mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-11-03 21:44:33 +00:00 
			
		
		
		
	Compare commits
	
		
			2 Commits
		
	
	
		
			hotfix/unw
			...
			aff3d50bae
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 
						 | 
					aff3d50bae | ||
| 32e6d58356 | 
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							@@ -1,2 +0,0 @@
 | 
				
			|||||||
 | 
					 | 
				
			||||||
mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench -DGRID_SYCL
 | 
					 | 
				
			||||||
@@ -1,5 +0,0 @@
 | 
				
			|||||||
CXX=hipcc
 | 
					 | 
				
			||||||
MPICXX=mpicxx 
 | 
					 | 
				
			||||||
CXXFLAGS="-fPIC -I{$ROCM_PATH}/include/ -I${MPICH_DIR}/include -L/lib64 -I/opt/cray/pe/mpich/8.1.28/ofi/gnu/12.3/include -DGRID_HIP"
 | 
					 | 
				
			||||||
LDFLAGS="-L/lib64 -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lamdhip64 -lhipblas -lrocblas -lmpi_gnu_123"
 | 
					 | 
				
			||||||
hipcc $CXXFLAGS $LDFLAGS BatchBlasBench.cc -o BatchBlasBench
 | 
					 | 
				
			||||||
@@ -1,2 +0,0 @@
 | 
				
			|||||||
 | 
					 | 
				
			||||||
mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench -DGRID_SYCL
 | 
					 | 
				
			||||||
@@ -51,13 +51,11 @@ directory
 | 
				
			|||||||
#pragma nv_diag_suppress cast_to_qualified_type
 | 
					#pragma nv_diag_suppress cast_to_qualified_type
 | 
				
			||||||
 //disables nvcc specific warning in many files
 | 
					 //disables nvcc specific warning in many files
 | 
				
			||||||
#pragma nv_diag_suppress esa_on_defaulted_function_ignored
 | 
					#pragma nv_diag_suppress esa_on_defaulted_function_ignored
 | 
				
			||||||
#pragma nv_diag_suppress declared_but_not_referenced
 | 
					 | 
				
			||||||
#pragma nv_diag_suppress extra_semicolon
 | 
					#pragma nv_diag_suppress extra_semicolon
 | 
				
			||||||
#else
 | 
					#else
 | 
				
			||||||
 //disables nvcc specific warning in json.hpp
 | 
					 //disables nvcc specific warning in json.hpp
 | 
				
			||||||
#pragma diag_suppress unsigned_compare_with_zero
 | 
					#pragma diag_suppress unsigned_compare_with_zero
 | 
				
			||||||
#pragma diag_suppress cast_to_qualified_type
 | 
					#pragma diag_suppress cast_to_qualified_type
 | 
				
			||||||
#pragma diag_suppress declared_but_not_referenced
 | 
					 | 
				
			||||||
 //disables nvcc specific warning in many files
 | 
					 //disables nvcc specific warning in many files
 | 
				
			||||||
#pragma diag_suppress esa_on_defaulted_function_ignored
 | 
					#pragma diag_suppress esa_on_defaulted_function_ignored
 | 
				
			||||||
#pragma diag_suppress extra_semicolon
 | 
					#pragma diag_suppress extra_semicolon
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -59,7 +59,6 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
#include <Grid/lattice/Lattice.h>      
 | 
					#include <Grid/lattice/Lattice.h>      
 | 
				
			||||||
#include <Grid/cshift/Cshift.h>       
 | 
					#include <Grid/cshift/Cshift.h>       
 | 
				
			||||||
#include <Grid/stencil/Stencil.h>      
 | 
					#include <Grid/stencil/Stencil.h>      
 | 
				
			||||||
#include <Grid/stencil/GeneralLocalStencil.h>      
 | 
					 | 
				
			||||||
#include <Grid/parallelIO/BinaryIO.h>
 | 
					#include <Grid/parallelIO/BinaryIO.h>
 | 
				
			||||||
#include <Grid/algorithms/Algorithms.h>   
 | 
					#include <Grid/algorithms/Algorithms.h>   
 | 
				
			||||||
NAMESPACE_CHECK(GridCore)
 | 
					NAMESPACE_CHECK(GridCore)
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,17 +1,9 @@
 | 
				
			|||||||
#ifndef GRID_STD_H
 | 
					#ifndef GRID_STD_H
 | 
				
			||||||
#define GRID_STD_H
 | 
					#define GRID_STD_H
 | 
				
			||||||
 | 
					
 | 
				
			||||||
///////////////////
 | 
					 | 
				
			||||||
// Grid config
 | 
					 | 
				
			||||||
///////////////////
 | 
					 | 
				
			||||||
#include "Config.h"
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
///////////////////
 | 
					///////////////////
 | 
				
			||||||
// Std C++ dependencies
 | 
					// Std C++ dependencies
 | 
				
			||||||
///////////////////
 | 
					///////////////////
 | 
				
			||||||
#define _NBACKTRACE (256)
 | 
					 | 
				
			||||||
extern void * Grid_backtrace_buffer[_NBACKTRACE];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#include <cassert>
 | 
					#include <cassert>
 | 
				
			||||||
#include <complex>
 | 
					#include <complex>
 | 
				
			||||||
#include <memory>
 | 
					#include <memory>
 | 
				
			||||||
@@ -23,9 +15,7 @@ extern void * Grid_backtrace_buffer[_NBACKTRACE];
 | 
				
			|||||||
#include <random>
 | 
					#include <random>
 | 
				
			||||||
#include <functional>
 | 
					#include <functional>
 | 
				
			||||||
#include <stdio.h>
 | 
					#include <stdio.h>
 | 
				
			||||||
#include <string.h>
 | 
					 | 
				
			||||||
#include <stdlib.h>
 | 
					#include <stdlib.h>
 | 
				
			||||||
#include <unistd.h>
 | 
					 | 
				
			||||||
#include <strings.h>
 | 
					#include <strings.h>
 | 
				
			||||||
#include <stdio.h>
 | 
					#include <stdio.h>
 | 
				
			||||||
#include <signal.h>
 | 
					#include <signal.h>
 | 
				
			||||||
@@ -33,36 +23,11 @@ extern void * Grid_backtrace_buffer[_NBACKTRACE];
 | 
				
			|||||||
#include <sys/time.h>
 | 
					#include <sys/time.h>
 | 
				
			||||||
#include <chrono>
 | 
					#include <chrono>
 | 
				
			||||||
#include <zlib.h>
 | 
					#include <zlib.h>
 | 
				
			||||||
#ifdef HAVE_EXECINFO_H
 | 
					 | 
				
			||||||
#include <execinfo.h>
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
void GridAbort(void);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#define ASSLOG(A) ::write(STDERR_FILENO,A,::strlen(A));
 | 
					 | 
				
			||||||
#ifdef HAVE_EXECINFO_H
 | 
					 | 
				
			||||||
#define GRID_ASSERT(b) if(!(b)) {					\
 | 
					 | 
				
			||||||
    fflush(stdout); \
 | 
					 | 
				
			||||||
    ASSLOG(" GRID_ASSERT failure: ");					\
 | 
					 | 
				
			||||||
    ASSLOG(__FILE__);							\
 | 
					 | 
				
			||||||
    ASSLOG(" : ");							\
 | 
					 | 
				
			||||||
    ASSLOG(#b);								\
 | 
					 | 
				
			||||||
    ASSLOG(" : ");							\
 | 
					 | 
				
			||||||
    int symbols = backtrace(Grid_backtrace_buffer,_NBACKTRACE);		\
 | 
					 | 
				
			||||||
    backtrace_symbols_fd(Grid_backtrace_buffer,symbols,STDERR_FILENO);	\
 | 
					 | 
				
			||||||
    GridAbort();							\
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
#define GRID_ASSERT(b) if(!(b)) {					\
 | 
					 | 
				
			||||||
    ASSLOG(" GRID_ASSERT failure: ");					\
 | 
					 | 
				
			||||||
    ASSLOG(__FILE__);							\
 | 
					 | 
				
			||||||
    ASSLOG(" : ");							\
 | 
					 | 
				
			||||||
    ASSLOG(#b);								\
 | 
					 | 
				
			||||||
    ASSLOG(" : ");							\
 | 
					 | 
				
			||||||
    GridAbort();							\
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					///////////////////
 | 
				
			||||||
 | 
					// Grid config
 | 
				
			||||||
 | 
					///////////////////
 | 
				
			||||||
 | 
					#include "Config.h"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#ifdef TOFU
 | 
					#ifdef TOFU
 | 
				
			||||||
#undef GRID_COMMS_THREADS
 | 
					#undef GRID_COMMS_THREADS
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -68,10 +68,8 @@ if BUILD_FERMION_REPS
 | 
				
			|||||||
endif
 | 
					endif
 | 
				
			||||||
if BUILD_SP
 | 
					if BUILD_SP
 | 
				
			||||||
    extra_sources+=$(SP_FERMION_FILES)
 | 
					    extra_sources+=$(SP_FERMION_FILES)
 | 
				
			||||||
if BUILD_FERMION_REPS
 | 
					 | 
				
			||||||
    extra_sources+=$(SP_TWOIND_FERMION_FILES)
 | 
					    extra_sources+=$(SP_TWOIND_FERMION_FILES)
 | 
				
			||||||
endif
 | 
					endif
 | 
				
			||||||
endif
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
lib_LIBRARIES = libGrid.a
 | 
					lib_LIBRARIES = libGrid.a
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -29,7 +29,6 @@ directory
 | 
				
			|||||||
#pragma once
 | 
					#pragma once
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#include <type_traits>
 | 
					#include <type_traits>
 | 
				
			||||||
#include <exception>
 | 
					 | 
				
			||||||
#include <cassert>
 | 
					#include <cassert>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#define NAMESPACE_BEGIN(A) namespace A {
 | 
					#define NAMESPACE_BEGIN(A) namespace A {
 | 
				
			||||||
@@ -37,7 +36,3 @@ directory
 | 
				
			|||||||
#define GRID_NAMESPACE_BEGIN NAMESPACE_BEGIN(Grid)
 | 
					#define GRID_NAMESPACE_BEGIN NAMESPACE_BEGIN(Grid)
 | 
				
			||||||
#define GRID_NAMESPACE_END   NAMESPACE_END(Grid)
 | 
					#define GRID_NAMESPACE_END   NAMESPACE_END(Grid)
 | 
				
			||||||
#define NAMESPACE_CHECK(x) struct namespaceTEST##x {};  static_assert(std::is_same<namespaceTEST##x, ::namespaceTEST##x>::value,"Not in :: at"  ); 
 | 
					#define NAMESPACE_CHECK(x) struct namespaceTEST##x {};  static_assert(std::is_same<namespaceTEST##x, ::namespaceTEST##x>::value,"Not in :: at"  ); 
 | 
				
			||||||
 | 
					 | 
				
			||||||
#define EXCEPTION_CHECK_BEGIN(A) try {
 | 
					 | 
				
			||||||
#define EXCEPTION_CHECK_END(A)   } catch ( std::exception e ) { BACKTRACEFP(stderr); std::cerr << __PRETTY_FUNCTION__ << " : " <<__LINE__<< " Caught exception "<<e.what()<<std::endl; throw; }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 
 | 
				
			|||||||
@@ -29,9 +29,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
#ifndef GRID_ALGORITHMS_H
 | 
					#ifndef GRID_ALGORITHMS_H
 | 
				
			||||||
#define GRID_ALGORITHMS_H
 | 
					#define GRID_ALGORITHMS_H
 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_CHECK(blas);
 | 
					 | 
				
			||||||
#include <Grid/algorithms/blas/BatchedBlas.h>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_CHECK(algorithms);
 | 
					NAMESPACE_CHECK(algorithms);
 | 
				
			||||||
#include <Grid/algorithms/SparseMatrix.h>
 | 
					#include <Grid/algorithms/SparseMatrix.h>
 | 
				
			||||||
#include <Grid/algorithms/LinearOperator.h>
 | 
					#include <Grid/algorithms/LinearOperator.h>
 | 
				
			||||||
@@ -47,13 +44,7 @@ NAMESPACE_CHECK(SparseMatrix);
 | 
				
			|||||||
#include <Grid/algorithms/approx/RemezGeneral.h>
 | 
					#include <Grid/algorithms/approx/RemezGeneral.h>
 | 
				
			||||||
#include <Grid/algorithms/approx/ZMobius.h>
 | 
					#include <Grid/algorithms/approx/ZMobius.h>
 | 
				
			||||||
NAMESPACE_CHECK(approx);
 | 
					NAMESPACE_CHECK(approx);
 | 
				
			||||||
#include <Grid/algorithms/deflation/Deflation.h>
 | 
					#include <Grid/algorithms/iterative/Deflation.h>
 | 
				
			||||||
#include <Grid/algorithms/deflation/MultiRHSBlockProject.h>
 | 
					 | 
				
			||||||
#include <Grid/algorithms/deflation/MultiRHSDeflation.h>
 | 
					 | 
				
			||||||
#include <Grid/algorithms/deflation/MultiRHSBlockCGLinalg.h>
 | 
					 | 
				
			||||||
// Not really deflation, but useful
 | 
					 | 
				
			||||||
#include <Grid/algorithms/blas/MomentumProject.h>
 | 
					 | 
				
			||||||
NAMESPACE_CHECK(deflation);
 | 
					 | 
				
			||||||
#include <Grid/algorithms/iterative/ConjugateGradient.h>
 | 
					#include <Grid/algorithms/iterative/ConjugateGradient.h>
 | 
				
			||||||
NAMESPACE_CHECK(ConjGrad);
 | 
					NAMESPACE_CHECK(ConjGrad);
 | 
				
			||||||
#include <Grid/algorithms/iterative/BiCGSTAB.h>
 | 
					#include <Grid/algorithms/iterative/BiCGSTAB.h>
 | 
				
			||||||
@@ -76,11 +67,10 @@ NAMESPACE_CHECK(BiCGSTAB);
 | 
				
			|||||||
#include <Grid/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h>
 | 
					#include <Grid/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h>
 | 
				
			||||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
 | 
					#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
 | 
				
			||||||
#include <Grid/algorithms/iterative/PowerMethod.h>
 | 
					#include <Grid/algorithms/iterative/PowerMethod.h>
 | 
				
			||||||
#include <Grid/algorithms/iterative/AdefGeneric.h>
 | 
					
 | 
				
			||||||
#include <Grid/algorithms/iterative/AdefMrhs.h>
 | 
					 | 
				
			||||||
NAMESPACE_CHECK(PowerMethod);
 | 
					NAMESPACE_CHECK(PowerMethod);
 | 
				
			||||||
#include <Grid/algorithms/multigrid/MultiGrid.h>
 | 
					#include <Grid/algorithms/CoarsenedMatrix.h>
 | 
				
			||||||
NAMESPACE_CHECK(multigrid);
 | 
					NAMESPACE_CHECK(CoarsendMatrix);
 | 
				
			||||||
#include <Grid/algorithms/FFT.h>
 | 
					#include <Grid/algorithms/FFT.h>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -56,6 +56,243 @@ inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner,
 | 
				
			|||||||
  blockSum(CoarseInner,fine_inner_msk);
 | 
					  blockSum(CoarseInner,fine_inner_msk);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class Geometry {
 | 
				
			||||||
 | 
					public:
 | 
				
			||||||
 | 
					  int npoint;
 | 
				
			||||||
 | 
					  int base;
 | 
				
			||||||
 | 
					  std::vector<int> directions   ;
 | 
				
			||||||
 | 
					  std::vector<int> displacements;
 | 
				
			||||||
 | 
					  std::vector<int> points_dagger;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Geometry(int _d)  {
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    base = (_d==5) ? 1:0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // make coarse grid stencil for 4d , not 5d
 | 
				
			||||||
 | 
					    if ( _d==5 ) _d=4;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    npoint = 2*_d+1;
 | 
				
			||||||
 | 
					    directions.resize(npoint);
 | 
				
			||||||
 | 
					    displacements.resize(npoint);
 | 
				
			||||||
 | 
					    points_dagger.resize(npoint);
 | 
				
			||||||
 | 
					    for(int d=0;d<_d;d++){
 | 
				
			||||||
 | 
					      directions[d   ] = d+base;
 | 
				
			||||||
 | 
					      directions[d+_d] = d+base;
 | 
				
			||||||
 | 
					      displacements[d  ] = +1;
 | 
				
			||||||
 | 
					      displacements[d+_d]= -1;
 | 
				
			||||||
 | 
					      points_dagger[d   ] = d+_d;
 | 
				
			||||||
 | 
					      points_dagger[d+_d] = d;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    directions   [2*_d]=0;
 | 
				
			||||||
 | 
					    displacements[2*_d]=0;
 | 
				
			||||||
 | 
					    points_dagger[2*_d]=2*_d;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  int point(int dir, int disp) {
 | 
				
			||||||
 | 
					    assert(disp == -1 || disp == 0 || disp == 1);
 | 
				
			||||||
 | 
					    assert(base+0 <= dir && dir < base+4);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // directions faster index = new indexing
 | 
				
			||||||
 | 
					    // 4d (base = 0):
 | 
				
			||||||
 | 
					    // point 0  1  2  3  4  5  6  7  8
 | 
				
			||||||
 | 
					    // dir   0  1  2  3  0  1  2  3  0
 | 
				
			||||||
 | 
					    // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | 
				
			||||||
 | 
					    // 5d (base = 1):
 | 
				
			||||||
 | 
					    // point 0  1  2  3  4  5  6  7  8
 | 
				
			||||||
 | 
					    // dir   1  2  3  4  1  2  3  4  0
 | 
				
			||||||
 | 
					    // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // displacements faster index = old indexing
 | 
				
			||||||
 | 
					    // 4d (base = 0):
 | 
				
			||||||
 | 
					    // point 0  1  2  3  4  5  6  7  8
 | 
				
			||||||
 | 
					    // dir   0  0  1  1  2  2  3  3  0
 | 
				
			||||||
 | 
					    // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | 
				
			||||||
 | 
					    // 5d (base = 1):
 | 
				
			||||||
 | 
					    // point 0  1  2  3  4  5  6  7  8
 | 
				
			||||||
 | 
					    // dir   1  1  2  2  3  3  4  4  0
 | 
				
			||||||
 | 
					    // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if(dir == 0 and disp == 0)
 | 
				
			||||||
 | 
					      return 8;
 | 
				
			||||||
 | 
					    else // New indexing
 | 
				
			||||||
 | 
					      return (1 - disp) / 2 * 4 + dir - base;
 | 
				
			||||||
 | 
					    // else // Old indexing
 | 
				
			||||||
 | 
					    //   return (4 * (dir - base) + 1 - disp) / 2;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					};
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 | 
					template<class Fobj,class CComplex,int nbasis>
 | 
				
			||||||
 | 
					class Aggregation   {
 | 
				
			||||||
 | 
					public:
 | 
				
			||||||
 | 
					  typedef iVector<CComplex,nbasis >             siteVector;
 | 
				
			||||||
 | 
					  typedef Lattice<siteVector>                 CoarseVector;
 | 
				
			||||||
 | 
					  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
				
			||||||
 | 
					  typedef Lattice<Fobj >        FineField;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  GridBase *CoarseGrid;
 | 
				
			||||||
 | 
					  GridBase *FineGrid;
 | 
				
			||||||
 | 
					  std::vector<Lattice<Fobj> > subspace;
 | 
				
			||||||
 | 
					  int checkerboard;
 | 
				
			||||||
 | 
					  int Checkerboard(void){return checkerboard;}
 | 
				
			||||||
 | 
					  Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) : 
 | 
				
			||||||
 | 
					    CoarseGrid(_CoarseGrid),
 | 
				
			||||||
 | 
					    FineGrid(_FineGrid),
 | 
				
			||||||
 | 
					    subspace(nbasis,_FineGrid),
 | 
				
			||||||
 | 
					    checkerboard(_checkerboard)
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					  };
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 | 
					  void Orthogonalise(void){
 | 
				
			||||||
 | 
					    CoarseScalar InnerProd(CoarseGrid); 
 | 
				
			||||||
 | 
					    std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
 | 
				
			||||||
 | 
					    blockOrthogonalise(InnerProd,subspace);
 | 
				
			||||||
 | 
					  } 
 | 
				
			||||||
 | 
					  void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
 | 
				
			||||||
 | 
					    blockProject(CoarseVec,FineVec,subspace);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
 | 
				
			||||||
 | 
					    FineVec.Checkerboard() = subspace[0].Checkerboard();
 | 
				
			||||||
 | 
					    blockPromote(CoarseVec,FineVec,subspace);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  virtual void CreateSubspace(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    RealD scale;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    ConjugateGradient<FineField> CG(1.0e-2,100,false);
 | 
				
			||||||
 | 
					    FineField noise(FineGrid);
 | 
				
			||||||
 | 
					    FineField Mn(FineGrid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for(int b=0;b<nn;b++){
 | 
				
			||||||
 | 
					      
 | 
				
			||||||
 | 
					      subspace[b] = Zero();
 | 
				
			||||||
 | 
					      gaussian(RNG,noise);
 | 
				
			||||||
 | 
					      scale = std::pow(norm2(noise),-0.5); 
 | 
				
			||||||
 | 
					      noise=noise*scale;
 | 
				
			||||||
 | 
					      
 | 
				
			||||||
 | 
					      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      for(int i=0;i<1;i++){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						CG(hermop,noise,subspace[b]);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						noise = subspace[b];
 | 
				
			||||||
 | 
						scale = std::pow(norm2(noise),-0.5); 
 | 
				
			||||||
 | 
						noise=noise*scale;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
 | 
				
			||||||
 | 
					      subspace[b]   = noise;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					  // World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
 | 
				
			||||||
 | 
					  // and this is the best I found
 | 
				
			||||||
 | 
					  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
				
			||||||
 | 
									       int nn,
 | 
				
			||||||
 | 
									       double hi,
 | 
				
			||||||
 | 
									       double lo,
 | 
				
			||||||
 | 
									       int orderfilter,
 | 
				
			||||||
 | 
									       int ordermin,
 | 
				
			||||||
 | 
									       int orderstep,
 | 
				
			||||||
 | 
									       double filterlo
 | 
				
			||||||
 | 
									       ) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    RealD scale;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    FineField noise(FineGrid);
 | 
				
			||||||
 | 
					    FineField Mn(FineGrid);
 | 
				
			||||||
 | 
					    FineField tmp(FineGrid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // New normalised noise
 | 
				
			||||||
 | 
					    gaussian(RNG,noise);
 | 
				
			||||||
 | 
					    scale = std::pow(norm2(noise),-0.5); 
 | 
				
			||||||
 | 
					    noise=noise*scale;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // Initial matrix element
 | 
				
			||||||
 | 
					    hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    int b =0;
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      // Filter
 | 
				
			||||||
 | 
					      Chebyshev<FineField> Cheb(lo,hi,orderfilter);
 | 
				
			||||||
 | 
					      Cheb(hermop,noise,Mn);
 | 
				
			||||||
 | 
					      // normalise
 | 
				
			||||||
 | 
					      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
				
			||||||
 | 
					      subspace[b]   = Mn;
 | 
				
			||||||
 | 
					      hermop.Op(Mn,tmp); 
 | 
				
			||||||
 | 
					      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
				
			||||||
 | 
					      b++;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // Generate a full sequence of Chebyshevs
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      lo=filterlo;
 | 
				
			||||||
 | 
					      noise=Mn;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      FineField T0(FineGrid); T0 = noise;  
 | 
				
			||||||
 | 
					      FineField T1(FineGrid); 
 | 
				
			||||||
 | 
					      FineField T2(FineGrid);
 | 
				
			||||||
 | 
					      FineField y(FineGrid);
 | 
				
			||||||
 | 
					      
 | 
				
			||||||
 | 
					      FineField *Tnm = &T0;
 | 
				
			||||||
 | 
					      FineField *Tn  = &T1;
 | 
				
			||||||
 | 
					      FineField *Tnp = &T2;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      // Tn=T1 = (xscale M + mscale)in
 | 
				
			||||||
 | 
					      RealD xscale = 2.0/(hi-lo);
 | 
				
			||||||
 | 
					      RealD mscale = -(hi+lo)/(hi-lo);
 | 
				
			||||||
 | 
					      hermop.HermOp(T0,y);
 | 
				
			||||||
 | 
					      T1=y*xscale+noise*mscale;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
 | 
				
			||||||
 | 
						
 | 
				
			||||||
 | 
						hermop.HermOp(*Tn,y);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						autoView( y_v , y, AcceleratorWrite);
 | 
				
			||||||
 | 
						autoView( Tn_v , (*Tn), AcceleratorWrite);
 | 
				
			||||||
 | 
						autoView( Tnp_v , (*Tnp), AcceleratorWrite);
 | 
				
			||||||
 | 
						autoView( Tnm_v , (*Tnm), AcceleratorWrite);
 | 
				
			||||||
 | 
						const int Nsimd = CComplex::Nsimd();
 | 
				
			||||||
 | 
						accelerator_for(ss, FineGrid->oSites(), Nsimd, {
 | 
				
			||||||
 | 
						  coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
 | 
				
			||||||
 | 
						  coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
 | 
				
			||||||
 | 
					        });
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						// Possible more fine grained control is needed than a linear sweep,
 | 
				
			||||||
 | 
						// but huge productivity gain if this is simple algorithm and not a tunable
 | 
				
			||||||
 | 
						int m =1;
 | 
				
			||||||
 | 
						if ( n>=ordermin ) m=n-ordermin;
 | 
				
			||||||
 | 
						if ( (m%orderstep)==0 ) { 
 | 
				
			||||||
 | 
						  Mn=*Tnp;
 | 
				
			||||||
 | 
						  scale = std::pow(norm2(Mn),-0.5);         Mn=Mn*scale;
 | 
				
			||||||
 | 
						  subspace[b] = Mn;
 | 
				
			||||||
 | 
						  hermop.Op(Mn,tmp); 
 | 
				
			||||||
 | 
						  std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
				
			||||||
 | 
						  b++;
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						// Cycle pointers to avoid copies
 | 
				
			||||||
 | 
						FineField *swizzle = Tnm;
 | 
				
			||||||
 | 
						Tnm    =Tn;
 | 
				
			||||||
 | 
						Tn     =Tnp;
 | 
				
			||||||
 | 
						Tnp    =swizzle;
 | 
				
			||||||
 | 
						  
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    assert(b==nn);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
// Fine Object == (per site) type of fine field
 | 
					// Fine Object == (per site) type of fine field
 | 
				
			||||||
// nbasis      == number of deflation vectors
 | 
					// nbasis      == number of deflation vectors
 | 
				
			||||||
template<class Fobj,class CComplex,int nbasis>
 | 
					template<class Fobj,class CComplex,int nbasis>
 | 
				
			||||||
@@ -99,7 +336,7 @@ public:
 | 
				
			|||||||
  CoarseMatrix AselfInvEven;
 | 
					  CoarseMatrix AselfInvEven;
 | 
				
			||||||
  CoarseMatrix AselfInvOdd;
 | 
					  CoarseMatrix AselfInvOdd;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  deviceVector<RealD> dag_factor;
 | 
					  Vector<RealD> dag_factor;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  ///////////////////////
 | 
					  ///////////////////////
 | 
				
			||||||
  // Interface
 | 
					  // Interface
 | 
				
			||||||
@@ -124,13 +361,9 @@ public:
 | 
				
			|||||||
    int npoint = geom.npoint;
 | 
					    int npoint = geom.npoint;
 | 
				
			||||||
    typedef LatticeView<Cobj> Aview;
 | 
					    typedef LatticeView<Cobj> Aview;
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
 | 
					    Vector<Aview> AcceleratorViewContainer;
 | 
				
			||||||
    hostVector<Aview>   hAcceleratorViewContainer(geom.npoint);
 | 
					 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++) {
 | 
					    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
 | 
				
			||||||
      hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
 | 
					 | 
				
			||||||
      acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
					    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    const int Nsimd = CComplex::Nsimd();
 | 
					    const int Nsimd = CComplex::Nsimd();
 | 
				
			||||||
@@ -165,7 +398,7 @@ public:
 | 
				
			|||||||
      coalescedWrite(out_v[ss](b),res);
 | 
					      coalescedWrite(out_v[ss](b),res);
 | 
				
			||||||
      });
 | 
					      });
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
 | 
					    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
 | 
				
			||||||
  };
 | 
					  };
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void Mdag (const CoarseVector &in, CoarseVector &out)
 | 
					  void Mdag (const CoarseVector &in, CoarseVector &out)
 | 
				
			||||||
@@ -194,14 +427,9 @@ public:
 | 
				
			|||||||
    int npoint = geom.npoint;
 | 
					    int npoint = geom.npoint;
 | 
				
			||||||
    typedef LatticeView<Cobj> Aview;
 | 
					    typedef LatticeView<Cobj> Aview;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Vector<Aview> AcceleratorViewContainer;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
 | 
					    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
 | 
				
			||||||
    hostVector<Aview>   hAcceleratorViewContainer(geom.npoint);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++) {
 | 
					 | 
				
			||||||
      hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
 | 
					 | 
				
			||||||
      acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
					    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    const int Nsimd = CComplex::Nsimd();
 | 
					    const int Nsimd = CComplex::Nsimd();
 | 
				
			||||||
@@ -210,10 +438,10 @@ public:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    int osites=Grid()->oSites();
 | 
					    int osites=Grid()->oSites();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    deviceVector<int> points(geom.npoint);
 | 
					    Vector<int> points(geom.npoint, 0);
 | 
				
			||||||
    for(int p=0; p<geom.npoint; p++) { 
 | 
					    for(int p=0; p<geom.npoint; p++)
 | 
				
			||||||
      acceleratorPut(points[p],geom.points_dagger[p]);
 | 
					      points[p] = geom.points_dagger[p];
 | 
				
			||||||
    }
 | 
					
 | 
				
			||||||
    auto points_p = &points[0];
 | 
					    auto points_p = &points[0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    RealD* dag_factor_p = &dag_factor[0];
 | 
					    RealD* dag_factor_p = &dag_factor[0];
 | 
				
			||||||
@@ -245,7 +473,7 @@ public:
 | 
				
			|||||||
      coalescedWrite(out_v[ss](b),res);
 | 
					      coalescedWrite(out_v[ss](b),res);
 | 
				
			||||||
      });
 | 
					      });
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
 | 
					    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void MdirComms(const CoarseVector &in)
 | 
					  void MdirComms(const CoarseVector &in)
 | 
				
			||||||
@@ -260,14 +488,8 @@ public:
 | 
				
			|||||||
    out.Checkerboard() = in.Checkerboard();
 | 
					    out.Checkerboard() = in.Checkerboard();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    typedef LatticeView<Cobj> Aview;
 | 
					    typedef LatticeView<Cobj> Aview;
 | 
				
			||||||
 | 
					    Vector<Aview> AcceleratorViewContainer;
 | 
				
			||||||
    deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
 | 
					    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
 | 
				
			||||||
    hostVector<Aview>   hAcceleratorViewContainer(geom.npoint);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++) {
 | 
					 | 
				
			||||||
      hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
 | 
					 | 
				
			||||||
      acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
					    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    autoView( out_v , out, AcceleratorWrite);
 | 
					    autoView( out_v , out, AcceleratorWrite);
 | 
				
			||||||
@@ -300,7 +522,7 @@ public:
 | 
				
			|||||||
      }
 | 
					      }
 | 
				
			||||||
      coalescedWrite(out_v[ss](b),res);
 | 
					      coalescedWrite(out_v[ss](b),res);
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
 | 
					    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out)
 | 
					  void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
@@ -309,7 +531,7 @@ public:
 | 
				
			|||||||
    if ((out.size()!=ndir)&&(out.size()!=ndir+1)) { 
 | 
					    if ((out.size()!=ndir)&&(out.size()!=ndir+1)) { 
 | 
				
			||||||
      std::cout <<"MdirAll out size "<< out.size()<<std::endl;
 | 
					      std::cout <<"MdirAll out size "<< out.size()<<std::endl;
 | 
				
			||||||
      std::cout <<"MdirAll ndir "<< ndir<<std::endl;
 | 
					      std::cout <<"MdirAll ndir "<< ndir<<std::endl;
 | 
				
			||||||
      GRID_ASSERT(0);
 | 
					      assert(0);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    for(int p=0;p<ndir;p++){
 | 
					    for(int p=0;p<ndir;p++){
 | 
				
			||||||
      MdirCalc(in,out[p],p);
 | 
					      MdirCalc(in,out[p],p);
 | 
				
			||||||
@@ -373,7 +595,7 @@ public:
 | 
				
			|||||||
    conformable(in.Grid(), _cbgrid);    // verifies half grid
 | 
					    conformable(in.Grid(), _cbgrid);    // verifies half grid
 | 
				
			||||||
    conformable(in.Grid(), out.Grid()); // drops the cb check
 | 
					    conformable(in.Grid(), out.Grid()); // drops the cb check
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    GRID_ASSERT(in.Checkerboard() == Even);
 | 
					    assert(in.Checkerboard() == Even);
 | 
				
			||||||
    out.Checkerboard() = Odd;
 | 
					    out.Checkerboard() = Odd;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    DhopInternal(StencilEven, Aodd, in, out, dag);
 | 
					    DhopInternal(StencilEven, Aodd, in, out, dag);
 | 
				
			||||||
@@ -383,7 +605,7 @@ public:
 | 
				
			|||||||
    conformable(in.Grid(), _cbgrid);    // verifies half grid
 | 
					    conformable(in.Grid(), _cbgrid);    // verifies half grid
 | 
				
			||||||
    conformable(in.Grid(), out.Grid()); // drops the cb check
 | 
					    conformable(in.Grid(), out.Grid()); // drops the cb check
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    GRID_ASSERT(in.Checkerboard() == Odd);
 | 
					    assert(in.Checkerboard() == Odd);
 | 
				
			||||||
    out.Checkerboard() = Even;
 | 
					    out.Checkerboard() = Even;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    DhopInternal(StencilOdd, Aeven, in, out, dag);
 | 
					    DhopInternal(StencilOdd, Aeven, in, out, dag);
 | 
				
			||||||
@@ -391,7 +613,7 @@ public:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  void MooeeInternal(const CoarseVector &in, CoarseVector &out, int dag, int inv) {
 | 
					  void MooeeInternal(const CoarseVector &in, CoarseVector &out, int dag, int inv) {
 | 
				
			||||||
    out.Checkerboard() = in.Checkerboard();
 | 
					    out.Checkerboard() = in.Checkerboard();
 | 
				
			||||||
    GRID_ASSERT(in.Checkerboard() == Odd || in.Checkerboard() == Even);
 | 
					    assert(in.Checkerboard() == Odd || in.Checkerboard() == Even);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    CoarseMatrix *Aself = nullptr;
 | 
					    CoarseMatrix *Aself = nullptr;
 | 
				
			||||||
    if(in.Grid()->_isCheckerBoarded) {
 | 
					    if(in.Grid()->_isCheckerBoarded) {
 | 
				
			||||||
@@ -406,7 +628,7 @@ public:
 | 
				
			|||||||
      Aself = (inv) ? &AselfInv : &A[geom.npoint-1];
 | 
					      Aself = (inv) ? &AselfInv : &A[geom.npoint-1];
 | 
				
			||||||
      DselfInternal(Stencil, *Aself, in, out, dag);
 | 
					      DselfInternal(Stencil, *Aself, in, out, dag);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    GRID_ASSERT(Aself != nullptr);
 | 
					    assert(Aself != nullptr);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void DselfInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, CoarseMatrix &a,
 | 
					  void DselfInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, CoarseMatrix &a,
 | 
				
			||||||
@@ -484,20 +706,14 @@ public:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    // determine in what order we need the points
 | 
					    // determine in what order we need the points
 | 
				
			||||||
    int npoint = geom.npoint-1;
 | 
					    int npoint = geom.npoint-1;
 | 
				
			||||||
    deviceVector<int> points(npoint);
 | 
					    Vector<int> points(npoint, 0);
 | 
				
			||||||
    for(int p=0; p<npoint; p++) {
 | 
					    for(int p=0; p<npoint; p++)
 | 
				
			||||||
      int val = (dag && !hermitian) ? geom.points_dagger[p] : p;
 | 
					      points[p] = (dag && !hermitian) ? geom.points_dagger[p] : p;
 | 
				
			||||||
      acceleratorPut(points[p], val);
 | 
					
 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    auto points_p = &points[0];
 | 
					    auto points_p = &points[0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
 | 
					    Vector<Aview> AcceleratorViewContainer;
 | 
				
			||||||
    hostVector<Aview>   hAcceleratorViewContainer(geom.npoint);
 | 
					    for(int p=0;p<npoint;p++) AcceleratorViewContainer.push_back(a[p].View(AcceleratorRead));
 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++) {
 | 
					 | 
				
			||||||
      hAcceleratorViewContainer[p] = a[p].View(AcceleratorRead);
 | 
					 | 
				
			||||||
      acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
					    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    const int Nsimd = CComplex::Nsimd();
 | 
					    const int Nsimd = CComplex::Nsimd();
 | 
				
			||||||
@@ -560,7 +776,7 @@ public:
 | 
				
			|||||||
      });
 | 
					      });
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    for(int p=0;p<npoint;p++) hAcceleratorViewContainer[p].ViewClose();
 | 
					    for(int p=0;p<npoint;p++) AcceleratorViewContainer[p].ViewClose();
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) 	:
 | 
					  CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) 	:
 | 
				
			||||||
@@ -611,13 +827,11 @@ public:
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // GPU readable prefactor
 | 
					    // GPU readable prefactor
 | 
				
			||||||
    std::vector<RealD> h_dag_factor(nbasis*nbasis);
 | 
					 | 
				
			||||||
    thread_for(i, nbasis*nbasis, {
 | 
					    thread_for(i, nbasis*nbasis, {
 | 
				
			||||||
      int j = i/nbasis;
 | 
					      int j = i/nbasis;
 | 
				
			||||||
      int k = i%nbasis;
 | 
					      int k = i%nbasis;
 | 
				
			||||||
      h_dag_factor[i] = dag_factor_eigen(j, k);
 | 
					      dag_factor[i] = dag_factor_eigen(j, k);
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
    acceleratorCopyToDevice(&h_dag_factor[0],&dag_factor[0],dag_factor.size()*sizeof(RealD));
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
					  void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
				
			||||||
@@ -697,7 +911,7 @@ public:
 | 
				
			|||||||
    evenmask = where(mod(bcb,2)==(Integer)0,one,zero);
 | 
					    evenmask = where(mod(bcb,2)==(Integer)0,one,zero);
 | 
				
			||||||
    oddmask  = one-evenmask;
 | 
					    oddmask  = one-evenmask;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    GRID_ASSERT(self_stencil!=-1);
 | 
					    assert(self_stencil!=-1);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    for(int i=0;i<nbasis;i++){
 | 
					    for(int i=0;i<nbasis;i++){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -28,15 +28,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
#ifndef _GRID_FFT_H_
 | 
					#ifndef _GRID_FFT_H_
 | 
				
			||||||
#define _GRID_FFT_H_
 | 
					#define _GRID_FFT_H_
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#ifdef GRID_CUDA
 | 
					 | 
				
			||||||
#include <cufft.h>
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#ifdef GRID_HIP
 | 
					 | 
				
			||||||
#include <hipfft/hipfft.h>
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#if !defined(GRID_CUDA) && !defined(GRID_HIP)
 | 
					 | 
				
			||||||
#ifdef HAVE_FFTW
 | 
					#ifdef HAVE_FFTW
 | 
				
			||||||
#if defined(USE_MKL) || defined(GRID_SYCL)
 | 
					#if defined(USE_MKL) || defined(GRID_SYCL)
 | 
				
			||||||
#include <fftw/fftw3.h>
 | 
					#include <fftw/fftw3.h>
 | 
				
			||||||
@@ -44,190 +35,88 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
#include <fftw3.h>
 | 
					#include <fftw3.h>
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					NAMESPACE_BEGIN(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#ifndef FFTW_FORWARD
 | 
					template<class scalar> struct FFTW { };
 | 
				
			||||||
#define FFTW_FORWARD (-1)
 | 
					 | 
				
			||||||
#define FFTW_BACKWARD (+1)
 | 
					 | 
				
			||||||
#define FFTW_ESTIMATE (0)
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class scalar> struct FFTW {
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#ifdef GRID_HIP
 | 
					 | 
				
			||||||
template<> struct FFTW<ComplexD> {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  static const int forward=FFTW_FORWARD;
 | 
					 | 
				
			||||||
  static const int backward=FFTW_BACKWARD;
 | 
					 | 
				
			||||||
  typedef hipfftDoubleComplex FFTW_scalar;
 | 
					 | 
				
			||||||
  typedef hipfftHandle        FFTW_plan;
 | 
					 | 
				
			||||||
  static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany,
 | 
					 | 
				
			||||||
				      FFTW_scalar *in, int *inembed,		
 | 
					 | 
				
			||||||
				      int istride, int idist,		
 | 
					 | 
				
			||||||
				      FFTW_scalar *out, int *onembed,		
 | 
					 | 
				
			||||||
				      int ostride, int odist,		
 | 
					 | 
				
			||||||
				      int sign, unsigned flags) {
 | 
					 | 
				
			||||||
    FFTW_plan p;
 | 
					 | 
				
			||||||
    auto rv = hipfftPlanMany(&p,rank,n,n,istride,idist,n,ostride,odist,HIPFFT_Z2Z,howmany);
 | 
					 | 
				
			||||||
    GRID_ASSERT(rv==HIPFFT_SUCCESS);
 | 
					 | 
				
			||||||
    return p;
 | 
					 | 
				
			||||||
  }	  
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
  inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) {
 | 
					 | 
				
			||||||
    hipfftResult rv;
 | 
					 | 
				
			||||||
    if ( sign == forward ) rv =hipfftExecZ2Z(p,in,out,HIPFFT_FORWARD);
 | 
					 | 
				
			||||||
    else                   rv =hipfftExecZ2Z(p,in,out,HIPFFT_BACKWARD);
 | 
					 | 
				
			||||||
    accelerator_barrier();
 | 
					 | 
				
			||||||
    GRID_ASSERT(rv==HIPFFT_SUCCESS);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  inline static void fftw_destroy_plan(const FFTW_plan p) {
 | 
					 | 
				
			||||||
    hipfftDestroy(p);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
template<> struct FFTW<ComplexF> {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  static const int forward=FFTW_FORWARD;
 | 
					 | 
				
			||||||
  static const int backward=FFTW_BACKWARD;
 | 
					 | 
				
			||||||
  typedef hipfftComplex      FFTW_scalar;
 | 
					 | 
				
			||||||
  typedef hipfftHandle        FFTW_plan;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany,
 | 
					 | 
				
			||||||
				      FFTW_scalar *in, int *inembed,		
 | 
					 | 
				
			||||||
				      int istride, int idist,		
 | 
					 | 
				
			||||||
				      FFTW_scalar *out, int *onembed,		
 | 
					 | 
				
			||||||
				      int ostride, int odist,		
 | 
					 | 
				
			||||||
				      int sign, unsigned flags) {
 | 
					 | 
				
			||||||
    FFTW_plan p;
 | 
					 | 
				
			||||||
    auto rv = hipfftPlanMany(&p,rank,n,n,istride,idist,n,ostride,odist,HIPFFT_C2C,howmany);
 | 
					 | 
				
			||||||
    GRID_ASSERT(rv==HIPFFT_SUCCESS);
 | 
					 | 
				
			||||||
    return p;
 | 
					 | 
				
			||||||
  }	  
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
  inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) {
 | 
					 | 
				
			||||||
    hipfftResult rv;
 | 
					 | 
				
			||||||
    if ( sign == forward ) rv =hipfftExecC2C(p,in,out,HIPFFT_FORWARD);
 | 
					 | 
				
			||||||
    else                   rv =hipfftExecC2C(p,in,out,HIPFFT_BACKWARD);
 | 
					 | 
				
			||||||
    accelerator_barrier();
 | 
					 | 
				
			||||||
    GRID_ASSERT(rv==HIPFFT_SUCCESS);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  inline static void fftw_destroy_plan(const FFTW_plan p) {
 | 
					 | 
				
			||||||
    hipfftDestroy(p);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#ifdef GRID_CUDA
 | 
					 | 
				
			||||||
template<> struct FFTW<ComplexD> {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  static const int forward=FFTW_FORWARD;
 | 
					 | 
				
			||||||
  static const int backward=FFTW_BACKWARD;
 | 
					 | 
				
			||||||
  typedef cufftDoubleComplex FFTW_scalar;
 | 
					 | 
				
			||||||
  typedef cufftHandle        FFTW_plan;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany,
 | 
					 | 
				
			||||||
				      FFTW_scalar *in, int *inembed,		
 | 
					 | 
				
			||||||
				      int istride, int idist,		
 | 
					 | 
				
			||||||
				      FFTW_scalar *out, int *onembed,		
 | 
					 | 
				
			||||||
				      int ostride, int odist,		
 | 
					 | 
				
			||||||
				      int sign, unsigned flags) {
 | 
					 | 
				
			||||||
    FFTW_plan p;
 | 
					 | 
				
			||||||
    cufftPlanMany(&p,rank,n,n,istride,idist,n,ostride,odist,CUFFT_Z2Z,howmany);
 | 
					 | 
				
			||||||
    return p;
 | 
					 | 
				
			||||||
  }	  
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
  inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) {
 | 
					 | 
				
			||||||
    if ( sign == forward ) cufftExecZ2Z(p,in,out,CUFFT_FORWARD);
 | 
					 | 
				
			||||||
    else                   cufftExecZ2Z(p,in,out,CUFFT_INVERSE);
 | 
					 | 
				
			||||||
    accelerator_barrier();
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  inline static void fftw_destroy_plan(const FFTW_plan p) {
 | 
					 | 
				
			||||||
    cufftDestroy(p);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
template<> struct FFTW<ComplexF> {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  static const int forward=FFTW_FORWARD;
 | 
					 | 
				
			||||||
  static const int backward=FFTW_BACKWARD;
 | 
					 | 
				
			||||||
  typedef cufftComplex FFTW_scalar;
 | 
					 | 
				
			||||||
  typedef cufftHandle        FFTW_plan;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany,
 | 
					 | 
				
			||||||
				      FFTW_scalar *in, int *inembed,		
 | 
					 | 
				
			||||||
				      int istride, int idist,		
 | 
					 | 
				
			||||||
				      FFTW_scalar *out, int *onembed,		
 | 
					 | 
				
			||||||
				      int ostride, int odist,		
 | 
					 | 
				
			||||||
				      int sign, unsigned flags) {
 | 
					 | 
				
			||||||
    FFTW_plan p;
 | 
					 | 
				
			||||||
    cufftPlanMany(&p,rank,n,n,istride,idist,n,ostride,odist,CUFFT_C2C,howmany);
 | 
					 | 
				
			||||||
    return p;
 | 
					 | 
				
			||||||
  }	  
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
  inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) {
 | 
					 | 
				
			||||||
    if ( sign == forward ) cufftExecC2C(p,in,out,CUFFT_FORWARD);
 | 
					 | 
				
			||||||
    else                   cufftExecC2C(p,in,out,CUFFT_INVERSE);
 | 
					 | 
				
			||||||
    accelerator_barrier();
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  inline static void fftw_destroy_plan(const FFTW_plan p) {
 | 
					 | 
				
			||||||
    cufftDestroy(p);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#if !defined(GRID_CUDA) && !defined(GRID_HIP)
 | 
					 | 
				
			||||||
#ifdef HAVE_FFTW	
 | 
					#ifdef HAVE_FFTW	
 | 
				
			||||||
template<> struct FFTW<ComplexD> {
 | 
					template<> struct FFTW<ComplexD> {
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  typedef fftw_complex FFTW_scalar;
 | 
					  typedef fftw_complex FFTW_scalar;
 | 
				
			||||||
  typedef fftw_plan    FFTW_plan;
 | 
					  typedef fftw_plan    FFTW_plan;
 | 
				
			||||||
  static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany,
 | 
					
 | 
				
			||||||
				      FFTW_scalar *in, int *inembed,		
 | 
					  static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany,
 | 
				
			||||||
 | 
									      FFTW_scalar *in, const int *inembed,		
 | 
				
			||||||
				      int istride, int idist,		
 | 
									      int istride, int idist,		
 | 
				
			||||||
				      FFTW_scalar *out, int *onembed,		
 | 
									      FFTW_scalar *out, const int *onembed,		
 | 
				
			||||||
				      int ostride, int odist,		
 | 
									      int ostride, int odist,		
 | 
				
			||||||
				      int sign, unsigned flags) {
 | 
									      int sign, unsigned flags) {
 | 
				
			||||||
    return ::fftw_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
 | 
					    return ::fftw_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
 | 
				
			||||||
  }	  
 | 
					  }	  
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
  inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) {
 | 
					  static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){
 | 
				
			||||||
 | 
					    ::fftw_flops(p,add,mul,fmas);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) {
 | 
				
			||||||
    ::fftw_execute_dft(p,in,out);
 | 
					    ::fftw_execute_dft(p,in,out);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  inline static void fftw_destroy_plan(const FFTW_plan p) {
 | 
					  inline static void fftw_destroy_plan(const FFTW_plan p) {
 | 
				
			||||||
    ::fftw_destroy_plan(p);
 | 
					    ::fftw_destroy_plan(p);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<> struct FFTW<ComplexF> {
 | 
					template<> struct FFTW<ComplexF> {
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  typedef fftwf_complex FFTW_scalar;
 | 
					  typedef fftwf_complex FFTW_scalar;
 | 
				
			||||||
  typedef fftwf_plan    FFTW_plan;
 | 
					  typedef fftwf_plan    FFTW_plan;
 | 
				
			||||||
  static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany,
 | 
					
 | 
				
			||||||
				      FFTW_scalar *in, int *inembed,		
 | 
					  static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany,
 | 
				
			||||||
 | 
									      FFTW_scalar *in, const int *inembed,		
 | 
				
			||||||
				      int istride, int idist,		
 | 
									      int istride, int idist,		
 | 
				
			||||||
				      FFTW_scalar *out, int *onembed,		
 | 
									      FFTW_scalar *out, const int *onembed,		
 | 
				
			||||||
				      int ostride, int odist,		
 | 
									      int ostride, int odist,		
 | 
				
			||||||
				      int sign, unsigned flags) {
 | 
									      int sign, unsigned flags) {
 | 
				
			||||||
    return ::fftwf_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
 | 
					    return ::fftwf_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
 | 
				
			||||||
  }	  
 | 
					  }	  
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
  inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) {
 | 
					  static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){
 | 
				
			||||||
 | 
					    ::fftwf_flops(p,add,mul,fmas);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) {
 | 
				
			||||||
    ::fftwf_execute_dft(p,in,out);
 | 
					    ::fftwf_execute_dft(p,in,out);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  inline static void fftw_destroy_plan(const FFTW_plan p) {
 | 
					  inline static void fftw_destroy_plan(const FFTW_plan p) {
 | 
				
			||||||
    ::fftwf_destroy_plan(p);
 | 
					    ::fftwf_destroy_plan(p);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#ifndef FFTW_FORWARD
 | 
				
			||||||
 | 
					#define FFTW_FORWARD (-1)
 | 
				
			||||||
 | 
					#define FFTW_BACKWARD (+1)
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class FFT {
 | 
					class FFT {
 | 
				
			||||||
private:
 | 
					private:
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
 | 
					  GridCartesian *vgrid;
 | 
				
			||||||
 | 
					  GridCartesian *sgrid;
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					  int Nd;
 | 
				
			||||||
  double flops;
 | 
					  double flops;
 | 
				
			||||||
  double flops_call;
 | 
					  double flops_call;
 | 
				
			||||||
  uint64_t usec;
 | 
					  uint64_t usec;
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
 | 
					  Coordinate dimensions;
 | 
				
			||||||
 | 
					  Coordinate processors;
 | 
				
			||||||
 | 
					  Coordinate processor_coor;
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
  static const int forward=FFTW_FORWARD;
 | 
					  static const int forward=FFTW_FORWARD;
 | 
				
			||||||
@@ -237,25 +126,31 @@ public:
 | 
				
			|||||||
  double MFlops(void) {return flops/usec;}
 | 
					  double MFlops(void) {return flops/usec;}
 | 
				
			||||||
  double USec(void)   {return (double)usec;}    
 | 
					  double USec(void)   {return (double)usec;}    
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  FFT ( GridCartesian * grid ) 
 | 
					  FFT ( GridCartesian * grid ) :
 | 
				
			||||||
 | 
					    vgrid(grid),
 | 
				
			||||||
 | 
					    Nd(grid->_ndimension),
 | 
				
			||||||
 | 
					    dimensions(grid->_fdimensions),
 | 
				
			||||||
 | 
					    processors(grid->_processors),
 | 
				
			||||||
 | 
					    processor_coor(grid->_processor_coor)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    flops=0;
 | 
					    flops=0;
 | 
				
			||||||
    usec =0;
 | 
					    usec =0;
 | 
				
			||||||
 | 
					    Coordinate layout(Nd,1);
 | 
				
			||||||
 | 
					    sgrid = new GridCartesian(dimensions,layout,processors,*grid);
 | 
				
			||||||
  };
 | 
					  };
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
  ~FFT ( void)  {
 | 
					  ~FFT ( void)  {
 | 
				
			||||||
    //    delete sgrid;
 | 
					    delete sgrid;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
  template<class vobj>
 | 
					  template<class vobj>
 | 
				
			||||||
  void FFT_dim_mask(Lattice<vobj> &result,const Lattice<vobj> &source,Coordinate mask,int sign){
 | 
					  void FFT_dim_mask(Lattice<vobj> &result,const Lattice<vobj> &source,Coordinate mask,int sign){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    //    vgrid=result.Grid();
 | 
					    conformable(result.Grid(),vgrid);
 | 
				
			||||||
    //    conformable(result.Grid(),vgrid);
 | 
					    conformable(source.Grid(),vgrid);
 | 
				
			||||||
    //    conformable(source.Grid(),vgrid);
 | 
					    Lattice<vobj> tmp(vgrid);
 | 
				
			||||||
    const int Ndim = source.Grid()->Nd();
 | 
					    tmp = source;
 | 
				
			||||||
    Lattice<vobj> tmp = source;
 | 
					    for(int d=0;d<Nd;d++){
 | 
				
			||||||
    for(int d=0;d<Ndim;d++){
 | 
					 | 
				
			||||||
      if( mask[d] ) {
 | 
					      if( mask[d] ) {
 | 
				
			||||||
	FFT_dim(result,tmp,d,sign);
 | 
						FFT_dim(result,tmp,d,sign);
 | 
				
			||||||
	tmp=result;
 | 
						tmp=result;
 | 
				
			||||||
@@ -265,70 +160,59 @@ public:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  template<class vobj>
 | 
					  template<class vobj>
 | 
				
			||||||
  void FFT_all_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int sign){
 | 
					  void FFT_all_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int sign){
 | 
				
			||||||
    const int Ndim = source.Grid()->Nd();
 | 
					    Coordinate mask(Nd,1);
 | 
				
			||||||
    Coordinate mask(Ndim,1);
 | 
					 | 
				
			||||||
    FFT_dim_mask(result,source,mask,sign);
 | 
					    FFT_dim_mask(result,source,mask,sign);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  template<class vobj>
 | 
					  template<class vobj>
 | 
				
			||||||
  void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int sign){
 | 
					  void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int sign){
 | 
				
			||||||
    const int Ndim = source.Grid()->Nd();
 | 
					#ifndef HAVE_FFTW
 | 
				
			||||||
    GridBase *grid = source.Grid();
 | 
					    assert(0);
 | 
				
			||||||
    conformable(result.Grid(),source.Grid());
 | 
					#else
 | 
				
			||||||
 | 
					    conformable(result.Grid(),vgrid);
 | 
				
			||||||
 | 
					    conformable(source.Grid(),vgrid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    int L = grid->_ldimensions[dim];
 | 
					    int L = vgrid->_ldimensions[dim];
 | 
				
			||||||
    int G = grid->_fdimensions[dim];
 | 
					    int G = vgrid->_fdimensions[dim];
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    Coordinate layout(Ndim,1);
 | 
					    Coordinate layout(Nd,1);
 | 
				
			||||||
 | 
					    Coordinate pencil_gd(vgrid->_fdimensions);
 | 
				
			||||||
 | 
					      
 | 
				
			||||||
 | 
					    pencil_gd[dim] = G*processors[dim];
 | 
				
			||||||
 | 
					      
 | 
				
			||||||
 | 
					    // Pencil global vol LxLxGxLxL per node
 | 
				
			||||||
 | 
					    GridCartesian pencil_g(pencil_gd,layout,processors,*vgrid);
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    // Construct pencils
 | 
					    // Construct pencils
 | 
				
			||||||
    typedef typename vobj::scalar_object sobj;
 | 
					    typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
    typedef typename vobj::scalar_type   scalar;
 | 
					    typedef typename sobj::scalar_type   scalar;
 | 
				
			||||||
    typedef typename vobj::scalar_type   scalar_type;
 | 
					 | 
				
			||||||
    typedef typename vobj::vector_type   vector_type;
 | 
					 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    //std::cout << "CPU view" << std::endl;
 | 
					    Lattice<sobj> pgbuf(&pencil_g);
 | 
				
			||||||
 | 
					    autoView(pgbuf_v , pgbuf, CpuWrite);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
 | 
					    typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
 | 
				
			||||||
    typedef typename FFTW<scalar>::FFTW_plan   FFTW_plan;
 | 
					    typedef typename FFTW<scalar>::FFTW_plan   FFTW_plan;
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    int Ncomp = sizeof(sobj)/sizeof(scalar);
 | 
					    int Ncomp = sizeof(sobj)/sizeof(scalar);
 | 
				
			||||||
    int64_t Nlow  = 1;
 | 
					    int Nlow  = 1;
 | 
				
			||||||
    int64_t Nhigh = 1;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int d=0;d<dim;d++){
 | 
					    for(int d=0;d<dim;d++){
 | 
				
			||||||
      Nlow*=grid->_ldimensions[d];
 | 
					      Nlow*=vgrid->_ldimensions[d];
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    for(int d=dim+1;d<Ndim;d++){
 | 
					 | 
				
			||||||
      Nhigh*=grid->_ldimensions[d];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    int64_t Nperp=Nlow*Nhigh;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    deviceVector<scalar> pgbuf; // Layout is [perp][component][dim]
 | 
					 | 
				
			||||||
    pgbuf.resize(Nperp*Ncomp*G);
 | 
					 | 
				
			||||||
    scalar *pgbuf_v = &pgbuf[0];
 | 
					 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    int rank = 1;  /* 1d transforms */
 | 
					    int rank = 1;  /* 1d transforms */
 | 
				
			||||||
    int n[] = {G}; /* 1d transforms of length G */
 | 
					    int n[] = {G}; /* 1d transforms of length G */
 | 
				
			||||||
    int howmany = Ncomp * Nperp;
 | 
					    int howmany = Ncomp;
 | 
				
			||||||
    int odist,idist,istride,ostride;
 | 
					    int odist,idist,istride,ostride;
 | 
				
			||||||
    idist   = odist   = G;            /* Distance between consecutive FT's */
 | 
					    idist   = odist   = 1;          /* Distance between consecutive FT's */
 | 
				
			||||||
    istride = ostride = 1;            /* Distance between two elements in the same FT */
 | 
					    istride = ostride = Ncomp*Nlow; /* distance between two elements in the same FT */
 | 
				
			||||||
    int *inembed = n, *onembed = n;
 | 
					    int *inembed = n, *onembed = n;
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    scalar div;
 | 
					    scalar div;
 | 
				
			||||||
    if ( sign == backward ) div = 1.0/G;
 | 
					    if ( sign == backward ) div = 1.0/G;
 | 
				
			||||||
    else if ( sign == forward ) div = 1.0;
 | 
					    else if ( sign == forward ) div = 1.0;
 | 
				
			||||||
    else GRID_ASSERT(0);
 | 
					    else assert(0);
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    double t_pencil=0;
 | 
					 | 
				
			||||||
    double t_fft   =0;
 | 
					 | 
				
			||||||
    double t_total =-usecond();
 | 
					 | 
				
			||||||
    //    std::cout << GridLogPerformance<<"Making FFTW plan" << std::endl;
 | 
					 | 
				
			||||||
    /*
 | 
					 | 
				
			||||||
     *
 | 
					 | 
				
			||||||
     */
 | 
					 | 
				
			||||||
    FFTW_plan p;
 | 
					    FFTW_plan p;
 | 
				
			||||||
    {
 | 
					    {
 | 
				
			||||||
      FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0];
 | 
					      FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0];
 | 
				
			||||||
@@ -342,154 +226,68 @@ public:
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    // Barrel shift and collect global pencil
 | 
					    // Barrel shift and collect global pencil
 | 
				
			||||||
    //    std::cout << GridLogPerformance<<"Making pencil" << std::endl;
 | 
					    Coordinate lcoor(Nd), gcoor(Nd);
 | 
				
			||||||
    Coordinate lcoor(Ndim), gcoor(Ndim);
 | 
					 | 
				
			||||||
    double t_copy=0;
 | 
					 | 
				
			||||||
    double t_shift=0;
 | 
					 | 
				
			||||||
    t_pencil = -usecond();
 | 
					 | 
				
			||||||
    result = source;
 | 
					    result = source;
 | 
				
			||||||
    int pc = grid->_processor_coor[dim];
 | 
					    int pc = processor_coor[dim];
 | 
				
			||||||
 | 
					 | 
				
			||||||
    const Coordinate ldims = grid->_ldimensions;
 | 
					 | 
				
			||||||
    const Coordinate rdims = grid->_rdimensions;
 | 
					 | 
				
			||||||
    const Coordinate sdims = grid->_simd_layout;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Coordinate processors = grid->_processors;
 | 
					 | 
				
			||||||
    Coordinate pgdims(Ndim);
 | 
					 | 
				
			||||||
    pgdims[0] = G;
 | 
					 | 
				
			||||||
    for(int d=0, dd=1;d<Ndim;d++){
 | 
					 | 
				
			||||||
      if ( d!=dim ) pgdims[dd++] = ldims[d];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    int64_t pgvol=1;
 | 
					 | 
				
			||||||
    for(int d=0;d<Ndim;d++) pgvol*=pgdims[d];
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    const int Nsimd = vobj::Nsimd();
 | 
					 | 
				
			||||||
    for(int p=0;p<processors[dim];p++) {
 | 
					    for(int p=0;p<processors[dim];p++) {
 | 
				
			||||||
      t_copy-=usecond();
 | 
					 | 
				
			||||||
      autoView(r_v,result,AcceleratorRead);
 | 
					 | 
				
			||||||
      accelerator_for(idx, grid->oSites(), vobj::Nsimd(), {
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
      {
 | 
					      {
 | 
				
			||||||
	int lane=acceleratorSIMTlane(Nsimd); // buffer lane
 | 
						autoView(r_v,result,CpuRead);
 | 
				
			||||||
#else
 | 
						autoView(p_v,pgbuf,CpuWrite);
 | 
				
			||||||
      for(int lane=0;lane<Nsimd;lane++) {
 | 
						thread_for(idx, sgrid->lSites(),{
 | 
				
			||||||
#endif
 | 
					          Coordinate cbuf(Nd);
 | 
				
			||||||
	Coordinate icoor;
 | 
					          sobj s;
 | 
				
			||||||
	Coordinate ocoor;
 | 
						  sgrid->LocalIndexToLocalCoor(idx,cbuf);
 | 
				
			||||||
	Coordinate pgcoor;
 | 
						  peekLocalSite(s,r_v,cbuf);
 | 
				
			||||||
 | 
						  cbuf[dim]+=((pc+p) % processors[dim])*L;
 | 
				
			||||||
	Lexicographic::CoorFromIndex(icoor,lane,sdims);
 | 
						  pokeLocalSite(s,p_v,cbuf);
 | 
				
			||||||
	Lexicographic::CoorFromIndex(ocoor,idx,rdims);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	pgcoor[0] = ocoor[dim] + icoor[dim]*rdims[dim] + ((pc+p)%processors[dim])*L;
 | 
					 | 
				
			||||||
	for(int d=0,dd=1;d<Ndim;d++){
 | 
					 | 
				
			||||||
	  if ( d!=dim ) {
 | 
					 | 
				
			||||||
	    pgcoor[dd] = ocoor[d] + icoor[d]*rdims[d];
 | 
					 | 
				
			||||||
	    dd++;
 | 
					 | 
				
			||||||
	  }
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	// Map coordinates in lattice layout to FFTW index
 | 
					 | 
				
			||||||
	int64_t pgidx;
 | 
					 | 
				
			||||||
	Lexicographic::IndexFromCoor(pgcoor,pgidx,pgdims);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	vector_type *from = (vector_type *)&r_v[idx];
 | 
					 | 
				
			||||||
	scalar_type stmp;
 | 
					 | 
				
			||||||
	for(int w=0;w<Ncomp;w++){
 | 
					 | 
				
			||||||
	  int64_t pg_idx = pgidx + w*pgvol;
 | 
					 | 
				
			||||||
	  stmp = getlane(from[w], lane);
 | 
					 | 
				
			||||||
	  pgbuf_v[pg_idx] = stmp;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
        });
 | 
					        });
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
      t_copy+=usecond();
 | 
					 | 
				
			||||||
      if (p != processors[dim] - 1) {
 | 
					      if (p != processors[dim] - 1) {
 | 
				
			||||||
	Lattice<vobj> temp(grid);
 | 
						result = Cshift(result,dim,L);
 | 
				
			||||||
	t_shift-=usecond();
 | 
					 | 
				
			||||||
	temp = Cshift(result,dim,L); result = temp;
 | 
					 | 
				
			||||||
	t_shift+=usecond();
 | 
					 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    t_pencil += usecond();
 | 
					 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    FFTW_scalar *in = (FFTW_scalar *)pgbuf_v;
 | 
					    // Loop over orthog coords
 | 
				
			||||||
    FFTW_scalar *out= (FFTW_scalar *)pgbuf_v;
 | 
					    int NN=pencil_g.lSites();
 | 
				
			||||||
    t_fft = -usecond();
 | 
					    GridStopWatch timer;
 | 
				
			||||||
    FFTW<scalar>::fftw_execute_dft(p,in,out,sign);
 | 
					    timer.Start();
 | 
				
			||||||
    t_fft += usecond();
 | 
					    thread_for( idx,NN,{
 | 
				
			||||||
 | 
					        Coordinate cbuf(Nd);
 | 
				
			||||||
 | 
						pencil_g.LocalIndexToLocalCoor(idx, cbuf);
 | 
				
			||||||
 | 
						if ( cbuf[dim] == 0 ) {  // restricts loop to plane at lcoor[dim]==0
 | 
				
			||||||
 | 
						  FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[idx];
 | 
				
			||||||
 | 
						  FFTW_scalar *out= (FFTW_scalar *)&pgbuf_v[idx];
 | 
				
			||||||
 | 
						  FFTW<scalar>::fftw_execute_dft(p,in,out);
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					    });
 | 
				
			||||||
 | 
					    timer.Stop();
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    // performance counting
 | 
					    // performance counting
 | 
				
			||||||
    flops_call = 5.0*howmany*G*log2(G);
 | 
					    double add,mul,fma;
 | 
				
			||||||
    usec = t_fft;
 | 
					    FFTW<scalar>::fftw_flops(p,&add,&mul,&fma);
 | 
				
			||||||
    flops= flops_call;
 | 
					    flops_call = add+mul+2.0*fma;
 | 
				
			||||||
 | 
					    usec += timer.useconds();
 | 
				
			||||||
 | 
					    flops+= flops_call*NN;
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    result = Zero();
 | 
					    // writing out result
 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    double t_insert = -usecond();
 | 
					 | 
				
			||||||
    {
 | 
					    {
 | 
				
			||||||
      autoView(r_v,result,AcceleratorWrite);
 | 
					      autoView(pgbuf_v,pgbuf,CpuRead);
 | 
				
			||||||
      accelerator_for(idx,grid->oSites(),Nsimd,{
 | 
					      autoView(result_v,result,CpuWrite);
 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					      thread_for(idx,sgrid->lSites(),{
 | 
				
			||||||
      {
 | 
						Coordinate clbuf(Nd), cgbuf(Nd);
 | 
				
			||||||
	int lane=acceleratorSIMTlane(Nsimd); // buffer lane
 | 
						sobj s;
 | 
				
			||||||
#else
 | 
						sgrid->LocalIndexToLocalCoor(idx,clbuf);
 | 
				
			||||||
      for(int lane=0;lane<Nsimd;lane++) {
 | 
						cgbuf = clbuf;
 | 
				
			||||||
#endif
 | 
						cgbuf[dim] = clbuf[dim]+L*pc;
 | 
				
			||||||
	Coordinate icoor(Ndim);
 | 
						peekLocalSite(s,pgbuf_v,cgbuf);
 | 
				
			||||||
	Coordinate ocoor(Ndim);
 | 
						pokeLocalSite(s,result_v,clbuf);
 | 
				
			||||||
	Coordinate pgcoor(Ndim);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	Lexicographic::CoorFromIndex(icoor,lane,sdims);
 | 
					 | 
				
			||||||
	Lexicographic::CoorFromIndex(ocoor,idx,rdims);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	pgcoor[0] = ocoor[dim] + icoor[dim]*rdims[dim] + pc*L;
 | 
					 | 
				
			||||||
	for(int d=0,dd=1;d<Ndim;d++){
 | 
					 | 
				
			||||||
	  if ( d!=dim ) {
 | 
					 | 
				
			||||||
	    pgcoor[dd] = ocoor[d] + icoor[d]*rdims[d];
 | 
					 | 
				
			||||||
	    dd++;
 | 
					 | 
				
			||||||
	  }
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	// Map coordinates in lattice layout to FFTW index
 | 
					 | 
				
			||||||
	int64_t pgidx;
 | 
					 | 
				
			||||||
	Lexicographic::IndexFromCoor(pgcoor,pgidx,pgdims);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	vector_type *to = (vector_type *)&r_v[idx];
 | 
					 | 
				
			||||||
	scalar_type stmp;
 | 
					 | 
				
			||||||
	for(int w=0;w<Ncomp;w++){
 | 
					 | 
				
			||||||
	  int64_t pg_idx = pgidx + w*pgvol;
 | 
					 | 
				
			||||||
	  stmp = pgbuf_v[pg_idx];
 | 
					 | 
				
			||||||
	  putlane(to[w], stmp, lane);
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
      });
 | 
					      });
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					 | 
				
			||||||
    result = result*div;
 | 
					    result = result*div;
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    t_insert +=usecond();
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    // destroying plan
 | 
					    // destroying plan
 | 
				
			||||||
    FFTW<scalar>::fftw_destroy_plan(p);
 | 
					    FFTW<scalar>::fftw_destroy_plan(p);
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
    t_total +=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< " FFT took   "<<t_total/1.0e6 <<" s" << std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< " FFT pencil "<<t_pencil/1.0e6 <<" s" << std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "  of which copy "<<t_copy/1.0e6 <<" s" << std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "  of which shift"<<t_shift/1.0e6 <<" s" << std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< " FFT kernels "<<t_fft/1.0e6 <<" s" << std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< " FFT insert  "<<t_insert/1.0e6 <<" s" << std::endl;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -64,7 +64,7 @@ public:
 | 
				
			|||||||
//
 | 
					//
 | 
				
			||||||
// I'm not entirely happy with implementation; to share the Schur code between herm and non-herm
 | 
					// I'm not entirely happy with implementation; to share the Schur code between herm and non-herm
 | 
				
			||||||
// while still having a "OpAndNorm" in the abstract base I had to implement it in both cases
 | 
					// while still having a "OpAndNorm" in the abstract base I had to implement it in both cases
 | 
				
			||||||
// with an GRID_ASSERT trap in the non-herm. This isn't right; there must be a better C++ way to
 | 
					// with an assert trap in the non-herm. This isn't right; there must be a better C++ way to
 | 
				
			||||||
// do it, but I fear it required multiple inheritance and mixed in abstract base classes
 | 
					// do it, but I fear it required multiple inheritance and mixed in abstract base classes
 | 
				
			||||||
/////////////////////////////////////////////////////////////////////////////////////////////
 | 
					/////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -103,38 +103,6 @@ public:
 | 
				
			|||||||
    _Mat.MdagM(in,out);
 | 
					    _Mat.MdagM(in,out);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
template<class Matrix,class Field>
 | 
					 | 
				
			||||||
class MMdagLinearOperator : public LinearOperatorBase<Field> {
 | 
					 | 
				
			||||||
  Matrix &_Mat;
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  MMdagLinearOperator(Matrix &Mat): _Mat(Mat){};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  // Support for coarsening to a multigrid
 | 
					 | 
				
			||||||
  void OpDiag (const Field &in, Field &out) {
 | 
					 | 
				
			||||||
    _Mat.Mdiag(in,out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
					 | 
				
			||||||
    _Mat.Mdir(in,out,dir,disp);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
					 | 
				
			||||||
    _Mat.MdirAll(in,out);
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  void Op     (const Field &in, Field &out){
 | 
					 | 
				
			||||||
    _Mat.M(in,out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void AdjOp     (const Field &in, Field &out){
 | 
					 | 
				
			||||||
    _Mat.Mdag(in,out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
					 | 
				
			||||||
    _Mat.MMdag(in,out);
 | 
					 | 
				
			||||||
    ComplexD dot = innerProduct(in,out);
 | 
					 | 
				
			||||||
    n1=real(dot);
 | 
					 | 
				
			||||||
    n2=norm2(out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void HermOp(const Field &in, Field &out){
 | 
					 | 
				
			||||||
    _Mat.MMdag(in,out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////
 | 
				
			||||||
// Construct herm op and shift it for mgrid smoother
 | 
					// Construct herm op and shift it for mgrid smoother
 | 
				
			||||||
@@ -148,22 +116,22 @@ public:
 | 
				
			|||||||
  // Support for coarsening to a multigrid
 | 
					  // Support for coarsening to a multigrid
 | 
				
			||||||
  void OpDiag (const Field &in, Field &out) {
 | 
					  void OpDiag (const Field &in, Field &out) {
 | 
				
			||||||
    _Mat.Mdiag(in,out);
 | 
					    _Mat.Mdiag(in,out);
 | 
				
			||||||
    GRID_ASSERT(0);
 | 
					    assert(0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
					  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
				
			||||||
    _Mat.Mdir(in,out,dir,disp);
 | 
					    _Mat.Mdir(in,out,dir,disp);
 | 
				
			||||||
    GRID_ASSERT(0);
 | 
					    assert(0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
					  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
				
			||||||
    GRID_ASSERT(0);
 | 
					    assert(0);
 | 
				
			||||||
  };
 | 
					  };
 | 
				
			||||||
  void Op     (const Field &in, Field &out){
 | 
					  void Op     (const Field &in, Field &out){
 | 
				
			||||||
    _Mat.M(in,out);
 | 
					    _Mat.M(in,out);
 | 
				
			||||||
    GRID_ASSERT(0);
 | 
					    assert(0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  void AdjOp     (const Field &in, Field &out){
 | 
					  void AdjOp     (const Field &in, Field &out){
 | 
				
			||||||
    _Mat.Mdag(in,out);
 | 
					    _Mat.Mdag(in,out);
 | 
				
			||||||
    GRID_ASSERT(0);
 | 
					    assert(0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
					  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
				
			||||||
    HermOp(in,out);
 | 
					    HermOp(in,out);
 | 
				
			||||||
@@ -177,44 +145,6 @@ public:
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
// Create a shifted HermOp
 | 
					 | 
				
			||||||
////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
template<class Field>
 | 
					 | 
				
			||||||
class ShiftedHermOpLinearOperator : public LinearOperatorBase<Field> {
 | 
					 | 
				
			||||||
  LinearOperatorBase<Field> &_Mat;
 | 
					 | 
				
			||||||
  RealD _shift;
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  ShiftedHermOpLinearOperator(LinearOperatorBase<Field> &Mat,RealD shift): _Mat(Mat), _shift(shift){};
 | 
					 | 
				
			||||||
  // Support for coarsening to a multigrid
 | 
					 | 
				
			||||||
  void OpDiag (const Field &in, Field &out) {
 | 
					 | 
				
			||||||
    GRID_ASSERT(0);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
					 | 
				
			||||||
    GRID_ASSERT(0);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
					 | 
				
			||||||
    GRID_ASSERT(0);
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  void Op     (const Field &in, Field &out){
 | 
					 | 
				
			||||||
    HermOp(in,out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void AdjOp     (const Field &in, Field &out){
 | 
					 | 
				
			||||||
    HermOp(in,out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
					 | 
				
			||||||
    HermOp(in,out);
 | 
					 | 
				
			||||||
    ComplexD dot = innerProduct(in,out);
 | 
					 | 
				
			||||||
    n1=real(dot);
 | 
					 | 
				
			||||||
    n2=norm2(out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void HermOp(const Field &in, Field &out){
 | 
					 | 
				
			||||||
    _Mat.HermOp(in,out);
 | 
					 | 
				
			||||||
    out = out + _shift*in;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////
 | 
				
			||||||
// Wrap an already herm matrix
 | 
					// Wrap an already herm matrix
 | 
				
			||||||
////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -271,42 +201,10 @@ public:
 | 
				
			|||||||
    _Mat.Mdag(in,out);
 | 
					    _Mat.Mdag(in,out);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
					  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
				
			||||||
    GRID_ASSERT(0);
 | 
					    assert(0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  void HermOp(const Field &in, Field &out){
 | 
					  void HermOp(const Field &in, Field &out){
 | 
				
			||||||
    GRID_ASSERT(0);
 | 
					    assert(0);
 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
template<class Matrix,class Field>
 | 
					 | 
				
			||||||
class ShiftedNonHermitianLinearOperator : public LinearOperatorBase<Field> {
 | 
					 | 
				
			||||||
  Matrix &_Mat;
 | 
					 | 
				
			||||||
  RealD shift;
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  ShiftedNonHermitianLinearOperator(Matrix &Mat,RealD shft): _Mat(Mat),shift(shft){};
 | 
					 | 
				
			||||||
  // Support for coarsening to a multigrid
 | 
					 | 
				
			||||||
  void OpDiag (const Field &in, Field &out) {
 | 
					 | 
				
			||||||
    _Mat.Mdiag(in,out);
 | 
					 | 
				
			||||||
    out = out + shift*in;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
					 | 
				
			||||||
    _Mat.Mdir(in,out,dir,disp);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
					 | 
				
			||||||
    _Mat.MdirAll(in,out);
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  void Op     (const Field &in, Field &out){
 | 
					 | 
				
			||||||
    _Mat.M(in,out);
 | 
					 | 
				
			||||||
    out = out + shift * in;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void AdjOp     (const Field &in, Field &out){
 | 
					 | 
				
			||||||
    _Mat.Mdag(in,out);
 | 
					 | 
				
			||||||
    out = out + shift * in;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
					 | 
				
			||||||
    GRID_ASSERT(0);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void HermOp(const Field &in, Field &out){
 | 
					 | 
				
			||||||
    GRID_ASSERT(0);
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -345,13 +243,13 @@ class SchurOperatorBase :  public LinearOperatorBase<Field> {
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
  // Support for coarsening to a multigrid
 | 
					  // Support for coarsening to a multigrid
 | 
				
			||||||
  void OpDiag (const Field &in, Field &out) {
 | 
					  void OpDiag (const Field &in, Field &out) {
 | 
				
			||||||
    GRID_ASSERT(0); // must coarsen the unpreconditioned system
 | 
					    assert(0); // must coarsen the unpreconditioned system
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
					  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
				
			||||||
    GRID_ASSERT(0);
 | 
					    assert(0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
					  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
				
			||||||
    GRID_ASSERT(0);
 | 
					    assert(0);
 | 
				
			||||||
  };
 | 
					  };
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
template<class Matrix,class Field>
 | 
					template<class Matrix,class Field>
 | 
				
			||||||
@@ -447,10 +345,10 @@ class NonHermitianSchurOperatorBase :  public LinearOperatorBase<Field>
 | 
				
			|||||||
    MpcDag(tmp,out);
 | 
					    MpcDag(tmp,out);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  virtual void HermOpAndNorm(const Field& in, Field& out, RealD& n1, RealD& n2) {
 | 
					  virtual void HermOpAndNorm(const Field& in, Field& out, RealD& n1, RealD& n2) {
 | 
				
			||||||
    GRID_ASSERT(0);
 | 
					    assert(0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  virtual void HermOp(const Field& in, Field& out) {
 | 
					  virtual void HermOp(const Field& in, Field& out) {
 | 
				
			||||||
    GRID_ASSERT(0);
 | 
					    assert(0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  void Op(const Field& in, Field& out) {
 | 
					  void Op(const Field& in, Field& out) {
 | 
				
			||||||
    Mpc(in, out);
 | 
					    Mpc(in, out);
 | 
				
			||||||
@@ -460,13 +358,13 @@ class NonHermitianSchurOperatorBase :  public LinearOperatorBase<Field>
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
  // Support for coarsening to a multigrid
 | 
					  // Support for coarsening to a multigrid
 | 
				
			||||||
  void OpDiag(const Field& in, Field& out) {
 | 
					  void OpDiag(const Field& in, Field& out) {
 | 
				
			||||||
    GRID_ASSERT(0); // must coarsen the unpreconditioned system
 | 
					    assert(0); // must coarsen the unpreconditioned system
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  void OpDir(const Field& in, Field& out, int dir, int disp) {
 | 
					  void OpDir(const Field& in, Field& out, int dir, int disp) {
 | 
				
			||||||
    GRID_ASSERT(0);
 | 
					    assert(0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  void OpDirAll(const Field& in, std::vector<Field>& out){
 | 
					  void OpDirAll(const Field& in, std::vector<Field>& out){
 | 
				
			||||||
    GRID_ASSERT(0);
 | 
					    assert(0);
 | 
				
			||||||
  };
 | 
					  };
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -580,7 +478,7 @@ class SchurStaggeredOperator :  public SchurOperatorBase<Field> {
 | 
				
			|||||||
 public:
 | 
					 public:
 | 
				
			||||||
  SchurStaggeredOperator (Matrix &Mat): _Mat(Mat), tmp(_Mat.RedBlackGrid()) 
 | 
					  SchurStaggeredOperator (Matrix &Mat): _Mat(Mat), tmp(_Mat.RedBlackGrid()) 
 | 
				
			||||||
  { 
 | 
					  { 
 | 
				
			||||||
    GRID_ASSERT( _Mat.isTrivialEE() );
 | 
					    assert( _Mat.isTrivialEE() );
 | 
				
			||||||
    mass = _Mat.Mass();
 | 
					    mass = _Mat.Mass();
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
					  virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
				
			||||||
@@ -611,7 +509,7 @@ class SchurStaggeredOperator :  public SchurOperatorBase<Field> {
 | 
				
			|||||||
    Mpc(in,out);
 | 
					    Mpc(in,out);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  virtual void MpcDagMpc(const Field &in, Field &out) {
 | 
					  virtual void MpcDagMpc(const Field &in, Field &out) {
 | 
				
			||||||
    GRID_ASSERT(0);// Never need with staggered
 | 
					    assert(0);// Never need with staggered
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
template<class Matrix,class Field> using SchurStagOperator = SchurStaggeredOperator<Matrix,Field>;
 | 
					template<class Matrix,class Field> using SchurStagOperator = SchurStaggeredOperator<Matrix,Field>;
 | 
				
			||||||
@@ -623,7 +521,7 @@ template<class Field> class OperatorFunction {
 | 
				
			|||||||
public:
 | 
					public:
 | 
				
			||||||
  virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) = 0;
 | 
					  virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) = 0;
 | 
				
			||||||
  virtual void operator() (LinearOperatorBase<Field> &Linop, const std::vector<Field> &in,std::vector<Field> &out) {
 | 
					  virtual void operator() (LinearOperatorBase<Field> &Linop, const std::vector<Field> &in,std::vector<Field> &out) {
 | 
				
			||||||
    GRID_ASSERT(in.size()==out.size());
 | 
					    assert(in.size()==out.size());
 | 
				
			||||||
    for(int k=0;k<in.size();k++){
 | 
					    for(int k=0;k<in.size();k++){
 | 
				
			||||||
      (*this)(Linop,in[k],out[k]);
 | 
					      (*this)(Linop,in[k],out[k]);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
@@ -637,7 +535,7 @@ public:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  virtual void operator() (const std::vector<Field> &in, std::vector<Field> &out)
 | 
					  virtual void operator() (const std::vector<Field> &in, std::vector<Field> &out)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    GRID_ASSERT(in.size() == out.size());
 | 
					    assert(in.size() == out.size());
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    for (unsigned int i = 0; i < in.size(); ++i)
 | 
					    for (unsigned int i = 0; i < in.size(); ++i)
 | 
				
			||||||
    {
 | 
					    {
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -45,11 +45,6 @@ public:
 | 
				
			|||||||
    M(in,tmp);
 | 
					    M(in,tmp);
 | 
				
			||||||
    Mdag(tmp,out);
 | 
					    Mdag(tmp,out);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  virtual void  MMdag(const Field &in, Field &out) {
 | 
					 | 
				
			||||||
    Field tmp (in.Grid());
 | 
					 | 
				
			||||||
    Mdag(in,tmp);
 | 
					 | 
				
			||||||
    M(tmp,out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  virtual  void Mdiag    (const Field &in, Field &out)=0;
 | 
					  virtual  void Mdiag    (const Field &in, Field &out)=0;
 | 
				
			||||||
  virtual  void Mdir     (const Field &in, Field &out,int dir, int disp)=0;
 | 
					  virtual  void Mdir     (const Field &in, Field &out,int dir, int disp)=0;
 | 
				
			||||||
  virtual  void MdirAll  (const Field &in, std::vector<Field> &out)=0;
 | 
					  virtual  void MdirAll  (const Field &in, std::vector<Field> &out)=0;
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -59,7 +59,7 @@ public:
 | 
				
			|||||||
    RealD diff = hi-lo;
 | 
					    RealD diff = hi-lo;
 | 
				
			||||||
    RealD delta = diff*1.0e-9;
 | 
					    RealD delta = diff*1.0e-9;
 | 
				
			||||||
    for (RealD x=lo; x<hi; x+=delta) {
 | 
					    for (RealD x=lo; x<hi; x+=delta) {
 | 
				
			||||||
      delta*=1.02;
 | 
					      delta*=1.1;
 | 
				
			||||||
      RealD f = approx(x);
 | 
					      RealD f = approx(x);
 | 
				
			||||||
      out<< x<<" "<<f<<std::endl;
 | 
					      out<< x<<" "<<f<<std::endl;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
@@ -90,8 +90,9 @@ public:
 | 
				
			|||||||
    order=_order;
 | 
					    order=_order;
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    if(order < 2) exit(-1);
 | 
					    if(order < 2) exit(-1);
 | 
				
			||||||
    Coeffs.resize(order,0.0);
 | 
					    Coeffs.resize(order);
 | 
				
			||||||
    Coeffs[order-1] = 1.0;
 | 
					    Coeffs.assign(0.,order);
 | 
				
			||||||
 | 
					    Coeffs[order-1] = 1.;
 | 
				
			||||||
  };
 | 
					  };
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  // PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's.
 | 
					  // PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's.
 | 
				
			||||||
@@ -131,26 +132,6 @@ public:
 | 
				
			|||||||
      Coeffs[j] = s * 2.0/order;
 | 
					      Coeffs[j] = s * 2.0/order;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  };
 | 
					  };
 | 
				
			||||||
  template<class functor>
 | 
					 | 
				
			||||||
  void Init(RealD _lo,RealD _hi,int _order, functor & func)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    lo=_lo;
 | 
					 | 
				
			||||||
    hi=_hi;
 | 
					 | 
				
			||||||
    order=_order;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    if(order < 2) exit(-1);
 | 
					 | 
				
			||||||
    Coeffs.resize(order);
 | 
					 | 
				
			||||||
    for(int j=0;j<order;j++){
 | 
					 | 
				
			||||||
      RealD s=0;
 | 
					 | 
				
			||||||
      for(int k=0;k<order;k++){
 | 
					 | 
				
			||||||
	RealD y=std::cos(M_PI*(k+0.5)/order);
 | 
					 | 
				
			||||||
	RealD x=0.5*(y*(hi-lo)+(hi+lo));
 | 
					 | 
				
			||||||
	RealD f=func(x);
 | 
					 | 
				
			||||||
	s=s+f*std::cos( j*M_PI*(k+0.5)/order );
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      Coeffs[j] = s * 2.0/order;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
  void JacksonSmooth(void){
 | 
					  void JacksonSmooth(void){
 | 
				
			||||||
@@ -269,9 +250,7 @@ public:
 | 
				
			|||||||
    RealD xscale = 2.0/(hi-lo);
 | 
					    RealD xscale = 2.0/(hi-lo);
 | 
				
			||||||
    RealD mscale = -(hi+lo)/(hi-lo);
 | 
					    RealD mscale = -(hi+lo)/(hi-lo);
 | 
				
			||||||
    Linop.HermOp(T0,y);
 | 
					    Linop.HermOp(T0,y);
 | 
				
			||||||
    grid->Barrier();
 | 
					 | 
				
			||||||
    axpby(T1,xscale,mscale,y,in);
 | 
					    axpby(T1,xscale,mscale,y,in);
 | 
				
			||||||
    grid->Barrier();
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // sum = .5 c[0] T0 + c[1] T1
 | 
					    // sum = .5 c[0] T0 + c[1] T1
 | 
				
			||||||
    //    out = ()*T0 + Coeffs[1]*T1;
 | 
					    //    out = ()*T0 + Coeffs[1]*T1;
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -40,7 +40,7 @@ public:
 | 
				
			|||||||
  RealD norm;
 | 
					  RealD norm;
 | 
				
			||||||
  RealD lo,hi;
 | 
					  RealD lo,hi;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), tolerances(n), lo(_lo), hi(_hi) {;};
 | 
					  MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), lo(_lo), hi(_hi) {;};
 | 
				
			||||||
  RealD approx(RealD x);
 | 
					  RealD approx(RealD x);
 | 
				
			||||||
  void csv(std::ostream &out);
 | 
					  void csv(std::ostream &out);
 | 
				
			||||||
  void gnuplot(std::ostream &out);
 | 
					  void gnuplot(std::ostream &out);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -121,7 +121,7 @@ double AlgRemez::generateApprox(int num_degree, int den_degree,
 | 
				
			|||||||
  // Reallocate arrays, since degree has changed
 | 
					  // Reallocate arrays, since degree has changed
 | 
				
			||||||
  if (num_degree != n || den_degree != d) allocate(num_degree,den_degree);
 | 
					  if (num_degree != n || den_degree != d) allocate(num_degree,den_degree);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GRID_ASSERT(a_len<=SUM_MAX);
 | 
					  assert(a_len<=SUM_MAX);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  step = new bigfloat[num_degree+den_degree+2];
 | 
					  step = new bigfloat[num_degree+den_degree+2];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -151,9 +151,9 @@ double AlgRemez::generateApprox(int num_degree, int den_degree,
 | 
				
			|||||||
    equations();
 | 
					    equations();
 | 
				
			||||||
    if (delta < tolerance) {
 | 
					    if (delta < tolerance) {
 | 
				
			||||||
      std::cout<<"Delta too small, try increasing precision\n";
 | 
					      std::cout<<"Delta too small, try increasing precision\n";
 | 
				
			||||||
      GRID_ASSERT(0);
 | 
					      assert(0);
 | 
				
			||||||
    };    
 | 
					    };    
 | 
				
			||||||
    GRID_ASSERT( delta>= tolerance);
 | 
					    assert( delta>= tolerance);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    search(step);
 | 
					    search(step);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -134,7 +134,7 @@ class AlgRemez
 | 
				
			|||||||
  virtual ~AlgRemez();
 | 
					  virtual ~AlgRemez();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  int getDegree(void){ 
 | 
					  int getDegree(void){ 
 | 
				
			||||||
    GRID_ASSERT(n==d);
 | 
					    assert(n==d);
 | 
				
			||||||
    return n;
 | 
					    return n;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  // Reset the bounds of the approximation
 | 
					  // Reset the bounds of the approximation
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -28,11 +28,11 @@ void AlgRemezGeneral::setupPolyProperties(int num_degree, int den_degree, PolyTy
 | 
				
			|||||||
  pow_n = num_degree;
 | 
					  pow_n = num_degree;
 | 
				
			||||||
  pow_d = den_degree;
 | 
					  pow_d = den_degree;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  if(pow_n % 2 == 0 && num_type_in == PolyType::Odd) GRID_ASSERT(0);
 | 
					  if(pow_n % 2 == 0 && num_type_in == PolyType::Odd) assert(0);
 | 
				
