1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-17 23:37:06 +01:00

Compare commits

..

18 Commits

Author SHA1 Message Date
6f421c7a6f Block solver in the SchurRedBlack plus timing report cleaner 2018-11-07 12:26:56 +00:00
b62b9ac214 Patch to broken assertion 2018-11-06 22:18:17 +00:00
8c3a599148 Block solver test 2018-11-06 16:44:58 +00:00
4a47b11876 Block CG improvements to develop 2018-11-06 12:49:05 +00:00
8f514ae550 Hadrons: Lanczos 32bit IO 2018-11-05 11:41:10 +00:00
febe41cc1d Hadrons: improvement on PR #176 2018-10-23 12:48:15 +01:00
62173395b8 Merge pull request #176 from guelpers/develop
Hadrons: full volume noise source for A2A
2018-10-23 12:29:35 +01:00
6b559d68aa Hadrons: eigenpack converter can do test reads 2018-10-22 11:10:18 +01:00
1982cc58dd Hadrons: A2A vectors I/O filename fix 2018-10-21 01:20:05 +01:00
2e2e5ce596 SciDAC I/O print data checksums 2018-10-19 20:36:32 +01:00
2d3916418e Hadrons: more precision fix 2018-10-18 23:45:13 +01:00
21304e2139 Hadrons: fix to allow single-prec build again 2018-10-18 19:58:50 +01:00
7b850eb48b Merge branch 'develop' of github.com:paboyle/Grid into develop 2018-10-18 19:46:25 +01:00
a3ace57e01 Hadrons copyright update 2018-10-18 19:46:11 +01:00
b1c3cbe35e Hadrons: A2A vectors I/O 2018-10-18 19:44:58 +01:00
2b4e253473 Merge branch 'develop' of github.com:paboyle/Grid into develop 2018-10-17 20:28:20 +01:00
0ba3d469c7 Benchmark IO in single and double precision 2018-10-17 20:27:34 +01:00
109c74bed8 Hadrons: full volume noise source for A2A 2018-10-16 14:56:12 +01:00
46 changed files with 1963 additions and 562 deletions

View File

@ -380,6 +380,12 @@ namespace Grid {
template<class Field> class OperatorFunction { template<class Field> class OperatorFunction {
public: public:
virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) = 0; virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) = 0;
virtual void operator() (LinearOperatorBase<Field> &Linop, const std::vector<Field> &in,std::vector<Field> &out) {
assert(in.size()==out.size());
for(int k=0;k<in.size();k++){
(*this)(Linop,in[k],out[k]);
}
};
}; };
template<class Field> class LinearFunction { template<class Field> class LinearFunction {
@ -421,7 +427,7 @@ namespace Grid {
// Hermitian operator Linear function and operator function // Hermitian operator Linear function and operator function
//////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> template<class Field>
class HermOpOperatorFunction : public OperatorFunction<Field> { class HermOpOperatorFunction : public OperatorFunction<Field> {
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) { void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
Linop.HermOp(in,out); Linop.HermOp(in,out);
}; };

View File

@ -55,6 +55,14 @@ namespace Grid {
template<class Field> class CheckerBoardedSparseMatrixBase : public SparseMatrixBase<Field> { template<class Field> class CheckerBoardedSparseMatrixBase : public SparseMatrixBase<Field> {
public: public:
virtual GridBase *RedBlackGrid(void)=0; virtual GridBase *RedBlackGrid(void)=0;
//////////////////////////////////////////////////////////////////////
// Query the even even properties to make algorithmic decisions
//////////////////////////////////////////////////////////////////////
virtual RealD Mass(void) { return 0.0; };
virtual int ConstEE(void) { return 0; }; // Disable assumptions unless overridden
virtual int isTrivialEE(void) { return 0; }; // by a derived class that knows better
// half checkerboard operaions // half checkerboard operaions
virtual void Meooe (const Field &in, Field &out)=0; virtual void Meooe (const Field &in, Field &out)=0;
virtual void Mooee (const Field &in, Field &out)=0; virtual void Mooee (const Field &in, Field &out)=0;

View File

@ -33,7 +33,7 @@ directory
namespace Grid { namespace Grid {
enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS }; enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS, BlockCGVec, BlockCGrQVec };
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
// Block conjugate gradient. Dimension zero should be the block direction // Block conjugate gradient. Dimension zero should be the block direction
@ -42,7 +42,6 @@ template <class Field>
class BlockConjugateGradient : public OperatorFunction<Field> { class BlockConjugateGradient : public OperatorFunction<Field> {
public: public:
typedef typename Field::scalar_type scomplex; typedef typename Field::scalar_type scomplex;
int blockDim ; int blockDim ;
@ -54,21 +53,15 @@ class BlockConjugateGradient : public OperatorFunction<Field> {
RealD Tolerance; RealD Tolerance;
Integer MaxIterations; Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
Integer PrintInterval; //GridLogMessages or Iterative
BlockConjugateGradient(BlockCGtype cgtype,int _Orthog,RealD tol, Integer maxit, bool err_on_no_conv = true) BlockConjugateGradient(BlockCGtype cgtype,int _Orthog,RealD tol, Integer maxit, bool err_on_no_conv = true)
: Tolerance(tol), CGtype(cgtype), blockDim(_Orthog), MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv) : Tolerance(tol), CGtype(cgtype), blockDim(_Orthog), MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv),PrintInterval(100)
{}; {};
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
// Thin QR factorisation (google it) // Thin QR factorisation (google it)
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
void ThinQRfact (Eigen::MatrixXcd &m_rr,
Eigen::MatrixXcd &C,
Eigen::MatrixXcd &Cinv,
Field & Q,
const Field & R)
{
int Orthog = blockDim; // First dimension is block dim; this is an assumption
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
//Dimensions //Dimensions
// R_{ferm x Nblock} = Q_{ferm x Nblock} x C_{Nblock x Nblock} -> ferm x Nblock // R_{ferm x Nblock} = Q_{ferm x Nblock} x C_{Nblock x Nblock} -> ferm x Nblock
@ -85,22 +78,20 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
// Cdag C = Rdag R ; passes. // Cdag C = Rdag R ; passes.
// QdagQ = 1 ; passes // QdagQ = 1 ; passes
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
void ThinQRfact (Eigen::MatrixXcd &m_rr,
Eigen::MatrixXcd &C,
Eigen::MatrixXcd &Cinv,
Field & Q,
const Field & R)
{
int Orthog = blockDim; // First dimension is block dim; this is an assumption
sliceInnerProductMatrix(m_rr,R,R,Orthog); sliceInnerProductMatrix(m_rr,R,R,Orthog);
// Force manifest hermitian to avoid rounding related // Force manifest hermitian to avoid rounding related
m_rr = 0.5*(m_rr+m_rr.adjoint()); m_rr = 0.5*(m_rr+m_rr.adjoint());
#if 0
std::cout << " Calling Cholesky ldlt on m_rr " << m_rr <<std::endl;
Eigen::MatrixXcd L_ldlt = m_rr.ldlt().matrixL();
std::cout << " Called Cholesky ldlt on m_rr " << L_ldlt <<std::endl;
auto D_ldlt = m_rr.ldlt().vectorD();
std::cout << " Called Cholesky ldlt on m_rr " << D_ldlt <<std::endl;
#endif
// std::cout << " Calling Cholesky llt on m_rr " <<std::endl;
Eigen::MatrixXcd L = m_rr.llt().matrixL(); Eigen::MatrixXcd L = m_rr.llt().matrixL();
// std::cout << " Called Cholesky llt on m_rr " << L <<std::endl;
C = L.adjoint(); C = L.adjoint();
Cinv = C.inverse(); Cinv = C.inverse();
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
@ -112,6 +103,25 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
sliceMulMatrix(Q,Cinv,R,Orthog); sliceMulMatrix(Q,Cinv,R,Orthog);
} }
// see comments above
void ThinQRfact (Eigen::MatrixXcd &m_rr,
Eigen::MatrixXcd &C,
Eigen::MatrixXcd &Cinv,
std::vector<Field> & Q,
const std::vector<Field> & R)
{
InnerProductMatrix(m_rr,R,R);
m_rr = 0.5*(m_rr+m_rr.adjoint());
Eigen::MatrixXcd L = m_rr.llt().matrixL();
C = L.adjoint();
Cinv = C.inverse();
MulMatrix(Q,Cinv,R);
}
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
// Call one of several implementations // Call one of several implementations
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
@ -119,14 +129,20 @@ void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
{ {
if ( CGtype == BlockCGrQ ) { if ( CGtype == BlockCGrQ ) {
BlockCGrQsolve(Linop,Src,Psi); BlockCGrQsolve(Linop,Src,Psi);
} else if (CGtype == BlockCG ) {
BlockCGsolve(Linop,Src,Psi);
} else if (CGtype == CGmultiRHS ) { } else if (CGtype == CGmultiRHS ) {
CGmultiRHSsolve(Linop,Src,Psi); CGmultiRHSsolve(Linop,Src,Psi);
} else { } else {
assert(0); assert(0);
} }
} }
virtual void operator()(LinearOperatorBase<Field> &Linop, const std::vector<Field> &Src, std::vector<Field> &Psi)
{
if ( CGtype == BlockCGrQVec ) {
BlockCGrQsolveVec(Linop,Src,Psi);
} else {
assert(0);
}
}
//////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////
// BlockCGrQ implementation: // BlockCGrQ implementation:
@ -139,7 +155,8 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
{ {
int Orthog = blockDim; // First dimension is block dim; this is an assumption int Orthog = blockDim; // First dimension is block dim; this is an assumption
Nblock = B._grid->_fdimensions[Orthog]; Nblock = B._grid->_fdimensions[Orthog];
/* FAKE */
Nblock=8;
std::cout<<GridLogMessage<<" Block Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl; std::cout<<GridLogMessage<<" Block Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl;
X.checkerboard = B.checkerboard; X.checkerboard = B.checkerboard;
@ -202,15 +219,10 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
std::cout << GridLogMessage<<"BlockCGrQ algorithm initialisation " <<std::endl; std::cout << GridLogMessage<<"BlockCGrQ algorithm initialisation " <<std::endl;
//1. QC = R = B-AX, D = Q ; QC => Thin QR factorisation (google it) //1. QC = R = B-AX, D = Q ; QC => Thin QR factorisation (google it)
Linop.HermOp(X, AD); Linop.HermOp(X, AD);
tmp = B - AD; tmp = B - AD;
//std::cout << GridLogMessage << " initial tmp " << norm2(tmp)<< std::endl;
ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp); ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
//std::cout << GridLogMessage << " initial Q " << norm2(Q)<< std::endl;
//std::cout << GridLogMessage << " m_rr " << m_rr<<std::endl;
//std::cout << GridLogMessage << " m_C " << m_C<<std::endl;
//std::cout << GridLogMessage << " m_Cinv " << m_Cinv<<std::endl;
D=Q; D=Q;
std::cout << GridLogMessage<<"BlockCGrQ computed initial residual and QR fact " <<std::endl; std::cout << GridLogMessage<<"BlockCGrQ computed initial residual and QR fact " <<std::endl;
@ -232,14 +244,12 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
MatrixTimer.Start(); MatrixTimer.Start();
Linop.HermOp(D, Z); Linop.HermOp(D, Z);
MatrixTimer.Stop(); MatrixTimer.Stop();
//std::cout << GridLogMessage << " norm2 Z " <<norm2(Z)<<std::endl;
//4. M = [D^dag Z]^{-1} //4. M = [D^dag Z]^{-1}
sliceInnerTimer.Start(); sliceInnerTimer.Start();
sliceInnerProductMatrix(m_DZ,D,Z,Orthog); sliceInnerProductMatrix(m_DZ,D,Z,Orthog);
sliceInnerTimer.Stop(); sliceInnerTimer.Stop();
m_M = m_DZ.inverse(); m_M = m_DZ.inverse();
//std::cout << GridLogMessage << " m_DZ " <<m_DZ<<std::endl;
//5. X = X + D MC //5. X = X + D MC
m_tmp = m_M * m_C; m_tmp = m_M * m_C;
@ -257,6 +267,7 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
//7. D = Q + D S^dag //7. D = Q + D S^dag
