrhs);
 | 
			
		||||
    CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
 | 
			
		||||
 | 
			
		||||
    //    this->rrr=in[0];
 | 
			
		||||
 | 
			
		||||
#undef SMOOTHER_BLOCK_SOLVE
 | 
			
		||||
#if SMOOTHER_BLOCK_SOLVE
 | 
			
		||||
    this->SmoothTimer.Start();
 | 
			
		||||
    this->_Smoother(in,Min);
 | 
			
		||||
    this->SmoothTimer.Stop();
 | 
			
		||||
#else
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
			
		||||
      this->SmoothTimer.Start();
 | 
			
		||||
      this->_Smoother(in[rhs],Min[rhs]);
 | 
			
		||||
      this->SmoothTimer.Stop();
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
    //    this->sss=Min[0];
 | 
			
		||||
    
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
			
		||||
      
 | 
			
		||||
      this->FineTimer.Start();
 | 
			
		||||
      this->_FineLinop.HermOp(Min[rhs],out[rhs]);
 | 
			
		||||
      axpy(tmp[rhs],-1.0,out[rhs],in[rhs]);          // resid  = in - A Min
 | 
			
		||||
      this->FineTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    this->ProjectTimer.Start();
 | 
			
		||||
    this->_Projector.blockProject(tmp,PleftProj);
 | 
			
		||||
    this->ProjectTimer.Stop();
 | 
			
		||||
    this->DeflateTimer.Start();
 | 
			
		||||
    this->_Deflator.DeflateSources(PleftProj,PleftMss_proj);
 | 
			
		||||
    this->DeflateTimer.Stop();
 | 
			
		||||
    this->InsertTimer.Start();
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
			
		||||
      InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0);
 | 
			
		||||
      InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess
 | 
			
		||||
    }
 | 
			
		||||
    this->InsertTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    this->CoarseTimer.Start();
 | 
			
		||||
    this->_CoarseSolverMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} [in - A Min]_s
 | 
			
		||||
    this->CoarseTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    this->InsertTimer.Start();
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
			
		||||
      ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0);
 | 
			
		||||
    }
 | 
			
		||||
    this->InsertTimer.Stop();
 | 
			
		||||
    this->PromoteTimer.Start();
 | 
			
		||||
    this->_Projector.blockPromote(tmp,PleftMss_proj);// tmp= Q[in - A Min]  
 | 
			
		||||
    this->PromoteTimer.Stop();
 | 
			
		||||
    this->FineTimer.Start();
 | 
			
		||||
    //    this->qqq=tmp[0];
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
			
		||||
      axpy(out[rhs],1.0,Min[rhs],tmp[rhs]); // Min+tmp
 | 
			
		||||
    }
 | 
			
		||||
    //    this->zzz=out[0];
 | 
			
		||||
    this->FineTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -31,58 +31,6 @@ directory
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){
 | 
			
		||||
  typedef typename Field::scalar_type scomplex;
 | 
			
		||||
  int Nblock = X.size();
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
  for(int bp=0;bp<Nblock;bp++) {
 | 
			
		||||
    m(b,bp) = innerProduct(X[b],Y[bp]);  
 | 
			
		||||
  }}
 | 
			
		||||
}
 | 
			
		||||
template<class Field>
 | 
			
		||||
void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){
 | 
			
		||||
  // Should make this cache friendly with site outermost, parallel_for
 | 
			
		||||
  // Deal with case AP aliases with either Y or X
 | 
			
		||||
  //
 | 
			
		||||
  //Could pack "X" and "AP" into a Nblock x Volume dense array.
 | 
			
		||||
  // AP(Nrhs x vol) = Y(Nrhs x vol) + scale * m(nrhs x nrhs) * X(nrhs*vol)
 | 
			
		||||
  typedef typename Field::scalar_type scomplex;
 | 
			
		||||
  int Nblock = AP.size();
 | 
			
		||||
  std::vector<Field> tmp(Nblock,X[0]);
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
    tmp[b]   = Y[b];
 | 
			
		||||
    for(int bp=0;bp<Nblock;bp++) {
 | 
			
		||||
      tmp[b] = tmp[b] +scomplex(scale*m(bp,b))*X[bp]; 
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
    AP[b] = tmp[b];
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
template<class Field>
 | 
			
		||||
void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){
 | 
			
		||||
  // Should make this cache friendly with site outermost, parallel_for
 | 
			
		||||
  typedef typename Field::scalar_type scomplex;
 | 
			
		||||
  int Nblock = AP.size();
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
    AP[b] = Zero();
 | 
			
		||||
    for(int bp=0;bp<Nblock;bp++) {
 | 
			
		||||
      AP[b] += scomplex(m(bp,b))*X[bp]; 
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
template<class Field>
 | 
			
		||||
double normv(const std::vector<Field> &P){
 | 
			
		||||
  int Nblock = P.size();
 | 
			
		||||
  double nn = 0.0;
 | 
			
		||||
  for(int b=0;b<Nblock;b++) {
 | 
			
		||||
    nn+=norm2(P[b]);
 | 
			
		||||
  }
 | 
			
		||||
  return nn;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS, BlockCGVec, BlockCGrQVec };
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -139,19 +87,10 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
 | 
			
		||||
  sliceInnerProductMatrix(m_rr,R,R,Orthog);
 | 
			
		||||
 | 
			
		||||
  // Force manifest hermitian to avoid rounding related
 | 
			
		||||
  /*
 | 
			
		||||
  int rank=m_rr.rows();
 | 
			
		||||
  for(int r=0;r<rank;r++){
 | 
			
		||||
  for(int s=0;s<rank;s++){
 | 
			
		||||
    std::cout << "QR m_rr["<<r<<","<<s<<"] "<<m_rr(r,s)<<std::endl;
 | 
			
		||||
  }}
 | 
			
		||||
  */
 | 
			
		||||
  m_rr = 0.5*(m_rr+m_rr.adjoint());
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd L    = m_rr.llt().matrixL(); 
 | 
			
		||||
 | 
			
		||||
//  ComplexD det = L.determinant();
 | 
			
		||||
//  std::cout << " Det m_rr "<<det<<std::endl;
 | 
			
		||||
  C    = L.adjoint();
 | 
			
		||||
  Cinv = C.inverse();
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -171,20 +110,11 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
 | 
			
		||||
		 const std::vector<Field> & R)
 | 
			
		||||
{
 | 
			
		||||
  InnerProductMatrix(m_rr,R,R);
 | 
			
		||||
  /*
 | 
			
		||||
  int rank=m_rr.rows();
 | 
			
		||||
  for(int r=0;r<rank;r++){
 | 
			
		||||
  for(int s=0;s<rank;s++){
 | 
			
		||||
    std::cout << "QRvec m_rr["<<r<<","<<s<<"] "<<m_rr(r,s)<<std::endl;
 | 
			
		||||
  }}
 | 
			
		||||
  */
 | 
			
		||||
 | 
			
		||||
  m_rr = 0.5*(m_rr+m_rr.adjoint());
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd L    = m_rr.llt().matrixL(); 
 | 
			
		||||
 | 
			
		||||
  //  ComplexD det = L.determinant();
 | 
			
		||||
  //  std::cout << " Det m_rr "<<det<<std::endl;
 | 
			
		||||
 | 
			
		||||
  C    = L.adjoint();
 | 
			
		||||
  Cinv = C.inverse();
 | 
			
		||||
 | 
			
		||||
@@ -256,7 +186,6 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
 | 
			
		||||
  sliceNorm(ssq,B,Orthog);
 | 
			
		||||
  RealD sssum=0;
 | 
			
		||||
  for(int b=0;b<Nblock;b++) sssum+=ssq[b];
 | 
			
		||||
  for(int b=0;b<Nblock;b++) std::cout << "src["<<b<<"]" << ssq[b] <<std::endl;
 | 
			
		||||
 | 
			
		||||
  sliceNorm(residuals,B,Orthog);
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
			
		||||
@@ -292,9 +221,6 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
 | 
			
		||||
  Linop.HermOp(X, AD);
 | 
			
		||||
  tmp = B - AD;  
 | 
			
		||||
 | 
			
		||||
  sliceNorm(residuals,tmp,Orthog);
 | 
			
		||||
  for(int b=0;b<Nblock;b++) std::cout << "res["<<b<<"]" << residuals[b] <<std::endl;
 | 
			
		||||
  
 | 
			
		||||
  ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
 | 
			
		||||
  D=Q;
 | 
			
		||||
 | 
			
		||||
@@ -310,8 +236,6 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
 | 
			
		||||
  GridStopWatch SolverTimer;
 | 
			
		||||
  SolverTimer.Start();
 | 
			
		||||
 | 
			
		||||
  RealD max_resid=0;
 | 
			
		||||
 | 
			
		||||
  int k;
 | 
			
		||||
  for (k = 1; k <= MaxIterations; k++) {
 | 
			
		||||
 | 
			
		||||
@@ -356,7 +280,7 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
 | 
			
		||||
     */
 | 
			
		||||
    m_rr = m_C.adjoint() * m_C;
 | 
			
		||||
 | 
			
		||||
    max_resid=0;
 | 
			
		||||
    RealD max_resid=0;
 | 
			
		||||
    RealD rrsum=0;
 | 
			
		||||
    RealD rr;
 | 
			
		||||
 | 
			
		||||
@@ -398,9 +322,7 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge "<<k<<" / "<<MaxIterations
 | 
			
		||||
	    <<" residual "<< std::sqrt(max_resid)<< std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge" << std::endl;
 | 
			
		||||
 | 
			
		||||
  if (ErrorOnNoConverge) assert(0);
 | 
			
		||||
  IterationsToComplete = k;
 | 
			
		||||
@@ -544,6 +466,43 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &
 | 
			
		||||
  IterationsToComplete = k;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
  for(int bp=0;bp<Nblock;bp++) {
 | 
			
		||||
    m(b,bp) = innerProduct(X[b],Y[bp]);  
 | 
			
		||||
  }}
 | 
			
		||||
}
 | 
			
		||||
void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){
 | 
			
		||||
  // Should make this cache friendly with site outermost, parallel_for
 | 
			
		||||
  // Deal with case AP aliases with either Y or X
 | 
			
		||||
  std::vector<Field> tmp(Nblock,X[0]);
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
    tmp[b]   = Y[b];
 | 
			
		||||
    for(int bp=0;bp<Nblock;bp++) {
 | 
			
		||||
      tmp[b] = tmp[b] + scomplex(scale*m(bp,b))*X[bp]; 
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
    AP[b] = tmp[b];
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){
 | 
			
		||||
  // Should make this cache friendly with site outermost, parallel_for
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
    AP[b] = Zero();
 | 
			
		||||
    for(int bp=0;bp<Nblock;bp++) {
 | 
			
		||||
      AP[b] += scomplex(m(bp,b))*X[bp]; 
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
double normv(const std::vector<Field> &P){
 | 
			
		||||
  double nn = 0.0;
 | 
			
		||||
  for(int b=0;b<Nblock;b++) {
 | 
			
		||||
    nn+=norm2(P[b]);
 | 
			
		||||
  }
 | 
			
		||||
  return nn;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// BlockCGrQvec implementation:
 | 
			
		||||
//--------------------------
 | 
			
		||||
@@ -590,7 +549,6 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
 | 
			
		||||
 | 
			
		||||
  RealD sssum=0;
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ ssq[b] = norm2(B[b]);}
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ std::cout << "ssq["<<b<<"] "<<ssq[b]<<std::endl;}
 | 
			
		||||
  for(int b=0;b<Nblock;b++) sssum+=ssq[b];
 | 
			
		||||
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ residuals[b] = norm2(B[b]);}
 | 
			
		||||
@@ -627,7 +585,6 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
 | 
			
		||||
  for(int b=0;b<Nblock;b++) {
 | 
			
		||||
    Linop.HermOp(X[b], AD[b]);
 | 
			
		||||
    tmp[b] = B[b] - AD[b];  
 | 
			
		||||
    std::cout << "r0["<<b<<"] "<<norm2(tmp[b])<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
 | 
			
		||||
 
 | 
			
		||||
@@ -38,7 +38,6 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
// single input vec, single output vec.
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <class Field>
 | 
			
		||||
class ConjugateGradient : public OperatorFunction<Field> {
 | 
			
		||||
public:
 | 
			
		||||
@@ -55,26 +54,11 @@ public:
 | 
			
		||||
  ConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
 | 
			
		||||
    : Tolerance(tol),
 | 
			
		||||
      MaxIterations(maxit),
 | 
			
		||||
      ErrorOnNoConverge(err_on_no_conv)
 | 
			
		||||
  {};
 | 
			
		||||
      ErrorOnNoConverge(err_on_no_conv){};
 | 
			
		||||
 | 
			
		||||
  virtual void LogIteration(int k,RealD a,RealD b){
 | 
			
		||||
    //    std::cout << "ConjugageGradient::LogIteration() "<<std::endl;
 | 
			
		||||
  };
 | 
			
		||||
  virtual void LogBegin(void){
 | 
			
		||||
    std::cout << "ConjugageGradient::LogBegin() "<<std::endl;
 | 
			
		||||
  };
 | 
			
		||||
  void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
 | 
			
		||||
 | 
			
		||||
    void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
 | 
			
		||||
 | 
			
		||||
      this->LogBegin();
 | 
			
		||||
 | 
			
		||||
      GRID_TRACE("ConjugateGradient");
 | 
			
		||||
    GridStopWatch PreambleTimer;
 | 
			
		||||
    GridStopWatch ConstructTimer;
 | 
			
		||||
    GridStopWatch NormTimer;
 | 
			
		||||
    GridStopWatch AssignTimer;
 | 
			
		||||
    PreambleTimer.Start();
 | 
			
		||||
    GRID_TRACE("ConjugateGradient");
 | 
			
		||||
    psi.Checkerboard() = src.Checkerboard();
 | 
			
		||||
 | 
			
		||||
    conformable(psi, src);
 | 
			
		||||
@@ -82,32 +66,22 @@ public:
 | 
			
		||||
    RealD cp, c, a, d, b, ssq, qq;
 | 
			
		||||
    //RealD b_pred;
 | 
			
		||||
 | 
			
		||||
    // Was doing copies
 | 
			
		||||
    ConstructTimer.Start();
 | 
			
		||||
    Field p  (src.Grid());
 | 
			
		||||
    Field mmp(src.Grid());
 | 
			
		||||
    Field r  (src.Grid());
 | 
			
		||||
    ConstructTimer.Stop();
 | 
			
		||||
    Field p(src);
 | 
			
		||||
    Field mmp(src);
 | 
			
		||||
    Field r(src);
 | 
			
		||||
 | 
			
		||||
    // Initial residual computation & set up
 | 
			
		||||
    NormTimer.Start();
 | 
			
		||||
    ssq = norm2(src);
 | 
			
		||||
    RealD guess = norm2(psi);
 | 
			
		||||
    NormTimer.Stop();
 | 
			
		||||
    assert(std::isnan(guess) == 0);
 | 
			
		||||
    AssignTimer.Start();
 | 
			
		||||
    if ( guess == 0.0 ) {
 | 
			
		||||
      r = src;
 | 
			
		||||
      p = r;
 | 
			
		||||
      a = ssq;
 | 
			
		||||
    } else { 
 | 
			
		||||
      Linop.HermOpAndNorm(psi, mmp, d, b);
 | 
			
		||||
      r = src - mmp;
 | 
			
		||||
      p = r;
 | 
			
		||||
      a = norm2(p);
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    Linop.HermOpAndNorm(psi, mmp, d, b);
 | 
			
		||||
    
 | 
			
		||||
    r = src - mmp;
 | 
			
		||||
    p = r;
 | 
			
		||||
 | 
			
		||||
    a = norm2(p);
 | 
			
		||||
    cp = a;
 | 
			
		||||
    AssignTimer.Stop();
 | 
			
		||||
    ssq = norm2(src);
 | 
			
		||||
 | 
			
		||||
    // Handle trivial case of zero src
 | 
			
		||||
    if (ssq == 0.){
 | 
			
		||||
@@ -137,7 +111,6 @@ public:
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(8)
 | 
			
		||||
              << "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
 | 
			
		||||
 | 
			
		||||
    PreambleTimer.Stop();
 | 
			
		||||
    GridStopWatch LinalgTimer;
 | 
			
		||||
    GridStopWatch InnerTimer;
 | 
			
		||||
    GridStopWatch AxpyNormTimer;
 | 
			
		||||
@@ -183,7 +156,6 @@ public:
 | 
			
		||||
      }
 | 
			
		||||
      LinearCombTimer.Stop();
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
      LogIteration(k,a,b);
 | 
			
		||||
 | 
			
		||||
      IterationTimer.Stop();
 | 
			
		||||
      if ( (k % 500) == 0 ) {
 | 
			
		||||
@@ -211,14 +183,13 @@ public:
 | 
			
		||||
		  << "\tTrue residual " << true_residual
 | 
			
		||||
		  << "\tTarget " << Tolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
	//	std::cout << GridLogMessage << "\tPreamble   " << PreambleTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tSolver Elapsed    " << SolverTimer.Elapsed() <<std::endl;
 | 
			
		||||
        std::cout << GridLogPerformance << "Time breakdown "<<std::endl;
 | 
			
		||||
	std::cout << GridLogPerformance << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogPerformance << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogPerformance << "\t\tInner      " << InnerTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogPerformance << "\t\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "Time breakdown "<<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tInner      " << InnerTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl;
 | 
			
		||||
 | 
			
		||||
@@ -231,143 +202,17 @@ public:
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    // Failed. Calculate true residual before giving up                                                         
 | 
			
		||||
    // Linop.HermOpAndNorm(psi, mmp, d, qq);
 | 
			
		||||
    //    p = mmp - src;
 | 
			
		||||
    //TrueResidual = sqrt(norm2(p)/ssq);
 | 
			
		||||
    //    TrueResidual = 1;
 | 
			
		||||
    Linop.HermOpAndNorm(psi, mmp, d, qq);
 | 
			
		||||
    p = mmp - src;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations
 | 
			
		||||
    	      <<" residual "<< std::sqrt(cp / ssq)<< std::endl;
 | 
			
		||||
    SolverTimer.Stop();
 | 
			
		||||
    std::cout << GridLogMessage << "\tPreamble   " << PreambleTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tConstruct  " << ConstructTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tNorm       " << NormTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tAssign     " << AssignTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tSolver     " << SolverTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Solver breakdown "<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<< "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\t\tInner      " << InnerTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\t\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
 | 
			
		||||
    TrueResidual = sqrt(norm2(p)/ssq);
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations<< std::endl;
 | 
			
		||||
 | 
			
		||||
    if (ErrorOnNoConverge) assert(0);
 | 
			
		||||
    IterationsToComplete = k;
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <class Field>
 | 
			
		||||
class ConjugateGradientPolynomial : public ConjugateGradient<Field> {
 | 
			
		||||
public:
 | 
			
		||||
  // Optionally record the CG polynomial
 | 
			
		||||
  std::vector<double> ak;
 | 
			
		||||
  std::vector<double> bk;
 | 
			
		||||
  std::vector<double> poly_p;
 | 
			
		||||
  std::vector<double> poly_r;
 | 
			
		||||
  std::vector<double> poly_Ap;
 | 
			
		||||
  std::vector<double> polynomial;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  ConjugateGradientPolynomial(RealD tol, Integer maxit, bool err_on_no_conv = true)
 | 
			
		||||
    : ConjugateGradient<Field>(tol,maxit,err_on_no_conv)
 | 
			
		||||
  { };
 | 
			
		||||
  void PolyHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
 | 
			
		||||
  {
 | 
			
		||||
    Field tmp(src.Grid());
 | 
			
		||||
    Field AtoN(src.Grid());
 | 
			
		||||
    AtoN = src;
 | 
			
		||||
    psi=AtoN*polynomial[0];
 | 
			
		||||
    for(int n=1;n<polynomial.size();n++){
 | 
			
		||||
      tmp = AtoN;
 | 
			
		||||
      Linop.HermOp(tmp,AtoN);
 | 
			
		||||
      psi = psi + polynomial[n]*AtoN;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void CGsequenceHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &x)
 | 
			
		||||
  {
 | 
			
		||||
    Field Ap(src.Grid());
 | 
			
		||||
    Field r(src.Grid());
 | 
			
		||||
    Field p(src.Grid());
 | 
			
		||||
    p=src;
 | 
			
		||||
    r=src;
 | 
			
		||||
    x=Zero();
 | 
			
		||||
    x.Checkerboard()=src.Checkerboard();
 | 
			
		||||
    for(int k=0;k<ak.size();k++){
 | 
			
		||||
      x = x + ak[k]*p;
 | 
			
		||||
      Linop.HermOp(p,Ap);
 | 
			
		||||
      r = r - ak[k] * Ap;
 | 
			
		||||
      p = r + bk[k] * p;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void Solve(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
 | 
			
		||||
  {
 | 
			
		||||
    psi=Zero();
 | 
			
		||||
    this->operator ()(Linop,src,psi);
 | 
			
		||||
  }
 | 
			
		||||
  virtual void LogBegin(void)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << "ConjugageGradientPolynomial::LogBegin() "<<std::endl;
 | 
			
		||||
    ak.resize(0);
 | 
			
		||||
    bk.resize(0);
 | 
			
		||||
    polynomial.resize(0);
 | 
			
		||||
    poly_Ap.resize(0);
 | 
			
		||||
    poly_Ap.resize(0);
 | 
			
		||||
    poly_p.resize(1);
 | 
			
		||||
    poly_r.resize(1);
 | 
			
		||||
    poly_p[0]=1.0;
 | 
			
		||||
    poly_r[0]=1.0;
 | 
			
		||||
  };
 | 
			
		||||
  virtual void LogIteration(int k,RealD a,RealD b)
 | 
			
		||||
  {
 | 
			
		||||
    // With zero guess,
 | 
			
		||||
    // p = r = src
 | 
			
		||||
    //
 | 
			
		||||
    // iterate:
 | 
			
		||||
    //   x =  x + a p
 | 
			
		||||
    //   r =  r - a A p
 | 
			
		||||
    //   p =  r + b p
 | 
			
		||||
    //
 | 
			
		||||
    // [0]
 | 
			
		||||
    // r = x
 | 
			
		||||
    // p = x
 | 
			
		||||
    // Ap=0
 | 
			
		||||
    //
 | 
			
		||||
    // [1]
 | 
			
		||||
    // Ap = A x + 0  ==> shift poly P right by 1 and add 0.
 | 
			
		||||
    // x  = x + a p  ==> add polynomials term by term 
 | 
			
		||||
    // r  = r - a A p  ==> add polynomials term by term
 | 
			
		||||
    // p  = r + b p  ==> add polynomials term by term
 | 
			
		||||
    //
 | 
			
		||||
    std::cout << "ConjugageGradientPolynomial::LogIteration() "<<k<<std::endl;
 | 
			
		||||
    ak.push_back(a);
 | 
			
		||||
    bk.push_back(b);
 | 
			
		||||
    //  Ap= right_shift(p)
 | 
			
		||||
    poly_Ap.resize(k+1);
 | 
			
		||||
    poly_Ap[0]=0.0;
 | 
			
		||||
    for(int i=0;i<k;i++){
 | 
			
		||||
      poly_Ap[i+1]=poly_p[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    //  x = x + a p
 | 
			
		||||
    polynomial.resize(k);
 | 
			
		||||
    polynomial[k-1]=0.0;
 | 
			
		||||
    for(int i=0;i<k;i++){
 | 
			
		||||
      polynomial[i] = polynomial[i] + a * poly_p[i];
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    //  r = r - a Ap
 | 
			
		||||
    //  p = r + b p
 | 
			
		||||
    poly_r.resize(k+1);
 | 
			
		||||
    poly_p.resize(k+1);
 | 
			
		||||
    poly_r[k] = poly_p[k] = 0.0;
 | 
			
		||||
    for(int i=0;i<k+1;i++){
 | 
			
		||||
      poly_r[i] = poly_r[i] - a * poly_Ap[i];
 | 
			
		||||
      poly_p[i] = poly_r[i] + b * poly_p[i];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -116,14 +116,14 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
      //Compute double precision rsd and also new RHS vector.
 | 
			
		||||
      Linop_d.HermOp(sol_d, tmp_d);
 | 
			
		||||
      RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector
 | 
			
		||||
      std::cout<<GridLogMessage<<" rsd norm "<<norm<<std::endl;
 | 
			
		||||
      
 | 
			
		||||
      std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " <<outer_iter<<" residual "<< norm<< " target "<< stop<<std::endl;
 | 
			
		||||
 | 
			
		||||
      if(norm < OuterLoopNormMult * stop){
 | 
			
		||||
	std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration converged on iteration " <<outer_iter <<std::endl;
 | 
			
		||||
	break;
 | 
			
		||||
      }
 | 
			
		||||
      while(norm * inner_tol * inner_tol < stop*1.01) inner_tol *= 2;  // inner_tol = sqrt(stop/norm) ??
 | 
			
		||||
      while(norm * inner_tol * inner_tol < stop) inner_tol *= 2;  // inner_tol = sqrt(stop/norm) ??
 | 
			
		||||
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChange(src_f, src_d, pc_wk_dp_to_sp);
 | 
			
		||||
 
 | 
			
		||||
@@ -102,11 +102,11 @@ public:
 | 
			
		||||
    assert(mass.size()==nshift);
 | 
			
		||||
    assert(mresidual.size()==nshift);
 | 
			
		||||
  
 | 
			
		||||
    // remove dynamic sized arrays on stack; 2d is a pain with vector
 | 
			
		||||
    std::vector<RealD>  bs(nshift);
 | 
			
		||||
    std::vector<RealD>  rsq(nshift);
 | 
			
		||||
    std::vector<std::array<RealD,2> >  z(nshift);
 | 
			
		||||
    std::vector<int>     converged(nshift);
 | 
			
		||||
    // dynamic sized arrays on stack; 2d is a pain with vector
 | 
			
		||||
    RealD  bs[nshift];
 | 
			
		||||
    RealD  rsq[nshift];
 | 
			
		||||
    RealD  z[nshift][2];
 | 
			
		||||
    int     converged[nshift];
 | 
			
		||||
  
 | 
			
		||||
    const int       primary =0;
 | 
			
		||||
  
 | 
			
		||||
@@ -144,7 +144,7 @@ public:
 | 
			
		||||
    for(int s=0;s<nshift;s++){
 | 
			
		||||
      rsq[s] = cp * mresidual[s] * mresidual[s];
 | 
			
		||||
      std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s
 | 
			
		||||
	       <<" target resid^2 "<<rsq[s]<<std::endl;
 | 
			
		||||
	       <<" target resid "<<rsq[s]<<std::endl;
 | 
			
		||||
      ps[s] = src;
 | 
			
		||||
    }
 | 
			
		||||
    // r and p for primary
 | 
			
		||||
 
 | 
			
		||||
@@ -123,11 +123,11 @@ public:
 | 
			
		||||
    assert(mresidual.size()==nshift);
 | 
			
		||||
  
 | 
			
		||||
    // dynamic sized arrays on stack; 2d is a pain with vector
 | 
			
		||||
    std::vector<RealD>  bs(nshift);
 | 
			
		||||
    std::vector<RealD>  rsq(nshift);
 | 
			
		||||
    std::vector<RealD>  rsqf(nshift);
 | 
			
		||||
    std::vector<std::array<RealD,2> >  z(nshift);
 | 
			
		||||
    std::vector<int>     converged(nshift);
 | 
			
		||||
    RealD  bs[nshift];
 | 
			
		||||
    RealD  rsq[nshift];
 | 
			
		||||
    RealD  rsqf[nshift];
 | 
			
		||||
    RealD  z[nshift][2];
 | 
			
		||||
    int     converged[nshift];
 | 
			
		||||
  
 | 
			
		||||
    const int       primary =0;
 | 
			
		||||
  
 | 
			
		||||
 
 | 
			
		||||
@@ -156,11 +156,11 @@ public:
 | 
			
		||||
    assert(mresidual.size()==nshift);
 | 
			
		||||
  
 | 
			
		||||
    // dynamic sized arrays on stack; 2d is a pain with vector
 | 
			
		||||
    std::vector<RealD>  bs(nshift);
 | 
			
		||||
    std::vector<RealD>  rsq(nshift);
 | 
			
		||||
    std::vector<RealD>  rsqf(nshift);
 | 
			
		||||
    std::vector<std::array<RealD,2> >  z(nshift);
 | 
			
		||||
    std::vector<int>     converged(nshift);
 | 
			
		||||
    RealD  bs[nshift];
 | 
			
		||||
    RealD  rsq[nshift];
 | 
			
		||||
    RealD  rsqf[nshift];
 | 
			
		||||
    RealD  z[nshift][2];
 | 
			
		||||
    int     converged[nshift];
 | 
			
		||||
  
 | 
			
		||||
    const int       primary =0;
 | 
			
		||||
  
 | 
			
		||||
 
 | 
			
		||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							@@ -79,16 +79,14 @@ template<class Field> class ImplicitlyRestartedLanczosHermOpTester  : public Imp
 | 
			
		||||
    RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
 | 
			
		||||
 | 
			
		||||
    std::cout.precision(13);
 | 
			
		||||
 | 
			
		||||
    int conv=0;
 | 
			
		||||
    if( (vv<eresid*eresid) ) conv = 1;
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogIRL  << "[" << std::setw(3)<<j<<"] "
 | 
			
		||||
	     <<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
 | 
			
		||||
	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
 | 
			
		||||
	     <<" target " << eresid*eresid << " conv " <<conv
 | 
			
		||||
	     <<std::endl;
 | 
			
		||||
 | 
			
		||||
    int conv=0;
 | 
			
		||||
    if( (vv<eresid*eresid) ) conv = 1;
 | 
			
		||||
 | 
			
		||||
    return conv;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
@@ -245,10 +243,9 @@ until convergence
 | 
			
		||||
	_HermOp(src_n,tmp);
 | 
			
		||||
	//	std::cout << GridLogMessage<< tmp<<std::endl; exit(0);
 | 
			
		||||
	//	std::cout << GridLogIRL << " _HermOp " << norm2(tmp) << std::endl;
 | 
			
		||||
//	RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
 | 
			
		||||
	RealD vnum = real(innerProduct(tmp,tmp)); // HermOp^2.
 | 
			
		||||
	RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
 | 
			
		||||
	RealD vden = norm2(src_n);
 | 
			
		||||
	RealD na = std::sqrt(vnum/vden);
 | 
			
		||||
	RealD na = vnum/vden;
 | 
			
		||||
	if (fabs(evalMaxApprox/na - 1.0) < 0.0001)
 | 
			
		||||
	  i=_MAX_ITER_IRL_MEVAPP_;
 | 
			
		||||
	evalMaxApprox = na;
 | 
			
		||||
@@ -256,7 +253,6 @@ until convergence
 | 
			
		||||
	src_n = tmp;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogIRL << " Final evalMaxApprox  " << evalMaxApprox << std::endl;
 | 
			
		||||
	
 | 
			
		||||
    std::vector<RealD> lme(Nm);  
 | 
			
		||||
    std::vector<RealD> lme2(Nm);
 | 
			
		||||
@@ -461,7 +457,7 @@ until convergence
 | 
			
		||||
	    std::vector<Field>& evec,
 | 
			
		||||
	    Field& w,int Nm,int k)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout<<GridLogDebug << "Lanczos step " <<k<<std::endl;
 | 
			
		||||
    std::cout<<GridLogIRL << "Lanczos step " <<k<<std::endl;
 | 
			
		||||
    const RealD tiny = 1.0e-20;
 | 
			
		||||
    assert( k< Nm );
 | 
			
		||||
 | 
			
		||||
@@ -469,7 +465,7 @@ until convergence
 | 
			
		||||
 | 
			
		||||
    Field& evec_k = evec[k];
 | 
			
		||||
 | 
			
		||||
    _PolyOp(evec_k,w);    std::cout<<GridLogDebug << "PolyOp" <<std::endl;
 | 
			
		||||
    _PolyOp(evec_k,w);    std::cout<<GridLogIRL << "PolyOp" <<std::endl;
 | 
			
		||||
 | 
			
		||||
    if(k>0) w -= lme[k-1] * evec[k-1];
 | 
			
		||||
 | 
			
		||||
@@ -484,18 +480,18 @@ until convergence
 | 
			
		||||
    lme[k] = beta;
 | 
			
		||||
 | 
			
		||||
    if ( (k>0) && ( (k % orth_period) == 0 )) {
 | 
			
		||||
      std::cout<<GridLogDebug << "Orthogonalising " <<k<<std::endl;
 | 
			
		||||
      std::cout<<GridLogIRL << "Orthogonalising " <<k<<std::endl;
 | 
			
		||||
      orthogonalize(w,evec,k); // orthonormalise
 | 
			
		||||
      std::cout<<GridLogDebug << "Orthogonalised " <<k<<std::endl;
 | 
			
		||||
      std::cout<<GridLogIRL << "Orthogonalised " <<k<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if(k < Nm-1) evec[k+1] = w;
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogIRL << "Lanczos step alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
 | 
			
		||||
    std::cout<<GridLogIRL << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
 | 
			
		||||
    if ( beta < tiny ) 
 | 
			
		||||
      std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogDebug << "Lanczos step complete " <<k<<std::endl;
 | 
			
		||||
    std::cout<<GridLogIRL << "Lanczos step complete " <<k<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme, 
 | 
			
		||||
 
 | 
			
		||||
@@ -33,7 +33,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Take a matrix and form an NE solver calling a Herm solver
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Field> class NormalEquations : public LinearFunction<Field>{
 | 
			
		||||
template<class Field> class NormalEquations {
 | 
			
		||||
private:
 | 
			
		||||
  SparseMatrixBase<Field> & _Matrix;
 | 
			
		||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
			
		||||
@@ -60,33 +60,7 @@ public:
 | 
			
		||||
  }     
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field> class NormalResidual : public LinearFunction<Field>{
 | 
			
		||||
private:
 | 
			
		||||
  SparseMatrixBase<Field> & _Matrix;
 | 
			
		||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
			
		||||
  LinearFunction<Field>   & _Guess;
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
  // Wrap the usual normal equations trick
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
 NormalResidual(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver,
 | 
			
		||||
		 LinearFunction<Field> &Guess) 
 | 
			
		||||
   :  _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {}; 
 | 
			
		||||
 | 
			
		||||
  void operator() (const Field &in, Field &out){
 | 
			
		||||
 
 | 
			
		||||
    Field res(in.Grid());
 | 
			
		||||
    Field tmp(in.Grid());
 | 
			
		||||
 | 
			
		||||
    MMdagLinearOperator<SparseMatrixBase<Field>,Field> MMdagOp(_Matrix);
 | 
			
		||||
    _Guess(in,res);
 | 
			
		||||
    _HermitianSolver(MMdagOp,in,res);  // M Mdag res = in ;
 | 
			
		||||
    _Matrix.Mdag(res,out);             // out = Mdag res
 | 
			
		||||
  }     
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field> class HPDSolver : public LinearFunction<Field> {
 | 
			
		||||
template<class Field> class HPDSolver {
 | 
			
		||||
private:
 | 
			
		||||
  LinearOperatorBase<Field> & _Matrix;
 | 
			
		||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
			
		||||
@@ -104,13 +78,13 @@ public:
 | 
			
		||||
  void operator() (const Field &in, Field &out){
 | 
			
		||||
 
 | 
			
		||||
    _Guess(in,out);
 | 
			
		||||
    _HermitianSolver(_Matrix,in,out);  //M out = in
 | 
			
		||||
    _HermitianSolver(_Matrix,in,out);  // Mdag M out = Mdag in
 | 
			
		||||
 | 
			
		||||
  }     
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class Field> class MdagMSolver : public LinearFunction<Field> {
 | 
			
		||||
template<class Field> class MdagMSolver {
 | 
			
		||||
private:
 | 
			
		||||
  SparseMatrixBase<Field> & _Matrix;
 | 
			
		||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
			
		||||
 
 | 
			
		||||
@@ -20,7 +20,7 @@ template<class Field> class PowerMethod
 | 
			
		||||
    RealD evalMaxApprox = 0.0; 
 | 
			
		||||
    auto src_n = src; 
 | 
			
		||||
    auto tmp = src; 
 | 
			
		||||
    const int _MAX_ITER_EST_ = 200; 
 | 
			
		||||
    const int _MAX_ITER_EST_ = 50; 
 | 
			
		||||
 | 
			
		||||
    for (int i=0;i<_MAX_ITER_EST_;i++) { 
 | 
			
		||||
      
 | 
			
		||||
@@ -30,17 +30,18 @@ template<class Field> class PowerMethod
 | 
			
		||||
      RealD vden = norm2(src_n); 
 | 
			
		||||
      RealD na = vnum/vden; 
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
 | 
			
		||||
      std::cout << GridLogIterative << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
 | 
			
		||||
      
 | 
			
		||||
      //      if ( (fabs(evalMaxApprox/na - 1.0) < 0.0001) || (i==_MAX_ITER_EST_-1) ) { 
 | 
			
		||||
	// 	evalMaxApprox = na; 
 | 
			
		||||
	// 	return evalMaxApprox; 
 | 
			
		||||
      //      } 
 | 
			
		||||
      if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) { 
 | 
			
		||||
 	evalMaxApprox = na; 
 | 
			
		||||
	std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
 | 
			
		||||
 	return evalMaxApprox; 
 | 
			
		||||
      } 
 | 
			
		||||
      evalMaxApprox = na; 
 | 
			
		||||
      src_n = tmp;
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
 | 
			
		||||
    return evalMaxApprox;
 | 
			
		||||
    assert(0);
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -1,76 +0,0 @@
 | 
			
		||||
#pragma once
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
class Band
 | 
			
		||||
{
 | 
			
		||||
  RealD lo, hi;
 | 
			
		||||
public:
 | 
			
		||||
  Band(RealD _lo,RealD _hi)
 | 
			
		||||
  {
 | 
			
		||||
    lo=_lo;
 | 
			
		||||
    hi=_hi;
 | 
			
		||||
  }
 | 
			
		||||
  RealD operator() (RealD x){
 | 
			
		||||
    if ( x>lo && x<hi ){
 | 
			
		||||
      return 1.0;
 | 
			
		||||
    } else {
 | 
			
		||||
      return 0.0;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
class PowerSpectrum
 | 
			
		||||
{ 
 | 
			
		||||
 public: 
 | 
			
		||||
 | 
			
		||||
  template<typename T>  static RealD normalise(T& v) 
 | 
			
		||||
  {
 | 
			
		||||
    RealD nn = norm2(v);
 | 
			
		||||
    nn = sqrt(nn);
 | 
			
		||||
    v = v * (1.0/nn);
 | 
			
		||||
    return nn;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::vector<RealD> ranges;
 | 
			
		||||
  std::vector<int> order;
 | 
			
		||||
  
 | 
			
		||||
  PowerSpectrum(  std::vector<RealD> &bins, std::vector<int> &_order ) : ranges(bins), order(_order)  { };
 | 
			
		||||
 | 
			
		||||
  template<class Field>
 | 
			
		||||
  RealD operator()(LinearOperatorBase<Field> &HermOp, const Field &src) 
 | 
			
		||||
  { 
 | 
			
		||||
    GridBase *grid = src.Grid(); 
 | 
			
		||||
    int N=ranges.size();
 | 
			
		||||
    RealD hi = ranges[N-1];
 | 
			
		||||
 | 
			
		||||
    RealD lo_band = 0.0;
 | 
			
		||||
    RealD hi_band;
 | 
			
		||||
    RealD nn=norm2(src);
 | 
			
		||||
    RealD ss=0.0;
 | 
			
		||||
 | 
			
		||||
    Field tmp = src;
 | 
			
		||||
 | 
			
		||||
    for(int b=0;b<N;b++){
 | 
			
		||||
      hi_band = ranges[b];
 | 
			
		||||
      Band Notch(lo_band,hi_band);
 | 
			
		||||
      
 | 
			
		||||
      Chebyshev<Field> polynomial;
 | 
			
		||||
      polynomial.Init(0.0,hi,order[b],Notch);
 | 
			
		||||
      polynomial.JacksonSmooth();
 | 
			
		||||
 | 
			
		||||
      polynomial(HermOp,src,tmp) ;
 | 
			
		||||
 | 
			
		||||
      RealD p=norm2(tmp);
 | 
			
		||||
      ss=ss+p;
 | 
			
		||||
      std::cout << GridLogMessage << " PowerSpectrum Band["<<lo_band<<","<<hi_band<<"] power "<<norm2(tmp)/nn<<std::endl;
 | 
			
		||||
      
 | 
			
		||||
      lo_band=hi_band;
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << " PowerSpectrum total power "<<ss/nn<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " PowerSpectrum total power (unnormalised) "<<nn<<std::endl;
 | 
			
		||||
 | 
			
		||||
    return 0;
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
  
 | 
			
		||||
}
 | 
			
		||||
@@ -74,7 +74,7 @@ public:
 | 
			
		||||
 | 
			
		||||
  void operator() (const Field &src, Field &psi){
 | 
			
		||||
 | 
			
		||||
    //    psi=Zero();
 | 
			
		||||
    psi=Zero();
 | 
			
		||||
    RealD cp, ssq,rsq;
 | 
			
		||||
    ssq=norm2(src);
 | 
			
		||||
    rsq=Tolerance*Tolerance*ssq;
 | 
			
		||||
 
 | 
			
		||||
@@ -499,87 +499,6 @@ namespace Grid {
 | 
			
		||||
      }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Site diagonal is identity, left preconditioned by Mee^inv
 | 
			
		||||
  // ( 1 - Mee^inv Meo Moo^inv Moe ) phi = Mee_inv ( Mee - Meo Moo^inv Moe Mee^inv  ) phi =  Mee_inv eta
 | 
			
		||||
  //
 | 
			
		||||
  // Solve:
 | 
			
		||||
  // ( 1 - Mee^inv Meo Moo^inv Moe )^dag ( 1 - Mee^inv Meo Moo^inv Moe ) phi = ( 1 - Mee^inv Meo Moo^inv Moe )^dag  Mee_inv eta
 | 
			
		||||
  //
 | 
			
		||||
  // Old notation e<->o
 | 
			
		||||
  //
 | 
			
		||||
  // Left precon by Moo^-1
 | 
			
		||||
  //  b) (Doo^{dag} M_oo^-dag) (Moo^-1 Doo) psi_o =  [ (D_oo)^dag M_oo^-dag ] Moo^-1 L^{-1}  eta_o
 | 
			
		||||
  //                                   eta_o'     = (D_oo)^dag  M_oo^-dag Moo^-1 (eta_o - Moe Mee^{-1} eta_e)
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template<class Field> class SchurRedBlackDiagOneSolve : public SchurRedBlackBase<Field> {
 | 
			
		||||
  public:
 | 
			
		||||
    typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////
 | 
			
		||||
    // Wrap the usual normal equations Schur trick
 | 
			
		||||
    /////////////////////////////////////////////////////
 | 
			
		||||
  SchurRedBlackDiagOneSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
 | 
			
		||||
      const bool _solnAsInitGuess = false)  
 | 
			
		||||
    : SchurRedBlackBase<Field>(HermitianRBSolver,initSubGuess,_solnAsInitGuess) {};
 | 
			
		||||
 | 
			
		||||
    virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
 | 
			
		||||
    {
 | 
			
		||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
			
		||||
      GridBase *fgrid= _Matrix.Grid();
 | 
			
		||||
 | 
			
		||||
      SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
			
		||||
      
 | 
			
		||||
      Field   tmp(grid);
 | 
			
		||||
      Field  Mtmp(grid);
 | 
			
		||||
 | 
			
		||||
      pickCheckerboard(Even,src_e,src);
 | 
			
		||||
      pickCheckerboard(Odd ,src_o,src);
 | 
			
		||||
    
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      // src_o = Mpcdag *MooeeInv * (source_o - Moe MeeInv source_e)
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.Checkerboard() ==Odd);     
 | 
			
		||||
      Mtmp=src_o-Mtmp;                 
 | 
			
		||||
      _Matrix.MooeeInv(Mtmp,tmp);      assert( tmp.Checkerboard() ==Odd);     
 | 
			
		||||
      
 | 
			
		||||
      // get the right MpcDag
 | 
			
		||||
      _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.Checkerboard() ==Odd);       
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
 | 
			
		||||
    {
 | 
			
		||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
			
		||||
      GridBase *fgrid= _Matrix.Grid();
 | 
			
		||||
 | 
			
		||||
      Field   tmp(grid);
 | 
			
		||||
      Field   sol_e(grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.Meooe(sol_o,tmp);    assert(  tmp.Checkerboard()   ==Even);
 | 
			
		||||
      tmp = src_e-tmp;             assert(  src_e.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.MooeeInv(tmp,sol_e); assert(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
     
 | 
			
		||||
      setCheckerboard(sol,sol_e);  assert(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
      setCheckerboard(sol,sol_o);  assert(  sol_o.Checkerboard() ==Odd );
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o)
 | 
			
		||||
    {
 | 
			
		||||
      SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
			
		||||
      this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
 | 
			
		||||
    };
 | 
			
		||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o)
 | 
			
		||||
    {
 | 
			
		||||
      SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
			
		||||
      this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); 
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Site diagonal is identity, right preconditioned by Mee^inv
 | 
			
		||||
  // ( 1 - Meo Moo^inv Moe Mee^inv  ) phi =( 1 - Meo Moo^inv Moe Mee^inv  ) Mee psi =  = eta  = eta
 | 
			
		||||
 
 | 
			
		||||
@@ -1,608 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/Aggregates.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidualNonHermitian.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
inline RealD AggregatePowerLaw(RealD x)
 | 
			
		||||
{
 | 
			
		||||
  //  return std::pow(x,-4);
 | 
			
		||||
  //  return std::pow(x,-3);
 | 
			
		||||
  return std::pow(x,-5);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class Aggregation {
 | 
			
		||||
public:
 | 
			
		||||
  constexpr int Nbasis(void) { return nbasis; };
 | 
			
		||||
  
 | 
			
		||||
  typedef iVector<CComplex,nbasis >             siteVector;
 | 
			
		||||
  typedef Lattice<siteVector>                 CoarseVector;
 | 
			
		||||
  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<Fobj >        FineField;
 | 
			
		||||
 | 
			
		||||
  GridBase *CoarseGrid;
 | 
			
		||||
  GridBase *FineGrid;
 | 
			
		||||
  std::vector<Lattice<Fobj> > subspace;
 | 
			
		||||
  int checkerboard;
 | 
			
		||||
  int Checkerboard(void){return checkerboard;}
 | 
			
		||||
  Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) : 
 | 
			
		||||
    CoarseGrid(_CoarseGrid),
 | 
			
		||||
    FineGrid(_FineGrid),
 | 
			
		||||
    subspace(nbasis,_FineGrid),
 | 
			
		||||
    checkerboard(_checkerboard)
 | 
			
		||||
  {
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
  
 | 
			
		||||
  void Orthogonalise(void){
 | 
			
		||||
    CoarseScalar InnerProd(CoarseGrid); 
 | 
			
		||||
    //    std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
 | 
			
		||||
    blockOrthogonalise(InnerProd,subspace);
 | 
			
		||||
  } 
 | 
			
		||||
  void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
 | 
			
		||||
    blockProject(CoarseVec,FineVec,subspace);
 | 
			
		||||
  }
 | 
			
		||||
  void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
 | 
			
		||||
    FineVec.Checkerboard() = subspace[0].Checkerboard();
 | 
			
		||||
    blockPromote(CoarseVec,FineVec,subspace);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspaceRandom(GridParallelRNG  &RNG) {
 | 
			
		||||
    int nn=nbasis;
 | 
			
		||||
    RealD scale;
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    for(int b=0;b<nn;b++){
 | 
			
		||||
      subspace[b] = Zero();
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
      subspace[b] = noise;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  virtual void CreateSubspace(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis)
 | 
			
		||||
  {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    ConjugateGradient<FineField> CG(1.0e-3,400,false);
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
 | 
			
		||||
    for(int b=0;b<nn;b++){
 | 
			
		||||
      
 | 
			
		||||
      subspace[b] = Zero();
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
      
 | 
			
		||||
      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<4;i++){
 | 
			
		||||
 | 
			
		||||
	CG(hermop,noise,subspace[b]);
 | 
			
		||||
 | 
			
		||||
	noise = subspace[b];
 | 
			
		||||
	scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
	noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
      subspace[b]   = noise;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspaceGCR(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &DiracOp,int nn=nbasis)
 | 
			
		||||
  {
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    TrivialPrecon<FineField> simple_fine;
 | 
			
		||||
    PrecGeneralisedConjugateResidualNonHermitian<FineField> GCR(0.001,30,DiracOp,simple_fine,12,12);
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField src(FineGrid);
 | 
			
		||||
    FineField guess(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
 | 
			
		||||
    for(int b=0;b<nn;b++){
 | 
			
		||||
      
 | 
			
		||||
      subspace[b] = Zero();
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
      
 | 
			
		||||
      DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|Op|n> "<<innerProduct(noise,Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<2;i++){
 | 
			
		||||
	//  void operator() (const Field &src, Field &psi){
 | 
			
		||||
#if 1
 | 
			
		||||
	std::cout << GridLogMessage << " inverting on noise "<<std::endl;
 | 
			
		||||
	src = noise;
 | 
			
		||||
	guess=Zero();
 | 
			
		||||
	GCR(src,guess);
 | 
			
		||||
	subspace[b] = guess;
 | 
			
		||||
#else
 | 
			
		||||
	std::cout << GridLogMessage << " inverting on zero "<<std::endl;
 | 
			
		||||
	src=Zero();
 | 
			
		||||
	guess = noise;
 | 
			
		||||
	GCR(src,guess);
 | 
			
		||||
	subspace[b] = guess;
 | 
			
		||||
#endif
 | 
			
		||||
	noise = subspace[b];
 | 
			
		||||
	scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
	noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|Op|f> "<<innerProduct(noise,Mn)<<std::endl;
 | 
			
		||||
      subspace[b]   = noise;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
 | 
			
		||||
  // and this is the best I found
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
				       int nn,
 | 
			
		||||
				       double hi,
 | 
			
		||||
				       double lo,
 | 
			
		||||
				       int orderfilter,
 | 
			
		||||
				       int ordermin,
 | 
			
		||||
				       int orderstep,
 | 
			
		||||
				       double filterlo
 | 
			
		||||
				       ) {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
 | 
			
		||||
    // New normalised noise
 | 
			
		||||
    gaussian(RNG,noise);
 | 
			
		||||
    scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
    noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage<<" Chebyshev subspace pass-1 : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<" Chebyshev subspace pass-2 : nbasis"<<nn<<" min "
 | 
			
		||||
	      <<ordermin<<" step "<<orderstep
 | 
			
		||||
	      <<" lo"<<filterlo<<std::endl;
 | 
			
		||||
 | 
			
		||||
    // Initial matrix element
 | 
			
		||||
    hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
    int b =0;
 | 
			
		||||
    {
 | 
			
		||||
      ComplexD ip;
 | 
			
		||||
      // Filter
 | 
			
		||||
      Chebyshev<FineField> Cheb(lo,hi,orderfilter);
 | 
			
		||||
      Cheb(hermop,noise,Mn);
 | 
			
		||||
      // normalise
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
			
		||||
      subspace[b]   = Mn;
 | 
			
		||||
 | 
			
		||||
      hermop.Op(Mn,tmp);
 | 
			
		||||
      ip= innerProduct(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
 | 
			
		||||
 | 
			
		||||
      hermop.AdjOp(Mn,tmp); 
 | 
			
		||||
      ip = innerProduct(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
 | 
			
		||||
      b++;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Generate a full sequence of Chebyshevs
 | 
			
		||||
    {
 | 
			
		||||
      lo=filterlo;
 | 
			
		||||
      noise=Mn;
 | 
			
		||||
 | 
			
		||||
      FineField T0(FineGrid); T0 = noise;  
 | 
			
		||||
      FineField T1(FineGrid); 
 | 
			
		||||
      FineField T2(FineGrid);
 | 
			
		||||
      FineField y(FineGrid);
 | 
			
		||||
      
 | 
			
		||||
      FineField *Tnm = &T0;
 | 
			
		||||
      FineField *Tn  = &T1;
 | 
			
		||||
      FineField *Tnp = &T2;
 | 
			
		||||
 | 
			
		||||
      // Tn=T1 = (xscale M + mscale)in
 | 
			
		||||
      RealD xscale = 2.0/(hi-lo);
 | 
			
		||||
      RealD mscale = -(hi+lo)/(hi-lo);
 | 
			
		||||
      hermop.HermOp(T0,y);
 | 
			
		||||
      T1=y*xscale+noise*mscale;
 | 
			
		||||
 | 
			
		||||
      for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
 | 
			
		||||
	
 | 
			
		||||
	hermop.HermOp(*Tn,y);
 | 
			
		||||
 | 
			
		||||
	autoView( y_v , y, AcceleratorWrite);
 | 
			
		||||
	autoView( Tn_v , (*Tn), AcceleratorWrite);
 | 
			
		||||
	autoView( Tnp_v , (*Tnp), AcceleratorWrite);
 | 
			
		||||
	autoView( Tnm_v , (*Tnm), AcceleratorWrite);
 | 
			
		||||
	const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
	accelerator_for(ss, FineGrid->oSites(), Nsimd, {
 | 
			
		||||
	  coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
 | 
			
		||||
	  coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
 | 
			
		||||
        });
 | 
			
		||||
 | 
			
		||||
	// Possible more fine grained control is needed than a linear sweep,
 | 
			
		||||
	// but huge productivity gain if this is simple algorithm and not a tunable
 | 
			
		||||
	int m =1;
 | 
			
		||||
	if ( n>=ordermin ) m=n-ordermin;
 | 
			
		||||
	if ( (m%orderstep)==0 ) { 
 | 
			
		||||
	  Mn=*Tnp;
 | 
			
		||||
	  scale = std::pow(norm2(Mn),-0.5);         Mn=Mn*scale;
 | 
			
		||||
	  subspace[b] = Mn;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	  ComplexD ip;
 | 
			
		||||
 | 
			
		||||
	  hermop.Op(Mn,tmp);
 | 
			
		||||
	  ip= innerProduct(Mn,tmp); 
 | 
			
		||||
	  std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
 | 
			
		||||
 | 
			
		||||
	  hermop.AdjOp(Mn,tmp); 
 | 
			
		||||
	  ip = innerProduct(Mn,tmp); 
 | 
			
		||||
	  std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
 | 
			
		||||
	  
 | 
			
		||||
	  b++;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Cycle pointers to avoid copies
 | 
			
		||||
	FineField *swizzle = Tnm;
 | 
			
		||||
	Tnm    =Tn;
 | 
			
		||||
	Tn     =Tnp;
 | 
			
		||||
	Tnp    =swizzle;
 | 
			
		||||
	  
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    assert(b==nn);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspacePolyCheby(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
				       int nn,
 | 
			
		||||
				       double hi,
 | 
			
		||||
				       double lo1,
 | 
			
		||||
				       int orderfilter,
 | 
			
		||||
				       double lo2,
 | 
			
		||||
				       int orderstep)
 | 
			
		||||
  {
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
 | 
			
		||||
    // New normalised noise
 | 
			
		||||
    gaussian(RNG,noise);
 | 
			
		||||
    scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
    noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage<<" CreateSubspacePolyCheby "<<std::endl;
 | 
			
		||||
    // Initial matrix element
 | 
			
		||||
    hermop.Op(noise,Mn);
 | 
			
		||||
    std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
    int b =0;
 | 
			
		||||
    {
 | 
			
		||||
      // Filter
 | 
			
		||||
      std::cout << GridLogMessage << "Cheby "<<lo1<<","<<hi<<" "<<orderstep<<std::endl;
 | 
			
		||||
      Chebyshev<FineField> Cheb(lo1,hi,orderfilter);
 | 
			
		||||
      Cheb(hermop,noise,Mn);
 | 
			
		||||
      // normalise
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
			
		||||
      subspace[b]   = Mn;
 | 
			
		||||
      hermop.Op(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Generate a full sequence of Chebyshevs
 | 
			
		||||
    for(int n=1;n<nn;n++){
 | 
			
		||||
      std::cout << GridLogMessage << "Cheby "<<lo2<<","<<hi<<" "<<orderstep<<std::endl;
 | 
			
		||||
      Chebyshev<FineField> Cheb(lo2,hi,orderstep);
 | 
			
		||||
      Cheb(hermop,subspace[n-1],Mn);
 | 
			
		||||
 | 
			
		||||
      for(int m=0;m<n;m++){
 | 
			
		||||
	ComplexD c = innerProduct(subspace[m],Mn);
 | 
			
		||||
	Mn = Mn - c*subspace[m];
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      // normalise
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5);
 | 
			
		||||
      Mn=Mn*scale;
 | 
			
		||||
      
 | 
			
		||||
      subspace[n]=Mn;
 | 
			
		||||
      
 | 
			
		||||
      hermop.Op(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<n<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<n<<"] <n|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
				       int nn,
 | 
			
		||||
				       double hi,
 | 
			
		||||
				       double lo,
 | 
			
		||||
				       int orderfilter
 | 
			
		||||
				       ) {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
 | 
			
		||||
    // New normalised noise
 | 
			
		||||
    std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<" Chebyshev subspace pure noise  : nbasis "<<nn<<std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    for(int b =0;b<nbasis;b++)
 | 
			
		||||
    {
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
      // Initial matrix element
 | 
			
		||||
      hermop.Op(noise,Mn);
 | 
			
		||||
      if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      // Filter
 | 
			
		||||
      Chebyshev<FineField> Cheb(lo,hi,orderfilter);
 | 
			
		||||
      Cheb(hermop,noise,Mn);
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
			
		||||
 | 
			
		||||
      // Refine
 | 
			
		||||
      Chebyshev<FineField> PowerLaw(lo,hi,1000,AggregatePowerLaw);
 | 
			
		||||
      noise = Mn;
 | 
			
		||||
      PowerLaw(hermop,noise,Mn);
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
			
		||||
 | 
			
		||||
      // normalise
 | 
			
		||||
      subspace[b]   = Mn;
 | 
			
		||||
      hermop.Op(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspaceChebyshevPowerLaw(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
					       int nn,
 | 
			
		||||
					       double hi,
 | 
			
		||||
					       int orderfilter
 | 
			
		||||
					       ) {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
 | 
			
		||||
    // New normalised noise
 | 
			
		||||
    std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" [0,"<<hi<<"]"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<" Chebyshev subspace pure noise  : nbasis "<<nn<<std::endl;
 | 
			
		||||
 | 
			
		||||
    for(int b =0;b<nbasis;b++)
 | 
			
		||||
    {
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
      // Initial matrix element
 | 
			