			||||||
  if(pow_n % 2 == 1 && num_type_in == PolyType::Even) GRID_ASSERT(0);
 | 
					  if(pow_n % 2 == 1 && num_type_in == PolyType::Even) assert(0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  if(pow_d % 2 == 0 && den_type_in == PolyType::Odd) GRID_ASSERT(0);
 | 
					  if(pow_d % 2 == 0 && den_type_in == PolyType::Odd) assert(0);
 | 
				
			||||||
  if(pow_d % 2 == 1 && den_type_in == PolyType::Even) GRID_ASSERT(0);
 | 
					  if(pow_d % 2 == 1 && den_type_in == PolyType::Even) assert(0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  num_type = num_type_in;
 | 
					  num_type = num_type_in;
 | 
				
			||||||
  den_type = den_type_in;
 | 
					  den_type = den_type_in;
 | 
				
			||||||
@@ -112,9 +112,9 @@ double AlgRemezGeneral::generateApprox(const int num_degree, const int den_degre
 | 
				
			|||||||
    equations();
 | 
					    equations();
 | 
				
			||||||
    if (delta < tolerance) {
 | 
					    if (delta < tolerance) {
 | 
				
			||||||
      std::cout<<"Iteration " << iter-1 << " delta too small (" << delta << "<" << tolerance << "), try increasing precision\n";
 | 
					      std::cout<<"Iteration " << iter-1 << " delta too small (" << delta << "<" << tolerance << "), try increasing precision\n";
 | 
				
			||||||
      GRID_ASSERT(0);
 | 
					      assert(0);
 | 
				
			||||||
    };    
 | 
					    };    
 | 
				
			||||||
    GRID_ASSERT( delta>= tolerance );
 | 
					    assert( delta>= tolerance );
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    search();
 | 
					    search();
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -278,7 +278,7 @@ void AlgRemezGeneral::equations(){
 | 
				
			|||||||
      if(num_pows[j] != -1){ *aa++ = z; t++; }
 | 
					      if(num_pows[j] != -1){ *aa++ = z; t++; }
 | 
				
			||||||
      z *= x;
 | 
					      z *= x;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    GRID_ASSERT(t == n+1);
 | 
					    assert(t == n+1);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    z = (bigfloat)1l;
 | 
					    z = (bigfloat)1l;
 | 
				
			||||||
    t = 0;
 | 
					    t = 0;
 | 
				
			||||||
@@ -286,7 +286,7 @@ void AlgRemezGeneral::equations(){
 | 
				
			|||||||
      if(den_pows[j] != -1){ *aa++ = -y * z; t++; }
 | 
					      if(den_pows[j] != -1){ *aa++ = -y * z; t++; }
 | 
				
			||||||
      z *= x;
 | 
					      z *= x;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    GRID_ASSERT(t == d);
 | 
					    assert(t == d);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    B[i] = y * z;		// Right hand side vector
 | 
					    B[i] = y * z;		// Right hand side vector
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -106,7 +106,7 @@ class AlgRemezGeneral{
 | 
				
			|||||||
		  bigfloat (*f)(bigfloat x, void *data), void *data);
 | 
							  bigfloat (*f)(bigfloat x, void *data), void *data);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  inline int getDegree(void) const{ 
 | 
					  inline int getDegree(void) const{ 
 | 
				
			||||||
    GRID_ASSERT(n==d);
 | 
					    assert(n==d);
 | 
				
			||||||
    return n;
 | 
					    return n;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  // Reset the bounds of the approximation
 | 
					  // Reset the bounds of the approximation
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -74,7 +74,7 @@ bigfloat epsilonMobius(bigfloat x, void* data){
 | 
				
			|||||||
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out,
 | 
					void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out,
 | 
				
			||||||
			 const std::vector<RealD> &omega_in, const int Ls_in,
 | 
								 const std::vector<RealD> &omega_in, const int Ls_in,
 | 
				
			||||||
			 const RealD lambda_bound){
 | 
								 const RealD lambda_bound){
 | 
				
			||||||
  GRID_ASSERT(omega_in.size() == Ls_in);
 | 
					  assert(omega_in.size() == Ls_in);
 | 
				
			||||||
  omega_out.resize(Ls_out);
 | 
					  omega_out.resize(Ls_out);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //Use the Remez algorithm to generate the appropriate rational polynomial
 | 
					  //Use the Remez algorithm to generate the appropriate rational polynomial
 | 
				
			||||||
 
 | 
				
			|||||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							@@ -1,300 +0,0 @@
 | 
				
			|||||||
/*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: MomentumProject.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2025
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
*************************************************************************************/
 | 
					 | 
				
			||||||
/*  END LEGAL */
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
/* 
 | 
					 | 
				
			||||||
   MultiMomProject
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Import vectors -> nxyz x (ncomponent x nt)
 | 
					 | 
				
			||||||
   Import complex phases -> nmom x nxy
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   apply = via (possibly batched) GEMM
 | 
					 | 
				
			||||||
*/
 | 
					 | 
				
			||||||
template<class Field, class ComplexField>
 | 
					 | 
				
			||||||
class MomentumProject
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  typedef typename Field::scalar_type   scalar;
 | 
					 | 
				
			||||||
  typedef typename Field::scalar_object scalar_object;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  GridBase *grid;
 | 
					 | 
				
			||||||
  uint64_t nmom;
 | 
					 | 
				
			||||||
  uint64_t nxyz;
 | 
					 | 
				
			||||||
  uint64_t nt;
 | 
					 | 
				
			||||||
  uint64_t nbtw;
 | 
					 | 
				
			||||||
  uint64_t words;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_V;      // 
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_M;      // 
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_P;      // 
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  MomentumProject(){};
 | 
					 | 
				
			||||||
 ~MomentumProject(){ Deallocate(); };
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  void Deallocate(void)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    grid=nullptr;
 | 
					 | 
				
			||||||
    nmom=0;
 | 
					 | 
				
			||||||
    nxyz=0;
 | 
					 | 
				
			||||||
    nt=0;
 | 
					 | 
				
			||||||
    nbtw=0;
 | 
					 | 
				
			||||||
    words=0;
 | 
					 | 
				
			||||||
    BLAS_V.resize(0);
 | 
					 | 
				
			||||||
    BLAS_M.resize(0);
 | 
					 | 
				
			||||||
    BLAS_P.resize(0);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void Allocate(int _nmom,GridBase *_grid)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    grid=_grid;
 | 
					 | 
				
			||||||
    Coordinate ldims = grid->LocalDimensions();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    nmom=_nmom;
 | 
					 | 
				
			||||||
    nt   = ldims[grid->Nd()-1];
 | 
					 | 
				
			||||||
    nxyz = grid->lSites()/nt;
 | 
					 | 
				
			||||||
    words = sizeof(scalar_object)/sizeof(scalar);
 | 
					 | 
				
			||||||
    nbtw = nt * words;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    BLAS_V.resize (nxyz * nt * words );
 | 
					 | 
				
			||||||
    BLAS_M.resize (nmom * nxyz       );
 | 
					 | 
				
			||||||
    BLAS_P.resize (nmom * nt * words );
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void ImportMomenta(const std::vector <ComplexField> &momenta)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    GRID_ASSERT(momenta.size()==nmom);
 | 
					 | 
				
			||||||
    //    might as well just make the momenta here
 | 
					 | 
				
			||||||
    typedef typename Field::vector_object vobj;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int nd = grid->_ndimension;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    uint64_t sz = BLAS_M.size();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GRID_ASSERT(momenta.size()==nmom)
 | 
					 | 
				
			||||||
    GRID_ASSERT(momenta[0].Grid()==grid);
 | 
					 | 
				
			||||||
    GRID_ASSERT(sz = nxyz * nmom);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    Coordinate rdimensions = grid->_rdimensions;
 | 
					 | 
				
			||||||
    Coordinate ldims       = grid->LocalDimensions();
 | 
					 | 
				
			||||||
    int64_t osites         = grid->oSites();
 | 
					 | 
				
			||||||
    Coordinate simd        = grid->_simd_layout;
 | 
					 | 
				
			||||||
    const int Nsimd        = vobj::Nsimd();
 | 
					 | 
				
			||||||
    uint64_t lwords        = words; // local variable for copy in to GPU
 | 
					 | 
				
			||||||
    int64_t Nxyz = nxyz;
 | 
					 | 
				
			||||||
    auto blasData_p  = &BLAS_M[0];
 | 
					 | 
				
			||||||
    for(int m=0;m<momenta.size();m++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      autoView( Data   , momenta[m], AcceleratorRead);
 | 
					 | 
				
			||||||
      auto Data_p  = &Data[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      accelerator_for(xyz,nxyz,1,{
 | 
					 | 
				
			||||||
	  //////////////////////////////////////////
 | 
					 | 
				
			||||||
	  // isite -- map lane within buffer to lane within lattice
 | 
					 | 
				
			||||||
	  ////////////////////////////////////////////
 | 
					 | 
				
			||||||
	    Coordinate lcoor(nd,0);
 | 
					 | 
				
			||||||
	    Lexicographic::CoorFromIndex(lcoor,xyz,ldims);
 | 
					 | 
				
			||||||
	    
 | 
					 | 
				
			||||||
	    Coordinate icoor(nd);
 | 
					 | 
				
			||||||
	    Coordinate ocoor(nd);
 | 
					 | 
				
			||||||
	    for (int d = 0; d < nd; d++) {
 | 
					 | 
				
			||||||
	      icoor[d] = lcoor[d]/rdimensions[d];
 | 
					 | 
				
			||||||
	      ocoor[d] = lcoor[d]%rdimensions[d];
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	    int64_t osite;
 | 
					 | 
				
			||||||
	    int64_t isite;
 | 
					 | 
				
			||||||
	    Lexicographic::IndexFromCoor(ocoor,osite,rdimensions);
 | 
					 | 
				
			||||||
	    Lexicographic::IndexFromCoor(icoor,isite,simd);
 | 
					 | 
				
			||||||
	    
 | 
					 | 
				
			||||||
	    // BLAS_M[nmom][slice_vol]
 | 
					 | 
				
			||||||
	    // Fortran Column major BLAS layout is M_xyz,mom
 | 
					 | 
				
			||||||
	    scalar data = extractLane(isite,Data[osite]);
 | 
					 | 
				
			||||||
	    uint64_t idx = xyz+m*Nxyz;
 | 
					 | 
				
			||||||
	    blasData_p[idx] = data;
 | 
					 | 
				
			||||||
	});
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void ImportVector(Field &vec)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    typedef typename Field::vector_object vobj;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int nd = grid->_ndimension;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    uint64_t sz = BLAS_V.size();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GRID_ASSERT(sz = nxyz * words * nt);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    Coordinate rdimensions = grid->_rdimensions;
 | 
					 | 
				
			||||||
    Coordinate ldims= grid->LocalDimensions();
 | 
					 | 
				
			||||||
    int64_t osites = grid->oSites();
 | 
					 | 
				
			||||||
    Coordinate simd = grid->_simd_layout;
 | 
					 | 
				
			||||||
    const int Nsimd = vobj::Nsimd();
 | 
					 | 
				
			||||||
    uint64_t lwords= words; // local variable for copy in to GPU
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    auto blasData_p  = &BLAS_V[0];
 | 
					 | 
				
			||||||
    autoView( Data   , vec, AcceleratorRead);
 | 
					 | 
				
			||||||
    auto Data_p  = &Data[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int64_t nwords = words;// for capture
 | 
					 | 
				
			||||||
    int64_t Nt     = nt;// for capture
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    accelerator_for(sf,osites,Nsimd,{
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
        {
 | 
					 | 
				
			||||||
	  int lane=acceleratorSIMTlane(Nsimd); // buffer lane
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	  for(int lane=0;lane<Nsimd;lane++) {
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
	  //////////////////////////////////////////
 | 
					 | 
				
			||||||
	  // isite -- map lane within buffer to lane within lattice
 | 
					 | 
				
			||||||
	  ////////////////////////////////////////////
 | 
					 | 
				
			||||||
	    Coordinate lcoor(nd,0);
 | 
					 | 
				
			||||||
	    Coordinate icoor(nd);
 | 
					 | 
				
			||||||
	    Coordinate ocoor(nd);
 | 
					 | 
				
			||||||
	    
 | 
					 | 
				
			||||||
	    Lexicographic::CoorFromIndex(icoor,lane,simd);
 | 
					 | 
				
			||||||
	    Lexicographic::CoorFromIndex(ocoor,sf,rdimensions);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  
 | 
					 | 
				
			||||||
	    int64_t l_xyz = 0;
 | 
					 | 
				
			||||||
	    for (int d = 0; d < nd; d++) {
 | 
					 | 
				
			||||||
	      lcoor[d] = rdimensions[d]*icoor[d] + ocoor[d];
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	    uint64_t l_t   = lcoor[nd-1];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	    Coordinate xyz_coor = lcoor;
 | 
					 | 
				
			||||||
	    xyz_coor[nd-1] =0;
 | 
					 | 
				
			||||||
	    Lexicographic::IndexFromCoor(xyz_coor,l_xyz,ldims);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	    
 | 
					 | 
				
			||||||
	    scalar_object data = extractLane(lane,Data[sf]);
 | 
					 | 
				
			||||||
	    scalar *data_words = (scalar *) &data;
 | 
					 | 
				
			||||||
	    for(int w = 0 ; w < nwords; w++) {
 | 
					 | 
				
			||||||
	      // BLAS_V[slice_vol][nt][words]
 | 
					 | 
				
			||||||
	      // Fortran Column major BLAS layout is V_(t,w)_xyz
 | 
					 | 
				
			||||||
	      uint64_t idx = w+l_t*nwords + l_xyz * nwords * Nt;
 | 
					 | 
				
			||||||
	      blasData_p[idx] = data_words[w];
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
	});
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void ExportMomentumProjection(std::vector<typename Field::scalar_object> &projection)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    projection.resize(nmom*nt);
 | 
					 | 
				
			||||||
    acceleratorCopyFromDevice(&BLAS_P[0],(scalar *)&projection[0],BLAS_P.size()*sizeof(scalar));
 | 
					 | 
				
			||||||
    // Could decide on a layout late?
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  // Row major layout "C" order:
 | 
					 | 
				
			||||||
  // BLAS_V[slice_vol][nt][words]
 | 
					 | 
				
			||||||
  // BLAS_M[nmom][slice_vol]
 | 
					 | 
				
			||||||
  // BLAS_P[nmom][nt][words]
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Fortran Column major BLAS layout is V_(w,t)_xyz
 | 
					 | 
				
			||||||
  // Fortran Column major BLAS layout is M_xyz,mom
 | 
					 | 
				
			||||||
  // Fortran Column major BLAS layout is P_(w,t),mom
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Projected
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // P = (V * M)_(w,t),mom
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  void Project(Field &data,std::vector< typename Field::scalar_object > & projected_gdata)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    double t_import=0;
 | 
					 | 
				
			||||||
    double t_export=0;
 | 
					 | 
				
			||||||
    double t_gemm  =0;
 | 
					 | 
				
			||||||
    double t_allreduce=0;
 | 
					 | 
				
			||||||
    t_import-=usecond();
 | 
					 | 
				
			||||||
    this->ImportVector(data);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector< typename Field::scalar_object > projected_planes;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Vd(1);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Md(1);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Pd(1);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    scalar * Vh = & BLAS_V[0];
 | 
					 | 
				
			||||||
    scalar * Mh = & BLAS_M[0];
 | 
					 | 
				
			||||||
    scalar * Ph = & BLAS_P[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    acceleratorPut(Vd[0],Vh);
 | 
					 | 
				
			||||||
    acceleratorPut(Md[0],Mh);
 | 
					 | 
				
			||||||
    acceleratorPut(Pd[0],Ph);
 | 
					 | 
				
			||||||
    t_import+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridBLAS BLAS;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    // P_im = VMmx . Vxi
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    t_gemm-=usecond();
 | 
					 | 
				
			||||||
    BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, 
 | 
					 | 
				
			||||||
    		     words*nt,nmom,nxyz,
 | 
					 | 
				
			||||||
		     scalar(1.0),
 | 
					 | 
				
			||||||
		     Vd,
 | 
					 | 
				
			||||||
		     Md,
 | 
					 | 
				
			||||||
		     scalar(0.0),  // wipe out result
 | 
					 | 
				
			||||||
		     Pd);
 | 
					 | 
				
			||||||
    BLAS.synchronise();
 | 
					 | 
				
			||||||
    t_gemm+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    t_export-=usecond();
 | 
					 | 
				
			||||||
    ExportMomentumProjection(projected_planes); // resizes
 | 
					 | 
				
			||||||
    t_export+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////
 | 
					 | 
				
			||||||
    // Reduce across MPI ranks
 | 
					 | 
				
			||||||
    /////////////////////////////////
 | 
					 | 
				
			||||||
    int nd = grid->Nd();
 | 
					 | 
				
			||||||
    int gt = grid->GlobalDimensions()[nd-1];
 | 
					 | 
				
			||||||
    int lt = grid->LocalDimensions()[nd-1];
 | 
					 | 
				
			||||||
    projected_gdata.resize(gt*nmom);
 | 
					 | 
				
			||||||
    for(int t=0;t<gt*nmom;t++){ // global Nt array with zeroes for stuff not on this node
 | 
					 | 
				
			||||||
      projected_gdata[t]=Zero();
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    for(int t=0;t<lt;t++){
 | 
					 | 
				
			||||||
    for(int m=0;m<nmom;m++){
 | 
					 | 
				
			||||||
      int st = grid->LocalStarts()[nd-1];
 | 
					 | 
				
			||||||
      projected_gdata[t+st + gt*m] = projected_planes[t+lt*m];
 | 
					 | 
				
			||||||
    }}
 | 
					 | 
				
			||||||
    t_allreduce-=usecond();
 | 
					 | 
				
			||||||
    grid->GlobalSumVector((scalar *)&projected_gdata[0],gt*nmom*words);
 | 
					 | 
				
			||||||
    t_allreduce+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<" MomentumProject t_import  "<<t_import<<"us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<" MomentumProject t_export  "<<t_export<<"us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<" MomentumProject t_gemm    "<<t_gemm<<"us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<" MomentumProject t_reduce  "<<t_allreduce<<"us"<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
@@ -1,376 +0,0 @@
 | 
				
			|||||||
/*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: MultiRHSBlockCGLinalg.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2024
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
*************************************************************************************/
 | 
					 | 
				
			||||||
/*  END LEGAL */
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/* Need helper object for BLAS accelerated mrhs blockCG */
 | 
					 | 
				
			||||||
template<class Field>
 | 
					 | 
				
			||||||
class MultiRHSBlockCGLinalg
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  typedef typename Field::scalar_type   scalar;
 | 
					 | 
				
			||||||
  typedef typename Field::scalar_object scalar_object;
 | 
					 | 
				
			||||||
  typedef typename Field::vector_object vector_object;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_X;      // nrhs x vol -- the sources
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_Y;      // nrhs x vol -- the result
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_C;      // nrhs x nrhs -- the coefficients 
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_Cred;   // nrhs x nrhs x oSites -- reduction buffer
 | 
					 | 
				
			||||||
  deviceVector<scalar *> Xdip;
 | 
					 | 
				
			||||||
  deviceVector<scalar *> Ydip;
 | 
					 | 
				
			||||||
  deviceVector<scalar *> Cdip;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  MultiRHSBlockCGLinalg() {};
 | 
					 | 
				
			||||||
  ~MultiRHSBlockCGLinalg(){ Deallocate(); };
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  void Deallocate(void)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    Xdip.resize(0);
 | 
					 | 
				
			||||||
    Ydip.resize(0);
 | 
					 | 
				
			||||||
    Cdip.resize(0);
 | 
					 | 
				
			||||||
    BLAS_Cred.resize(0);
 | 
					 | 
				
			||||||
    BLAS_C.resize(0);
 | 
					 | 
				
			||||||
    BLAS_X.resize(0);
 | 
					 | 
				
			||||||
    BLAS_Y.resize(0);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::vector<Field> Y_copy(AP.size(),AP[0].Grid());
 | 
					 | 
				
			||||||
    for(int r=0;r<AP.size();r++){
 | 
					 | 
				
			||||||
      Y_copy[r] = Y[r];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    MulMatrix(AP,m,X);
 | 
					 | 
				
			||||||
    for(int r=0;r<AP.size();r++){
 | 
					 | 
				
			||||||
      AP[r] = scale*AP[r]+Y_copy[r];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void MulMatrix(std::vector<Field> &Y, Eigen::MatrixXcd &m , const std::vector<Field> &X)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    typedef typename Field::scalar_type scomplex;
 | 
					 | 
				
			||||||
    GridBase *grid;
 | 
					 | 
				
			||||||
    uint64_t vol;
 | 
					 | 
				
			||||||
    uint64_t words;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int nrhs = Y.size();
 | 
					 | 
				
			||||||
    grid  = X[0].Grid();
 | 
					 | 
				
			||||||
    vol   = grid->lSites();
 | 
					 | 
				
			||||||
    words = sizeof(scalar_object)/sizeof(scalar);
 | 
					 | 
				
			||||||
    int64_t vw = vol * words;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t0 = usecond();
 | 
					 | 
				
			||||||
    BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
 | 
					 | 
				
			||||||
    BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
 | 
					 | 
				
			||||||
    BLAS_C.resize(nrhs * nrhs);// cost free if size doesn't change
 | 
					 | 
				
			||||||
    RealD t1 = usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Copy in the multi-rhs sources
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////
 | 
					 | 
				
			||||||
    for(int r=0;r<nrhs;r++){
 | 
					 | 
				
			||||||
      int64_t offset = r*vw;
 | 
					 | 
				
			||||||
      autoView(x_v,X[r],AcceleratorRead);
 | 
					 | 
				
			||||||
      acceleratorCopyDeviceToDevice(&x_v[0],&BLAS_X[offset],sizeof(scalar_object)*vol);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Assumes Eigen storage contiguous
 | 
					 | 
				
			||||||
    acceleratorCopyToDevice(&m(0,0),&BLAS_C[0],BLAS_C.size()*sizeof(scalar));
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
   * in Fortran column major notation (cuBlas order)
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Xxr = [X1(x)][..][Xn(x)]
 | 
					 | 
				
			||||||
   * Yxr = [Y1(x)][..][Ym(x)]
 | 
					 | 
				
			||||||
   * Y = X . C
 | 
					 | 
				
			||||||
   */
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Xd(1);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Yd(1);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Cd(1);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    scalar * Xh = & BLAS_X[0];
 | 
					 | 
				
			||||||
    scalar * Yh = & BLAS_Y[0];
 | 
					 | 
				
			||||||
    scalar * Ch = & BLAS_C[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    acceleratorPut(Xd[0],Xh);
 | 
					 | 
				
			||||||
    acceleratorPut(Yd[0],Yh);
 | 
					 | 
				
			||||||
    acceleratorPut(Cd[0],Ch);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t2 = usecond();
 | 
					 | 
				
			||||||
    GridBLAS BLAS;
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Y = X*C (transpose?)
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, 
 | 
					 | 
				
			||||||
    		     vw,nrhs,nrhs,
 | 
					 | 
				
			||||||
		     scalar(1.0),
 | 
					 | 
				
			||||||
		     Xd,
 | 
					 | 
				
			||||||
		     Cd,
 | 
					 | 
				
			||||||
		     scalar(0.0),  // wipe out Y
 | 
					 | 
				
			||||||
		     Yd);
 | 
					 | 
				
			||||||
    BLAS.synchronise();
 | 
					 | 
				
			||||||
    RealD t3 = usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Copy back Y = m X 
 | 
					 | 
				
			||||||
    for(int r=0;r<nrhs;r++){
 | 
					 | 
				
			||||||
      int64_t offset = r*vw;
 | 
					 | 
				
			||||||
      autoView(y_v,Y[r],AcceleratorWrite);
 | 
					 | 
				
			||||||
      acceleratorCopyDeviceToDevice(&BLAS_Y[offset],&y_v[0],sizeof(scalar_object)*vol);
 | 
					 | 
				
			||||||
    }    
 | 
					 | 
				
			||||||
    RealD t4 = usecond();
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance << "MulMatrix alloc    took "<< t1-t0<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "MulMatrix preamble took "<< t2-t1<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "MulMatrix blas     took "<< t3-t2<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "MulMatrix copy     took "<< t4-t3<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "MulMatrix total "<< t4-t0<<" us"<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
#if 0    
 | 
					 | 
				
			||||||
    int nrhs;
 | 
					 | 
				
			||||||
    GridBase *grid;
 | 
					 | 
				
			||||||
    uint64_t vol;
 | 
					 | 
				
			||||||
    uint64_t words;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    nrhs = X.size();
 | 
					 | 
				
			||||||
    GRID_ASSERT(X.size()==Y.size());
 | 
					 | 
				
			||||||
    conformable(X[0],Y[0]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    grid  = X[0].Grid();
 | 
					 | 
				
			||||||
    vol   = grid->lSites();
 | 
					 | 
				
			||||||
    words = sizeof(scalar_object)/sizeof(scalar);
 | 
					 | 
				
			||||||
    int64_t vw = vol * words;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t0 = usecond();
 | 
					 | 
				
			||||||
    BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
 | 
					 | 
				
			||||||
    BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
 | 
					 | 
				
			||||||
    BLAS_C.resize(nrhs * nrhs);// cost free if size doesn't change
 | 
					 | 
				
			||||||
    RealD t1 = usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Copy in the multi-rhs sources
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////
 | 
					 | 
				
			||||||
    for(int r=0;r<nrhs;r++){
 | 
					 | 
				
			||||||
      int64_t offset = r*vw;
 | 
					 | 
				
			||||||
      autoView(x_v,X[r],AcceleratorRead);
 | 
					 | 
				
			||||||
      acceleratorCopyDeviceToDevice(&x_v[0],&BLAS_X[offset],sizeof(scalar_object)*vol);
 | 
					 | 
				
			||||||
      autoView(y_v,Y[r],AcceleratorRead);
 | 
					 | 
				
			||||||
      acceleratorCopyDeviceToDevice(&y_v[0],&BLAS_Y[offset],sizeof(scalar_object)*vol);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    RealD t2 = usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
   * in Fortran column major notation (cuBlas order)
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Xxr = [X1(x)][..][Xn(x)]
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Yxr = [Y1(x)][..][Ym(x)]
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * C_rs = X^dag Y
 | 
					 | 
				
			||||||
   */
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Xd(1);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Yd(1);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Cd(1);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    scalar * Xh = & BLAS_X[0];
 | 
					 | 
				
			||||||
    scalar * Yh = & BLAS_Y[0];
 | 
					 | 
				
			||||||
    scalar * Ch = & BLAS_C[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    acceleratorPut(Xd[0],Xh);
 | 
					 | 
				
			||||||
    acceleratorPut(Yd[0],Yh);
 | 
					 | 
				
			||||||
    acceleratorPut(Cd[0],Ch);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridBLAS BLAS;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t3 = usecond();
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    // C_rs = X^dag Y
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N, 
 | 
					 | 
				
			||||||
    		     nrhs,nrhs,vw,
 | 
					 | 
				
			||||||
		     ComplexD(1.0),
 | 
					 | 
				
			||||||
		     Xd,
 | 
					 | 
				
			||||||
		     Yd,
 | 
					 | 
				
			||||||
		     ComplexD(0.0),  // wipe out C
 | 
					 | 
				
			||||||
		     Cd);
 | 
					 | 
				
			||||||
    BLAS.synchronise();
 | 
					 | 
				
			||||||
    RealD t4 = usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<scalar> HOST_C(BLAS_C.size());      // nrhs . nrhs -- the coefficients 
 | 
					 | 
				
			||||||
    acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar));
 | 
					 | 
				
			||||||
    grid->GlobalSumVector(&HOST_C[0],nrhs*nrhs);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t5 = usecond();
 | 
					 | 
				
			||||||
    for(int rr=0;rr<nrhs;rr++){
 | 
					 | 
				
			||||||
      for(int r=0;r<nrhs;r++){
 | 
					 | 
				
			||||||
	int off = r+nrhs*rr;
 | 
					 | 
				
			||||||
	m(r,rr)=HOST_C[off];
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    RealD t6 = usecond();
 | 
					 | 
				
			||||||
    uint64_t M=nrhs;
 | 
					 | 
				
			||||||
    uint64_t N=nrhs;
 | 
					 | 
				
			||||||
    uint64_t K=vw;
 | 
					 | 
				
			||||||
    RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K);
 | 
					 | 
				
			||||||
    RealD flops = 8.0*M*N*K;
 | 
					 | 
				
			||||||
    flops = flops/(t4-t3)/1.e3;
 | 
					 | 
				
			||||||
    bytes = bytes/(t4-t3)/1.e3;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix cp    t2 "<< t2-t1<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< flops<<" GF/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< bytes<<" GB/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix gsum t5 "<< t5-t4<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix cp   t6 "<< t6-t5<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
    int nrhs;
 | 
					 | 
				
			||||||
    GridBase *grid;
 | 
					 | 
				
			||||||
    uint64_t vol;
 | 
					 | 
				
			||||||
    uint64_t words;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    nrhs = X.size();
 | 
					 | 
				
			||||||
    GRID_ASSERT(X.size()==Y.size());
 | 
					 | 
				
			||||||
    conformable(X[0],Y[0]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    grid  = X[0].Grid();
 | 
					 | 
				
			||||||
    int rd0 =  grid->_rdimensions[0] * grid->_rdimensions[1];
 | 
					 | 
				
			||||||
    vol   = grid->oSites()/rd0;
 | 
					 | 
				
			||||||
    words = rd0*sizeof(vector_object)/sizeof(scalar);
 | 
					 | 
				
			||||||
    int64_t vw = vol * words;
 | 
					 | 
				
			||||||
    GRID_ASSERT(vw == grid->lSites()*sizeof(scalar_object)/sizeof(scalar));
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t0 = usecond();
 | 
					 | 
				
			||||||
    BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
 | 
					 | 
				
			||||||
    BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
 | 
					 | 
				
			||||||
    BLAS_Cred.resize(nrhs * nrhs * vol);// cost free if size doesn't change
 | 
					 | 
				
			||||||
    RealD t1 = usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Copy in the multi-rhs sources -- layout batched BLAS ready
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////
 | 
					 | 
				
			||||||
    for(int r=0;r<nrhs;r++){
 | 
					 | 
				
			||||||
      autoView(x_v,X[r],AcceleratorRead);
 | 
					 | 
				
			||||||
      autoView(y_v,Y[r],AcceleratorRead);
 | 
					 | 
				
			||||||
      scalar *from_x=(scalar *)&x_v[0];
 | 
					 | 
				
			||||||
      scalar *from_y=(scalar *)&y_v[0];
 | 
					 | 
				
			||||||
      scalar *BX = &BLAS_X[0];
 | 
					 | 
				
			||||||
      scalar *BY = &BLAS_Y[0];
 | 
					 | 
				
			||||||
      accelerator_for(ssw,vw,1,{
 | 
					 | 
				
			||||||
	  uint64_t ss=ssw/words;
 | 
					 | 
				
			||||||
	  uint64_t  w=ssw%words;
 | 
					 | 
				
			||||||
	  uint64_t offset = w+r*words+ss*nrhs*words; // [ss][rhs][words]
 | 
					 | 
				
			||||||
	  BX[offset] = from_x[ssw];
 | 
					 | 
				
			||||||
	  BY[offset] = from_y[ssw];
 | 
					 | 
				
			||||||
	});
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    RealD t2 = usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
   * in Fortran column major notation (cuBlas order)
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Xxr = [X1(x)][..][Xn(x)]
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Yxr = [Y1(x)][..][Ym(x)]
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * C_rs = X^dag Y
 | 
					 | 
				
			||||||
   */
 | 
					 | 
				
			||||||
    Xdip.resize(vol);
 | 
					 | 
				
			||||||
    Ydip.resize(vol);
 | 
					 | 
				
			||||||
    Cdip.resize(vol);
 | 
					 | 
				
			||||||
    std::vector<scalar *> Xh(vol);
 | 
					 | 
				
			||||||
    std::vector<scalar *> Yh(vol);
 | 
					 | 
				
			||||||
    std::vector<scalar *> Ch(vol);
 | 
					 | 
				
			||||||
    for(uint64_t ss=0;ss<vol;ss++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      Xh[ss] = & BLAS_X[ss*nrhs*words];
 | 
					 | 
				
			||||||
      Yh[ss] = & BLAS_Y[ss*nrhs*words];
 | 
					 | 
				
			||||||
      Ch[ss] = & BLAS_Cred[ss*nrhs*nrhs];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    acceleratorCopyToDevice(&Xh[0],&Xdip[0],vol*sizeof(scalar *));
 | 
					 | 
				
			||||||
    acceleratorCopyToDevice(&Yh[0],&Ydip[0],vol*sizeof(scalar *));
 | 
					 | 
				
			||||||
    acceleratorCopyToDevice(&Ch[0],&Cdip[0],vol*sizeof(scalar *));
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    GridBLAS BLAS;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t3 = usecond();
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    // C_rs = X^dag Y
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N, 
 | 
					 | 
				
			||||||
    		     nrhs,nrhs,words,
 | 
					 | 
				
			||||||
		     ComplexD(1.0),
 | 
					 | 
				
			||||||
		     Xdip,
 | 
					 | 
				
			||||||
		     Ydip,
 | 
					 | 
				
			||||||
		     ComplexD(0.0),  // wipe out C
 | 
					 | 
				
			||||||
		     Cdip);
 | 
					 | 
				
			||||||
    BLAS.synchronise();
 | 
					 | 
				
			||||||
    RealD t4 = usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<scalar> HOST_C(BLAS_Cred.size());      // nrhs . nrhs -- the coefficients 
 | 
					 | 
				
			||||||
    acceleratorCopyFromDevice(&BLAS_Cred[0],&HOST_C[0],BLAS_Cred.size()*sizeof(scalar));
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t5 = usecond();
 | 
					 | 
				
			||||||
    m = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
					 | 
				
			||||||
    for(int ss=0;ss<vol;ss++){
 | 
					 | 
				
			||||||
      Eigen::Map<Eigen::MatrixXcd> eC((std::complex<double> *)&HOST_C[ss*nrhs*nrhs],nrhs,nrhs);
 | 
					 | 
				
			||||||
      m = m + eC;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    RealD t6l = usecond();
 | 
					 | 
				
			||||||
    grid->GlobalSumVector((scalar *) &m(0,0),nrhs*nrhs);
 | 
					 | 
				
			||||||
    RealD t6 = usecond();
 | 
					 | 
				
			||||||
    uint64_t M=nrhs;
 | 
					 | 
				
			||||||
    uint64_t N=nrhs;
 | 
					 | 
				
			||||||
    uint64_t K=vw;
 | 
					 | 
				
			||||||
    RealD xybytes = grid->lSites()*sizeof(scalar_object);
 | 
					 | 
				
			||||||
    RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K);
 | 
					 | 
				
			||||||
    RealD flops = 8.0*M*N*K;
 | 
					 | 
				
			||||||
    flops = flops/(t4-t3)/1.e3;
 | 
					 | 
				
			||||||
    bytes = bytes/(t4-t3)/1.e3;
 | 
					 | 
				
			||||||
    xybytes = 4*xybytes/(t2-t1)/1.e3;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix cp    t2 "<< t2-t1<<" us "<<xybytes<<" GB/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< flops<<" GF/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< bytes<<" GB/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix cp     t5 "<< t5-t4<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix lsum   t6l "<< t6l-t5<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix gsum   t6 "<< t6-t6l<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
@@ -1,513 +0,0 @@
 | 
				
			|||||||
/*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: MultiRHSDeflation.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2023
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
*************************************************************************************/
 | 
					 | 
				
			||||||
/*  END LEGAL */
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/* 
 | 
					 | 
				
			||||||
   MultiRHS block projection
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Import basis -> nblock x nbasis x  (block x internal) 
 | 
					 | 
				
			||||||
   Import vector of fine lattice objects -> nblock x nrhs x (block x internal) 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   => coarse_(nrhs x nbasis )^block = via batched GEMM
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
//template<class vobj,class CComplex,int nbasis,class VLattice>
 | 
					 | 
				
			||||||
//inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
					 | 
				
			||||||
//			   const VLattice &fineData,
 | 
					 | 
				
			||||||
//			   const VLattice &Basis)
 | 
					 | 
				
			||||||
*/
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class Field>
 | 
					 | 
				
			||||||
class MultiRHSBlockProject
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  typedef typename Field::scalar_type   scalar;
 | 
					 | 
				
			||||||
  typedef typename Field::scalar_object scalar_object;
 | 
					 | 
				
			||||||
  typedef Field Fermion;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int nbasis;
 | 
					 | 
				
			||||||
  GridBase *coarse_grid;
 | 
					 | 
				
			||||||
  GridBase *fine_grid;
 | 
					 | 
				
			||||||
  uint64_t block_vol;
 | 
					 | 
				
			||||||
  uint64_t fine_vol;
 | 
					 | 
				
			||||||
  uint64_t coarse_vol;
 | 
					 | 
				
			||||||
  uint64_t words;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  // Row major layout "C" order:
 | 
					 | 
				
			||||||
  // BLAS_V[coarse_vol][nbasis][block_vol][words]
 | 
					 | 
				
			||||||
  // BLAS_F[coarse_vol][nrhs][block_vol][words]
 | 
					 | 
				
			||||||
  // BLAS_C[coarse_vol][nrhs][nbasis]
 | 
					 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
   * in Fortran column major notation (cuBlas order)
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Vxb = [v1(x)][..][vn(x)] ... x coarse vol
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Fxr = [r1(x)][..][rm(x)] ... x coarse vol
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Block project:
 | 
					 | 
				
			||||||
   * C_br = V^dag F x coarse vol
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Block promote:
 | 
					 | 
				
			||||||
   * F_xr = Vxb Cbr x coarse_vol
 | 
					 | 
				
			||||||
   */  
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_V;      // words * block_vol * nbasis x coarse_vol 
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_F;      // nrhs x fine_vol * words   -- the sources
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_C;      // nrhs x coarse_vol * nbasis -- the coarse coeffs
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  RealD blasNorm2(deviceVector<scalar> &blas)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    scalar ss(0.0);
 | 
					 | 
				
			||||||
    std::vector<scalar> tmp(blas.size());
 | 
					 | 
				
			||||||
    acceleratorCopyFromDevice(&blas[0],&tmp[0],blas.size()*sizeof(scalar));
 | 
					 | 
				
			||||||
    for(int64_t s=0;s<blas.size();s++){
 | 
					 | 
				
			||||||
      ss=ss+tmp[s]*adj(tmp[s]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    coarse_grid->GlobalSum(ss);
 | 
					 | 
				
			||||||
    return real(ss);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  MultiRHSBlockProject(){};
 | 
					 | 
				
			||||||
 ~MultiRHSBlockProject(){ Deallocate(); };
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  void Deallocate(void)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    nbasis=0;
 | 
					 | 
				
			||||||
    coarse_grid=nullptr;
 | 
					 | 
				
			||||||
    fine_grid=nullptr;
 | 
					 | 
				
			||||||
    fine_vol=0;
 | 
					 | 
				
			||||||
    block_vol=0;
 | 
					 | 
				
			||||||
    coarse_vol=0;
 | 
					 | 
				
			||||||
    words=0;
 | 
					 | 
				
			||||||
    BLAS_V.resize(0);
 | 
					 | 
				
			||||||
    BLAS_F.resize(0);
 | 
					 | 
				
			||||||
    BLAS_C.resize(0);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void Allocate(int _nbasis,GridBase *_fgrid,GridBase *_cgrid)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    nbasis=_nbasis;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    fine_grid=_fgrid;
 | 
					 | 
				
			||||||
    coarse_grid=_cgrid;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    fine_vol   = fine_grid->lSites();
 | 
					 | 
				
			||||||
    coarse_vol = coarse_grid->lSites();
 | 
					 | 
				
			||||||
    block_vol = fine_vol/coarse_vol;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    words = sizeof(scalar_object)/sizeof(scalar);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    BLAS_V.resize (fine_vol * words * nbasis );
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void ImportFineGridVectors(std::vector <Field > &vecs, deviceVector<scalar> &blas)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int nvec = vecs.size();
 | 
					 | 
				
			||||||
    typedef typename Field::vector_object vobj;
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage <<" BlockProjector importing "<<nvec<< " fine grid vectors" <<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GRID_ASSERT(vecs[0].Grid()==fine_grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    subdivides(coarse_grid,fine_grid); // require they map
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int _ndimension = coarse_grid->_ndimension;
 | 
					 | 
				
			||||||
    GRID_ASSERT(block_vol == fine_grid->oSites() / coarse_grid->oSites());
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    Coordinate  block_r      (_ndimension);
 | 
					 | 
				
			||||||
    for(int d=0 ; d<_ndimension;d++){
 | 
					 | 
				
			||||||
      block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    uint64_t sz = blas.size();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    acceleratorMemSet(&blas[0],0,blas.size()*sizeof(scalar));
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Coordinate fine_rdimensions = fine_grid->_rdimensions;
 | 
					 | 
				
			||||||
    Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
 | 
					 | 
				
			||||||
    int64_t bv= block_vol;
 | 
					 | 
				
			||||||
    for(int v=0;v<vecs.size();v++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      //      std::cout << " BlockProjector importing vector"<<v<<" "<<norm2(vecs[v])<<std::endl;
 | 
					 | 
				
			||||||
      autoView( fineData   , vecs[v], AcceleratorRead);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      auto blasData_p  = &blas[0];
 | 
					 | 
				
			||||||
      auto fineData_p  = &fineData[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      int64_t osites = fine_grid->oSites();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // loop over fine sites
 | 
					 | 
				
			||||||
      const int Nsimd = vobj::Nsimd();
 | 
					 | 
				
			||||||
      //      std::cout << "sz "<<sz<<std::endl;
 | 
					 | 
				
			||||||
      //      std::cout << "prod "<<Nsimd * coarse_grid->oSites() * block_vol * nvec * words<<std::endl;
 | 
					 | 
				
			||||||
      GRID_ASSERT(sz == Nsimd * coarse_grid->oSites() * block_vol * nvec * words);
 | 
					 | 
				
			||||||
      uint64_t lwords= words; // local variable for copy in to GPU
 | 
					 | 
				
			||||||
      accelerator_for(sf,osites,Nsimd,{
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
        {
 | 
					 | 
				
			||||||
	  int lane=acceleratorSIMTlane(Nsimd); // buffer lane
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	  for(int lane=0;lane<Nsimd;lane++) {
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
	  // One thread per fine site
 | 
					 | 
				
			||||||
	  Coordinate coor_f(_ndimension);
 | 
					 | 
				
			||||||
	  Coordinate coor_b(_ndimension);
 | 
					 | 
				
			||||||
	  Coordinate coor_c(_ndimension);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  // Fine site to fine coor
 | 
					 | 
				
			||||||
	  Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d];
 | 
					 | 
				
			||||||
	  for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d];
 | 
					 | 
				
			||||||
	  
 | 
					 | 
				
			||||||
	  int sc;// coarse site
 | 
					 | 
				
			||||||
	  int sb;// block site
 | 
					 | 
				
			||||||
	  Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions);
 | 
					 | 
				
			||||||
	  Lexicographic::IndexFromCoor(coor_b,sb,block_r);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
          scalar_object data = extractLane(lane,fineData[sf]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  // BLAS layout address calculation
 | 
					 | 
				
			||||||
	  // words * block_vol * nbasis x coarse_vol
 | 
					 | 
				
			||||||
	  // coarse oSite x block vole x lanes
 | 
					 | 
				
			||||||
	  int64_t site = (lane*osites + sc*bv)*nvec
 | 
					 | 
				
			||||||
   	               + v*bv
 | 
					 | 
				
			||||||
	               + sb;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  //	  GRID_ASSERT(site*lwords<sz);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  *ptr = data;
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
      });
 | 
					 | 
				
			||||||
      //      std::cout << " import fine Blas norm "<<blasNorm2(blas)<<std::endl;
 | 
					 | 
				
			||||||
      //      std::cout << " BlockProjector imported vector"<<v<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void ExportFineGridVectors(std::vector <Field> &vecs, deviceVector<scalar> &blas)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    typedef typename Field::vector_object vobj;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int nvec = vecs.size();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GRID_ASSERT(vecs[0].Grid()==fine_grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    subdivides(coarse_grid,fine_grid); // require they map
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int _ndimension = coarse_grid->_ndimension;
 | 
					 | 
				
			||||||
    GRID_ASSERT(block_vol == fine_grid->oSites() / coarse_grid->oSites());
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    Coordinate  block_r      (_ndimension);
 | 
					 | 
				
			||||||
    for(int d=0 ; d<_ndimension;d++){
 | 
					 | 
				
			||||||
      block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    Coordinate fine_rdimensions = fine_grid->_rdimensions;
 | 
					 | 
				
			||||||
    Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //    std::cout << " export fine Blas norm "<<blasNorm2(blas)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int64_t bv= block_vol;
 | 
					 | 
				
			||||||
    for(int v=0;v<vecs.size();v++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      autoView( fineData   , vecs[v], AcceleratorWrite);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      auto blasData_p  = &blas[0];
 | 
					 | 
				
			||||||
      auto fineData_p    = &fineData[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      int64_t osites = fine_grid->oSites();
 | 
					 | 
				
			||||||
      uint64_t lwords = words;
 | 
					 | 
				
			||||||
      //      std::cout << " Nsimd is "<<vobj::Nsimd() << std::endl;
 | 
					 | 
				
			||||||
      //      std::cout << " lwords is "<<lwords << std::endl;
 | 
					 | 
				
			||||||
      //      std::cout << " sizeof(scalar_object) is "<<sizeof(scalar_object) << std::endl;
 | 
					 | 
				
			||||||
      // loop over fine sites
 | 
					 | 
				
			||||||
      accelerator_for(sf,osites,vobj::Nsimd(),{
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
        {
 | 
					 | 
				
			||||||
	  int lane=acceleratorSIMTlane(vobj::Nsimd()); // buffer lane
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	  for(int lane=0;lane<vobj::Nsimd();lane++) {
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
	  // One thread per fine site
 | 
					 | 
				
			||||||
	  Coordinate coor_f(_ndimension);
 | 
					 | 
				
			||||||
	  Coordinate coor_b(_ndimension);
 | 
					 | 
				
			||||||
	  Coordinate coor_c(_ndimension);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d];
 | 
					 | 
				
			||||||
	  for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d];
 | 
					 | 
				
			||||||
	  
 | 
					 | 
				
			||||||
	  int sc;
 | 
					 | 
				
			||||||
	  int sb;
 | 
					 | 
				
			||||||
	  Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions);
 | 
					 | 
				
			||||||
	  Lexicographic::IndexFromCoor(coor_b,sb,block_r);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  // BLAS layout address calculation
 | 
					 | 
				
			||||||
	  // words * block_vol * nbasis x coarse_vol 	  
 | 
					 | 
				
			||||||
	  int64_t site = (lane*osites + sc*bv)*nvec
 | 
					 | 
				
			||||||
   	               + v*bv
 | 
					 | 
				
			||||||
	               + sb;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  scalar_object data = *ptr;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  insertLane(lane,fineData[sf],data);
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
      });
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  template<class vobj>
 | 
					 | 
				
			||||||
  void ImportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int nvec = vecs.size();
 | 
					 | 
				
			||||||
    typedef typename vobj::scalar_object coarse_scalar_object;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //    std::cout << " BlockProjector importing "<<nvec<< " coarse grid vectors" <<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GRID_ASSERT(vecs[0].Grid()==coarse_grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int _ndimension = coarse_grid->_ndimension;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    uint64_t sz = blas.size();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    for(int v=0;v<vecs.size();v++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      //      std::cout << " BlockProjector importing coarse vector"<<v<<" "<<norm2(vecs[v])<<std::endl;
 | 
					 | 
				
			||||||
      autoView( coarseData   , vecs[v], AcceleratorRead);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      auto blasData_p  = &blas[0];
 | 
					 | 
				
			||||||
      auto coarseData_p  = &coarseData[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      int64_t osites = coarse_grid->oSites();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // loop over fine sites
 | 
					 | 
				
			||||||
      const int Nsimd = vobj::Nsimd();
 | 
					 | 
				
			||||||
      uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar);
 | 
					 | 
				
			||||||
      GRID_ASSERT(cwords==nbasis);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      accelerator_for(sc,osites,Nsimd,{
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
        {
 | 
					 | 
				
			||||||
	  int lane=acceleratorSIMTlane(Nsimd); // buffer lane
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	  for(int lane=0;lane<Nsimd;lane++) {
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
           // C_br per site
 | 
					 | 
				
			||||||
	    int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords;
 | 
					 | 
				
			||||||
	    
 | 
					 | 
				
			||||||
	    coarse_scalar_object data = extractLane(lane,coarseData[sc]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	    coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	    *ptr = data;
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
      });
 | 
					 | 
				
			||||||
      //      std::cout << " import coarsee Blas norm "<<blasNorm2(blas)<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  template<class vobj>
 | 
					 | 
				
			||||||
  void ExportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int nvec = vecs.size();
 | 
					 | 
				
			||||||
    typedef typename vobj::scalar_object coarse_scalar_object;
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage<<" BlockProjector exporting "<<nvec<< " coarse grid vectors" <<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GRID_ASSERT(vecs[0].Grid()==coarse_grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int _ndimension = coarse_grid->_ndimension;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    uint64_t sz = blas.size();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    //    std::cout << " export coarsee Blas norm "<<blasNorm2(blas)<<std::endl;
 | 
					 | 
				
			||||||
    for(int v=0;v<vecs.size();v++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      //  std::cout << " BlockProjector exporting coarse vector"<<v<<std::endl;
 | 
					 | 
				
			||||||
      autoView( coarseData   , vecs[v], AcceleratorWrite);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      auto blasData_p  = &blas[0];
 | 
					 | 
				
			||||||
      auto coarseData_p  = &coarseData[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      int64_t osites = coarse_grid->oSites();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // loop over fine sites
 | 
					 | 
				
			||||||
      const int Nsimd = vobj::Nsimd();
 | 
					 | 
				
			||||||
      uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar);
 | 
					 | 
				
			||||||
      GRID_ASSERT(cwords==nbasis);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      accelerator_for(sc,osites,Nsimd,{
 | 
					 | 
				
			||||||
	  // Wrap in a macro "FOR_ALL_LANES(lane,{ ... });
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
        {
 | 
					 | 
				
			||||||
	  int lane=acceleratorSIMTlane(Nsimd); // buffer lane
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	  for(int lane=0;lane<Nsimd;lane++) {
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
	    int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords;
 | 
					 | 
				
			||||||
	    coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site];
 | 
					 | 
				
			||||||
	    coarse_scalar_object data = *ptr;
 | 
					 | 
				
			||||||
	    insertLane(lane,coarseData[sc],data);
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
      });
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void ImportBasis(std::vector < Field > &vecs)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    //    std::cout << " BlockProjector Import basis size "<<vecs.size()<<std::endl;
 | 
					 | 
				
			||||||
    ImportFineGridVectors(vecs,BLAS_V);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  template<class cobj>
 | 
					 | 
				
			||||||
  void blockProject(std::vector<Field> &fine,std::vector< Lattice<cobj> > & coarse)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int nrhs=fine.size();
 | 
					 | 
				
			||||||
    int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar);
 | 
					 | 
				
			||||||
    //    std::cout << "blockProject nbasis " <<nbasis<<" " << _nbasis<<std::endl;
 | 
					 | 
				
			||||||
    GRID_ASSERT(nbasis==_nbasis);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    BLAS_F.resize (fine_vol * words * nrhs );
 | 
					 | 
				
			||||||
    BLAS_C.resize (coarse_vol * nbasis * nrhs );
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Copy in the multi-rhs sources to same data layout
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////
 | 
					 | 
				
			||||||
    //    std::cout << "BlockProject import fine"<<std::endl;
 | 
					 | 
				
			||||||
    ImportFineGridVectors(fine,BLAS_F);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Vd(coarse_vol);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Fd(coarse_vol);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Cd(coarse_vol);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //    std::cout << "BlockProject pointers"<<std::endl;
 | 
					 | 
				
			||||||
    for(int c=0;c<coarse_vol;c++){
 | 
					 | 
				
			||||||
      // BLAS_V[coarse_vol][nbasis][block_vol][words]
 | 
					 | 
				
			||||||
      // BLAS_F[coarse_vol][nrhs][block_vol][words]
 | 
					 | 
				
			||||||
      // BLAS_C[coarse_vol][nrhs][nbasis]
 | 
					 | 
				
			||||||
      scalar * Vh = & BLAS_V[c*nbasis*block_vol*words];
 | 
					 | 
				
			||||||
      scalar * Fh = & BLAS_F[c*nrhs*block_vol*words];
 | 
					 | 
				
			||||||
      scalar * Ch = & BLAS_C[c*nrhs*nbasis];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      acceleratorPut(Vd[c],Vh);
 | 
					 | 
				
			||||||
      acceleratorPut(Fd[c],Fh);
 | 
					 | 
				
			||||||
      acceleratorPut(Cd[c],Ch);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridBLAS BLAS;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //    std::cout << "BlockProject BLAS"<<std::endl;
 | 
					 | 
				
			||||||
    int64_t vw = block_vol * words;
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    // C_br = V^dag R
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N, 
 | 
					 | 
				
			||||||
    		     nbasis,nrhs,vw,
 | 
					 | 
				
			||||||
		     scalar(1.0),
 | 
					 | 
				
			||||||
		     Vd,
 | 
					 | 
				
			||||||
		     Fd,
 | 
					 | 
				
			||||||
		     scalar(0.0),  // wipe out C
 | 
					 | 
				
			||||||
		     Cd);
 | 
					 | 
				
			||||||
    BLAS.synchronise();
 | 
					 | 
				
			||||||
    //    std::cout << "BlockProject done"<<std::endl;
 | 
					 | 
				
			||||||
    ExportCoarseGridVectors(coarse, BLAS_C);
 | 
					 | 
				
			||||||
    //    std::cout << "BlockProject done"<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  template<class cobj>
 | 
					 | 
				
			||||||
  void blockPromote(std::vector<Field> &fine,std::vector<Lattice<cobj> > & coarse)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int nrhs=fine.size();
 | 
					 | 
				
			||||||
    int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar);
 | 
					 | 
				
			||||||
    GRID_ASSERT(nbasis==_nbasis);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    BLAS_F.resize (fine_vol * words * nrhs );
 | 
					 | 
				
			||||||
    BLAS_C.resize (coarse_vol * nbasis * nrhs );
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ImportCoarseGridVectors(coarse, BLAS_C);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridBLAS BLAS;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Vd(coarse_vol);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Fd(coarse_vol);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Cd(coarse_vol);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int c=0;c<coarse_vol;c++){
 | 
					 | 
				
			||||||
      // BLAS_V[coarse_vol][nbasis][block_vol][words]
 | 
					 | 
				
			||||||
      // BLAS_F[coarse_vol][nrhs][block_vol][words]
 | 
					 | 
				
			||||||
      // BLAS_C[coarse_vol][nrhs][nbasis]
 | 
					 | 
				
			||||||
      scalar * Vh = & BLAS_V[c*nbasis*block_vol*words];
 | 
					 | 
				
			||||||
      scalar * Fh = & BLAS_F[c*nrhs*block_vol*words];
 | 
					 | 
				
			||||||
      scalar * Ch = & BLAS_C[c*nrhs*nbasis];
 | 
					 | 
				
			||||||
      acceleratorPut(Vd[c],Vh);
 | 
					 | 
				
			||||||
      acceleratorPut(Fd[c],Fh);
 | 
					 | 
				
			||||||
      acceleratorPut(Cd[c],Ch);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Block promote:
 | 
					 | 
				
			||||||
    // F_xr = Vxb Cbr (x coarse_vol)
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int64_t vw = block_vol * words;
 | 
					 | 
				
			||||||
    BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, 
 | 
					 | 
				
			||||||
    		     vw,nrhs,nbasis,
 | 
					 | 
				
			||||||
		     scalar(1.0),
 | 
					 | 
				
			||||||
		     Vd,
 | 
					 | 
				
			||||||
		     Cd,
 | 
					 | 
				
			||||||
		     scalar(0.0),  // wipe out C
 | 
					 | 
				
			||||||
		     Fd);
 | 
					 | 
				
			||||||
    BLAS.synchronise();
 | 
					 | 
				
			||||||
    //    std::cout << " blas call done"<<std::endl;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    ExportFineGridVectors(fine, BLAS_F);
 | 
					 | 
				
			||||||
    //    std::cout << " exported "<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
@@ -1,233 +0,0 @@
 | 
				
			|||||||
/*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: MultiRHSDeflation.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2023
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
*************************************************************************************/
 | 
					 | 
				
			||||||
/*  END LEGAL */
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/* Need helper object for BLAS accelerated mrhs projection
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   i) MultiRHS Deflation
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Import Evecs -> nev x vol x internal 
 | 
					 | 
				
			||||||
   Import vector of Lattice objects -> nrhs x vol x internal
 | 
					 | 
				
			||||||
   => Cij (nrhs x Nev) via GEMM.
 | 
					 | 
				
			||||||
   => Guess  (nrhs x vol x internal)  = C x evecs (via GEMM)
 | 
					 | 
				
			||||||
   Export
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   
 | 
					 | 
				
			||||||
   ii) MultiRHS block projection
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Import basis -> nblock x nbasis x  (block x internal) 
 | 
					 | 
				
			||||||
   Import vector of fine lattice objects -> nblock x nrhs x (block x internal) 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   => coarse_(nrhs x nbasis )^block = via batched GEMM
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   iii)   Alternate interface: 
 | 
					 | 
				
			||||||
   Import higher dim Lattice object-> vol x nrhs layout
 | 
					 | 
				
			||||||
   
 | 
					 | 
				
			||||||
*/
 | 
					 | 
				
			||||||
template<class Field>
 | 
					 | 
				
			||||||
class MultiRHSDeflation
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  typedef typename Field::scalar_type   scalar;
 | 
					 | 
				
			||||||
  typedef typename Field::scalar_object scalar_object;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int nev;
 | 
					 | 
				
			||||||
  std::vector<RealD> eval;
 | 
					 | 
				
			||||||
  GridBase *grid;
 | 
					 | 
				
			||||||
  uint64_t vol;
 | 
					 | 
				
			||||||
  uint64_t words;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_E;      //  nev x vol -- the eigenbasis   (up to a 1/sqrt(lambda))
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_R;      // nrhs x vol -- the sources
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_G;      // nrhs x vol -- the guess
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_C;      // nrhs x nev -- the coefficients 
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  MultiRHSDeflation(){};
 | 
					 | 
				
			||||||
  ~MultiRHSDeflation(){ Deallocate(); };
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  void Deallocate(void)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    nev=0;
 | 
					 | 
				
			||||||
    grid=nullptr;
 | 
					 | 
				
			||||||
    vol=0;
 | 
					 | 
				
			||||||
    words=0;
 | 
					 | 
				
			||||||
    BLAS_E.resize(0);
 | 
					 | 
				
			||||||
    BLAS_R.resize(0);
 | 
					 | 
				
			||||||
    BLAS_C.resize(0);
 | 
					 | 
				
			||||||
    BLAS_G.resize(0);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void Allocate(int _nev,GridBase *_grid)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    nev=_nev;
 | 
					 | 
				
			||||||
    grid=_grid;
 | 
					 | 
				
			||||||
    vol   = grid->lSites();
 | 
					 | 
				
			||||||
    words = sizeof(scalar_object)/sizeof(scalar);
 | 
					 | 
				
			||||||
    eval.resize(nev);
 | 
					 | 
				
			||||||
    BLAS_E.resize (vol * words * nev );
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << " Allocate for "<<nev<<" eigenvectors and volume "<<vol<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void ImportEigenVector(Field &evec,RealD &_eval, int ev)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    //    std::cout << " ev " <<ev<<" eval "<<_eval<< std::endl;
 | 
					 | 
				
			||||||
    GRID_ASSERT(ev<eval.size());
 | 
					 | 
				
			||||||
    eval[ev] = _eval;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int64_t offset = ev*vol*words;
 | 
					 | 
				
			||||||
    autoView(v,evec,AcceleratorRead);
 | 
					 | 
				
			||||||
    acceleratorCopyDeviceToDevice(&v[0],&BLAS_E[offset],sizeof(scalar_object)*vol);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    ImportEigenBasis(evec,_eval,0,evec.size());
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  // Could use to import a batch of eigenvectors
 | 
					 | 
				
			||||||
  void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval, int _ev0, int _nev)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    GRID_ASSERT(_ev0+_nev<=evec.size());
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Allocate(_nev,evec[0].Grid());
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    // Imports a sub-batch of eigenvectors, _ev0, ..., _ev0+_nev-1
 | 
					 | 
				
			||||||
    for(int e=0;e<nev;e++){
 | 
					 | 
				
			||||||
      std::cout << "Importing eigenvector "<<e<<" evalue "<<_eval[_ev0+e]<<std::endl;
 | 
					 | 
				
			||||||
      ImportEigenVector(evec[_ev0+e],_eval[_ev0+e],e);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void DeflateSources(std::vector<Field> &source,std::vector<Field> & guess)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int nrhs = source.size();
 | 
					 | 
				
			||||||
    GRID_ASSERT(source.size()==guess.size());
 | 
					 | 
				
			||||||
    GRID_ASSERT(grid == guess[0].Grid());
 | 
					 | 
				
			||||||
    conformable(guess[0],source[0]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int64_t vw = vol * words;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t0 = usecond();
 | 
					 | 
				
			||||||
    BLAS_R.resize(nrhs * vw); // cost free if size doesn't change
 | 
					 | 
				
			||||||
    BLAS_G.resize(nrhs * vw); // cost free if size doesn't change
 | 
					 | 
				
			||||||
    BLAS_C.resize(nev * nrhs);// cost free if size doesn't change
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Copy in the multi-rhs sources
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////
 | 
					 | 
				
			||||||
    //    for(int r=0;r<nrhs;r++){
 | 
					 | 
				
			||||||
    //      std::cout << " source["<<r<<"] = "<<norm2(source[r])<<std::endl;
 | 
					 | 
				
			||||||
    //    }
 | 
					 | 
				
			||||||
    for(int r=0;r<nrhs;r++){
 | 
					 | 
				
			||||||
      int64_t offset = r*vw;
 | 
					 | 
				
			||||||
      autoView(v,source[r],AcceleratorRead);
 | 
					 | 
				
			||||||
      acceleratorCopyDeviceToDevice(&v[0],&BLAS_R[offset],sizeof(scalar_object)*vol);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
   * in Fortran column major notation (cuBlas order)
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Exe = [e1(x)][..][en(x)]
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Rxr = [r1(x)][..][rm(x)]
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * C_er = E^dag R
 | 
					 | 
				
			||||||
   * C_er = C_er / lambda_e 
 | 
					 | 
				
			||||||
   * G_xr = Exe Cer
 | 
					 | 
				
			||||||
   */
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Ed(1);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Rd(1);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Cd(1);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Gd(1);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    scalar * Eh = & BLAS_E[0];
 | 
					 | 
				
			||||||
    scalar * Rh = & BLAS_R[0];
 | 
					 | 
				
			||||||
    scalar * Ch = & BLAS_C[0];
 | 
					 | 
				
			||||||
    scalar * Gh = & BLAS_G[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    acceleratorPut(Ed[0],Eh);
 | 
					 | 
				
			||||||
    acceleratorPut(Rd[0],Rh);
 | 
					 | 
				
			||||||
    acceleratorPut(Cd[0],Ch);
 | 
					 | 
				
			||||||
    acceleratorPut(Gd[0],Gh);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridBLAS BLAS;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    // C_er = E^dag R
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N, 
 | 
					 | 
				
			||||||
    		     nev,nrhs,vw,
 | 
					 | 
				
			||||||
		     scalar(1.0),
 | 
					 | 
				
			||||||
		     Ed,
 | 
					 | 
				
			||||||
		     Rd,
 | 
					 | 
				
			||||||
		     scalar(0.0),  // wipe out C
 | 
					 | 
				
			||||||
		     Cd);
 | 
					 | 
				
			||||||
    BLAS.synchronise();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GRID_ASSERT(BLAS_C.size()==nev*nrhs);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<scalar> HOST_C(BLAS_C.size());      // nrhs . nev -- the coefficients 
 | 
					 | 
				
			||||||
    acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar));
 | 
					 | 
				
			||||||
    grid->GlobalSumVector(&HOST_C[0],nev*nrhs);
 | 
					 | 
				
			||||||
    for(int e=0;e<nev;e++){
 | 
					 | 
				
			||||||
      RealD lam(1.0/eval[e]);
 | 
					 | 
				
			||||||
      for(int r=0;r<nrhs;r++){
 | 
					 | 
				
			||||||
	int off = e+nev*r;
 | 
					 | 
				
			||||||
	HOST_C[off]=HOST_C[off] * lam;
 | 
					 | 
				
			||||||
	//	std::cout << "C["<<e<<"]["<<r<<"] ="<<HOST_C[off]<< " eval[e] "<<eval[e] <<std::endl;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    acceleratorCopyToDevice(&HOST_C[0],&BLAS_C[0],BLAS_C.size()*sizeof(scalar));
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Guess G_xr = Exe Cer
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, 
 | 
					 | 
				
			||||||
		     vw,nrhs,nev,
 | 
					 | 
				
			||||||
		     scalar(1.0),
 | 
					 | 
				
			||||||
		     Ed, // x . nev
 | 
					 | 
				
			||||||
		     Cd, // nev . nrhs
 | 
					 | 
				
			||||||
		     scalar(0.0),
 | 
					 | 
				
			||||||
		     Gd);
 | 
					 | 
				
			||||||
    BLAS.synchronise();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ///////////////////////////////////////
 | 
					 | 
				
			||||||
    // Copy out the multirhs
 | 
					 | 
				
			||||||
    ///////////////////////////////////////
 | 
					 | 
				
			||||||
    for(int r=0;r<nrhs;r++){
 | 
					 | 
				
			||||||
      int64_t offset = r*vw;
 | 
					 | 
				
			||||||
      autoView(v,guess[r],AcceleratorWrite);
 | 
					 | 
				
			||||||
      acceleratorCopyDeviceToDevice(&BLAS_G[offset],&v[0],sizeof(scalar_object)*vol);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    RealD t1 = usecond();
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "MultiRHSDeflation for "<<nrhs<<" sources with "<<nev<<" eigenvectors took " << (t1-t0)/1e3 <<" ms"<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
@@ -33,111 +33,109 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
   * Script A = SolverMatrix 
 | 
					   * Script A = SolverMatrix 
 | 
				
			||||||
   * Script P = Preconditioner
 | 
					   * Script P = Preconditioner
 | 
				
			||||||
   *
 | 
					   *
 | 
				
			||||||
 | 
					   * Deflation methods considered
 | 
				
			||||||
 | 
					   *      -- Solve P A x = P b        [ like Luscher ]
 | 
				
			||||||
 | 
					   * DEF-1        M P A x = M P b     [i.e. left precon]
 | 
				
			||||||
 | 
					   * DEF-2        P^T M A x = P^T M b
 | 
				
			||||||
 | 
					   * ADEF-1       Preconditioner = M P + Q      [ Q + M + M A Q]
 | 
				
			||||||
 | 
					   * ADEF-2       Preconditioner = P^T M + Q
 | 
				
			||||||
 | 
					   * BNN          Preconditioner = P^T M P + Q
 | 
				
			||||||
 | 
					   * BNN2         Preconditioner = M P + P^TM +Q - M P A M 
 | 
				
			||||||
 | 
					   * 
 | 
				
			||||||
   * Implement ADEF-2
 | 
					   * Implement ADEF-2
 | 
				
			||||||
   *
 | 
					   *
 | 
				
			||||||
   * Vstart = P^Tx + Qb
 | 
					   * Vstart = P^Tx + Qb
 | 
				
			||||||
   * M1 = P^TM + Q
 | 
					   * M1 = P^TM + Q
 | 
				
			||||||
   * M2=M3=1
 | 
					   * M2=M3=1
 | 
				
			||||||
 | 
					   * Vout = x
 | 
				
			||||||
   */
 | 
					   */
 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					// abstract base
 | 
				
			||||||
template<class Field>
 | 
					template<class Field, class CoarseField>
 | 
				
			||||||
class TwoLevelCG : public LinearFunction<Field>
 | 
					class TwoLevelFlexiblePcg : public LinearFunction<Field>
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
 public:
 | 
					 public:
 | 
				
			||||||
 | 
					  int verbose;
 | 
				
			||||||
  RealD   Tolerance;
 | 
					  RealD   Tolerance;
 | 
				
			||||||
  Integer MaxIterations;
 | 
					  Integer MaxIterations;
 | 
				
			||||||
 | 
					  const int mmax = 5;
 | 
				
			||||||
  GridBase *grid;
 | 
					  GridBase *grid;
 | 
				
			||||||
 | 
					  GridBase *coarsegrid;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Fine operator, Smoother, CoarseSolver
 | 
					  LinearOperatorBase<Field>   *_Linop
 | 
				
			||||||
  LinearOperatorBase<Field>   &_FineLinop;
 | 
					  OperatorFunction<Field>     *_Smoother,
 | 
				
			||||||
  LinearFunction<Field>   &_Smoother;
 | 
					  LinearFunction<CoarseField> *_CoarseSolver;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  // Need somthing that knows how to get from Coarse to fine and back again
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  // more most opertor functions
 | 
					  // more most opertor functions
 | 
				
			||||||
  TwoLevelCG(RealD tol,
 | 
					  TwoLevelFlexiblePcg(RealD tol,
 | 
				
			||||||
		     Integer maxit,
 | 
							     Integer maxit,
 | 
				
			||||||
	     LinearOperatorBase<Field>   &FineLinop,
 | 
							     LinearOperatorBase<Field> *Linop,
 | 
				
			||||||
	     LinearFunction<Field>       &Smoother,
 | 
							     LinearOperatorBase<Field> *SmootherLinop,
 | 
				
			||||||
	     GridBase *fine) : 
 | 
							     OperatorFunction<Field>   *Smoother,
 | 
				
			||||||
 | 
							     OperatorFunction<CoarseField>  CoarseLinop
 | 
				
			||||||
 | 
							     ) : 
 | 
				
			||||||
      Tolerance(tol), 
 | 
					      Tolerance(tol), 
 | 
				
			||||||
      MaxIterations(maxit),
 | 
					      MaxIterations(maxit),
 | 
				
			||||||
      _FineLinop(FineLinop),
 | 
					      _Linop(Linop),
 | 
				
			||||||
      _Smoother(Smoother)
 | 
					      _PreconditionerLinop(PrecLinop),
 | 
				
			||||||
 | 
					      _Preconditioner(Preconditioner)
 | 
				
			||||||
  { 
 | 
					  { 
 | 
				
			||||||
    grid       = fine;
 | 
					    verbose=0;
 | 
				
			||||||
  };
 | 
					  };
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  virtual void operator() (const Field &src, Field &x)
 | 
					  // The Pcg routine is common to all, but the various matrices differ from derived 
 | 
				
			||||||
  {
 | 
					  // implementation to derived implmentation
 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg starting single RHS"<<std::endl;
 | 
					  void operator() (const Field &src, Field &psi){
 | 
				
			||||||
 | 
					  void operator() (const Field &src, Field &psi){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    psi.Checkerboard() = src.Checkerboard();
 | 
				
			||||||
 | 
					    grid             = src.Grid();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    RealD f;
 | 
					    RealD f;
 | 
				
			||||||
    RealD rtzp,rtz,a,d,b;
 | 
					    RealD rtzp,rtz,a,d,b;
 | 
				
			||||||
    RealD rptzp;
 | 
					    RealD rptzp;
 | 
				
			||||||
 | 
					    RealD tn;
 | 
				
			||||||
 | 
					    RealD guess = norm2(psi);
 | 
				
			||||||
 | 
					    RealD ssq   = norm2(src);
 | 
				
			||||||
 | 
					    RealD rsq   = ssq*Tolerance*Tolerance;
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    /////////////////////////////
 | 
					    /////////////////////////////
 | 
				
			||||||
    // Set up history vectors
 | 
					    // Set up history vectors
 | 
				
			||||||
    /////////////////////////////
 | 
					    /////////////////////////////
 | 
				
			||||||
    int mmax = 5;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
 | 
					 | 
				
			||||||
    std::vector<Field> p  (mmax,grid);
 | 
					    std::vector<Field> p  (mmax,grid);
 | 
				
			||||||
    std::vector<Field> mmp(mmax,grid);
 | 
					    std::vector<Field> mmp(mmax,grid);
 | 
				
			||||||
    std::vector<RealD> pAp(mmax);
 | 
					    std::vector<RealD> pAp(mmax);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Field x  (grid); x = psi;
 | 
				
			||||||
    Field z  (grid);
 | 
					    Field z  (grid);
 | 
				
			||||||
    Field tmp(grid);
 | 
					    Field tmp(grid);
 | 
				
			||||||
    Field  mp (grid);
 | 
					 | 
				
			||||||
    Field r  (grid);
 | 
					    Field r  (grid);
 | 
				
			||||||
    Field mu (grid);
 | 
					    Field mu (grid);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocated"<<std::endl;
 | 
					 | 
				
			||||||
    //Initial residual computation & set up
 | 
					 | 
				
			||||||
    RealD guess   = norm2(x);
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg guess nrm "<<guess<<std::endl;
 | 
					 | 
				
			||||||
    RealD src_nrm = norm2(src);
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg src nrm "<<src_nrm<<std::endl;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    if ( src_nrm == 0.0 ) {
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage<<"HDCG: fPcg given trivial source norm "<<src_nrm<<std::endl;
 | 
					 | 
				
			||||||
      x=Zero();
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    RealD tn;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    GridStopWatch HDCGTimer;
 | 
					 | 
				
			||||||
    HDCGTimer.Start();
 | 
					 | 
				
			||||||
    //////////////////////////
 | 
					    //////////////////////////
 | 
				
			||||||
    // x0 = Vstart -- possibly modify guess
 | 
					    // x0 = Vstart -- possibly modify guess
 | 
				
			||||||
    //////////////////////////
 | 
					    //////////////////////////
 | 
				
			||||||
 | 
					    x=src;
 | 
				
			||||||
    Vstart(x,src);
 | 
					    Vstart(x,src);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // r0 = b -A x0
 | 
					    // r0 = b -A x0
 | 
				
			||||||
    _FineLinop.HermOp(x,mmp[0]);
 | 
					    HermOp(x,mmp); // Shouldn't this be something else?
 | 
				
			||||||
    axpy (r, -1.0,mmp[0], src);    // Recomputes r=src-Ax0
 | 
					    axpy (r, -1.0,mmp[0], src);    // Recomputes r=src-Ax0
 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      double n1 = norm2(x);
 | 
					 | 
				
			||||||
      double n2 = norm2(mmp[0]);
 | 
					 | 
				
			||||||
      double n3 = norm2(r);
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage<<"x,vstart,r = "<<n1<<" "<<n2<<" "<<n3<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    //////////////////////////////////
 | 
					    //////////////////////////////////
 | 
				
			||||||
    // Compute z = M1 x
 | 
					    // Compute z = M1 x
 | 
				
			||||||
    //////////////////////////////////
 | 
					    //////////////////////////////////
 | 
				
			||||||
    PcgM1(r,z);
 | 
					    M1(r,z,tmp,mp,SmootherMirs);
 | 
				
			||||||
    rtzp =real(innerProduct(r,z));
 | 
					    rtzp =real(innerProduct(r,z));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    ///////////////////////////////////////
 | 
					    ///////////////////////////////////////
 | 
				
			||||||
    // Solve for Mss mu = P A z and set p = z-mu
 | 
					    // Solve for Mss mu = P A z and set p = z-mu
 | 
				
			||||||
    // Def2 p = 1 - Q Az = Pright z
 | 
					    // Def2: p = 1 - Q Az = Pright z 
 | 
				
			||||||
    // Other algos M2 is trivial
 | 
					    // Other algos M2 is trivial
 | 
				
			||||||
    ///////////////////////////////////////
 | 
					    ///////////////////////////////////////
 | 
				
			||||||
    PcgM2(z,p[0]);
 | 
					    M2(z,p[0]);
 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD ssq =  norm2(src);
 | 
					 | 
				
			||||||
    RealD rsq =  ssq*Tolerance*Tolerance;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: k=0 residual "<<rtzp<<" rsq "<<rsq<<"\n";
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Field pp(grid);
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    for (int k=0;k<=MaxIterations;k++){
 | 
					    for (int k=0;k<=MaxIterations;k++){
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
@@ -145,7 +143,7 @@ class TwoLevelCG : public LinearFunction<Field>
 | 
				
			|||||||
      int peri_kp = (k+1) % mmax;
 | 
					      int peri_kp = (k+1) % mmax;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      rtz=rtzp;
 | 
					      rtz=rtzp;
 | 
				
			||||||
      d= PcgM3(p[peri_k],mmp[peri_k]);
 | 
					      d= M3(p[peri_k],mp,mmp[peri_k],tmp);
 | 
				
			||||||
      a = rtz/d;
 | 
					      a = rtz/d;
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
      // Memorise this
 | 
					      // Memorise this
 | 
				
			||||||
@@ -155,36 +153,21 @@ class TwoLevelCG : public LinearFunction<Field>
 | 
				
			|||||||
      RealD rn = axpy_norm(r,-a,mmp[peri_k],r);
 | 
					      RealD rn = axpy_norm(r,-a,mmp[peri_k],r);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      // Compute z = M x
 | 
					      // Compute z = M x
 | 
				
			||||||
      PcgM1(r,z);
 | 
					      M1(r,z,tmp,mp);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      {
 | 
					 | 
				
			||||||
	RealD n1,n2;
 | 
					 | 
				
			||||||
	n1=norm2(r);
 | 
					 | 
				
			||||||
	n2=norm2(z);
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : vector r,z "<<n1<<" "<<n2<<"\n";
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      rtzp =real(innerProduct(r,z));
 | 
					      rtzp =real(innerProduct(r,z));
 | 
				
			||||||
      std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : inner rtzp "<<rtzp<<"\n";
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
      //    PcgM2(z,p[0]);
 | 
					      M2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
 | 
				
			||||||
      PcgM2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
      p[peri_kp]=mu;
 | 
					      p[peri_kp]=p[peri_k];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      // Standard search direction  p -> z + b p    
 | 
					      // Standard search direction  p -> z + b p    ; b = 
 | 
				
			||||||
      b = (rtzp)/rtz;
 | 
					      b = (rtzp)/rtz;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      int northog;
 | 
					      int northog;
 | 
				
			||||||
      // k=zero  <=> peri_kp=1;        northog = 1
 | 
					 | 
				
			||||||
      // k=1     <=> peri_kp=2;        northog = 2
 | 
					 | 
				
			||||||
      // ...               ...                  ...
 | 
					 | 
				
			||||||
      // k=mmax-2<=> peri_kp=mmax-1;   northog = mmax-1
 | 
					 | 
				
			||||||
      // k=mmax-1<=> peri_kp=0;        northog = 1
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      //    northog     = (peri_kp==0)?1:peri_kp; // This is the fCG(mmax) algorithm
 | 
					      //    northog     = (peri_kp==0)?1:peri_kp; // This is the fCG(mmax) algorithm
 | 
				
			||||||
      northog     = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm
 | 
					      northog     = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
      std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
 | 
					 | 
				
			||||||
      for(int back=0; back < northog; back++){
 | 
					      for(int back=0; back < northog; back++){
 | 
				
			||||||
	int peri_back = (k-back)%mmax;
 | 
						int peri_back = (k-back)%mmax;
 | 
				
			||||||
	RealD pbApk= real(innerProduct(mmp[peri_back],p[peri_kp]));
 | 
						RealD pbApk= real(innerProduct(mmp[peri_back],p[peri_kp]));
 | 
				
			||||||
@@ -193,324 +176,75 @@ class TwoLevelCG : public LinearFunction<Field>
 | 
				
			|||||||
      }
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      RealD rrn=sqrt(rn/ssq);
 | 
					      RealD rrn=sqrt(rn/ssq);
 | 
				
			||||||
      RealD rtn=sqrt(rtz/ssq);
 | 
					      std::cout<<GridLogMessage<<"TwoLevelfPcg: k= "<<k<<" residual = "<<rrn<<std::endl;
 | 
				
			||||||
      RealD rtnp=sqrt(rtzp/ssq);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage<<"HDCG: fPcg k= "<<k<<" residual = "<<rrn<<"\n";
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
      // Stopping condition
 | 
					      // Stopping condition
 | 
				
			||||||
      if ( rn <= rsq ) { 
 | 
					      if ( rn <= rsq ) { 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	HDCGTimer.Stop();
 | 
						HermOp(x,mmp); // Shouldn't this be something else?
 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	_FineLinop.HermOp(x,mmp[0]);			  
 | 
					 | 
				
			||||||
	axpy(tmp,-1.0,src,mmp[0]);
 | 
						axpy(tmp,-1.0,src,mmp[0]);
 | 
				
			||||||
	
 | 
						
 | 
				
			||||||
	RealD  mmpnorm = sqrt(norm2(mmp[0]));
 | 
						RealD psinorm = sqrt(norm2(x));
 | 
				
			||||||
	RealD  xnorm   = sqrt(norm2(x));
 | 
					 | 
				
			||||||
	RealD srcnorm = sqrt(norm2(src));
 | 
						RealD srcnorm = sqrt(norm2(src));
 | 
				
			||||||
	RealD tmpnorm = sqrt(norm2(tmp));
 | 
						RealD tmpnorm = sqrt(norm2(tmp));
 | 
				
			||||||
	RealD true_residual = tmpnorm/srcnorm;
 | 
						RealD true_residual = tmpnorm/srcnorm;
 | 
				
			||||||
	std::cout<<GridLogMessage
 | 
						std::cout<<GridLogMessage<<"TwoLevelfPcg:   true residual is "<<true_residual<<std::endl;
 | 
				
			||||||
	       <<"HDCG: true residual is "<<true_residual
 | 
						std::cout<<GridLogMessage<<"TwoLevelfPcg: target residual was"<<Tolerance<<std::endl;
 | 
				
			||||||
	       <<" solution "<<xnorm
 | 
						return k;
 | 
				
			||||||
	       <<" source "<<srcnorm
 | 
					 | 
				
			||||||
	       <<" mmp "<<mmpnorm	  
 | 
					 | 
				
			||||||
	       <<std::endl;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
	return;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    HDCGTimer.Stop();
 | 
					 | 
				
			||||||
    std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
 | 
					 | 
				
			||||||
    RealD  xnorm   = sqrt(norm2(x));
 | 
					 | 
				
			||||||
    RealD  srcnorm = sqrt(norm2(src));
 | 
					 | 
				
			||||||
    std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
 | 
					 | 
				
			||||||
    src[0].Grid()->Barrier();
 | 
					 | 
				
			||||||
    int nrhs = src.size();
 | 
					 | 
				
			||||||
    std::vector<RealD> f(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> rtzp(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> rtz(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> a(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> d(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> b(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> rptzp(nrhs);
 | 
					 | 
				
			||||||
    /////////////////////////////
 | 
					 | 
				
			||||||
    // Set up history vectors
 | 
					 | 
				
			||||||
    /////////////////////////////
 | 
					 | 
				
			||||||
    int mmax = 3;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
 | 
					 | 
				
			||||||
    src[0].Grid()->Barrier();
 | 
					 | 
				
			||||||
    std::vector<std::vector<Field> > p(nrhs);   for(int r=0;r<nrhs;r++)  p[r].resize(mmax,grid);
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocated p"<<std::endl;
 | 
					 | 
				
			||||||
    src[0].Grid()->Barrier();
 | 
					 | 
				
			||||||
    std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid);
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocated mmp"<<std::endl;
 | 
					 | 
				
			||||||
    src[0].Grid()->Barrier();
 | 
					 | 
				
			||||||
    std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax);
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocated pAp"<<std::endl;
 | 
					 | 
				
			||||||
    src[0].Grid()->Barrier();
 | 
					 | 
				
			||||||
    std::vector<Field> z(nrhs,grid);
 | 
					 | 
				
			||||||
    std::vector<Field>  mp (nrhs,grid);
 | 
					 | 
				
			||||||
    std::vector<Field>  r  (nrhs,grid);
 | 
					 | 
				
			||||||
    std::vector<Field>  mu (nrhs,grid);
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocated z,mp,r,mu"<<std::endl;
 | 
					 | 
				
			||||||
    src[0].Grid()->Barrier();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //Initial residual computation & set up
 | 
					 | 
				
			||||||
    std::vector<RealD> src_nrm(nrhs);
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
					 | 
				
			||||||
      src_nrm[rhs]=norm2(src[rhs]);
 | 
					 | 
				
			||||||
      GRID_ASSERT(src_nrm[rhs]!=0.0);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    std::vector<RealD> tn(nrhs);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridStopWatch HDCGTimer;
 | 
					 | 
				
			||||||
    HDCGTimer.Start();
 | 
					 | 
				
			||||||
    //////////////////////////
 | 
					 | 
				
			||||||
    // x0 = Vstart -- possibly modify guess
 | 
					 | 
				
			||||||
    //////////////////////////
 | 
					 | 
				
			||||||
    Vstart(x,src);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
      // r0 = b -A x0
 | 
					 | 
				
			||||||
      _FineLinop.HermOp(x[rhs],mmp[rhs][0]);
 | 
					 | 
				
			||||||
      axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]);    // Recomputes r=src-Ax0
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //////////////////////////////////
 | 
					 | 
				
			||||||
    // Compute z = M1 x
 | 
					 | 
				
			||||||
    //////////////////////////////////
 | 
					 | 
				
			||||||
    // This needs a multiRHS version for acceleration
 | 
					 | 
				
			||||||
    PcgM1(r,z);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<RealD> ssq(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> rsq(nrhs);
 | 
					 | 
				
			||||||
    std::vector<Field> pp(nrhs,grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
      rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
 | 
					 | 
				
			||||||
      p[rhs][0]=z[rhs];
 | 
					 | 
				
			||||||
      ssq[rhs]=norm2(src[rhs]);
 | 
					 | 
				
			||||||
      rsq[rhs]=  ssq[rhs]*Tolerance*Tolerance;
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n";
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<RealD> rn(nrhs);
 | 
					 | 
				
			||||||
    for (int k=0;k<=MaxIterations;k++){
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
      int peri_k  = k % mmax;
 | 
					 | 
				
			||||||
      int peri_kp = (k+1) % mmax;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
	rtz[rhs]=rtzp[rhs];
 | 
					 | 
				
			||||||
	d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]);
 | 
					 | 
				
			||||||
	a[rhs] = rtz[rhs]/d[rhs];
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
	// Memorise this
 | 
					 | 
				
			||||||
	pAp[rhs][peri_k] = d[rhs];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]);
 | 
					 | 
				
			||||||
	rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]);
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Compute z = M x (for *all* RHS)
 | 
					 | 
				
			||||||
      PcgM1(r,z);
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage<<"HDCG::fPcg M1 complete"<<std::endl;
 | 
					 | 
				
			||||||
      grid->Barrier();
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      RealD max_rn=0.0;
 | 
					 | 
				
			||||||
      for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n";
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	mu[rhs]=z[rhs];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	p[rhs][peri_kp]=mu[rhs];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	// Standard search direction p == z + b p 
 | 
					 | 
				
			||||||
	b[rhs] = (rtzp[rhs])/rtz[rhs];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	int northog = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
 | 
					 | 
				
			||||||
	for(int back=0; back < northog; back++){
 | 
					 | 
				
			||||||
	  int peri_back = (k-back)%mmax;
 | 
					 | 
				
			||||||
	  RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp]));
 | 
					 | 
				
			||||||
	  RealD beta = -pbApk/pAp[rhs][peri_back];
 | 
					 | 
				
			||||||
	  axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]);
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	RealD rrn=sqrt(rn[rhs]/ssq[rhs]);
 | 
					 | 
				
			||||||
	RealD rtn=sqrt(rtz[rhs]/ssq[rhs]);
 | 
					 | 
				
			||||||
	RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]);
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: rhs "<<rhs<<"fPcg k= "<<k<<" residual = "<<rrn<<"\n";
 | 
					 | 
				
			||||||
	if ( rrn > max_rn ) max_rn = rrn;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Stopping condition based on worst case
 | 
					 | 
				
			||||||
      if ( max_rn <= Tolerance ) { 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	HDCGTimer.Stop();
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
	  _FineLinop.HermOp(x[rhs],mmp[rhs][0]);			  
 | 
					 | 
				
			||||||
	  Field tmp(grid);
 | 
					 | 
				
			||||||
	  axpy(tmp,-1.0,src[rhs],mmp[rhs][0]);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
	  RealD  mmpnorm = sqrt(norm2(mmp[rhs][0]));
 | 
					 | 
				
			||||||
	  RealD  xnorm   = sqrt(norm2(x[rhs]));
 | 
					 | 
				
			||||||
	  RealD  srcnorm = sqrt(norm2(src[rhs]));
 | 
					 | 
				
			||||||
	  RealD  tmpnorm = sqrt(norm2(tmp));
 | 
					 | 
				
			||||||
	  RealD  true_residual = tmpnorm/srcnorm;
 | 
					 | 
				
			||||||
	  std::cout<<GridLogMessage
 | 
					 | 
				
			||||||
		   <<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
 | 
					 | 
				
			||||||
		   <<" solution "<<xnorm
 | 
					 | 
				
			||||||
		   <<" source "<<srcnorm
 | 
					 | 
				
			||||||
		   <<" mmp "<<mmpnorm	  
 | 
					 | 
				
			||||||
		   <<std::endl;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	return;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    HDCGTimer.Stop();
 | 
					 | 
				
			||||||
    std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
      RealD  xnorm   = sqrt(norm2(x[rhs]));
 | 
					 | 
				
			||||||
      RealD  srcnorm = sqrt(norm2(src[rhs]));
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
 | 
					 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  
 | 
					    // Non-convergence
 | 
				
			||||||
 | 
					    assert(0);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 public:
 | 
					 public:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out)
 | 
					  virtual void M(Field & in,Field & out,Field & tmp) {
 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::cout << "PcgM1 default (cheat) mrhs version"<<std::endl;
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<in.size();rhs++){
 | 
					 | 
				
			||||||
      this->PcgM1(in[rhs],out[rhs]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  virtual void PcgM1(Field & in, Field & out)     =0;
 | 
					 | 
				
			||||||
  virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::cout << "Vstart default (cheat) mrhs version"<<std::endl;
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<x.size();rhs++){
 | 
					 | 
				
			||||||
      this->Vstart(x[rhs],src[rhs]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  virtual void Vstart(Field & x,const Field & src)=0;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  virtual void PcgM2(const Field & in, Field & out) {
 | 
					 | 
				
			||||||
    out=in;
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  virtual RealD PcgM3(const Field & p, Field & mmp){
 | 
					  virtual void M1(Field & in, Field & out) {// the smoother
 | 
				
			||||||
    RealD dd;
 | 
					 | 
				
			||||||
    _FineLinop.HermOp(p,mmp);
 | 
					 | 
				
			||||||
    ComplexD dot = innerProduct(p,mmp);
 | 
					 | 
				
			||||||
    dd=real(dot);
 | 
					 | 
				
			||||||
    return dd;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  /////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // Only Def1 has non-trivial Vout.
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
template<class Field, class CoarseField, class Aggregation>
 | 
					 | 
				
			||||||
class TwoLevelADEF2 : public TwoLevelCG<Field>
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
 public:
 | 
					 | 
				
			||||||
  ///////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // Need something that knows how to get from Coarse to fine and back again
 | 
					 | 
				
			||||||
  //  void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
 | 
					 | 
				
			||||||
  //  void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
 | 
					 | 
				
			||||||
  ///////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  GridBase *coarsegrid;
 | 
					 | 
				
			||||||
  Aggregation &_Aggregates;                    
 | 
					 | 
				
			||||||
  LinearFunction<CoarseField> &_CoarseSolver;
 | 
					 | 
				
			||||||
  LinearFunction<CoarseField> &_CoarseSolverPrecise;
 | 
					 | 
				
			||||||
  ///////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  // more most opertor functions
 | 
					 | 
				
			||||||
  TwoLevelADEF2(RealD tol,
 | 
					 | 
				
			||||||
		Integer maxit,
 | 
					 | 
				
			||||||
		LinearOperatorBase<Field>    &FineLinop,
 | 
					 | 
				
			||||||
		LinearFunction<Field>        &Smoother,
 | 
					 | 
				
			||||||
		LinearFunction<CoarseField>  &CoarseSolver,
 | 
					 | 
				
			||||||
		LinearFunction<CoarseField>  &CoarseSolverPrecise,
 | 
					 | 
				
			||||||
		Aggregation &Aggregates
 | 
					 | 
				
			||||||
		) :
 | 
					 | 
				
			||||||
      TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,Aggregates.FineGrid),
 | 
					 | 
				