m_tmp = m_S.adjoint(); m_tmp = m_S.adjoint();
sliceMaddTimer.Start(); sliceMaddTimer.Start();
sliceMaddMatrix(D,m_tmp,D,Q,Orthog); sliceMaddMatrix(D,m_tmp,D,Q,Orthog);
sliceMaddTimer.Stop(); sliceMaddTimer.Stop();
@ -317,152 +328,6 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
IterationsToComplete = k; IterationsToComplete = k;
} }
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
// Block conjugate gradient; Original O'Leary Dimension zero should be the block direction
//////////////////////////////////////////////////////////////////////////
void BlockCGsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
{
int Orthog = blockDim; // First dimension is block dim; this is an assumption
Nblock = Src._grid->_fdimensions[Orthog];
std::cout<<GridLogMessage<<" Block Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl;
Psi.checkerboard = Src.checkerboard;
conformable(Psi, Src);
Field P(Src);
Field AP(Src);
Field R(Src);
Eigen::MatrixXcd m_pAp = Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_pAp_inv= Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_rr = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_rr_inv = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_alpha = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_beta = Eigen::MatrixXcd::Zero(Nblock,Nblock);
// Initial residual computation & set up
std::vector<RealD> residuals(Nblock);
std::vector<RealD> ssq(Nblock);
sliceNorm(ssq,Src,Orthog);
RealD sssum=0;
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
sliceNorm(residuals,Src,Orthog);
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
sliceNorm(residuals,Psi,Orthog);
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
// Initial search dir is guess
Linop.HermOp(Psi, AP);
/************************************************************************
* Block conjugate gradient (Stephen Pickles, thesis 1995, pp 71, O Leary 1980)
************************************************************************
* O'Leary : R = B - A X
* O'Leary : P = M R ; preconditioner M = 1
* O'Leary : alpha = PAP^{-1} RMR
* O'Leary : beta = RMR^{-1}_old RMR_new
* O'Leary : X=X+Palpha
* O'Leary : R_new=R_old-AP alpha
* O'Leary : P=MR_new+P beta
*/
R = Src - AP;
P = R;
sliceInnerProductMatrix(m_rr,R,R,Orthog);
GridStopWatch sliceInnerTimer;
GridStopWatch sliceMaddTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
int k;
for (k = 1; k <= MaxIterations; k++) {
RealD rrsum=0;
for(int b=0;b<Nblock;b++) rrsum+=real(m_rr(b,b));
std::cout << GridLogIterative << "\titeration "<<k<<" rr_sum "<<rrsum<<" ssq_sum "<< sssum
<<" / "<<std::sqrt(rrsum/sssum) <<std::endl;
MatrixTimer.Start();
Linop.HermOp(P, AP);
MatrixTimer.Stop();
// Alpha
sliceInnerTimer.Start();
sliceInnerProductMatrix(m_pAp,P,AP,Orthog);
sliceInnerTimer.Stop();
m_pAp_inv = m_pAp.inverse();
m_alpha = m_pAp_inv * m_rr ;
// Psi, R update
sliceMaddTimer.Start();
sliceMaddMatrix(Psi,m_alpha, P,Psi,Orthog); // add alpha * P to psi
sliceMaddMatrix(R ,m_alpha,AP, R,Orthog,-1.0);// sub alpha * AP to resid
sliceMaddTimer.Stop();
// Beta
m_rr_inv = m_rr.inverse();
sliceInnerTimer.Start();
sliceInnerProductMatrix(m_rr,R,R,Orthog);
sliceInnerTimer.Stop();
m_beta = m_rr_inv *m_rr;
// Search update
sliceMaddTimer.Start();
sliceMaddMatrix(AP,m_beta,P,R,Orthog);
sliceMaddTimer.Stop();
P= AP;
/*********************
* convergence monitor
*********************
*/
RealD max_resid=0;
RealD rr;
for(int b=0;b<Nblock;b++){
rr = real(m_rr(b,b))/ssq[b];
if ( rr > max_resid ) max_resid = rr;
}
if ( max_resid < Tolerance*Tolerance ) {
SolverTimer.Stop();
std::cout << GridLogMessage<<"BlockCG converged in "<<k<<" iterations"<<std::endl;
for(int b=0;b<Nblock;b++){
std::cout << GridLogMessage<< "\t\tblock "<<b<<" computed resid "
<< std::sqrt(real(m_rr(b,b))/ssq[b])<<std::endl;
}
std::cout << GridLogMessage<<"\tMax residual is "<<std::sqrt(max_resid)<<std::endl;
Linop.HermOp(Psi, AP);
AP = AP-Src;
std::cout << GridLogMessage <<"\t True residual is " << std::sqrt(norm2(AP)/norm2(Src)) <<std::endl;
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tInnerProd " << sliceInnerTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMaddMatrix " << sliceMaddTimer.Elapsed() <<std::endl;
IterationsToComplete = k;
return;
}
}
std::cout << GridLogMessage << "BlockConjugateGradient did NOT converge" << std::endl;
if (ErrorOnNoConverge) assert(0);
IterationsToComplete = k;
}
//////////////////////////////////////////////////////////////////////////
// multiRHS conjugate gradient. Dimension zero should be the block direction // multiRHS conjugate gradient. Dimension zero should be the block direction
// Use this for spread out across nodes // Use this for spread out across nodes
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
@ -600,6 +465,233 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &
IterationsToComplete = k; IterationsToComplete = k;
} }
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){
for(int b=0;b<Nblock;b++){
for(int bp=0;bp<Nblock;bp++) {
m(b,bp) = innerProduct(X[b],Y[bp]);
}}
}
void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){
// Should make this cache friendly with site outermost, parallel_for
// Deal with case AP aliases with either Y or X
std::vector<Field> tmp(Nblock,X[0]);
for(int b=0;b<Nblock;b++){
tmp[b] = Y[b];
for(int bp=0;bp<Nblock;bp++) {
tmp[b] = tmp[b] + (scale*m(bp,b))*X[bp];
}
}
for(int b=0;b<Nblock;b++){
AP[b] = tmp[b];
}
}
void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){
// Should make this cache friendly with site outermost, parallel_for
for(int b=0;b<Nblock;b++){
AP[b] = zero;
for(int bp=0;bp<Nblock;bp++) {
AP[b] += (m(bp,b))*X[bp];
}
}
}
double normv(const std::vector<Field> &P){
double nn = 0.0;
for(int b=0;b<Nblock;b++) {
nn+=norm2(P[b]);
}
return nn;
}
////////////////////////////////////////////////////////////////////////////
// BlockCGrQvec implementation:
//--------------------------
// X is guess/Solution
// B is RHS
// Solve A X_i = B_i ; i refers to Nblock index
////////////////////////////////////////////////////////////////////////////
void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field> &B, std::vector<Field> &X)
{
Nblock = B.size();
assert(Nblock == X.size());
std::cout<<GridLogMessage<<" Block Conjugate Gradient Vec rQ : Nblock "<<Nblock<<std::endl;
for(int b=0;b<Nblock;b++){
X[b].checkerboard = B[b].checkerboard;
conformable(X[b], B[b]);
conformable(X[b], X[0]);
}
Field Fake(B[0]);
std::vector<Field> tmp(Nblock,Fake);
std::vector<Field> Q(Nblock,Fake);
std::vector<Field> D(Nblock,Fake);
std::vector<Field> Z(Nblock,Fake);
std::vector<Field> AD(Nblock,Fake);
Eigen::MatrixXcd m_DZ = Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_M = Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_rr = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_C = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_Cinv = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_S = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_Sinv = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_tmp = Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_tmp1 = Eigen::MatrixXcd::Identity(Nblock,Nblock);
// Initial residual computation & set up
std::vector<RealD> residuals(Nblock);
std::vector<RealD> ssq(Nblock);
RealD sssum=0;
for(int b=0;b<Nblock;b++){ ssq[b] = norm2(B[b]);}
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
for(int b=0;b<Nblock;b++){ residuals[b] = norm2(B[b]);}
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
for(int b=0;b<Nblock;b++){ residuals[b] = norm2(X[b]);}
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
/************************************************************************
* Block conjugate gradient rQ (Sebastien Birk Thesis, after Dubrulle 2001)
************************************************************************
* Dimensions:
*
* X,B==(Nferm x Nblock)
* A==(Nferm x Nferm)
*
* Nferm = Nspin x Ncolour x Ncomplex x Nlattice_site
*
* QC = R = B-AX, D = Q ; QC => Thin QR factorisation (google it)
* for k:
* Z = AD
* M = [D^dag Z]^{-1}
* X = X + D MC
* QS = Q - ZM
* D = Q + D S^dag
* C = S C
*/
///////////////////////////////////////
// Initial block: initial search dir is guess
///////////////////////////////////////
std::cout << GridLogMessage<<"BlockCGrQvec algorithm initialisation " <<std::endl;
//1. QC = R = B-AX, D = Q ; QC => Thin QR factorisation (google it)
for(int b=0;b<Nblock;b++) {
Linop.HermOp(X[b], AD[b]);
tmp[b] = B[b] - AD[b];
}
ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
for(int b=0;b<Nblock;b++) D[b]=Q[b];
std::cout << GridLogMessage<<"BlockCGrQ vec computed initial residual and QR fact " <<std::endl;
///////////////////////////////////////
// Timers
///////////////////////////////////////
GridStopWatch sliceInnerTimer;
GridStopWatch sliceMaddTimer;
GridStopWatch QRTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
int k;
for (k = 1; k <= MaxIterations; k++) {
//3. Z = AD
MatrixTimer.Start();
for(int b=0;b<Nblock;b++) Linop.HermOp(D[b], Z[b]);
MatrixTimer.Stop();
//4. M = [D^dag Z]^{-1}
sliceInnerTimer.Start();
InnerProductMatrix(m_DZ,D,Z);
sliceInnerTimer.Stop();
m_M = m_DZ.inverse();
//5. X = X + D MC
m_tmp = m_M * m_C;
sliceMaddTimer.Start();
MaddMatrix(X,m_tmp, D,X);
sliceMaddTimer.Stop();
//6. QS = Q - ZM
sliceMaddTimer.Start();
MaddMatrix(tmp,m_M,Z,Q,-1.0);
sliceMaddTimer.Stop();
QRTimer.Start();
ThinQRfact (m_rr, m_S, m_Sinv, Q, tmp);
QRTimer.Stop();
//7. D = Q + D S^dag
m_tmp = m_S.adjoint();
sliceMaddTimer.Start();
MaddMatrix(D,m_tmp,D,Q);
sliceMaddTimer.Stop();
//8. C = S C
m_C = m_S*m_C;
/*********************
* convergence monitor
*********************
*/
m_rr = m_C.adjoint() * m_C;
RealD max_resid=0;
RealD rrsum=0;
RealD rr;
for(int b=0;b<Nblock;b++) {
rrsum+=real(m_rr(b,b));
rr = real(m_rr(b,b))/ssq[b];
if ( rr > max_resid ) max_resid = rr;
}
std::cout << GridLogIterative << "\t Block Iteration "<<k<<" ave resid "<< sqrt(rrsum/sssum) << " max "<< sqrt(max_resid) <<std::endl;
if ( max_resid < Tolerance*Tolerance ) {
SolverTimer.Stop();
std::cout << GridLogMessage<<"BlockCGrQ converged in "<<k<<" iterations"<<std::endl;
for(int b=0;b<Nblock;b++){
std::cout << GridLogMessage<< "\t\tblock "<<b<<" computed resid "<< std::sqrt(real(m_rr(b,b))/ssq[b])<<std::endl;
}
std::cout << GridLogMessage<<"\tMax residual is "<<std::sqrt(max_resid)<<std::endl;
for(int b=0;b<Nblock;b++) Linop.HermOp(X[b], AD[b]);
for(int b=0;b<Nblock;b++) AD[b] = AD[b]-B[b];
std::cout << GridLogMessage <<"\t True residual is " << std::sqrt(normv(AD)/normv(B)) <<std::endl;
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tInnerProd " << sliceInnerTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMaddMatrix " << sliceMaddTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tThinQRfact " << QRTimer.Elapsed() <<std::endl;
IterationsToComplete = k;
return;
}
}
std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge" << std::endl;
if (ErrorOnNoConverge) assert(0);
IterationsToComplete = k;
}
}; };
} }