		||||
      hermop.Op(noise,Mn);
 | 
			
		||||
      if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
      // Filter
 | 
			
		||||
      Chebyshev<FineField> Cheb(0.0,hi,orderfilter,AggregatePowerLaw);
 | 
			
		||||
      Cheb(hermop,noise,Mn);
 | 
			
		||||
      // normalise
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
			
		||||
      subspace[b]   = Mn;
 | 
			
		||||
      hermop.Op(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  virtual void CreateSubspaceChebyshevNew(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
					  double hi
 | 
			
		||||
					  ) {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
 | 
			
		||||
    // New normalised noise
 | 
			
		||||
    for(int b =0;b<nbasis;b++)
 | 
			
		||||
    {
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
      // Initial matrix element
 | 
			
		||||
      hermop.Op(noise,Mn);
 | 
			
		||||
      if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
      // Filter
 | 
			
		||||
      //#opt2(x) =  acheb(x,3,90,300)* acheb(x,1,90,50) * acheb(x,0.5,90,200) * acheb(x,0.05,90,400) * acheb(x,0.01,90,1500)
 | 
			
		||||
      /*266
 | 
			
		||||
      Chebyshev<FineField> Cheb1(3.0,hi,300);
 | 
			
		||||
      Chebyshev<FineField> Cheb2(1.0,hi,50);
 | 
			
		||||
      Chebyshev<FineField> Cheb3(0.5,hi,300);
 | 
			
		||||
      Chebyshev<FineField> Cheb4(0.05,hi,500);
 | 
			
		||||
      Chebyshev<FineField> Cheb5(0.01,hi,2000);
 | 
			
		||||
      */
 | 
			
		||||
      /* 242 */
 | 
			
		||||
      /*
 | 
			
		||||
      Chebyshev<FineField> Cheb3(0.1,hi,300);
 | 
			
		||||
      Chebyshev<FineField> Cheb2(0.02,hi,1000);
 | 
			
		||||
      Chebyshev<FineField> Cheb1(0.003,hi,2000);
 | 
			
		||||
      8?
 | 
			
		||||
      */
 | 
			
		||||
      /* How many??
 | 
			
		||||
      */
 | 
			
		||||
      Chebyshev<FineField> Cheb2(0.001,hi,2500); // 169 iters on HDCG after refine
 | 
			
		||||
      Chebyshev<FineField> Cheb1(0.02,hi,600);
 | 
			
		||||
 | 
			
		||||
      //      Chebyshev<FineField> Cheb2(0.001,hi,1500);
 | 
			
		||||
      //      Chebyshev<FineField> Cheb1(0.02,hi,600);
 | 
			
		||||
      Cheb1(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale;
 | 
			
		||||
      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb1 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
      Cheb2(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale;
 | 
			
		||||
      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb2 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
      //      Cheb3(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale;
 | 
			
		||||
      //      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb3 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
      //      Cheb4(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale;
 | 
			
		||||
      //      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb4 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
      //      Cheb5(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale;
 | 
			
		||||
      //      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb5 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
      subspace[b]   = noise;
 | 
			
		||||
      hermop.Op(subspace[b],tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<< " norm " << norm2(noise)<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspaceMultishift(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
					double Lo,double tol,int maxit)
 | 
			
		||||
  {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
 | 
			
		||||
    // New normalised noise
 | 
			
		||||
    std::cout << GridLogMessage<<" Multishift subspace : Lo "<<Lo<<std::endl;
 | 
			
		||||
 | 
			
		||||
    // Filter
 | 
			
		||||
    // [ 1/6(x+Lo)  - 1/2(x+2Lo) + 1/2(x+3Lo)  -1/6(x+4Lo) = Lo^3 /[ (x+1Lo)(x+2Lo)(x+3Lo)(x+4Lo) ]
 | 
			
		||||
    //
 | 
			
		||||
    // 1/(x+Lo)  - 1/(x+2 Lo)
 | 
			
		||||
    double epsilon      = Lo/3;
 | 
			
		||||
    std::vector<RealD> alpha({1.0/6.0,-1.0/2.0,1.0/2.0,-1.0/6.0});
 | 
			
		||||
    std::vector<RealD> shifts({Lo,Lo+epsilon,Lo+2*epsilon,Lo+3*epsilon});
 | 
			
		||||
    std::vector<RealD> tols({tol,tol,tol,tol});
 | 
			
		||||
    std::cout << "sizes "<<alpha.size()<<" "<<shifts.size()<<" "<<tols.size()<<std::endl;
 | 
			
		||||
 | 
			
		||||
    MultiShiftFunction msf(4,0.0,95.0);
 | 
			
		||||
    std::cout << "msf constructed "<<std::endl;
 | 
			
		||||
    msf.poles=shifts;
 | 
			
		||||
    msf.residues=alpha;
 | 
			
		||||
    msf.tolerances=tols;
 | 
			
		||||
    msf.norm=0.0;
 | 
			
		||||
    msf.order=alpha.size();
 | 
			
		||||
    ConjugateGradientMultiShift<FineField> MSCG(maxit,msf);
 | 
			
		||||
    
 | 
			
		||||
    for(int b =0;b<nbasis;b++)
 | 
			
		||||
    {
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
      // Initial matrix element
 | 
			
		||||
      hermop.Op(noise,Mn);
 | 
			
		||||
      if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      MSCG(hermop,noise,Mn);
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
			
		||||
      subspace[b]   = Mn;
 | 
			
		||||
      hermop.Op(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  virtual void RefineSubspace(LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
			      double Lo,double tol,int maxit)
 | 
			
		||||
  {
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
    for(int b =0;b<nbasis;b++)
 | 
			
		||||
    {
 | 
			
		||||
      ConjugateGradient<FineField>  CGsloppy(tol,maxit,false);
 | 
			
		||||
      ShiftedHermOpLinearOperator<FineField> ShiftedFineHermOp(hermop,Lo);
 | 
			
		||||
      tmp=Zero();
 | 
			
		||||
      CGsloppy(hermop,subspace[b],tmp);
 | 
			
		||||
      RealD scale = std::pow(norm2(tmp),-0.5); 	tmp=tmp*scale;
 | 
			
		||||
      subspace[b]=tmp;
 | 
			
		||||
      hermop.Op(subspace[b],tmp);
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  virtual void RefineSubspaceHDCG(LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
				  TwoLevelADEF2mrhs<FineField,CoarseVector> & theHDCG,
 | 
			
		||||
				  int nrhs)
 | 
			
		||||
  {
 | 
			
		||||
    std::vector<FineField> src_mrhs(nrhs,FineGrid);
 | 
			
		||||
    std::vector<FineField> res_mrhs(nrhs,FineGrid);
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
    for(int b =0;b<nbasis;b+=nrhs)
 | 
			
		||||
    {
 | 
			
		||||
      tmp = subspace[b];
 | 
			
		||||
      RealD scale = std::pow(norm2(tmp),-0.5); 	tmp=tmp*scale;
 | 
			
		||||
      subspace[b] =tmp;
 | 
			
		||||
      hermop.Op(subspace[b],tmp);
 | 
			
		||||
      std::cout<<GridLogMessage << "before filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      for(int r=0;r<MIN(nbasis-b,nrhs);r++){
 | 
			
		||||
	src_mrhs[r] = subspace[b+r];
 | 
			
		||||
      }
 | 
			
		||||
      for(int r=0;r<nrhs;r++){
 | 
			
		||||
	res_mrhs[r] = Zero();
 | 
			
		||||
      }
 | 
			
		||||
      theHDCG(src_mrhs,res_mrhs);
 | 
			
		||||
 | 
			
		||||
      for(int r=0;r<MIN(nbasis-b,nrhs);r++){
 | 
			
		||||
	tmp = res_mrhs[r];
 | 
			
		||||
	RealD scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
 | 
			
		||||
	subspace[b+r]=tmp;
 | 
			
		||||
      }
 | 
			
		||||
      hermop.Op(subspace[b],tmp);
 | 
			
		||||
      std::cout<<GridLogMessage << "after filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -1,629 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No)
 | 
			
		||||
 | 
			
		||||
#include <Grid/lattice/PaddedCell.h>
 | 
			
		||||
#include <Grid/stencil/GeneralLocalStencil.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
// Fine Object == (per site) type of fine field
 | 
			
		||||
// nbasis      == number of deflation vectors
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class GeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > >  {
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
 | 
			
		||||
  typedef iVector<CComplex,nbasis >           siteVector;
 | 
			
		||||
  typedef iMatrix<CComplex,nbasis >           siteMatrix;
 | 
			
		||||
  typedef Lattice<iScalar<CComplex> >         CoarseComplexField;
 | 
			
		||||
  typedef Lattice<siteVector>                 CoarseVector;
 | 
			
		||||
  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
			
		||||
  typedef iMatrix<CComplex,nbasis >  Cobj;
 | 
			
		||||
  typedef iVector<CComplex,nbasis >  Cvec;
 | 
			
		||||
  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<Fobj >        FineField;
 | 
			
		||||
  typedef Lattice<CComplex >    FineComplexField;
 | 
			
		||||
  typedef CoarseVector Field;
 | 
			
		||||
  ////////////////////
 | 
			
		||||
  // Data members
 | 
			
		||||
  ////////////////////
 | 
			
		||||
  int hermitian;
 | 
			
		||||
  GridBase      *       _FineGrid; 
 | 
			
		||||
  GridCartesian *       _CoarseGrid; 
 | 
			
		||||
  NonLocalStencilGeometry &geom;
 | 
			
		||||
  PaddedCell Cell;
 | 
			
		||||
  GeneralLocalStencil Stencil;
 | 
			
		||||
  
 | 
			
		||||
  std::vector<CoarseMatrix> _A;
 | 
			
		||||
  std::vector<CoarseMatrix> _Adag;
 | 
			
		||||
  std::vector<CoarseVector> MultTemporaries;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////
 | 
			
		||||
  // Interface
 | 
			
		||||
  ///////////////////////
 | 
			
		||||
  GridBase      * Grid(void)           { return _CoarseGrid; };   // this is all the linalg routines need to know
 | 
			
		||||
  GridBase      * FineGrid(void)       { return _FineGrid; };   // this is all the linalg routines need to know
 | 
			
		||||
  GridCartesian * CoarseGrid(void)     { return _CoarseGrid; };   // this is all the linalg routines need to know
 | 
			
		||||
 | 
			
		||||
  /*  void ShiftMatrix(RealD shift)
 | 
			
		||||
  {
 | 
			
		||||
    int Nd=_FineGrid->Nd(); 
 | 
			
		||||
    Coordinate zero_shift(Nd,0);
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      if ( zero_shift==geom.shifts[p] ) {
 | 
			
		||||
	_A[p] = _A[p]+shift;
 | 
			
		||||
	//	_Adag[p] = _Adag[p]+shift;
 | 
			
		||||
      }
 | 
			
		||||
    }    
 | 
			
		||||
  }
 | 
			
		||||
  void ProjectNearestNeighbour(RealD shift, GeneralCoarseOp &CopyMe)
 | 
			
		||||
  {
 | 
			
		||||
    int nfound=0;
 | 
			
		||||
    std::cout << GridLogMessage <<"GeneralCoarsenedMatrix::ProjectNearestNeighbour "<< CopyMe._A[0].Grid()<<std::endl;
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      for(int pp=0;pp<CopyMe.geom.npoint;pp++){
 | 
			
		||||
 	// Search for the same relative shift
 | 
			
		||||
	// Avoids brutal handling of Grid pointers
 | 
			
		||||
	if ( CopyMe.geom.shifts[pp]==geom.shifts[p] ) {
 | 
			
		||||
	  _A[p] = CopyMe.Cell.Extract(CopyMe._A[pp]);
 | 
			
		||||
	  //	  _Adag[p] = CopyMe.Cell.Extract(CopyMe._Adag[pp]);
 | 
			
		||||
	  nfound++;
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    assert(nfound==geom.npoint);
 | 
			
		||||
    ExchangeCoarseLinks();
 | 
			
		||||
  }
 | 
			
		||||
  */
 | 
			
		||||
  
 | 
			
		||||
  GeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridBase *FineGrid, GridCartesian * CoarseGrid)
 | 
			
		||||
    : geom(_geom),
 | 
			
		||||
      _FineGrid(FineGrid),
 | 
			
		||||
      _CoarseGrid(CoarseGrid),
 | 
			
		||||
      hermitian(1),
 | 
			
		||||
      Cell(_geom.Depth(),_CoarseGrid),
 | 
			
		||||
      Stencil(Cell.grids.back(),geom.shifts)
 | 
			
		||||
  {
 | 
			
		||||
    {
 | 
			
		||||
      int npoint = _geom.npoint;
 | 
			
		||||
    }
 | 
			
		||||
    _A.resize(geom.npoint,CoarseGrid);
 | 
			
		||||
    //    _Adag.resize(geom.npoint,CoarseGrid);
 | 
			
		||||
  }
 | 
			
		||||
  void M (const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    Mult(_A,in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void Mdag (const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    assert(hermitian);
 | 
			
		||||
    Mult(_A,in,out);
 | 
			
		||||
    //    if ( hermitian ) M(in,out);
 | 
			
		||||
    //    else Mult(_Adag,in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void Mult (std::vector<CoarseMatrix> &A,const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    RealD tviews=0;    RealD ttot=0;    RealD tmult=0;   RealD texch=0;    RealD text=0; RealD ttemps=0; RealD tcopy=0;
 | 
			
		||||
    RealD tmult2=0;
 | 
			
		||||
 | 
			
		||||
    ttot=-usecond();
 | 
			
		||||
    conformable(CoarseGrid(),in.Grid());
 | 
			
		||||
    conformable(in.Grid(),out.Grid());
 | 
			
		||||
    out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
    CoarseVector tin=in;
 | 
			
		||||
 | 
			
		||||
    texch-=usecond();
 | 
			
		||||
    CoarseVector pin = Cell.ExchangePeriodic(tin);
 | 
			
		||||
    texch+=usecond();
 | 
			
		||||
 | 
			
		||||
    CoarseVector pout(pin.Grid());
 | 
			
		||||
 | 
			
		||||
    int npoint = geom.npoint;
 | 
			
		||||
    typedef LatticeView<Cobj> Aview;
 | 
			
		||||
    typedef LatticeView<Cvec> Vview;
 | 
			
		||||
      
 | 
			
		||||
    const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
    
 | 
			
		||||
    int64_t osites=pin.Grid()->oSites();
 | 
			
		||||
 | 
			
		||||
    RealD flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
 | 
			
		||||
    RealD bytes = 1.0*osites*sizeof(siteMatrix)*npoint
 | 
			
		||||
                + 2.0*osites*sizeof(siteVector)*npoint;
 | 
			
		||||
      
 | 
			
		||||
    {
 | 
			
		||||
      tviews-=usecond();
 | 
			
		||||
      autoView( in_v , pin, AcceleratorRead);
 | 
			
		||||
      autoView( out_v , pout, AcceleratorWriteDiscard);
 | 
			
		||||
      autoView( Stencil_v  , Stencil, AcceleratorRead);
 | 
			
		||||
      tviews+=usecond();
 | 
			
		||||
 | 
			
		||||
      // Static and prereserve to keep UVM region live and not resized across multiple calls
 | 
			
		||||
      ttemps-=usecond();
 | 
			
		||||
      MultTemporaries.resize(npoint,pin.Grid());       
 | 
			
		||||
      ttemps+=usecond();
 | 
			
		||||
      std::vector<Aview> AcceleratorViewContainer_h;
 | 
			
		||||
      std::vector<Vview> AcceleratorVecViewContainer_h; 
 | 
			
		||||
 | 
			
		||||
      tviews-=usecond();
 | 
			
		||||
      for(int p=0;p<npoint;p++) {
 | 
			
		||||
	AcceleratorViewContainer_h.push_back(      A[p].View(AcceleratorRead));
 | 
			
		||||
	AcceleratorVecViewContainer_h.push_back(MultTemporaries[p].View(AcceleratorWrite));
 | 
			
		||||
      }
 | 
			
		||||
      tviews+=usecond();
 | 
			
		||||
 | 
			
		||||
      static deviceVector<Aview> AcceleratorViewContainer; AcceleratorViewContainer.resize(npoint);
 | 
			
		||||
      static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(npoint); 
 | 
			
		||||
      
 | 
			
		||||
      auto Aview_p = &AcceleratorViewContainer[0];
 | 
			
		||||
      auto Vview_p = &AcceleratorVecViewContainer[0];
 | 
			
		||||
      tcopy-=usecond();
 | 
			
		||||
      acceleratorCopyToDevice(&AcceleratorViewContainer_h[0],&AcceleratorViewContainer[0],npoint *sizeof(Aview));
 | 
			
		||||
      acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],npoint *sizeof(Vview));
 | 
			
		||||
      tcopy+=usecond();
 | 
			
		||||
 | 
			
		||||
      tmult-=usecond();
 | 
			
		||||
      accelerator_for(spb, osites*nbasis*npoint, Nsimd, {
 | 
			
		||||
	  typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
 | 
			
		||||
	  int32_t ss   = spb/(nbasis*npoint);
 | 
			
		||||
	  int32_t bp   = spb%(nbasis*npoint);
 | 
			
		||||
	  int32_t point= bp/nbasis;
 | 
			
		||||
	  int32_t b    = bp%nbasis;
 | 
			
		||||
	  auto SE  = Stencil_v.GetEntry(point,ss);
 | 
			
		||||
	  auto nbr = coalescedReadGeneralPermute(in_v[SE->_offset],SE->_permute,Nd);
 | 
			
		||||
	  auto res = coalescedRead(Aview_p[point][ss](0,b))*nbr(0);
 | 
			
		||||
	  for(int bb=1;bb<nbasis;bb++) {
 | 
			
		||||
	    res = res + coalescedRead(Aview_p[point][ss](bb,b))*nbr(bb);
 | 
			
		||||
	  }
 | 
			
		||||
	  coalescedWrite(Vview_p[point][ss](b),res);
 | 
			
		||||
      });
 | 
			
		||||
      tmult2-=usecond();
 | 
			
		||||
      accelerator_for(sb, osites*nbasis, Nsimd, {
 | 
			
		||||
	  int ss = sb/nbasis;
 | 
			
		||||
	  int b  = sb%nbasis;
 | 
			
		||||
	  auto res = coalescedRead(Vview_p[0][ss](b));
 | 
			
		||||
	  for(int point=1;point<npoint;point++){
 | 
			
		||||
	    res = res + coalescedRead(Vview_p[point][ss](b));
 | 
			
		||||
	  }
 | 
			
		||||
	  coalescedWrite(out_v[ss](b),res);
 | 
			
		||||
      });
 | 
			
		||||
      tmult2+=usecond();
 | 
			
		||||
      tmult+=usecond();
 | 
			
		||||
      for(int p=0;p<npoint;p++) {
 | 
			
		||||
	AcceleratorViewContainer_h[p].ViewClose();
 | 
			
		||||
	AcceleratorVecViewContainer_h[p].ViewClose();
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    text-=usecond();
 | 
			
		||||
    out = Cell.Extract(pout);
 | 
			
		||||
    text+=usecond();
 | 
			
		||||
    ttot+=usecond();
 | 
			
		||||
    
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse 1rhs Mult Aviews "<<tviews<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Mult exch "<<texch<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Mult mult "<<tmult<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<" of which mult2  "<<tmult2<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Mult ext  "<<text<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Mult temps "<<ttemps<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Mult copy  "<<tcopy<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Mult tot  "<<ttot<<" us"<<std::endl;
 | 
			
		||||
    //    std::cout << GridLogPerformance<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Kernel flops "<< flops<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Kernel flop/s "<< flops/tmult<<" mflop/s"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Kernel bytes/s "<< bytes/tmult<<" MB/s"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse overall flops/s "<< flops/ttot<<" mflop/s"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse total bytes   "<< bytes/1e6<<" MB"<<std::endl;
 | 
			
		||||
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
  void PopulateAdag(void)
 | 
			
		||||
  {
 | 
			
		||||
    for(int64_t bidx=0;bidx<CoarseGrid()->gSites() ;bidx++){
 | 
			
		||||
      Coordinate bcoor;
 | 
			
		||||
      CoarseGrid()->GlobalIndexToGlobalCoor(bidx,bcoor);
 | 
			
		||||
      
 | 
			
		||||
      for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
	Coordinate scoor = bcoor;
 | 
			
		||||
	for(int mu=0;mu<bcoor.size();mu++){
 | 
			
		||||
	  int L = CoarseGrid()->GlobalDimensions()[mu];
 | 
			
		||||
	  scoor[mu] = (bcoor[mu] - geom.shifts[p][mu] + L) % L; // Modulo arithmetic
 | 
			
		||||
	}
 | 
			
		||||
	// Flip to poke/peekLocalSite and not too bad
 | 
			
		||||
	auto link = peekSite(_A[p],scoor);
 | 
			
		||||
	int pp = geom.Reverse(p);
 | 
			
		||||
	pokeSite(adj(link),_Adag[pp],bcoor);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  // 
 | 
			
		||||
  // A) Only reduced flops option is to use a padded cell of depth 4
 | 
			
		||||
  // and apply MpcDagMpc in the padded cell.
 | 
			
		||||
  //
 | 
			
		||||
  // Makes for ONE application of MpcDagMpc per vector instead of 30 or 80.
 | 
			
		||||
  // With the effective cell size around (B+8)^4 perhaps 12^4/4^4 ratio
 | 
			
		||||
  // Cost is 81x more, same as stencil size.
 | 
			
		||||
  //
 | 
			
		||||
  // But: can eliminate comms and do as local dirichlet.
 | 
			
		||||
  //
 | 
			
		||||
  // Local exchange gauge field once.
 | 
			
		||||
  // Apply to all vectors, local only computation.
 | 
			
		||||
  // Must exchange ghost subcells in reverse process of PaddedCell to take inner products
 | 
			
		||||
  //
 | 
			
		||||
  // B) Can reduce cost: pad by 1, apply Deo      (4^4+6^4+8^4+8^4 )/ (4x 4^4)
 | 
			
		||||
  //                     pad by 2, apply Doe
 | 
			
		||||
  //                     pad by 3, apply Deo
 | 
			
		||||
  //                     then break out 8x directions; cost is ~10x MpcDagMpc per vector
 | 
			
		||||
  //
 | 
			
		||||
  // => almost factor of 10 in setup cost, excluding data rearrangement
 | 
			
		||||
  //
 | 
			
		||||
  // Intermediates -- ignore the corner terms, leave approximate and force Hermitian
 | 
			
		||||
  // Intermediates -- pad by 2 and apply 1+8+24 = 33 times.
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////////
 | 
			
		||||
    // BFM HDCG style approach: Solve a system of equations to get Aij
 | 
			
		||||
    //////////////////////////////////////////////////////////
 | 
			
		||||
    /*
 | 
			
		||||
     *     Here, k,l index which possible shift within the 3^Nd "ball" connected by MdagM.
 | 
			
		||||
     *
 | 
			
		||||
     *     conj(phases[block]) proj[k][ block*Nvec+j ] =  \sum_ball  e^{i q_k . delta} < phi_{block,j} | MdagM | phi_{(block+delta),i} > 
 | 
			
		||||
     *                                                 =  \sum_ball e^{iqk.delta} A_ji
 | 
			
		||||
     *
 | 
			
		||||
     *     Must invert matrix M_k,l = e^[i q_k . delta_l]
 | 
			
		||||
     *
 | 
			
		||||
     *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
			
		||||
     */
 | 
			
		||||
#if 0
 | 
			
		||||
  void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
			
		||||
		       Aggregation<Fobj,CComplex,nbasis> & Subspace)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
 | 
			
		||||
    GridBase *grid = FineGrid();
 | 
			
		||||
 | 
			
		||||
    RealD tproj=0.0;
 | 
			
		||||
    RealD teigen=0.0;
 | 
			
		||||
    RealD tmat=0.0;
 | 
			
		||||
    RealD tphase=0.0;
 | 
			
		||||
    RealD tinv=0.0;
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    // Orthogonalise the subblocks over the basis
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    CoarseScalar InnerProd(CoarseGrid()); 
 | 
			
		||||
    blockOrthogonalise(InnerProd,Subspace.subspace);
 | 
			
		||||
 | 
			
		||||
    const int npoint = geom.npoint;
 | 
			
		||||
      
 | 
			
		||||
    Coordinate clatt = CoarseGrid()->GlobalDimensions();
 | 
			
		||||
    int Nd = CoarseGrid()->Nd();
 | 
			
		||||
 | 
			
		||||
      /*
 | 
			
		||||
       *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
 | 
			
		||||
       *     Matrix index i is mapped to this shift via 
 | 
			
		||||
       *               geom.shifts[i]
 | 
			
		||||
       *
 | 
			
		||||
       *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block] 
 | 
			
		||||
       *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} > 
 | 
			
		||||
       *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
 | 
			
		||||
       *       = M_{kl} A_ji^{b.b+l}
 | 
			
		||||
       *
 | 
			
		||||
       *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
 | 
			
		||||
       *  
 | 
			
		||||
       *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
			
		||||
       *
 | 
			
		||||
       *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
 | 
			
		||||
       */
 | 
			
		||||
    teigen-=usecond();
 | 
			
		||||
    Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
			
		||||
    Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
			
		||||
    ComplexD ci(0.0,1.0);
 | 
			
		||||
    for(int k=0;k<npoint;k++){ // Loop over momenta
 | 
			
		||||
 | 
			
		||||
      for(int l=0;l<npoint;l++){ // Loop over nbr relative
 | 
			
		||||
	ComplexD phase(0.0,0.0);
 | 
			
		||||
	for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
			
		||||
	  phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
 | 
			
		||||
	}
 | 
			
		||||
	phase=exp(phase*ci);
 | 
			
		||||
	Mkl(k,l) = phase;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    invMkl = Mkl.inverse();
 | 
			
		||||
    teigen+=usecond();
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Now compute the matrix elements of linop between the orthonormal
 | 
			
		||||
    // set of vectors.
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////
 | 
			
		||||
    FineField phaV(grid); // Phased block basis vector
 | 
			
		||||
    FineField MphaV(grid);// Matrix applied
 | 
			
		||||
    CoarseVector coarseInner(CoarseGrid());
 | 
			
		||||
 | 
			
		||||
    std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
 | 
			
		||||
    std::vector<CoarseVector>          FT(npoint,CoarseGrid());
 | 
			
		||||
    for(int i=0;i<nbasis;i++){// Loop over basis vectors
 | 
			
		||||
      std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
 | 
			
		||||
      for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
			
		||||
	/////////////////////////////////////////////////////
 | 
			
		||||
	// Stick a phase on every block
 | 
			
		||||
	/////////////////////////////////////////////////////
 | 
			
		||||
	tphase-=usecond();
 | 
			
		||||
	CoarseComplexField coor(CoarseGrid());
 | 
			
		||||
	CoarseComplexField pha(CoarseGrid());	pha=Zero();
 | 
			
		||||
	for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
	  LatticeCoordinate(coor,mu);
 | 
			
		||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
			
		||||
	  pha = pha + (TwoPiL * geom.shifts[p][mu]) * coor;
 | 
			
		||||
	}
 | 
			
		||||
	pha  =exp(pha*ci);
 | 
			
		||||
	phaV=Zero();
 | 
			
		||||
	blockZAXPY(phaV,pha,Subspace.subspace[i],phaV);
 | 
			
		||||
	tphase+=usecond();
 | 
			
		||||
 | 
			
		||||
	/////////////////////////////////////////////////////////////////////
 | 
			
		||||
	// Multiple phased subspace vector by matrix and project to subspace
 | 
			
		||||
	// Remove local bulk phase to leave relative phases
 | 
			
		||||
	/////////////////////////////////////////////////////////////////////
 | 
			
		||||
	tmat-=usecond();
 | 
			
		||||
	linop.Op(phaV,MphaV);
 | 
			
		||||
	tmat+=usecond();
 | 
			
		||||
 | 
			
		||||
	tproj-=usecond();
 | 
			
		||||
	blockProject(coarseInner,MphaV,Subspace.subspace);
 | 
			
		||||
	coarseInner = conjugate(pha) * coarseInner;
 | 
			
		||||
 | 
			
		||||
	ComputeProj[p] = coarseInner;
 | 
			
		||||
	tproj+=usecond();
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      tinv-=usecond();
 | 
			
		||||
      for(int k=0;k<npoint;k++){
 | 
			
		||||
	FT[k] = Zero();
 | 
			
		||||
	for(int l=0;l<npoint;l++){
 | 
			
		||||
	  FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
 | 
			
		||||
	}
 | 
			
		||||
      
 | 
			
		||||
	int osites=CoarseGrid()->oSites();
 | 
			
		||||
	autoView( A_v  , _A[k], AcceleratorWrite);
 | 
			
		||||
	autoView( FT_v  , FT[k], AcceleratorRead);
 | 
			
		||||
	accelerator_for(sss, osites, 1, {
 | 
			
		||||
	    for(int j=0;j<nbasis;j++){
 | 
			
		||||
	      A_v[sss](i,j) = FT_v[sss](j);
 | 
			
		||||
	    }
 | 
			
		||||
        });
 | 
			
		||||
      }
 | 
			
		||||
      tinv+=usecond();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Only needed if nonhermitian
 | 
			
		||||
    if ( ! hermitian ) {
 | 
			
		||||
      //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl;
 | 
			
		||||
      //      PopulateAdag();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Need to write something to populate Adag from A
 | 
			
		||||
    ExchangeCoarseLinks();
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator eigen  "<<teigen<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator phase  "<<tphase<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator mat    "<<tmat <<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator proj   "<<tproj<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
#else
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Galerkin projection of matrix
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////
 | 
			
		||||
  void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
			
		||||
		       Aggregation<Fobj,CComplex,nbasis> & Subspace)
 | 
			
		||||
  {
 | 
			
		||||
    CoarsenOperator(linop,Subspace,Subspace);
 | 
			
		||||
  }
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Petrov - Galerkin projection of matrix
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////
 | 
			
		||||
  void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
			
		||||
		       Aggregation<Fobj,CComplex,nbasis> & U,
 | 
			
		||||
		       Aggregation<Fobj,CComplex,nbasis> & V)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
 | 
			
		||||
    GridBase *grid = FineGrid();
 | 
			
		||||
 | 
			
		||||
    RealD tproj=0.0;
 | 
			
		||||
    RealD teigen=0.0;
 | 
			
		||||
    RealD tmat=0.0;
 | 
			
		||||
    RealD tphase=0.0;
 | 
			
		||||
    RealD tphaseBZ=0.0;
 | 
			
		||||
    RealD tinv=0.0;
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    // Orthogonalise the subblocks over the basis
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    CoarseScalar InnerProd(CoarseGrid()); 
 | 
			
		||||
    blockOrthogonalise(InnerProd,V.subspace);
 | 
			
		||||
    blockOrthogonalise(InnerProd,U.subspace);
 | 
			
		||||
 | 
			
		||||
    const int npoint = geom.npoint;
 | 
			
		||||
      
 | 
			
		||||
    Coordinate clatt = CoarseGrid()->GlobalDimensions();
 | 
			
		||||
    int Nd = CoarseGrid()->Nd();
 | 
			
		||||
 | 
			
		||||
      /*
 | 
			
		||||
       *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
 | 
			
		||||
       *     Matrix index i is mapped to this shift via 
 | 
			
		||||
       *               geom.shifts[i]
 | 
			
		||||
       *
 | 
			
		||||
       *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block] 
 | 
			
		||||
       *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} > 
 | 
			
		||||
       *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
 | 
			
		||||
       *       = M_{kl} A_ji^{b.b+l}
 | 
			
		||||
       *
 | 
			
		||||
       *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
 | 
			
		||||
       *  
 | 
			
		||||
       *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
			
		||||
       *
 | 
			
		||||
       *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
 | 
			
		||||
       */
 | 
			
		||||
    teigen-=usecond();
 | 
			
		||||
    Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
			
		||||
    Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
			
		||||
    ComplexD ci(0.0,1.0);
 | 
			
		||||
    for(int k=0;k<npoint;k++){ // Loop over momenta
 | 
			
		||||
 | 
			
		||||
      for(int l=0;l<npoint;l++){ // Loop over nbr relative
 | 
			
		||||
	ComplexD phase(0.0,0.0);
 | 
			
		||||
	for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
			
		||||
	  phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
 | 
			
		||||
	}
 | 
			
		||||
	phase=exp(phase*ci);
 | 
			
		||||
	Mkl(k,l) = phase;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    invMkl = Mkl.inverse();
 | 
			
		||||
    teigen+=usecond();
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Now compute the matrix elements of linop between the orthonormal
 | 
			
		||||
    // set of vectors.
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////
 | 
			
		||||
    FineField phaV(grid); // Phased block basis vector
 | 
			
		||||
    FineField MphaV(grid);// Matrix applied
 | 
			
		||||
    std::vector<FineComplexField> phaF(npoint,grid);
 | 
			
		||||
    std::vector<CoarseComplexField> pha(npoint,CoarseGrid());
 | 
			
		||||
    
 | 
			
		||||
    CoarseVector coarseInner(CoarseGrid());
 | 
			
		||||
    
 | 
			
		||||
    typedef typename CComplex::scalar_type SComplex;
 | 
			
		||||
    FineComplexField one(grid); one=SComplex(1.0);
 | 
			
		||||
    FineComplexField zz(grid); zz = Zero();
 | 
			
		||||
    tphase=-usecond();
 | 
			
		||||
    for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      // Stick a phase on every block
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      CoarseComplexField coor(CoarseGrid());
 | 
			
		||||
      pha[p]=Zero();
 | 
			
		||||
      for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
	LatticeCoordinate(coor,mu);
 | 
			
		||||
	RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
			
		||||
	pha[p] = pha[p] + (TwoPiL * geom.shifts[p][mu]) * coor;
 | 
			
		||||
      }
 | 
			
		||||
      pha[p]  =exp(pha[p]*ci);
 | 
			
		||||
 | 
			
		||||
      blockZAXPY(phaF[p],pha[p],one,zz);
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
    tphase+=usecond();
 | 
			
		||||
    
 | 
			
		||||
    std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
 | 
			
		||||
    std::vector<CoarseVector>          FT(npoint,CoarseGrid());
 | 
			
		||||
    for(int i=0;i<nbasis;i++){// Loop over basis vectors
 | 
			
		||||
      std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
 | 
			
		||||
      for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
			
		||||
	tphaseBZ-=usecond();
 | 
			
		||||
	phaV = phaF[p]*V.subspace[i];
 | 
			
		||||
	tphaseBZ+=usecond();
 | 
			
		||||
 | 
			
		||||
	/////////////////////////////////////////////////////////////////////
 | 
			
		||||
	// Multiple phased subspace vector by matrix and project to subspace
 | 
			
		||||
	// Remove local bulk phase to leave relative phases
 | 
			
		||||
	/////////////////////////////////////////////////////////////////////
 | 
			
		||||
	tmat-=usecond();
 | 
			
		||||
	linop.Op(phaV,MphaV);
 | 
			
		||||
	tmat+=usecond();
 | 
			
		||||
	//	std::cout << i << " " <<p << " MphaV "<<norm2(MphaV)<<" "<<norm2(phaV)<<std::endl;
 | 
			
		||||
 | 
			
		||||
	tproj-=usecond();
 | 
			
		||||
	blockProject(coarseInner,MphaV,U.subspace);
 | 
			
		||||
	coarseInner = conjugate(pha[p]) * coarseInner;
 | 
			
		||||
 | 
			
		||||
	ComputeProj[p] = coarseInner;
 | 
			
		||||
	tproj+=usecond();
 | 
			
		||||
	//	std::cout << i << " " <<p << " ComputeProj "<<norm2(ComputeProj[p])<<std::endl;
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      tinv-=usecond();
 | 
			
		||||
      for(int k=0;k<npoint;k++){
 | 
			
		||||
	FT[k] = Zero();
 | 
			
		||||
	for(int l=0;l<npoint;l++){
 | 
			
		||||
	  FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
 | 
			
		||||
	}
 | 
			
		||||
      
 | 
			
		||||
	int osites=CoarseGrid()->oSites();
 | 
			
		||||
	autoView( A_v  , _A[k], AcceleratorWrite);
 | 
			
		||||
	autoView( FT_v  , FT[k], AcceleratorRead);
 | 
			
		||||
	accelerator_for(sss, osites, 1, {
 | 
			
		||||
	    for(int j=0;j<nbasis;j++){
 | 
			
		||||
	      A_v[sss](i,j) = FT_v[sss](j);
 | 
			
		||||
	    }
 | 
			
		||||
        });
 | 
			
		||||
      }
 | 
			
		||||
      tinv+=usecond();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Only needed if nonhermitian
 | 
			
		||||
    if ( ! hermitian ) {
 | 
			
		||||
      //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl;
 | 
			
		||||
      //      PopulateAdag();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      std::cout << " _A["<<p<<"] "<<norm2(_A[p])<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Need to write something to populate Adag from A
 | 
			
		||||
    ExchangeCoarseLinks();
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator eigen  "<<teigen<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator phase  "<<tphase<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator mat    "<<tmat <<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator proj   "<<tproj<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
#endif  
 | 
			
		||||
  void ExchangeCoarseLinks(void){
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      _A[p] = Cell.ExchangePeriodic(_A[p]);
 | 
			
		||||
      //      _Adag[p]= Cell.ExchangePeriodic(_Adag[p]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  virtual  void Mdiag    (const Field &in, Field &out){ assert(0);};
 | 
			
		||||
  virtual  void Mdir     (const Field &in, Field &out,int dir, int disp){assert(0);};
 | 
			
		||||
  virtual  void MdirAll  (const Field &in, std::vector<Field> &out){assert(0);};
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -1,729 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/GeneralCoarsenedMatrixMultiRHS.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// Fine Object == (per site) type of fine field
 | 
			
		||||
// nbasis      == number of deflation vectors
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class MultiGeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > >  {
 | 
			
		||||
public:
 | 
			
		||||
  typedef typename CComplex::scalar_object SComplex;
 | 
			
		||||
  typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
 | 
			
		||||
  typedef MultiGeneralCoarsenedMatrix<Fobj,CComplex,nbasis> MultiGeneralCoarseOp;
 | 
			
		||||
 | 
			
		||||
  typedef iVector<CComplex,nbasis >           siteVector;
 | 
			
		||||
  typedef iMatrix<CComplex,nbasis >           siteMatrix;
 | 
			
		||||
  typedef iVector<SComplex,nbasis >           calcVector;
 | 
			
		||||
  typedef iMatrix<SComplex,nbasis >           calcMatrix;
 | 
			
		||||
  typedef Lattice<iScalar<CComplex> >         CoarseComplexField;
 | 
			
		||||
  typedef Lattice<siteVector>                 CoarseVector;
 | 
			
		||||
  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
			
		||||
  typedef iMatrix<CComplex,nbasis >  Cobj;
 | 
			
		||||
  typedef iVector<CComplex,nbasis >  Cvec;
 | 
			
		||||
  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<Fobj >        FineField;
 | 
			
		||||
  typedef Lattice<CComplex >    FineComplexField;
 | 
			
		||||
  typedef CoarseVector Field;
 | 
			
		||||
 | 
			
		||||
  ////////////////////
 | 
			
		||||
  // Data members
 | 
			
		||||
  ////////////////////
 | 
			
		||||
  GridCartesian *       _CoarseGridMulti; 
 | 
			
		||||
  NonLocalStencilGeometry geom;
 | 
			
		||||
  NonLocalStencilGeometry geom_srhs;
 | 
			
		||||
  PaddedCell Cell;
 | 
			
		||||
  GeneralLocalStencil Stencil;
 | 
			
		||||
 | 
			
		||||
  deviceVector<calcVector> BLAS_B;
 | 
			
		||||
  deviceVector<calcVector> BLAS_C;
 | 
			
		||||
  std::vector<deviceVector<calcMatrix> > BLAS_A;
 | 
			
		||||
 | 
			
		||||
  std::vector<deviceVector<ComplexD *> > BLAS_AP;
 | 
			
		||||
  std::vector<deviceVector<ComplexD *> > BLAS_BP;
 | 
			
		||||
  deviceVector<ComplexD *>               BLAS_CP;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////
 | 
			
		||||
  // Interface
 | 
			
		||||
  ///////////////////////
 | 
			
		||||
  GridBase      * Grid(void)           { return _CoarseGridMulti; };   // this is all the linalg routines need to know
 | 
			
		||||
  GridCartesian * CoarseGrid(void)     { return _CoarseGridMulti; };   // this is all the linalg routines need to know
 | 
			
		||||
 | 
			
		||||
  // Can be used to do I/O on the operator matrices externally
 | 
			
		||||
  void SetMatrix (int p,CoarseMatrix & A)
 | 
			
		||||
  {
 | 
			
		||||
    assert(A.size()==geom_srhs.npoint);
 | 
			
		||||
    GridtoBLAS(A[p],BLAS_A[p]);
 | 
			
		||||
  }
 | 
			
		||||
  void GetMatrix (int p,CoarseMatrix & A)
 | 
			
		||||
  {
 | 
			
		||||
    assert(A.size()==geom_srhs.npoint);
 | 
			
		||||
    BLAStoGrid(A[p],BLAS_A[p]);
 | 
			
		||||
  }
 | 
			
		||||
  void CopyMatrix (GeneralCoarseOp &_Op)
 | 
			
		||||
  {
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      auto Aup = _Op.Cell.Extract(_Op._A[p]);
 | 
			
		||||
      //Unpadded
 | 
			
		||||
      GridtoBLAS(Aup,BLAS_A[p]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  /*
 | 
			
		||||
  void CheckMatrix (GeneralCoarseOp &_Op)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout <<"************* Checking the little direc operator mRHS"<<std::endl;
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      //Unpadded
 | 
			
		||||
      auto Aup = _Op.Cell.Extract(_Op._A[p]);
 | 
			
		||||
      auto Ack = Aup;
 | 
			
		||||
      BLAStoGrid(Ack,BLAS_A[p]);
 | 
			
		||||
      std::cout << p<<" Ack "<<norm2(Ack)<<std::endl;
 | 
			
		||||
      std::cout << p<<" Aup "<<norm2(Aup)<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    std::cout <<"************* "<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  */
 | 
			
		||||
  
 | 
			
		||||
  MultiGeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridCartesian *CoarseGridMulti) :
 | 
			
		||||
    _CoarseGridMulti(CoarseGridMulti),
 | 
			
		||||
    geom_srhs(_geom),
 | 
			
		||||
    geom(_CoarseGridMulti,_geom.hops,_geom.skip+1),
 | 
			
		||||
    Cell(geom.Depth(),_CoarseGridMulti),
 | 
			
		||||
    Stencil(Cell.grids.back(),geom.shifts) // padded cell stencil
 | 
			
		||||
  {
 | 
			
		||||
    int32_t padded_sites   = Cell.grids.back()->lSites();
 | 
			
		||||
    int32_t unpadded_sites = CoarseGridMulti->lSites();
 | 
			
		||||
    
 | 
			
		||||
    int32_t nrhs  = CoarseGridMulti->FullDimensions()[0];  // # RHS
 | 
			
		||||
    int32_t orhs  = nrhs/CComplex::Nsimd();
 | 
			
		||||
 | 
			
		||||
    padded_sites   = padded_sites/nrhs;
 | 
			
		||||
    unpadded_sites = unpadded_sites/nrhs;
 | 
			
		||||
    
 | 
			
		||||
    /////////////////////////////////////////////////
 | 
			
		||||
    // Device data vector storage
 | 
			
		||||
    /////////////////////////////////////////////////
 | 
			
		||||
    BLAS_A.resize(geom.npoint);
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      BLAS_A[p].resize (unpadded_sites); // no ghost zone, npoint elements
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    BLAS_B.resize(nrhs *padded_sites);   // includes ghost zone
 | 
			
		||||
    BLAS_C.resize(nrhs *unpadded_sites); // no ghost zone
 | 
			
		||||
    BLAS_AP.resize(geom.npoint);
 | 
			
		||||
    BLAS_BP.resize(geom.npoint);
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      BLAS_AP[p].resize(unpadded_sites);
 | 
			
		||||
      BLAS_BP[p].resize(unpadded_sites);
 | 
			
		||||
    }
 | 
			
		||||
    BLAS_CP.resize(unpadded_sites);
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////
 | 
			
		||||
    // Pointers to data
 | 
			
		||||
    /////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    // Site identity mapping for A
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      for(int ss=0;ss<unpadded_sites;ss++){
 | 
			
		||||
	ComplexD *ptr = (ComplexD *)&BLAS_A[p][ss];
 | 
			
		||||
	acceleratorPut(BLAS_AP[p][ss],ptr);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    // Site identity mapping for C
 | 
			
		||||
    for(int ss=0;ss<unpadded_sites;ss++){
 | 
			
		||||
      ComplexD *ptr = (ComplexD *)&BLAS_C[ss*nrhs];
 | 
			
		||||
      acceleratorPut(BLAS_CP[ss],ptr);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Neighbour table is more complicated
 | 
			
		||||
    int32_t j=0; // Interior point counter (unpadded)
 | 
			
		||||
    for(int32_t s=0;s<padded_sites;s++){ // 4 volume, padded
 | 
			
		||||
      int ghost_zone=0;
 | 
			
		||||
      for(int32_t point = 0 ; point < geom.npoint; point++){
 | 
			
		||||
	int i=s*orhs*geom.npoint+point;
 | 
			
		||||
	if( Stencil._entries[i]._wrap ) { // stencil is indexed by the oSite of the CoarseGridMulti, hence orhs factor
 | 
			
		||||
	  ghost_zone=1; // If general stencil wrapped in any direction, wrap=1
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      if( ghost_zone==0) {
 | 
			
		||||
	for(int32_t point = 0 ; point < geom.npoint; point++){
 | 
			
		||||
	  int i=s*orhs*geom.npoint+point;
 | 
			
		||||
 	  int32_t nbr = Stencil._entries[i]._offset*CComplex::Nsimd(); // oSite -> lSite
 | 
			
		||||
	  assert(nbr<BLAS_B.size());
 | 
			
		||||
	  ComplexD * ptr = (ComplexD *)&BLAS_B[nbr];
 | 
			
		||||
	  acceleratorPut(BLAS_BP[point][j],ptr); // neighbour indexing in ghost zone volume
 | 
			
		||||
	}
 | 
			
		||||
	j++;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    assert(j==unpadded_sites);
 | 
			
		||||
  }
 | 
			
		||||
  template<class vobj> void GridtoBLAS(const Lattice<vobj> &from,deviceVector<typename vobj::scalar_object> &to)
 | 
			
		||||
  {
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  GridBase *Fg = from.Grid();
 | 
			
		||||
  assert(!Fg->_isCheckerBoarded);
 | 
			
		||||
  int nd = Fg->_ndimension;
 | 
			
		||||
 | 
			
		||||
  to.resize(Fg->lSites());
 | 
			
		||||
 | 
			
		||||
  Coordinate LocalLatt = Fg->LocalDimensions();
 | 
			
		||||
  size_t nsite = 1;
 | 
			
		||||
  for(int i=0;i<nd;i++) nsite *= LocalLatt[i];
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // do the index calc on the GPU
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  Coordinate f_ostride = Fg->_ostride;
 | 
			
		||||
  Coordinate f_istride = Fg->_istride;
 | 
			
		||||
  Coordinate f_rdimensions = Fg->_rdimensions;
 | 
			
		||||
 | 
			
		||||
  autoView(from_v,from,AcceleratorRead);
 | 
			
		||||
  auto to_v = &to[0];
 | 
			
		||||
 | 
			
		||||
  const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
  accelerator_for(idx,nsite,1,{
 | 
			
		||||
      
 | 
			
		||||
      Coordinate from_coor, base;
 | 
			
		||||
      Lexicographic::CoorFromIndex(base,idx,LocalLatt);
 | 
			
		||||
      for(int i=0;i<nd;i++){
 | 
			
		||||
	from_coor[i] = base[i];
 | 
			
		||||
      }
 | 
			
		||||
      int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
 | 
			
		||||
      int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
 | 
			
		||||
 | 
			
		||||
      const vector_type* from = (const vector_type *)&from_v[from_oidx];
 | 
			
		||||
      scalar_type* to = (scalar_type *)&to_v[idx];
 | 
			
		||||
      
 | 
			
		||||
      scalar_type stmp;
 | 
			
		||||
      for(int w=0;w<words;w++){
 | 
			
		||||
	stmp = getlane(from[w], from_lane);
 | 
			
		||||
	to[w] = stmp;
 | 
			
		||||
      }
 | 
			
		||||
    });
 | 
			
		||||
  }    
 | 
			
		||||
  template<class vobj> void BLAStoGrid(Lattice<vobj> &grid,deviceVector<typename vobj::scalar_object> &in)
 | 
			
		||||
  {
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  GridBase *Tg = grid.Grid();
 | 
			
		||||
  assert(!Tg->_isCheckerBoarded);
 | 
			
		||||
  int nd = Tg->_ndimension;
 | 
			
		||||
  
 | 
			
		||||
  assert(in.size()==Tg->lSites());
 | 
			
		||||
 | 
			
		||||
  Coordinate LocalLatt = Tg->LocalDimensions();
 | 
			
		||||
  size_t nsite = 1;
 | 
			
		||||
  for(int i=0;i<nd;i++) nsite *= LocalLatt[i];
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // do the index calc on the GPU
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  Coordinate t_ostride = Tg->_ostride;
 | 
			
		||||
  Coordinate t_istride = Tg->_istride;
 | 
			
		||||
  Coordinate t_rdimensions = Tg->_rdimensions;
 | 
			
		||||
 | 
			
		||||
  autoView(to_v,grid,AcceleratorWrite);
 | 
			
		||||
  auto from_v = &in[0];
 | 
			
		||||
 | 
			
		||||
  const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
  accelerator_for(idx,nsite,1,{
 | 
			
		||||
      
 | 
			
		||||
      Coordinate to_coor, base;
 | 
			
		||||
      Lexicographic::CoorFromIndex(base,idx,LocalLatt);
 | 
			
		||||
      for(int i=0;i<nd;i++){
 | 
			
		||||
	to_coor[i] = base[i];
 | 
			
		||||
      }
 | 
			
		||||
      int to_oidx = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
 | 
			
		||||
      int to_lane = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
 | 
			
		||||
 | 
			
		||||
      vector_type* to = (vector_type *)&to_v[to_oidx];
 | 
			
		||||
      scalar_type* from = (scalar_type *)&from_v[idx];
 | 
			
		||||
      
 | 
			
		||||
      scalar_type stmp;
 | 
			
		||||
      for(int w=0;w<words;w++){
 | 
			
		||||
	stmp=from[w];
 | 
			
		||||
	putlane(to[w], stmp, to_lane);
 | 
			
		||||
      }
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
  void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
			
		||||
		       Aggregation<Fobj,CComplex,nbasis> & Subspace,
 | 
			
		||||
		       GridBase *CoarseGrid)
 | 
			
		||||
  {
 | 
			
		||||
#if 0
 | 
			
		||||
    std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl;
 | 
			
		||||
 | 
			
		||||
    GridBase *grid = Subspace.FineGrid;
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    // Orthogonalise the subblocks over the basis
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    CoarseScalar InnerProd(CoarseGrid); 
 | 
			
		||||
    blockOrthogonalise(InnerProd,Subspace.subspace);
 | 
			
		||||
 | 
			
		||||
    const int npoint = geom_srhs.npoint;
 | 
			
		||||
 | 
			
		||||
    Coordinate clatt = CoarseGrid->GlobalDimensions();
 | 
			
		||||
    int Nd = CoarseGrid->Nd();
 | 
			
		||||
      /*
 | 
			
		||||
       *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
 | 
			
		||||
       *     Matrix index i is mapped to this shift via 
 | 
			
		||||
       *               geom.shifts[i]
 | 
			
		||||
       *
 | 
			
		||||
       *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block] 
 | 
			
		||||
       *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} > 
 | 
			
		||||
       *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
 | 
			
		||||
       *       = M_{kl} A_ji^{b.b+l}
 | 
			
		||||
       *
 | 
			
		||||
       *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
 | 
			
		||||
       *  
 | 
			
		||||
       *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
			
		||||
       *
 | 
			
		||||
       *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
 | 
			
		||||
       */
 | 
			
		||||
    Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
			
		||||
    Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
			
		||||
    ComplexD ci(0.0,1.0);
 | 
			
		||||
    for(int k=0;k<npoint;k++){ // Loop over momenta
 | 
			
		||||
 | 
			
		||||
      for(int l=0;l<npoint;l++){ // Loop over nbr relative
 | 
			
		||||
	ComplexD phase(0.0,0.0);
 | 
			
		||||
	for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
			
		||||
	  phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu];
 | 
			
		||||
	}
 | 
			
		||||
	phase=exp(phase*ci);
 | 
			
		||||
	Mkl(k,l) = phase;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    invMkl = Mkl.inverse();
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Now compute the matrix elements of linop between the orthonormal
 | 
			
		||||
    // set of vectors.
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////
 | 
			
		||||
    FineField phaV(grid); // Phased block basis vector
 | 
			
		||||
    FineField MphaV(grid);// Matrix applied
 | 
			
		||||
    std::vector<FineComplexField> phaF(npoint,grid);
 | 
			
		||||
    std::vector<CoarseComplexField> pha(npoint,CoarseGrid);
 | 
			
		||||
    
 | 
			
		||||
    CoarseVector coarseInner(CoarseGrid);
 | 
			
		||||
    
 | 
			
		||||
    typedef typename CComplex::scalar_type SComplex;
 | 
			
		||||
    FineComplexField one(grid); one=SComplex(1.0);
 | 
			
		||||
    FineComplexField zz(grid); zz = Zero();
 | 
			
		||||
    for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      // Stick a phase on every block
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      CoarseComplexField coor(CoarseGrid);
 | 
			
		||||
      pha[p]=Zero();
 | 
			
		||||
      for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
	LatticeCoordinate(coor,mu);
 | 
			
		||||
	RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
			
		||||
	pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor;
 | 
			
		||||
      }
 | 
			
		||||
      pha[p]  =exp(pha[p]*ci);	
 | 
			
		||||
 | 
			
		||||
      blockZAXPY(phaF[p],pha[p],one,zz);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Could save on temporary storage here
 | 
			
		||||
    std::vector<CoarseMatrix> _A;
 | 
			
		||||
    _A.resize(geom_srhs.npoint,CoarseGrid);
 | 
			
		||||
 | 
			
		||||
    std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid);
 | 
			
		||||
    CoarseVector          FT(CoarseGrid);
 | 
			
		||||
    for(int i=0;i<nbasis;i++){// Loop over basis vectors
 | 
			
		||||
      std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
 | 
			
		||||
      for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
			
		||||
 | 
			
		||||
	phaV = phaF[p]*Subspace.subspace[i];
 | 
			
		||||
 | 
			
		||||
	/////////////////////////////////////////////////////////////////////
 | 
			
		||||
	// Multiple phased subspace vector by matrix and project to subspace
 | 
			
		||||
	// Remove local bulk phase to leave relative phases
 | 
			
		||||
	/////////////////////////////////////////////////////////////////////
 | 
			
		||||
	linop.Op(phaV,MphaV);
 | 
			
		||||
 | 
			
		||||
	// Fixme, could use batched block projector here
 | 
			
		||||
	blockProject(coarseInner,MphaV,Subspace.subspace);
 | 
			
		||||
 | 
			
		||||
	coarseInner = conjugate(pha[p]) * coarseInner;
 | 
			
		||||
 | 
			
		||||
	ComputeProj[p] = coarseInner;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix.
 | 
			
		||||
      for(int k=0;k<npoint;k++){
 | 
			
		||||
 | 
			
		||||
	FT = Zero();
 | 
			
		||||
	for(int l=0;l<npoint;l++){
 | 
			
		||||
	  FT= FT+ invMkl(l,k)*ComputeProj[l];
 | 
			
		||||
	}
 | 
			
		||||
      
 | 
			
		||||
	int osites=CoarseGrid->oSites();
 | 
			
		||||
	autoView( A_v  , _A[k], AcceleratorWrite);
 | 
			
		||||
	autoView( FT_v  , FT, AcceleratorRead);
 | 
			
		||||
	accelerator_for(sss, osites, 1, {
 | 
			
		||||
	    for(int j=0;j<nbasis;j++){
 | 
			
		||||
	      A_v[sss](i,j) = FT_v[sss](j);
 | 
			
		||||
	    }
 | 
			
		||||
        });
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Only needed if nonhermitian
 | 
			
		||||
    //    if ( ! hermitian ) {
 | 
			
		||||
    //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl;
 | 
			
		||||
    //      PopulateAdag();
 | 
			
		||||
    //    }
 | 
			
		||||
    // Need to write something to populate Adag from A
 | 
			
		||||
 | 
			
		||||
    for(int p=0;p<geom_srhs.npoint;p++){
 | 
			
		||||
      GridtoBLAS(_A[p],BLAS_A[p]);
 | 
			
		||||
    }
 | 
			
		||||
    /*
 | 
			
		||||
Grid : Message : 11698.730546 s : CoarsenOperator eigen  1334 us
 | 
			
		||||
Grid : Message : 11698.730563 s : CoarsenOperator phase  34729 us
 | 
			
		||||
Grid : Message : 11698.730565 s : CoarsenOperator phaseBZ 2423814 us
 | 
			
		||||
Grid : Message : 11698.730566 s : CoarsenOperator mat    127890998 us
 | 
			
		||||
Grid : Message : 11698.730567 s : CoarsenOperator proj   515840840 us
 | 
			
		||||
Grid : Message : 11698.730568 s : CoarsenOperator inv    103948313 us
 | 
			
		||||
Takes 600s to compute matrix elements, DOMINATED by the block project.
 | 
			
		||||
Easy to speed up with the batched block project.
 | 
			
		||||
Store npoint vectors, get npoint x Nbasis block projection, and 81 fold faster.
 | 
			
		||||
 | 
			
		||||
// Block project below taks to 240s
 | 
			
		||||
Grid : Message : 328.193418 s : CoarsenOperator phase      38338 us
 | 
			
		||||
Grid : Message : 328.193434 s : CoarsenOperator phaseBZ  1711226 us
 | 
			
		||||
Grid : Message : 328.193436 s : CoarsenOperator mat    122213270 us
 | 
			
		||||
//Grid : Message : 328.193438 s : CoarsenOperator proj   1181154 us <-- this is mistimed
 | 
			
		||||
//Grid : Message : 11698.730568 s : CoarsenOperator inv  103948313 us <-- Cut this ~10x if lucky by loop fusion
 | 
			
		||||
     */
 | 
			
		||||
#else
 | 
			
		||||
    RealD tproj=0.0;
 | 
			
		||||
    RealD tmat=0.0;
 | 
			
		||||
    RealD tphase=0.0;
 | 
			
		||||
    RealD tphaseBZ=0.0;
 | 
			
		||||
    RealD tinv=0.0;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl;
 | 
			