			||||||
      _CoarseSolver(CoarseSolver),
 | 
					 | 
				
			||||||
      _CoarseSolverPrecise(CoarseSolverPrecise),
 | 
					 | 
				
			||||||
      _Aggregates(Aggregates)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    coarsegrid = Aggregates.CoarseGrid;
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void PcgM1(Field & in, Field & out)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    GRID_TRACE("MultiGridPreconditioner ");
 | 
					 | 
				
			||||||
    // [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
 | 
					    // [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
 | 
				
			||||||
 | 
					    Field tmp(grid);
 | 
				
			||||||
 | 
					    Field Min(grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    Field tmp(this->grid);
 | 
					    PcgM(in,Min); // Smoother call
 | 
				
			||||||
    Field Min(this->grid);
 | 
					 | 
				
			||||||
    CoarseField PleftProj(this->coarsegrid);
 | 
					 | 
				
			||||||
    CoarseField PleftMss_proj(this->coarsegrid);
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    GridStopWatch SmootherTimer;
 | 
					    HermOp(Min,out);
 | 
				
			||||||
    GridStopWatch MatrixTimer;
 | 
					 | 
				
			||||||
    SmootherTimer.Start();
 | 
					 | 
				
			||||||
    this->_Smoother(in,Min);
 | 
					 | 
				
			||||||
    SmootherTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    MatrixTimer.Start();
 | 
					 | 
				
			||||||
    this->_FineLinop.HermOp(Min,out);
 | 
					 | 
				
			||||||
    MatrixTimer.Stop();
 | 
					 | 
				
			||||||
    axpy(tmp,-1.0,out,in);          // tmp  = in - A Min
 | 
					    axpy(tmp,-1.0,out,in);          // tmp  = in - A Min
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    GridStopWatch ProjTimer;
 | 
					    ProjectToSubspace(tmp,PleftProj);     
 | 
				
			||||||
    GridStopWatch CoarseTimer;
 | 
					    ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
 | 
				
			||||||
    GridStopWatch PromTimer;
 | 
					    PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]  
 | 
				
			||||||
    ProjTimer.Start();
 | 
					 | 
				
			||||||
    this->_Aggregates.ProjectToSubspace(PleftProj,tmp);     
 | 
					 | 
				
			||||||
    ProjTimer.Stop();
 | 
					 | 
				
			||||||
    CoarseTimer.Start();
 | 
					 | 
				
			||||||
    this->_CoarseSolver(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
 | 
					 | 
				
			||||||
    CoarseTimer.Stop();
 | 
					 | 
				
			||||||
    PromTimer.Start();
 | 
					 | 
				
			||||||
    this->_Aggregates.PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]  
 | 
					 | 
				
			||||||
    PromTimer.Stop();
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PcgM1 breakdown "<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "\tSmoother   " << SmootherTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "\tProj       " << ProjTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "\tCoarse     " << CoarseTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "\tProm       " << PromTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    axpy(out,1.0,Min,tmp); // Min+tmp
 | 
					    axpy(out,1.0,Min,tmp); // Min+tmp
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  virtual void Vstart(Field & x,const Field & src)
 | 
					  virtual void M2(const Field & in, Field & out) {
 | 
				
			||||||
  {
 | 
					    out=in;
 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg Vstart "<<std::endl;
 | 
					    // Must override for Def2 only
 | 
				
			||||||
 | 
					    //  case PcgDef2:
 | 
				
			||||||
 | 
					    //    Pright(in,out);
 | 
				
			||||||
 | 
					    //    break;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  virtual RealD M3(const Field & p, Field & mmp){
 | 
				
			||||||
 | 
					    double d,dd;
 | 
				
			||||||
 | 
					    HermOpAndNorm(p,mmp,d,dd);
 | 
				
			||||||
 | 
					    return dd;
 | 
				
			||||||
 | 
					    // Must override for Def1 only
 | 
				
			||||||
 | 
					    //  case PcgDef1:
 | 
				
			||||||
 | 
					    //    d=linop_d->Mprec(p,mmp,tmp,0,1);// Dag no
 | 
				
			||||||
 | 
					    //      linop_d->Mprec(mmp,mp,tmp,1);// Dag yes
 | 
				
			||||||
 | 
					    //    Pleft(mp,mmp);
 | 
				
			||||||
 | 
					    //    d=real(linop_d->inner(p,mmp));
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  virtual void VstartDef2(Field & xconst Field & src){
 | 
				
			||||||
 | 
					    //case PcgDef2:
 | 
				
			||||||
 | 
					    //case PcgAdef2: 
 | 
				
			||||||
 | 
					    //case PcgAdef2f:
 | 
				
			||||||
 | 
					    //case PcgV11f:
 | 
				
			||||||
    ///////////////////////////////////
 | 
					    ///////////////////////////////////
 | 
				
			||||||
    // Choose x_0 such that 
 | 
					    // Choose x_0 such that 
 | 
				
			||||||
    // x_0 = guess +  (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
 | 
					    // x_0 = guess +  (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
 | 
				
			||||||
@@ -522,78 +256,142 @@ class TwoLevelADEF2 : public TwoLevelCG<Field>
 | 
				
			|||||||
    //                   = src_s - (A guess)_s - src_s  + (A guess)_s 
 | 
					    //                   = src_s - (A guess)_s - src_s  + (A guess)_s 
 | 
				
			||||||
    //                   = 0 
 | 
					    //                   = 0 
 | 
				
			||||||
    ///////////////////////////////////
 | 
					    ///////////////////////////////////
 | 
				
			||||||
    Field r(this->grid);
 | 
					    Field r(grid);
 | 
				
			||||||
    Field mmp(this->grid);
 | 
					    Field mmp(grid);
 | 
				
			||||||
    CoarseField PleftProj(this->coarsegrid);
 | 
					 | 
				
			||||||
    CoarseField PleftMss_proj(this->coarsegrid);
 | 
					 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg Vstart projecting "<<std::endl;
 | 
					    HermOp(x,mmp);
 | 
				
			||||||
    this->_Aggregates.ProjectToSubspace(PleftProj,src);     
 | 
					    axpy (r, -1.0, mmp, src);        // r_{-1} = src - A x
 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg Vstart coarse solve "<<std::endl;
 | 
					    ProjectToSubspace(r,PleftProj);     
 | 
				
			||||||
    this->_CoarseSolverPrecise(PleftProj,PleftMss_proj); // Ass^{-1} r_s
 | 
					    ApplyInverseCG(PleftProj,PleftMss_proj); // Ass^{-1} r_s
 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg Vstart promote "<<std::endl;
 | 
					    PromoteFromSubspace(PleftMss_proj,mmp);  
 | 
				
			||||||
    this->_Aggregates.PromoteFromSubspace(PleftMss_proj,x);  
 | 
					    x=x+mmp;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
};
 | 
					  virtual void Vstart(Field & x,const Field & src){
 | 
				
			||||||
 | 
					    return;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  /////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					  // Only Def1 has non-trivial Vout. Override in Def1
 | 
				
			||||||
 | 
					  /////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					  virtual void   Vout  (Field & in, Field & out,Field & src){
 | 
				
			||||||
 | 
					    out = in;
 | 
				
			||||||
 | 
					    //case PcgDef1:
 | 
				
			||||||
 | 
					    //    //Qb + PT x
 | 
				
			||||||
 | 
					    //    ProjectToSubspace(src,PleftProj);     
 | 
				
			||||||
 | 
					    //    ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} r_s
 | 
				
			||||||
 | 
					    //    PromoteFromSubspace(PleftMss_proj,tmp);  
 | 
				
			||||||
 | 
					    //    
 | 
				
			||||||
 | 
					    //    Pright(in,out);
 | 
				
			||||||
 | 
					    //    
 | 
				
			||||||
 | 
					    //    linop_d->axpy(out,tmp,out,1.0);
 | 
				
			||||||
 | 
					    //    break;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					  // Pright and Pleft are common to all implementations
 | 
				
			||||||
 | 
					  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					  virtual void Pright(Field & in,Field & out){
 | 
				
			||||||
 | 
					    // P_R  = [ 1              0 ] 
 | 
				
			||||||
 | 
					    //        [ -Mss^-1 Msb    0 ] 
 | 
				
			||||||
 | 
					    Field in_sbar(grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    ProjectToSubspace(in,PleftProj);     
 | 
				
			||||||
 | 
					    PromoteFromSubspace(PleftProj,out);  
 | 
				
			||||||
 | 
					    axpy(in_sbar,-1.0,out,in);       // in_sbar = in - in_s 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    HermOp(in_sbar,out);
 | 
				
			||||||
 | 
					    ProjectToSubspace(out,PleftProj);           // Mssbar in_sbar  (project)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    ApplyInverse     (PleftProj,PleftMss_proj); // Mss^{-1} Mssbar 
 | 
				
			||||||
 | 
					    PromoteFromSubspace(PleftMss_proj,out);     // 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    axpy(out,-1.0,out,in_sbar);     // in_sbar - Mss^{-1} Mssbar in_sbar
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  virtual void Pleft (Field & in,Field & out){
 | 
				
			||||||
 | 
					    // P_L  = [ 1  -Mbs Mss^-1] 
 | 
				
			||||||
 | 
					    //        [ 0   0         ] 
 | 
				
			||||||
 | 
					    Field in_sbar(grid);
 | 
				
			||||||
 | 
					    Field    tmp2(grid);
 | 
				
			||||||
 | 
					    Field    Mtmp(grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    ProjectToSubspace(in,PleftProj);     
 | 
				
			||||||
 | 
					    PromoteFromSubspace(PleftProj,out);  
 | 
				
			||||||
 | 
					    axpy(in_sbar,-1.0,out,in);      // in_sbar = in - in_s
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    ApplyInverse(PleftProj,PleftMss_proj); // Mss^{-1} in_s
 | 
				
			||||||
 | 
					    PromoteFromSubspace(PleftMss_proj,out);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    HermOp(out,Mtmp);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    ProjectToSubspace(Mtmp,PleftProj);      // Msbar s Mss^{-1}
 | 
				
			||||||
 | 
					    PromoteFromSubspace(PleftProj,tmp2);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    axpy(out,-1.0,tmp2,Mtmp);
 | 
				
			||||||
 | 
					    axpy(out,-1.0,out,in_sbar);     // in_sbar - Msbars Mss^{-1} in_s
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class Field>
 | 
					template<class Field>
 | 
				
			||||||
class TwoLevelADEF1defl : public TwoLevelCG<Field>
 | 
					class TwoLevelFlexiblePcgADef2 : public TwoLevelFlexiblePcg<Field> {
 | 
				
			||||||
{
 | 
					 | 
				
			||||||
 public:
 | 
					 public:
 | 
				
			||||||
  const std::vector<Field> &evec;
 | 
					  virtual void M(Field & in,Field & out,Field & tmp){
 | 
				
			||||||
  const std::vector<RealD> &eval;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  TwoLevelADEF1defl(RealD tol,
 | 
					  } 
 | 
				
			||||||
		   Integer maxit,
 | 
					  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp){
 | 
				
			||||||
		   LinearOperatorBase<Field>   &FineLinop,
 | 
					 | 
				
			||||||
		   LinearFunction<Field>   &Smoother,
 | 
					 | 
				
			||||||
		   std::vector<Field> &_evec,
 | 
					 | 
				
			||||||
		   std::vector<RealD> &_eval) : 
 | 
					 | 
				
			||||||
    TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,_evec[0].Grid()),
 | 
					 | 
				
			||||||
    evec(_evec),
 | 
					 | 
				
			||||||
    eval(_eval)
 | 
					 | 
				
			||||||
  {};
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Can just inherit existing M2
 | 
					  }
 | 
				
			||||||
  // Can just inherit existing M3
 | 
					  virtual void M2(Field & in, Field & out){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Simple vstart - do nothing
 | 
					  }
 | 
				
			||||||
  virtual void Vstart(Field & x,const Field & src){
 | 
					  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp){
 | 
				
			||||||
    x=src; // Could apply Q
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Override PcgM1
 | 
					  }
 | 
				
			||||||
  virtual void PcgM1(Field & in, Field & out)
 | 
					  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp){
 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    GRID_TRACE("EvecPreconditioner ");
 | 
					 | 
				
			||||||
    int N=evec.size();
 | 
					 | 
				
			||||||
    Field Pin(this->grid);
 | 
					 | 
				
			||||||
    Field Qin(this->grid);
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    //MP  + Q = M(1-AQ) + Q = M
 | 
					  }
 | 
				
			||||||
    // // If we are eigenvector deflating in coarse space
 | 
					}
 | 
				
			||||||
    // // Q   = Sum_i |phi_i> 1/lambda_i <phi_i|
 | 
					/*
 | 
				
			||||||
    // // A Q = Sum_i |phi_i> <phi_i|
 | 
					template<class Field>
 | 
				
			||||||
    // // M(1-AQ) = M(1-proj) + Q
 | 
					class TwoLevelFlexiblePcgAD : public TwoLevelFlexiblePcg<Field> {
 | 
				
			||||||
    Qin.Checkerboard()=in.Checkerboard();
 | 
					 public:
 | 
				
			||||||
    Qin = Zero();
 | 
					  virtual void M(Field & in,Field & out,Field & tmp); 
 | 
				
			||||||
    Pin = in;
 | 
					  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
 | 
				
			||||||
    for (int i=0;i<N;i++) {
 | 
					  virtual void M2(Field & in, Field & out);
 | 
				
			||||||
      const Field& tmp = evec[i];
 | 
					  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
 | 
				
			||||||
      auto ip = TensorRemove(innerProduct(tmp,in));
 | 
					  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
 | 
				
			||||||
      axpy(Qin, ip / eval[i],tmp,Qin);
 | 
					 | 
				
			||||||
      axpy(Pin, -ip ,tmp,Pin);
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    this->_Smoother(Pin,out);
 | 
					template<class Field>
 | 
				
			||||||
 | 
					class TwoLevelFlexiblePcgDef1 : public TwoLevelFlexiblePcg<Field> {
 | 
				
			||||||
    out = out + Qin;
 | 
					 public:
 | 
				
			||||||
 | 
					  virtual void M(Field & in,Field & out,Field & tmp); 
 | 
				
			||||||
 | 
					  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
 | 
				
			||||||
 | 
					  virtual void M2(Field & in, Field & out);
 | 
				
			||||||
 | 
					  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
 | 
				
			||||||
 | 
					  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
 | 
				
			||||||
 | 
					  virtual void   Vout  (Field & in, Field & out,Field & src,Field & tmp);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					template<class Field>
 | 
				
			||||||
 | 
					class TwoLevelFlexiblePcgDef2 : public TwoLevelFlexiblePcg<Field> {
 | 
				
			||||||
 | 
					 public:
 | 
				
			||||||
 | 
					  virtual void M(Field & in,Field & out,Field & tmp); 
 | 
				
			||||||
 | 
					  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
 | 
				
			||||||
 | 
					  virtual void M2(Field & in, Field & out);
 | 
				
			||||||
 | 
					  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
 | 
				
			||||||
 | 
					  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					template<class Field>
 | 
				
			||||||
 | 
					class TwoLevelFlexiblePcgV11: public TwoLevelFlexiblePcg<Field> {
 | 
				
			||||||
 | 
					 public:
 | 
				
			||||||
 | 
					  virtual void M(Field & in,Field & out,Field & tmp); 
 | 
				
			||||||
 | 
					  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
 | 
				
			||||||
 | 
					  virtual void M2(Field & in, Field & out);
 | 
				
			||||||
 | 
					  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
 | 
				
			||||||
 | 
					  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,734 +0,0 @@
 | 
				
			|||||||
    /*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: ./lib/algorithms/iterative/AdefGeneric.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2015
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
    *************************************************************************************/
 | 
					 | 
				
			||||||
    /*  END LEGAL */
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
   * Compared to Tang-2009:  P=Pleft. P^T = PRight Q=MssInv. 
 | 
					 | 
				
			||||||
   * Script A = SolverMatrix 
 | 
					 | 
				
			||||||
   * Script P = Preconditioner
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Implement ADEF-2
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Vstart = P^Tx + Qb
 | 
					 | 
				
			||||||
   * M1 = P^TM + Q
 | 
					 | 
				
			||||||
   * M2=M3=1
 | 
					 | 
				
			||||||
   */
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class Field>
 | 
					 | 
				
			||||||
class TwoLevelCGmrhs
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
 public:
 | 
					 | 
				
			||||||
  RealD   Tolerance;
 | 
					 | 
				
			||||||
  Integer MaxIterations;
 | 
					 | 
				
			||||||
  GridBase *grid;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  // Fine operator, Smoother, CoarseSolver
 | 
					 | 
				
			||||||
  LinearOperatorBase<Field>   &_FineLinop;
 | 
					 | 
				
			||||||
  LinearFunction<Field>   &_Smoother;
 | 
					 | 
				
			||||||
  MultiRHSBlockCGLinalg<Field> _BlockCGLinalg;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  GridStopWatch ProjectTimer;
 | 
					 | 
				
			||||||
  GridStopWatch PromoteTimer;
 | 
					 | 
				
			||||||
  GridStopWatch DeflateTimer;
 | 
					 | 
				
			||||||
  GridStopWatch CoarseTimer;
 | 
					 | 
				
			||||||
  GridStopWatch FineTimer;
 | 
					 | 
				
			||||||
  GridStopWatch SmoothTimer;
 | 
					 | 
				
			||||||
  GridStopWatch InsertTimer;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
    Field rrr;
 | 
					 | 
				
			||||||
  Field sss;
 | 
					 | 
				
			||||||
  Field qqq;
 | 
					 | 
				
			||||||
  Field zzz;
 | 
					 | 
				
			||||||
  */  
 | 
					 | 
				
			||||||
  // more most opertor functions
 | 
					 | 
				
			||||||
  TwoLevelCGmrhs(RealD tol,
 | 
					 | 
				
			||||||
		 Integer maxit,
 | 
					 | 
				
			||||||
		 LinearOperatorBase<Field>   &FineLinop,
 | 
					 | 
				
			||||||
		 LinearFunction<Field>       &Smoother,
 | 
					 | 
				
			||||||
		 GridBase *fine) : 
 | 
					 | 
				
			||||||
    Tolerance(tol), 
 | 
					 | 
				
			||||||
    MaxIterations(maxit),
 | 
					 | 
				
			||||||
    _FineLinop(FineLinop),
 | 
					 | 
				
			||||||
    _Smoother(Smoother)
 | 
					 | 
				
			||||||
    /*
 | 
					 | 
				
			||||||
    rrr(fine),
 | 
					 | 
				
			||||||
    sss(fine),
 | 
					 | 
				
			||||||
    qqq(fine),
 | 
					 | 
				
			||||||
    zzz(fine)
 | 
					 | 
				
			||||||
*/
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    grid       = fine;
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  // Vector case
 | 
					 | 
				
			||||||
  virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    //    SolveSingleSystem(src,x);
 | 
					 | 
				
			||||||
    SolvePrecBlockCG(src,x);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
// Thin QR factorisation (google it)
 | 
					 | 
				
			||||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  //Dimensions
 | 
					 | 
				
			||||||
  // R_{ferm x Nblock} =  Q_{ferm x Nblock} x  C_{Nblock x Nblock} -> ferm x Nblock
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Rdag R = m_rr = Herm = L L^dag        <-- Cholesky decomposition (LLT routine in Eigen)
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  //   Q  C = R => Q = R C^{-1}
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Want  Ident = Q^dag Q = C^{-dag} R^dag R C^{-1} = C^{-dag} L L^dag C^{-1} = 1_{Nblock x Nblock} 
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Set C = L^{dag}, and then Q^dag Q = ident 
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Checks:
 | 
					 | 
				
			||||||
  // Cdag C = Rdag R ; passes.
 | 
					 | 
				
			||||||
  // QdagQ  = 1      ; passes
 | 
					 | 
				
			||||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  void ThinQRfact (Eigen::MatrixXcd &m_zz,
 | 
					 | 
				
			||||||
		   Eigen::MatrixXcd &C,
 | 
					 | 
				
			||||||
		   Eigen::MatrixXcd &Cinv,
 | 
					 | 
				
			||||||
		   std::vector<Field> &  Q,
 | 
					 | 
				
			||||||
		   std::vector<Field> & MQ,
 | 
					 | 
				
			||||||
		   const std::vector<Field> & Z,
 | 
					 | 
				
			||||||
		   const std::vector<Field> & MZ)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    RealD t0=usecond();
 | 
					 | 
				
			||||||
    _BlockCGLinalg.InnerProductMatrix(m_zz,MZ,Z);
 | 
					 | 
				
			||||||
    RealD t1=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    m_zz = 0.5*(m_zz+m_zz.adjoint());
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd L    = m_zz.llt().matrixL(); 
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    C    = L.adjoint();
 | 
					 | 
				
			||||||
    Cinv = C.inverse();
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    RealD t3=usecond();
 | 
					 | 
				
			||||||
    _BlockCGLinalg.MulMatrix( Q,Cinv,Z);
 | 
					 | 
				
			||||||
    _BlockCGLinalg.MulMatrix(MQ,Cinv,MZ);
 | 
					 | 
				
			||||||
    RealD t4=usecond();
 | 
					 | 
				
			||||||
    std::cout << " ThinQRfact IP    :"<< t1-t0<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << " ThinQRfact Eigen :"<< t3-t1<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << " ThinQRfact MulMat:"<< t4-t3<<" us"<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void SolvePrecBlockCG (std::vector<Field> &src, std::vector<Field> &X)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: mrhs fPrecBlockcg starting"<<std::endl;
 | 
					 | 
				
			||||||
    src[0].Grid()->Barrier();
 | 
					 | 
				
			||||||
    int nrhs = src.size();
 | 
					 | 
				
			||||||
    //    std::vector<RealD> f(nrhs);
 | 
					 | 
				
			||||||
    //    std::vector<RealD> rtzp(nrhs);
 | 
					 | 
				
			||||||
    //    std::vector<RealD> rtz(nrhs);
 | 
					 | 
				
			||||||
    //    std::vector<RealD> a(nrhs);
 | 
					 | 
				
			||||||
    //    std::vector<RealD> d(nrhs);
 | 
					 | 
				
			||||||
    //    std::vector<RealD> b(nrhs);
 | 
					 | 
				
			||||||
    //    std::vector<RealD> rptzp(nrhs);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////
 | 
					 | 
				
			||||||
    //Initial residual computation & set up
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////
 | 
					 | 
				
			||||||
    std::vector<RealD> ssq(nrhs);
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
      ssq[rhs]=norm2(src[rhs]); GRID_ASSERT(ssq[rhs]!=0.0);
 | 
					 | 
				
			||||||
    }      
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ///////////////////////////
 | 
					 | 
				
			||||||
    // Fields -- eliminate duplicates between fPcg and block cg
 | 
					 | 
				
			||||||
    ///////////////////////////
 | 
					 | 
				
			||||||
    std::vector<Field> Mtmp(nrhs,grid);
 | 
					 | 
				
			||||||
    std::vector<Field> tmp(nrhs,grid);
 | 
					 | 
				
			||||||
    std::vector<Field>   Z(nrhs,grid); // Rename Z to R
 | 
					 | 
				
			||||||
    std::vector<Field>  MZ(nrhs,grid); // Rename MZ to Z
 | 
					 | 
				
			||||||
    std::vector<Field>   Q(nrhs,grid); // 
 | 
					 | 
				
			||||||
    std::vector<Field>  MQ(nrhs,grid); // Rename to P
 | 
					 | 
				
			||||||
    std::vector<Field>   D(nrhs,grid);
 | 
					 | 
				
			||||||
    std::vector<Field>  AD(nrhs,grid);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    /************************************************************************
 | 
					 | 
				
			||||||
     * Preconditioned Block conjugate gradient rQ
 | 
					 | 
				
			||||||
     * Generalise Sebastien Birk Thesis, after Dubrulle 2001.
 | 
					 | 
				
			||||||
     * Introduce preconditioning following Saad Ch9
 | 
					 | 
				
			||||||
     ************************************************************************
 | 
					 | 
				
			||||||
     * Dimensions:
 | 
					 | 
				
			||||||
     *
 | 
					 | 
				
			||||||
     *   X,B etc... ==(Nferm x nrhs)
 | 
					 | 
				
			||||||
     *  Matrix A==(Nferm x Nferm)
 | 
					 | 
				
			||||||
     *  
 | 
					 | 
				
			||||||
     * Nferm = Nspin x Ncolour x Ncomplex x Nlattice_site
 | 
					 | 
				
			||||||
     * QC => Thin QR factorisation (google it)
 | 
					 | 
				
			||||||
     *
 | 
					 | 
				
			||||||
     * R = B-AX
 | 
					 | 
				
			||||||
     * Z = Mi R
 | 
					 | 
				
			||||||
     * QC = Z
 | 
					 | 
				
			||||||
     * D = Q 
 | 
					 | 
				
			||||||
     * for k: 
 | 
					 | 
				
			||||||
     *   R  = AD
 | 
					 | 
				
			||||||
     *   Z  = Mi R
 | 
					 | 
				
			||||||
     *   M  = [D^dag R]^{-1}
 | 
					 | 
				
			||||||
     *   X  = X + D M C
 | 
					 | 
				
			||||||
     *   QS = Q - Z.M
 | 
					 | 
				
			||||||
     *   D  = Q + D S^dag
 | 
					 | 
				
			||||||
     *   C  = S C
 | 
					 | 
				
			||||||
     */
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd m_DZ     = Eigen::MatrixXcd::Identity(nrhs,nrhs);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd m_M      = Eigen::MatrixXcd::Identity(nrhs,nrhs);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd m_zz     = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd m_rr     = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd m_C      = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd m_Cinv   = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd m_S      = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd m_Sinv   = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd m_tmp    = Eigen::MatrixXcd::Identity(nrhs,nrhs);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd m_tmp1   = Eigen::MatrixXcd::Identity(nrhs,nrhs);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridStopWatch HDCGTimer;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //////////////////////////
 | 
					 | 
				
			||||||
    // x0 = Vstart -- possibly modify guess
 | 
					 | 
				
			||||||
    //////////////////////////
 | 
					 | 
				
			||||||
    Vstart(X,src);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //////////////////////////
 | 
					 | 
				
			||||||
    // R = B-AX
 | 
					 | 
				
			||||||
    //////////////////////////
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
      // r0 = b -A x0
 | 
					 | 
				
			||||||
      _FineLinop.HermOp(X[rhs],tmp[rhs]);
 | 
					 | 
				
			||||||
      axpy (Z[rhs], -1.0,tmp[rhs], src[rhs]);    // Computes R=Z=src - A X0
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //////////////////////////////////
 | 
					 | 
				
			||||||
    // Compute MZ = M1 Z = M1 B - M1 A x0
 | 
					 | 
				
			||||||
    //////////////////////////////////
 | 
					 | 
				
			||||||
    PcgM1(Z,MZ);  
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //////////////////////////////////
 | 
					 | 
				
			||||||
    // QC = Z
 | 
					 | 
				
			||||||
    //////////////////////////////////
 | 
					 | 
				
			||||||
    ThinQRfact (m_zz, m_C, m_Cinv, Q, MQ, Z, MZ);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //////////////////////////////////
 | 
					 | 
				
			||||||
    // D=MQ
 | 
					 | 
				
			||||||
    //////////////////////////////////
 | 
					 | 
				
			||||||
    for(int b=0;b<nrhs;b++) D[b]=MQ[b]; // LLT rotation of the MZ basis of search dirs
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"PrecBlockCGrQ vec computed initial residual and QR fact " <<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ProjectTimer.Reset();
 | 
					 | 
				
			||||||
    PromoteTimer.Reset();
 | 
					 | 
				
			||||||
    DeflateTimer.Reset();
 | 
					 | 
				
			||||||
    CoarseTimer.Reset();
 | 
					 | 
				
			||||||
    SmoothTimer.Reset();
 | 
					 | 
				
			||||||
    FineTimer.Reset();
 | 
					 | 
				
			||||||
    InsertTimer.Reset();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridStopWatch M1Timer;
 | 
					 | 
				
			||||||
    GridStopWatch M2Timer;
 | 
					 | 
				
			||||||
    GridStopWatch M3Timer;
 | 
					 | 
				
			||||||
    GridStopWatch LinalgTimer;
 | 
					 | 
				
			||||||
    GridStopWatch InnerProdTimer;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    HDCGTimer.Start();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<RealD> rn(nrhs);
 | 
					 | 
				
			||||||
    for (int k=0;k<=MaxIterations;k++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      ////////////////////
 | 
					 | 
				
			||||||
      // Z  = AD
 | 
					 | 
				
			||||||
      ////////////////////
 | 
					 | 
				
			||||||
      M3Timer.Start();
 | 
					 | 
				
			||||||
      for(int b=0;b<nrhs;b++) _FineLinop.HermOp(D[b], Z[b]);      
 | 
					 | 
				
			||||||
      M3Timer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      ////////////////////
 | 
					 | 
				
			||||||
      // MZ  = M1 Z <==== the Multigrid preconditioner
 | 
					 | 
				
			||||||
      ////////////////////
 | 
					 | 
				
			||||||
      M1Timer.Start();
 | 
					 | 
				
			||||||
      PcgM1(Z,MZ);
 | 
					 | 
				
			||||||
      M1Timer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      FineTimer.Start();
 | 
					 | 
				
			||||||
      ////////////////////
 | 
					 | 
				
			||||||
      // M  = [D^dag Z]^{-1} = (<Ddag MZ>_M)^{-1} inner prod, generalising Saad derivation of Precon CG
 | 
					 | 
				
			||||||
      ////////////////////
 | 
					 | 
				
			||||||
      InnerProdTimer.Start();
 | 
					 | 
				
			||||||
      _BlockCGLinalg.InnerProductMatrix(m_DZ,D,Z);
 | 
					 | 
				
			||||||
      InnerProdTimer.Stop();
 | 
					 | 
				
			||||||
      m_M       = m_DZ.inverse();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      ///////////////////////////
 | 
					 | 
				
			||||||
      // X  = X + D MC
 | 
					 | 
				
			||||||
      ///////////////////////////
 | 
					 | 
				
			||||||
      m_tmp     = m_M * m_C;
 | 
					 | 
				
			||||||
      LinalgTimer.Start();
 | 
					 | 
				
			||||||
      _BlockCGLinalg.MaddMatrix(X,m_tmp, D,X);     // D are the search directions and X takes the updates 
 | 
					 | 
				
			||||||
      LinalgTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      ///////////////////////////
 | 
					 | 
				
			||||||
      // QS = Q - M Z
 | 
					 | 
				
			||||||
      // (MQ) S = MQ - M (M1Z)
 | 
					 | 
				
			||||||
      ///////////////////////////
 | 
					 | 
				
			||||||
      LinalgTimer.Start();
 | 
					 | 
				
			||||||
      _BlockCGLinalg.MaddMatrix(tmp ,m_M, Z, Q,-1.0);
 | 
					 | 
				
			||||||
      _BlockCGLinalg.MaddMatrix(Mtmp,m_M,MZ,MQ,-1.0);
 | 
					 | 
				
			||||||
      ThinQRfact (m_zz, m_S, m_Sinv, Q, MQ, tmp, Mtmp);
 | 
					 | 
				
			||||||
      LinalgTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      ////////////////////////////
 | 
					 | 
				
			||||||
      // D  = MQ + D S^dag
 | 
					 | 
				
			||||||
      ////////////////////////////
 | 
					 | 
				
			||||||
      m_tmp = m_S.adjoint();
 | 
					 | 
				
			||||||
      LinalgTimer.Start();
 | 
					 | 
				
			||||||
      _BlockCGLinalg.MaddMatrix(D,m_tmp,D,MQ);
 | 
					 | 
				
			||||||
      LinalgTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      ////////////////////////////
 | 
					 | 
				
			||||||
      // C  = S C
 | 
					 | 
				
			||||||
      ////////////////////////////
 | 
					 | 
				
			||||||
      m_C = m_S*m_C;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      ////////////////////////////
 | 
					 | 
				
			||||||
      // convergence monitor
 | 
					 | 
				
			||||||
      ////////////////////////////
 | 
					 | 
				
			||||||
      m_rr = m_C.adjoint() * m_C;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      FineTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      RealD max_resid=0;
 | 
					 | 
				
			||||||
      RealD rrsum=0;
 | 
					 | 
				
			||||||
      RealD sssum=0;
 | 
					 | 
				
			||||||
      RealD rr;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int b=0;b<nrhs;b++) {
 | 
					 | 
				
			||||||
	rrsum+=real(m_rr(b,b));
 | 
					 | 
				
			||||||
	sssum+=ssq[b];
 | 
					 | 
				
			||||||
	rr = real(m_rr(b,b))/ssq[b];
 | 
					 | 
				
			||||||
	if ( rr > max_resid ) max_resid = rr;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage <<
 | 
					 | 
				
			||||||
	  "\t Prec BlockCGrQ Iteration "<<k<<" ave resid "<< std::sqrt(rrsum/sssum) << " max "<< std::sqrt(max_resid) <<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      if ( max_resid < Tolerance*Tolerance ) { 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	HDCGTimer.Stop();
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Linalg  "<<LinalgTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : fine H  "<<M3Timer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : prec M1 "<<M1Timer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"**** M1 breakdown:"<<std::endl;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Project "<<ProjectTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Promote "<<PromoteTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Deflate "<<DeflateTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Coarse  "<<CoarseTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Fine    "<<FineTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Smooth  "<<SmoothTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Insert  "<<InsertTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  _FineLinop.HermOp(X[rhs],tmp[rhs]);			  
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  Field mytmp(grid);
 | 
					 | 
				
			||||||
	  axpy(mytmp,-1.0,src[rhs],tmp[rhs]);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
	  RealD  xnorm   = sqrt(norm2(X[rhs]));
 | 
					 | 
				
			||||||
	  RealD  srcnorm = sqrt(norm2(src[rhs]));
 | 
					 | 
				
			||||||
	  RealD  tmpnorm = sqrt(norm2(mytmp));
 | 
					 | 
				
			||||||
	  RealD  true_residual = tmpnorm/srcnorm;
 | 
					 | 
				
			||||||
	  std::cout<<GridLogMessage
 | 
					 | 
				
			||||||
		   <<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
 | 
					 | 
				
			||||||
		   <<" solution "<<xnorm
 | 
					 | 
				
			||||||
		   <<" source "<<srcnorm
 | 
					 | 
				
			||||||
		   <<std::endl;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	return;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    HDCGTimer.Stop();
 | 
					 | 
				
			||||||
    std::cout<<GridLogMessage<<"HDCG: PrecBlockCGrQ not converged "<<HDCGTimer.Elapsed()<<std::endl;
 | 
					 | 
				
			||||||
    GRID_ASSERT(0);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void SolveSingleSystem (std::vector<Field> &src, std::vector<Field> &x)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
 | 
					 | 
				
			||||||
    src[0].Grid()->Barrier();
 | 
					 | 
				
			||||||
    int nrhs = src.size();
 | 
					 | 
				
			||||||
    std::vector<RealD> f(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> rtzp(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> rtz(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> a(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> d(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> b(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> rptzp(nrhs);
 | 
					 | 
				
			||||||
    /////////////////////////////
 | 
					 | 
				
			||||||
    // Set up history vectors
 | 
					 | 
				
			||||||
    /////////////////////////////
 | 
					 | 
				
			||||||
    int mmax = 3;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<std::vector<Field> > p(nrhs);   for(int r=0;r<nrhs;r++)  p[r].resize(mmax,grid);
 | 
					 | 
				
			||||||
    std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid);
 | 
					 | 
				
			||||||
    std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<Field> z(nrhs,grid);
 | 
					 | 
				
			||||||
    std::vector<Field>  mp (nrhs,grid);
 | 
					 | 
				
			||||||
    std::vector<Field>  r  (nrhs,grid);
 | 
					 | 
				
			||||||
    std::vector<Field>  mu (nrhs,grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //Initial residual computation & set up
 | 
					 | 
				
			||||||
    std::vector<RealD> src_nrm(nrhs);
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
					 | 
				
			||||||
      src_nrm[rhs]=norm2(src[rhs]);
 | 
					 | 
				
			||||||
      GRID_ASSERT(src_nrm[rhs]!=0.0);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    std::vector<RealD> tn(nrhs);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridStopWatch HDCGTimer;
 | 
					 | 
				
			||||||
    //////////////////////////
 | 
					 | 
				
			||||||
    // x0 = Vstart -- possibly modify guess
 | 
					 | 
				
			||||||
    //////////////////////////
 | 
					 | 
				
			||||||
    Vstart(x,src);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
      // r0 = b -A x0
 | 
					 | 
				
			||||||
      _FineLinop.HermOp(x[rhs],mmp[rhs][0]);
 | 
					 | 
				
			||||||
      axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]);    // Recomputes r=src-Ax0
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //////////////////////////////////
 | 
					 | 
				
			||||||
    // Compute z = M1 x
 | 
					 | 
				
			||||||
    //////////////////////////////////
 | 
					 | 
				
			||||||
    // This needs a multiRHS version for acceleration
 | 
					 | 
				
			||||||
    PcgM1(r,z);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<RealD> ssq(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> rsq(nrhs);
 | 
					 | 
				
			||||||
    std::vector<Field> pp(nrhs,grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
      rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
 | 
					 | 
				
			||||||
      p[rhs][0]=z[rhs];
 | 
					 | 
				
			||||||
      ssq[rhs]=norm2(src[rhs]);
 | 
					 | 
				
			||||||
      rsq[rhs]=  ssq[rhs]*Tolerance*Tolerance;
 | 
					 | 
				
			||||||
      //      std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n";
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ProjectTimer.Reset();
 | 
					 | 
				
			||||||
    PromoteTimer.Reset();
 | 
					 | 
				
			||||||
    DeflateTimer.Reset();
 | 
					 | 
				
			||||||
    CoarseTimer.Reset();
 | 
					 | 
				
			||||||
    SmoothTimer.Reset();
 | 
					 | 
				
			||||||
    FineTimer.Reset();
 | 
					 | 
				
			||||||
    InsertTimer.Reset();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridStopWatch M1Timer;
 | 
					 | 
				
			||||||
    GridStopWatch M2Timer;
 | 
					 | 
				
			||||||
    GridStopWatch M3Timer;
 | 
					 | 
				
			||||||
    GridStopWatch LinalgTimer;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    HDCGTimer.Start();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<RealD> rn(nrhs);
 | 
					 | 
				
			||||||
    for (int k=0;k<=MaxIterations;k++){
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
      int peri_k  = k % mmax;
 | 
					 | 
				
			||||||
      int peri_kp = (k+1) % mmax;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
	rtz[rhs]=rtzp[rhs];
 | 
					 | 
				
			||||||
	M3Timer.Start();
 | 
					 | 
				
			||||||
	d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]);
 | 
					 | 
				
			||||||
	M3Timer.Stop();
 | 
					 | 
				
			||||||
	a[rhs] = rtz[rhs]/d[rhs];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	LinalgTimer.Start();
 | 
					 | 
				
			||||||
	// Memorise this
 | 
					 | 
				
			||||||
	pAp[rhs][peri_k] = d[rhs];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]);
 | 
					 | 
				
			||||||
	rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]);
 | 
					 | 
				
			||||||
	LinalgTimer.Stop();
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Compute z = M x (for *all* RHS)
 | 
					 | 
				
			||||||
      M1Timer.Start();
 | 
					 | 
				
			||||||
      PcgM1(r,z);
 | 
					 | 
				
			||||||
      M1Timer.Stop();
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      RealD max_rn=0.0;
 | 
					 | 
				
			||||||
      LinalgTimer.Start();
 | 
					 | 
				
			||||||
      for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	//	std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n";
 | 
					 | 
				
			||||||
	mu[rhs]=z[rhs];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	p[rhs][peri_kp]=mu[rhs];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	// Standard search direction p == z + b p 
 | 
					 | 
				
			||||||
	b[rhs] = (rtzp[rhs])/rtz[rhs];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	int northog = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm
 | 
					 | 
				
			||||||
	for(int back=0; back < northog; back++){
 | 
					 | 
				
			||||||
	  int peri_back = (k-back)%mmax;
 | 
					 | 
				
			||||||
	  RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp]));
 | 
					 | 
				
			||||||
	  RealD beta = -pbApk/pAp[rhs][peri_back];
 | 
					 | 
				
			||||||
	  axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]);
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	RealD rrn=sqrt(rn[rhs]/ssq[rhs]);
 | 
					 | 
				
			||||||
	RealD rtn=sqrt(rtz[rhs]/ssq[rhs]);
 | 
					 | 
				
			||||||
	RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]);
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG:fPcg rhs "<<rhs<<" k= "<<k<<" residual = "<<rrn<<"\n";
 | 
					 | 
				
			||||||
	if ( rrn > max_rn ) max_rn = rrn;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      LinalgTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Stopping condition based on worst case
 | 
					 | 
				
			||||||
      if ( max_rn <= Tolerance ) { 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	HDCGTimer.Stop();
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Linalg  "<<LinalgTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : fine M3 "<<M3Timer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : prec M1 "<<M1Timer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"**** M1 breakdown:"<<std::endl;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Project "<<ProjectTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Promote "<<PromoteTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Deflate "<<DeflateTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Coarse  "<<CoarseTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Fine    "<<FineTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Smooth  "<<SmoothTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Insert  "<<InsertTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
	  _FineLinop.HermOp(x[rhs],mmp[rhs][0]);			  
 | 
					 | 
				
			||||||
	  Field tmp(grid);
 | 
					 | 
				
			||||||
	  axpy(tmp,-1.0,src[rhs],mmp[rhs][0]);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
	  RealD  mmpnorm = sqrt(norm2(mmp[rhs][0]));
 | 
					 | 
				
			||||||
	  RealD  xnorm   = sqrt(norm2(x[rhs]));
 | 
					 | 
				
			||||||
	  RealD  srcnorm = sqrt(norm2(src[rhs]));
 | 
					 | 
				
			||||||
	  RealD  tmpnorm = sqrt(norm2(tmp));
 | 
					 | 
				
			||||||
	  RealD  true_residual = tmpnorm/srcnorm;
 | 
					 | 
				
			||||||
	  std::cout<<GridLogMessage
 | 
					 | 
				
			||||||
		   <<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
 | 
					 | 
				
			||||||
		   <<" solution "<<xnorm
 | 
					 | 
				
			||||||
		   <<" source "<<srcnorm
 | 
					 | 
				
			||||||
		   <<" mmp "<<mmpnorm	  
 | 
					 | 
				
			||||||
		   <<std::endl;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	return;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    HDCGTimer.Stop();
 | 
					 | 
				
			||||||
    std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
      RealD  xnorm   = sqrt(norm2(x[rhs]));
 | 
					 | 
				
			||||||
      RealD  srcnorm = sqrt(norm2(src[rhs]));
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 public:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out) = 0;
 | 
					 | 
				
			||||||
  virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src) = 0;
 | 
					 | 
				
			||||||
  virtual void PcgM2(const Field & in, Field & out) {
 | 
					 | 
				
			||||||
    out=in;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual RealD PcgM3(const Field & p, Field & mmp){
 | 
					 | 
				
			||||||
    RealD dd;
 | 
					 | 
				
			||||||
    _FineLinop.HermOp(p,mmp);
 | 
					 | 
				
			||||||
    ComplexD dot = innerProduct(p,mmp);
 | 
					 | 
				
			||||||
    dd=real(dot);
 | 
					 | 
				
			||||||
    return dd;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class Field, class CoarseField>
 | 
					 | 
				
			||||||
class TwoLevelADEF2mrhs : public TwoLevelCGmrhs<Field>
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  GridBase *coarsegrid;
 | 
					 | 
				
			||||||
  GridBase *coarsegridmrhs;
 | 
					 | 
				
			||||||
  LinearFunction<CoarseField> &_CoarseSolverMrhs;
 | 
					 | 
				
			||||||
  LinearFunction<CoarseField> &_CoarseSolverPreciseMrhs;
 | 
					 | 
				
			||||||
  MultiRHSBlockProject<Field>    &_Projector;
 | 
					 | 
				
			||||||
  MultiRHSDeflation<CoarseField> &_Deflator;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  TwoLevelADEF2mrhs(RealD tol,
 | 
					 | 
				
			||||||
		    Integer maxit,
 | 
					 | 
				
			||||||
		    LinearOperatorBase<Field>    &FineLinop,
 | 
					 | 
				
			||||||
		    LinearFunction<Field>        &Smoother,
 | 
					 | 
				
			||||||
		    LinearFunction<CoarseField>  &CoarseSolverMrhs,
 | 
					 | 
				
			||||||
		    LinearFunction<CoarseField>  &CoarseSolverPreciseMrhs,
 | 
					 | 
				
			||||||
		    MultiRHSBlockProject<Field>    &Projector,
 | 
					 | 
				
			||||||
		    MultiRHSDeflation<CoarseField> &Deflator,
 | 
					 | 
				
			||||||
		    GridBase *_coarsemrhsgrid) :
 | 
					 | 
				
			||||||
    TwoLevelCGmrhs<Field>(tol, maxit,FineLinop,Smoother,Projector.fine_grid),
 | 
					 | 
				
			||||||
    _CoarseSolverMrhs(CoarseSolverMrhs),
 | 
					 | 
				
			||||||
    _CoarseSolverPreciseMrhs(CoarseSolverPreciseMrhs),
 | 
					 | 
				
			||||||
    _Projector(Projector),
 | 
					 | 
				
			||||||
    _Deflator(Deflator)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    coarsegrid = Projector.coarse_grid;
 | 
					 | 
				
			||||||
    coarsegridmrhs = _coarsemrhsgrid;// Thi could be in projector
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  // Override Vstart
 | 
					 | 
				
			||||||
  virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int nrhs=x.size();
 | 
					 | 
				
			||||||
    ///////////////////////////////////
 | 
					 | 
				
			||||||
    // Choose x_0 such that 
 | 
					 | 
				
			||||||
    // x_0 = guess +  (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
 | 
					 | 
				
			||||||
    //                               = [1 - Ass_inv A] Guess + Assinv src
 | 
					 | 
				
			||||||
    //                               = P^T guess + Assinv src 
 | 
					 | 
				
			||||||
    //                               = Vstart  [Tang notation]
 | 
					 | 
				
			||||||
    // This gives:
 | 
					 | 
				
			||||||
    // W^T (src - A x_0) = src_s - A guess_s - r_s
 | 
					 | 
				
			||||||
    //                   = src_s - (A guess)_s - src_s  + (A guess)_s 
 | 
					 | 
				
			||||||
    //                   = 0 
 | 
					 | 
				
			||||||
    ///////////////////////////////////
 | 
					 | 
				
			||||||
    std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid);
 | 
					 | 
				
			||||||
    std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid);
 | 
					 | 
				
			||||||
    CoarseField PleftProjMrhs(this->coarsegridmrhs);
 | 
					 | 
				
			||||||
    CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    this->_Projector.blockProject(src,PleftProj);
 | 
					 | 
				
			||||||
    this->_Deflator.DeflateSources(PleftProj,PleftMss_proj);
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
					 | 
				
			||||||
      InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0);
 | 
					 | 
				
			||||||
      InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    this->_CoarseSolverPreciseMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} r_s
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
					 | 
				
			||||||
      ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    this->_Projector.blockPromote(x,PleftMss_proj);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int nrhs=in.size();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
 | 
					 | 
				
			||||||
    std::vector<Field> tmp(nrhs,this->grid);
 | 
					 | 
				
			||||||
    std::vector<Field> Min(nrhs,this->grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid);
 | 
					 | 
				
			||||||
    std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    CoarseField PleftProjMrhs(this->coarsegridmrhs);
 | 
					 | 
				
			||||||
    CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //    this->rrr=in[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#undef SMOOTHER_BLOCK_SOLVE
 | 
					 | 
				
			||||||
#if SMOOTHER_BLOCK_SOLVE
 | 
					 | 
				
			||||||
    this->SmoothTimer.Start();
 | 
					 | 
				
			||||||
    this->_Smoother(in,Min);
 | 
					 | 
				
			||||||
    this->SmoothTimer.Stop();
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
					 | 
				
			||||||
      this->SmoothTimer.Start();
 | 
					 | 
				
			||||||
      this->_Smoother(in[rhs],Min[rhs]);
 | 
					 | 
				
			||||||
      this->SmoothTimer.Stop();
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
    //    this->sss=Min[0];
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      this->FineTimer.Start();
 | 
					 | 
				
			||||||
      this->_FineLinop.HermOp(Min[rhs],out[rhs]);
 | 
					 | 
				
			||||||
      axpy(tmp[rhs],-1.0,out[rhs],in[rhs]);          // resid  = in - A Min
 | 
					 | 
				
			||||||
      this->FineTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    this->ProjectTimer.Start();
 | 
					 | 
				
			||||||
    this->_Projector.blockProject(tmp,PleftProj);
 | 
					 | 
				
			||||||
    this->ProjectTimer.Stop();
 | 
					 | 
				
			||||||
    this->DeflateTimer.Start();
 | 
					 | 
				
			||||||
    this->_Deflator.DeflateSources(PleftProj,PleftMss_proj);
 | 
					 | 
				
			||||||
    this->DeflateTimer.Stop();
 | 
					 | 
				
			||||||
    this->InsertTimer.Start();
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
					 | 
				
			||||||
      InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0);
 | 
					 | 
				
			||||||
      InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    this->InsertTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    this->CoarseTimer.Start();
 | 
					 | 
				
			||||||
    this->_CoarseSolverMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} [in - A Min]_s
 | 
					 | 
				
			||||||
    this->CoarseTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    this->InsertTimer.Start();
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
					 | 
				
			||||||
      ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    this->InsertTimer.Stop();
 | 
					 | 
				
			||||||
    this->PromoteTimer.Start();
 | 
					 | 
				
			||||||
    this->_Projector.blockPromote(tmp,PleftMss_proj);// tmp= Q[in - A Min]  
 | 
					 | 
				
			||||||
    this->PromoteTimer.Stop();
 | 
					 | 
				
			||||||
    this->FineTimer.Start();
 | 
					 | 
				
			||||||
    //    this->qqq=tmp[0];
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
					 | 
				
			||||||
      axpy(out[rhs],1.0,Min[rhs],tmp[rhs]); // Min+tmp
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    //    this->zzz=out[0];
 | 
					 | 
				
			||||||
    this->FineTimer.Stop();
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
@@ -47,7 +47,7 @@ class BiCGSTAB : public OperatorFunction<Field>
 | 
				
			|||||||
  public:
 | 
					  public:
 | 
				
			||||||
    using OperatorFunction<Field>::operator();
 | 
					    using OperatorFunction<Field>::operator();
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    bool ErrorOnNoConverge;  // throw an GRID_ASSERT when the CG fails to converge.
 | 
					    bool ErrorOnNoConverge;  // throw an assert when the CG fails to converge.
 | 
				
			||||||
                             // Defaults true.
 | 
					                             // Defaults true.
 | 
				
			||||||
    RealD Tolerance;
 | 
					    RealD Tolerance;
 | 
				
			||||||
    Integer MaxIterations;
 | 
					    Integer MaxIterations;
 | 
				
			||||||
@@ -77,7 +77,7 @@ class BiCGSTAB : public OperatorFunction<Field>
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
      // Initial residual computation & set up
 | 
					      // Initial residual computation & set up
 | 
				
			||||||
      RealD guess = norm2(psi);
 | 
					      RealD guess = norm2(psi);
 | 
				
			||||||
      GRID_ASSERT(std::isnan(guess) == 0);
 | 
					      assert(std::isnan(guess) == 0);
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
      Linop.Op(psi, v);
 | 
					      Linop.Op(psi, v);
 | 
				
			||||||
      b = norm2(v);
 | 
					      b = norm2(v);
 | 
				
			||||||
@@ -214,7 +214,7 @@ class BiCGSTAB : public OperatorFunction<Field>
 | 
				
			|||||||
          std::cout << GridLogMessage << "\tAxpyNorm   " << AxpyNormTimer.Elapsed() << std::endl;
 | 
					          std::cout << GridLogMessage << "\tAxpyNorm   " << AxpyNormTimer.Elapsed() << std::endl;
 | 
				
			||||||
          std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() << std::endl;
 | 
					          std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() << std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
          if(ErrorOnNoConverge){ GRID_ASSERT(true_residual / Tolerance < 10000.0); }
 | 
					          if(ErrorOnNoConverge){ assert(true_residual / Tolerance < 10000.0); }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
          IterationsToComplete = k;	
 | 
					          IterationsToComplete = k;	
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -224,7 +224,7 @@ class BiCGSTAB : public OperatorFunction<Field>
 | 
				
			|||||||
      
 | 
					      
 | 
				
			||||||
      std::cout << GridLogMessage << "BiCGSTAB did NOT converge" << std::endl;
 | 
					      std::cout << GridLogMessage << "BiCGSTAB did NOT converge" << std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      if(ErrorOnNoConverge){ GRID_ASSERT(0); }
 | 
					      if(ErrorOnNoConverge){ assert(0); }
 | 
				
			||||||
      IterationsToComplete = k;
 | 
					      IterationsToComplete = k;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -31,58 +31,6 @@ directory
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					NAMESPACE_BEGIN(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class Field>
 | 
					 | 
				
			||||||
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){
 | 
					 | 
				
			||||||
  typedef typename Field::scalar_type scomplex;
 | 
					 | 
				
			||||||
  int Nblock = X.size();
 | 
					 | 
				
			||||||
  for(int b=0;b<Nblock;b++){
 | 
					 | 
				
			||||||
  for(int bp=0;bp<Nblock;bp++) {
 | 
					 | 
				
			||||||
    m(b,bp) = innerProduct(X[b],Y[bp]);  
 | 
					 | 
				
			||||||
  }}
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
template<class Field>
 | 
					 | 
				
			||||||
void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){
 | 
					 | 
				
			||||||
  // Should make this cache friendly with site outermost, parallel_for
 | 
					 | 
				
			||||||
  // Deal with case AP aliases with either Y or X
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  //Could pack "X" and "AP" into a Nblock x Volume dense array.
 | 
					 | 
				
			||||||
  // AP(Nrhs x vol) = Y(Nrhs x vol) + scale * m(nrhs x nrhs) * X(nrhs*vol)
 | 
					 | 
				
			||||||
  typedef typename Field::scalar_type scomplex;
 | 
					 | 
				
			||||||
  int Nblock = AP.size();
 | 
					 | 
				
			||||||
  std::vector<Field> tmp(Nblock,X[0]);
 | 
					 | 
				
			||||||
  for(int b=0;b<Nblock;b++){
 | 
					 | 
				
			||||||
    tmp[b]   = Y[b];
 | 
					 | 
				
			||||||
    for(int bp=0;bp<Nblock;bp++) {
 | 
					 | 
				
			||||||
      tmp[b] = tmp[b] +scomplex(scale*m(bp,b))*X[bp]; 
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  for(int b=0;b<Nblock;b++){
 | 
					 | 
				
			||||||
    AP[b] = tmp[b];
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
template<class Field>
 | 
					 | 
				
			||||||
void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){
 | 
					 | 
				
			||||||
  // Should make this cache friendly with site outermost, parallel_for
 | 
					 | 
				
			||||||
  typedef typename Field::scalar_type scomplex;
 | 
					 | 
				
			||||||
  int Nblock = AP.size();
 | 
					 | 
				
			||||||
  for(int b=0;b<Nblock;b++){
 | 
					 | 
				
			||||||
    AP[b] = Zero();
 | 
					 | 
				
			||||||
    for(int bp=0;bp<Nblock;bp++) {
 | 
					 | 
				
			||||||
      AP[b] += scomplex(m(bp,b))*X[bp]; 
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
template<class Field>
 | 
					 | 
				
			||||||
double normv(const std::vector<Field> &P){
 | 
					 | 
				
			||||||
  int Nblock = P.size();
 | 
					 | 
				
			||||||
  double nn = 0.0;
 | 
					 | 
				
			||||||
  for(int b=0;b<Nblock;b++) {
 | 
					 | 
				
			||||||
    nn+=norm2(P[b]);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  return nn;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS, BlockCGVec, BlockCGrQVec };
 | 
					enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS, BlockCGVec, BlockCGrQVec };
 | 
				
			||||||
 | 
					
 | 
				
			||||||
//////////////////////////////////////////////////////////////////////////
 | 
					//////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -98,7 +46,7 @@ class BlockConjugateGradient : public OperatorFunction<Field> {
 | 
				
			|||||||
  int Nblock;
 | 
					  int Nblock;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  BlockCGtype CGtype;
 | 
					  BlockCGtype CGtype;
 | 
				
			||||||
  bool ErrorOnNoConverge;  // throw an GRID_ASSERT when the CG fails to converge.
 | 
					  bool ErrorOnNoConverge;  // throw an assert when the CG fails to converge.
 | 
				
			||||||
                           // Defaults true.
 | 
					                           // Defaults true.
 | 
				
			||||||
  RealD Tolerance;
 | 
					  RealD Tolerance;
 | 
				
			||||||
  Integer MaxIterations;
 | 
					  Integer MaxIterations;
 | 
				
			||||||
@@ -139,19 +87,10 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
 | 
				
			|||||||
  sliceInnerProductMatrix(m_rr,R,R,Orthog);
 | 
					  sliceInnerProductMatrix(m_rr,R,R,Orthog);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Force manifest hermitian to avoid rounding related
 | 
					  // Force manifest hermitian to avoid rounding related
 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
  int rank=m_rr.rows();
 | 
					 | 
				
			||||||
  for(int r=0;r<rank;r++){
 | 
					 | 
				
			||||||
  for(int s=0;s<rank;s++){
 | 
					 | 
				
			||||||
    std::cout << "QR m_rr["<<r<<","<<s<<"] "<<m_rr(r,s)<<std::endl;
 | 
					 | 
				
			||||||
  }}
 | 
					 | 
				
			||||||
  */
 | 
					 | 
				
			||||||
  m_rr = 0.5*(m_rr+m_rr.adjoint());
 | 
					  m_rr = 0.5*(m_rr+m_rr.adjoint());
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  Eigen::MatrixXcd L    = m_rr.llt().matrixL(); 
 | 
					  Eigen::MatrixXcd L    = m_rr.llt().matrixL(); 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
//  ComplexD det = L.determinant();
 | 
					 | 
				
			||||||
//  std::cout << " Det m_rr "<<det<<std::endl;
 | 
					 | 
				
			||||||
  C    = L.adjoint();
 | 
					  C    = L.adjoint();
 | 
				
			||||||
  Cinv = C.inverse();
 | 
					  Cinv = C.inverse();
 | 
				
			||||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -171,20 +110,11 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
 | 
				
			|||||||
		 const std::vector<Field> & R)
 | 
							 const std::vector<Field> & R)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  InnerProductMatrix(m_rr,R,R);
 | 
					  InnerProductMatrix(m_rr,R,R);
 | 
				
			||||||
  /*
 | 
					
 | 
				
			||||||
  int rank=m_rr.rows();
 | 
					 | 
				
			||||||
  for(int r=0;r<rank;r++){
 | 
					 | 
				
			||||||
  for(int s=0;s<rank;s++){
 | 
					 | 
				
			||||||
    std::cout << "QRvec m_rr["<<r<<","<<s<<"] "<<m_rr(r,s)<<std::endl;
 | 
					 | 
				
			||||||
  }}
 | 
					 | 
				
			||||||
  */
 | 
					 | 
				
			||||||
  m_rr = 0.5*(m_rr+m_rr.adjoint());
 | 
					  m_rr = 0.5*(m_rr+m_rr.adjoint());
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  Eigen::MatrixXcd L    = m_rr.llt().matrixL(); 
 | 
					  Eigen::MatrixXcd L    = m_rr.llt().matrixL(); 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //  ComplexD det = L.determinant();
 | 
					 | 
				
			||||||
  //  std::cout << " Det m_rr "<<det<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  C    = L.adjoint();
 | 
					  C    = L.adjoint();
 | 
				
			||||||
  Cinv = C.inverse();
 | 
					  Cinv = C.inverse();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -201,7 +131,7 @@ void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
 | 
				
			|||||||
  } else if (CGtype == CGmultiRHS ) {
 | 
					  } else if (CGtype == CGmultiRHS ) {
 | 
				
			||||||
    CGmultiRHSsolve(Linop,Src,Psi);
 | 
					    CGmultiRHSsolve(Linop,Src,Psi);
 | 
				
			||||||
  } else {
 | 
					  } else {
 | 
				
			||||||
    GRID_ASSERT(0);
 | 
					    assert(0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
virtual void operator()(LinearOperatorBase<Field> &Linop, const std::vector<Field> &Src, std::vector<Field> &Psi) 
 | 
					virtual void operator()(LinearOperatorBase<Field> &Linop, const std::vector<Field> &Src, std::vector<Field> &Psi) 
 | 
				
			||||||
@@ -209,7 +139,7 @@ virtual void operator()(LinearOperatorBase<Field> &Linop, const std::vector<Fiel
 | 
				
			|||||||
  if ( CGtype == BlockCGrQVec ) {
 | 
					  if ( CGtype == BlockCGrQVec ) {
 | 
				
			||||||
    BlockCGrQsolveVec(Linop,Src,Psi);
 | 
					    BlockCGrQsolveVec(Linop,Src,Psi);
 | 
				
			||||||
  } else {
 | 
					  } else {
 | 
				
			||||||
    GRID_ASSERT(0);
 | 
					    assert(0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -256,13 +186,12 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
 | 
				
			|||||||
  sliceNorm(ssq,B,Orthog);
 | 
					  sliceNorm(ssq,B,Orthog);
 | 
				
			||||||
  RealD sssum=0;
 | 
					  RealD sssum=0;
 | 
				
			||||||
  for(int b=0;b<Nblock;b++) sssum+=ssq[b];
 | 
					  for(int b=0;b<Nblock;b++) sssum+=ssq[b];
 | 
				
			||||||
  for(int b=0;b<Nblock;b++) std::cout << "src["<<b<<"]" << ssq[b] <<std::endl;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  sliceNorm(residuals,B,Orthog);
 | 
					  sliceNorm(residuals,B,Orthog);
 | 
				
			||||||
  for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); }
 | 
					  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  sliceNorm(residuals,X,Orthog);
 | 
					  sliceNorm(residuals,X,Orthog);
 | 
				
			||||||
  for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); }
 | 
					  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  /************************************************************************
 | 
					  /************************************************************************
 | 
				
			||||||
   * Block conjugate gradient rQ (Sebastien Birk Thesis, after Dubrulle 2001)
 | 
					   * Block conjugate gradient rQ (Sebastien Birk Thesis, after Dubrulle 2001)
 | 
				
			||||||
@@ -292,9 +221,6 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
 | 
				
			|||||||
  Linop.HermOp(X, AD);
 | 
					  Linop.HermOp(X, AD);
 | 
				
			||||||
  tmp = B - AD;  
 | 
					  tmp = B - AD;  
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  sliceNorm(residuals,tmp,Orthog);
 | 
					 | 
				
			||||||
  for(int b=0;b<Nblock;b++) std::cout << "res["<<b<<"]" << residuals[b] <<std::endl;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
 | 
					  ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
 | 
				
			||||||
  D=Q;
 | 
					  D=Q;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -310,8 +236,6 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
 | 
				
			|||||||
  GridStopWatch SolverTimer;
 | 
					  GridStopWatch SolverTimer;
 | 
				
			||||||
  SolverTimer.Start();
 | 
					  SolverTimer.Start();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  RealD max_resid=0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int k;
 | 
					  int k;
 | 
				
			||||||
  for (k = 1; k <= MaxIterations; k++) {
 | 
					  for (k = 1; k <= MaxIterations; k++) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -356,7 +280,7 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
 | 
				
			|||||||
     */
 | 
					     */
 | 
				
			||||||
    m_rr = m_C.adjoint() * m_C;
 | 
					    m_rr = m_C.adjoint() * m_C;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    max_resid=0;
 | 
					    RealD max_resid=0;
 | 
				
			||||||
    RealD rrsum=0;
 | 
					    RealD rrsum=0;
 | 
				
			||||||
    RealD rr;
 | 
					    RealD rr;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -398,11 +322,9 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					  std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge" << std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge "<<k<<" / "<<MaxIterations
 | 
					  if (ErrorOnNoConverge) assert(0);
 | 
				
			||||||
	    <<" residual "<< std::sqrt(max_resid)<< std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  if (ErrorOnNoConverge) GRID_ASSERT(0);
 | 
					 | 
				
			||||||
  IterationsToComplete = k;
 | 
					  IterationsToComplete = k;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
//////////////////////////////////////////////////////////////////////////
 | 
					//////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -438,10 +360,10 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &
 | 
				
			|||||||
  for(int b=0;b<Nblock;b++) sssum+=ssq[b];
 | 
					  for(int b=0;b<Nblock;b++) sssum+=ssq[b];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  sliceNorm(residuals,Src,Orthog);
 | 
					  sliceNorm(residuals,Src,Orthog);
 | 
				
			||||||
  for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); }
 | 
					  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  sliceNorm(residuals,Psi,Orthog);
 | 
					  sliceNorm(residuals,Psi,Orthog);
 | 
				
			||||||
  for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); }
 | 
					  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Initial search dir is guess
 | 
					  // Initial search dir is guess
 | 
				
			||||||
  Linop.HermOp(Psi, AP);
 | 
					  Linop.HermOp(Psi, AP);
 | 
				
			||||||
@@ -540,10 +462,47 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
  std::cout << GridLogMessage << "MultiRHSConjugateGradient did NOT converge" << std::endl;
 | 
					  std::cout << GridLogMessage << "MultiRHSConjugateGradient did NOT converge" << std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  if (ErrorOnNoConverge) GRID_ASSERT(0);
 | 
					  if (ErrorOnNoConverge) assert(0);
 | 
				
			||||||
  IterationsToComplete = k;
 | 
					  IterationsToComplete = k;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){
 | 
				
			||||||
 | 
					  for(int b=0;b<Nblock;b++){
 | 
				
			||||||
 | 
					  for(int bp=0;bp<Nblock;bp++) {
 | 
				
			||||||
 | 
					    m(b,bp) = innerProduct(X[b],Y[bp]);  
 | 
				
			||||||
 | 
					  }}
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){
 | 
				
			||||||
 | 
					  // Should make this cache friendly with site outermost, parallel_for
 | 
				
			||||||
 | 
					  // Deal with case AP aliases with either Y or X
 | 
				
			||||||
 | 
					  std::vector<Field> tmp(Nblock,X[0]);
 | 
				
			||||||
 | 
					  for(int b=0;b<Nblock;b++){
 | 
				
			||||||
 | 
					    tmp[b]   = Y[b];
 | 
				
			||||||
 | 
					    for(int bp=0;bp<Nblock;bp++) {
 | 
				
			||||||
 | 
					      tmp[b] = tmp[b] + scomplex(scale*m(bp,b))*X[bp]; 
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  for(int b=0;b<Nblock;b++){
 | 
				
			||||||
 | 
					    AP[b] = tmp[b];
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){
 | 
				
			||||||
 | 
					  // Should make this cache friendly with site outermost, parallel_for
 | 
				
			||||||
 | 
					  for(int b=0;b<Nblock;b++){
 | 
				
			||||||
 | 
					    AP[b] = Zero();
 | 
				
			||||||
 | 
					    for(int bp=0;bp<Nblock;bp++) {
 | 
				
			||||||
 | 
					      AP[b] += scomplex(m(bp,b))*X[bp]; 
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					double normv(const std::vector<Field> &P){
 | 
				
			||||||
 | 
					  double nn = 0.0;
 | 
				
			||||||
 | 
					  for(int b=0;b<Nblock;b++) {
 | 
				
			||||||
 | 
					    nn+=norm2(P[b]);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  return nn;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
////////////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
// BlockCGrQvec implementation:
 | 
					// BlockCGrQvec implementation:
 | 
				
			||||||
//--------------------------
 | 
					//--------------------------
 | 
				
			||||||
@@ -554,7 +513,7 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &
 | 
				
			|||||||
void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field> &B, std::vector<Field> &X) 
 | 
					void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field> &B, std::vector<Field> &X) 
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  Nblock = B.size();
 | 
					  Nblock = B.size();
 | 
				
			||||||
  GRID_ASSERT(Nblock == X.size());
 | 
					  assert(Nblock == X.size());
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  std::cout<<GridLogMessage<<" Block Conjugate Gradient Vec rQ : Nblock "<<Nblock<<std::endl;
 | 
					  std::cout<<GridLogMessage<<" Block Conjugate Gradient Vec rQ : Nblock "<<Nblock<<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -590,14 +549,13 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  RealD sssum=0;
 | 
					  RealD sssum=0;
 | 
				
			||||||
  for(int b=0;b<Nblock;b++){ ssq[b] = norm2(B[b]);}
 | 
					  for(int b=0;b<Nblock;b++){ ssq[b] = norm2(B[b]);}
 | 
				
			||||||
  for(int b=0;b<Nblock;b++){ std::cout << "ssq["<<b<<"] "<<ssq[b]<<std::endl;}
 | 
					 | 
				
			||||||
  for(int b=0;b<Nblock;b++) sssum+=ssq[b];
 | 
					  for(int b=0;b<Nblock;b++) sssum+=ssq[b];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  for(int b=0;b<Nblock;b++){ residuals[b] = norm2(B[b]);}
 | 
					  for(int b=0;b<Nblock;b++){ residuals[b] = norm2(B[b]);}
 | 
				
			||||||
  for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); }
 | 
					  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  for(int b=0;b<Nblock;b++){ residuals[b] = norm2(X[b]);}
 | 
					  for(int b=0;b<Nblock;b++){ residuals[b] = norm2(X[b]);}
 | 
				
			||||||
  for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); }
 | 
					  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  /************************************************************************
 | 
					  /************************************************************************
 | 
				
			||||||
   * Block conjugate gradient rQ (Sebastien Birk Thesis, after Dubrulle 2001)
 | 
					   * Block conjugate gradient rQ (Sebastien Birk Thesis, after Dubrulle 2001)
 | 
				
			||||||
@@ -627,7 +585,6 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
 | 
				
			|||||||
  for(int b=0;b<Nblock;b++) {
 | 
					  for(int b=0;b<Nblock;b++) {
 | 
				
			||||||
    Linop.HermOp(X[b], AD[b]);
 | 
					    Linop.HermOp(X[b], AD[b]);
 | 
				
			||||||
    tmp[b] = B[b] - AD[b];  
 | 
					    tmp[b] = B[b] - AD[b];  
 | 
				
			||||||
    std::cout << "r0["<<b<<"] "<<norm2(tmp[b])<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
 | 
					  ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
 | 
				
			||||||
@@ -731,7 +688,7 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
  std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge" << std::endl;
 | 
					  std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge" << std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  if (ErrorOnNoConverge) GRID_ASSERT(0);
 | 
					  if (ErrorOnNoConverge) assert(0);
 | 
				
			||||||
  IterationsToComplete = k;
 | 
					  IterationsToComplete = k;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -36,7 +36,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<
 | 
				
			|||||||
 public:
 | 
					 public:
 | 
				
			||||||
  using OperatorFunction<Field>::operator();
 | 
					  using OperatorFunction<Field>::operator();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  bool ErrorOnNoConverge; // Throw an GRID_ASSERT when CAGMRES fails to converge,
 | 
					  bool ErrorOnNoConverge; // Throw an assert when CAGMRES fails to converge,
 | 
				
			||||||
                          // defaults to true
 | 
					                          // defaults to true
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  RealD   Tolerance;
 | 
					  RealD   Tolerance;
 | 
				
			||||||
@@ -82,7 +82,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<
 | 
				
			|||||||
    conformable(psi, src);
 | 
					    conformable(psi, src);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    RealD guess = norm2(psi);
 | 
					    RealD guess = norm2(psi);
 | 
				
			||||||
    GRID_ASSERT(std::isnan(guess) == 0);
 | 
					    assert(std::isnan(guess) == 0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    RealD cp;
 | 
					    RealD cp;
 | 
				
			||||||
    RealD ssq = norm2(src);
 | 
					    RealD ssq = norm2(src);
 | 
				
			||||||
@@ -137,7 +137,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<
 | 
				
			|||||||
    std::cout << GridLogMessage << "CommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
 | 
					    std::cout << GridLogMessage << "CommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if (ErrorOnNoConverge)
 | 
					    if (ErrorOnNoConverge)
 | 
				
			||||||
      GRID_ASSERT(0);
 | 
					      assert(0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
 | 
					  RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
 | 
				
			||||||
@@ -185,7 +185,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<
 | 
				
			|||||||
      }
 | 
					      }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    GRID_ASSERT(0); // Never reached
 | 
					    assert(0); // Never reached
 | 
				
			||||||
    return cp;
 | 
					    return cp;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -38,14 +38,13 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
// single input vec, single output vec.
 | 
					// single input vec, single output vec.
 | 
				
			||||||
/////////////////////////////////////////////////////////////
 | 
					/////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
template <class Field>
 | 
					template <class Field>
 | 
				
			||||||
class ConjugateGradient : public OperatorFunction<Field> {
 | 
					class ConjugateGradient : public OperatorFunction<Field> {
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  using OperatorFunction<Field>::operator();
 | 
					  using OperatorFunction<Field>::operator();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  bool ErrorOnNoConverge;  // throw an GRID_ASSERT when the CG fails to converge.
 | 
					  bool ErrorOnNoConverge;  // throw an assert when the CG fails to converge.
 | 
				
			||||||
                           // Defaults true.
 | 
					                           // Defaults true.
 | 
				
			||||||
  RealD Tolerance;
 | 
					  RealD Tolerance;
 | 
				
			||||||
  Integer MaxIterations;
 | 
					  Integer MaxIterations;
 | 
				
			||||||
@@ -55,26 +54,11 @@ public:
 | 
				
			|||||||
  ConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
 | 
					  ConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
 | 
				
			||||||
    : Tolerance(tol),
 | 
					    : Tolerance(tol),
 | 
				
			||||||
      MaxIterations(maxit),
 | 
					      MaxIterations(maxit),
 | 
				
			||||||
      ErrorOnNoConverge(err_on_no_conv)
 | 
					      ErrorOnNoConverge(err_on_no_conv){};
 | 
				
			||||||
  {};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void LogIteration(int k,RealD a,RealD b){
 | 
					 | 
				
			||||||
    //    std::cout << "ConjugageGradient::LogIteration() "<<std::endl;
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  virtual void LogBegin(void){
 | 
					 | 
				
			||||||
    std::cout << "ConjugageGradient::LogBegin() "<<std::endl;
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
 | 
					  void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      this->LogBegin();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GRID_TRACE("ConjugateGradient");
 | 
					    GRID_TRACE("ConjugateGradient");
 | 
				
			||||||
    GridStopWatch PreambleTimer;
 | 
					 | 
				
			||||||
    GridStopWatch ConstructTimer;
 | 
					 | 
				
			||||||
    GridStopWatch NormTimer;
 | 
					 | 
				
			||||||
    GridStopWatch AssignTimer;
 | 
					 | 
				
			||||||
    PreambleTimer.Start();
 | 
					 | 
				
			||||||
    psi.Checkerboard() = src.Checkerboard();
 | 
					    psi.Checkerboard() = src.Checkerboard();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    conformable(psi, src);
 | 
					    conformable(psi, src);
 | 
				
			||||||
@@ -82,32 +66,22 @@ public:
 | 
				
			|||||||
    RealD cp, c, a, d, b, ssq, qq;
 | 
					    RealD cp, c, a, d, b, ssq, qq;
 | 
				
			||||||
    //RealD b_pred;
 | 
					    //RealD b_pred;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // Was doing copies
 | 
					    Field p(src);
 | 
				
			||||||
    ConstructTimer.Start();
 | 
					    Field mmp(src);
 | 
				
			||||||
    Field p  (src.Grid());
 | 
					    Field r(src);
 | 
				
			||||||
    Field mmp(src.Grid());
 | 
					 | 
				
			||||||
    Field r  (src.Grid());
 | 
					 | 
				
			||||||
    ConstructTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // Initial residual computation & set up
 | 
					    // Initial residual computation & set up
 | 
				
			||||||
    NormTimer.Start();
 | 
					 | 
				
			||||||
    ssq = norm2(src);
 | 
					 | 
				
			||||||
    RealD guess = norm2(psi);
 | 
					    RealD guess = norm2(psi);
 | 
				
			||||||
    NormTimer.Stop();
 | 
					    assert(std::isnan(guess) == 0);
 | 
				
			||||||
    GRID_ASSERT(std::isnan(guess) == 0);
 | 
					    
 | 
				
			||||||
    AssignTimer.Start();
 | 
					 | 
				
			||||||
    if ( guess == 0.0 ) {
 | 
					 | 
				
			||||||
      r = src;
 | 
					 | 
				
			||||||
      p = r;
 | 
					 | 
				
			||||||
      a = ssq;
 | 
					 | 
				
			||||||
    } else { 
 | 
					 | 
				
			||||||
    Linop.HermOpAndNorm(psi, mmp, d, b);
 | 
					    Linop.HermOpAndNorm(psi, mmp, d, b);
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
    r = src - mmp;
 | 
					    r = src - mmp;
 | 
				
			||||||
    p = r;
 | 
					    p = r;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    a = norm2(p);
 | 
					    a = norm2(p);
 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    cp = a;
 | 
					    cp = a;
 | 
				
			||||||
    AssignTimer.Stop();
 | 
					    ssq = norm2(src);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // Handle trivial case of zero src
 | 
					    // Handle trivial case of zero src
 | 
				
			||||||
    if (ssq == 0.){
 | 
					    if (ssq == 0.){
 | 
				
			||||||
@@ -137,7 +111,6 @@ public:
 | 
				
			|||||||
    std::cout << GridLogIterative << std::setprecision(8)
 | 
					    std::cout << GridLogIterative << std::setprecision(8)
 | 
				
			||||||
              << "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
 | 
					              << "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    PreambleTimer.Stop();
 | 
					 | 
				
			||||||
    GridStopWatch LinalgTimer;
 | 
					    GridStopWatch LinalgTimer;
 | 
				
			||||||
    GridStopWatch InnerTimer;
 | 
					    GridStopWatch InnerTimer;
 | 
				
			||||||
    GridStopWatch AxpyNormTimer;
 | 
					    GridStopWatch AxpyNormTimer;
 | 
				
			||||||
@@ -183,7 +156,6 @@ public:
 | 
				
			|||||||
      }
 | 
					      }
 | 
				
			||||||
      LinearCombTimer.Stop();
 | 
					      LinearCombTimer.Stop();
 | 
				
			||||||
      LinalgTimer.Stop();
 | 
					      LinalgTimer.Stop();
 | 
				
			||||||
      LogIteration(k,a,b);
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
      IterationTimer.Stop();
 | 
					      IterationTimer.Stop();
 | 
				
			||||||
      if ( (k % 500) == 0 ) {
 | 
					      if ( (k % 500) == 0 ) {
 | 
				
			||||||
@@ -211,18 +183,17 @@ public:
 | 
				
			|||||||
		  << "\tTrue residual " << true_residual
 | 
							  << "\tTrue residual " << true_residual
 | 
				
			||||||
		  << "\tTarget " << Tolerance << std::endl;
 | 
							  << "\tTarget " << Tolerance << std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	//	std::cout << GridLogMessage << "\tPreamble   " << PreambleTimer.Elapsed() <<std::endl;
 | 
					        std::cout << GridLogMessage << "Time breakdown "<<std::endl;
 | 
				
			||||||
	std::cout << GridLogMessage << "\tSolver Elapsed    " << SolverTimer.Elapsed() <<std::endl;
 | 
						std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed() <<std::endl;
 | 
				
			||||||
        std::cout << GridLogPerformance << "Time breakdown "<<std::endl;
 | 
						std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
				
			||||||
	std::cout << GridLogPerformance << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
						std::cout << GridLogMessage << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
				
			||||||
	std::cout << GridLogPerformance << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
						std::cout << GridLogMessage << "\tInner      " << InnerTimer.Elapsed() <<std::endl;
 | 
				
			||||||
	std::cout << GridLogPerformance << "\t\tInner      " << InnerTimer.Elapsed() <<std::endl;
 | 
						std::cout << GridLogMessage << "\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl;
 | 
				
			||||||
	std::cout << GridLogPerformance << "\t\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl;
 | 
						std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
 | 
				
			||||||
	std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
	std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl;
 | 
						std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        if (ErrorOnNoConverge) GRID_ASSERT(true_residual / Tolerance < 10000.0);
 | 
					        if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	IterationsToComplete = k;	
 | 
						IterationsToComplete = k;	
 | 
				
			||||||
	TrueResidual = true_residual;
 | 
						TrueResidual = true_residual;
 | 
				
			||||||
@@ -231,143 +202,17 @@ public:
 | 
				
			|||||||
      }
 | 
					      }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    // Failed. Calculate true residual before giving up                                                         
 | 
					    // Failed. Calculate true residual before giving up                                                         
 | 
				
			||||||
    // Linop.HermOpAndNorm(psi, mmp, d, qq);
 | 
					    Linop.HermOpAndNorm(psi, mmp, d, qq);
 | 
				
			||||||
    //    p = mmp - src;
 | 
					    p = mmp - src;
 | 
				
			||||||
    //TrueResidual = sqrt(norm2(p)/ssq);
 | 
					 | 
				
			||||||
    //    TrueResidual = 1;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations
 | 
					    TrueResidual = sqrt(norm2(p)/ssq);
 | 
				
			||||||
    	      <<" residual "<< std::sqrt(cp / ssq)<< std::endl;
 | 
					 | 
				
			||||||
    SolverTimer.Stop();
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "\tPreamble   " << PreambleTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "\tConstruct  " << ConstructTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "\tNorm       " << NormTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "\tAssign     " << AssignTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "\tSolver     " << SolverTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "Solver breakdown "<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<< "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "\t\tInner      " << InnerTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "\t\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if (ErrorOnNoConverge) GRID_ASSERT(0);
 | 
					    std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations<< std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if (ErrorOnNoConverge) assert(0);
 | 
				
			||||||
    IterationsToComplete = k;
 | 
					    IterationsToComplete = k;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template <class Field>
 | 
					 | 
				
			||||||
class ConjugateGradientPolynomial : public ConjugateGradient<Field> {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  // Optionally record the CG polynomial
 | 
					 | 
				
			||||||
  std::vector<double> ak;
 | 
					 | 
				
			||||||
  std::vector<double> bk;
 | 
					 | 
				
			||||||
  std::vector<double> poly_p;
 | 
					 | 
				
			||||||
  std::vector<double> poly_r;
 | 
					 | 
				
			||||||
  std::vector<double> poly_Ap;
 | 
					 | 
				
			||||||
  std::vector<double> polynomial;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  ConjugateGradientPolynomial(RealD tol, Integer maxit, bool err_on_no_conv = true)
 | 
					 | 
				
			||||||
    : ConjugateGradient<Field>(tol,maxit,err_on_no_conv)
 | 
					 | 
				
			||||||
  { };
 | 
					 | 
				
			||||||
  void PolyHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    Field tmp(src.Grid());
 | 
					 | 
				
			||||||
    Field AtoN(src.Grid());
 | 
					 | 
				
			||||||
    AtoN = src;
 | 
					 | 
				
			||||||
    psi=AtoN*polynomial[0];
 | 
					 | 
				
			||||||
    for(int n=1;n<polynomial.size();n++){
 | 
					 | 
				
			||||||
      tmp = AtoN;
 | 
					 | 
				
			||||||
      Linop.HermOp(tmp,AtoN);
 | 
					 | 
				
			||||||
      psi = psi + polynomial[n]*AtoN;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void CGsequenceHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &x)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    Field Ap(src.Grid());
 | 
					 | 
				
			||||||
    Field r(src.Grid());
 | 
					 | 
				
			||||||
    Field p(src.Grid());
 | 
					 | 
				
			||||||
    p=src;
 | 
					 | 
				
			||||||
    r=src;
 | 
					 | 
				
			||||||
    x=Zero();
 | 
					 | 
				
			||||||
    x.Checkerboard()=src.Checkerboard();
 | 
					 | 
				
			||||||
    for(int k=0;k<ak.size();k++){
 | 
					 | 
				
			||||||
      x = x + ak[k]*p;
 | 
					 | 
				
			||||||
      Linop.HermOp(p,Ap);
 | 
					 | 
				
			||||||
      r = r - ak[k] * Ap;
 | 
					 | 
				
			||||||
      p = r + bk[k] * p;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void Solve(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    psi=Zero();
 | 
					 | 
				
			||||||
    this->operator ()(Linop,src,psi);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  virtual void LogBegin(void)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::cout << "ConjugageGradientPolynomial::LogBegin() "<<std::endl;
 | 
					 | 
				
			||||||
    ak.resize(0);
 | 
					 | 
				
			||||||
    bk.resize(0);
 | 
					 | 
				
			||||||
    polynomial.resize(0);
 | 
					 | 
				
			||||||
    poly_Ap.resize(0);
 | 
					 | 
				
			||||||
    poly_Ap.resize(0);
 | 
					 | 
				
			||||||
    poly_p.resize(1);
 | 
					 | 
				
			||||||
    poly_r.resize(1);
 | 
					 | 
				
			||||||
    poly_p[0]=1.0;
 | 
					 | 
				
			||||||
    poly_r[0]=1.0;
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  virtual void LogIteration(int k,RealD a,RealD b)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    // With zero guess,
 | 
					 | 
				
			||||||
    // p = r = src
 | 
					 | 
				
			||||||
    //
 | 
					 | 
				
			||||||
    // iterate:
 | 
					 | 
				
			||||||
    //   x =  x + a p
 | 
					 | 
				
			||||||
    //   r =  r - a A p
 | 
					 | 
				
			||||||
    //   p =  r + b p
 | 
					 | 
				
			||||||
    //
 | 
					 | 
				
			||||||
    // [0]
 | 
					 | 
				
			||||||
    // r = x
 | 
					 | 
				
			||||||
    // p = x
 | 
					 | 
				
			||||||
    // Ap=0
 | 
					 | 
				
			||||||
    //
 | 
					 | 
				
			||||||
    // [1]
 | 
					 | 
				
			||||||
    // Ap = A x + 0  ==> shift poly P right by 1 and add 0.
 | 
					 | 
				
			||||||
    // x  = x + a p  ==> add polynomials term by term 
 | 
					 | 
				
			||||||
    // r  = r - a A p  ==> add polynomials term by term
 | 
					 | 
				
			||||||
    // p  = r + b p  ==> add polynomials term by term
 | 
					 | 
				
			||||||
    //
 | 
					 | 
				
			||||||
    std::cout << "ConjugageGradientPolynomial::LogIteration() "<<k<<std::endl;
 | 
					 | 
				
			||||||
    ak.push_back(a);
 | 
					 | 
				
			||||||
    bk.push_back(b);
 | 
					 | 
				
			||||||
    //  Ap= right_shift(p)
 | 
					 | 
				
			||||||
    poly_Ap.resize(k+1);
 | 
					 | 
				
			||||||
    poly_Ap[0]=0.0;
 | 
					 | 
				
			||||||
    for(int i=0;i<k;i++){
 | 
					 | 
				
			||||||
      poly_Ap[i+1]=poly_p[i];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //  x = x + a p
 | 
					 | 
				
			||||||
    polynomial.resize(k);
 | 
					 | 
				
			||||||
    polynomial[k-1]=0.0;
 | 
					 | 
				
			||||||
    for(int i=0;i<k;i++){
 | 
					 | 
				
			||||||
      polynomial[i] = polynomial[i] + a * poly_p[i];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    //  r = r - a Ap
 | 
					 | 
				
			||||||
    //  p = r + b p
 | 
					 | 
				
			||||||
    poly_r.resize(k+1);
 | 
					 | 
				
			||||||
    poly_p.resize(k+1);
 | 
					 | 
				
			||||||
    poly_r[k] = poly_p[k] = 0.0;
 | 
					 | 
				
			||||||
    for(int i=0;i<k+1;i++){
 | 
					 | 
				
			||||||
      poly_r[i] = poly_r[i] - a * poly_Ap[i];
 | 
					 | 
				
			||||||
      poly_p[i] = poly_r[i] + b * poly_p[i];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -116,14 +116,14 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
      //Compute double precision rsd and also new RHS vector.
 | 
					      //Compute double precision rsd and also new RHS vector.
 | 
				
			||||||
      Linop_d.HermOp(sol_d, tmp_d);
 | 
					      Linop_d.HermOp(sol_d, tmp_d);
 | 
				
			||||||
      RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector
 | 
					      RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector
 | 
				
			||||||
      std::cout<<GridLogMessage<<" rsd norm "<<norm<<std::endl;
 | 
					      
 | 
				
			||||||
      std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " <<outer_iter<<" residual "<< norm<< " target "<< stop<<std::endl;
 | 
					      std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " <<outer_iter<<" residual "<< norm<< " target "<< stop<<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      if(norm < OuterLoopNormMult * stop){
 | 
					      if(norm < OuterLoopNormMult * stop){
 | 
				
			||||||
	std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration converged on iteration " <<outer_iter <<std::endl;
 | 
						std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration converged on iteration " <<outer_iter <<std::endl;
 | 
				
			||||||
	break;
 | 
						break;
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
      while(norm * inner_tol * inner_tol < stop*1.01) inner_tol *= 2;  // inner_tol = sqrt(stop/norm) ??
 | 
					      while(norm * inner_tol * inner_tol < stop) inner_tol *= 2;  // inner_tol = sqrt(stop/norm) ??
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      PrecChangeTimer.Start();
 | 
					      PrecChangeTimer.Start();
 | 
				
			||||||
      precisionChange(src_f, src_d, pc_wk_dp_to_sp);
 | 
					      precisionChange(src_f, src_d, pc_wk_dp_to_sp);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -77,7 +77,7 @@ public:
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void operator() (const std::vector<FieldD> &src_d_in, std::vector<FieldD> &sol_d){
 | 
					  void operator() (const std::vector<FieldD> &src_d_in, std::vector<FieldD> &sol_d){
 | 
				
			||||||
    GRID_ASSERT(src_d_in.size() == sol_d.size());
 | 
					    assert(src_d_in.size() == sol_d.size());
 | 
				
			||||||
    int NBatch = src_d_in.size();
 | 
					    int NBatch = src_d_in.size();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    std::cout << GridLogMessage << "NBatch = " << NBatch << std::endl;
 | 
					    std::cout << GridLogMessage << "NBatch = " << NBatch << std::endl;
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -98,15 +98,15 @@ public:
 | 
				
			|||||||
    std::vector<RealD> alpha(nshift,1.0);
 | 
					    std::vector<RealD> alpha(nshift,1.0);
 | 
				
			||||||
    std::vector<Field>   ps(nshift,grid);// Search directions
 | 
					    std::vector<Field>   ps(nshift,grid);// Search directions
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    GRID_ASSERT(psi.size()==nshift);
 | 
					    assert(psi.size()==nshift);
 | 
				
			||||||
    GRID_ASSERT(mass.size()==nshift);
 | 
					    assert(mass.size()==nshift);
 | 
				
			||||||
    GRID_ASSERT(mresidual.size()==nshift);
 | 
					    assert(mresidual.size()==nshift);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
    // remove dynamic sized arrays on stack; 2d is a pain with vector
 | 
					    // dynamic sized arrays on stack; 2d is a pain with vector
 | 
				
			||||||
    std::vector<RealD>  bs(nshift);
 | 
					    RealD  bs[nshift];
 | 
				
			||||||
    std::vector<RealD>  rsq(nshift);
 | 
					    RealD  rsq[nshift];
 | 
				
			||||||
    std::vector<std::array<RealD,2> >  z(nshift);
 | 
					    RealD  z[nshift][2];
 | 
				
			||||||
    std::vector<int>     converged(nshift);
 | 
					    int     converged[nshift];
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
    const int       primary =0;
 | 
					    const int       primary =0;
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
@@ -122,7 +122,7 @@ public:
 | 
				
			|||||||
  
 | 
					  
 | 
				
			||||||
    // Check lightest mass
 | 
					    // Check lightest mass
 | 
				
			||||||
    for(int s=0;s<nshift;s++){
 | 
					    for(int s=0;s<nshift;s++){
 | 
				
			||||||
      GRID_ASSERT( mass[s]>= mass[primary] );
 | 
					      assert( mass[s]>= mass[primary] );
 | 
				
			||||||
      converged[s]=0;
 | 
					      converged[s]=0;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
@@ -144,7 +144,7 @@ public:
 | 
				
			|||||||
    for(int s=0;s<nshift;s++){
 | 
					    for(int s=0;s<nshift;s++){
 | 
				
			||||||
      rsq[s] = cp * mresidual[s] * mresidual[s];
 | 
					      rsq[s] = cp * mresidual[s] * mresidual[s];
 | 
				
			||||||
      std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s
 | 
					      std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s
 | 
				