View File

@ -133,7 +133,7 @@ class ConjugateGradient : public OperatorFunction<Field> {
LinalgTimer.Stop(); LinalgTimer.Stop();
std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k
<< " residual " << cp << " target " << rsq << std::endl; << " residual^2 " << sqrt(cp/ssq) << " target " << Tolerance << std::endl;
// Stopping condition // Stopping condition
if (cp <= rsq) { if (cp <= rsq) {
@ -150,13 +150,13 @@ class ConjugateGradient : public OperatorFunction<Field> {
std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl; std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl;
std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl; std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
std::cout << GridLogPerformance << "Time breakdown "<<std::endl; std::cout << GridLogMessage << "Time breakdown "<<std::endl;
std::cout << GridLogPerformance << "\tElapsed " << SolverTimer.Elapsed() <<std::endl; std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl; std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl; std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tInner " << InnerTimer.Elapsed() <<std::endl; std::cout << GridLogMessage << "\tInner " << InnerTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl; std::cout << GridLogMessage << "\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl; std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0); if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);

View File

@ -86,229 +86,23 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
*/ */
namespace Grid { namespace Grid {
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Use base class to share code
///////////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////////
// Take a matrix and form a Red Black solver calling a Herm solver // Take a matrix and form a Red Black solver calling a Herm solver
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface // Use of RB info prevents making SchurRedBlackSolve conform to standard interface
/////////////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////////
// Now make the norm reflect extra factor of Mee template<class Field> class SchurRedBlackBase {
template<class Field> class SchurRedBlackStaggeredSolve { protected:
private: typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
OperatorFunction<Field> & _HermitianRBSolver; OperatorFunction<Field> & _HermitianRBSolver;
int CBfactorise; int CBfactorise;
bool subGuess; bool subGuess;
public: public:
///////////////////////////////////////////////////// SchurRedBlackBase(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false) :
// Wrap the usual normal equations Schur trick _HermitianRBSolver(HermitianRBSolver)
/////////////////////////////////////////////////////
SchurRedBlackStaggeredSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false) :
_HermitianRBSolver(HermitianRBSolver)
{
CBfactorise=0;
subtractGuess(initSubGuess);
};
void subtractGuess(const bool initSubGuess)
{
subGuess = initSubGuess;
}
bool isSubtractGuess(void)
{
return subGuess;
}
template<class Matrix>
void operator() (Matrix & _Matrix,const Field &in, Field &out){
ZeroGuesser<Field> guess;
(*this)(_Matrix,in,out,guess);
}
template<class Matrix, class Guesser>
void operator() (Matrix & _Matrix,const Field &in, Field &out, Guesser &guess){
// FIXME CGdiagonalMee not implemented virtual function
// FIXME use CBfactorise to control schur decomp
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
Field src_e(grid);
Field src_o(grid);
Field sol_e(grid);
Field sol_o(grid);
Field tmp(grid);
Field Mtmp(grid);
Field resid(fgrid);
std::cout << GridLogMessage << " SchurRedBlackStaggeredSolve " <<std::endl;
pickCheckerboard(Even,src_e,in);
pickCheckerboard(Odd ,src_o,in);
pickCheckerboard(Even,sol_e,out);
pickCheckerboard(Odd ,sol_o,out);
std::cout << GridLogMessage << " SchurRedBlackStaggeredSolve checkerboards picked" <<std::endl;
/////////////////////////////////////////////////////
// src_o = (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
//src_o = tmp; assert(src_o.checkerboard ==Odd);
_Matrix.Mooee(tmp,src_o); // Extra factor of "m" in source from dumb choice of matrix norm.
//////////////////////////////////////////////////////////////
// Call the red-black solver
//////////////////////////////////////////////////////////////
std::cout<<GridLogMessage << "SchurRedBlackStaggeredSolver calling the Mpc solver" <<std::endl;
guess(src_o, sol_o);
Mtmp = sol_o;
_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
std::cout<<GridLogMessage << "SchurRedBlackStaggeredSolver called the Mpc solver" <<std::endl;
// Fionn A2A boolean behavioural control
if (subGuess) sol_o = sol_o-Mtmp;
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
std::cout<<GridLogMessage << "SchurRedBlackStaggeredSolver reconstructed other CB" <<std::endl;
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
std::cout<<GridLogMessage << "SchurRedBlackStaggeredSolver inserted solution" <<std::endl;
// Verify the unprec residual
if ( ! subGuess ) {
_Matrix.M(out,resid);
resid = resid-in;
RealD ns = norm2(in);
RealD nr = norm2(resid);
std::cout<<GridLogMessage << "SchurRedBlackStaggered solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
} else {
std::cout << GridLogMessage << "Guess subtracted after solve." << std::endl;
}
}
};
template<class Field> using SchurRedBlackStagSolve = SchurRedBlackStaggeredSolve<Field>;
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Take a matrix and form a Red Black solver calling a Herm solver
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SchurRedBlackDiagMooeeSolve {
private:
OperatorFunction<Field> & _HermitianRBSolver;
int CBfactorise;
bool subGuess;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations Schur trick
/////////////////////////////////////////////////////
SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver,int cb=0, const bool initSubGuess = false) : _HermitianRBSolver(HermitianRBSolver)
{
CBfactorise=cb;
subtractGuess(initSubGuess);
};
void subtractGuess(const bool initSubGuess)
{
subGuess = initSubGuess;
}
bool isSubtractGuess(void)
{
return subGuess;
}
template<class Matrix>
void operator() (Matrix & _Matrix,const Field &in, Field &out){
ZeroGuesser<Field> guess;
(*this)(_Matrix,in,out,guess);
}
template<class Matrix, class Guesser>
void operator() (Matrix & _Matrix,const Field &in, Field &out,Guesser &guess){
// FIXME CGdiagonalMee not implemented virtual function
// FIXME use CBfactorise to control schur decomp
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
Field src_e(grid);
Field src_o(grid);
Field sol_e(grid);
Field sol_o(grid);
Field tmp(grid);
Field Mtmp(grid);
Field resid(fgrid);
pickCheckerboard(Even,src_e,in);
pickCheckerboard(Odd ,src_o,in);
pickCheckerboard(Even,sol_e,out);
pickCheckerboard(Odd ,sol_o,out);
/////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
// get the right MpcDag
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.checkerboard ==Odd);
//////////////////////////////////////////////////////////////
// Call the red-black solver
//////////////////////////////////////////////////////////////
std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
guess(src_o,sol_o);
Mtmp = sol_o;
_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
// Fionn A2A boolean behavioural control
if (subGuess) sol_o = sol_o-Mtmp;
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
// Verify the unprec residual
if ( ! subGuess ) {
_Matrix.M(out,resid);
resid = resid-in;
RealD ns = norm2(in);
RealD nr = norm2(resid);
std::cout<<GridLogMessage << "SchurRedBlackDiagMooee solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
} else {
std::cout << GridLogMessage << "Guess subtracted after solve." << std::endl;
}
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Take a matrix and form a Red Black solver calling a Herm solver
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SchurRedBlackDiagTwoSolve {
private:
OperatorFunction<Field> & _HermitianRBSolver;
int CBfactorise;
bool subGuess;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations Schur trick
/////////////////////////////////////////////////////
SchurRedBlackDiagTwoSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false) :
_HermitianRBSolver(HermitianRBSolver)
{ {
CBfactorise = 0; CBfactorise = 0;
subtractGuess(initSubGuess); subtractGuess(initSubGuess);
@ -322,12 +116,86 @@ namespace Grid {
return subGuess; return subGuess;
} }
template<class Matrix> /////////////////////////////////////////////////////////////
// Shared code
/////////////////////////////////////////////////////////////
void operator() (Matrix & _Matrix,const Field &in, Field &out){ void operator() (Matrix & _Matrix,const Field &in, Field &out){
ZeroGuesser<Field> guess; ZeroGuesser<Field> guess;
(*this)(_Matrix,in,out,guess); (*this)(_Matrix,in,out,guess);
} }
template<class Matrix,class Guesser> void operator()(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &out)
{
ZeroGuesser<Field> guess;
(*this)(_Matrix,in,out,guess);
}
template<class Guesser>
void operator()(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &out,Guesser &guess)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
int nblock = in.size();
std::vector<Field> src_o(nblock,grid);
std::vector<Field> sol_o(nblock,grid);
std::vector<Field> guess_save;
Field resid(fgrid);
Field tmp(grid);
////////////////////////////////////////////////
// Prepare RedBlack source
////////////////////////////////////////////////
for(int b=0;b<nblock;b++){
RedBlackSource(_Matrix,in[b],tmp,src_o[b]);
}
////////////////////////////////////////////////
// Make the guesses
////////////////////////////////////////////////
if ( subGuess ) guess_save.resize(nblock,grid);
for(int b=0;b<nblock;b++){
guess(src_o[b],sol_o[b]);
if ( subGuess ) {
guess_save[b] = sol_o[b];
}
}
//////////////////////////////////////////////////////////////
// Call the block solver
//////////////////////////////////////////////////////////////
std::cout<<GridLogMessage << "SchurRedBlackBase calling the solver for "<<nblock<<" RHS" <<std::endl;
RedBlackSolve(_Matrix,src_o,sol_o);
////////////////////////////////////////////////
// A2A boolean behavioural control & reconstruct other checkerboard
////////////////////////////////////////////////
for(int b=0;b<nblock;b++) {
if (subGuess) sol_o[b] = sol_o[b] - guess_save[b];
///////// Needs even source //////////////
pickCheckerboard(Even,tmp,in[b]);
RedBlackSolution(_Matrix,sol_o[b],tmp,out[b]);
/////////////////////////////////////////////////
// Check unprec residual if possible
/////////////////////////////////////////////////
if ( ! subGuess ) {
_Matrix.M(out[b],resid);
resid = resid-in[b];
RealD ns = norm2(in[b]);
RealD nr = norm2(resid);
std::cout<<GridLogMessage<< "SchurRedBlackBase solver true unprec resid["<<b<<"] "<<std::sqrt(nr/ns) << std::endl;
} else {
std::cout<<GridLogMessage<< "SchurRedBlackBase Guess subtracted after solve["<<b<<"] " << std::endl;
}
}
}
template<class Guesser>
void operator() (Matrix & _Matrix,const Field &in, Field &out,Guesser &guess){ void operator() (Matrix & _Matrix,const Field &in, Field &out,Guesser &guess){
// FIXME CGdiagonalMee not implemented virtual function // FIXME CGdiagonalMee not implemented virtual function
@ -335,20 +203,153 @@ namespace Grid {
GridBase *grid = _Matrix.RedBlackGrid(); GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid(); GridBase *fgrid= _Matrix.Grid();
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix); Field resid(fgrid);
Field src_e(grid);
Field src_o(grid); Field src_o(grid);
Field sol_e(grid); Field src_e(grid);
Field sol_o(grid); Field sol_o(grid);
////////////////////////////////////////////////
// RedBlack source
////////////////////////////////////////////////
RedBlackSource(_Matrix,in,src_e,src_o);
////////////////////////////////
// Construct the guess
////////////////////////////////
Field tmp(grid);
guess(src_o,sol_o);
Field guess_save(grid);
guess_save = sol_o;
//////////////////////////////////////////////////////////////
// Call the red-black solver
//////////////////////////////////////////////////////////////
RedBlackSolve(_Matrix,src_o,sol_o);
////////////////////////////////////////////////
// Fionn A2A boolean behavioural control
////////////////////////////////////////////////
if (subGuess) sol_o= sol_o-guess_save;
///////////////////////////////////////////////////
// RedBlack solution needs the even source
///////////////////////////////////////////////////
RedBlackSolution(_Matrix,sol_o,src_e,out);
// Verify the unprec residual
if ( ! subGuess ) {
_Matrix.M(out,resid);
resid = resid-in;
RealD ns = norm2(in);
RealD nr = norm2(resid);
std::cout<<GridLogMessage << "SchurRedBlackBase solver true unprec resid "<< std::sqrt(nr/ns) << std::endl;
} else {
std::cout << GridLogMessage << "SchurRedBlackBase Guess subtracted after solve." << std::endl;
}
}
/////////////////////////////////////////////////////////////
// Override in derived. Not virtual as template methods
/////////////////////////////////////////////////////////////
virtual void RedBlackSource (Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o) =0;
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol) =0;
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o) =0;
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)=0;
};
template<class Field> class SchurRedBlackStaggeredSolve : public SchurRedBlackBase<Field> {
public:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
SchurRedBlackStaggeredSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false)
: SchurRedBlackBase<Field> (HermitianRBSolver,initSubGuess)
{
}
//////////////////////////////////////////////////////
// Override RedBlack specialisation
//////////////////////////////////////////////////////
virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field tmp(grid); Field tmp(grid);
Field Mtmp(grid); Field Mtmp(grid);
Field resid(fgrid);
pickCheckerboard(Even,src_e,in); pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd ,src_o,in); pickCheckerboard(Odd ,src_o,src);
pickCheckerboard(Even,sol_e,out);
pickCheckerboard(Odd ,sol_o,out); /////////////////////////////////////////////////////
// src_o = (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
_Matrix.Mooee(tmp,src_o); // Extra factor of "m" in source from dumb choice of matrix norm.
}
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e_c,Field &sol)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field tmp(grid);
Field sol_e(grid);
Field src_e(grid);
src_e = src_e_c; // Const correctness
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(sol,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(sol,sol_o); assert( sol_o.checkerboard ==Odd );
}
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
{
SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
};
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
{
SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
}
};
template<class Field> using SchurRedBlackStagSolve = SchurRedBlackStaggeredSolve<Field>;
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Site diagonal has Mooee on it.
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SchurRedBlackDiagMooeeSolve : public SchurRedBlackBase<Field> {
public:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false)
: SchurRedBlackBase<Field> (HermitianRBSolver,initSubGuess) {};
//////////////////////////////////////////////////////
// Override RedBlack specialisation
//////////////////////////////////////////////////////
virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field tmp(grid);
Field Mtmp(grid);
pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd ,src_o,src);
///////////////////////////////////////////////////// /////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e) // src_o = Mdag * (source_o - Moe MeeInv source_e)
@ -358,99 +359,67 @@ namespace Grid {
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd); tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
// get the right MpcDag // get the right MpcDag
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.checkerboard ==Odd); _HermOpEO.MpcDag(tmp,src_o); assert(src_o.checkerboard ==Odd);
////////////////////////////////////////////////////////////// }
// Call the red-black solver virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
////////////////////////////////////////////////////////////// {
std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl; GridBase *grid = _Matrix.RedBlackGrid();
// _HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd); GridBase *fgrid= _Matrix.Grid();
guess(src_o,tmp);
Mtmp = tmp;
_HermitianRBSolver(_HermOpEO,src_o,tmp); assert(tmp.checkerboard==Odd);
// Fionn A2A boolean behavioural control
if (subGuess) tmp = tmp-Mtmp;
_Matrix.MooeeInv(tmp,sol_o); assert( sol_o.checkerboard ==Odd);
Field tmp(grid);
Field sol_e(grid);
Field src_e_i(grid);
/////////////////////////////////////////////////// ///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )... // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
/////////////////////////////////////////////////// ///////////////////////////////////////////////////
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even); _Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
src_e = src_e-tmp; assert( src_e.checkerboard ==Even); src_e_i = src_e-tmp; assert( src_e_i.checkerboard ==Even);
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even); _Matrix.MooeeInv(src_e_i,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Even); setCheckerboard(sol,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd ); setCheckerboard(sol,sol_o); assert( sol_o.checkerboard ==Odd );
}
// Verify the unprec residual virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
if ( ! subGuess ) { {
_Matrix.M(out,resid); SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
resid = resid-in; this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
RealD ns = norm2(in); };
RealD nr = norm2(resid); virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
{
std::cout<<GridLogMessage << "SchurRedBlackDiagTwo solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl; SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
} else { this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
std::cout << GridLogMessage << "Guess subtracted after solve." << std::endl;
}
} }
}; };
/////////////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////////
// Take a matrix and form a Red Black solver calling a Herm solver // Site diagonal is identity, right preconditioned by Mee^inv
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface // ( 1 - Meo Moo^inv Moe Mee^inv ) phi =( 1 - Meo Moo^inv Moe Mee^inv ) Mee psi = = eta = eta
//=> psi = MeeInv phi
/////////////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SchurRedBlackDiagTwoMixed { template<class Field> class SchurRedBlackDiagTwoSolve : public SchurRedBlackBase<Field> {
private:
LinearFunction<Field> & _HermitianRBSolver;
int CBfactorise;
bool subGuess;
public: public:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
///////////////////////////////////////////////////// /////////////////////////////////////////////////////
// Wrap the usual normal equations Schur trick // Wrap the usual normal equations Schur trick
///////////////////////////////////////////////////// /////////////////////////////////////////////////////
SchurRedBlackDiagTwoMixed(LinearFunction<Field> &HermitianRBSolver, const bool initSubGuess = false) : SchurRedBlackDiagTwoSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false)
_HermitianRBSolver(HermitianRBSolver) : SchurRedBlackBase<Field>(HermitianRBSolver,initSubGuess) {};
{
CBfactorise=0;
subtractGuess(initSubGuess);
};
void subtractGuess(const bool initSubGuess)
{
subGuess = initSubGuess;
}
bool isSubtractGuess(void)
{
return subGuess;
}
template<class Matrix> virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
void operator() (Matrix & _Matrix,const Field &in, Field &out){ {
ZeroGuesser<Field> guess;
(*this)(_Matrix,in,out,guess);
}
template<class Matrix, class Guesser>
void operator() (Matrix & _Matrix,const Field &in, Field &out,Guesser &guess){
// FIXME CGdiagonalMee not implemented virtual function
// FIXME use CBfactorise to control schur decomp
GridBase *grid = _Matrix.RedBlackGrid(); GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid(); GridBase *fgrid= _Matrix.Grid();
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix); SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
Field src_e(grid);
Field src_o(grid);
Field sol_e(grid);
Field sol_o(grid);
Field tmp(grid); Field tmp(grid);
Field Mtmp(grid); Field Mtmp(grid);
Field resid(fgrid);
pickCheckerboard(Even,src_e,in); pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd ,src_o,in); pickCheckerboard(Odd ,src_o,src);
pickCheckerboard(Even,sol_e,out);
pickCheckerboard(Odd ,sol_o,out);
///////////////////////////////////////////////////// /////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e) // src_o = Mdag * (source_o - Moe MeeInv source_e)
@ -461,43 +430,44 @@ namespace Grid {
// get the right MpcDag // get the right MpcDag
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.checkerboard ==Odd); _HermOpEO.MpcDag(tmp,src_o); assert(src_o.checkerboard ==Odd);
}
////////////////////////////////////////////////////////////// virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
// Call the red-black solver {
////////////////////////////////////////////////////////////// GridBase *grid = _Matrix.RedBlackGrid();
std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl; GridBase *fgrid= _Matrix.Grid();
// _HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
// _HermitianRBSolver(_HermOpEO,src_o,tmp); assert(tmp.checkerboard==Odd); Field sol_o_i(grid);
guess(src_o,tmp); Field tmp(grid);
Mtmp = tmp; Field sol_e(grid);
_HermitianRBSolver(_HermOpEO,src_o,tmp); assert(tmp.checkerboard==Odd);
// Fionn A2A boolean behavioural control ////////////////////////////////////////////////
if (subGuess) tmp = tmp-Mtmp; // MooeeInv due to pecond
_Matrix.MooeeInv(tmp,sol_o); assert( sol_o.checkerboard ==Odd); ////////////////////////////////////////////////
_Matrix.MooeeInv(sol_o,tmp);
sol_o_i = tmp;
/////////////////////////////////////////////////// ///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )... // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
/////////////////////////////////////////////////// ///////////////////////////////////////////////////
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even); _Matrix.Meooe(sol_o_i,tmp); assert( tmp.checkerboard ==Even);
src_e = src_e-tmp; assert( src_e.checkerboard ==Even); tmp = src_e-tmp; assert( src_e.checkerboard ==Even);
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even); _Matrix.MooeeInv(tmp,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Even); setCheckerboard(sol,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd ); setCheckerboard(sol,sol_o_i); assert( sol_o_i.checkerboard ==Odd );
};
// Verify the unprec residual virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
if ( ! subGuess ) { {
_Matrix.M(out,resid); SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
resid = resid-in; this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
RealD ns = norm2(in); };
RealD nr = norm2(resid); virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
{
std::cout << GridLogMessage << "SchurRedBlackDiagTwo solver true unprec resid " << std::sqrt(nr / ns) << " nr " << nr << " ns " << ns << std::endl; SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
} else { this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
std::cout << GridLogMessage << "Guess subtracted after solve." << std::endl;
}
} }
}; };
} }
#endif #endif

