1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-07-01 22:17:08 +01:00

Compare commits

...

8 Commits

8 changed files with 1006 additions and 9 deletions

View File

@ -158,6 +158,18 @@ public:
blockPromote(CoarseVec,FineVec,subspace);
}
virtual void CreateSubspaceRandom(GridParallelRNG &RNG) {
int nn=nbasis;
RealD scale;
FineField noise(FineGrid);
for(int b=0;b<nn;b++){
subspace[b] = Zero();
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
subspace[b] = noise;
}
}
virtual void CreateSubspace(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) {
RealD scale;

View File

@ -0,0 +1,431 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
Copyright (C) 2015
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No)
#include <Grid/lattice/PaddedCell.h>
#include <Grid/stencil/GeneralLocalStencil.h>
NAMESPACE_BEGIN(Grid);
template<class vobj> void gpermute(vobj & inout,int perm){
vobj tmp=inout;
if (perm & 0x1 ) { permute(inout,tmp,0); tmp=inout;}
if (perm & 0x2 ) { permute(inout,tmp,1); tmp=inout;}
if (perm & 0x4 ) { permute(inout,tmp,2); tmp=inout;}
if (perm & 0x8 ) { permute(inout,tmp,3); tmp=inout;}
}
/////////////////////////////////////////////////////////////////
// Reuse Aggregation class from CoarsenedMatrix for now
// Might think about *smoothed* Aggregation
// Equivalent of Geometry class in cartesian case
/////////////////////////////////////////////////////////////////
class NonLocalStencilGeometry {
public:
int depth;
int npoint;
std::vector<Coordinate> shifts;
virtual void BuildShifts(void) { assert(0); } ;
int Depth(void){return depth;};
NonLocalStencilGeometry(int _depth) : depth(_depth)
{
};
virtual ~NonLocalStencilGeometry() {};
};
// Need to worry about red-black now
class NextToNearestStencilGeometry4D : public NonLocalStencilGeometry {
public:
NextToNearestStencilGeometry4D(void) : NonLocalStencilGeometry(2)
{
this->BuildShifts();
};
virtual ~NextToNearestStencilGeometry4D() {};
virtual void BuildShifts(void)
{
this->shifts.resize(0);
// Like HDCG: 81 point stencil including self connection
this->shifts.push_back(Coordinate({0,0,0,0}));
// +-x, +-y, +-z, +-t : 8
for(int s=-1;s<=1;s+=2){
this->shifts.push_back(Coordinate({s,0,0,0}));
this->shifts.push_back(Coordinate({0,s,0,0}));
this->shifts.push_back(Coordinate({0,0,s,0}));
this->shifts.push_back(Coordinate({0,0,0,s}));
}
// +-x+-y, +-x+-z, +-x+-t, +-y+-z, +-y+-t, +-z+-t : 24
for(int s1=-1;s1<=1;s1+=2){
for(int s2=-1;s2<=1;s2+=2){
this->shifts.push_back(Coordinate({s1,s2,0,0}));
this->shifts.push_back(Coordinate({s1,0,s2,0}));
this->shifts.push_back(Coordinate({s1,0,0,s2}));
this->shifts.push_back(Coordinate({0,s1,s2,0}));
this->shifts.push_back(Coordinate({0,s1,0,s2}));
this->shifts.push_back(Coordinate({0,0,s1,s2}));
}}
this->npoint = this->shifts.size();
}
};
// Need to worry about red-black now
class NextToNextToNextToNearestStencilGeometry4D : public NonLocalStencilGeometry {
public:
NextToNextToNextToNearestStencilGeometry4D(void) : NonLocalStencilGeometry(4)
{
this->BuildShifts();
};
virtual ~NextToNextToNextToNearestStencilGeometry4D() {}
virtual void BuildShifts(void)
{
this->shifts.resize(0);
// Like HDCG: 81 point stencil including self connection
this->shifts.push_back(Coordinate({0,0,0,0}));
// +-x, +-y, +-z, +-t : 8
for(int s=-1;s<=1;s+=2){
this->shifts.push_back(Coordinate({s,0,0,0}));