			||||||
	       <<" target resid^2 "<<rsq[s]<<std::endl;
 | 
						       <<" target resid "<<rsq[s]<<std::endl;
 | 
				
			||||||
      ps[s] = src;
 | 
					      ps[s] = src;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    // r and p for primary
 | 
					    // r and p for primary
 | 
				
			||||||
@@ -338,7 +338,7 @@ public:
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
    // ugly hack
 | 
					    // ugly hack
 | 
				
			||||||
    std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
 | 
					    std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
 | 
				
			||||||
    //  GRID_ASSERT(0);
 | 
					    //  assert(0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -118,16 +118,16 @@ public:
 | 
				
			|||||||
    FieldF r_f(SinglePrecGrid);
 | 
					    FieldF r_f(SinglePrecGrid);
 | 
				
			||||||
    FieldD mmp_d(DoublePrecGrid);
 | 
					    FieldD mmp_d(DoublePrecGrid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    GRID_ASSERT(psi_d.size()==nshift);
 | 
					    assert(psi_d.size()==nshift);
 | 
				
			||||||
    GRID_ASSERT(mass.size()==nshift);
 | 
					    assert(mass.size()==nshift);
 | 
				
			||||||
    GRID_ASSERT(mresidual.size()==nshift);
 | 
					    assert(mresidual.size()==nshift);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
    // dynamic sized arrays on stack; 2d is a pain with vector
 | 
					    // dynamic sized arrays on stack; 2d is a pain with vector
 | 
				
			||||||
    std::vector<RealD>  bs(nshift);
 | 
					    RealD  bs[nshift];
 | 
				
			||||||
    std::vector<RealD>  rsq(nshift);
 | 
					    RealD  rsq[nshift];
 | 
				
			||||||
    std::vector<RealD>  rsqf(nshift);
 | 
					    RealD  rsqf[nshift];
 | 
				
			||||||
    std::vector<std::array<RealD,2> >  z(nshift);
 | 
					    RealD  z[nshift][2];
 | 
				
			||||||
    std::vector<int>     converged(nshift);
 | 
					    int     converged[nshift];
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
    const int       primary =0;
 | 
					    const int       primary =0;
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
@@ -141,7 +141,7 @@ public:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    // Check lightest mass
 | 
					    // Check lightest mass
 | 
				
			||||||
    for(int s=0;s<nshift;s++){
 | 
					    for(int s=0;s<nshift;s++){
 | 
				
			||||||
      GRID_ASSERT( mass[s]>= mass[primary] );
 | 
					      assert( mass[s]>= mass[primary] );
 | 
				
			||||||
      converged[s]=0;
 | 
					      converged[s]=0;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
@@ -179,7 +179,7 @@ public:
 | 
				
			|||||||
    Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp)
 | 
					    Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp)
 | 
				
			||||||
    tmp_d = tmp_d - mmp_d;
 | 
					    tmp_d = tmp_d - mmp_d;
 | 
				
			||||||
    std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
 | 
					    std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
 | 
				
			||||||
    //    GRID_ASSERT(norm2(tmp_d)< 1.0e-4);
 | 
					    //    assert(norm2(tmp_d)< 1.0e-4);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    axpy(mmp_d,mass[0],p_d,mmp_d);
 | 
					    axpy(mmp_d,mass[0],p_d,mmp_d);
 | 
				
			||||||
    RealD rn = norm2(p_d);
 | 
					    RealD rn = norm2(p_d);
 | 
				
			||||||
@@ -365,7 +365,7 @@ public:
 | 
				
			|||||||
   
 | 
					   
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
 | 
					    std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
 | 
				
			||||||
    GRID_ASSERT(0);
 | 
					    assert(0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -48,12 +48,12 @@ public:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  ShiftedLinop(LinearOperatorBase<Field> &_linop_base, RealD _shift): linop_base(_linop_base), shift(_shift){}
 | 
					  ShiftedLinop(LinearOperatorBase<Field> &_linop_base, RealD _shift): linop_base(_linop_base), shift(_shift){}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void OpDiag (const Field &in, Field &out){ GRID_ASSERT(0); }
 | 
					  void OpDiag (const Field &in, Field &out){ assert(0); }
 | 
				
			||||||
  void OpDir  (const Field &in, Field &out,int dir,int disp){ GRID_ASSERT(0); }
 | 
					  void OpDir  (const Field &in, Field &out,int dir,int disp){ assert(0); }
 | 
				
			||||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){ GRID_ASSERT(0); }
 | 
					  void OpDirAll  (const Field &in, std::vector<Field> &out){ assert(0); }
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  void Op     (const Field &in, Field &out){ GRID_ASSERT(0); }
 | 
					  void Op     (const Field &in, Field &out){ assert(0); }
 | 
				
			||||||
  void AdjOp  (const Field &in, Field &out){ GRID_ASSERT(0); }
 | 
					  void AdjOp  (const Field &in, Field &out){ assert(0); }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void HermOp(const Field &in, Field &out){
 | 
					  void HermOp(const Field &in, Field &out){
 | 
				
			||||||
    linop_base.HermOp(in, out);
 | 
					    linop_base.HermOp(in, out);
 | 
				
			||||||
@@ -151,16 +151,16 @@ public:
 | 
				
			|||||||
    FieldD r_d(DoublePrecGrid);
 | 
					    FieldD r_d(DoublePrecGrid);
 | 
				
			||||||
    FieldD mmp_d(DoublePrecGrid);
 | 
					    FieldD mmp_d(DoublePrecGrid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    GRID_ASSERT(psi_d.size()==nshift);
 | 
					    assert(psi_d.size()==nshift);
 | 
				
			||||||
    GRID_ASSERT(mass.size()==nshift);
 | 
					    assert(mass.size()==nshift);
 | 
				
			||||||
    GRID_ASSERT(mresidual.size()==nshift);
 | 
					    assert(mresidual.size()==nshift);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
    // dynamic sized arrays on stack; 2d is a pain with vector
 | 
					    // dynamic sized arrays on stack; 2d is a pain with vector
 | 
				
			||||||
    std::vector<RealD>  bs(nshift);
 | 
					    RealD  bs[nshift];
 | 
				
			||||||
    std::vector<RealD>  rsq(nshift);
 | 
					    RealD  rsq[nshift];
 | 
				
			||||||
    std::vector<RealD>  rsqf(nshift);
 | 
					    RealD  rsqf[nshift];
 | 
				
			||||||
    std::vector<std::array<RealD,2> >  z(nshift);
 | 
					    RealD  z[nshift][2];
 | 
				
			||||||
    std::vector<int>     converged(nshift);
 | 
					    int     converged[nshift];
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
    const int       primary =0;
 | 
					    const int       primary =0;
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
@@ -174,7 +174,7 @@ public:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    // Check lightest mass
 | 
					    // Check lightest mass
 | 
				
			||||||
    for(int s=0;s<nshift;s++){
 | 
					    for(int s=0;s<nshift;s++){
 | 
				
			||||||
      GRID_ASSERT( mass[s]>= mass[primary] );
 | 
					      assert( mass[s]>= mass[primary] );
 | 
				
			||||||
      converged[s]=0;
 | 
					      converged[s]=0;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
@@ -211,7 +211,7 @@ public:
 | 
				
			|||||||
    Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp)
 | 
					    Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp)
 | 
				
			||||||
    tmp_d = tmp_d - mmp_d;
 | 
					    tmp_d = tmp_d - mmp_d;
 | 
				
			||||||
    std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
 | 
					    std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
 | 
				
			||||||
    GRID_ASSERT(norm2(tmp_d)< 1.0);
 | 
					    assert(norm2(tmp_d)< 1.0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    axpy(mmp_d,mass[0],p_d,mmp_d);
 | 
					    axpy(mmp_d,mass[0],p_d,mmp_d);
 | 
				
			||||||
    RealD rn = norm2(p_d);
 | 
					    RealD rn = norm2(p_d);
 | 
				
			||||||
@@ -408,7 +408,7 @@ public:
 | 
				
			|||||||
   
 | 
					   
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
 | 
					    std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
 | 
				
			||||||
    GRID_ASSERT(0);
 | 
					    assert(0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -35,7 +35,7 @@ template<class FieldD,class FieldF,
 | 
				
			|||||||
	 typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0> 
 | 
						 typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0> 
 | 
				
			||||||
class ConjugateGradientReliableUpdate : public LinearFunction<FieldD> {
 | 
					class ConjugateGradientReliableUpdate : public LinearFunction<FieldD> {
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
  bool ErrorOnNoConverge;  // throw an GRID_ASSERT when the CG fails to converge.
 | 
					  bool ErrorOnNoConverge;  // throw an assert when the CG fails to converge.
 | 
				
			||||||
  // Defaults true.
 | 
					  // Defaults true.
 | 
				
			||||||
  RealD Tolerance;
 | 
					  RealD Tolerance;
 | 
				
			||||||
  Integer MaxIterations;
 | 
					  Integer MaxIterations;
 | 
				
			||||||
@@ -66,7 +66,7 @@ public:
 | 
				
			|||||||
      DoFinalCleanup(true),
 | 
					      DoFinalCleanup(true),
 | 
				
			||||||
      Linop_fallback(NULL)
 | 
					      Linop_fallback(NULL)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    GRID_ASSERT(Delta > 0. && Delta < 1. && "Expect  0 < Delta < 1");
 | 
					    assert(Delta > 0. && Delta < 1. && "Expect  0 < Delta < 1");
 | 
				
			||||||
  };
 | 
					  };
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){
 | 
					  void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){
 | 
				
			||||||
@@ -90,7 +90,7 @@ public:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    // Initial residual computation & set up
 | 
					    // Initial residual computation & set up
 | 
				
			||||||
    RealD guess = norm2(psi);
 | 
					    RealD guess = norm2(psi);
 | 
				
			||||||
    GRID_ASSERT(std::isnan(guess) == 0);
 | 
					    assert(std::isnan(guess) == 0);
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    Linop_d.HermOpAndNorm(psi, mmp, d, b);
 | 
					    Linop_d.HermOpAndNorm(psi, mmp, d, b);
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
@@ -217,7 +217,7 @@ public:
 | 
				
			|||||||
	  CG(Linop_d,src,psi);
 | 
						  CG(Linop_d,src,psi);
 | 
				
			||||||
	  IterationsToCleanup = CG.IterationsToComplete;
 | 
						  IterationsToCleanup = CG.IterationsToComplete;
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	else if (ErrorOnNoConverge) GRID_ASSERT(true_residual / Tolerance < 10000.0);
 | 
						else if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	std::cout << GridLogMessage << "ConjugateGradientReliableUpdate complete.\n";
 | 
						std::cout << GridLogMessage << "ConjugateGradientReliableUpdate complete.\n";
 | 
				
			||||||
	return;
 | 
						return;
 | 
				
			||||||
@@ -263,7 +263,7 @@ public:
 | 
				
			|||||||
    std::cout << GridLogMessage << "ConjugateGradientReliableUpdate did NOT converge"
 | 
					    std::cout << GridLogMessage << "ConjugateGradientReliableUpdate did NOT converge"
 | 
				
			||||||
	      << std::endl;
 | 
						      << std::endl;
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    if (ErrorOnNoConverge) GRID_ASSERT(0);
 | 
					    if (ErrorOnNoConverge) assert(0);
 | 
				
			||||||
    IterationsToComplete = k;
 | 
					    IterationsToComplete = k;
 | 
				
			||||||
    ReliableUpdatesPerformed = l;      
 | 
					    ReliableUpdatesPerformed = l;      
 | 
				
			||||||
  }    
 | 
					  }    
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -106,7 +106,7 @@ public:
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    std::cout<<GridLogMessage<<"ConjugateResidual did NOT converge"<<std::endl;
 | 
					    std::cout<<GridLogMessage<<"ConjugateResidual did NOT converge"<<std::endl;
 | 
				
			||||||
    GRID_ASSERT(0);
 | 
					    assert(0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -69,8 +69,8 @@ public:
 | 
				
			|||||||
  DeflatedGuesser(const std::vector<Field> & _evec, const std::vector<RealD> & _eval, const unsigned int _N)
 | 
					  DeflatedGuesser(const std::vector<Field> & _evec, const std::vector<RealD> & _eval, const unsigned int _N)
 | 
				
			||||||
  : evec(_evec), eval(_eval), N(_N)
 | 
					  : evec(_evec), eval(_eval), N(_N)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    GRID_ASSERT(evec.size()==eval.size());
 | 
					    assert(evec.size()==eval.size());
 | 
				
			||||||
    GRID_ASSERT(N <= evec.size());
 | 
					    assert(N <= evec.size());
 | 
				
			||||||
  } 
 | 
					  } 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  virtual void operator()(const Field &src,Field &guess) {
 | 
					  virtual void operator()(const Field &src,Field &guess) {
 | 
				
			||||||
@@ -141,7 +141,8 @@ public:
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
    //postprocessing
 | 
					    //postprocessing
 | 
				
			||||||
    std::cout << GridLogMessage << "Start BlockPromote for loop" << std::endl;
 | 
					    std::cout << GridLogMessage << "Start BlockPromote for loop" << std::endl;
 | 
				
			||||||
    for (int j=0;j<Nsrc;j++) {
 | 
					    for (int j=0;j<Nsrc;j++)
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
    std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl;
 | 
					    std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl;
 | 
				
			||||||
    blockPromote(guess_coarse[j],guess[j],subspace);
 | 
					    blockPromote(guess_coarse[j],guess[j],subspace);
 | 
				
			||||||
    guess[j].Checkerboard() = src[j].Checkerboard();
 | 
					    guess[j].Checkerboard() = src[j].Checkerboard();
 | 
				
			||||||
@@ -36,7 +36,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF
 | 
				
			|||||||
 public:
 | 
					 public:
 | 
				
			||||||
  using OperatorFunction<Field>::operator();
 | 
					  using OperatorFunction<Field>::operator();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  bool ErrorOnNoConverge; // Throw an GRID_ASSERT when FCAGMRES fails to converge,
 | 
					  bool ErrorOnNoConverge; // Throw an assert when FCAGMRES fails to converge,
 | 
				
			||||||
                          // defaults to true
 | 
					                          // defaults to true
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  RealD   Tolerance;
 | 
					  RealD   Tolerance;
 | 
				
			||||||
@@ -87,7 +87,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF
 | 
				
			|||||||
    conformable(psi, src);
 | 
					    conformable(psi, src);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    RealD guess = norm2(psi);
 | 
					    RealD guess = norm2(psi);
 | 
				
			||||||
    GRID_ASSERT(std::isnan(guess) == 0);
 | 
					    assert(std::isnan(guess) == 0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    RealD cp;
 | 
					    RealD cp;
 | 
				
			||||||
    RealD ssq = norm2(src);
 | 
					    RealD ssq = norm2(src);
 | 
				
			||||||
@@ -144,7 +144,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF
 | 
				
			|||||||
    std::cout << GridLogMessage << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
 | 
					    std::cout << GridLogMessage << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if (ErrorOnNoConverge)
 | 
					    if (ErrorOnNoConverge)
 | 
				
			||||||
      GRID_ASSERT(0);
 | 
					      assert(0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
 | 
					  RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
 | 
				
			||||||
@@ -191,7 +191,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF
 | 
				
			|||||||
      }
 | 
					      }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    GRID_ASSERT(0); // Never reached
 | 
					    assert(0); // Never reached
 | 
				
			||||||
    return cp;
 | 
					    return cp;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -36,7 +36,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
 | 
				
			|||||||
 public:
 | 
					 public:
 | 
				
			||||||
  using OperatorFunction<Field>::operator();
 | 
					  using OperatorFunction<Field>::operator();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  bool ErrorOnNoConverge; // Throw an GRID_ASSERT when FGMRES fails to converge,
 | 
					  bool ErrorOnNoConverge; // Throw an assert when FGMRES fails to converge,
 | 
				
			||||||
                          // defaults to true
 | 
					                          // defaults to true
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  RealD   Tolerance;
 | 
					  RealD   Tolerance;
 | 
				
			||||||
@@ -85,7 +85,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
 | 
				
			|||||||
    conformable(psi, src);
 | 
					    conformable(psi, src);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    RealD guess = norm2(psi);
 | 
					    RealD guess = norm2(psi);
 | 
				
			||||||
    GRID_ASSERT(std::isnan(guess) == 0);
 | 
					    assert(std::isnan(guess) == 0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    RealD cp;
 | 
					    RealD cp;
 | 
				
			||||||
    RealD ssq = norm2(src);
 | 
					    RealD ssq = norm2(src);
 | 
				
			||||||
@@ -142,7 +142,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
 | 
				
			|||||||
    std::cout << GridLogMessage << "FlexibleGeneralisedMinimalResidual did NOT converge" << std::endl;
 | 
					    std::cout << GridLogMessage << "FlexibleGeneralisedMinimalResidual did NOT converge" << std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if (ErrorOnNoConverge)
 | 
					    if (ErrorOnNoConverge)
 | 
				
			||||||
      GRID_ASSERT(0);
 | 
					      assert(0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
 | 
					  RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
 | 
				
			||||||
@@ -189,7 +189,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
 | 
				
			|||||||
      }
 | 
					      }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    GRID_ASSERT(0); // Never reached
 | 
					    assert(0); // Never reached
 | 
				
			||||||
    return cp;
 | 
					    return cp;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -36,7 +36,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> {
 | 
				
			|||||||
 public:
 | 
					 public:
 | 
				
			||||||
  using OperatorFunction<Field>::operator();
 | 
					  using OperatorFunction<Field>::operator();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  bool ErrorOnNoConverge; // Throw an GRID_ASSERT when GMRES fails to converge,
 | 
					  bool ErrorOnNoConverge; // Throw an assert when GMRES fails to converge,
 | 
				
			||||||
                          // defaults to true
 | 
					                          // defaults to true
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  RealD   Tolerance;
 | 
					  RealD   Tolerance;
 | 
				
			||||||
@@ -80,7 +80,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> {
 | 
				
			|||||||
    conformable(psi, src);
 | 
					    conformable(psi, src);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    RealD guess = norm2(psi);
 | 
					    RealD guess = norm2(psi);
 | 
				
			||||||
    GRID_ASSERT(std::isnan(guess) == 0);
 | 
					    assert(std::isnan(guess) == 0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    RealD cp;
 | 
					    RealD cp;
 | 
				
			||||||
    RealD ssq = norm2(src);
 | 
					    RealD ssq = norm2(src);
 | 
				
			||||||
@@ -135,7 +135,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> {
 | 
				
			|||||||
    std::cout << GridLogMessage << "GeneralisedMinimalResidual did NOT converge" << std::endl;
 | 
					    std::cout << GridLogMessage << "GeneralisedMinimalResidual did NOT converge" << std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if (ErrorOnNoConverge)
 | 
					    if (ErrorOnNoConverge)
 | 
				
			||||||
      GRID_ASSERT(0);
 | 
					      assert(0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
 | 
					  RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
 | 
				
			||||||
@@ -181,7 +181,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> {
 | 
				
			|||||||
      }
 | 
					      }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    GRID_ASSERT(0); // Never reached
 | 
					    assert(0); // Never reached
 | 
				
			||||||
    return cp;
 | 
					    return cp;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -175,7 +175,7 @@ public:
 | 
				
			|||||||
      eresid(_eresid),  MaxIter(_MaxIter),
 | 
					      eresid(_eresid),  MaxIter(_MaxIter),
 | 
				
			||||||
      diagonalisation(_diagonalisation),split_test(0),
 | 
					      diagonalisation(_diagonalisation),split_test(0),
 | 
				
			||||||
      Nevec_acc(_Nu)
 | 
					      Nevec_acc(_Nu)
 | 
				
			||||||
  { GRID_ASSERT( (Nk%Nu==0) && (Nm%Nu==0) ); };
 | 
					  { assert( (Nk%Nu==0) && (Nm%Nu==0) ); };
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  ////////////////////////////////
 | 
					  ////////////////////////////////
 | 
				
			||||||
  // Helpers
 | 
					  // Helpers
 | 
				
			||||||
@@ -206,7 +206,7 @@ public:
 | 
				
			|||||||
          Glog<<"orthogonalize after: "<<j<<" of "<<k<<" "<< ip <<std::endl;
 | 
					          Glog<<"orthogonalize after: "<<j<<" of "<<k<<" "<< ip <<std::endl;
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    GRID_ASSERT(normalize(w,if_print) != 0);
 | 
					    assert(normalize(w,if_print) != 0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  void reorthogonalize(Field& w, std::vector<Field>& evec, int k)
 | 
					  void reorthogonalize(Field& w, std::vector<Field>& evec, int k)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
@@ -225,7 +225,7 @@ public:
 | 
				
			|||||||
      w[i] = w[i] - ip * evec[j];
 | 
					      w[i] = w[i] - ip * evec[j];
 | 
				
			||||||
    }}
 | 
					    }}
 | 
				
			||||||
    for(int i=0; i<_Nu; ++i)
 | 
					    for(int i=0; i<_Nu; ++i)
 | 
				
			||||||
    GRID_ASSERT(normalize(w[i],if_print) !=0);
 | 
					    assert(normalize(w[i],if_print) !=0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -244,7 +244,7 @@ public:
 | 
				
			|||||||
    const uint64_t sites = grid->lSites();
 | 
					    const uint64_t sites = grid->lSites();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    int Nbatch = R/Nevec_acc;
 | 
					    int Nbatch = R/Nevec_acc;
 | 
				
			||||||
    GRID_ASSERT( R%Nevec_acc == 0 );
 | 
					    assert( R%Nevec_acc == 0 );
 | 
				
			||||||
//    Glog << "nBatch, Nevec_acc, R, Nu = " 
 | 
					//    Glog << "nBatch, Nevec_acc, R, Nu = " 
 | 
				
			||||||
//         << Nbatch << "," << Nevec_acc << "," << R << "," << Nu << std::endl;
 | 
					//         << Nbatch << "," << Nevec_acc << "," << R << "," << Nu << std::endl;
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
@@ -302,7 +302,7 @@ public:
 | 
				
			|||||||
      }
 | 
					      }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    for (int i=0; i<Nu; ++i) {
 | 
					    for (int i=0; i<Nu; ++i) {
 | 
				
			||||||
      GRID_ASSERT(normalize(w[i],do_print)!=0);
 | 
					      assert(normalize(w[i],do_print)!=0);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    Glog << "cuBLAS Zgemm done"<< std::endl;
 | 
					    Glog << "cuBLAS Zgemm done"<< std::endl;
 | 
				
			||||||
@@ -374,8 +374,8 @@ cudaStat = cudaMallocManaged((void **)&evec_acc, Nevec_acc*sites*12*sizeof(CUDA_
 | 
				
			|||||||
  {
 | 
					  {
 | 
				
			||||||
    std::string fname = std::string(cname+"::calc_irbl()"); 
 | 
					    std::string fname = std::string(cname+"::calc_irbl()"); 
 | 
				
			||||||
    GridBase *grid = evec[0].Grid();
 | 
					    GridBase *grid = evec[0].Grid();
 | 
				
			||||||
    GRID_ASSERT(grid == src[0].Grid());
 | 
					    assert(grid == src[0].Grid());
 | 
				
			||||||
    GRID_ASSERT( Nu = src.size() );
 | 
					    assert( Nu = src.size() );
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    Glog << std::string(74,'*') << std::endl;
 | 
					    Glog << std::string(74,'*') << std::endl;
 | 
				
			||||||
    Glog << fname + " starting iteration 0 /  "<< MaxIter<< std::endl;
 | 
					    Glog << fname + " starting iteration 0 /  "<< MaxIter<< std::endl;
 | 
				
			||||||
@@ -396,7 +396,7 @@ cudaStat = cudaMallocManaged((void **)&evec_acc, Nevec_acc*sites*12*sizeof(CUDA_
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
    Glog << std::string(74,'*') << std::endl;
 | 
					    Glog << std::string(74,'*') << std::endl;
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    GRID_ASSERT(Nm == evec.size() && Nm == eval.size());
 | 
					    assert(Nm == evec.size() && Nm == eval.size());
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));  
 | 
					    std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));  
 | 
				
			||||||
    std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));  
 | 
					    std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));  
 | 
				
			||||||
@@ -579,8 +579,8 @@ cudaStat = cudaMallocManaged((void **)&evec_acc, Nevec_acc*sites*12*sizeof(CUDA_
 | 
				
			|||||||
  {
 | 
					  {
 | 
				
			||||||
    std::string fname = std::string(cname+"::calc_rbl()"); 
 | 
					    std::string fname = std::string(cname+"::calc_rbl()"); 
 | 
				
			||||||
    GridBase *grid = evec[0].Grid();
 | 
					    GridBase *grid = evec[0].Grid();
 | 
				
			||||||
    GRID_ASSERT(grid == src[0].Grid());
 | 
					    assert(grid == src[0].Grid());
 | 
				
			||||||
    GRID_ASSERT( Nu = src.size() );
 | 
					    assert( Nu = src.size() );
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    int Np = (Nm-Nk);
 | 
					    int Np = (Nm-Nk);
 | 
				
			||||||
    if (Np > 0 && MaxIter > 1) Np /= MaxIter;
 | 
					    if (Np > 0 && MaxIter > 1) Np /= MaxIter;
 | 
				
			||||||
@@ -607,7 +607,7 @@ cudaStat = cudaMallocManaged((void **)&evec_acc, Nevec_acc*sites*12*sizeof(CUDA_
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
    Glog << std::string(74,'*') << std::endl;
 | 
					    Glog << std::string(74,'*') << std::endl;
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    GRID_ASSERT(Nm == evec.size() && Nm == eval.size());
 | 
					    assert(Nm == evec.size() && Nm == eval.size());
 | 
				
			||||||
	
 | 
						
 | 
				
			||||||
    std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));  
 | 
					    std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));  
 | 
				
			||||||
    std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));  
 | 
					    std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));  
 | 
				
			||||||
@@ -785,7 +785,7 @@ private:
 | 
				
			|||||||
    
 | 
					    
 | 
				
			||||||
    int Nu = w.size();
 | 
					    int Nu = w.size();
 | 
				
			||||||
    int Nm = evec.size();
 | 
					    int Nm = evec.size();
 | 
				
			||||||
    GRID_ASSERT( b < Nm/Nu );
 | 
					    assert( b < Nm/Nu );
 | 
				
			||||||
//    GridCartesian *grid = evec[0]._grid;
 | 
					//    GridCartesian *grid = evec[0]._grid;
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    // converts block index to full indicies for an interval [L,R)
 | 
					    // converts block index to full indicies for an interval [L,R)
 | 
				
			||||||
@@ -796,7 +796,7 @@ private:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    Glog << "Using split grid"<< std::endl;
 | 
					    Glog << "Using split grid"<< std::endl;
 | 
				
			||||||
//   LatticeGaugeField s_Umu(SGrid);
 | 
					//   LatticeGaugeField s_Umu(SGrid);
 | 
				
			||||||
   GRID_ASSERT((Nu%mrhs)==0);
 | 
					   assert((Nu%mrhs)==0);
 | 
				
			||||||
   std::vector<Field>   in(mrhs,f_grid);
 | 
					   std::vector<Field>   in(mrhs,f_grid);
 | 
				
			||||||
     
 | 
					     
 | 
				
			||||||
    Field s_in(sf_grid);
 | 
					    Field s_in(sf_grid);
 | 
				
			||||||
@@ -906,7 +906,7 @@ if(split_test){
 | 
				
			|||||||
    
 | 
					    
 | 
				
			||||||
    for (int u=0; u<Nu; ++u) {
 | 
					    for (int u=0; u<Nu; ++u) {
 | 
				
			||||||
//      Glog << "norm2(w[" << u << "])= "<< norm2(w[u]) << std::endl;
 | 
					//      Glog << "norm2(w[" << u << "])= "<< norm2(w[u]) << std::endl;
 | 
				
			||||||
      GRID_ASSERT (!isnan(norm2(w[u])));
 | 
					      assert (!isnan(norm2(w[u])));
 | 
				
			||||||
      for (int k=L+u; k<R; ++k) {
 | 
					      for (int k=L+u; k<R; ++k) {
 | 
				
			||||||
        Glog <<" In block "<< b << "," <<" beta[" << u << "," << k-L << "] = " << lme[u][k] << std::endl;
 | 
					        Glog <<" In block "<< b << "," <<" beta[" << u << "," << k-L << "] = " << lme[u][k] << std::endl;
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
@@ -929,8 +929,8 @@ if(split_test){
 | 
				
			|||||||
			 Eigen::MatrixXcd & Qt, // Nm x Nm
 | 
								 Eigen::MatrixXcd & Qt, // Nm x Nm
 | 
				
			||||||
			 GridBase *grid)
 | 
								 GridBase *grid)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 );
 | 
					    assert( Nk%Nu == 0 && Nm%Nu == 0 );
 | 
				
			||||||
    GRID_ASSERT( Nk <= Nm );
 | 
					    assert( Nk <= Nm );
 | 
				
			||||||
    Eigen::MatrixXcd BlockTriDiag = Eigen::MatrixXcd::Zero(Nk,Nk);
 | 
					    Eigen::MatrixXcd BlockTriDiag = Eigen::MatrixXcd::Zero(Nk,Nk);
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    for ( int u=0; u<Nu; ++u ) {
 | 
					    for ( int u=0; u<Nu; ++u ) {
 | 
				
			||||||
@@ -970,8 +970,8 @@ if(split_test){
 | 
				
			|||||||
			 GridBase *grid)
 | 
								 GridBase *grid)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    Glog << "diagonalize_lapack: Nu= "<<Nu<<" Nk= "<<Nk<<" Nm= "<<std::endl;
 | 
					    Glog << "diagonalize_lapack: Nu= "<<Nu<<" Nk= "<<Nk<<" Nm= "<<std::endl;
 | 
				
			||||||
    GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 );
 | 
					    assert( Nk%Nu == 0 && Nm%Nu == 0 );
 | 
				
			||||||
    GRID_ASSERT( Nk <= Nm );
 | 
					    assert( Nk <= Nm );
 | 
				
			||||||
    Eigen::MatrixXcd BlockTriDiag = Eigen::MatrixXcd::Zero(Nk,Nk);
 | 
					    Eigen::MatrixXcd BlockTriDiag = Eigen::MatrixXcd::Zero(Nk,Nk);
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    for ( int u=0; u<Nu; ++u ) {
 | 
					    for ( int u=0; u<Nu; ++u ) {
 | 
				
			||||||
@@ -1119,7 +1119,7 @@ if (1){
 | 
				
			|||||||
      diagonalize_lapack(eval,lmd,lme,Nu,Nk,Nm,Qt,grid);
 | 
					      diagonalize_lapack(eval,lmd,lme,Nu,Nk,Nm,Qt,grid);
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
    } else { 
 | 
					    } else { 
 | 
				
			||||||
      GRID_ASSERT(0);
 | 
					      assert(0);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
@@ -1131,8 +1131,8 @@ if (1){
 | 
				
			|||||||
         Eigen::MatrixXcd& M)
 | 
					         Eigen::MatrixXcd& M)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    //Glog << "unpackHermitBlockTriDiagMatToEigen() begin" << '\n'; 
 | 
					    //Glog << "unpackHermitBlockTriDiagMatToEigen() begin" << '\n'; 
 | 
				
			||||||
    GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 );
 | 
					    assert( Nk%Nu == 0 && Nm%Nu == 0 );
 | 
				
			||||||
    GRID_ASSERT( Nk <= Nm );
 | 
					    assert( Nk <= Nm );
 | 
				
			||||||
    M = Eigen::MatrixXcd::Zero(Nk,Nk);
 | 
					    M = Eigen::MatrixXcd::Zero(Nk,Nk);
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    // rearrange 
 | 
					    // rearrange 
 | 
				
			||||||
@@ -1159,8 +1159,8 @@ if (1){
 | 
				
			|||||||
         Eigen::MatrixXcd& M)
 | 
					         Eigen::MatrixXcd& M)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    //Glog << "packHermitBlockTriDiagMatfromEigen() begin" << '\n'; 
 | 
					    //Glog << "packHermitBlockTriDiagMatfromEigen() begin" << '\n'; 
 | 
				
			||||||
    GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 );
 | 
					    assert( Nk%Nu == 0 && Nm%Nu == 0 );
 | 
				
			||||||
    GRID_ASSERT( Nk <= Nm );
 | 
					    assert( Nk <= Nm );
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    // rearrange 
 | 
					    // rearrange 
 | 
				
			||||||
    for ( int u=0; u<Nu; ++u ) {
 | 
					    for ( int u=0; u<Nu; ++u ) {
 | 
				
			||||||
 
 | 
				
			|||||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							@@ -79,16 +79,14 @@ template<class Field> class ImplicitlyRestartedLanczosHermOpTester  : public Imp
 | 
				
			|||||||
    RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
 | 
					    RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    std::cout.precision(13);
 | 
					    std::cout.precision(13);
 | 
				
			||||||
 | 
					 | 
				
			||||||
    int conv=0;
 | 
					 | 
				
			||||||
    if( (vv<eresid*eresid) ) conv = 1;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::cout<<GridLogIRL  << "[" << std::setw(3)<<j<<"] "
 | 
					    std::cout<<GridLogIRL  << "[" << std::setw(3)<<j<<"] "
 | 
				
			||||||
	     <<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
 | 
						     <<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
 | 
				
			||||||
	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
 | 
						     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
 | 
				
			||||||
	     <<" target " << eresid*eresid << " conv " <<conv
 | 
					 | 
				
			||||||
	     <<std::endl;
 | 
						     <<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    int conv=0;
 | 
				
			||||||
 | 
					    if( (vv<eresid*eresid) ) conv = 1;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    return conv;
 | 
					    return conv;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
@@ -211,7 +209,7 @@ until convergence
 | 
				
			|||||||
  void calc(std::vector<RealD>& eval, std::vector<Field>& evec,  const Field& src, int& Nconv, bool reverse=false)
 | 
					  void calc(std::vector<RealD>& eval, std::vector<Field>& evec,  const Field& src, int& Nconv, bool reverse=false)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    GridBase *grid = src.Grid();
 | 
					    GridBase *grid = src.Grid();
 | 
				
			||||||
    GRID_ASSERT(grid == evec[0].Grid());
 | 
					    assert(grid == evec[0].Grid());
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    //    GridLogIRL.TimingMode(1);
 | 
					    //    GridLogIRL.TimingMode(1);
 | 
				
			||||||
    std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
 | 
					    std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
 | 
				
			||||||
@@ -231,7 +229,7 @@ until convergence
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
    std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
 | 
					    std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
 | 
				
			||||||
	
 | 
						
 | 
				
			||||||
    GRID_ASSERT(Nm <= evec.size() && Nm <= eval.size());
 | 
					    assert(Nm <= evec.size() && Nm <= eval.size());
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    // quickly get an idea of the largest eigenvalue to more properly normalize the residuum
 | 
					    // quickly get an idea of the largest eigenvalue to more properly normalize the residuum
 | 
				
			||||||
    RealD evalMaxApprox = 0.0;
 | 
					    RealD evalMaxApprox = 0.0;
 | 
				
			||||||
@@ -245,10 +243,9 @@ until convergence
 | 
				
			|||||||
	_HermOp(src_n,tmp);
 | 
						_HermOp(src_n,tmp);
 | 
				
			||||||
	//	std::cout << GridLogMessage<< tmp<<std::endl; exit(0);
 | 
						//	std::cout << GridLogMessage<< tmp<<std::endl; exit(0);
 | 
				
			||||||
	//	std::cout << GridLogIRL << " _HermOp " << norm2(tmp) << std::endl;
 | 
						//	std::cout << GridLogIRL << " _HermOp " << norm2(tmp) << std::endl;
 | 
				
			||||||
//	RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
 | 
						RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
 | 
				
			||||||
	RealD vnum = real(innerProduct(tmp,tmp)); // HermOp^2.
 | 
					 | 
				
			||||||
	RealD vden = norm2(src_n);
 | 
						RealD vden = norm2(src_n);
 | 
				
			||||||
	RealD na = std::sqrt(vnum/vden);
 | 
						RealD na = vnum/vden;
 | 
				
			||||||
	if (fabs(evalMaxApprox/na - 1.0) < 0.0001)
 | 
						if (fabs(evalMaxApprox/na - 1.0) < 0.0001)
 | 
				
			||||||
	  i=_MAX_ITER_IRL_MEVAPP_;
 | 
						  i=_MAX_ITER_IRL_MEVAPP_;
 | 
				
			||||||
	evalMaxApprox = na;
 | 
						evalMaxApprox = na;
 | 
				
			||||||
@@ -256,7 +253,6 @@ until convergence
 | 
				
			|||||||
	src_n = tmp;
 | 
						src_n = tmp;
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    std::cout << GridLogIRL << " Final evalMaxApprox  " << evalMaxApprox << std::endl;
 | 
					 | 
				
			||||||
	
 | 
						
 | 
				
			||||||
    std::vector<RealD> lme(Nm);  
 | 
					    std::vector<RealD> lme(Nm);  
 | 
				
			||||||
    std::vector<RealD> lme2(Nm);
 | 
					    std::vector<RealD> lme2(Nm);
 | 
				
			||||||
@@ -337,7 +333,7 @@ until convergence
 | 
				
			|||||||
      }
 | 
					      }
 | 
				
			||||||
      std::cout<<GridLogIRL <<"QR decomposed "<<std::endl;
 | 
					      std::cout<<GridLogIRL <<"QR decomposed "<<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      GRID_ASSERT(k2<Nm);      GRID_ASSERT(k2<Nm);      GRID_ASSERT(k1>0);
 | 
					      assert(k2<Nm);      assert(k2<Nm);      assert(k1>0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      basisRotate(evec,Qt,k1-1,k2+1,0,Nm,Nm); /// big constraint on the basis
 | 
					      basisRotate(evec,Qt,k1-1,k2+1,0,Nm,Nm); /// big constraint on the basis
 | 
				
			||||||
      std::cout<<GridLogIRL <<"basisRotated  by Qt *"<<k1-1<<","<<k2+1<<")"<<std::endl;
 | 
					      std::cout<<GridLogIRL <<"basisRotated  by Qt *"<<k1-1<<","<<k2+1<<")"<<std::endl;
 | 
				
			||||||
@@ -461,15 +457,15 @@ until convergence
 | 
				
			|||||||
	    std::vector<Field>& evec,
 | 
						    std::vector<Field>& evec,
 | 
				
			||||||
	    Field& w,int Nm,int k)
 | 
						    Field& w,int Nm,int k)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    std::cout<<GridLogDebug << "Lanczos step " <<k<<std::endl;
 | 
					    std::cout<<GridLogIRL << "Lanczos step " <<k<<std::endl;
 | 
				
			||||||
    const RealD tiny = 1.0e-20;
 | 
					    const RealD tiny = 1.0e-20;
 | 
				
			||||||
    GRID_ASSERT( k< Nm );
 | 
					    assert( k< Nm );
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    GridStopWatch gsw_op,gsw_o;
 | 
					    GridStopWatch gsw_op,gsw_o;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    Field& evec_k = evec[k];
 | 
					    Field& evec_k = evec[k];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    _PolyOp(evec_k,w);    std::cout<<GridLogDebug << "PolyOp" <<std::endl;
 | 
					    _PolyOp(evec_k,w);    std::cout<<GridLogIRL << "PolyOp" <<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if(k>0) w -= lme[k-1] * evec[k-1];
 | 
					    if(k>0) w -= lme[k-1] * evec[k-1];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -484,18 +480,18 @@ until convergence
 | 
				
			|||||||
    lme[k] = beta;
 | 
					    lme[k] = beta;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if ( (k>0) && ( (k % orth_period) == 0 )) {
 | 
					    if ( (k>0) && ( (k % orth_period) == 0 )) {
 | 
				
			||||||
      std::cout<<GridLogDebug << "Orthogonalising " <<k<<std::endl;
 | 
					      std::cout<<GridLogIRL << "Orthogonalising " <<k<<std::endl;
 | 
				
			||||||
      orthogonalize(w,evec,k); // orthonormalise
 | 
					      orthogonalize(w,evec,k); // orthonormalise
 | 
				
			||||||
      std::cout<<GridLogDebug << "Orthogonalised " <<k<<std::endl;
 | 
					      std::cout<<GridLogIRL << "Orthogonalised " <<k<<std::endl;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if(k < Nm-1) evec[k+1] = w;
 | 
					    if(k < Nm-1) evec[k+1] = w;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    std::cout<<GridLogIRL << "Lanczos step alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
 | 
					    std::cout<<GridLogIRL << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
 | 
				
			||||||
    if ( beta < tiny ) 
 | 
					    if ( beta < tiny ) 
 | 
				
			||||||
      std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
 | 
					      std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    std::cout<<GridLogDebug << "Lanczos step complete " <<k<<std::endl;
 | 
					    std::cout<<GridLogIRL << "Lanczos step complete " <<k<<std::endl;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme, 
 | 
					  void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme, 
 | 
				
			||||||
@@ -597,7 +593,7 @@ until convergence
 | 
				
			|||||||
    }  else if ( diagonalisation == IRLdiagonaliseWithEigen ) { 
 | 
					    }  else if ( diagonalisation == IRLdiagonaliseWithEigen ) { 
 | 
				
			||||||
      diagonalize_Eigen(lmd,lme,Nk,Nm,Qt,grid);
 | 
					      diagonalize_Eigen(lmd,lme,Nk,Nm,Qt,grid);
 | 
				
			||||||
    } else { 
 | 
					    } else { 
 | 
				
			||||||
      GRID_ASSERT(0);
 | 
					      assert(0);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -687,7 +683,7 @@ void diagonalize_lapack(std::vector<RealD>& lmd,
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
#else 
 | 
					#else 
 | 
				
			||||||
  GRID_ASSERT(0);
 | 
					  assert(0);
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -80,7 +80,7 @@ public:
 | 
				
			|||||||
  ProjectedHermOp(LinearOperatorBase<FineField>& linop, std::vector<FineField> & _subspace) : 
 | 
					  ProjectedHermOp(LinearOperatorBase<FineField>& linop, std::vector<FineField> & _subspace) : 
 | 
				
			||||||
    _Linop(linop), subspace(_subspace)
 | 
					    _Linop(linop), subspace(_subspace)
 | 
				
			||||||
  {  
 | 
					  {  
 | 
				
			||||||
    GRID_ASSERT(subspace.size() >0);
 | 
					    assert(subspace.size() >0);
 | 
				
			||||||
  };
 | 
					  };
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void operator()(const CoarseField& in, CoarseField& out) {
 | 
					  void operator()(const CoarseField& in, CoarseField& out) {
 | 
				
			||||||
@@ -346,12 +346,12 @@ public:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  void testFine(RealD resid) 
 | 
					  void testFine(RealD resid) 
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    GRID_ASSERT(evals_fine.size() == nbasis);
 | 
					    assert(evals_fine.size() == nbasis);
 | 
				
			||||||
    GRID_ASSERT(subspace.size() == nbasis);
 | 
					    assert(subspace.size() == nbasis);
 | 
				
			||||||
    PlainHermOp<FineField>    Op(_FineOp);
 | 
					    PlainHermOp<FineField>    Op(_FineOp);
 | 
				
			||||||
    ImplicitlyRestartedLanczosHermOpTester<FineField> SimpleTester(Op);
 | 
					    ImplicitlyRestartedLanczosHermOpTester<FineField> SimpleTester(Op);
 | 
				
			||||||
    for(int k=0;k<nbasis;k++){
 | 
					    for(int k=0;k<nbasis;k++){
 | 
				
			||||||
      GRID_ASSERT(SimpleTester.ReconstructEval(k,resid,subspace[k],evals_fine[k],1.0)==1);
 | 
					      assert(SimpleTester.ReconstructEval(k,resid,subspace[k],evals_fine[k],1.0)==1);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -359,8 +359,8 @@ public:
 | 
				
			|||||||
  //hence the smoother can be tuned after running the coarse Lanczos by using a different smoother here
 | 
					  //hence the smoother can be tuned after running the coarse Lanczos by using a different smoother here
 | 
				
			||||||
  void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax) 
 | 
					  void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax) 
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    GRID_ASSERT(evals_fine.size() == nbasis);
 | 
					    assert(evals_fine.size() == nbasis);
 | 
				
			||||||
    GRID_ASSERT(subspace.size() == nbasis);
 | 
					    assert(subspace.size() == nbasis);
 | 
				
			||||||
    //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					    //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
    // create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
 | 
					    // create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
 | 
				
			||||||
    //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					    //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -380,7 +380,7 @@ public:
 | 
				
			|||||||
  void calcFine(ChebyParams cheby_parms,int Nstop,int Nk,int Nm,RealD resid, 
 | 
					  void calcFine(ChebyParams cheby_parms,int Nstop,int Nk,int Nm,RealD resid, 
 | 
				
			||||||
		RealD MaxIt, RealD betastp, int MinRes)
 | 
							RealD MaxIt, RealD betastp, int MinRes)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    GRID_ASSERT(nbasis<=Nm);
 | 
					    assert(nbasis<=Nm);
 | 
				
			||||||
    Chebyshev<FineField>      Cheby(cheby_parms);
 | 
					    Chebyshev<FineField>      Cheby(cheby_parms);
 | 
				
			||||||
    FunctionHermOp<FineField> ChebyOp(Cheby,_FineOp);
 | 
					    FunctionHermOp<FineField> ChebyOp(Cheby,_FineOp);
 | 
				
			||||||
    PlainHermOp<FineField>    Op(_FineOp);
 | 
					    PlainHermOp<FineField>    Op(_FineOp);
 | 
				
			||||||
@@ -400,8 +400,8 @@ public:
 | 
				
			|||||||
    IRL.calc(evals_fine,subspace,src,Nconv,false);
 | 
					    IRL.calc(evals_fine,subspace,src,Nconv,false);
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    // Shrink down to number saved
 | 
					    // Shrink down to number saved
 | 
				
			||||||
    GRID_ASSERT(Nstop>=nbasis);
 | 
					    assert(Nstop>=nbasis);
 | 
				
			||||||
    GRID_ASSERT(Nconv>=nbasis);
 | 
					    assert(Nconv>=nbasis);
 | 
				
			||||||
    evals_fine.resize(nbasis);
 | 
					    evals_fine.resize(nbasis);
 | 
				
			||||||
    subspace.resize(nbasis,_FineGrid);
 | 
					    subspace.resize(nbasis,_FineGrid);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -433,7 +433,7 @@ public:
 | 
				
			|||||||
    ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
 | 
					    ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
 | 
				
			||||||
    int Nconv=0;
 | 
					    int Nconv=0;
 | 
				
			||||||
    IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
 | 
					    IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
 | 
				
			||||||
    GRID_ASSERT(Nconv>=Nstop);
 | 
					    assert(Nconv>=Nstop);
 | 
				
			||||||
    evals_coarse.resize(Nstop);
 | 
					    evals_coarse.resize(Nstop);
 | 
				
			||||||
    evec_coarse.resize (Nstop,_CoarseGrid);
 | 
					    evec_coarse.resize (Nstop,_CoarseGrid);
 | 
				
			||||||
    for (int i=0;i<Nstop;i++){
 | 
					    for (int i=0;i<Nstop;i++){
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -35,7 +35,7 @@ template<class Field> class MinimalResidual : public OperatorFunction<Field> {
 | 
				
			|||||||
 public:
 | 
					 public:
 | 
				
			||||||
  using OperatorFunction<Field>::operator();
 | 
					  using OperatorFunction<Field>::operator();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  bool ErrorOnNoConverge; // throw an GRID_ASSERT when the MR fails to converge.
 | 
					  bool ErrorOnNoConverge; // throw an assert when the MR fails to converge.
 | 
				
			||||||
                          // Defaults true.
 | 
					                          // Defaults true.
 | 
				
			||||||
  RealD   Tolerance;
 | 
					  RealD   Tolerance;
 | 
				
			||||||
  Integer MaxIterations;
 | 
					  Integer MaxIterations;
 | 
				
			||||||
@@ -59,7 +59,7 @@ template<class Field> class MinimalResidual : public OperatorFunction<Field> {
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    // Initial residual computation & set up
 | 
					    // Initial residual computation & set up
 | 
				
			||||||
    RealD guess = norm2(psi);
 | 
					    RealD guess = norm2(psi);
 | 
				
			||||||
    GRID_ASSERT(std::isnan(guess) == 0);
 | 
					    assert(std::isnan(guess) == 0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    RealD ssq = norm2(src);
 | 
					    RealD ssq = norm2(src);
 | 
				
			||||||
    RealD rsq = Tolerance * Tolerance * ssq;
 | 
					    RealD rsq = Tolerance * Tolerance * ssq;
 | 
				
			||||||
@@ -136,7 +136,7 @@ template<class Field> class MinimalResidual : public OperatorFunction<Field> {
 | 
				
			|||||||
        std::cout << GridLogMessage << "MR Time elapsed: Linalg  " << LinalgTimer.Elapsed() << std::endl;
 | 
					        std::cout << GridLogMessage << "MR Time elapsed: Linalg  " << LinalgTimer.Elapsed() << std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        if (ErrorOnNoConverge)
 | 
					        if (ErrorOnNoConverge)
 | 
				
			||||||
          GRID_ASSERT(true_residual / Tolerance < 10000.0);
 | 
					          assert(true_residual / Tolerance < 10000.0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        IterationsToComplete = k;
 | 
					        IterationsToComplete = k;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -148,7 +148,7 @@ template<class Field> class MinimalResidual : public OperatorFunction<Field> {
 | 
				
			|||||||
              << std::endl;
 | 
					              << std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if (ErrorOnNoConverge)
 | 
					    if (ErrorOnNoConverge)
 | 
				
			||||||
      GRID_ASSERT(0);
 | 
					      assert(0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    IterationsToComplete = k;
 | 
					    IterationsToComplete = k;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -37,7 +37,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  using OperatorFunction<FieldD>::operator();
 | 
					  using OperatorFunction<FieldD>::operator();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  bool ErrorOnNoConverge; // Throw an GRID_ASSERT when MPFGMRES fails to converge,
 | 
					  bool ErrorOnNoConverge; // Throw an assert when MPFGMRES fails to converge,
 | 
				
			||||||
                          // defaults to true
 | 
					                          // defaults to true
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  RealD   Tolerance;
 | 
					  RealD   Tolerance;
 | 
				
			||||||
@@ -91,7 +91,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction
 | 
				
			|||||||
    conformable(psi, src);
 | 
					    conformable(psi, src);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    RealD guess = norm2(psi);
 | 
					    RealD guess = norm2(psi);
 | 
				
			||||||
    GRID_ASSERT(std::isnan(guess) == 0);
 | 
					    assert(std::isnan(guess) == 0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    RealD cp;
 | 
					    RealD cp;
 | 
				
			||||||
    RealD ssq = norm2(src);
 | 
					    RealD ssq = norm2(src);
 | 
				
			||||||
@@ -150,7 +150,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction
 | 
				
			|||||||
    std::cout << GridLogMessage << "MPFGMRES did NOT converge" << std::endl;
 | 
					    std::cout << GridLogMessage << "MPFGMRES did NOT converge" << std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if (ErrorOnNoConverge)
 | 
					    if (ErrorOnNoConverge)
 | 
				
			||||||
      GRID_ASSERT(0);
 | 
					      assert(0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  RealD outerLoopBody(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi, RealD rsq) {
 | 
					  RealD outerLoopBody(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi, RealD rsq) {
 | 
				
			||||||
@@ -197,7 +197,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction
 | 
				
			|||||||
      }
 | 
					      }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    GRID_ASSERT(0); // Never reached
 | 
					    assert(0); // Never reached
 | 
				
			||||||
    return cp;
 | 
					    return cp;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -33,7 +33,7 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
// Take a matrix and form an NE solver calling a Herm solver
 | 
					// Take a matrix and form an NE solver calling a Herm solver
 | 
				
			||||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
template<class Field> class NormalEquations : public LinearFunction<Field>{
 | 
					template<class Field> class NormalEquations {
 | 
				
			||||||
private:
 | 
					private:
 | 
				
			||||||
  SparseMatrixBase<Field> & _Matrix;
 | 
					  SparseMatrixBase<Field> & _Matrix;
 | 
				
			||||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
					  OperatorFunction<Field> & _HermitianSolver;
 | 
				
			||||||
@@ -60,33 +60,7 @@ public:
 | 
				
			|||||||
  }     
 | 
					  }     
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class Field> class NormalResidual : public LinearFunction<Field>{
 | 
					template<class Field> class HPDSolver {
 | 
				
			||||||
private:
 | 
					 | 
				
			||||||
  SparseMatrixBase<Field> & _Matrix;
 | 
					 | 
				
			||||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
					 | 
				
			||||||
  LinearFunction<Field>   & _Guess;
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // Wrap the usual normal equations trick
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
 NormalResidual(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver,
 | 
					 | 
				
			||||||
		 LinearFunction<Field> &Guess) 
 | 
					 | 
				
			||||||
   :  _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {}; 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void operator() (const Field &in, Field &out){
 | 
					 | 
				
			||||||
 
 | 
					 | 
				
			||||||
    Field res(in.Grid());
 | 
					 | 
				
			||||||
    Field tmp(in.Grid());
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    MMdagLinearOperator<SparseMatrixBase<Field>,Field> MMdagOp(_Matrix);
 | 
					 | 
				
			||||||
    _Guess(in,res);
 | 
					 | 
				
			||||||
    _HermitianSolver(MMdagOp,in,res);  // M Mdag res = in ;
 | 
					 | 
				
			||||||
    _Matrix.Mdag(res,out);             // out = Mdag res
 | 
					 | 
				
			||||||
  }     
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class Field> class HPDSolver : public LinearFunction<Field> {
 | 
					 | 
				
			||||||
private:
 | 
					private:
 | 
				
			||||||
  LinearOperatorBase<Field> & _Matrix;
 | 
					  LinearOperatorBase<Field> & _Matrix;
 | 
				
			||||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
					  OperatorFunction<Field> & _HermitianSolver;
 | 
				
			||||||
@@ -104,13 +78,13 @@ public:
 | 
				
			|||||||
  void operator() (const Field &in, Field &out){
 | 
					  void operator() (const Field &in, Field &out){
 | 
				
			||||||
 
 | 
					 
 | 
				
			||||||
    _Guess(in,out);
 | 
					    _Guess(in,out);
 | 
				
			||||||
    _HermitianSolver(_Matrix,in,out);  //M out = in
 | 
					    _HermitianSolver(_Matrix,in,out);  // Mdag M out = Mdag in
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  }     
 | 
					  }     
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class Field> class MdagMSolver : public LinearFunction<Field> {
 | 
					template<class Field> class MdagMSolver {
 | 
				
			||||||
private:
 | 
					private:
 | 
				
			||||||
  SparseMatrixBase<Field> & _Matrix;
 | 
					  SparseMatrixBase<Field> & _Matrix;
 | 
				
			||||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
					  OperatorFunction<Field> & _HermitianSolver;
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -20,7 +20,7 @@ template<class Field> class PowerMethod
 | 
				
			|||||||
    RealD evalMaxApprox = 0.0; 
 | 
					    RealD evalMaxApprox = 0.0; 
 | 
				
			||||||
    auto src_n = src; 
 | 
					    auto src_n = src; 
 | 
				
			||||||
    auto tmp = src; 
 | 
					    auto tmp = src; 
 | 
				
			||||||
    const int _MAX_ITER_EST_ = 200; 
 | 
					    const int _MAX_ITER_EST_ = 50; 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    for (int i=0;i<_MAX_ITER_EST_;i++) { 
 | 
					    for (int i=0;i<_MAX_ITER_EST_;i++) { 
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
@@ -30,17 +30,18 @@ template<class Field> class PowerMethod
 | 
				
			|||||||
      RealD vden = norm2(src_n); 
 | 
					      RealD vden = norm2(src_n); 
 | 
				
			||||||
      RealD na = vnum/vden; 
 | 
					      RealD na = vnum/vden; 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      std::cout << GridLogMessage << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
 | 
					      std::cout << GridLogIterative << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
      //      if ( (fabs(evalMaxApprox/na - 1.0) < 0.0001) || (i==_MAX_ITER_EST_-1) ) { 
 | 
					      if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) { 
 | 
				
			||||||
	// 	evalMaxApprox = na; 
 | 
					 | 
				
			||||||
	// 	return evalMaxApprox; 
 | 
					 | 
				
			||||||
      //      } 
 | 
					 | 
				
			||||||
 	evalMaxApprox = na; 
 | 
					 	evalMaxApprox = na; 
 | 
				
			||||||
      src_n = tmp;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
 | 
						std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
 | 
				
			||||||
 	return evalMaxApprox; 
 | 
					 	return evalMaxApprox; 
 | 
				
			||||||
      } 
 | 
					      } 
 | 
				
			||||||
 | 
					      evalMaxApprox = na; 
 | 
				
			||||||
 | 
					      src_n = tmp;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    assert(0);
 | 
				
			||||||
 | 
					    return 0;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,76 +0,0 @@
 | 
				
			|||||||
#pragma once
 | 
					 | 
				
			||||||
namespace Grid {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
class Band
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  RealD lo, hi;
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  Band(RealD _lo,RealD _hi)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    lo=_lo;
 | 
					 | 
				
			||||||
    hi=_hi;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  RealD operator() (RealD x){
 | 
					 | 
				
			||||||
    if ( x>lo && x<hi ){
 | 
					 | 
				
			||||||
      return 1.0;
 | 
					 | 
				
			||||||
    } else {
 | 
					 | 
				
			||||||
      return 0.0;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
class PowerSpectrum
 | 
					 | 
				
			||||||
{ 
 | 
					 | 
				
			||||||
 public: 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  template<typename T>  static RealD normalise(T& v) 
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    RealD nn = norm2(v);
 | 
					 | 
				
			||||||
    nn = sqrt(nn);
 | 
					 | 
				
			||||||
    v = v * (1.0/nn);
 | 
					 | 
				
			||||||
    return nn;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  std::vector<RealD> ranges;
 | 
					 | 
				
			||||||
  std::vector<int> order;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  PowerSpectrum(  std::vector<RealD> &bins, std::vector<int> &_order ) : ranges(bins), order(_order)  { };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  template<class Field>
 | 
					 | 
				
			||||||
  RealD operator()(LinearOperatorBase<Field> &HermOp, const Field &src) 
 | 
					 | 
				
			||||||
  { 
 | 
					 | 
				
			||||||
    GridBase *grid = src.Grid(); 
 | 
					 | 
				
			||||||
    int N=ranges.size();
 | 
					 | 
				
			||||||
    RealD hi = ranges[N-1];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD lo_band = 0.0;
 | 
					 | 
				
			||||||
    RealD hi_band;
 | 
					 | 
				
			||||||
    RealD nn=norm2(src);
 | 
					 | 
				
			||||||
    RealD ss=0.0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Field tmp = src;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int b=0;b<N;b++){
 | 
					 | 
				
			||||||
      hi_band = ranges[b];
 | 
					 | 
				
			||||||
      Band Notch(lo_band,hi_band);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      Chebyshev<Field> polynomial;
 | 
					 | 
				
			||||||
      polynomial.Init(0.0,hi,order[b],Notch);
 | 
					 | 
				
			||||||
      polynomial.JacksonSmooth();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      polynomial(HermOp,src,tmp) ;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      RealD p=norm2(tmp);
 | 
					 | 
				
			||||||
      ss=ss+p;
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage << " PowerSpectrum Band["<<lo_band<<","<<hi_band<<"] power "<<norm2(tmp)/nn<<std::endl;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      lo_band=hi_band;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << " PowerSpectrum total power "<<ss/nn<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << " PowerSpectrum total power (unnormalised) "<<nn<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    return 0;
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
@@ -112,7 +112,7 @@ public:
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    std::cout<<GridLogMessage<<"PrecConjugateResidual did NOT converge"<<std::endl;
 | 
					    std::cout<<GridLogMessage<<"PrecConjugateResidual did NOT converge"<<std::endl;
 | 
				
			||||||
    GRID_ASSERT(0);
 | 
					    assert(0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -118,7 +118,7 @@ public:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl;
 | 
					    GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl;
 | 
				
			||||||
    //    GRID_ASSERT(0);
 | 
					    //    assert(0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
 | 
					  RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
 | 
				
			||||||
@@ -221,7 +221,7 @@ public:
 | 
				
			|||||||
      int northog = ((kp)>(mmax-1))?(mmax-1):(kp);  // if more than mmax done, we orthog all mmax history.
 | 
					      int northog = ((kp)>(mmax-1))?(mmax-1):(kp);  // if more than mmax done, we orthog all mmax history.
 | 
				
			||||||
      for(int back=0;back<northog;back++){
 | 
					      for(int back=0;back<northog;back++){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	int peri_back=(k-back)%mmax;   	  GRID_ASSERT((k-back)>=0);
 | 
						int peri_back=(k-back)%mmax;   	  assert((k-back)>=0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	b=-real(innerProduct(q[peri_back],Az))/qq[peri_back];
 | 
						b=-real(innerProduct(q[peri_back],Az))/qq[peri_back];
 | 
				
			||||||
	p[peri_kp]=p[peri_kp]+b*p[peri_back];
 | 
						p[peri_kp]=p[peri_kp]+b*p[peri_back];
 | 
				
			||||||
@@ -231,7 +231,7 @@ public:
 | 
				
			|||||||
      qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
 | 
					      qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
 | 
				
			||||||
      LinalgTimer.Stop();
 | 
					      LinalgTimer.Stop();
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    GRID_ASSERT(0); // never reached
 | 
					    assert(0); // never reached
 | 
				
			||||||
    return cp;
 | 
					    return cp;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -74,7 +74,7 @@ public:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  void operator() (const Field &src, Field &psi){
 | 
					  void operator() (const Field &src, Field &psi){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    //    psi=Zero();
 | 
					    psi=Zero();
 | 
				
			||||||
    RealD cp, ssq,rsq;
 | 
					    RealD cp, ssq,rsq;
 | 
				
			||||||
    ssq=norm2(src);
 | 
					    ssq=norm2(src);
 | 
				
			||||||
    rsq=Tolerance*Tolerance*ssq;
 | 
					    rsq=Tolerance*Tolerance*ssq;
 | 
				
			||||||
@@ -113,7 +113,7 @@ public:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl;
 | 
					    GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl;
 | 
				
			||||||
    //    GRID_ASSERT(0);
 | 
					    //    assert(0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
 | 
					  RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
 | 
				
			||||||
@@ -224,7 +224,7 @@ public:
 | 
				
			|||||||
      int northog = ((kp)>(mmax-1))?(mmax-1):(kp);  // if more than mmax done, we orthog all mmax history.
 | 
					      int northog = ((kp)>(mmax-1))?(mmax-1):(kp);  // if more than mmax done, we orthog all mmax history.
 | 
				
			||||||
      for(int back=0;back<northog;back++){
 | 
					      for(int back=0;back<northog;back++){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	int peri_back=(k-back)%mmax;   	  GRID_ASSERT((k-back)>=0);
 | 
						int peri_back=(k-back)%mmax;   	  assert((k-back)>=0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	b=-real(innerProduct(q[peri_back],Az))/qq[peri_back];
 | 
						b=-real(innerProduct(q[peri_back],Az))/qq[peri_back];
 | 
				
			||||||
	p[peri_kp]=p[peri_kp]+b*p[peri_back];
 | 
						p[peri_kp]=p[peri_kp]+b*p[peri_back];
 | 
				
			||||||
@@ -234,7 +234,7 @@ public:
 | 
				
			|||||||
      qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
 | 
					      qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
 | 
				
			||||||
      LinalgTimer.Stop();
 | 
					      LinalgTimer.Stop();
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    GRID_ASSERT(0); // never reached
 | 
					    assert(0); // never reached
 | 
				
			||||||
    return cp;
 | 
					    return cp;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -79,7 +79,7 @@ class QuasiMinimalResidual : public OperatorFunction<Field> {
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    LinOp.Op(x,r); r = b - r;
 | 
					    LinOp.Op(x,r); r = b - r;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    GRID_ASSERT(normb> 0.0);
 | 
					    assert(normb> 0.0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    resid = norm2(r)/normb;
 | 
					    resid = norm2(r)/normb;
 | 
				
			||||||
    if (resid <= Tolerance) {
 | 
					    if (resid <= Tolerance) {
 | 
				
			||||||
@@ -105,8 +105,8 @@ class QuasiMinimalResidual : public OperatorFunction<Field> {
 | 
				
			|||||||
    for (int i = 1; i <= MaxIterations; i++) {
 | 
					    for (int i = 1; i <= MaxIterations; i++) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      // Breakdown tests
 | 
					      // Breakdown tests
 | 
				
			||||||
      GRID_ASSERT( rho != 0.0);
 | 
					      assert( rho != 0.0);
 | 
				
			||||||
      GRID_ASSERT( xi  != 0.0);
 | 
					      assert( xi  != 0.0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      v = (1. / rho) * v_tld;
 | 
					      v = (1. / rho) * v_tld;
 | 
				
			||||||
      y = (1. / rho) * y;
 | 
					      y = (1. / rho) * y;
 | 
				
			||||||
@@ -134,10 +134,10 @@ class QuasiMinimalResidual : public OperatorFunction<Field> {
 | 
				
			|||||||
      ep=Zep.real();
 | 
					      ep=Zep.real();
 | 
				
			||||||
      std::cout << "Zep "<<Zep <<std::endl;
 | 
					      std::cout << "Zep "<<Zep <<std::endl;
 | 
				
			||||||
      // Complex Audit
 | 
					      // Complex Audit
 | 
				
			||||||
      GRID_ASSERT(abs(ep)>0);
 | 
					      assert(abs(ep)>0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      beta = ep / delta;
 | 
					      beta = ep / delta;
 | 
				
			||||||
      GRID_ASSERT(abs(beta)>0);
 | 
					      assert(abs(beta)>0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      v_tld = p_tld - beta * v;
 | 
					      v_tld = p_tld - beta * v;
 | 
				
			||||||
      y = v_tld;
 | 
					      y = v_tld;
 | 
				
			||||||
@@ -158,7 +158,7 @@ class QuasiMinimalResidual : public OperatorFunction<Field> {
 | 
				
			|||||||
      std::cout << "theta "<<theta<<std::endl;
 | 
					      std::cout << "theta "<<theta<<std::endl;
 | 
				
			||||||
      std::cout << "gamma "<<gamma<<std::endl;
 | 
					      std::cout << "gamma "<<gamma<<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      GRID_ASSERT(abs(gamma)> 0.0);
 | 
					      assert(abs(gamma)> 0.0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      eta = -eta * rho_1 * gamma* gamma / (beta * gamma_1 * gamma_1);
 | 
					      eta = -eta * rho_1 * gamma* gamma / (beta * gamma_1 * gamma_1);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -178,7 +178,7 @@ class QuasiMinimalResidual : public OperatorFunction<Field> {
 | 
				
			|||||||
      }
 | 
					      }
 | 
				
			||||||
      std::cout << "Iteration "<<i<<" resid " << resid<<std::endl;
 | 
					      std::cout << "Iteration "<<i<<" resid " << resid<<std::endl;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    GRID_ASSERT(0);
 | 
					    assert(0);
 | 
				
			||||||
    return;                            // no convergence
 | 
					    return;                            // no convergence
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
#else
 | 
					#else
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -327,9 +327,9 @@ namespace Grid {
 | 
				
			|||||||
      /////////////////////////////////////////////////////
 | 
					      /////////////////////////////////////////////////////
 | 
				
			||||||
      // src_o = (source_o - Moe MeeInv source_e)
 | 
					      // src_o = (source_o - Moe MeeInv source_e)
 | 
				
			||||||
      /////////////////////////////////////////////////////
 | 
					      /////////////////////////////////////////////////////
 | 
				
			||||||
      _Matrix.MooeeInv(src_e,tmp);     GRID_ASSERT(  tmp.Checkerboard() ==Even);
 | 
					      _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.Checkerboard() ==Even);
 | 
				
			||||||
      _Matrix.Meooe   (tmp,Mtmp);      GRID_ASSERT( Mtmp.Checkerboard() ==Odd);     
 | 
					      _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.Checkerboard() ==Odd);     
 | 
				
			||||||
      tmp=src_o-Mtmp;                  GRID_ASSERT(  tmp.Checkerboard() ==Odd);     
 | 
					      tmp=src_o-Mtmp;                  assert(  tmp.Checkerboard() ==Odd);     
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      _Matrix.Mooee(tmp,src_o); // Extra factor of "m" in source from dumb choice of matrix norm.
 | 
					      _Matrix.Mooee(tmp,src_o); // Extra factor of "m" in source from dumb choice of matrix norm.
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
@@ -347,17 +347,17 @@ namespace Grid {
 | 
				
			|||||||
      ///////////////////////////////////////////////////
 | 
					      ///////////////////////////////////////////////////
 | 
				
			||||||
      // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
					      // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
				
			||||||
      ///////////////////////////////////////////////////
 | 
					      ///////////////////////////////////////////////////
 | 
				
			||||||
      _Matrix.Meooe(sol_o,tmp);        GRID_ASSERT(  tmp.Checkerboard()   ==Even);
 | 
					      _Matrix.Meooe(sol_o,tmp);        assert(  tmp.Checkerboard()   ==Even);
 | 
				
			||||||
      src_e = src_e-tmp;               GRID_ASSERT(  src_e.Checkerboard() ==Even);
 | 
					      src_e = src_e-tmp;               assert(  src_e.Checkerboard() ==Even);
 | 
				
			||||||
      _Matrix.MooeeInv(src_e,sol_e);   GRID_ASSERT(  sol_e.Checkerboard() ==Even);
 | 
					      _Matrix.MooeeInv(src_e,sol_e);   assert(  sol_e.Checkerboard() ==Even);
 | 
				
			||||||
     
 | 
					     
 | 
				
			||||||
      setCheckerboard(sol,sol_e); GRID_ASSERT(  sol_e.Checkerboard() ==Even);
 | 
					      setCheckerboard(sol,sol_e); assert(  sol_e.Checkerboard() ==Even);
 | 
				
			||||||
      setCheckerboard(sol,sol_o); GRID_ASSERT(  sol_o.Checkerboard() ==Odd );
 | 
					      setCheckerboard(sol,sol_o); assert(  sol_o.Checkerboard() ==Odd );
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o)
 | 
					    virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o)
 | 
				
			||||||
    {
 | 
					    {
 | 
				
			||||||
      SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
					      SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
				
			||||||
      this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  GRID_ASSERT(sol_o.Checkerboard()==Odd);
 | 
					      this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  assert(sol_o.Checkerboard()==Odd);
 | 
				
			||||||
    };
 | 
					    };
 | 
				
			||||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o)
 | 
					    virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o)
 | 
				
			||||||
    {
 | 
					    {
 | 
				
			||||||
@@ -396,13 +396,13 @@ namespace Grid {
 | 
				
			|||||||
      /////////////////////////////////////////////////////
 | 
					      /////////////////////////////////////////////////////
 | 
				
			||||||
      // src_o = Mdag * (source_o - Moe MeeInv source_e)
 | 
					      // src_o = Mdag * (source_o - Moe MeeInv source_e)
 | 
				
			||||||
      /////////////////////////////////////////////////////
 | 
					      /////////////////////////////////////////////////////
 | 
				
			||||||
      _Matrix.MooeeInv(src_e,tmp);     GRID_ASSERT(  tmp.Checkerboard() ==Even);
 | 
					      _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.Checkerboard() ==Even);
 | 
				
			||||||
      _Matrix.Meooe   (tmp,Mtmp);      GRID_ASSERT( Mtmp.Checkerboard() ==Odd);     
 | 
					      _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.Checkerboard() ==Odd);     
 | 
				
			||||||
      tmp=src_o-Mtmp;                  GRID_ASSERT(  tmp.Checkerboard() ==Odd);     
 | 
					      tmp=src_o-Mtmp;                  assert(  tmp.Checkerboard() ==Odd);     
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      // get the right MpcDag
 | 
					      // get the right MpcDag
 | 
				
			||||||
      SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
					      SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
				
			||||||
      _HermOpEO.MpcDag(tmp,src_o);     GRID_ASSERT(src_o.Checkerboard() ==Odd);       
 | 
					      _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.Checkerboard() ==Odd);       
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
 | 
					    virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
 | 
				
			||||||
@@ -416,17 +416,17 @@ namespace Grid {
 | 
				
			|||||||
      ///////////////////////////////////////////////////
 | 
					      ///////////////////////////////////////////////////
 | 
				
			||||||
      // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
					      // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
				
			||||||
      ///////////////////////////////////////////////////
 | 
					      ///////////////////////////////////////////////////
 | 
				
			||||||
      _Matrix.Meooe(sol_o,tmp);          GRID_ASSERT(  tmp.Checkerboard()   ==Even);
 | 
					      _Matrix.Meooe(sol_o,tmp);          assert(  tmp.Checkerboard()   ==Even);
 | 
				
			||||||
      src_e_i = src_e-tmp;               GRID_ASSERT(  src_e_i.Checkerboard() ==Even);
 | 
					      src_e_i = src_e-tmp;               assert(  src_e_i.Checkerboard() ==Even);
 | 
				
			||||||
      _Matrix.MooeeInv(src_e_i,sol_e);   GRID_ASSERT(  sol_e.Checkerboard() ==Even);
 | 
					      _Matrix.MooeeInv(src_e_i,sol_e);   assert(  sol_e.Checkerboard() ==Even);
 | 
				
			||||||
     
 | 
					     
 | 
				
			||||||
      setCheckerboard(sol,sol_e); GRID_ASSERT(  sol_e.Checkerboard() ==Even);
 | 
					      setCheckerboard(sol,sol_e); assert(  sol_e.Checkerboard() ==Even);
 | 
				
			||||||
      setCheckerboard(sol,sol_o); GRID_ASSERT(  sol_o.Checkerboard() ==Odd );
 | 
					      setCheckerboard(sol,sol_o); assert(  sol_o.Checkerboard() ==Odd );
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o)
 | 
					    virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o)
 | 
				
			||||||
    {
 | 
					    {
 | 
				
			||||||
      SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
					      SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
				
			||||||
      this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  GRID_ASSERT(sol_o.Checkerboard()==Odd);
 | 
					      this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  assert(sol_o.Checkerboard()==Odd);
 | 
				
			||||||
    };
 | 
					    };
 | 
				
			||||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o)
 | 
					    virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o)
 | 
				
			||||||
    {
 | 
					    {
 | 
				
			||||||
@@ -461,9 +461,9 @@ namespace Grid {
 | 
				
			|||||||
        /////////////////////////////////////////////////////
 | 
					        /////////////////////////////////////////////////////
 | 
				
			||||||
        // src_o = Mdag * (source_o - Moe MeeInv source_e)
 | 
					        // src_o = Mdag * (source_o - Moe MeeInv source_e)
 | 
				
			||||||
        /////////////////////////////////////////////////////
 | 
					        /////////////////////////////////////////////////////
 | 
				
			||||||
        _Matrix.MooeeInv(src_e, tmp);   GRID_ASSERT(   tmp.Checkerboard() == Even );
 | 
					        _Matrix.MooeeInv(src_e, tmp);   assert(   tmp.Checkerboard() == Even );
 | 
				
			||||||
        _Matrix.Meooe   (tmp, Mtmp);    GRID_ASSERT(  Mtmp.Checkerboard() == Odd  );     
 | 
					        _Matrix.Meooe   (tmp, Mtmp);    assert(  Mtmp.Checkerboard() == Odd  );     
 | 
				
			||||||
        src_o -= Mtmp;                  GRID_ASSERT( src_o.Checkerboard() == Odd  );     
 | 
					        src_o -= Mtmp;                  assert( src_o.Checkerboard() == Odd  );     
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
      virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol)
 | 
					      virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol)
 | 
				
			||||||
@@ -478,18 +478,18 @@ namespace Grid {
 | 
				
			|||||||
        ///////////////////////////////////////////////////
 | 
					        ///////////////////////////////////////////////////
 | 
				
			||||||
        // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
					        // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
				
			||||||
        ///////////////////////////////////////////////////
 | 
					        ///////////////////////////////////////////////////
 | 
				
			||||||
        _Matrix.Meooe(sol_o, tmp);         GRID_ASSERT(     tmp.Checkerboard() == Even );
 | 
					        _Matrix.Meooe(sol_o, tmp);         assert(     tmp.Checkerboard() == Even );
 | 
				
			||||||
        src_e_i = src_e - tmp;             GRID_ASSERT( src_e_i.Checkerboard() == Even );
 | 
					        src_e_i = src_e - tmp;             assert( src_e_i.Checkerboard() == Even );
 | 
				
			||||||
        _Matrix.MooeeInv(src_e_i, sol_e);  GRID_ASSERT(   sol_e.Checkerboard() == Even );
 | 
					        _Matrix.MooeeInv(src_e_i, sol_e);  assert(   sol_e.Checkerboard() == Even );
 | 
				
			||||||
       
 | 
					       
 | 
				
			||||||
        setCheckerboard(sol, sol_e); GRID_ASSERT( sol_e.Checkerboard() == Even );
 | 
					        setCheckerboard(sol, sol_e); assert( sol_e.Checkerboard() == Even );
 | 
				
			||||||
        setCheckerboard(sol, sol_o); GRID_ASSERT( sol_o.Checkerboard() == Odd  );
 | 
					        setCheckerboard(sol, sol_o); assert( sol_o.Checkerboard() == Odd  );
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o)
 | 
					      virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o)
 | 
				
			||||||
      {
 | 
					      {
 | 
				
			||||||
        NonHermitianSchurDiagMooeeOperator<Matrix,Field> _OpEO(_Matrix);
 | 
					        NonHermitianSchurDiagMooeeOperator<Matrix,Field> _OpEO(_Matrix);
 | 
				
			||||||
        this->_HermitianRBSolver(_OpEO, src_o, sol_o);  GRID_ASSERT(sol_o.Checkerboard() == Odd);
 | 
					        this->_HermitianRBSolver(_OpEO, src_o, sol_o);  assert(sol_o.Checkerboard() == Odd);
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      virtual void RedBlackSolve(Matrix& _Matrix, const std::vector<Field>& src_o, std::vector<Field>& sol_o)
 | 
					      virtual void RedBlackSolve(Matrix& _Matrix, const std::vector<Field>& src_o, std::vector<Field>& sol_o)
 | 
				
			||||||
@@ -499,87 +499,6 @@ namespace Grid {
 | 
				
			|||||||
      }
 | 
					      }
 | 
				
			||||||
  };
 | 
					  };
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // Site diagonal is identity, left preconditioned by Mee^inv
 | 
					 | 
				
			||||||
  // ( 1 - Mee^inv Meo Moo^inv Moe ) phi = Mee_inv ( Mee - Meo Moo^inv Moe Mee^inv  ) phi =  Mee_inv eta
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Solve:
 | 
					 | 
				
			||||||
  // ( 1 - Mee^inv Meo Moo^inv Moe )^dag ( 1 - Mee^inv Meo Moo^inv Moe ) phi = ( 1 - Mee^inv Meo Moo^inv Moe )^dag  Mee_inv eta
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Old notation e<->o
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Left precon by Moo^-1
 | 
					 | 
				
			||||||
  //  b) (Doo^{dag} M_oo^-dag) (Moo^-1 Doo) psi_o =  [ (D_oo)^dag M_oo^-dag ] Moo^-1 L^{-1}  eta_o
 | 
					 | 
				
			||||||
  //                                   eta_o'     = (D_oo)^dag  M_oo^-dag Moo^-1 (eta_o - Moe Mee^{-1} eta_e)
 | 
					 | 
				
			||||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  template<class Field> class SchurRedBlackDiagOneSolve : public SchurRedBlackBase<Field> {
 | 
					 | 
				
			||||||
  public:
 | 
					 | 
				
			||||||
    typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Wrap the usual normal equations Schur trick
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  SchurRedBlackDiagOneSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
 | 
					 | 
				
			||||||
      const bool _solnAsInitGuess = false)  
 | 
					 | 
				
			||||||
    : SchurRedBlackBase<Field>(HermitianRBSolver,initSubGuess,_solnAsInitGuess) {};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
					 | 
				
			||||||
      GridBase *fgrid= _Matrix.Grid();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      Field   tmp(grid);
 | 
					 | 
				
			||||||
      Field  Mtmp(grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      pickCheckerboard(Even,src_e,src);
 | 
					 | 
				
			||||||
      pickCheckerboard(Odd ,src_o,src);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
      /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
      // src_o = Mpcdag *MooeeInv * (source_o - Moe MeeInv source_e)
 | 
					 | 
				
			||||||
      /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
      _Matrix.MooeeInv(src_e,tmp);     GRID_ASSERT(  tmp.Checkerboard() ==Even);
 | 
					 | 
				
			||||||
      _Matrix.Meooe   (tmp,Mtmp);      GRID_ASSERT( Mtmp.Checkerboard() ==Odd);     
 | 
					 | 
				
			||||||
      Mtmp=src_o-Mtmp;                 
 | 
					 | 
				
			||||||
      _Matrix.MooeeInv(Mtmp,tmp);      GRID_ASSERT( tmp.Checkerboard() ==Odd);     
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      // get the right MpcDag
 | 
					 | 
				
			||||||
      _HermOpEO.MpcDag(tmp,src_o);     GRID_ASSERT(src_o.Checkerboard() ==Odd);       
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
					 | 
				
			||||||
      GridBase *fgrid= _Matrix.Grid();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      Field   tmp(grid);
 | 
					 | 
				
			||||||
      Field   sol_e(grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      ///////////////////////////////////////////////////
 | 
					 | 
				
			||||||
      // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
					 | 
				
			||||||
      ///////////////////////////////////////////////////
 | 
					 | 
				
			||||||
      _Matrix.Meooe(sol_o,tmp);    GRID_ASSERT(  tmp.Checkerboard()   ==Even);
 | 
					 | 
				
			||||||
      tmp = src_e-tmp;             GRID_ASSERT(  src_e.Checkerboard() ==Even);
 | 
					 | 
				
			||||||
      _Matrix.MooeeInv(tmp,sol_e); GRID_ASSERT(  sol_e.Checkerboard() ==Even);
 | 
					 | 
				
			||||||
     
 | 
					 | 
				
			||||||
      setCheckerboard(sol,sol_e);  GRID_ASSERT(  sol_e.Checkerboard() ==Even);
 | 
					 | 
				
			||||||
      setCheckerboard(sol,sol_o);  GRID_ASSERT(  sol_o.Checkerboard() ==Odd );
 | 
					 | 
				
			||||||
    };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
					 | 
				
			||||||
      this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
 | 
					 | 
				
			||||||
    };
 | 
					 | 
				
			||||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
					 | 
				
			||||||
      this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); 
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Site diagonal is identity, right preconditioned by Mee^inv
 | 
					  // Site diagonal is identity, right preconditioned by Mee^inv
 | 
				
			||||||
  // ( 1 - Meo Moo^inv Moe Mee^inv  ) phi =( 1 - Meo Moo^inv Moe Mee^inv  ) Mee psi =  = eta  = eta
 | 
					  // ( 1 - Meo Moo^inv Moe Mee^inv  ) phi =( 1 - Meo Moo^inv Moe Mee^inv  ) Mee psi =  = eta  = eta
 | 
				
			||||||
@@ -612,12 +531,12 @@ namespace Grid {
 | 
				
			|||||||
      /////////////////////////////////////////////////////
 | 
					      /////////////////////////////////////////////////////
 | 
				
			||||||
      // src_o = Mdag * (source_o - Moe MeeInv source_e)
 | 
					      // src_o = Mdag * (source_o - Moe MeeInv source_e)
 | 
				
			||||||
      /////////////////////////////////////////////////////
 | 
					      /////////////////////////////////////////////////////
 | 
				
			||||||
      _Matrix.MooeeInv(src_e,tmp);     GRID_ASSERT(  tmp.Checkerboard() ==Even);
 | 
					      _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.Checkerboard() ==Even);
 | 
				
			||||||
      _Matrix.Meooe   (tmp,Mtmp);      GRID_ASSERT( Mtmp.Checkerboard() ==Odd);     
 | 
					      _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.Checkerboard() ==Odd);     
 | 
				
			||||||
      tmp=src_o-Mtmp;                  GRID_ASSERT(  tmp.Checkerboard() ==Odd);     
 | 
					      tmp=src_o-Mtmp;                  assert(  tmp.Checkerboard() ==Odd);     
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      // get the right MpcDag
 | 
					      // get the right MpcDag
 | 
				
			||||||
      _HermOpEO.MpcDag(tmp,src_o);     GRID_ASSERT(src_o.Checkerboard() ==Odd);       
 | 
					      _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.Checkerboard() ==Odd);       
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
 | 
					    virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
 | 
				
			||||||
@@ -638,12 +557,12 @@ namespace Grid {
 | 
				
			|||||||
      ///////////////////////////////////////////////////
 | 
					      ///////////////////////////////////////////////////
 | 
				
			||||||
      // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
					      // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
				
			||||||
      ///////////////////////////////////////////////////
 | 
					      ///////////////////////////////////////////////////
 | 
				
			||||||
      _Matrix.Meooe(sol_o_i,tmp);    GRID_ASSERT(  tmp.Checkerboard()   ==Even);
 | 
					      _Matrix.Meooe(sol_o_i,tmp);    assert(  tmp.Checkerboard()   ==Even);
 | 
				
			||||||
      tmp = src_e-tmp;               GRID_ASSERT(  src_e.Checkerboard() ==Even);
 | 
					      tmp = src_e-tmp;               assert(  src_e.Checkerboard() ==Even);
 | 
				
			||||||
      _Matrix.MooeeInv(tmp,sol_e);   GRID_ASSERT(  sol_e.Checkerboard() ==Even);
 | 
					      _Matrix.MooeeInv(tmp,sol_e);   assert(  sol_e.Checkerboard() ==Even);
 | 
				
			||||||
     
 | 
					     
 | 
				
			||||||
      setCheckerboard(sol,sol_e);    GRID_ASSERT(  sol_e.Checkerboard() ==Even);
 | 
					      setCheckerboard(sol,sol_e);    assert(  sol_e.Checkerboard() ==Even);
 | 
				
			||||||
      setCheckerboard(sol,sol_o_i);  GRID_ASSERT(  sol_o_i.Checkerboard() ==Odd );
 | 
					      setCheckerboard(sol,sol_o_i);  assert(  sol_o_i.Checkerboard() ==Odd );
 | 
				
			||||||
    };
 | 
					    };
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o)
 | 
					    virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o)
 | 
				
			||||||
@@ -684,9 +603,9 @@ namespace Grid {
 | 
				
			|||||||
        /////////////////////////////////////////////////////
 | 
					        /////////////////////////////////////////////////////
 | 
				
			||||||
        // src_o = Mdag * (source_o - Moe MeeInv source_e)
 | 
					        // src_o = Mdag * (source_o - Moe MeeInv source_e)
 | 
				
			||||||
        /////////////////////////////////////////////////////
 | 
					        /////////////////////////////////////////////////////
 | 
				
			||||||
        _Matrix.MooeeInv(src_e, tmp);   GRID_ASSERT(   tmp.Checkerboard() == Even );
 | 
					        _Matrix.MooeeInv(src_e, tmp);   assert(   tmp.Checkerboard() == Even );
 | 
				
			||||||
        _Matrix.Meooe   (tmp, Mtmp);    GRID_ASSERT(  Mtmp.Checkerboard() == Odd  );     
 | 
					        _Matrix.Meooe   (tmp, Mtmp);    assert(  Mtmp.Checkerboard() == Odd  );     
 | 
				
			||||||
        src_o -= Mtmp;                  GRID_ASSERT( src_o.Checkerboard() == Odd  );     
 | 
					        src_o -= Mtmp;                  assert( src_o.Checkerboard() == Odd  );     
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol)
 | 
					      virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol)
 | 
				
			||||||
@@ -707,12 +626,12 @@ namespace Grid {
 | 
				
			|||||||
        ///////////////////////////////////////////////////
 | 
					        ///////////////////////////////////////////////////
 | 
				
			||||||
        // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
					        // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
				
			||||||
        ///////////////////////////////////////////////////
 | 
					        ///////////////////////////////////////////////////
 | 
				
			||||||
        _Matrix.Meooe(sol_o_i, tmp);    GRID_ASSERT(   tmp.Checkerboard() == Even );
 | 
					        _Matrix.Meooe(sol_o_i, tmp);    assert(   tmp.Checkerboard() == Even );
 | 
				
			||||||
        tmp = src_e - tmp;              GRID_ASSERT( src_e.Checkerboard() == Even );
 | 
					        tmp = src_e - tmp;              assert( src_e.Checkerboard() == Even );
 | 
				
			||||||
        _Matrix.MooeeInv(tmp, sol_e);   GRID_ASSERT( sol_e.Checkerboard() == Even );
 | 
					        _Matrix.MooeeInv(tmp, sol_e);   assert( sol_e.Checkerboard() == Even );
 | 
				
			||||||
       
 | 
					       
 | 
				
			||||||
        setCheckerboard(sol, sol_e);    GRID_ASSERT(   sol_e.Checkerboard() == Even );
 | 
					        setCheckerboard(sol, sol_e);    assert(   sol_e.Checkerboard() == Even );
 | 
				
			||||||
        setCheckerboard(sol, sol_o_i);  GRID_ASSERT( sol_o_i.Checkerboard() == Odd  );
 | 
					        setCheckerboard(sol, sol_o_i);  assert( sol_o_i.Checkerboard() == Odd  );
 | 
				
			||||||
      };
 | 
					      };
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o)
 | 
					      virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o)
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,608 +0,0 @@
 | 
				
			|||||||
/*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: ./lib/algorithms/Aggregates.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2015
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
					 | 
				
			||||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
					 | 
				
			||||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
 | 
					 | 
				
			||||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
*************************************************************************************/
 | 
					 | 
				
			||||||
/*  END LEGAL */
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidualNonHermitian.h>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
inline RealD AggregatePowerLaw(RealD x)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  //  return std::pow(x,-4);
 | 
					 | 
				
			||||||
  //  return std::pow(x,-3);
 | 
					 | 
				
			||||||
  return std::pow(x,-5);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class Fobj,class CComplex,int nbasis>
 | 
					 | 
				
			||||||
class Aggregation {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  constexpr int Nbasis(void) { return nbasis; };
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  typedef iVector<CComplex,nbasis >             siteVector;
 | 
					 | 
				
			||||||
  typedef Lattice<siteVector>                 CoarseVector;
 | 
					 | 
				
			||||||
  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
					 | 
				
			||||||
  typedef Lattice<Fobj >        FineField;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  GridBase *CoarseGrid;
 | 
					 | 
				
			||||||
  GridBase *FineGrid;
 | 
					 | 
				
			||||||
  std::vector<Lattice<Fobj> > subspace;
 | 
					 | 
				
			||||||
  int checkerboard;
 | 
					 | 
				
			||||||
  int Checkerboard(void){return checkerboard;}
 | 
					 | 
				
			||||||
  Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) : 
 | 
					 | 
				
			||||||
    CoarseGrid(_CoarseGrid),
 | 
					 | 
				
			||||||
    FineGrid(_FineGrid),
 | 
					 | 
				
			||||||
    subspace(nbasis,_FineGrid),
 | 
					 | 
				
			||||||
    checkerboard(_checkerboard)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  void Orthogonalise(void){
 | 
					 | 
				
			||||||
    CoarseScalar InnerProd(CoarseGrid); 
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
 | 
					 | 
				
			||||||
    blockOrthogonalise(InnerProd,subspace);
 | 
					 | 
				
			||||||
  } 
 | 
					 | 
				
			||||||
  void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
 | 
					 | 
				
			||||||
    blockProject(CoarseVec,FineVec,subspace);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
 | 
					 | 
				
			||||||
    FineVec.Checkerboard() = subspace[0].Checkerboard();
 | 
					 | 
				
			||||||
    blockPromote(CoarseVec,FineVec,subspace);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void CreateSubspaceRandom(GridParallelRNG  &RNG) {
 | 
					 | 
				
			||||||
    int nn=nbasis;
 | 
					 | 
				
			||||||
    RealD scale;
 | 
					 | 
				
			||||||
    FineField noise(FineGrid);
 | 
					 | 
				
			||||||
    for(int b=0;b<nn;b++){
 | 
					 | 
				
			||||||
      subspace[b] = Zero();
 | 
					 | 
				
			||||||
      gaussian(RNG,noise);
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
      noise=noise*scale;
 | 
					 | 
				
			||||||
      subspace[b] = noise;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  virtual void CreateSubspace(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ConjugateGradient<FineField> CG(1.0e-3,400,false);
 | 
					 | 
				
			||||||
    FineField noise(FineGrid);
 | 
					 | 
				
			||||||
    FineField Mn(FineGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int b=0;b<nn;b++){
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      subspace[b] = Zero();
 | 
					 | 
				