View File

@ -485,7 +485,7 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
template<class vobj> template<class vobj>
void ExtractSliceLocal(Lattice<vobj> &lowDim, const Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog) void ExtractSliceLocal(Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
{ {
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;
@ -520,7 +520,7 @@ void ExtractSliceLocal(Lattice<vobj> &lowDim, const Lattice<vobj> & higherDim,in
template<class vobj> template<class vobj>
void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine) void Replicate(Lattice<vobj> &coarse,Lattice<vobj> & fine)
{ {
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;

View File

@ -146,9 +146,11 @@ public:
if ( log.timestamp ) { if ( log.timestamp ) {
log.StopWatch->Stop(); log.StopWatch->Stop();
GridTime now = log.StopWatch->Elapsed(); GridTime now = log.StopWatch->Elapsed();
if ( log.timing_mode==1 ) log.StopWatch->Reset(); if ( log.timing_mode==1 ) log.StopWatch->Reset();
log.StopWatch->Start(); log.StopWatch->Start();
stream << log.evidence()<< std::setw(6)<<now << log.background() << " : " ; stream << log.evidence()
<< now << log.background() << " : " ;
} }
stream << log.colour(); stream << log.colour();
return stream; return stream;

View File

@ -233,7 +233,8 @@ class GridLimeReader : public BinaryIO {
// std::cout << " ReadLatticeObject from offset "<<offset << std::endl; // std::cout << " ReadLatticeObject from offset "<<offset << std::endl;
BinarySimpleMunger<sobj,sobj> munge; BinarySimpleMunger<sobj,sobj> munge;
BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb); BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
std::cout << GridLogMessage << "SciDAC checksum A " << std::hex << scidac_csuma << std::dec << std::endl;
std::cout << GridLogMessage << "SciDAC checksum B " << std::hex << scidac_csumb << std::dec << std::endl;
///////////////////////////////////////////// /////////////////////////////////////////////
// Insist checksum is next record // Insist checksum is next record
///////////////////////////////////////////// /////////////////////////////////////////////

View File

@ -49,20 +49,34 @@ inline double usecond(void) {
typedef std::chrono::system_clock GridClock; typedef std::chrono::system_clock GridClock;
typedef std::chrono::time_point<GridClock> GridTimePoint; typedef std::chrono::time_point<GridClock> GridTimePoint;
typedef std::chrono::milliseconds GridMillisecs;
typedef std::chrono::microseconds GridTime;
typedef std::chrono::microseconds GridUsecs;
inline std::ostream& operator<< (std::ostream & stream, const std::chrono::milliseconds & time) typedef std::chrono::seconds GridSecs;
typedef std::chrono::milliseconds GridMillisecs;
typedef std::chrono::microseconds GridUsecs;
typedef std::chrono::microseconds GridTime;
inline std::ostream& operator<< (std::ostream & stream, const GridSecs & time)
{ {
stream << time.count()<<" ms"; stream << time.count()<<" s";
return stream; return stream;
} }
inline std::ostream& operator<< (std::ostream & stream, const std::chrono::microseconds & time) inline std::ostream& operator<< (std::ostream & stream, const GridMillisecs & now)
{ {
stream << time.count()<<" usec"; GridSecs second(1);
auto secs = now/second ;
auto subseconds = now%second ;
stream << secs<<"."<<std::setw(3)<<std::setfill('0')<<subseconds.count()<<" s";
return stream; return stream;
} }
inline std::ostream& operator<< (std::ostream & stream, const GridUsecs & now)
{
GridSecs second(1);
auto seconds = now/second ;
auto subseconds = now%second ;
stream << seconds<<"."<<std::setw(6)<<std::setfill('0')<<subseconds.count()<<" s";
return stream;
}
class GridStopWatch { class GridStopWatch {
private: private:

View File

@ -64,11 +64,6 @@ namespace Grid {
virtual RealD M (const FermionField &in, FermionField &out)=0; virtual RealD M (const FermionField &in, FermionField &out)=0;
virtual RealD Mdag (const FermionField &in, FermionField &out)=0; virtual RealD Mdag (const FermionField &in, FermionField &out)=0;
// Query the even even properties to make algorithmic decisions
virtual int ConstEE(void) { return 1; }; // clover returns zero as EE depends on gauge field
virtual int isTrivialEE(void) { return 0; };
virtual RealD Mass(void) {return 0.0;};
// half checkerboard operaions // half checkerboard operaions
virtual void Meooe (const FermionField &in, FermionField &out)=0; virtual void Meooe (const FermionField &in, FermionField &out)=0;
virtual void MeooeDag (const FermionField &in, FermionField &out)=0; virtual void MeooeDag (const FermionField &in, FermionField &out)=0;

View File

@ -36,7 +36,7 @@ See the full license in the file "LICENSE" in the top level distribution directo
BEGIN_HADRONS_NAMESPACE BEGIN_HADRONS_NAMESPACE
/****************************************************************************** /******************************************************************************
* Classes to generate V & W all-to-all vectors * * Class to generate V & W all-to-all vectors *
******************************************************************************/ ******************************************************************************/
template <typename FImpl> template <typename FImpl>
class A2AVectorsSchurDiagTwo class A2AVectorsSchurDiagTwo
@ -70,6 +70,42 @@ private:
SchurDiagTwoOperator<FMat, FermionField> op_; SchurDiagTwoOperator<FMat, FermionField> op_;
}; };
/******************************************************************************
* Methods for V & W all-to-all vectors I/O *
******************************************************************************/
class A2AVectorsIo
{
public:
struct Record: Serializable
{
GRID_SERIALIZABLE_CLASS_MEMBERS(Record,
unsigned int, index);
Record(void): index(0) {}
};
public:
template <typename Field>
static void write(const std::string fileStem, std::vector<Field> &vec,
const bool multiFile, const int trajectory = -1);
template <typename Field>
static void read(std::vector<Field> &vec, const std::string fileStem,
const bool multiFile, const int trajectory = -1);
private:
static inline std::string vecFilename(const std::string stem, const int traj,
const bool multiFile)
{
std::string t = (traj < 0) ? "" : ("." + std::to_string(traj));
if (multiFile)
{
return stem + t;
}
else
{
return stem + t + ".bin";
}
}
};
/****************************************************************************** /******************************************************************************
* A2AVectorsSchurDiagTwo template implementation * * A2AVectorsSchurDiagTwo template implementation *
******************************************************************************/ ******************************************************************************/
@ -217,6 +253,90 @@ void A2AVectorsSchurDiagTwo<FImpl>::makeHighModeW5D(FermionField &wout_4d,
} }
} }
/******************************************************************************
* all-to-all vectors I/O template implementation *
******************************************************************************/
template <typename Field>
void A2AVectorsIo::write(const std::string fileStem, std::vector<Field> &vec,
const bool multiFile, const int trajectory)
{
Record record;
GridBase *grid = vec[0]._grid;
ScidacWriter binWriter(grid->IsBoss());
std::string filename = vecFilename(fileStem, trajectory, multiFile);
if (multiFile)
{
std::string fullFilename;
for (unsigned int i = 0; i < vec.size(); ++i)
{
fullFilename = filename + "/elem" + std::to_string(i) + ".bin";
LOG(Message) << "Writing vector " << i << std::endl;
makeFileDir(fullFilename, grid);
binWriter.open(fullFilename);
record.index = i;
binWriter.writeScidacFieldRecord(vec[i], record);
binWriter.close();
}
}
else
{
makeFileDir(filename, grid);
binWriter.open(filename);
for (unsigned int i = 0; i < vec.size(); ++i)
{
LOG(Message) << "Writing vector " << i << std::endl;
record.index = i;
binWriter.writeScidacFieldRecord(vec[i], record);
}
binWriter.close();
}
}
template <typename Field>
void A2AVectorsIo::read(std::vector<Field> &vec, const std::string fileStem,
const bool multiFile, const int trajectory)
{
Record record;
ScidacReader binReader;
std::string filename = vecFilename(fileStem, trajectory, multiFile);
if (multiFile)
{
std::string fullFilename;
for (unsigned int i = 0; i < vec.size(); ++i)
{
fullFilename = filename + "/elem" + std::to_string(i) + ".bin";
LOG(Message) << "Reading vector " << i << std::endl;
binReader.open(fullFilename);
binReader.readScidacFieldRecord(vec[i], record);
binReader.close();
if (record.index != i)
{
HADRONS_ERROR(Io, "vector index mismatch");
}
}
}
else
{
binReader.open(filename);
for (unsigned int i = 0; i < vec.size(); ++i)
{
LOG(Message) << "Reading vector " << i << std::endl;
binReader.readScidacFieldRecord(vec[i], record);
if (record.index != i)
{
HADRONS_ERROR(Io, "vector index mismatch");
}
}
binReader.close();
}
}
END_HADRONS_NAMESPACE END_HADRONS_NAMESPACE
#endif // A2A_Vectors_hpp_ #endif // A2A_Vectors_hpp_

View File

@ -7,6 +7,7 @@ Source file: Hadrons/DilutedNoise.hpp
Copyright (C) 2015-2018 Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com> Author: Antonin Portelli <antonin.portelli@me.com>
Author: Vera Guelpers <Vera.Guelpers@ed.ac.uk>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
@ -76,6 +77,22 @@ private:
unsigned int nt_; unsigned int nt_;
}; };
template <typename FImpl>
class FullVolumeSpinColorDiagonalNoise: public DilutedNoise<FImpl>
{
public:
typedef typename FImpl::FermionField FermionField;
public:
// constructor/destructor
FullVolumeSpinColorDiagonalNoise(GridCartesian *g, unsigned int n_src);
virtual ~FullVolumeSpinColorDiagonalNoise(void) = default;
// generate noise
virtual void generateNoise(GridParallelRNG &rng);
private:
unsigned int nSrc_;
};
/****************************************************************************** /******************************************************************************
* DilutedNoise template implementation * * DilutedNoise template implementation *
******************************************************************************/ ******************************************************************************/
@ -186,6 +203,47 @@ void TimeDilutedSpinColorDiagonalNoise<FImpl>::generateNoise(GridParallelRNG &rn
} }
} }
/******************************************************************************
* FullVolumeSpinColorDiagonalNoise template implementation *
******************************************************************************/
template <typename FImpl>
FullVolumeSpinColorDiagonalNoise<FImpl>::
FullVolumeSpinColorDiagonalNoise(GridCartesian *g, unsigned int nSrc)
: DilutedNoise<FImpl>(g, nSrc*Ns*FImpl::Dimension), nSrc_(nSrc)
{}
template <typename FImpl>
void FullVolumeSpinColorDiagonalNoise<FImpl>::generateNoise(GridParallelRNG &rng)
{
typedef decltype(peekColour((*this)[0], 0)) SpinField;
auto &noise = *this;
auto g = this->getGrid();
auto nd = g->GlobalDimensions().size();
auto nc = FImpl::Dimension;
Complex shift(1., 1.);
LatticeComplex eta(g);
SpinField etas(g);
unsigned int i = 0;
bernoulli(rng, eta);
eta = (2.*eta - shift)*(1./::sqrt(2.));
for (unsigned int n = 0; n < nSrc_; ++n)
{
for (unsigned int s = 0; s < Ns; ++s)
{
etas = zero;
pokeSpin(etas, eta, s);
for (unsigned int c = 0; c < nc; ++c)
{
noise[i] = zero;
pokeColour(noise[i], etas, c);
i++;
}
}
}
}
END_HADRONS_NAMESPACE END_HADRONS_NAMESPACE
#endif // Hadrons_DilutedNoise_hpp_ #endif // Hadrons_DilutedNoise_hpp_