		||||
 | 
			
		||||
    GridBase *grid = Subspace.FineGrid;
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    // Orthogonalise the subblocks over the basis
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    CoarseScalar InnerProd(CoarseGrid); 
 | 
			
		||||
    blockOrthogonalise(InnerProd,Subspace.subspace);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    MultiRHSBlockProject<Lattice<Fobj> >    Projector;
 | 
			
		||||
    Projector.Allocate(nbasis,grid,CoarseGrid);
 | 
			
		||||
    Projector.ImportBasis(Subspace.subspace);
 | 
			
		||||
    
 | 
			
		||||
    const int npoint = geom_srhs.npoint;
 | 
			
		||||
 | 
			
		||||
    Coordinate clatt = CoarseGrid->GlobalDimensions();
 | 
			
		||||
    int Nd = CoarseGrid->Nd();
 | 
			
		||||
      /*
 | 
			
		||||
       *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
 | 
			
		||||
       *     Matrix index i is mapped to this shift via 
 | 
			
		||||
       *               geom.shifts[i]
 | 
			
		||||
       *
 | 
			
		||||
       *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block] 
 | 
			
		||||
       *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} > 
 | 
			
		||||
       *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
 | 
			
		||||
       *       = M_{kl} A_ji^{b.b+l}
 | 
			
		||||
       *
 | 
			
		||||
       *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
 | 
			
		||||
       *  
 | 
			
		||||
       *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
			
		||||
       *
 | 
			
		||||
       *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
 | 
			
		||||
       */
 | 
			
		||||
    Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
			
		||||
    Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
			
		||||
    ComplexD ci(0.0,1.0);
 | 
			
		||||
    for(int k=0;k<npoint;k++){ // Loop over momenta
 | 
			
		||||
 | 
			
		||||
      for(int l=0;l<npoint;l++){ // Loop over nbr relative
 | 
			
		||||
	ComplexD phase(0.0,0.0);
 | 
			
		||||
	for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
			
		||||
	  phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu];
 | 
			
		||||
	}
 | 
			
		||||
	phase=exp(phase*ci);
 | 
			
		||||
	Mkl(k,l) = phase;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    invMkl = Mkl.inverse();
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Now compute the matrix elements of linop between the orthonormal
 | 
			
		||||
    // set of vectors.
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////
 | 
			
		||||
    FineField phaV(grid); // Phased block basis vector
 | 
			
		||||
    FineField MphaV(grid);// Matrix applied
 | 
			
		||||
    std::vector<FineComplexField> phaF(npoint,grid);
 | 
			
		||||
    std::vector<CoarseComplexField> pha(npoint,CoarseGrid);
 | 
			
		||||
    
 | 
			
		||||
    CoarseVector coarseInner(CoarseGrid);
 | 
			
		||||
    
 | 
			
		||||
    tphase=-usecond();
 | 
			
		||||
    typedef typename CComplex::scalar_type SComplex;
 | 
			
		||||
    FineComplexField one(grid); one=SComplex(1.0);
 | 
			
		||||
    FineComplexField zz(grid); zz = Zero();
 | 
			
		||||
    for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      // Stick a phase on every block
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      CoarseComplexField coor(CoarseGrid);
 | 
			
		||||
      pha[p]=Zero();
 | 
			
		||||
      for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
	LatticeCoordinate(coor,mu);
 | 
			
		||||
	RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
			
		||||
	pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor;
 | 
			
		||||
      }
 | 
			
		||||
      pha[p]  =exp(pha[p]*ci);	
 | 
			
		||||
 | 
			
		||||
      blockZAXPY(phaF[p],pha[p],one,zz);
 | 
			
		||||
    }
 | 
			
		||||
    tphase+=usecond();
 | 
			
		||||
 | 
			
		||||
    // Could save on temporary storage here
 | 
			
		||||
    std::vector<CoarseMatrix> _A;
 | 
			
		||||
    _A.resize(geom_srhs.npoint,CoarseGrid);
 | 
			
		||||
 | 
			
		||||
    // Count use small chunks than npoint == 81 and save memory
 | 
			
		||||
    int batch = 9;
 | 
			
		||||
    std::vector<FineField>    _MphaV(batch,grid);
 | 
			
		||||
    std::vector<CoarseVector> TmpProj(batch,CoarseGrid);
 | 
			
		||||
 | 
			
		||||
    std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid);
 | 
			
		||||
    CoarseVector          FT(CoarseGrid);
 | 
			
		||||
    for(int i=0;i<nbasis;i++){// Loop over basis vectors
 | 
			
		||||
      std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
 | 
			
		||||
 | 
			
		||||
      //      std::cout << GridLogMessage << " phasing the fine vector "<<std::endl;
 | 
			
		||||
      // Fixme : do this in batches
 | 
			
		||||
      for(int p=0;p<npoint;p+=batch){ // Loop over momenta in npoint
 | 
			
		||||
 | 
			
		||||
	for(int b=0;b<MIN(batch,npoint-p);b++){
 | 
			
		||||
	  tphaseBZ-=usecond();
 | 
			
		||||
	  phaV = phaF[p+b]*Subspace.subspace[i];
 | 
			
		||||
	  tphaseBZ+=usecond();
 | 
			
		||||
 | 
			
		||||
	  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
	  // Multiple phased subspace vector by matrix and project to subspace
 | 
			
		||||
	  // Remove local bulk phase to leave relative phases
 | 
			
		||||
	  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
	  // Memory footprint was an issue
 | 
			
		||||
	  tmat-=usecond();
 | 
			
		||||
	  linop.Op(phaV,MphaV);
 | 
			
		||||
	  _MphaV[b] = MphaV;
 | 
			
		||||
	  tmat+=usecond();
 | 
			
		||||
	}      
 | 
			
		||||
 | 
			
		||||
	//	std::cout << GridLogMessage << " Calling block project "<<std::endl;
 | 
			
		||||
	tproj-=usecond();
 | 
			
		||||
	Projector.blockProject(_MphaV,TmpProj);
 | 
			
		||||
	tproj+=usecond();
 | 
			
		||||
	
 | 
			
		||||
	//	std::cout << GridLogMessage << " conj phasing the coarse vectors "<<std::endl;
 | 
			
		||||
	for(int b=0;b<MIN(batch,npoint-p);b++){
 | 
			
		||||
	  ComputeProj[p+b] = conjugate(pha[p+b])*TmpProj[b];
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix.
 | 
			
		||||
      
 | 
			
		||||
      // std::cout << GridLogMessage << " Starting FT inv "<<std::endl;
 | 
			
		||||
      tinv-=usecond();
 | 
			
		||||
      for(int k=0;k<npoint;k++){
 | 
			
		||||
	FT = Zero();
 | 
			
		||||
	// 81 kernel calls as many ComputeProj vectors
 | 
			
		||||
	// Could fuse with a vector of views, but ugly
 | 
			
		||||
	// Could unroll the expression and run fewer kernels -- much more attractive
 | 
			
		||||
	// Could also do non blocking.
 | 
			
		||||
#if 0	
 | 
			
		||||
	for(int l=0;l<npoint;l++){
 | 
			
		||||
	  FT= FT+ invMkl(l,k)*ComputeProj[l];
 | 
			
		||||
	}
 | 
			
		||||
#else
 | 
			
		||||
	const int radix = 9;
 | 
			
		||||
	int ll;
 | 
			
		||||
	for(ll=0;ll+radix-1<npoint;ll+=radix){
 | 
			
		||||
	  // When ll = npoint-radix, ll+radix-1 = npoint-1, and we do it all.
 | 
			
		||||
	  FT = FT 
 | 
			
		||||
	    + invMkl(ll+0,k)*ComputeProj[ll+0]
 | 
			
		||||
	    + invMkl(ll+1,k)*ComputeProj[ll+1]
 | 
			
		||||
	    + invMkl(ll+2,k)*ComputeProj[ll+2]
 | 
			
		||||
	    + invMkl(ll+3,k)*ComputeProj[ll+3]
 | 
			
		||||
	    + invMkl(ll+4,k)*ComputeProj[ll+4]
 | 
			
		||||
	    + invMkl(ll+5,k)*ComputeProj[ll+5]
 | 
			
		||||
	    + invMkl(ll+6,k)*ComputeProj[ll+6]
 | 
			
		||||
	    + invMkl(ll+7,k)*ComputeProj[ll+7]
 | 
			
		||||
	    + invMkl(ll+8,k)*ComputeProj[ll+8];
 | 
			
		||||
	}
 | 
			
		||||
	for(int l=ll;l<npoint;l++){
 | 
			
		||||
	  FT= FT+ invMkl(l,k)*ComputeProj[l];
 | 
			
		||||
	}
 | 
			
		||||
#endif
 | 
			
		||||
      
 | 
			
		||||
	// 1 kernel call -- must be cheaper
 | 
			
		||||
	int osites=CoarseGrid->oSites();
 | 
			
		||||
	autoView( A_v  , _A[k], AcceleratorWrite);
 | 
			
		||||
	autoView( FT_v  , FT, AcceleratorRead);
 | 
			
		||||
	accelerator_for(sss, osites, 1, {
 | 
			
		||||
	    for(int j=0;j<nbasis;j++){
 | 
			
		||||
	      A_v[sss](i,j) = FT_v[sss](j);
 | 
			
		||||
	    }
 | 
			
		||||
        });
 | 
			
		||||
      }
 | 
			
		||||
      tinv+=usecond();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Only needed if nonhermitian
 | 
			
		||||
    //    if ( ! hermitian ) {
 | 
			
		||||
    //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl;
 | 
			
		||||
    //      PopulateAdag();
 | 
			
		||||
    //    }
 | 
			
		||||
    // Need to write something to populate Adag from A
 | 
			
		||||
    //    std::cout << GridLogMessage << " Calling GridtoBLAS "<<std::endl;
 | 
			
		||||
    for(int p=0;p<geom_srhs.npoint;p++){
 | 
			
		||||
      GridtoBLAS(_A[p],BLAS_A[p]);
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator phase  "<<tphase<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator mat    "<<tmat <<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator proj   "<<tproj<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl;
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
  void Mdag(const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    this->M(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void M (const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    //    std::cout << GridLogMessage << "New Mrhs coarse"<<std::endl;
 | 
			
		||||
    conformable(CoarseGrid(),in.Grid());
 | 
			
		||||
    conformable(in.Grid(),out.Grid());
 | 
			
		||||
    out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
 | 
			
		||||
    RealD t_tot;
 | 
			
		||||
    RealD t_exch;
 | 
			
		||||
    RealD t_GtoB;
 | 
			
		||||
    RealD t_BtoG;
 | 
			
		||||
    RealD t_mult;
 | 
			
		||||
 | 
			
		||||
    t_tot=-usecond();
 | 
			
		||||
    CoarseVector tin=in;
 | 
			
		||||
    t_exch=-usecond();
 | 
			
		||||
    CoarseVector pin = Cell.ExchangePeriodic(tin); //padded input
 | 
			
		||||
    t_exch+=usecond();
 | 
			
		||||
 | 
			
		||||
    CoarseVector pout(pin.Grid());
 | 
			
		||||
 | 
			
		||||
    int npoint = geom.npoint;
 | 
			
		||||
    typedef calcMatrix* Aview;
 | 
			
		||||
    typedef LatticeView<Cvec> Vview;
 | 
			
		||||
      
 | 
			
		||||
    const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
 | 
			
		||||
    int64_t nrhs  =pin.Grid()->GlobalDimensions()[0];
 | 
			
		||||
    assert(nrhs>=1);
 | 
			
		||||
 | 
			
		||||
    RealD flops,bytes;
 | 
			
		||||
    int64_t osites=in.Grid()->oSites(); // unpadded
 | 
			
		||||
    int64_t unpadded_vol = CoarseGrid()->lSites()/nrhs;
 | 
			
		||||
    
 | 
			
		||||
    flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
 | 
			
		||||
    bytes = 1.0*osites*sizeof(siteMatrix)*npoint/pin.Grid()->GlobalDimensions()[0]
 | 
			
		||||
          + 2.0*osites*sizeof(siteVector)*npoint;
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    t_GtoB=-usecond();
 | 
			
		||||
    GridtoBLAS(pin,BLAS_B);
 | 
			
		||||
    t_GtoB+=usecond();
 | 
			
		||||
 | 
			
		||||
    GridBLAS BLAS;
 | 
			
		||||
 | 
			
		||||
    t_mult=-usecond();
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      RealD c = 1.0;
 | 
			
		||||
      if (p==0) c = 0.0;
 | 
			
		||||
      ComplexD beta(c);
 | 
			
		||||
 | 
			
		||||
      BLAS.gemmBatched(nbasis,nrhs,nbasis,
 | 
			
		||||
		       ComplexD(1.0),
 | 
			
		||||
		       BLAS_AP[p], 
 | 
			
		||||
		       BLAS_BP[p], 
 | 
			
		||||
		       ComplexD(c), 
 | 
			
		||||
		       BLAS_CP);
 | 
			
		||||
    }
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
    t_mult+=usecond();
 | 
			
		||||
 | 
			
		||||
    t_BtoG=-usecond();
 | 
			
		||||
    BLAStoGrid(out,BLAS_C);
 | 
			
		||||
    t_BtoG+=usecond();
 | 
			
		||||
    t_tot+=usecond();
 | 
			
		||||
    /*
 | 
			
		||||
    std::cout << GridLogMessage << "New Mrhs coarse DONE "<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"Coarse Mult exch "<<t_exch<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"Coarse Mult mult "<<t_mult<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"Coarse Mult GtoB  "<<t_GtoB<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"Coarse Mult BtoG  "<<t_BtoG<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"Coarse Mult tot  "<<t_tot<<" us"<<std::endl;
 | 
			
		||||
    */
 | 
			
		||||
    //    std::cout << GridLogMessage<<std::endl;
 | 
			
		||||
    //    std::cout << GridLogMessage<<"Coarse Kernel flops "<< flops<<std::endl;
 | 
			
		||||
    //    std::cout << GridLogMessage<<"Coarse Kernel flop/s "<< flops/t_mult<<" mflop/s"<<std::endl;
 | 
			
		||||
    //    std::cout << GridLogMessage<<"Coarse Kernel bytes/s "<< bytes/t_mult/1000<<" GB/s"<<std::endl;
 | 
			
		||||
    //    std::cout << GridLogMessage<<"Coarse overall flops/s "<< flops/t_tot<<" mflop/s"<<std::endl;
 | 
			
		||||
    //    std::cout << GridLogMessage<<"Coarse total bytes   "<< bytes/1e6<<" MB"<<std::endl;
 | 
			
		||||
  };
 | 
			
		||||
  virtual  void Mdiag    (const Field &in, Field &out){ assert(0);};
 | 
			
		||||
  virtual  void Mdir     (const Field &in, Field &out,int dir, int disp){assert(0);};
 | 
			
		||||
  virtual  void MdirAll  (const Field &in, std::vector<Field> &out){assert(0);};
 | 
			
		||||
};
 | 
			
		||||
  
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -1,238 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////
 | 
			
		||||
// Geometry class in cartesian case
 | 
			
		||||
/////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
class Geometry {
 | 
			
		||||
public:
 | 
			
		||||
  int npoint;
 | 
			
		||||
  int base;
 | 
			
		||||
  std::vector<int> directions   ;
 | 
			
		||||
  std::vector<int> displacements;
 | 
			
		||||
  std::vector<int> points_dagger;
 | 
			
		||||
 | 
			
		||||
  Geometry(int _d)  {
 | 
			
		||||
    
 | 
			
		||||
    base = (_d==5) ? 1:0;
 | 
			
		||||
 | 
			
		||||
    // make coarse grid stencil for 4d , not 5d
 | 
			
		||||
    if ( _d==5 ) _d=4;
 | 
			
		||||
 | 
			
		||||
    npoint = 2*_d+1;
 | 
			
		||||
    directions.resize(npoint);
 | 
			
		||||
    displacements.resize(npoint);
 | 
			
		||||
    points_dagger.resize(npoint);
 | 
			
		||||
    for(int d=0;d<_d;d++){
 | 
			
		||||
      directions[d   ] = d+base;
 | 
			
		||||
      directions[d+_d] = d+base;
 | 
			
		||||
      displacements[d  ] = +1;
 | 
			
		||||
      displacements[d+_d]= -1;
 | 
			
		||||
      points_dagger[d   ] = d+_d;
 | 
			
		||||
      points_dagger[d+_d] = d;
 | 
			
		||||
    }
 | 
			
		||||
    directions   [2*_d]=0;
 | 
			
		||||
    displacements[2*_d]=0;
 | 
			
		||||
    points_dagger[2*_d]=2*_d;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int point(int dir, int disp) {
 | 
			
		||||
    assert(disp == -1 || disp == 0 || disp == 1);
 | 
			
		||||
    assert(base+0 <= dir && dir < base+4);
 | 
			
		||||
 | 
			
		||||
    // directions faster index = new indexing
 | 
			
		||||
    // 4d (base = 0):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   0  1  2  3  0  1  2  3  0
 | 
			
		||||
    // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | 
			
		||||
    // 5d (base = 1):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   1  2  3  4  1  2  3  4  0
 | 
			
		||||
    // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | 
			
		||||
 | 
			
		||||
    // displacements faster index = old indexing
 | 
			
		||||
    // 4d (base = 0):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   0  0  1  1  2  2  3  3  0
 | 
			
		||||
    // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | 
			
		||||
    // 5d (base = 1):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   1  1  2  2  3  3  4  4  0
 | 
			
		||||
    // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | 
			
		||||
 | 
			
		||||
    if(dir == 0 and disp == 0)
 | 
			
		||||
      return 8;
 | 
			
		||||
    else // New indexing
 | 
			
		||||
      return (1 - disp) / 2 * 4 + dir - base;
 | 
			
		||||
    // else // Old indexing
 | 
			
		||||
    //   return (4 * (dir - base) + 1 - disp) / 2;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////
 | 
			
		||||
// Less local equivalent of Geometry class in cartesian case
 | 
			
		||||
/////////////////////////////////////////////////////////////////
 | 
			
		||||
class NonLocalStencilGeometry {
 | 
			
		||||
public:
 | 
			
		||||
  //  int depth;
 | 
			
		||||
  int skip;
 | 
			
		||||
  int hops;
 | 
			
		||||
  int npoint;
 | 
			
		||||
  std::vector<Coordinate> shifts;
 | 
			
		||||
  Coordinate stencil_size;
 | 
			
		||||
  Coordinate stencil_lo;
 | 
			
		||||
  Coordinate stencil_hi;
 | 
			
		||||
  GridCartesian *grid;
 | 
			
		||||
  GridCartesian *Grid() {return grid;};
 | 
			
		||||
  int Depth(void){return 1;};   // Ghost zone depth
 | 
			
		||||
  int Hops(void){return hops;}; // # of hops=> level of corner fill in in stencil
 | 
			
		||||
  int DimSkip(void){return skip;};
 | 
			
		||||
 | 
			
		||||
  virtual ~NonLocalStencilGeometry() {};
 | 
			
		||||
 | 
			
		||||
  int  Reverse(int point)
 | 
			
		||||
  {
 | 
			
		||||
    int Nd = Grid()->Nd();
 | 
			
		||||
    Coordinate shft = shifts[point];
 | 
			
		||||
    Coordinate rev(Nd);
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++) rev[mu]= -shft[mu];
 | 
			
		||||
    for(int p=0;p<npoint;p++){
 | 
			
		||||
      if(rev==shifts[p]){
 | 
			
		||||
	return p;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    assert(0);
 | 
			
		||||
    return -1;
 | 
			
		||||
  }
 | 
			
		||||
  void BuildShifts(void)
 | 
			
		||||
  {
 | 
			
		||||
    this->shifts.resize(0);
 | 
			
		||||
    int Nd = this->grid->Nd();
 | 
			
		||||
 | 
			
		||||
    int dd = this->DimSkip();
 | 
			
		||||
    for(int s0=this->stencil_lo[dd+0];s0<=this->stencil_hi[dd+0];s0++){
 | 
			
		||||
    for(int s1=this->stencil_lo[dd+1];s1<=this->stencil_hi[dd+1];s1++){
 | 
			
		||||
    for(int s2=this->stencil_lo[dd+2];s2<=this->stencil_hi[dd+2];s2++){
 | 
			
		||||
    for(int s3=this->stencil_lo[dd+3];s3<=this->stencil_hi[dd+3];s3++){
 | 
			
		||||
      Coordinate sft(Nd,0);
 | 
			
		||||
      sft[dd+0] = s0;
 | 
			
		||||
      sft[dd+1] = s1;
 | 
			
		||||
      sft[dd+2] = s2;
 | 
			
		||||
      sft[dd+3] = s3;
 | 
			
		||||
      int nhops = abs(s0)+abs(s1)+abs(s2)+abs(s3);
 | 
			
		||||
      if(nhops<=this->hops) this->shifts.push_back(sft);
 | 
			
		||||
    }}}}
 | 
			
		||||
    this->npoint = this->shifts.size();
 | 
			
		||||
    std::cout << GridLogMessage << "NonLocalStencilGeometry has "<< this->npoint << " terms in stencil "<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  NonLocalStencilGeometry(GridCartesian *_coarse_grid,int _hops,int _skip) : grid(_coarse_grid), hops(_hops), skip(_skip)
 | 
			
		||||
  {
 | 
			
		||||
    Coordinate latt = grid->GlobalDimensions();
 | 
			
		||||
    stencil_size.resize(grid->Nd());
 | 
			
		||||
    stencil_lo.resize(grid->Nd());
 | 
			
		||||
    stencil_hi.resize(grid->Nd());
 | 
			
		||||
    for(int d=0;d<grid->Nd();d++){
 | 
			
		||||
     if ( latt[d] == 1 ) {
 | 
			
		||||
      stencil_lo[d] = 0;
 | 
			
		||||
      stencil_hi[d] = 0;
 | 
			
		||||
      stencil_size[d]= 1;
 | 
			
		||||
     } else if ( latt[d] == 2 ) {
 | 
			
		||||
      stencil_lo[d] = -1;
 | 
			
		||||
      stencil_hi[d] = 0;
 | 
			
		||||
      stencil_size[d]= 2;
 | 
			
		||||
     } else if ( latt[d] > 2 ) {
 | 
			
		||||
       stencil_lo[d] = -1;
 | 
			
		||||
       stencil_hi[d] =  1;
 | 
			
		||||
       stencil_size[d]= 3;
 | 
			
		||||
     }
 | 
			
		||||
    }
 | 
			
		||||
    this->BuildShifts();
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// Need to worry about red-black now
 | 
			
		||||
class NonLocalStencilGeometry4D : public NonLocalStencilGeometry {
 | 
			
		||||
public:
 | 
			
		||||
  virtual int DerivedDimSkip(void) { return 0;};
 | 
			
		||||
  NonLocalStencilGeometry4D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,0) { };
 | 
			
		||||
  virtual ~NonLocalStencilGeometry4D() {};
 | 
			
		||||
};
 | 
			
		||||
class NonLocalStencilGeometry5D : public NonLocalStencilGeometry {
 | 
			
		||||
public:
 | 
			
		||||
  virtual int DerivedDimSkip(void) { return 1; }; 
 | 
			
		||||
  NonLocalStencilGeometry5D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,1)  { };
 | 
			
		||||
  virtual ~NonLocalStencilGeometry5D() {};
 | 
			
		||||
};
 | 
			
		||||
/*
 | 
			
		||||
 * Bunch of different options classes
 | 
			
		||||
 */
 | 
			
		||||
class NextToNextToNextToNearestStencilGeometry4D : public NonLocalStencilGeometry4D {
 | 
			
		||||
public:
 | 
			
		||||
  NextToNextToNextToNearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,4)
 | 
			
		||||
  {
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
class NextToNextToNextToNearestStencilGeometry5D : public  NonLocalStencilGeometry5D {
 | 
			
		||||
public:
 | 
			
		||||
  NextToNextToNextToNearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,4)
 | 
			
		||||
  {
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
class NextToNearestStencilGeometry4D : public  NonLocalStencilGeometry4D {
 | 
			
		||||
public:
 | 
			
		||||
  NextToNearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,2)
 | 
			
		||||
  {
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
class NextToNearestStencilGeometry5D : public  NonLocalStencilGeometry5D {
 | 
			
		||||
public:
 | 
			
		||||
  NextToNearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,2)
 | 
			
		||||
  {
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
class NearestStencilGeometry4D : public  NonLocalStencilGeometry4D {
 | 
			
		||||
public:
 | 
			
		||||
  NearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,1)
 | 
			
		||||
  {
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
class NearestStencilGeometry5D : public  NonLocalStencilGeometry5D {
 | 
			
		||||
public:
 | 
			
		||||
  NearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,1)
 | 
			
		||||
  {
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -1,34 +0,0 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
    Source file: Grid/algorithms/multigrid/MultiGrid.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2023
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <Grid/algorithms/multigrid/Aggregates.h>
 | 
			
		||||
#include <Grid/algorithms/multigrid/Geometry.h>
 | 
			
		||||
#include <Grid/algorithms/multigrid/CoarsenedMatrix.h>
 | 
			
		||||
#include <Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h>
 | 
			
		||||
#include <Grid/algorithms/multigrid/GeneralCoarsenedMatrixMultiRHS.h>
 | 
			
		||||
@@ -54,9 +54,6 @@ public:
 | 
			
		||||
    size_type bytes = __n*sizeof(_Tp);
 | 
			
		||||
    profilerAllocate(bytes);
 | 
			
		||||
    _Tp *ptr = (_Tp*) MemoryManager::CpuAllocate(bytes);
 | 
			
		||||
    if ( (_Tp*)ptr == (_Tp *) NULL ) {
 | 
			
		||||
      printf("Grid CPU Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
 | 
			
		||||
    }
 | 
			
		||||
    assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
 | 
			
		||||
    return ptr;
 | 
			
		||||
  }
 | 
			
		||||
@@ -69,7 +66,7 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop
 | 
			
		||||
  void construct(pointer __p, const _Tp& __val) { };
 | 
			
		||||
  void construct(pointer __p, const _Tp& __val) { assert(0);};
 | 
			
		||||
  void construct(pointer __p) { };
 | 
			
		||||
  void destroy(pointer __p) { };
 | 
			
		||||
};
 | 
			
		||||
@@ -103,9 +100,6 @@ public:
 | 
			
		||||
    size_type bytes = __n*sizeof(_Tp);
 | 
			
		||||
    profilerAllocate(bytes);
 | 
			
		||||
    _Tp *ptr = (_Tp*) MemoryManager::SharedAllocate(bytes);
 | 
			
		||||
    if ( (_Tp*)ptr == (_Tp *) NULL ) {
 | 
			
		||||
      printf("Grid Shared Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
 | 
			
		||||
    }
 | 
			
		||||
    assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
 | 
			
		||||
    return ptr;
 | 
			
		||||
  }
 | 
			
		||||
@@ -151,9 +145,6 @@ public:
 | 
			
		||||
    size_type bytes = __n*sizeof(_Tp);
 | 
			
		||||
    profilerAllocate(bytes);
 | 
			
		||||
    _Tp *ptr = (_Tp*) MemoryManager::AcceleratorAllocate(bytes);
 | 
			
		||||
    if ( (_Tp*)ptr == (_Tp *) NULL ) {
 | 
			
		||||
      printf("Grid Device Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
 | 
			
		||||
    }
 | 
			
		||||
    assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
 | 
			
		||||
    return ptr;
 | 
			
		||||
  }
 | 
			
		||||
@@ -174,48 +165,19 @@ template<typename _Tp>  inline bool operator!=(const devAllocator<_Tp>&, const d
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Template typedefs
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class T> using hostVector          = std::vector<T,alignedAllocator<T> >;           // Needs autoview
 | 
			
		||||
template<class T> using Vector              = std::vector<T,uvmAllocator<T> >;               // Really want to deprecate
 | 
			
		||||
template<class T> using uvmVector           = std::vector<T,uvmAllocator<T> >;               // auto migrating page
 | 
			
		||||
template<class T> using deviceVector        = std::vector<T,devAllocator<T> >;               // device vector
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT
 | 
			
		||||
// Cshift on device
 | 
			
		||||
template<class T> using cshiftAllocator = devAllocator<T>;
 | 
			
		||||
#else
 | 
			
		||||
// Cshift on host
 | 
			
		||||
template<class T> using cshiftAllocator = std::allocator<T>;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
template<class T> class vecView
 | 
			
		||||
{
 | 
			
		||||
 protected:
 | 
			
		||||
  T * data;
 | 
			
		||||
  uint64_t size;
 | 
			
		||||
  ViewMode mode;
 | 
			
		||||
  void * cpu_ptr;
 | 
			
		||||
 public:
 | 
			
		||||
  // Rvalue accessor
 | 
			
		||||
  accelerator_inline T & operator[](size_t i) const { return this->data[i]; };
 | 
			
		||||
  vecView(Vector<T> &refer_to_me,ViewMode _mode)
 | 
			
		||||
  {
 | 
			
		||||
    cpu_ptr = &refer_to_me[0];
 | 
			
		||||
    size = refer_to_me.size();
 | 
			
		||||
    mode = _mode;
 | 
			
		||||
    data =(T *) MemoryManager::ViewOpen(cpu_ptr,
 | 
			
		||||
					size*sizeof(T),
 | 
			
		||||
					mode,
 | 
			
		||||
					AdviseDefault);
 | 
			
		||||
  }
 | 
			
		||||
  void ViewClose(void)
 | 
			
		||||
  { // Inform the manager
 | 
			
		||||
    MemoryManager::ViewClose(this->cpu_ptr,this->mode);    
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class T> vecView<T> VectorView(Vector<T> &vec,ViewMode _mode)
 | 
			
		||||
{
 | 
			
		||||
  vecView<T> ret(vec,_mode); // does the open
 | 
			
		||||
  return ret;                // must be closed
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#define autoVecView(v_v,v,mode)					\
 | 
			
		||||
  auto v_v = VectorView(v,mode);				\
 | 
			
		||||
  ViewCloser<decltype(v_v)> _autoView##v_v(v_v);
 | 
			
		||||
*/
 | 
			
		||||
template<class T> using Vector        = std::vector<T,uvmAllocator<T> >;           
 | 
			
		||||
template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;           
 | 
			
		||||
template<class T> using commVector = std::vector<T,devAllocator<T> >;
 | 
			
		||||
template<class T> using deviceVector  = std::vector<T,devAllocator<T> >;
 | 
			
		||||
template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -16,44 +16,6 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
uint64_t total_shared;
 | 
			
		||||
uint64_t total_device;
 | 
			
		||||
uint64_t total_host;;
 | 
			
		||||
 | 
			
		||||
#if defined(__has_feature)
 | 
			
		||||
#if __has_feature(leak_sanitizer)
 | 
			
		||||
#define ASAN_LEAK_CHECK
 | 
			
		||||
#endif
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef ASAN_LEAK_CHECK
 | 
			
		||||
#include <sanitizer/asan_interface.h>
 | 
			
		||||
#include <sanitizer/common_interface_defs.h>
 | 
			
		||||
#include <sanitizer/lsan_interface.h>
 | 
			
		||||
#define LEAK_CHECK(A) { __lsan_do_recoverable_leak_check(); }
 | 
			
		||||
#else
 | 
			
		||||
#define LEAK_CHECK(A) { }
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
void MemoryManager::DisplayMallinfo(void)
 | 
			
		||||
{
 | 
			
		||||
#ifdef __linux__
 | 
			
		||||
  struct mallinfo mi; // really want mallinfo2, but glibc version isn't uniform
 | 
			
		||||
  
 | 
			
		||||
  mi = mallinfo();
 | 
			
		||||
 | 
			
		||||
  std::cout << "MemoryManager: Total non-mmapped bytes (arena):       "<< (size_t)mi.arena<<std::endl;
 | 
			
		||||
  std::cout << "MemoryManager: # of free chunks (ordblks):            "<< (size_t)mi.ordblks<<std::endl;
 | 
			
		||||
  std::cout << "MemoryManager: # of free fastbin blocks (smblks):     "<< (size_t)mi.smblks<<std::endl;
 | 
			
		||||
  std::cout << "MemoryManager: # of mapped regions (hblks):           "<< (size_t)mi.hblks<<std::endl;
 | 
			
		||||
  std::cout << "MemoryManager: Bytes in mapped regions (hblkhd):      "<< (size_t)mi.hblkhd<<std::endl;
 | 
			
		||||
  std::cout << "MemoryManager: Max. total allocated space (usmblks):  "<< (size_t)mi.usmblks<<std::endl;
 | 
			
		||||
  std::cout << "MemoryManager: Free bytes held in fastbins (fsmblks): "<< (size_t)mi.fsmblks<<std::endl;
 | 
			
		||||
  std::cout << "MemoryManager: Total allocated space (uordblks):      "<< (size_t)mi.uordblks<<std::endl;
 | 
			
		||||
  std::cout << "MemoryManager: Total free space (fordblks):           "<< (size_t)mi.fordblks<<std::endl;
 | 
			
		||||
  std::cout << "MemoryManager: Topmost releasable block (keepcost):   "<< (size_t)mi.keepcost<<std::endl;
 | 
			
		||||
#endif
 | 
			
		||||
  LEAK_CHECK();
 | 
			
		||||
 
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void MemoryManager::PrintBytes(void)
 | 
			
		||||
{
 | 
			
		||||
  std::cout << " MemoryManager : ------------------------------------ "<<std::endl;
 | 
			
		||||
@@ -73,7 +35,7 @@ void MemoryManager::PrintBytes(void)
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
  cuda_mem();
 | 
			
		||||
#endif
 | 
			
		||||
  DisplayMallinfo();
 | 
			
		||||
  
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
uint64_t MemoryManager::DeviceCacheBytes() { return CacheBytes[Acc] + CacheBytes[AccHuge] + CacheBytes[AccSmall]; }
 | 
			
		||||
 
 | 
			
		||||
@@ -209,10 +209,9 @@ private:
 | 
			
		||||
  static void     CpuViewClose(uint64_t Ptr);
 | 
			
		||||
  static uint64_t CpuViewOpen(uint64_t  CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
 | 
			
		||||
#endif
 | 
			
		||||
  static void NotifyDeletion(void * CpuPtr);
 | 
			
		||||
 | 
			
		||||
 public:
 | 
			
		||||
  static void DisplayMallinfo(void);
 | 
			
		||||
  static void NotifyDeletion(void * CpuPtr);
 | 
			
		||||
  static void Print(void);
 | 
			
		||||
  static void PrintAll(void);
 | 
			
		||||
  static void PrintState( void* CpuPtr);
 | 
			
		||||
 
 | 
			
		||||
@@ -1,15 +1,16 @@
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
#ifndef GRID_UVM
 | 
			
		||||
 | 
			
		||||
#warning "Using explicit device memory copies"
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
#define MAXLINE 512
 | 
			
		||||
static char print_buffer [ MAXLINE ];
 | 
			
		||||
 | 
			
		||||
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer << std::endl;
 | 
			
		||||
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug  << print_buffer << std::endl;
 | 
			
		||||
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer;
 | 
			
		||||
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer;
 | 
			
		||||
//#define dprintf(...) 
 | 
			
		||||
//#define mprintf(...) 
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////
 | 
			
		||||
// For caching copies of data on device
 | 
			
		||||
@@ -110,7 +111,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
 | 
			
		||||
  ///////////////////////////////////////////////////////////
 | 
			
		||||
  assert(AccCache.state!=Empty);
 | 
			
		||||
  
 | 
			
		||||
  dprintf("MemoryManager: Discard(%lx) %lx",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr); 
 | 
			
		||||
  mprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr); 
 | 
			
		||||
  assert(AccCache.accLock==0);
 | 
			
		||||
  assert(AccCache.cpuLock==0);
 | 
			
		||||
  assert(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
			
		||||
@@ -120,7 +121,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
 | 
			
		||||
    DeviceBytes   -=AccCache.bytes;
 | 
			
		||||
    LRUremove(AccCache);
 | 
			
		||||
    AccCache.AccPtr=(uint64_t) NULL;
 | 
			
		||||
    dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);  
 | 
			
		||||
    dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);  
 | 
			
		||||
  }
 | 
			
		||||
  uint64_t CpuPtr = AccCache.CpuPtr;
 | 
			
		||||
  EntryErase(CpuPtr);
 | 
			
		||||
@@ -140,7 +141,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  assert(AccCache.state!=Empty);
 | 
			
		||||
  
 | 
			
		||||
  mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld",
 | 
			
		||||
  mprintf("MemoryManager: Evict cpu %lx acc %lx cpuLock %ld accLock %ld\n",
 | 
			
		||||
	  (uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr,
 | 
			
		||||
	  (uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock); 
 | 
			
		||||
  if (AccCache.accLock!=0) return;
 | 
			
		||||
@@ -154,7 +155,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
 | 
			
		||||
    AccCache.AccPtr=(uint64_t)NULL;
 | 
			
		||||
    AccCache.state=CpuDirty; // CPU primary now
 | 
			
		||||
    DeviceBytes   -=AccCache.bytes;
 | 
			
		||||
    dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld ",(uint64_t)AccCache.AccPtr,DeviceBytes);  
 | 
			
		||||
    dprintf("MemoryManager: Free(%lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);  
 | 
			
		||||
  }
 | 
			
		||||
  //  uint64_t CpuPtr = AccCache.CpuPtr;
 | 
			
		||||
  DeviceEvictions++;
 | 
			
		||||
@@ -168,7 +169,7 @@ void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
 | 
			
		||||
  assert(AccCache.AccPtr!=(uint64_t)NULL);
 | 
			
		||||
  assert(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
			
		||||
  acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
 | 
			
		||||
  mprintf("MemoryManager: acceleratorCopyFromDevice Flush size %ld AccPtr %lx -> CpuPtr %lx",(uint64_t)AccCache.bytes,(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
 | 
			
		||||
  mprintf("MemoryManager: Flush  %lx -> %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
 | 
			
		||||
  DeviceToHostBytes+=AccCache.bytes;
 | 
			
		||||
  DeviceToHostXfer++;
 | 
			
		||||
  AccCache.state=Consistent;
 | 
			
		||||
@@ -183,9 +184,7 @@ void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
 | 
			
		||||
    AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
 | 
			
		||||
    DeviceBytes+=AccCache.bytes;
 | 
			
		||||
  }
 | 
			
		||||
  mprintf("MemoryManager: acceleratorCopyToDevice   Clone size %ld AccPtr %lx <- CpuPtr %lx",
 | 
			
		||||
	  (uint64_t)AccCache.bytes,
 | 
			
		||||
	  (uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
 | 
			
		||||
  mprintf("MemoryManager: Clone %lx <- %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
 | 
			
		||||
  acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
 | 
			
		||||
  HostToDeviceBytes+=AccCache.bytes;
 | 
			
		||||
  HostToDeviceXfer++;
 | 
			
		||||
@@ -211,7 +210,7 @@ void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache)
 | 
			
		||||
void MemoryManager::ViewClose(void* Ptr,ViewMode mode)
 | 
			
		||||
{
 | 
			
		||||
  if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
 | 
			
		||||
    dprintf("AcceleratorViewClose %lx",(uint64_t)Ptr);
 | 
			
		||||
    dprintf("AcceleratorViewClose %lx\n",(uint64_t)Ptr);
 | 
			
		||||
    AcceleratorViewClose((uint64_t)Ptr);
 | 
			
		||||
  } else if( (mode==CpuRead)||(mode==CpuWrite)){
 | 
			
		||||
    CpuViewClose((uint64_t)Ptr);
 | 
			
		||||
@@ -223,7 +222,7 @@ void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvis
 | 
			
		||||
{
 | 
			
		||||
  uint64_t CpuPtr = (uint64_t)_CpuPtr;
 | 
			
		||||
  if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
 | 
			
		||||
    dprintf("AcceleratorViewOpen %lx",(uint64_t)CpuPtr);
 | 
			
		||||
    dprintf("AcceleratorViewOpen %lx\n",(uint64_t)CpuPtr);
 | 
			
		||||
    return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint);
 | 
			
		||||
  } else if( (mode==CpuRead)||(mode==CpuWrite)){
 | 
			
		||||
    return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint);
 | 
			
		||||
@@ -234,9 +233,6 @@ void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvis
 | 
			
		||||
}
 | 
			
		||||
void  MemoryManager::EvictVictims(uint64_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  if(bytes>=DeviceMaxBytes) {
 | 
			
		||||
    printf("EvictVictims bytes %ld DeviceMaxBytes %ld\n",bytes,DeviceMaxBytes);
 | 
			
		||||
  }
 | 
			
		||||
  assert(bytes<DeviceMaxBytes);
 | 
			
		||||
  while(bytes+DeviceLRUBytes > DeviceMaxBytes){
 | 
			
		||||
    if ( DeviceLRUBytes > 0){
 | 
			
		||||
@@ -269,7 +265,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
 | 
			
		||||
  assert(AccCache.cpuLock==0);  // Programming error
 | 
			
		||||
 | 
			
		||||
  if(AccCache.state!=Empty) {
 | 
			
		||||
    dprintf("ViewOpen found entry %lx %lx : sizes %ld %ld accLock %ld",
 | 
			
		||||
    dprintf("ViewOpen found entry %lx %lx : %ld %ld accLock %ld\n",
 | 
			
		||||
		    (uint64_t)AccCache.CpuPtr,
 | 
			
		||||
		    (uint64_t)CpuPtr,
 | 
			
		||||
		    (uint64_t)AccCache.bytes,
 | 
			
		||||
@@ -309,7 +305,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
 | 
			
		||||
      AccCache.state  = Consistent; // Empty + AccRead => Consistent
 | 
			
		||||
    }
 | 
			
		||||
    AccCache.accLock= 1;
 | 
			
		||||
    dprintf("Copied Empty entry into device accLock= %d",AccCache.accLock);
 | 
			
		||||
    dprintf("Copied Empty entry into device accLock= %d\n",AccCache.accLock);
 | 
			
		||||
  } else if(AccCache.state==CpuDirty ){
 | 
			
		||||
    if(mode==AcceleratorWriteDiscard) {
 | 
			
		||||
      CpuDiscard(AccCache);
 | 
			
		||||
@@ -322,21 +318,21 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
 | 
			
		||||
      AccCache.state  = Consistent; // CpuDirty + AccRead => Consistent
 | 
			
		||||
    }
 | 
			
		||||
    AccCache.accLock++;
 | 
			
		||||
    dprintf("CpuDirty entry into device ++accLock= %d",AccCache.accLock);
 | 
			
		||||
    dprintf("CpuDirty entry into device ++accLock= %d\n",AccCache.accLock);
 | 
			
		||||
  } else if(AccCache.state==Consistent) {
 | 
			
		||||
    if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
 | 
			
		||||
      AccCache.state  = AccDirty;   // Consistent + AcceleratorWrite=> AccDirty
 | 
			
		||||
    else
 | 
			
		||||
      AccCache.state  = Consistent; // Consistent + AccRead => Consistent
 | 
			
		||||
    AccCache.accLock++;
 | 
			
		||||
    dprintf("Consistent entry into device ++accLock= %d",AccCache.accLock);
 | 
			
		||||
    dprintf("Consistent entry into device ++accLock= %d\n",AccCache.accLock);
 | 
			
		||||
  } else if(AccCache.state==AccDirty) {
 | 
			
		||||
    if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
 | 
			
		||||
      AccCache.state  = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty
 | 
			
		||||
    else
 | 
			
		||||
      AccCache.state  = AccDirty; // AccDirty + AccRead => AccDirty
 | 
			
		||||
    AccCache.accLock++;
 | 
			
		||||
    dprintf("AccDirty entry ++accLock= %d",AccCache.accLock);
 | 
			
		||||
    dprintf("AccDirty entry ++accLock= %d\n",AccCache.accLock);
 | 
			
		||||
  } else {
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
@@ -345,7 +341,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
 | 
			
		||||
  // If view is opened on device must remove from LRU
 | 
			
		||||
  if(AccCache.LRU_valid==1){
 | 
			
		||||
    // must possibly remove from LRU as now locked on GPU
 | 
			
		||||
    dprintf("AccCache entry removed from LRU ");
 | 
			
		||||
    dprintf("AccCache entry removed from LRU \n");
 | 
			
		||||
    LRUremove(AccCache);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
@@ -368,10 +364,10 @@ void MemoryManager::AcceleratorViewClose(uint64_t CpuPtr)
 | 
			
		||||
  AccCache.accLock--;
 | 
			
		||||
  // Move to LRU queue if not locked and close on device
 | 
			
		||||
  if(AccCache.accLock==0) {
 | 
			
		||||
    dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
 | 
			
		||||
    dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
 | 
			
		||||
    LRUinsert(AccCache);
 | 
			
		||||
  } else {
 | 
			
		||||
    dprintf("AccleratorViewClose %lx AccLock decremented to %ld",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
 | 
			
		||||
    dprintf("AccleratorViewClose %lx AccLock decremented to %ld\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
void MemoryManager::CpuViewClose(uint64_t CpuPtr)
 | 
			
		||||
@@ -478,7 +474,6 @@ void  MemoryManager::Print(void)
 | 
			
		||||
  std::cout << GridLogMessage << DeviceEvictions  << " Evictions from device " << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << DeviceDestroy    << " Destroyed vectors on device " << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl;
 | 
			
		||||
  acceleratorMem();
 | 
			
		||||
  std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
 | 
			
		||||
}
 | 
			
		||||
void  MemoryManager::PrintAll(void)
 | 
			
		||||
 
 | 
			
		||||
@@ -15,10 +15,10 @@ void check_huge_pages(void *Buf,uint64_t BYTES)
 | 
			
		||||
  uint64_t virt_pfn = (uint64_t)Buf / page_size;
 | 
			
		||||
  off_t offset = sizeof(uint64_t) * virt_pfn;
 | 
			
		||||
  uint64_t npages = (BYTES + page_size-1) / page_size;
 | 
			
		||||
  std::vector<uint64_t> pagedata(npages);
 | 
			
		||||
  uint64_t pagedata[npages];
 | 
			
		||||
  uint64_t ret = lseek(fd, offset, SEEK_SET);
 | 
			
		||||
  assert(ret == offset);
 | 
			
		||||
  ret = ::read(fd, &pagedata[0], sizeof(uint64_t)*npages);
 | 
			
		||||
  ret = ::read(fd, pagedata, sizeof(uint64_t)*npages);
 | 
			
		||||
  assert(ret == sizeof(uint64_t) * npages);
 | 
			
		||||
  int nhugepages = npages / 512;
 | 
			
		||||
  int n4ktotal, nnothuge;
 | 
			
		||||
 
 | 
			
		||||
@@ -31,6 +31,5 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#include <Grid/cartesian/Cartesian_base.h>
 | 
			
		||||
#include <Grid/cartesian/Cartesian_full.h>
 | 
			
		||||
#include <Grid/cartesian/Cartesian_red_black.h> 
 | 
			
		||||
#include <Grid/cartesian/CartesianCrossIcosahedron.h>
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -1,235 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/cartesian/CartesianCrossIcosahedron.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2025
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
    
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Grid Support.
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
enum IcosahedralMeshType {
 | 
			
		||||
  IcosahedralVertices,
 | 
			
		||||
  IcosahedralEdges
 | 
			
		||||
} ;
 | 
			
		||||
enum NorthSouth {
 | 
			
		||||
  North = 1,
 | 
			
		||||
  South = 0
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
const int IcosahedralPatches = 10;
 | 
			
		||||
const int HemiPatches=IcosahedralPatches/2;
 | 
			
		||||
const int NorthernHemisphere = HemiPatches;
 | 
			
		||||
const int SouthernHemisphere = 0;
 | 
			
		||||
 | 
			
		||||
class GridCartesianCrossIcosahedron: public GridCartesian {
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  IcosahedralMeshType meshType;
 | 
			
		||||
 | 
			
		||||
  IcosahedralMeshType MeshType(void) { return meshType; };
 | 
			
		||||
  
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Constructor takes a parent grid and possibly subdivides communicator.
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  /*
 | 
			
		||||
  GridCartesian(const Coordinate &dimensions,
 | 
			
		||||
		const Coordinate &simd_layout,
 | 
			
		||||
		const Coordinate &processor_grid,
 | 
			
		||||
		const GridCartesian &parent) : GridBase(processor_grid,parent,dummy)
 | 
			
		||||
  {
 | 
			
		||||
    assert(0); // No subdivision
 | 
			
		||||
  }
 | 
			
		||||
  GridCartesian(const Coordinate &dimensions,
 | 
			
		||||
		const Coordinate &simd_layout,
 | 
			
		||||
		const Coordinate &processor_grid,
 | 
			
		||||
		const GridCartesian &parent,int &split_rank) : GridBase(processor_grid,parent,split_rank)
 | 
			
		||||
  {
 | 
			
		||||
    assert(0); // No subdivision
 | 
			
		||||
  }
 | 
			
		||||
  */
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Construct from comm world
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  GridCartesianCrossIcosahedron(const Coordinate &dimensions,
 | 
			
		||||
				const Coordinate &simd_layout,
 | 
			
		||||
				const Coordinate &processor_grid,
 | 
			
		||||
				IcosahedralMeshType _meshType) : GridCartesian(dimensions,simd_layout,processor_grid)
 | 
			
		||||
  {
 | 
			
		||||
    meshType = _meshType;
 | 
			
		||||
    Coordinate S2dimensions=dimensions;
 | 
			
		||||
    Coordinate S2simd      =simd_layout;
 | 
			
		||||
    Coordinate S2procs     =processor_grid;
 | 
			
		||||
 | 
			
		||||
    assert(simd_layout[0]==1); // Force simd into perpendicular dimensions
 | 
			
		||||
    assert(simd_layout[1]==1); // to avoid pole storage complexity interacting with SIMD.
 | 
			
		||||
    assert(dimensions[_ndimension-1]==IcosahedralPatches);
 | 
			
		||||
    assert(processor_grid[_ndimension-1]<=2); // Keeps the patches that need a pole on the same node
 | 
			
		||||
 | 
			
		||||
    // Save a copy of the basic cartesian initialisation volume
 | 
			
		||||
    cartesianOsites = this->_osites;
 | 
			
		||||
 | 
			
		||||
    // allocate the pole storage if we are seeking vertex domain data
 | 
			
		||||
    if ( meshType == IcosahedralVertices ) {
 | 
			
		||||
      InitPoles();
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual ~GridCartesianCrossIcosahedron() = default;
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////
 | 
			
		||||
  // Use to decide if a given grid is icosahedral
 | 
			
		||||
  ////////////////////////////////////////////////
 | 
			
		||||
  int hasNorthPole;
 | 
			
		||||
  int hasSouthPole;
 | 
			
		||||
  int northPoleOsite;
 | 
			
		||||
  int southPoleOsite;
 | 
			
		||||
  int northPoleOsites;
 | 
			
		||||
  int southPoleOsites;
 | 
			
		||||
  int cartesianOsites;
 | 
			
		||||
 | 
			
		||||
  virtual int isIcosahedral(void)           override { return 1;}
 | 
			
		||||
  virtual int isIcosahedralVertex(void)     override { return meshType==IcosahedralVertices;}
 | 
			
		||||
  virtual int isIcosahedralEdge  (void)     override { return meshType==IcosahedralEdges;}
 | 
			
		||||
  virtual int NorthPoleOsite(void)  const override { return northPoleOsite; };
 | 
			
		||||
  virtual int NorthPoleOsites(void) const override { return northPoleOsites; };
 | 
			
		||||
  virtual int SouthPoleOsite(void)  const override { return southPoleOsite; };
 | 
			
		||||
  virtual int SouthPoleOsites(void) const override { return southPoleOsites; };
 | 
			
		||||
  virtual int ownsNorthPole(void)   const override { return hasNorthPole; };
 | 
			
		||||
  virtual int ownsSouthPole(void)   const override { return hasSouthPole; };
 | 
			
		||||
  virtual int CartesianOsites(void) const override { return cartesianOsites; };
 | 
			
		||||
  virtual int64_t PoleIdxForOcoor(Coordinate &Coor) override
 | 
			
		||||
  {
 | 
			
		||||
    // Work out the pole_osite. Pick the higher dims
 | 
			
		||||
    Coordinate rdims;
 | 
			
		||||
    Coordinate ocoor;
 | 
			
		||||
    int64_t pole_idx;
 | 
			
		||||
    int Ndm1 = this->Nd()-1;
 | 
			
		||||
    for(int d=2;d<Ndm1;d++){
 | 
			
		||||
      int dd=d-2;
 | 
			
		||||
      rdims.push_back(this->_rdimensions[d]);
 | 
			
		||||
      ocoor.push_back(Coor[d]%this->_rdimensions[d]);
 | 
			
		||||
    }
 | 
			
		||||
    Lexicographic::IndexFromCoor(ocoor,pole_idx,rdims);
 | 
			
		||||
    return pole_idx;
 | 
			
		||||
  }
 | 
			
		||||
  virtual int64_t PoleSiteForOcoor(Coordinate &Coor) override
 | 
			
		||||
  {
 | 
			
		||||
    int Ndm1 = this->Nd()-1;
 | 
			
		||||
    int64_t pole_idx = this->PoleIdxForOcoor(Coor);
 | 
			
		||||
    int64_t pole_osite;
 | 
			
		||||
    if ( Coor[Ndm1] >= HemiPatches ) {
 | 
			
		||||
      pole_osite = pole_idx + this->NorthPoleOsite();
 | 
			
		||||
    } else {
 | 
			
		||||
      pole_osite = pole_idx + this->SouthPoleOsite();
 | 
			
		||||
    }
 | 
			
		||||
    return pole_osite;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  void InitPoles(void)
 | 
			
		||||
  {
 | 
			
		||||
    int Ndm1 = _ndimension-1;
 | 
			
		||||
    ///////////////////////
 | 
			
		||||
    // Add the extra pole storage
 | 
			
		||||
    ///////////////////////
 | 
			
		||||
    // Vertices = 1x LxLx D1...Dn + 2.D1...Dn
 | 
			
		||||
    // Start after the LxL and don't include the 10 patch dim
 | 
			
		||||
    int OrthogSize = 1;
 | 
			
		||||
    for (int d = 2; d < Ndm1; d++) {
 | 
			
		||||
      OrthogSize *= _gdimensions[d];
 | 
			
		||||
    }
 | 
			
		||||
    _fsites += OrthogSize*2;
 | 
			
		||||
    _gsites += OrthogSize*2;
 | 
			
		||||
 | 
			
		||||
    // Simd reduced sizes are multiplied up.
 | 
			
		||||
    // If the leading LxL are simd-ized, the vector objects will contain "redundant" lanes
 | 
			
		||||
    // which should contain identical north (south) pole data
 | 
			
		||||
    OrthogSize = 1;
 | 
			
		||||
    for (int d = 2; d < Ndm1; d++) {
 | 
			
		||||
      OrthogSize *= _rdimensions[d];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Grow the local volume to hold pole data
 | 
			
		||||
    // on rank (0,0) in the LxL planes
 | 
			
		||||
    // since SIMD must be placed in the orthogonal directions
 | 
			
		||||
    Coordinate pcoor = this->ThisProcessorCoor();
 | 
			
		||||
    Coordinate pgrid = this->ProcessorGrid();
 | 
			
		||||
 | 
			
		||||
    const int xdim=0;
 | 
			
		||||
    const int ydim=1;
 | 
			
		||||
    /*
 | 
			
		||||
     *
 | 
			
		||||
     *  /\/\/\/\/\
 | 
			
		||||
     * /\/\/\/\/\/
 | 
			
		||||
     * \/\/\/\/\/
 | 
			
		||||
     *
 | 
			
		||||
     *  y
 | 
			
		||||
     * /
 | 
			
		||||
     * \x
 | 
			
		||||
     *
 | 
			
		||||
     * Labelling patches as 5 6 7 8 9
 | 
			
		||||
     *                      0 1 2 3 4
 | 
			
		||||
     *
 | 
			
		||||
     * Will ban distribution of the patch dimension by more than 2.
 | 
			
		||||
     *
 | 
			
		||||
     * Hence all 5 patches associated with the pole must have the
 | 
			
		||||
     * appropriate "corner" of the patch L^2 located on the SAME rank.
 | 
			
		||||
     */ 
 | 
			
		||||
    
 | 
			
		||||
    if( (pcoor[xdim]==pgrid[xdim]-1) && (pcoor[ydim]==0) && (pcoor[Ndm1]==0) ){
 | 
			
		||||
      hasSouthPole   =1;
 | 
			
		||||
      southPoleOsite=this->_osites; 
 | 
			
		||||
      southPoleOsites=OrthogSize;
 | 
			
		||||
      this->_osites += OrthogSize;
 | 
			
		||||
    } else {
 | 
			
		||||
      hasSouthPole   =0;
 | 
			
		||||
      southPoleOsites=0;
 | 
			
		||||
      southPoleOsite=0;
 | 
			
		||||
    }
 | 
			
		||||
    if( (pcoor[xdim]==0) && (pcoor[ydim]==pgrid[ydim]-1) && (pcoor[Ndm1]==pgrid[Ndm1]-1) ){
 | 
			
		||||
      hasNorthPole   =1;
 | 
			
		||||
      northPoleOsite=this->_osites;
 | 
			
		||||
      northPoleOsites=OrthogSize;
 | 
			
		||||
      this->_osites += OrthogSize;
 | 
			
		||||
    } else {
 | 
			
		||||
      hasNorthPole   =0;
 | 
			
		||||
      northPoleOsites=0;
 | 
			
		||||
      northPoleOsite=0;
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogDebug<<"Icosahedral vertex field volume " << this->_osites<<std::endl;
 | 
			
		||||
    std::cout << GridLogDebug<<"Icosahedral south pole offset   " << this->southPoleOsite<<std::endl;
 | 
			
		||||
    std::cout << GridLogDebug<<"Icosahedral north pole offset   " << this->northPoleOsite<<std::endl;
 | 
			
		||||
    std::cout << GridLogDebug<<"Icosahedral south pole size     " << this->southPoleOsites<<std::endl;
 | 
			
		||||
    std::cout << GridLogDebug<<"Icosahedral north pole size     " << this->northPoleOsites<<std::endl;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -70,8 +70,8 @@ public:
 | 
			
		||||
  Coordinate _istride;    // Inner stride i.e. within simd lane
 | 
			
		||||
  int _osites;                  // _isites*_osites = product(dimensions).
 | 
			
		||||
  int _isites;
 | 
			
		||||
  int64_t _fsites;                  // _isites*_osites = product(dimensions).
 | 
			
		||||
  int64_t _gsites;
 | 
			
		||||
  int _fsites;                  // _isites*_osites = product(dimensions).
 | 
			