this->shifts.push_back(Coordinate({0,s,0,0}));
this->shifts.push_back(Coordinate({0,0,s,0}));
this->shifts.push_back(Coordinate({0,0,0,s}));
}
// +-x+-y, +-x+-z, +-x+-t, +-y+-z, +-y+-t, +-z+-t : 24
for(int s1=-1;s1<=1;s1+=2){
for(int s2=-1;s2<=1;s2+=2){
this->shifts.push_back(Coordinate({s1,s2,0,0}));
this->shifts.push_back(Coordinate({s1,0,s2,0}));
this->shifts.push_back(Coordinate({s1,0,0,s2}));
this->shifts.push_back(Coordinate({0,s1,s2,0}));
this->shifts.push_back(Coordinate({0,s1,0,s2}));
this->shifts.push_back(Coordinate({0,0,s1,s2}));
}}
// +-x+-y+-z, +-x+-y+-z, +-x+-y+-z,
for(int s1=-1;s1<=1;s1+=2){
for(int s2=-1;s2<=1;s2+=2){
for(int s3=-1;s3<=1;s3+=2){
this->shifts.push_back(Coordinate({s1,s2,s3,0})); // 8x4 = 32
this->shifts.push_back(Coordinate({s1,s2,0,s3}));
this->shifts.push_back(Coordinate({s1,0,s2,s3}));
this->shifts.push_back(Coordinate({0,s1,s2,s3}));
}}}
for(int s1=-1;s1<=1;s1+=2){
for(int s2=-1;s2<=1;s2+=2){
for(int s3=-1;s3<=1;s3+=2){
for(int s4=-1;s4<=1;s4+=2){
this->shifts.push_back(Coordinate({s1,s2,s3,s4})); // 16
}}}}
this->npoint = this->shifts.size();
}
};
class NextToNearestStencilGeometry5D : public NonLocalStencilGeometry {
public:
NextToNearestStencilGeometry5D(void) : NonLocalStencilGeometry(2)
{
this->BuildShifts();
};
virtual ~NextToNearestStencilGeometry5D() {};
virtual void BuildShifts(void)
{
this->shifts.resize(0);
// Like HDCG: 81 point stencil including self connection
this->shifts.push_back(Coordinate({0,0,0,0,0}));
// +-x, +-y, +-z, +-t : 8
for(int s=-1;s<=1;s+=2){
this->shifts.push_back(Coordinate({0,s,0,0,0}));
this->shifts.push_back(Coordinate({0,0,s,0,0}));
this->shifts.push_back(Coordinate({0,0,0,s,0}));
this->shifts.push_back(Coordinate({0,0,0,0,s}));
}
// +-x+-y, +-x+-z, +-x+-t, +-y+-z, +-y+-t, +-z+-t : 24
for(int s1=-1;s1<=1;s1+=2){
for(int s2=-1;s2<=1;s2+=2){
this->shifts.push_back(Coordinate({0,s1,s2,0,0}));
this->shifts.push_back(Coordinate({0,s1,0,s2,0}));
this->shifts.push_back(Coordinate({0,s1,0,0,s2}));
this->shifts.push_back(Coordinate({0,0,s1,s2,0}));
this->shifts.push_back(Coordinate({0,0,s1,0,s2}));
this->shifts.push_back(Coordinate({0,0,0,s1,s2}));
}}
this->npoint = this->shifts.size();
}
};
// Need to worry about red-black now
class NextToNextToNextToNearestStencilGeometry5D : public NonLocalStencilGeometry {
public:
NextToNextToNextToNearestStencilGeometry5D(void) : NonLocalStencilGeometry(4)
{
this->BuildShifts();
};
virtual ~NextToNextToNextToNearestStencilGeometry5D() {}
virtual void BuildShifts(void)
{
this->shifts.resize(0);
// Like HDCG: 81 point stencil including self connection
this->shifts.push_back(Coordinate({0,0,0,0,0}));
// +-x, +-y, +-z, +-t : 8
for(int s=-1;s<=1;s+=2){
this->shifts.push_back(Coordinate({0,s,0,0,0}));
this->shifts.push_back(Coordinate({0,0,s,0,0}));
this->shifts.push_back(Coordinate({0,0,0,s,0}));
this->shifts.push_back(Coordinate({0,0,0,0,s}));
}
// +-x+-y, +-x+-z, +-x+-t, +-y+-z, +-y+-t, +-z+-t : 24
for(int s1=-1;s1<=1;s1+=2){
for(int s2=-1;s2<=1;s2+=2){
this->shifts.push_back(Coordinate({0,s1,s2,0,0}));
this->shifts.push_back(Coordinate({0,s1,0,s2,0}));
this->shifts.push_back(Coordinate({0,s1,0,0,s2}));
this->shifts.push_back(Coordinate({0,0,s1,s2,0}));
this->shifts.push_back(Coordinate({0,0,s1,0,s2}));
this->shifts.push_back(Coordinate({0,0,0,s1,s2}));