View File

@ -32,6 +32,7 @@
#include <Hadrons/Modules/MGauge/FundtoHirep.hpp> #include <Hadrons/Modules/MGauge/FundtoHirep.hpp>
#include <Hadrons/Modules/MGauge/StochEm.hpp> #include <Hadrons/Modules/MGauge/StochEm.hpp>
#include <Hadrons/Modules/MNoise/TimeDilutedSpinColorDiagonal.hpp> #include <Hadrons/Modules/MNoise/TimeDilutedSpinColorDiagonal.hpp>
#include <Hadrons/Modules/MNoise/FullVolumeSpinColorDiagonal.hpp>
#include <Hadrons/Modules/MUtilities/PrecisionCast.hpp> #include <Hadrons/Modules/MUtilities/PrecisionCast.hpp>
#include <Hadrons/Modules/MUtilities/RandomVectors.hpp> #include <Hadrons/Modules/MUtilities/RandomVectors.hpp>
#include <Hadrons/Modules/MUtilities/TestSeqGamma.hpp> #include <Hadrons/Modules/MUtilities/TestSeqGamma.hpp>
@ -65,6 +66,7 @@
#include <Hadrons/Modules/MScalarSUN/TrKinetic.hpp> #include <Hadrons/Modules/MScalarSUN/TrKinetic.hpp>
#include <Hadrons/Modules/MIO/LoadEigenPack.hpp> #include <Hadrons/Modules/MIO/LoadEigenPack.hpp>
#include <Hadrons/Modules/MIO/LoadNersc.hpp> #include <Hadrons/Modules/MIO/LoadNersc.hpp>
#include <Hadrons/Modules/MIO/LoadA2AVectors.hpp>
#include <Hadrons/Modules/MIO/LoadCosmHol.hpp> #include <Hadrons/Modules/MIO/LoadCosmHol.hpp>
#include <Hadrons/Modules/MIO/LoadCoarseEigenPack.hpp> #include <Hadrons/Modules/MIO/LoadCoarseEigenPack.hpp>
#include <Hadrons/Modules/MIO/LoadBinary.hpp> #include <Hadrons/Modules/MIO/LoadBinary.hpp>

View File

@ -32,4 +32,6 @@ using namespace Hadrons;
using namespace MAction; using namespace MAction;
template class Grid::Hadrons::MAction::TDWF<FIMPL>; template class Grid::Hadrons::MAction::TDWF<FIMPL>;
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
template class Grid::Hadrons::MAction::TDWF<FIMPLF>; template class Grid::Hadrons::MAction::TDWF<FIMPLF>;
#endif

View File

@ -73,7 +73,9 @@ protected:
}; };
MODULE_REGISTER_TMP(DWF, TDWF<FIMPL>, MAction); MODULE_REGISTER_TMP(DWF, TDWF<FIMPL>, MAction);
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
MODULE_REGISTER_TMP(DWFF, TDWF<FIMPLF>, MAction); MODULE_REGISTER_TMP(DWFF, TDWF<FIMPLF>, MAction);
#endif
/****************************************************************************** /******************************************************************************
* DWF template implementation * * DWF template implementation *

View File

@ -32,4 +32,6 @@ using namespace Hadrons;
using namespace MAction; using namespace MAction;
template class Grid::Hadrons::MAction::TMobiusDWF<FIMPL>; template class Grid::Hadrons::MAction::TMobiusDWF<FIMPL>;
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
template class Grid::Hadrons::MAction::TMobiusDWF<FIMPLF>; template class Grid::Hadrons::MAction::TMobiusDWF<FIMPLF>;
#endif

View File

@ -72,7 +72,9 @@ public:
}; };
MODULE_REGISTER_TMP(MobiusDWF, TMobiusDWF<FIMPL>, MAction); MODULE_REGISTER_TMP(MobiusDWF, TMobiusDWF<FIMPL>, MAction);
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
MODULE_REGISTER_TMP(MobiusDWFF, TMobiusDWF<FIMPLF>, MAction); MODULE_REGISTER_TMP(MobiusDWFF, TMobiusDWF<FIMPLF>, MAction);
#endif
/****************************************************************************** /******************************************************************************
* TMobiusDWF implementation * * TMobiusDWF implementation *

View File

@ -32,4 +32,6 @@ using namespace Hadrons;
using namespace MAction; using namespace MAction;
template class Grid::Hadrons::MAction::TScaledDWF<FIMPL>; template class Grid::Hadrons::MAction::TScaledDWF<FIMPL>;
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
template class Grid::Hadrons::MAction::TScaledDWF<FIMPLF>; template class Grid::Hadrons::MAction::TScaledDWF<FIMPLF>;
#endif

View File

@ -71,7 +71,9 @@ public:
}; };
MODULE_REGISTER_TMP(ScaledDWF, TScaledDWF<FIMPL>, MAction); MODULE_REGISTER_TMP(ScaledDWF, TScaledDWF<FIMPL>, MAction);
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
MODULE_REGISTER_TMP(ScaledDWFF, TScaledDWF<FIMPLF>, MAction); MODULE_REGISTER_TMP(ScaledDWFF, TScaledDWF<FIMPLF>, MAction);
#endif
/****************************************************************************** /******************************************************************************
* TScaledDWF implementation * * TScaledDWF implementation *

View File

@ -32,4 +32,6 @@ using namespace Hadrons;
using namespace MAction; using namespace MAction;
template class Grid::Hadrons::MAction::TWilson<FIMPL>; template class Grid::Hadrons::MAction::TWilson<FIMPL>;
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
template class Grid::Hadrons::MAction::TWilson<FIMPLF>; template class Grid::Hadrons::MAction::TWilson<FIMPLF>;
#endif

View File

@ -71,7 +71,9 @@ protected:
}; };
MODULE_REGISTER_TMP(Wilson, TWilson<FIMPL>, MAction); MODULE_REGISTER_TMP(Wilson, TWilson<FIMPL>, MAction);
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
MODULE_REGISTER_TMP(WilsonF, TWilson<FIMPLF>, MAction); MODULE_REGISTER_TMP(WilsonF, TWilson<FIMPLF>, MAction);
#endif
/****************************************************************************** /******************************************************************************
* TWilson template implementation * * TWilson template implementation *

View File

@ -32,4 +32,6 @@ using namespace Hadrons;
using namespace MAction; using namespace MAction;
template class Grid::Hadrons::MAction::TWilsonClover<FIMPL>; template class Grid::Hadrons::MAction::TWilsonClover<FIMPL>;
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
template class Grid::Hadrons::MAction::TWilsonClover<FIMPLF>; template class Grid::Hadrons::MAction::TWilsonClover<FIMPLF>;
#endif

View File

@ -75,7 +75,9 @@ public:
}; };
MODULE_REGISTER_TMP(WilsonClover, TWilsonClover<FIMPL>, MAction); MODULE_REGISTER_TMP(WilsonClover, TWilsonClover<FIMPL>, MAction);
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
MODULE_REGISTER_TMP(WilsonCloverF, TWilsonClover<FIMPLF>, MAction); MODULE_REGISTER_TMP(WilsonCloverF, TWilsonClover<FIMPLF>, MAction);
#endif
/****************************************************************************** /******************************************************************************
* TWilsonClover template implementation * * TWilsonClover template implementation *

View File

@ -32,4 +32,6 @@ using namespace Hadrons;
using namespace MAction; using namespace MAction;
template class Grid::Hadrons::MAction::TZMobiusDWF<ZFIMPL>; template class Grid::Hadrons::MAction::TZMobiusDWF<ZFIMPL>;
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
template class Grid::Hadrons::MAction::TZMobiusDWF<ZFIMPLF>; template class Grid::Hadrons::MAction::TZMobiusDWF<ZFIMPLF>;
#endif

View File

@ -73,7 +73,9 @@ public:
}; };
MODULE_REGISTER_TMP(ZMobiusDWF, TZMobiusDWF<ZFIMPL>, MAction); MODULE_REGISTER_TMP(ZMobiusDWF, TZMobiusDWF<ZFIMPL>, MAction);
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
MODULE_REGISTER_TMP(ZMobiusDWFF, TZMobiusDWF<ZFIMPLF>, MAction); MODULE_REGISTER_TMP(ZMobiusDWFF, TZMobiusDWF<ZFIMPLF>, MAction);
#endif
/****************************************************************************** /******************************************************************************
* TZMobiusDWF implementation * * TZMobiusDWF implementation *

View File

@ -0,0 +1,34 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MIO/LoadA2AVectors.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MIO/LoadA2AVectors.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MIO;
template class Grid::Hadrons::MIO::TLoadA2AVectors<FIMPL>;

View File

@ -0,0 +1,120 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MIO/LoadA2AVectors.hpp
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MIO_LoadA2AVectors_hpp_
#define Hadrons_MIO_LoadA2AVectors_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
#include <Hadrons/A2AVectors.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Module to load all-to-all vectors *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MIO)
class LoadA2AVectorsPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(LoadA2AVectorsPar,
std::string, filestem,
bool, multiFile,
unsigned int, size);
};
template <typename FImpl>
class TLoadA2AVectors: public Module<LoadA2AVectorsPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
public:
// constructor
TLoadA2AVectors(const std::string name);
// destructor
virtual ~TLoadA2AVectors(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(LoadA2AVectors, TLoadA2AVectors<FIMPL>, MIO);
/******************************************************************************
* TLoadA2AVectors implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TLoadA2AVectors<FImpl>::TLoadA2AVectors(const std::string name)
: Module<LoadA2AVectorsPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TLoadA2AVectors<FImpl>::getInput(void)
{
std::vector<std::string> in;
return in;
}
template <typename FImpl>
std::vector<std::string> TLoadA2AVectors<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TLoadA2AVectors<FImpl>::setup(void)
{
envCreate(std::vector<FermionField>, getName(), 1, par().size,
envGetGrid(FermionField));
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TLoadA2AVectors<FImpl>::execute(void)
{
auto &vec = envGet(std::vector<FermionField>, getName());
A2AVectorsIo::read(vec, par().filestem, par().multiFile, vm().getTrajectory());
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MIO_LoadA2AVectors_hpp_

View File

@ -32,4 +32,6 @@ using namespace Hadrons;
using namespace MIO; using namespace MIO;
template class Grid::Hadrons::MIO::TLoadEigenPack<FermionEigenPack<FIMPL>>; template class Grid::Hadrons::MIO::TLoadEigenPack<FermionEigenPack<FIMPL>>;
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
template class Grid::Hadrons::MIO::TLoadEigenPack<FermionEigenPack<FIMPL, FIMPLF>>; template class Grid::Hadrons::MIO::TLoadEigenPack<FermionEigenPack<FIMPL, FIMPLF>>;
#endif

View File

@ -72,7 +72,9 @@ public:
}; };
MODULE_REGISTER_TMP(LoadFermionEigenPack, TLoadEigenPack<FermionEigenPack<FIMPL>>, MIO); MODULE_REGISTER_TMP(LoadFermionEigenPack, TLoadEigenPack<FermionEigenPack<FIMPL>>, MIO);
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
MODULE_REGISTER_TMP(LoadFermionEigenPackIo32, ARG(TLoadEigenPack<FermionEigenPack<FIMPL, FIMPLF>>), MIO); MODULE_REGISTER_TMP(LoadFermionEigenPackIo32, ARG(TLoadEigenPack<FermionEigenPack<FIMPL, FIMPLF>>), MIO);
#endif
/****************************************************************************** /******************************************************************************
* TLoadEigenPack implementation * * TLoadEigenPack implementation *

View File

@ -6,6 +6,7 @@ Source file: Hadrons/Modules/MNPR/Amputate.cc
Copyright (C) 2015-2018 Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk> Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify

View File

@ -6,6 +6,7 @@ Source file: Hadrons/Modules/MNPR/Bilinear.cc
Copyright (C) 2015-2018 Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk> Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify

View File

@ -6,6 +6,7 @@ Source file: Hadrons/Modules/MNPR/FourQuark.cc
Copyright (C) 2015-2018 Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk> Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify

View File

@ -0,0 +1,36 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MNoise/FullVolumeSpinColorDiagonal.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Vera Guelpers <Vera.Guelpers@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MNoise/FullVolumeSpinColorDiagonal.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MNoise;
template class Grid::Hadrons::MNoise::TFullVolumeSpinColorDiagonal<FIMPL>;
template class Grid::Hadrons::MNoise::TFullVolumeSpinColorDiagonal<ZFIMPL>;

View File

@ -0,0 +1,121 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MNoise/FullVolumeSpinColorDiagonal.hpp
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Vera Guelpers <Vera.Guelpers@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MNoise_FullVolumeSpinColorDiagonal_hpp_
#define Hadrons_MNoise_FullVolumeSpinColorDiagonal_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
#include <Hadrons/DilutedNoise.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Generate full volume spin-color diagonal noise *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MNoise)
class FullVolumeSpinColorDiagonalPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(FullVolumeSpinColorDiagonalPar,
unsigned int, nsrc);
};
template <typename FImpl>
class TFullVolumeSpinColorDiagonal: public Module<FullVolumeSpinColorDiagonalPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
public:
// constructor
TFullVolumeSpinColorDiagonal(const std::string name);
// destructor
virtual ~TFullVolumeSpinColorDiagonal(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(FullVolumeSpinColorDiagonal, TFullVolumeSpinColorDiagonal<FIMPL>, MNoise);
MODULE_REGISTER_TMP(ZFullVolumeSpinColorDiagonal, TFullVolumeSpinColorDiagonal<ZFIMPL>, MNoise);
/******************************************************************************
* TFullVolumeSpinColorDiagonal implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TFullVolumeSpinColorDiagonal<FImpl>::TFullVolumeSpinColorDiagonal(const std::string name)
: Module<FullVolumeSpinColorDiagonalPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TFullVolumeSpinColorDiagonal<FImpl>::getInput(void)
{
std::vector<std::string> in;
return in;
}
template <typename FImpl>
std::vector<std::string> TFullVolumeSpinColorDiagonal<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TFullVolumeSpinColorDiagonal<FImpl>::setup(void)
{
envCreateDerived(DilutedNoise<FImpl>,
FullVolumeSpinColorDiagonalNoise<FImpl>,
getName(), 1, envGetGrid(FermionField), par().nsrc);
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TFullVolumeSpinColorDiagonal<FImpl>::execute(void)
{
auto &noise = envGet(DilutedNoise<FImpl>, getName());
LOG(Message) << "Generating full volume, spin-color diagonal noise" << std::endl;
noise.generateNoise(rng4d());
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MNoise_FullVolumeSpinColorDiagonal_hpp_