		||||
  int _gsites;
 | 
			
		||||
  Coordinate _slice_block;// subslice information
 | 
			
		||||
  Coordinate _slice_stride;
 | 
			
		||||
  Coordinate _slice_nblock;
 | 
			
		||||
@@ -82,30 +82,14 @@ public:
 | 
			
		||||
  bool _isCheckerBoarded; 
 | 
			
		||||
  int        LocallyPeriodic;
 | 
			
		||||
  Coordinate _checker_dim_mask;
 | 
			
		||||
  int              _checker_dim;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  // Icosahedral decisions
 | 
			
		||||
  virtual int isIcosahedral(void) { return 0;}
 | 
			
		||||
  virtual int isIcosahedralVertex(void) { return 0;}
 | 
			
		||||
  virtual int isIcosahedralEdge  (void) { return 0;}
 | 
			
		||||
  virtual int ownsNorthPole(void) const { return 0; };
 | 
			
		||||
  virtual int ownsSouthPole(void) const { return 0; };
 | 
			
		||||
  virtual int NorthPoleOsite(void) const { return 0; };
 | 
			
		||||
  virtual int SouthPoleOsite(void) const { return 0; };
 | 
			
		||||
  virtual int NorthPoleOsites(void) const { std::cout << "base osites" <<std::endl;return 0; };
 | 
			
		||||
  virtual int SouthPoleOsites(void) const { std::cout << "base osites" <<std::endl;return 0; };
 | 
			
		||||
  virtual int CartesianOsites(void) const { return this->oSites(); };
 | 
			
		||||
  virtual int64_t PoleIdxForOcoor(Coordinate &Coor) { return 0;};
 | 
			
		||||
  virtual int64_t PoleSiteForOcoor(Coordinate &Coor){ return 0;}
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Checkerboarding interface is virtual and overridden by 
 | 
			
		||||
  // GridCartesian / GridRedBlackCartesian
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  virtual int CheckerBoarded(int dim) =0;
 | 
			
		||||
  virtual int CheckerBoarded(int dim)=0;
 | 
			
		||||
  virtual int CheckerBoard(const Coordinate &site)=0;
 | 
			
		||||
  virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0;
 | 
			
		||||
  virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0;
 | 
			
		||||
@@ -191,8 +175,6 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
    return permute_type;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Array sizing queries
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -201,7 +183,7 @@ public:
 | 
			
		||||
  inline int Nsimd(void)  const { return _isites; };// Synonymous with iSites
 | 
			
		||||
  inline int oSites(void) const { return _osites; };
 | 
			
		||||
  inline int lSites(void) const { return _isites*_osites; }; 
 | 
			
		||||
  inline int64_t gSites(void) const { return (int64_t)_isites*(int64_t)_osites*(int64_t)_Nprocessors; }; 
 | 
			
		||||
  inline int gSites(void) const { return _isites*_osites*_Nprocessors; }; 
 | 
			
		||||
  inline int Nd    (void) const { return _ndimension;};
 | 
			
		||||
 | 
			
		||||
  inline const Coordinate LocalStarts(void)             { return _lstart;    };
 | 
			
		||||
@@ -232,7 +214,7 @@ public:
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Global addressing
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  void GlobalIndexToGlobalCoor(int64_t gidx,Coordinate &gcoor){
 | 
			
		||||
  void GlobalIndexToGlobalCoor(int gidx,Coordinate &gcoor){
 | 
			
		||||
    assert(gidx< gSites());
 | 
			
		||||
    Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
 | 
			
		||||
  }
 | 
			
		||||
@@ -240,7 +222,7 @@ public:
 | 
			
		||||
    assert(lidx<lSites());
 | 
			
		||||
    Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
 | 
			
		||||
  }
 | 
			
		||||
  void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int64_t & gidx){
 | 
			
		||||
  void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int & gidx){
 | 
			
		||||
    gidx=0;
 | 
			
		||||
    int mult=1;
 | 
			
		||||
    for(int mu=0;mu<_ndimension;mu++) {
 | 
			
		||||
 
 | 
			
		||||
@@ -38,7 +38,7 @@ class GridCartesian: public GridBase {
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  int dummy;
 | 
			
		||||
  //  Coordinate _checker_dim_mask;
 | 
			
		||||
  Coordinate _checker_dim_mask;
 | 
			
		||||
  virtual int  CheckerBoardFromOindexTable (int Oindex) {
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
@@ -46,7 +46,7 @@ public:
 | 
			
		||||
  {
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
  virtual int CheckerBoarded(int dim) {
 | 
			
		||||
  virtual int CheckerBoarded(int dim){
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
  virtual int CheckerBoard(const Coordinate &site){
 | 
			
		||||
@@ -106,7 +106,6 @@ public:
 | 
			
		||||
    _rdimensions.resize(_ndimension);
 | 
			
		||||
    _simd_layout.resize(_ndimension);
 | 
			
		||||
    _checker_dim_mask.resize(_ndimension);;
 | 
			
		||||
    _checker_dim = -1;
 | 
			
		||||
    _lstart.resize(_ndimension);
 | 
			
		||||
    _lend.resize(_ndimension);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -57,10 +57,9 @@ class GridRedBlackCartesian : public GridBase
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  //  Coordinate _checker_dim_mask;
 | 
			
		||||
  //  int              _checker_dim;
 | 
			
		||||
  int              _checker_dim;
 | 
			
		||||
  std::vector<int> _checker_board;
 | 
			
		||||
 | 
			
		||||
  virtual int isCheckerBoarded(void) const { return 1; };
 | 
			
		||||
  virtual int CheckerBoarded(int dim){
 | 
			
		||||
    if( dim==_checker_dim) return 1;
 | 
			
		||||
    else return 0;
 | 
			
		||||
 
 | 
			
		||||
@@ -57,29 +57,18 @@ int                      CartesianCommunicator::ProcessorCount(void)    { return
 | 
			
		||||
// very VERY rarely (Log, serial RNG) we need world without a grid
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
#ifdef USE_GRID_REDUCTION
 | 
			
		||||
void CartesianCommunicator::GlobalSum(ComplexF &c)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSumP2P(c);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(ComplexD &c)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSumP2P(c);
 | 
			
		||||
}
 | 
			
		||||
#else
 | 
			
		||||
void CartesianCommunicator::GlobalSum(ComplexF &c)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSumVector((float *)&c,2);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(ComplexD &c)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSumVector((double *)&c,2);
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
void CartesianCommunicator::GlobalSumVector(ComplexF *c,int N)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSumVector((float *)c,2*N);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(ComplexD &c)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSumVector((double *)&c,2);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSumVector((double *)c,2*N);
 | 
			
		||||
 
 | 
			
		||||
@@ -33,8 +33,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
///////////////////////////////////
 | 
			
		||||
#include <Grid/communicator/SharedMemory.h>
 | 
			
		||||
 | 
			
		||||
#define NVLINK_GET
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
extern bool Stencil_force_mpi ;
 | 
			
		||||
@@ -130,35 +128,6 @@ public:
 | 
			
		||||
  void GlobalXOR(uint32_t &);
 | 
			
		||||
  void GlobalXOR(uint64_t &);
 | 
			
		||||
  
 | 
			
		||||
  template<class obj> void GlobalSumP2P(obj &o)
 | 
			
		||||
  {
 | 
			
		||||
    std::vector<obj> column;
 | 
			
		||||
    obj accum = o;
 | 
			
		||||
    int source,dest;
 | 
			
		||||
    for(int d=0;d<_ndimension;d++){
 | 
			
		||||
      column.resize(_processors[d]);
 | 
			
		||||
      column[0] = accum;
 | 
			
		||||
      std::vector<MpiCommsRequest_t> list;
 | 
			
		||||
      for(int p=1;p<_processors[d];p++){
 | 
			
		||||
	ShiftedRanks(d,p,source,dest);
 | 
			
		||||
	SendToRecvFromBegin(list,
 | 
			
		||||
			    &column[0],
 | 
			
		||||
			    dest,
 | 
			
		||||
			    &column[p],
 | 
			
		||||
			    source,
 | 
			
		||||
			    sizeof(obj),d*100+p);
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
      if (!list.empty()) // avoid triggering assert in comms == none
 | 
			
		||||
	CommsComplete(list);
 | 
			
		||||
      for(int p=1;p<_processors[d];p++){
 | 
			
		||||
	accum = accum + column[p];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    Broadcast(0,accum);
 | 
			
		||||
    o=accum;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class obj> void GlobalSum(obj &o){
 | 
			
		||||
    typedef typename obj::scalar_type scalar_type;
 | 
			
		||||
    int words = sizeof(obj)/sizeof(scalar_type);
 | 
			
		||||
@@ -169,14 +138,6 @@ public:
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  // Face exchange, buffer swap in translational invariant way
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  void CommsComplete(std::vector<MpiCommsRequest_t> &list);
 | 
			
		||||
  void SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list,
 | 
			
		||||
			   void *xmit,
 | 
			
		||||
			   int dest,
 | 
			
		||||
			   void *recv,
 | 
			
		||||
			   int from,
 | 
			
		||||
			   int bytes,int dir);
 | 
			
		||||
  
 | 
			
		||||
  void SendToRecvFrom(void *xmit,
 | 
			
		||||
		      int xmit_to_rank,
 | 
			
		||||
		      void *recv,
 | 
			
		||||
@@ -189,17 +150,6 @@ public:
 | 
			
		||||
			       int recv_from_rank,int do_recv,
 | 
			
		||||
			       int bytes,int dir);
 | 
			
		||||
 | 
			
		||||
  double StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
 | 
			
		||||
				      void *xmit,
 | 
			
		||||
				      int xmit_to_rank,int do_xmit,
 | 
			
		||||
				      void *recv,
 | 
			
		||||
				      int recv_from_rank,int do_recv,
 | 
			
		||||
				      int xbytes,int rbytes,int dir);
 | 
			
		||||
 | 
			
		||||
  // Could do a PollHtoD and have a CommsMerge dependence
 | 
			
		||||
  void StencilSendToRecvFromPollDtoH (std::vector<CommsRequest_t> &list);
 | 
			
		||||
  void StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list);
 | 
			
		||||
 | 
			
		||||
  double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
				    void *xmit,
 | 
			
		||||
				    int xmit_to_rank,int do_xmit,
 | 
			
		||||
 
 | 
			
		||||
@@ -30,7 +30,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Grid_MPI_Comm       CartesianCommunicator::communicator_world;
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
@@ -258,41 +257,15 @@ CartesianCommunicator::~CartesianCommunicator()
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
#ifdef USE_GRID_REDUCTION
 | 
			
		||||
void CartesianCommunicator::GlobalSum(float &f){
 | 
			
		||||
  FlightRecorder::StepLog("GlobalSumP2P");
 | 
			
		||||
  CartesianCommunicator::GlobalSumP2P(f);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(double &d)
 | 
			
		||||
{
 | 
			
		||||
  FlightRecorder::StepLog("GlobalSumP2P");
 | 
			
		||||
  CartesianCommunicator::GlobalSumP2P(d);
 | 
			
		||||
}
 | 
			
		||||
#else
 | 
			
		||||
void CartesianCommunicator::GlobalSum(float &f){
 | 
			
		||||
  FlightRecorder::StepLog("AllReduce");
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(double &d)
 | 
			
		||||
{
 | 
			
		||||
  FlightRecorder::StepLog("AllReduce");
 | 
			
		||||
  int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
void CartesianCommunicator::GlobalSum(uint32_t &u){
 | 
			
		||||
  FlightRecorder::StepLog("AllReduce");
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(uint64_t &u){
 | 
			
		||||
  FlightRecorder::StepLog("AllReduce");
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSumVector(uint64_t* u,int N){
 | 
			
		||||
  FlightRecorder::StepLog("AllReduceVector");
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,u,N,MPI_UINT64_T,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
@@ -314,54 +287,25 @@ void CartesianCommunicator::GlobalMax(double &d)
 | 
			
		||||
  int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(float &f){
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSumVector(float *f,int N)
 | 
			
		||||
{
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(double &d)
 | 
			
		||||
{
 | 
			
		||||
  int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSumVector(double *d,int N)
 | 
			
		||||
{
 | 
			
		||||
  int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list,
 | 
			
		||||
						void *xmit,
 | 
			
		||||
						int dest,
 | 
			
		||||
						void *recv,
 | 
			
		||||
						int from,
 | 
			
		||||
						int bytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
  MPI_Request xrq;
 | 
			
		||||
  MPI_Request rrq;
 | 
			
		||||
 | 
			
		||||
  assert(dest != _processor);
 | 
			
		||||
  assert(from != _processor);
 | 
			
		||||
 | 
			
		||||
  int tag;
 | 
			
		||||
 | 
			
		||||
  tag= dir+from*32;
 | 
			
		||||
  int ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator,&rrq);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  list.push_back(rrq);
 | 
			
		||||
  
 | 
			
		||||
  tag= dir+_processor*32;
 | 
			
		||||
  ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator,&xrq);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  list.push_back(xrq);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::CommsComplete(std::vector<MpiCommsRequest_t> &list)
 | 
			
		||||
{
 | 
			
		||||
  int nreq=list.size();
 | 
			
		||||
 | 
			
		||||
  if (nreq==0) return;
 | 
			
		||||
 | 
			
		||||
  std::vector<MPI_Status> status(nreq);
 | 
			
		||||
  int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  list.resize(0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Basic Halo comms primitive
 | 
			
		||||
void CartesianCommunicator::SendToRecvFrom(void *xmit,
 | 
			
		||||
					   int dest,
 | 
			
		||||
@@ -369,7 +313,9 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
 | 
			
		||||
					   int from,
 | 
			
		||||
					   int bytes)
 | 
			
		||||
{
 | 
			
		||||
  std::vector<MpiCommsRequest_t> reqs(0);
 | 
			
		||||
  std::vector<CommsRequest_t> reqs(0);
 | 
			
		||||
  unsigned long  xcrc = crc32(0L, Z_NULL, 0);
 | 
			
		||||
  unsigned long  rcrc = crc32(0L, Z_NULL, 0);
 | 
			
		||||
 | 
			
		||||
  int myrank = _processor;
 | 
			
		||||
  int ierr;
 | 
			
		||||
@@ -385,6 +331,9 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
 | 
			
		||||
		    communicator,MPI_STATUS_IGNORE);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
 | 
			
		||||
  //  xcrc = crc32(xcrc,(unsigned char *)xmit,bytes);
 | 
			
		||||
  //  rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
 | 
			
		||||
  //  printf("proc %d SendToRecvFrom %d bytes xcrc %lx rcrc %lx\n",_processor,bytes,xcrc,rcrc); fflush
 | 
			
		||||
}
 | 
			
		||||
// Basic Halo comms primitive
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
 | 
			
		||||
@@ -394,25 +343,11 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
 | 
			
		||||
						     int bytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
  std::vector<CommsRequest_t> list;
 | 
			
		||||
  double offbytes = StencilSendToRecvFromPrepare(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
 | 
			
		||||
  offbytes       += StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
 | 
			
		||||
  double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
 | 
			
		||||
  StencilSendToRecvFromComplete(list,dir);
 | 
			
		||||
  return offbytes;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {};
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {};
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
 | 
			
		||||
							   void *xmit,
 | 
			
		||||
							   int dest,int dox,
 | 
			
		||||
							   void *recv,
 | 
			
		||||
							   int from,int dor,
 | 
			
		||||
							   int xbytes,int rbytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
  return 0.0; // Do nothing -- no preparation required
 | 
			
		||||
}
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
							 void *xmit,
 | 
			
		||||
							 int dest,int dox,
 | 
			
		||||
@@ -445,15 +380,8 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
 | 
			
		||||
      list.push_back(rrq);
 | 
			
		||||
      off_node_bytes+=rbytes;
 | 
			
		||||
    }
 | 
			
		||||
#ifdef NVLINK_GET
 | 
			
		||||
    else { 
 | 
			
		||||
      void *shm = (void *) this->ShmBufferTranslate(from,xmit);
 | 
			
		||||
      assert(shm!=NULL);
 | 
			
		||||
      acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
  // This is a NVLINK PUT  
 | 
			
		||||
  
 | 
			
		||||
  if (dox) {
 | 
			
		||||
    if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
			
		||||
      tag= dir+_processor*32;
 | 
			
		||||
@@ -462,346 +390,27 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
 | 
			
		||||
      list.push_back(xrq);
 | 
			
		||||
      off_node_bytes+=xbytes;
 | 
			
		||||
    } else {
 | 
			
		||||
#ifndef NVLINK_GET
 | 
			
		||||
      void *shm = (void *) this->ShmBufferTranslate(dest,recv);
 | 
			
		||||
      assert(shm!=NULL);
 | 
			
		||||
      acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
 | 
			
		||||
#endif
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  return off_node_bytes;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
 | 
			
		||||
{
 | 
			
		||||
  int nreq=list.size();
 | 
			
		||||
  /*finishes Get/Put*/
 | 
			
		||||
  acceleratorCopySynchronise();
 | 
			
		||||
 | 
			
		||||
  if (nreq==0) return;
 | 
			
		||||
 | 
			
		||||
  std::vector<MPI_Status> status(nreq);
 | 
			
		||||
  int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  list.resize(0);
 | 
			
		||||
  this->StencilBarrier(); 
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#else /* NOT     ... ACCELERATOR_AWARE_MPI */
 | 
			
		||||
///////////////////////////////////////////
 | 
			
		||||
// Pipeline mode through host memory
 | 
			
		||||
///////////////////////////////////////////
 | 
			
		||||
  /*
 | 
			
		||||
   * In prepare (phase 1):
 | 
			
		||||
   * PHASE 1: (prepare)
 | 
			
		||||
   * - post MPI receive buffers asynch
 | 
			
		||||
   * - post device - host send buffer transfer asynch
 | 
			
		||||
   * PHASE 2: (Begin)
 | 
			
		||||
   * - complete all copies
 | 
			
		||||
   * - post MPI send asynch
 | 
			
		||||
   * - post device - device transfers
 | 
			
		||||
   * PHASE 3: (Complete)
 | 
			
		||||
   * - MPI_waitall
 | 
			
		||||
   * - host-device transfers
 | 
			
		||||
   *
 | 
			
		||||
   *********************************
 | 
			
		||||
   * NB could split this further:
 | 
			
		||||
   *--------------------------------
 | 
			
		||||
   * PHASE 1: (Prepare)
 | 
			
		||||
   * - post MPI receive buffers asynch
 | 
			
		||||
   * - post device - host send buffer transfer asynch
 | 
			
		||||
   * PHASE 2: (BeginInterNode)
 | 
			
		||||
   * - complete all copies 
 | 
			
		||||
   * - post MPI send asynch
 | 
			
		||||
   * PHASE 3: (BeginIntraNode)
 | 
			
		||||
   * - post device - device transfers
 | 
			
		||||
   * PHASE 4: (Complete)
 | 
			
		||||
   * - MPI_waitall
 | 
			
		||||
   * - host-device transfers asynch
 | 
			
		||||
   * - (complete all copies) 
 | 
			
		||||
   */
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
 | 
			
		||||
							   void *xmit,
 | 
			
		||||
							   int dest,int dox,
 | 
			
		||||
							   void *recv,
 | 
			
		||||
							   int from,int dor,
 | 
			
		||||
							   int xbytes,int rbytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
/*
 | 
			
		||||
 * Bring sequence from Stencil.h down to lower level.
 | 
			
		||||
 * Assume using XeLink is ok
 | 
			
		||||
 */  
 | 
			
		||||
  int ncomm  =communicator_halo.size();
 | 
			
		||||
  int commdir=dir%ncomm;
 | 
			
		||||
 | 
			
		||||
  MPI_Request xrq;
 | 
			
		||||
  MPI_Request rrq;
 | 
			
		||||
 | 
			
		||||
  int ierr;
 | 
			
		||||
  int gdest = ShmRanks[dest];
 | 
			
		||||
  int gfrom = ShmRanks[from];
 | 
			
		||||
  int gme   = ShmRanks[_processor];
 | 
			
		||||
 | 
			
		||||
  assert(dest != _processor);
 | 
			
		||||
  assert(from != _processor);
 | 
			
		||||
  assert(gme  == ShmRank);
 | 
			
		||||
  double off_node_bytes=0.0;
 | 
			
		||||
  int tag;
 | 
			
		||||
 | 
			
		||||
  void * host_recv = NULL;
 | 
			
		||||
  void * host_xmit = NULL;
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
   * PHASE 1: (Prepare)
 | 
			
		||||
   * - post MPI receive buffers asynch
 | 
			
		||||
   * - post device - host send buffer transfer asynch
 | 
			
		||||
   */
 | 
			
		||||
  
 | 
			
		||||
  if ( dor ) {
 | 
			
		||||
    if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
			
		||||
      tag= dir+from*32;
 | 
			
		||||
      host_recv = this->HostBufferMalloc(rbytes);
 | 
			
		||||
      ierr=MPI_Irecv(host_recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
 | 
			
		||||
      assert(ierr==0);
 | 
			
		||||
      CommsRequest_t srq;
 | 
			
		||||
      srq.PacketType = InterNodeRecv;
 | 
			
		||||
      srq.bytes      = rbytes;
 | 
			
		||||
      srq.req        = rrq;
 | 
			
		||||
      srq.host_buf   = host_recv;
 | 
			
		||||
      srq.device_buf = recv;
 | 
			
		||||
      list.push_back(srq);
 | 
			
		||||
      off_node_bytes+=rbytes;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  if (dox) {
 | 
			
		||||
    if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
			
		||||
 | 
			
		||||
      tag= dir+_processor*32;
 | 
			
		||||
 | 
			
		||||
      host_xmit = this->HostBufferMalloc(xbytes);
 | 
			
		||||
      CommsRequest_t srq;
 | 
			
		||||
 | 
			
		||||
      srq.ev = acceleratorCopyFromDeviceAsynch(xmit, host_xmit,xbytes); // Make this Asynch
 | 
			
		||||
      
 | 
			
		||||
      //      ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
 | 
			
		||||
      //      assert(ierr==0);
 | 
			
		||||
      //      off_node_bytes+=xbytes;
 | 
			
		||||
 | 
			
		||||
      srq.PacketType = InterNodeXmit;
 | 
			
		||||
      srq.bytes      = xbytes;
 | 
			
		||||
      //      srq.req        = xrq;
 | 
			
		||||
      srq.host_buf   = host_xmit;
 | 
			
		||||
      srq.device_buf = xmit;
 | 
			
		||||
      srq.tag        = tag;
 | 
			
		||||
      srq.dest       = dest;
 | 
			
		||||
      srq.commdir    = commdir;
 | 
			
		||||
      list.push_back(srq);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  return off_node_bytes;
 | 
			
		||||
}
 | 
			
		||||
/*
 | 
			
		||||
 * In the interest of better pipelining, poll for completion on each DtoH and 
 | 
			
		||||
 * start MPI_ISend in the meantime
 | 
			
		||||
 */
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list)
 | 
			
		||||
{
 | 
			
		||||
  int pending = 0;
 | 
			
		||||
  do {
 | 
			
		||||
 | 
			
		||||
    pending = 0;
 | 
			
		||||
 | 
			
		||||
    for(int idx = 0; idx<list.size();idx++){
 | 
			
		||||
 | 
			
		||||
      if ( list[idx].PacketType==InterNodeRecv ) {
 | 
			
		||||
 | 
			
		||||
	int flag = 0;
 | 
			
		||||
	MPI_Status status;
 | 
			
		||||
	int ierr = MPI_Test(&list[idx].req,&flag,&status);
 | 
			
		||||
	assert(ierr==0);
 | 
			
		||||
 | 
			
		||||
	if ( flag ) {
 | 
			
		||||
	  //	  std::cout << " PollIrecv "<<idx<<" flag "<<flag<<std::endl;
 | 
			
		||||
	  acceleratorCopyToDeviceAsynch(list[idx].host_buf,list[idx].device_buf,list[idx].bytes);
 | 
			
		||||
	  list[idx].PacketType=InterNodeReceiveHtoD;
 | 
			
		||||
	} else {
 | 
			
		||||
	  pending ++;
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    //    std::cout << " PollIrecv "<<pending<<" pending requests"<<std::endl;
 | 
			
		||||
  } while ( pending );
 | 
			
		||||
  
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list)
 | 
			
		||||
{
 | 
			
		||||
  int pending = 0;
 | 
			
		||||
  do {
 | 
			
		||||
 | 
			
		||||
    pending = 0;
 | 
			
		||||
 | 
			
		||||
    for(int idx = 0; idx<list.size();idx++){
 | 
			
		||||
 | 
			
		||||
      if ( list[idx].PacketType==InterNodeXmit ) {
 | 
			
		||||
 | 
			
		||||
	if ( acceleratorEventIsComplete(list[idx].ev) ) {
 | 
			
		||||
 | 
			
		||||
	  void *host_xmit = list[idx].host_buf;
 | 
			
		||||
	  uint32_t xbytes = list[idx].bytes;
 | 
			
		||||
	  int dest        = list[idx].dest;
 | 
			
		||||
	  int tag         = list[idx].tag;
 | 
			
		||||
	  int commdir     = list[idx].commdir;
 | 
			
		||||
	  ///////////////////
 | 
			
		||||
	  // Send packet
 | 
			
		||||
	  ///////////////////
 | 
			
		||||
 | 
			
		||||
	  //	  std::cout << " DtoH is complete for index "<<idx<<" calling MPI_Isend "<<std::endl;
 | 
			
		||||
	  
 | 
			
		||||
	  MPI_Request xrq;
 | 
			
		||||
	  int ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
 | 
			
		||||
	  assert(ierr==0);
 | 
			
		||||
 | 
			
		||||
	  list[idx].req        = xrq; // Update the MPI request in the list
 | 
			
		||||
 | 
			
		||||
	  list[idx].PacketType=InterNodeXmitISend;
 | 
			
		||||
 | 
			
		||||
	} else {
 | 
			
		||||
	  // not done, so return to polling loop
 | 
			
		||||
	  pending++;
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  } while (pending);
 | 
			
		||||
}  
 | 
			
		||||
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
							 void *xmit,
 | 
			
		||||
							 int dest,int dox,
 | 
			
		||||
							 void *recv,
 | 
			
		||||
							 int from,int dor,
 | 
			
		||||
							 int xbytes,int rbytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
  int ncomm  =communicator_halo.size();
 | 
			
		||||
  int commdir=dir%ncomm;
 | 
			
		||||
 | 
			
		||||
  MPI_Request xrq;
 | 
			
		||||
  MPI_Request rrq;
 | 
			
		||||
 | 
			
		||||
  int ierr;
 | 
			
		||||
  int gdest = ShmRanks[dest];
 | 
			
		||||
  int gfrom = ShmRanks[from];
 | 
			
		||||
  int gme   = ShmRanks[_processor];
 | 
			
		||||
 | 
			
		||||
  assert(dest != _processor);
 | 
			
		||||
  assert(from != _processor);
 | 
			
		||||
  assert(gme  == ShmRank);
 | 
			
		||||
  double off_node_bytes=0.0;
 | 
			
		||||
  int tag;
 | 
			
		||||
 | 
			
		||||
  void * host_xmit = NULL;
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////
 | 
			
		||||
  // Receives already posted
 | 
			
		||||
  // Copies already started
 | 
			
		||||
  ////////////////////////////////
 | 
			
		||||
  /*  
 | 
			
		||||
   * PHASE 2: (Begin)
 | 
			
		||||
   * - complete all copies
 | 
			
		||||
   * - post MPI send asynch
 | 
			
		||||
   */
 | 
			
		||||
#ifdef NVLINK_GET
 | 
			
		||||
  if ( dor ) {
 | 
			
		||||
 | 
			
		||||
    if ( ! ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) ) {
 | 
			
		||||
      // Intranode
 | 
			
		||||
      void *shm = (void *) this->ShmBufferTranslate(from,xmit);
 | 
			
		||||
      assert(shm!=NULL);
 | 
			
		||||
 | 
			
		||||
      CommsRequest_t srq;
 | 
			
		||||
 | 
			
		||||
      srq.ev = acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
 | 
			
		||||
 | 
			
		||||
      srq.PacketType = IntraNodeRecv;
 | 
			
		||||
      srq.bytes      = xbytes;
 | 
			
		||||
      //      srq.req        = xrq;
 | 
			
		||||
      srq.host_buf   = NULL;
 | 
			
		||||
      srq.device_buf = xmit;
 | 
			
		||||
      srq.tag        = -1;
 | 
			
		||||
      srq.dest       = dest;
 | 
			
		||||
      srq.commdir    = dir;
 | 
			
		||||
      list.push_back(srq);
 | 
			
		||||
    }
 | 
			
		||||
  }  
 | 
			
		||||
#else
 | 
			
		||||
  if (dox) {
 | 
			
		||||
 | 
			
		||||
    if ( !( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) ) {
 | 
			
		||||
      // Intranode
 | 
			
		||||
      void *shm = (void *) this->ShmBufferTranslate(dest,recv);
 | 
			
		||||
      assert(shm!=NULL);
 | 
			
		||||
 | 
			
		||||
      CommsRequest_t srq;
 | 
			
		||||
      
 | 
			
		||||
      srq.ev = acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
 | 
			
		||||
 | 
			
		||||
      srq.PacketType = IntraNodeXmit;
 | 
			
		||||
      srq.bytes      = xbytes;
 | 
			
		||||
      //      srq.req        = xrq;
 | 
			
		||||
      srq.host_buf   = NULL;
 | 
			
		||||
      srq.device_buf = xmit;
 | 
			
		||||
      srq.tag        = -1;
 | 
			
		||||
      srq.dest       = dest;
 | 
			
		||||
      srq.commdir    = dir;
 | 
			
		||||
      list.push_back(srq);
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
  return off_node_bytes;
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
 | 
			
		||||
{
 | 
			
		||||
  acceleratorCopySynchronise(); // Complete all pending copy transfers D2D
 | 
			
		||||
 | 
			
		||||
  std::vector<MPI_Status> status;
 | 
			
		||||
  std::vector<MPI_Request> MpiRequests;
 | 
			
		||||
    
 | 
			
		||||
  for(int r=0;r<list.size();r++){
 | 
			
		||||
    // Must check each Send buf is clear to reuse
 | 
			
		||||
    if ( list[r].PacketType == InterNodeXmitISend ) MpiRequests.push_back(list[r].req);
 | 
			
		||||
    //    if ( list[r].PacketType == InterNodeRecv ) MpiRequests.push_back(list[r].req); // Already "Test" passed
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int nreq=MpiRequests.size();
 | 
			
		||||
 | 
			
		||||
  if (nreq>0) {
 | 
			
		||||
    status.resize(MpiRequests.size());
 | 
			
		||||
    int ierr = MPI_Waitall(MpiRequests.size(),&MpiRequests[0],&status[0]); // Sends are guaranteed in order. No harm in not completing.
 | 
			
		||||
    assert(ierr==0);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  //  for(int r=0;r<nreq;r++){
 | 
			
		||||
  //    if ( list[r].PacketType==InterNodeRecv ) {
 | 
			
		||||
  //      acceleratorCopyToDeviceAsynch(list[r].host_buf,list[r].device_buf,list[r].bytes);
 | 
			
		||||
  //    }
 | 
			
		||||
  //  }
 | 
			
		||||
  
 | 
			
		||||
  
 | 
			
		||||
  list.resize(0);               // Delete the list
 | 
			
		||||
  this->HostBufferFreeAll();    // Clean up the buffer allocs
 | 
			
		||||
#ifndef NVLINK_GET
 | 
			
		||||
  this->StencilBarrier(); // if PUT must check our nbrs have filled our receive buffers.
 | 
			
		||||
#endif   
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
// END PIPELINE MODE / NO CUDA AWARE MPI
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
void CartesianCommunicator::StencilBarrier(void)
 | 
			
		||||
{
 | 
			
		||||
  FlightRecorder::StepLog("NodeBarrier");
 | 
			
		||||
  MPI_Barrier  (ShmComm);
 | 
			
		||||
}
 | 
			
		||||
//void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
 | 
			
		||||
@@ -809,13 +418,11 @@ void CartesianCommunicator::StencilBarrier(void)
 | 
			
		||||
//}
 | 
			
		||||
void CartesianCommunicator::Barrier(void)
 | 
			
		||||
{
 | 
			
		||||
  FlightRecorder::StepLog("GridBarrier");
 | 
			
		||||
  int ierr = MPI_Barrier(communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
 | 
			
		||||
{
 | 
			
		||||
  FlightRecorder::StepLog("Broadcast");
 | 
			
		||||
  int ierr=MPI_Bcast(data,
 | 
			
		||||
		     bytes,
 | 
			
		||||
		     MPI_BYTE,
 | 
			
		||||
@@ -834,7 +441,6 @@ void CartesianCommunicator::BarrierWorld(void){
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
 | 
			
		||||
{
 | 
			
		||||
  FlightRecorder::StepLog("BroadcastWorld");
 | 
			
		||||
  int ierr= MPI_Bcast(data,
 | 
			
		||||
		      bytes,
 | 
			
		||||
		      MPI_BYTE,
 | 
			
		||||
@@ -857,7 +463,6 @@ void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,uint64_t words,
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::AllToAll(void  *in,void *out,uint64_t words,uint64_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  FlightRecorder::StepLog("AllToAll");
 | 
			
		||||
  // MPI is a pain and uses "int" arguments
 | 
			
		||||
  // 64*64*64*128*16 == 500Million elements of data.
 | 
			
		||||
  // When 24*4 bytes multiples get 50x 10^9 >>> 2x10^9 Y2K bug.
 | 
			
		||||
 
 | 
			
		||||
@@ -91,17 +91,6 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
 | 
			
		||||
{
 | 
			
		||||
  assert(0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ assert(list.size()==0);}
 | 
			
		||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
						void *xmit,
 | 
			
		||||
						int dest,
 | 
			
		||||
						void *recv,
 | 
			
		||||
						int from,
 | 
			
		||||
						int bytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
  assert(0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,uint64_t words,uint64_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  bcopy(in,out,bytes*words);
 | 
			
		||||
@@ -132,17 +121,6 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
 | 
			
		||||
{
 | 
			
		||||
  return 2.0*bytes;
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {};
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {};
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
 | 
			
		||||
							   void *xmit,
 | 
			
		||||
							   int xmit_to_rank,int dox,
 | 
			
		||||
							   void *recv,
 | 
			
		||||
							   int recv_from_rank,int dor,
 | 
			
		||||
							   int xbytes,int rbytes, int dir)
 | 
			
		||||
{
 | 
			
		||||
  return 0.0;
 | 
			
		||||
}
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
							 void *xmit,
 | 
			
		||||
							 int xmit_to_rank,int dox,
 | 
			
		||||
 
 | 
			
		||||
@@ -40,9 +40,6 @@ int                 GlobalSharedMemory::_ShmAlloc;
 | 
			
		||||
uint64_t            GlobalSharedMemory::_ShmAllocBytes;
 | 
			
		||||
 | 
			
		||||
std::vector<void *> GlobalSharedMemory::WorldShmCommBufs;
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
void * GlobalSharedMemory::HostCommBuf;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
Grid_MPI_Comm       GlobalSharedMemory::WorldShmComm;
 | 
			
		||||
int                 GlobalSharedMemory::WorldShmRank;
 | 
			
		||||
@@ -69,26 +66,6 @@ void GlobalSharedMemory::SharedMemoryFree(void)
 | 
			
		||||
/////////////////////////////////
 | 
			
		||||
// Alloc, free shmem region
 | 
			
		||||
/////////////////////////////////
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
void *SharedMemory::HostBufferMalloc(size_t bytes){
 | 
			
		||||
  void *ptr = (void *)host_heap_top;
 | 
			
		||||
  host_heap_top  += bytes;
 | 
			
		||||
  host_heap_bytes+= bytes;
 | 
			
		||||
  if (host_heap_bytes >= host_heap_size) {
 | 
			
		||||
    std::cout<< " HostBufferMalloc exceeded heap size -- try increasing with --shm <MB> flag" <<std::endl;
 | 
			
		||||
    std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl;
 | 
			
		||||
    std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl;
 | 
			
		||||
    std::cout<< " Current bytes is " << (host_heap_bytes/(1024*1024)) <<"MB"<<std::endl;
 | 
			
		||||
    std::cout<< " Current heap  is " << (host_heap_size/(1024*1024)) <<"MB"<<std::endl;
 | 
			
		||||
    assert(host_heap_bytes<host_heap_size);
 | 
			
		||||
  }
 | 
			
		||||
  return ptr;
 | 
			
		||||
}
 | 
			
		||||
void SharedMemory::HostBufferFreeAll(void) { 
 | 
			
		||||
  host_heap_top  =(size_t)HostCommBuf;
 | 
			
		||||
  host_heap_bytes=0;
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
void *SharedMemory::ShmBufferMalloc(size_t bytes){
 | 
			
		||||
  //  bytes = (bytes+sizeof(vRealD))&(~(sizeof(vRealD)-1));// align up bytes
 | 
			
		||||
  void *ptr = (void *)heap_top;
 | 
			
		||||
 
 | 
			
		||||
@@ -46,40 +46,8 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
#if defined (GRID_COMMS_MPI3) 
 | 
			
		||||
typedef MPI_Comm    Grid_MPI_Comm;
 | 
			
		||||
typedef MPI_Request MpiCommsRequest_t;
 | 
			
		||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
			
		||||
typedef MPI_Request CommsRequest_t;
 | 
			
		||||
#else 
 | 
			
		||||
/*
 | 
			
		||||
 * Enable state transitions as each packet flows.
 | 
			
		||||
 */
 | 
			
		||||
enum PacketType_t {
 | 
			
		||||
  FaceGather,
 | 
			
		||||
  InterNodeXmit,
 | 
			
		||||
  InterNodeRecv,
 | 
			
		||||
  IntraNodeXmit,
 | 
			
		||||
  IntraNodeRecv,
 | 
			
		||||
  InterNodeXmitISend,
 | 
			
		||||
  InterNodeReceiveHtoD
 | 
			
		||||
};
 | 
			
		||||
/*
 | 
			
		||||
 *Package arguments needed for various actions along packet flow
 | 
			
		||||
 */
 | 
			
		||||
typedef struct {
 | 
			
		||||
  PacketType_t PacketType;
 | 
			
		||||
  void *host_buf;
 | 
			
		||||
  void *device_buf;
 | 
			
		||||
  int dest;
 | 
			
		||||
  int tag;
 | 
			
		||||
  int commdir;
 | 
			
		||||
  unsigned long bytes;
 | 
			
		||||
  acceleratorEvent_t ev;
 | 
			
		||||
  MpiCommsRequest_t req;
 | 
			
		||||
} CommsRequest_t;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#else 
 | 
			
		||||
typedef int MpiCommsRequest_t;
 | 
			
		||||
typedef int CommsRequest_t;
 | 
			
		||||
typedef int Grid_MPI_Comm;
 | 
			
		||||
#endif
 | 
			
		||||
@@ -107,9 +75,7 @@ public:
 | 
			
		||||
  static int           Hugepages;
 | 
			
		||||
 | 
			
		||||
  static std::vector<void *> WorldShmCommBufs;
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
  static void *HostCommBuf;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
  static Grid_MPI_Comm WorldComm;
 | 
			
		||||
  static int           WorldRank;
 | 
			
		||||
  static int           WorldSize;
 | 
			
		||||
@@ -137,7 +103,7 @@ public:
 | 
			
		||||
  ///////////////////////////////////////////////////
 | 
			
		||||
  static void SharedMemoryAllocate(uint64_t bytes, int flags);
 | 
			
		||||
  static void SharedMemoryFree(void);
 | 
			
		||||
  //  static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
 | 
			
		||||
  static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
 | 
			
		||||
  static void SharedMemoryZero(void *dest,size_t bytes);
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
@@ -154,13 +120,6 @@ private:
 | 
			
		||||
  size_t heap_bytes;
 | 
			
		||||
  size_t heap_size;
 | 
			
		||||
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
  size_t host_heap_top;  // set in free all
 | 
			
		||||
  size_t host_heap_bytes;// set in free all
 | 
			
		||||
  void *HostCommBuf;     // set in SetCommunicator
 | 
			
		||||
  size_t host_heap_size; // set in SetCommunicator
 | 
			
		||||
#endif
 | 
			
		||||
  
 | 
			
		||||
protected:
 | 
			
		||||
 | 
			
		||||
  Grid_MPI_Comm    ShmComm; // for barriers
 | 
			
		||||
@@ -192,10 +151,7 @@ public:
 | 
			
		||||
  void *ShmBufferTranslate(int rank,void * local_p);
 | 
			
		||||
  void *ShmBufferMalloc(size_t bytes);
 | 
			
		||||
  void  ShmBufferFreeAll(void) ;
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
  void *HostBufferMalloc(size_t bytes);
 | 
			
		||||
  void HostBufferFreeAll(void);
 | 
			
		||||
#endif  
 | 
			
		||||
  
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Make info on Nodes & ranks and Shared memory available
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -39,16 +39,9 @@ Author: Christoph Lehner <christoph@lhnr.de>
 | 
			
		||||
#include <hip/hip_runtime_api.h>
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
			
		||||
#define GRID_SYCL_LEVEL_ZERO_IPC
 | 
			
		||||
#define SHM_SOCKETS
 | 
			
		||||
#else
 | 
			
		||||
#ifdef HAVE_NUMAIF_H
 | 
			
		||||
  #warning " Using NUMAIF "
 | 
			
		||||
#include <numaif.h>
 | 
			
		||||
#endif 
 | 
			
		||||
#endif 
 | 
			
		||||
#include <syscall.h>
 | 
			
		||||
#define SHM_SOCKETS 
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#include <sys/socket.h>
 | 
			
		||||
@@ -519,6 +512,46 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
// Hugetlbfs mapping intended
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
#if defined(GRID_CUDA) ||defined(GRID_HIP)  || defined(GRID_SYCL)
 | 
			
		||||
 | 
			
		||||
//if defined(GRID_SYCL)
 | 
			
		||||
#if 0
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
{
 | 
			
		||||
  void * ShmCommBuf ; 
 | 
			
		||||
  assert(_ShmSetup==1);
 | 
			
		||||
  assert(_ShmAlloc==0);
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // allocate the pointer array for shared windows for our group
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  MPI_Barrier(WorldShmComm);
 | 
			
		||||
  WorldShmCommBufs.resize(WorldShmSize);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Each MPI rank should allocate our own buffer
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  ShmCommBuf = acceleratorAllocDevice(bytes);
 | 
			
		||||
 | 
			
		||||
  if (ShmCommBuf == (void *)NULL ) {
 | 
			
		||||
    std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
 | 
			
		||||
    exit(EXIT_FAILURE);  
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::cout << WorldRank << Mheader " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes 
 | 
			
		||||
	    << "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
 | 
			
		||||
 | 
			
		||||
  SharedMemoryZero(ShmCommBuf,bytes);
 | 
			
		||||
 | 
			
		||||
  assert(WorldShmSize == 1);
 | 
			
		||||
  for(int r=0;r<WorldShmSize;r++){
 | 
			
		||||
    WorldShmCommBufs[r] = ShmCommBuf;
 | 
			
		||||
  }
 | 
			
		||||
  _ShmAllocBytes=bytes;
 | 
			
		||||
  _ShmAlloc=1;
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if defined(GRID_CUDA) ||defined(GRID_HIP) ||defined(GRID_SYCL)  
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
{
 | 
			
		||||
  void * ShmCommBuf ; 
 | 
			
		||||
@@ -541,40 +574,6 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Each MPI rank should allocate our own buffer
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
  // printf("Host buffer allocate for GPU non-aware MPI\n");
 | 
			
		||||
#if 0
 | 
			
		||||
  HostCommBuf= acceleratorAllocHost(bytes);
 | 
			
		||||
#else 
 | 
			
		||||
  HostCommBuf= malloc(bytes); /// CHANGE THIS TO malloc_host
 | 
			
		||||
#if 0
 | 
			
		||||
  #warning "Moving host buffers to specific NUMA domain"
 | 
			
		||||
  int numa;
 | 
			
		||||
  char *numa_name=(char *)getenv("MPI_BUF_NUMA");
 | 
			
		||||
  if(numa_name) {
 | 
			
		||||
    unsigned long page_size = sysconf(_SC_PAGESIZE);
 | 
			
		||||
    numa = atoi(numa_name);
 | 
			
		||||
    unsigned long page_count = bytes/page_size;
 | 
			
		||||
    std::vector<void *> pages(page_count);
 | 
			
		||||
    std::vector<int>    nodes(page_count,numa);
 | 
			
		||||
    std::vector<int>    status(page_count,-1);
 | 
			
		||||
    for(unsigned long p=0;p<page_count;p++){
 | 
			
		||||
      pages[p] =(void *) ((uint64_t) HostCommBuf + p*page_size);
 | 
			
		||||
    }
 | 
			
		||||
    int ret = move_pages(0,
 | 
			
		||||
			 page_count,
 | 
			
		||||
			 &pages[0],
 | 
			
		||||
			 &nodes[0],
 | 
			
		||||
			 &status[0],
 | 
			
		||||
			 MPOL_MF_MOVE);
 | 
			
		||||
    printf("Host buffer move to numa domain %d : move_pages returned %d\n",numa,ret);
 | 
			
		||||
    if (ret) perror(" move_pages failed for reason:");
 | 
			
		||||
  }
 | 
			
		||||
#endif  
 | 
			
		||||
  acceleratorPin(HostCommBuf,bytes);
 | 
			
		||||
#endif  
 | 
			
		||||
 | 
			
		||||
#endif  
 | 
			
		||||
  ShmCommBuf = acceleratorAllocDevice(bytes);
 | 
			
		||||
  if (ShmCommBuf == (void *)NULL ) {
 | 
			
		||||
    std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
 | 
			
		||||
@@ -605,8 +604,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
 | 
			
		||||
    typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t;
 | 
			
		||||
 | 
			
		||||
    auto zeDevice    = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
 | 
			
		||||
    auto zeContext   = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
 | 
			
		||||
    auto zeDevice    = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
 | 
			
		||||
    auto zeContext   = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
 | 
			
		||||
      
 | 
			
		||||
    ze_ipc_mem_handle_t ihandle;
 | 
			
		||||
    clone_mem_t handle;
 | 
			
		||||
@@ -739,6 +738,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
  _ShmAllocBytes=bytes;
 | 
			
		||||
  _ShmAlloc=1;
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#else 
 | 
			
		||||
#ifdef GRID_MPI3_SHMMMAP
 | 
			
		||||
@@ -916,14 +916,14 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
 | 
			
		||||
  bzero(dest,bytes);
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
//void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
 | 
			
		||||
//{
 | 
			
		||||
//#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
 | 
			
		||||
//  acceleratorCopyToDevice(src,dest,bytes);
 | 
			
		||||
//#else   
 | 
			
		||||
//  bcopy(src,dest,bytes);
 | 
			
		||||
//#endif
 | 
			
		||||
//}
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
 | 
			
		||||
{
 | 
			
		||||
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
 | 
			
		||||
  acceleratorCopyToDevice(src,dest,bytes);
 | 
			
		||||
#else   
 | 
			
		||||
  bcopy(src,dest,bytes);
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
////////////////////////////////////////////////////////
 | 
			
		||||
// Global shared functionality finished
 | 
			
		||||
// Now move to per communicator functionality
 | 
			
		||||
@@ -959,16 +959,9 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
 | 
			
		||||
    MPI_Allreduce(MPI_IN_PLACE,&wsr,1,MPI_UINT32_T,MPI_SUM,ShmComm);
 | 
			
		||||
 | 
			
		||||
    ShmCommBufs[r] = GlobalSharedMemory::WorldShmCommBufs[wsr];
 | 
			
		||||
    //    std::cerr << " SetCommunicator rank "<<r<<" comm "<<ShmCommBufs[r] <<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  ShmBufferFreeAll();
 | 
			
		||||
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
  host_heap_size = heap_size;
 | 
			
		||||
  HostCommBuf= GlobalSharedMemory::HostCommBuf;
 | 
			
		||||
  HostBufferFreeAll();
 | 
			
		||||
#endif  
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // find comm ranks in our SHM group (i.e. which ranks are on our node)
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -990,7 +983,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
  //  SharedMemoryTest();
 | 
			
		||||
  //SharedMemoryTest();
 | 
			
		||||
}
 | 
			
		||||
//////////////////////////////////////////////////////////////////
 | 
			
		||||
// On node barrier
 | 
			
		||||
@@ -1012,18 +1005,19 @@ void SharedMemory::SharedMemoryTest(void)
 | 
			
		||||
       check[0]=GlobalSharedMemory::WorldNode;
 | 
			
		||||
       check[1]=r;
 | 
			
		||||
       check[2]=magic;
 | 
			
		||||
       acceleratorCopyToDevice(check,ShmCommBufs[r],3*sizeof(uint64_t));
 | 
			
		||||
       GlobalSharedMemory::SharedMemoryCopy( ShmCommBufs[r], check, 3*sizeof(uint64_t));
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  ShmBarrier();
 | 
			
		||||
  for(uint64_t r=0;r<ShmSize;r++){
 | 
			
		||||
    acceleratorCopyFromDevice(ShmCommBufs[r],check,3*sizeof(uint64_t));
 | 
			
		||||
    ShmBarrier();
 | 
			
		||||
    GlobalSharedMemory::SharedMemoryCopy(check,ShmCommBufs[r], 3*sizeof(uint64_t));
 | 
			
		||||
    ShmBarrier();
 | 
			
		||||
    assert(check[0]==GlobalSharedMemory::WorldNode);
 | 
			
		||||
    assert(check[1]==r);
 | 
			
		||||
    assert(check[2]==magic);
 | 
			
		||||
    ShmBarrier();
 | 
			
		||||
  }
 | 
			
		||||
  ShmBarrier();
 | 
			
		||||
  std::cout << GridLogDebug << " SharedMemoryTest has passed "<<std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void *SharedMemory::ShmBuffer(int rank)
 | 
			
		||||
 
 | 
			
		||||
@@ -122,10 +122,10 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  acceleratorMemSet(dest,0,bytes);
 | 
			
		||||
}
 | 
			
		||||
//void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
 | 
			
		||||
//{
 | 
			
		||||
//  acceleratorCopyToDevice(src,dest,bytes);
 | 
			
		||||
//}
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  acceleratorCopyToDevice(src,dest,bytes);
 | 
			
		||||
}
 | 
			
		||||
////////////////////////////////////////////////////////
 | 
			
		||||
// Global shared functionality finished
 | 
			
		||||
// Now move to per communicator functionality
 | 
			
		||||
 
 | 
			
		||||
@@ -51,6 +51,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#endif 
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr> 
 | 
			
		||||
auto Cshift(const Expression &expr,int dim,int shift)  -> decltype(closure(expr)) 
 | 
			
		||||
{
 | 
			
		||||
 
 | 
			
		||||
@@ -30,11 +30,12 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
extern std::vector<std::pair<int,int> > Cshift_table; 
 | 
			
		||||
extern deviceVector<std::pair<int,int> > Cshift_table_device; 
 | 
			
		||||
extern commVector<std::pair<int,int> > Cshift_table_device; 
 | 
			
		||||
 | 
			
		||||
inline std::pair<int,int> *MapCshiftTable(void)
 | 
			
		||||
{
 | 
			
		||||
  // GPU version
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT    
 | 
			
		||||
  uint64_t sz=Cshift_table.size();
 | 
			
		||||
  if (Cshift_table_device.size()!=sz )    {
 | 
			
		||||
    Cshift_table_device.resize(sz);
 | 
			
		||||
@@ -44,13 +45,16 @@ inline std::pair<int,int> *MapCshiftTable(void)
 | 
			
		||||
			  sizeof(Cshift_table[0])*sz);
 | 
			
		||||
 | 
			
		||||
  return &Cshift_table_device[0];
 | 
			
		||||
#else 
 | 
			
		||||
  return &Cshift_table[0];
 | 
			
		||||
#endif
 | 
			
		||||
  // CPU version use identify map
 | 
			
		||||
}
 | 
			
		||||
///////////////////////////////////////////////////////////////////
 | 
			
		||||
// Gather for when there is no need to SIMD split 
 | 
			
		||||
///////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj> void 
 | 
			
		||||
Gather_plane_simple (const Lattice<vobj> &rhs,deviceVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
 | 
			
		||||
Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
 | 
			
		||||
{
 | 
			
		||||
  int rd = rhs.Grid()->_rdimensions[dimension];
 | 
			
		||||
 | 
			
		||||
@@ -90,10 +94,17 @@ Gather_plane_simple (const Lattice<vobj> &rhs,deviceVector<vobj> &buffer,int dim
 | 
			
		||||
  {
 | 
			
		||||
    auto buffer_p = & buffer[0];
 | 
			
		||||
    auto table = MapCshiftTable();
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT
 | 
			
		||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
			
		||||
    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
			
		||||
	coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second]));
 | 
			
		||||
    });
 | 
			
		||||
#else
 | 
			
		||||
    autoView(rhs_v , rhs, CpuRead);
 | 
			
		||||
    thread_for(i,ent,{
 | 
			
		||||
      buffer_p[table[i].first]=rhs_v[table[i].second];
 | 
			
		||||
    });
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -118,6 +129,7 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
 | 
			
		||||
  int n1=rhs.Grid()->_slice_stride[dimension];
 | 
			
		||||
 | 
			
		||||
  if ( cbmask ==0x3){
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT
 | 
			
		||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
			
		||||
    accelerator_for(nn,e1*e2,1,{
 | 
			
		||||
	int n = nn%e1;
 | 
			
		||||
@@ -128,10 +140,21 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
 | 
			
		||||
	vobj temp =rhs_v[so+o+b];
 | 
			
		||||
	extract<vobj>(temp,pointers,offset);
 | 
			
		||||
      });
 | 
			
		||||
#else
 | 
			
		||||
    autoView(rhs_v , rhs, CpuRead);
 | 
			
		||||
    thread_for2d(n,e1,b,e2,{
 | 
			
		||||
	int o      =   n*n1;
 | 
			
		||||
	int offset = b+n*e2;
 | 
			
		||||
	
 | 
			
		||||
	vobj temp =rhs_v[so+o+b];
 | 
			
		||||
	extract<vobj>(temp,pointers,offset);
 | 
			
		||||
      });
 | 
			
		||||
#endif
 | 
			
		||||
  } else { 
 | 
			
		||||
    Coordinate rdim=rhs.Grid()->_rdimensions;
 | 
			
		||||
    Coordinate cdm =rhs.Grid()->_checker_dim_mask;
 | 
			
		||||
    std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb?
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT    
 | 
			
		||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
			
		||||
    accelerator_for(nn,e1*e2,1,{
 | 
			
		||||
	int n = nn%e1;
 | 
			
		||||
@@ -152,13 +175,33 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
 | 
			
		||||
	  extract<vobj>(temp,pointers,offset);
 | 
			
		||||
	}
 | 
			
		||||
      });
 | 
			
		||||
#else
 | 
			
		||||
    autoView(rhs_v , rhs, CpuRead);
 | 
			
		||||
    thread_for2d(n,e1,b,e2,{
 | 
			
		||||
 | 
			
		||||
	Coordinate coor;
 | 
			
		||||
 | 
			
		||||
	int o=n*n1;
 | 
			
		||||
	int oindex = o+b;
 | 
			
		||||
 | 
			
		||||
       	int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm);
 | 
			
		||||
 | 
			
		||||
	int ocb=1<<cb;
 | 
			
		||||
	int offset = b+n*e2;
 | 
			
		||||
 | 
			
		||||
	if ( ocb & cbmask ) {
 | 
			
		||||
	  vobj temp =rhs_v[so+o+b];
 | 
			
		||||
	  extract<vobj>(temp,pointers,offset);
 | 
			
		||||
	}
 | 
			
		||||
      });
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
// Scatter for when there is no need to SIMD split
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,deviceVector<vobj> &buffer, int dimension,int plane,int cbmask)
 | 
			
		||||
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<vobj> &buffer, int dimension,int plane,int cbmask)
 | 
			
		||||
{
 | 
			
		||||
  int rd = rhs.Grid()->_rdimensions[dimension];
 | 
			
		||||
 | 
			
		||||
@@ -202,10 +245,17 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,deviceVector<
 | 
			
		||||
  {
 | 
			
		||||
    auto buffer_p = & buffer[0];
 | 
			
		||||
    auto table = MapCshiftTable();
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT    
 | 
			
		||||
    autoView( rhs_v, rhs, AcceleratorWrite);
 | 
			
		||||
    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
			
		||||
	coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second]));
 | 
			
		||||
    });
 | 
			
		||||
#else
 | 
			
		||||
    autoView( rhs_v, rhs, CpuWrite);
 | 
			
		||||
    thread_for(i,ent,{
 | 
			
		||||
      rhs_v[table[i].first]=buffer_p[table[i].second];
 | 
			
		||||
    });
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -228,6 +278,7 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
 | 
			
		||||
  if(cbmask ==0x3 ) {
 | 
			
		||||
    int _slice_stride = rhs.Grid()->_slice_stride[dimension];
 | 
			
		||||
    int _slice_block = rhs.Grid()->_slice_block[dimension];
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT    
 | 
			
		||||
    autoView( rhs_v , rhs, AcceleratorWrite);
 | 
			
		||||
    accelerator_for(nn,e1*e2,1,{
 | 
			
		||||
	int n = nn%e1;
 | 
			
		||||
@@ -236,6 +287,14 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
 | 
			
		||||
	int offset = b+n*_slice_block;
 | 
			
		||||
	merge(rhs_v[so+o+b],pointers,offset);
 | 
			
		||||
      });
 | 
			
		||||
#else
 | 
			
		||||
    autoView( rhs_v , rhs, CpuWrite);
 | 
			
		||||
    thread_for2d(n,e1,b,e2,{
 | 
			
		||||
	int o      = n*_slice_stride;
 | 
			
		||||
	int offset = b+n*_slice_block;
 | 
			
		||||
	merge(rhs_v[so+o+b],pointers,offset);
 | 
			
		||||
    });
 | 
			
		||||
#endif
 | 
			
		||||
  } else { 
 | 
			
		||||
 | 
			
		||||
    // Case of SIMD split AND checker dim cannot currently be hit, except in 
 | 
			
		||||
@@ -301,11 +360,19 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
 | 
			
		||||
 | 
			
		||||
  {
 | 
			
		||||
    auto table = MapCshiftTable();
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT    
 | 
			
		||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
			
		||||
    autoView(lhs_v , lhs, AcceleratorWrite);
 | 
			
		||||
    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
			
		||||
      coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second]));
 | 
			
		||||
    });
 | 
			
		||||
#else
 | 
			
		||||
    autoView(rhs_v , rhs, CpuRead);
 | 
			
		||||
    autoView(lhs_v , lhs, CpuWrite);
 | 
			
		||||
    thread_for(i,ent,{
 | 
			
		||||
      lhs_v[table[i].first]=rhs_v[table[i].second];
 | 
			
		||||
    });
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -345,11 +412,19 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
 | 
			