}}
// +-x+-y+-z, +-x+-y+-z, +-x+-y+-z,
for(int s1=-1;s1<=1;s1+=2){
for(int s2=-1;s2<=1;s2+=2){
for(int s3=-1;s3<=1;s3+=2){
this->shifts.push_back(Coordinate({0,s1,s2,s3,0})); // 8x4 = 32
this->shifts.push_back(Coordinate({0,s1,s2,0,s3}));
this->shifts.push_back(Coordinate({0,s1,0,s2,s3}));
this->shifts.push_back(Coordinate({0,0,s1,s2,s3}));
}}}
for(int s1=-1;s1<=1;s1+=2){
for(int s2=-1;s2<=1;s2+=2){
for(int s3=-1;s3<=1;s3+=2){
for(int s4=-1;s4<=1;s4+=2){
this->shifts.push_back(Coordinate({0,s1,s2,s3,s4})); // 16
}}}}
this->npoint = this->shifts.size();
}
};
// Fine Object == (per site) type of fine field
// nbasis == number of deflation vectors
template<class Fobj,class CComplex,int nbasis>
class GeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
public:
typedef iVector<CComplex,nbasis > siteVector;
typedef Lattice<CComplex > CoarseComplexField;
typedef Lattice<siteVector> CoarseVector;
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
typedef iMatrix<CComplex,nbasis > Cobj;
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj > FineField;
typedef CoarseVector Field;
////////////////////
// Data members
////////////////////
int hermitian;
GridCartesian * _FineGrid;
GridCartesian * _CoarseGrid;
NonLocalStencilGeometry &geom;
PaddedCell Cell;
GeneralLocalStencil Stencil;
std::vector<CoarseMatrix> _A;
std::vector<CoarseMatrix> _Adag;
///////////////////////
// Interface
///////////////////////
GridCartesian * Grid(void) { return _FineGrid; }; // this is all the linalg routines need to know
GridCartesian * FineGrid(void) { return _FineGrid; }; // this is all the linalg routines need to know
GridCartesian * CoarseGrid(void) { return _CoarseGrid; }; // this is all the linalg routines need to know
GeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridCartesian *FineGrid, GridCartesian * CoarseGrid)
: geom(_geom),
_FineGrid(FineGrid),
_CoarseGrid(CoarseGrid),
hermitian(1),
Cell(_geom.Depth(),_CoarseGrid),
Stencil(Cell.grids.back(),geom.shifts)
{
_A.resize(geom.npoint,CoarseGrid);
_Adag.resize(geom.npoint,CoarseGrid);
}
void M (const CoarseVector &in, CoarseVector &out)
{
Mult(_A,in,out);
}
void Mdag (const CoarseVector &in, CoarseVector &out)
{
Mult(_Adag,in,out);
}
void Mult (std::vector<CoarseMatrix> &A,const CoarseVector &in, CoarseVector &out)
{
conformable(CoarseGrid(),in.Grid());
conformable(in.Grid(),out.Grid());
out.Checkerboard() = in.Checkerboard();
CoarseVector tin=in;
std::cout << "Calling Exchange"<<std::endl;
CoarseVector pin = Cell.Exchange(tin);
// std::cout << "Called Exchange"<<std::endl;
CoarseVector pout(pin.Grid());
autoView( in_v , pin, AcceleratorRead);
autoView( out_v , pout, AcceleratorWrite);
autoView( Stencil_v , Stencil, AcceleratorRead);
int npoint = geom.npoint;
typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer;
for(int p=0;p<npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
Aview *Aview_p = & AcceleratorViewContainer[0];
const int Nsimd = CComplex::Nsimd();
typedef siteVector calcVector;
typedef CComplex calcComplex;
int osites=pin.Grid()->oSites();
for(int point=0;point<npoint;point++){
conformable(_A[point],pin);
}
// Should also exchange "A" and "Adag"
accelerator_for(sss, osites*nbasis, 1, {
int ss = sss/nbasis;
int b = sss%nbasis;
assert(ss<osites);
calcComplex res;
res = Zero();
calcVector nbr;