View File

@ -51,7 +51,9 @@ public:
std::string, noise, std::string, noise,
std::string, action, std::string, action,
std::string, eigenPack, std::string, eigenPack,
std::string, solver); std::string, solver,
std::string, output,
bool, multiFile);
}; };
template <typename FImpl, typename Pack> template <typename FImpl, typename Pack>
@ -236,6 +238,17 @@ void TA2AVectors<FImpl, Pack>::execute(void)
} }
stopTimer("W high mode"); stopTimer("W high mode");
} }
// I/O if necessary
if (!par().output.empty())
{
startTimer("V I/O");
A2AVectorsIo::write(par().output + "_v", v, par().multiFile, vm().getTrajectory());
stopTimer("V I/O");
startTimer("W I/O");
A2AVectorsIo::write(par().output + "_w", w, par().multiFile, vm().getTrajectory());
stopTimer("W I/O");
}
} }
END_MODULE_NAMESPACE END_MODULE_NAMESPACE

View File

@ -33,4 +33,7 @@ using namespace MSolver;
template class Grid::Hadrons::MSolver::TLocalCoherenceLanczos<FIMPL,HADRONS_DEFAULT_LANCZOS_NBASIS>; template class Grid::Hadrons::MSolver::TLocalCoherenceLanczos<FIMPL,HADRONS_DEFAULT_LANCZOS_NBASIS>;
template class Grid::Hadrons::MSolver::TLocalCoherenceLanczos<ZFIMPL,HADRONS_DEFAULT_LANCZOS_NBASIS>; template class Grid::Hadrons::MSolver::TLocalCoherenceLanczos<ZFIMPL,HADRONS_DEFAULT_LANCZOS_NBASIS>;
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
template class Grid::Hadrons::MSolver::TLocalCoherenceLanczos<FIMPL,HADRONS_DEFAULT_LANCZOS_NBASIS, FIMPLF>;
template class Grid::Hadrons::MSolver::TLocalCoherenceLanczos<ZFIMPL,HADRONS_DEFAULT_LANCZOS_NBASIS, ZFIMPLF>;
#endif

View File

@ -55,17 +55,17 @@ public:
bool, multiFile); bool, multiFile);
}; };
template <typename FImpl, int nBasis> template <typename FImpl, int nBasis, typename FImplIo = FImpl>
class TLocalCoherenceLanczos: public Module<LocalCoherenceLanczosPar> class TLocalCoherenceLanczos: public Module<LocalCoherenceLanczosPar>
{ {
public: public:
FERM_TYPE_ALIASES(FImpl,); FERM_TYPE_ALIASES(FImpl,);
typedef LocalCoherenceLanczos<typename FImpl::SiteSpinor, typedef LocalCoherenceLanczos<typename FImpl::SiteSpinor,
typename FImpl::SiteComplex, typename FImpl::SiteComplex,
nBasis> LCL; nBasis> LCL;
typedef BaseFermionEigenPack<FImpl> BasePack; typedef BaseFermionEigenPack<FImpl> BasePack;
typedef CoarseFermionEigenPack<FImpl, nBasis> CoarsePack; typedef CoarseFermionEigenPack<FImpl, nBasis, FImplIo> CoarsePack;
typedef HADRONS_DEFAULT_SCHUR_OP<FMat, FermionField> SchurFMat; typedef HADRONS_DEFAULT_SCHUR_OP<FMat, FermionField> SchurFMat;
public: public:
// constructor // constructor
TLocalCoherenceLanczos(const std::string name); TLocalCoherenceLanczos(const std::string name);
@ -82,27 +82,31 @@ public:
MODULE_REGISTER_TMP(LocalCoherenceLanczos, ARG(TLocalCoherenceLanczos<FIMPL, HADRONS_DEFAULT_LANCZOS_NBASIS>), MSolver); MODULE_REGISTER_TMP(LocalCoherenceLanczos, ARG(TLocalCoherenceLanczos<FIMPL, HADRONS_DEFAULT_LANCZOS_NBASIS>), MSolver);
MODULE_REGISTER_TMP(ZLocalCoherenceLanczos, ARG(TLocalCoherenceLanczos<ZFIMPL, HADRONS_DEFAULT_LANCZOS_NBASIS>), MSolver); MODULE_REGISTER_TMP(ZLocalCoherenceLanczos, ARG(TLocalCoherenceLanczos<ZFIMPL, HADRONS_DEFAULT_LANCZOS_NBASIS>), MSolver);
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
MODULE_REGISTER_TMP(LocalCoherenceLanczosIo32, ARG(TLocalCoherenceLanczos<FIMPL, HADRONS_DEFAULT_LANCZOS_NBASIS, FIMPLF>), MSolver);
MODULE_REGISTER_TMP(ZLocalCoherenceLanczosIo32, ARG(TLocalCoherenceLanczos<ZFIMPL, HADRONS_DEFAULT_LANCZOS_NBASIS, ZFIMPLF>), MSolver);
#endif
/****************************************************************************** /******************************************************************************
* TLocalCoherenceLanczos implementation * * TLocalCoherenceLanczos implementation *
******************************************************************************/ ******************************************************************************/
// constructor ///////////////////////////////////////////////////////////////// // constructor /////////////////////////////////////////////////////////////////
template <typename FImpl, int nBasis> template <typename FImpl, int nBasis, typename FImplIo>
TLocalCoherenceLanczos<FImpl, nBasis>::TLocalCoherenceLanczos(const std::string name) TLocalCoherenceLanczos<FImpl, nBasis, FImplIo>::TLocalCoherenceLanczos(const std::string name)
: Module<LocalCoherenceLanczosPar>(name) : Module<LocalCoherenceLanczosPar>(name)
{} {}
// dependencies/products /////////////////////////////////////////////////////// // dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl, int nBasis> template <typename FImpl, int nBasis, typename FImplIo>
std::vector<std::string> TLocalCoherenceLanczos<FImpl, nBasis>::getInput(void) std::vector<std::string> TLocalCoherenceLanczos<FImpl, nBasis, FImplIo>::getInput(void)
{ {
std::vector<std::string> in = {par().action}; std::vector<std::string> in = {par().action};
return in; return in;
} }
template <typename FImpl, int nBasis> template <typename FImpl, int nBasis, typename FImplIo>
std::vector<std::string> TLocalCoherenceLanczos<FImpl, nBasis>::getOutput(void) std::vector<std::string> TLocalCoherenceLanczos<FImpl, nBasis, FImplIo>::getOutput(void)
{ {
std::vector<std::string> out = {getName()}; std::vector<std::string> out = {getName()};
@ -110,8 +114,8 @@ std::vector<std::string> TLocalCoherenceLanczos<FImpl, nBasis>::getOutput(void)
} }
// setup /////////////////////////////////////////////////////////////////////// // setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl, int nBasis> template <typename FImpl, int nBasis, typename FImplIo>
void TLocalCoherenceLanczos<FImpl, nBasis>::setup(void) void TLocalCoherenceLanczos<FImpl, nBasis, FImplIo>::setup(void)
{ {
LOG(Message) << "Setting up local coherence Lanczos eigensolver for" LOG(Message) << "Setting up local coherence Lanczos eigensolver for"
<< " action '" << par().action << "' (" << nBasis << " action '" << par().action << "' (" << nBasis
@ -138,8 +142,8 @@ void TLocalCoherenceLanczos<FImpl, nBasis>::setup(void)
} }
// execution /////////////////////////////////////////////////////////////////// // execution ///////////////////////////////////////////////////////////////////
template <typename FImpl, int nBasis> template <typename FImpl, int nBasis, typename FImplIo>
void TLocalCoherenceLanczos<FImpl, nBasis>::execute(void) void TLocalCoherenceLanczos<FImpl, nBasis, FImplIo>::execute(void)
{ {
auto &finePar = par().fineParams; auto &finePar = par().fineParams;
auto &coarsePar = par().coarseParams; auto &coarsePar = par().coarseParams;

View File

@ -35,7 +35,7 @@ using namespace Hadrons;
template <typename FOut, typename FIn> template <typename FOut, typename FIn>
void convert(const std::string outFilename, const std::string inFilename, void convert(const std::string outFilename, const std::string inFilename,
const unsigned int Ls, const bool rb, const unsigned int size, const unsigned int Ls, const bool rb, const unsigned int size,
const bool multiFile) const bool multiFile, const bool testRead)
{ {
assert(outFilename != inFilename); assert(outFilename != inFilename);
@ -102,6 +102,7 @@ void convert(const std::string outFilename, const std::string inFilename,
LOG(Message) << "Out type : " << typeName<FOut>() << std::endl; LOG(Message) << "Out type : " << typeName<FOut>() << std::endl;
LOG(Message) << "#vectors : " << size << std::endl; LOG(Message) << "#vectors : " << size << std::endl;
LOG(Message) << "Multifile : " << (multiFile ? "yes" : "no") << std::endl; LOG(Message) << "Multifile : " << (multiFile ? "yes" : "no") << std::endl;
LOG(Message) << "Test read : " << (testRead ? "yes" : "no") << std::endl;
if (multiFile) if (multiFile)
{ {
for(unsigned int k = 0; k < size; ++k) for(unsigned int k = 0; k < size; ++k)
@ -112,6 +113,8 @@ void convert(const std::string outFilename, const std::string inFilename,
LOG(Message) << "==== Converting vector " << k << std::endl; LOG(Message) << "==== Converting vector " << k << std::endl;
LOG(Message) << "In : " << inV << std::endl; LOG(Message) << "In : " << inV << std::endl;
LOG(Message) << "Out: " << outV << std::endl; LOG(Message) << "Out: " << outV << std::endl;
// conversion
LOG(Message) << "-- Doing conversion" << std::endl;
makeFileDir(outV, gOut); makeFileDir(outV, gOut);
binWriter.open(outV); binWriter.open(outV);
binReader.open(inV); binReader.open(inV);
@ -121,10 +124,20 @@ void convert(const std::string outFilename, const std::string inFilename,
EigenPackIo::writeElement<FIn, FOut>(binWriter, bufIn, eval, k, &bufOut, &testIn); EigenPackIo::writeElement<FIn, FOut>(binWriter, bufIn, eval, k, &bufOut, &testIn);
binWriter.close(); binWriter.close();
binReader.close(); binReader.close();
// read test
if (testRead)
{
LOG(Message) << "-- Test read" << std::endl;
binReader.open(outV);
EigenPackIo::readElement<FOut>(bufOut, eval, k, binReader);
binReader.close();
}
} }
} }
else else
{ {
// conversion
LOG(Message) << "-- Doing conversion" << std::endl;
makeFileDir(outFilename, gOut); makeFileDir(outFilename, gOut);
binWriter.open(outFilename); binWriter.open(outFilename);
binReader.open(inFilename); binReader.open(inFilename);
@ -137,6 +150,18 @@ void convert(const std::string outFilename, const std::string inFilename,
} }
binWriter.close(); binWriter.close();
binReader.close(); binReader.close();
// read test
if (testRead)
{
LOG(Message) << "-- Test read" << std::endl;
binReader.open(outFilename);
EigenPackIo::readHeader(record, binReader);
for(unsigned int k = 0; k < size; ++k)
{
EigenPackIo::readElement<FOut>(bufOut, eval, k, binReader);
}
binReader.close();
}
} }
} }
@ -154,11 +179,11 @@ int main(int argc, char *argv[])
// parse command line // parse command line
std::string outFilename, inFilename; std::string outFilename, inFilename;
unsigned int size, Ls; unsigned int size, Ls;
bool rb, multiFile; bool rb, multiFile, testRead;
if (argc < 7) if (argc < 8)
{ {
std::cerr << "usage: " << argv[0] << " <out eigenpack> <in eigenpack> <Ls> <red-black (0|1)> <#vector> <multifile (0|1)> [Grid options]"; std::cerr << "usage: " << argv[0] << " <out eigenpack> <in eigenpack> <Ls> <red-black {0|1}> <#vector> <multifile {0|1}> <test read {0|1}> [Grid options]";
std::cerr << std::endl; std::cerr << std::endl;
std::exit(EXIT_FAILURE); std::exit(EXIT_FAILURE);
} }
@ -168,6 +193,7 @@ int main(int argc, char *argv[])
rb = (std::string(argv[4]) != "0"); rb = (std::string(argv[4]) != "0");
size = std::stoi(std::string(argv[5])); size = std::stoi(std::string(argv[5]));
multiFile = (std::string(argv[6]) != "0"); multiFile = (std::string(argv[6]) != "0");
testRead = (std::string(argv[7]) != "0");
// initialization // initialization
Grid_init(&argc, &argv); Grid_init(&argc, &argv);
@ -176,7 +202,7 @@ int main(int argc, char *argv[])
// execution // execution
try try
{ {
convert<FOUT, FIN>(outFilename, inFilename, Ls, rb, size, multiFile); convert<FOUT, FIN>(outFilename, inFilename, Ls, rb, size, multiFile, testRead);
} }
catch (const std::exception& e) catch (const std::exception& e)
{ {

View File

@ -31,6 +31,7 @@ modules_cc =\
Modules/MGauge/FundtoHirep.cc \ Modules/MGauge/FundtoHirep.cc \
Modules/MGauge/GaugeFix.cc \ Modules/MGauge/GaugeFix.cc \
Modules/MNoise/TimeDilutedSpinColorDiagonal.cc \ Modules/MNoise/TimeDilutedSpinColorDiagonal.cc \
Modules/MNoise/FullVolumeSpinColorDiagonal.cc \
Modules/MUtilities/RandomVectors.cc \ Modules/MUtilities/RandomVectors.cc \
Modules/MUtilities/TestSeqGamma.cc \ Modules/MUtilities/TestSeqGamma.cc \
Modules/MUtilities/PrecisionCast.cc \ Modules/MUtilities/PrecisionCast.cc \
@ -64,7 +65,8 @@ modules_cc =\
Modules/MIO/LoadBinary.cc \ Modules/MIO/LoadBinary.cc \
Modules/MIO/LoadNersc.cc \ Modules/MIO/LoadNersc.cc \
Modules/MIO/LoadCoarseEigenPack.cc \ Modules/MIO/LoadCoarseEigenPack.cc \
Modules/MIO/LoadCosmHol.cc Modules/MIO/LoadCosmHol.cc \
Modules/MIO/LoadA2AVectors.cc
modules_hpp =\ modules_hpp =\
Modules/MContraction/Baryon.hpp \ Modules/MContraction/Baryon.hpp \
@ -101,6 +103,7 @@ modules_hpp =\
Modules/MGauge/FundtoHirep.hpp \ Modules/MGauge/FundtoHirep.hpp \
Modules/MGauge/StochEm.hpp \ Modules/MGauge/StochEm.hpp \
Modules/MNoise/TimeDilutedSpinColorDiagonal.hpp \ Modules/MNoise/TimeDilutedSpinColorDiagonal.hpp \
Modules/MNoise/FullVolumeSpinColorDiagonal.hpp \
Modules/MUtilities/PrecisionCast.hpp \ Modules/MUtilities/PrecisionCast.hpp \
Modules/MUtilities/RandomVectors.hpp \ Modules/MUtilities/RandomVectors.hpp \
Modules/MUtilities/TestSeqGamma.hpp \ Modules/MUtilities/TestSeqGamma.hpp \
@ -134,6 +137,7 @@ modules_hpp =\
Modules/MScalarSUN/TrKinetic.hpp \ Modules/MScalarSUN/TrKinetic.hpp \
Modules/MIO/LoadEigenPack.hpp \ Modules/MIO/LoadEigenPack.hpp \
Modules/MIO/LoadNersc.hpp \ Modules/MIO/LoadNersc.hpp \
Modules/MIO/LoadA2AVectors.hpp \
Modules/MIO/LoadCosmHol.hpp \ Modules/MIO/LoadCosmHol.hpp \
Modules/MIO/LoadCoarseEigenPack.hpp \ Modules/MIO/LoadCoarseEigenPack.hpp \
Modules/MIO/LoadBinary.hpp Modules/MIO/LoadBinary.hpp