		||||
 | 
			
		||||
  {
 | 
			
		||||
    auto table = MapCshiftTable();
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT    
 | 
			
		||||
    autoView( rhs_v, rhs, AcceleratorRead);
 | 
			
		||||
    autoView( lhs_v, lhs, AcceleratorWrite);
 | 
			
		||||
    accelerator_for(i,ent,1,{
 | 
			
		||||
      permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
 | 
			
		||||
    });
 | 
			
		||||
#else
 | 
			
		||||
    autoView( rhs_v, rhs, CpuRead);
 | 
			
		||||
    autoView( lhs_v, lhs, CpuWrite);
 | 
			
		||||
    thread_for(i,ent,{
 | 
			
		||||
      permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
 | 
			
		||||
    });
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -31,11 +31,9 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid); 
 | 
			
		||||
const int Cshift_verbose=0;
 | 
			
		||||
 | 
			
		||||
template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift)
 | 
			
		||||
{
 | 
			
		||||
  assert(!rhs.Grid()->isIcosahedral());
 | 
			
		||||
  
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
 | 
			
		||||
@@ -57,17 +55,17 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
 | 
			
		||||
  RealD t1,t0;
 | 
			
		||||
  t0=usecond();
 | 
			
		||||
  if ( !comm_dim ) {
 | 
			
		||||
    //    std::cout << "CSHIFT: Cshift_local" <<std::endl;
 | 
			
		||||
    //std::cout << "CSHIFT: Cshift_local" <<std::endl;
 | 
			
		||||
    Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding
 | 
			
		||||
  } else if ( splice_dim ) {
 | 
			
		||||
    //    std::cout << "CSHIFT: Cshift_comms_simd call - splice_dim = " << splice_dim << " shift " << shift << " dimension = " << dimension << std::endl;
 | 
			
		||||
    //std::cout << "CSHIFT: Cshift_comms_simd call - splice_dim = " << splice_dim << " shift " << shift << " dimension = " << dimension << std::endl;
 | 
			
		||||
    Cshift_comms_simd(ret,rhs,dimension,shift);
 | 
			
		||||
  } else {
 | 
			
		||||
    //    std::cout << "CSHIFT: Cshift_comms" <<std::endl;
 | 
			
		||||
    //std::cout << "CSHIFT: Cshift_comms" <<std::endl;
 | 
			
		||||
    Cshift_comms(ret,rhs,dimension,shift);
 | 
			
		||||
  }
 | 
			
		||||
  t1=usecond();
 | 
			
		||||
  if(Cshift_verbose) std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl;
 | 
			
		||||
  //  std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl;
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -96,16 +94,18 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob
 | 
			
		||||
  sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
 | 
			
		||||
  sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
 | 
			
		||||
 | 
			
		||||
  //  std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.Checkerboard()<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
 | 
			
		||||
  //std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.checkerboard<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
 | 
			
		||||
  if ( sshift[0] == sshift[1] ) {
 | 
			
		||||
    //    std::cout << "Single pass Cshift_comms" <<std::endl;
 | 
			
		||||
    //std::cout << "Single pass Cshift_comms" <<std::endl;
 | 
			
		||||
    Cshift_comms_simd(ret,rhs,dimension,shift,0x3);
 | 
			
		||||
  } else {
 | 
			
		||||
    //    std::cout << "Two pass Cshift_comms" <<std::endl;
 | 
			
		||||
    //std::cout << "Two pass Cshift_comms" <<std::endl;
 | 
			
		||||
    Cshift_comms_simd(ret,rhs,dimension,shift,0x1);// if checkerboard is unfavourable take two passes
 | 
			
		||||
    Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
#define ACCELERATOR_CSHIFT_NO_COPY
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT_NO_COPY
 | 
			
		||||
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
@@ -125,12 +125,8 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
 | 
			
		||||
  assert(shift<fd);
 | 
			
		||||
  
 | 
			
		||||
  int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
 | 
			
		||||
  static deviceVector<vobj> send_buf; send_buf.resize(buffer_size);
 | 
			
		||||
  static deviceVector<vobj> recv_buf; recv_buf.resize(buffer_size);
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
  static hostVector<vobj> hsend_buf; hsend_buf.resize(buffer_size);
 | 
			
		||||
  static hostVector<vobj> hrecv_buf; hrecv_buf.resize(buffer_size);
 | 
			
		||||
#endif
 | 
			
		||||
  static cshiftVector<vobj> send_buf; send_buf.resize(buffer_size);
 | 
			
		||||
  static cshiftVector<vobj> recv_buf; recv_buf.resize(buffer_size);
 | 
			
		||||
    
 | 
			
		||||
  int cb= (cbmask==0x2)? Odd : Even;
 | 
			
		||||
  int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
 | 
			
		||||
@@ -162,31 +158,18 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
 | 
			
		||||
      //      int rank           = grid->_processor;
 | 
			
		||||
      int recv_from_rank;
 | 
			
		||||
      int xmit_to_rank;
 | 
			
		||||
 | 
			
		||||
      grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
 | 
			
		||||
      
 | 
			
		||||
      tcomms-=usecond();
 | 
			
		||||
      grid->Barrier();
 | 
			
		||||
      //      grid->Barrier();
 | 
			
		||||
 | 
			
		||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
			
		||||
      grid->SendToRecvFrom((void *)&send_buf[0],
 | 
			
		||||
			   xmit_to_rank,
 | 
			
		||||
			   (void *)&recv_buf[0],
 | 
			
		||||
			   recv_from_rank,
 | 
			
		||||
			   bytes);
 | 
			
		||||
#else
 | 
			
		||||
      // bouncy bouncy
 | 
			
		||||
      acceleratorCopyFromDevice(&send_buf[0],&hsend_buf[0],bytes);
 | 
			
		||||
      grid->SendToRecvFrom((void *)&hsend_buf[0],
 | 
			
		||||
			   xmit_to_rank,
 | 
			
		||||
			   (void *)&hrecv_buf[0],
 | 
			
		||||
			   recv_from_rank,
 | 
			
		||||
			   bytes);
 | 
			
		||||
      acceleratorCopyToDevice(&hrecv_buf[0],&recv_buf[0],bytes);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
      xbytes+=bytes;
 | 
			
		||||
      grid->Barrier();
 | 
			
		||||
      //      grid->Barrier();
 | 
			
		||||
      tcomms+=usecond();
 | 
			
		||||
 | 
			
		||||
      tscatter-=usecond();
 | 
			
		||||
@@ -194,13 +177,13 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
 | 
			
		||||
      tscatter+=usecond();
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  if (Cshift_verbose){
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  /*
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
			
		||||
  */
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
			
		||||
@@ -218,9 +201,9 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
			
		||||
  int simd_layout     = grid->_simd_layout[dimension];
 | 
			
		||||
  int comm_dim        = grid->_processors[dimension] >1 ;
 | 
			
		||||
 | 
			
		||||
  //  std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
 | 
			
		||||
  //	    << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout 
 | 
			
		||||
  //	    << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
 | 
			
		||||
  //std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
 | 
			
		||||
  //    << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout 
 | 
			
		||||
  //    << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
 | 
			
		||||
 | 
			
		||||
  assert(comm_dim==1);
 | 
			
		||||
  assert(simd_layout==2);
 | 
			
		||||
@@ -241,8 +224,8 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
			
		||||
  int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
 | 
			
		||||
  //  int words = sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
 | 
			
		||||
  static std::vector<deviceVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd);
 | 
			
		||||
  static std::vector<deviceVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd);
 | 
			
		||||
  static std::vector<cshiftVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd);
 | 
			
		||||
  static std::vector<cshiftVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd);
 | 
			
		||||
  scalar_object *  recv_buf_extract_mpi;
 | 
			
		||||
  scalar_object *  send_buf_extract_mpi;
 | 
			
		||||
 
 | 
			
		||||
@@ -250,10 +233,6 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
			
		||||
    send_buf_extract[s].resize(buffer_size);
 | 
			
		||||
    recv_buf_extract[s].resize(buffer_size);
 | 
			
		||||
  }
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
  hostVector<scalar_object> hsend_buf; hsend_buf.resize(buffer_size);
 | 
			
		||||
  hostVector<scalar_object> hrecv_buf; hrecv_buf.resize(buffer_size);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
  int bytes = buffer_size*sizeof(scalar_object);
 | 
			
		||||
 | 
			
		||||
@@ -302,29 +281,18 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
			
		||||
	grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank); 
 | 
			
		||||
 | 
			
		||||
	tcomms-=usecond();
 | 
			
		||||
	grid->Barrier();
 | 
			
		||||
	//	grid->Barrier();
 | 
			
		||||
 | 
			
		||||
	send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
 | 
			
		||||
	recv_buf_extract_mpi = &recv_buf_extract[i][0];
 | 
			
		||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
			
		||||
	grid->SendToRecvFrom((void *)send_buf_extract_mpi,
 | 
			
		||||
			     xmit_to_rank,
 | 
			
		||||
			     (void *)recv_buf_extract_mpi,
 | 
			
		||||
			     recv_from_rank,
 | 
			
		||||
			     bytes);
 | 
			
		||||
#else
 | 
			
		||||
      // bouncy bouncy
 | 
			
		||||
	acceleratorCopyFromDevice((void *)send_buf_extract_mpi,(void *)&hsend_buf[0],bytes);
 | 
			
		||||
	grid->SendToRecvFrom((void *)&hsend_buf[0],
 | 
			
		||||
			     xmit_to_rank,
 | 
			
		||||
			     (void *)&hrecv_buf[0],
 | 
			
		||||
			     recv_from_rank,
 | 
			
		||||
			     bytes);
 | 
			
		||||
	acceleratorCopyToDevice((void *)&hrecv_buf[0],(void *)recv_buf_extract_mpi,bytes);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
	xbytes+=bytes;
 | 
			
		||||
	grid->Barrier();
 | 
			
		||||
	//	grid->Barrier();
 | 
			
		||||
	tcomms+=usecond();
 | 
			
		||||
 | 
			
		||||
	rpointers[i] = &recv_buf_extract[i][0];
 | 
			
		||||
@@ -337,15 +305,242 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
			
		||||
    Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
 | 
			
		||||
    tscatter+=usecond();
 | 
			
		||||
  }
 | 
			
		||||
  if(Cshift_verbose){
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
			
		||||
  /*
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
			
		||||
  */
 | 
			
		||||
}
 | 
			
		||||
#else 
 | 
			
		||||
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
 | 
			
		||||
  GridBase *grid=rhs.Grid();
 | 
			
		||||
  Lattice<vobj> temp(rhs.Grid());
 | 
			
		||||
 | 
			
		||||
  int fd              = rhs.Grid()->_fdimensions[dimension];
 | 
			
		||||
  int rd              = rhs.Grid()->_rdimensions[dimension];
 | 
			
		||||
  int pd              = rhs.Grid()->_processors[dimension];
 | 
			
		||||
  int simd_layout     = rhs.Grid()->_simd_layout[dimension];
 | 
			
		||||
  int comm_dim        = rhs.Grid()->_processors[dimension] >1 ;
 | 
			
		||||
  assert(simd_layout==1);
 | 
			
		||||
  assert(comm_dim==1);
 | 
			
		||||
  assert(shift>=0);
 | 
			
		||||
  assert(shift<fd);
 | 
			
		||||
  RealD tcopy=0.0;
 | 
			
		||||
  RealD tgather=0.0;
 | 
			
		||||
  RealD tscatter=0.0;
 | 
			
		||||
  RealD tcomms=0.0;
 | 
			
		||||
  uint64_t xbytes=0;
 | 
			
		||||
  
 | 
			
		||||
  int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
 | 
			
		||||
  static cshiftVector<vobj> send_buf_v; send_buf_v.resize(buffer_size);
 | 
			
		||||
  static cshiftVector<vobj> recv_buf_v; recv_buf_v.resize(buffer_size);
 | 
			
		||||
  vobj *send_buf;
 | 
			
		||||
  vobj *recv_buf;
 | 
			
		||||
  {
 | 
			
		||||
    grid->ShmBufferFreeAll();
 | 
			
		||||
    size_t bytes = buffer_size*sizeof(vobj);
 | 
			
		||||
    send_buf=(vobj *)grid->ShmBufferMalloc(bytes);
 | 
			
		||||
    recv_buf=(vobj *)grid->ShmBufferMalloc(bytes);
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  int cb= (cbmask==0x2)? Odd : Even;
 | 
			
		||||
  int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
 | 
			
		||||
 | 
			
		||||
  for(int x=0;x<rd;x++){       
 | 
			
		||||
 | 
			
		||||
    int sx        =  (x+sshift)%rd;
 | 
			
		||||
    int comm_proc = ((x+sshift)/rd)%pd;
 | 
			
		||||
    
 | 
			
		||||
    if (comm_proc==0) {
 | 
			
		||||
 | 
			
		||||
      tcopy-=usecond();
 | 
			
		||||
      Copy_plane(ret,rhs,dimension,x,sx,cbmask); 
 | 
			
		||||
      tcopy+=usecond();
 | 
			
		||||
 | 
			
		||||
    } else {
 | 
			
		||||
 | 
			
		||||
      int words = buffer_size;
 | 
			
		||||
      if (cbmask != 0x3) words=words>>1;
 | 
			
		||||
 | 
			
		||||
      int bytes = words * sizeof(vobj);
 | 
			
		||||
 | 
			
		||||
      tgather-=usecond();
 | 
			
		||||
      Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask);
 | 
			
		||||
      tgather+=usecond();
 | 
			
		||||
 | 
			
		||||
      //      int rank           = grid->_processor;
 | 
			
		||||
      int recv_from_rank;
 | 
			
		||||
      int xmit_to_rank;
 | 
			
		||||
      grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      tcomms-=usecond();
 | 
			
		||||
      //      grid->Barrier();
 | 
			
		||||
 | 
			
		||||
      acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes);
 | 
			
		||||
      grid->SendToRecvFrom((void *)&send_buf[0],
 | 
			
		||||
			   xmit_to_rank,
 | 
			
		||||
			   (void *)&recv_buf[0],
 | 
			
		||||
			   recv_from_rank,
 | 
			
		||||
			   bytes);
 | 
			
		||||
      xbytes+=bytes;
 | 
			
		||||
      acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes);
 | 
			
		||||
 | 
			
		||||
      //      grid->Barrier();
 | 
			
		||||
      tcomms+=usecond();
 | 
			
		||||
 | 
			
		||||
      tscatter-=usecond();
 | 
			
		||||
      Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask);
 | 
			
		||||
      tscatter+=usecond();
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  /*
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
			
		||||
  */
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=rhs.Grid();
 | 
			
		||||
  const int Nsimd = grid->Nsimd();
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  typedef typename vobj::scalar_object scalar_object;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
   
 | 
			
		||||
  int fd = grid->_fdimensions[dimension];
 | 
			
		||||
  int rd = grid->_rdimensions[dimension];
 | 
			
		||||
  int ld = grid->_ldimensions[dimension];
 | 
			
		||||
  int pd = grid->_processors[dimension];
 | 
			
		||||
  int simd_layout     = grid->_simd_layout[dimension];
 | 
			
		||||
  int comm_dim        = grid->_processors[dimension] >1 ;
 | 
			
		||||
 | 
			
		||||
  //std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
 | 
			
		||||
  //    << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout 
 | 
			
		||||
  //    << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
 | 
			
		||||
 | 
			
		||||
  assert(comm_dim==1);
 | 
			
		||||
  assert(simd_layout==2);
 | 
			
		||||
  assert(shift>=0);
 | 
			
		||||
  assert(shift<fd);
 | 
			
		||||
  RealD tcopy=0.0;
 | 
			
		||||
  RealD tgather=0.0;
 | 
			
		||||
  RealD tscatter=0.0;
 | 
			
		||||
  RealD tcomms=0.0;
 | 
			
		||||
  uint64_t xbytes=0;
 | 
			
		||||
 | 
			
		||||
  int permute_type=grid->PermuteType(dimension);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////
 | 
			
		||||
  // Simd direction uses an extract/merge pair
 | 
			
		||||
  ///////////////////////////////////////////////
 | 
			
		||||
  int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
 | 
			
		||||
  //  int words = sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
 | 
			
		||||
  static std::vector<cshiftVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd);
 | 
			
		||||
  static std::vector<cshiftVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd);
 | 
			
		||||
  scalar_object *  recv_buf_extract_mpi;
 | 
			
		||||
  scalar_object *  send_buf_extract_mpi;
 | 
			
		||||
  {
 | 
			
		||||
    size_t bytes = sizeof(scalar_object)*buffer_size;
 | 
			
		||||
    grid->ShmBufferFreeAll();
 | 
			
		||||
    send_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
 | 
			
		||||
    recv_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
 | 
			
		||||
  }
 | 
			
		||||
  for(int s=0;s<Nsimd;s++){
 | 
			
		||||
    send_buf_extract[s].resize(buffer_size);
 | 
			
		||||
    recv_buf_extract[s].resize(buffer_size);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int bytes = buffer_size*sizeof(scalar_object);
 | 
			
		||||
 | 
			
		||||
  ExtractPointerArray<scalar_object>  pointers(Nsimd); // 
 | 
			
		||||
  ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  // Work out what to send where
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  int cb    = (cbmask==0x2)? Odd : Even;
 | 
			
		||||
  int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
 | 
			
		||||
 | 
			
		||||
  // loop over outer coord planes orthog to dim
 | 
			
		||||
  for(int x=0;x<rd;x++){       
 | 
			
		||||
 | 
			
		||||
    // FIXME call local permute copy if none are offnode.
 | 
			
		||||
    for(int i=0;i<Nsimd;i++){       
 | 
			
		||||
      pointers[i] = &send_buf_extract[i][0];
 | 
			
		||||
    }
 | 
			
		||||
    tgather-=usecond();
 | 
			
		||||
    int sx   = (x+sshift)%rd;
 | 
			
		||||
    Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
 | 
			
		||||
    tgather+=usecond();
 | 
			
		||||
 | 
			
		||||
    for(int i=0;i<Nsimd;i++){
 | 
			
		||||
      
 | 
			
		||||
      int inner_bit = (Nsimd>>(permute_type+1));
 | 
			
		||||
      int ic= (i&inner_bit)? 1:0;
 | 
			
		||||
 | 
			
		||||
      int my_coor          = rd*ic + x;
 | 
			
		||||
      int nbr_coor         = my_coor+sshift;
 | 
			
		||||
      int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors
 | 
			
		||||
 | 
			
		||||
      int nbr_ic   = (nbr_coor%ld)/rd;    // inner coord of peer
 | 
			
		||||
      int nbr_ox   = (nbr_coor%rd);       // outer coord of peer
 | 
			
		||||
      int nbr_lane = (i&(~inner_bit));
 | 
			
		||||
 | 
			
		||||
      int recv_from_rank;
 | 
			
		||||
      int xmit_to_rank;
 | 
			
		||||
 | 
			
		||||
      if (nbr_ic) nbr_lane|=inner_bit;
 | 
			
		||||
 | 
			
		||||
      assert (sx == nbr_ox);
 | 
			
		||||
 | 
			
		||||
      if(nbr_proc){
 | 
			
		||||
	grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank); 
 | 
			
		||||
 | 
			
		||||
	tcomms-=usecond();
 | 
			
		||||
	//	grid->Barrier();
 | 
			
		||||
 | 
			
		||||
	acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes);
 | 
			
		||||
	grid->SendToRecvFrom((void *)send_buf_extract_mpi,
 | 
			
		||||
			     xmit_to_rank,
 | 
			
		||||
			     (void *)recv_buf_extract_mpi,
 | 
			
		||||
			     recv_from_rank,
 | 
			
		||||
			     bytes);
 | 
			
		||||
	acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes);
 | 
			
		||||
	xbytes+=bytes;
 | 
			
		||||
 | 
			
		||||
	//	grid->Barrier();
 | 
			
		||||
	tcomms+=usecond();
 | 
			
		||||
	rpointers[i] = &recv_buf_extract[i][0];
 | 
			
		||||
      } else { 
 | 
			
		||||
	rpointers[i] = &send_buf_extract[nbr_lane][0];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    tscatter-=usecond();
 | 
			
		||||
    Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
 | 
			
		||||
    tscatter+=usecond();
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  /*
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s"<<std::endl;
 | 
			
		||||
  */
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
NAMESPACE_END(Grid); 
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -30,7 +30,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift)
 | 
			
		||||
{
 | 
			
		||||
  assert(!rhs.Grid()->isIcosahedral());
 | 
			
		||||
  Lattice<vobj> ret(rhs.Grid());
 | 
			
		||||
  ret.Checkerboard() = rhs.Grid()->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension);
 | 
			
		||||
  Cshift_local(ret,rhs,dimension,shift);
 | 
			
		||||
 
 | 
			
		||||
@@ -1,5 +1,5 @@
 | 
			
		||||
#include <Grid/GridCore.h>       
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
std::vector<std::pair<int,int> > Cshift_table; 
 | 
			
		||||
deviceVector<std::pair<int,int> > Cshift_table_device; 
 | 
			
		||||
commVector<std::pair<int,int> > Cshift_table_device; 
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -257,30 +257,17 @@ void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#define FAST_AXPY_NORM
 | 
			
		||||
template<class sobj,class vobj> inline
 | 
			
		||||
RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
 | 
			
		||||
{
 | 
			
		||||
  GRID_TRACE("axpy_norm");
 | 
			
		||||
#ifdef FAST_AXPY_NORM
 | 
			
		||||
  return axpy_norm_fast(ret,a,x,y);
 | 
			
		||||
#else
 | 
			
		||||
  ret = a*x+y;
 | 
			
		||||
  RealD nn=norm2(ret);
 | 
			
		||||
  return nn;
 | 
			
		||||
#endif
 | 
			
		||||
    return axpy_norm_fast(ret,a,x,y);
 | 
			
		||||
}
 | 
			
		||||
template<class sobj,class vobj> inline
 | 
			
		||||
RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
 | 
			
		||||
{
 | 
			
		||||
  GRID_TRACE("axpby_norm");
 | 
			
		||||
#ifdef FAST_AXPY_NORM
 | 
			
		||||
  return axpby_norm_fast(ret,a,b,x,y);
 | 
			
		||||
#else
 | 
			
		||||
  ret = a*x+b*y;
 | 
			
		||||
  RealD nn=norm2(ret);
 | 
			
		||||
  return nn;
 | 
			
		||||
#endif
 | 
			
		||||
    return axpby_norm_fast(ret,a,b,x,y);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/// Trace product
 | 
			
		||||
 
 | 
			
		||||
@@ -234,23 +234,10 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){
 | 
			
		||||
    vobj vtmp;
 | 
			
		||||
    vtmp = r;
 | 
			
		||||
#if 1
 | 
			
		||||
    deviceVector<vobj> vvtmp(1);
 | 
			
		||||
    acceleratorPut(vvtmp[0],vtmp);
 | 
			
		||||
    vobj *vvtmp_p = & vvtmp[0];
 | 
			
		||||
    auto me  = View(AcceleratorWrite);
 | 
			
		||||
    accelerator_for(ss,me.size(),vobj::Nsimd(),{
 | 
			
		||||
	auto stmp=coalescedRead(*vvtmp_p);
 | 
			
		||||
	coalescedWrite(me[ss],stmp);
 | 
			
		||||
    });
 | 
			
		||||
#else    
 | 
			
		||||
    auto me  = View(CpuWrite);
 | 
			
		||||
    thread_for(ss,me.size(),{
 | 
			
		||||
       me[ss]= r;
 | 
			
		||||
      });
 | 
			
		||||
#endif    
 | 
			
		||||
	me[ss]= r;
 | 
			
		||||
    });
 | 
			
		||||
    me.ViewClose();
 | 
			
		||||
    return *this;
 | 
			
		||||
  }
 | 
			
		||||
@@ -373,17 +360,14 @@ public:
 | 
			
		||||
 | 
			
		||||
template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  uint64_t gsites=1;
 | 
			
		||||
  uint64_t polesites=0;
 | 
			
		||||
  for(int d=0;d<o.Grid()->_ndimension;d++) gsites *= o.Grid()->_gdimensions[d];
 | 
			
		||||
  for(int64_t g=0;g<gsites;g++){
 | 
			
		||||
  for(int g=0;g<o.Grid()->_gsites;g++){
 | 
			
		||||
 | 
			
		||||
    Coordinate gcoor;
 | 
			
		||||
    o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);
 | 
			
		||||
 | 
			
		||||
    sobj ss;
 | 
			
		||||
    peekSite(ss,o,gcoor);
 | 
			
		||||
    stream<<"["<<  g<<" : ";
 | 
			
		||||
    stream<<"[";
 | 
			
		||||
    for(int d=0;d<gcoor.size();d++){
 | 
			
		||||
      stream<<gcoor[d];
 | 
			
		||||
      if(d!=gcoor.size()-1) stream<<",";
 | 
			
		||||
@@ -391,41 +375,6 @@ template<class vobj> std::ostream& operator<< (std::ostream& stream, const Latti
 | 
			
		||||
    stream<<"]\t";
 | 
			
		||||
    stream<<ss<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  if ( o.Grid()->isIcosahedralVertex() ) {
 | 
			
		||||
    uint64_t psites=1;
 | 
			
		||||
    Coordinate perpdims;
 | 
			
		||||
    for(int d=2;d<o.Grid()->_ndimension-1;d++){
 | 
			
		||||
      int pd=o.Grid()->_gdimensions[d];
 | 
			
		||||
      psites*=pd;
 | 
			
		||||
      perpdims.push_back(pd);
 | 
			
		||||
    }
 | 
			
		||||
    for(uint64_t p=0;p<psites;p++){
 | 
			
		||||
      sobj ss;
 | 
			
		||||
      Coordinate orthog;
 | 
			
		||||
      Lexicographic::CoorFromIndex(orthog,p,perpdims);
 | 
			
		||||
      peekPole(ss,o,orthog,South);
 | 
			
		||||
      stream<<"[ SouthPole : ";
 | 
			
		||||
      for(int d=0;d<orthog.size();d++){
 | 
			
		||||
	stream<<orthog[d];
 | 
			
		||||
	if(d!=orthog.size()-1) stream<<",";
 | 
			
		||||
      }
 | 
			
		||||
      stream<<"]\t";
 | 
			
		||||
      stream<<ss<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    for(uint64_t p=0;p<psites;p++){
 | 
			
		||||
      sobj ss;
 | 
			
		||||
      Coordinate orthog;
 | 
			
		||||
      Lexicographic::CoorFromIndex(orthog,p,perpdims);
 | 
			
		||||
      peekPole(ss,o,orthog,North);
 | 
			
		||||
      stream<<"[ NorthPole : ";
 | 
			
		||||
      for(int d=0;d<orthog.size();d++){
 | 
			
		||||
	stream<<orthog[d];
 | 
			
		||||
	if(d!=orthog.size()-1) stream<<",";
 | 
			
		||||
      }
 | 
			
		||||
      stream<<"]\t";
 | 
			
		||||
      stream<<ss<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  return stream;
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
 
 | 
			
		||||
@@ -53,19 +53,36 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
 | 
			
		||||
  typedef decltype(basis[0]) Field;
 | 
			
		||||
  typedef decltype(basis[0].View(AcceleratorRead)) View;
 | 
			
		||||
 | 
			
		||||
  hostVector<View>  h_basis_v(basis.size());
 | 
			
		||||
  deviceVector<View> d_basis_v(basis.size());
 | 
			
		||||
  typedef typename std::remove_reference<decltype(h_basis_v[0][0])>::type vobj;
 | 
			
		||||
  Vector<View> basis_v; basis_v.reserve(basis.size());
 | 
			
		||||
  typedef typename std::remove_reference<decltype(basis_v[0][0])>::type vobj;
 | 
			
		||||
  typedef typename std::remove_reference<decltype(Qt(0,0))>::type Coeff_t;
 | 
			
		||||
 | 
			
		||||
  GridBase* grid = basis[0].Grid();
 | 
			
		||||
      
 | 
			
		||||
  for(int k=0;k<basis.size();k++){
 | 
			
		||||
    h_basis_v[k] = basis[k].View(AcceleratorWrite);
 | 
			
		||||
    acceleratorPut(d_basis_v[k],h_basis_v[k]);
 | 
			
		||||
    basis_v.push_back(basis[k].View(AcceleratorWrite));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  View *basis_vp = &d_basis_v[0];
 | 
			
		||||
#if ( !(defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)) )
 | 
			
		||||
  int max_threads = thread_max();
 | 
			
		||||
  Vector < vobj > Bt(Nm * max_threads);
 | 
			
		||||
  thread_region
 | 
			
		||||
    {
 | 
			
		||||
      vobj* B = &Bt[Nm * thread_num()];
 | 
			
		||||
      thread_for_in_region(ss, grid->oSites(),{
 | 
			
		||||
	  for(int j=j0; j<j1; ++j) B[j]=0.;
 | 
			
		||||
      
 | 
			
		||||
	  for(int j=j0; j<j1; ++j){
 | 
			
		||||
	    for(int k=k0; k<k1; ++k){
 | 
			
		||||
	      B[j] +=Qt(j,k) * basis_v[k][ss];
 | 
			
		||||
	    }
 | 
			
		||||
	  }
 | 
			
		||||
	  for(int j=j0; j<j1; ++j){
 | 
			
		||||
	    basis_v[j][ss] = B[j];
 | 
			
		||||
	  }
 | 
			
		||||
	});
 | 
			
		||||
    }
 | 
			
		||||
#else
 | 
			
		||||
  View *basis_vp = &basis_v[0];
 | 
			
		||||
 | 
			
		||||
  int nrot = j1-j0;
 | 
			
		||||
  if (!nrot) // edge case not handled gracefully by Cuda
 | 
			
		||||
@@ -74,19 +91,17 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
 | 
			
		||||
  uint64_t oSites   =grid->oSites();
 | 
			
		||||
  uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead
 | 
			
		||||
 | 
			
		||||
  deviceVector <vobj> Bt(siteBlock * nrot); 
 | 
			
		||||
  Vector <vobj> Bt(siteBlock * nrot); 
 | 
			
		||||
  auto Bp=&Bt[0];
 | 
			
		||||
 | 
			
		||||
  // GPU readable copy of matrix
 | 
			
		||||
  hostVector<Coeff_t> h_Qt_jv(Nm*Nm);
 | 
			
		||||
  deviceVector<Coeff_t> Qt_jv(Nm*Nm);
 | 
			
		||||
  Vector<Coeff_t> Qt_jv(Nm*Nm);
 | 
			
		||||
  Coeff_t *Qt_p = & Qt_jv[0];
 | 
			
		||||
  thread_for(i,Nm*Nm,{
 | 
			
		||||
      int j = i/Nm;
 | 
			
		||||
      int k = i%Nm;
 | 
			
		||||
      h_Qt_jv[i]=Qt(j,k);
 | 
			
		||||
      Qt_p[i]=Qt(j,k);
 | 
			
		||||
  });
 | 
			
		||||
  acceleratorCopyToDevice(&h_Qt_jv[0],Qt_p,Nm*Nm*sizeof(Coeff_t));
 | 
			
		||||
 | 
			
		||||
  // Block the loop to keep storage footprint down
 | 
			
		||||
  for(uint64_t s=0;s<oSites;s+=siteBlock){
 | 
			
		||||
@@ -122,8 +137,9 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
 | 
			
		||||
	coalescedWrite(basis_vp[jj][sss],coalescedRead(Bp[ss*nrot+j]));
 | 
			
		||||
      });
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
  for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose();
 | 
			
		||||
  for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Extract a single rotated vector
 | 
			
		||||
@@ -136,19 +152,16 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in
 | 
			
		||||
 | 
			
		||||
  result.Checkerboard() = basis[0].Checkerboard();
 | 
			
		||||
 | 
			
		||||
  hostVector<View>  h_basis_v(basis.size());
 | 
			
		||||
  deviceVector<View> d_basis_v(basis.size());
 | 
			
		||||
  Vector<View> basis_v; basis_v.reserve(basis.size());
 | 
			
		||||
  for(int k=0;k<basis.size();k++){
 | 
			
		||||
    h_basis_v[k]=basis[k].View(AcceleratorRead);
 | 
			
		||||
    acceleratorPut(d_basis_v[k],h_basis_v[k]);
 | 
			
		||||
    basis_v.push_back(basis[k].View(AcceleratorRead));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  vobj zz=Zero();
 | 
			
		||||
  deviceVector<double> Qt_jv(Nm);
 | 
			
		||||
  Vector<double> Qt_jv(Nm);
 | 
			
		||||
  double * Qt_j = & Qt_jv[0];
 | 
			
		||||
  for(int k=0;k<Nm;++k) acceleratorPut(Qt_j[k],Qt(j,k));
 | 
			
		||||
  for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k);
 | 
			
		||||
 | 
			
		||||
  auto basis_vp=& d_basis_v[0];
 | 
			
		||||
  auto basis_vp=& basis_v[0];
 | 
			
		||||
  autoView(result_v,result,AcceleratorWrite);
 | 
			
		||||
  accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
 | 
			
		||||
    vobj zzz=Zero();
 | 
			
		||||
@@ -158,7 +171,7 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in
 | 
			
		||||
    }
 | 
			
		||||
    coalescedWrite(result_v[ss], B);
 | 
			
		||||
  });
 | 
			
		||||
  for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose();
 | 
			
		||||
  for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
 
 | 
			
		||||
@@ -34,86 +34,22 @@ template<class iobj> inline void LatticeCoordinate(Lattice<iobj> &l,int mu)
 | 
			
		||||
  typedef typename iobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename iobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  l=Zero();
 | 
			
		||||
  
 | 
			
		||||
  GridBase *grid = l.Grid();
 | 
			
		||||
  int Nsimd = grid->iSites();
 | 
			
		||||
 | 
			
		||||
  int cartesian_vol = grid->oSites();
 | 
			
		||||
  if ( grid->isIcosahedral() ) {
 | 
			
		||||
    cartesian_vol = cartesian_vol - grid->NorthPoleOsites()-grid->SouthPoleOsites();
 | 
			
		||||
  }
 | 
			
		||||
  {
 | 
			
		||||
    autoView(l_v, l, CpuWrite);
 | 
			
		||||
    thread_for( o, cartesian_vol, {
 | 
			
		||||
	vector_type vI;
 | 
			
		||||
	Coordinate gcoor;
 | 
			
		||||
	ExtractBuffer<scalar_type> mergebuf(Nsimd);
 | 
			
		||||
	for(int i=0;i<grid->iSites();i++){
 | 
			
		||||
	  grid->RankIndexToGlobalCoor(grid->ThisRank(),o,i,gcoor);
 | 
			
		||||
	  mergebuf[i]=(Integer)gcoor[mu];
 | 
			
		||||
	}
 | 
			
		||||
	merge<vector_type,scalar_type>(vI,mergebuf);
 | 
			
		||||
	l_v[o]=vI;
 | 
			
		||||
      });
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if (grid->isIcosahedralVertex()) {
 | 
			
		||||
    uint64_t psites=1;
 | 
			
		||||
    Coordinate perpdims;
 | 
			
		||||
    typename iobj::scalar_object ss;
 | 
			
		||||
    for(int d=2;d<grid->_ndimension-1;d++){
 | 
			
		||||
      int pd=grid->_gdimensions[d];
 | 
			
		||||
      psites*=pd;
 | 
			
		||||
      perpdims.push_back(pd);
 | 
			
		||||
  autoView(l_v, l, CpuWrite);
 | 
			
		||||
  thread_for( o, grid->oSites(), {
 | 
			
		||||
    vector_type vI;
 | 
			
		||||
    Coordinate gcoor;
 | 
			
		||||
    ExtractBuffer<scalar_type> mergebuf(Nsimd);
 | 
			
		||||
    for(int i=0;i<grid->iSites();i++){
 | 
			
		||||
      grid->RankIndexToGlobalCoor(grid->ThisRank(),o,i,gcoor);
 | 
			
		||||
      mergebuf[i]=(Integer)gcoor[mu];
 | 
			
		||||
    }
 | 
			
		||||
    for(uint64_t p=0;p<psites;p++){
 | 
			
		||||
      Coordinate orthog;
 | 
			
		||||
      Lexicographic::CoorFromIndex(orthog,p,perpdims);
 | 
			
		||||
 | 
			
		||||
      int icoor;
 | 
			
		||||
      if ( mu>=2 && mu < grid->_ndimension-1) {
 | 
			
		||||
	icoor = orthog[mu-2];
 | 
			
		||||
      } else {
 | 
			
		||||
	icoor = -1;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      ss=scalar_type(icoor);
 | 
			
		||||
 | 
			
		||||
      pokePole(ss,l,orthog,South);
 | 
			
		||||
      pokePole(ss,l,orthog,North);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
template<class iobj> inline void LatticePole(Lattice<iobj> &l,NorthSouth pole)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename iobj::scalar_object sobj;
 | 
			
		||||
  typedef typename iobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename iobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  GridBase *grid = l.Grid();
 | 
			
		||||
 | 
			
		||||
  l=Zero();
 | 
			
		||||
 | 
			
		||||
  assert(grid->isIcosahedralVertex());
 | 
			
		||||
  
 | 
			
		||||
  if (grid->isIcosahedralVertex()) {
 | 
			
		||||
    uint64_t psites=1;
 | 
			
		||||
    Coordinate perpdims;
 | 
			
		||||
    sobj ss;
 | 
			
		||||
    scalar_type one(1.0);
 | 
			
		||||
    ss=one;
 | 
			
		||||
    for(int d=2;d<l.Grid()->_ndimension-1;d++){
 | 
			
		||||
      int pd=l.Grid()->_gdimensions[d];
 | 
			
		||||
      psites*=pd;
 | 
			
		||||
      perpdims.push_back(pd);
 | 
			
		||||
    }
 | 
			
		||||
    for(uint64_t p=0;p<psites;p++){
 | 
			
		||||
      Coordinate orthog;
 | 
			
		||||
      Lexicographic::CoorFromIndex(orthog,p,perpdims);
 | 
			
		||||
      pokePole(ss,l,orthog,pole);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
    merge<vector_type,scalar_type>(vI,mergebuf);
 | 
			
		||||
    l_v[o]=vI;
 | 
			
		||||
  });
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class vobj> void DumpSliceNorm(std::string s,const Lattice<vobj> &f,int mu=-1)
 | 
			
		||||
template<class vobj> void DumpSliceNorm(std::string s,Lattice<vobj> &f,int mu=-1)
 | 
			
		||||
{
 | 
			
		||||
  auto ff = localNorm2(f);
 | 
			
		||||
  if ( mu==-1 ) mu = f.Grid()->Nd()-1;
 | 
			
		||||
 
 | 
			
		||||
@@ -141,7 +141,7 @@ void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
 | 
			
		||||
  grid->GlobalCoorToRankIndex(rank,odx,idx,site);
 | 
			
		||||
 | 
			
		||||
  ExtractBuffer<sobj> buf(Nsimd);
 | 
			
		||||
  autoView( l_v , l, CpuRead);
 | 
			
		||||
  autoView( l_v , l, CpuWrite);
 | 
			
		||||
  extract(l_v[odx],buf);
 | 
			
		||||
 | 
			
		||||
  s = buf[idx];
 | 
			
		||||
@@ -151,261 +151,6 @@ void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
 | 
			
		||||
  return;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// zero for south pole, one for north pole
 | 
			
		||||
template<class vobj,class sobj>
 | 
			
		||||
void peekPole(sobj &s,const Lattice<vobj> &l,const Coordinate &orthog,NorthSouth isNorth)
 | 
			
		||||
{
 | 
			
		||||
  s=Zero();
 | 
			
		||||
  
 | 
			
		||||
  GridBase *grid=l.Grid();
 | 
			
		||||
 | 
			
		||||
  assert(grid->isIcosahedral());
 | 
			
		||||
  assert(grid->isIcosahedralVertex());
 | 
			
		||||
 | 
			
		||||
  int Nsimd = grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
  int rank;
 | 
			
		||||
 | 
			
		||||
  int Ndm1         = grid->_ndimension-1;
 | 
			
		||||
  Coordinate pgrid = grid->ProcessorGrid();
 | 
			
		||||
  const int xdim=0;
 | 
			
		||||
  const int ydim=1;
 | 
			
		||||
  const int pdim=Ndm1;
 | 
			
		||||
 | 
			
		||||
  int64_t pole_osite;
 | 
			
		||||
  int64_t pole_isite;
 | 
			
		||||
  Coordinate rdims;
 | 
			
		||||
  Coordinate idims;
 | 
			
		||||
  Coordinate ocoor;
 | 
			
		||||
  Coordinate icoor;
 | 
			
		||||
  Coordinate pcoor(grid->_ndimension);
 | 
			
		||||
  for(int d=2;d<Ndm1;d++){
 | 
			
		||||
    int dd=d-2;
 | 
			
		||||
    rdims.push_back(grid->_rdimensions[d]);
 | 
			
		||||
    idims.push_back(grid->_simd_layout[d]);
 | 
			
		||||
    icoor.push_back((orthog[dd]%grid->_ldimensions[d])/grid->_rdimensions[d]);
 | 
			
		||||
    ocoor.push_back(orthog[dd]%grid->_rdimensions[d]);
 | 
			
		||||
    pcoor[d] = orthog[dd]/grid->_ldimensions[d];
 | 
			
		||||
  }
 | 
			
		||||
  Lexicographic::IndexFromCoor(ocoor,pole_osite,rdims);
 | 
			
		||||
  Lexicographic::IndexFromCoor(icoor,pole_isite,idims);
 | 
			
		||||
  
 | 
			
		||||
  int64_t osite;
 | 
			
		||||
  if(isNorth == North){
 | 
			
		||||
    pcoor[xdim] = 0;
 | 
			
		||||
    pcoor[ydim] = pgrid[ydim]-1;
 | 
			
		||||
    pcoor[Ndm1] = pgrid[Ndm1]-1;
 | 
			
		||||
    osite = pole_osite + grid->NorthPoleOsite();
 | 
			
		||||
  } else {
 | 
			
		||||
    pcoor[xdim] = pgrid[xdim]-1;
 | 
			
		||||
    pcoor[ydim] = 0;
 | 
			
		||||
    pcoor[Ndm1] = 0;
 | 
			
		||||
    osite = pole_osite + grid->SouthPoleOsite();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  rank = grid->RankFromProcessorCoor(pcoor);
 | 
			
		||||
 | 
			
		||||
  if ( rank == grid->ThisRank() ) {
 | 
			
		||||
    ExtractBuffer<sobj> buf(Nsimd);
 | 
			
		||||
    autoView( l_v , l, CpuWrite);
 | 
			
		||||
    extract(l_v[osite],buf);
 | 
			
		||||
    s = buf[pole_isite];
 | 
			
		||||
  }
 | 
			
		||||
  grid->Broadcast(rank,s);
 | 
			
		||||
 | 
			
		||||
  return;
 | 
			
		||||
};
 | 
			
		||||
template<class vobj,class sobj>
 | 
			
		||||
void pokePole(const sobj &s,Lattice<vobj> &l,const Coordinate &orthog,NorthSouth isNorth)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=l.Grid();
 | 
			
		||||
 | 
			
		||||
  assert(grid->isIcosahedral());
 | 
			
		||||
  assert(grid->isIcosahedralVertex());
 | 
			
		||||
 | 
			
		||||
  grid->Broadcast(grid->BossRank(),s);
 | 
			
		||||
 | 
			
		||||
  int Nsimd = grid->Nsimd();
 | 
			
		||||
  int rank;
 | 
			
		||||
  int Ndm1         = grid->_ndimension-1;
 | 
			
		||||
  Coordinate pgrid = grid->ProcessorGrid();
 | 
			
		||||
  const int xdim=0;
 | 
			
		||||
  const int ydim=1;
 | 
			
		||||
  const int pdim=Ndm1;
 | 
			
		||||
 | 
			
		||||
  int64_t pole_osite;
 | 
			
		||||
  int64_t pole_isite;
 | 
			
		||||
  Coordinate rdims;
 | 
			
		||||
  Coordinate idims;
 | 
			
		||||
  Coordinate ocoor;
 | 
			
		||||
  Coordinate icoor;
 | 
			
		||||
  Coordinate pcoor(grid->_ndimension,0);
 | 
			
		||||
  for(int d=2;d<Ndm1;d++){
 | 
			
		||||
    int dd = d-2;
 | 
			
		||||
    rdims.push_back(grid->_rdimensions[d]);
 | 
			
		||||
    idims.push_back(grid->_simd_layout[d]);
 | 
			
		||||
    icoor.push_back((orthog[dd]%grid->_ldimensions[d])/grid->_rdimensions[d]);
 | 
			
		||||
    ocoor.push_back(orthog[dd]%grid->_rdimensions[d]);
 | 
			
		||||
    pcoor[d] = orthog[dd]/grid->_ldimensions[d];
 | 
			
		||||
 | 
			
		||||
    int o = orthog[dd];
 | 
			
		||||
    int r = grid->_rdimensions[d];
 | 
			
		||||
    int omr = o % r;
 | 
			
		||||
  }
 | 
			
		||||
  Lexicographic::IndexFromCoor(ocoor,pole_osite,rdims);
 | 
			
		||||
  Lexicographic::IndexFromCoor(icoor,pole_isite,idims);
 | 
			
		||||
  
 | 
			
		||||
  int64_t osite;
 | 
			
		||||
  if(isNorth ==North){
 | 
			
		||||
    pcoor[xdim] = 0;
 | 
			
		||||
    pcoor[ydim] = pgrid[ydim]-1;
 | 
			
		||||
    pcoor[Ndm1] = pgrid[Ndm1]-1;
 | 
			
		||||
    osite = pole_osite + grid->NorthPoleOsite();
 | 
			
		||||
  } else {
 | 
			
		||||
    pcoor[xdim] = pgrid[xdim]-1;
 | 
			
		||||
    pcoor[ydim] = 0;
 | 
			
		||||
    pcoor[Ndm1] = 0;
 | 
			
		||||
    osite = pole_osite + grid->SouthPoleOsite();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  rank = grid->RankFromProcessorCoor(pcoor);
 | 
			
		||||
 | 
			
		||||
  // extract-modify-merge cycle is easiest way and this is not perf critical
 | 
			
		||||
  if ( rank == grid->ThisRank() ) {
 | 
			
		||||
    ExtractBuffer<sobj> buf(Nsimd);
 | 
			
		||||
    autoView( l_v , l, CpuWrite);
 | 
			
		||||
    extract(l_v[osite],buf);
 | 
			
		||||
    buf[pole_isite] = s;
 | 
			
		||||
    merge(l_v[osite],buf);
 | 
			
		||||
  }
 | 
			
		||||
  return;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vobj,class sobj>
 | 
			
		||||
void peekLocalPole(sobj &s,const Lattice<vobj> &l,const Coordinate &orthog,NorthSouth isNorth)
 | 
			
		||||
{
 | 
			
		||||
  s=Zero();
 | 
			
		||||
  
 | 
			
		||||
  GridBase *grid=l.Grid();
 | 
			
		||||
 | 
			
		||||
  assert(grid->isIcosahedral());
 | 
			
		||||
  assert(grid->isIcosahedralVertex());
 | 
			
		||||
 | 
			
		||||
  int Nsimd = grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
  int rank;
 | 
			
		||||
 | 
			
		||||
  int Ndm1         = grid->_ndimension-1;
 | 
			
		||||
  Coordinate pgrid = grid->ProcessorGrid();
 | 
			
		||||
  const int xdim=0;
 | 
			
		||||
  const int ydim=1;
 | 
			
		||||
  const int pdim=Ndm1;
 | 
			
		||||
 | 
			
		||||
  int64_t pole_osite;
 | 
			
		||||
  int64_t pole_isite;
 | 
			
		||||
  Coordinate rdims;
 | 
			
		||||
  Coordinate idims;
 | 
			
		||||
  Coordinate ocoor;
 | 
			
		||||
  Coordinate icoor;
 | 
			
		||||
  //  Coordinate pcoor(grid->_ndimension);
 | 
			
		||||
  for(int d=2;d<Ndm1;d++){
 | 
			
		||||
    int dd=d-2;
 | 
			
		||||
    rdims.push_back(grid->_rdimensions[d]);
 | 
			
		||||
    idims.push_back(grid->_simd_layout[d]);
 | 
			
		||||
    icoor.push_back((orthog[dd]%grid->_ldimensions[d])/grid->_rdimensions[d]);
 | 
			
		||||
    ocoor.push_back(orthog[dd]%grid->_rdimensions[d]);
 | 
			
		||||
    //    pcoor[d] = orthog[dd]/grid->_ldimensions[d];
 | 
			
		||||
  }
 | 
			
		||||
  Lexicographic::IndexFromCoor(ocoor,pole_osite,rdims);
 | 
			
		||||
  Lexicographic::IndexFromCoor(icoor,pole_isite,idims);
 | 
			
		||||
  
 | 
			
		||||
  int64_t osite;
 | 
			
		||||
  if(isNorth == North){
 | 
			
		||||
    //    pcoor[xdim] = 0;
 | 
			
		||||
    //    pcoor[ydim] = pgrid[ydim]-1;
 | 
			
		||||
    //    pcoor[Ndm1] = pgrid[Ndm1]-1;
 | 
			
		||||
    osite = pole_osite + grid->NorthPoleOsite();
 | 
			
		||||
    assert(grid->ownsNorthPole());
 | 
			
		||||
  } else {
 | 
			
		||||
    //    pcoor[xdim] = pgrid[xdim]-1;
 | 
			
		||||
    //    pcoor[ydim] = 0;
 | 
			
		||||
    //    pcoor[Ndm1] = 0;
 | 
			
		||||
    osite = pole_osite + grid->SouthPoleOsite();
 | 
			
		||||
    assert(grid->ownsSouthPole());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ExtractBuffer<sobj> buf(Nsimd);
 | 
			
		||||
  autoView( l_v , l, CpuWrite);
 | 
			
		||||
  extract(l_v[osite],buf);
 | 
			
		||||
  s = buf[pole_isite];
 | 
			
		||||
 | 
			
		||||
  return;
 | 
			
		||||
};
 | 
			
		||||
template<class vobj,class sobj>
 | 
			
		||||
void pokeLocalPole(const sobj &s,Lattice<vobj> &l,const Coordinate &orthog,NorthSouth isNorth)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=l.Grid();
 | 
			
		||||
 | 
			
		||||
  assert(grid->isIcosahedral());
 | 
			
		||||
  assert(grid->isIcosahedralVertex());
 | 
			
		||||
 | 
			
		||||
  int Nsimd = grid->Nsimd();
 | 
			
		||||
  int rank;
 | 
			
		||||
  int Ndm1         = grid->_ndimension-1;
 | 
			
		||||
 | 
			
		||||
  const int xdim=0;
 | 
			
		||||
  const int ydim=1;
 | 
			
		||||
  const int pdim=Ndm1;
 | 
			
		||||
 | 
			
		||||
  int64_t pole_osite;
 | 
			
		||||
  int64_t pole_isite;
 | 
			
		||||
  Coordinate rdims;
 | 
			
		||||
  Coordinate idims;
 | 
			
		||||
  Coordinate ocoor;
 | 
			
		||||
  Coordinate icoor;
 | 
			
		||||
  //  Coordinate pcoor(grid->_ndimension,0);
 | 
			
		||||
  for(int d=2;d<Ndm1;d++){
 | 
			
		||||
    int dd = d-2;
 | 
			
		||||
    rdims.push_back(grid->_rdimensions[d]);
 | 
			
		||||
    idims.push_back(grid->_simd_layout[d]);
 | 
			
		||||
    icoor.push_back((orthog[dd]%grid->_ldimensions[d])/grid->_rdimensions[d]);
 | 
			
		||||
    ocoor.push_back(orthog[dd]%grid->_rdimensions[d]);
 | 
			
		||||
    //    pcoor[d] = orthog[dd]/grid->_ldimensions[d];
 | 
			
		||||
 | 
			
		||||
    int o = orthog[dd];
 | 
			
		||||
    int r = grid->_rdimensions[d];
 | 
			
		||||
    int omr = o % r;
 | 
			
		||||
  }
 | 
			
		||||
  Lexicographic::IndexFromCoor(ocoor,pole_osite,rdims);
 | 
			
		||||
  Lexicographic::IndexFromCoor(icoor,pole_isite,idims);
 | 
			
		||||
  
 | 
			
		||||
  int64_t osite;
 | 
			
		||||
  int insert=0;
 | 
			
		||||
  if(isNorth ==North){
 | 
			
		||||
    //    pcoor[xdim] = 0;
 | 
			
		||||
    //    pcoor[ydim] = pgrid[ydim]-1;
 | 
			
		||||
    //    pcoor[Ndm1] = pgrid[Ndm1]-1;
 | 
			
		||||
    osite = pole_osite + grid->NorthPoleOsite();
 | 
			
		||||
    assert(grid->ownsNorthPole());
 | 
			
		||||
  } else {
 | 
			
		||||
    //    pcoor[xdim] = pgrid[xdim]-1;
 | 
			
		||||
    //    pcoor[ydim] = 0;
 | 
			
		||||
    //    pcoor[Ndm1] = 0;
 | 
			
		||||
    osite = pole_osite + grid->SouthPoleOsite();
 | 
			
		||||
    assert(grid->ownsSouthPole());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // extract-modify-merge cycle is easiest way and this is not perf critical
 | 
			
		||||
  ExtractBuffer<sobj> buf(Nsimd);
 | 
			
		||||
  autoView( l_v , l, CpuWrite);
 | 
			
		||||
  extract(l_v[osite],buf);
 | 
			
		||||
  buf[pole_isite] = s;
 | 
			
		||||
  merge(l_v[osite],buf);
 | 
			
		||||
  
 | 
			
		||||
  return;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////
 | 
			
		||||
// Peek a scalar object from the SIMD array
 | 
			
		||||
//////////////////////////////////////////////////////////
 | 
			
		||||
@@ -420,7 +165,7 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
 | 
			
		||||
 | 
			
		||||
  int Nsimd = grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
  //  assert( l.Checkerboard()== grid->CheckerBoard(site));
 | 
			
		||||
  assert( l.Checkerboard()== grid->CheckerBoard(site));
 | 
			
		||||
  assert( sizeof(sobj)*Nsimd == sizeof(vobj));
 | 
			
		||||
 | 
			
		||||
  static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
@@ -457,7 +202,7 @@ inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site)
 | 
			
		||||
 | 
			
		||||
  int Nsimd = grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
  //  assert( l.Checkerboard()== grid->CheckerBoard(site));
 | 
			
		||||
  assert( l.Checkerboard()== grid->CheckerBoard(site));
 | 
			
		||||
  assert( sizeof(sobj)*Nsimd == sizeof(vobj));
 | 
			
		||||
 | 
			
		||||
  static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
 
 | 
			
		||||
@@ -46,7 +46,7 @@ inline typename vobj::scalar_object sum_cpu(const vobj *arg, Integer osites)
 | 
			
		||||
  //  const int Nsimd = vobj::Nsimd();
 | 
			
		||||
  const int nthread = GridThread::GetThreads();
 | 
			
		||||
 | 
			
		||||
  std::vector<sobj> sumarray(nthread);
 | 
			
		||||
  Vector<sobj> sumarray(nthread);
 | 
			
		||||
  for(int i=0;i<nthread;i++){
 | 
			
		||||
    sumarray[i]=Zero();
 | 
			
		||||
  }
 | 
			
		||||
@@ -75,7 +75,7 @@ inline typename vobj::scalar_objectD sumD_cpu(const vobj *arg, Integer osites)
 | 
			
		||||
 | 
			
		||||
  const int nthread = GridThread::GetThreads();
 | 
			
		||||
 | 
			
		||||
  std::vector<sobj> sumarray(nthread);
 | 
			
		||||
  Vector<sobj> sumarray(nthread);
 | 
			
		||||
  for(int i=0;i<nthread;i++){
 | 
			
		||||
    sumarray[i]=Zero();
 | 
			
		||||
  }
 | 
			
		||||
@@ -204,27 +204,6 @@ template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){
 | 
			
		||||
  return real(nrm); 
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class Op,class T1>
 | 
			
		||||
inline auto norm2(const LatticeUnaryExpression<Op,T1> & expr)  ->RealD
 | 
			
		||||
{
 | 
			
		||||
  return norm2(closure(expr));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Op,class T1,class T2>
 | 
			
		||||
inline auto norm2(const LatticeBinaryExpression<Op,T1,T2> & expr)      ->RealD
 | 
			
		||||
{
 | 
			
		||||
  return norm2(closure(expr));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class Op,class T1,class T2,class T3>
 | 
			
		||||
inline auto norm2(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)      ->RealD
 | 
			
		||||
{
 | 
			
		||||
  return norm2(closure(expr));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//The global maximum of the site norm2
 | 
			
		||||
template<class vobj> inline RealD maxLocalNorm2(const Lattice<vobj> &arg)
 | 
			
		||||
{
 | 
			
		||||
@@ -264,8 +243,24 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
 | 
			
		||||
  const uint64_t sites = grid->oSites();
 | 
			
		||||
  
 | 
			
		||||
  // Might make all code paths go this way.
 | 
			
		||||
#if 0
 | 
			
		||||
  typedef decltype(innerProductD(vobj(),vobj())) inner_t;
 | 
			
		||||
  Vector<inner_t> inner_tmp(sites);
 | 
			
		||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
			
		||||
  {
 | 
			
		||||
    autoView( left_v , left, AcceleratorRead);
 | 
			
		||||
    autoView( right_v,right, AcceleratorRead);
 | 
			
		||||
    // This code could read coalesce
 | 
			
		||||
    // GPU - SIMT lane compliance...
 | 
			
		||||
    accelerator_for( ss, sites, nsimd,{
 | 
			
		||||
	auto x_l = left_v(ss);
 | 
			
		||||
	auto y_l = right_v(ss);
 | 
			
		||||
	coalescedWrite(inner_tmp_v[ss],innerProductD(x_l,y_l));
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
#else
 | 
			
		||||
  typedef decltype(innerProduct(vobj(),vobj())) inner_t;
 | 
			
		||||
  deviceVector<inner_t> inner_tmp(sites);
 | 
			
		||||
  Vector<inner_t> inner_tmp(sites);
 | 
			
		||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
			
		||||
    
 | 
			
		||||
  {
 | 
			
		||||
@@ -279,6 +274,7 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
 | 
			
		||||
	coalescedWrite(inner_tmp_v[ss],innerProduct(x_l,y_l));
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
  // This is in single precision and fails some tests
 | 
			
		||||
  auto anrm = sumD(inner_tmp_v,sites);  
 | 
			
		||||
  nrm = anrm;
 | 
			
		||||
@@ -289,47 +285,13 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) {
 | 
			