int ptype;
StencilEntry *SE;
// FIXME -- exchange the A and the A dag
for(int point=0;point<npoint;point++){
auto SE = Stencil_v.GetEntry(point,ss);
int o = SE->_offset;
// gpermute etc..
nbr = in_v[o];
assert( o< osites);
gpermute(nbr,SE->_permute);
for(int bb=0;bb<nbasis;bb++) {
res = res + Aview_p[point][ss](b,bb)*nbr(bb);
}
}
out_v[ss](b)=res;
});
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
out = Cell.Extract(pout);
};
void Test(LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & Subspace)
{
// Create a random
GridCartesian *grid = FineGrid();
FineField MbV(grid);
FineField tmp(grid);
FineField f_src(grid);
FineField f_res(grid);
FineField f_ref(grid);
CoarseVector c_src(CoarseGrid());
CoarseVector c_res(CoarseGrid());
CoarseVector coarseInner(CoarseGrid());
GridParallelRNG RNG(CoarseGrid()); RNG.SeedUniqueString(std::string("Coarse RNG"));
random(RNG,c_src);
blockPromote(c_src,f_src,Subspace.subspace);
linop.op(f_src,f_ref);
this->Mult (_A,c_src,c_res);
blockPromote(c_res,f_res,Subspace.subspace);
std::cout << " GeneralCoarsenedMatrix comparison res "<<norm2(f_res)<<std::endl;
std::cout << " GeneralCoarsenedMatrix comparison ref "<<norm2(f_ref)<<std::endl;
f_res = f_res - f_ref;
std::cout << " GeneralCoarsenedMatrix comparison diff "<<norm2(f_res)<<std::endl;
}
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & Subspace)
{
std::cout << GridLogMessage<< "CoarsenMatrix "<< std::endl;
GridCartesian *grid = FineGrid();
// Orthogonalise the subblocks over the basis
CoarseScalar InnerProd(CoarseGrid());
for(int b=0;b<nbasis;b++){
std::cout << "subspace["<<b<<"] " <<norm2(Subspace.subspace[b])<<std::endl;
}
blockOrthogonalise(InnerProd,Subspace.subspace);
// Now compute the matrix elements of linop between this orthonormal
// set of vectors.
FineField bV(grid);
FineField MbV(grid);
FineField tmp(grid);
CoarseVector coarseInner(CoarseGrid());
// Very inefficient loop of order coarse volume.
// First pass hack
// Could replace with a coloring scheme our phase scheme
// as in BFM
for(int bidx=0;bidx<CoarseGrid()->gSites() ;bidx++){
Coordinate bcoor;
CoarseGrid()->GlobalIndexToGlobalCoor(bidx,bcoor);
std::cout << GridLogMessage<< "CoarsenMatrix block "<< bcoor << std::endl;
for(int b=0;b<nbasis;b++){
blockPick(CoarseGrid(),Subspace.subspace[b],bV,bcoor);
linop.HermOp(bV,MbV);
blockProject(coarseInner,MbV,Subspace.subspace);
for(int p=0;p<geom.npoint;p++){
Coordinate scoor = bcoor;
for(int mu=0;mu<bcoor.size();mu++){
int L = CoarseGrid()->GlobalDimensions()[mu];
scoor[mu] = (bcoor[mu] - geom.shifts[p][mu] + L) % L; // Modulo arithmetic
}
auto ip = peekSite(coarseInner,scoor);
std::cout << "A["<<b<<"]["<<p<<"]"<<scoor<<" "<<" shift "<<geom.shifts[p]<<" "<< ip <<std::endl;
auto Ab = peekSite(_A[p],scoor);
auto Adagb = peekSite(_Adag[p],bcoor);
for(int bb=0;bb<nbasis;bb++){
Ab(bb,b) = ip(bb);
Adagb(b,bb) = conjugate(ip(bb));
}
pokeSite(Ab,_A[p],scoor);
pokeSite(Adagb,_Adag[p],bcoor);
}
}
}
std::cout << " Exchanging _A " <<std::endl;
for(int p=0;p<geom.npoint;p++){
_A[p] = Cell.Exchange(_A[p]);
_Adag[p] = Cell.Exchange(_Adag[p]);
}
}
virtual void Mdiag (const Field &in, Field &out){ assert(0);};
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);};
virtual void MdirAll (const Field &in, std::vector<Field> &out){assert(0);};
};
NAMESPACE_END(Grid);