View File

@ -3,9 +3,6 @@
#define MSG std::cout << GridLogMessage #define MSG std::cout << GridLogMessage
#define SEP \ #define SEP \
"=============================================================================" "============================================================================="
#ifndef BENCH_IO_LMAX
#define BENCH_IO_LMAX 40
#endif
using namespace Grid; using namespace Grid;
using namespace QCD; using namespace QCD;
@ -41,7 +38,7 @@ int main (int argc, char ** argv)
int64_t threads = GridThread::GetThreads(); int64_t threads = GridThread::GetThreads();
MSG << "Grid is setup to use " << threads << " threads" << std::endl; MSG << "Grid is setup to use " << threads << " threads" << std::endl;
MSG << SEP << std::endl; MSG << SEP << std::endl;
MSG << "Benchmark Lime write" << std::endl; MSG << "Benchmark double precision Lime write" << std::endl;
MSG << SEP << std::endl; MSG << SEP << std::endl;
for (auto &d: dir) for (auto &d: dir)
{ {
@ -49,7 +46,8 @@ int main (int argc, char ** argv)
writeBenchmark<LatticeFermion>(GridDefaultLatt(), d + "/ioBench", limeWrite<LatticeFermion>, Ls, rb); writeBenchmark<LatticeFermion>(GridDefaultLatt(), d + "/ioBench", limeWrite<LatticeFermion>, Ls, rb);
} }
MSG << "Benchmark Lime read" << std::endl; MSG << SEP << std::endl;
MSG << "Benchmark double precision Lime read" << std::endl;
MSG << SEP << std::endl; MSG << SEP << std::endl;
for (auto &d: dir) for (auto &d: dir)
{ {
@ -57,6 +55,24 @@ int main (int argc, char ** argv)
readBenchmark<LatticeFermion>(GridDefaultLatt(), d + "/ioBench", limeRead<LatticeFermion>, Ls, rb); readBenchmark<LatticeFermion>(GridDefaultLatt(), d + "/ioBench", limeRead<LatticeFermion>, Ls, rb);
} }
MSG << SEP << std::endl;
MSG << "Benchmark single precision Lime write" << std::endl;
MSG << SEP << std::endl;
for (auto &d: dir)
{
MSG << "-- Directory " << d << std::endl;
writeBenchmark<LatticeFermionF>(GridDefaultLatt(), d + "/ioBench", limeWrite<LatticeFermionF>, Ls, rb);
}
MSG << SEP << std::endl;
MSG << "Benchmark single precision Lime read" << std::endl;
MSG << SEP << std::endl;
for (auto &d: dir)
{
MSG << "-- Directory " << d << std::endl;
readBenchmark<LatticeFermionF>(GridDefaultLatt(), d + "/ioBench", limeRead<LatticeFermionF>, Ls, rb);
}
Grid_finalize(); Grid_finalize();
return EXIT_SUCCESS; return EXIT_SUCCESS;

View File

@ -38,6 +38,7 @@ int main (int argc, char ** argv)
typedef typename DomainWallFermionR::ComplexField ComplexField; typedef typename DomainWallFermionR::ComplexField ComplexField;
typename DomainWallFermionR::ImplParams params; typename DomainWallFermionR::ImplParams params;
double stp=1.0e-5;
const int Ls=4; const int Ls=4;
Grid_init(&argc,&argv); Grid_init(&argc,&argv);
@ -197,7 +198,7 @@ int main (int argc, char ** argv)
MdagMLinearOperator<DomainWallFermionR,FermionField> HermOp(Ddwf); MdagMLinearOperator<DomainWallFermionR,FermionField> HermOp(Ddwf);
MdagMLinearOperator<DomainWallFermionR,FermionField> HermOpCk(Dchk); MdagMLinearOperator<DomainWallFermionR,FermionField> HermOpCk(Dchk);
ConjugateGradient<FermionField> CG((1.0e-2),10000); ConjugateGradient<FermionField> CG((stp),10000);
s_res = zero; s_res = zero;
CG(HermOp,s_src,s_res); CG(HermOp,s_src,s_res);
@ -227,5 +228,11 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage<<" resid["<<n<<"] "<< norm2(tmp)/norm2(src[n])<<std::endl; std::cout << GridLogMessage<<" resid["<<n<<"] "<< norm2(tmp)/norm2(src[n])<<std::endl;
} }
for(int s=0;s<nrhs;s++) result[s]=zero;
int blockDim = 0;//not used for BlockCGVec
BlockConjugateGradient<FermionField> BCGV (BlockCGVec,blockDim,stp,10000);
BCGV.PrintInterval=10;
BCGV(HermOpCk,src,result);
Grid_finalize(); Grid_finalize();
} }

View File

@ -0,0 +1,220 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_dwf_mrhs_cg.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
typedef typename MobiusFermionR::FermionField FermionField;
typedef typename MobiusFermionR::ComplexField ComplexField;
typename MobiusFermionR::ImplParams params;
const int Ls=12;
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
std::vector<int> mpi_split (mpi_layout.size(),1);
std::vector<int> split_coor (mpi_layout.size(),1);
std::vector<int> split_dim (mpi_layout.size(),1);
std::vector<ComplexD> boundary_phases(Nd,1.);
boundary_phases[Nd-1]=-1.;
params.boundary_phases = boundary_phases;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * rbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
/////////////////////////////////////////////
// Split into 1^4 mpi communicators
/////////////////////////////////////////////
for(int i=0;i<argc;i++){
if(std::string(argv[i]) == "--split"){
for(int k=0;k<mpi_layout.size();k++){
std::stringstream ss;
ss << argv[i+1+k];
ss >> mpi_split[k];
}
break;
}
}
double stp = 1.e-8;
int nrhs = 1;
int me;
for(int i=0;i<mpi_layout.size();i++){
// split_dim[i] = (mpi_layout[i]/mpi_split[i]);
nrhs *= (mpi_layout[i]/mpi_split[i]);
// split_coor[i] = FGrid._processor_coor[i]/mpi_split[i];
}
std::cout << GridLogMessage << "Creating split grids " <<std::endl;
GridCartesian * SGrid = new GridCartesian(GridDefaultLatt(),
GridDefaultSimd(Nd,vComplex::Nsimd()),
mpi_split,
*UGrid,me);
std::cout << GridLogMessage <<"Creating split ferm grids " <<std::endl;
GridCartesian * SFGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,SGrid);
std::cout << GridLogMessage <<"Creating split rb grids " <<std::endl;
GridRedBlackCartesian * SrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(SGrid);
std::cout << GridLogMessage <<"Creating split ferm rb grids " <<std::endl;
GridRedBlackCartesian * SFrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,SGrid);
std::cout << GridLogMessage << "Made the grids"<<std::endl;
///////////////////////////////////////////////
// Set up the problem as a 4d spreadout job
///////////////////////////////////////////////
std::vector<int> seeds({1,2,3,4});
std::vector<FermionField> src(nrhs,FGrid);
std::vector<FermionField> src_chk(nrhs,FGrid);
std::vector<FermionField> result(nrhs,FGrid);
FermionField tmp(FGrid);
std::cout << GridLogMessage << "Made the Fermion Fields"<<std::endl;
for(int s=0;s<nrhs;s++) result[s]=zero;
GridParallelRNG pRNG5(FGrid); pRNG5.SeedFixedIntegers(seeds);
for(int s=0;s<nrhs;s++) {
random(pRNG5,src[s]);
std::cout << GridLogMessage << " src ["<<s<<"] "<<norm2(src[s])<<std::endl;
}
std::cout << GridLogMessage << "Intialised the Fermion Fields"<<std::endl;
LatticeGaugeField Umu(UGrid);
if(0) {
FieldMetaData header;
std::string file("./lat.in");
NerscIO::readConfiguration(Umu,header,file);
std::cout << GridLogMessage << " "<<file<<" successfully read" <<std::endl;
} else {
GridParallelRNG pRNG(UGrid );
std::cout << GridLogMessage << "Intialising 4D RNG "<<std::endl;
pRNG.SeedFixedIntegers(seeds);
std::cout << GridLogMessage << "Intialised 4D RNG "<<std::endl;
SU3::HotConfiguration(pRNG,Umu);
std::cout << GridLogMessage << "Intialised the HOT Gauge Field"<<std::endl;
std::cout << " Site zero "<< Umu._odata[0] <<std::endl;
}
/////////////////
// MPI only sends
/////////////////
LatticeGaugeField s_Umu(SGrid);
FermionField s_src(SFGrid);
FermionField s_tmp(SFGrid);
FermionField s_res(SFGrid);
std::cout << GridLogMessage << "Made the split grid fields"<<std::endl;
///////////////////////////////////////////////////////////////
// split the source out using MPI instead of I/O
///////////////////////////////////////////////////////////////
Grid_split (Umu,s_Umu);
Grid_split (src,s_src);
std::cout << GridLogMessage << " split rank " <<me << " s_src "<<norm2(s_src)<<std::endl;
///////////////////////////////////////////////////////////////
// Set up N-solvers as trivially parallel
///////////////////////////////////////////////////////////////
std::cout << GridLogMessage << " Building the solvers"<<std::endl;
// RealD mass=0.00107;
RealD mass=0.1;
RealD M5=1.8;
RealD mobius_factor=32./12.;
RealD mobius_b=0.5*(mobius_factor+1.);
RealD mobius_c=0.5*(mobius_factor-1.);
MobiusFermionR Dchk(Umu,*FGrid,*FrbGrid,*UGrid,*rbGrid,mass,M5,mobius_b,mobius_c,params);
MobiusFermionR Ddwf(s_Umu,*SFGrid,*SFrbGrid,*SGrid,*SrbGrid,mass,M5,mobius_b,mobius_c,params);
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
std::cout << GridLogMessage << " Calling DWF CG "<<std::endl;
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
MdagMLinearOperator<MobiusFermionR,FermionField> HermOp(Ddwf);
MdagMLinearOperator<MobiusFermionR,FermionField> HermOpCk(Dchk);
ConjugateGradient<FermionField> CG((stp),100000);
s_res = zero;
CG(HermOp,s_src,s_res);
std::cout << GridLogMessage << " split residual norm "<<norm2(s_res)<<std::endl;
/////////////////////////////////////////////////////////////
// Report how long they all took
/////////////////////////////////////////////////////////////
std::vector<uint32_t> iterations(nrhs,0);
iterations[me] = CG.IterationsToComplete;
for(int n=0;n<nrhs;n++){
UGrid->GlobalSum(iterations[n]);
std::cout << GridLogMessage<<" Rank "<<n<<" "<< iterations[n]<<" CG iterations"<<std::endl;
}
/////////////////////////////////////////////////////////////
// Gather and residual check on the results
/////////////////////////////////////////////////////////////
std::cout << GridLogMessage<< "Unsplitting the result"<<std::endl;
Grid_unsplit(result,s_res);
std::cout << GridLogMessage<< "Checking the residuals"<<std::endl;
for(int n=0;n<nrhs;n++){
std::cout << GridLogMessage<< " res["<<n<<"] norm "<<norm2(result[n])<<std::endl;
HermOpCk.HermOp(result[n],tmp); tmp = tmp - src[n];
std::cout << GridLogMessage<<" resid["<<n<<"] "<< std::sqrt(norm2(tmp)/norm2(src[n]))<<std::endl;
}
for(int s=0;s<nrhs;s++){
result[s]=zero;
}
/////////////////////////////////////////////////////////////
// Try block CG
/////////////////////////////////////////////////////////////
int blockDim = 0;//not used for BlockCGVec
BlockConjugateGradient<FermionField> BCGV (BlockCGrQVec,blockDim,stp,100000);
{
BCGV(HermOpCk,src,result);
}
Grid_finalize();
}