		||||
  GridBase *grid = left.Grid();
 | 
			
		||||
 | 
			
		||||
  bool ok;
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
  uint64_t csum=0;
 | 
			
		||||
  uint64_t csum2=0;
 | 
			
		||||
  if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone)
 | 
			
		||||
  {
 | 
			
		||||
    // Hack
 | 
			
		||||
    // Fast integer xor checksum. Can also be used in comms now.
 | 
			
		||||
    autoView(l_v,left,AcceleratorRead);
 | 
			
		||||
    Integer words = left.Grid()->oSites()*sizeof(vobj)/sizeof(uint64_t);
 | 
			
		||||
    uint64_t *base= (uint64_t *)&l_v[0];
 | 
			
		||||
    csum=svm_xor(base,words);
 | 
			
		||||
    ok = FlightRecorder::CsumLog(csum);
 | 
			
		||||
    if ( !ok ) {
 | 
			
		||||
      csum2=svm_xor(base,words);
 | 
			
		||||
      std::cerr<< " Bad CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
 | 
			
		||||
    } else {
 | 
			
		||||
      //      csum2=svm_xor(base,words);
 | 
			
		||||
      //      std::cerr<< " ok CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    assert(ok);
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
  FlightRecorder::StepLog("rank inner product");
 | 
			
		||||
  uint32_t csum=0;
 | 
			
		||||
  //  Uint32Checksum(left,csum);
 | 
			
		||||
  ComplexD nrm = rankInnerProduct(left,right);
 | 
			
		||||
  //  ComplexD nrmck=nrm;
 | 
			
		||||
  RealD local = real(nrm);
 | 
			
		||||
  ok = FlightRecorder::NormLog(real(nrm));
 | 
			
		||||
  if ( !ok ) {
 | 
			
		||||
    ComplexD nrm2 = rankInnerProduct(left,right);
 | 
			
		||||
    RealD local2 = real(nrm2);
 | 
			
		||||
    std::cerr<< " Bad NORM " << local << " recomputed as "<<local2<<std::endl;
 | 
			
		||||
    assert(ok);
 | 
			
		||||
  }
 | 
			
		||||
  FlightRecorder::StepLog("Start global sum");
 | 
			
		||||
  //  grid->GlobalSumP2P(nrm);
 | 
			
		||||
  GridNormLog(real(nrm),csum); // Could log before and after global sum to distinguish local and MPI
 | 
			
		||||
  grid->GlobalSum(nrm);
 | 
			
		||||
  FlightRecorder::StepLog("Finished global sum");
 | 
			
		||||
  //  std::cout << " norm "<< nrm << " p2p norm "<<nrmck<<std::endl;
 | 
			
		||||
  FlightRecorder::ReductionLog(local,real(nrm)); 
 | 
			
		||||
  GridMPINormLog(local,real(nrm)); 
 | 
			
		||||
  return nrm;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -365,9 +327,20 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
 | 
			
		||||
  autoView( x_v, x, AcceleratorRead);
 | 
			
		||||
  autoView( y_v, y, AcceleratorRead);
 | 
			
		||||
  autoView( z_v, z, AcceleratorWrite);
 | 
			
		||||
#if 0
 | 
			
		||||
  typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t;
 | 
			
		||||
  Vector<inner_t> inner_tmp(sites);
 | 
			
		||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
			
		||||
 | 
			
		||||
  accelerator_for( ss, sites, nsimd,{
 | 
			
		||||
      auto tmp = a*x_v(ss)+b*y_v(ss);
 | 
			
		||||
      coalescedWrite(inner_tmp_v[ss],innerProductD(tmp,tmp));
 | 
			
		||||
      coalescedWrite(z_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
  nrm = real(TensorRemove(sum(inner_tmp_v,sites)));
 | 
			
		||||
#else
 | 
			
		||||
  typedef decltype(innerProduct(x_v[0],y_v[0])) inner_t;
 | 
			
		||||
  deviceVector<inner_t> inner_tmp;
 | 
			
		||||
  inner_tmp.resize(sites);
 | 
			
		||||
  Vector<inner_t> inner_tmp(sites);
 | 
			
		||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
			
		||||
 | 
			
		||||
  accelerator_for( ss, sites, nsimd,{
 | 
			
		||||
@@ -375,44 +348,9 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
 | 
			
		||||
      coalescedWrite(inner_tmp_v[ss],innerProduct(tmp,tmp));
 | 
			
		||||
      coalescedWrite(z_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
  bool ok;
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
  uint64_t csum=0;
 | 
			
		||||
  uint64_t csum2=0;
 | 
			
		||||
  if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone)
 | 
			
		||||
  {
 | 
			
		||||
    // z_v
 | 
			
		||||
    {
 | 
			
		||||
      Integer words = sites*sizeof(vobj)/sizeof(uint64_t);
 | 
			
		||||
      uint64_t *base= (uint64_t *)&z_v[0];
 | 
			
		||||
      csum=svm_xor(base,words);
 | 
			
		||||
      ok = FlightRecorder::CsumLog(csum);
 | 
			
		||||
      if ( !ok ) {
 | 
			
		||||
	csum2=svm_xor(base,words);
 | 
			
		||||
	std::cerr<< " Bad z_v CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
      assert(ok);
 | 
			
		||||
    }
 | 
			
		||||
    // inner_v
 | 
			
		||||
    {
 | 
			
		||||
      Integer words = sites*sizeof(inner_t)/sizeof(uint64_t);
 | 
			
		||||
      uint64_t *base= (uint64_t *)&inner_tmp_v[0];
 | 
			
		||||
      csum=svm_xor(base,words);
 | 
			
		||||
      ok = FlightRecorder::CsumLog(csum);
 | 
			
		||||
      if ( !ok ) {
 | 
			
		||||
	csum2=svm_xor(base,words);
 | 
			
		||||
	std::cerr<< " Bad inner_tmp_v CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
      assert(ok);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
  nrm = real(TensorRemove(sumD(inner_tmp_v,sites)));
 | 
			
		||||
  ok = FlightRecorder::NormLog(real(nrm));
 | 
			
		||||
  assert(ok);
 | 
			
		||||
  RealD local = real(nrm);
 | 
			
		||||
#endif
 | 
			
		||||
  grid->GlobalSum(nrm);
 | 
			
		||||
  FlightRecorder::ReductionLog(local,real(nrm));
 | 
			
		||||
  return nrm; 
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -422,7 +360,7 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti
 | 
			
		||||
  conformable(left,right);
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::vector_typeD vector_type;
 | 
			
		||||
  std::vector<ComplexD> tmp(2);
 | 
			
		||||
  Vector<ComplexD> tmp(2);
 | 
			
		||||
 | 
			
		||||
  GridBase *grid = left.Grid();
 | 
			
		||||
 | 
			
		||||
@@ -432,8 +370,8 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti
 | 
			
		||||
  // GPU
 | 
			
		||||
  typedef decltype(innerProductD(vobj(),vobj())) inner_t;
 | 
			
		||||
  typedef decltype(innerProductD(vobj(),vobj())) norm_t;
 | 
			
		||||
  deviceVector<inner_t> inner_tmp(sites);
 | 
			
		||||
  deviceVector<norm_t>  norm_tmp(sites);
 | 
			
		||||
  Vector<inner_t> inner_tmp(sites);
 | 
			
		||||
  Vector<norm_t>  norm_tmp(sites);
 | 
			
		||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
			
		||||
  auto norm_tmp_v = &norm_tmp[0];
 | 
			
		||||
  {
 | 
			
		||||
@@ -483,9 +421,7 @@ inline auto sum(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)
 | 
			
		||||
// sliceSum, sliceInnerProduct, sliceAxpy, sliceNorm etc...
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,
 | 
			
		||||
					  std::vector<typename vobj::scalar_object> &result,
 | 
			
		||||
					  int orthogdim)
 | 
			
		||||
template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<typename vobj::scalar_object> &result,int orthogdim)
 | 
			
		||||
{
 | 
			
		||||
  ///////////////////////////////////////////////////////
 | 
			
		||||
  // FIXME precision promoted summation
 | 
			
		||||
@@ -507,8 +443,8 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,
 | 
			
		||||
  int ld=grid->_ldimensions[orthogdim];
 | 
			
		||||
  int rd=grid->_rdimensions[orthogdim];
 | 
			
		||||
 | 
			
		||||
  std::vector<vobj> lvSum(rd); // will locally sum vectors first
 | 
			
		||||
  std::vector<sobj> lsSum(ld,Zero());                    // sum across these down to scalars
 | 
			
		||||
  Vector<vobj> lvSum(rd); // will locally sum vectors first
 | 
			
		||||
  Vector<sobj> lsSum(ld,Zero());                    // sum across these down to scalars
 | 
			
		||||
  ExtractBuffer<sobj> extracted(Nsimd);                  // splitting the SIMD
 | 
			
		||||
 | 
			
		||||
  result.resize(fd); // And then global sum to return the same vector to every node 
 | 
			
		||||
@@ -556,8 +492,6 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,
 | 
			
		||||
  scalar_type * ptr = (scalar_type *) &result[0];
 | 
			
		||||
  int words = fd*sizeof(sobj)/sizeof(scalar_type);
 | 
			
		||||
  grid->GlobalSumVector(ptr, words);
 | 
			
		||||
  //  std::cout << GridLogMessage << " sliceSum local"<<t_sum<<" us, host+mpi "<<t_rest<<std::endl;
 | 
			
		||||
  
 | 
			
		||||
}
 | 
			
		||||
template<class vobj> inline
 | 
			
		||||
std::vector<typename vobj::scalar_object> 
 | 
			
		||||
@@ -568,20 +502,7 @@ sliceSum(const Lattice<vobj> &Data,int orthogdim)
 | 
			
		||||
  return result;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
Reimplement
 | 
			
		||||
 | 
			
		||||
1)
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0) 
 | 
			
		||||
 | 
			
		||||
2)
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog) 
 | 
			
		||||
 | 
			
		||||
3)
 | 
			
		||||
-- Make Slice Mul Matrix call sliceMaddMatrix
 | 
			
		||||
 */
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim) 
 | 
			
		||||
{
 | 
			
		||||
@@ -601,8 +522,8 @@ static void sliceInnerProductVector( std::vector<ComplexD> & result, const Latti
 | 
			
		||||
  int ld=grid->_ldimensions[orthogdim];
 | 
			
		||||
  int rd=grid->_rdimensions[orthogdim];
 | 
			
		||||
 | 
			
		||||
  std::vector<vector_type> lvSum(rd); // will locally sum vectors first
 | 
			
		||||
  std::vector<scalar_type > lsSum(ld,scalar_type(0.0));                    // sum across these down to scalars
 | 
			
		||||
  Vector<vector_type> lvSum(rd); // will locally sum vectors first
 | 
			
		||||
  Vector<scalar_type > lsSum(ld,scalar_type(0.0));                    // sum across these down to scalars
 | 
			
		||||
  ExtractBuffer<iScalar<scalar_type> > extracted(Nsimd);   // splitting the SIMD  
 | 
			
		||||
 | 
			
		||||
  result.resize(fd); // And then global sum to return the same vector to every node for IO to file
 | 
			
		||||
@@ -732,96 +653,203 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
inline GridBase         *makeSubSliceGrid(const GridBase *BlockSolverGrid,int Orthog)
 | 
			
		||||
{
 | 
			
		||||
  int NN    = BlockSolverGrid->_ndimension;
 | 
			
		||||
  int nsimd = BlockSolverGrid->Nsimd();
 | 
			
		||||
  
 | 
			
		||||
  std::vector<int> latt_phys(NN-1);
 | 
			
		||||
  Coordinate simd_phys;
 | 
			
		||||
  std::vector<int>  mpi_phys(NN-1);
 | 
			
		||||
  Coordinate checker_dim_mask(NN-1);
 | 
			
		||||
  int checker_dim=-1;
 | 
			
		||||
  std::vector<int> latt_phys(0);
 | 
			
		||||
  std::vector<int> simd_phys(0);
 | 
			
		||||
  std::vector<int>  mpi_phys(0);
 | 
			
		||||
  
 | 
			
		||||
  int dd;
 | 
			
		||||
  for(int d=0;d<NN;d++){
 | 
			
		||||
    if( d!=Orthog ) { 
 | 
			
		||||
      latt_phys[dd]=BlockSolverGrid->_fdimensions[d];
 | 
			
		||||
      mpi_phys[dd] =BlockSolverGrid->_processors[d];
 | 
			
		||||
      checker_dim_mask[dd] = BlockSolverGrid->_checker_dim_mask[d];
 | 
			
		||||
      if ( d == BlockSolverGrid->_checker_dim ) checker_dim = dd;
 | 
			
		||||
      dd++;
 | 
			
		||||
      latt_phys.push_back(BlockSolverGrid->_fdimensions[d]);
 | 
			
		||||
      simd_phys.push_back(BlockSolverGrid->_simd_layout[d]);
 | 
			
		||||
      mpi_phys.push_back(BlockSolverGrid->_processors[d]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  simd_phys=GridDefaultSimd(latt_phys.size(),nsimd);
 | 
			
		||||
  GridCartesian *tmp         = new GridCartesian(latt_phys,simd_phys,mpi_phys);
 | 
			
		||||
  if(BlockSolverGrid->_isCheckerBoarded) {
 | 
			
		||||
    GridRedBlackCartesian *ret = new GridRedBlackCartesian(tmp,checker_dim_mask,checker_dim);
 | 
			
		||||
    delete tmp;
 | 
			
		||||
    return (GridBase *) ret;
 | 
			
		||||
  } else { 
 | 
			
		||||
    return (GridBase *) tmp;
 | 
			
		||||
  }
 | 
			
		||||
  return (GridBase *)new GridCartesian(latt_phys,simd_phys,mpi_phys); 
 | 
			
		||||
}
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0) 
 | 
			
		||||
{    
 | 
			
		||||
  GridBase *FullGrid = X.Grid();
 | 
			
		||||
  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
 | 
			
		||||
 | 
			
		||||
  Lattice<vobj> Ys(SliceGrid);
 | 
			
		||||
  Lattice<vobj> Rs(SliceGrid);
 | 
			
		||||
  Lattice<vobj> Xs(SliceGrid);
 | 
			
		||||
  Lattice<vobj> RR(FullGrid);
 | 
			
		||||
 | 
			
		||||
  RR = R; // Copies checkerboard for insert
 | 
			
		||||
  
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  int Nslice = X.Grid()->GlobalDimensions()[Orthog];
 | 
			
		||||
  for(int i=0;i<Nslice;i++){
 | 
			
		||||
    ExtractSlice(Ys,Y,i,Orthog);
 | 
			
		||||
    ExtractSlice(Rs,R,i,Orthog);
 | 
			
		||||
    Rs=Ys;
 | 
			
		||||
    for(int j=0;j<Nslice;j++){
 | 
			
		||||
      ExtractSlice(Xs,X,j,Orthog);
 | 
			
		||||
      Rs = Rs + Xs*(scale*aa(j,i));
 | 
			
		||||
    }
 | 
			
		||||
    InsertSlice(Rs,RR,i,Orthog);
 | 
			
		||||
 | 
			
		||||
  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
			
		||||
 | 
			
		||||
  GridBase *FullGrid  = X.Grid();
 | 
			
		||||
  //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
 | 
			
		||||
 | 
			
		||||
  //  Lattice<vobj> Xslice(SliceGrid);
 | 
			
		||||
  //  Lattice<vobj> Rslice(SliceGrid);
 | 
			
		||||
 | 
			
		||||
  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
			
		||||
  //  int nh =  FullGrid->_ndimension;
 | 
			
		||||
  //  int nl = SliceGrid->_ndimension;
 | 
			
		||||
  //  int nl = nh-1;
 | 
			
		||||
 | 
			
		||||
  //FIXME package in a convenient iterator
 | 
			
		||||
  //Should loop over a plane orthogonal to direction "Orthog"
 | 
			
		||||
  int stride=FullGrid->_slice_stride[Orthog];
 | 
			
		||||
  int block =FullGrid->_slice_block [Orthog];
 | 
			
		||||
  int nblock=FullGrid->_slice_nblock[Orthog];
 | 
			
		||||
  int ostride=FullGrid->_ostride[Orthog];
 | 
			
		||||
 | 
			
		||||
  autoView( X_v, X, CpuRead);
 | 
			
		||||
  autoView( Y_v, Y, CpuRead);
 | 
			
		||||
  autoView( R_v, R, CpuWrite);
 | 
			
		||||
  thread_region
 | 
			
		||||
  {
 | 
			
		||||
    Vector<vobj> s_x(Nblock);
 | 
			
		||||
 | 
			
		||||
    thread_for_collapse_in_region(2, n,nblock, {
 | 
			
		||||
     for(int b=0;b<block;b++){
 | 
			
		||||
      int o  = n*stride + b;
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<Nblock;i++){
 | 
			
		||||
	s_x[i] = X_v[o+i*ostride];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      vobj dot;
 | 
			
		||||
      for(int i=0;i<Nblock;i++){
 | 
			
		||||
	dot = Y_v[o+i*ostride];
 | 
			
		||||
	for(int j=0;j<Nblock;j++){
 | 
			
		||||
	  dot = dot + s_x[j]*(scale*aa(j,i));
 | 
			
		||||
	}
 | 
			
		||||
	R_v[o+i*ostride]=dot;
 | 
			
		||||
      }
 | 
			
		||||
    }});
 | 
			
		||||
  }
 | 
			
		||||
  R=RR; // Copy back handles arguments aliasing case
 | 
			
		||||
  delete SliceGrid;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0) 
 | 
			
		||||
{    
 | 
			
		||||
  R=Zero();
 | 
			
		||||
  sliceMaddMatrix(R,aa,X,R,Orthog,scale);
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
			
		||||
 | 
			
		||||
  GridBase *FullGrid  = X.Grid();
 | 
			
		||||
  //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
 | 
			
		||||
  //  Lattice<vobj> Xslice(SliceGrid);
 | 
			
		||||
  //  Lattice<vobj> Rslice(SliceGrid);
 | 
			
		||||
 | 
			
		||||
  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
			
		||||
  //  int nh =  FullGrid->_ndimension;
 | 
			
		||||
  //  int nl = SliceGrid->_ndimension;
 | 
			
		||||
  //  int nl=1;
 | 
			
		||||
 | 
			
		||||
  //FIXME package in a convenient iterator
 | 
			
		||||
  // thread_for2d_in_region
 | 
			
		||||
  //Should loop over a plane orthogonal to direction "Orthog"
 | 
			
		||||
  int stride=FullGrid->_slice_stride[Orthog];
 | 
			
		||||
  int block =FullGrid->_slice_block [Orthog];
 | 
			
		||||
  int nblock=FullGrid->_slice_nblock[Orthog];
 | 
			
		||||
  int ostride=FullGrid->_ostride[Orthog];
 | 
			
		||||
  autoView( R_v, R, CpuWrite);
 | 
			
		||||
  autoView( X_v, X, CpuRead);
 | 
			
		||||
  thread_region
 | 
			
		||||
  {
 | 
			
		||||
    std::vector<vobj> s_x(Nblock);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    thread_for_collapse_in_region( 2 ,n,nblock,{
 | 
			
		||||
    for(int b=0;b<block;b++){
 | 
			
		||||
      int o  = n*stride + b;
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<Nblock;i++){
 | 
			
		||||
	s_x[i] = X_v[o+i*ostride];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      vobj dot;
 | 
			
		||||
      for(int i=0;i<Nblock;i++){
 | 
			
		||||
	dot = s_x[0]*(scale*aa(0,i));
 | 
			
		||||
	for(int j=1;j<Nblock;j++){
 | 
			
		||||
	  dot = dot + s_x[j]*(scale*aa(j,i));
 | 
			
		||||
	}
 | 
			
		||||
	R_v[o+i*ostride]=dot;
 | 
			
		||||
      }
 | 
			
		||||
    }});
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog) 
 | 
			
		||||
{
 | 
			
		||||
  GridBase *SliceGrid = makeSubSliceGrid(lhs.Grid(),Orthog);
 | 
			
		||||
 | 
			
		||||
  Lattice<vobj> ls(SliceGrid);
 | 
			
		||||
  Lattice<vobj> rs(SliceGrid);
 | 
			
		||||
  
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  int Nslice = lhs.Grid()->GlobalDimensions()[Orthog];
 | 
			
		||||
  mat = Eigen::MatrixXcd::Zero(Nslice,Nslice);
 | 
			
		||||
  for(int s=0;s<Nslice;s++){
 | 
			
		||||
    ExtractSlice(ls,lhs,s,Orthog);
 | 
			
		||||
    for(int ss=0;ss<Nslice;ss++){
 | 
			
		||||
      ExtractSlice(rs,rhs,ss,Orthog);
 | 
			
		||||
      mat(s,ss) = innerProduct(ls,rs);
 | 
			
		||||
  
 | 
			
		||||
  GridBase *FullGrid  = lhs.Grid();
 | 
			
		||||
  //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
 | 
			
		||||
  
 | 
			
		||||
  int Nblock = FullGrid->GlobalDimensions()[Orthog];
 | 
			
		||||
  
 | 
			
		||||
  //  Lattice<vobj> Lslice(SliceGrid);
 | 
			
		||||
  //  Lattice<vobj> Rslice(SliceGrid);
 | 
			
		||||
  
 | 
			
		||||
  mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
 | 
			
		||||
  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
			
		||||
  //  int nh =  FullGrid->_ndimension;
 | 
			
		||||
  //  int nl = SliceGrid->_ndimension;
 | 
			
		||||
  //  int nl = nh-1;
 | 
			
		||||
 | 
			
		||||
  //FIXME package in a convenient iterator
 | 
			
		||||
  //Should loop over a plane orthogonal to direction "Orthog"
 | 
			
		||||
  int stride=FullGrid->_slice_stride[Orthog];
 | 
			
		||||
  int block =FullGrid->_slice_block [Orthog];
 | 
			
		||||
  int nblock=FullGrid->_slice_nblock[Orthog];
 | 
			
		||||
  int ostride=FullGrid->_ostride[Orthog];
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::vector_typeD vector_typeD;
 | 
			
		||||
 | 
			
		||||
  autoView( lhs_v, lhs, CpuRead);
 | 
			
		||||
  autoView( rhs_v, rhs, CpuRead);
 | 
			
		||||
  thread_region
 | 
			
		||||
  {
 | 
			
		||||
    std::vector<vobj> Left(Nblock);
 | 
			
		||||
    std::vector<vobj> Right(Nblock);
 | 
			
		||||
    Eigen::MatrixXcd  mat_thread = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
 | 
			
		||||
    thread_for_collapse_in_region( 2, n,nblock,{
 | 
			
		||||
    for(int b=0;b<block;b++){
 | 
			
		||||
 | 
			
		||||
      int o  = n*stride + b;
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<Nblock;i++){
 | 
			
		||||
	Left [i] = lhs_v[o+i*ostride];
 | 
			
		||||
	Right[i] = rhs_v[o+i*ostride];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<Nblock;i++){
 | 
			
		||||
      for(int j=0;j<Nblock;j++){
 | 
			
		||||
	auto tmp = innerProduct(Left[i],Right[j]);
 | 
			
		||||
	auto rtmp = TensorRemove(tmp);
 | 
			
		||||
	auto red  =  Reduce(rtmp);
 | 
			
		||||
	mat_thread(i,j) += std::complex<double>(real(red),imag(red));
 | 
			
		||||
      }}
 | 
			
		||||
    }});
 | 
			
		||||
    thread_critical
 | 
			
		||||
    {
 | 
			
		||||
      mat += mat_thread;
 | 
			
		||||
    }  
 | 
			
		||||
  }
 | 
			
		||||
  delete SliceGrid;
 | 
			
		||||
 | 
			
		||||
  for(int i=0;i<Nblock;i++){
 | 
			
		||||
  for(int j=0;j<Nblock;j++){
 | 
			
		||||
    ComplexD sum = mat(i,j);
 | 
			
		||||
    FullGrid->GlobalSum(sum);
 | 
			
		||||
    mat(i,j)=sum;
 | 
			
		||||
  }}
 | 
			
		||||
 | 
			
		||||
  return;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -214,12 +214,22 @@ inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osi
 | 
			
		||||
  // Move out of UVM
 | 
			
		||||
  // Turns out I had messed up the synchronise after move to compute stream
 | 
			
		||||
  // as running this on the default stream fools the synchronise
 | 
			
		||||
  deviceVector<sobj> buffer(numBlocks);
 | 
			
		||||
#undef UVM_BLOCK_BUFFER  
 | 
			
		||||
#ifndef UVM_BLOCK_BUFFER  
 | 
			
		||||
  commVector<sobj> buffer(numBlocks);
 | 
			
		||||
  sobj *buffer_v = &buffer[0];
 | 
			
		||||
  sobj result;
 | 
			
		||||
  reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
 | 
			
		||||
  accelerator_barrier();
 | 
			
		||||
  acceleratorCopyFromDevice(buffer_v,&result,sizeof(result));
 | 
			
		||||
#else
 | 
			
		||||
  Vector<sobj> buffer(numBlocks);
 | 
			
		||||
  sobj *buffer_v = &buffer[0];
 | 
			
		||||
  sobj result;
 | 
			
		||||
  reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
 | 
			
		||||
  accelerator_barrier();
 | 
			
		||||
  result = *buffer_v;
 | 
			
		||||
#endif
 | 
			
		||||
  return result;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -234,7 +244,7 @@ inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osi
 | 
			
		||||
  
 | 
			
		||||
  const int words = sizeof(vobj)/sizeof(vector);
 | 
			
		||||
 | 
			
		||||
  deviceVector<vector> buffer(osites);
 | 
			
		||||
  Vector<vector> buffer(osites);
 | 
			
		||||
  vector *dat = (vector *)lat;
 | 
			
		||||
  vector *buf = &buffer[0];
 | 
			
		||||
  iScalar<vector> *tbuf =(iScalar<vector> *)  &buffer[0];
 | 
			
		||||
 
 | 
			
		||||
@@ -4,28 +4,29 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
// Possibly promote to double and sum
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <class vobj>
 | 
			
		||||
inline typename vobj::scalar_objectD sumD_gpu_tensor(const vobj *lat, Integer osites) 
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_objectD sobjD;
 | 
			
		||||
 | 
			
		||||
  sobj *mysum =(sobj *) malloc_shared(sizeof(sobj),*theGridAccelerator);
 | 
			
		||||
  sobj identity; zeroit(identity);
 | 
			
		||||
  sobj ret; zeroit(ret);
 | 
			
		||||
  sobj ret ; 
 | 
			
		||||
 | 
			
		||||
  Integer nsimd= vobj::Nsimd();
 | 
			
		||||
  { 
 | 
			
		||||
    sycl::buffer<sobj, 1> abuff(&ret, {1});
 | 
			
		||||
    theGridAccelerator->submit([&](sycl::handler &cgh) {
 | 
			
		||||
      auto Reduction = sycl::reduction(abuff,cgh,identity,std::plus<>());
 | 
			
		||||
      cgh.parallel_for(sycl::range<1>{osites},
 | 
			
		||||
                      Reduction,
 | 
			
		||||
                      [=] (sycl::id<1> item, auto &sum) {
 | 
			
		||||
                        auto osite   = item[0];
 | 
			
		||||
                        sum +=Reduce(lat[osite]);
 | 
			
		||||
                      });
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
 | 
			
		||||
     auto Reduction = cl::sycl::reduction(mysum,identity,std::plus<>());
 | 
			
		||||
     cgh.parallel_for(cl::sycl::range<1>{osites},
 | 
			
		||||
		      Reduction,
 | 
			
		||||
		      [=] (cl::sycl::id<1> item, auto &sum) {
 | 
			
		||||
      auto osite   = item[0];
 | 
			
		||||
      sum +=Reduce(lat[osite]);
 | 
			
		||||
     });
 | 
			
		||||
   });
 | 
			
		||||
  theGridAccelerator->wait();
 | 
			
		||||
  ret = mysum[0];
 | 
			
		||||
  free(mysum,*theGridAccelerator);
 | 
			
		||||
  sobjD dret; convertType(dret,ret);
 | 
			
		||||
  return dret;
 | 
			
		||||
}
 | 
			
		||||
@@ -68,25 +69,57 @@ inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osite
 | 
			
		||||
  return result;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Word> Word svm_xor(Word *vec,uint64_t L)
 | 
			
		||||
/*
 | 
			
		||||
template<class Double> Double svm_reduce(Double *vec,uint64_t L)
 | 
			
		||||
{
 | 
			
		||||
  Word identity;  identity=0;
 | 
			
		||||
  Word ret = 0;
 | 
			
		||||
  { 
 | 
			
		||||
    sycl::buffer<Word, 1> abuff(&ret, {1});
 | 
			
		||||
    theGridAccelerator->submit([&](sycl::handler &cgh) {
 | 
			
		||||
      auto Reduction = sycl::reduction(abuff,cgh,identity,std::bit_xor<>());
 | 
			
		||||
      cgh.parallel_for(sycl::range<1>{L},
 | 
			
		||||
                      Reduction,
 | 
			
		||||
                      [=] (sycl::id<1> index, auto &sum) {
 | 
			
		||||
                        sum ^=vec[index];
 | 
			
		||||
                      });
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
  Double sumResult; zeroit(sumResult);
 | 
			
		||||
  Double *d_sum =(Double *)cl::sycl::malloc_shared(sizeof(Double),*theGridAccelerator);
 | 
			
		||||
  Double identity;  zeroit(identity);
 | 
			
		||||
  theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
 | 
			
		||||
     auto Reduction = cl::sycl::reduction(d_sum,identity,std::plus<>());
 | 
			
		||||
     cgh.parallel_for(cl::sycl::range<1>{L},
 | 
			
		||||
		      Reduction,
 | 
			
		||||
		      [=] (cl::sycl::id<1> index, auto &sum) {
 | 
			
		||||
	 sum +=vec[index];
 | 
			
		||||
     });
 | 
			
		||||
   });
 | 
			
		||||
  theGridAccelerator->wait();
 | 
			
		||||
  Double ret = d_sum[0];
 | 
			
		||||
  free(d_sum,*theGridAccelerator);
 | 
			
		||||
  std::cout << " svm_reduce finished "<<L<<" sites sum = " << ret <<std::endl;
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
template <class vobj>
 | 
			
		||||
inline typename vobj::scalar_objectD sumD_gpu_repack(const vobj *lat, Integer osites)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::vector_type  vector;
 | 
			
		||||
  typedef typename vobj::scalar_type  scalar;
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::scalar_typeD scalarD;
 | 
			
		||||
  typedef typename vobj::scalar_objectD sobjD;
 | 
			
		||||
 | 
			
		||||
  sobjD ret;
 | 
			
		||||
  scalarD *ret_p = (scalarD *)&ret;
 | 
			
		||||
  
 | 
			
		||||
  const int nsimd = vobj::Nsimd();
 | 
			
		||||
  const int words = sizeof(vobj)/sizeof(vector);
 | 
			
		||||
 | 
			
		||||
  Vector<scalar> buffer(osites*nsimd);
 | 
			
		||||
  scalar *buf = &buffer[0];
 | 
			
		||||
  vector *dat = (vector *)lat;
 | 
			
		||||
 | 
			
		||||
  for(int w=0;w<words;w++) {
 | 
			
		||||
 | 
			
		||||
    accelerator_for(ss,osites,nsimd,{
 | 
			
		||||
	int lane = acceleratorSIMTlane(nsimd);
 | 
			
		||||
	buf[ss*nsimd+lane] = dat[ss*words+w].getlane(lane);
 | 
			
		||||
    });
 | 
			
		||||
    //Precision change at this point is to late to gain precision
 | 
			
		||||
    ret_p[w] = svm_reduce(buf,nsimd*osites);
 | 
			
		||||
  }
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
*/
 | 
			
		||||
 
 | 
			
		||||
@@ -48,45 +48,31 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
//////////////////////////////////////////////////////////////
 | 
			
		||||
inline int RNGfillable(GridBase *coarse,GridBase *fine)
 | 
			
		||||
{
 | 
			
		||||
  if ( coarse == fine ) return 1;
 | 
			
		||||
 | 
			
		||||
  if ( coarse->isIcosahedral()) assert(coarse->isIcosahedralEdge());
 | 
			
		||||
  int rngdims = coarse->_ndimension;
 | 
			
		||||
 | 
			
		||||
  if ( fine->isIcosahedralVertex() && coarse->isIcosahedralEdge() ) {
 | 
			
		||||
    assert(fine->Nd()==coarse->Nd());
 | 
			
		||||
    for(int d=0;d<fine->Nd();d++){
 | 
			
		||||
      assert(fine->LocalDimensions()[d] == coarse->LocalDimensions()[d]);
 | 
			
		||||
    }
 | 
			
		||||
    return 1;
 | 
			
		||||
  // trivially extended in higher dims, with locality guaranteeing RNG state is local to node
 | 
			
		||||
  int lowerdims   = fine->_ndimension - coarse->_ndimension;
 | 
			
		||||
  assert(lowerdims >= 0);
 | 
			
		||||
  for(int d=0;d<lowerdims;d++){
 | 
			
		||||
    assert(fine->_simd_layout[d]==1);
 | 
			
		||||
    assert(fine->_processors[d]==1);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  {
 | 
			
		||||
    
 | 
			
		||||
    int rngdims = coarse->_ndimension;
 | 
			
		||||
 | 
			
		||||
    // trivially extended in higher dims, with locality guaranteeing RNG state is local to node
 | 
			
		||||
    int lowerdims   = fine->_ndimension - coarse->_ndimension;
 | 
			
		||||
    assert(lowerdims >= 0);
 | 
			
		||||
    for(int d=0;d<lowerdims;d++){
 | 
			
		||||
      assert(fine->_simd_layout[d]==1);
 | 
			
		||||
      assert(fine->_processors[d]==1);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    int multiplicity=1;
 | 
			
		||||
    for(int d=0;d<lowerdims;d++){
 | 
			
		||||
      multiplicity=multiplicity*fine->_rdimensions[d];
 | 
			
		||||
    }
 | 
			
		||||
    // local and global volumes subdivide cleanly after SIMDization
 | 
			
		||||
    for(int d=0;d<rngdims;d++){
 | 
			
		||||
      int fd= d+lowerdims;
 | 
			
		||||
      assert(coarse->_processors[d]  == fine->_processors[fd]);
 | 
			
		||||
      assert(coarse->_simd_layout[d] == fine->_simd_layout[fd]);
 | 
			
		||||
      assert(((fine->_rdimensions[fd] / coarse->_rdimensions[d])* coarse->_rdimensions[d])==fine->_rdimensions[fd]); 
 | 
			
		||||
 | 
			
		||||
      multiplicity = multiplicity *fine->_rdimensions[fd] / coarse->_rdimensions[d]; 
 | 
			
		||||
    }
 | 
			
		||||
    return multiplicity;
 | 
			
		||||
  int multiplicity=1;
 | 
			
		||||
  for(int d=0;d<lowerdims;d++){
 | 
			
		||||
    multiplicity=multiplicity*fine->_rdimensions[d];
 | 
			
		||||
  }
 | 
			
		||||
  // local and global volumes subdivide cleanly after SIMDization
 | 
			
		||||
  for(int d=0;d<rngdims;d++){
 | 
			
		||||
    int fd= d+lowerdims;
 | 
			
		||||
    assert(coarse->_processors[d]  == fine->_processors[fd]);
 | 
			
		||||
    assert(coarse->_simd_layout[d] == fine->_simd_layout[fd]);
 | 
			
		||||
    assert(((fine->_rdimensions[fd] / coarse->_rdimensions[d])* coarse->_rdimensions[d])==fine->_rdimensions[fd]); 
 | 
			
		||||
 | 
			
		||||
    multiplicity = multiplicity *fine->_rdimensions[fd] / coarse->_rdimensions[d]; 
 | 
			
		||||
  }
 | 
			
		||||
  return multiplicity;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
@@ -94,19 +80,6 @@ inline int RNGfillable(GridBase *coarse,GridBase *fine)
 | 
			
		||||
// this function is necessary for the LS vectorised field
 | 
			
		||||
inline int RNGfillable_general(GridBase *coarse,GridBase *fine)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
  if ( coarse == fine ) return 1;
 | 
			
		||||
 | 
			
		||||
  if ( coarse->isIcosahedral()) assert(coarse->isIcosahedralEdge());
 | 
			
		||||
  
 | 
			
		||||
  if ( fine->isIcosahedralVertex() && coarse->isIcosahedralEdge() ) {
 | 
			
		||||
    assert(fine->Nd()==coarse->Nd());
 | 
			
		||||
    for(int d=0;d<fine->Nd();d++){
 | 
			
		||||
      assert(fine->LocalDimensions()[d] == coarse->LocalDimensions()[d]);
 | 
			
		||||
    }
 | 
			
		||||
    return 1;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int rngdims = coarse->_ndimension;
 | 
			
		||||
    
 | 
			
		||||
  // trivially extended in higher dims, with locality guaranteeing RNG state is local to node
 | 
			
		||||
@@ -379,12 +352,12 @@ private:
 | 
			
		||||
public:
 | 
			
		||||
  GridBase *Grid(void) const { return _grid; }
 | 
			
		||||
  int generator_idx(int os,int is) {
 | 
			
		||||
    return (is*_grid->CartesianOsites()+os)%_grid->lSites(); // On the pole sites wrap back to normal generators; Icosahedral hack
 | 
			
		||||
    return is*_grid->oSites()+os;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  GridParallelRNG(GridBase *grid) : GridRNGbase() {
 | 
			
		||||
    _grid = grid;
 | 
			
		||||
    _vol  =_grid->lSites();
 | 
			
		||||
    _vol  =_grid->iSites()*_grid->oSites();
 | 
			
		||||
 | 
			
		||||
    _generators.resize(_vol);
 | 
			
		||||
    _uniform.resize(_vol,std::uniform_real_distribution<RealD>{0,1});
 | 
			
		||||
@@ -392,14 +365,9 @@ public:
 | 
			
		||||
    _bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
 | 
			
		||||
    _uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
 | 
			
		||||
  }
 | 
			
		||||
  template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist)
 | 
			
		||||
  {
 | 
			
		||||
    if ( l.Grid()->_isCheckerBoarded ) {
 | 
			
		||||
      Lattice<vobj> tmp(_grid);
 | 
			
		||||
      fill(tmp,dist);
 | 
			
		||||
      pickCheckerboard(l.Checkerboard(),l,tmp);
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist){
 | 
			
		||||
 | 
			
		||||
    typedef typename vobj::scalar_object scalar_object;
 | 
			
		||||
    typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
    typedef typename vobj::vector_type vector_type;
 | 
			
		||||
@@ -408,7 +376,7 @@ public:
 | 
			
		||||
 | 
			
		||||
    int multiplicity = RNGfillable_general(_grid, l.Grid()); // l has finer or same grid
 | 
			
		||||
    int Nsimd  = _grid->Nsimd();  // guaranteed to be the same for l.Grid() too
 | 
			
		||||
    int osites = _grid->CartesianOsites();  // guaranteed to be <= l.Grid()->oSites() by a factor multiplicity, except on Icosahedral
 | 
			
		||||
    int osites = _grid->oSites();  // guaranteed to be <= l.Grid()->oSites() by a factor multiplicity
 | 
			
		||||
    int words  = sizeof(scalar_object) / sizeof(scalar_type);
 | 
			
		||||
 | 
			
		||||
    autoView(l_v, l, CpuWrite);
 | 
			
		||||
@@ -429,27 +397,8 @@ public:
 | 
			
		||||
	// merge into SIMD lanes, FIXME suboptimal implementation
 | 
			
		||||
	merge(l_v[sm], buf);
 | 
			
		||||
      }
 | 
			
		||||
    });
 | 
			
		||||
 | 
			
		||||
    /*
 | 
			
		||||
     * Fill in the poles for an Icosahedral vertex mesh
 | 
			
		||||
     */
 | 
			
		||||
    if (l.Grid()->isIcosahedralVertex()) { 
 | 
			
		||||
      int64_t pole_sites=l.Grid()->NorthPoleOsites()+l.Grid()->SouthPoleOsites();
 | 
			
		||||
      int64_t pole_base =l.Grid()->CartesianOsites();
 | 
			
		||||
 | 
			
		||||
      ExtractBuffer<scalar_object> buf(Nsimd);
 | 
			
		||||
      for (int m = 0; m < pole_sites; m++) {  // Draw from same generator multiplicity times                                                                                                           
 | 
			
		||||
        for (int si = 0; si < Nsimd; si++) {
 | 
			
		||||
          int gdx = 0;
 | 
			
		||||
	  scalar_type *pointer = (scalar_type *)&buf[si];
 | 
			
		||||
          dist[gdx].reset();
 | 
			
		||||
          for (int idx = 0; idx < words; idx++)
 | 
			
		||||
            fillScalar(pointer[idx], dist[gdx], _generators[gdx]);
 | 
			
		||||
        }
 | 
			
		||||
        merge(l_v[pole_base+m], buf);
 | 
			
		||||
      }      
 | 
			
		||||
    }
 | 
			
		||||
      });
 | 
			
		||||
    //    });
 | 
			
		||||
 | 
			
		||||
    _time_counter += usecond()- inner_time_counter;
 | 
			
		||||
  }
 | 
			
		||||
@@ -481,7 +430,7 @@ public:
 | 
			
		||||
    ////////////////////////////////////////////////
 | 
			
		||||
    thread_for( lidx, _grid->lSites(), {
 | 
			
		||||
 | 
			
		||||
	int64_t gidx;
 | 
			
		||||
	int gidx;
 | 
			
		||||
	int o_idx;
 | 
			
		||||
	int i_idx;
 | 
			
		||||
	int rank;
 | 
			
		||||
 
 | 
			
		||||
@@ -1,5 +1,5 @@
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <type_traits>
 | 
			
		||||
#if defined(GRID_CUDA)
 | 
			
		||||
 | 
			
		||||
#include <cub/cub.cuh>
 | 
			
		||||
@@ -21,18 +21,9 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#if defined(GRID_CUDA) || defined(GRID_HIP)
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline void sliceSumReduction_cub_small(const vobj *Data,
 | 
			
		||||
					std::vector<vobj> &lvSum,
 | 
			
		||||
					const int rd,
 | 
			
		||||
					const int e1,
 | 
			
		||||
					const int e2,
 | 
			
		||||
					const int stride,
 | 
			
		||||
					const int ostride,
 | 
			
		||||
					const int Nsimd)
 | 
			
		||||
{
 | 
			
		||||
template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
 | 
			
		||||
  size_t subvol_size = e1*e2;
 | 
			
		||||
  deviceVector<vobj> reduction_buffer(rd*subvol_size);
 | 
			
		||||
  commVector<vobj> reduction_buffer(rd*subvol_size);
 | 
			
		||||
  auto rb_p = &reduction_buffer[0];
 | 
			
		||||
  vobj zero_init;
 | 
			
		||||
  zeroit(zero_init);
 | 
			
		||||
@@ -55,7 +46,7 @@ inline void sliceSumReduction_cub_small(const vobj *Data,
 | 
			
		||||
  d_offsets = static_cast<int*>(acceleratorAllocDevice((rd+1)*sizeof(int)));
 | 
			
		||||
  
 | 
			
		||||
  //copy offsets to device
 | 
			
		||||
  acceleratorCopyToDeviceAsynch(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream);
 | 
			
		||||
  acceleratorCopyToDeviceAsync(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream);
 | 
			
		||||
  
 | 
			
		||||
  
 | 
			
		||||
  gpuError_t gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), zero_init, computeStream);
 | 
			
		||||
@@ -88,7 +79,7 @@ inline void sliceSumReduction_cub_small(const vobj *Data,
 | 
			
		||||
    exit(EXIT_FAILURE);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  acceleratorCopyFromDeviceAsynch(d_out,&lvSum[0],rd*sizeof(vobj),computeStream);
 | 
			
		||||
  acceleratorCopyFromDeviceAsync(d_out,&lvSum[0],rd*sizeof(vobj),computeStream);
 | 
			
		||||
  
 | 
			
		||||
  //sync after copy
 | 
			
		||||
  accelerator_barrier();
 | 
			
		||||
@@ -99,34 +90,61 @@ inline void sliceSumReduction_cub_small(const vobj *Data,
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void sliceSumReduction_cub_large(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
 | 
			
		||||
  typedef typename vobj::vector_type vector;
 | 
			
		||||
  const int words = sizeof(vobj)/sizeof(vector);
 | 
			
		||||
  const int osites = rd*e1*e2;
 | 
			
		||||
  commVector<vector>buffer(osites);
 | 
			
		||||
  vector *dat = (vector *)Data;
 | 
			
		||||
  vector *buf = &buffer[0];
 | 
			
		||||
  Vector<vector> lvSum_small(rd);
 | 
			
		||||
  vector *lvSum_ptr = (vector *)&lvSum[0];
 | 
			
		||||
 | 
			
		||||
  for (int w = 0; w < words; w++) {
 | 
			
		||||
    accelerator_for(ss,osites,1,{
 | 
			
		||||
	    buf[ss] = dat[ss*words+w];
 | 
			
		||||
    });
 | 
			
		||||
 | 
			
		||||
    sliceSumReduction_cub_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd);
 | 
			
		||||
      
 | 
			
		||||
    for (int r = 0; r < rd; r++) {
 | 
			
		||||
      lvSum_ptr[w+words*r]=lvSum_small[r];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void sliceSumReduction_cub(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd)
 | 
			
		||||
{
 | 
			
		||||
  autoView(Data_v, Data, AcceleratorRead); //hipcub/cub cannot deal with large vobjs so we split into small/large case.
 | 
			
		||||
    if constexpr (sizeof(vobj) <= 256) { 
 | 
			
		||||
      sliceSumReduction_cub_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
			
		||||
    }
 | 
			
		||||
    else {
 | 
			
		||||
      sliceSumReduction_cub_large(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#if defined(GRID_SYCL)
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline void sliceSumReduction_sycl_small(const vobj *Data,
 | 
			
		||||
					 std::vector <vobj> &lvSum,
 | 
			
		||||
					 const int  &rd,
 | 
			
		||||
					 const int &e1,
 | 
			
		||||
					 const int &e2,
 | 
			
		||||
					 const int &stride,
 | 
			
		||||
					 const int &ostride,
 | 
			
		||||
					 const int &Nsimd)
 | 
			
		||||
template<class vobj> inline void sliceSumReduction_sycl(const Lattice<vobj> &Data, Vector <vobj> &lvSum, const int  &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  size_t subvol_size = e1*e2;
 | 
			
		||||
 | 
			
		||||
  vobj *mysum = (vobj *) malloc_shared(rd*sizeof(vobj),*theGridAccelerator);
 | 
			
		||||
  vobj *mysum = (vobj *) malloc_shared(sizeof(vobj),*theGridAccelerator);
 | 
			
		||||
  vobj vobj_zero;
 | 
			
		||||
  zeroit(vobj_zero);
 | 
			
		||||
  for (int r = 0; r<rd; r++) { 
 | 
			
		||||
    mysum[r] = vobj_zero; 
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  deviceVector<vobj> reduction_buffer(rd*subvol_size);    
 | 
			
		||||
  commVector<vobj> reduction_buffer(rd*subvol_size);    
 | 
			
		||||
 | 
			
		||||
  auto rb_p = &reduction_buffer[0];
 | 
			
		||||
 | 
			
		||||
  // autoView(Data_v, Data, AcceleratorRead);
 | 
			
		||||
  autoView(Data_v, Data, AcceleratorRead);
 | 
			
		||||
 | 
			
		||||
  //prepare reduction buffer 
 | 
			
		||||
  accelerator_for2d( s,subvol_size, r,rd, (size_t)Nsimd,{ 
 | 
			
		||||
@@ -136,102 +154,30 @@ inline void sliceSumReduction_sycl_small(const vobj *Data,
 | 
			
		||||
      int so=r*ostride; // base offset for start of plane 
 | 
			
		||||
      int ss= so+n*stride+b;
 | 
			
		||||
 | 
			
		||||
      coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data[ss]));
 | 
			
		||||
      coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data_v[ss]));
 | 
			
		||||
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
  for (int r = 0; r < rd; r++) {
 | 
			
		||||
      theGridAccelerator->submit([&](sycl::handler &cgh) {
 | 
			
		||||
          auto Reduction = sycl::reduction(&mysum[r],std::plus<>());
 | 
			
		||||
          cgh.parallel_for(sycl::range<1>{subvol_size},
 | 
			
		||||
      mysum[0] = vobj_zero; //dirty hack: cannot pass vobj_zero as identity to sycl::reduction as its not device_copyable
 | 
			
		||||
      theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
 | 
			
		||||
          auto Reduction = cl::sycl::reduction(mysum,std::plus<>());
 | 
			
		||||
          cgh.parallel_for(cl::sycl::range<1>{subvol_size},
 | 
			
		||||
          Reduction,
 | 
			
		||||
          [=](sycl::id<1> item, auto &sum) {
 | 
			
		||||
          [=](cl::sycl::id<1> item, auto &sum) {
 | 
			
		||||
              auto s = item[0];
 | 
			
		||||
              sum += rb_p[r*subvol_size+s];
 | 
			
		||||
          });
 | 
			
		||||
      });
 | 
			
		||||
      
 | 
			
		||||
     
 | 
			
		||||
  }
 | 
			
		||||
  theGridAccelerator->wait();
 | 
			
		||||
  for (int r = 0; r < rd; r++) {
 | 
			
		||||
    lvSum[r] = mysum[r];
 | 
			
		||||
      theGridAccelerator->wait();
 | 
			
		||||
      lvSum[r] = mysum[0];
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  free(mysum,*theGridAccelerator);
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline void sliceSumReduction_large(const vobj *Data,
 | 
			
		||||
				    std::vector<vobj> &lvSum,
 | 
			
		||||
				    const int rd,
 | 
			
		||||
				    const int e1,
 | 
			
		||||
				    const int e2,
 | 
			
		||||
				    const int stride,
 | 
			
		||||
				    const int ostride,
 | 
			
		||||
				    const int Nsimd)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::vector_type vector;
 | 
			
		||||
  const int words = sizeof(vobj)/sizeof(vector);
 | 
			
		||||
  const int osites = rd*e1*e2;
 | 
			
		||||
  deviceVector<vector>buffer(osites);
 | 
			
		||||
  vector *dat = (vector *)Data;
 | 
			
		||||
  vector *buf = &buffer[0];
 | 
			
		||||
  std::vector<vector> lvSum_small(rd);
 | 
			
		||||
  vector *lvSum_ptr = (vector *)&lvSum[0];
 | 
			
		||||
 | 
			
		||||
  for (int w = 0; w < words; w++) {
 | 
			
		||||
    accelerator_for(ss,osites,1,{
 | 
			
		||||
	    buf[ss] = dat[ss*words+w];
 | 
			
		||||
    });
 | 
			
		||||
 | 
			
		||||
    #if defined(GRID_CUDA) || defined(GRID_HIP)
 | 
			
		||||
      sliceSumReduction_cub_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd);
 | 
			
		||||
    #elif defined(GRID_SYCL)
 | 
			
		||||
      sliceSumReduction_sycl_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd);
 | 
			
		||||
    #endif
 | 
			
		||||
 | 
			
		||||
    for (int r = 0; r < rd; r++) {
 | 
			
		||||
      lvSum_ptr[w+words*r]=lvSum_small[r];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline void sliceSumReduction_gpu(const Lattice<vobj> &Data,
 | 
			
		||||
				  std::vector<vobj> &lvSum,
 | 
			
		||||
				  const int rd,
 | 
			
		||||
				  const int e1,
 | 
			
		||||
				  const int e2,
 | 
			
		||||
				  const int stride,
 | 
			
		||||
				  const int ostride,
 | 
			
		||||
				  const int Nsimd)
 | 
			
		||||
{
 | 
			
		||||
  autoView(Data_v, Data, AcceleratorRead); //reduction libraries cannot deal with large vobjs so we split into small/large case.
 | 
			
		||||
    if constexpr (sizeof(vobj) <= 256) { 
 | 
			
		||||
 | 
			
		||||
      #if defined(GRID_CUDA) || defined(GRID_HIP)
 | 
			
		||||
        sliceSumReduction_cub_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
			
		||||
      #elif defined (GRID_SYCL)
 | 
			
		||||
        sliceSumReduction_sycl_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
			
		||||
      #endif
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    else {
 | 
			
		||||
      sliceSumReduction_large(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline void sliceSumReduction_cpu(const Lattice<vobj> &Data,
 | 
			
		||||
				  std::vector<vobj> &lvSum,
 | 
			
		||||
				  const int &rd,
 | 
			
		||||
				  const int &e1,
 | 
			
		||||
				  const int &e2,
 | 
			
		||||
				  const int &stride,
 | 
			
		||||
				  const int &ostride,
 | 
			
		||||
				  const int &Nsimd)
 | 
			
		||||
template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
 | 
			
		||||
{
 | 
			
		||||
  // sum over reduced dimension planes, breaking out orthog dir
 | 
			
		||||
  // Parallel over orthog direction
 | 
			
		||||
@@ -247,20 +193,20 @@ inline void sliceSumReduction_cpu(const Lattice<vobj> &Data,
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data,
 | 
			
		||||
						   std::vector<vobj> &lvSum,
 | 
			
		||||
						   const int &rd,
 | 
			
		||||
						   const int &e1,
 | 
			
		||||
						   const int &e2,
 | 
			
		||||
						   const int &stride,
 | 
			
		||||
						   const int &ostride,
 | 
			
		||||
						   const int &Nsimd) 
 | 
			
		||||
template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd) 
 | 
			
		||||
{
 | 
			
		||||
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
 | 
			
		||||
  sliceSumReduction_gpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
			
		||||
#else
 | 
			
		||||
  #if defined(GRID_CUDA) || defined(GRID_HIP)
 | 
			
		||||
  
 | 
			
		||||
  sliceSumReduction_cub(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
			
		||||
  
 | 
			
		||||
  #elif defined(GRID_SYCL)
 | 
			
		||||
  
 | 
			
		||||
  sliceSumReduction_sycl(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
			
		||||
  
 | 
			
		||||
  #else
 | 
			
		||||
  sliceSumReduction_cpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
  #endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -276,33 +276,18 @@ inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
			
		||||
 | 
			
		||||
  autoView( coarseData_ , coarseData, AcceleratorWrite);
 | 
			
		||||
  autoView( ip_         , ip,         AcceleratorWrite);
 | 
			
		||||
  RealD t_IP=0;
 | 
			
		||||
  RealD t_co=0;
 | 
			
		||||
  RealD t_za=0;
 | 
			
		||||
  for(int v=0;v<nbasis;v++) {
 | 
			
		||||
    t_IP-=usecond();
 | 
			
		||||
    blockInnerProductD(ip,Basis[v],fineDataRed); // ip = <basis|fine>
 | 
			
		||||
    t_IP+=usecond();
 | 
			
		||||
    t_co-=usecond();
 | 
			
		||||
    accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
 | 
			
		||||
	convertType(coarseData_[sc](v),ip_[sc]);
 | 
			
		||||
    });
 | 
			
		||||
    t_co+=usecond();
 | 
			
		||||
 | 
			
		||||
    // improve numerical stability of projection
 | 
			
		||||
    // |fine> = |fine> - <basis|fine> |basis>
 | 
			
		||||
    ip=-ip;
 | 
			
		||||
    t_za-=usecond();
 | 
			
		||||
    blockZAXPY(fineDataRed,ip,Basis[v],fineDataRed); 
 | 
			
		||||
    t_za+=usecond();
 | 
			
		||||
  }
 | 
			
		||||
  //  std::cout << GridLogPerformance << " blockProject : blockInnerProduct :  "<<t_IP<<" us"<<std::endl;
 | 
			
		||||
  //  std::cout << GridLogPerformance << " blockProject : conv              :  "<<t_co<<" us"<<std::endl;
 | 
			
		||||
  //  std::cout << GridLogPerformance << " blockProject : blockZaxpy        :  "<<t_za<<" us"<<std::endl;
 | 
			
		||||
}
 | 
			
		||||
// This only minimises data motion from CPU to GPU
 | 
			
		||||
// there is chance of better implementation that does a vxk loop of inner products to data share
 | 
			
		||||
// at the GPU thread level
 | 
			
		||||
template<class vobj,class CComplex,int nbasis,class VLattice>
 | 
			
		||||
inline void batchBlockProject(std::vector<Lattice<iVector<CComplex,nbasis>>> &coarseData,
 | 
			
		||||
                               const std::vector<Lattice<vobj>> &fineData,
 | 
			
		||||
@@ -408,15 +393,8 @@ template<class vobj,class CComplex>
 | 
			
		||||
  Lattice<dotp> coarse_inner(coarse);
 | 
			
		||||
 | 
			
		||||
  // Precision promotion
 | 
			
		||||
  RealD t;
 | 
			
		||||
  t=-usecond();
 | 
			
		||||
  fine_inner = localInnerProductD<vobj>(fineX,fineY);
 | 
			
		||||
  //  t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : localInnerProductD "<<t<<" us"<<std::endl;
 | 
			
		||||
  
 | 
			
		||||
  t=-usecond();
 | 
			
		||||
  blockSum(coarse_inner,fine_inner);
 | 
			
		||||
  //  t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : blockSum "<<t<<" us"<<std::endl;
 | 
			
		||||
  t=-usecond();
 | 
			
		||||
  {
 | 
			
		||||
    autoView( CoarseInner_  , CoarseInner,AcceleratorWrite);
 | 
			
		||||
    autoView( coarse_inner_ , coarse_inner,AcceleratorRead);
 | 
			
		||||
@@ -424,7 +402,6 @@ template<class vobj,class CComplex>
 | 
			
		||||
      convertType(CoarseInner_[ss], TensorRemove(coarse_inner_[ss]));
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
  //  t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : convertType "<<t<<" us"<<std::endl;
 | 
			
		||||
 
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -467,9 +444,6 @@ inline void blockNormalise(Lattice<CComplex> &ip,Lattice<vobj> &fineX)
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData) 
 | 
			
		||||
{
 | 
			
		||||
  const int maxsubsec=256;
 | 
			
		||||
  typedef iVector<vobj,maxsubsec> vSubsec;
 | 
			
		||||
 | 
			
		||||
  GridBase * fine  = fineData.Grid();
 | 
			
		||||
  GridBase * coarse= coarseData.Grid();
 | 
			
		||||
 | 
			
		||||
@@ -489,40 +463,22 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
 | 
			
		||||
  autoView( coarseData_ , coarseData, AcceleratorWrite);
 | 
			
		||||
  autoView( fineData_   , fineData, AcceleratorRead);
 | 
			
		||||
 | 
			
		||||
  auto coarseData_p  = &coarseData_[0];
 | 
			
		||||
  auto fineData_p    = &fineData_[0];
 | 
			
		||||
  auto coarseData_p = &coarseData_[0];
 | 
			
		||||
  auto fineData_p = &fineData_[0];
 | 
			
		||||
  
 | 
			
		||||
  Coordinate fine_rdimensions = fine->_rdimensions;
 | 
			
		||||
  Coordinate coarse_rdimensions = coarse->_rdimensions;
 | 
			
		||||
 | 
			
		||||
  vobj zz = Zero();
 | 
			
		||||
 | 
			
		||||
  // Somewhat lazy calculation
 | 
			
		||||
  // Find the biggest power of two subsection divisor less than or equal to maxsubsec
 | 
			