View File

@ -90,9 +90,8 @@ public:
order=_order;
if(order < 2) exit(-1);
Coeffs.resize(order);
Coeffs.assign(0.,order);
Coeffs[order-1] = 1.;
Coeffs.resize(order,0.0);
Coeffs[order-1] = 1.0;
};
// PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's.

View File

@ -45,8 +45,9 @@ public:
dims=_grid->Nd();
AllocateGrids();
Coordinate local =unpadded_grid->LocalDimensions();
Coordinate procs =unpadded_grid->ProcessorGrid();
for(int d=0;d<dims;d++){
assert(local[d]>=depth);
if ( procs[d] > 1 ) assert(local[d]>=depth);
}
}
void DeleteGrids(void)
@ -111,7 +112,7 @@ public:
if(dim==0) conformable(old_grid,unpadded_grid);
else conformable(old_grid,grids[dim-1]);
std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl;
// std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl;
// Middle bit
for(int x=0;x<local[dim];x++){
InsertSliceLocal(in,padded,x,depth+x,dim);

View File

@ -46,7 +46,7 @@ class GeneralLocalStencilView {
accelerator_inline GeneralStencilEntry * GetEntry(int point,int osite) {
return & this->_entries_p[point+this->_npoints*osite];
}
void ViewClose(void){};
};
////////////////////////////////////////
// The Stencil Class itself
@ -61,7 +61,7 @@ protected:
public:
GridBase *Grid(void) const { return _grid; }
View_type View(void) const {
View_type View(int mode) const {
View_type accessor(*( (View_type *) this));
return accessor;
}

View File

@ -1,4 +1,3 @@
BREW=/opt/local/
MPICXX=mpicxx CXX=c++-12 ../../configure --enable-simd=GEN --enable-comms=mpi-auto --enable-unified=yes --prefix $HOME/QCD/GridInstall --with-lime=/Users/peterboyle/QCD/SciDAC/install/ --with-openssl=$BREW --disable-fermion-reps --disable-gparity --disable-debug
CXXFLAGS=-fsanitize=address CXX=g++ ../../configure --enable-simd=NEONv8 --enable-comms=none --enable-unified=yes --prefix $HOME/QCD/GridInstall --with-lime=/Users/peterboyle/QCD/SciDAC/install/ --with-openssl=$BREW --disable-gparity --disable-fermion-reps