View File

@ -0,0 +1,144 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_dwf_mrhs_cg.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
typedef typename DomainWallFermionR::FermionField FermionField;
typedef typename DomainWallFermionR::ComplexField ComplexField;
typename DomainWallFermionR::ImplParams params;
const int Ls=16;
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
std::vector<ComplexD> boundary_phases(Nd,1.);
boundary_phases[Nd-1]=-1.;
params.boundary_phases = boundary_phases;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * rbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
double stp = 1.e-8;
int nrhs = 2;
///////////////////////////////////////////////
// Set up the problem as a 4d spreadout job
///////////////////////////////////////////////
std::vector<int> seeds({1,2,3,4});
std::vector<FermionField> src(nrhs,FGrid);
std::vector<FermionField> src_chk(nrhs,FGrid);
std::vector<FermionField> result(nrhs,FGrid);
FermionField tmp(FGrid);
std::cout << GridLogMessage << "Made the Fermion Fields"<<std::endl;
for(int s=0;s<nrhs;s++) result[s]=zero;
GridParallelRNG pRNG5(FGrid); pRNG5.SeedFixedIntegers(seeds);
for(int s=0;s<nrhs;s++) {
random(pRNG5,src[s]);
std::cout << GridLogMessage << " src ["<<s<<"] "<<norm2(src[s])<<std::endl;
}
std::cout << GridLogMessage << "Intialised the Fermion Fields"<<std::endl;
LatticeGaugeField Umu(UGrid);
int conf = 0;
if(conf==0) {
FieldMetaData header;
std::string file("./lat.in");
NerscIO::readConfiguration(Umu,header,file);
std::cout << GridLogMessage << " Config "<<file<<" successfully read" <<std::endl;
} else if (conf==1){
GridParallelRNG pRNG(UGrid );
pRNG.SeedFixedIntegers(seeds);
SU3::HotConfiguration(pRNG,Umu);
std::cout << GridLogMessage << "Intialised the HOT Gauge Field"<<std::endl;
} else {
SU3::ColdConfiguration(Umu);
std::cout << GridLogMessage << "Intialised the COLD Gauge Field"<<std::endl;
}
///////////////////////////////////////////////////////////////
// Set up N-solvers as trivially parallel
///////////////////////////////////////////////////////////////
std::cout << GridLogMessage << " Building the solvers"<<std::endl;
RealD mass=0.01;
RealD M5=1.8;
DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*rbGrid,mass,M5,params);
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
std::cout << GridLogMessage << " Calling DWF CG "<<std::endl;
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
MdagMLinearOperator<DomainWallFermionR,FermionField> HermOp(Ddwf);
ConjugateGradient<FermionField> CG((stp),100000);
for(int rhs=0;rhs<1;rhs++){
result[rhs] = zero;
CG(HermOp,src[rhs],result[rhs]);
}
for(int rhs=0;rhs<1;rhs++){
std::cout << " Result["<<rhs<<"] norm = "<<norm2(result[rhs])<<std::endl;
}
/////////////////////////////////////////////////////////////
// Try block CG
/////////////////////////////////////////////////////////////
int blockDim = 0;//not used for BlockCGVec
for(int s=0;s<nrhs;s++){
result[s]=zero;
}
BlockConjugateGradient<FermionField> BCGV (BlockCGrQVec,blockDim,stp,100000);
{
BCGV(HermOp,src,result);
}
for(int rhs=0;rhs<nrhs;rhs++){
std::cout << " Result["<<rhs<<"] norm = "<<norm2(result[rhs])<<std::endl;
}
Grid_finalize();
}

View File

@ -0,0 +1,148 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_dwf_mrhs_cg.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
typedef typename DomainWallFermionR::FermionField FermionField;
typedef typename DomainWallFermionR::ComplexField ComplexField;
typename DomainWallFermionR::ImplParams params;
const int Ls=16;
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
std::vector<ComplexD> boundary_phases(Nd,1.);
boundary_phases[Nd-1]=-1.;
params.boundary_phases = boundary_phases;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * rbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
double stp = 1.e-8;
int nrhs = 2;
///////////////////////////////////////////////
// Set up the problem as a 4d spreadout job
///////////////////////////////////////////////
std::vector<int> seeds({1,2,3,4});
std::vector<FermionField> src4(nrhs,UGrid);
std::vector<FermionField> src(nrhs,FGrid);
std::vector<FermionField> src_chk(nrhs,FGrid);
std::vector<FermionField> result(nrhs,FGrid);
FermionField tmp(FGrid);
std::cout << GridLogMessage << "Made the Fermion Fields"<<std::endl;
for(int s=0;s<nrhs;s++) result[s]=zero;
GridParallelRNG pRNG4(UGrid); pRNG4.SeedFixedIntegers(seeds);
for(int s=0;s<nrhs;s++) {
random(pRNG4,src4[s]);
std::cout << GridLogMessage << " src ["<<s<<"] "<<norm2(src[s])<<std::endl;
}
std::cout << GridLogMessage << "Intialised the Fermion Fields"<<std::endl;
LatticeGaugeField Umu(UGrid);
int conf = 0;
if(conf==0) {
FieldMetaData header;
std::string file("./lat.in");
NerscIO::readConfiguration(Umu,header,file);
std::cout << GridLogMessage << " Config "<<file<<" successfully read" <<std::endl;
} else if (conf==1){
GridParallelRNG pRNG(UGrid );
pRNG.SeedFixedIntegers(seeds);
SU3::HotConfiguration(pRNG,Umu);
std::cout << GridLogMessage << "Intialised the HOT Gauge Field"<<std::endl;
} else {
SU3::ColdConfiguration(Umu);
std::cout << GridLogMessage << "Intialised the COLD Gauge Field"<<std::endl;
}
///////////////////////////////////////////////////////////////
// Set up N-solvers as trivially parallel
///////////////////////////////////////////////////////////////
std::cout << GridLogMessage << " Building the solvers"<<std::endl;
RealD mass=0.01;
RealD M5=1.8;
DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*rbGrid,mass,M5,params);
for(int s=0;s<nrhs;s++) {
Ddwf.ImportPhysicalFermionSource(src4[s],src[s]);
}
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
std::cout << GridLogMessage << " Calling DWF CG "<<std::endl;
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
MdagMLinearOperator<DomainWallFermionR,FermionField> HermOp(Ddwf);
ConjugateGradient<FermionField> CG((stp),100000);
for(int rhs=0;rhs<1;rhs++){
result[rhs] = zero;
// CG(HermOp,src[rhs],result[rhs]);
}
for(int rhs=0;rhs<1;rhs++){
std::cout << " Result["<<rhs<<"] norm = "<<norm2(result[rhs])<<std::endl;
}
/////////////////////////////////////////////////////////////
// Try block CG
/////////////////////////////////////////////////////////////
int blockDim = 0;//not used for BlockCGVec
for(int s=0;s<nrhs;s++){
result[s]=zero;
}
BlockConjugateGradient<FermionField> BCGV (BlockCGrQVec,blockDim,stp,100000);
{
BCGV(HermOp,src,result);
}
for(int rhs=0;rhs<nrhs;rhs++){
std::cout << " Result["<<rhs<<"] norm = "<<norm2(result[rhs])<<std::endl;
}
Grid_finalize();
}

View File

@ -0,0 +1,147 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_dwf_mrhs_cg.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
typedef typename DomainWallFermionR::FermionField FermionField;
typedef typename DomainWallFermionR::ComplexField ComplexField;
typename DomainWallFermionR::ImplParams params;
const int Ls=16;
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
std::vector<ComplexD> boundary_phases(Nd,1.);
boundary_phases[Nd-1]=-1.;
params.boundary_phases = boundary_phases;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * rbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
double stp = 1.e-8;
int nrhs = 4;
///////////////////////////////////////////////
// Set up the problem as a 4d spreadout job
///////////////////////////////////////////////
std::vector<int> seeds({1,2,3,4});
std::vector<FermionField> src(nrhs,FGrid);
std::vector<FermionField> src_chk(nrhs,FGrid);
std::vector<FermionField> result(nrhs,FGrid);
FermionField tmp(FGrid);
std::cout << GridLogMessage << "Made the Fermion Fields"<<std::endl;
for(int s=0;s<nrhs;s++) result[s]=zero;
GridParallelRNG pRNG5(FGrid); pRNG5.SeedFixedIntegers(seeds);
for(int s=0;s<nrhs;s++) {
random(pRNG5,src[s]);
std::cout << GridLogMessage << " src ["<<s<<"] "<<norm2(src[s])<<std::endl;
}
std::cout << GridLogMessage << "Intialised the Fermion Fields"<<std::endl;
LatticeGaugeField Umu(UGrid);
int conf = 2;
if(conf==0) {
FieldMetaData header;
std::string file("./lat.in");
NerscIO::readConfiguration(Umu,header,file);
std::cout << GridLogMessage << " Config "<<file<<" successfully read" <<std::endl;
} else if (conf==1){
GridParallelRNG pRNG(UGrid );
pRNG.SeedFixedIntegers(seeds);
SU3::HotConfiguration(pRNG,Umu);
std::cout << GridLogMessage << "Intialised the HOT Gauge Field"<<std::endl;
} else {
SU3::ColdConfiguration(Umu);
std::cout << GridLogMessage << "Intialised the COLD Gauge Field"<<std::endl;
}
///////////////////////////////////////////////////////////////
// Set up N-solvers as trivially parallel
///////////////////////////////////////////////////////////////
std::cout << GridLogMessage << " Building the solvers"<<std::endl;
RealD mass=0.01;
RealD M5=1.8;
DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*rbGrid,mass,M5,params);
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
std::cout << GridLogMessage << " Calling DWF CG "<<std::endl;
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
MdagMLinearOperator<DomainWallFermionR,FermionField> HermOp(Ddwf);
ConjugateGradient<FermionField> CG((stp),100000);
for(int rhs=0;rhs<1;rhs++){
result[rhs] = zero;
CG(HermOp,src[rhs],result[rhs]);
}
for(int rhs=0;rhs<1;rhs++){
std::cout << " Result["<<rhs<<"] norm = "<<norm2(result[rhs])<<std::endl;
}
/////////////////////////////////////////////////////////////
// Try block CG
/////////////////////////////////////////////////////////////
int blockDim = 0;//not used for BlockCGVec
for(int s=0;s<nrhs;s++){
result[s]=zero;
}
{
BlockConjugateGradient<FermionField> BCGV (BlockCGrQVec,blockDim,stp,100000);
SchurRedBlackDiagTwoSolve<FermionField> SchurSolver(BCGV);
SchurSolver(Ddwf,src,result);
}
for(int rhs=0;rhs<nrhs;rhs++){
std::cout << " Result["<<rhs<<"] norm = "<<norm2(result[rhs])<<std::endl;
}
Grid_finalize();
}

View File

@ -67,7 +67,22 @@ int main (int argc, char ** argv)
GridParallelRNG pRNG(UGrid ); pRNG.SeedFixedIntegers(seeds); GridParallelRNG pRNG(UGrid ); pRNG.SeedFixedIntegers(seeds);
GridParallelRNG pRNG5(FGrid); pRNG5.SeedFixedIntegers(seeds); GridParallelRNG pRNG5(FGrid); pRNG5.SeedFixedIntegers(seeds);
FermionField src(FGrid); random(pRNG5,src); FermionField src(FGrid);
FermionField tt(FGrid);
#if 1
random(pRNG5,src);
#else
src=zero;
ComplexField coor(FGrid);
LatticeCoordinate(coor,0);
for(int ss=0;ss<FGrid->oSites();ss++){
src._odata[ss]()()(0)=coor._odata[ss]()()();
}
LatticeCoordinate(coor,1);
for(int ss=0;ss<FGrid->oSites();ss++){
src._odata[ss]()()(0)+=coor._odata[ss]()()();
}
#endif
FermionField src_o(FrbGrid); pickCheckerboard(Odd,src_o,src); FermionField src_o(FrbGrid); pickCheckerboard(Odd,src_o,src);
FermionField result_o(FrbGrid); result_o=zero; FermionField result_o(FrbGrid); result_o=zero;
RealD nrm = norm2(src); RealD nrm = norm2(src);
@ -89,7 +104,8 @@ int main (int argc, char ** argv)
ConjugateGradient<FermionField> CG(1.0e-8,10000); ConjugateGradient<FermionField> CG(1.0e-8,10000);
int blockDim = 0; int blockDim = 0;
BlockConjugateGradient<FermionField> BCGrQ(BlockCGrQ,blockDim,1.0e-8,10000); BlockConjugateGradient<FermionField> BCGrQ(BlockCGrQ,blockDim,1.0e-8,10000);
BlockConjugateGradient<FermionField> BCG (BlockCG,blockDim,1.0e-8,10000); BlockConjugateGradient<FermionField> BCG (BlockCGrQ,blockDim,1.0e-8,10000);
BlockConjugateGradient<FermionField> BCGv (BlockCGrQVec,blockDim,1.0e-8,10000);
BlockConjugateGradient<FermionField> mCG (CGmultiRHS,blockDim,1.0e-8,10000); BlockConjugateGradient<FermionField> mCG (CGmultiRHS,blockDim,1.0e-8,10000);
std::cout << GridLogMessage << "****************************************************************** "<<std::endl; std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
@ -158,7 +174,7 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage << "************************************************************************ "<<std::endl; std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
std::cout << GridLogMessage << "************************************************************************ "<<std::endl; std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
std::cout << GridLogMessage << " Calling Block CG for "<<Ls <<" right hand sides" <<std::endl; std::cout << GridLogMessage << " Calling Block CGrQ for "<<Ls <<" right hand sides" <<std::endl;
std::cout << GridLogMessage << "************************************************************************ "<<std::endl; std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
Ds.ZeroCounters(); Ds.ZeroCounters();
result_o=zero; result_o=zero;
@ -176,6 +192,49 @@ int main (int argc, char ** argv)
Ds.Report(); Ds.Report();
std::cout << GridLogMessage << "************************************************************************ "<<std::endl; std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
std::cout << GridLogMessage << " Calling Block CG for "<<Ls <<" right hand sides" <<std::endl;
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
Ds.ZeroCounters();
result_o=zero;
{
double t1=usecond();
BCG(HermOp,src_o,result_o);
double t2=usecond();
double ncall=BCGrQ.IterationsToComplete*Ls;
double flops = deodoe_flops * ncall;
std::cout<<GridLogMessage << "usec = "<< (t2-t1)<<std::endl;
std::cout<<GridLogMessage << "flops = "<< flops<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t2-t1)<<std::endl;
HermOp.Report();
}
Ds.Report();
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
std::cout << GridLogMessage << " Calling BCGvec "<<std::endl;
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
std::vector<FermionField> src_v (Ls,UrbGrid);
std::vector<FermionField> result_v(Ls,UrbGrid);
for(int s=0;s<Ls;s++) result_v[s] = zero;
for(int s=0;s<Ls;s++) {
FermionField src4(UGrid);
ExtractSlice(src4,src,s,0);
pickCheckerboard(Odd,src_v[s],src4);
}
{
double t1=usecond();
BCGv(HermOp4d,src_v,result_v);
double t2=usecond();
double ncall=BCGv.IterationsToComplete*Ls;
double flops = deodoe_flops * ncall;
std::cout<<GridLogMessage << "usec = "<< (t2-t1)<<std::endl;
std::cout<<GridLogMessage << "flops = "<< flops<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t2-t1)<<std::endl;
// HermOp4d.Report();
}
Grid_finalize(); Grid_finalize();
} }