		||||
  int subsec=maxsubsec;
 | 
			
		||||
  int subvol;
 | 
			
		||||
  subvol=blockVol/subsec;
 | 
			
		||||
  while(subvol*subsec!=blockVol){
 | 
			
		||||
    subsec = subsec/2;
 | 
			
		||||
    subvol=blockVol/subsec;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  Lattice<vSubsec> coarseTmp(coarse);
 | 
			
		||||
  autoView( coarseTmp_, coarseTmp, AcceleratorWriteDiscard);
 | 
			
		||||
  auto coarseTmp_p= &coarseTmp_[0];
 | 
			
		||||
  
 | 
			
		||||
  // Sum within subsecs in a first kernel
 | 
			
		||||
  accelerator_for(sce,subsec*coarse->oSites(),vobj::Nsimd(),{
 | 
			
		||||
 | 
			
		||||
      int sc=sce/subsec;
 | 
			
		||||
      int e=sce%subsec;
 | 
			
		||||
  accelerator_for(sc,coarse->oSites(),1,{
 | 
			
		||||
 | 
			
		||||
      // One thread per sub block
 | 
			
		||||
      Coordinate coor_c(_ndimension);
 | 
			
		||||
      Lexicographic::CoorFromIndex(coor_c,sc,coarse_rdimensions);  // Block coordinate
 | 
			
		||||
 | 
			
		||||
      auto cd = coalescedRead(zz);
 | 
			
		||||
      for(int sb=e*subvol;sb<MIN((e+1)*subvol,blockVol);sb++){
 | 
			
		||||
      vobj cd = Zero();
 | 
			
		||||
      
 | 
			
		||||
      for(int sb=0;sb<blockVol;sb++){
 | 
			
		||||
 | 
			
		||||
	int sf;
 | 
			
		||||
	Coordinate coor_b(_ndimension);
 | 
			
		||||
	Coordinate coor_f(_ndimension);
 | 
			
		||||
@@ -530,21 +486,12 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
 | 
			
		||||
	for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d] + coor_b[d];
 | 
			
		||||
	Lexicographic::IndexFromCoor(coor_f,sf,fine_rdimensions);
 | 
			
		||||
 | 
			
		||||
	cd=cd+coalescedRead(fineData_p[sf]);
 | 
			
		||||
	cd=cd+fineData_p[sf];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      coalescedWrite(coarseTmp_[sc](e),cd);
 | 
			
		||||
      coarseData_p[sc] = cd;
 | 
			
		||||
 | 
			
		||||
    });
 | 
			
		||||
   // Sum across subsecs in a second kernel
 | 
			
		||||
   accelerator_for(sc,coarse->oSites(),vobj::Nsimd(),{
 | 
			
		||||
      auto cd = coalescedRead(coarseTmp_p[sc](0));
 | 
			
		||||
      for(int e=1;e<subsec;e++){
 | 
			
		||||
	cd=cd+coalescedRead(coarseTmp_p[sc](e));
 | 
			
		||||
      }
 | 
			
		||||
      coalescedWrite(coarseData_p[sc],cd);
 | 
			
		||||
   });
 | 
			
		||||
 | 
			
		||||
  return;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -601,7 +548,7 @@ inline void blockOrthogonalise(Lattice<CComplex> &ip,std::vector<Lattice<vobj> >
 | 
			
		||||
  blockOrthonormalize(ip,Basis);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_ACCELERATED
 | 
			
		||||
#if 0
 | 
			
		||||
// TODO: CPU optimized version here
 | 
			
		||||
template<class vobj,class CComplex,int nbasis>
 | 
			
		||||
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
			
		||||
@@ -627,37 +574,26 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
			
		||||
  autoView( fineData_   , fineData, AcceleratorWrite);
 | 
			
		||||
  autoView( coarseData_ , coarseData, AcceleratorRead);
 | 
			
		||||
 | 
			
		||||
  typedef LatticeView<vobj> Vview;
 | 
			
		||||
  std::vector<Vview> AcceleratorVecViewContainer_h; 
 | 
			
		||||
  for(int v=0;v<nbasis;v++) {
 | 
			
		||||
    AcceleratorVecViewContainer_h.push_back(Basis[v].View(AcceleratorRead));
 | 
			
		||||
  }
 | 
			
		||||
  static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(nbasis); 
 | 
			
		||||
  acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],nbasis *sizeof(Vview));
 | 
			
		||||
  auto Basis_p = &AcceleratorVecViewContainer[0];
 | 
			
		||||
  // Loop with a cache friendly loop ordering
 | 
			
		||||
  Coordinate frdimensions=fine->_rdimensions;
 | 
			
		||||
  Coordinate crdimensions=coarse->_rdimensions;
 | 
			
		||||
  accelerator_for(sf,fine->oSites(),vobj::Nsimd(),{
 | 
			
		||||
  accelerator_for(sf,fine->oSites(),1,{
 | 
			
		||||
    int sc;
 | 
			
		||||
    Coordinate coor_c(_ndimension);
 | 
			
		||||
    Coordinate coor_f(_ndimension);
 | 
			
		||||
 | 
			
		||||
    Lexicographic::CoorFromIndex(coor_f,sf,frdimensions);
 | 
			
		||||
    Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
 | 
			
		||||
    for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
 | 
			
		||||
    Lexicographic::IndexFromCoor(coor_c,sc,crdimensions);
 | 
			
		||||
    Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
 | 
			
		||||
 | 
			
		||||
    auto sum= coarseData_(sc)(0) *Basis_p[0](sf);
 | 
			
		||||
    for(int i=1;i<nbasis;i++) sum = sum + coarseData_(sc)(i)*Basis_p[i](sf);
 | 
			
		||||
    coalescedWrite(fineData_[sf],sum);
 | 
			
		||||
    for(int i=0;i<nbasis;i++) {
 | 
			
		||||
      /*      auto basis_ = Basis[i],  );*/
 | 
			
		||||
      if(i==0) fineData_[sf]=coarseData_[sc](i) *basis_[sf]);
 | 
			
		||||
      else     fineData_[sf]=fineData_[sf]+coarseData_[sc](i)*basis_[sf]);
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
  for(int v=0;v<nbasis;v++) {
 | 
			
		||||
    AcceleratorVecViewContainer_h[v].ViewClose();
 | 
			
		||||
  }
 | 
			
		||||
  return;
 | 
			
		||||
  
 | 
			
		||||
}
 | 
			
		||||
#else
 | 
			
		||||
// CPU version
 | 
			
		||||
template<class vobj,class CComplex,int nbasis,class VLattice>
 | 
			
		||||
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
			
		||||
			 Lattice<vobj>   &fineData,
 | 
			
		||||
@@ -744,11 +680,7 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // checks should guarantee that the operations are local
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
 | 
			
		||||
  GridBase *Fg = From.Grid();
 | 
			
		||||
  GridBase *Tg = To.Grid();
 | 
			
		||||
@@ -763,83 +695,38 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
 | 
			
		||||
  for(int d=0;d<nd;d++){
 | 
			
		||||
    assert(Fg->_processors[d]  == Tg->_processors[d]);
 | 
			
		||||
  }
 | 
			
		||||
  // the above should guarantee that the operations are local
 | 
			
		||||
  
 | 
			
		||||
  ///////////////////////////////////////////////////////////
 | 
			
		||||
  // do the index calc on the GPU
 | 
			
		||||
  ///////////////////////////////////////////////////////////
 | 
			
		||||
  Coordinate f_ostride = Fg->_ostride;
 | 
			
		||||
  Coordinate f_istride = Fg->_istride;
 | 
			
		||||
  Coordinate f_rdimensions = Fg->_rdimensions;
 | 
			
		||||
  Coordinate t_ostride = Tg->_ostride;
 | 
			
		||||
  Coordinate t_istride = Tg->_istride;
 | 
			
		||||
  Coordinate t_rdimensions = Tg->_rdimensions;
 | 
			
		||||
#if 1
 | 
			
		||||
 | 
			
		||||
  size_t nsite = 1;
 | 
			
		||||
  for(int i=0;i<nd;i++) nsite *= RegionSize[i];
 | 
			
		||||
  
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  size_t tbytes = 4*nsite*sizeof(int);
 | 
			
		||||
  int *table = (int*)malloc(tbytes);
 | 
			
		||||
 
 | 
			
		||||
  autoView(from_v,From,AcceleratorRead);
 | 
			
		||||
  autoView(to_v,To,AcceleratorWrite);
 | 
			
		||||
 | 
			
		||||
  accelerator_for(idx,nsite,1,{
 | 
			
		||||
 | 
			
		||||
      Coordinate from_coor, to_coor, base;
 | 
			
		||||
      Lexicographic::CoorFromIndex(base,idx,RegionSize);
 | 
			
		||||
  thread_for(idx, nsite, {
 | 
			
		||||
      Coordinate from_coor, to_coor;
 | 
			
		||||
      size_t rem = idx;
 | 
			
		||||
      for(int i=0;i<nd;i++){
 | 
			
		||||
	from_coor[i] = base[i] + FromLowerLeft[i];
 | 
			
		||||
	to_coor[i] = base[i] + ToLowerLeft[i];
 | 
			
		||||
	size_t base_i  = rem % RegionSize[i]; rem /= RegionSize[i];
 | 
			
		||||
	from_coor[i] = base_i + FromLowerLeft[i];
 | 
			
		||||
	to_coor[i] = base_i + ToLowerLeft[i];
 | 
			
		||||
      }
 | 
			
		||||
      int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
 | 
			
		||||
      int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
 | 
			
		||||
      int to_oidx   = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
 | 
			
		||||
      int to_lane   = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
 | 
			
		||||
      
 | 
			
		||||
      const vector_type* from = (const vector_type *)&from_v[from_oidx];
 | 
			
		||||
      vector_type* to = (vector_type *)&to_v[to_oidx];
 | 
			
		||||
      int foidx = Fg->oIndex(from_coor);
 | 
			
		||||
      int fiidx = Fg->iIndex(from_coor);
 | 
			
		||||
      int toidx = Tg->oIndex(to_coor);
 | 
			
		||||
      int tiidx = Tg->iIndex(to_coor);
 | 
			
		||||
      int* tt = table + 4*idx;
 | 
			
		||||
      tt[0] = foidx;
 | 
			
		||||
      tt[1] = fiidx;
 | 
			
		||||
      tt[2] = toidx;
 | 
			
		||||
      tt[3] = tiidx;
 | 
			
		||||
    });
 | 
			
		||||
  
 | 
			
		||||
      scalar_type stmp;
 | 
			
		||||
      for(int w=0;w<words;w++){
 | 
			
		||||
	stmp = getlane(from[w], from_lane);
 | 
			
		||||
	putlane(to[w], stmp, to_lane);
 | 
			
		||||
      }
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
void InsertSliceFast(const Lattice<vobj> &From,Lattice<vobj> & To,int slice, int orthog)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // checks should guarantee that the operations are local
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  GridBase *Fg = From.Grid();
 | 
			
		||||
  GridBase *Tg = To.Grid();
 | 
			
		||||
  assert(!Fg->_isCheckerBoarded);
 | 
			
		||||
  assert(!Tg->_isCheckerBoarded);
 | 
			
		||||
  int Nsimd = Fg->Nsimd();
 | 
			
		||||
  int nF = Fg->_ndimension;
 | 
			
		||||
  int nT = Tg->_ndimension;
 | 
			
		||||
  assert(nF+1 == nT);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////
 | 
			
		||||
  // do the index calc on the GPU
 | 
			
		||||
  ///////////////////////////////////////////////////////////
 | 
			
		||||
  Coordinate f_ostride = Fg->_ostride;
 | 
			
		||||
  Coordinate f_istride = Fg->_istride;
 | 
			
		||||
  Coordinate f_rdimensions = Fg->_rdimensions;
 | 
			
		||||
  Coordinate t_ostride = Tg->_ostride;
 | 
			
		||||
  Coordinate t_istride = Tg->_istride;
 | 
			
		||||
  Coordinate t_rdimensions = Tg->_rdimensions;
 | 
			
		||||
  Coordinate RegionSize = Fg->_ldimensions;
 | 
			
		||||
  size_t nsite = 1;
 | 
			
		||||
  for(int i=0;i<nF;i++) nsite *= RegionSize[i]; // whole volume of lower dim grid
 | 
			
		||||
  int* table_d = (int*)acceleratorAllocDevice(tbytes);
 | 
			
		||||
  acceleratorCopyToDevice(table,table_d,tbytes);
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
@@ -848,22 +735,12 @@ void InsertSliceFast(const Lattice<vobj> &From,Lattice<vobj> & To,int slice, int
 | 
			
		||||
  autoView(to_v,To,AcceleratorWrite);
 | 
			
		||||
  
 | 
			
		||||
  accelerator_for(idx,nsite,1,{
 | 
			
		||||
 | 
			
		||||
      Coordinate from_coor(nF), to_coor(nT);
 | 
			
		||||
      Lexicographic::CoorFromIndex(from_coor,idx,RegionSize);
 | 
			
		||||
      int j=0;
 | 
			
		||||
      for(int i=0;i<nT;i++){
 | 
			
		||||
	if ( i!=orthog ) { 
 | 
			
		||||
	  to_coor[i] = from_coor[j];
 | 
			
		||||
	  j++;
 | 
			
		||||
	} else {
 | 
			
		||||
	  to_coor[i] = slice;
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      int from_oidx = 0; for(int d=0;d<nF;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
 | 
			
		||||
      int from_lane = 0; for(int d=0;d<nF;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
 | 
			
		||||
      int to_oidx   = 0; for(int d=0;d<nT;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
 | 
			
		||||
      int to_lane   = 0; for(int d=0;d<nT;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
 | 
			
		||||
      static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
      int* tt = table_d + 4*idx;
 | 
			
		||||
      int from_oidx = *tt++;
 | 
			
		||||
      int from_lane = *tt++;
 | 
			
		||||
      int to_oidx = *tt++;
 | 
			
		||||
      int to_lane = *tt;
 | 
			
		||||
 | 
			
		||||
      const vector_type* from = (const vector_type *)&from_v[from_oidx];
 | 
			
		||||
      vector_type* to = (vector_type *)&to_v[to_oidx];
 | 
			
		||||
@@ -873,78 +750,57 @@ void InsertSliceFast(const Lattice<vobj> &From,Lattice<vobj> & To,int slice, int
 | 
			
		||||
	stmp = getlane(from[w], from_lane);
 | 
			
		||||
	putlane(to[w], stmp, to_lane);
 | 
			
		||||
      }
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
    });
 | 
			
		||||
  
 | 
			
		||||
template<class vobj>
 | 
			
		||||
void ExtractSliceFast(Lattice<vobj> &To,const Lattice<vobj> & From,int slice, int orthog)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  acceleratorFreeDevice(table_d);    
 | 
			
		||||
  free(table);
 | 
			
		||||
  
 | 
			
		||||
  const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // checks should guarantee that the operations are local
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  GridBase *Fg = From.Grid();
 | 
			
		||||
  GridBase *Tg = To.Grid();
 | 
			
		||||
  assert(!Fg->_isCheckerBoarded);
 | 
			
		||||
  assert(!Tg->_isCheckerBoarded);
 | 
			
		||||
  int Nsimd = Fg->Nsimd();
 | 
			
		||||
  int nF = Fg->_ndimension;
 | 
			
		||||
  int nT = Tg->_ndimension;
 | 
			
		||||
  assert(nT+1 == nF);
 | 
			
		||||
#else  
 | 
			
		||||
  Coordinate ldf = Fg->_ldimensions;
 | 
			
		||||
  Coordinate rdf = Fg->_rdimensions;
 | 
			
		||||
  Coordinate isf = Fg->_istride;
 | 
			
		||||
  Coordinate osf = Fg->_ostride;
 | 
			
		||||
  Coordinate rdt = Tg->_rdimensions;
 | 
			
		||||
  Coordinate ist = Tg->_istride;
 | 
			
		||||
  Coordinate ost = Tg->_ostride;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////
 | 
			
		||||
  // do the index calc on the GPU
 | 
			
		||||
  ///////////////////////////////////////////////////////////
 | 
			
		||||
  Coordinate f_ostride = Fg->_ostride;
 | 
			
		||||
  Coordinate f_istride = Fg->_istride;
 | 
			
		||||
  Coordinate f_rdimensions = Fg->_rdimensions;
 | 
			
		||||
  Coordinate t_ostride = Tg->_ostride;
 | 
			
		||||
  Coordinate t_istride = Tg->_istride;
 | 
			
		||||
  Coordinate t_rdimensions = Tg->_rdimensions;
 | 
			
		||||
  Coordinate RegionSize = Tg->_ldimensions;
 | 
			
		||||
  size_t nsite = 1;
 | 
			
		||||
  for(int i=0;i<nT;i++) nsite *= RegionSize[i]; // whole volume of lower dim grid
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
 | 
			
		||||
  autoView(from_v,From,AcceleratorRead);
 | 
			
		||||
  autoView(to_v,To,AcceleratorWrite);
 | 
			
		||||
 | 
			
		||||
  accelerator_for(idx,nsite,1,{
 | 
			
		||||
 | 
			
		||||
      Coordinate from_coor(nF), to_coor(nT);
 | 
			
		||||
      Lexicographic::CoorFromIndex(to_coor,idx,RegionSize);
 | 
			
		||||
      int j=0;
 | 
			
		||||
      for(int i=0;i<nF;i++){
 | 
			
		||||
	if ( i!=orthog ) { 
 | 
			
		||||
	  from_coor[i] = to_coor[j];
 | 
			
		||||
	  j++;
 | 
			
		||||
	} else {
 | 
			
		||||
	  from_coor[i] = slice;
 | 
			
		||||
	}
 | 
			
		||||
  autoView( t_v , To, CpuWrite);
 | 
			
		||||
  autoView( f_v , From, CpuRead);
 | 
			
		||||
  thread_for(idx,Fg->lSites(),{
 | 
			
		||||
    sobj s;
 | 
			
		||||
    Coordinate Fcoor(nd);
 | 
			
		||||
    Coordinate Tcoor(nd);
 | 
			
		||||
    Lexicographic::CoorFromIndex(Fcoor,idx,ldf);
 | 
			
		||||
    int in_region=1;
 | 
			
		||||
    for(int d=0;d<nd;d++){
 | 
			
		||||
      if ( (Fcoor[d] < FromLowerLeft[d]) || (Fcoor[d]>=FromLowerLeft[d]+RegionSize[d]) ){ 
 | 
			
		||||
	in_region=0;
 | 
			
		||||
      }
 | 
			
		||||
      int from_oidx = 0; for(int d=0;d<nF;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
 | 
			
		||||
      int from_lane = 0; for(int d=0;d<nF;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
 | 
			
		||||
      int to_oidx   = 0; for(int d=0;d<nT;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
 | 
			
		||||
      int to_lane   = 0; for(int d=0;d<nT;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
 | 
			
		||||
 | 
			
		||||
      const vector_type* from = (const vector_type *)&from_v[from_oidx];
 | 
			
		||||
      vector_type* to = (vector_type *)&to_v[to_oidx];
 | 
			
		||||
      
 | 
			
		||||
      scalar_type stmp;
 | 
			
		||||
      Tcoor[d] = ToLowerLeft[d]+ Fcoor[d]-FromLowerLeft[d];
 | 
			
		||||
    }
 | 
			
		||||
    if (in_region) {
 | 
			
		||||
#if 0      
 | 
			
		||||
      Integer idx_f = 0; for(int d=0;d<nd;d++) idx_f+=isf[d]*(Fcoor[d]/rdf[d]); // inner index from
 | 
			
		||||
      Integer idx_t = 0; for(int d=0;d<nd;d++) idx_t+=ist[d]*(Tcoor[d]/rdt[d]); // inner index to
 | 
			
		||||
      Integer odx_f = 0; for(int d=0;d<nd;d++) odx_f+=osf[d]*(Fcoor[d]%rdf[d]); // outer index from
 | 
			
		||||
      Integer odx_t = 0; for(int d=0;d<nd;d++) odx_t+=ost[d]*(Tcoor[d]%rdt[d]); // outer index to
 | 
			
		||||
      scalar_type * fp = (scalar_type *)&f_v[odx_f];
 | 
			
		||||
      scalar_type * tp = (scalar_type *)&t_v[odx_t];
 | 
			
		||||
      for(int w=0;w<words;w++){
 | 
			
		||||
	stmp = getlane(from[w], from_lane);
 | 
			
		||||
	putlane(to[w], stmp, to_lane);
 | 
			
		||||
	tp[w].putlane(fp[w].getlane(idx_f),idx_t);
 | 
			
		||||
      }
 | 
			
		||||
#else
 | 
			
		||||
    peekLocalSite(s,f_v,Fcoor);
 | 
			
		||||
    pokeLocalSite(s,t_v,Tcoor);
 | 
			
		||||
#endif
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice, int orthog)
 | 
			
		||||
{
 | 
			
		||||
@@ -981,14 +837,8 @@ void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice
 | 
			
		||||
    hcoor[orthog] = slice;
 | 
			
		||||
    for(int d=0;d<nh;d++){
 | 
			
		||||
      if ( d!=orthog ) { 
 | 
			
		||||
	hcoor[d]=lcoor[ddl];
 | 
			
		||||
	if ( hg->_checker_dim == d ) {
 | 
			
		||||
	  hcoor[d]=hcoor[d]*2; // factor in the full coor for peekLocalSite
 | 
			
		||||
	  lcoor[ddl]=lcoor[ddl]*2; // factor in the full coor for peekLocalSite
 | 
			
		||||
	}
 | 
			
		||||
	ddl++;
 | 
			
		||||
	hcoor[d]=lcoor[ddl++];
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
    peekLocalSite(s,lowDimv,lcoor);
 | 
			
		||||
    pokeLocalSite(s,higherDimv,hcoor);
 | 
			
		||||
@@ -1009,7 +859,6 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
 | 
			
		||||
  assert(orthog<nh);
 | 
			
		||||
  assert(orthog>=0);
 | 
			
		||||
  assert(hg->_processors[orthog]==1);
 | 
			
		||||
  lowDim.Checkerboard() = higherDim.Checkerboard();
 | 
			
		||||
 | 
			
		||||
  int dl; dl = 0;
 | 
			
		||||
  for(int d=0;d<nh;d++){
 | 
			
		||||
@@ -1027,16 +876,11 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
 | 
			
		||||
    Coordinate lcoor(nl);
 | 
			
		||||
    Coordinate hcoor(nh);
 | 
			
		||||
    lg->LocalIndexToLocalCoor(idx,lcoor);
 | 
			
		||||
    hcoor[orthog] = slice;
 | 
			
		||||
    int ddl=0;
 | 
			
		||||
    hcoor[orthog] = slice;
 | 
			
		||||
    for(int d=0;d<nh;d++){
 | 
			
		||||
      if ( d!=orthog ) { 
 | 
			
		||||
	hcoor[d]=lcoor[ddl];
 | 
			
		||||
	if ( hg->_checker_dim == d ) {
 | 
			
		||||
	  hcoor[d]=hcoor[d]*2;     // factor in the full gridd coor for peekLocalSite
 | 
			
		||||
	  lcoor[ddl]=lcoor[ddl]*2; // factor in the full coor for peekLocalSite
 | 
			
		||||
	}
 | 
			
		||||
	ddl++;
 | 
			
		||||
	hcoor[d]=lcoor[ddl++];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    peekLocalSite(s,higherDimv,hcoor);
 | 
			
		||||
@@ -1045,7 +889,9 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//Can I implement with local copyregion??
 | 
			
		||||
 | 
			
		||||
//Insert subvolume orthogonal to direction 'orthog' with slice index 'slice_lo' from 'lowDim' onto slice index 'slice_hi' of higherDim
 | 
			
		||||
//The local dimensions of both 'lowDim' and 'higherDim' orthogonal to 'orthog' should be the same
 | 
			
		||||
template<class vobj>
 | 
			
		||||
void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
 | 
			
		||||
{
 | 
			
		||||
@@ -1066,18 +912,121 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
 | 
			
		||||
      assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  Coordinate sz = lg->_ldimensions;
 | 
			
		||||
  sz[orthog]=1;
 | 
			
		||||
  Coordinate f_ll(nl,0); f_ll[orthog]=slice_lo;
 | 
			
		||||
  Coordinate t_ll(nh,0); t_ll[orthog]=slice_hi;
 | 
			
		||||
  localCopyRegion(lowDim,higherDim,f_ll,t_ll,sz);
 | 
			
		||||
 | 
			
		||||
#if 1
 | 
			
		||||
  size_t nsite = lg->lSites()/lg->LocalDimensions()[orthog];
 | 
			
		||||
  size_t tbytes = 4*nsite*sizeof(int);
 | 
			
		||||
  int *table = (int*)malloc(tbytes);
 | 
			
		||||
  
 | 
			
		||||
  thread_for(idx,nsite,{
 | 
			
		||||
    Coordinate lcoor(nl);
 | 
			
		||||
    Coordinate hcoor(nh);
 | 
			
		||||
    lcoor[orthog] = slice_lo;
 | 
			
		||||
    hcoor[orthog] = slice_hi;
 | 
			
		||||
    size_t rem = idx;
 | 
			
		||||
    for(int mu=0;mu<nl;mu++){
 | 
			
		||||
      if(mu != orthog){
 | 
			
		||||
	int xmu = rem % lg->LocalDimensions()[mu];  rem /= lg->LocalDimensions()[mu];
 | 
			
		||||
	lcoor[mu] = hcoor[mu] = xmu;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    int loidx = lg->oIndex(lcoor);
 | 
			
		||||
    int liidx = lg->iIndex(lcoor);
 | 
			
		||||
    int hoidx = hg->oIndex(hcoor);
 | 
			
		||||
    int hiidx = hg->iIndex(hcoor);
 | 
			
		||||
    int* tt = table + 4*idx;
 | 
			
		||||
    tt[0] = loidx;
 | 
			
		||||
    tt[1] = liidx;
 | 
			
		||||
    tt[2] = hoidx;
 | 
			
		||||
    tt[3] = hiidx;
 | 
			
		||||
    });
 | 
			
		||||
   
 | 
			
		||||
  int* table_d = (int*)acceleratorAllocDevice(tbytes);
 | 
			
		||||
  acceleratorCopyToDevice(table,table_d,tbytes);
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
 | 
			
		||||
  autoView(lowDim_v,lowDim,AcceleratorRead);
 | 
			
		||||
  autoView(higherDim_v,higherDim,AcceleratorWrite);
 | 
			
		||||
  
 | 
			
		||||
  accelerator_for(idx,nsite,1,{
 | 
			
		||||
      static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
      int* tt = table_d + 4*idx;
 | 
			
		||||
      int from_oidx = *tt++;
 | 
			
		||||
      int from_lane = *tt++;
 | 
			
		||||
      int to_oidx = *tt++;
 | 
			
		||||
      int to_lane = *tt;
 | 
			
		||||
 | 
			
		||||
      const vector_type* from = (const vector_type *)&lowDim_v[from_oidx];
 | 
			
		||||
      vector_type* to = (vector_type *)&higherDim_v[to_oidx];
 | 
			
		||||
      
 | 
			
		||||
      scalar_type stmp;
 | 
			
		||||
      for(int w=0;w<words;w++){
 | 
			
		||||
	stmp = getlane(from[w], from_lane);
 | 
			
		||||
	putlane(to[w], stmp, to_lane);
 | 
			
		||||
      }
 | 
			
		||||
    });
 | 
			
		||||
  
 | 
			
		||||
  acceleratorFreeDevice(table_d);    
 | 
			
		||||
  free(table);
 | 
			
		||||
  
 | 
			
		||||
#else
 | 
			
		||||
  // the above should guarantee that the operations are local
 | 
			
		||||
  autoView(lowDimv,lowDim,CpuRead);
 | 
			
		||||
  autoView(higherDimv,higherDim,CpuWrite);
 | 
			
		||||
  thread_for(idx,lg->lSites(),{
 | 
			
		||||
    sobj s;
 | 
			
		||||
    Coordinate lcoor(nl);
 | 
			
		||||
    Coordinate hcoor(nh);
 | 
			
		||||
    lg->LocalIndexToLocalCoor(idx,lcoor);
 | 
			
		||||
    if( lcoor[orthog] == slice_lo ) { 
 | 
			
		||||
      hcoor=lcoor;
 | 
			
		||||
      hcoor[orthog] = slice_hi;
 | 
			
		||||
      peekLocalSite(s,lowDimv,lcoor);
 | 
			
		||||
      pokeLocalSite(s,higherDimv,hcoor);
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
 | 
			
		||||
{
 | 
			
		||||
  InsertSliceLocal(higherDim,lowDim,slice_hi,slice_lo,orthog);
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
 | 
			
		||||
  GridBase *lg = lowDim.Grid();
 | 
			
		||||
  GridBase *hg = higherDim.Grid();
 | 
			
		||||
  int nl = lg->_ndimension;
 | 
			
		||||
  int nh = hg->_ndimension;
 | 
			
		||||
 | 
			
		||||
  assert(nl == nh);
 | 
			
		||||
  assert(orthog<nh);
 | 
			
		||||
  assert(orthog>=0);
 | 
			
		||||
 | 
			
		||||
  for(int d=0;d<nh;d++){
 | 
			
		||||
    if ( d!=orthog ) {
 | 
			
		||||
    assert(lg->_processors[d]  == hg->_processors[d]);
 | 
			
		||||
    assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
 | 
			
		||||
  }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // the above should guarantee that the operations are local
 | 
			
		||||
  autoView(lowDimv,lowDim,CpuWrite);
 | 
			
		||||
  autoView(higherDimv,higherDim,CpuRead);
 | 
			
		||||
  thread_for(idx,lg->lSites(),{
 | 
			
		||||
    sobj s;
 | 
			
		||||
    Coordinate lcoor(nl);
 | 
			
		||||
    Coordinate hcoor(nh);
 | 
			
		||||
    lg->LocalIndexToLocalCoor(idx,lcoor);
 | 
			
		||||
    if( lcoor[orthog] == slice_lo ) { 
 | 
			
		||||
      hcoor=lcoor;
 | 
			
		||||
      hcoor[orthog] = slice_hi;
 | 
			
		||||
      peekLocalSite(s,higherDimv,hcoor);
 | 
			
		||||
      pokeLocalSite(s,lowDimv,lcoor);
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -1103,7 +1052,7 @@ void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine)
 | 
			
		||||
 | 
			
		||||
  Coordinate fcoor(nd);
 | 
			
		||||
  Coordinate ccoor(nd);
 | 
			
		||||
  for(int64_t g=0;g<fg->gSites();g++){
 | 
			
		||||
  for(int g=0;g<fg->gSites();g++){
 | 
			
		||||
 | 
			
		||||
    fg->GlobalIndexToGlobalCoor(g,fcoor);
 | 
			
		||||
    for(int d=0;d<nd;d++){
 | 
			
		||||
@@ -1789,35 +1738,5 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split)
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
// Faster but less accurate blockProject
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj,class CComplex,int nbasis,class VLattice>
 | 
			
		||||
inline void blockProjectFast(Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
			
		||||
			     const             Lattice<vobj>   &fineData,
 | 
			
		||||
			     const VLattice &Basis)
 | 
			
		||||
{
 | 
			
		||||
  GridBase * fine  = fineData.Grid();
 | 
			
		||||
  GridBase * coarse= coarseData.Grid();
 | 
			
		||||
 | 
			
		||||
  Lattice<iScalar<CComplex> > ip(coarse);
 | 
			
		||||
 | 
			
		||||
  autoView( coarseData_ , coarseData, AcceleratorWrite);
 | 
			
		||||
  autoView( ip_         , ip,         AcceleratorWrite);
 | 
			
		||||
  RealD t_IP=0;
 | 
			
		||||
  RealD t_co=0;
 | 
			
		||||
  for(int v=0;v<nbasis;v++) {
 | 
			
		||||
    t_IP-=usecond();
 | 
			
		||||
    blockInnerProductD(ip,Basis[v],fineData); 
 | 
			
		||||
    t_IP+=usecond();
 | 
			
		||||
    t_co-=usecond();
 | 
			
		||||
    accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
 | 
			
		||||
	convertType(coarseData_[sc](v),ip_[sc]);
 | 
			
		||||
      });
 | 
			
		||||
    t_co+=usecond();
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -45,188 +45,6 @@ struct CshiftImplGauge: public CshiftImplBase<typename Gimpl::GaugeLinkField::ve
 | 
			
		||||
  typename Gimpl::GaugeLinkField Cshift(const typename Gimpl::GaugeLinkField &in, int dir, int shift) const override{ return Gimpl::CshiftLink(in,dir,shift); }
 | 
			
		||||
};  
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 *
 | 
			
		||||
 * TODO: 
 | 
			
		||||
 *  -- address elementsof vobj via thread block in Scatter/Gather
 | 
			
		||||
 *  -- overlap comms with motion in Face_exchange
 | 
			
		||||
 *
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void ScatterSlice(const deviceVector<vobj> &buf,
 | 
			
		||||
					      Lattice<vobj> &lat,
 | 
			
		||||
					      int x,
 | 
			
		||||
					      int dim,
 | 
			
		||||
					      int offset=0)
 | 
			
		||||
{
 | 
			
		||||
  const int Nsimd=vobj::Nsimd();
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  GridBase *grid = lat.Grid();
 | 
			
		||||
  Coordinate simd = grid->_simd_layout;
 | 
			
		||||
  int Nd          = grid->Nd();
 | 
			
		||||
  int block       = grid->_slice_block[dim];
 | 
			
		||||
  int stride      = grid->_slice_stride[dim];
 | 
			
		||||
  int nblock      = grid->_slice_nblock[dim];
 | 
			
		||||
  int rd          = grid->_rdimensions[dim];
 | 
			
		||||
 | 
			
		||||
  int ox = x%rd;
 | 
			
		||||
  int ix = x/rd;
 | 
			
		||||
 | 
			
		||||
  int isites = 1; for(int d=0;d<Nd;d++) if( d!=dim) isites*=simd[d];
 | 
			
		||||
 | 
			
		||||
  Coordinate rsimd= simd;  rsimd[dim]=1; // maybe reduce Nsimd
 | 
			
		||||
 | 
			
		||||
  int rNsimd = 1; for(int d=0;d<Nd;d++) rNsimd*=rsimd[d];
 | 
			
		||||
  int rNsimda= Nsimd/simd[dim]; // should be equal
 | 
			
		||||
  assert(rNsimda==rNsimd);
 | 
			
		||||
  int face_ovol=block*nblock;
 | 
			
		||||
 | 
			
		||||
  //  assert(buf.size()==face_ovol*rNsimd);
 | 
			
		||||
 | 
			
		||||
  /*This will work GPU ONLY unless rNsimd is put in the lexico index*/
 | 
			
		||||
  //Let's make it work on GPU and then make a special accelerator_for that
 | 
			
		||||
  //doesn't hide the SIMD direction and keeps explicit in the threadIdx
 | 
			
		||||
  //for cross platform
 | 
			
		||||
  // FIXME -- can put internal indices into thread loop
 | 
			
		||||
  auto buf_p = & buf[0];
 | 
			
		||||
  autoView(lat_v, lat, AcceleratorWrite);
 | 
			
		||||
  accelerator_for(ss, face_ovol/simd[dim],Nsimd,{
 | 
			
		||||
 | 
			
		||||
    // scalar layout won't coalesce
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
      {
 | 
			
		||||
	int blane=acceleratorSIMTlane(Nsimd); // buffer lane
 | 
			
		||||
#else
 | 
			
		||||
      for(int blane=0;blane<Nsimd;blane++) {
 | 
			
		||||
#endif
 | 
			
		||||
	int olane=blane%rNsimd;               // reduced lattice lane
 | 
			
		||||
	int obit =blane/rNsimd;
 | 
			
		||||
 | 
			
		||||
	///////////////////////////////////////////////////////////////
 | 
			
		||||
	// osite -- potentially one bit from simd in the buffer: (ss<<1)|obit
 | 
			
		||||
	///////////////////////////////////////////////////////////////
 | 
			
		||||
	int ssp = ss*simd[dim]+obit;
 | 
			
		||||
	int b    = ssp%block;
 | 
			
		||||
	int n    = ssp/block;
 | 
			
		||||
	int osite= b+n*stride + ox*block;
 | 
			
		||||
	
 | 
			
		||||
	////////////////////////////////////////////
 | 
			
		||||
	// isite -- map lane within buffer to lane within lattice
 | 
			
		||||
	////////////////////////////////////////////
 | 
			
		||||
	Coordinate icoor;
 | 
			
		||||
	int lane;
 | 
			
		||||
	Lexicographic::CoorFromIndex(icoor,olane,rsimd);
 | 
			
		||||
	icoor[dim]=ix;
 | 
			
		||||
	Lexicographic::IndexFromCoor(icoor,lane,simd);
 | 
			
		||||
	
 | 
			
		||||
	///////////////////////////////////////////
 | 
			
		||||
	// Transfer into lattice - will coalesce
 | 
			
		||||
	///////////////////////////////////////////
 | 
			
		||||
	//	sobj obj = extractLane(blane,buf_p[ss+offset]);
 | 
			
		||||
	//	insertLane(lane,lat_v[osite],obj);
 | 
			
		||||
	const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
	vector_type * from = (vector_type *)&buf_p[ss+offset];
 | 
			
		||||
	vector_type * to   = (vector_type *)&lat_v[osite];
 | 
			
		||||
	scalar_type stmp;
 | 
			
		||||
	for(int w=0;w<words;w++){
 | 
			
		||||
	  stmp = getlane(from[w], blane);
 | 
			
		||||
	  putlane(to[w], stmp, lane);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void GatherSlice(deviceVector<vobj> &buf,
 | 
			
		||||
					     const Lattice<vobj> &lat,
 | 
			
		||||
					     int x,
 | 
			
		||||
					     int dim,
 | 
			
		||||
					     int offset=0)
 | 
			
		||||
{
 | 
			
		||||
  const int Nsimd=vobj::Nsimd();
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  autoView(lat_v, lat, AcceleratorRead);
 | 
			
		||||
 | 
			
		||||
  GridBase *grid = lat.Grid();
 | 
			
		||||
  Coordinate simd = grid->_simd_layout;
 | 
			
		||||
  int Nd          = grid->Nd();
 | 
			
		||||
  int block       = grid->_slice_block[dim];
 | 
			
		||||
  int stride      = grid->_slice_stride[dim];
 | 
			
		||||
  int nblock      = grid->_slice_nblock[dim];
 | 
			
		||||
  int rd          = grid->_rdimensions[dim];
 | 
			
		||||
 | 
			
		||||
  int ox = x%rd;
 | 
			
		||||
  int ix = x/rd;
 | 
			
		||||
 | 
			
		||||
  int isites = 1; for(int d=0;d<Nd;d++) if( d!=dim) isites*=simd[d];
 | 
			
		||||
 | 
			
		||||
  Coordinate rsimd= simd;  rsimd[dim]=1; // maybe reduce Nsimd
 | 
			
		||||
 | 
			
		||||
  int rNsimd = 1; for(int d=0;d<Nd;d++) rNsimd*=rsimd[d];
 | 
			
		||||
  
 | 
			
		||||
  int face_ovol=block*nblock;
 | 
			
		||||
 | 
			
		||||
  //  assert(buf.size()==face_ovol*rNsimd);
 | 
			
		||||
 | 
			
		||||
  /*This will work GPU ONLY unless rNsimd is put in the lexico index*/
 | 
			
		||||
  //Let's make it work on GPU and then make a special accelerator_for that
 | 
			
		||||
  //doesn't hide the SIMD direction and keeps explicit in the threadIdx
 | 
			
		||||
  //for cross platform
 | 
			
		||||
  //For CPU perhaps just run a loop over Nsimd
 | 
			
		||||
  auto buf_p = & buf[0];
 | 
			
		||||
  accelerator_for(ss, face_ovol/simd[dim],Nsimd,{
 | 
			
		||||
 | 
			
		||||
    // scalar layout won't coalesce
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
      {
 | 
			
		||||
	int blane=acceleratorSIMTlane(Nsimd); // buffer lane
 | 
			
		||||
#else
 | 
			
		||||
      for(int blane=0;blane<Nsimd;blane++) {
 | 
			
		||||
#endif
 | 
			
		||||
	int olane=blane%rNsimd;               // reduced lattice lane
 | 
			
		||||
	int obit =blane/rNsimd;
 | 
			
		||||
	
 | 
			
		||||
	////////////////////////////////////////////
 | 
			
		||||
	// osite
 | 
			
		||||
	////////////////////////////////////////////
 | 
			
		||||
	int ssp = ss*simd[dim]+obit;
 | 
			
		||||
	int b    = ssp%block;
 | 
			
		||||
	int n    = ssp/block;
 | 
			
		||||
	int osite= b+n*stride + ox*block;
 | 
			
		||||
 | 
			
		||||
	////////////////////////////////////////////
 | 
			
		||||
	// isite -- map lane within buffer to lane within lattice
 | 
			
		||||
	////////////////////////////////////////////
 | 
			
		||||
	Coordinate icoor;
 | 
			
		||||
	int lane;
 | 
			
		||||
	Lexicographic::CoorFromIndex(icoor,olane,rsimd);
 | 
			
		||||
	icoor[dim]=ix;
 | 
			
		||||
	Lexicographic::IndexFromCoor(icoor,lane,simd);
 | 
			
		||||
	
 | 
			
		||||
	///////////////////////////////////////////
 | 
			
		||||
	// Take out of lattice
 | 
			
		||||
	///////////////////////////////////////////
 | 
			
		||||
	//	sobj obj = extractLane(lane,lat_v[osite]);
 | 
			
		||||
	//	insertLane(blane,buf_p[ss+offset],obj);
 | 
			
		||||
	const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
	vector_type * to    = (vector_type *)&buf_p[ss+offset];
 | 
			
		||||
	vector_type * from  = (vector_type *)&lat_v[osite];
 | 
			
		||||
	scalar_type stmp;
 | 
			
		||||
	for(int w=0;w<words;w++){
 | 
			
		||||
	  stmp = getlane(from[w], lane);
 | 
			
		||||
	  putlane(to[w], stmp, blane);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class PaddedCell {
 | 
			
		||||
public:
 | 
			
		||||
  GridCartesian * unpadded_grid;
 | 
			
		||||
@@ -245,18 +63,14 @@ public:
 | 
			
		||||
    dims=_grid->Nd();
 | 
			
		||||
    AllocateGrids();
 | 
			
		||||
    Coordinate local     =unpadded_grid->LocalDimensions();
 | 
			
		||||
    Coordinate procs     =unpadded_grid->ProcessorGrid();
 | 
			
		||||
    for(int d=0;d<dims;d++){
 | 
			
		||||
      if ( procs[d] > 1 ) assert(local[d]>=depth);
 | 
			
		||||
      assert(local[d]>=depth);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void DeleteGrids(void)
 | 
			
		||||
  {
 | 
			
		||||
    Coordinate processors=unpadded_grid->_processors;
 | 
			
		||||
    for(int d=0;d<grids.size();d++){
 | 
			
		||||
      if ( processors[d] > 1 ) { 
 | 
			
		||||
	delete grids[d];
 | 
			
		||||
      }
 | 
			
		||||
      delete grids[d];
 | 
			
		||||
    }
 | 
			
		||||
    grids.resize(0);
 | 
			
		||||
  };
 | 
			
		||||
@@ -267,36 +81,27 @@ public:
 | 
			
		||||
    Coordinate processors=unpadded_grid->_processors;
 | 
			
		||||
    Coordinate plocal    =unpadded_grid->LocalDimensions();
 | 
			
		||||
    Coordinate global(dims);
 | 
			
		||||
    GridCartesian *old_grid = unpadded_grid;
 | 
			
		||||
 | 
			
		||||
    // expand up one dim at a time
 | 
			
		||||
    for(int d=0;d<dims;d++){
 | 
			
		||||
 | 
			
		||||
      if ( processors[d] > 1 ) { 
 | 
			
		||||
	plocal[d] += 2*depth; 
 | 
			
		||||
      plocal[d] += 2*depth; 
 | 
			
		||||
 | 
			
		||||
	for(int d=0;d<dims;d++){
 | 
			
		||||
	  global[d] = plocal[d]*processors[d];
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	old_grid = new GridCartesian(global,simd,processors);
 | 
			
		||||
      for(int d=0;d<dims;d++){
 | 
			
		||||
	global[d] = plocal[d]*processors[d];
 | 
			
		||||
      }
 | 
			
		||||
      grids.push_back(old_grid);
 | 
			
		||||
 | 
			
		||||
      grids.push_back(new GridCartesian(global,simd,processors));
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  inline Lattice<vobj> Extract(const Lattice<vobj> &in) const
 | 
			
		||||
  {
 | 
			
		||||
    Coordinate processors=unpadded_grid->_processors;
 | 
			
		||||
 | 
			
		||||
    Lattice<vobj> out(unpadded_grid);
 | 
			
		||||
 | 
			
		||||
    Coordinate local     =unpadded_grid->LocalDimensions();
 | 
			
		||||
    // depends on the MPI spread      
 | 
			
		||||
    Coordinate fll(dims,depth);
 | 
			
		||||
    Coordinate fll(dims,depth); // depends on the MPI spread
 | 
			
		||||
    Coordinate tll(dims,0); // depends on the MPI spread
 | 
			
		||||
    for(int d=0;d<dims;d++){
 | 
			
		||||
      if( processors[d]==1 ) fll[d]=0;
 | 
			
		||||
    }
 | 
			
		||||
    localCopyRegion(in,out,fll,tll,local);
 | 
			
		||||
    return out;
 | 
			
		||||
  }
 | 
			
		||||
@@ -311,22 +116,10 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
    return tmp;
 | 
			
		||||
  }
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  inline Lattice<vobj> ExchangePeriodic(const Lattice<vobj> &in) const
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *old_grid = in.Grid();
 | 
			
		||||
    int dims = old_grid->Nd();
 | 
			
		||||
    Lattice<vobj> tmp = in;
 | 
			
		||||
    for(int d=0;d<dims;d++){
 | 
			
		||||
      tmp = ExpandPeriodic(d,tmp); // rvalue && assignment
 | 
			
		||||
    }
 | 
			
		||||
    return tmp;
 | 
			
		||||
  }
 | 
			
		||||
  // expand up one dim at a time
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  inline Lattice<vobj> Expand(int dim, const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
 | 
			
		||||
  {
 | 
			
		||||
    Coordinate processors=unpadded_grid->_processors;
 | 
			
		||||
    GridBase *old_grid = in.Grid();
 | 
			
		||||
    GridCartesian *new_grid = grids[dim];//These are new grids
 | 
			
		||||
    Lattice<vobj>  padded(new_grid);
 | 
			
		||||
@@ -336,266 +129,46 @@ public:
 | 
			
		||||
    if(dim==0) conformable(old_grid,unpadded_grid);
 | 
			
		||||
    else       conformable(old_grid,grids[dim-1]);
 | 
			
		||||
 | 
			
		||||
    std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl;
 | 
			
		||||
 | 
			
		||||
    double tins=0, tshift=0;
 | 
			
		||||
    
 | 
			
		||||
    int islocal = 0 ;
 | 
			
		||||
    if ( processors[dim] == 1 ) islocal = 1;
 | 
			
		||||
 | 
			
		||||
    if ( islocal ) {
 | 
			
		||||
 | 
			
		||||
      // replace with a copy and maybe grid swizzle
 | 
			
		||||
      // return in;??
 | 
			
		||||
      double t = usecond();
 | 
			
		||||
      padded = in;
 | 
			
		||||
      tins += usecond() - t;
 | 
			
		||||
      
 | 
			
		||||
    } else {
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////////////////
 | 
			
		||||
      // Replace sequence with
 | 
			
		||||
      // ---------------------
 | 
			
		||||
      // (i) Gather high face(s); start comms
 | 
			
		||||
      // (ii) Gather low  face(s); start comms
 | 
			
		||||
      // (iii) Copy middle bit with localCopyRegion
 | 
			
		||||
      // (iv) Complete high face(s), insert slice(s)
 | 
			
		||||
      // (iv) Complete low  face(s), insert slice(s)
 | 
			
		||||
      //////////////////////////////////////////////
 | 
			
		||||
      // Middle bit
 | 
			
		||||
      double t = usecond();
 | 
			
		||||
      for(int x=0;x<local[dim];x++){
 | 
			
		||||
	InsertSliceLocal(in,padded,x,depth+x,dim);
 | 
			
		||||
      }
 | 
			
		||||
      tins += usecond() - t;
 | 
			
		||||
    
 | 
			
		||||
      // High bit
 | 
			
		||||
      t = usecond();
 | 
			
		||||
      shifted = cshift.Cshift(in,dim,depth);
 | 
			
		||||
      tshift += usecond() - t;
 | 
			
		||||
 | 
			
		||||
      t=usecond();
 | 
			
		||||
      for(int x=0;x<depth;x++){
 | 
			
		||||
	InsertSliceLocal(shifted,padded,local[dim]-depth+x,depth+local[dim]+x,dim);
 | 
			
		||||
      }
 | 
			
		||||
      tins += usecond() - t;
 | 
			
		||||
    
 | 
			
		||||
      // Low bit
 | 
			
		||||
      t = usecond();
 | 
			
		||||
      shifted = cshift.Cshift(in,dim,-depth);
 | 
			
		||||
      tshift += usecond() - t;
 | 
			
		||||
    
 | 
			
		||||
      t = usecond();
 | 
			
		||||
      for(int x=0;x<depth;x++){
 | 
			
		||||
	InsertSliceLocal(shifted,padded,x,x,dim);
 | 
			
		||||
      }
 | 
			
		||||
      tins += usecond() - t;
 | 
			
		||||
 | 
			
		||||
    // Middle bit
 | 
			
		||||
    double t = usecond();
 | 
			
		||||
    for(int x=0;x<local[dim];x++){
 | 
			
		||||
      InsertSliceLocal(in,padded,x,depth+x,dim);
 | 
			
		||||
    }
 | 
			
		||||
    tins += usecond() - t;
 | 
			
		||||
    
 | 
			
		||||
    // High bit
 | 
			
		||||
    t = usecond();
 | 
			
		||||
    shifted = cshift.Cshift(in,dim,depth);
 | 
			
		||||
    tshift += usecond() - t;
 | 
			
		||||
 | 
			
		||||
    t=usecond();
 | 
			
		||||
    for(int x=0;x<depth;x++){
 | 
			
		||||
      InsertSliceLocal(shifted,padded,local[dim]-depth+x,depth+local[dim]+x,dim);
 | 
			
		||||
    }
 | 
			
		||||
    tins += usecond() - t;
 | 
			
		||||
    
 | 
			
		||||
    // Low bit
 | 
			
		||||
    t = usecond();
 | 
			
		||||
    shifted = cshift.Cshift(in,dim,-depth);
 | 
			
		||||
    tshift += usecond() - t;
 | 
			
		||||
    
 | 
			
		||||
    t = usecond();
 | 
			
		||||
    for(int x=0;x<depth;x++){
 | 
			
		||||
      InsertSliceLocal(shifted,padded,x,x,dim);
 | 
			
		||||
    }
 | 
			
		||||
    tins += usecond() - t;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogPerformance << "PaddedCell::Expand timings: cshift:" << tshift/1000 << "ms, insert-slice:" << tins/1000 << "ms" << std::endl;
 | 
			
		||||
    
 | 
			
		||||
    return padded;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  inline Lattice<vobj> ExpandPeriodic(int dim, const Lattice<vobj> &in) const
 | 
			
		||||
  {
 | 
			
		||||
    Coordinate processors=unpadded_grid->_processors;
 | 
			
		||||
    GridBase *old_grid = in.Grid();
 | 
			
		||||
    GridCartesian *new_grid = grids[dim];//These are new grids
 | 
			
		||||
    Lattice<vobj>  padded(new_grid);
 | 
			
		||||
    //    Lattice<vobj> shifted(old_grid);    
 | 
			
		||||
    Coordinate local     =old_grid->LocalDimensions();
 | 
			
		||||
    Coordinate plocal    =new_grid->LocalDimensions();
 | 
			
		||||
    if(dim==0) conformable(old_grid,unpadded_grid);
 | 
			
		||||
    else       conformable(old_grid,grids[dim-1]);
 | 
			
		||||
 | 
			
		||||
    //    std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl;
 | 
			
		||||
    double tins=0, tshift=0;
 | 
			
		||||
 | 
			
		||||
    int islocal = 0 ;
 | 
			
		||||
    if ( processors[dim] == 1 ) islocal = 1;
 | 
			
		||||
 | 
			
		||||
    if ( islocal ) {
 | 
			
		||||
      padded=in; // slightly different interface could avoid a copy operation
 | 
			
		||||
    } else {
 | 
			
		||||
      Face_exchange(in,padded,dim,depth);
 | 
			
		||||
      return padded;
 | 
			
		||||
    }
 | 
			
		||||
    return padded;
 | 
			
		||||
  }
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  void Face_exchange(const Lattice<vobj> &from,
 | 
			
		||||
		     Lattice<vobj> &to,
 | 
			
		||||
		     int dimension,int depth) const
 | 
			
		||||
  {
 | 
			
		||||
    typedef typename vobj::vector_type vector_type;
 | 
			
		||||
    typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
    typedef typename vobj::scalar_object sobj;
 | 
			
		||||
 | 
			
		||||
    RealD t_gather=0.0;
 | 
			
		||||
    RealD t_scatter=0.0;
 | 
			
		||||
    RealD t_comms=0.0;
 | 
			
		||||
    RealD t_copy=0.0;
 | 
			
		||||
    
 | 
			
		||||
    //    std::cout << GridLogMessage << "dimension " <<dimension<<std::endl;
 | 
			
		||||
    //    DumpSliceNorm(std::string("Face_exchange from"),from,dimension);
 | 
			
		||||
    GridBase *grid=from.Grid();
 | 
			
		||||
    GridBase *new_grid=to.Grid();
 | 
			
		||||
 | 
			
		||||
    Coordinate lds = from.Grid()->_ldimensions;
 | 
			
		||||
    Coordinate nlds=   to.Grid()->_ldimensions;
 | 
			
		||||
    Coordinate simd= from.Grid()->_simd_layout;
 | 
			
		||||
    int ld    = lds[dimension];
 | 
			
		||||
    int nld   = to.Grid()->_ldimensions[dimension];
 | 
			
		||||
    const int Nsimd = vobj::Nsimd();
 | 
			
		||||
 | 
			
		||||
    assert(depth<=lds[dimension]); // A must be on neighbouring node
 | 
			
		||||
    assert(depth>0);   // A caller bug if zero
 | 
			
		||||
    assert(ld+2*depth==nld);
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Face size and byte calculations
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    int buffer_size = 1;
 | 
			
		||||
    for(int d=0;d<lds.size();d++){
 | 
			
		||||
      if ( d!= dimension) buffer_size=buffer_size*lds[d];
 | 
			
		||||
    }
 | 
			
		||||
    buffer_size = buffer_size  / Nsimd;
 | 
			
		||||
    int rNsimd = Nsimd / simd[dimension];
 | 
			
		||||
    assert( buffer_size == from.Grid()->_slice_nblock[dimension]*from.Grid()->_slice_block[dimension] / simd[dimension]);
 | 
			
		||||
 | 
			
		||||
    static deviceVector<vobj> send_buf; 
 | 
			
		||||
    static deviceVector<vobj> recv_buf;
 | 
			
		||||
    send_buf.resize(buffer_size*2*depth);    
 | 
			
		||||
    recv_buf.resize(buffer_size*2*depth);
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
    static hostVector<vobj> hsend_buf; 
 | 
			
		||||
    static hostVector<vobj> hrecv_buf;
 | 
			
		||||
    hsend_buf.resize(buffer_size*2*depth);    
 | 
			
		||||
    hrecv_buf.resize(buffer_size*2*depth);
 | 
			
		||||
#endif    
 | 
			
		||||
 | 
			
		||||
    std::vector<MpiCommsRequest_t> fwd_req;   
 | 
			
		||||
    std::vector<MpiCommsRequest_t> bwd_req;   
 | 
			
		||||
 | 
			
		||||
    int words = buffer_size;
 | 
			
		||||
    int bytes = words * sizeof(vobj);
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Communication coords
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    int comm_proc = 1;
 | 
			
		||||
    int xmit_to_rank;
 | 
			
		||||
    int recv_from_rank;
 | 
			
		||||
    grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Gather all surface terms up to depth "d"
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    RealD t;
 | 
			
		||||
    RealD t_tot=-usecond();
 | 
			
		||||
    int plane=0;
 | 
			
		||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
			
		||||
      int tag = d*1024 + dimension*2+0;
 | 
			
		||||
 | 
			
		||||
      t=usecond();
 | 
			
		||||
      GatherSlice(send_buf,from,d,dimension,plane*buffer_size); plane++;
 | 
			
		||||
      t_gather+=usecond()-t;
 | 
			
		||||
 | 
			
		||||
      t=usecond();
 | 
			
		||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
			
		||||
      grid->SendToRecvFromBegin(fwd_req,
 | 
			
		||||
				(void *)&send_buf[d*buffer_size], xmit_to_rank,
 | 
			
		||||
				(void *)&recv_buf[d*buffer_size], recv_from_rank, bytes, tag);
 | 
			
		||||
#else
 | 
			
		||||
      acceleratorCopyFromDevice(&send_buf[d*buffer_size],&hsend_buf[d*buffer_size],bytes);
 | 
			
		||||
      grid->SendToRecvFromBegin(fwd_req,
 | 
			
		||||
				(void *)&hsend_buf[d*buffer_size], xmit_to_rank,
 | 
			
		||||
				(void *)&hrecv_buf[d*buffer_size], recv_from_rank, bytes, tag);
 | 
			
		||||
#endif
 | 
			
		||||
      t_comms+=usecond()-t;
 | 
			
		||||
     }
 | 
			
		||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
			
		||||
      int tag = d*1024 + dimension*2+1;
 | 
			
		||||
 | 
			
		||||
      t=usecond();
 | 
			
		||||
      GatherSlice(send_buf,from,ld-depth+d,dimension,plane*buffer_size); plane++;
 | 
			