View File

@ -0,0 +1,329 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_padded_cell.cc
Copyright (C) 2023
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/lattice/PaddedCell.h>
#include <Grid/stencil/GeneralLocalStencil.h>
#include <Grid/algorithms/GeneralCoarsenedMatrix.h>
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidual.h>
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidualNonHermitian.h>
#include <Grid/algorithms/iterative/BiCGSTAB.h>
using namespace std;
using namespace Grid;
template<class Field>
class HermOpAdaptor : public LinearOperatorBase<Field>
{
LinearOperatorBase<Field> & wrapped;
public:
HermOpAdaptor(LinearOperatorBase<Field> &wrapme) : wrapped(wrapme) {};
void OpDiag (const Field &in, Field &out) { assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); };
void Op (const Field &in, Field &out){
wrapped.HermOp(in,out);
}
void AdjOp (const Field &in, Field &out){
wrapped.HermOp(in,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
void HermOp(const Field &in, Field &out){
wrapped.HermOp(in,out);
}
};
template<class Matrix,class Field>
class PVdagMLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
Matrix &_PV;
public:
PVdagMLinearOperator(Matrix &Mat,Matrix &PV): _Mat(Mat),_PV(PV){};
void OpDiag (const Field &in, Field &out) { assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); };
void Op (const Field &in, Field &out){
Field tmp(in.Grid());
_Mat.M(in,tmp);
_PV.Mdag(tmp,out);
}
void AdjOp (const Field &in, Field &out){
Field tmp(in.Grid());
_PV.M(tmp,out);
_Mat.Mdag(in,tmp);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
void HermOp(const Field &in, Field &out){
std::cout << "HermOp"<<std::endl;
Field tmp(in.Grid());
_Mat.M(in,tmp);
_PV.Mdag(tmp,out);
_PV.M(out,tmp);
_Mat.Mdag(tmp,out);
std::cout << "HermOp done "<<norm2(out)<<std::endl;
}
};
template<class Field> class DumbOperator : public LinearOperatorBase<Field> {
public:
LatticeComplex scale;
DumbOperator(GridBase *grid) : scale(grid)
{
scale = 0.0;
LatticeComplex scalesft(grid);
LatticeComplex scaletmp(grid);
for(int d=0;d<4;d++){
Lattice<iScalar<vInteger> > x(grid); LatticeCoordinate(x,d+1);
LatticeCoordinate(scaletmp,d+1);
scalesft = Cshift(scaletmp,d+1,1);
scale = 100.0*scale + where( mod(x ,2)==(Integer)0, scalesft,scaletmp);
}
std::cout << " scale\n" << scale << std::endl;
}
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {};
void OpDir (const Field &in, Field &out,int dir,int disp){};
void OpDirAll (const Field &in, std::vector<Field> &out) {};
void Op (const Field &in, Field &out){
out = scale * in;
}
void AdjOp (const Field &in, Field &out){
out = scale * in;
}
void HermOp(const Field &in, Field &out){
double n1, n2;
HermOpAndNorm(in,out,n1,n2);
}
void HermOpAndNorm(const Field &in, Field &out,double &n1,double &n2){
ComplexD dot;
out = scale * in;
dot= innerProduct(in,out);
n1=real(dot);
dot = innerProduct(out,out);
n2=real(dot);
}
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
const int Ls=4;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
// Construct a coarsened grid
Coordinate clatt = GridDefaultLatt();
for(int d=0;d<clatt.size();d++){
clatt[d] = clatt[d]/2;
}
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());;
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
std::vector<int> cseeds({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds);
LatticeFermion src(FGrid); random(RNG5,src);
LatticeFermion result(FGrid); result=Zero();
LatticeFermion ref(FGrid); ref=Zero();
LatticeFermion tmp(FGrid);
LatticeFermion err(FGrid);
LatticeGaugeField Umu(UGrid);
//SU<Nc>::HotConfiguration(RNG4,Umu);
SU<Nc>::ColdConfiguration(Umu);
// auto U = peekLorentz(Umu,0);
// Umu=Zero(); // Make operator local for now
// pokeLorentz(Umu,U,0);
RealD mass=0.5;
RealD M5=1.8;
DomainWallFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
DomainWallFermionD Dpv(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,1.0,M5);
const int nbasis = 20;
const int cb = 0 ;
LatticeFermion prom(FGrid);
std::vector<LatticeFermion> subspace(nbasis,FGrid);
std::cout<<GridLogMessage<<"Calling Aggregation class" <<std::endl;