			||||||
      gaussian(RNG,noise);
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
      noise=noise*scale;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int i=0;i<4;i++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	CG(hermop,noise,subspace[b]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	noise = subspace[b];
 | 
					 | 
				
			||||||
	scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
	noise=noise*scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
 | 
					 | 
				
			||||||
      subspace[b]   = noise;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void CreateSubspaceGCR(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &DiracOp,int nn=nbasis)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    RealD scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    TrivialPrecon<FineField> simple_fine;
 | 
					 | 
				
			||||||
    PrecGeneralisedConjugateResidualNonHermitian<FineField> GCR(0.001,30,DiracOp,simple_fine,12,12);
 | 
					 | 
				
			||||||
    FineField noise(FineGrid);
 | 
					 | 
				
			||||||
    FineField src(FineGrid);
 | 
					 | 
				
			||||||
    FineField guess(FineGrid);
 | 
					 | 
				
			||||||
    FineField Mn(FineGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int b=0;b<nn;b++){
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      subspace[b] = Zero();
 | 
					 | 
				
			||||||
      gaussian(RNG,noise);
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
      noise=noise*scale;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|Op|n> "<<innerProduct(noise,Mn)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int i=0;i<2;i++){
 | 
					 | 
				
			||||||
	//  void operator() (const Field &src, Field &psi){
 | 
					 | 
				
			||||||
#if 1
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage << " inverting on noise "<<std::endl;
 | 
					 | 
				
			||||||
	src = noise;
 | 
					 | 
				
			||||||
	guess=Zero();
 | 
					 | 
				
			||||||
	GCR(src,guess);
 | 
					 | 
				
			||||||
	subspace[b] = guess;
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage << " inverting on zero "<<std::endl;
 | 
					 | 
				
			||||||
	src=Zero();
 | 
					 | 
				
			||||||
	guess = noise;
 | 
					 | 
				
			||||||
	GCR(src,guess);
 | 
					 | 
				
			||||||
	subspace[b] = guess;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
	noise = subspace[b];
 | 
					 | 
				
			||||||
	scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
	noise=noise*scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|Op|f> "<<innerProduct(noise,Mn)<<std::endl;
 | 
					 | 
				
			||||||
      subspace[b]   = noise;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
 | 
					 | 
				
			||||||
  // and this is the best I found
 | 
					 | 
				
			||||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
					 | 
				
			||||||
				       int nn,
 | 
					 | 
				
			||||||
				       double hi,
 | 
					 | 
				
			||||||
				       double lo,
 | 
					 | 
				
			||||||
				       int orderfilter,
 | 
					 | 
				
			||||||
				       int ordermin,
 | 
					 | 
				
			||||||
				       int orderstep,
 | 
					 | 
				
			||||||
				       double filterlo
 | 
					 | 
				
			||||||
				       ) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    FineField noise(FineGrid);
 | 
					 | 
				
			||||||
    FineField Mn(FineGrid);
 | 
					 | 
				
			||||||
    FineField tmp(FineGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // New normalised noise
 | 
					 | 
				
			||||||
    gaussian(RNG,noise);
 | 
					 | 
				
			||||||
    scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
    noise=noise*scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<" Chebyshev subspace pass-1 : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<" Chebyshev subspace pass-2 : nbasis"<<nn<<" min "
 | 
					 | 
				
			||||||
	      <<ordermin<<" step "<<orderstep
 | 
					 | 
				
			||||||
	      <<" lo"<<filterlo<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Initial matrix element
 | 
					 | 
				
			||||||
    hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int b =0;
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      ComplexD ip;
 | 
					 | 
				
			||||||
      // Filter
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb(lo,hi,orderfilter);
 | 
					 | 
				
			||||||
      Cheb(hermop,noise,Mn);
 | 
					 | 
				
			||||||
      // normalise
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
					 | 
				
			||||||
      subspace[b]   = Mn;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      hermop.Op(Mn,tmp);
 | 
					 | 
				
			||||||
      ip= innerProduct(Mn,tmp); 
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      hermop.AdjOp(Mn,tmp); 
 | 
					 | 
				
			||||||
      ip = innerProduct(Mn,tmp); 
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
 | 
					 | 
				
			||||||
      b++;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Generate a full sequence of Chebyshevs
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      lo=filterlo;
 | 
					 | 
				
			||||||
      noise=Mn;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      FineField T0(FineGrid); T0 = noise;  
 | 
					 | 
				
			||||||
      FineField T1(FineGrid); 
 | 
					 | 
				
			||||||
      FineField T2(FineGrid);
 | 
					 | 
				
			||||||
      FineField y(FineGrid);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      FineField *Tnm = &T0;
 | 
					 | 
				
			||||||
      FineField *Tn  = &T1;
 | 
					 | 
				
			||||||
      FineField *Tnp = &T2;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Tn=T1 = (xscale M + mscale)in
 | 
					 | 
				
			||||||
      RealD xscale = 2.0/(hi-lo);
 | 
					 | 
				
			||||||
      RealD mscale = -(hi+lo)/(hi-lo);
 | 
					 | 
				
			||||||
      hermop.HermOp(T0,y);
 | 
					 | 
				
			||||||
      T1=y*xscale+noise*mscale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	hermop.HermOp(*Tn,y);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	autoView( y_v , y, AcceleratorWrite);
 | 
					 | 
				
			||||||
	autoView( Tn_v , (*Tn), AcceleratorWrite);
 | 
					 | 
				
			||||||
	autoView( Tnp_v , (*Tnp), AcceleratorWrite);
 | 
					 | 
				
			||||||
	autoView( Tnm_v , (*Tnm), AcceleratorWrite);
 | 
					 | 
				
			||||||
	const int Nsimd = CComplex::Nsimd();
 | 
					 | 
				
			||||||
	accelerator_for(ss, FineGrid->oSites(), Nsimd, {
 | 
					 | 
				
			||||||
	  coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
 | 
					 | 
				
			||||||
	  coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
 | 
					 | 
				
			||||||
        });
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	// Possible more fine grained control is needed than a linear sweep,
 | 
					 | 
				
			||||||
	// but huge productivity gain if this is simple algorithm and not a tunable
 | 
					 | 
				
			||||||
	int m =1;
 | 
					 | 
				
			||||||
	if ( n>=ordermin ) m=n-ordermin;
 | 
					 | 
				
			||||||
	if ( (m%orderstep)==0 ) { 
 | 
					 | 
				
			||||||
	  Mn=*Tnp;
 | 
					 | 
				
			||||||
	  scale = std::pow(norm2(Mn),-0.5);         Mn=Mn*scale;
 | 
					 | 
				
			||||||
	  subspace[b] = Mn;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  ComplexD ip;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  hermop.Op(Mn,tmp);
 | 
					 | 
				
			||||||
	  ip= innerProduct(Mn,tmp); 
 | 
					 | 
				
			||||||
	  std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  hermop.AdjOp(Mn,tmp); 
 | 
					 | 
				
			||||||
	  ip = innerProduct(Mn,tmp); 
 | 
					 | 
				
			||||||
	  std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
 | 
					 | 
				
			||||||
	  
 | 
					 | 
				
			||||||
	  b++;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	// Cycle pointers to avoid copies
 | 
					 | 
				
			||||||
	FineField *swizzle = Tnm;
 | 
					 | 
				
			||||||
	Tnm    =Tn;
 | 
					 | 
				
			||||||
	Tn     =Tnp;
 | 
					 | 
				
			||||||
	Tnp    =swizzle;
 | 
					 | 
				
			||||||
	  
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    GRID_ASSERT(b==nn);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void CreateSubspacePolyCheby(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
					 | 
				
			||||||
				       int nn,
 | 
					 | 
				
			||||||
				       double hi,
 | 
					 | 
				
			||||||
				       double lo1,
 | 
					 | 
				
			||||||
				       int orderfilter,
 | 
					 | 
				
			||||||
				       double lo2,
 | 
					 | 
				
			||||||
				       int orderstep)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    RealD scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    FineField noise(FineGrid);
 | 
					 | 
				
			||||||
    FineField Mn(FineGrid);
 | 
					 | 
				
			||||||
    FineField tmp(FineGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // New normalised noise
 | 
					 | 
				
			||||||
    gaussian(RNG,noise);
 | 
					 | 
				
			||||||
    scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
    noise=noise*scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<" CreateSubspacePolyCheby "<<std::endl;
 | 
					 | 
				
			||||||
    // Initial matrix element
 | 
					 | 
				
			||||||
    hermop.Op(noise,Mn);
 | 
					 | 
				
			||||||
    std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int b =0;
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      // Filter
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage << "Cheby "<<lo1<<","<<hi<<" "<<orderstep<<std::endl;
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb(lo1,hi,orderfilter);
 | 
					 | 
				
			||||||
      Cheb(hermop,noise,Mn);
 | 
					 | 
				
			||||||
      // normalise
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
					 | 
				
			||||||
      subspace[b]   = Mn;
 | 
					 | 
				
			||||||
      hermop.Op(Mn,tmp); 
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|n> "<<norm2(Mn)<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Generate a full sequence of Chebyshevs
 | 
					 | 
				
			||||||
    for(int n=1;n<nn;n++){
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage << "Cheby "<<lo2<<","<<hi<<" "<<orderstep<<std::endl;
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb(lo2,hi,orderstep);
 | 
					 | 
				
			||||||
      Cheb(hermop,subspace[n-1],Mn);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int m=0;m<n;m++){
 | 
					 | 
				
			||||||
	ComplexD c = innerProduct(subspace[m],Mn);
 | 
					 | 
				
			||||||
	Mn = Mn - c*subspace[m];
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      // normalise
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(Mn),-0.5);
 | 
					 | 
				
			||||||
      Mn=Mn*scale;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      subspace[n]=Mn;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      hermop.Op(Mn,tmp); 
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<n<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<n<<"] <n|n> "<<norm2(Mn)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
					 | 
				
			||||||
				       int nn,
 | 
					 | 
				
			||||||
				       double hi,
 | 
					 | 
				
			||||||
				       double lo,
 | 
					 | 
				
			||||||
				       int orderfilter
 | 
					 | 
				
			||||||
				       ) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    FineField noise(FineGrid);
 | 
					 | 
				
			||||||
    FineField Mn(FineGrid);
 | 
					 | 
				
			||||||
    FineField tmp(FineGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // New normalised noise
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<" Chebyshev subspace pure noise  : nbasis "<<nn<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int b =0;b<nbasis;b++)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      gaussian(RNG,noise);
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
      noise=noise*scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Initial matrix element
 | 
					 | 
				
			||||||
      hermop.Op(noise,Mn);
 | 
					 | 
				
			||||||
      if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Filter
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb(lo,hi,orderfilter);
 | 
					 | 
				
			||||||
      Cheb(hermop,noise,Mn);
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Refine
 | 
					 | 
				
			||||||
      Chebyshev<FineField> PowerLaw(lo,hi,1000,AggregatePowerLaw);
 | 
					 | 
				
			||||||
      noise = Mn;
 | 
					 | 
				
			||||||
      PowerLaw(hermop,noise,Mn);
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // normalise
 | 
					 | 
				
			||||||
      subspace[b]   = Mn;
 | 
					 | 
				
			||||||
      hermop.Op(Mn,tmp); 
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void CreateSubspaceChebyshevPowerLaw(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
					 | 
				
			||||||
					       int nn,
 | 
					 | 
				
			||||||
					       double hi,
 | 
					 | 
				
			||||||
					       int orderfilter
 | 
					 | 
				
			||||||
					       ) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    FineField noise(FineGrid);
 | 
					 | 
				
			||||||
    FineField Mn(FineGrid);
 | 
					 | 
				
			||||||
    FineField tmp(FineGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // New normalised noise
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" [0,"<<hi<<"]"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<" Chebyshev subspace pure noise  : nbasis "<<nn<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int b =0;b<nbasis;b++)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      gaussian(RNG,noise);
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
      noise=noise*scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Initial matrix element
 | 
					 | 
				
			||||||
      hermop.Op(noise,Mn);
 | 
					 | 
				
			||||||
      if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
					 | 
				
			||||||
      // Filter
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb(0.0,hi,orderfilter,AggregatePowerLaw);
 | 
					 | 
				
			||||||
      Cheb(hermop,noise,Mn);
 | 
					 | 
				
			||||||
      // normalise
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
					 | 
				
			||||||
      subspace[b]   = Mn;
 | 
					 | 
				
			||||||
      hermop.Op(Mn,tmp); 
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  virtual void CreateSubspaceChebyshevNew(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
					 | 
				
			||||||
					  double hi
 | 
					 | 
				
			||||||
					  ) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    FineField noise(FineGrid);
 | 
					 | 
				
			||||||
    FineField Mn(FineGrid);
 | 
					 | 
				
			||||||
    FineField tmp(FineGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // New normalised noise
 | 
					 | 
				
			||||||
    for(int b =0;b<nbasis;b++)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      gaussian(RNG,noise);
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
      noise=noise*scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Initial matrix element
 | 
					 | 
				
			||||||
      hermop.Op(noise,Mn);
 | 
					 | 
				
			||||||
      if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
					 | 
				
			||||||
      // Filter
 | 
					 | 
				
			||||||
      //#opt2(x) =  acheb(x,3,90,300)* acheb(x,1,90,50) * acheb(x,0.5,90,200) * acheb(x,0.05,90,400) * acheb(x,0.01,90,1500)
 | 
					 | 
				
			||||||
      /*266
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb1(3.0,hi,300);
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb2(1.0,hi,50);
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb3(0.5,hi,300);
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb4(0.05,hi,500);
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb5(0.01,hi,2000);
 | 
					 | 
				
			||||||
      */
 | 
					 | 
				
			||||||
      /* 242 */
 | 
					 | 
				
			||||||
      /*
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb3(0.1,hi,300);
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb2(0.02,hi,1000);
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb1(0.003,hi,2000);
 | 
					 | 
				
			||||||
      8?
 | 
					 | 
				
			||||||
      */
 | 
					 | 
				
			||||||
      /* How many??
 | 
					 | 
				
			||||||
      */
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb2(0.001,hi,2500); // 169 iters on HDCG after refine
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb1(0.02,hi,600);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      //      Chebyshev<FineField> Cheb2(0.001,hi,1500);
 | 
					 | 
				
			||||||
      //      Chebyshev<FineField> Cheb1(0.02,hi,600);
 | 
					 | 
				
			||||||
      Cheb1(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale;
 | 
					 | 
				
			||||||
      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb1 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
      Cheb2(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale;
 | 
					 | 
				
			||||||
      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb2 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
      //      Cheb3(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale;
 | 
					 | 
				
			||||||
      //      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb3 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
      //      Cheb4(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale;
 | 
					 | 
				
			||||||
      //      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb4 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
      //      Cheb5(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale;
 | 
					 | 
				
			||||||
      //      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb5 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
      subspace[b]   = noise;
 | 
					 | 
				
			||||||
      hermop.Op(subspace[b],tmp); 
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<< " norm " << norm2(noise)<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void CreateSubspaceMultishift(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
					 | 
				
			||||||
					double Lo,double tol,int maxit)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    FineField noise(FineGrid);
 | 
					 | 
				
			||||||
    FineField Mn(FineGrid);
 | 
					 | 
				
			||||||
    FineField tmp(FineGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // New normalised noise
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<" Multishift subspace : Lo "<<Lo<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Filter
 | 
					 | 
				
			||||||
    // [ 1/6(x+Lo)  - 1/2(x+2Lo) + 1/2(x+3Lo)  -1/6(x+4Lo) = Lo^3 /[ (x+1Lo)(x+2Lo)(x+3Lo)(x+4Lo) ]
 | 
					 | 
				
			||||||
    //
 | 
					 | 
				
			||||||
    // 1/(x+Lo)  - 1/(x+2 Lo)
 | 
					 | 
				
			||||||
    double epsilon      = Lo/3;
 | 
					 | 
				
			||||||
    std::vector<RealD> alpha({1.0/6.0,-1.0/2.0,1.0/2.0,-1.0/6.0});
 | 
					 | 
				
			||||||
    std::vector<RealD> shifts({Lo,Lo+epsilon,Lo+2*epsilon,Lo+3*epsilon});
 | 
					 | 
				
			||||||
    std::vector<RealD> tols({tol,tol,tol,tol});
 | 
					 | 
				
			||||||
    std::cout << "sizes "<<alpha.size()<<" "<<shifts.size()<<" "<<tols.size()<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    MultiShiftFunction msf(4,0.0,95.0);
 | 
					 | 
				
			||||||
    std::cout << "msf constructed "<<std::endl;
 | 
					 | 
				
			||||||
    msf.poles=shifts;
 | 
					 | 
				
			||||||
    msf.residues=alpha;
 | 
					 | 
				
			||||||
    msf.tolerances=tols;
 | 
					 | 
				
			||||||
    msf.norm=0.0;
 | 
					 | 
				
			||||||
    msf.order=alpha.size();
 | 
					 | 
				
			||||||
    ConjugateGradientMultiShift<FineField> MSCG(maxit,msf);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    for(int b =0;b<nbasis;b++)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      gaussian(RNG,noise);
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
      noise=noise*scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Initial matrix element
 | 
					 | 
				
			||||||
      hermop.Op(noise,Mn);
 | 
					 | 
				
			||||||
      if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      MSCG(hermop,noise,Mn);
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
					 | 
				
			||||||
      subspace[b]   = Mn;
 | 
					 | 
				
			||||||
      hermop.Op(Mn,tmp); 
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  virtual void RefineSubspace(LinearOperatorBase<FineField> &hermop,
 | 
					 | 
				
			||||||
			      double Lo,double tol,int maxit)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    FineField tmp(FineGrid);
 | 
					 | 
				
			||||||
    for(int b =0;b<nbasis;b++)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      ConjugateGradient<FineField>  CGsloppy(tol,maxit,false);
 | 
					 | 
				
			||||||
      ShiftedHermOpLinearOperator<FineField> ShiftedFineHermOp(hermop,Lo);
 | 
					 | 
				
			||||||
      tmp=Zero();
 | 
					 | 
				
			||||||
      CGsloppy(hermop,subspace[b],tmp);
 | 
					 | 
				
			||||||
      RealD scale = std::pow(norm2(tmp),-0.5); 	tmp=tmp*scale;
 | 
					 | 
				
			||||||
      subspace[b]=tmp;
 | 
					 | 
				
			||||||
      hermop.Op(subspace[b],tmp);
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  virtual void RefineSubspaceHDCG(LinearOperatorBase<FineField> &hermop,
 | 
					 | 
				
			||||||
				  TwoLevelADEF2mrhs<FineField,CoarseVector> & theHDCG,
 | 
					 | 
				
			||||||
				  int nrhs)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::vector<FineField> src_mrhs(nrhs,FineGrid);
 | 
					 | 
				
			||||||
    std::vector<FineField> res_mrhs(nrhs,FineGrid);
 | 
					 | 
				
			||||||
    FineField tmp(FineGrid);
 | 
					 | 
				
			||||||
    for(int b =0;b<nbasis;b+=nrhs)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      tmp = subspace[b];
 | 
					 | 
				
			||||||
      RealD scale = std::pow(norm2(tmp),-0.5); 	tmp=tmp*scale;
 | 
					 | 
				
			||||||
      subspace[b] =tmp;
 | 
					 | 
				
			||||||
      hermop.Op(subspace[b],tmp);
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "before filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int r=0;r<MIN(nbasis-b,nrhs);r++){
 | 
					 | 
				
			||||||
	src_mrhs[r] = subspace[b+r];
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      for(int r=0;r<nrhs;r++){
 | 
					 | 
				
			||||||
	res_mrhs[r] = Zero();
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      theHDCG(src_mrhs,res_mrhs);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int r=0;r<MIN(nbasis-b,nrhs);r++){
 | 
					 | 
				
			||||||
	tmp = res_mrhs[r];
 | 
					 | 
				
			||||||
	RealD scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
 | 
					 | 
				
			||||||
	subspace[b+r]=tmp;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      hermop.Op(subspace[b],tmp);
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "after filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
@@ -1,629 +0,0 @@
 | 
				
			|||||||
/*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2015
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
*************************************************************************************/
 | 
					 | 
				
			||||||
/*  END LEGAL */
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#include <Grid/lattice/PaddedCell.h>
 | 
					 | 
				
			||||||
#include <Grid/stencil/GeneralLocalStencil.h>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
// Fine Object == (per site) type of fine field
 | 
					 | 
				
			||||||
// nbasis      == number of deflation vectors
 | 
					 | 
				
			||||||
template<class Fobj,class CComplex,int nbasis>
 | 
					 | 
				
			||||||
class GeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > >  {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
 | 
					 | 
				
			||||||
  typedef iVector<CComplex,nbasis >           siteVector;
 | 
					 | 
				
			||||||
  typedef iMatrix<CComplex,nbasis >           siteMatrix;
 | 
					 | 
				
			||||||
  typedef Lattice<iScalar<CComplex> >         CoarseComplexField;
 | 
					 | 
				
			||||||
  typedef Lattice<siteVector>                 CoarseVector;
 | 
					 | 
				
			||||||
  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
					 | 
				
			||||||
  typedef iMatrix<CComplex,nbasis >  Cobj;
 | 
					 | 
				
			||||||
  typedef iVector<CComplex,nbasis >  Cvec;
 | 
					 | 
				
			||||||
  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
					 | 
				
			||||||
  typedef Lattice<Fobj >        FineField;
 | 
					 | 
				
			||||||
  typedef Lattice<CComplex >    FineComplexField;
 | 
					 | 
				
			||||||
  typedef CoarseVector Field;
 | 
					 | 
				
			||||||
  ////////////////////
 | 
					 | 
				
			||||||
  // Data members
 | 
					 | 
				
			||||||
  ////////////////////
 | 
					 | 
				
			||||||
  int hermitian;
 | 
					 | 
				
			||||||
  GridBase      *       _FineGrid; 
 | 
					 | 
				
			||||||
  GridCartesian *       _CoarseGrid; 
 | 
					 | 
				
			||||||
  NonLocalStencilGeometry &geom;
 | 
					 | 
				
			||||||
  PaddedCell Cell;
 | 
					 | 
				
			||||||
  GeneralLocalStencil Stencil;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  std::vector<CoarseMatrix> _A;
 | 
					 | 
				
			||||||
  std::vector<CoarseMatrix> _Adag;
 | 
					 | 
				
			||||||
  std::vector<CoarseVector> MultTemporaries;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ///////////////////////
 | 
					 | 
				
			||||||
  // Interface
 | 
					 | 
				
			||||||
  ///////////////////////
 | 
					 | 
				
			||||||
  GridBase      * Grid(void)           { return _CoarseGrid; };   // this is all the linalg routines need to know
 | 
					 | 
				
			||||||
  GridBase      * FineGrid(void)       { return _FineGrid; };   // this is all the linalg routines need to know
 | 
					 | 
				
			||||||
  GridCartesian * CoarseGrid(void)     { return _CoarseGrid; };   // this is all the linalg routines need to know
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /*  void ShiftMatrix(RealD shift)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int Nd=_FineGrid->Nd(); 
 | 
					 | 
				
			||||||
    Coordinate zero_shift(Nd,0);
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
      if ( zero_shift==geom.shifts[p] ) {
 | 
					 | 
				
			||||||
	_A[p] = _A[p]+shift;
 | 
					 | 
				
			||||||
	//	_Adag[p] = _Adag[p]+shift;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }    
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void ProjectNearestNeighbour(RealD shift, GeneralCoarseOp &CopyMe)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int nfound=0;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage <<"GeneralCoarsenedMatrix::ProjectNearestNeighbour "<< CopyMe._A[0].Grid()<<std::endl;
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
      for(int pp=0;pp<CopyMe.geom.npoint;pp++){
 | 
					 | 
				
			||||||
 	// Search for the same relative shift
 | 
					 | 
				
			||||||
	// Avoids brutal handling of Grid pointers
 | 
					 | 
				
			||||||
	if ( CopyMe.geom.shifts[pp]==geom.shifts[p] ) {
 | 
					 | 
				
			||||||
	  _A[p] = CopyMe.Cell.Extract(CopyMe._A[pp]);
 | 
					 | 
				
			||||||
	  //	  _Adag[p] = CopyMe.Cell.Extract(CopyMe._Adag[pp]);
 | 
					 | 
				
			||||||
	  nfound++;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    GRID_ASSERT(nfound==geom.npoint);
 | 
					 | 
				
			||||||
    ExchangeCoarseLinks();
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  */
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  GeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridBase *FineGrid, GridCartesian * CoarseGrid)
 | 
					 | 
				
			||||||
    : geom(_geom),
 | 
					 | 
				
			||||||
      _FineGrid(FineGrid),
 | 
					 | 
				
			||||||
      _CoarseGrid(CoarseGrid),
 | 
					 | 
				
			||||||
      hermitian(1),
 | 
					 | 
				
			||||||
      Cell(_geom.Depth(),_CoarseGrid),
 | 
					 | 
				
			||||||
      Stencil(Cell.grids.back(),geom.shifts)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      int npoint = _geom.npoint;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    _A.resize(geom.npoint,CoarseGrid);
 | 
					 | 
				
			||||||
    //    _Adag.resize(geom.npoint,CoarseGrid);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void M (const CoarseVector &in, CoarseVector &out)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    Mult(_A,in,out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void Mdag (const CoarseVector &in, CoarseVector &out)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    GRID_ASSERT(hermitian);
 | 
					 | 
				
			||||||
    Mult(_A,in,out);
 | 
					 | 
				
			||||||
    //    if ( hermitian ) M(in,out);
 | 
					 | 
				
			||||||
    //    else Mult(_Adag,in,out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void Mult (std::vector<CoarseMatrix> &A,const CoarseVector &in, CoarseVector &out)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    RealD tviews=0;    RealD ttot=0;    RealD tmult=0;   RealD texch=0;    RealD text=0; RealD ttemps=0; RealD tcopy=0;
 | 
					 | 
				
			||||||
    RealD tmult2=0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ttot=-usecond();
 | 
					 | 
				
			||||||
    conformable(CoarseGrid(),in.Grid());
 | 
					 | 
				
			||||||
    conformable(in.Grid(),out.Grid());
 | 
					 | 
				
			||||||
    out.Checkerboard() = in.Checkerboard();
 | 
					 | 
				
			||||||
    CoarseVector tin=in;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    texch-=usecond();
 | 
					 | 
				
			||||||
    CoarseVector pin = Cell.ExchangePeriodic(tin);
 | 
					 | 
				
			||||||
    texch+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    CoarseVector pout(pin.Grid());
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int npoint = geom.npoint;
 | 
					 | 
				
			||||||
    typedef LatticeView<Cobj> Aview;
 | 
					 | 
				
			||||||
    typedef LatticeView<Cvec> Vview;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    const int Nsimd = CComplex::Nsimd();
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    int64_t osites=pin.Grid()->oSites();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
 | 
					 | 
				
			||||||
    RealD bytes = 1.0*osites*sizeof(siteMatrix)*npoint
 | 
					 | 
				
			||||||
                + 2.0*osites*sizeof(siteVector)*npoint;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      tviews-=usecond();
 | 
					 | 
				
			||||||
      autoView( in_v , pin, AcceleratorRead);
 | 
					 | 
				
			||||||
      autoView( out_v , pout, AcceleratorWriteDiscard);
 | 
					 | 
				
			||||||
      autoView( Stencil_v  , Stencil, AcceleratorRead);
 | 
					 | 
				
			||||||
      tviews+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Static and prereserve to keep UVM region live and not resized across multiple calls
 | 
					 | 
				
			||||||
      ttemps-=usecond();
 | 
					 | 
				
			||||||
      MultTemporaries.resize(npoint,pin.Grid());       
 | 
					 | 
				
			||||||
      ttemps+=usecond();
 | 
					 | 
				
			||||||
      std::vector<Aview> AcceleratorViewContainer_h;
 | 
					 | 
				
			||||||
      std::vector<Vview> AcceleratorVecViewContainer_h; 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      tviews-=usecond();
 | 
					 | 
				
			||||||
      for(int p=0;p<npoint;p++) {
 | 
					 | 
				
			||||||
	AcceleratorViewContainer_h.push_back(      A[p].View(AcceleratorRead));
 | 
					 | 
				
			||||||
	AcceleratorVecViewContainer_h.push_back(MultTemporaries[p].View(AcceleratorWrite));
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      tviews+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      static deviceVector<Aview> AcceleratorViewContainer; AcceleratorViewContainer.resize(npoint);
 | 
					 | 
				
			||||||
      static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(npoint); 
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      auto Aview_p = &AcceleratorViewContainer[0];
 | 
					 | 
				
			||||||
      auto Vview_p = &AcceleratorVecViewContainer[0];
 | 
					 | 
				
			||||||
      tcopy-=usecond();
 | 
					 | 
				
			||||||
      acceleratorCopyToDevice(&AcceleratorViewContainer_h[0],&AcceleratorViewContainer[0],npoint *sizeof(Aview));
 | 
					 | 
				
			||||||
      acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],npoint *sizeof(Vview));
 | 
					 | 
				
			||||||
      tcopy+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      tmult-=usecond();
 | 
					 | 
				
			||||||
      accelerator_for(spb, osites*nbasis*npoint, Nsimd, {
 | 
					 | 
				
			||||||
	  typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
 | 
					 | 
				
			||||||
	  int32_t ss   = spb/(nbasis*npoint);
 | 
					 | 
				
			||||||
	  int32_t bp   = spb%(nbasis*npoint);
 | 
					 | 
				
			||||||
	  int32_t point= bp/nbasis;
 | 
					 | 
				
			||||||
	  int32_t b    = bp%nbasis;
 | 
					 | 
				
			||||||
	  auto SE  = Stencil_v.GetEntry(point,ss);
 | 
					 | 
				
			||||||
	  auto nbr = coalescedReadGeneralPermute(in_v[SE->_offset],SE->_permute,Nd);
 | 
					 | 
				
			||||||
	  auto res = coalescedRead(Aview_p[point][ss](0,b))*nbr(0);
 | 
					 | 
				
			||||||
	  for(int bb=1;bb<nbasis;bb++) {
 | 
					 | 
				
			||||||
	    res = res + coalescedRead(Aview_p[point][ss](bb,b))*nbr(bb);
 | 
					 | 
				
			||||||
	  }
 | 
					 | 
				
			||||||
	  coalescedWrite(Vview_p[point][ss](b),res);
 | 
					 | 
				
			||||||
      });
 | 
					 | 
				
			||||||
      tmult2-=usecond();
 | 
					 | 
				
			||||||
      accelerator_for(sb, osites*nbasis, Nsimd, {
 | 
					 | 
				
			||||||
	  int ss = sb/nbasis;
 | 
					 | 
				
			||||||
	  int b  = sb%nbasis;
 | 
					 | 
				
			||||||
	  auto res = coalescedRead(Vview_p[0][ss](b));
 | 
					 | 
				
			||||||
	  for(int point=1;point<npoint;point++){
 | 
					 | 
				
			||||||
	    res = res + coalescedRead(Vview_p[point][ss](b));
 | 
					 | 
				
			||||||
	  }
 | 
					 | 
				
			||||||
	  coalescedWrite(out_v[ss](b),res);
 | 
					 | 
				
			||||||
      });
 | 
					 | 
				
			||||||
      tmult2+=usecond();
 | 
					 | 
				
			||||||
      tmult+=usecond();
 | 
					 | 
				
			||||||
      for(int p=0;p<npoint;p++) {
 | 
					 | 
				
			||||||
	AcceleratorViewContainer_h[p].ViewClose();
 | 
					 | 
				
			||||||
	AcceleratorVecViewContainer_h[p].ViewClose();
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    text-=usecond();
 | 
					 | 
				
			||||||
    out = Cell.Extract(pout);
 | 
					 | 
				
			||||||
    text+=usecond();
 | 
					 | 
				
			||||||
    ttot+=usecond();
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse 1rhs Mult Aviews "<<tviews<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse Mult exch "<<texch<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse Mult mult "<<tmult<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<" of which mult2  "<<tmult2<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse Mult ext  "<<text<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse Mult temps "<<ttemps<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse Mult copy  "<<tcopy<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse Mult tot  "<<ttot<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    //    std::cout << GridLogPerformance<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse Kernel flops "<< flops<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse Kernel flop/s "<< flops/tmult<<" mflop/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse Kernel bytes/s "<< bytes/tmult<<" MB/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse overall flops/s "<< flops/ttot<<" mflop/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse total bytes   "<< bytes/1e6<<" MB"<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  void PopulateAdag(void)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    for(int64_t bidx=0;bidx<CoarseGrid()->gSites() ;bidx++){
 | 
					 | 
				
			||||||
      Coordinate bcoor;
 | 
					 | 
				
			||||||
      CoarseGrid()->GlobalIndexToGlobalCoor(bidx,bcoor);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
	Coordinate scoor = bcoor;
 | 
					 | 
				
			||||||
	for(int mu=0;mu<bcoor.size();mu++){
 | 
					 | 
				
			||||||
	  int L = CoarseGrid()->GlobalDimensions()[mu];
 | 
					 | 
				
			||||||
	  scoor[mu] = (bcoor[mu] - geom.shifts[p][mu] + L) % L; // Modulo arithmetic
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	// Flip to poke/peekLocalSite and not too bad
 | 
					 | 
				
			||||||
	auto link = peekSite(_A[p],scoor);
 | 
					 | 
				
			||||||
	int pp = geom.Reverse(p);
 | 
					 | 
				
			||||||
	pokeSite(adj(link),_Adag[pp],bcoor);
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // 
 | 
					 | 
				
			||||||
  // A) Only reduced flops option is to use a padded cell of depth 4
 | 
					 | 
				
			||||||
  // and apply MpcDagMpc in the padded cell.
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Makes for ONE application of MpcDagMpc per vector instead of 30 or 80.
 | 
					 | 
				
			||||||
  // With the effective cell size around (B+8)^4 perhaps 12^4/4^4 ratio
 | 
					 | 
				
			||||||
  // Cost is 81x more, same as stencil size.
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // But: can eliminate comms and do as local dirichlet.
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Local exchange gauge field once.
 | 
					 | 
				
			||||||
  // Apply to all vectors, local only computation.
 | 
					 | 
				
			||||||
  // Must exchange ghost subcells in reverse process of PaddedCell to take inner products
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // B) Can reduce cost: pad by 1, apply Deo      (4^4+6^4+8^4+8^4 )/ (4x 4^4)
 | 
					 | 
				
			||||||
  //                     pad by 2, apply Doe
 | 
					 | 
				
			||||||
  //                     pad by 3, apply Deo
 | 
					 | 
				
			||||||
  //                     then break out 8x directions; cost is ~10x MpcDagMpc per vector
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // => almost factor of 10 in setup cost, excluding data rearrangement
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Intermediates -- ignore the corner terms, leave approximate and force Hermitian
 | 
					 | 
				
			||||||
  // Intermediates -- pad by 2 and apply 1+8+24 = 33 times.
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // BFM HDCG style approach: Solve a system of equations to get Aij
 | 
					 | 
				
			||||||
    //////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    /*
 | 
					 | 
				
			||||||
     *     Here, k,l index which possible shift within the 3^Nd "ball" connected by MdagM.
 | 
					 | 
				
			||||||
     *
 | 
					 | 
				
			||||||
     *     conj(phases[block]) proj[k][ block*Nvec+j ] =  \sum_ball  e^{i q_k . delta} < phi_{block,j} | MdagM | phi_{(block+delta),i} > 
 | 
					 | 
				
			||||||
     *                                                 =  \sum_ball e^{iqk.delta} A_ji
 | 
					 | 
				
			||||||
     *
 | 
					 | 
				
			||||||
     *     Must invert matrix M_k,l = e^[i q_k . delta_l]
 | 
					 | 
				
			||||||
     *
 | 
					 | 
				
			||||||
     *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
					 | 
				
			||||||
     */
 | 
					 | 
				
			||||||
#if 0
 | 
					 | 
				
			||||||
  void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
					 | 
				
			||||||
		       Aggregation<Fobj,CComplex,nbasis> & Subspace)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
 | 
					 | 
				
			||||||
    GridBase *grid = FineGrid();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD tproj=0.0;
 | 
					 | 
				
			||||||
    RealD teigen=0.0;
 | 
					 | 
				
			||||||
    RealD tmat=0.0;
 | 
					 | 
				
			||||||
    RealD tphase=0.0;
 | 
					 | 
				
			||||||
    RealD tinv=0.0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Orthogonalise the subblocks over the basis
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    CoarseScalar InnerProd(CoarseGrid()); 
 | 
					 | 
				
			||||||
    blockOrthogonalise(InnerProd,Subspace.subspace);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    const int npoint = geom.npoint;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    Coordinate clatt = CoarseGrid()->GlobalDimensions();
 | 
					 | 
				
			||||||
    int Nd = CoarseGrid()->Nd();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      /*
 | 
					 | 
				
			||||||
       *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
 | 
					 | 
				
			||||||
       *     Matrix index i is mapped to this shift via 
 | 
					 | 
				
			||||||
       *               geom.shifts[i]
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block] 
 | 
					 | 
				
			||||||
       *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} > 
 | 
					 | 
				
			||||||
       *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
 | 
					 | 
				
			||||||
       *       = M_{kl} A_ji^{b.b+l}
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
 | 
					 | 
				
			||||||
       *  
 | 
					 | 
				
			||||||
       *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
 | 
					 | 
				
			||||||
       */
 | 
					 | 
				
			||||||
    teigen-=usecond();
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
					 | 
				
			||||||
    ComplexD ci(0.0,1.0);
 | 
					 | 
				
			||||||
    for(int k=0;k<npoint;k++){ // Loop over momenta
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int l=0;l<npoint;l++){ // Loop over nbr relative
 | 
					 | 
				
			||||||
	ComplexD phase(0.0,0.0);
 | 
					 | 
				
			||||||
	for(int mu=0;mu<Nd;mu++){
 | 
					 | 
				
			||||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
					 | 
				
			||||||
	  phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	phase=exp(phase*ci);
 | 
					 | 
				
			||||||
	Mkl(k,l) = phase;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    invMkl = Mkl.inverse();
 | 
					 | 
				
			||||||
    teigen+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ///////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Now compute the matrix elements of linop between the orthonormal
 | 
					 | 
				
			||||||
    // set of vectors.
 | 
					 | 
				
			||||||
    ///////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    FineField phaV(grid); // Phased block basis vector
 | 
					 | 
				
			||||||
    FineField MphaV(grid);// Matrix applied
 | 
					 | 
				
			||||||
    CoarseVector coarseInner(CoarseGrid());
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
 | 
					 | 
				
			||||||
    std::vector<CoarseVector>          FT(npoint,CoarseGrid());
 | 
					 | 
				
			||||||
    for(int i=0;i<nbasis;i++){// Loop over basis vectors
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
 | 
					 | 
				
			||||||
      for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
					 | 
				
			||||||
	/////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	// Stick a phase on every block
 | 
					 | 
				
			||||||
	/////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	tphase-=usecond();
 | 
					 | 
				
			||||||
	CoarseComplexField coor(CoarseGrid());
 | 
					 | 
				
			||||||
	CoarseComplexField pha(CoarseGrid());	pha=Zero();
 | 
					 | 
				
			||||||
	for(int mu=0;mu<Nd;mu++){
 | 
					 | 
				
			||||||
	  LatticeCoordinate(coor,mu);
 | 
					 | 
				
			||||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
					 | 
				
			||||||
	  pha = pha + (TwoPiL * geom.shifts[p][mu]) * coor;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	pha  =exp(pha*ci);
 | 
					 | 
				
			||||||
	phaV=Zero();
 | 
					 | 
				
			||||||
	blockZAXPY(phaV,pha,Subspace.subspace[i],phaV);
 | 
					 | 
				
			||||||
	tphase+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	/////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	// Multiple phased subspace vector by matrix and project to subspace
 | 
					 | 
				
			||||||
	// Remove local bulk phase to leave relative phases
 | 
					 | 
				
			||||||
	/////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	tmat-=usecond();
 | 
					 | 
				
			||||||
	linop.Op(phaV,MphaV);
 | 
					 | 
				
			||||||
	tmat+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	tproj-=usecond();
 | 
					 | 
				
			||||||
	blockProject(coarseInner,MphaV,Subspace.subspace);
 | 
					 | 
				
			||||||
	coarseInner = conjugate(pha) * coarseInner;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	ComputeProj[p] = coarseInner;
 | 
					 | 
				
			||||||
	tproj+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      tinv-=usecond();
 | 
					 | 
				
			||||||
      for(int k=0;k<npoint;k++){
 | 
					 | 
				
			||||||
	FT[k] = Zero();
 | 
					 | 
				
			||||||
	for(int l=0;l<npoint;l++){
 | 
					 | 
				
			||||||
	  FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
	int osites=CoarseGrid()->oSites();
 | 
					 | 
				
			||||||
	autoView( A_v  , _A[k], AcceleratorWrite);
 | 
					 | 
				
			||||||
	autoView( FT_v  , FT[k], AcceleratorRead);
 | 
					 | 
				
			||||||
	accelerator_for(sss, osites, 1, {
 | 
					 | 
				
			||||||
	    for(int j=0;j<nbasis;j++){
 | 
					 | 
				
			||||||
	      A_v[sss](i,j) = FT_v[sss](j);
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
        });
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      tinv+=usecond();
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Only needed if nonhermitian
 | 
					 | 
				
			||||||
    if ( ! hermitian ) {
 | 
					 | 
				
			||||||
      //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl;
 | 
					 | 
				
			||||||
      //      PopulateAdag();
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Need to write something to populate Adag from A
 | 
					 | 
				
			||||||
    ExchangeCoarseLinks();
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator eigen  "<<teigen<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator phase  "<<tphase<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator mat    "<<tmat <<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator proj   "<<tproj<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // Galerkin projection of matrix
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
					 | 
				
			||||||
		       Aggregation<Fobj,CComplex,nbasis> & Subspace)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    CoarsenOperator(linop,Subspace,Subspace);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // Petrov - Galerkin projection of matrix
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
					 | 
				
			||||||
		       Aggregation<Fobj,CComplex,nbasis> & U,
 | 
					 | 
				
			||||||
		       Aggregation<Fobj,CComplex,nbasis> & V)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
 | 
					 | 
				
			||||||
    GridBase *grid = FineGrid();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD tproj=0.0;
 | 
					 | 
				
			||||||
    RealD teigen=0.0;
 | 
					 | 
				
			||||||
    RealD tmat=0.0;
 | 
					 | 
				
			||||||
    RealD tphase=0.0;
 | 
					 | 
				
			||||||
    RealD tphaseBZ=0.0;
 | 
					 | 
				
			||||||
    RealD tinv=0.0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Orthogonalise the subblocks over the basis
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    CoarseScalar InnerProd(CoarseGrid()); 
 | 
					 | 
				
			||||||
    blockOrthogonalise(InnerProd,V.subspace);
 | 
					 | 
				
			||||||
    blockOrthogonalise(InnerProd,U.subspace);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    const int npoint = geom.npoint;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    Coordinate clatt = CoarseGrid()->GlobalDimensions();
 | 
					 | 
				
			||||||
    int Nd = CoarseGrid()->Nd();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      /*
 | 
					 | 
				
			||||||
       *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
 | 
					 | 
				
			||||||
       *     Matrix index i is mapped to this shift via 
 | 
					 | 
				
			||||||
       *               geom.shifts[i]
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block] 
 | 
					 | 
				
			||||||
       *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} > 
 | 
					 | 
				
			||||||
       *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
 | 
					 | 
				
			||||||
       *       = M_{kl} A_ji^{b.b+l}
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
 | 
					 | 
				
			||||||
       *  
 | 
					 | 
				
			||||||
       *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
 | 
					 | 
				
			||||||
       */
 | 
					 | 
				
			||||||
    teigen-=usecond();
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
					 | 
				
			||||||
    ComplexD ci(0.0,1.0);
 | 
					 | 
				
			||||||
    for(int k=0;k<npoint;k++){ // Loop over momenta
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int l=0;l<npoint;l++){ // Loop over nbr relative
 | 
					 | 
				
			||||||
	ComplexD phase(0.0,0.0);
 | 
					 | 
				
			||||||
	for(int mu=0;mu<Nd;mu++){
 | 
					 | 
				
			||||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
					 | 
				
			||||||
	  phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	phase=exp(phase*ci);
 | 
					 | 
				
			||||||
	Mkl(k,l) = phase;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    invMkl = Mkl.inverse();
 | 
					 | 
				
			||||||
    teigen+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ///////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Now compute the matrix elements of linop between the orthonormal
 | 
					 | 
				
			||||||
    // set of vectors.
 | 
					 | 
				
			||||||
    ///////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    FineField phaV(grid); // Phased block basis vector
 | 
					 | 
				
			||||||
    FineField MphaV(grid);// Matrix applied
 | 
					 | 
				
			||||||
    std::vector<FineComplexField> phaF(npoint,grid);
 | 
					 | 
				
			||||||
    std::vector<CoarseComplexField> pha(npoint,CoarseGrid());
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    CoarseVector coarseInner(CoarseGrid());
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    typedef typename CComplex::scalar_type SComplex;
 | 
					 | 
				
			||||||
    FineComplexField one(grid); one=SComplex(1.0);
 | 
					 | 
				
			||||||
    FineComplexField zz(grid); zz = Zero();
 | 
					 | 
				
			||||||
    tphase=-usecond();
 | 
					 | 
				
			||||||
    for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
					 | 
				
			||||||
      /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
      // Stick a phase on every block
 | 
					 | 
				
			||||||
      /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
      CoarseComplexField coor(CoarseGrid());
 | 
					 | 
				
			||||||
      pha[p]=Zero();
 | 
					 | 
				
			||||||
      for(int mu=0;mu<Nd;mu++){
 | 
					 | 
				
			||||||
	LatticeCoordinate(coor,mu);
 | 
					 | 
				
			||||||
	RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
					 | 
				
			||||||
	pha[p] = pha[p] + (TwoPiL * geom.shifts[p][mu]) * coor;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      pha[p]  =exp(pha[p]*ci);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      blockZAXPY(phaF[p],pha[p],one,zz);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    tphase+=usecond();
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
 | 
					 | 
				
			||||||
    std::vector<CoarseVector>          FT(npoint,CoarseGrid());
 | 
					 | 
				
			||||||
    for(int i=0;i<nbasis;i++){// Loop over basis vectors
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
 | 
					 | 
				
			||||||
      for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
					 | 
				
			||||||
	tphaseBZ-=usecond();
 | 
					 | 
				
			||||||
	phaV = phaF[p]*V.subspace[i];
 | 
					 | 
				
			||||||
	tphaseBZ+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	/////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	// Multiple phased subspace vector by matrix and project to subspace
 | 
					 | 
				
			||||||
	// Remove local bulk phase to leave relative phases
 | 
					 | 
				
			||||||
	/////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	tmat-=usecond();
 | 
					 | 
				
			||||||
	linop.Op(phaV,MphaV);
 | 
					 | 
				
			||||||
	tmat+=usecond();
 | 
					 | 
				
			||||||
	//	std::cout << i << " " <<p << " MphaV "<<norm2(MphaV)<<" "<<norm2(phaV)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	tproj-=usecond();
 | 
					 | 
				
			||||||
	blockProject(coarseInner,MphaV,U.subspace);
 | 
					 | 
				
			||||||
	coarseInner = conjugate(pha[p]) * coarseInner;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	ComputeProj[p] = coarseInner;
 | 
					 | 
				
			||||||
	tproj+=usecond();
 | 
					 | 
				
			||||||
	//	std::cout << i << " " <<p << " ComputeProj "<<norm2(ComputeProj[p])<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      tinv-=usecond();
 | 
					 | 
				
			||||||
      for(int k=0;k<npoint;k++){
 | 
					 | 
				
			||||||
	FT[k] = Zero();
 | 
					 | 
				
			||||||
	for(int l=0;l<npoint;l++){
 | 
					 | 
				
			||||||
	  FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
	int osites=CoarseGrid()->oSites();
 | 
					 | 
				
			||||||
	autoView( A_v  , _A[k], AcceleratorWrite);
 | 
					 | 
				
			||||||
	autoView( FT_v  , FT[k], AcceleratorRead);
 | 
					 | 
				
			||||||
	accelerator_for(sss, osites, 1, {
 | 
					 | 
				
			||||||
	    for(int j=0;j<nbasis;j++){
 | 
					 | 
				
			||||||
	      A_v[sss](i,j) = FT_v[sss](j);
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
        });
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      tinv+=usecond();
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Only needed if nonhermitian
 | 
					 | 
				
			||||||
    if ( ! hermitian ) {
 | 
					 | 
				
			||||||
      //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl;
 | 
					 | 
				
			||||||
      //      PopulateAdag();
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
      std::cout << " _A["<<p<<"] "<<norm2(_A[p])<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Need to write something to populate Adag from A
 | 
					 | 
				
			||||||
    ExchangeCoarseLinks();
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator eigen  "<<teigen<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator phase  "<<tphase<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator mat    "<<tmat <<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator proj   "<<tproj<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
#endif  
 | 
					 | 
				
			||||||
  void ExchangeCoarseLinks(void){
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
      _A[p] = Cell.ExchangePeriodic(_A[p]);
 | 
					 | 
				
			||||||
      //      _Adag[p]= Cell.ExchangePeriodic(_Adag[p]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  virtual  void Mdiag    (const Field &in, Field &out){ GRID_ASSERT(0);};
 | 
					 | 
				
			||||||
  virtual  void Mdir     (const Field &in, Field &out,int dir, int disp){assert(0);};
 | 
					 | 
				
			||||||
  virtual  void MdirAll  (const Field &in, std::vector<Field> &out){assert(0);};
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
@@ -1,729 +0,0 @@
 | 
				
			|||||||
/*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: ./lib/algorithms/GeneralCoarsenedMatrixMultiRHS.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2015
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
*************************************************************************************/
 | 
					 | 
				
			||||||
/*  END LEGAL */
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
// Fine Object == (per site) type of fine field
 | 
					 | 
				
			||||||
// nbasis      == number of deflation vectors
 | 
					 | 
				
			||||||
template<class Fobj,class CComplex,int nbasis>
 | 
					 | 
				
			||||||
class MultiGeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > >  {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  typedef typename CComplex::scalar_object SComplex;
 | 
					 | 
				
			||||||
  typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
 | 
					 | 
				
			||||||
  typedef MultiGeneralCoarsenedMatrix<Fobj,CComplex,nbasis> MultiGeneralCoarseOp;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  typedef iVector<CComplex,nbasis >           siteVector;
 | 
					 | 
				
			||||||
  typedef iMatrix<CComplex,nbasis >           siteMatrix;
 | 
					 | 
				
			||||||
  typedef iVector<SComplex,nbasis >           calcVector;
 | 
					 | 
				
			||||||
  typedef iMatrix<SComplex,nbasis >           calcMatrix;
 | 
					 | 
				
			||||||
  typedef Lattice<iScalar<CComplex> >         CoarseComplexField;
 | 
					 | 
				
			||||||
  typedef Lattice<siteVector>                 CoarseVector;
 | 
					 | 
				
			||||||
  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
					 | 
				
			||||||
  typedef iMatrix<CComplex,nbasis >  Cobj;
 | 
					 | 
				
			||||||
  typedef iVector<CComplex,nbasis >  Cvec;
 | 
					 | 
				
			||||||
  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
					 | 
				
			||||||
  typedef Lattice<Fobj >        FineField;
 | 
					 | 
				
			||||||
  typedef Lattice<CComplex >    FineComplexField;
 | 
					 | 
				
			||||||
  typedef CoarseVector Field;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ////////////////////
 | 
					 | 
				
			||||||
  // Data members
 | 
					 | 
				
			||||||
  ////////////////////
 | 
					 | 
				
			||||||
  GridCartesian *       _CoarseGridMulti; 
 | 
					 | 
				
			||||||
  NonLocalStencilGeometry geom;
 | 
					 | 
				
			||||||
  NonLocalStencilGeometry geom_srhs;
 | 
					 | 
				
			||||||
  PaddedCell Cell;
 | 
					 | 
				
			||||||
  GeneralLocalStencil Stencil;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  deviceVector<calcVector> BLAS_B;
 | 
					 | 
				
			||||||
  deviceVector<calcVector> BLAS_C;
 | 
					 | 
				
			||||||
  std::vector<deviceVector<calcMatrix> > BLAS_A;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  std::vector<deviceVector<ComplexD *> > BLAS_AP;
 | 
					 | 
				
			||||||
  std::vector<deviceVector<ComplexD *> > BLAS_BP;
 | 
					 | 
				
			||||||
  deviceVector<ComplexD *>               BLAS_CP;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ///////////////////////
 | 
					 | 
				
			||||||
  // Interface
 | 
					 | 
				
			||||||
  ///////////////////////
 | 
					 | 
				
			||||||
  GridBase      * Grid(void)           { return _CoarseGridMulti; };   // this is all the linalg routines need to know
 | 
					 | 
				
			||||||
  GridCartesian * CoarseGrid(void)     { return _CoarseGridMulti; };   // this is all the linalg routines need to know
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  // Can be used to do I/O on the operator matrices externally
 | 
					 | 
				
			||||||
  void SetMatrix (int p,CoarseMatrix & A)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    GRID_ASSERT(A.size()==geom_srhs.npoint);
 | 
					 | 
				
			||||||
    GridtoBLAS(A[p],BLAS_A[p]);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void GetMatrix (int p,CoarseMatrix & A)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    GRID_ASSERT(A.size()==geom_srhs.npoint);
 | 
					 | 
				
			||||||
    BLAStoGrid(A[p],BLAS_A[p]);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void CopyMatrix (GeneralCoarseOp &_Op)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
      auto Aup = _Op.Cell.Extract(_Op._A[p]);
 | 
					 | 
				
			||||||
      //Unpadded
 | 
					 | 
				
			||||||
      GridtoBLAS(Aup,BLAS_A[p]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
  void CheckMatrix (GeneralCoarseOp &_Op)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::cout <<"************* Checking the little direc operator mRHS"<<std::endl;
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
      //Unpadded
 | 
					 | 
				
			||||||
      auto Aup = _Op.Cell.Extract(_Op._A[p]);
 | 
					 | 
				
			||||||
      auto Ack = Aup;
 | 
					 | 
				
			||||||
      BLAStoGrid(Ack,BLAS_A[p]);
 | 
					 | 
				
			||||||
      std::cout << p<<" Ack "<<norm2(Ack)<<std::endl;
 | 
					 | 
				
			||||||
      std::cout << p<<" Aup "<<norm2(Aup)<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    std::cout <<"************* "<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  */
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  MultiGeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridCartesian *CoarseGridMulti) :
 | 
					 | 
				
			||||||
    _CoarseGridMulti(CoarseGridMulti),
 | 
					 | 
				
			||||||
    geom_srhs(_geom),
 | 
					 | 
				
			||||||
    geom(_CoarseGridMulti,_geom.hops,_geom.skip+1),
 | 
					 | 
				
			||||||
    Cell(geom.Depth(),_CoarseGridMulti),
 | 
					 | 
				
			||||||
    Stencil(Cell.grids.back(),geom.shifts) // padded cell stencil
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int32_t padded_sites   = Cell.grids.back()->lSites();
 | 
					 | 
				
			||||||
    int32_t unpadded_sites = CoarseGridMulti->lSites();
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    int32_t nrhs  = CoarseGridMulti->FullDimensions()[0];  // # RHS
 | 
					 | 
				
			||||||
    int32_t orhs  = nrhs/CComplex::Nsimd();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    padded_sites   = padded_sites/nrhs;
 | 
					 | 
				
			||||||
    unpadded_sites = unpadded_sites/nrhs;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Device data vector storage
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    BLAS_A.resize(geom.npoint);
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
      BLAS_A[p].resize (unpadded_sites); // no ghost zone, npoint elements
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    BLAS_B.resize(nrhs *padded_sites);   // includes ghost zone
 | 
					 | 
				
			||||||
    BLAS_C.resize(nrhs *unpadded_sites); // no ghost zone
 | 
					 | 
				
			||||||
    BLAS_AP.resize(geom.npoint);
 | 
					 | 
				
			||||||
    BLAS_BP.resize(geom.npoint);
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
      BLAS_AP[p].resize(unpadded_sites);
 | 
					 | 
				
			||||||
      BLAS_BP[p].resize(unpadded_sites);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    BLAS_CP.resize(unpadded_sites);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Pointers to data
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Site identity mapping for A
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
      for(int ss=0;ss<unpadded_sites;ss++){
 | 
					 | 
				
			||||||
	ComplexD *ptr = (ComplexD *)&BLAS_A[p][ss];
 | 
					 | 
				
			||||||
	acceleratorPut(BLAS_AP[p][ss],ptr);
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    // Site identity mapping for C
 | 
					 | 
				
			||||||
    for(int ss=0;ss<unpadded_sites;ss++){
 | 
					 | 
				
			||||||
      ComplexD *ptr = (ComplexD *)&BLAS_C[ss*nrhs];
 | 
					 | 
				
			||||||
      acceleratorPut(BLAS_CP[ss],ptr);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Neighbour table is more complicated
 | 
					 | 
				
			||||||
    int32_t j=0; // Interior point counter (unpadded)
 | 
					 | 
				
			||||||
    for(int32_t s=0;s<padded_sites;s++){ // 4 volume, padded
 | 
					 | 
				
			||||||
      int ghost_zone=0;
 | 
					 | 
				
			||||||
      for(int32_t point = 0 ; point < geom.npoint; point++){
 | 
					 | 
				
			||||||
	int i=s*orhs*geom.npoint+point;
 | 
					 | 
				
			||||||
	if( Stencil._entries[i]._wrap ) { // stencil is indexed by the oSite of the CoarseGridMulti, hence orhs factor
 | 
					 | 
				
			||||||
	  ghost_zone=1; // If general stencil wrapped in any direction, wrap=1
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      if( ghost_zone==0) {
 | 
					 | 
				
			||||||
	for(int32_t point = 0 ; point < geom.npoint; point++){
 | 
					 | 
				
			||||||
	  int i=s*orhs*geom.npoint+point;
 | 
					 | 
				
			||||||
 	  int32_t nbr = Stencil._entries[i]._offset*CComplex::Nsimd(); // oSite -> lSite
 | 
					 | 
				
			||||||
	  GRID_ASSERT(nbr<BLAS_B.size());
 | 
					 | 
				
			||||||
	  ComplexD * ptr = (ComplexD *)&BLAS_B[nbr];
 | 
					 | 
				
			||||||
	  acceleratorPut(BLAS_BP[point][j],ptr); // neighbour indexing in ghost zone volume
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	j++;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    GRID_ASSERT(j==unpadded_sites);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  template<class vobj> void GridtoBLAS(const Lattice<vobj> &from,deviceVector<typename vobj::scalar_object> &to)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  GridBase *Fg = from.Grid();
 | 
					 | 
				
			||||||
  GRID_ASSERT(!Fg->_isCheckerBoarded);
 | 
					 | 
				
			||||||
  int nd = Fg->_ndimension;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  to.resize(Fg->lSites());
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Coordinate LocalLatt = Fg->LocalDimensions();
 | 
					 | 
				
			||||||
  size_t nsite = 1;
 | 
					 | 
				
			||||||
  for(int i=0;i<nd;i++) nsite *= LocalLatt[i];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // do the index calc on the GPU
 | 
					 | 
				
			||||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  Coordinate f_ostride = Fg->_ostride;
 | 
					 | 
				
			||||||
  Coordinate f_istride = Fg->_istride;
 | 
					 | 
				
			||||||
  Coordinate f_rdimensions = Fg->_rdimensions;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  autoView(from_v,from,AcceleratorRead);
 | 
					 | 
				
			||||||
  auto to_v = &to[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  const int words=sizeof(vobj)/sizeof(vector_type);
 | 
					 | 
				
			||||||
  accelerator_for(idx,nsite,1,{
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      Coordinate from_coor, base;
 | 
					 | 
				
			||||||
      Lexicographic::CoorFromIndex(base,idx,LocalLatt);
 | 
					 | 
				
			||||||
      for(int i=0;i<nd;i++){
 | 
					 | 
				
			||||||
	from_coor[i] = base[i];
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
 | 
					 | 
				
			||||||
      int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      const vector_type* from = (const vector_type *)&from_v[from_oidx];
 | 
					 | 
				
			||||||
      scalar_type* to = (scalar_type *)&to_v[idx];
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      scalar_type stmp;
 | 
					 | 
				
			||||||
      for(int w=0;w<words;w++){
 | 
					 | 
				
			||||||
	stmp = getlane(from[w], from_lane);
 | 
					 | 
				
			||||||
	to[w] = stmp;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    });
 | 
					 | 
				
			||||||
  }    
 | 
					 | 
				
			||||||
  template<class vobj> void BLAStoGrid(Lattice<vobj> &grid,deviceVector<typename vobj::scalar_object> &in)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  GridBase *Tg = grid.Grid();
 | 
					 | 
				
			||||||
  GRID_ASSERT(!Tg->_isCheckerBoarded);
 | 
					 | 
				
			||||||
  int nd = Tg->_ndimension;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  GRID_ASSERT(in.size()==Tg->lSites());
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Coordinate LocalLatt = Tg->LocalDimensions();
 | 
					 | 
				
			||||||
  size_t nsite = 1;
 | 
					 | 
				
			||||||
  for(int i=0;i<nd;i++) nsite *= LocalLatt[i];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // do the index calc on the GPU
 | 
					 | 
				
			||||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  Coordinate t_ostride = Tg->_ostride;
 | 
					 | 
				
			||||||
  Coordinate t_istride = Tg->_istride;
 | 
					 | 
				
			||||||
  Coordinate t_rdimensions = Tg->_rdimensions;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  autoView(to_v,grid,AcceleratorWrite);
 | 
					 | 
				
			||||||
  auto from_v = &in[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  const int words=sizeof(vobj)/sizeof(vector_type);
 | 
					 | 
				
			||||||
  accelerator_for(idx,nsite,1,{
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      Coordinate to_coor, base;
 | 
					 | 
				
			||||||
      Lexicographic::CoorFromIndex(base,idx,LocalLatt);
 | 
					 | 
				
			||||||
      for(int i=0;i<nd;i++){
 | 
					 | 
				
			||||||
	to_coor[i] = base[i];
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      int to_oidx = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
 | 
					 | 
				
			||||||
      int to_lane = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      vector_type* to = (vector_type *)&to_v[to_oidx];
 | 
					 | 
				
			||||||
      scalar_type* from = (scalar_type *)&from_v[idx];
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      scalar_type stmp;
 | 
					 | 
				
			||||||
      for(int w=0;w<words;w++){
 | 
					 | 
				
			||||||
	stmp=from[w];
 | 
					 | 
				
			||||||
	putlane(to[w], stmp, to_lane);
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    });
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
					 | 
				
			||||||
		       Aggregation<Fobj,CComplex,nbasis> & Subspace,
 | 
					 | 
				
			||||||
		       GridBase *CoarseGrid)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
#if 0
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridBase *grid = Subspace.FineGrid;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Orthogonalise the subblocks over the basis
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    CoarseScalar InnerProd(CoarseGrid); 
 | 
					 | 
				
			||||||
    blockOrthogonalise(InnerProd,Subspace.subspace);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    const int npoint = geom_srhs.npoint;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Coordinate clatt = CoarseGrid->GlobalDimensions();
 | 
					 | 
				
			||||||
    int Nd = CoarseGrid->Nd();
 | 
					 | 
				
			||||||
      /*
 | 
					 | 
				
			||||||
       *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
 | 
					 | 
				
			||||||
       *     Matrix index i is mapped to this shift via 
 | 
					 | 
				
			||||||
       *               geom.shifts[i]
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block] 
 | 
					 | 
				
			||||||
       *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} > 
 | 
					 | 
				
			||||||
       *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
 | 
					 | 
				
			||||||
       *       = M_{kl} A_ji^{b.b+l}
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
 | 
					 | 
				
			||||||
       *  
 | 
					 | 
				
			||||||
       *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
 | 
					 | 
				
			||||||
       */
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
					 | 
				
			||||||
    ComplexD ci(0.0,1.0);
 | 
					 | 
				
			||||||
    for(int k=0;k<npoint;k++){ // Loop over momenta
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int l=0;l<npoint;l++){ // Loop over nbr relative
 | 
					 | 
				
			||||||
	ComplexD phase(0.0,0.0);
 | 
					 | 
				
			||||||
	for(int mu=0;mu<Nd;mu++){
 | 
					 | 
				
			||||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
					 | 
				
			||||||
	  phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	phase=exp(phase*ci);
 | 
					 | 
				
			||||||
	Mkl(k,l) = phase;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    invMkl = Mkl.inverse();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ///////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Now compute the matrix elements of linop between the orthonormal
 | 
					 | 
				
			||||||
    // set of vectors.
 | 
					 | 
				
			||||||
    ///////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    FineField phaV(grid); // Phased block basis vector
 | 
					 | 
				
			||||||
    FineField MphaV(grid);// Matrix applied
 | 
					 | 
				
			||||||
    std::vector<FineComplexField> phaF(npoint,grid);
 | 
					 | 
				
			||||||
    std::vector<CoarseComplexField> pha(npoint,CoarseGrid);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    CoarseVector coarseInner(CoarseGrid);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    typedef typename CComplex::scalar_type SComplex;
 | 
					 | 
				
			||||||
    FineComplexField one(grid); one=SComplex(1.0);
 | 
					 | 
				
			||||||
    FineComplexField zz(grid); zz = Zero();
 | 
					 | 
				
			||||||
    for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
					 | 
				
			||||||
      /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
      // Stick a phase on every block
 | 
					 | 
				
			||||||
      /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
      CoarseComplexField coor(CoarseGrid);
 | 
					 | 
				
			||||||
      pha[p]=Zero();
 | 
					 | 
				
			||||||
      for(int mu=0;mu<Nd;mu++){
 | 
					 | 
				
			||||||
	LatticeCoordinate(coor,mu);
 | 
					 | 
				
			||||||
	RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
					 | 
				
			||||||
	pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      pha[p]  =exp(pha[p]*ci);	
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      blockZAXPY(phaF[p],pha[p],one,zz);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Could save on temporary storage here
 | 
					 | 
				
			||||||
    std::vector<CoarseMatrix> _A;
 | 
					 | 
				
			||||||
    _A.resize(geom_srhs.npoint,CoarseGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid);
 | 
					 | 
				
			||||||
    CoarseVector          FT(CoarseGrid);
 | 
					 | 
				
			||||||
    for(int i=0;i<nbasis;i++){// Loop over basis vectors
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
 | 
					 | 
				
			||||||
      for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	phaV = phaF[p]*Subspace.subspace[i];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	/////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	// Multiple phased subspace vector by matrix and project to subspace
 | 
					 | 
				
			||||||
	// Remove local bulk phase to leave relative phases
 | 
					 | 
				
			||||||
	/////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	linop.Op(phaV,MphaV);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	// Fixme, could use batched block projector here
 | 
					 | 
				
			||||||
	blockProject(coarseInner,MphaV,Subspace.subspace);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	coarseInner = conjugate(pha[p]) * coarseInner;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	ComputeProj[p] = coarseInner;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix.
 | 
					 | 
				
			||||||
      for(int k=0;k<npoint;k++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	FT = Zero();
 | 
					 | 
				
			||||||
	for(int l=0;l<npoint;l++){
 | 
					 | 
				
			||||||
	  FT= FT+ invMkl(l,k)*ComputeProj[l];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
	int osites=CoarseGrid->oSites();
 | 
					 | 
				
			||||||
	autoView( A_v  , _A[k], AcceleratorWrite);
 | 
					 | 
				
			||||||
	autoView( FT_v  , FT, AcceleratorRead);
 | 
					 | 
				
			||||||
	accelerator_for(sss, osites, 1, {
 | 
					 | 
				
			||||||
	    for(int j=0;j<nbasis;j++){
 | 
					 | 
				
			||||||
	      A_v[sss](i,j) = FT_v[sss](j);
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
        });
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Only needed if nonhermitian
 | 
					 | 
				
			||||||
    //    if ( ! hermitian ) {
 | 
					 | 
				
			||||||
    //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl;
 | 
					 | 
				
			||||||
    //      PopulateAdag();
 | 
					 | 
				
			||||||
    //    }
 | 
					 | 
				
			||||||
    // Need to write something to populate Adag from A
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int p=0;p<geom_srhs.npoint;p++){
 | 
					 | 
				
			||||||
      GridtoBLAS(_A[p],BLAS_A[p]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    /*
 | 
					 | 
				
			||||||
Grid : Message : 11698.730546 s : CoarsenOperator eigen  1334 us
 | 
					 | 
				
			||||||
Grid : Message : 11698.730563 s : CoarsenOperator phase  34729 us
 | 
					 | 
				
			||||||
Grid : Message : 11698.730565 s : CoarsenOperator phaseBZ 2423814 us
 | 
					 | 
				
			||||||
Grid : Message : 11698.730566 s : CoarsenOperator mat    127890998 us
 | 
					 | 
				
			||||||
Grid : Message : 11698.730567 s : CoarsenOperator proj   515840840 us
 | 
					 | 
				
			||||||
Grid : Message : 11698.730568 s : CoarsenOperator inv    103948313 us
 | 
					 | 
				
			||||||
Takes 600s to compute matrix elements, DOMINATED by the block project.
 | 
					 | 
				
			||||||
Easy to speed up with the batched block project.
 | 
					 | 
				
			||||||
Store npoint vectors, get npoint x Nbasis block projection, and 81 fold faster.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
// Block project below taks to 240s
 | 
					 | 
				
			||||||
Grid : Message : 328.193418 s : CoarsenOperator phase      38338 us
 | 
					 | 
				
			||||||
Grid : Message : 328.193434 s : CoarsenOperator phaseBZ  1711226 us
 | 
					 | 
				
			||||||
Grid : Message : 328.193436 s : CoarsenOperator mat    122213270 us
 | 
					 | 
				
			||||||
//Grid : Message : 328.193438 s : CoarsenOperator proj   1181154 us <-- this is mistimed
 | 
					 | 
				
			||||||
//Grid : Message : 11698.730568 s : CoarsenOperator inv  103948313 us <-- Cut this ~10x if lucky by loop fusion
 | 
					 | 
				
			||||||
     */
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
    RealD tproj=0.0;
 | 
					 | 
				
			||||||
    RealD tmat=0.0;
 | 
					 | 
				
			||||||
    RealD tphase=0.0;
 | 
					 | 
				
			||||||
    RealD tphaseBZ=0.0;
 | 
					 | 
				
			||||||
    RealD tinv=0.0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridBase *grid = Subspace.FineGrid;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Orthogonalise the subblocks over the basis
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    CoarseScalar InnerProd(CoarseGrid); 
 | 
					 | 
				
			||||||
    blockOrthogonalise(InnerProd,Subspace.subspace);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    MultiRHSBlockProject<Lattice<Fobj> >    Projector;
 | 
					 | 
				
			||||||
    Projector.Allocate(nbasis,grid,CoarseGrid);
 | 
					 | 
				
			||||||
    Projector.ImportBasis(Subspace.subspace);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    const int npoint = geom_srhs.npoint;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Coordinate clatt = CoarseGrid->GlobalDimensions();
 | 
					 | 
				
			||||||
    int Nd = CoarseGrid->Nd();
 | 
					 | 
				
			||||||
      /*
 | 
					 | 
				
			||||||
       *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
 | 
					 | 
				
			||||||
       *     Matrix index i is mapped to this shift via 
 | 
					 | 
				
			||||||
       *               geom.shifts[i]
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block] 
 | 
					 | 
				
			||||||
       *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} > 
 | 
					 | 
				
			||||||
       *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
 | 
					 | 
				
			||||||
       *       = M_{kl} A_ji^{b.b+l}
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
 | 
					 | 
				
			||||||
       *  
 | 
					 | 
				
			||||||
       *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
 | 
					 | 
				
			||||||
       */
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
					 | 
				
			||||||
    ComplexD ci(0.0,1.0);
 | 
					 | 
				
			||||||
    for(int k=0;k<npoint;k++){ // Loop over momenta
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int l=0;l<npoint;l++){ // Loop over nbr relative
 | 
					 | 
				
			||||||
	ComplexD phase(0.0,0.0);
 | 
					 | 
				
			||||||
	for(int mu=0;mu<Nd;mu++){
 | 
					 | 
				
			||||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
					 | 
				
			||||||
	  phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	phase=exp(phase*ci);
 | 
					 | 
				
			||||||
	Mkl(k,l) = phase;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    invMkl = Mkl.inverse();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ///////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Now compute the matrix elements of linop between the orthonormal
 | 
					 | 
				
			||||||
    // set of vectors.
 | 
					 | 
				
			||||||
    ///////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    FineField phaV(grid); // Phased block basis vector
 | 
					 | 
				
			||||||
    FineField MphaV(grid);// Matrix applied
 | 
					 | 
				
			||||||
    std::vector<FineComplexField> phaF(npoint,grid);
 | 
					 | 
				
			||||||
    std::vector<CoarseComplexField> pha(npoint,CoarseGrid);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    CoarseVector coarseInner(CoarseGrid);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    tphase=-usecond();
 | 
					 | 
				
			||||||
    typedef typename CComplex::scalar_type SComplex;
 | 
					 | 
				
			||||||
    FineComplexField one(grid); one=SComplex(1.0);
 | 
					 | 
				
			||||||
    FineComplexField zz(grid); zz = Zero();
 | 
					 | 
				
			||||||
    for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
					 | 
				
			||||||
      /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
      // Stick a phase on every block
 | 
					 | 
				
			||||||
      /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
      CoarseComplexField coor(CoarseGrid);
 | 
					 | 
				
			||||||
      pha[p]=Zero();
 | 
					 | 
				
			||||||
      for(int mu=0;mu<Nd;mu++){
 | 
					 | 
				
			||||||
	LatticeCoordinate(coor,mu);
 | 
					 | 
				
			||||||
	RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
					 | 
				
			||||||
	pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      pha[p]  =exp(pha[p]*ci);	
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      blockZAXPY(phaF[p],pha[p],one,zz);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    tphase+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Could save on temporary storage here
 | 
					 | 
				
			||||||
    std::vector<CoarseMatrix> _A;
 | 
					 | 
				
			||||||
    _A.resize(geom_srhs.npoint,CoarseGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Count use small chunks than npoint == 81 and save memory
 | 
					 | 
				
			||||||
    int batch = 9;
 | 
					 | 
				
			||||||
    std::vector<FineField>    _MphaV(batch,grid);
 | 
					 | 
				
			||||||
    std::vector<CoarseVector> TmpProj(batch,CoarseGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid);
 | 
					 | 
				
			||||||
    CoarseVector          FT(CoarseGrid);
 | 
					 | 
				
			||||||
    for(int i=0;i<nbasis;i++){// Loop over basis vectors
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      //      std::cout << GridLogMessage << " phasing the fine vector "<<std::endl;
 | 
					 | 
				
			||||||
      // Fixme : do this in batches
 | 
					 | 
				
			||||||
      for(int p=0;p<npoint;p+=batch){ // Loop over momenta in npoint
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	for(int b=0;b<MIN(batch,npoint-p);b++){
 | 
					 | 
				
			||||||
	  tphaseBZ-=usecond();
 | 
					 | 
				
			||||||
	  phaV = phaF[p+b]*Subspace.subspace[i];
 | 
					 | 
				
			||||||
	  tphaseBZ+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  /////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	  // Multiple phased subspace vector by matrix and project to subspace
 | 
					 | 
				
			||||||
	  // Remove local bulk phase to leave relative phases
 | 
					 | 
				
			||||||
	  /////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	  // Memory footprint was an issue
 | 
					 | 
				
			||||||
	  tmat-=usecond();
 | 
					 | 
				
			||||||
	  linop.Op(phaV,MphaV);
 | 
					 | 
				
			||||||
	  _MphaV[b] = MphaV;
 | 
					 | 
				
			||||||
	  tmat+=usecond();
 | 
					 | 
				
			||||||
	}      
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	//	std::cout << GridLogMessage << " Calling block project "<<std::endl;
 | 
					 | 
				
			||||||
	tproj-=usecond();
 | 
					 | 
				
			||||||
	Projector.blockProject(_MphaV,TmpProj);
 | 
					 | 
				
			||||||
	tproj+=usecond();
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	//	std::cout << GridLogMessage << " conj phasing the coarse vectors "<<std::endl;
 | 
					 | 
				
			||||||
	for(int b=0;b<MIN(batch,npoint-p);b++){
 | 
					 | 
				
			||||||
	  ComputeProj[p+b] = conjugate(pha[p+b])*TmpProj[b];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix.
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      // std::cout << GridLogMessage << " Starting FT inv "<<std::endl;
 | 
					 | 
				
			||||||
      tinv-=usecond();
 | 
					 | 
				
			||||||
      for(int k=0;k<npoint;k++){
 | 
					 | 
				
			||||||
	FT = Zero();
 | 
					 | 
				
			||||||
	// 81 kernel calls as many ComputeProj vectors
 | 
					 | 
				
			||||||
	// Could fuse with a vector of views, but ugly
 | 
					 | 
				
			||||||
	// Could unroll the expression and run fewer kernels -- much more attractive
 | 
					 | 
				
			||||||
	// Could also do non blocking.
 | 
					 | 
				
			||||||
#if 0	
 | 
					 | 
				
			||||||
	for(int l=0;l<npoint;l++){
 | 
					 | 
				
			||||||
	  FT= FT+ invMkl(l,k)*ComputeProj[l];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	const int radix = 9;
 | 
					 | 
				
			||||||
	int ll;
 | 
					 | 
				
			||||||
	for(ll=0;ll+radix-1<npoint;ll+=radix){
 | 
					 | 
				
			||||||
	  // When ll = npoint-radix, ll+radix-1 = npoint-1, and we do it all.
 | 
					 | 
				
			||||||
	  FT = FT 
 | 
					 | 
				
			||||||
	    + invMkl(ll+0,k)*ComputeProj[ll+0]
 | 
					 | 
				
			||||||
	    + invMkl(ll+1,k)*ComputeProj[ll+1]
 | 
					 | 
				
			||||||
	    + invMkl(ll+2,k)*ComputeProj[ll+2]
 | 
					 | 
				
			||||||
	    + invMkl(ll+3,k)*ComputeProj[ll+3]
 | 
					 | 
				
			||||||
	    + invMkl(ll+4,k)*ComputeProj[ll+4]
 | 
					 | 
				
			||||||
	    + invMkl(ll+5,k)*ComputeProj[ll+5]
 | 
					 | 
				
			||||||
	    + invMkl(ll+6,k)*ComputeProj[ll+6]
 | 
					 | 
				
			||||||
	    + invMkl(ll+7,k)*ComputeProj[ll+7]
 | 
					 | 
				
			||||||
	    + invMkl(ll+8,k)*ComputeProj[ll+8];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	for(int l=ll;l<npoint;l++){
 | 
					 | 
				
			||||||
	  FT= FT+ invMkl(l,k)*ComputeProj[l];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
	// 1 kernel call -- must be cheaper
 | 
					 | 
				
			||||||
	int osites=CoarseGrid->oSites();
 | 
					 | 
				
			||||||
	autoView( A_v  , _A[k], AcceleratorWrite);
 | 
					 | 
				
			||||||
	autoView( FT_v  , FT, AcceleratorRead);
 | 
					 | 
				
			||||||
	accelerator_for(sss, osites, 1, {
 | 
					 | 
				
			||||||
	    for(int j=0;j<nbasis;j++){
 | 
					 | 
				
			||||||
	      A_v[sss](i,j) = FT_v[sss](j);
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
        });
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      tinv+=usecond();
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Only needed if nonhermitian
 | 
					 | 
				
			||||||
    //    if ( ! hermitian ) {
 | 
					 | 
				
			||||||
    //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl;
 | 
					 | 
				
			||||||
    //      PopulateAdag();
 | 
					 | 
				
			||||||
    //    }
 | 
					 | 
				
			||||||
    // Need to write something to populate Adag from A
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage << " Calling GridtoBLAS "<<std::endl;
 | 
					 | 
				
			||||||
    for(int p=0;p<geom_srhs.npoint;p++){
 | 
					 | 
				
			||||||
      GridtoBLAS(_A[p],BLAS_A[p]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator phase  "<<tphase<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator mat    "<<tmat <<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator proj   "<<tproj<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void Mdag(const CoarseVector &in, CoarseVector &out)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    this->M(in,out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void M (const CoarseVector &in, CoarseVector &out)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage << "New Mrhs coarse"<<std::endl;
 | 
					 | 
				
			||||||
    conformable(CoarseGrid(),in.Grid());
 | 
					 | 
				
			||||||
    conformable(in.Grid(),out.Grid());
 | 
					 | 
				
			||||||
    out.Checkerboard() = in.Checkerboard();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t_tot;
 | 
					 | 
				
			||||||
    RealD t_exch;
 | 
					 | 
				
			||||||
    RealD t_GtoB;
 | 
					 | 
				
			||||||
    RealD t_BtoG;
 | 
					 | 
				
			||||||
    RealD t_mult;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    t_tot=-usecond();
 | 
					 | 
				
			||||||
    CoarseVector tin=in;
 | 
					 | 
				
			||||||
    t_exch=-usecond();
 | 
					 | 
				
			||||||
    CoarseVector pin = Cell.ExchangePeriodic(tin); //padded input
 | 
					 | 
				
			||||||
    t_exch+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    CoarseVector pout(pin.Grid());
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int npoint = geom.npoint;
 | 
					 | 
				
			||||||
    typedef calcMatrix* Aview;
 | 
					 | 
				
			||||||
    typedef LatticeView<Cvec> Vview;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    const int Nsimd = CComplex::Nsimd();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int64_t nrhs  =pin.Grid()->GlobalDimensions()[0];
 | 
					 | 
				
			||||||
    GRID_ASSERT(nrhs>=1);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD flops,bytes;
 | 
					 | 
				
			||||||
    int64_t osites=in.Grid()->oSites(); // unpadded
 | 
					 | 
				
			||||||
    int64_t unpadded_vol = CoarseGrid()->lSites()/nrhs;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
 | 
					 | 
				
			||||||
    bytes = 1.0*osites*sizeof(siteMatrix)*npoint/pin.Grid()->GlobalDimensions()[0]
 | 
					 | 
				
			||||||
          + 2.0*osites*sizeof(siteVector)*npoint;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    t_GtoB=-usecond();
 | 
					 | 
				
			||||||
    GridtoBLAS(pin,BLAS_B);
 | 
					 | 
				
			||||||
    t_GtoB+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridBLAS BLAS;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    t_mult=-usecond();
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
      RealD c = 1.0;
 | 
					 | 
				
			||||||
      if (p==0) c = 0.0;
 | 
					 | 
				
			||||||
      ComplexD beta(c);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      BLAS.gemmBatched(nbasis,nrhs,nbasis,
 | 
					 | 
				
			||||||
		       ComplexD(1.0),
 | 
					 | 
				
			||||||
		       BLAS_AP[p], 
 | 
					 | 
				
			||||||
		       BLAS_BP[p], 
 | 
					 | 
				
			||||||
		       ComplexD(c), 
 | 
					 | 
				
			||||||
		       BLAS_CP);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    BLAS.synchronise();
 | 
					 | 
				
			||||||
    t_mult+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    t_BtoG=-usecond();
 | 
					 | 
				
			||||||
    BLAStoGrid(out,BLAS_C);
 | 
					 | 
				
			||||||
    t_BtoG+=usecond();
 | 
					 | 
				
			||||||
    t_tot+=usecond();
 | 
					 | 
				
			||||||
    /*
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "New Mrhs coarse DONE "<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"Coarse Mult exch "<<t_exch<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"Coarse Mult mult "<<t_mult<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"Coarse Mult GtoB  "<<t_GtoB<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"Coarse Mult BtoG  "<<t_BtoG<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"Coarse Mult tot  "<<t_tot<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    */
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage<<std::endl;
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage<<"Coarse Kernel flops "<< flops<<std::endl;
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage<<"Coarse Kernel flop/s "<< flops/t_mult<<" mflop/s"<<std::endl;
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage<<"Coarse Kernel bytes/s "<< bytes/t_mult/1000<<" GB/s"<<std::endl;
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage<<"Coarse overall flops/s "<< flops/t_tot<<" mflop/s"<<std::endl;
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage<<"Coarse total bytes   "<< bytes/1e6<<" MB"<<std::endl;
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  virtual  void Mdiag    (const Field &in, Field &out){ GRID_ASSERT(0);};
 | 
					 | 
				
			||||||
  virtual  void Mdir     (const Field &in, Field &out,int dir, int disp){assert(0);};
 | 
					 | 
				
			||||||
  virtual  void MdirAll  (const Field &in, std::vector<Field> &out){assert(0);};
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
@@ -1,238 +0,0 @@
 | 
				
			|||||||
/*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2015
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
*************************************************************************************/
 | 
					 | 
				
			||||||
/*  END LEGAL */
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
// Geometry class in cartesian case
 | 
					 | 
				
			||||||
/////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
class Geometry {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  int npoint;
 | 
					 | 
				
			||||||
  int base;
 | 
					 | 
				
			||||||
  std::vector<int> directions   ;
 | 
					 | 
				
			||||||
  std::vector<int> displacements;
 | 
					 | 
				
			||||||
  std::vector<int> points_dagger;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Geometry(int _d)  {
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    base = (_d==5) ? 1:0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // make coarse grid stencil for 4d , not 5d
 | 
					 | 
				
			||||||
    if ( _d==5 ) _d=4;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    npoint = 2*_d+1;
 | 
					 | 
				
			||||||
    directions.resize(npoint);
 | 
					 | 
				
			||||||
    displacements.resize(npoint);
 | 
					 | 
				
			||||||
    points_dagger.resize(npoint);
 | 
					 | 
				
			||||||
    for(int d=0;d<_d;d++){
 | 
					 | 
				
			||||||
      directions[d   ] = d+base;
 | 
					 | 
				
			||||||
      directions[d+_d] = d+base;
 | 
					 | 
				
			||||||
      displacements[d  ] = +1;
 | 
					 | 
				
			||||||
      displacements[d+_d]= -1;
 | 
					 | 
				
			||||||
      points_dagger[d   ] = d+_d;
 | 
					 | 
				
			||||||
      points_dagger[d+_d] = d;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    directions   [2*_d]=0;
 | 
					 | 
				
			||||||
    displacements[2*_d]=0;
 | 
					 | 
				
			||||||
    points_dagger[2*_d]=2*_d;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int point(int dir, int disp) {
 | 
					 | 
				
			||||||
    GRID_ASSERT(disp == -1 || disp == 0 || disp == 1);
 | 
					 | 
				
			||||||
    GRID_ASSERT(base+0 <= dir && dir < base+4);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // directions faster index = new indexing
 | 
					 | 
				
			||||||
    // 4d (base = 0):
 | 
					 | 
				
			||||||
    // point 0  1  2  3  4  5  6  7  8
 | 
					 | 
				
			||||||
    // dir   0  1  2  3  0  1  2  3  0
 | 
					 | 
				
			||||||
    // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | 
					 | 
				
			||||||
    // 5d (base = 1):
 | 
					 | 
				
			||||||
    // point 0  1  2  3  4  5  6  7  8
 | 
					 | 
				
			||||||
    // dir   1  2  3  4  1  2  3  4  0
 | 
					 | 
				
			||||||
    // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // displacements faster index = old indexing
 | 
					 | 
				
			||||||
    // 4d (base = 0):
 | 
					 | 
				
			||||||
    // point 0  1  2  3  4  5  6  7  8
 | 
					 | 
				
			||||||
    // dir   0  0  1  1  2  2  3  3  0
 | 
					 | 
				
			||||||
    // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | 
					 | 
				
			||||||
    // 5d (base = 1):
 | 
					 | 
				
			||||||
    // point 0  1  2  3  4  5  6  7  8
 | 
					 | 
				
			||||||
    // dir   1  1  2  2  3  3  4  4  0
 | 
					 | 
				
			||||||
    // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if(dir == 0 and disp == 0)
 | 
					 | 
				
			||||||
      return 8;
 | 
					 | 
				
			||||||
    else // New indexing
 | 
					 | 
				
			||||||
      return (1 - disp) / 2 * 4 + dir - base;
 | 
					 | 
				
			||||||
    // else // Old indexing
 | 
					 | 
				
			||||||
    //   return (4 * (dir - base) + 1 - disp) / 2;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
// Less local equivalent of Geometry class in cartesian case
 | 
					 | 
				
			||||||
/////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
class NonLocalStencilGeometry {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  //  int depth;
 | 
					 | 
				
			||||||
  int skip;
 | 
					 | 
				
			||||||
  int hops;
 | 
					 | 
				
			||||||
  int npoint;
 | 
					 | 
				
			||||||
  std::vector<Coordinate> shifts;
 | 
					 | 
				
			||||||
  Coordinate stencil_size;
 | 
					 | 
				
			||||||
  Coordinate stencil_lo;
 | 
					 | 
				
			||||||
  Coordinate stencil_hi;
 | 
					 | 
				
			||||||
  GridCartesian *grid;
 | 
					 | 
				
			||||||
  GridCartesian *Grid() {return grid;};
 | 
					 | 
				
			||||||
  int Depth(void){return 1;};   // Ghost zone depth
 | 
					 | 
				
			||||||
  int Hops(void){return hops;}; // # of hops=> level of corner fill in in stencil
 | 
					 | 
				
			||||||
  int DimSkip(void){return skip;};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual ~NonLocalStencilGeometry() {};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int  Reverse(int point)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int Nd = Grid()->Nd();
 | 
					 | 
				
			||||||
    Coordinate shft = shifts[point];
 | 
					 | 
				
			||||||
    Coordinate rev(Nd);
 | 
					 | 
				
			||||||
    for(int mu=0;mu<Nd;mu++) rev[mu]= -shft[mu];
 | 
					 | 
				
			||||||
    for(int p=0;p<npoint;p++){
 | 
					 | 
				
			||||||
      if(rev==shifts[p]){
 | 
					 | 
				
			||||||
	return p;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    GRID_ASSERT(0);
 | 
					 | 
				
			||||||
    return -1;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void BuildShifts(void)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    this->shifts.resize(0);
 | 
					 | 
				
			||||||
    int Nd = this->grid->Nd();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int dd = this->DimSkip();
 | 
					 | 
				
			||||||
    for(int s0=this->stencil_lo[dd+0];s0<=this->stencil_hi[dd+0];s0++){
 | 
					 | 
				
			||||||
    for(int s1=this->stencil_lo[dd+1];s1<=this->stencil_hi[dd+1];s1++){
 | 
					 | 
				
			||||||
    for(int s2=this->stencil_lo[dd+2];s2<=this->stencil_hi[dd+2];s2++){
 | 
					 | 
				
			||||||
    for(int s3=this->stencil_lo[dd+3];s3<=this->stencil_hi[dd+3];s3++){
 | 
					 | 
				
			||||||
      Coordinate sft(Nd,0);
 | 
					 | 
				
			||||||
      sft[dd+0] = s0;
 | 
					 | 
				
			||||||
      sft[dd+1] = s1;
 | 
					 | 
				
			||||||
      sft[dd+2] = s2;
 | 
					 | 
				
			||||||
      sft[dd+3] = s3;
 | 
					 | 
				
			||||||
      int nhops = abs(s0)+abs(s1)+abs(s2)+abs(s3);
 | 
					 | 
				
			||||||
      if(nhops<=this->hops) this->shifts.push_back(sft);
 | 
					 | 
				
			||||||
    }}}}
 | 
					 | 
				
			||||||
    this->npoint = this->shifts.size();
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "NonLocalStencilGeometry has "<< this->npoint << " terms in stencil "<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  NonLocalStencilGeometry(GridCartesian *_coarse_grid,int _hops,int _skip) : grid(_coarse_grid), hops(_hops), skip(_skip)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    Coordinate latt = grid->GlobalDimensions();
 | 
					 | 
				
			||||||
    stencil_size.resize(grid->Nd());
 | 
					 | 
				
			||||||
    stencil_lo.resize(grid->Nd());
 | 
					 | 
				
			||||||
    stencil_hi.resize(grid->Nd());
 | 
					 | 
				
			||||||
    for(int d=0;d<grid->Nd();d++){
 | 
					 | 
				
			||||||
     if ( latt[d] == 1 ) {
 | 
					 | 
				
			||||||
      stencil_lo[d] = 0;
 | 
					 | 
				
			||||||
      stencil_hi[d] = 0;
 | 
					 | 
				
			||||||
      stencil_size[d]= 1;
 | 
					 | 
				
			||||||
     } else if ( latt[d] == 2 ) {
 | 
					 | 
				
			||||||
      stencil_lo[d] = -1;
 | 
					 | 
				
			||||||
      stencil_hi[d] = 0;
 | 
					 | 
				
			||||||
      stencil_size[d]= 2;
 | 
					 | 
				
			||||||
     } else if ( latt[d] > 2 ) {
 | 
					 | 
				
			||||||
       stencil_lo[d] = -1;
 | 
					 | 
				
			||||||
       stencil_hi[d] =  1;
 | 
					 | 
				
			||||||
       stencil_size[d]= 3;
 | 
					 | 
				
			||||||
     }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    this->BuildShifts();
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
// Need to worry about red-black now
 | 
					 | 
				
			||||||
class NonLocalStencilGeometry4D : public NonLocalStencilGeometry {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  virtual int DerivedDimSkip(void) { return 0;};
 | 
					 | 
				
			||||||
  NonLocalStencilGeometry4D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,0) { };
 | 
					 | 
				
			||||||
  virtual ~NonLocalStencilGeometry4D() {};
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
class NonLocalStencilGeometry5D : public NonLocalStencilGeometry {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  virtual int DerivedDimSkip(void) { return 1; }; 
 | 
					 | 
				
			||||||
  NonLocalStencilGeometry5D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,1)  { };
 | 
					 | 
				
			||||||
  virtual ~NonLocalStencilGeometry5D() {};
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
/*
 | 
					 | 
				
			||||||
 * Bunch of different options classes
 | 
					 | 
				
			||||||
 */
 | 
					 | 
				
			||||||
class NextToNextToNextToNearestStencilGeometry4D : public NonLocalStencilGeometry4D {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  NextToNextToNextToNearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,4)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
class NextToNextToNextToNearestStencilGeometry5D : public  NonLocalStencilGeometry5D {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  NextToNextToNextToNearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,4)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
class NextToNearestStencilGeometry4D : public  NonLocalStencilGeometry4D {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  NextToNearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,2)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
class NextToNearestStencilGeometry5D : public  NonLocalStencilGeometry5D {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  NextToNearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,2)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
class NearestStencilGeometry4D : public  NonLocalStencilGeometry4D {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  NearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,1)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
class NearestStencilGeometry5D : public  NonLocalStencilGeometry5D {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  NearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,1)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
@@ -1,34 +0,0 @@
 | 
				
			|||||||
    /*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: Grid/algorithms/multigrid/MultiGrid.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2023
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
    *************************************************************************************/
 | 
					 | 
				
			||||||
    /*  END LEGAL */
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#include <Grid/algorithms/multigrid/Aggregates.h>
 | 
					 | 
				
			||||||
#include <Grid/algorithms/multigrid/Geometry.h>
 | 
					 | 
				
			||||||
#include <Grid/algorithms/multigrid/CoarsenedMatrix.h>
 | 
					 | 
				
			||||||
#include <Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h>
 | 
					 | 
				
			||||||
#include <Grid/algorithms/multigrid/GeneralCoarsenedMatrixMultiRHS.h>
 | 
					 | 
				
			||||||
@@ -54,10 +54,7 @@ public:
 | 
				
			|||||||
    size_type bytes = __n*sizeof(_Tp);
 | 
					    size_type bytes = __n*sizeof(_Tp);
 | 
				
			||||||
    profilerAllocate(bytes);
 | 
					    profilerAllocate(bytes);
 | 
				
			||||||
    _Tp *ptr = (_Tp*) MemoryManager::CpuAllocate(bytes);
 | 
					    _Tp *ptr = (_Tp*) MemoryManager::CpuAllocate(bytes);
 | 
				
			||||||
    if ( (_Tp*)ptr == (_Tp *) NULL ) {
 | 
					    assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
 | 
				
			||||||
      printf("Grid CPU Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    GRID_ASSERT( ( (_Tp*)ptr != (_Tp *)NULL ) );
 | 
					 | 
				
			||||||
    return ptr;
 | 
					    return ptr;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -69,7 +66,7 @@ public:
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop
 | 
					  // FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop
 | 
				
			||||||
  void construct(pointer __p, const _Tp& __val) { };
 | 
					  void construct(pointer __p, const _Tp& __val) { assert(0);};
 | 
				
			||||||
  void construct(pointer __p) { };
 | 
					  void construct(pointer __p) { };
 | 
				
			||||||
  void destroy(pointer __p) { };
 | 
					  void destroy(pointer __p) { };
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
@@ -103,10 +100,7 @@ public:
 | 
				
			|||||||
    size_type bytes = __n*sizeof(_Tp);
 | 
					    size_type bytes = __n*sizeof(_Tp);
 | 
				
			||||||
    profilerAllocate(bytes);
 | 
					    profilerAllocate(bytes);
 | 
				
			||||||
    _Tp *ptr = (_Tp*) MemoryManager::SharedAllocate(bytes);
 | 
					    _Tp *ptr = (_Tp*) MemoryManager::SharedAllocate(bytes);
 | 
				
			||||||
    if ( (_Tp*)ptr == (_Tp *) NULL ) {
 | 
					    assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
 | 
				
			||||||
      printf("Grid Shared Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    GRID_ASSERT( ( (_Tp*)ptr != (_Tp *)NULL ) );
 | 
					 | 
				
			||||||
    return ptr;
 | 
					    return ptr;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -151,10 +145,7 @@ public:
 | 
				
			|||||||
    size_type bytes = __n*sizeof(_Tp);
 | 
					    size_type bytes = __n*sizeof(_Tp);
 | 
				
			||||||
    profilerAllocate(bytes);
 | 
					    profilerAllocate(bytes);
 | 
				
			||||||
    _Tp *ptr = (_Tp*) MemoryManager::AcceleratorAllocate(bytes);
 | 
					    _Tp *ptr = (_Tp*) MemoryManager::AcceleratorAllocate(bytes);
 | 
				
			||||||
    if ( (_Tp*)ptr == (_Tp *) NULL ) {
 | 
					    assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
 | 
				
			||||||
      printf("Grid Device Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    GRID_ASSERT( ( (_Tp*)ptr != (_Tp *)NULL ) );
 | 
					 | 
				
			||||||
    return ptr;
 | 
					    return ptr;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -174,48 +165,19 @@ template<typename _Tp>  inline bool operator!=(const devAllocator<_Tp>&, const d
 | 
				
			|||||||
////////////////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
// Template typedefs
 | 
					// Template typedefs
 | 
				
			||||||
////////////////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
template<class T> using hostVector          = std::vector<T,alignedAllocator<T> >;           // Needs autoview
 | 
					#ifdef ACCELERATOR_CSHIFT
 | 
				
			||||||
template<class T> using Vector              = std::vector<T,uvmAllocator<T> >;               // Really want to deprecate
 | 
					// Cshift on device
 | 
				
			||||||
template<class T> using uvmVector           = std::vector<T,uvmAllocator<T> >;               // auto migrating page
 | 
					template<class T> using cshiftAllocator = devAllocator<T>;
 | 
				
			||||||
template<class T> using deviceVector        = std::vector<T,devAllocator<T> >;               // device vector
 | 
					#else
 | 
				
			||||||
 | 
					// Cshift on host
 | 
				
			||||||
 | 
					template<class T> using cshiftAllocator = std::allocator<T>;
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
/*
 | 
					template<class T> using Vector        = std::vector<T,uvmAllocator<T> >;           
 | 
				
			||||||
template<class T> class vecView
 | 
					template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;           
 | 
				
			||||||
{
 | 
					template<class T> using commVector = std::vector<T,devAllocator<T> >;
 | 
				
			||||||
 protected:
 | 
					template<class T> using deviceVector  = std::vector<T,devAllocator<T> >;
 | 
				
			||||||
  T * data;
 | 
					template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
 | 
				
			||||||
  uint64_t size;
 | 
					 | 
				
			||||||
  ViewMode mode;
 | 
					 | 
				
			||||||
  void * cpu_ptr;
 | 
					 | 
				
			||||||
 public:
 | 
					 | 
				
			||||||
  // Rvalue accessor
 | 
					 | 
				
			||||||
  accelerator_inline T & operator[](size_t i) const { return this->data[i]; };
 | 
					 | 
				
			||||||
  vecView(Vector<T> &refer_to_me,ViewMode _mode)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    cpu_ptr = &refer_to_me[0];
 | 
					 | 
				
			||||||
    size = refer_to_me.size();
 | 
					 | 
				
			||||||
    mode = _mode;
 | 
					 | 
				
			||||||
    data =(T *) MemoryManager::ViewOpen(cpu_ptr,
 | 
					 | 
				
			||||||
					size*sizeof(T),
 | 
					 | 
				
			||||||
					mode,
 | 
					 | 
				
			||||||
					AdviseDefault);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void ViewClose(void)
 | 
					 | 
				
			||||||
  { // Inform the manager
 | 
					 | 
				
			||||||
    MemoryManager::ViewClose(this->cpu_ptr,this->mode);    
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class T> vecView<T> VectorView(Vector<T> &vec,ViewMode _mode)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  vecView<T> ret(vec,_mode); // does the open
 | 
					 | 
				
			||||||
  return ret;                // must be closed
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#define autoVecView(v_v,v,mode)					\
 | 
					 | 
				
			||||||
  auto v_v = VectorView(v,mode);				\
 | 
					 | 
				
			||||||
  ViewCloser<decltype(v_v)> _autoView##v_v(v_v);
 | 
					 | 
				
			||||||
*/
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -16,44 +16,6 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
uint64_t total_shared;
 | 
					uint64_t total_shared;
 | 
				
			||||||
uint64_t total_device;
 | 
					uint64_t total_device;
 | 
				
			||||||
uint64_t total_host;;
 | 
					uint64_t total_host;;
 | 
				
			||||||
 | 
					 | 
				
			||||||
#if defined(__has_feature)
 | 
					 | 
				
			||||||
#if __has_feature(leak_sanitizer)
 | 
					 | 
				
			||||||
#define ASAN_LEAK_CHECK
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#ifdef ASAN_LEAK_CHECK
 | 
					 | 
				
			||||||
#include <sanitizer/asan_interface.h>
 | 
					 | 
				
			||||||
#include <sanitizer/common_interface_defs.h>
 | 
					 | 
				
			||||||
#include <sanitizer/lsan_interface.h>
 | 
					 | 
				
			||||||
#define LEAK_CHECK(A) { __lsan_do_recoverable_leak_check(); }
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
#define LEAK_CHECK(A) { }
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
void MemoryManager::DisplayMallinfo(void)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
#ifdef __linux__
 | 
					 | 
				
			||||||
  struct mallinfo mi; // really want mallinfo2, but glibc version isn't uniform
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  mi = mallinfo();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  std::cout << "MemoryManager: Total non-mmapped bytes (arena):       "<< (size_t)mi.arena<<std::endl;
 | 
					 | 
				
			||||||
  std::cout << "MemoryManager: # of free chunks (ordblks):            "<< (size_t)mi.ordblks<<std::endl;
 | 
					 | 
				
			||||||
  std::cout << "MemoryManager: # of free fastbin blocks (smblks):     "<< (size_t)mi.smblks<<std::endl;
 | 
					 | 
				
			||||||
  std::cout << "MemoryManager: # of mapped regions (hblks):           "<< (size_t)mi.hblks<<std::endl;
 | 
					 | 
				
			||||||
  std::cout << "MemoryManager: Bytes in mapped regions (hblkhd):      "<< (size_t)mi.hblkhd<<std::endl;
 | 
					 | 
				
			||||||
  std::cout << "MemoryManager: Max. total allocated space (usmblks):  "<< (size_t)mi.usmblks<<std::endl;
 | 
					 | 
				
			||||||
  std::cout << "MemoryManager: Free bytes held in fastbins (fsmblks): "<< (size_t)mi.fsmblks<<std::endl;
 | 
					 | 
				
			||||||
  std::cout << "MemoryManager: Total allocated space (uordblks):      "<< (size_t)mi.uordblks<<std::endl;
 | 
					 | 
				
			||||||
  std::cout << "MemoryManager: Total free space (fordblks):           "<< (size_t)mi.fordblks<<std::endl;
 | 
					 | 
				
			||||||
  std::cout << "MemoryManager: Topmost releasable block (keepcost):   "<< (size_t)mi.keepcost<<std::endl;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  LEAK_CHECK();
 | 
					 | 
				
			||||||
 
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
void MemoryManager::PrintBytes(void)
 | 
					void MemoryManager::PrintBytes(void)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  std::cout << " MemoryManager : ------------------------------------ "<<std::endl;
 | 
					  std::cout << " MemoryManager : ------------------------------------ "<<std::endl;
 | 
				
			||||||
@@ -73,7 +35,7 @@ void MemoryManager::PrintBytes(void)
 | 
				
			|||||||
#ifdef GRID_CUDA
 | 
					#ifdef GRID_CUDA
 | 
				
			||||||
  cuda_mem();
 | 
					  cuda_mem();
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
  DisplayMallinfo();
 | 
					  