		||||
      t_gather+= usecond() - t;
 | 
			
		||||
 | 
			
		||||
      t=usecond();
 | 
			
		||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
			
		||||
      grid->SendToRecvFromBegin(bwd_req,
 | 
			
		||||
				(void *)&send_buf[(d+depth)*buffer_size], recv_from_rank,
 | 
			
		||||
				(void *)&recv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag);
 | 
			
		||||
#else
 | 
			
		||||
      acceleratorCopyFromDevice(&send_buf[(d+depth)*buffer_size],&hsend_buf[(d+depth)*buffer_size],bytes);
 | 
			
		||||
      grid->SendToRecvFromBegin(bwd_req,
 | 
			
		||||
				(void *)&hsend_buf[(d+depth)*buffer_size], recv_from_rank,
 | 
			
		||||
				(void *)&hrecv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag);
 | 
			
		||||
#endif      
 | 
			
		||||
      t_comms+=usecond()-t;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Copy interior -- overlap this with comms
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    int Nd = new_grid->Nd();
 | 
			
		||||
    Coordinate LL(Nd,0);
 | 
			
		||||
    Coordinate sz = grid->_ldimensions;
 | 
			
		||||
    Coordinate toLL(Nd,0);
 | 
			
		||||
    toLL[dimension]=depth;
 | 
			
		||||
    t=usecond();
 | 
			
		||||
    localCopyRegion(from,to,LL,toLL,sz);
 | 
			
		||||
    t_copy= usecond() - t;
 | 
			
		||||
    
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Scatter all faces
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    plane=0;
 | 
			
		||||
 | 
			
		||||
    t=usecond();
 | 
			
		||||
    grid->CommsComplete(fwd_req);
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
			
		||||
      acceleratorCopyToDevice(&hrecv_buf[d*buffer_size],&recv_buf[d*buffer_size],bytes);
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
    t_comms+= usecond() - t;
 | 
			
		||||
    
 | 
			
		||||
    t=usecond();
 | 
			
		||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
			
		||||
      ScatterSlice(recv_buf,to,nld-depth+d,dimension,plane*buffer_size); plane++;
 | 
			
		||||
    }
 | 
			
		||||
    t_scatter= usecond() - t;
 | 
			
		||||
 | 
			
		||||
    t=usecond();
 | 
			
		||||
    grid->CommsComplete(bwd_req);
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
			
		||||
      acceleratorCopyToDevice(&hrecv_buf[(d+depth)*buffer_size],&recv_buf[(d+depth)*buffer_size],bytes);
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
    t_comms+= usecond() - t;
 | 
			
		||||
    
 | 
			
		||||
    t=usecond();
 | 
			
		||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
			
		||||
      ScatterSlice(recv_buf,to,d,dimension,plane*buffer_size); plane++;
 | 
			
		||||
    }
 | 
			
		||||
    t_scatter+= usecond() - t;
 | 
			
		||||
    t_tot+=usecond();
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: gather :" << t_gather/1000  << "ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: scatter:" << t_scatter/1000   << "ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: copy   :" << t_copy/1000      << "ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: comms  :" << t_comms/1000     << "ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: total  :" << t_tot/1000     << "ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: gather :" << depth*4.0*bytes/t_gather << "MB/s"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: scatter:" << depth*4.0*bytes/t_scatter<< "MB/s"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: comms  :" << (RealD)4.0*bytes/t_comms   << "MB/s"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: face bytes  :" << depth*bytes/1e6 << "MB"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
};
 | 
			
		||||
 
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -165,7 +165,7 @@ class BinaryIO {
 | 
			
		||||
	 * FIXME -- 128^3 x 256 x 16 will overflow.
 | 
			
		||||
	 */
 | 
			
		||||
	
 | 
			
		||||
	int64_t global_site;
 | 
			
		||||
	int global_site;
 | 
			
		||||
 | 
			
		||||
	Lexicographic::CoorFromIndex(coor,local_site,local_vol);
 | 
			
		||||
 | 
			
		||||
@@ -175,8 +175,8 @@ class BinaryIO {
 | 
			
		||||
 | 
			
		||||
	Lexicographic::IndexFromCoor(coor,global_site,global_vol);
 | 
			
		||||
 | 
			
		||||
	uint64_t gsite29   = global_site%29;
 | 
			
		||||
	uint64_t gsite31   = global_site%31;
 | 
			
		||||
	uint32_t gsite29   = global_site%29;
 | 
			
		||||
	uint32_t gsite31   = global_site%31;
 | 
			
		||||
	
 | 
			
		||||
	site_crc = crc32(0,(unsigned char *)site_buf,sizeof(fobj));
 | 
			
		||||
	//	std::cout << "Site "<<local_site << " crc "<<std::hex<<site_crc<<std::dec<<std::endl;
 | 
			
		||||
@@ -545,9 +545,7 @@ class BinaryIO {
 | 
			
		||||
				       const std::string &format,
 | 
			
		||||
				       uint32_t &nersc_csum,
 | 
			
		||||
				       uint32_t &scidac_csuma,
 | 
			
		||||
				       uint32_t &scidac_csumb,
 | 
			
		||||
				       int control=BINARYIO_LEXICOGRAPHIC
 | 
			
		||||
				       )
 | 
			
		||||
				       uint32_t &scidac_csumb)
 | 
			
		||||
  {
 | 
			
		||||
    typedef typename vobj::scalar_object sobj;
 | 
			
		||||
    typedef typename vobj::Realified::scalar_type word;    word w=0;
 | 
			
		||||
@@ -558,7 +556,7 @@ class BinaryIO {
 | 
			
		||||
    std::vector<sobj> scalardata(lsites); 
 | 
			
		||||
    std::vector<fobj>     iodata(lsites); // Munge, checksum, byte order in here
 | 
			
		||||
    
 | 
			
		||||
    IOobject(w,grid,iodata,file,offset,format,BINARYIO_READ|control,
 | 
			
		||||
    IOobject(w,grid,iodata,file,offset,format,BINARYIO_READ|BINARYIO_LEXICOGRAPHIC,
 | 
			
		||||
	     nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
 | 
			
		||||
    GridStopWatch timer; 
 | 
			
		||||
@@ -584,8 +582,7 @@ class BinaryIO {
 | 
			
		||||
					  const std::string &format,
 | 
			
		||||
					  uint32_t &nersc_csum,
 | 
			
		||||
					  uint32_t &scidac_csuma,
 | 
			
		||||
					  uint32_t &scidac_csumb,
 | 
			
		||||
					  int control=BINARYIO_LEXICOGRAPHIC)
 | 
			
		||||
					  uint32_t &scidac_csumb)
 | 
			
		||||
  {
 | 
			
		||||
    typedef typename vobj::scalar_object sobj;
 | 
			
		||||
    typedef typename vobj::Realified::scalar_type word;    word w=0;
 | 
			
		||||
@@ -610,7 +607,7 @@ class BinaryIO {
 | 
			
		||||
    while (attemptsLeft >= 0)
 | 
			
		||||
    {
 | 
			
		||||
      grid->Barrier();
 | 
			
		||||
      IOobject(w,grid,iodata,file,offset,format,BINARYIO_WRITE|control,
 | 
			
		||||
      IOobject(w,grid,iodata,file,offset,format,BINARYIO_WRITE|BINARYIO_LEXICOGRAPHIC,
 | 
			
		||||
	             nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
      if (checkWrite)
 | 
			
		||||
      {
 | 
			
		||||
@@ -620,7 +617,7 @@ class BinaryIO {
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage << "writeLatticeObject: read back object" << std::endl;
 | 
			
		||||
        grid->Barrier();
 | 
			
		||||
        IOobject(w,grid,ckiodata,file,ckoffset,format,BINARYIO_READ|control,
 | 
			
		||||
        IOobject(w,grid,ckiodata,file,ckoffset,format,BINARYIO_READ|BINARYIO_LEXICOGRAPHIC,
 | 
			
		||||
	               cknersc_csum,ckscidac_csuma,ckscidac_csumb);
 | 
			
		||||
        if ((cknersc_csum != nersc_csum) or (ckscidac_csuma != scidac_csuma) or (ckscidac_csumb != scidac_csumb))
 | 
			
		||||
        {
 | 
			
		||||
 
 | 
			
		||||
@@ -162,14 +162,8 @@ template<class vobj> void ScidacMetaData(Lattice<vobj> & field,
 | 
			
		||||
 {
 | 
			
		||||
   uint32_t scidac_checksuma = stoull(scidacChecksum_.suma,0,16);
 | 
			
		||||
   uint32_t scidac_checksumb = stoull(scidacChecksum_.sumb,0,16);
 | 
			
		||||
   std::cout << GridLogMessage << " scidacChecksumVerify computed "<<scidac_csuma<<" expected "<<scidac_checksuma <<std::endl;
 | 
			
		||||
   std::cout << GridLogMessage << " scidacChecksumVerify computed "<<scidac_csumb<<" expected "<<scidac_checksumb <<std::endl;
 | 
			
		||||
   if ( scidac_csuma !=scidac_checksuma) {
 | 
			
		||||
     return 0;
 | 
			
		||||
   };
 | 
			
		||||
   if ( scidac_csumb !=scidac_checksumb) {
 | 
			
		||||
     return 0;
 | 
			
		||||
   };
 | 
			
		||||
   if ( scidac_csuma !=scidac_checksuma) return 0;
 | 
			
		||||
   if ( scidac_csumb !=scidac_checksumb) return 0;
 | 
			
		||||
   return 1;
 | 
			
		||||
 }
 | 
			
		||||
 | 
			
		||||
@@ -212,7 +206,7 @@ class GridLimeReader : public BinaryIO {
 | 
			
		||||
  // Read a generic lattice field and verify checksum
 | 
			
		||||
  ////////////////////////////////////////////
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  void readLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name,int control=BINARYIO_LEXICOGRAPHIC)
 | 
			
		||||
  void readLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name)
 | 
			
		||||
  {
 | 
			
		||||
    typedef typename vobj::scalar_object sobj;
 | 
			
		||||
    scidacChecksum scidacChecksum_;
 | 
			
		||||
@@ -244,7 +238,7 @@ class GridLimeReader : public BinaryIO {
 | 
			
		||||
	uint64_t offset= ftello(File);
 | 
			
		||||
	//	std::cout << " ReadLatticeObject from offset "<<offset << std::endl;
 | 
			
		||||
	BinarySimpleMunger<sobj,sobj> munge;
 | 
			
		||||
	BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb,control);
 | 
			
		||||
	BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
	std::cout << GridLogMessage << "SciDAC checksum A " << std::hex << scidac_csuma << std::dec << std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "SciDAC checksum B " << std::hex << scidac_csumb << std::dec << std::endl;
 | 
			
		||||
	/////////////////////////////////////////////
 | 
			
		||||
@@ -414,7 +408,7 @@ class GridLimeWriter : public BinaryIO
 | 
			
		||||
  // in communicator used by the field.Grid()
 | 
			
		||||
  ////////////////////////////////////////////////////
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  void writeLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name,int control=BINARYIO_LEXICOGRAPHIC)
 | 
			
		||||
  void writeLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name)
 | 
			
		||||
  {
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // NB: FILE and iostream are jointly writing disjoint sequences in the
 | 
			
		||||
@@ -465,7 +459,7 @@ class GridLimeWriter : public BinaryIO
 | 
			
		||||
    ///////////////////////////////////////////
 | 
			
		||||
    std::string format = getFormatString<vobj>();
 | 
			
		||||
    BinarySimpleMunger<sobj,sobj> munge;
 | 
			
		||||
    BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset1, format,nersc_csum,scidac_csuma,scidac_csumb,control);
 | 
			
		||||
    BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset1, format,nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////
 | 
			
		||||
    // Wind forward and close the record
 | 
			
		||||
@@ -518,8 +512,7 @@ class ScidacWriter : public GridLimeWriter {
 | 
			
		||||
  ////////////////////////////////////////////////
 | 
			
		||||
  template <class vobj, class userRecord>
 | 
			
		||||
  void writeScidacFieldRecord(Lattice<vobj> &field,userRecord _userRecord,
 | 
			
		||||
                              const unsigned int recordScientificPrec = 0,
 | 
			
		||||
			      int control=BINARYIO_LEXICOGRAPHIC)
 | 
			
		||||
                              const unsigned int recordScientificPrec = 0) 
 | 
			
		||||
  {
 | 
			
		||||
    GridBase * grid = field.Grid();
 | 
			
		||||
 | 
			
		||||
@@ -541,7 +534,7 @@ class ScidacWriter : public GridLimeWriter {
 | 
			
		||||
      writeLimeObject(0,0,_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
 | 
			
		||||
    }
 | 
			
		||||
    // Collective call
 | 
			
		||||
    writeLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA),control);      // Closes message with checksum
 | 
			
		||||
    writeLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA));      // Closes message with checksum
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
@@ -560,8 +553,7 @@ class ScidacReader : public GridLimeReader {
 | 
			
		||||
  // Write generic lattice field in scidac format
 | 
			
		||||
  ////////////////////////////////////////////////
 | 
			
		||||
  template <class vobj, class userRecord>
 | 
			
		||||
  void readScidacFieldRecord(Lattice<vobj> &field,userRecord &_userRecord,
 | 
			
		||||
			     int control=BINARYIO_LEXICOGRAPHIC) 
 | 
			
		||||
  void readScidacFieldRecord(Lattice<vobj> &field,userRecord &_userRecord) 
 | 
			
		||||
  {
 | 
			
		||||
    typedef typename vobj::scalar_object sobj;
 | 
			
		||||
    GridBase * grid = field.Grid();
 | 
			
		||||
@@ -579,7 +571,7 @@ class ScidacReader : public GridLimeReader {
 | 
			
		||||
    readLimeObject(header ,std::string("FieldMetaData"),std::string(GRID_FORMAT)); // Open message 
 | 
			
		||||
    readLimeObject(_userRecord,_userRecord.SerialisableClassName(),std::string(SCIDAC_RECORD_XML));
 | 
			
		||||
    readLimeObject(_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
 | 
			
		||||
    readLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA),control);
 | 
			
		||||
    readLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA));
 | 
			
		||||
  }
 | 
			
		||||
  void skipPastBinaryRecord(void) {
 | 
			
		||||
    std::string rec_name(ILDG_BINARY_DATA);
 | 
			
		||||
 
 | 
			
		||||
@@ -49,7 +49,7 @@ static constexpr int Tm = 7;
 | 
			
		||||
 | 
			
		||||
static constexpr int Nc=Config_Nc;
 | 
			
		||||
static constexpr int Ns=4;
 | 
			
		||||
static constexpr int Nd=Config_Nd;
 | 
			
		||||
static constexpr int Nd=4;
 | 
			
		||||
static constexpr int Nhs=2; // half spinor
 | 
			
		||||
static constexpr int Nds=8; // double stored gauge field
 | 
			
		||||
static constexpr int Ngp=2; // gparity index range
 | 
			
		||||
@@ -75,7 +75,6 @@ static constexpr int InverseYes=1;
 | 
			
		||||
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
 | 
			
		||||
 | 
			
		||||
const int SpinorIndex = 2;
 | 
			
		||||
const int PauliIndex  = 2; //TensorLevel counts from the bottom!
 | 
			
		||||
template<typename T> struct isSpinor {
 | 
			
		||||
  static constexpr bool value = (SpinorIndex==T::TensorLevel);
 | 
			
		||||
};
 | 
			
		||||
 
 | 
			
		||||
@@ -132,10 +132,6 @@ public:
 | 
			
		||||
template <class GaugeField >
 | 
			
		||||
class EmptyAction : public Action <GaugeField>
 | 
			
		||||
{
 | 
			
		||||
  using Action<GaugeField>::refresh;
 | 
			
		||||
  using Action<GaugeField>::Sinitial;
 | 
			
		||||
  using Action<GaugeField>::deriv;
 | 
			
		||||
 | 
			
		||||
  virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) { assert(0);}; // refresh pseudofermions
 | 
			
		||||
  virtual RealD S(const GaugeField& U) { return 0.0;};                             // evaluate the action
 | 
			
		||||
  virtual void deriv(const GaugeField& U, GaugeField& dSdU) { assert(0); };        // evaluate the action derivative
 | 
			
		||||
 
 | 
			
		||||
@@ -55,11 +55,6 @@ public:
 | 
			
		||||
  RealD alpha; // Mobius scale
 | 
			
		||||
  RealD k;     // EOFA normalization constant
 | 
			
		||||
 | 
			
		||||
  // Device resident
 | 
			
		||||
  deviceVector<Coeff_t> d_shift_coefficients;
 | 
			
		||||
  deviceVector<Coeff_t> d_MooeeInv_shift_lc;
 | 
			
		||||
  deviceVector<Coeff_t> d_MooeeInv_shift_norm;
 | 
			
		||||
  
 | 
			
		||||
  virtual void Instantiatable(void) = 0;
 | 
			
		||||
 | 
			
		||||
  // EOFA-specific operations
 | 
			
		||||
@@ -97,11 +92,6 @@ public:
 | 
			
		||||
    this->k = this->alpha * (_mq3-_mq2) * std::pow(this->alpha+1.0,2*Ls) /
 | 
			
		||||
      ( std::pow(this->alpha+1.0,Ls) + _mq2*std::pow(this->alpha-1.0,Ls) ) /
 | 
			
		||||
      ( std::pow(this->alpha+1.0,Ls) + _mq3*std::pow(this->alpha-1.0,Ls) );
 | 
			
		||||
    
 | 
			
		||||
    d_shift_coefficients.resize(Ls);
 | 
			
		||||
    d_MooeeInv_shift_lc.resize(Ls);
 | 
			
		||||
    d_MooeeInv_shift_norm.resize(Ls);
 | 
			
		||||
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -90,16 +90,16 @@ public:
 | 
			
		||||
  void M5D(const FermionField &psi,
 | 
			
		||||
	   const FermionField &phi,
 | 
			
		||||
	   FermionField &chi,
 | 
			
		||||
	   std::vector<Coeff_t> &lower,
 | 
			
		||||
	   std::vector<Coeff_t> &diag,
 | 
			
		||||
	   std::vector<Coeff_t> &upper);
 | 
			
		||||
	   Vector<Coeff_t> &lower,
 | 
			
		||||
	   Vector<Coeff_t> &diag,
 | 
			
		||||
	   Vector<Coeff_t> &upper);
 | 
			
		||||
 | 
			
		||||
  void M5Ddag(const FermionField &psi,
 | 
			
		||||
	      const FermionField &phi,
 | 
			
		||||
	      FermionField &chi,
 | 
			
		||||
	      std::vector<Coeff_t> &lower,
 | 
			
		||||
	      std::vector<Coeff_t> &diag,
 | 
			
		||||
	      std::vector<Coeff_t> &upper);
 | 
			
		||||
	      Vector<Coeff_t> &lower,
 | 
			
		||||
	      Vector<Coeff_t> &diag,
 | 
			
		||||
	      Vector<Coeff_t> &upper);
 | 
			
		||||
 | 
			
		||||
  virtual void   Instantiatable(void)=0;
 | 
			
		||||
 | 
			
		||||
@@ -119,51 +119,35 @@ public:
 | 
			
		||||
  RealD mass_plus, mass_minus;
 | 
			
		||||
 | 
			
		||||
  // Save arguments to SetCoefficientsInternal
 | 
			
		||||
  std::vector<Coeff_t> _gamma;
 | 
			
		||||
  Vector<Coeff_t> _gamma;
 | 
			
		||||
  RealD                _zolo_hi;
 | 
			
		||||
  RealD                _b;
 | 
			
		||||
  RealD                _c;
 | 
			
		||||
 | 
			
		||||
  // possible boost
 | 
			
		||||
  std::vector<ComplexD> qmu;
 | 
			
		||||
  void set_qmu(std::vector<ComplexD> _qmu) { qmu=_qmu; assert(qmu.size()==Nd);};
 | 
			
		||||
  void addQmu(const FermionField &in, FermionField &out, int dag);
 | 
			
		||||
  
 | 
			
		||||
  // Cayley form Moebius (tanh and zolotarev)
 | 
			
		||||
  std::vector<Coeff_t> omega;
 | 
			
		||||
  std::vector<Coeff_t> bs;    // S dependent coeffs
 | 
			
		||||
  std::vector<Coeff_t> cs;
 | 
			
		||||
  std::vector<Coeff_t> as;
 | 
			
		||||
  Vector<Coeff_t> omega;
 | 
			
		||||
  Vector<Coeff_t> bs;    // S dependent coeffs
 | 
			
		||||
  Vector<Coeff_t> cs;
 | 
			
		||||
  Vector<Coeff_t> as;
 | 
			
		||||
  // For preconditioning Cayley form
 | 
			
		||||
  std::vector<Coeff_t> bee;
 | 
			
		||||
  std::vector<Coeff_t> cee;
 | 
			
		||||
  std::vector<Coeff_t> aee;
 | 
			
		||||
  std::vector<Coeff_t> beo;
 | 
			
		||||
  std::vector<Coeff_t> ceo;
 | 
			
		||||
  std::vector<Coeff_t> aeo;
 | 
			
		||||
  Vector<Coeff_t> bee;
 | 
			
		||||
  Vector<Coeff_t> cee;
 | 
			
		||||
  Vector<Coeff_t> aee;
 | 
			
		||||
  Vector<Coeff_t> beo;
 | 
			
		||||
  Vector<Coeff_t> ceo;
 | 
			
		||||
  Vector<Coeff_t> aeo;
 | 
			
		||||
  // LDU factorisation of the eeoo matrix
 | 
			
		||||
  std::vector<Coeff_t> lee;
 | 
			
		||||
  std::vector<Coeff_t> leem;
 | 
			
		||||
  std::vector<Coeff_t> uee;
 | 
			
		||||
  std::vector<Coeff_t> ueem;
 | 
			
		||||
  std::vector<Coeff_t> dee;
 | 
			
		||||
 | 
			
		||||
  // Device memory
 | 
			
		||||
  deviceVector<Coeff_t> d_diag;
 | 
			
		||||
  deviceVector<Coeff_t> d_upper;
 | 
			
		||||
  deviceVector<Coeff_t> d_lower;
 | 
			
		||||
 | 
			
		||||
  deviceVector<Coeff_t> d_lee;
 | 
			
		||||
  deviceVector<Coeff_t> d_dee;
 | 
			
		||||
  deviceVector<Coeff_t> d_uee;
 | 
			
		||||
  deviceVector<Coeff_t> d_leem;
 | 
			
		||||
  deviceVector<Coeff_t> d_ueem;
 | 
			
		||||
  Vector<Coeff_t> lee;
 | 
			
		||||
  Vector<Coeff_t> leem;
 | 
			
		||||
  Vector<Coeff_t> uee;
 | 
			
		||||
  Vector<Coeff_t> ueem;
 | 
			
		||||
  Vector<Coeff_t> dee;
 | 
			
		||||
 | 
			
		||||
  // Matrices of 5d ee inverse params
 | 
			
		||||
  //  std::vector<iSinglet<Simd> >  MatpInv;
 | 
			
		||||
  //  std::vector<iSinglet<Simd> >  MatmInv;
 | 
			
		||||
  //  std::vector<iSinglet<Simd> >  MatpInvDag;
 | 
			
		||||
  //  std::vector<iSinglet<Simd> >  MatmInvDag;
 | 
			
		||||
  Vector<iSinglet<Simd> >  MatpInv;
 | 
			
		||||
  Vector<iSinglet<Simd> >  MatmInv;
 | 
			
		||||
  Vector<iSinglet<Simd> >  MatpInvDag;
 | 
			
		||||
  Vector<iSinglet<Simd> >  MatmInvDag;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Conserved current utilities
 | 
			
		||||
@@ -203,7 +187,7 @@ public:
 | 
			
		||||
protected:
 | 
			
		||||
  virtual void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c);
 | 
			
		||||
  virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c);
 | 
			
		||||
  virtual void SetCoefficientsInternal(RealD zolo_hi,std::vector<Coeff_t> & gamma,RealD b,RealD c);
 | 
			
		||||
  virtual void SetCoefficientsInternal(RealD zolo_hi,Vector<Coeff_t> & gamma,RealD b,RealD c);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -1,196 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/qcd/action/fermion/CompactWilsonCloverFermion5D.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2020 - 2025
 | 
			
		||||
 | 
			
		||||
    Author: Daniel Richtmann <daniel.richtmann@gmail.com>
 | 
			
		||||
    Author: Nils Meyer <nils.meyer@ur.de>
 | 
			
		||||
    Author: Christoph Lehner <christoph@lhnr.de>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/fermion/WilsonFermion5D.h>
 | 
			
		||||
#include <Grid/qcd/action/fermion/WilsonCloverTypes.h>
 | 
			
		||||
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
 | 
			
		||||
#include <Grid/qcd/action/fermion/CloverHelpers.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
// see Grid/qcd/action/fermion/CompactWilsonCloverFermion.h for description
 | 
			
		||||
 | 
			
		||||
template<class Impl, class CloverHelpers>
 | 
			
		||||
class CompactWilsonCloverFermion5D : public WilsonFermion5D<Impl>,
 | 
			
		||||
				     public WilsonCloverHelpers<Impl>,
 | 
			
		||||
				     public CompactWilsonCloverHelpers<Impl> {
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
  // Sizes
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  INHERIT_COMPACT_CLOVER_SIZES(Impl);
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
  // Type definitions
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
  INHERIT_CLOVER_TYPES(Impl);
 | 
			
		||||
  INHERIT_COMPACT_CLOVER_TYPES(Impl);
 | 
			
		||||
 | 
			
		||||
  typedef WilsonFermion5D<Impl>            WilsonBase;
 | 
			
		||||
  typedef WilsonCloverHelpers<Impl>        Helpers;
 | 
			
		||||
  typedef CompactWilsonCloverHelpers<Impl> CompactHelpers;
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
  // Constructors
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  CompactWilsonCloverFermion5D(GaugeField& _Umu,
 | 
			
		||||
			       GridCartesian         &FiveDimGrid,
 | 
			
		||||
			       GridRedBlackCartesian &FiveDimRedBlackGrid,
 | 
			
		||||
			       GridCartesian         &FourDimGrid,
 | 
			
		||||
			       GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
			
		||||
			       const RealD _mass,
 | 
			
		||||
			       const RealD _csw_r = 0.0,
 | 
			
		||||
			       const RealD _csw_t = 0.0,
 | 
			
		||||
			       const RealD _cF = 1.0,
 | 
			
		||||
			       const ImplParams& impl_p = ImplParams());
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
  // Member functions (implementing interface)
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  virtual void Instantiatable() {};
 | 
			
		||||
  int          ConstEE()     override { return 0; };
 | 
			
		||||
  int          isTrivialEE() override { return 0; };
 | 
			
		||||
 | 
			
		||||
  void Dhop(const FermionField& in, FermionField& out, int dag) override;
 | 
			
		||||
 | 
			
		||||
  void DhopOE(const FermionField& in, FermionField& out, int dag) override;
 | 
			
		||||
 | 
			
		||||
  void DhopEO(const FermionField& in, FermionField& out, int dag) override;
 | 
			
		||||
 | 
			
		||||
  void DhopDir(const FermionField& in, FermionField& out, int dir, int disp) override;
 | 
			
		||||
 | 
			
		||||
  void DhopDirAll(const FermionField& in, std::vector<FermionField>& out) /* override */;
 | 
			
		||||
 | 
			
		||||
  void M(const FermionField& in, FermionField& out) override;
 | 
			
		||||
 | 
			
		||||
  void Mdag(const FermionField& in, FermionField& out) override;
 | 
			
		||||
 | 
			
		||||
  void Meooe(const FermionField& in, FermionField& out) override;
 | 
			
		||||
 | 
			
		||||
  void MeooeDag(const FermionField& in, FermionField& out) override;
 | 
			
		||||
 | 
			
		||||
  void Mooee(const FermionField& in, FermionField& out) override;
 | 
			
		||||
 | 
			
		||||
  void MooeeDag(const FermionField& in, FermionField& out) override;
 | 
			
		||||
 | 
			
		||||
  void MooeeInv(const FermionField& in, FermionField& out) override;
 | 
			
		||||
 | 
			
		||||
  void MooeeInvDag(const FermionField& in, FermionField& out) override;
 | 
			
		||||
 | 
			
		||||
  void Mdir(const FermionField& in, FermionField& out, int dir, int disp) override;
 | 
			
		||||
 | 
			
		||||
  void MdirAll(const FermionField& in, std::vector<FermionField>& out) override;
 | 
			
		||||
 | 
			
		||||
  void MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) override;
 | 
			
		||||
 | 
			
		||||
  void MooDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override;
 | 
			
		||||
 | 
			
		||||
  void MeeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override;
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
  // Member functions (internals)
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  void MooeeInternal(const FermionField&        in,
 | 
			
		||||
                     FermionField&              out,
 | 
			
		||||
                     const CloverDiagonalField& diagonal,
 | 
			
		||||
                     const CloverTriangleField& triangle);
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
  // Helpers
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  void ImportGauge(const GaugeField& _Umu) override;
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
  // Helpers
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
 | 
			
		||||
  template<class Field>
 | 
			
		||||
  const MaskField* getCorrectMaskField(const Field &in) const {
 | 
			
		||||
    if(in.Grid()->_isCheckerBoarded) {
 | 
			
		||||
      if(in.Checkerboard() == Odd) {
 | 
			
		||||
        return &this->BoundaryMaskOdd;
 | 
			
		||||
      } else {
 | 
			
		||||
        return &this->BoundaryMaskEven;
 | 
			
		||||
      }
 | 
			
		||||
    } else {
 | 
			
		||||
      return &this->BoundaryMask;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class Field>
 | 
			
		||||
  void ApplyBoundaryMask(Field& f) {
 | 
			
		||||
    const MaskField* m = getCorrectMaskField(f); assert(m != nullptr);
 | 
			
		||||
    assert(m != nullptr);
 | 
			
		||||
    CompactHelpers::ApplyBoundaryMask(f, *m);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
  // Member Data
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  RealD csw_r;
 | 
			
		||||
  RealD csw_t;
 | 
			
		||||
  RealD cF;
 | 
			
		||||
  int n_rhs;
 | 
			
		||||
  
 | 
			
		||||
  bool fixedBoundaries;
 | 
			
		||||
 | 
			
		||||
  CloverDiagonalField Diagonal,    DiagonalEven,    DiagonalOdd;
 | 
			
		||||
  CloverDiagonalField DiagonalInv, DiagonalInvEven, DiagonalInvOdd;
 | 
			
		||||
 | 
			
		||||
  CloverTriangleField Triangle,    TriangleEven,    TriangleOdd;
 | 
			
		||||
  CloverTriangleField TriangleInv, TriangleInvEven, TriangleInvOdd;
 | 
			
		||||
 | 
			
		||||
  FermionField Tmp;
 | 
			
		||||
 | 
			
		||||
  MaskField BoundaryMask, BoundaryMaskEven, BoundaryMaskOdd;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -60,50 +60,6 @@ public:
 | 
			
		||||
  //      virtual void   Instantiatable(void)=0;
 | 
			
		||||
  virtual void   Instantiatable(void) =0;
 | 
			
		||||
 | 
			
		||||
  void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary, std::vector<double> twist)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << "Free Propagator for PartialFraction"<<std::endl;
 | 
			
		||||
    FermionField in_k(in.Grid());
 | 
			
		||||
    FermionField prop_k(in.Grid());
 | 
			
		||||
    
 | 
			
		||||
    FFT theFFT((GridCartesian *) in.Grid());
 | 
			
		||||
 | 
			
		||||
    //phase for boundary condition
 | 
			
		||||
    ComplexField coor(in.Grid());
 | 
			
		||||
    ComplexField ph(in.Grid());  ph = Zero();
 | 
			
		||||
    FermionField in_buf(in.Grid()); in_buf = Zero();
 | 
			
		||||
    typedef typename Simd::scalar_type Scalar;
 | 
			
		||||
    Scalar ci(0.0,1.0);
 | 
			
		||||
    assert(twist.size() == Nd);//check that twist is Nd
 | 
			
		||||
    assert(boundary.size() == Nd);//check that boundary conditions is Nd
 | 
			
		||||
    int shift = 0;
 | 
			
		||||
    for(unsigned int nu = 0; nu < Nd; nu++)
 | 
			
		||||
      {
 | 
			
		||||
	// Shift coordinate lattice index by 1 to account for 5th dimension.
 | 
			
		||||
	LatticeCoordinate(coor, nu + shift);
 | 
			
		||||
	double boundary_phase = ::acos(real(boundary[nu]));
 | 
			
		||||
	ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu+shift])));
 | 
			
		||||
	//momenta for propagator shifted by twist+boundary
 | 
			
		||||
	twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI));
 | 
			
		||||
      }
 | 
			
		||||
    in_buf = exp(ci*ph*(-1.0))*in;
 | 
			
		||||
 | 
			
		||||
    theFFT.FFT_all_dim(in_k,in,FFT::forward);
 | 
			
		||||
    this->MomentumSpacePropagatorHw(prop_k,in_k,mass,twist);
 | 
			
		||||
    theFFT.FFT_all_dim(out,prop_k,FFT::backward);
 | 
			
		||||
    
 | 
			
		||||
    //phase for boundary condition
 | 
			
		||||
    out = out * exp(ci*ph);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
 | 
			
		||||
    std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
 | 
			
		||||
    std::vector<Complex> boundary;
 | 
			
		||||
    for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions
 | 
			
		||||
    FreePropagator(in,out,mass,boundary,twist);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  // Efficient support for multigrid coarsening
 | 
			
		||||
  virtual void  Mdir (const FermionField &in, FermionField &out,int dir,int disp);
 | 
			
		||||
  virtual void  MdirAll(const FermionField &in, std::vector<FermionField> &out);
 | 
			
		||||
@@ -134,12 +90,12 @@ protected:
 | 
			
		||||
  RealD mass;
 | 
			
		||||
  RealD R;
 | 
			
		||||
  RealD ZoloHiInv;
 | 
			
		||||
  std::vector<double> Beta;
 | 
			
		||||
  std::vector<double> cc;;
 | 
			
		||||
  std::vector<double> cc_d;;
 | 
			
		||||
  std::vector<double> sqrt_cc;
 | 
			
		||||
  std::vector<double> See;
 | 
			
		||||
  std::vector<double> Aee;
 | 
			
		||||
  Vector<double> Beta;
 | 
			
		||||
  Vector<double> cc;;
 | 
			
		||||
  Vector<double> cc_d;;
 | 
			
		||||
  Vector<double> sqrt_cc;
 | 
			
		||||
  Vector<double> See;
 | 
			
		||||
  Vector<double> Aee;
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -69,10 +69,10 @@ public:
 | 
			
		||||
  // Instantiate different versions depending on Impl
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
  void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
			
		||||
	   std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
 | 
			
		||||
	   Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
 | 
			
		||||
 | 
			
		||||
  void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
			
		||||
	      std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
 | 
			
		||||
	      Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
 | 
			
		||||
 | 
			
		||||
  virtual void RefreshShiftCoefficients(RealD new_shift);
 | 
			
		||||
 | 
			
		||||
@@ -83,7 +83,7 @@ public:
 | 
			
		||||
			RealD _M5, const ImplParams& p=ImplParams());
 | 
			
		||||
 | 
			
		||||
protected:
 | 
			
		||||
  void SetCoefficientsInternal(RealD zolo_hi, std::vector<Coeff_t>& gamma, RealD b, RealD c);
 | 
			
		||||
  void SetCoefficientsInternal(RealD zolo_hi, Vector<Coeff_t>& gamma, RealD b, RealD c);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -123,10 +123,10 @@ public:
 | 
			
		||||
      GaugeGrid->LocalIndexToLocalCoor(lidx, lcoor);
 | 
			
		||||
      
 | 
			
		||||
      peekLocalSite(ScalarUmu, Umu_v, lcoor);
 | 
			
		||||
      for (int mu = 0; mu < Nd; mu++) ScalarUds(mu) = ScalarUmu(mu);
 | 
			
		||||
      for (int mu = 0; mu < 4; mu++) ScalarUds(mu) = ScalarUmu(mu);
 | 
			
		||||
      
 | 
			
		||||
      peekLocalSite(ScalarUmu, Uadj_v, lcoor);
 | 
			
		||||
      for (int mu = 0; mu < Nd; mu++) ScalarUds(mu + Nd) = ScalarUmu(mu);
 | 
			
		||||
      for (int mu = 0; mu < 4; mu++) ScalarUds(mu + 4) = ScalarUmu(mu);
 | 
			
		||||
      
 | 
			
		||||
      pokeLocalSite(ScalarUds, Uds_v, lcoor);
 | 
			
		||||
    });
 | 
			
		||||
 
 | 
			
		||||
@@ -55,7 +55,6 @@ NAMESPACE_CHECK(Wilson);
 | 
			
		||||
NAMESPACE_CHECK(WilsonTM);
 | 
			
		||||
#include <Grid/qcd/action/fermion/WilsonCloverFermion.h> // 4d wilson clover fermions
 | 
			
		||||
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h> // 4d compact wilson clover fermions
 | 
			
		||||
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion5D.h> // 5d compact wilson clover fermions
 | 
			
		||||
NAMESPACE_CHECK(WilsonClover);
 | 
			
		||||
#include <Grid/qcd/action/fermion/WilsonFermion5D.h>     // 5d base used by all 5d overlap types
 | 
			
		||||
NAMESPACE_CHECK(Wilson5D);
 | 
			
		||||
@@ -85,15 +84,6 @@ NAMESPACE_CHECK(DomainWall);
 | 
			
		||||
#include <Grid/qcd/action/fermion/OverlapWilsonPartialFractionTanhFermion.h>
 | 
			
		||||
#include <Grid/qcd/action/fermion/OverlapWilsonPartialFractionZolotarevFermion.h>
 | 
			
		||||
NAMESPACE_CHECK(Overlap);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Two spin wilson fermion based
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/fermion/TwoSpinWilsonFermion3plus1D.h>
 | 
			
		||||
NAMESPACE_CHECK(TwoSpinWilson);
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// G5 herm -- this has to live in QCD since dirac matrix is not in the broader sector of code
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -174,17 +164,12 @@ typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiS
 | 
			
		||||
 | 
			
		||||
// Compact Clover fermions
 | 
			
		||||
template <typename WImpl> using CompactWilsonClover = CompactWilsonCloverFermion<WImpl, CompactCloverHelpers<WImpl>>;
 | 
			
		||||
template <typename WImpl> using CompactWilsonClover5D = CompactWilsonCloverFermion5D<WImpl, CompactCloverHelpers<WImpl>>;
 | 
			
		||||
template <typename WImpl> using CompactWilsonExpClover = CompactWilsonCloverFermion<WImpl, CompactExpCloverHelpers<WImpl>>;
 | 
			
		||||
 | 
			
		||||
typedef CompactWilsonClover<WilsonImplD2> CompactWilsonCloverFermionD2;
 | 
			
		||||
typedef CompactWilsonClover<WilsonImplF> CompactWilsonCloverFermionF;
 | 
			
		||||
typedef CompactWilsonClover<WilsonImplD> CompactWilsonCloverFermionD;
 | 
			
		||||
 | 
			
		||||
typedef CompactWilsonClover5D<WilsonImplD2> CompactWilsonCloverFermion5DD2;
 | 
			
		||||
typedef CompactWilsonClover5D<WilsonImplF> CompactWilsonCloverFermion5DF;
 | 
			
		||||
typedef CompactWilsonClover5D<WilsonImplD> CompactWilsonCloverFermion5DD;
 | 
			
		||||
 | 
			
		||||
typedef CompactWilsonExpClover<WilsonImplD2> CompactWilsonExpCloverFermionD2;
 | 
			
		||||
typedef CompactWilsonExpClover<WilsonImplF> CompactWilsonExpCloverFermionF;
 | 
			
		||||
typedef CompactWilsonExpClover<WilsonImplD> CompactWilsonExpCloverFermionD;
 | 
			
		||||
 
 | 
			
		||||
@@ -41,9 +41,8 @@ NAMESPACE_CHECK(Compressor);
 | 
			
		||||
NAMESPACE_CHECK(FermionOperatorImpl);
 | 
			
		||||
#include <Grid/qcd/action/fermion/FermionOperator.h>
 | 
			
		||||
NAMESPACE_CHECK(FermionOperator);
 | 
			
		||||
#include <Grid/qcd/action/fermion/WilsonKernels.h>           //used by all wilson type fermions
 | 
			
		||||
#include <Grid/qcd/action/fermion/WilsonKernels.h>        //used by all wilson type fermions
 | 
			
		||||
#include <Grid/qcd/action/fermion/StaggeredKernels.h>        //used by all wilson type fermions
 | 
			
		||||
#include <Grid/qcd/action/fermion/TwoSpinWilsonKernels.h>    //used for 3D fermions, pauli in place of Dirac
 | 
			
		||||
NAMESPACE_CHECK(Kernels);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -180,12 +180,6 @@ NAMESPACE_CHECK(ImplGparityWilson);
 | 
			
		||||
#include <Grid/qcd/action/fermion/StaggeredImpl.h> 
 | 
			
		||||
NAMESPACE_CHECK(ImplStaggered);  
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Two component spinor Wilson action for 3d / Boston
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
#include <Grid/qcd/action/fermion/TwoSpinWilsonImpl.h> 
 | 
			
		||||
NAMESPACE_CHECK(ImplTwoSpinWilson);  
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Single flavour one component spinors with colour index. 5d vec
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -274,7 +274,7 @@ public:
 | 
			
		||||
	autoView( Uds_v , Uds, CpuWrite);
 | 
			
		||||
	autoView( Utmp_v, Utmp, CpuWrite);
 | 
			
		||||
	thread_foreach(ss,Utmp_v,{
 | 
			
		||||
	    Uds_v[ss](0)(mu+Nd) = Utmp_v[ss]();
 | 
			
		||||
	    Uds_v[ss](0)(mu+4) = Utmp_v[ss]();
 | 
			
		||||
	  });
 | 
			
		||||
      }
 | 
			
		||||
      Utmp = Uconj;
 | 
			
		||||
@@ -286,7 +286,7 @@ public:
 | 
			
		||||
	autoView( Uds_v , Uds, CpuWrite);
 | 
			
		||||
	autoView( Utmp_v, Utmp, CpuWrite);
 | 
			
		||||
	thread_foreach(ss,Utmp_v,{
 | 
			
		||||
	    Uds_v[ss](1)(mu+Nd) = Utmp_v[ss]();
 | 
			
		||||
	    Uds_v[ss](1)(mu+4) = Utmp_v[ss]();
 | 
			
		||||
        });
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
@@ -320,7 +320,7 @@ public:
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      Uconj = conjugate(*Upoke);
 | 
			
		||||
      pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu + Nd);
 | 
			
		||||
      pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu + 4);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
      
 | 
			
		||||
 
 | 
			
		||||
@@ -36,8 +36,6 @@ public:
 | 
			
		||||
  static const std::vector<int> directions;
 | 
			
		||||
  static const std::vector<int> displacements;
 | 
			
		||||
  static const int npoint = 16;
 | 
			
		||||
  static std::vector<int> MakeDirections(void);
 | 
			
		||||
  static std::vector<int> MakeDisplacements(void);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <class Impl>
 | 
			
		||||
@@ -104,11 +102,11 @@ public:
 | 
			
		||||
		     GaugeField &mat, 
 | 
			
		||||
		     const FermionField &A, const FermionField &B, int dag);
 | 
			
		||||
 | 
			
		||||
  void DhopInternal(StencilImpl &st, DoubledGaugeField &U,DoubledGaugeField &UUU,
 | 
			
		||||
  void DhopInternal(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU,
 | 
			
		||||
                    const FermionField &in, FermionField &out, int dag);
 | 
			
		||||
  void DhopInternalSerialComms(StencilImpl &st, DoubledGaugeField &U,DoubledGaugeField &UUU,
 | 
			
		||||
  void DhopInternalSerialComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU,
 | 
			
		||||
                    const FermionField &in, FermionField &out, int dag);
 | 
			
		||||
  void DhopInternalOverlappedComms(StencilImpl &st, DoubledGaugeField &U,DoubledGaugeField &UUU,
 | 
			
		||||
  void DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU,
 | 
			
		||||
                    const FermionField &in, FermionField &out, int dag);
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -166,6 +164,8 @@ public:
 | 
			
		||||
  DoubledGaugeField UUUmuEven;
 | 
			
		||||
  DoubledGaugeField UUUmuOdd;
 | 
			
		||||
 | 
			
		||||
  LebesgueOrder Lebesgue;
 | 
			
		||||
  LebesgueOrder LebesgueEvenOdd;
 | 
			
		||||
  
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Conserved current utilities
 | 
			
		||||
 
 | 
			
		||||
@@ -40,8 +40,6 @@ public:
 | 
			
		||||
  static const std::vector<int> directions;
 | 
			
		||||
  static const std::vector<int> displacements;
 | 
			
		||||
  const int npoint = 16;
 | 
			
		||||
  static std::vector<int> MakeDirections(void);
 | 
			
		||||
  static std::vector<int> MakeDisplacements(void);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -102,6 +100,7 @@ public:
 | 
			
		||||
		     int dag);
 | 
			
		||||
    
 | 
			
		||||
  void DhopInternal(StencilImpl & st,
 | 
			
		||||
		    LebesgueOrder &lo,
 | 
			
		||||
		    DoubledGaugeField &U,
 | 
			
		||||
		    DoubledGaugeField &UUU,
 | 
			
		||||
		    const FermionField &in, 
 | 
			
		||||
@@ -109,6 +108,7 @@ public:
 | 
			
		||||
		    int dag);
 | 
			
		||||
    
 | 
			
		||||
    void DhopInternalOverlappedComms(StencilImpl & st,
 | 
			
		||||
		      LebesgueOrder &lo,
 | 
			
		||||
		      DoubledGaugeField &U,
 | 
			
		||||
		      DoubledGaugeField &UUU,
 | 
			
		||||
		      const FermionField &in, 
 | 
			
		||||
@@ -116,6 +116,7 @@ public:
 | 
			
		||||
		      int dag);
 | 
			
		||||
 | 
			
		||||
    void DhopInternalSerialComms(StencilImpl & st,
 | 
			
		||||
		      LebesgueOrder &lo,
 | 
			
		||||
		      DoubledGaugeField &U,
 | 
			
		||||
		      DoubledGaugeField &UUU,
 | 
			
		||||
		      const FermionField &in, 
 | 
			
		||||
@@ -191,6 +192,8 @@ public:
 | 
			
		||||
  DoubledGaugeField UUUmuEven;
 | 
			
		||||
  DoubledGaugeField UUUmuOdd;
 | 
			
		||||
    
 | 
			
		||||
  LebesgueOrder Lebesgue;
 | 
			
		||||
  LebesgueOrder LebesgueEvenOdd;
 | 
			
		||||
    
 | 
			
		||||
  // Comms buffer
 | 
			
		||||
  //  std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> >  comm_buf;
 | 
			
		||||
 
 | 
			
		||||
@@ -42,11 +42,11 @@ public:
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  // Shift operator coefficients for red-black preconditioned Mobius EOFA
 | 
			
		||||
  std::vector<Coeff_t> Mooee_shift;
 | 
			
		||||
  std::vector<Coeff_t> MooeeInv_shift_lc;
 | 
			
		||||
  std::vector<Coeff_t> MooeeInv_shift_norm;
 | 
			
		||||
  std::vector<Coeff_t> MooeeInvDag_shift_lc;
 | 
			
		||||
  std::vector<Coeff_t> MooeeInvDag_shift_norm;
 | 
			
		||||
  Vector<Coeff_t> Mooee_shift;
 | 
			
		||||
  Vector<Coeff_t> MooeeInv_shift_lc;
 | 
			
		||||
  Vector<Coeff_t> MooeeInv_shift_norm;
 | 
			
		||||
  Vector<Coeff_t> MooeeInvDag_shift_lc;
 | 
			
		||||
  Vector<Coeff_t> MooeeInvDag_shift_norm;
 | 
			
		||||
 | 
			
		||||
  virtual void Instantiatable(void) {};
 | 
			
		||||
 | 
			
		||||
@@ -74,18 +74,18 @@ public:
 | 
			
		||||
  // Instantiate different versions depending on Impl
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
  void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
			
		||||
	   std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
 | 
			
		||||
	   Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
 | 
			
		||||
 | 
			
		||||
  void M5D_shift(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
			
		||||
		 std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
 | 
			
		||||
		 std::vector<Coeff_t>& shift_coeffs);
 | 
			
		||||
		 Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper,
 | 
			
		||||
		 Vector<Coeff_t>& shift_coeffs);
 | 
			
		||||
 | 
			
		||||
  void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
			
		||||
	      std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
 | 
			
		||||
	      Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
 | 
			
		||||
 | 
			
		||||
  void M5Ddag_shift(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
			
		||||
		    std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
 | 
			
		||||
		    std::vector<Coeff_t>& shift_coeffs);
 | 
			
		||||
		    Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper,
 | 
			
		||||
		    Vector<Coeff_t>& shift_coeffs);
 | 
			
		||||
 | 
			
		||||
  virtual void RefreshShiftCoefficients(RealD new_shift);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -36,8 +36,6 @@ public:
 | 
			
		||||
  static const std::vector<int> directions;
 | 
			
		||||
  static const std::vector<int> displacements;
 | 
			
		||||
  static const int npoint = 8;
 | 
			
		||||
  static std::vector<int> MakeDirections(void);
 | 
			
		||||
  static std::vector<int> MakeDisplacements(void);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <class Impl>
 | 
			
		||||
@@ -104,11 +102,11 @@ public:
 | 
			
		||||
		     GaugeField &mat, 
 | 
			
		||||
		     const FermionField &A, const FermionField &B, int dag);
 | 
			
		||||
 | 
			
		||||
  void DhopInternal(StencilImpl &st, DoubledGaugeField &U,
 | 
			
		||||
  void DhopInternal(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
 | 
			
		||||
                    const FermionField &in, FermionField &out, int dag);
 | 
			
		||||
  void DhopInternalSerialComms(StencilImpl &st, DoubledGaugeField &U,
 | 
			
		||||
  void DhopInternalSerialComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
 | 
			
		||||
			       const FermionField &in, FermionField &out, int dag);
 | 
			
		||||
  void DhopInternalOverlappedComms(StencilImpl &st, DoubledGaugeField &U,
 | 
			
		||||
  void DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
 | 
			
		||||
				   const FermionField &in, FermionField &out, int dag);
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -154,6 +152,9 @@ public:
 | 
			
		||||
  DoubledGaugeField UmuEven;
 | 
			
		||||
  DoubledGaugeField UmuOdd;
 | 
			
		||||
 | 
			
		||||
  LebesgueOrder Lebesgue;
 | 
			
		||||
  LebesgueOrder LebesgueEvenOdd;
 | 
			
		||||
  
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Conserved current utilities
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -42,7 +42,7 @@ public:
 | 
			
		||||
 | 
			
		||||
     void  MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
 | 
			
		||||
       this->MomentumSpacePropagatorHw(out,in,_m,twist);
 | 
			
		||||
     };
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  // Constructors
 | 
			
		||||
  OverlapWilsonCayleyTanhFermion(GaugeField &_Umu,
 | 
			
		||||
 
 | 
			
		||||
@@ -41,10 +41,6 @@ public:
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  // Constructors
 | 
			
		||||
  virtual void   Instantiatable(void){};
 | 
			
		||||
  void  MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
 | 
			
		||||
    this->MomentumSpacePropagatorHw(out,in,_m,twist);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  OverlapWilsonCayleyZolotarevFermion(GaugeField &_Umu,
 | 
			
		||||
				      GridCartesian         &FiveDimGrid,
 | 
			
		||||
 
 | 
			
		||||
@@ -41,9 +41,6 @@ public:
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  virtual void   Instantiatable(void){};
 | 
			
		||||
  void  MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
 | 
			
		||||
    this->MomentumSpacePropagatorHw(out,in,_m,twist);
 | 
			
		||||
  };
 | 
			
		||||
  // Constructors
 | 
			
		||||
  OverlapWilsonContFracTanhFermion(GaugeField &_Umu,
 | 
			
		||||
				   GridCartesian         &FiveDimGrid,
 | 
			
		||||
 
 | 
			
		||||
@@ -40,9 +40,6 @@ public:
 | 
			
		||||
  INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
 | 
			
		||||
  virtual void   Instantiatable(void){};
 | 
			
		||||
  void  MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
 | 
			
		||||
    this->MomentumSpacePropagatorHw(out,in,_m,twist);
 | 
			
		||||
  };
 | 
			
		||||
  // Constructors
 | 
			
		||||
  OverlapWilsonContFracZolotarevFermion(GaugeField &_Umu,
 | 
			
		||||
					GridCartesian         &FiveDimGrid,
 | 
			
		||||
 
 | 
			
		||||
@@ -41,9 +41,6 @@ public:
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  virtual void   Instantiatable(void){};
 | 
			
		||||
  void  MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
 | 
			
		||||
    this->MomentumSpacePropagatorHw(out,in,_m,twist);
 | 
			
		||||
  };
 | 
			
		||||
  // Constructors
 | 
			
		||||
  OverlapWilsonPartialFractionTanhFermion(GaugeField &_Umu,
 | 
			
		||||
					  GridCartesian         &FiveDimGrid,
 | 
			
		||||
 
 | 
			
		||||
@@ -40,11 +40,6 @@ public:
 | 
			
		||||
  INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
 | 
			
		||||
  virtual void   Instantiatable(void){};
 | 
			
		||||
 | 
			
		||||
  void  MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
 | 
			
		||||
    this->MomentumSpacePropagatorHw(out,in,_m,twist);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  // Constructors
 | 
			
		||||
  OverlapWilsonPartialFractionZolotarevFermion(GaugeField &_Umu,
 | 
			
		||||
					       GridCartesian         &FiveDimGrid,
 | 
			
		||||
 
 | 
			
		||||
@@ -39,7 +39,7 @@ class PartialFractionFermion5D : public WilsonFermion5D<Impl>
 | 
			
		||||
public:
 | 
			
		||||
  INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
 | 
			
		||||
  const int part_frac_chroma_convention=0;
 | 
			
		||||
  const int part_frac_chroma_convention=1;
 | 
			
		||||
 | 
			
		||||
  void   Meooe_internal(const FermionField &in, FermionField &out,int dag);
 | 
			
		||||
  void   Mooee_internal(const FermionField &in, FermionField &out,int dag);
 | 
			
		||||
@@ -83,78 +83,19 @@ public:
 | 
			
		||||
			   GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
			
		||||
			   RealD _mass,RealD M5,const ImplParams &p= ImplParams());
 | 
			
		||||
 | 
			
		||||
  PartialFractionFermion5D(GaugeField &_Umu,
 | 
			
		||||
			   GridCartesian         &FiveDimGrid,
 | 
			
		||||
			   GridRedBlackCartesian &FiveDimRedBlackGrid,
 | 
			
		||||
			   GridCartesian         &FourDimGrid,
 | 
			
		||||
			   GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
			
		||||
			   RealD _mass,RealD M5,std::vector<RealD> &_qmu,const ImplParams &p= ImplParams());
 | 
			
		||||
 | 
			
		||||
  void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary, std::vector<double> twist)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << "Free Propagator for PartialFraction"<<std::endl;
 | 
			
		||||
    FermionField in_k(in.Grid());
 | 
			
		||||
    FermionField prop_k(in.Grid());
 | 
			
		||||
    
 | 
			
		||||
    FFT theFFT((GridCartesian *) in.Grid());
 | 
			
		||||
 | 
			
		||||
    //phase for boundary condition
 | 
			
		||||
    ComplexField coor(in.Grid());
 | 
			
		||||
    ComplexField ph(in.Grid());  ph = Zero();
 | 
			
		||||
    FermionField in_buf(in.Grid()); in_buf = Zero();
 | 
			
		||||
    typedef typename Simd::scalar_type Scalar;
 | 
			
		||||
    Scalar ci(0.0,1.0);
 | 
			
		||||
    assert(twist.size() == Nd);//check that twist is Nd
 | 
			
		||||
    assert(boundary.size() == Nd);//check that boundary conditions is Nd
 | 
			
		||||
    int shift = 0;
 | 
			
		||||
    for(unsigned int nu = 0; nu < Nd; nu++)
 | 
			
		||||
      {
 | 
			
		||||
	// Shift coordinate lattice index by 1 to account for 5th dimension.
 | 
			
		||||
	LatticeCoordinate(coor, nu + shift);
 | 
			
		||||
	double boundary_phase = ::acos(real(boundary[nu]));
 | 
			
		||||
	ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu+shift])));
 | 
			
		||||
	//momenta for propagator shifted by twist+boundary
 | 
			
		||||
	twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI));
 | 
			
		||||
      }
 | 
			
		||||
    in_buf = exp(ci*ph*(-1.0))*in;
 | 
			
		||||
 | 
			
		||||
    theFFT.FFT_all_dim(in_k,in,FFT::forward);
 | 
			
		||||
    if ( this->qmu.size() ){
 | 
			
		||||
      this->MomentumSpacePropagatorHwQ(prop_k,in_k,mass,twist,this->qmu);
 | 
			
		||||
    } else {
 | 
			
		||||
      this->MomentumSpacePropagatorHw(prop_k,in_k,mass,twist);
 | 
			
		||||
    }
 | 
			
		||||
    theFFT.FFT_all_dim(out,prop_k,FFT::backward);
 | 
			
		||||
    
 | 
			
		||||
    //phase for boundary condition
 | 
			
		||||
    out = out * exp(ci*ph);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
 | 
			
		||||
    std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
 | 
			
		||||
    std::vector<Complex> boundary;
 | 
			
		||||
    for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions
 | 
			
		||||
    FreePropagator(in,out,mass,boundary,twist);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void set_qmu(std::vector<RealD> _qmu) { qmu=_qmu; assert(qmu.size()==Nd);};
 | 
			
		||||
  void addQmu(const FermionField &in, FermionField &out, int dag);
 | 
			
		||||
 | 
			
		||||
protected:
 | 
			
		||||
 | 
			
		||||
  virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale);
 | 
			
		||||
  virtual void SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata);
 | 
			
		||||
 | 
			
		||||
  std::vector<RealD> qmu;
 | 
			
		||||
 | 
			
		||||
  // Part frac
 | 
			
		||||
  RealD mass;
 | 
			
		||||
  RealD dw_diag;
 | 
			
		||||
  RealD R;
 | 
			
		||||
  RealD amax;
 | 
			
		||||
  RealD scale;
 | 
			
		||||
  std::vector<double> p; 
 | 
			
		||||
  std::vector<double> q;
 | 
			
		||||
  Vector<double> p; 
 | 
			
		||||
  Vector<double> q;
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
Some files were not shown because too many files have changed in this diff Show More
		Reference in New Issue
	
	Block a user