// Possible tactics -- with zero gauge field, verify block locality of dirac op
// Possible tactics -- with zero gauge field, take inner products
// Squared operator
MdagMLinearOperator<DomainWallFermionD,LatticeFermion> HermDefOp(Ddwf);
DumbOperator<LatticeFermion> Diagonal(FGrid);
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
Subspace Aggregates(Coarse5d,FGrid,cb);
Aggregates.CreateSubspaceRandom(RNG5);
std::cout<<GridLogMessage << "Called aggregation class"<< std::endl;
typedef GeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LittleDiracOperator;
typedef LittleDiracOperator::CoarseVector CoarseVector;
NextToNearestStencilGeometry5D geom;
LittleDiracOperator LittleDiracOp(geom,FGrid,Coarse5d);
LittleDiracOp.CoarsenOperator(HermDefOp,Aggregates);
// LittleDiracOp.CoarsenOperator(Diagonal,Aggregates);
std::cout<<GridLogMessage<<"Coarsened operator "<<std::endl;
CoarseVector c_src (Coarse5d);
CoarseVector c_res (Coarse5d);
CoarseVector c_proj(Coarse5d);
subspace=Aggregates.subspace;
Complex one(1.0);
c_src = one; // 1 in every element for vector 1.
Coordinate coor(5,0);
std::cout << "c_src"<< c_src<< std::endl;
blockPromote(c_src,err,subspace);
prom=Zero();
for(int b=0;b<nbasis;b++){
prom=prom+subspace[b];
}
err=err-prom;
std::cout<<GridLogMessage<<"Promoted back from subspace: err "<<norm2(err)<<std::endl;
std::cout<<GridLogMessage<<"c_src "<<norm2(c_src)<<std::endl;
std::cout<<GridLogMessage<<"prom "<<norm2(prom)<<std::endl;
// blockPick(Coarse5d,c_src,c_src,coor);
// blockPromote(c_src,prom,subspace);
// Diagonal.HermOp(prom,tmp);
HermDefOp.HermOp(prom,tmp);
// HermDefOp.Op(prom,tmp);
blockProject(c_proj,tmp,subspace);
std::cout<<GridLogMessage<<" Called Big Dirac Op "<<norm2(tmp)<<std::endl;
LittleDiracOp.M(c_src,c_res);
std::cout<<GridLogMessage<<" Called Little Dirac Op c_src "<< norm2(c_src) << " c_res "<< norm2(c_res) <<std::endl;
std::cout<<GridLogMessage<<"Little dop : "<<norm2(c_res)<<std::endl;
std::cout<<GridLogMessage<<" Little "<< c_res<<std::endl;
std::cout<<GridLogMessage<<"Big dop in subspace : "<<norm2(c_proj)<<std::endl;
std::cout<<GridLogMessage<<" Big "<< c_proj<<std::endl;
c_proj = c_proj - c_res;
std::cout<<GridLogMessage<<" ldop error: "<<norm2(c_proj)<<std::endl;
std::cout<<GridLogMessage<<" error "<< c_proj<<std::endl;
std::cout<<GridLogMessage << "Testing Hermiticity stochastically "<< std::endl;
CoarseVector phi(Coarse5d);
CoarseVector chi(Coarse5d);
CoarseVector Aphi(Coarse5d);
CoarseVector Achi(Coarse5d);
random(CRNG,phi);
random(CRNG,chi);
std::cout<<GridLogMessage<<"Made randoms "<<norm2(phi)<<" " << norm2(chi)<<std::endl;
LittleDiracOp.M(phi,Aphi);
LittleDiracOp.Mdag(chi,Achi);
std::cout<<GridLogMessage<<"Aphi "<<norm2(Aphi)<<" Adag chi" << norm2(Achi)<<std::endl;
ComplexD pAc = innerProduct(chi,Aphi);
ComplexD cAp = innerProduct(phi,Achi);
ComplexD cAc = innerProduct(chi,Achi);
ComplexD pAp = innerProduct(phi,Aphi);
std::cout<<GridLogMessage<< "pAc "<<pAc<<" cAp "<< cAp<< " diff "<<pAc-adj(cAp)<<std::endl;
std::cout<<GridLogMessage<< "pAp "<<pAp<<" cAc "<< cAc<<"Should be real"<< std::endl;
std::cout<<GridLogMessage<<"Testing linearity"<<std::endl;
CoarseVector PhiPlusChi(Coarse5d);
CoarseVector APhiPlusChi(Coarse5d);
CoarseVector linerr(Coarse5d);
PhiPlusChi = phi+chi;
LittleDiracOp.M(PhiPlusChi,APhiPlusChi);
linerr= APhiPlusChi-Aphi;
linerr= linerr-Achi;
std::cout<<GridLogMessage<<"**Diff "<<norm2(linerr)<<std::endl;
std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage<<std::endl;
PVdagMLinearOperator<DomainWallFermionD,LatticeFermionD> PVdagM(Ddwf,Dpv);
HermOpAdaptor<LatticeFermionD> HOA(PVdagM);
// Run power method on HOA??
PowerMethod<LatticeFermion> PM; PM(HOA,src);
// Warning: This routine calls PVdagM.Op, not PVdagM.HermOp
Subspace AggregatesPD(Coarse5d,FGrid,cb);
AggregatesPD.CreateSubspaceChebyshev(RNG5,
HOA,
nbasis,
5000.0,
0.02,
100,
50,
50,
0.0);
LittleDiracOperator LittleDiracOpPV(geom,FGrid,Coarse5d);
LittleDiracOpPV.CoarsenOperator(PVdagM,AggregatesPD);
std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage << "Done "<< std::endl;
Grid_finalize();
return 0;
}