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
uint64_t MemoryManager::DeviceCacheBytes() { return CacheBytes[Acc] + CacheBytes[AccHuge] + CacheBytes[AccSmall]; }
 | 
					uint64_t MemoryManager::DeviceCacheBytes() { return CacheBytes[Acc] + CacheBytes[AccHuge] + CacheBytes[AccSmall]; }
 | 
				
			||||||
@@ -292,7 +254,7 @@ void *MemoryManager::Insert(void *ptr,size_t bytes,int type)
 | 
				
			|||||||
void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim, uint64_t &cacheBytes) 
 | 
					void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim, uint64_t &cacheBytes) 
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
#ifdef GRID_OMP
 | 
					#ifdef GRID_OMP
 | 
				
			||||||
  GRID_ASSERT(omp_in_parallel()==0);
 | 
					  assert(omp_in_parallel()==0);
 | 
				
			||||||
#endif 
 | 
					#endif 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  if (ncache == 0) return ptr;
 | 
					  if (ncache == 0) return ptr;
 | 
				
			||||||
@@ -345,7 +307,7 @@ void *MemoryManager::Lookup(size_t bytes,int type)
 | 
				
			|||||||
void *MemoryManager::Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t & cacheBytes) 
 | 
					void *MemoryManager::Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t & cacheBytes) 
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
#ifdef GRID_OMP
 | 
					#ifdef GRID_OMP
 | 
				
			||||||
  GRID_ASSERT(omp_in_parallel()==0);
 | 
					  assert(omp_in_parallel()==0);
 | 
				
			||||||
#endif 
 | 
					#endif 
 | 
				
			||||||
  for(int e=0;e<ncache;e++){
 | 
					  for(int e=0;e<ncache;e++){
 | 
				
			||||||
    if ( entries[e].valid && ( entries[e].bytes == bytes ) ) {
 | 
					    if ( entries[e].valid && ( entries[e].bytes == bytes ) ) {
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -209,10 +209,9 @@ private:
 | 
				
			|||||||
  static void     CpuViewClose(uint64_t Ptr);
 | 
					  static void     CpuViewClose(uint64_t Ptr);
 | 
				
			||||||
  static uint64_t CpuViewOpen(uint64_t  CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
 | 
					  static uint64_t CpuViewOpen(uint64_t  CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 | 
					  static void NotifyDeletion(void * CpuPtr);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 public:
 | 
					 public:
 | 
				
			||||||
  static void DisplayMallinfo(void);
 | 
					 | 
				
			||||||
  static void NotifyDeletion(void * CpuPtr);
 | 
					 | 
				
			||||||
  static void Print(void);
 | 
					  static void Print(void);
 | 
				
			||||||
  static void PrintAll(void);
 | 
					  static void PrintAll(void);
 | 
				
			||||||
  static void PrintState( void* CpuPtr);
 | 
					  static void PrintState( void* CpuPtr);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,15 +1,16 @@
 | 
				
			|||||||
#include <Grid/GridCore.h>
 | 
					#include <Grid/GridCore.h>
 | 
				
			||||||
#ifndef GRID_UVM
 | 
					#ifndef GRID_UVM
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#warning "Using explicit device memory copies"
 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					NAMESPACE_BEGIN(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#define MAXLINE 512
 | 
					#define MAXLINE 512
 | 
				
			||||||
static char print_buffer [ MAXLINE ];
 | 
					static char print_buffer [ MAXLINE ];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer << std::endl;
 | 
					#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer;
 | 
				
			||||||
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug  << print_buffer << std::endl;
 | 
					#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer;
 | 
				
			||||||
//#define dprintf(...) 
 | 
					//#define dprintf(...) 
 | 
				
			||||||
//#define mprintf(...) 
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////
 | 
				
			||||||
// For caching copies of data on device
 | 
					// For caching copies of data on device
 | 
				
			||||||
@@ -50,12 +51,12 @@ int   MemoryManager::EntryPresent(uint64_t CpuPtr)
 | 
				
			|||||||
{
 | 
					{
 | 
				
			||||||
  if(AccViewTable.empty()) return 0;
 | 
					  if(AccViewTable.empty()) return 0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  auto count = AccViewTable.count(CpuPtr);  GRID_ASSERT((count==0)||(count==1));
 | 
					  auto count = AccViewTable.count(CpuPtr);  assert((count==0)||(count==1));
 | 
				
			||||||
  return count;
 | 
					  return count;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void  MemoryManager::EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
 | 
					void  MemoryManager::EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GRID_ASSERT(!EntryPresent(CpuPtr));
 | 
					  assert(!EntryPresent(CpuPtr));
 | 
				
			||||||
  AcceleratorViewEntry AccCache;
 | 
					  AcceleratorViewEntry AccCache;
 | 
				
			||||||
  AccCache.CpuPtr = CpuPtr;
 | 
					  AccCache.CpuPtr = CpuPtr;
 | 
				
			||||||
  AccCache.AccPtr = (uint64_t)NULL;
 | 
					  AccCache.AccPtr = (uint64_t)NULL;
 | 
				
			||||||
@@ -69,9 +70,9 @@ void  MemoryManager::EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,View
 | 
				
			|||||||
}
 | 
					}
 | 
				
			||||||
MemoryManager::AccViewTableIterator MemoryManager::EntryLookup(uint64_t CpuPtr)
 | 
					MemoryManager::AccViewTableIterator MemoryManager::EntryLookup(uint64_t CpuPtr)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GRID_ASSERT(EntryPresent(CpuPtr));
 | 
					  assert(EntryPresent(CpuPtr));
 | 
				
			||||||
  auto AccCacheIterator = AccViewTable.find(CpuPtr);
 | 
					  auto AccCacheIterator = AccViewTable.find(CpuPtr);
 | 
				
			||||||
  GRID_ASSERT(AccCacheIterator!=AccViewTable.end());
 | 
					  assert(AccCacheIterator!=AccViewTable.end());
 | 
				
			||||||
  return AccCacheIterator;
 | 
					  return AccCacheIterator;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void MemoryManager::EntryErase(uint64_t CpuPtr)
 | 
					void MemoryManager::EntryErase(uint64_t CpuPtr)
 | 
				
			||||||
@@ -81,7 +82,7 @@ void MemoryManager::EntryErase(uint64_t CpuPtr)
 | 
				
			|||||||
}
 | 
					}
 | 
				
			||||||
void  MemoryManager::LRUinsert(AcceleratorViewEntry &AccCache)
 | 
					void  MemoryManager::LRUinsert(AcceleratorViewEntry &AccCache)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GRID_ASSERT(AccCache.LRU_valid==0);
 | 
					  assert(AccCache.LRU_valid==0);
 | 
				
			||||||
  if (AccCache.transient) { 
 | 
					  if (AccCache.transient) { 
 | 
				
			||||||
    LRU.push_back(AccCache.CpuPtr);
 | 
					    LRU.push_back(AccCache.CpuPtr);
 | 
				
			||||||
    AccCache.LRU_entry = --LRU.end();
 | 
					    AccCache.LRU_entry = --LRU.end();
 | 
				
			||||||
@@ -94,7 +95,7 @@ void  MemoryManager::LRUinsert(AcceleratorViewEntry &AccCache)
 | 
				
			|||||||
}
 | 
					}
 | 
				
			||||||
void  MemoryManager::LRUremove(AcceleratorViewEntry &AccCache)
 | 
					void  MemoryManager::LRUremove(AcceleratorViewEntry &AccCache)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GRID_ASSERT(AccCache.LRU_valid==1);
 | 
					  assert(AccCache.LRU_valid==1);
 | 
				
			||||||
  LRU.erase(AccCache.LRU_entry);
 | 
					  LRU.erase(AccCache.LRU_entry);
 | 
				
			||||||
  AccCache.LRU_valid = 0;
 | 
					  AccCache.LRU_valid = 0;
 | 
				
			||||||
  DeviceLRUBytes-=AccCache.bytes;
 | 
					  DeviceLRUBytes-=AccCache.bytes;
 | 
				
			||||||
@@ -108,19 +109,19 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
 | 
				
			|||||||
  // Remove from Accelerator, remove entry, without flush
 | 
					  // Remove from Accelerator, remove entry, without flush
 | 
				
			||||||
  // Cannot be locked. If allocated Must be in LRU pool.
 | 
					  // Cannot be locked. If allocated Must be in LRU pool.
 | 
				
			||||||
  ///////////////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////////////
 | 
				
			||||||
  GRID_ASSERT(AccCache.state!=Empty);
 | 
					  assert(AccCache.state!=Empty);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  dprintf("MemoryManager: Discard(%lx) %lx",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr); 
 | 
					  mprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr); 
 | 
				
			||||||
  GRID_ASSERT(AccCache.accLock==0);
 | 
					  assert(AccCache.accLock==0);
 | 
				
			||||||
  GRID_ASSERT(AccCache.cpuLock==0);
 | 
					  assert(AccCache.cpuLock==0);
 | 
				
			||||||
  GRID_ASSERT(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
					  assert(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
				
			||||||
  if(AccCache.AccPtr) {
 | 
					  if(AccCache.AccPtr) {
 | 
				
			||||||
    AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
 | 
					    AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
 | 
				
			||||||
    DeviceDestroy++;
 | 
					    DeviceDestroy++;
 | 
				
			||||||
    DeviceBytes   -=AccCache.bytes;
 | 
					    DeviceBytes   -=AccCache.bytes;
 | 
				
			||||||
    LRUremove(AccCache);
 | 
					    LRUremove(AccCache);
 | 
				
			||||||
    AccCache.AccPtr=(uint64_t) NULL;
 | 
					    AccCache.AccPtr=(uint64_t) NULL;
 | 
				
			||||||
    dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);  
 | 
					    dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);  
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  uint64_t CpuPtr = AccCache.CpuPtr;
 | 
					  uint64_t CpuPtr = AccCache.CpuPtr;
 | 
				
			||||||
  EntryErase(CpuPtr);
 | 
					  EntryErase(CpuPtr);
 | 
				
			||||||
@@ -138,9 +139,9 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
 | 
				
			|||||||
  //                          Take these OUT LRU queue when CPU locked?
 | 
					  //                          Take these OUT LRU queue when CPU locked?
 | 
				
			||||||
  //                          Cannot take out the table as cpuLock data is important.
 | 
					  //                          Cannot take out the table as cpuLock data is important.
 | 
				
			||||||
  ///////////////////////////////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  GRID_ASSERT(AccCache.state!=Empty);
 | 
					  assert(AccCache.state!=Empty);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld",
 | 
					  mprintf("MemoryManager: Evict cpu %lx acc %lx cpuLock %ld accLock %ld\n",
 | 
				
			||||||
	  (uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr,
 | 
						  (uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr,
 | 
				
			||||||
	  (uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock); 
 | 
						  (uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock); 
 | 
				
			||||||
  if (AccCache.accLock!=0) return;
 | 
					  if (AccCache.accLock!=0) return;
 | 
				
			||||||
@@ -154,7 +155,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
 | 
				
			|||||||
    AccCache.AccPtr=(uint64_t)NULL;
 | 
					    AccCache.AccPtr=(uint64_t)NULL;
 | 
				
			||||||
    AccCache.state=CpuDirty; // CPU primary now
 | 
					    AccCache.state=CpuDirty; // CPU primary now
 | 
				
			||||||
    DeviceBytes   -=AccCache.bytes;
 | 
					    DeviceBytes   -=AccCache.bytes;
 | 
				
			||||||
    dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld ",(uint64_t)AccCache.AccPtr,DeviceBytes);  
 | 
					    dprintf("MemoryManager: Free(%lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);  
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  //  uint64_t CpuPtr = AccCache.CpuPtr;
 | 
					  //  uint64_t CpuPtr = AccCache.CpuPtr;
 | 
				
			||||||
  DeviceEvictions++;
 | 
					  DeviceEvictions++;
 | 
				
			||||||
@@ -162,30 +163,28 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
 | 
				
			|||||||
}
 | 
					}
 | 
				
			||||||
void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
 | 
					void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GRID_ASSERT(AccCache.state==AccDirty);
 | 
					  assert(AccCache.state==AccDirty);
 | 
				
			||||||
  GRID_ASSERT(AccCache.cpuLock==0);
 | 
					  assert(AccCache.cpuLock==0);
 | 
				
			||||||
  GRID_ASSERT(AccCache.accLock==0);
 | 
					  assert(AccCache.accLock==0);
 | 
				
			||||||
  GRID_ASSERT(AccCache.AccPtr!=(uint64_t)NULL);
 | 
					  assert(AccCache.AccPtr!=(uint64_t)NULL);
 | 
				
			||||||
  GRID_ASSERT(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
					  assert(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
				
			||||||
  acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
 | 
					  acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
 | 
				
			||||||
  mprintf("MemoryManager: acceleratorCopyFromDevice Flush size %ld AccPtr %lx -> CpuPtr %lx",(uint64_t)AccCache.bytes,(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
 | 
					  mprintf("MemoryManager: Flush  %lx -> %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
 | 
				
			||||||
  DeviceToHostBytes+=AccCache.bytes;
 | 
					  DeviceToHostBytes+=AccCache.bytes;
 | 
				
			||||||
  DeviceToHostXfer++;
 | 
					  DeviceToHostXfer++;
 | 
				
			||||||
  AccCache.state=Consistent;
 | 
					  AccCache.state=Consistent;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
 | 
					void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GRID_ASSERT(AccCache.state==CpuDirty);
 | 
					  assert(AccCache.state==CpuDirty);
 | 
				
			||||||
  GRID_ASSERT(AccCache.cpuLock==0);
 | 
					  assert(AccCache.cpuLock==0);
 | 
				
			||||||
  GRID_ASSERT(AccCache.accLock==0);
 | 
					  assert(AccCache.accLock==0);
 | 
				
			||||||
  GRID_ASSERT(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
					  assert(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
				
			||||||
  if(AccCache.AccPtr==(uint64_t)NULL){
 | 
					  if(AccCache.AccPtr==(uint64_t)NULL){
 | 
				
			||||||
    AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
 | 
					    AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
 | 
				
			||||||
    DeviceBytes+=AccCache.bytes;
 | 
					    DeviceBytes+=AccCache.bytes;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  mprintf("MemoryManager: acceleratorCopyToDevice   Clone size %ld AccPtr %lx <- CpuPtr %lx",
 | 
					  mprintf("MemoryManager: Clone %lx <- %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
 | 
				
			||||||
	  (uint64_t)AccCache.bytes,
 | 
					 | 
				
			||||||
	  (uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
 | 
					 | 
				
			||||||
  acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
 | 
					  acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
 | 
				
			||||||
  HostToDeviceBytes+=AccCache.bytes;
 | 
					  HostToDeviceBytes+=AccCache.bytes;
 | 
				
			||||||
  HostToDeviceXfer++;
 | 
					  HostToDeviceXfer++;
 | 
				
			||||||
@@ -194,10 +193,10 @@ void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache)
 | 
					void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GRID_ASSERT(AccCache.state!=Empty);
 | 
					  assert(AccCache.state!=Empty);
 | 
				
			||||||
  GRID_ASSERT(AccCache.cpuLock==0);
 | 
					  assert(AccCache.cpuLock==0);
 | 
				
			||||||
  GRID_ASSERT(AccCache.accLock==0);
 | 
					  assert(AccCache.accLock==0);
 | 
				
			||||||
  GRID_ASSERT(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
					  assert(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
				
			||||||
  if(AccCache.AccPtr==(uint64_t)NULL){
 | 
					  if(AccCache.AccPtr==(uint64_t)NULL){
 | 
				
			||||||
    AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
 | 
					    AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
 | 
				
			||||||
    DeviceBytes+=AccCache.bytes;
 | 
					    DeviceBytes+=AccCache.bytes;
 | 
				
			||||||
@@ -211,36 +210,33 @@ void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache)
 | 
				
			|||||||
void MemoryManager::ViewClose(void* Ptr,ViewMode mode)
 | 
					void MemoryManager::ViewClose(void* Ptr,ViewMode mode)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
 | 
					  if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
 | 
				
			||||||
    dprintf("AcceleratorViewClose %lx",(uint64_t)Ptr);
 | 
					    dprintf("AcceleratorViewClose %lx\n",(uint64_t)Ptr);
 | 
				
			||||||
    AcceleratorViewClose((uint64_t)Ptr);
 | 
					    AcceleratorViewClose((uint64_t)Ptr);
 | 
				
			||||||
  } else if( (mode==CpuRead)||(mode==CpuWrite)){
 | 
					  } else if( (mode==CpuRead)||(mode==CpuWrite)){
 | 
				
			||||||
    CpuViewClose((uint64_t)Ptr);
 | 
					    CpuViewClose((uint64_t)Ptr);
 | 
				
			||||||
  } else { 
 | 
					  } else { 
 | 
				
			||||||
    GRID_ASSERT(0);
 | 
					    assert(0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
 | 
					void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  uint64_t CpuPtr = (uint64_t)_CpuPtr;
 | 
					  uint64_t CpuPtr = (uint64_t)_CpuPtr;
 | 
				
			||||||
  if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
 | 
					  if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
 | 
				
			||||||
    dprintf("AcceleratorViewOpen %lx",(uint64_t)CpuPtr);
 | 
					    dprintf("AcceleratorViewOpen %lx\n",(uint64_t)CpuPtr);
 | 
				
			||||||
    return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint);
 | 
					    return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint);
 | 
				
			||||||
  } else if( (mode==CpuRead)||(mode==CpuWrite)){
 | 
					  } else if( (mode==CpuRead)||(mode==CpuWrite)){
 | 
				
			||||||
    return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint);
 | 
					    return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint);
 | 
				
			||||||
  } else { 
 | 
					  } else { 
 | 
				
			||||||
    GRID_ASSERT(0);
 | 
					    assert(0);
 | 
				
			||||||
    return NULL;
 | 
					    return NULL;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void  MemoryManager::EvictVictims(uint64_t bytes)
 | 
					void  MemoryManager::EvictVictims(uint64_t bytes)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  if(bytes>=DeviceMaxBytes) {
 | 
					  assert(bytes<DeviceMaxBytes);
 | 
				
			||||||
    printf("EvictVictims bytes %ld DeviceMaxBytes %ld\n",bytes,DeviceMaxBytes);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  GRID_ASSERT(bytes<DeviceMaxBytes);
 | 
					 | 
				
			||||||
  while(bytes+DeviceLRUBytes > DeviceMaxBytes){
 | 
					  while(bytes+DeviceLRUBytes > DeviceMaxBytes){
 | 
				
			||||||
    if ( DeviceLRUBytes > 0){
 | 
					    if ( DeviceLRUBytes > 0){
 | 
				
			||||||
      GRID_ASSERT(LRU.size()>0);
 | 
					      assert(LRU.size()>0);
 | 
				
			||||||
      uint64_t victim = LRU.back(); // From the LRU
 | 
					      uint64_t victim = LRU.back(); // From the LRU
 | 
				
			||||||
      auto AccCacheIterator = EntryLookup(victim);
 | 
					      auto AccCacheIterator = EntryLookup(victim);
 | 
				
			||||||
      auto & AccCache = AccCacheIterator->second;
 | 
					      auto & AccCache = AccCacheIterator->second;
 | 
				
			||||||
@@ -264,19 +260,19 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
 | 
				
			|||||||
  if (!AccCache.AccPtr) {
 | 
					  if (!AccCache.AccPtr) {
 | 
				
			||||||
    EvictVictims(bytes); 
 | 
					    EvictVictims(bytes); 
 | 
				
			||||||
  } 
 | 
					  } 
 | 
				
			||||||
  GRID_ASSERT((mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard));
 | 
					  assert((mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GRID_ASSERT(AccCache.cpuLock==0);  // Programming error
 | 
					  assert(AccCache.cpuLock==0);  // Programming error
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  if(AccCache.state!=Empty) {
 | 
					  if(AccCache.state!=Empty) {
 | 
				
			||||||
    dprintf("ViewOpen found entry %lx %lx : sizes %ld %ld accLock %ld",
 | 
					    dprintf("ViewOpen found entry %lx %lx : %ld %ld accLock %ld\n",
 | 
				
			||||||
		    (uint64_t)AccCache.CpuPtr,
 | 
							    (uint64_t)AccCache.CpuPtr,
 | 
				
			||||||
		    (uint64_t)CpuPtr,
 | 
							    (uint64_t)CpuPtr,
 | 
				
			||||||
		    (uint64_t)AccCache.bytes,
 | 
							    (uint64_t)AccCache.bytes,
 | 
				
			||||||
	            (uint64_t)bytes,
 | 
						            (uint64_t)bytes,
 | 
				
			||||||
		    (uint64_t)AccCache.accLock);
 | 
							    (uint64_t)AccCache.accLock);
 | 
				
			||||||
    GRID_ASSERT(AccCache.CpuPtr == CpuPtr);
 | 
					    assert(AccCache.CpuPtr == CpuPtr);
 | 
				
			||||||
    GRID_ASSERT(AccCache.bytes  ==bytes);
 | 
					    assert(AccCache.bytes  ==bytes);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
/*
 | 
					/*
 | 
				
			||||||
 *  State transitions and actions
 | 
					 *  State transitions and actions
 | 
				
			||||||
@@ -293,7 +289,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
 | 
				
			|||||||
 *  AccWrite AccDirty   AccDirty       -        - 
 | 
					 *  AccWrite AccDirty   AccDirty       -        - 
 | 
				
			||||||
 */
 | 
					 */
 | 
				
			||||||
  if(AccCache.state==Empty) {
 | 
					  if(AccCache.state==Empty) {
 | 
				
			||||||
    GRID_ASSERT(AccCache.LRU_valid==0);
 | 
					    assert(AccCache.LRU_valid==0);
 | 
				
			||||||
    AccCache.CpuPtr = CpuPtr;
 | 
					    AccCache.CpuPtr = CpuPtr;
 | 
				
			||||||
    AccCache.AccPtr = (uint64_t)NULL;
 | 
					    AccCache.AccPtr = (uint64_t)NULL;
 | 
				
			||||||
    AccCache.bytes  = bytes;
 | 
					    AccCache.bytes  = bytes;
 | 
				
			||||||
@@ -309,7 +305,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
 | 
				
			|||||||
      AccCache.state  = Consistent; // Empty + AccRead => Consistent
 | 
					      AccCache.state  = Consistent; // Empty + AccRead => Consistent
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    AccCache.accLock= 1;
 | 
					    AccCache.accLock= 1;
 | 
				
			||||||
    dprintf("Copied Empty entry into device accLock= %d",AccCache.accLock);
 | 
					    dprintf("Copied Empty entry into device accLock= %d\n",AccCache.accLock);
 | 
				
			||||||
  } else if(AccCache.state==CpuDirty ){
 | 
					  } else if(AccCache.state==CpuDirty ){
 | 
				
			||||||
    if(mode==AcceleratorWriteDiscard) {
 | 
					    if(mode==AcceleratorWriteDiscard) {
 | 
				
			||||||
      CpuDiscard(AccCache);
 | 
					      CpuDiscard(AccCache);
 | 
				
			||||||
@@ -322,30 +318,30 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
 | 
				
			|||||||
      AccCache.state  = Consistent; // CpuDirty + AccRead => Consistent
 | 
					      AccCache.state  = Consistent; // CpuDirty + AccRead => Consistent
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    AccCache.accLock++;
 | 
					    AccCache.accLock++;
 | 
				
			||||||
    dprintf("CpuDirty entry into device ++accLock= %d",AccCache.accLock);
 | 
					    dprintf("CpuDirty entry into device ++accLock= %d\n",AccCache.accLock);
 | 
				
			||||||
  } else if(AccCache.state==Consistent) {
 | 
					  } else if(AccCache.state==Consistent) {
 | 
				
			||||||
    if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
 | 
					    if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
 | 
				
			||||||
      AccCache.state  = AccDirty;   // Consistent + AcceleratorWrite=> AccDirty
 | 
					      AccCache.state  = AccDirty;   // Consistent + AcceleratorWrite=> AccDirty
 | 
				
			||||||
    else
 | 
					    else
 | 
				
			||||||
      AccCache.state  = Consistent; // Consistent + AccRead => Consistent
 | 
					      AccCache.state  = Consistent; // Consistent + AccRead => Consistent
 | 
				
			||||||
    AccCache.accLock++;
 | 
					    AccCache.accLock++;
 | 
				
			||||||
    dprintf("Consistent entry into device ++accLock= %d",AccCache.accLock);
 | 
					    dprintf("Consistent entry into device ++accLock= %d\n",AccCache.accLock);
 | 
				
			||||||
  } else if(AccCache.state==AccDirty) {
 | 
					  } else if(AccCache.state==AccDirty) {
 | 
				
			||||||
    if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
 | 
					    if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
 | 
				
			||||||
      AccCache.state  = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty
 | 
					      AccCache.state  = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty
 | 
				
			||||||
    else
 | 
					    else
 | 
				
			||||||
      AccCache.state  = AccDirty; // AccDirty + AccRead => AccDirty
 | 
					      AccCache.state  = AccDirty; // AccDirty + AccRead => AccDirty
 | 
				
			||||||
    AccCache.accLock++;
 | 
					    AccCache.accLock++;
 | 
				
			||||||
    dprintf("AccDirty entry ++accLock= %d",AccCache.accLock);
 | 
					    dprintf("AccDirty entry ++accLock= %d\n",AccCache.accLock);
 | 
				
			||||||
  } else {
 | 
					  } else {
 | 
				
			||||||
    GRID_ASSERT(0);
 | 
					    assert(0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GRID_ASSERT(AccCache.accLock>0);
 | 
					  assert(AccCache.accLock>0);
 | 
				
			||||||
  // If view is opened on device must remove from LRU
 | 
					  // If view is opened on device must remove from LRU
 | 
				
			||||||
  if(AccCache.LRU_valid==1){
 | 
					  if(AccCache.LRU_valid==1){
 | 
				
			||||||
    // must possibly remove from LRU as now locked on GPU
 | 
					    // must possibly remove from LRU as now locked on GPU
 | 
				
			||||||
    dprintf("AccCache entry removed from LRU ");
 | 
					    dprintf("AccCache entry removed from LRU \n");
 | 
				
			||||||
    LRUremove(AccCache);
 | 
					    LRUremove(AccCache);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -362,16 +358,16 @@ void MemoryManager::AcceleratorViewClose(uint64_t CpuPtr)
 | 
				
			|||||||
  auto AccCacheIterator = EntryLookup(CpuPtr);
 | 
					  auto AccCacheIterator = EntryLookup(CpuPtr);
 | 
				
			||||||
  auto & AccCache = AccCacheIterator->second;
 | 
					  auto & AccCache = AccCacheIterator->second;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GRID_ASSERT(AccCache.cpuLock==0);
 | 
					  assert(AccCache.cpuLock==0);
 | 
				
			||||||
  GRID_ASSERT(AccCache.accLock>0);
 | 
					  assert(AccCache.accLock>0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  AccCache.accLock--;
 | 
					  AccCache.accLock--;
 | 
				
			||||||
  // Move to LRU queue if not locked and close on device
 | 
					  // Move to LRU queue if not locked and close on device
 | 
				
			||||||
  if(AccCache.accLock==0) {
 | 
					  if(AccCache.accLock==0) {
 | 
				
			||||||
    dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
 | 
					    dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
 | 
				
			||||||
    LRUinsert(AccCache);
 | 
					    LRUinsert(AccCache);
 | 
				
			||||||
  } else {
 | 
					  } else {
 | 
				
			||||||
    dprintf("AccleratorViewClose %lx AccLock decremented to %ld",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
 | 
					    dprintf("AccleratorViewClose %lx AccLock decremented to %ld\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void MemoryManager::CpuViewClose(uint64_t CpuPtr)
 | 
					void MemoryManager::CpuViewClose(uint64_t CpuPtr)
 | 
				
			||||||
@@ -379,8 +375,8 @@ void MemoryManager::CpuViewClose(uint64_t CpuPtr)
 | 
				
			|||||||
  auto AccCacheIterator = EntryLookup(CpuPtr);
 | 
					  auto AccCacheIterator = EntryLookup(CpuPtr);
 | 
				
			||||||
  auto & AccCache = AccCacheIterator->second;
 | 
					  auto & AccCache = AccCacheIterator->second;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GRID_ASSERT(AccCache.cpuLock>0);
 | 
					  assert(AccCache.cpuLock>0);
 | 
				
			||||||
  GRID_ASSERT(AccCache.accLock==0);
 | 
					  assert(AccCache.accLock==0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  AccCache.cpuLock--;
 | 
					  AccCache.cpuLock--;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
@@ -413,12 +409,12 @@ uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,V
 | 
				
			|||||||
  //    EvictVictims(bytes);
 | 
					  //    EvictVictims(bytes);
 | 
				
			||||||
  //  }
 | 
					  //  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GRID_ASSERT((mode==CpuRead)||(mode==CpuWrite));
 | 
					  assert((mode==CpuRead)||(mode==CpuWrite));
 | 
				
			||||||
  GRID_ASSERT(AccCache.accLock==0);  // Programming error
 | 
					  assert(AccCache.accLock==0);  // Programming error
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  if(AccCache.state!=Empty) {
 | 
					  if(AccCache.state!=Empty) {
 | 
				
			||||||
    GRID_ASSERT(AccCache.CpuPtr == CpuPtr);
 | 
					    assert(AccCache.CpuPtr == CpuPtr);
 | 
				
			||||||
    GRID_ASSERT(AccCache.bytes==bytes);
 | 
					    assert(AccCache.bytes==bytes);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  if(AccCache.state==Empty) {
 | 
					  if(AccCache.state==Empty) {
 | 
				
			||||||
@@ -433,20 +429,20 @@ uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,V
 | 
				
			|||||||
    AccCache.state = CpuDirty; // CpuDirty +CpuRead/CpuWrite => CpuDirty
 | 
					    AccCache.state = CpuDirty; // CpuDirty +CpuRead/CpuWrite => CpuDirty
 | 
				
			||||||
    AccCache.cpuLock++;
 | 
					    AccCache.cpuLock++;
 | 
				
			||||||
  } else if(AccCache.state==Consistent) {
 | 
					  } else if(AccCache.state==Consistent) {
 | 
				
			||||||
    GRID_ASSERT(AccCache.AccPtr != (uint64_t)NULL);
 | 
					    assert(AccCache.AccPtr != (uint64_t)NULL);
 | 
				
			||||||
    if(mode==CpuWrite)
 | 
					    if(mode==CpuWrite)
 | 
				
			||||||
      AccCache.state = CpuDirty;   // Consistent +CpuWrite => CpuDirty
 | 
					      AccCache.state = CpuDirty;   // Consistent +CpuWrite => CpuDirty
 | 
				
			||||||
    else 
 | 
					    else 
 | 
				
			||||||
      AccCache.state = Consistent; // Consistent +CpuRead  => Consistent
 | 
					      AccCache.state = Consistent; // Consistent +CpuRead  => Consistent
 | 
				
			||||||
    AccCache.cpuLock++;
 | 
					    AccCache.cpuLock++;
 | 
				
			||||||
  } else if(AccCache.state==AccDirty) {
 | 
					  } else if(AccCache.state==AccDirty) {
 | 
				
			||||||
    GRID_ASSERT(AccCache.AccPtr != (uint64_t)NULL);
 | 
					    assert(AccCache.AccPtr != (uint64_t)NULL);
 | 
				
			||||||
    Flush(AccCache);
 | 
					    Flush(AccCache);
 | 
				
			||||||
    if(mode==CpuWrite) AccCache.state = CpuDirty;   // AccDirty +CpuWrite => CpuDirty, Flush
 | 
					    if(mode==CpuWrite) AccCache.state = CpuDirty;   // AccDirty +CpuWrite => CpuDirty, Flush
 | 
				
			||||||
    else            AccCache.state = Consistent; // AccDirty +CpuRead  => Consistent, Flush
 | 
					    else            AccCache.state = Consistent; // AccDirty +CpuRead  => Consistent, Flush
 | 
				
			||||||
    AccCache.cpuLock++;
 | 
					    AccCache.cpuLock++;
 | 
				
			||||||
  } else {
 | 
					  } else {
 | 
				
			||||||
    GRID_ASSERT(0); // should be unreachable
 | 
					    assert(0); // should be unreachable
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  AccCache.transient= transient? EvictNext : 0;
 | 
					  AccCache.transient= transient? EvictNext : 0;
 | 
				
			||||||
@@ -478,7 +474,6 @@ void  MemoryManager::Print(void)
 | 
				
			|||||||
  std::cout << GridLogMessage << DeviceEvictions  << " Evictions from device " << std::endl;
 | 
					  std::cout << GridLogMessage << DeviceEvictions  << " Evictions from device " << std::endl;
 | 
				
			||||||
  std::cout << GridLogMessage << DeviceDestroy    << " Destroyed vectors on device " << std::endl;
 | 
					  std::cout << GridLogMessage << DeviceDestroy    << " Destroyed vectors on device " << std::endl;
 | 
				
			||||||
  std::cout << GridLogMessage << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl;
 | 
					  std::cout << GridLogMessage << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl;
 | 
				
			||||||
  acceleratorMem();
 | 
					 | 
				
			||||||
  std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
 | 
					  std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void  MemoryManager::PrintAll(void)
 | 
					void  MemoryManager::PrintAll(void)
 | 
				
			||||||
@@ -528,12 +523,12 @@ void MemoryManager::Audit(std::string s)
 | 
				
			|||||||
  std::cout << " Memory Manager::Audit() from "<<s<<std::endl;
 | 
					  std::cout << " Memory Manager::Audit() from "<<s<<std::endl;
 | 
				
			||||||
  for(auto it=LRU.begin();it!=LRU.end();it++){
 | 
					  for(auto it=LRU.begin();it!=LRU.end();it++){
 | 
				
			||||||
    uint64_t cpuPtr = *it;
 | 
					    uint64_t cpuPtr = *it;
 | 
				
			||||||
    GRID_ASSERT(EntryPresent(cpuPtr));
 | 
					    assert(EntryPresent(cpuPtr));
 | 
				
			||||||
    auto AccCacheIterator = EntryLookup(cpuPtr);
 | 
					    auto AccCacheIterator = EntryLookup(cpuPtr);
 | 
				
			||||||
    auto & AccCache = AccCacheIterator->second;
 | 
					    auto & AccCache = AccCacheIterator->second;
 | 
				
			||||||
    LruBytes2+=AccCache.bytes;
 | 
					    LruBytes2+=AccCache.bytes;
 | 
				
			||||||
    GRID_ASSERT(AccCache.LRU_valid==1);
 | 
					    assert(AccCache.LRU_valid==1);
 | 
				
			||||||
    GRID_ASSERT(AccCache.LRU_entry==it);
 | 
					    assert(AccCache.LRU_entry==it);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  std::cout << " Memory Manager::Audit() LRU queue matches table entries "<<std::endl;
 | 
					  std::cout << " Memory Manager::Audit() LRU queue matches table entries "<<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -552,7 +547,7 @@ void MemoryManager::Audit(std::string s)
 | 
				
			|||||||
    if( AccCache.LRU_valid ) LruCnt++;
 | 
					    if( AccCache.LRU_valid ) LruCnt++;
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    if ( AccCache.cpuLock || AccCache.accLock ) {
 | 
					    if ( AccCache.cpuLock || AccCache.accLock ) {
 | 
				
			||||||
      GRID_ASSERT(AccCache.LRU_valid==0);
 | 
					      assert(AccCache.LRU_valid==0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      std::cout << GridLogError << s<< "\n\t 0x"<<std::hex<<AccCache.CpuPtr<<std::dec
 | 
					      std::cout << GridLogError << s<< "\n\t 0x"<<std::hex<<AccCache.CpuPtr<<std::dec
 | 
				
			||||||
		<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
 | 
							<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
 | 
				
			||||||
@@ -561,16 +556,16 @@ void MemoryManager::Audit(std::string s)
 | 
				
			|||||||
		<< "\t LRUvalid " << AccCache.LRU_valid<<std::endl;
 | 
							<< "\t LRUvalid " << AccCache.LRU_valid<<std::endl;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    GRID_ASSERT( AccCache.cpuLock== 0 ) ;
 | 
					    assert( AccCache.cpuLock== 0 ) ;
 | 
				
			||||||
    GRID_ASSERT( AccCache.accLock== 0 ) ;
 | 
					    assert( AccCache.accLock== 0 ) ;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  std::cout << " Memory Manager::Audit() no locked table entries "<<std::endl;
 | 
					  std::cout << " Memory Manager::Audit() no locked table entries "<<std::endl;
 | 
				
			||||||
  GRID_ASSERT(LruBytes1==LruBytes2);
 | 
					  assert(LruBytes1==LruBytes2);
 | 
				
			||||||
  GRID_ASSERT(LruBytes1==DeviceLRUBytes);
 | 
					  assert(LruBytes1==DeviceLRUBytes);
 | 
				
			||||||
  std::cout << " Memory Manager::Audit() evictable bytes matches sum over table "<<std::endl;
 | 
					  std::cout << " Memory Manager::Audit() evictable bytes matches sum over table "<<std::endl;
 | 
				
			||||||
  GRID_ASSERT(AccBytes==DeviceBytes);
 | 
					  assert(AccBytes==DeviceBytes);
 | 
				
			||||||
  std::cout << " Memory Manager::Audit() device bytes matches sum over table "<<std::endl;
 | 
					  std::cout << " Memory Manager::Audit() device bytes matches sum over table "<<std::endl;
 | 
				
			||||||
  GRID_ASSERT(LruCnt == LRU.size());
 | 
					  assert(LruCnt == LRU.size());
 | 
				
			||||||
  std::cout << " Memory Manager::Audit() LRU entry count matches "<<std::endl;
 | 
					  std::cout << " Memory Manager::Audit() LRU entry count matches "<<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -10,16 +10,16 @@ void check_huge_pages(void *Buf,uint64_t BYTES)
 | 
				
			|||||||
{
 | 
					{
 | 
				
			||||||
#ifdef __linux__
 | 
					#ifdef __linux__
 | 
				
			||||||
  int fd = open("/proc/self/pagemap", O_RDONLY);
 | 
					  int fd = open("/proc/self/pagemap", O_RDONLY);
 | 
				
			||||||
  GRID_ASSERT(fd >= 0);
 | 
					  assert(fd >= 0);
 | 
				
			||||||
  const int page_size = 4096;
 | 
					  const int page_size = 4096;
 | 
				
			||||||
  uint64_t virt_pfn = (uint64_t)Buf / page_size;
 | 
					  uint64_t virt_pfn = (uint64_t)Buf / page_size;
 | 
				
			||||||
  off_t offset = sizeof(uint64_t) * virt_pfn;
 | 
					  off_t offset = sizeof(uint64_t) * virt_pfn;
 | 
				
			||||||
  uint64_t npages = (BYTES + page_size-1) / page_size;
 | 
					  uint64_t npages = (BYTES + page_size-1) / page_size;
 | 
				
			||||||
  std::vector<uint64_t> pagedata(npages);
 | 
					  uint64_t pagedata[npages];
 | 
				
			||||||
  uint64_t ret = lseek(fd, offset, SEEK_SET);
 | 
					  uint64_t ret = lseek(fd, offset, SEEK_SET);
 | 
				
			||||||
  GRID_ASSERT(ret == offset);
 | 
					  assert(ret == offset);
 | 
				
			||||||
  ret = ::read(fd, &pagedata[0], sizeof(uint64_t)*npages);
 | 
					  ret = ::read(fd, pagedata, sizeof(uint64_t)*npages);
 | 
				
			||||||
  GRID_ASSERT(ret == sizeof(uint64_t) * npages);
 | 
					  assert(ret == sizeof(uint64_t) * npages);
 | 
				
			||||||
  int nhugepages = npages / 512;
 | 
					  int nhugepages = npages / 512;
 | 
				
			||||||
  int n4ktotal, nnothuge;
 | 
					  int n4ktotal, nnothuge;
 | 
				
			||||||
  n4ktotal = 0;
 | 
					  n4ktotal = 0;
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -70,8 +70,8 @@ public:
 | 
				
			|||||||
  Coordinate _istride;    // Inner stride i.e. within simd lane
 | 
					  Coordinate _istride;    // Inner stride i.e. within simd lane
 | 
				
			||||||
  int _osites;                  // _isites*_osites = product(dimensions).
 | 
					  int _osites;                  // _isites*_osites = product(dimensions).
 | 
				
			||||||
  int _isites;
 | 
					  int _isites;
 | 
				
			||||||
  int64_t _fsites;                  // _isites*_osites = product(dimensions).
 | 
					  int _fsites;                  // _isites*_osites = product(dimensions).
 | 
				
			||||||
  int64_t _gsites;
 | 
					  int _gsites;
 | 
				
			||||||
  Coordinate _slice_block;// subslice information
 | 
					  Coordinate _slice_block;// subslice information
 | 
				
			||||||
  Coordinate _slice_stride;
 | 
					  Coordinate _slice_stride;
 | 
				
			||||||
  Coordinate _slice_nblock;
 | 
					  Coordinate _slice_nblock;
 | 
				
			||||||
@@ -82,7 +82,6 @@ public:
 | 
				
			|||||||
  bool _isCheckerBoarded; 
 | 
					  bool _isCheckerBoarded; 
 | 
				
			||||||
  int        LocallyPeriodic;
 | 
					  int        LocallyPeriodic;
 | 
				
			||||||
  Coordinate _checker_dim_mask;
 | 
					  Coordinate _checker_dim_mask;
 | 
				
			||||||
  int              _checker_dim;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -165,7 +164,7 @@ public:
 | 
				
			|||||||
    //
 | 
					    //
 | 
				
			||||||
    if ( _simd_layout[dimension] > 2 ) { 
 | 
					    if ( _simd_layout[dimension] > 2 ) { 
 | 
				
			||||||
      for(int d=0;d<_ndimension;d++){
 | 
					      for(int d=0;d<_ndimension;d++){
 | 
				
			||||||
	if ( d != dimension ) GRID_ASSERT ( (_simd_layout[d]==1)  );
 | 
						if ( d != dimension ) assert ( (_simd_layout[d]==1)  );
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
      permute_type = RotateBit; // How to specify distance; this is not just direction.
 | 
					      permute_type = RotateBit; // How to specify distance; this is not just direction.
 | 
				
			||||||
      return permute_type;
 | 
					      return permute_type;
 | 
				
			||||||
@@ -184,10 +183,10 @@ public:
 | 
				
			|||||||
  inline int Nsimd(void)  const { return _isites; };// Synonymous with iSites
 | 
					  inline int Nsimd(void)  const { return _isites; };// Synonymous with iSites
 | 
				
			||||||
  inline int oSites(void) const { return _osites; };
 | 
					  inline int oSites(void) const { return _osites; };
 | 
				
			||||||
  inline int lSites(void) const { return _isites*_osites; }; 
 | 
					  inline int lSites(void) const { return _isites*_osites; }; 
 | 
				
			||||||
  inline int64_t gSites(void) const { return (int64_t)_isites*(int64_t)_osites*(int64_t)_Nprocessors; }; 
 | 
					  inline int gSites(void) const { return _isites*_osites*_Nprocessors; }; 
 | 
				
			||||||
  inline int Nd    (void) const { return _ndimension;};
 | 
					  inline int Nd    (void) const { return _ndimension;};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  inline const Coordinate &LocalStarts(void)            { return _lstart;    };
 | 
					  inline const Coordinate LocalStarts(void)             { return _lstart;    };
 | 
				
			||||||
  inline const Coordinate &FullDimensions(void)         { return _fdimensions;};
 | 
					  inline const Coordinate &FullDimensions(void)         { return _fdimensions;};
 | 
				
			||||||
  inline const Coordinate &GlobalDimensions(void)       { return _gdimensions;};
 | 
					  inline const Coordinate &GlobalDimensions(void)       { return _gdimensions;};
 | 
				
			||||||
  inline const Coordinate &LocalDimensions(void)        { return _ldimensions;};
 | 
					  inline const Coordinate &LocalDimensions(void)        { return _ldimensions;};
 | 
				
			||||||
@@ -215,15 +214,15 @@ public:
 | 
				
			|||||||
  ////////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Global addressing
 | 
					  // Global addressing
 | 
				
			||||||
  ////////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////////
 | 
				
			||||||
  void GlobalIndexToGlobalCoor(int64_t gidx,Coordinate &gcoor){
 | 
					  void GlobalIndexToGlobalCoor(int gidx,Coordinate &gcoor){
 | 
				
			||||||
    GRID_ASSERT(gidx< gSites());
 | 
					    assert(gidx< gSites());
 | 
				
			||||||
    Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
 | 
					    Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  void LocalIndexToLocalCoor(int lidx,Coordinate &lcoor){
 | 
					  void LocalIndexToLocalCoor(int lidx,Coordinate &lcoor){
 | 
				
			||||||
    GRID_ASSERT(lidx<lSites());
 | 
					    assert(lidx<lSites());
 | 
				
			||||||
    Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
 | 
					    Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int64_t & gidx){
 | 
					  void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int & gidx){
 | 
				
			||||||
    gidx=0;
 | 
					    gidx=0;
 | 
				
			||||||
    int mult=1;
 | 
					    int mult=1;
 | 
				
			||||||
    for(int mu=0;mu<_ndimension;mu++) {
 | 
					    for(int mu=0;mu<_ndimension;mu++) {
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -38,7 +38,7 @@ class GridCartesian: public GridBase {
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
  int dummy;
 | 
					  int dummy;
 | 
				
			||||||
  //  Coordinate _checker_dim_mask;
 | 
					  Coordinate _checker_dim_mask;
 | 
				
			||||||
  virtual int  CheckerBoardFromOindexTable (int Oindex) {
 | 
					  virtual int  CheckerBoardFromOindexTable (int Oindex) {
 | 
				
			||||||
    return 0;
 | 
					    return 0;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -106,7 +106,6 @@ public:
 | 
				
			|||||||
    _rdimensions.resize(_ndimension);
 | 
					    _rdimensions.resize(_ndimension);
 | 
				
			||||||
    _simd_layout.resize(_ndimension);
 | 
					    _simd_layout.resize(_ndimension);
 | 
				
			||||||
    _checker_dim_mask.resize(_ndimension);;
 | 
					    _checker_dim_mask.resize(_ndimension);;
 | 
				
			||||||
    _checker_dim = -1;
 | 
					 | 
				
			||||||
    _lstart.resize(_ndimension);
 | 
					    _lstart.resize(_ndimension);
 | 
				
			||||||
    _lend.resize(_ndimension);
 | 
					    _lend.resize(_ndimension);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -128,10 +127,10 @@ public:
 | 
				
			|||||||
        // Use a reduced simd grid
 | 
					        // Use a reduced simd grid
 | 
				
			||||||
        _ldimensions[d] = _gdimensions[d] / _processors[d]; //local dimensions
 | 
					        _ldimensions[d] = _gdimensions[d] / _processors[d]; //local dimensions
 | 
				
			||||||
        //std::cout << _ldimensions[d] << "  " << _gdimensions[d] << "  " << _processors[d] << std::endl;
 | 
					        //std::cout << _ldimensions[d] << "  " << _gdimensions[d] << "  " << _processors[d] << std::endl;
 | 
				
			||||||
        GRID_ASSERT(_ldimensions[d] * _processors[d] == _gdimensions[d]);
 | 
					        assert(_ldimensions[d] * _processors[d] == _gdimensions[d]);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        _rdimensions[d] = _ldimensions[d] / _simd_layout[d]; //overdecomposition
 | 
					        _rdimensions[d] = _ldimensions[d] / _simd_layout[d]; //overdecomposition
 | 
				
			||||||
        GRID_ASSERT(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
 | 
					        assert(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        _lstart[d] = _processor_coor[d] * _ldimensions[d];
 | 
					        _lstart[d] = _processor_coor[d] * _ldimensions[d];
 | 
				
			||||||
        _lend[d] = _processor_coor[d] * _ldimensions[d] + _ldimensions[d] - 1;
 | 
					        _lend[d] = _processor_coor[d] * _ldimensions[d] + _ldimensions[d] - 1;
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -57,17 +57,16 @@ class GridRedBlackCartesian : public GridBase
 | 
				
			|||||||
{
 | 
					{
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
  //  Coordinate _checker_dim_mask;
 | 
					  //  Coordinate _checker_dim_mask;
 | 
				
			||||||
  //  int              _checker_dim;
 | 
					  int              _checker_dim;
 | 
				
			||||||
  std::vector<int> _checker_board;
 | 
					  std::vector<int> _checker_board;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  virtual int isCheckerBoarded(void) const { return 1; };
 | 
					 | 
				
			||||||
  virtual int CheckerBoarded(int dim){
 | 
					  virtual int CheckerBoarded(int dim){
 | 
				
			||||||
    if( dim==_checker_dim) return 1;
 | 
					    if( dim==_checker_dim) return 1;
 | 
				
			||||||
    else return 0;
 | 
					    else return 0;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  virtual int CheckerBoard(const Coordinate &site){
 | 
					  virtual int CheckerBoard(const Coordinate &site){
 | 
				
			||||||
    int linear=0;
 | 
					    int linear=0;
 | 
				
			||||||
    GRID_ASSERT(site.size()==_ndimension);
 | 
					    assert(site.size()==_ndimension);
 | 
				
			||||||
    for(int d=0;d<_ndimension;d++){ 
 | 
					    for(int d=0;d<_ndimension;d++){ 
 | 
				
			||||||
      if(_checker_dim_mask[d])
 | 
					      if(_checker_dim_mask[d])
 | 
				
			||||||
	linear=linear+site[d];
 | 
						linear=linear+site[d];
 | 
				
			||||||
@@ -160,11 +159,11 @@ public:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
      _isCheckerBoarded = true;
 | 
					      _isCheckerBoarded = true;
 | 
				
			||||||
    _checker_dim = checker_dim;
 | 
					    _checker_dim = checker_dim;
 | 
				
			||||||
    GRID_ASSERT(checker_dim_mask[checker_dim] == 1);
 | 
					    assert(checker_dim_mask[checker_dim] == 1);
 | 
				
			||||||
    _ndimension = dimensions.size();
 | 
					    _ndimension = dimensions.size();
 | 
				
			||||||
    GRID_ASSERT(checker_dim_mask.size() == _ndimension);
 | 
					    assert(checker_dim_mask.size() == _ndimension);
 | 
				
			||||||
    GRID_ASSERT(processor_grid.size() == _ndimension);
 | 
					    assert(processor_grid.size() == _ndimension);
 | 
				
			||||||
    GRID_ASSERT(simd_layout.size() == _ndimension);
 | 
					    assert(simd_layout.size() == _ndimension);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    _fdimensions.resize(_ndimension);
 | 
					    _fdimensions.resize(_ndimension);
 | 
				
			||||||
    _gdimensions.resize(_ndimension);
 | 
					    _gdimensions.resize(_ndimension);
 | 
				
			||||||
@@ -190,20 +189,20 @@ public:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
        if (d == _checker_dim)
 | 
					        if (d == _checker_dim)
 | 
				
			||||||
	  {
 | 
						  {
 | 
				
			||||||
	    GRID_ASSERT((_gdimensions[d] & 0x1) == 0);
 | 
						    assert((_gdimensions[d] & 0x1) == 0);
 | 
				
			||||||
	    _gdimensions[d] = _gdimensions[d] / 2; // Remove a checkerboard
 | 
						    _gdimensions[d] = _gdimensions[d] / 2; // Remove a checkerboard
 | 
				
			||||||
	    _gsites /= 2;
 | 
						    _gsites /= 2;
 | 
				
			||||||
	  }
 | 
						  }
 | 
				
			||||||
        _ldimensions[d] = _gdimensions[d] / _processors[d];
 | 
					        _ldimensions[d] = _gdimensions[d] / _processors[d];
 | 
				
			||||||
        GRID_ASSERT(_ldimensions[d] * _processors[d] == _gdimensions[d]);
 | 
					        assert(_ldimensions[d] * _processors[d] == _gdimensions[d]);
 | 
				
			||||||
        _lstart[d] = _processor_coor[d] * _ldimensions[d];
 | 
					        _lstart[d] = _processor_coor[d] * _ldimensions[d];
 | 
				
			||||||
        _lend[d] = _processor_coor[d] * _ldimensions[d] + _ldimensions[d] - 1;
 | 
					        _lend[d] = _processor_coor[d] * _ldimensions[d] + _ldimensions[d] - 1;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        // Use a reduced simd grid
 | 
					        // Use a reduced simd grid
 | 
				
			||||||
        _simd_layout[d] = simd_layout[d];
 | 
					        _simd_layout[d] = simd_layout[d];
 | 
				
			||||||
        _rdimensions[d] = _ldimensions[d] / _simd_layout[d]; // this is not checking if this is integer
 | 
					        _rdimensions[d] = _ldimensions[d] / _simd_layout[d]; // this is not checking if this is integer
 | 
				
			||||||
        GRID_ASSERT(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
 | 
					        assert(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
 | 
				
			||||||
        GRID_ASSERT(_rdimensions[d] > 0);
 | 
					        assert(_rdimensions[d] > 0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        // all elements of a simd vector must have same checkerboard.
 | 
					        // all elements of a simd vector must have same checkerboard.
 | 
				
			||||||
        // If Ls vectorised, this must still be the case; e.g. dwf rb5d
 | 
					        // If Ls vectorised, this must still be the case; e.g. dwf rb5d
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -57,29 +57,18 @@ int                      CartesianCommunicator::ProcessorCount(void)    { return
 | 
				
			|||||||
// very VERY rarely (Log, serial RNG) we need world without a grid
 | 
					// very VERY rarely (Log, serial RNG) we need world without a grid
 | 
				
			||||||
////////////////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#ifdef USE_GRID_REDUCTION
 | 
					 | 
				
			||||||
void CartesianCommunicator::GlobalSum(ComplexF &c)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  GlobalSumP2P(c);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
void CartesianCommunicator::GlobalSum(ComplexD &c)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  GlobalSumP2P(c);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
void CartesianCommunicator::GlobalSum(ComplexF &c)
 | 
					void CartesianCommunicator::GlobalSum(ComplexF &c)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GlobalSumVector((float *)&c,2);
 | 
					  GlobalSumVector((float *)&c,2);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::GlobalSum(ComplexD &c)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  GlobalSumVector((double *)&c,2);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
void CartesianCommunicator::GlobalSumVector(ComplexF *c,int N)
 | 
					void CartesianCommunicator::GlobalSumVector(ComplexF *c,int N)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GlobalSumVector((float *)c,2*N);
 | 
					  GlobalSumVector((float *)c,2*N);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					void CartesianCommunicator::GlobalSum(ComplexD &c)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  GlobalSumVector((double *)&c,2);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N)
 | 
					void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GlobalSumVector((double *)c,2*N);
 | 
					  GlobalSumVector((double *)c,2*N);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -33,8 +33,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
///////////////////////////////////
 | 
					///////////////////////////////////
 | 
				
			||||||
#include <Grid/communicator/SharedMemory.h>
 | 
					#include <Grid/communicator/SharedMemory.h>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#define NVLINK_GET
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					NAMESPACE_BEGIN(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
extern bool Stencil_force_mpi ;
 | 
					extern bool Stencil_force_mpi ;
 | 
				
			||||||
@@ -108,7 +106,7 @@ public:
 | 
				
			|||||||
  // very VERY rarely (Log, serial RNG) we need world without a grid
 | 
					  // very VERY rarely (Log, serial RNG) we need world without a grid
 | 
				
			||||||
  ////////////////////////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  static int  RankWorld(void) ;
 | 
					  static int  RankWorld(void) ;
 | 
				
			||||||
  static void BroadcastWorld(int root,void* data, uint64_t bytes);
 | 
					  static void BroadcastWorld(int root,void* data, int bytes);
 | 
				
			||||||
  static void BarrierWorld(void);
 | 
					  static void BarrierWorld(void);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  ////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -130,35 +128,6 @@ public:
 | 
				
			|||||||
  void GlobalXOR(uint32_t &);
 | 
					  void GlobalXOR(uint32_t &);
 | 
				
			||||||
  void GlobalXOR(uint64_t &);
 | 
					  void GlobalXOR(uint64_t &);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  template<class obj> void GlobalSumP2P(obj &o)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::vector<obj> column;
 | 
					 | 
				
			||||||
    obj accum = o;
 | 
					 | 
				
			||||||
    int source,dest;
 | 
					 | 
				
			||||||
    for(int d=0;d<_ndimension;d++){
 | 
					 | 
				
			||||||
      column.resize(_processors[d]);
 | 
					 | 
				
			||||||
      column[0] = accum;
 | 
					 | 
				
			||||||
      std::vector<MpiCommsRequest_t> list;
 | 
					 | 
				
			||||||
      for(int p=1;p<_processors[d];p++){
 | 
					 | 
				
			||||||
	ShiftedRanks(d,p,source,dest);
 | 
					 | 
				
			||||||
	SendToRecvFromBegin(list,
 | 
					 | 
				
			||||||
			    &column[0],
 | 
					 | 
				
			||||||
			    dest,
 | 
					 | 
				
			||||||
			    &column[p],
 | 
					 | 
				
			||||||
			    source,
 | 
					 | 
				
			||||||
			    sizeof(obj),d*100+p);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      if (!list.empty()) // avoid triggering GRID_ASSERT in comms == none
 | 
					 | 
				
			||||||
	CommsComplete(list);
 | 
					 | 
				
			||||||
      for(int p=1;p<_processors[d];p++){
 | 
					 | 
				
			||||||
	accum = accum + column[p];
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    Broadcast(0,accum);
 | 
					 | 
				
			||||||
    o=accum;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  template<class obj> void GlobalSum(obj &o){
 | 
					  template<class obj> void GlobalSum(obj &o){
 | 
				
			||||||
    typedef typename obj::scalar_type scalar_type;
 | 
					    typedef typename obj::scalar_type scalar_type;
 | 
				
			||||||
    int words = sizeof(obj)/sizeof(scalar_type);
 | 
					    int words = sizeof(obj)/sizeof(scalar_type);
 | 
				
			||||||
@@ -169,44 +138,24 @@ public:
 | 
				
			|||||||
  ////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Face exchange, buffer swap in translational invariant way
 | 
					  // Face exchange, buffer swap in translational invariant way
 | 
				
			||||||
  ////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////
 | 
				
			||||||
  void CommsComplete(std::vector<MpiCommsRequest_t> &list);
 | 
					 | 
				
			||||||
  void SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list,
 | 
					 | 
				
			||||||
			   void *xmit,
 | 
					 | 
				
			||||||
			   int dest,
 | 
					 | 
				
			||||||
			   void *recv,
 | 
					 | 
				
			||||||
			   int from,
 | 
					 | 
				
			||||||
			   uint64_t bytes,int dir);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  void SendToRecvFrom(void *xmit,
 | 
					  void SendToRecvFrom(void *xmit,
 | 
				
			||||||
		      int xmit_to_rank,
 | 
							      int xmit_to_rank,
 | 
				
			||||||
		      void *recv,
 | 
							      void *recv,
 | 
				
			||||||
		      int recv_from_rank,
 | 
							      int recv_from_rank,
 | 
				
			||||||
		      uint64_t bytes);
 | 
							      int bytes);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  int IsOffNode(int rank);
 | 
					 | 
				
			||||||
  double StencilSendToRecvFrom(void *xmit,
 | 
					  double StencilSendToRecvFrom(void *xmit,
 | 
				
			||||||
			       int xmit_to_rank,int do_xmit,
 | 
								       int xmit_to_rank,int do_xmit,
 | 
				
			||||||
			       void *recv,
 | 
								       void *recv,
 | 
				
			||||||
			       int recv_from_rank,int do_recv,
 | 
								       int recv_from_rank,int do_recv,
 | 
				
			||||||
			       uint64_t bytes,int dir);
 | 
								       int bytes,int dir);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  double StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
 | 
					  double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
				
			||||||
				    void *xmit,
 | 
									    void *xmit,
 | 
				
			||||||
				    int xmit_to_rank,int do_xmit,
 | 
									    int xmit_to_rank,int do_xmit,
 | 
				
			||||||
				    void *recv,
 | 
									    void *recv,
 | 
				
			||||||
				    int recv_from_rank,int do_recv,
 | 
									    int recv_from_rank,int do_recv,
 | 
				
			||||||
				      uint64_t xbytes,uint64_t rbytes,int dir);
 | 
									    int xbytes,int rbytes,int dir);
 | 
				
			||||||
 | 
					 | 
				
			||||||
  // Could do a PollHtoD and have a CommsMerge dependence
 | 
					 | 
				
			||||||
  void StencilSendToRecvFromPollDtoH (std::vector<CommsRequest_t> &list);
 | 
					 | 
				
			||||||
  void StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
					 | 
				
			||||||
				    void *xmit,void *xmit_comp,
 | 
					 | 
				
			||||||
				    int xmit_to_rank,int do_xmit,
 | 
					 | 
				
			||||||
				    void *recv,void *recv_comp,
 | 
					 | 
				
			||||||
				    int recv_from_rank,int do_recv,
 | 
					 | 
				
			||||||
				    uint64_t xbytes,uint64_t rbytes,int dir);
 | 
					 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  void StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int i);
 | 
					  void StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int i);
 | 
				
			||||||
@@ -220,20 +169,20 @@ public:
 | 
				
			|||||||
  ////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Broadcast a buffer and composite larger
 | 
					  // Broadcast a buffer and composite larger
 | 
				
			||||||
  ////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////
 | 
				
			||||||
  void Broadcast(int root,void* data, uint64_t bytes);
 | 
					  void Broadcast(int root,void* data, int bytes);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  ////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////
 | 
				
			||||||
  // All2All down one dimension
 | 
					  // All2All down one dimension
 | 
				
			||||||
  ////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////
 | 
				
			||||||
  template<class T> void AllToAll(int dim,std::vector<T> &in, std::vector<T> &out){
 | 
					  template<class T> void AllToAll(int dim,std::vector<T> &in, std::vector<T> &out){
 | 
				
			||||||
    GRID_ASSERT(dim>=0);
 | 
					    assert(dim>=0);
 | 
				
			||||||
    GRID_ASSERT(dim<_ndimension);
 | 
					    assert(dim<_ndimension);
 | 
				
			||||||
    GRID_ASSERT(in.size()==out.size());
 | 
					    assert(in.size()==out.size());
 | 
				
			||||||
    int numnode = _processors[dim];
 | 
					    int numnode = _processors[dim];
 | 
				
			||||||
    uint64_t bytes=sizeof(T);
 | 
					    uint64_t bytes=sizeof(T);
 | 
				
			||||||
    uint64_t words=in.size()/numnode;
 | 
					    uint64_t words=in.size()/numnode;
 | 
				
			||||||
    GRID_ASSERT(numnode * words == in.size());
 | 
					    assert(numnode * words == in.size());
 | 
				
			||||||
    GRID_ASSERT(words < (1ULL<<31));
 | 
					    assert(words < (1ULL<<31));
 | 
				
			||||||
    AllToAll(dim,(void *)&in[0],(void *)&out[0],words,bytes);
 | 
					    AllToAll(dim,(void *)&in[0],(void *)&out[0],words,bytes);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  void AllToAll(int dim  ,void *in,void *out,uint64_t words,uint64_t bytes);
 | 
					  void AllToAll(int dim  ,void *in,void *out,uint64_t words,uint64_t bytes);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -28,17 +28,9 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
#include <Grid/GridCore.h>
 | 
					#include <Grid/GridCore.h>
 | 
				
			||||||
#include <Grid/communicator/SharedMemory.h>
 | 
					#include <Grid/communicator/SharedMemory.h>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
void GridAbort(void) { MPI_Abort(MPI_COMM_WORLD,SIGABRT); }
 | 
					 | 
				
			||||||
extern void * Grid_backtrace_buffer[_NBACKTRACE];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					NAMESPACE_BEGIN(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
Grid_MPI_Comm       CartesianCommunicator::communicator_world;
 | 
					Grid_MPI_Comm       CartesianCommunicator::communicator_world;
 | 
				
			||||||
#ifdef GRID_CHECKSUM_COMMS
 | 
					 | 
				
			||||||
uint64_t checksum_index = 1;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
////////////////////////////////////////////
 | 
					////////////////////////////////////////////
 | 
				
			||||||
// First initialise of comms system
 | 
					// First initialise of comms system
 | 
				
			||||||
@@ -63,11 +55,11 @@ void CartesianCommunicator::Init(int *argc, char ***argv)
 | 
				
			|||||||
#endif
 | 
					#endif
 | 
				
			||||||
    //If only 1 comms thread we require any threading mode other than SINGLE, but for multiple comms threads we need MULTIPLE
 | 
					    //If only 1 comms thread we require any threading mode other than SINGLE, but for multiple comms threads we need MULTIPLE
 | 
				
			||||||
    if( (nCommThreads == 1) && (provided == MPI_THREAD_SINGLE) ) {
 | 
					    if( (nCommThreads == 1) && (provided == MPI_THREAD_SINGLE) ) {
 | 
				
			||||||
      GRID_ASSERT(0);
 | 
					      assert(0);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if( (nCommThreads > 1) && (provided != MPI_THREAD_MULTIPLE) ) {
 | 
					    if( (nCommThreads > 1) && (provided != MPI_THREAD_MULTIPLE) ) {
 | 
				
			||||||
      GRID_ASSERT(0);
 | 
					      assert(0);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -88,20 +80,20 @@ void CartesianCommunicator::Init(int *argc, char ***argv)
 | 
				
			|||||||
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
 | 
					void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  int ierr=MPI_Cart_shift(communicator,dim,shift,&source,&dest);
 | 
					  int ierr=MPI_Cart_shift(communicator,dim,shift,&source,&dest);
 | 
				
			||||||
  GRID_ASSERT(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
int CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor)
 | 
					int CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  int rank;
 | 
					  int rank;
 | 
				
			||||||
  int ierr=MPI_Cart_rank  (communicator, &coor[0], &rank);
 | 
					  int ierr=MPI_Cart_rank  (communicator, &coor[0], &rank);
 | 
				
			||||||
  GRID_ASSERT(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
  return rank;
 | 
					  return rank;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void  CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor)
 | 
					void  CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  coor.resize(_ndimension);
 | 
					  coor.resize(_ndimension);
 | 
				
			||||||
  int ierr=MPI_Cart_coords  (communicator, rank, _ndimension,&coor[0]);
 | 
					  int ierr=MPI_Cart_coords  (communicator, rank, _ndimension,&coor[0]);
 | 
				
			||||||
  GRID_ASSERT(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -128,8 +120,8 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
 | 
				
			|||||||
//////////////////////////////////
 | 
					//////////////////////////////////
 | 
				
			||||||
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)
 | 
					CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  _ndimension = processors.size();  GRID_ASSERT(_ndimension>=1);
 | 
					  _ndimension = processors.size();  assert(_ndimension>=1);
 | 
				
			||||||
  int parent_ndimension = parent._ndimension; GRID_ASSERT(_ndimension >= parent._ndimension);
 | 
					  int parent_ndimension = parent._ndimension; assert(_ndimension >= parent._ndimension);
 | 
				
			||||||
  Coordinate parent_processor_coor(_ndimension,0);
 | 
					  Coordinate parent_processor_coor(_ndimension,0);
 | 
				
			||||||
  Coordinate parent_processors    (_ndimension,1);
 | 
					  Coordinate parent_processors    (_ndimension,1);
 | 
				
			||||||
  Coordinate shm_processors       (_ndimension,1);
 | 
					  Coordinate shm_processors       (_ndimension,1);
 | 
				
			||||||
@@ -153,7 +145,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
 | 
				
			|||||||
    childsize *= processors[d];
 | 
					    childsize *= processors[d];
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  int Nchild = Nparent/childsize;
 | 
					  int Nchild = Nparent/childsize;
 | 
				
			||||||
  GRID_ASSERT (childsize * Nchild == Nparent);
 | 
					  assert (childsize * Nchild == Nparent);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  Coordinate ccoor(_ndimension); // coor within subcommunicator
 | 
					  Coordinate ccoor(_ndimension); // coor within subcommunicator
 | 
				
			||||||
  Coordinate scoor(_ndimension); // coor of split within parent
 | 
					  Coordinate scoor(_ndimension); // coor of split within parent
 | 
				
			||||||
@@ -179,12 +171,12 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
 | 
				
			|||||||
    // Split the communicator
 | 
					    // Split the communicator
 | 
				
			||||||
    ////////////////////////////////////////////////////////////////
 | 
					    ////////////////////////////////////////////////////////////////
 | 
				
			||||||
    int ierr= MPI_Comm_split(parent.communicator,srank,crank,&comm_split);
 | 
					    int ierr= MPI_Comm_split(parent.communicator,srank,crank,&comm_split);
 | 
				
			||||||
    GRID_ASSERT(ierr==0);
 | 
					    assert(ierr==0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  } else {
 | 
					  } else {
 | 
				
			||||||
    srank = 0;
 | 
					    srank = 0;
 | 
				
			||||||
    int ierr = MPI_Comm_dup (parent.communicator,&comm_split);
 | 
					    int ierr = MPI_Comm_dup (parent.communicator,&comm_split);
 | 
				
			||||||
    GRID_ASSERT(ierr==0);
 | 
					    assert(ierr==0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -209,7 +201,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  for(int d=0;d<processors.size();d++){
 | 
					  for(int d=0;d<processors.size();d++){
 | 
				
			||||||
    GRID_ASSERT(_processor_coor[d] == ccoor[d] );
 | 
					    assert(_processor_coor[d] == ccoor[d] );
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -251,7 +243,7 @@ void CartesianCommunicator::InitFromMPICommunicator(const Coordinate &processors
 | 
				
			|||||||
  for(int i=0;i<_ndimension*2;i++){
 | 
					  for(int i=0;i<_ndimension*2;i++){
 | 
				
			||||||
    MPI_Comm_dup(communicator,&communicator_halo[i]);
 | 
					    MPI_Comm_dup(communicator,&communicator_halo[i]);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  GRID_ASSERT(Size==_Nprocessors);
 | 
					  assert(Size==_Nprocessors);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
CartesianCommunicator::~CartesianCommunicator()
 | 
					CartesianCommunicator::~CartesianCommunicator()
 | 
				
			||||||
@@ -265,176 +257,103 @@ CartesianCommunicator::~CartesianCommunicator()
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
#ifdef USE_GRID_REDUCTION
 | 
					 | 
				
			||||||
void CartesianCommunicator::GlobalSum(float &f){
 | 
					 | 
				
			||||||
  FlightRecorder::StepLog("GlobalSumP2P");
 | 
					 | 
				
			||||||
  CartesianCommunicator::GlobalSumP2P(f);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
void CartesianCommunicator::GlobalSum(double &d)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  FlightRecorder::StepLog("GlobalSumP2P");
 | 
					 | 
				
			||||||
  CartesianCommunicator::GlobalSumP2P(d);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
void CartesianCommunicator::GlobalSum(float &f){
 | 
					 | 
				
			||||||
  FlightRecorder::StepLog("AllReduce float");
 | 
					 | 
				
			||||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
 | 
					 | 
				
			||||||
  GRID_ASSERT(ierr==0);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
void CartesianCommunicator::GlobalSum(double &d)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  FlightRecorder::StepLog("AllReduce double");
 | 
					 | 
				
			||||||
  int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
 | 
					 | 
				
			||||||
  GRID_ASSERT(ierr==0);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
void CartesianCommunicator::GlobalSum(uint32_t &u){
 | 
					void CartesianCommunicator::GlobalSum(uint32_t &u){
 | 
				
			||||||
  FlightRecorder::StepLog("AllReduce uint32_t");
 | 
					 | 
				
			||||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
 | 
					  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
 | 
				
			||||||
  GRID_ASSERT(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::GlobalSum(uint64_t &u){
 | 
					void CartesianCommunicator::GlobalSum(uint64_t &u){
 | 
				
			||||||
  FlightRecorder::StepLog("AllReduce uint64_t");
 | 
					 | 
				
			||||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator);
 | 
					  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator);
 | 
				
			||||||
  GRID_ASSERT(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::GlobalSumVector(uint64_t* u,int N){
 | 
					void CartesianCommunicator::GlobalSumVector(uint64_t* u,int N){
 | 
				
			||||||
  FlightRecorder::StepLog("AllReduceVector");
 | 
					 | 
				
			||||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,u,N,MPI_UINT64_T,MPI_SUM,communicator);
 | 
					  int ierr=MPI_Allreduce(MPI_IN_PLACE,u,N,MPI_UINT64_T,MPI_SUM,communicator);
 | 
				
			||||||
  GRID_ASSERT(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::GlobalXOR(uint32_t &u){
 | 
					void CartesianCommunicator::GlobalXOR(uint32_t &u){
 | 
				
			||||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_BXOR,communicator);
 | 
					  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_BXOR,communicator);
 | 
				
			||||||
  GRID_ASSERT(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::GlobalXOR(uint64_t &u){
 | 
					void CartesianCommunicator::GlobalXOR(uint64_t &u){
 | 
				
			||||||
  FlightRecorder::StepLog("GlobalXOR");
 | 
					 | 
				
			||||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_BXOR,communicator);
 | 
					  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_BXOR,communicator);
 | 
				
			||||||
  GRID_ASSERT(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::GlobalMax(float &f)
 | 
					void CartesianCommunicator::GlobalMax(float &f)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  FlightRecorder::StepLog("GlobalMax");
 | 
					 | 
				
			||||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_MAX,communicator);
 | 
					  int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_MAX,communicator);
 | 
				
			||||||
  GRID_ASSERT(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::GlobalMax(double &d)
 | 
					void CartesianCommunicator::GlobalMax(double &d)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  FlightRecorder::StepLog("GlobalMax");
 | 
					 | 
				
			||||||
  int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator);
 | 
					  int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator);
 | 
				
			||||||
  GRID_ASSERT(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					void CartesianCommunicator::GlobalSum(float &f){
 | 
				
			||||||
 | 
					  int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
 | 
				
			||||||
 | 
					  assert(ierr==0);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::GlobalSumVector(float *f,int N)
 | 
					void CartesianCommunicator::GlobalSumVector(float *f,int N)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  FlightRecorder::StepLog("GlobalSumVector(float *)");
 | 
					 | 
				
			||||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator);
 | 
					  int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator);
 | 
				
			||||||
  GRID_ASSERT(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					void CartesianCommunicator::GlobalSum(double &d)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
 | 
				
			||||||
 | 
					  assert(ierr==0);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::GlobalSumVector(double *d,int N)
 | 
					void CartesianCommunicator::GlobalSumVector(double *d,int N)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  FlightRecorder::StepLog("GlobalSumVector(double *)");
 | 
					 | 
				
			||||||
  int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
 | 
					  int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
 | 
				
			||||||
  GRID_ASSERT(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					 | 
				
			||||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list,
 | 
					 | 
				
			||||||
						void *xmit,
 | 
					 | 
				
			||||||
						int dest,
 | 
					 | 
				
			||||||
						void *recv,
 | 
					 | 
				
			||||||
						int from,
 | 
					 | 
				
			||||||
						uint64_t bytes,int dir)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  MPI_Request xrq;
 | 
					 | 
				
			||||||
  MPI_Request rrq;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  GRID_ASSERT(dest != _processor);
 | 
					 | 
				
			||||||
  GRID_ASSERT(from != _processor);
 | 
					 | 
				
			||||||
  int tag;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  tag= dir+from*32;
 | 
					 | 
				
			||||||
  int ierr=MPI_Irecv(recv,(int)( bytes/sizeof(int32_t)), MPI_INT32_T,from,tag,communicator,&rrq);
 | 
					 | 
				
			||||||
  GRID_ASSERT(ierr==0);
 | 
					 | 
				
			||||||
  list.push_back(rrq);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  tag= dir+_processor*32;
 | 
					 | 
				
			||||||
  ierr =MPI_Isend(xmit,(int)(bytes/sizeof(int32_t)), MPI_INT32_T,dest,tag,communicator,&xrq);
 | 
					 | 
				
			||||||
  GRID_ASSERT(ierr==0);
 | 
					 | 
				
			||||||
  list.push_back(xrq);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
void CartesianCommunicator::CommsComplete(std::vector<MpiCommsRequest_t> &list)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  int nreq=list.size();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  if (nreq==0) return;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  std::vector<MPI_Status> status(nreq);
 | 
					 | 
				
			||||||
  int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
 | 
					 | 
				
			||||||
  GRID_ASSERT(ierr==0);
 | 
					 | 
				
			||||||
  list.resize(0);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
// Basic Halo comms primitive
 | 
					// Basic Halo comms primitive
 | 
				
			||||||
void CartesianCommunicator::SendToRecvFrom(void *xmit,
 | 
					void CartesianCommunicator::SendToRecvFrom(void *xmit,
 | 
				
			||||||
					   int dest,
 | 
										   int dest,
 | 
				
			||||||
					   void *recv,
 | 
										   void *recv,
 | 
				
			||||||
					   int from,
 | 
										   int from,
 | 
				
			||||||
					   uint64_t bytes)
 | 
										   int bytes)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  std::vector<MpiCommsRequest_t> reqs(0);
 | 
					  std::vector<CommsRequest_t> reqs(0);
 | 
				
			||||||
 | 
					  unsigned long  xcrc = crc32(0L, Z_NULL, 0);
 | 
				
			||||||
 | 
					  unsigned long  rcrc = crc32(0L, Z_NULL, 0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  int myrank = _processor;
 | 
					  int myrank = _processor;
 | 
				
			||||||
  int ierr;
 | 
					  int ierr;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Enforce no UVM in comms, device or host OK
 | 
					  // Enforce no UVM in comms, device or host OK
 | 
				
			||||||
  GRID_ASSERT(acceleratorIsCommunicable(xmit));
 | 
					  assert(acceleratorIsCommunicable(xmit));
 | 
				
			||||||
  GRID_ASSERT(acceleratorIsCommunicable(recv));
 | 
					  assert(acceleratorIsCommunicable(recv));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Give the CPU to MPI immediately; can use threads to overlap optionally
 | 
					  // Give the CPU to MPI immediately; can use threads to overlap optionally
 | 
				
			||||||
  //  printf("proc %d SendToRecvFrom %d bytes Sendrecv \n",_processor,bytes);
 | 
					  //  printf("proc %d SendToRecvFrom %d bytes Sendrecv \n",_processor,bytes);
 | 
				
			||||||
  ierr=MPI_Sendrecv(xmit,(int)(bytes/sizeof(int32_t)),MPI_INT32_T,dest,myrank,
 | 
					  ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,dest,myrank,
 | 
				
			||||||
		    recv,(int)(bytes/sizeof(int32_t)),MPI_INT32_T,from, from,
 | 
							    recv,bytes,MPI_CHAR,from, from,
 | 
				
			||||||
		    communicator,MPI_STATUS_IGNORE);
 | 
							    communicator,MPI_STATUS_IGNORE);
 | 
				
			||||||
  GRID_ASSERT(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  //  xcrc = crc32(xcrc,(unsigned char *)xmit,bytes);
 | 
				
			||||||
 | 
					  //  rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
 | 
				
			||||||
 | 
					  //  printf("proc %d SendToRecvFrom %d bytes xcrc %lx rcrc %lx\n",_processor,bytes,xcrc,rcrc); fflush
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
// Basic Halo comms primitive
 | 
					// Basic Halo comms primitive
 | 
				
			||||||
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
 | 
					double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
 | 
				
			||||||
						     int dest, int dox,
 | 
											     int dest, int dox,
 | 
				
			||||||
						     void *recv,
 | 
											     void *recv,
 | 
				
			||||||
						     int from, int dor,
 | 
											     int from, int dor,
 | 
				
			||||||
						     uint64_t bytes,int dir)
 | 
											     int bytes,int dir)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  std::vector<CommsRequest_t> list;
 | 
					  std::vector<CommsRequest_t> list;
 | 
				
			||||||
  double offbytes = StencilSendToRecvFromPrepare(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
 | 
					  double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
 | 
				
			||||||
  offbytes       += StencilSendToRecvFromBegin(list,xmit,xmit,dest,dox,recv,recv,from,dor,bytes,bytes,dir);
 | 
					 | 
				
			||||||
  StencilSendToRecvFromComplete(list,dir);
 | 
					  StencilSendToRecvFromComplete(list,dir);
 | 
				
			||||||
  return offbytes;
 | 
					  return offbytes;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
int CartesianCommunicator::IsOffNode(int rank)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  int grank = ShmRanks[rank];
 | 
					 | 
				
			||||||
  if ( grank == MPI_UNDEFINED ) return true;
 | 
					 | 
				
			||||||
  else return false;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
					double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
				
			||||||
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {};
 | 
					 | 
				
			||||||
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {};
 | 
					 | 
				
			||||||
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
 | 
					 | 
				
			||||||
							 void *xmit,
 | 
												 void *xmit,
 | 
				
			||||||
							 int dest,int dox,
 | 
												 int dest,int dox,
 | 
				
			||||||
							 void *recv,
 | 
												 void *recv,
 | 
				
			||||||
							 int from,int dor,
 | 
												 int from,int dor,
 | 
				
			||||||
							   uint64_t xbytes,uint64_t rbytes,int dir)
 | 
												 int xbytes,int rbytes,int dir)
 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  return 0.0; // Do nothing -- no preparation required
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
					 | 
				
			||||||
							 void *xmit,void *xmit_comp,
 | 
					 | 
				
			||||||
							 int dest,int dox,
 | 
					 | 
				
			||||||
							 void *recv,void *recv_comp,
 | 
					 | 
				
			||||||
							 int from,int dor,
 | 
					 | 
				
			||||||
							 uint64_t xbytes,uint64_t rbytes,int dir)
 | 
					 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  int ncomm  =communicator_halo.size();
 | 
					  int ncomm  =communicator_halo.size();
 | 
				
			||||||
  int commdir=dir%ncomm;
 | 
					  int commdir=dir%ncomm;
 | 
				
			||||||
@@ -447,431 +366,51 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
 | 
				
			|||||||
  int gfrom = ShmRanks[from];
 | 
					  int gfrom = ShmRanks[from];
 | 
				
			||||||
  int gme   = ShmRanks[_processor];
 | 
					  int gme   = ShmRanks[_processor];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GRID_ASSERT(dest != _processor);
 | 
					  assert(dest != _processor);
 | 
				
			||||||
  GRID_ASSERT(from != _processor);
 | 
					  assert(from != _processor);
 | 
				
			||||||
  GRID_ASSERT(gme  == ShmRank);
 | 
					  assert(gme  == ShmRank);
 | 
				
			||||||
  double off_node_bytes=0.0;
 | 
					  double off_node_bytes=0.0;
 | 
				
			||||||
  int tag;
 | 
					  int tag;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  if ( dor ) {
 | 
					  if ( dor ) {
 | 
				
			||||||
    if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
					    if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
				
			||||||
      tag= dir+from*32;
 | 
					      tag= dir+from*32;
 | 
				
			||||||
      //      std::cout << " StencilSendToRecvFrom "<<dir<<" MPI_Irecv "<<std::hex<<recv<<std::dec<<std::endl;
 | 
					      ierr=MPI_Irecv(recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
 | 
				
			||||||
      ierr=MPI_Irecv(recv_comp,(int)(rbytes/sizeof(int32_t)), MPI_INT32_T,from,tag,communicator_halo[commdir],&rrq);
 | 
					      assert(ierr==0);
 | 
				
			||||||
      GRID_ASSERT(ierr==0);
 | 
					 | 
				
			||||||
      list.push_back(rrq);
 | 
					      list.push_back(rrq);
 | 
				
			||||||
      off_node_bytes+=rbytes;
 | 
					      off_node_bytes+=rbytes;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
#ifdef NVLINK_GET
 | 
					 | 
				
			||||||
    else { 
 | 
					 | 
				
			||||||
      void *shm = (void *) this->ShmBufferTranslate(from,xmit);
 | 
					 | 
				
			||||||
      GRID_ASSERT(shm!=NULL);
 | 
					 | 
				
			||||||
      //      std::cout << " StencilSendToRecvFrom "<<dir<<" CopyDeviceToDevice recv "<<std::hex<<recv<<" remote "<<shm <<std::dec<<std::endl;
 | 
					 | 
				
			||||||
      acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
#endif
 | 
					  
 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  // This is a NVLINK PUT  
 | 
					 | 
				
			||||||
  if (dox) {
 | 
					  if (dox) {
 | 
				
			||||||
    if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
					    if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
				
			||||||
      tag= dir+_processor*32;
 | 
					      tag= dir+_processor*32;
 | 
				
			||||||
      ierr =MPI_Isend(xmit_comp,(int)(xbytes/sizeof(int32_t)), MPI_INT32_T,dest,tag,communicator_halo[commdir],&xrq);
 | 
					      ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
 | 
				
			||||||
      GRID_ASSERT(ierr==0);
 | 
					      assert(ierr==0);
 | 
				
			||||||
      list.push_back(xrq);
 | 
					      list.push_back(xrq);
 | 
				
			||||||
      off_node_bytes+=xbytes;
 | 
					      off_node_bytes+=xbytes;
 | 
				
			||||||
    } else {
 | 
					    } else {
 | 
				
			||||||
#ifndef NVLINK_GET
 | 
					 | 
				
			||||||
      void *shm = (void *) this->ShmBufferTranslate(dest,recv);
 | 
					      void *shm = (void *) this->ShmBufferTranslate(dest,recv);
 | 
				
			||||||
      GRID_ASSERT(shm!=NULL);
 | 
					      assert(shm!=NULL);
 | 
				
			||||||
      acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
 | 
					      acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  return off_node_bytes;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  return off_node_bytes;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
 | 
					void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  int nreq=list.size();
 | 
					  int nreq=list.size();
 | 
				
			||||||
  /*finishes Get/Put*/
 | 
					 | 
				
			||||||
  acceleratorCopySynchronise();
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  if (nreq==0) return;
 | 
					  if (nreq==0) return;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  std::vector<MPI_Status> status(nreq);
 | 
					  std::vector<MPI_Status> status(nreq);
 | 
				
			||||||
  int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
 | 
					  int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
 | 
				
			||||||
  GRID_ASSERT(ierr==0);
 | 
					 | 
				
			||||||
  list.resize(0);
 | 
					 | 
				
			||||||
  this->StencilBarrier(); 
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#else /* NOT     ... ACCELERATOR_AWARE_MPI */
 | 
					 | 
				
			||||||
///////////////////////////////////////////
 | 
					 | 
				
			||||||
// Pipeline mode through host memory
 | 
					 | 
				
			||||||
///////////////////////////////////////////
 | 
					 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
   * In prepare (phase 1):
 | 
					 | 
				
			||||||
   * PHASE 1: (prepare)
 | 
					 | 
				
			||||||
   * - post MPI receive buffers asynch
 | 
					 | 
				
			||||||
   * - post device - host send buffer transfer asynch
 | 
					 | 
				
			||||||
   * PHASE 2: (Begin)
 | 
					 | 
				
			||||||
   * - complete all copies
 | 
					 | 
				
			||||||
   * - post MPI send asynch
 | 
					 | 
				
			||||||
   * - post device - device transfers
 | 
					 | 
				
			||||||
   * PHASE 3: (Complete)
 | 
					 | 
				
			||||||
   * - MPI_waitall
 | 
					 | 
				
			||||||
   * - host-device transfers
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   *********************************
 | 
					 | 
				
			||||||
   * NB could split this further:
 | 
					 | 
				
			||||||
   *--------------------------------
 | 
					 | 
				
			||||||
   * PHASE 1: (Prepare)
 | 
					 | 
				
			||||||
   * - post MPI receive buffers asynch
 | 
					 | 
				
			||||||
   * - post device - host send buffer transfer asynch
 | 
					 | 
				
			||||||
   * PHASE 2: (BeginInterNode)
 | 
					 | 
				
			||||||
   * - complete all copies 
 | 
					 | 
				
			||||||
   * - post MPI send asynch
 | 
					 | 
				
			||||||
   * PHASE 3: (BeginIntraNode)
 | 
					 | 
				
			||||||
   * - post device - device transfers
 | 
					 | 
				
			||||||
   * PHASE 4: (Complete)
 | 
					 | 
				
			||||||
   * - MPI_waitall
 | 
					 | 
				
			||||||
   * - host-device transfers asynch
 | 
					 | 
				
			||||||
   * - (complete all copies) 
 | 
					 | 
				
			||||||
   */
 | 
					 | 
				
			||||||
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
 | 
					 | 
				
			||||||
							   void *xmit,
 | 
					 | 
				
			||||||
							   int dest,int dox,
 | 
					 | 
				
			||||||
							   void *recv,
 | 
					 | 
				
			||||||
							   int from,int dor,
 | 
					 | 
				
			||||||
							   uint64_t xbytes,uint64_t rbytes,int dir)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
/*
 | 
					 | 
				
			||||||
 * Bring sequence from Stencil.h down to lower level.
 | 
					 | 
				
			||||||
 * Assume using XeLink is ok
 | 
					 | 
				
			||||||
 */  
 | 
					 | 
				
			||||||
  int ncomm  =communicator_halo.size();
 | 
					 | 
				
			||||||
  int commdir=dir%ncomm;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  MPI_Request xrq;
 | 
					 | 
				
			||||||
  MPI_Request rrq;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int ierr;
 | 
					 | 
				
			||||||
  int gdest = ShmRanks[dest];
 | 
					 | 
				
			||||||
  int gfrom = ShmRanks[from];
 | 
					 | 
				
			||||||
  int gme   = ShmRanks[_processor];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  GRID_ASSERT(dest != _processor);
 | 
					 | 
				
			||||||
  GRID_ASSERT(from != _processor);
 | 
					 | 
				
			||||||
  GRID_ASSERT(gme  == ShmRank);
 | 
					 | 
				
			||||||
  double off_node_bytes=0.0;
 | 
					 | 
				
			||||||
  int tag;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void * host_recv = NULL;
 | 
					 | 
				
			||||||
  void * host_xmit = NULL;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
   * PHASE 1: (Prepare)
 | 
					 | 
				
			||||||
   * - post MPI receive buffers asynch
 | 
					 | 
				
			||||||
   * - post device - host send buffer transfer asynch
 | 
					 | 
				
			||||||
   */
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
#ifdef GRID_CHECKSUM_COMMS
 | 
					 | 
				
			||||||
  rbytes += 8;
 | 
					 | 
				
			||||||
  xbytes += 8;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  if ( dor ) {
 | 
					 | 
				
			||||||
    if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
					 | 
				
			||||||
      tag= dir+from*32;
 | 
					 | 
				
			||||||
      host_recv = this->HostBufferMalloc(rbytes);
 | 
					 | 
				
			||||||
      ierr=MPI_Irecv(host_recv,(int)(rbytes/sizeof(int32_t)), MPI_INT32_T,from,tag,communicator_halo[commdir],&rrq);
 | 
					 | 
				
			||||||
      GRID_ASSERT(ierr==0);
 | 
					 | 
				
			||||||
      CommsRequest_t srq;
 | 
					 | 
				
			||||||
      srq.PacketType = InterNodeRecv;
 | 
					 | 
				
			||||||
      srq.bytes      = rbytes;
 | 
					 | 
				
			||||||
      srq.req        = rrq;
 | 
					 | 
				
			||||||
      srq.host_buf   = host_recv;
 | 
					 | 
				
			||||||
      srq.device_buf = recv;
 | 
					 | 
				
			||||||
      srq.tag        = tag;
 | 
					 | 
				
			||||||
      list.push_back(srq);
 | 
					 | 
				
			||||||
      off_node_bytes+=rbytes;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  if (dox) {
 | 
					 | 
				
			||||||
    if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      tag= dir+_processor*32;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      host_xmit = this->HostBufferMalloc(xbytes);
 | 
					 | 
				
			||||||
      CommsRequest_t srq;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#ifdef GRID_CHECKSUM_COMMS
 | 
					 | 
				
			||||||
      uint64_t xbytes_data = xbytes - 8;
 | 
					 | 
				
			||||||
      srq.ev = acceleratorCopyFromDeviceAsynch(xmit, host_xmit,xbytes_data); // Make this Asynch
 | 
					 | 
				
			||||||
      GRID_ASSERT(xbytes % 8 == 0);
 | 
					 | 
				
			||||||
      // flip one bit so that a zero buffer is not consistent
 | 
					 | 
				
			||||||
      uint64_t xsum = checksum_gpu((uint64_t*)xmit, xbytes_data / 8) ^ (checksum_index + 1 + 1000 * tag); 
 | 
					 | 
				
			||||||
      *(uint64_t*)(((char*)host_xmit) + xbytes_data) = xsum;
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
      srq.ev = acceleratorCopyFromDeviceAsynch(xmit, host_xmit,xbytes); // Make this Asynch
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      //      ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
 | 
					 | 
				
			||||||
      //      GRID_ASSERT(ierr==0);
 | 
					 | 
				
			||||||
      //      off_node_bytes+=xbytes;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      srq.PacketType = InterNodeXmit;
 | 
					 | 
				
			||||||
      srq.bytes      = xbytes;
 | 
					 | 
				
			||||||
      //      srq.req        = xrq;
 | 
					 | 
				
			||||||
      srq.host_buf   = host_xmit;
 | 
					 | 
				
			||||||
      srq.device_buf = xmit;
 | 
					 | 
				
			||||||
      srq.tag        = tag;
 | 
					 | 
				
			||||||
      srq.dest       = dest;
 | 
					 | 
				
			||||||
      srq.commdir    = commdir;
 | 
					 | 
				
			||||||
      list.push_back(srq);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  return off_node_bytes;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
/*
 | 
					 | 
				
			||||||
 * In the interest of better pipelining, poll for completion on each DtoH and 
 | 
					 | 
				
			||||||
 * start MPI_ISend in the meantime
 | 
					 | 
				
			||||||
 */
 | 
					 | 
				
			||||||
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  int pending = 0;
 | 
					 | 
				
			||||||
  do {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    pending = 0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int idx = 0; idx<list.size();idx++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      if ( list[idx].PacketType==InterNodeRecv ) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	int flag = 0;
 | 
					 | 
				
			||||||
	MPI_Status status;
 | 
					 | 
				
			||||||
	int ierr = MPI_Test(&list[idx].req,&flag,&status);
 | 
					 | 
				
			||||||
  assert(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
 | 
					  list.resize(0);
 | 
				
			||||||
	if ( flag ) {
 | 
					 | 
				
			||||||
	  //	  std::cout << " PollIrecv "<<idx<<" flag "<<flag<<std::endl;
 | 
					 | 
				
			||||||
#ifdef GRID_CHECKSUM_COMMS
 | 
					 | 
				
			||||||
 	  acceleratorCopyToDeviceAsynch(list[idx].host_buf,list[idx].device_buf,list[idx].bytes - 8);
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	  acceleratorCopyToDeviceAsynch(list[idx].host_buf,list[idx].device_buf,list[idx].bytes);
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
	  list[idx].PacketType=InterNodeReceiveHtoD;
 | 
					 | 
				
			||||||
	} else {
 | 
					 | 
				
			||||||
	  pending ++;
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    //    std::cout << " PollIrecv "<<pending<<" pending requests"<<std::endl;
 | 
					 | 
				
			||||||
  } while ( pending );
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  int pending = 0;
 | 
					 | 
				
			||||||
  do {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    pending = 0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int idx = 0; idx<list.size();idx++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      if ( list[idx].PacketType==InterNodeXmit ) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	if ( acceleratorEventIsComplete(list[idx].ev) ) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  void *host_xmit = list[idx].host_buf;
 | 
					 | 
				
			||||||
	  uint64_t xbytes = list[idx].bytes;
 | 
					 | 
				
			||||||
	  int dest        = list[idx].dest;
 | 
					 | 
				
			||||||
	  int tag         = list[idx].tag;
 | 
					 | 
				
			||||||
	  int commdir     = list[idx].commdir;
 | 
					 | 
				
			||||||
	  ///////////////////
 | 
					 | 
				
			||||||
	  // Send packet
 | 
					 | 
				
			||||||
	  ///////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  //	  std::cout << " DtoH is complete for index "<<idx<<" calling MPI_Isend "<<std::endl;
 | 
					 | 
				
			||||||
	  
 | 
					 | 
				
			||||||
	  MPI_Request xrq;
 | 
					 | 
				
			||||||
	  int ierr =MPI_Isend(host_xmit, (int)(xbytes/sizeof(int32_t)), MPI_INT32_T,dest,tag,communicator_halo[commdir],&xrq);
 | 
					 | 
				
			||||||
	  GRID_ASSERT(ierr==0);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  list[idx].req        = xrq; // Update the MPI request in the list
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  list[idx].PacketType=InterNodeXmitISend;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	} else {
 | 
					 | 
				
			||||||
	  // not done, so return to polling loop
 | 
					 | 
				
			||||||
	  pending++;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  } while (pending);
 | 
					 | 
				
			||||||
}  
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
					 | 
				
			||||||
							 void *xmit,void *xmit_comp,
 | 
					 | 
				
			||||||
							 int dest,int dox,
 | 
					 | 
				
			||||||
							 void *recv,void *recv_comp,
 | 
					 | 
				
			||||||
							 int from,int dor,
 | 
					 | 
				
			||||||
							 uint64_t xbytes,uint64_t rbytes,int dir)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  int ncomm  =communicator_halo.size();
 | 
					 | 
				
			||||||
  int commdir=dir%ncomm;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  MPI_Request xrq;
 | 
					 | 
				
			||||||
  MPI_Request rrq;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int ierr;
 | 
					 | 
				
			||||||
  int gdest = ShmRanks[dest];
 | 
					 | 
				
			||||||
  int gfrom = ShmRanks[from];
 | 
					 | 
				
			||||||
  int gme   = ShmRanks[_processor];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  GRID_ASSERT(dest != _processor);
 | 
					 | 
				
			||||||
  GRID_ASSERT(from != _processor);
 | 
					 | 
				
			||||||
  GRID_ASSERT(gme  == ShmRank);
 | 
					 | 
				
			||||||
  double off_node_bytes=0.0;
 | 
					 | 
				
			||||||
  int tag;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void * host_xmit = NULL;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ////////////////////////////////
 | 
					 | 
				
			||||||
  // Receives already posted
 | 
					 | 
				
			||||||
  // Copies already started
 | 
					 | 
				
			||||||
  ////////////////////////////////
 | 
					 | 
				
			||||||
  /*  
 | 
					 | 
				
			||||||
   * PHASE 2: (Begin)
 | 
					 | 
				
			||||||
   * - complete all copies
 | 
					 | 
				
			||||||
   * - post MPI send asynch
 | 
					 | 
				
			||||||
   */
 | 
					 | 
				
			||||||
#ifdef NVLINK_GET
 | 
					 | 
				
			||||||
  if ( dor ) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if ( ! ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) ) {
 | 
					 | 
				
			||||||
      // Intranode
 | 
					 | 
				
			||||||
      void *shm = (void *) this->ShmBufferTranslate(from,xmit);
 | 
					 | 
				
			||||||
      GRID_ASSERT(shm!=NULL);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      CommsRequest_t srq;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      srq.ev = acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      srq.PacketType = IntraNodeRecv;
 | 
					 | 
				
			||||||
      srq.bytes      = xbytes;
 | 
					 | 
				
			||||||
      //      srq.req        = xrq;
 | 
					 | 
				
			||||||
      srq.host_buf   = NULL;
 | 
					 | 
				
			||||||
      srq.device_buf = xmit;
 | 
					 | 
				
			||||||
      srq.tag        = -1;
 | 
					 | 
				
			||||||
      srq.dest       = dest;
 | 
					 | 
				
			||||||
      srq.commdir    = dir;
 | 
					 | 
				
			||||||
      list.push_back(srq);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }  
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
  if (dox) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if ( !( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) ) {
 | 
					 | 
				
			||||||
      // Intranode
 | 
					 | 
				
			||||||
      void *shm = (void *) this->ShmBufferTranslate(dest,recv);
 | 
					 | 
				
			||||||
      GRID_ASSERT(shm!=NULL);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      CommsRequest_t srq;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      srq.ev = acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      srq.PacketType = IntraNodeXmit;
 | 
					 | 
				
			||||||
      srq.bytes      = xbytes;
 | 
					 | 
				
			||||||
      //      srq.req        = xrq;
 | 
					 | 
				
			||||||
      srq.host_buf   = NULL;
 | 
					 | 
				
			||||||
      srq.device_buf = xmit;
 | 
					 | 
				
			||||||
      srq.tag        = -1;
 | 
					 | 
				
			||||||
      srq.dest       = dest;
 | 
					 | 
				
			||||||
      srq.commdir    = dir;
 | 
					 | 
				
			||||||
      list.push_back(srq);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  return off_node_bytes;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  acceleratorCopySynchronise(); // Complete all pending copy transfers D2D
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  std::vector<MPI_Status> status;
 | 
					 | 
				
			||||||
  std::vector<MPI_Request> MpiRequests;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
  for(int r=0;r<list.size();r++){
 | 
					 | 
				
			||||||
    // Must check each Send buf is clear to reuse
 | 
					 | 
				
			||||||
    if ( list[r].PacketType == InterNodeXmitISend ) MpiRequests.push_back(list[r].req);
 | 
					 | 
				
			||||||
    //    if ( list[r].PacketType == InterNodeRecv ) MpiRequests.push_back(list[r].req); // Already "Test" passed
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int nreq=MpiRequests.size();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  if (nreq>0) {
 | 
					 | 
				
			||||||
    status.resize(MpiRequests.size());
 | 
					 | 
				
			||||||
    int ierr = MPI_Waitall(MpiRequests.size(),&MpiRequests[0],&status[0]); // Sends are guaranteed in order. No harm in not completing.
 | 
					 | 
				
			||||||
    GRID_ASSERT(ierr==0);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  //  for(int r=0;r<nreq;r++){
 | 
					 | 
				
			||||||
  //    if ( list[r].PacketType==InterNodeRecv ) {
 | 
					 | 
				
			||||||
  //      acceleratorCopyToDeviceAsynch(list[r].host_buf,list[r].device_buf,list[r].bytes);
 | 
					 | 
				
			||||||
  //    }
 | 
					 | 
				
			||||||
  //  }
 | 
					 | 
				
			||||||
#ifdef GRID_CHECKSUM_COMMS
 | 
					 | 
				
			||||||
  for(int r=0;r<list.size();r++){
 | 
					 | 
				
			||||||
    if ( list[r].PacketType == InterNodeReceiveHtoD ) {
 | 
					 | 
				
			||||||
      uint64_t rbytes_data = list[r].bytes - 8;
 | 
					 | 
				
			||||||
      uint64_t expected_cs = *(uint64_t*)(((char*)list[r].host_buf) + rbytes_data);
 | 
					 | 
				
			||||||
      uint64_t computed_cs = checksum_gpu((uint64_t*)list[r].device_buf, rbytes_data / 8) ^ (checksum_index + 1 + 1000 * list[r].tag); //
 | 
					 | 
				
			||||||
      if (expected_cs != computed_cs) {
 | 
					 | 
				
			||||||
	// TODO: error message, backtrace, quit
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	fprintf(stderr, "GRID_CHECKSUM_COMMS error:\n");
 | 
					 | 
				
			||||||
	fprintf(stderr, " processor = %d\n", (int)_processor);
 | 
					 | 
				
			||||||
	for(int d=0;d<_processors.size();d++)
 | 
					 | 
				
			||||||
	  fprintf(stderr, " processor_coord[%d] = %d\n", d, _processor_coor[d]);
 | 
					 | 
				
			||||||
	fprintf(stderr, " hostname: %s\n", GridHostname());
 | 
					 | 
				
			||||||
	fprintf(stderr, " expected_cs: %ld\n", expected_cs);
 | 
					 | 
				
			||||||
	fprintf(stderr, " computed_cs: %ld\n", computed_cs);
 | 
					 | 
				
			||||||
	fprintf(stderr, " dest: %d\n", list[r].dest);
 | 
					 | 
				
			||||||
	fprintf(stderr, " tag: %d\n", list[r].tag);
 | 
					 | 
				
			||||||
	fprintf(stderr, " commdir: %d\n", list[r].commdir);
 | 
					 | 
				
			||||||
	fprintf(stderr, " bytes: %ld\n", (uint64_t)list[r].bytes);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	fflush(stderr);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	// backtrace
 | 
					 | 
				
			||||||
	int symbols = backtrace(Grid_backtrace_buffer,_NBACKTRACE);
 | 
					 | 
				
			||||||
	backtrace_symbols_fd(Grid_backtrace_buffer,symbols, 2);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	exit(1);
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  checksum_index += 1;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  list.resize(0);               // Delete the list
 | 
					 | 
				
			||||||
  this->HostBufferFreeAll();    // Clean up the buffer allocs
 | 
					 | 
				
			||||||
#ifndef NVLINK_GET
 | 
					 | 
				
			||||||
  this->StencilBarrier(); // if PUT must check our nbrs have filled our receive buffers.
 | 
					 | 
				
			||||||
#endif   
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
////////////////////////////////////////////
 | 
					 | 
				
			||||||
// END PIPELINE MODE / NO CUDA AWARE MPI
 | 
					 | 
				
			||||||
////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
void CartesianCommunicator::StencilBarrier(void)
 | 
					void CartesianCommunicator::StencilBarrier(void)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  FlightRecorder::StepLog("NodeBarrier");
 | 
					 | 
				
			||||||
  MPI_Barrier  (ShmComm);
 | 
					  MPI_Barrier  (ShmComm);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
//void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
 | 
					//void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
 | 
				
			||||||
@@ -879,19 +418,17 @@ void CartesianCommunicator::StencilBarrier(void)
 | 
				
			|||||||
//}
 | 
					//}
 | 
				
			||||||
void CartesianCommunicator::Barrier(void)
 | 
					void CartesianCommunicator::Barrier(void)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  FlightRecorder::StepLog("GridBarrier");
 | 
					 | 
				
			||||||
  int ierr = MPI_Barrier(communicator);
 | 
					  int ierr = MPI_Barrier(communicator);
 | 
				
			||||||
  GRID_ASSERT(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::Broadcast(int root,void* data,uint64_t bytes)
 | 
					void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  FlightRecorder::StepLog("Broadcast");
 | 
					 | 
				
			||||||
  int ierr=MPI_Bcast(data,
 | 
					  int ierr=MPI_Bcast(data,
 | 
				
			||||||
		     (int)bytes,
 | 
							     bytes,
 | 
				
			||||||
		     MPI_BYTE,
 | 
							     MPI_BYTE,
 | 
				
			||||||
		     root,
 | 
							     root,
 | 
				
			||||||
		     communicator);
 | 
							     communicator);
 | 
				
			||||||
  GRID_ASSERT(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
int CartesianCommunicator::RankWorld(void){
 | 
					int CartesianCommunicator::RankWorld(void){
 | 
				
			||||||
  int r;
 | 
					  int r;
 | 
				
			||||||
@@ -899,25 +436,23 @@ int CartesianCommunicator::RankWorld(void){
 | 
				
			|||||||
  return r;
 | 
					  return r;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::BarrierWorld(void){
 | 
					void CartesianCommunicator::BarrierWorld(void){
 | 
				
			||||||
  FlightRecorder::StepLog("BarrierWorld");
 | 
					 | 
				
			||||||
  int ierr = MPI_Barrier(communicator_world);
 | 
					  int ierr = MPI_Barrier(communicator_world);
 | 
				
			||||||
  GRID_ASSERT(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, uint64_t bytes)
 | 
					void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  FlightRecorder::StepLog("BroadcastWorld");
 | 
					 | 
				
			||||||
  int ierr= MPI_Bcast(data,
 | 
					  int ierr= MPI_Bcast(data,
 | 
				
			||||||
		      (int)bytes,
 | 
							      bytes,
 | 
				
			||||||
		      MPI_BYTE,
 | 
							      MPI_BYTE,
 | 
				
			||||||
		      root,
 | 
							      root,
 | 
				
			||||||
		      communicator_world);
 | 
							      communicator_world);
 | 
				
			||||||
  GRID_ASSERT(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,uint64_t words,uint64_t bytes)
 | 
					void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,uint64_t words,uint64_t bytes)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  Coordinate row(_ndimension,1);
 | 
					  Coordinate row(_ndimension,1);
 | 
				
			||||||
  GRID_ASSERT(dim>=0 && dim<_ndimension);
 | 
					  assert(dim>=0 && dim<_ndimension);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //  Split the communicator
 | 
					  //  Split the communicator
 | 
				
			||||||
  row[dim] = _processors[dim];
 | 
					  row[dim] = _processors[dim];
 | 
				
			||||||
@@ -928,7 +463,6 @@ void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,uint64_t words,
 | 
				
			|||||||
}
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::AllToAll(void  *in,void *out,uint64_t words,uint64_t bytes)
 | 
					void CartesianCommunicator::AllToAll(void  *in,void *out,uint64_t words,uint64_t bytes)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  FlightRecorder::StepLog("AllToAll");
 | 
					 | 
				
			||||||
  // MPI is a pain and uses "int" arguments
 | 
					  // MPI is a pain and uses "int" arguments
 | 
				
			||||||
  // 64*64*64*128*16 == 500Million elements of data.
 | 
					  // 64*64*64*128*16 == 500Million elements of data.
 | 
				
			||||||
  // When 24*4 bytes multiples get 50x 10^9 >>> 2x10^9 Y2K bug.
 | 
					  // When 24*4 bytes multiples get 50x 10^9 >>> 2x10^9 Y2K bug.
 | 
				
			||||||
@@ -938,8 +472,8 @@ void CartesianCommunicator::AllToAll(void  *in,void *out,uint64_t words,uint64_t
 | 
				
			|||||||
  int ibytes;
 | 
					  int ibytes;
 | 
				
			||||||
  iwords = words;
 | 
					  iwords = words;
 | 
				
			||||||
  ibytes = bytes;
 | 
					  ibytes = bytes;
 | 
				
			||||||
  GRID_ASSERT(words == iwords); // safe to cast to int ?
 | 
					  assert(words == iwords); // safe to cast to int ?
 | 
				
			||||||
  GRID_ASSERT(bytes == ibytes); // safe to cast to int ?
 | 
					  assert(bytes == ibytes); // safe to cast to int ?
 | 
				
			||||||
  MPI_Type_contiguous(ibytes,MPI_BYTE,&object);
 | 
					  MPI_Type_contiguous(ibytes,MPI_BYTE,&object);
 | 
				
			||||||
  MPI_Type_commit(&object);
 | 
					  MPI_Type_commit(&object);
 | 
				
			||||||
  MPI_Alltoall(in,iwords,object,out,iwords,object,communicator);
 | 
					  MPI_Alltoall(in,iwords,object,out,iwords,object,communicator);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -34,8 +34,6 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
///////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					///////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
Grid_MPI_Comm       CartesianCommunicator::communicator_world;
 | 
					Grid_MPI_Comm       CartesianCommunicator::communicator_world;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
void GridAbort(void) { abort(); }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
void CartesianCommunicator::Init(int *argc, char *** arv)
 | 
					void CartesianCommunicator::Init(int *argc, char *** arv)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GlobalSharedMemory::Init(communicator_world);
 | 
					  GlobalSharedMemory::Init(communicator_world);
 | 
				
			||||||
@@ -56,14 +54,14 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
 | 
				
			|||||||
{
 | 
					{
 | 
				
			||||||
  _shm_processors = Coordinate(processors.size(),1);
 | 
					  _shm_processors = Coordinate(processors.size(),1);
 | 
				
			||||||
  _processors = processors;
 | 
					  _processors = processors;
 | 
				
			||||||
  _ndimension = processors.size();  GRID_ASSERT(_ndimension>=1);
 | 
					  _ndimension = processors.size();  assert(_ndimension>=1);
 | 
				
			||||||
  _processor_coor.resize(_ndimension);
 | 
					  _processor_coor.resize(_ndimension);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  // Require 1^N processor grid for fake
 | 
					  // Require 1^N processor grid for fake
 | 
				
			||||||
  _Nprocessors=1;
 | 
					  _Nprocessors=1;
 | 
				
			||||||
  _processor = 0;
 | 
					  _processor = 0;
 | 
				
			||||||
  for(int d=0;d<_ndimension;d++) {
 | 
					  for(int d=0;d<_ndimension;d++) {
 | 
				
			||||||
    GRID_ASSERT(_processors[d]==1);
 | 
					    assert(_processors[d]==1);
 | 
				
			||||||
    _processor_coor[d] = 0;
 | 
					    _processor_coor[d] = 0;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  SetCommunicator(communicator_world);
 | 
					  SetCommunicator(communicator_world);
 | 
				
			||||||
@@ -89,21 +87,10 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
 | 
				
			|||||||
					   int dest,
 | 
										   int dest,
 | 
				
			||||||
					   void *recv,
 | 
										   void *recv,
 | 
				
			||||||
					   int from,
 | 
										   int from,
 | 
				
			||||||
					   uint64_t bytes)
 | 
										   int bytes)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GRID_ASSERT(0);
 | 
					  assert(0);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ GRID_ASSERT(list.size()==0);}
 | 
					 | 
				
			||||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
					 | 
				
			||||||
						void *xmit,
 | 
					 | 
				
			||||||
						int dest,
 | 
					 | 
				
			||||||
						void *recv,
 | 
					 | 
				
			||||||
						int from,
 | 
					 | 
				
			||||||
						uint64_t bytes,int dir)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  GRID_ASSERT(0);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,uint64_t words,uint64_t bytes)
 | 
					void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,uint64_t words,uint64_t bytes)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  bcopy(in,out,bytes*words);
 | 
					  bcopy(in,out,bytes*words);
 | 
				
			||||||
@@ -115,8 +102,8 @@ void CartesianCommunicator::AllToAll(void  *in,void *out,uint64_t words,uint64_t
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
int  CartesianCommunicator::RankWorld(void){return 0;}
 | 
					int  CartesianCommunicator::RankWorld(void){return 0;}
 | 
				
			||||||
void CartesianCommunicator::Barrier(void){}
 | 
					void CartesianCommunicator::Barrier(void){}
 | 
				
			||||||
void CartesianCommunicator::Broadcast(int root,void* data, uint64_t bytes) {}
 | 
					void CartesianCommunicator::Broadcast(int root,void* data, int bytes) {}
 | 
				
			||||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, uint64_t bytes) { }
 | 
					void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) { }
 | 
				
			||||||
void CartesianCommunicator::BarrierWorld(void) { }
 | 
					void CartesianCommunicator::BarrierWorld(void) { }
 | 
				
			||||||
int  CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor) {  return 0;}
 | 
					int  CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor) {  return 0;}
 | 
				
			||||||
void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor){  coor = _processor_coor; }
 | 
					void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor){  coor = _processor_coor; }
 | 
				
			||||||
@@ -126,33 +113,20 @@ void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest
 | 
				
			|||||||
  dest=0;
 | 
					  dest=0;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
int CartesianCommunicator::IsOffNode(int rank) { return false; }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
 | 
					double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
 | 
				
			||||||
						     int xmit_to_rank,int dox,
 | 
											     int xmit_to_rank,int dox,
 | 
				
			||||||
						     void *recv,
 | 
											     void *recv,
 | 
				
			||||||
						     int recv_from_rank,int dor,
 | 
											     int recv_from_rank,int dor,
 | 
				
			||||||
						     uint64_t bytes, int dir)
 | 
											     int bytes, int dir)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  return 2.0*bytes;
 | 
					  return 2.0*bytes;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {};
 | 
					double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
				
			||||||
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {};
 | 
					 | 
				
			||||||
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
 | 
					 | 
				
			||||||
							 void *xmit,
 | 
												 void *xmit,
 | 
				
			||||||
							 int xmit_to_rank,int dox,
 | 
												 int xmit_to_rank,int dox,
 | 
				
			||||||
							 void *recv,
 | 
												 void *recv,
 | 
				
			||||||
							 int recv_from_rank,int dor,
 | 
												 int recv_from_rank,int dor,
 | 
				
			||||||
							   uint64_t xbytes,uint64_t rbytes, int dir)
 | 
												 int xbytes,int rbytes, int dir)
 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  return 0.0;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
					 | 
				
			||||||
							 void *xmit, void *xmit_comp,
 | 
					 | 
				
			||||||
							 int xmit_to_rank,int dox,
 | 
					 | 
				
			||||||
							 void *recv, void *recv_comp,
 | 
					 | 
				
			||||||
							 int recv_from_rank,int dor,
 | 
					 | 
				
			||||||
							 uint64_t xbytes,uint64_t rbytes, int dir)
 | 
					 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  return xbytes+rbytes;
 | 
					  return xbytes+rbytes;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -40,9 +40,6 @@ int                 GlobalSharedMemory::_ShmAlloc;
 | 
				
			|||||||
uint64_t            GlobalSharedMemory::_ShmAllocBytes;
 | 
					uint64_t            GlobalSharedMemory::_ShmAllocBytes;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
std::vector<void *> GlobalSharedMemory::WorldShmCommBufs;
 | 
					std::vector<void *> GlobalSharedMemory::WorldShmCommBufs;
 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
void * GlobalSharedMemory::HostCommBuf;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
Grid_MPI_Comm       GlobalSharedMemory::WorldShmComm;
 | 
					Grid_MPI_Comm       GlobalSharedMemory::WorldShmComm;
 | 
				
			||||||
int                 GlobalSharedMemory::WorldShmRank;
 | 
					int                 GlobalSharedMemory::WorldShmRank;
 | 
				
			||||||
@@ -58,8 +55,8 @@ int                 GlobalSharedMemory::WorldNode;
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
void GlobalSharedMemory::SharedMemoryFree(void)
 | 
					void GlobalSharedMemory::SharedMemoryFree(void)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GRID_ASSERT(_ShmAlloc);
 | 
					  assert(_ShmAlloc);
 | 
				
			||||||
  GRID_ASSERT(_ShmAllocBytes>0);
 | 
					  assert(_ShmAllocBytes>0);
 | 
				
			||||||
  for(int r=0;r<WorldShmSize;r++){
 | 
					  for(int r=0;r<WorldShmSize;r++){
 | 
				
			||||||
    munmap(WorldShmCommBufs[r],_ShmAllocBytes);
 | 
					    munmap(WorldShmCommBufs[r],_ShmAllocBytes);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -69,26 +66,6 @@ void GlobalSharedMemory::SharedMemoryFree(void)
 | 
				
			|||||||
/////////////////////////////////
 | 
					/////////////////////////////////
 | 
				
			||||||
// Alloc, free shmem region
 | 
					// Alloc, free shmem region
 | 
				
			||||||
/////////////////////////////////
 | 
					/////////////////////////////////
 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
void *SharedMemory::HostBufferMalloc(size_t bytes){
 | 
					 | 
				
			||||||
  void *ptr = (void *)host_heap_top;
 | 
					 | 
				
			||||||
  host_heap_top  += bytes;
 | 
					 | 
				
			||||||
  host_heap_bytes+= bytes;
 | 
					 | 
				
			||||||
  if (host_heap_bytes >= host_heap_size) {
 | 
					 | 
				
			||||||
    std::cout<< " HostBufferMalloc exceeded heap size -- try increasing with --shm <MB> flag" <<std::endl;
 | 
					 | 
				
			||||||
    std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl;
 | 
					 | 
				
			||||||
    std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout<< " Current bytes is " << (host_heap_bytes/(1024*1024)) <<"MB"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout<< " Current heap  is " << (host_heap_size/(1024*1024)) <<"MB"<<std::endl;
 | 
					 | 
				
			||||||
    GRID_ASSERT(host_heap_bytes<host_heap_size);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  return ptr;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
void SharedMemory::HostBufferFreeAll(void) { 
 | 
					 | 
				
			||||||
  host_heap_top  =(size_t)HostCommBuf;
 | 
					 | 
				
			||||||
  host_heap_bytes=0;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
void *SharedMemory::ShmBufferMalloc(size_t bytes){
 | 
					void *SharedMemory::ShmBufferMalloc(size_t bytes){
 | 
				
			||||||
  //  bytes = (bytes+sizeof(vRealD))&(~(sizeof(vRealD)-1));// align up bytes
 | 
					  //  bytes = (bytes+sizeof(vRealD))&(~(sizeof(vRealD)-1));// align up bytes
 | 
				
			||||||
  void *ptr = (void *)heap_top;
 | 
					  void *ptr = (void *)heap_top;
 | 
				
			||||||
@@ -100,7 +77,7 @@ void *SharedMemory::ShmBufferMalloc(size_t bytes){
 | 
				
			|||||||
    std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl;
 | 
					    std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl;
 | 
				
			||||||
    std::cout<< " Current bytes is " << (heap_bytes/(1024*1024)) <<"MB"<<std::endl;
 | 
					    std::cout<< " Current bytes is " << (heap_bytes/(1024*1024)) <<"MB"<<std::endl;
 | 
				
			||||||
    std::cout<< " Current heap  is " << (heap_size/(1024*1024)) <<"MB"<<std::endl;
 | 
					    std::cout<< " Current heap  is " << (heap_size/(1024*1024)) <<"MB"<<std::endl;
 | 
				
			||||||
    GRID_ASSERT(heap_bytes<heap_size);
 | 
					    assert(heap_bytes<heap_size);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  //std::cerr << "ShmBufferMalloc "<<std::hex<< ptr<<" - "<<((uint64_t)ptr+bytes)<<std::dec<<std::endl;
 | 
					  //std::cerr << "ShmBufferMalloc "<<std::hex<< ptr<<" - "<<((uint64_t)ptr+bytes)<<std::dec<<std::endl;
 | 
				
			||||||
  return ptr;
 | 
					  return ptr;
 | 
				
			||||||
@@ -127,13 +104,13 @@ void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmD
 | 
				
			|||||||
  if ( str ) {
 | 
					  if ( str ) {
 | 
				
			||||||
    std::vector<int> IntShmDims;
 | 
					    std::vector<int> IntShmDims;
 | 
				
			||||||
    GridCmdOptionIntVector(std::string(str),IntShmDims);
 | 
					    GridCmdOptionIntVector(std::string(str),IntShmDims);
 | 
				
			||||||
    GRID_ASSERT(IntShmDims.size() == WorldDims.size());
 | 
					    assert(IntShmDims.size() == WorldDims.size());
 | 
				
			||||||
    long ShmSize = 1;
 | 
					    long ShmSize = 1;
 | 
				
			||||||
    for (int dim=0;dim<WorldDims.size();dim++) {
 | 
					    for (int dim=0;dim<WorldDims.size();dim++) {
 | 
				
			||||||
      ShmSize *= (ShmDims[dim] = IntShmDims[dim]);
 | 
					      ShmSize *= (ShmDims[dim] = IntShmDims[dim]);
 | 
				
			||||||
      GRID_ASSERT(divides(ShmDims[dim],WorldDims[dim]));
 | 
					      assert(divides(ShmDims[dim],WorldDims[dim]));
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    GRID_ASSERT(ShmSize == WorldShmSize);
 | 
					    assert(ShmSize == WorldShmSize);
 | 
				
			||||||
    return;
 | 
					    return;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -46,40 +46,8 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
#if defined (GRID_COMMS_MPI3) 
 | 
					#if defined (GRID_COMMS_MPI3) 
 | 
				
			||||||
typedef MPI_Comm    Grid_MPI_Comm;
 | 
					typedef MPI_Comm    Grid_MPI_Comm;
 | 
				
			||||||
typedef MPI_Request MpiCommsRequest_t;
 | 
					 | 
				
			||||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
typedef MPI_Request CommsRequest_t;
 | 
					typedef MPI_Request CommsRequest_t;
 | 
				
			||||||
#else 
 | 
					#else 
 | 
				
			||||||
/*
 | 
					 | 
				
			||||||
 * Enable state transitions as each packet flows.
 | 
					 | 
				
			||||||
 */
 | 
					 | 
				
			||||||
enum PacketType_t {
 | 
					 | 
				
			||||||
  FaceGather,
 | 
					 | 
				
			||||||
  InterNodeXmit,
 | 
					 | 
				
			||||||
  InterNodeRecv,
 | 
					 | 
				
			||||||
  IntraNodeXmit,
 | 
					 | 
				
			||||||
  IntraNodeRecv,
 | 
					 | 
				
			||||||
  InterNodeXmitISend,
 | 
					 | 
				
			||||||
  InterNodeReceiveHtoD
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
/*
 | 
					 | 
				
			||||||
 *Package arguments needed for various actions along packet flow
 | 
					 | 
				
			||||||
 */
 | 
					 | 
				
			||||||
typedef struct {
 | 
					 | 
				
			||||||
  PacketType_t PacketType;
 | 
					 | 
				
			||||||
  void *host_buf;
 | 
					 | 
				
			||||||
  void *device_buf;
 | 
					 | 
				
			||||||
  int dest;
 | 
					 | 
				
			||||||
  int tag;
 | 
					 | 
				
			||||||
  int commdir;
 | 
					 | 
				
			||||||
  unsigned long bytes;
 | 
					 | 
				
			||||||
  acceleratorEvent_t ev;
 | 
					 | 
				
			||||||
  MpiCommsRequest_t req;
 | 
					 | 
				
			||||||
} CommsRequest_t;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#else 
 | 
					 | 
				
			||||||
typedef int MpiCommsRequest_t;
 | 
					 | 
				
			||||||
typedef int CommsRequest_t;
 | 
					typedef int CommsRequest_t;
 | 
				
			||||||
typedef int Grid_MPI_Comm;
 | 
					typedef int Grid_MPI_Comm;
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
@@ -107,9 +75,7 @@ public:
 | 
				
			|||||||
  static int           Hugepages;
 | 
					  static int           Hugepages;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  static std::vector<void *> WorldShmCommBufs;
 | 
					  static std::vector<void *> WorldShmCommBufs;
 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					
 | 
				
			||||||
  static void *HostCommBuf;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  static Grid_MPI_Comm WorldComm;
 | 
					  static Grid_MPI_Comm WorldComm;
 | 
				
			||||||
  static int           WorldRank;
 | 
					  static int           WorldRank;
 | 
				
			||||||
  static int           WorldSize;
 | 
					  static int           WorldSize;
 | 
				
			||||||
@@ -137,7 +103,7 @@ public:
 | 
				
			|||||||
  ///////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////
 | 
				
			||||||
  static void SharedMemoryAllocate(uint64_t bytes, int flags);
 | 
					  static void SharedMemoryAllocate(uint64_t bytes, int flags);
 | 
				
			||||||
  static void SharedMemoryFree(void);
 | 
					  static void SharedMemoryFree(void);
 | 
				
			||||||
  //  static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
 | 
					  static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
 | 
				
			||||||
  static void SharedMemoryZero(void *dest,size_t bytes);
 | 
					  static void SharedMemoryZero(void *dest,size_t bytes);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
@@ -154,13 +120,6 @@ private:
 | 
				
			|||||||
  size_t heap_bytes;
 | 
					  size_t heap_bytes;
 | 
				
			||||||
  size_t heap_size;
 | 
					  size_t heap_size;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
  size_t host_heap_top;  // set in free all
 | 
					 | 
				
			||||||
  size_t host_heap_bytes;// set in free all
 | 
					 | 
				
			||||||
  void *HostCommBuf;     // set in SetCommunicator
 | 
					 | 
				
			||||||
  size_t host_heap_size; // set in SetCommunicator
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
protected:
 | 
					protected:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  Grid_MPI_Comm    ShmComm; // for barriers
 | 
					  Grid_MPI_Comm    ShmComm; // for barriers
 | 
				
			||||||
@@ -192,10 +151,7 @@ public:
 | 
				
			|||||||
  void *ShmBufferTranslate(int rank,void * local_p);
 | 
					  void *ShmBufferTranslate(int rank,void * local_p);
 | 
				
			||||||
  void *ShmBufferMalloc(size_t bytes);
 | 
					  void *ShmBufferMalloc(size_t bytes);
 | 
				
			||||||
  void  ShmBufferFreeAll(void) ;
 | 
					  void  ShmBufferFreeAll(void) ;
 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					  
 | 
				
			||||||
  void *HostBufferMalloc(size_t bytes);
 | 
					 | 
				
			||||||
  void HostBufferFreeAll(void);
 | 
					 | 
				
			||||||
#endif  
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////
 | 
					  //////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Make info on Nodes & ranks and Shared memory available
 | 
					  // Make info on Nodes & ranks and Shared memory available
 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////
 | 
					  //////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -39,12 +39,9 @@ Author: Christoph Lehner <christoph@lhnr.de>
 | 
				
			|||||||
#include <hip/hip_runtime_api.h>
 | 
					#include <hip/hip_runtime_api.h>
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
#ifdef GRID_SYCL
 | 
					#ifdef GRID_SYCL
 | 
				
			||||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
#define GRID_SYCL_LEVEL_ZERO_IPC
 | 
					#define GRID_SYCL_LEVEL_ZERO_IPC
 | 
				
			||||||
#define SHM_SOCKETS
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
#endif 
 | 
					 | 
				
			||||||
#include <syscall.h>
 | 
					#include <syscall.h>
 | 
				
			||||||
 | 
					#define SHM_SOCKETS 
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#include <sys/socket.h>
 | 
					#include <sys/socket.h>
 | 
				
			||||||
@@ -67,7 +64,7 @@ public:
 | 
				
			|||||||
  {
 | 
					  {
 | 
				
			||||||
    int errnum;
 | 
					    int errnum;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    sock = socket(AF_UNIX, SOCK_DGRAM, 0);  GRID_ASSERT(sock>0);
 | 
					    sock = socket(AF_UNIX, SOCK_DGRAM, 0);  assert(sock>0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    struct sockaddr_un sa_un = { 0 };
 | 
					    struct sockaddr_un sa_un = { 0 };
 | 
				
			||||||
    sa_un.sun_family = AF_UNIX;
 | 
					    sa_un.sun_family = AF_UNIX;
 | 
				
			||||||
@@ -158,7 +155,7 @@ public:
 | 
				
			|||||||
/*Construct from an MPI communicator*/
 | 
					/*Construct from an MPI communicator*/
 | 
				
			||||||
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
 | 
					void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GRID_ASSERT(_ShmSetup==0);
 | 
					  assert(_ShmSetup==0);
 | 
				
			||||||
  WorldComm = comm;
 | 
					  WorldComm = comm;
 | 
				
			||||||
  MPI_Comm_rank(WorldComm,&WorldRank);
 | 
					  MPI_Comm_rank(WorldComm,&WorldRank);
 | 
				
			||||||
  MPI_Comm_size(WorldComm,&WorldSize);
 | 
					  MPI_Comm_size(WorldComm,&WorldSize);
 | 
				
			||||||
@@ -184,7 +181,7 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  // WorldNodes
 | 
					  // WorldNodes
 | 
				
			||||||
  WorldNodes = WorldSize/WorldShmSize;
 | 
					  WorldNodes = WorldSize/WorldShmSize;
 | 
				
			||||||
  GRID_ASSERT( (WorldNodes * WorldShmSize) == WorldSize );
 | 
					  assert( (WorldNodes * WorldShmSize) == WorldSize );
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // FIXME: Check all WorldShmSize are the same ?
 | 
					  // FIXME: Check all WorldShmSize are the same ?
 | 
				
			||||||
@@ -209,7 +206,7 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
 | 
				
			|||||||
  MyGroup.resize(WorldShmSize);
 | 
					  MyGroup.resize(WorldShmSize);
 | 
				
			||||||
  for(int rank=0;rank<WorldSize;rank++){
 | 
					  for(int rank=0;rank<WorldSize;rank++){
 | 
				
			||||||
    if(WorldShmRanks[rank]!=MPI_UNDEFINED){
 | 
					    if(WorldShmRanks[rank]!=MPI_UNDEFINED){
 | 
				
			||||||
      GRID_ASSERT(g<WorldShmSize);
 | 
					      assert(g<WorldShmSize);
 | 
				
			||||||
      MyGroup[g++] = rank;
 | 
					      MyGroup[g++] = rank;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -225,7 +222,7 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
 | 
				
			|||||||
  // global sum leaders over comm world
 | 
					  // global sum leaders over comm world
 | 
				
			||||||
  ///////////////////////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////////////////////
 | 
				
			||||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&leaders_1hot[0],WorldSize,MPI_INT,MPI_SUM,WorldComm);
 | 
					  int ierr=MPI_Allreduce(MPI_IN_PLACE,&leaders_1hot[0],WorldSize,MPI_INT,MPI_SUM,WorldComm);
 | 
				
			||||||
  GRID_ASSERT(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  ///////////////////////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // find the group leaders world rank
 | 
					  // find the group leaders world rank
 | 
				
			||||||
@@ -246,7 +243,7 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
 | 
				
			|||||||
      WorldNode=g;
 | 
					      WorldNode=g;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  GRID_ASSERT(WorldNode!=-1);
 | 
					  assert(WorldNode!=-1);
 | 
				
			||||||
  _ShmSetup=1;
 | 
					  _ShmSetup=1;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
// Gray encode support 
 | 
					// Gray encode support 
 | 
				
			||||||
@@ -288,7 +285,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
 | 
				
			|||||||
  // Assert power of two shm_size.
 | 
					  // Assert power of two shm_size.
 | 
				
			||||||
  ////////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////////
 | 
				
			||||||
  int log2size = Log2Size(WorldShmSize,MAXLOG2RANKSPERNODE);
 | 
					  int log2size = Log2Size(WorldShmSize,MAXLOG2RANKSPERNODE);
 | 
				
			||||||
  GRID_ASSERT(log2size != -1);
 | 
					  assert(log2size != -1);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  ////////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Identify the hypercube coordinate of this node using hostname
 | 
					  // Identify the hypercube coordinate of this node using hostname
 | 
				
			||||||
@@ -309,7 +306,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
 | 
				
			|||||||
  // Parse ICE-XA hostname to get hypercube location
 | 
					  // Parse ICE-XA hostname to get hypercube location
 | 
				
			||||||
  gethostname(name,namelen);
 | 
					  gethostname(name,namelen);
 | 
				
			||||||
  int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ;
 | 
					  int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ;
 | 
				
			||||||
  GRID_ASSERT(nscan==3);
 | 
					  assert(nscan==3);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  int nlo = N%9;
 | 
					  int nlo = N%9;
 | 
				
			||||||
  int nhi = N/9;
 | 
					  int nhi = N/9;
 | 
				
			||||||
@@ -333,8 +330,8 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
 | 
				
			|||||||
  //////////////////////////////////////////////////////////////////
 | 
					  //////////////////////////////////////////////////////////////////
 | 
				
			||||||
  MPI_Bcast(&rootcoor, sizeof(rootcoor), MPI_BYTE, 0, WorldComm); 
 | 
					  MPI_Bcast(&rootcoor, sizeof(rootcoor), MPI_BYTE, 0, WorldComm); 
 | 
				
			||||||
  hypercoor=hypercoor-rootcoor;
 | 
					  hypercoor=hypercoor-rootcoor;
 | 
				
			||||||
  GRID_ASSERT(hypercoor<WorldSize);
 | 
					  assert(hypercoor<WorldSize);
 | 
				
			||||||
  GRID_ASSERT(hypercoor>=0);
 | 
					  assert(hypercoor>=0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //////////////////////////////////////
 | 
					  //////////////////////////////////////
 | 
				
			||||||
  // Printing
 | 
					  // Printing
 | 
				
			||||||
@@ -382,7 +379,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
 | 
				
			|||||||
  for(int i=0;i<ndimension;i++){
 | 
					  for(int i=0;i<ndimension;i++){
 | 
				
			||||||
    Nprocessors*=processors[i];
 | 
					    Nprocessors*=processors[i];
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  GRID_ASSERT(WorldSize==Nprocessors);
 | 
					  assert(WorldSize==Nprocessors);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  ////////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Establish mapping between lexico physics coord and WorldRank
 | 
					  // Establish mapping between lexico physics coord and WorldRank
 | 
				
			||||||
@@ -401,7 +398,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
 | 
				
			|||||||
  // Build the new communicator
 | 
					  // Build the new communicator
 | 
				
			||||||
  /////////////////////////////////////////////////////////////////
 | 
					  /////////////////////////////////////////////////////////////////
 | 
				
			||||||
  int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
 | 
					  int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
 | 
				
			||||||
  GRID_ASSERT(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
 | 
					void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
@@ -431,8 +428,7 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
 | 
				
			|||||||
  for(int i=0;i<ndimension;i++){
 | 
					  for(int i=0;i<ndimension;i++){
 | 
				
			||||||
    Nprocessors*=processors[i];
 | 
					    Nprocessors*=processors[i];
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  //  std::cerr << " WorldSize "<<WorldSize << " Nprocessors "<<Nprocessors<<" "<<processors<<std::endl; 
 | 
					  assert(WorldSize==Nprocessors);
 | 
				
			||||||
  GRID_ASSERT(WorldSize==Nprocessors);
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  ////////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Establish mapping between lexico physics coord and WorldRank
 | 
					  // Establish mapping between lexico physics coord and WorldRank
 | 
				
			||||||
@@ -448,7 +444,7 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
 | 
				
			|||||||
  // Build the new communicator
 | 
					  // Build the new communicator
 | 
				
			||||||
  /////////////////////////////////////////////////////////////////
 | 
					  /////////////////////////////////////////////////////////////////
 | 
				
			||||||
  int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
 | 
					  int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
 | 
				
			||||||
  GRID_ASSERT(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
// SHMGET
 | 
					// SHMGET
 | 
				
			||||||
@@ -457,8 +453,8 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
 | 
				
			|||||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
					void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl;
 | 
					  std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl;
 | 
				
			||||||
  GRID_ASSERT(_ShmSetup==1);
 | 
					  assert(_ShmSetup==1);
 | 
				
			||||||
  GRID_ASSERT(_ShmAlloc==0);
 | 
					  assert(_ShmAlloc==0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // allocate the shared windows for our group
 | 
					  // allocate the shared windows for our group
 | 
				
			||||||
@@ -516,11 +512,51 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			|||||||
// Hugetlbfs mapping intended
 | 
					// Hugetlbfs mapping intended
 | 
				
			||||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
#if defined(GRID_CUDA) ||defined(GRID_HIP)  || defined(GRID_SYCL)
 | 
					#if defined(GRID_CUDA) ||defined(GRID_HIP)  || defined(GRID_SYCL)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					//if defined(GRID_SYCL)
 | 
				
			||||||
 | 
					#if 0
 | 
				
			||||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
					void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  void * ShmCommBuf ; 
 | 
					  void * ShmCommBuf ; 
 | 
				
			||||||
  GRID_ASSERT(_ShmSetup==1);
 | 
					  assert(_ShmSetup==1);
 | 
				
			||||||
  GRID_ASSERT(_ShmAlloc==0);
 | 
					  assert(_ShmAlloc==0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					  // allocate the pointer array for shared windows for our group
 | 
				
			||||||
 | 
					  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					  MPI_Barrier(WorldShmComm);
 | 
				
			||||||
 | 
					  WorldShmCommBufs.resize(WorldShmSize);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					  // Each MPI rank should allocate our own buffer
 | 
				
			||||||
 | 
					  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					  ShmCommBuf = acceleratorAllocDevice(bytes);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  if (ShmCommBuf == (void *)NULL ) {
 | 
				
			||||||
 | 
					    std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
 | 
				
			||||||
 | 
					    exit(EXIT_FAILURE);  
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  std::cout << WorldRank << Mheader " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes 
 | 
				
			||||||
 | 
						    << "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  SharedMemoryZero(ShmCommBuf,bytes);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  assert(WorldShmSize == 1);
 | 
				
			||||||
 | 
					  for(int r=0;r<WorldShmSize;r++){
 | 
				
			||||||
 | 
					    WorldShmCommBufs[r] = ShmCommBuf;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  _ShmAllocBytes=bytes;
 | 
				
			||||||
 | 
					  _ShmAlloc=1;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#if defined(GRID_CUDA) ||defined(GRID_HIP) ||defined(GRID_SYCL)  
 | 
				
			||||||
 | 
					void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  void * ShmCommBuf ; 
 | 
				
			||||||
 | 
					  assert(_ShmSetup==1);
 | 
				
			||||||
 | 
					  assert(_ShmAlloc==0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // allocate the pointer array for shared windows for our group
 | 
					  // allocate the pointer array for shared windows for our group
 | 
				
			||||||
@@ -538,23 +574,17 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			|||||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Each MPI rank should allocate our own buffer
 | 
					  // Each MPI rank should allocate our own buffer
 | 
				
			||||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
  // printf("Host buffer allocate for GPU non-aware MPI\n");
 | 
					 | 
				
			||||||
  HostCommBuf= malloc(bytes); /// CHANGE THIS TO malloc_host
 | 
					 | 
				
			||||||
#endif  
 | 
					 | 
				
			||||||
  ShmCommBuf = acceleratorAllocDevice(bytes);
 | 
					  ShmCommBuf = acceleratorAllocDevice(bytes);
 | 
				
			||||||
  if (ShmCommBuf == (void *)NULL ) {
 | 
					  if (ShmCommBuf == (void *)NULL ) {
 | 
				
			||||||
    std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
 | 
					    std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
 | 
				
			||||||
    exit(EXIT_FAILURE);  
 | 
					    exit(EXIT_FAILURE);  
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  if ( WorldRank == 0 ){
 | 
					  if ( WorldRank == 0 ){
 | 
				
			||||||
    std::cout << Mheader " acceleratorAllocDevice "<< bytes 
 | 
					    std::cout << WorldRank << Mheader " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes 
 | 
				
			||||||
	      << "bytes at "<< std::hex<< ShmCommBuf << " - "<<(bytes-1+(uint64_t)ShmCommBuf) <<std::dec<<" for comms buffers " <<std::endl;
 | 
						      << "bytes at "<< std::hex<< ShmCommBuf << " - "<<(bytes-1+(uint64_t)ShmCommBuf) <<std::dec<<" for comms buffers " <<std::endl;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  SharedMemoryZero(ShmCommBuf,bytes);
 | 
					  SharedMemoryZero(ShmCommBuf,bytes);
 | 
				
			||||||
  if ( WorldRank == 0 ){
 | 
					  std::cout<< "Setting up IPC"<<std::endl;
 | 
				
			||||||
    std::cout<< Mheader "Setting up IPC"<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Loop over ranks/gpu's on our node
 | 
					  // Loop over ranks/gpu's on our node
 | 
				
			||||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -574,8 +604,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			|||||||
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
 | 
					#ifdef GRID_SYCL_LEVEL_ZERO_IPC
 | 
				
			||||||
    typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t;
 | 
					    typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    auto zeDevice    = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
 | 
					    auto zeDevice    = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
 | 
				
			||||||
    auto zeContext   = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
 | 
					    auto zeContext   = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    ze_ipc_mem_handle_t ihandle;
 | 
					    ze_ipc_mem_handle_t ihandle;
 | 
				
			||||||
    clone_mem_t handle;
 | 
					    clone_mem_t handle;
 | 
				
			||||||
@@ -585,6 +615,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			|||||||
      if ( err != ZE_RESULT_SUCCESS ) {
 | 
					      if ( err != ZE_RESULT_SUCCESS ) {
 | 
				
			||||||
	std::cerr << "SharedMemoryMPI.cc zeMemGetIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
 | 
						std::cerr << "SharedMemoryMPI.cc zeMemGetIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
 | 
				
			||||||
	exit(EXIT_FAILURE);
 | 
						exit(EXIT_FAILURE);
 | 
				
			||||||
 | 
					      } else {
 | 
				
			||||||
 | 
						std::cout << "SharedMemoryMPI.cc zeMemGetIpcHandle succeeded for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
      memcpy((void *)&handle.fd,(void *)&ihandle,sizeof(int));
 | 
					      memcpy((void *)&handle.fd,(void *)&ihandle,sizeof(int));
 | 
				
			||||||
      handle.pid = getpid();
 | 
					      handle.pid = getpid();
 | 
				
			||||||
@@ -629,7 +661,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			|||||||
			 MPI_BYTE,
 | 
								 MPI_BYTE,
 | 
				
			||||||
			 r,
 | 
								 r,
 | 
				
			||||||
			 WorldShmComm);
 | 
								 WorldShmComm);
 | 
				
			||||||
      GRID_ASSERT(ierr==0);
 | 
					      assert(ierr==0);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    ///////////////////////////////////////////////////////////////
 | 
					    ///////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -643,12 +675,12 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			|||||||
#ifdef SHM_SOCKETS
 | 
					#ifdef SHM_SOCKETS
 | 
				
			||||||
      myfd=UnixSockets::RecvFileDescriptor();
 | 
					      myfd=UnixSockets::RecvFileDescriptor();
 | 
				
			||||||
#else
 | 
					#else
 | 
				
			||||||
      //      std::cout<<"mapping seeking remote pid/fd "
 | 
					      std::cout<<"mapping seeking remote pid/fd "
 | 
				
			||||||
      //	       <<handle.pid<<"/"
 | 
						       <<handle.pid<<"/"
 | 
				
			||||||
      //	       <<handle.fd<<std::endl;
 | 
						       <<handle.fd<<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      int pidfd = syscall(SYS_pidfd_open,handle.pid,0);
 | 
					      int pidfd = syscall(SYS_pidfd_open,handle.pid,0);
 | 
				
			||||||
      //      std::cout<<"Using IpcHandle pidfd "<<pidfd<<"\n";
 | 
					      std::cout<<"Using IpcHandle pidfd "<<pidfd<<"\n";
 | 
				
			||||||
      //      int myfd  = syscall(SYS_pidfd_getfd,pidfd,handle.fd,0);
 | 
					      //      int myfd  = syscall(SYS_pidfd_getfd,pidfd,handle.fd,0);
 | 
				
			||||||
      myfd  = syscall(438,pidfd,handle.fd,0);
 | 
					      myfd  = syscall(438,pidfd,handle.fd,0);
 | 
				
			||||||
      int err_t = errno;
 | 
					      int err_t = errno;
 | 
				
			||||||
@@ -658,7 +690,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			|||||||
	assert(0);
 | 
						assert(0);
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
      //      std::cout<<"Using IpcHandle mapped remote pid "<<handle.pid <<" FD "<<handle.fd <<" to myfd "<<myfd<<"\n";
 | 
					      std::cout<<"Using IpcHandle mapped remote pid "<<handle.pid <<" FD "<<handle.fd <<" to myfd "<<myfd<<"\n";
 | 
				
			||||||
      memcpy((void *)&ihandle,(void *)&handle.ze,sizeof(ihandle));
 | 
					      memcpy((void *)&ihandle,(void *)&handle.ze,sizeof(ihandle));
 | 
				
			||||||
      memcpy((void *)&ihandle,(void *)&myfd,sizeof(int));
 | 
					      memcpy((void *)&ihandle,(void *)&myfd,sizeof(int));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -667,8 +699,11 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			|||||||
	std::cerr << "SharedMemoryMPI.cc "<<zeContext<<" "<<zeDevice<<std::endl;
 | 
						std::cerr << "SharedMemoryMPI.cc "<<zeContext<<" "<<zeDevice<<std::endl;
 | 
				
			||||||
	std::cerr << "SharedMemoryMPI.cc zeMemOpenIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl; 
 | 
						std::cerr << "SharedMemoryMPI.cc zeMemOpenIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl; 
 | 
				
			||||||
	exit(EXIT_FAILURE);
 | 
						exit(EXIT_FAILURE);
 | 
				
			||||||
 | 
					      } else {
 | 
				
			||||||
 | 
						std::cout << "SharedMemoryMPI.cc zeMemOpenIpcHandle succeeded for rank "<<r<<std::endl;
 | 
				
			||||||
 | 
						std::cout << "SharedMemoryMPI.cc zeMemOpenIpcHandle pointer is "<<std::hex<<thisBuf<<std::dec<<std::endl;
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
      GRID_ASSERT(thisBuf!=nullptr);
 | 
					      assert(thisBuf!=nullptr);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
#ifdef GRID_CUDA
 | 
					#ifdef GRID_CUDA
 | 
				
			||||||
@@ -703,14 +738,15 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			|||||||
  _ShmAllocBytes=bytes;
 | 
					  _ShmAllocBytes=bytes;
 | 
				
			||||||
  _ShmAlloc=1;
 | 
					  _ShmAlloc=1;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#else 
 | 
					#else 
 | 
				
			||||||
#ifdef GRID_MPI3_SHMMMAP
 | 
					#ifdef GRID_MPI3_SHMMMAP
 | 
				
			||||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
					void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl;
 | 
					  std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl;
 | 
				
			||||||
  GRID_ASSERT(_ShmSetup==1);
 | 
					  assert(_ShmSetup==1);
 | 
				
			||||||
  GRID_ASSERT(_ShmAlloc==0);
 | 
					  assert(_ShmAlloc==0);
 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // allocate the shared windows for our group
 | 
					  // allocate the shared windows for our group
 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -740,14 +776,13 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			|||||||
    void *ptr = (void *) mmap(NULL, bytes, PROT_READ | PROT_WRITE, mmap_flag,fd, 0); 
 | 
					    void *ptr = (void *) mmap(NULL, bytes, PROT_READ | PROT_WRITE, mmap_flag,fd, 0); 
 | 
				
			||||||
    if ( ptr == (void *)MAP_FAILED ) {    
 | 
					    if ( ptr == (void *)MAP_FAILED ) {    
 | 
				
			||||||
      printf("mmap %s failed\n",shm_name);
 | 
					      printf("mmap %s failed\n",shm_name);
 | 
				
			||||||
      perror("failed mmap");      GRID_ASSERT(0);    
 | 
					      perror("failed mmap");      assert(0);    
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    GRID_ASSERT(((uint64_t)ptr&0x3F)==0);
 | 
					    assert(((uint64_t)ptr&0x3F)==0);
 | 
				
			||||||
    close(fd);
 | 
					    close(fd);
 | 
				
			||||||
    WorldShmCommBufs[r] =ptr;
 | 
					    WorldShmCommBufs[r] =ptr;
 | 
				
			||||||
    //    std::cout << Mheader "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
 | 
					    //    std::cout << Mheader "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  std::cout<< Mheader " Intra-node IPC setup is complete "<<std::endl;
 | 
					 | 
				
			||||||
  _ShmAlloc=1;
 | 
					  _ShmAlloc=1;
 | 
				
			||||||
  _ShmAllocBytes  = bytes;
 | 
					  _ShmAllocBytes  = bytes;
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
@@ -757,8 +792,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			|||||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
					void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl;
 | 
					  std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl;
 | 
				
			||||||
  GRID_ASSERT(_ShmSetup==1);
 | 
					  assert(_ShmSetup==1);
 | 
				
			||||||
  GRID_ASSERT(_ShmAlloc==0);
 | 
					  assert(_ShmAlloc==0);
 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // allocate the shared windows for our group
 | 
					  // allocate the shared windows for our group
 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -769,7 +804,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			|||||||
  // Hugetlbf and others map filesystems as mappable huge pages
 | 
					  // Hugetlbf and others map filesystems as mappable huge pages
 | 
				
			||||||
  ////////////////////////////////////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  char shm_name [NAME_MAX];
 | 
					  char shm_name [NAME_MAX];
 | 
				
			||||||
  GRID_ASSERT(WorldShmSize == 1);
 | 
					  assert(WorldShmSize == 1);
 | 
				
			||||||
  for(int r=0;r<WorldShmSize;r++){
 | 
					  for(int r=0;r<WorldShmSize;r++){
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    int fd=-1;
 | 
					    int fd=-1;
 | 
				
			||||||
@@ -783,9 +818,9 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			|||||||
    void *ptr = (void *) mmap(NULL, bytes, PROT_READ | PROT_WRITE, mmap_flag,fd, 0); 
 | 
					    void *ptr = (void *) mmap(NULL, bytes, PROT_READ | PROT_WRITE, mmap_flag,fd, 0); 
 | 
				
			||||||
    if ( ptr == (void *)MAP_FAILED ) {    
 | 
					    if ( ptr == (void *)MAP_FAILED ) {    
 | 
				
			||||||
      printf("mmap %s failed\n",shm_name);
 | 
					      printf("mmap %s failed\n",shm_name);
 | 
				
			||||||
      perror("failed mmap");      GRID_ASSERT(0);    
 | 
					      perror("failed mmap");      assert(0);    
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    GRID_ASSERT(((uint64_t)ptr&0x3F)==0);
 | 
					    assert(((uint64_t)ptr&0x3F)==0);
 | 
				
			||||||
    close(fd);
 | 
					    close(fd);
 | 
				
			||||||
    WorldShmCommBufs[r] =ptr;
 | 
					    WorldShmCommBufs[r] =ptr;
 | 
				
			||||||
    //    std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
 | 
					    //    std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
 | 
				
			||||||
@@ -804,8 +839,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			|||||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
					void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			||||||
{ 
 | 
					{ 
 | 
				
			||||||
  std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl;
 | 
					  std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl;
 | 
				
			||||||
  GRID_ASSERT(_ShmSetup==1);
 | 
					  assert(_ShmSetup==1);
 | 
				
			||||||
  GRID_ASSERT(_ShmAlloc==0); 
 | 
					  assert(_ShmAlloc==0); 
 | 
				
			||||||
  MPI_Barrier(WorldShmComm);
 | 
					  MPI_Barrier(WorldShmComm);
 | 
				
			||||||
  WorldShmCommBufs.resize(WorldShmSize);
 | 
					  WorldShmCommBufs.resize(WorldShmSize);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -836,7 +871,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			|||||||
	perror("failed mmap");     
 | 
						perror("failed mmap");     
 | 
				
			||||||
	assert(0);    
 | 
						assert(0);    
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
      GRID_ASSERT(((uint64_t)ptr&0x3F)==0);
 | 
					      assert(((uint64_t)ptr&0x3F)==0);
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
      WorldShmCommBufs[r] =ptr;
 | 
					      WorldShmCommBufs[r] =ptr;
 | 
				
			||||||
      close(fd);
 | 
					      close(fd);
 | 
				
			||||||
@@ -857,8 +892,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			|||||||
      if ( fd<0 ) {	perror("failed shm_open");	assert(0);      }
 | 
					      if ( fd<0 ) {	perror("failed shm_open");	assert(0);      }
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
      void * ptr =  mmap(NULL,size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
 | 
					      void * ptr =  mmap(NULL,size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
 | 
				
			||||||
      if ( ptr == MAP_FAILED ) {       perror("failed mmap");      GRID_ASSERT(0);    }
 | 
					      if ( ptr == MAP_FAILED ) {       perror("failed mmap");      assert(0);    }
 | 
				
			||||||
      GRID_ASSERT(((uint64_t)ptr&0x3F)==0);
 | 
					      assert(((uint64_t)ptr&0x3F)==0);
 | 
				
			||||||
      WorldShmCommBufs[r] =ptr;
 | 
					      WorldShmCommBufs[r] =ptr;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      close(fd);
 | 
					      close(fd);
 | 
				
			||||||
@@ -881,14 +916,14 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
 | 
				
			|||||||
  bzero(dest,bytes);
 | 
					  bzero(dest,bytes);
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
//void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
 | 
					void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
 | 
				
			||||||
//{
 | 
					{
 | 
				
			||||||
//#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
 | 
					#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
 | 
				
			||||||
//  acceleratorCopyToDevice(src,dest,bytes);
 | 
					  acceleratorCopyToDevice(src,dest,bytes);
 | 
				
			||||||
//#else   
 | 
					#else   
 | 
				
			||||||
//  bcopy(src,dest,bytes);
 | 
					  bcopy(src,dest,bytes);
 | 
				
			||||||
//#endif
 | 
					#endif
 | 
				
			||||||
//}
 | 
					}
 | 
				
			||||||
////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////
 | 
				
			||||||
// Global shared functionality finished
 | 
					// Global shared functionality finished
 | 
				
			||||||
// Now move to per communicator functionality
 | 
					// Now move to per communicator functionality
 | 
				
			||||||
@@ -915,7 +950,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
 | 
				
			|||||||
  //////////////////////////////////////////////////////////////////////
 | 
					  //////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Map ShmRank to WorldShmRank and use the right buffer
 | 
					  // Map ShmRank to WorldShmRank and use the right buffer
 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////
 | 
					  //////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  GRID_ASSERT (GlobalSharedMemory::ShmAlloc()==1);
 | 
					  assert (GlobalSharedMemory::ShmAlloc()==1);
 | 
				
			||||||
  heap_size = GlobalSharedMemory::ShmAllocBytes();
 | 
					  heap_size = GlobalSharedMemory::ShmAllocBytes();
 | 
				
			||||||
  for(int r=0;r<ShmSize;r++){
 | 
					  for(int r=0;r<ShmSize;r++){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -924,16 +959,9 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
 | 
				
			|||||||
    MPI_Allreduce(MPI_IN_PLACE,&wsr,1,MPI_UINT32_T,MPI_SUM,ShmComm);
 | 
					    MPI_Allreduce(MPI_IN_PLACE,&wsr,1,MPI_UINT32_T,MPI_SUM,ShmComm);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    ShmCommBufs[r] = GlobalSharedMemory::WorldShmCommBufs[wsr];
 | 
					    ShmCommBufs[r] = GlobalSharedMemory::WorldShmCommBufs[wsr];
 | 
				
			||||||
    //    std::cerr << " SetCommunicator rank "<<r<<" comm "<<ShmCommBufs[r] <<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  ShmBufferFreeAll();
 | 
					  ShmBufferFreeAll();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
  host_heap_size = heap_size;
 | 
					 | 
				
			||||||
  HostCommBuf= GlobalSharedMemory::HostCommBuf;
 | 
					 | 
				
			||||||
  HostBufferFreeAll();
 | 
					 | 
				
			||||||
#endif  
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////////////////////////////
 | 
					  /////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // find comm ranks in our SHM group (i.e. which ranks are on our node)
 | 
					  // find comm ranks in our SHM group (i.e. which ranks are on our node)
 | 
				
			||||||
  /////////////////////////////////////////////////////////////////////
 | 
					  /////////////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -977,18 +1005,19 @@ void SharedMemory::SharedMemoryTest(void)
 | 
				
			|||||||
       check[0]=GlobalSharedMemory::WorldNode;
 | 
					       check[0]=GlobalSharedMemory::WorldNode;
 | 
				
			||||||
       check[1]=r;
 | 
					       check[1]=r;
 | 
				
			||||||
       check[2]=magic;
 | 
					       check[2]=magic;
 | 
				
			||||||
       acceleratorCopyToDevice(check,ShmCommBufs[r],3*sizeof(uint64_t));
 | 
					       GlobalSharedMemory::SharedMemoryCopy( ShmCommBufs[r], check, 3*sizeof(uint64_t));
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  ShmBarrier();
 | 
					  ShmBarrier();
 | 
				
			||||||
  for(uint64_t r=0;r<ShmSize;r++){
 | 
					  for(uint64_t r=0;r<ShmSize;r++){
 | 
				
			||||||
    acceleratorCopyFromDevice(ShmCommBufs[r],check,3*sizeof(uint64_t));
 | 
					 | 
				
			||||||
    GRID_ASSERT(check[0]==GlobalSharedMemory::WorldNode);
 | 
					 | 
				
			||||||
    GRID_ASSERT(check[1]==r);
 | 
					 | 
				
			||||||
    GRID_ASSERT(check[2]==magic);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
    ShmBarrier();
 | 
					    ShmBarrier();
 | 
				
			||||||
  std::cout << GridLogDebug << " SharedMemoryTest has passed "<<std::endl;
 | 
					    GlobalSharedMemory::SharedMemoryCopy(check,ShmCommBufs[r], 3*sizeof(uint64_t));
 | 
				
			||||||
 | 
					    ShmBarrier();
 | 
				
			||||||
 | 
					    assert(check[0]==GlobalSharedMemory::WorldNode);
 | 
				
			||||||
 | 
					    assert(check[1]==r);
 | 
				
			||||||
 | 
					    assert(check[2]==magic);
 | 
				
			||||||
 | 
					    ShmBarrier();
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
void *SharedMemory::ShmBuffer(int rank)
 | 
					void *SharedMemory::ShmBuffer(int rank)
 | 
				
			||||||
@@ -1003,14 +1032,12 @@ void *SharedMemory::ShmBuffer(int rank)
 | 
				
			|||||||
void *SharedMemory::ShmBufferTranslate(int rank,void * local_p)
 | 
					void *SharedMemory::ShmBufferTranslate(int rank,void * local_p)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  int gpeer = ShmRanks[rank];
 | 
					  int gpeer = ShmRanks[rank];
 | 
				
			||||||
  GRID_ASSERT(gpeer!=ShmRank); // never send to self
 | 
					  assert(gpeer!=ShmRank); // never send to self
 | 
				
			||||||
  //  std::cout << "ShmBufferTranslate for rank " << rank<<" peer "<<gpeer<<std::endl;
 | 
					 | 
				
			||||||
  if (gpeer == MPI_UNDEFINED){
 | 
					  if (gpeer == MPI_UNDEFINED){
 | 
				
			||||||
    return NULL;
 | 
					    return NULL;
 | 
				
			||||||
  } else { 
 | 
					  } else { 
 | 
				
			||||||
    uint64_t offset = (uint64_t)local_p - (uint64_t)ShmCommBufs[ShmRank];
 | 
					    uint64_t offset = (uint64_t)local_p - (uint64_t)ShmCommBufs[ShmRank];
 | 
				
			||||||
    uint64_t remote = (uint64_t)ShmCommBufs[gpeer]+offset;
 | 
					    uint64_t remote = (uint64_t)ShmCommBufs[gpeer]+offset;
 | 
				
			||||||
    //    std::cout << "ShmBufferTranslate : local,offset,remote "<<std::hex<<local_p<<" "<<offset<<" "<<remote<<std::dec<<std::endl;
 | 
					 | 
				
			||||||
    return (void *) remote;
 | 
					    return (void *) remote;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -34,7 +34,7 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
/*Construct from an MPI communicator*/
 | 
					/*Construct from an MPI communicator*/
 | 
				
			||||||
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
 | 
					void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GRID_ASSERT(_ShmSetup==0);
 | 
					  assert(_ShmSetup==0);
 | 
				
			||||||
  WorldComm = 0;
 | 
					  WorldComm = 0;
 | 
				
			||||||
  WorldRank = 0;
 | 
					  WorldRank = 0;
 | 
				
			||||||
  WorldSize = 1;
 | 
					  WorldSize = 1;
 | 
				
			||||||
@@ -62,8 +62,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			|||||||
{
 | 
					{
 | 
				
			||||||
  std::cout << header "SharedMemoryAllocate "<< bytes<< " GPU implementation "<<std::endl;
 | 
					  std::cout << header "SharedMemoryAllocate "<< bytes<< " GPU implementation "<<std::endl;
 | 
				
			||||||
  void * ShmCommBuf ; 
 | 
					  void * ShmCommBuf ; 
 | 
				
			||||||
  GRID_ASSERT(_ShmSetup==1);
 | 
					  assert(_ShmSetup==1);
 | 
				
			||||||
  GRID_ASSERT(_ShmAlloc==0);
 | 
					  assert(_ShmAlloc==0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Each MPI rank should allocate our own buffer
 | 
					  // Each MPI rank should allocate our own buffer
 | 
				
			||||||
@@ -92,8 +92,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			|||||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
					void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  void * ShmCommBuf ; 
 | 
					  void * ShmCommBuf ; 
 | 
				
			||||||
  GRID_ASSERT(_ShmSetup==1);
 | 
					  assert(_ShmSetup==1);
 | 
				
			||||||
  GRID_ASSERT(_ShmAlloc==0);
 | 
					  assert(_ShmAlloc==0);
 | 
				
			||||||
  int mmap_flag =0;
 | 
					  int mmap_flag =0;
 | 
				
			||||||
#ifdef MAP_ANONYMOUS
 | 
					#ifdef MAP_ANONYMOUS
 | 
				
			||||||
  mmap_flag = mmap_flag| MAP_SHARED | MAP_ANONYMOUS;
 | 
					  mmap_flag = mmap_flag| MAP_SHARED | MAP_ANONYMOUS;
 | 
				
			||||||
@@ -122,17 +122,17 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
 | 
				
			|||||||
{
 | 
					{
 | 
				
			||||||
  acceleratorMemSet(dest,0,bytes);
 | 
					  acceleratorMemSet(dest,0,bytes);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
//void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
 | 
					void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
 | 
				
			||||||
//{
 | 
					{
 | 
				
			||||||
//  acceleratorCopyToDevice(src,dest,bytes);
 | 
					  acceleratorCopyToDevice(src,dest,bytes);
 | 
				
			||||||
//}
 | 
					}
 | 
				
			||||||
////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////
 | 
				
			||||||
// Global shared functionality finished
 | 
					// Global shared functionality finished
 | 
				
			||||||
// Now move to per communicator functionality
 | 
					// Now move to per communicator functionality
 | 
				
			||||||
////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////
 | 
				
			||||||
void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
 | 
					void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GRID_ASSERT(GlobalSharedMemory::ShmAlloc()==1);
 | 
					  assert(GlobalSharedMemory::ShmAlloc()==1);
 | 
				
			||||||
  ShmRanks.resize(1);
 | 
					  ShmRanks.resize(1);
 | 
				
			||||||
  ShmCommBufs.resize(1);
 | 
					  ShmCommBufs.resize(1);
 | 
				
			||||||
  ShmRanks[0] = 0;
 | 
					  ShmRanks[0] = 0;
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -51,6 +51,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
#endif 
 | 
					#endif 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					NAMESPACE_BEGIN(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr> 
 | 
					template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr> 
 | 
				
			||||||
auto Cshift(const Expression &expr,int dim,int shift)  -> decltype(closure(expr)) 
 | 
					auto Cshift(const Expression &expr,int dim,int shift)  -> decltype(closure(expr)) 
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -30,11 +30,12 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
NAMESPACE_BEGIN(Grid);
 | 
					NAMESPACE_BEGIN(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
extern std::vector<std::pair<int,int> > Cshift_table; 
 | 
					extern std::vector<std::pair<int,int> > Cshift_table; 
 | 
				
			||||||
extern deviceVector<std::pair<int,int> > Cshift_table_device; 
 | 
					extern commVector<std::pair<int,int> > Cshift_table_device; 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
inline std::pair<int,int> *MapCshiftTable(void)
 | 
					inline std::pair<int,int> *MapCshiftTable(void)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  // GPU version
 | 
					  // GPU version
 | 
				
			||||||
 | 
					#ifdef ACCELERATOR_CSHIFT    
 | 
				
			||||||
  uint64_t sz=Cshift_table.size();
 | 
					  uint64_t sz=Cshift_table.size();
 | 
				
			||||||
  if (Cshift_table_device.size()!=sz )    {
 | 
					  if (Cshift_table_device.size()!=sz )    {
 | 
				
			||||||
    Cshift_table_device.resize(sz);
 | 
					    Cshift_table_device.resize(sz);
 | 
				
			||||||
@@ -44,13 +45,16 @@ inline std::pair<int,int> *MapCshiftTable(void)
 | 
				
			|||||||
			  sizeof(Cshift_table[0])*sz);
 | 
								  sizeof(Cshift_table[0])*sz);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  return &Cshift_table_device[0];
 | 
					  return &Cshift_table_device[0];
 | 
				
			||||||
 | 
					#else 
 | 
				
			||||||
 | 
					  return &Cshift_table[0];
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
  // CPU version use identify map
 | 
					  // CPU version use identify map
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
///////////////////////////////////////////////////////////////////
 | 
					///////////////////////////////////////////////////////////////////
 | 
				
			||||||
// Gather for when there is no need to SIMD split 
 | 
					// Gather for when there is no need to SIMD split 
 | 
				
			||||||
///////////////////////////////////////////////////////////////////
 | 
					///////////////////////////////////////////////////////////////////
 | 
				
			||||||
template<class vobj> void 
 | 
					template<class vobj> void 
 | 
				
			||||||
Gather_plane_simple (const Lattice<vobj> &rhs,deviceVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
 | 
					Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  int rd = rhs.Grid()->_rdimensions[dimension];
 | 
					  int rd = rhs.Grid()->_rdimensions[dimension];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -90,10 +94,17 @@ Gather_plane_simple (const Lattice<vobj> &rhs,deviceVector<vobj> &buffer,int dim
 | 
				
			|||||||
  {
 | 
					  {
 | 
				
			||||||
    auto buffer_p = & buffer[0];
 | 
					    auto buffer_p = & buffer[0];
 | 
				
			||||||
    auto table = MapCshiftTable();
 | 
					    auto table = MapCshiftTable();
 | 
				
			||||||
 | 
					#ifdef ACCELERATOR_CSHIFT
 | 
				
			||||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
					    autoView(rhs_v , rhs, AcceleratorRead);
 | 
				
			||||||
    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
					    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
				
			||||||
	coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second]));
 | 
						coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second]));
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
 | 
					    autoView(rhs_v , rhs, CpuRead);
 | 
				
			||||||
 | 
					    thread_for(i,ent,{
 | 
				
			||||||
 | 
					      buffer_p[table[i].first]=rhs_v[table[i].second];
 | 
				
			||||||
 | 
					    });
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -118,6 +129,7 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
 | 
				
			|||||||
  int n1=rhs.Grid()->_slice_stride[dimension];
 | 
					  int n1=rhs.Grid()->_slice_stride[dimension];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  if ( cbmask ==0x3){
 | 
					  if ( cbmask ==0x3){
 | 
				
			||||||
 | 
					#ifdef ACCELERATOR_CSHIFT
 | 
				
			||||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
					    autoView(rhs_v , rhs, AcceleratorRead);
 | 
				
			||||||
    accelerator_for(nn,e1*e2,1,{
 | 
					    accelerator_for(nn,e1*e2,1,{
 | 
				
			||||||
	int n = nn%e1;
 | 
						int n = nn%e1;
 | 
				
			||||||
@@ -128,10 +140,21 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
 | 
				
			|||||||
	vobj temp =rhs_v[so+o+b];
 | 
						vobj temp =rhs_v[so+o+b];
 | 
				
			||||||
	extract<vobj>(temp,pointers,offset);
 | 
						extract<vobj>(temp,pointers,offset);
 | 
				
			||||||
      });
 | 
					      });
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
 | 
					    autoView(rhs_v , rhs, CpuRead);
 | 
				
			||||||
 | 
					    thread_for2d(n,e1,b,e2,{
 | 
				
			||||||
 | 
						int o      =   n*n1;
 | 
				
			||||||
 | 
						int offset = b+n*e2;
 | 
				
			||||||
 | 
						
 | 
				
			||||||
 | 
						vobj temp =rhs_v[so+o+b];
 | 
				
			||||||
 | 
						extract<vobj>(temp,pointers,offset);
 | 
				
			||||||
 | 
					      });
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
  } else { 
 | 
					  } else { 
 | 
				
			||||||
    Coordinate rdim=rhs.Grid()->_rdimensions;
 | 
					    Coordinate rdim=rhs.Grid()->_rdimensions;
 | 
				
			||||||
    Coordinate cdm =rhs.Grid()->_checker_dim_mask;
 | 
					    Coordinate cdm =rhs.Grid()->_checker_dim_mask;
 | 
				
			||||||
    std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb?
 | 
					    std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb?
 | 
				
			||||||
 | 
					#ifdef ACCELERATOR_CSHIFT    
 | 
				
			||||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
					    autoView(rhs_v , rhs, AcceleratorRead);
 | 
				
			||||||
    accelerator_for(nn,e1*e2,1,{
 | 
					    accelerator_for(nn,e1*e2,1,{
 | 
				
			||||||
	int n = nn%e1;
 | 
						int n = nn%e1;
 | 
				
			||||||
@@ -152,13 +175,33 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
 | 
				
			|||||||
	  extract<vobj>(temp,pointers,offset);
 | 
						  extract<vobj>(temp,pointers,offset);
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
      });
 | 
					      });
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
 | 
					    autoView(rhs_v , rhs, CpuRead);
 | 
				
			||||||
 | 
					    thread_for2d(n,e1,b,e2,{
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						Coordinate coor;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						int o=n*n1;
 | 
				
			||||||
 | 
						int oindex = o+b;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					       	int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						int ocb=1<<cb;
 | 
				
			||||||
 | 
						int offset = b+n*e2;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						if ( ocb & cbmask ) {
 | 
				
			||||||
 | 
						  vobj temp =rhs_v[so+o+b];
 | 
				
			||||||
 | 
						  extract<vobj>(temp,pointers,offset);
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					      });
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
//////////////////////////////////////////////////////
 | 
					//////////////////////////////////////////////////////
 | 
				
			||||||
// Scatter for when there is no need to SIMD split
 | 
					// Scatter for when there is no need to SIMD split
 | 
				
			||||||
//////////////////////////////////////////////////////
 | 
					//////////////////////////////////////////////////////
 | 
				
			||||||
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,deviceVector<vobj> &buffer, int dimension,int plane,int cbmask)
 | 
					template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<vobj> &buffer, int dimension,int plane,int cbmask)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  int rd = rhs.Grid()->_rdimensions[dimension];
 | 
					  int rd = rhs.Grid()->_rdimensions[dimension];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -202,10 +245,17 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,deviceVector<
 | 
				
			|||||||
  {
 | 
					  {
 | 
				
			||||||
    auto buffer_p = & buffer[0];
 | 
					    auto buffer_p = & buffer[0];
 | 
				
			||||||
    auto table = MapCshiftTable();
 | 
					    auto table = MapCshiftTable();
 | 
				