View File

@ -0,0 +1,226 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_padded_cell.cc
Copyright (C) 2023
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/lattice/PaddedCell.h>
#include <Grid/stencil/GeneralLocalStencil.h>
#include <Grid/algorithms/GeneralCoarsenedMatrix.h>
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidual.h>
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidualNonHermitian.h>
#include <Grid/algorithms/iterative/BiCGSTAB.h>
using namespace std;
using namespace Grid;
template<class Field>
class HermOpAdaptor : public LinearOperatorBase<Field>
{
LinearOperatorBase<Field> & wrapped;
public:
HermOpAdaptor(LinearOperatorBase<Field> &wrapme) : wrapped(wrapme) {};
void OpDiag (const Field &in, Field &out) { assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); };
void Op (const Field &in, Field &out){
wrapped.HermOp(in,out);
}
void AdjOp (const Field &in, Field &out){
wrapped.HermOp(in,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
void HermOp(const Field &in, Field &out){
wrapped.HermOp(in,out);
}
};
template<class Matrix,class Field>
class PVdagMLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
Matrix &_PV;
public:
PVdagMLinearOperator(Matrix &Mat,Matrix &PV): _Mat(Mat),_PV(PV){};
void OpDiag (const Field &in, Field &out) { assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); };
void Op (const Field &in, Field &out){
Field tmp(in.Grid());
_Mat.M(in,tmp);
_PV.Mdag(tmp,out);
}
void AdjOp (const Field &in, Field &out){
Field tmp(in.Grid());
_PV.M(tmp,out);
_Mat.Mdag(in,tmp);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
void HermOp(const Field &in, Field &out){
std::cout << "HermOp"<<std::endl;
Field tmp(in.Grid());
_Mat.M(in,tmp);
_PV.Mdag(tmp,out);
_PV.M(out,tmp);
_Mat.Mdag(tmp,out);
std::cout << "HermOp done "<<norm2(out)<<std::endl;
}
};
template<class Field> class DumbOperator : public LinearOperatorBase<Field> {
public:
LatticeComplex scale;
DumbOperator(GridBase *grid) : scale(grid)
{
scale = 0.0;
LatticeComplex scalesft(grid);
LatticeComplex scaletmp(grid);
for(int d=0;d<4;d++){
Lattice<iScalar<vInteger> > x(grid); LatticeCoordinate(x,d+1);
LatticeCoordinate(scaletmp,d+1);
scalesft = Cshift(scaletmp,d+1,1);
scale = 100.0*scale + where( mod(x ,2)==(Integer)0, scalesft,scaletmp);
}
std::cout << " scale\n" << scale << std::endl;
}
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {};
void OpDir (const Field &in, Field &out,int dir,int disp){};
void OpDirAll (const Field &in, std::vector<Field> &out) {};
void Op (const Field &in, Field &out){
out = scale * in;
}
void AdjOp (const Field &in, Field &out){
out = scale * in;
}
void HermOp(const Field &in, Field &out){
double n1, n2;
HermOpAndNorm(in,out,n1,n2);
}
void HermOpAndNorm(const Field &in, Field &out,double &n1,double &n2){
ComplexD dot;
out = scale * in;
dot= innerProduct(in,out);
n1=real(dot);
dot = innerProduct(out,out);
n2=real(dot);
}
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
const int Ls=16;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
// Construct a coarsened grid
Coordinate clatt = GridDefaultLatt();
for(int d=0;d<clatt.size();d++){
clatt[d] = clatt[d]/2;
}
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());;
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
std::vector<int> cseeds({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds);
LatticeFermion src(FGrid); random(RNG5,src);
LatticeFermion result(FGrid); result=Zero();
LatticeFermion ref(FGrid); ref=Zero();
LatticeFermion tmp(FGrid);
LatticeFermion err(FGrid);
LatticeGaugeField Umu(UGrid);
FieldMetaData header;
std::string file("ckpoint_lat.4000");
NerscIO::readConfiguration(Umu,header,file);
RealD mass=0.5;
RealD M5=1.8;
DomainWallFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
DomainWallFermionD Dpv(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,1.0,M5);
const int nbasis = 20;
const int cb = 0 ;
LatticeFermion prom(FGrid);
typedef GeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LittleDiracOperator;
typedef LittleDiracOperator::CoarseVector CoarseVector;
NextToNearestStencilGeometry5D geom;
std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
std::cout<<GridLogMessage<<std::endl;
PVdagMLinearOperator<DomainWallFermionD,LatticeFermionD> PVdagM(Ddwf,Dpv);
HermOpAdaptor<LatticeFermionD> HOA(PVdagM);
// Run power method on HOA??
PowerMethod<LatticeFermion> PM; PM(HOA,src);
// Warning: This routine calls PVdagM.Op, not PVdagM.HermOp
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
Subspace AggregatesPD(Coarse5d,FGrid,cb);
AggregatesPD.CreateSubspaceChebyshev(RNG5,
HOA,
nbasis,
5000.0,
0.02,
100,
50,
50,
0.0);
LittleDiracOperator LittleDiracOpPV(geom,FGrid,Coarse5d);
LittleDiracOpPV.CoarsenOperator(PVdagM,AggregatesPD);
std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage << "Done "<< std::endl;
Grid_finalize();
return 0;
}