			||||||
    autoView( rhs_v, rhs, AcceleratorWriteDiscard);
 | 
					#ifdef ACCELERATOR_CSHIFT    
 | 
				
			||||||
 | 
					    autoView( rhs_v, rhs, AcceleratorWrite);
 | 
				
			||||||
    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
					    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
				
			||||||
	coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second]));
 | 
						coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second]));
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
 | 
					    autoView( rhs_v, rhs, CpuWrite);
 | 
				
			||||||
 | 
					    thread_for(i,ent,{
 | 
				
			||||||
 | 
					      rhs_v[table[i].first]=buffer_p[table[i].second];
 | 
				
			||||||
 | 
					    });
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -228,7 +278,8 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
 | 
				
			|||||||
  if(cbmask ==0x3 ) {
 | 
					  if(cbmask ==0x3 ) {
 | 
				
			||||||
    int _slice_stride = rhs.Grid()->_slice_stride[dimension];
 | 
					    int _slice_stride = rhs.Grid()->_slice_stride[dimension];
 | 
				
			||||||
    int _slice_block = rhs.Grid()->_slice_block[dimension];
 | 
					    int _slice_block = rhs.Grid()->_slice_block[dimension];
 | 
				
			||||||
    autoView( rhs_v , rhs, AcceleratorWriteDiscard);
 | 
					#ifdef ACCELERATOR_CSHIFT    
 | 
				
			||||||
 | 
					    autoView( rhs_v , rhs, AcceleratorWrite);
 | 
				
			||||||
    accelerator_for(nn,e1*e2,1,{
 | 
					    accelerator_for(nn,e1*e2,1,{
 | 
				
			||||||
	int n = nn%e1;
 | 
						int n = nn%e1;
 | 
				
			||||||
	int b = nn/e1;
 | 
						int b = nn/e1;
 | 
				
			||||||
@@ -236,13 +287,21 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
 | 
				
			|||||||
	int offset = b+n*_slice_block;
 | 
						int offset = b+n*_slice_block;
 | 
				
			||||||
	merge(rhs_v[so+o+b],pointers,offset);
 | 
						merge(rhs_v[so+o+b],pointers,offset);
 | 
				
			||||||
      });
 | 
					      });
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
 | 
					    autoView( rhs_v , rhs, CpuWrite);
 | 
				
			||||||
 | 
					    thread_for2d(n,e1,b,e2,{
 | 
				
			||||||
 | 
						int o      = n*_slice_stride;
 | 
				
			||||||
 | 
						int offset = b+n*_slice_block;
 | 
				
			||||||
 | 
						merge(rhs_v[so+o+b],pointers,offset);
 | 
				
			||||||
 | 
					    });
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
  } else { 
 | 
					  } else { 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // Case of SIMD split AND checker dim cannot currently be hit, except in 
 | 
					    // Case of SIMD split AND checker dim cannot currently be hit, except in 
 | 
				
			||||||
    // Test_cshift_red_black code.
 | 
					    // Test_cshift_red_black code.
 | 
				
			||||||
    std::cout << "Scatter_plane merge GRID_ASSERT(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME
 | 
					    std::cout << "Scatter_plane merge assert(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME
 | 
				
			||||||
    std::cout<<" Unthreaded warning -- buffer is not densely packed ??"<<std::endl;
 | 
					    std::cout<<" Unthreaded warning -- buffer is not densely packed ??"<<std::endl;
 | 
				
			||||||
    GRID_ASSERT(0); // This will fail if hit on GPU
 | 
					    assert(0); // This will fail if hit on GPU
 | 
				
			||||||
    autoView( rhs_v, rhs, CpuWrite);
 | 
					    autoView( rhs_v, rhs, CpuWrite);
 | 
				
			||||||
    for(int n=0;n<e1;n++){
 | 
					    for(int n=0;n<e1;n++){
 | 
				
			||||||
      for(int b=0;b<e2;b++){
 | 
					      for(int b=0;b<e2;b++){
 | 
				
			||||||
@@ -301,11 +360,19 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    auto table = MapCshiftTable();
 | 
					    auto table = MapCshiftTable();
 | 
				
			||||||
 | 
					#ifdef ACCELERATOR_CSHIFT    
 | 
				
			||||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
					    autoView(rhs_v , rhs, AcceleratorRead);
 | 
				
			||||||
    autoView(lhs_v , lhs, AcceleratorWriteDiscard);
 | 
					    autoView(lhs_v , lhs, AcceleratorWrite);
 | 
				
			||||||
    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
					    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
				
			||||||
      coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second]));
 | 
					      coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second]));
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
 | 
					    autoView(rhs_v , rhs, CpuRead);
 | 
				
			||||||
 | 
					    autoView(lhs_v , lhs, CpuWrite);
 | 
				
			||||||
 | 
					    thread_for(i,ent,{
 | 
				
			||||||
 | 
					      lhs_v[table[i].first]=rhs_v[table[i].second];
 | 
				
			||||||
 | 
					    });
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -345,11 +412,19 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    auto table = MapCshiftTable();
 | 
					    auto table = MapCshiftTable();
 | 
				
			||||||
 | 
					#ifdef ACCELERATOR_CSHIFT    
 | 
				
			||||||
    autoView( rhs_v, rhs, AcceleratorRead);
 | 
					    autoView( rhs_v, rhs, AcceleratorRead);
 | 
				
			||||||
    autoView( lhs_v, lhs, AcceleratorWrite);
 | 
					    autoView( lhs_v, lhs, AcceleratorWrite);
 | 
				
			||||||
    accelerator_for(i,ent,1,{
 | 
					    accelerator_for(i,ent,1,{
 | 
				
			||||||
      permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
 | 
					      permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
 | 
					    autoView( rhs_v, rhs, CpuRead);
 | 
				
			||||||
 | 
					    autoView( lhs_v, lhs, CpuWrite);
 | 
				
			||||||
 | 
					    thread_for(i,ent,{
 | 
				
			||||||
 | 
					      permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
 | 
				
			||||||
 | 
					    });
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -29,13 +29,9 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
#ifndef _GRID_CSHIFT_MPI_H_
 | 
					#ifndef _GRID_CSHIFT_MPI_H_
 | 
				
			||||||
#define _GRID_CSHIFT_MPI_H_
 | 
					#define _GRID_CSHIFT_MPI_H_
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_BEGIN(Grid); 
 | 
					NAMESPACE_BEGIN(Grid); 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#ifdef GRID_CHECKSUM_COMMS
 | 
					 | 
				
			||||||
extern uint64_t checksum_index;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
const int Cshift_verbose=0;
 | 
					 | 
				
			||||||
template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift)
 | 
					template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
@@ -49,20 +45,6 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
 | 
				
			|||||||
  // Map to always positive shift modulo global full dimension.
 | 
					  // Map to always positive shift modulo global full dimension.
 | 
				
			||||||
  shift = (shift+fd)%fd;
 | 
					  shift = (shift+fd)%fd;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  if( shift ==0 ) {
 | 
					 | 
				
			||||||
    ret = rhs;
 | 
					 | 
				
			||||||
    return ret;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Potential easy fast cases:
 | 
					 | 
				
			||||||
  // Shift is a multiple of the local lattice extent.
 | 
					 | 
				
			||||||
  // Then need only to shift whole subvolumes
 | 
					 | 
				
			||||||
  int L = rhs.Grid()->_ldimensions[dimension];
 | 
					 | 
				
			||||||
  if ( (shift%L )==0 && !rhs.Grid()->CheckerBoarded(dimension) ) {
 | 
					 | 
				
			||||||
    Cshift_simple(ret,rhs,dimension,shift);
 | 
					 | 
				
			||||||
    return ret;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  ret.Checkerboard() = rhs.Grid()->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension);
 | 
					  ret.Checkerboard() = rhs.Grid()->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension);
 | 
				
			||||||
        
 | 
					        
 | 
				
			||||||
  // the permute type
 | 
					  // the permute type
 | 
				
			||||||
@@ -83,59 +65,10 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
 | 
				
			|||||||
    Cshift_comms(ret,rhs,dimension,shift);
 | 
					    Cshift_comms(ret,rhs,dimension,shift);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  t1=usecond();
 | 
					  t1=usecond();
 | 
				
			||||||
  if(Cshift_verbose) std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl;
 | 
					  //  std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl;
 | 
				
			||||||
  return ret;
 | 
					  return ret;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj> void Cshift_simple(Lattice<vobj>& ret,const Lattice<vobj> &rhs,int dimension,int shift)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  GridBase *grid=rhs.Grid();
 | 
					 | 
				
			||||||
  int comm_proc, xmit_to_rank, recv_from_rank;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  int fd              = rhs.Grid()->_fdimensions[dimension];
 | 
					 | 
				
			||||||
  int rd              = rhs.Grid()->_rdimensions[dimension];
 | 
					 | 
				
			||||||
  int ld              = rhs.Grid()->_ldimensions[dimension];
 | 
					 | 
				
			||||||
  int pd              = rhs.Grid()->_processors[dimension];
 | 
					 | 
				
			||||||
  int simd_layout     = rhs.Grid()->_simd_layout[dimension];
 | 
					 | 
				
			||||||
  int comm_dim        = rhs.Grid()->_processors[dimension] >1 ;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  comm_proc = ((shift)/ld)%pd;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
 | 
					 | 
				
			||||||
  if(comm_dim) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int64_t bytes = sizeof(vobj) * grid->oSites();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
					 | 
				
			||||||
    autoView(ret_v , ret, AcceleratorWrite);
 | 
					 | 
				
			||||||
    void *send_buf  = (void *)&rhs_v[0];
 | 
					 | 
				
			||||||
    void *recv_buf  = (void *)&ret_v[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
    grid->SendToRecvFrom(send_buf,
 | 
					 | 
				
			||||||
			 xmit_to_rank,
 | 
					 | 
				
			||||||
			 recv_buf,
 | 
					 | 
				
			||||||
			 recv_from_rank,
 | 
					 | 
				
			||||||
			 bytes);
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
    static hostVector<vobj> hrhs; hrhs.resize(grid->oSites());
 | 
					 | 
				
			||||||
    static hostVector<vobj> hret; hret.resize(grid->oSites());
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    void *hsend_buf = (void *)&hrhs[0];
 | 
					 | 
				
			||||||
    void *hrecv_buf = (void *)&hret[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    acceleratorCopyFromDevice(&send_buf[0],&hsend_buf[0],bytes);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    grid->SendToRecvFrom(hsend_buf,
 | 
					 | 
				
			||||||
			 xmit_to_rank,
 | 
					 | 
				
			||||||
			 hrecv_buf,
 | 
					 | 
				
			||||||
			 recv_from_rank,
 | 
					 | 
				
			||||||
			 bytes);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    acceleratorCopyToDevice(&hrecv_buf[0],&recv_buf[0],bytes);
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
template<class vobj> void Cshift_comms(Lattice<vobj>& ret,const Lattice<vobj> &rhs,int dimension,int shift)
 | 
					template<class vobj> void Cshift_comms(Lattice<vobj>& ret,const Lattice<vobj> &rhs,int dimension,int shift)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  int sshift[2];
 | 
					  int sshift[2];
 | 
				
			||||||
@@ -161,7 +94,7 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob
 | 
				
			|||||||
  sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
 | 
					  sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
 | 
				
			||||||
  sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
 | 
					  sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //  std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.Checkerboard()<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
 | 
					  //std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.checkerboard<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
 | 
				
			||||||
  if ( sshift[0] == sshift[1] ) {
 | 
					  if ( sshift[0] == sshift[1] ) {
 | 
				
			||||||
    //std::cout << "Single pass Cshift_comms" <<std::endl;
 | 
					    //std::cout << "Single pass Cshift_comms" <<std::endl;
 | 
				
			||||||
    Cshift_comms_simd(ret,rhs,dimension,shift,0x3);
 | 
					    Cshift_comms_simd(ret,rhs,dimension,shift,0x3);
 | 
				
			||||||
@@ -171,6 +104,8 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob
 | 
				
			|||||||
    Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
 | 
					    Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					#define ACCELERATOR_CSHIFT_NO_COPY
 | 
				
			||||||
 | 
					#ifdef ACCELERATOR_CSHIFT_NO_COPY
 | 
				
			||||||
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
					template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
@@ -184,19 +119,14 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
 | 
				
			|||||||
  int pd              = rhs.Grid()->_processors[dimension];
 | 
					  int pd              = rhs.Grid()->_processors[dimension];
 | 
				
			||||||
  int simd_layout     = rhs.Grid()->_simd_layout[dimension];
 | 
					  int simd_layout     = rhs.Grid()->_simd_layout[dimension];
 | 
				
			||||||
  int comm_dim        = rhs.Grid()->_processors[dimension] >1 ;
 | 
					  int comm_dim        = rhs.Grid()->_processors[dimension] >1 ;
 | 
				
			||||||
  GRID_ASSERT(simd_layout==1);
 | 
					  assert(simd_layout==1);
 | 
				
			||||||
  GRID_ASSERT(comm_dim==1);
 | 
					  assert(comm_dim==1);
 | 
				
			||||||
  GRID_ASSERT(shift>=0);
 | 
					  assert(shift>=0);
 | 
				
			||||||
  GRID_ASSERT(shift<fd);
 | 
					  assert(shift<fd);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
 | 
					  int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
 | 
				
			||||||
  static deviceVector<vobj> send_buf; send_buf.resize(buffer_size);
 | 
					  static cshiftVector<vobj> send_buf; send_buf.resize(buffer_size);
 | 
				
			||||||
  static deviceVector<vobj> recv_buf; recv_buf.resize(buffer_size);
 | 
					  static cshiftVector<vobj> recv_buf; recv_buf.resize(buffer_size);
 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
  int pad = (8 + sizeof(vobj) - 1) / sizeof(vobj);
 | 
					 | 
				
			||||||
  static hostVector<vobj> hsend_buf; hsend_buf.resize(buffer_size+pad);
 | 
					 | 
				
			||||||
  static hostVector<vobj> hrecv_buf; hrecv_buf.resize(buffer_size+pad);
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
  int cb= (cbmask==0x2)? Odd : Even;
 | 
					  int cb= (cbmask==0x2)? Odd : Even;
 | 
				
			||||||
  int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
 | 
					  int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
 | 
				
			||||||
@@ -211,11 +141,9 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
 | 
				
			|||||||
    int comm_proc = ((x+sshift)/rd)%pd;
 | 
					    int comm_proc = ((x+sshift)/rd)%pd;
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    if (comm_proc==0) {
 | 
					    if (comm_proc==0) {
 | 
				
			||||||
      FlightRecorder::StepLog("Cshift_Copy_plane");
 | 
					 | 
				
			||||||
      tcopy-=usecond();
 | 
					      tcopy-=usecond();
 | 
				
			||||||
      Copy_plane(ret,rhs,dimension,x,sx,cbmask); 
 | 
					      Copy_plane(ret,rhs,dimension,x,sx,cbmask); 
 | 
				
			||||||
      tcopy+=usecond();
 | 
					      tcopy+=usecond();
 | 
				
			||||||
      FlightRecorder::StepLog("Cshift_Copy_plane_complete");
 | 
					 | 
				
			||||||
    } else {
 | 
					    } else {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      int words = buffer_size;
 | 
					      int words = buffer_size;
 | 
				
			||||||
@@ -223,84 +151,39 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
      int bytes = words * sizeof(vobj);
 | 
					      int bytes = words * sizeof(vobj);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      FlightRecorder::StepLog("Cshift_Gather_plane");
 | 
					 | 
				
			||||||
      tgather-=usecond();
 | 
					      tgather-=usecond();
 | 
				
			||||||
      Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask);
 | 
					      Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask);
 | 
				
			||||||
      tgather+=usecond();
 | 
					      tgather+=usecond();
 | 
				
			||||||
      FlightRecorder::StepLog("Cshift_Gather_plane_complete");
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
      //      int rank           = grid->_processor;
 | 
					      //      int rank           = grid->_processor;
 | 
				
			||||||
      int recv_from_rank;
 | 
					      int recv_from_rank;
 | 
				
			||||||
      int xmit_to_rank;
 | 
					      int xmit_to_rank;
 | 
				
			||||||
 | 
					 | 
				
			||||||
      grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
 | 
					      grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
      tcomms-=usecond();
 | 
					      tcomms-=usecond();
 | 
				
			||||||
      grid->Barrier();
 | 
					      //      grid->Barrier();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      FlightRecorder::StepLog("Cshift_SendRecv");
 | 
					 | 
				
			||||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
      grid->SendToRecvFrom((void *)&send_buf[0],
 | 
					      grid->SendToRecvFrom((void *)&send_buf[0],
 | 
				
			||||||
			   xmit_to_rank,
 | 
								   xmit_to_rank,
 | 
				
			||||||
			   (void *)&recv_buf[0],
 | 
								   (void *)&recv_buf[0],
 | 
				
			||||||
			   recv_from_rank,
 | 
								   recv_from_rank,
 | 
				
			||||||
			   bytes);
 | 
								   bytes);
 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
      // bouncy bouncy
 | 
					 | 
				
			||||||
      acceleratorCopyFromDevice(&send_buf[0],&hsend_buf[0],bytes);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#ifdef GRID_CHECKSUM_COMMS
 | 
					 | 
				
			||||||
      GRID_ASSERT(bytes % 8 == 0);
 | 
					 | 
				
			||||||
      checksum_index++;
 | 
					 | 
				
			||||||
      uint64_t xsum = checksum_gpu((uint64_t*)&send_buf[0], bytes / 8) ^ (1 + checksum_index);
 | 
					 | 
				
			||||||
      *(uint64_t*)(((char*)&hsend_buf[0]) + bytes) = xsum;
 | 
					 | 
				
			||||||
      bytes += 8;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      grid->SendToRecvFrom((void *)&hsend_buf[0],
 | 
					 | 
				
			||||||
			   xmit_to_rank,
 | 
					 | 
				
			||||||
			   (void *)&hrecv_buf[0],
 | 
					 | 
				
			||||||
			   recv_from_rank,
 | 
					 | 
				
			||||||
			   bytes);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#ifdef GRID_CHECKSUM_COMMS
 | 
					 | 
				
			||||||
      bytes -= 8;
 | 
					 | 
				
			||||||
      acceleratorCopyToDevice(&hrecv_buf[0],&recv_buf[0],bytes);
 | 
					 | 
				
			||||||
      uint64_t expected_cs = *(uint64_t*)(((char*)&hrecv_buf[0]) + bytes);
 | 
					 | 
				
			||||||
      uint64_t computed_cs = checksum_gpu((uint64_t*)&recv_buf[0], bytes / 8) ^ (1 + checksum_index);
 | 
					 | 
				
			||||||
      std::cout << GridLogComms<< " Cshift: "
 | 
					 | 
				
			||||||
		<<" dim"<<dimension
 | 
					 | 
				
			||||||
		<<" shift "<<shift
 | 
					 | 
				
			||||||
		<< " rank "<< grid->ThisRank()
 | 
					 | 
				
			||||||
		<<" Coor "<<grid->ThisProcessorCoor()
 | 
					 | 
				
			||||||
		<<" send "<<xsum<<" to   "<<xmit_to_rank
 | 
					 | 
				
			||||||
		<<" recv "<<computed_cs<<" from "<<recv_from_rank
 | 
					 | 
				
			||||||
		<<std::endl;
 | 
					 | 
				
			||||||
      GRID_ASSERT(expected_cs == computed_cs);
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
      acceleratorCopyToDevice(&hrecv_buf[0],&recv_buf[0],bytes);
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
      FlightRecorder::StepLog("Cshift_SendRecv_complete");
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      xbytes+=bytes;
 | 
					      xbytes+=bytes;
 | 
				
			||||||
      grid->Barrier();
 | 
					      //      grid->Barrier();
 | 
				
			||||||
      tcomms+=usecond();
 | 
					      tcomms+=usecond();
 | 
				
			||||||
      FlightRecorder::StepLog("Cshift_barrier_complete");
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
      tscatter-=usecond();
 | 
					      tscatter-=usecond();
 | 
				
			||||||
      Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask);
 | 
					      Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask);
 | 
				
			||||||
      tscatter+=usecond();
 | 
					      tscatter+=usecond();
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  if (Cshift_verbose){
 | 
					  /*
 | 
				
			||||||
  std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
					  std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
				
			||||||
  std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
					  std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
				
			||||||
  std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
					  std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
				
			||||||
  std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
					  std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
				
			||||||
  std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
					  std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
				
			||||||
  }
 | 
					  */
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
					template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
				
			||||||
@@ -322,10 +205,10 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
				
			|||||||
  //    << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout 
 | 
					  //    << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout 
 | 
				
			||||||
  //    << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
 | 
					  //    << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GRID_ASSERT(comm_dim==1);
 | 
					  assert(comm_dim==1);
 | 
				
			||||||
  GRID_ASSERT(simd_layout==2);
 | 
					  assert(simd_layout==2);
 | 
				
			||||||
  GRID_ASSERT(shift>=0);
 | 
					  assert(shift>=0);
 | 
				
			||||||
  GRID_ASSERT(shift<fd);
 | 
					  assert(shift<fd);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  RealD tcopy=0.0;
 | 
					  RealD tcopy=0.0;
 | 
				
			||||||
  RealD tgather=0.0;
 | 
					  RealD tgather=0.0;
 | 
				
			||||||
@@ -341,8 +224,8 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
				
			|||||||
  int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
 | 
					  int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
 | 
				
			||||||
  //  int words = sizeof(vobj)/sizeof(vector_type);
 | 
					  //  int words = sizeof(vobj)/sizeof(vector_type);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  static std::vector<deviceVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd);
 | 
					  static std::vector<cshiftVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd);
 | 
				
			||||||
  static std::vector<deviceVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd);
 | 
					  static std::vector<cshiftVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd);
 | 
				
			||||||
  scalar_object *  recv_buf_extract_mpi;
 | 
					  scalar_object *  recv_buf_extract_mpi;
 | 
				
			||||||
  scalar_object *  send_buf_extract_mpi;
 | 
					  scalar_object *  send_buf_extract_mpi;
 | 
				
			||||||
 
 | 
					 
 | 
				
			||||||
@@ -350,18 +233,6 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
				
			|||||||
    send_buf_extract[s].resize(buffer_size);
 | 
					    send_buf_extract[s].resize(buffer_size);
 | 
				
			||||||
    recv_buf_extract[s].resize(buffer_size);
 | 
					    recv_buf_extract[s].resize(buffer_size);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
#ifdef GRID_CHECKSUM_COMMS
 | 
					 | 
				
			||||||
  buffer_size += (8 + sizeof(vobj) - 1) / sizeof(vobj);
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  static hostVector<vobj> hsend_buf; hsend_buf.resize(buffer_size);
 | 
					 | 
				
			||||||
  static hostVector<vobj> hrecv_buf; hrecv_buf.resize(buffer_size);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#ifdef GRID_CHECKSUM_COMMS
 | 
					 | 
				
			||||||
  buffer_size -= (8 + sizeof(vobj) - 1) / sizeof(vobj);
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  int bytes = buffer_size*sizeof(scalar_object);
 | 
					  int bytes = buffer_size*sizeof(scalar_object);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -404,60 +275,24 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
      if (nbr_ic) nbr_lane|=inner_bit;
 | 
					      if (nbr_ic) nbr_lane|=inner_bit;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      GRID_ASSERT (sx == nbr_ox);
 | 
					      assert (sx == nbr_ox);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      if(nbr_proc){
 | 
					      if(nbr_proc){
 | 
				
			||||||
	grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank); 
 | 
						grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank); 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	tcomms-=usecond();
 | 
						tcomms-=usecond();
 | 
				
			||||||
	grid->Barrier();
 | 
						//	grid->Barrier();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
 | 
						send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
 | 
				
			||||||
	recv_buf_extract_mpi = &recv_buf_extract[i][0];
 | 
						recv_buf_extract_mpi = &recv_buf_extract[i][0];
 | 
				
			||||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
	grid->SendToRecvFrom((void *)send_buf_extract_mpi,
 | 
						grid->SendToRecvFrom((void *)send_buf_extract_mpi,
 | 
				
			||||||
			     xmit_to_rank,
 | 
								     xmit_to_rank,
 | 
				
			||||||
			     (void *)recv_buf_extract_mpi,
 | 
								     (void *)recv_buf_extract_mpi,
 | 
				
			||||||
			     recv_from_rank,
 | 
								     recv_from_rank,
 | 
				
			||||||
			     bytes);
 | 
								     bytes);
 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
      // bouncy bouncy
 | 
					 | 
				
			||||||
	acceleratorCopyFromDevice((void *)send_buf_extract_mpi,(void *)&hsend_buf[0],bytes);
 | 
					 | 
				
			||||||
#ifdef GRID_CHECKSUM_COMMS
 | 
					 | 
				
			||||||
	assert(bytes % 8 == 0);
 | 
					 | 
				
			||||||
	checksum_index++;
 | 
					 | 
				
			||||||
	uint64_t xsum = checksum_gpu((uint64_t*)send_buf_extract_mpi, bytes / 8) ^ (1 + checksum_index);
 | 
					 | 
				
			||||||
	*(uint64_t*)(((char*)&hsend_buf[0]) + bytes) = xsum;
 | 
					 | 
				
			||||||
	bytes += 8;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
	grid->SendToRecvFrom((void *)&hsend_buf[0],
 | 
					 | 
				
			||||||
			     xmit_to_rank,
 | 
					 | 
				
			||||||
			     (void *)&hrecv_buf[0],
 | 
					 | 
				
			||||||
			     recv_from_rank,
 | 
					 | 
				
			||||||
			     bytes);
 | 
					 | 
				
			||||||
#ifdef GRID_CHECKSUM_COMMS
 | 
					 | 
				
			||||||
	bytes -= 8;
 | 
					 | 
				
			||||||
	acceleratorCopyToDevice((void *)&hrecv_buf[0],(void *)recv_buf_extract_mpi,bytes);
 | 
					 | 
				
			||||||
	uint64_t expected_cs = *(uint64_t*)(((char*)&hrecv_buf[0]) + bytes);
 | 
					 | 
				
			||||||
	uint64_t computed_cs = checksum_gpu((uint64_t*)recv_buf_extract_mpi, bytes / 8) ^ (1 + checksum_index);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	std::cout << GridLogComms<< " Cshift_comms_simd: "
 | 
					 | 
				
			||||||
		<<" dim"<<dimension
 | 
					 | 
				
			||||||
		<<" shift "<<shift
 | 
					 | 
				
			||||||
		<< " rank "<< grid->ThisRank()
 | 
					 | 
				
			||||||
		<<" Coor "<<grid->ThisProcessorCoor()
 | 
					 | 
				
			||||||
		<<" send "<<xsum<<" to   "<<xmit_to_rank
 | 
					 | 
				
			||||||
		<<" recv "<<computed_cs<<" from "<<recv_from_rank
 | 
					 | 
				
			||||||
		<<std::endl;
 | 
					 | 
				
			||||||
	assert(expected_cs == computed_cs);
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	acceleratorCopyToDevice((void *)&hrecv_buf[0],(void *)recv_buf_extract_mpi,bytes);
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
	xbytes+=bytes;
 | 
						xbytes+=bytes;
 | 
				
			||||||
	grid->Barrier();
 | 
						//	grid->Barrier();
 | 
				
			||||||
	tcomms+=usecond();
 | 
						tcomms+=usecond();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	rpointers[i] = &recv_buf_extract[i][0];
 | 
						rpointers[i] = &recv_buf_extract[i][0];
 | 
				
			||||||
@@ -470,15 +305,242 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
				
			|||||||
    Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
 | 
					    Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
 | 
				
			||||||
    tscatter+=usecond();
 | 
					    tscatter+=usecond();
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  if(Cshift_verbose){
 | 
					  /*
 | 
				
			||||||
  std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
					  std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
				
			||||||
  std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
					  std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
				
			||||||
  std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
					  std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
				
			||||||
  std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
					  std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
				
			||||||
  std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
					  std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
				
			||||||
 | 
					  */
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					#else 
 | 
				
			||||||
 | 
					template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
 | 
					  typedef typename vobj::scalar_type scalar_type;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  GridBase *grid=rhs.Grid();
 | 
				
			||||||
 | 
					  Lattice<vobj> temp(rhs.Grid());
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  int fd              = rhs.Grid()->_fdimensions[dimension];
 | 
				
			||||||
 | 
					  int rd              = rhs.Grid()->_rdimensions[dimension];
 | 
				
			||||||
 | 
					  int pd              = rhs.Grid()->_processors[dimension];
 | 
				
			||||||
 | 
					  int simd_layout     = rhs.Grid()->_simd_layout[dimension];
 | 
				
			||||||
 | 
					  int comm_dim        = rhs.Grid()->_processors[dimension] >1 ;
 | 
				
			||||||
 | 
					  assert(simd_layout==1);
 | 
				
			||||||
 | 
					  assert(comm_dim==1);
 | 
				
			||||||
 | 
					  assert(shift>=0);
 | 
				
			||||||
 | 
					  assert(shift<fd);
 | 
				
			||||||
 | 
					  RealD tcopy=0.0;
 | 
				
			||||||
 | 
					  RealD tgather=0.0;
 | 
				
			||||||
 | 
					  RealD tscatter=0.0;
 | 
				
			||||||
 | 
					  RealD tcomms=0.0;
 | 
				
			||||||
 | 
					  uint64_t xbytes=0;
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 | 
					  int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
 | 
				
			||||||
 | 
					  static cshiftVector<vobj> send_buf_v; send_buf_v.resize(buffer_size);
 | 
				
			||||||
 | 
					  static cshiftVector<vobj> recv_buf_v; recv_buf_v.resize(buffer_size);
 | 
				
			||||||
 | 
					  vobj *send_buf;
 | 
				
			||||||
 | 
					  vobj *recv_buf;
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    grid->ShmBufferFreeAll();
 | 
				
			||||||
 | 
					    size_t bytes = buffer_size*sizeof(vobj);
 | 
				
			||||||
 | 
					    send_buf=(vobj *)grid->ShmBufferMalloc(bytes);
 | 
				
			||||||
 | 
					    recv_buf=(vobj *)grid->ShmBufferMalloc(bytes);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
 | 
					  int cb= (cbmask==0x2)? Odd : Even;
 | 
				
			||||||
 | 
					  int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  for(int x=0;x<rd;x++){       
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    int sx        =  (x+sshift)%rd;
 | 
				
			||||||
 | 
					    int comm_proc = ((x+sshift)/rd)%pd;
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    if (comm_proc==0) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      tcopy-=usecond();
 | 
				
			||||||
 | 
					      Copy_plane(ret,rhs,dimension,x,sx,cbmask); 
 | 
				
			||||||
 | 
					      tcopy+=usecond();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    } else {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      int words = buffer_size;
 | 
				
			||||||
 | 
					      if (cbmask != 0x3) words=words>>1;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      int bytes = words * sizeof(vobj);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      tgather-=usecond();
 | 
				
			||||||
 | 
					      Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask);
 | 
				
			||||||
 | 
					      tgather+=usecond();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      //      int rank           = grid->_processor;
 | 
				
			||||||
 | 
					      int recv_from_rank;
 | 
				
			||||||
 | 
					      int xmit_to_rank;
 | 
				
			||||||
 | 
					      grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      tcomms-=usecond();
 | 
				
			||||||
 | 
					      //      grid->Barrier();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes);
 | 
				
			||||||
 | 
					      grid->SendToRecvFrom((void *)&send_buf[0],
 | 
				
			||||||
 | 
								   xmit_to_rank,
 | 
				
			||||||
 | 
								   (void *)&recv_buf[0],
 | 
				
			||||||
 | 
								   recv_from_rank,
 | 
				
			||||||
 | 
								   bytes);
 | 
				
			||||||
 | 
					      xbytes+=bytes;
 | 
				
			||||||
 | 
					      acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      //      grid->Barrier();
 | 
				
			||||||
 | 
					      tcomms+=usecond();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      tscatter-=usecond();
 | 
				
			||||||
 | 
					      Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask);
 | 
				
			||||||
 | 
					      tscatter+=usecond();
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  /*
 | 
				
			||||||
 | 
					  std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
				
			||||||
 | 
					  std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
				
			||||||
 | 
					  std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
				
			||||||
 | 
					  std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
				
			||||||
 | 
					  std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
				
			||||||
 | 
					  */
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  GridBase *grid=rhs.Grid();
 | 
				
			||||||
 | 
					  const int Nsimd = grid->Nsimd();
 | 
				
			||||||
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
 | 
					  typedef typename vobj::scalar_object scalar_object;
 | 
				
			||||||
 | 
					  typedef typename vobj::scalar_type scalar_type;
 | 
				
			||||||
 | 
					   
 | 
				
			||||||
 | 
					  int fd = grid->_fdimensions[dimension];
 | 
				
			||||||
 | 
					  int rd = grid->_rdimensions[dimension];
 | 
				
			||||||
 | 
					  int ld = grid->_ldimensions[dimension];
 | 
				
			||||||
 | 
					  int pd = grid->_processors[dimension];
 | 
				
			||||||
 | 
					  int simd_layout     = grid->_simd_layout[dimension];
 | 
				
			||||||
 | 
					  int comm_dim        = grid->_processors[dimension] >1 ;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  //std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
 | 
				
			||||||
 | 
					  //    << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout 
 | 
				
			||||||
 | 
					  //    << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  assert(comm_dim==1);
 | 
				
			||||||
 | 
					  assert(simd_layout==2);
 | 
				
			||||||
 | 
					  assert(shift>=0);
 | 
				
			||||||
 | 
					  assert(shift<fd);
 | 
				
			||||||
 | 
					  RealD tcopy=0.0;
 | 
				
			||||||
 | 
					  RealD tgather=0.0;
 | 
				
			||||||
 | 
					  RealD tscatter=0.0;
 | 
				
			||||||
 | 
					  RealD tcomms=0.0;
 | 
				
			||||||
 | 
					  uint64_t xbytes=0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  int permute_type=grid->PermuteType(dimension);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  ///////////////////////////////////////////////
 | 
				
			||||||
 | 
					  // Simd direction uses an extract/merge pair
 | 
				
			||||||
 | 
					  ///////////////////////////////////////////////
 | 
				
			||||||
 | 
					  int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
 | 
				
			||||||
 | 
					  //  int words = sizeof(vobj)/sizeof(vector_type);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  static std::vector<cshiftVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd);
 | 
				
			||||||
 | 
					  static std::vector<cshiftVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd);
 | 
				
			||||||
 | 
					  scalar_object *  recv_buf_extract_mpi;
 | 
				
			||||||
 | 
					  scalar_object *  send_buf_extract_mpi;
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    size_t bytes = sizeof(scalar_object)*buffer_size;
 | 
				
			||||||
 | 
					    grid->ShmBufferFreeAll();
 | 
				
			||||||
 | 
					    send_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
 | 
				
			||||||
 | 
					    recv_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  for(int s=0;s<Nsimd;s++){
 | 
				
			||||||
 | 
					    send_buf_extract[s].resize(buffer_size);
 | 
				
			||||||
 | 
					    recv_buf_extract[s].resize(buffer_size);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  int bytes = buffer_size*sizeof(scalar_object);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  ExtractPointerArray<scalar_object>  pointers(Nsimd); // 
 | 
				
			||||||
 | 
					  ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  ///////////////////////////////////////////
 | 
				
			||||||
 | 
					  // Work out what to send where
 | 
				
			||||||
 | 
					  ///////////////////////////////////////////
 | 
				
			||||||
 | 
					  int cb    = (cbmask==0x2)? Odd : Even;
 | 
				
			||||||
 | 
					  int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  // loop over outer coord planes orthog to dim
 | 
				
			||||||
 | 
					  for(int x=0;x<rd;x++){       
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // FIXME call local permute copy if none are offnode.
 | 
				
			||||||
 | 
					    for(int i=0;i<Nsimd;i++){       
 | 
				
			||||||
 | 
					      pointers[i] = &send_buf_extract[i][0];
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    tgather-=usecond();
 | 
				
			||||||
 | 
					    int sx   = (x+sshift)%rd;
 | 
				
			||||||
 | 
					    Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
 | 
				
			||||||
 | 
					    tgather+=usecond();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for(int i=0;i<Nsimd;i++){
 | 
				
			||||||
 | 
					      
 | 
				
			||||||
 | 
					      int inner_bit = (Nsimd>>(permute_type+1));
 | 
				
			||||||
 | 
					      int ic= (i&inner_bit)? 1:0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      int my_coor          = rd*ic + x;
 | 
				
			||||||
 | 
					      int nbr_coor         = my_coor+sshift;
 | 
				
			||||||
 | 
					      int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      int nbr_ic   = (nbr_coor%ld)/rd;    // inner coord of peer
 | 
				
			||||||
 | 
					      int nbr_ox   = (nbr_coor%rd);       // outer coord of peer
 | 
				
			||||||
 | 
					      int nbr_lane = (i&(~inner_bit));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      int recv_from_rank;
 | 
				
			||||||
 | 
					      int xmit_to_rank;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      if (nbr_ic) nbr_lane|=inner_bit;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      assert (sx == nbr_ox);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      if(nbr_proc){
 | 
				
			||||||
 | 
						grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank); 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						tcomms-=usecond();
 | 
				
			||||||
 | 
						//	grid->Barrier();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes);
 | 
				
			||||||
 | 
						grid->SendToRecvFrom((void *)send_buf_extract_mpi,
 | 
				
			||||||
 | 
								     xmit_to_rank,
 | 
				
			||||||
 | 
								     (void *)recv_buf_extract_mpi,
 | 
				
			||||||
 | 
								     recv_from_rank,
 | 
				
			||||||
 | 
								     bytes);
 | 
				
			||||||
 | 
						acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes);
 | 
				
			||||||
 | 
						xbytes+=bytes;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						//	grid->Barrier();
 | 
				
			||||||
 | 
						tcomms+=usecond();
 | 
				
			||||||
 | 
						rpointers[i] = &recv_buf_extract[i][0];
 | 
				
			||||||
 | 
					      } else { 
 | 
				
			||||||
 | 
						rpointers[i] = &send_buf_extract[nbr_lane][0];
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    tscatter-=usecond();
 | 
				
			||||||
 | 
					    Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
 | 
				
			||||||
 | 
					    tscatter+=usecond();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  /*
 | 
				
			||||||
 | 
					  std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
				
			||||||
 | 
					  std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
				
			||||||
 | 
					  std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
				
			||||||
 | 
					  std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
				
			||||||
 | 
					  std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s"<<std::endl;
 | 
				
			||||||
 | 
					  */
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
NAMESPACE_END(Grid); 
 | 
					NAMESPACE_END(Grid); 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,5 +1,5 @@
 | 
				
			|||||||
#include <Grid/GridCore.h>       
 | 
					#include <Grid/GridCore.h>       
 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					NAMESPACE_BEGIN(Grid);
 | 
				
			||||||
std::vector<std::pair<int,int> > Cshift_table; 
 | 
					std::vector<std::pair<int,int> > Cshift_table; 
 | 
				
			||||||
deviceVector<std::pair<int,int> > Cshift_table_device; 
 | 
					commVector<std::pair<int,int> > Cshift_table_device; 
 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -245,7 +245,7 @@ template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * =
 | 
				
			|||||||
inline void CBFromExpression(int &cb, const T1 &lat)  // Lattice leaf
 | 
					inline void CBFromExpression(int &cb, const T1 &lat)  // Lattice leaf
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  if ((cb == Odd) || (cb == Even)) {
 | 
					  if ((cb == Odd) || (cb == Even)) {
 | 
				
			||||||
    GRID_ASSERT(cb == lat.Checkerboard());
 | 
					    assert(cb == lat.Checkerboard());
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  cb = lat.Checkerboard();
 | 
					  cb = lat.Checkerboard();
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -257,30 +257,17 @@ void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice
 | 
				
			|||||||
  });
 | 
					  });
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#define FAST_AXPY_NORM
 | 
					 | 
				
			||||||
template<class sobj,class vobj> inline
 | 
					template<class sobj,class vobj> inline
 | 
				
			||||||
RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
 | 
					RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GRID_TRACE("axpy_norm");
 | 
					  GRID_TRACE("axpy_norm");
 | 
				
			||||||
#ifdef FAST_AXPY_NORM
 | 
					 | 
				
			||||||
    return axpy_norm_fast(ret,a,x,y);
 | 
					    return axpy_norm_fast(ret,a,x,y);
 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
  ret = a*x+y;
 | 
					 | 
				
			||||||
  RealD nn=norm2(ret);
 | 
					 | 
				
			||||||
  return nn;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
template<class sobj,class vobj> inline
 | 
					template<class sobj,class vobj> inline
 | 
				
			||||||
RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
 | 
					RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GRID_TRACE("axpby_norm");
 | 
					  GRID_TRACE("axpby_norm");
 | 
				
			||||||
#ifdef FAST_AXPY_NORM
 | 
					 | 
				
			||||||
    return axpby_norm_fast(ret,a,b,x,y);
 | 
					    return axpby_norm_fast(ret,a,b,x,y);
 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
  ret = a*x+b*y;
 | 
					 | 
				
			||||||
  RealD nn=norm2(ret);
 | 
					 | 
				
			||||||
  return nn;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
/// Trace product
 | 
					/// Trace product
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -120,12 +120,12 @@ public:
 | 
				
			|||||||
    GRID_TRACE("ExpressionTemplateEval");
 | 
					    GRID_TRACE("ExpressionTemplateEval");
 | 
				
			||||||
    GridBase *egrid(nullptr);
 | 
					    GridBase *egrid(nullptr);
 | 
				
			||||||
    GridFromExpression(egrid,expr);
 | 
					    GridFromExpression(egrid,expr);
 | 
				
			||||||
    GRID_ASSERT(egrid!=nullptr);
 | 
					    assert(egrid!=nullptr);
 | 
				
			||||||
    conformable(this->_grid,egrid);
 | 
					    conformable(this->_grid,egrid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    int cb=-1;
 | 
					    int cb=-1;
 | 
				
			||||||
    CBFromExpression(cb,expr);
 | 
					    CBFromExpression(cb,expr);
 | 
				
			||||||
    GRID_ASSERT( (cb==Odd) || (cb==Even));
 | 
					    assert( (cb==Odd) || (cb==Even));
 | 
				
			||||||
    this->checkerboard=cb;
 | 
					    this->checkerboard=cb;
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    auto exprCopy = expr;
 | 
					    auto exprCopy = expr;
 | 
				
			||||||
@@ -144,12 +144,12 @@ public:
 | 
				
			|||||||
    GRID_TRACE("ExpressionTemplateEval");
 | 
					    GRID_TRACE("ExpressionTemplateEval");
 | 
				
			||||||
    GridBase *egrid(nullptr);
 | 
					    GridBase *egrid(nullptr);
 | 
				
			||||||
    GridFromExpression(egrid,expr);
 | 
					    GridFromExpression(egrid,expr);
 | 
				
			||||||
    GRID_ASSERT(egrid!=nullptr);
 | 
					    assert(egrid!=nullptr);
 | 
				
			||||||
    conformable(this->_grid,egrid);
 | 
					    conformable(this->_grid,egrid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    int cb=-1;
 | 
					    int cb=-1;
 | 
				
			||||||
    CBFromExpression(cb,expr);
 | 
					    CBFromExpression(cb,expr);
 | 
				
			||||||
    GRID_ASSERT( (cb==Odd) || (cb==Even));
 | 
					    assert( (cb==Odd) || (cb==Even));
 | 
				
			||||||
    this->checkerboard=cb;
 | 
					    this->checkerboard=cb;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    auto exprCopy = expr;
 | 
					    auto exprCopy = expr;
 | 
				
			||||||
@@ -168,12 +168,12 @@ public:
 | 
				
			|||||||
    GRID_TRACE("ExpressionTemplateEval");
 | 
					    GRID_TRACE("ExpressionTemplateEval");
 | 
				
			||||||
    GridBase *egrid(nullptr);
 | 
					    GridBase *egrid(nullptr);
 | 
				
			||||||
    GridFromExpression(egrid,expr);
 | 
					    GridFromExpression(egrid,expr);
 | 
				
			||||||
    GRID_ASSERT(egrid!=nullptr);
 | 
					    assert(egrid!=nullptr);
 | 
				
			||||||
    conformable(this->_grid,egrid);
 | 
					    conformable(this->_grid,egrid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    int cb=-1;
 | 
					    int cb=-1;
 | 
				
			||||||
    CBFromExpression(cb,expr);
 | 
					    CBFromExpression(cb,expr);
 | 
				
			||||||
    GRID_ASSERT( (cb==Odd) || (cb==Even));
 | 
					    assert( (cb==Odd) || (cb==Even));
 | 
				
			||||||
    this->checkerboard=cb;
 | 
					    this->checkerboard=cb;
 | 
				
			||||||
    auto exprCopy = expr;
 | 
					    auto exprCopy = expr;
 | 
				
			||||||
    ExpressionViewOpen(exprCopy);
 | 
					    ExpressionViewOpen(exprCopy);
 | 
				
			||||||
@@ -191,11 +191,11 @@ public:
 | 
				
			|||||||
  Lattice(const LatticeUnaryExpression<Op,T1> & expr) {
 | 
					  Lattice(const LatticeUnaryExpression<Op,T1> & expr) {
 | 
				
			||||||
    this->_grid = nullptr;
 | 
					    this->_grid = nullptr;
 | 
				
			||||||
    GridFromExpression(this->_grid,expr);
 | 
					    GridFromExpression(this->_grid,expr);
 | 
				
			||||||
    GRID_ASSERT(this->_grid!=nullptr);
 | 
					    assert(this->_grid!=nullptr);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    int cb=-1;
 | 
					    int cb=-1;
 | 
				
			||||||
    CBFromExpression(cb,expr);
 | 
					    CBFromExpression(cb,expr);
 | 
				
			||||||
    GRID_ASSERT( (cb==Odd) || (cb==Even));
 | 
					    assert( (cb==Odd) || (cb==Even));
 | 
				
			||||||
    this->checkerboard=cb;
 | 
					    this->checkerboard=cb;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    resize(this->_grid->oSites());
 | 
					    resize(this->_grid->oSites());
 | 
				
			||||||
@@ -206,11 +206,11 @@ public:
 | 
				
			|||||||
  Lattice(const LatticeBinaryExpression<Op,T1,T2> & expr) {
 | 
					  Lattice(const LatticeBinaryExpression<Op,T1,T2> & expr) {
 | 
				
			||||||
    this->_grid = nullptr;
 | 
					    this->_grid = nullptr;
 | 
				
			||||||
    GridFromExpression(this->_grid,expr);
 | 
					    GridFromExpression(this->_grid,expr);
 | 
				
			||||||
    GRID_ASSERT(this->_grid!=nullptr);
 | 
					    assert(this->_grid!=nullptr);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    int cb=-1;
 | 
					    int cb=-1;
 | 
				
			||||||
    CBFromExpression(cb,expr);
 | 
					    CBFromExpression(cb,expr);
 | 
				
			||||||
    GRID_ASSERT( (cb==Odd) || (cb==Even));
 | 
					    assert( (cb==Odd) || (cb==Even));
 | 
				
			||||||
    this->checkerboard=cb;
 | 
					    this->checkerboard=cb;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    resize(this->_grid->oSites());
 | 
					    resize(this->_grid->oSites());
 | 
				
			||||||
@@ -221,11 +221,11 @@ public:
 | 
				
			|||||||
  Lattice(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr) {
 | 
					  Lattice(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr) {
 | 
				
			||||||
    this->_grid = nullptr;
 | 
					    this->_grid = nullptr;
 | 
				
			||||||
    GridFromExpression(this->_grid,expr);
 | 
					    GridFromExpression(this->_grid,expr);
 | 
				
			||||||
    GRID_ASSERT(this->_grid!=nullptr);
 | 
					    assert(this->_grid!=nullptr);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    int cb=-1;
 | 
					    int cb=-1;
 | 
				
			||||||
    CBFromExpression(cb,expr);
 | 
					    CBFromExpression(cb,expr);
 | 
				
			||||||
    GRID_ASSERT( (cb==Odd) || (cb==Even));
 | 
					    assert( (cb==Odd) || (cb==Even));
 | 
				
			||||||
    this->checkerboard=cb;
 | 
					    this->checkerboard=cb;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    resize(this->_grid->oSites());
 | 
					    resize(this->_grid->oSites());
 | 
				
			||||||
@@ -234,23 +234,10 @@ public:
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){
 | 
					  template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){
 | 
				
			||||||
    vobj vtmp;
 | 
					 | 
				
			||||||
    vtmp = r;
 | 
					 | 
				
			||||||
#if 1
 | 
					 | 
				
			||||||
    deviceVector<vobj> vvtmp(1);
 | 
					 | 
				
			||||||
    acceleratorPut(vvtmp[0],vtmp);
 | 
					 | 
				
			||||||
    vobj *vvtmp_p = & vvtmp[0];
 | 
					 | 
				
			||||||
    auto me  = View(AcceleratorWrite);
 | 
					 | 
				
			||||||
    accelerator_for(ss,me.size(),vobj::Nsimd(),{
 | 
					 | 
				
			||||||
	auto stmp=coalescedRead(*vvtmp_p);
 | 
					 | 
				
			||||||
	coalescedWrite(me[ss],stmp);
 | 
					 | 
				
			||||||
    });
 | 
					 | 
				
			||||||
#else    
 | 
					 | 
				
			||||||
    auto me  = View(CpuWrite);
 | 
					    auto me  = View(CpuWrite);
 | 
				
			||||||
    thread_for(ss,me.size(),{
 | 
					    thread_for(ss,me.size(),{
 | 
				
			||||||
	me[ss]= r;
 | 
						me[ss]= r;
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
#endif    
 | 
					 | 
				
			||||||
    me.ViewClose();
 | 
					    me.ViewClose();
 | 
				
			||||||
    return *this;
 | 
					    return *this;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -264,7 +251,7 @@ public:
 | 
				
			|||||||
  Lattice(GridBase *grid,ViewMode mode=AcceleratorWriteDiscard) { 
 | 
					  Lattice(GridBase *grid,ViewMode mode=AcceleratorWriteDiscard) { 
 | 
				
			||||||
    this->_grid = grid;
 | 
					    this->_grid = grid;
 | 
				
			||||||
    resize(this->_grid->oSites());
 | 
					    resize(this->_grid->oSites());
 | 
				
			||||||
    GRID_ASSERT((((uint64_t)&this->_odata[0])&0xF) ==0);
 | 
					    assert((((uint64_t)&this->_odata[0])&0xF) ==0);
 | 
				
			||||||
    this->checkerboard=0;
 | 
					    this->checkerboard=0;
 | 
				
			||||||
    SetViewMode(mode);
 | 
					    SetViewMode(mode);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -373,7 +360,7 @@ public:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
 | 
					template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					  typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
  for(int64_t g=0;g<o.Grid()->_gsites;g++){
 | 
					  for(int g=0;g<o.Grid()->_gsites;g++){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    Coordinate gcoor;
 | 
					    Coordinate gcoor;
 | 
				
			||||||
    o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);
 | 
					    o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -53,19 +53,36 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
 | 
				
			|||||||
  typedef decltype(basis[0]) Field;
 | 
					  typedef decltype(basis[0]) Field;
 | 
				
			||||||
  typedef decltype(basis[0].View(AcceleratorRead)) View;
 | 
					  typedef decltype(basis[0].View(AcceleratorRead)) View;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  hostVector<View>  h_basis_v(basis.size());
 | 
					  Vector<View> basis_v; basis_v.reserve(basis.size());
 | 
				
			||||||
  deviceVector<View> d_basis_v(basis.size());
 | 
					  typedef typename std::remove_reference<decltype(basis_v[0][0])>::type vobj;
 | 
				
			||||||
  typedef typename std::remove_reference<decltype(h_basis_v[0][0])>::type vobj;
 | 
					 | 
				
			||||||
  typedef typename std::remove_reference<decltype(Qt(0,0))>::type Coeff_t;
 | 
					  typedef typename std::remove_reference<decltype(Qt(0,0))>::type Coeff_t;
 | 
				
			||||||
 | 
					 | 
				
			||||||
  GridBase* grid = basis[0].Grid();
 | 
					  GridBase* grid = basis[0].Grid();
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
  for(int k=0;k<basis.size();k++){
 | 
					  for(int k=0;k<basis.size();k++){
 | 
				
			||||||
    h_basis_v[k] = basis[k].View(AcceleratorWrite);
 | 
					    basis_v.push_back(basis[k].View(AcceleratorWrite));
 | 
				
			||||||
    acceleratorPut(d_basis_v[k],h_basis_v[k]);
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  View *basis_vp = &d_basis_v[0];
 | 
					#if ( !(defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)) )
 | 
				
			||||||
 | 
					  int max_threads = thread_max();
 | 
				
			||||||
 | 
					  Vector < vobj > Bt(Nm * max_threads);
 | 
				
			||||||
 | 
					  thread_region
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      vobj* B = &Bt[Nm * thread_num()];
 | 
				
			||||||
 | 
					      thread_for_in_region(ss, grid->oSites(),{
 | 
				
			||||||
 | 
						  for(int j=j0; j<j1; ++j) B[j]=0.;
 | 
				
			||||||
 | 
					      
 | 
				
			||||||
 | 
						  for(int j=j0; j<j1; ++j){
 | 
				
			||||||
 | 
						    for(int k=k0; k<k1; ++k){
 | 
				
			||||||
 | 
						      B[j] +=Qt(j,k) * basis_v[k][ss];
 | 
				
			||||||
 | 
						    }
 | 
				
			||||||
 | 
						  }
 | 
				
			||||||
 | 
						  for(int j=j0; j<j1; ++j){
 | 
				
			||||||
 | 
						    basis_v[j][ss] = B[j];
 | 
				
			||||||
 | 
						  }
 | 
				
			||||||
 | 
						});
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
 | 
					  View *basis_vp = &basis_v[0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  int nrot = j1-j0;
 | 
					  int nrot = j1-j0;
 | 
				
			||||||
  if (!nrot) // edge case not handled gracefully by Cuda
 | 
					  if (!nrot) // edge case not handled gracefully by Cuda
 | 
				
			||||||
@@ -74,19 +91,17 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
 | 
				
			|||||||
  uint64_t oSites   =grid->oSites();
 | 
					  uint64_t oSites   =grid->oSites();
 | 
				
			||||||
  uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead
 | 
					  uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  deviceVector <vobj> Bt(siteBlock * nrot); 
 | 
					  Vector <vobj> Bt(siteBlock * nrot); 
 | 
				
			||||||
  auto Bp=&Bt[0];
 | 
					  auto Bp=&Bt[0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // GPU readable copy of matrix
 | 
					  // GPU readable copy of matrix
 | 
				
			||||||
  hostVector<Coeff_t> h_Qt_jv(Nm*Nm);
 | 
					  Vector<Coeff_t> Qt_jv(Nm*Nm);
 | 
				
			||||||
  deviceVector<Coeff_t> Qt_jv(Nm*Nm);
 | 
					 | 
				
			||||||
  Coeff_t *Qt_p = & Qt_jv[0];
 | 
					  Coeff_t *Qt_p = & Qt_jv[0];
 | 
				
			||||||
  thread_for(i,Nm*Nm,{
 | 
					  thread_for(i,Nm*Nm,{
 | 
				
			||||||
      int j = i/Nm;
 | 
					      int j = i/Nm;
 | 
				
			||||||
      int k = i%Nm;
 | 
					      int k = i%Nm;
 | 
				
			||||||
      h_Qt_jv[i]=Qt(j,k);
 | 
					      Qt_p[i]=Qt(j,k);
 | 
				
			||||||
  });
 | 
					  });
 | 
				
			||||||
  acceleratorCopyToDevice(&h_Qt_jv[0],Qt_p,Nm*Nm*sizeof(Coeff_t));
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Block the loop to keep storage footprint down
 | 
					  // Block the loop to keep storage footprint down
 | 
				
			||||||
  for(uint64_t s=0;s<oSites;s+=siteBlock){
 | 
					  for(uint64_t s=0;s<oSites;s+=siteBlock){
 | 
				
			||||||
@@ -122,8 +137,9 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
 | 
				
			|||||||
	coalescedWrite(basis_vp[jj][sss],coalescedRead(Bp[ss*nrot+j]));
 | 
						coalescedWrite(basis_vp[jj][sss],coalescedRead(Bp[ss*nrot+j]));
 | 
				
			||||||
      });
 | 
					      });
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose();
 | 
					  for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
// Extract a single rotated vector
 | 
					// Extract a single rotated vector
 | 
				
			||||||
@@ -136,19 +152,16 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  result.Checkerboard() = basis[0].Checkerboard();
 | 
					  result.Checkerboard() = basis[0].Checkerboard();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  hostVector<View>  h_basis_v(basis.size());
 | 
					  Vector<View> basis_v; basis_v.reserve(basis.size());
 | 
				
			||||||
  deviceVector<View> d_basis_v(basis.size());
 | 
					 | 
				
			||||||
  for(int k=0;k<basis.size();k++){
 | 
					  for(int k=0;k<basis.size();k++){
 | 
				
			||||||
    h_basis_v[k]=basis[k].View(AcceleratorRead);
 | 
					    basis_v.push_back(basis[k].View(AcceleratorRead));
 | 
				
			||||||
    acceleratorPut(d_basis_v[k],h_basis_v[k]);
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					 | 
				
			||||||
  vobj zz=Zero();
 | 
					  vobj zz=Zero();
 | 
				
			||||||
  deviceVector<double> Qt_jv(Nm);
 | 
					  Vector<double> Qt_jv(Nm);
 | 
				
			||||||
  double * Qt_j = & Qt_jv[0];
 | 
					  double * Qt_j = & Qt_jv[0];
 | 
				
			||||||
  for(int k=0;k<Nm;++k) acceleratorPut(Qt_j[k],Qt(j,k));
 | 
					  for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  auto basis_vp=& d_basis_v[0];
 | 
					  auto basis_vp=& basis_v[0];
 | 
				
			||||||
  autoView(result_v,result,AcceleratorWrite);
 | 
					  autoView(result_v,result,AcceleratorWrite);
 | 
				
			||||||
  accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
 | 
					  accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
 | 
				
			||||||
    vobj zzz=Zero();
 | 
					    vobj zzz=Zero();
 | 
				
			||||||
@@ -158,7 +171,7 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
    coalescedWrite(result_v[ss], B);
 | 
					    coalescedWrite(result_v[ss], B);
 | 
				
			||||||
  });
 | 
					  });
 | 
				
			||||||
  for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose();
 | 
					  for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class Field>
 | 
					template<class Field>
 | 
				
			||||||
@@ -166,9 +179,9 @@ void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, s
 | 
				
			|||||||
{
 | 
					{
 | 
				
			||||||
  int vlen = idx.size();
 | 
					  int vlen = idx.size();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GRID_ASSERT(vlen>=1);
 | 
					  assert(vlen>=1);
 | 
				
			||||||
  GRID_ASSERT(vlen<=sort_vals.size());
 | 
					  assert(vlen<=sort_vals.size());
 | 
				
			||||||
  GRID_ASSERT(vlen<=_v.size());
 | 
					  assert(vlen<=_v.size());
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  for (size_t i=0;i<vlen;i++) {
 | 
					  for (size_t i=0;i<vlen;i++) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -186,7 +199,7 @@ void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, s
 | 
				
			|||||||
	if (idx[j]==i)
 | 
						if (idx[j]==i)
 | 
				
			||||||
	  break;
 | 
						  break;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      GRID_ASSERT(idx[i] > i);     GRID_ASSERT(j!=idx.size());      GRID_ASSERT(idx[j]==i);
 | 
					      assert(idx[i] > i);     assert(j!=idx.size());      assert(idx[j]==i);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      swap(_v[i],_v[idx[i]]); // should use vector move constructor, no data copy
 | 
					      swap(_v[i],_v[idx[i]]); // should use vector move constructor, no data copy
 | 
				
			||||||
      std::swap(sort_vals[i],sort_vals[idx[i]]);
 | 
					      std::swap(sort_vals[i],sort_vals[idx[i]]);
 | 
				
			||||||
@@ -224,7 +237,7 @@ void basisSortInPlace(std::vector<Field> & _v,std::vector<RealD>& sort_vals, boo
 | 
				
			|||||||
template<class Field>
 | 
					template<class Field>
 | 
				
			||||||
void basisDeflate(const std::vector<Field> &_v,const std::vector<RealD>& eval,const Field& src_orig,Field& result) {
 | 
					void basisDeflate(const std::vector<Field> &_v,const std::vector<RealD>& eval,const Field& src_orig,Field& result) {
 | 
				
			||||||
  result = Zero();
 | 
					  result = Zero();
 | 
				
			||||||
  GRID_ASSERT(_v.size()==eval.size());
 | 
					  assert(_v.size()==eval.size());
 | 
				
			||||||
  int N = (int)_v.size();
 | 
					  int N = (int)_v.size();
 | 
				
			||||||
  for (int i=0;i<N;i++) {
 | 
					  for (int i=0;i<N;i++) {
 | 
				
			||||||
    Field& tmp = _v[i];
 | 
					    Field& tmp = _v[i];
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -32,8 +32,8 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
template<class obj1,class obj2> void conformable(const Lattice<obj1> &lhs,const Lattice<obj2> &rhs)
 | 
					template<class obj1,class obj2> void conformable(const Lattice<obj1> &lhs,const Lattice<obj2> &rhs)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GRID_ASSERT(lhs.Grid() == rhs.Grid());
 | 
					  assert(lhs.Grid() == rhs.Grid());
 | 
				
			||||||
  GRID_ASSERT(lhs.Checkerboard() == rhs.Checkerboard());
 | 
					  assert(lhs.Checkerboard() == rhs.Checkerboard());
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					NAMESPACE_BEGIN(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj> void DumpSliceNorm(std::string s,const Lattice<vobj> &f,int mu=-1)
 | 
					template<class vobj> void DumpSliceNorm(std::string s,Lattice<vobj> &f,int mu=-1)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  auto ff = localNorm2(f);
 | 
					  auto ff = localNorm2(f);
 | 
				
			||||||
  if ( mu==-1 ) mu = f.Grid()->Nd()-1;
 | 
					  if ( mu==-1 ) mu = f.Grid()->Nd()-1;
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -42,7 +42,7 @@ static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice
 | 
				
			|||||||
  //  Lattice<vobj> Xslice(SliceGrid);
 | 
					  //  Lattice<vobj> Xslice(SliceGrid);
 | 
				
			||||||
  //  Lattice<vobj> Rslice(SliceGrid);
 | 
					  //  Lattice<vobj> Rslice(SliceGrid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GRID_ASSERT( FullGrid->_simd_layout[Orthog]==1);
 | 
					  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //FIXME package in a convenient iterator
 | 
					  //FIXME package in a convenient iterator
 | 
				
			||||||
  //Should loop over a plane orthogonal to direction "Orthog"
 | 
					  //Should loop over a plane orthogonal to direction "Orthog"
 | 
				
			||||||
@@ -86,7 +86,7 @@ static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<
 | 
				
			|||||||
  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
					  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GridBase *FullGrid  = X.Grid();
 | 
					  GridBase *FullGrid  = X.Grid();
 | 
				
			||||||
  GRID_ASSERT( FullGrid->_simd_layout[Orthog]==1);
 | 
					  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //FIXME package in a convenient iterator
 | 
					  //FIXME package in a convenient iterator
 | 
				
			||||||
  //Should loop over a plane orthogonal to direction "Orthog"
 | 
					  //Should loop over a plane orthogonal to direction "Orthog"
 | 
				
			||||||
@@ -140,7 +140,7 @@ static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj>
 | 
				
			|||||||
  
 | 
					  
 | 
				
			||||||
  mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
					  mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GRID_ASSERT( FullGrid->_simd_layout[Orthog]==1);
 | 
					  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
				
			||||||
  //  int nh =  FullGrid->_ndimension;
 | 
					  //  int nh =  FullGrid->_ndimension;
 | 
				
			||||||
  //  int nl = SliceGrid->_ndimension;
 | 
					  //  int nl = SliceGrid->_ndimension;
 | 
				
			||||||
  //  int nl = nh-1;
 | 
					  //  int nl = nh-1;
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -98,8 +98,8 @@ void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  int Nsimd = grid->Nsimd();
 | 
					  int Nsimd = grid->Nsimd();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GRID_ASSERT( l.Checkerboard()== l.Grid()->CheckerBoard(site));
 | 
					  assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
 | 
				
			||||||
  GRID_ASSERT( sizeof(sobj)*Nsimd == sizeof(vobj));
 | 
					  assert( sizeof(sobj)*Nsimd == sizeof(vobj));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  int rank,odx,idx;
 | 
					  int rank,odx,idx;
 | 
				
			||||||
  // Optional to broadcast from node 0.
 | 
					  // Optional to broadcast from node 0.
 | 
				
			||||||
@@ -135,7 +135,7 @@ void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  int Nsimd = grid->Nsimd();
 | 
					  int Nsimd = grid->Nsimd();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GRID_ASSERT( l.Checkerboard() == l.Grid()->CheckerBoard(site));
 | 
					  assert( l.Checkerboard() == l.Grid()->CheckerBoard(site));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  int rank,odx,idx;
 | 
					  int rank,odx,idx;
 | 
				
			||||||
  grid->GlobalCoorToRankIndex(rank,odx,idx,site);
 | 
					  grid->GlobalCoorToRankIndex(rank,odx,idx,site);
 | 
				
			||||||
@@ -159,14 +159,14 @@ template<class vobj,class sobj>
 | 
				
			|||||||
inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
 | 
					inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GridBase *grid = l.getGrid();
 | 
					  GridBase *grid = l.getGrid();
 | 
				
			||||||
  GRID_ASSERT(l.mode==CpuRead);
 | 
					  assert(l.mode==CpuRead);
 | 
				
			||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					  typedef typename vobj::scalar_type scalar_type;
 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  int Nsimd = grid->Nsimd();
 | 
					  int Nsimd = grid->Nsimd();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //  GRID_ASSERT( l.Checkerboard()== grid->CheckerBoard(site));
 | 
					  assert( l.Checkerboard()== grid->CheckerBoard(site));
 | 
				
			||||||
  GRID_ASSERT( sizeof(sobj)*Nsimd == sizeof(vobj));
 | 
					  assert( sizeof(sobj)*Nsimd == sizeof(vobj));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
					  static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
				
			||||||
  int odx,idx;
 | 
					  int odx,idx;
 | 
				
			||||||
@@ -179,7 +179,7 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
 | 
				
			|||||||
  for(int w=0;w<words;w++){
 | 
					  for(int w=0;w<words;w++){
 | 
				
			||||||
    pt[w] = getlane(vp[w],idx);
 | 
					    pt[w] = getlane(vp[w],idx);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  //  std::cout << "peekLocalSite "<<site<<" "<<odx<<","<<idx<<" "<<s<<std::endl;
 | 
					      
 | 
				
			||||||
  return;
 | 
					  return;
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
template<class vobj,class sobj>
 | 
					template<class vobj,class sobj>
 | 
				
			||||||
@@ -195,15 +195,15 @@ template<class vobj,class sobj>
 | 
				
			|||||||
inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site)
 | 
					inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GridBase *grid=l.getGrid();
 | 
					  GridBase *grid=l.getGrid();
 | 
				
			||||||
  GRID_ASSERT(l.mode==CpuWrite);
 | 
					  assert(l.mode==CpuWrite);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					  typedef typename vobj::scalar_type scalar_type;
 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  int Nsimd = grid->Nsimd();
 | 
					  int Nsimd = grid->Nsimd();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //  GRID_ASSERT( l.Checkerboard()== grid->CheckerBoard(site));
 | 
					  assert( l.Checkerboard()== grid->CheckerBoard(site));
 | 
				
			||||||
  GRID_ASSERT( sizeof(sobj)*Nsimd == sizeof(vobj));
 | 
					  assert( sizeof(sobj)*Nsimd == sizeof(vobj));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
					  static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
				
			||||||
  int odx,idx;
 | 
					  int odx,idx;
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -46,7 +46,7 @@ inline typename vobj::scalar_object sum_cpu(const vobj *arg, Integer osites)
 | 
				
			|||||||
  //  const int Nsimd = vobj::Nsimd();
 | 
					  //  const int Nsimd = vobj::Nsimd();
 | 
				
			||||||
  const int nthread = GridThread::GetThreads();
 | 
					  const int nthread = GridThread::GetThreads();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  std::vector<sobj> sumarray(nthread);
 | 
					  Vector<sobj> sumarray(nthread);
 | 
				
			||||||
  for(int i=0;i<nthread;i++){
 | 
					  for(int i=0;i<nthread;i++){
 | 
				
			||||||
    sumarray[i]=Zero();
 | 
					    sumarray[i]=Zero();
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -75,7 +75,7 @@ inline typename vobj::scalar_objectD sumD_cpu(const vobj *arg, Integer osites)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  const int nthread = GridThread::GetThreads();
 | 
					  const int nthread = GridThread::GetThreads();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  std::vector<sobj> sumarray(nthread);
 | 
					  Vector<sobj> sumarray(nthread);
 | 
				
			||||||
  for(int i=0;i<nthread;i++){
 | 
					  for(int i=0;i<nthread;i++){
 | 
				
			||||||
    sumarray[i]=Zero();
 | 
					    sumarray[i]=Zero();
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -204,27 +204,6 @@ template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){
 | 
				
			|||||||
  return real(nrm); 
 | 
					  return real(nrm); 
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class Op,class T1>
 | 
					 | 
				
			||||||
inline auto norm2(const LatticeUnaryExpression<Op,T1> & expr)  ->RealD
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  return norm2(closure(expr));
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class Op,class T1,class T2>
 | 
					 | 
				
			||||||
inline auto norm2(const LatticeBinaryExpression<Op,T1,T2> & expr)      ->RealD
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  return norm2(closure(expr));
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class Op,class T1,class T2,class T3>
 | 
					 | 
				
			||||||
inline auto norm2(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)      ->RealD
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  return norm2(closure(expr));
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
//The global maximum of the site norm2
 | 
					//The global maximum of the site norm2
 | 
				
			||||||
template<class vobj> inline RealD maxLocalNorm2(const Lattice<vobj> &arg)
 | 
					template<class vobj> inline RealD maxLocalNorm2(const Lattice<vobj> &arg)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
@@ -264,8 +243,24 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
 | 
				
			|||||||
  const uint64_t sites = grid->oSites();
 | 
					  const uint64_t sites = grid->oSites();
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  // Might make all code paths go this way.
 | 
					  // Might make all code paths go this way.
 | 
				
			||||||
 | 
					#if 0
 | 
				
			||||||
 | 
					  typedef decltype(innerProductD(vobj(),vobj())) inner_t;
 | 
				
			||||||
 | 
					  Vector<inner_t> inner_tmp(sites);
 | 
				
			||||||
 | 
					  auto inner_tmp_v = &inner_tmp[0];
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    autoView( left_v , left, AcceleratorRead);
 | 
				
			||||||
 | 
					    autoView( right_v,right, AcceleratorRead);
 | 
				
			||||||
 | 
					    // This code could read coalesce
 | 
				
			||||||
 | 
					    // GPU - SIMT lane compliance...
 | 
				
			||||||
 | 
					    accelerator_for( ss, sites, nsimd,{
 | 
				
			||||||
 | 
						auto x_l = left_v(ss);
 | 
				
			||||||
 | 
						auto y_l = right_v(ss);
 | 
				
			||||||
 | 
						coalescedWrite(inner_tmp_v[ss],innerProductD(x_l,y_l));
 | 
				
			||||||
 | 
					    });
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
  typedef decltype(innerProduct(vobj(),vobj())) inner_t;
 | 
					  typedef decltype(innerProduct(vobj(),vobj())) inner_t;
 | 
				
			||||||
  deviceVector<inner_t> inner_tmp(sites);
 | 
					  Vector<inner_t> inner_tmp(sites);
 | 
				
			||||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
					  auto inner_tmp_v = &inner_tmp[0];
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
@@ -279,6 +274,7 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
 | 
				
			|||||||
	coalescedWrite(inner_tmp_v[ss],innerProduct(x_l,y_l));
 | 
						coalescedWrite(inner_tmp_v[ss],innerProduct(x_l,y_l));
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
  // This is in single precision and fails some tests
 | 
					  // This is in single precision and fails some tests
 | 
				
			||||||
  auto anrm = sumD(inner_tmp_v,sites);  
 | 
					  auto anrm = sumD(inner_tmp_v,sites);  
 | 
				
			||||||
  nrm = anrm;
 | 
					  nrm = anrm;
 | 
				
			||||||
@@ -289,47 +285,13 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
 | 
				
			|||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) {
 | 
					inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) {
 | 
				
			||||||
  GridBase *grid = left.Grid();
 | 
					  GridBase *grid = left.Grid();
 | 
				
			||||||
 | 
					  uint32_t csum=0;
 | 
				
			||||||
  bool ok;
 | 
					  //  Uint32Checksum(left,csum);
 | 
				
			||||||
#ifdef GRID_SYCL
 | 
					 | 
				
			||||||
  //  uint64_t csum=0;
 | 
					 | 
				
			||||||
  //  uint64_t csum2=0;
 | 
					 | 
				
			||||||
  //  if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone)
 | 
					 | 
				
			||||||
  //  {
 | 
					 | 
				
			||||||
  // Hack
 | 
					 | 
				
			||||||
  // Fast integer xor checksum. Can also be used in comms now.
 | 
					 | 
				
			||||||
  //    autoView(l_v,left,AcceleratorRead);
 | 
					 | 
				
			||||||
  //    Integer words = left.Grid()->oSites()*sizeof(vobj)/sizeof(uint64_t);
 | 
					 | 
				
			||||||
  //    uint64_t *base= (uint64_t *)&l_v[0];
 | 
					 | 
				
			||||||
  //    csum=svm_xor(base,words);
 | 
					 | 
				
			||||||
  //    ok = FlightRecorder::CsumLog(csum);
 | 
					 | 
				
			||||||
  //    if ( !ok ) {
 | 
					 | 
				
			||||||
  //      csum2=svm_xor(base,words);
 | 
					 | 
				
			||||||
  //      std::cerr<< " Bad CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
 | 
					 | 
				
			||||||
  //    } else {
 | 
					 | 
				
			||||||
  //      csum2=svm_xor(base,words);
 | 
					 | 
				
			||||||
  //      std::cerr<< " ok CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
 | 
					 | 
				
			||||||
  //    }
 | 
					 | 
				
			||||||
  //    GRID_ASSERT(ok);
 | 
					 | 
				
			||||||
  // }
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  FlightRecorder::StepLog("rank inner product");
 | 
					 | 
				
			||||||
  ComplexD nrm = rankInnerProduct(left,right);
 | 
					  ComplexD nrm = rankInnerProduct(left,right);
 | 
				
			||||||
  //  ComplexD nrmck=nrm;
 | 
					 | 
				
			||||||
  RealD local = real(nrm);
 | 
					  RealD local = real(nrm);
 | 
				
			||||||
  ok = FlightRecorder::NormLog(real(nrm));
 | 
					  GridNormLog(real(nrm),csum); // Could log before and after global sum to distinguish local and MPI
 | 
				
			||||||
  if ( !ok ) {
 | 
					  grid->GlobalSum(nrm);
 | 
				
			||||||
    ComplexD nrm2 = rankInnerProduct(left,right);
 | 
					  GridMPINormLog(local,real(nrm)); 
 | 
				
			||||||
    RealD local2 = real(nrm2);
 | 
					 | 
				
			||||||
    std::cerr<< " Bad NORM " << local << " recomputed as "<<local2<<std::endl;
 | 
					 | 
				
			||||||
    GRID_ASSERT(ok);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  FlightRecorder::StepLog("Start global sum");
 | 
					 | 
				
			||||||
  grid->GlobalSumP2P(nrm);
 | 
					 | 
				
			||||||
  //  grid->GlobalSum(nrm);
 | 
					 | 
				
			||||||
  FlightRecorder::StepLog("Finished global sum");
 | 
					 | 
				
			||||||
  //  std::cout << " norm "<< nrm << " p2p norm "<<nrmck<<std::endl;
 | 
					 | 
				
			||||||
  FlightRecorder::ReductionLog(local,real(nrm)); 
 | 
					 | 
				
			||||||
  return nrm;
 | 
					  return nrm;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -365,9 +327,20 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
 | 
				
			|||||||
  autoView( x_v, x, AcceleratorRead);
 | 
					  autoView( x_v, x, AcceleratorRead);
 | 
				
			||||||
  autoView( y_v, y, AcceleratorRead);
 | 
					  autoView( y_v, y, AcceleratorRead);
 | 
				
			||||||
  autoView( z_v, z, AcceleratorWrite);
 | 
					  autoView( z_v, z, AcceleratorWrite);
 | 
				
			||||||
 | 
					#if 0
 | 
				
			||||||
 | 
					  typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t;
 | 
				
			||||||
 | 
					  Vector<inner_t> inner_tmp(sites);
 | 
				
			||||||
 | 
					  auto inner_tmp_v = &inner_tmp[0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  accelerator_for( ss, sites, nsimd,{
 | 
				
			||||||
 | 
					      auto tmp = a*x_v(ss)+b*y_v(ss);
 | 
				
			||||||
 | 
					      coalescedWrite(inner_tmp_v[ss],innerProductD(tmp,tmp));
 | 
				
			||||||
 | 
					      coalescedWrite(z_v[ss],tmp);
 | 
				
			||||||
 | 
					  });
 | 
				
			||||||
 | 
					  nrm = real(TensorRemove(sum(inner_tmp_v,sites)));
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
  typedef decltype(innerProduct(x_v[0],y_v[0])) inner_t;
 | 
					  typedef decltype(innerProduct(x_v[0],y_v[0])) inner_t;
 | 
				
			||||||
  deviceVector<inner_t> inner_tmp;
 | 
					  Vector<inner_t> inner_tmp(sites);
 | 
				
			||||||
  inner_tmp.resize(sites);
 | 
					 | 
				
			||||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
					  auto inner_tmp_v = &inner_tmp[0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  accelerator_for( ss, sites, nsimd,{
 | 
					  accelerator_for( ss, sites, nsimd,{
 | 
				
			||||||
@@ -375,13 +348,9 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
 | 
				
			|||||||
      coalescedWrite(inner_tmp_v[ss],innerProduct(tmp,tmp));
 | 
					      coalescedWrite(inner_tmp_v[ss],innerProduct(tmp,tmp));
 | 
				
			||||||
      coalescedWrite(z_v[ss],tmp);
 | 
					      coalescedWrite(z_v[ss],tmp);
 | 
				
			||||||
  });
 | 
					  });
 | 
				
			||||||
  bool ok;
 | 
					 | 
				
			||||||
  nrm = real(TensorRemove(sumD(inner_tmp_v,sites)));
 | 
					  nrm = real(TensorRemove(sumD(inner_tmp_v,sites)));
 | 
				
			||||||
  ok = FlightRecorder::NormLog(real(nrm));
 | 
					#endif
 | 
				
			||||||
  GRID_ASSERT(ok);
 | 
					 | 
				
			||||||
  RealD local = real(nrm);
 | 
					 | 
				
			||||||
  grid->GlobalSum(nrm);
 | 
					  grid->GlobalSum(nrm);
 | 
				
			||||||
  FlightRecorder::ReductionLog(local,real(nrm));
 | 
					 | 
				
			||||||
  return nrm; 
 | 
					  return nrm; 
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 
 | 
					 
 | 
				
			||||||
@@ -391,7 +360,7 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti
 | 
				
			|||||||
  conformable(left,right);
 | 
					  conformable(left,right);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  typedef typename vobj::vector_typeD vector_type;
 | 
					  typedef typename vobj::vector_typeD vector_type;
 | 
				
			||||||
  std::vector<ComplexD> tmp(2);
 | 
					  Vector<ComplexD> tmp(2);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GridBase *grid = left.Grid();
 | 
					  GridBase *grid = left.Grid();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -401,8 +370,8 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti
 | 
				
			|||||||
  // GPU
 | 
					  // GPU
 | 
				
			||||||
  typedef decltype(innerProductD(vobj(),vobj())) inner_t;
 | 
					  typedef decltype(innerProductD(vobj(),vobj())) inner_t;
 | 
				
			||||||
  typedef decltype(innerProductD(vobj(),vobj())) norm_t;
 | 
					  typedef decltype(innerProductD(vobj(),vobj())) norm_t;
 | 
				
			||||||
  deviceVector<inner_t> inner_tmp(sites);
 | 
					  Vector<inner_t> inner_tmp(sites);
 | 
				
			||||||
  deviceVector<norm_t>  norm_tmp(sites);
 | 
					  Vector<norm_t>  norm_tmp(sites);
 | 
				
			||||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
					  auto inner_tmp_v = &inner_tmp[0];
 | 
				
			||||||
  auto norm_tmp_v = &norm_tmp[0];
 | 
					  auto norm_tmp_v = &norm_tmp[0];
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
@@ -452,9 +421,7 @@ inline auto sum(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)
 | 
				
			|||||||
// sliceSum, sliceInnerProduct, sliceAxpy, sliceNorm etc...
 | 
					// sliceSum, sliceInnerProduct, sliceAxpy, sliceNorm etc...
 | 
				
			||||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					//////////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,
 | 
					template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<typename vobj::scalar_object> &result,int orthogdim)
 | 
				
			||||||
					  std::vector<typename vobj::scalar_object> &result,
 | 
					 | 
				
			||||||
					  int orthogdim)
 | 
					 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  ///////////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////////
 | 
				
			||||||
  // FIXME precision promoted summation
 | 
					  // FIXME precision promoted summation
 | 
				
			||||||
@@ -464,20 +431,20 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,
 | 
				
			|||||||
  typedef typename vobj::scalar_object sobj;
 | 
					  typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
  typedef typename vobj::scalar_object::scalar_type scalar_type;
 | 
					  typedef typename vobj::scalar_object::scalar_type scalar_type;
 | 
				
			||||||
  GridBase  *grid = Data.Grid();
 | 
					  GridBase  *grid = Data.Grid();
 | 
				
			||||||
  GRID_ASSERT(grid!=NULL);
 | 
					  assert(grid!=NULL);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  const int    Nd = grid->_ndimension;
 | 
					  const int    Nd = grid->_ndimension;
 | 
				
			||||||
  const int Nsimd = grid->Nsimd();
 | 
					  const int Nsimd = grid->Nsimd();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GRID_ASSERT(orthogdim >= 0);
 | 
					  assert(orthogdim >= 0);
 | 
				
			||||||
  GRID_ASSERT(orthogdim < Nd);
 | 
					  assert(orthogdim < Nd);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  int fd=grid->_fdimensions[orthogdim];
 | 
					  int fd=grid->_fdimensions[orthogdim];
 | 
				
			||||||
  int ld=grid->_ldimensions[orthogdim];
 | 
					  int ld=grid->_ldimensions[orthogdim];
 | 
				
			||||||
  int rd=grid->_rdimensions[orthogdim];
 | 
					  int rd=grid->_rdimensions[orthogdim];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  std::vector<vobj> lvSum(rd); // will locally sum vectors first
 | 
					  Vector<vobj> lvSum(rd); // will locally sum vectors first
 | 
				
			||||||
  std::vector<sobj> lsSum(ld,Zero());                    // sum across these down to scalars
 | 
					  Vector<sobj> lsSum(ld,Zero());                    // sum across these down to scalars
 | 
				
			||||||
  ExtractBuffer<sobj> extracted(Nsimd);                  // splitting the SIMD
 | 
					  ExtractBuffer<sobj> extracted(Nsimd);                  // splitting the SIMD
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  result.resize(fd); // And then global sum to return the same vector to every node 
 | 
					  result.resize(fd); // And then global sum to return the same vector to every node 
 | 
				
			||||||
@@ -525,8 +492,6 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,
 | 
				
			|||||||
  scalar_type * ptr = (scalar_type *) &result[0];
 | 
					  scalar_type * ptr = (scalar_type *) &result[0];
 | 
				
			||||||
  int words = fd*sizeof(sobj)/sizeof(scalar_type);
 | 
					  int words = fd*sizeof(sobj)/sizeof(scalar_type);
 | 
				
			||||||
  grid->GlobalSumVector(ptr, words);
 | 
					  grid->GlobalSumVector(ptr, words);
 | 
				
			||||||
  //  std::cout << GridLogMessage << " sliceSum local"<<t_sum<<" us, host+mpi "<<t_rest<<std::endl;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
template<class vobj> inline
 | 
					template<class vobj> inline
 | 
				
			||||||
std::vector<typename vobj::scalar_object> 
 | 
					std::vector<typename vobj::scalar_object> 
 | 
				
			||||||
@@ -537,41 +502,28 @@ sliceSum(const Lattice<vobj> &Data,int orthogdim)
 | 
				
			|||||||
  return result;
 | 
					  return result;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
/*
 | 
					 | 
				
			||||||
Reimplement
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
1)
 | 
					 | 
				
			||||||
template<class vobj>
 | 
					 | 
				
			||||||
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0) 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
2)
 | 
					 | 
				
			||||||
template<class vobj>
 | 
					 | 
				
			||||||
static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog) 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
3)
 | 
					 | 
				
			||||||
-- Make Slice Mul Matrix call sliceMaddMatrix
 | 
					 | 
				
			||||||
 */
 | 
					 | 
				
			||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim) 
 | 
					static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim) 
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  typedef typename vobj::vector_type   vector_type;
 | 
					  typedef typename vobj::vector_type   vector_type;
 | 
				
			||||||
  typedef typename vobj::scalar_type   scalar_type;
 | 
					  typedef typename vobj::scalar_type   scalar_type;
 | 
				
			||||||
  GridBase  *grid = lhs.Grid();
 | 
					  GridBase  *grid = lhs.Grid();
 | 
				
			||||||
  GRID_ASSERT(grid!=NULL);
 | 
					  assert(grid!=NULL);
 | 
				
			||||||
  conformable(grid,rhs.Grid());
 | 
					  conformable(grid,rhs.Grid());
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  const int    Nd = grid->_ndimension;
 | 
					  const int    Nd = grid->_ndimension;
 | 
				
			||||||
  const int Nsimd = grid->Nsimd();
 | 
					  const int Nsimd = grid->Nsimd();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GRID_ASSERT(orthogdim >= 0);
 | 
					  assert(orthogdim >= 0);
 | 
				
			||||||
  GRID_ASSERT(orthogdim < Nd);
 | 
					  assert(orthogdim < Nd);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  int fd=grid->_fdimensions[orthogdim];
 | 
					  int fd=grid->_fdimensions[orthogdim];
 | 
				
			||||||
  int ld=grid->_ldimensions[orthogdim];
 | 
					  int ld=grid->_ldimensions[orthogdim];
 | 
				
			||||||
  int rd=grid->_rdimensions[orthogdim];
 | 
					  int rd=grid->_rdimensions[orthogdim];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  std::vector<vector_type> lvSum(rd); // will locally sum vectors first
 | 
					  Vector<vector_type> lvSum(rd); // will locally sum vectors first
 | 
				
			||||||
  std::vector<scalar_type > lsSum(ld,scalar_type(0.0));                    // sum across these down to scalars
 | 
					  Vector<scalar_type > lsSum(ld,scalar_type(0.0));                    // sum across these down to scalars
 | 
				
			||||||
  ExtractBuffer<iScalar<scalar_type> > extracted(Nsimd);   // splitting the SIMD  
 | 
					  ExtractBuffer<iScalar<scalar_type> > extracted(Nsimd);   // splitting the SIMD  
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  result.resize(fd); // And then global sum to return the same vector to every node for IO to file
 | 
					  result.resize(fd); // And then global sum to return the same vector to every node for IO to file
 | 
				
			||||||
@@ -701,96 +653,203 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
inline GridBase         *makeSubSliceGrid(const GridBase *BlockSolverGrid,int Orthog)
 | 
					inline GridBase         *makeSubSliceGrid(const GridBase *BlockSolverGrid,int Orthog)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  int NN    = BlockSolverGrid->_ndimension;
 | 
					  int NN    = BlockSolverGrid->_ndimension;
 | 
				
			||||||
  int nsimd = BlockSolverGrid->Nsimd();
 | 
					  int nsimd = BlockSolverGrid->Nsimd();
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  std::vector<int> latt_phys(NN-1);
 | 
					  std::vector<int> latt_phys(0);
 | 
				
			||||||
  Coordinate simd_phys;
 | 
					  std::vector<int> simd_phys(0);
 | 
				
			||||||
  std::vector<int>  mpi_phys(NN-1);
 | 
					  std::vector<int>  mpi_phys(0);
 | 
				
			||||||
  Coordinate checker_dim_mask(NN-1);
 | 
					 | 
				
			||||||
  int checker_dim=-1;
 | 
					 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  int dd;
 | 
					 | 
				
			||||||
  for(int d=0;d<NN;d++){
 | 
					  for(int d=0;d<NN;d++){
 | 
				
			||||||
    if( d!=Orthog ) { 
 | 
					    if( d!=Orthog ) { 
 | 
				
			||||||
      latt_phys[dd]=BlockSolverGrid->_fdimensions[d];
 | 
					      latt_phys.push_back(BlockSolverGrid->_fdimensions[d]);
 | 
				
			||||||
      mpi_phys[dd] =BlockSolverGrid->_processors[d];
 | 
					      simd_phys.push_back(BlockSolverGrid->_simd_layout[d]);
 | 
				
			||||||
      checker_dim_mask[dd] = BlockSolverGrid->_checker_dim_mask[d];
 | 
					      mpi_phys.push_back(BlockSolverGrid->_processors[d]);
 | 
				
			||||||
      if ( d == BlockSolverGrid->_checker_dim ) checker_dim = dd;
 | 
					 | 
				
			||||||
      dd++;
 | 
					 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  simd_phys=GridDefaultSimd(latt_phys.size(),nsimd);
 | 
					  return (GridBase *)new GridCartesian(latt_phys,simd_phys,mpi_phys); 
 | 
				
			||||||
  GridCartesian *tmp         = new GridCartesian(latt_phys,simd_phys,mpi_phys);
 | 
					 | 
				
			||||||
  if(BlockSolverGrid->_isCheckerBoarded) {
 | 
					 | 
				
			||||||
    GridRedBlackCartesian *ret = new GridRedBlackCartesian(tmp,checker_dim_mask,checker_dim);
 | 
					 | 
				
			||||||
    delete tmp;
 | 
					 | 
				
			||||||
    return (GridBase *) ret;
 | 
					 | 
				
			||||||
  } else { 
 | 
					 | 
				
			||||||
    return (GridBase *) tmp;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0) 
 | 
					static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0) 
 | 
				
			||||||
{    
 | 
					{    
 | 
				
			||||||
  GridBase *FullGrid = X.Grid();
 | 
					 | 
				
			||||||
  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Lattice<vobj> Ys(SliceGrid);
 | 
					 | 
				
			||||||
  Lattice<vobj> Rs(SliceGrid);
 | 
					 | 
				
			||||||
  Lattice<vobj> Xs(SliceGrid);
 | 
					 | 
				
			||||||
  Lattice<vobj> RR(FullGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  RR = R; // Copies checkerboard for insert
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					  typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
  int Nslice = X.Grid()->GlobalDimensions()[Orthog];
 | 
					
 | 
				
			||||||
  for(int i=0;i<Nslice;i++){
 | 
					  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
				
			||||||
    ExtractSlice(Ys,Y,i,Orthog);
 | 
					
 | 
				
			||||||
    ExtractSlice(Rs,R,i,Orthog);
 | 
					  GridBase *FullGrid  = X.Grid();
 | 
				
			||||||
    Rs=Ys;
 | 
					  //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
 | 
				
			||||||
    for(int j=0;j<Nslice;j++){
 | 
					
 | 
				
			||||||
      ExtractSlice(Xs,X,j,Orthog);
 | 
					  //  Lattice<vobj> Xslice(SliceGrid);
 | 
				
			||||||
      Rs = Rs + Xs*(scale*aa(j,i));
 | 
					  //  Lattice<vobj> Rslice(SliceGrid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
				
			||||||
 | 
					  //  int nh =  FullGrid->_ndimension;
 | 
				
			||||||
 | 
					  //  int nl = SliceGrid->_ndimension;
 | 
				
			||||||
 | 
					  //  int nl = nh-1;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  //FIXME package in a convenient iterator
 | 
				
			||||||
 | 
					  //Should loop over a plane orthogonal to direction "Orthog"
 | 
				
			||||||
 | 
					  int stride=FullGrid->_slice_stride[Orthog];
 | 
				
			||||||
 | 
					  int block =FullGrid->_slice_block [Orthog];
 | 
				
			||||||
 | 
					  int nblock=FullGrid->_slice_nblock[Orthog];
 | 
				
			||||||
 | 
					  int ostride=FullGrid->_ostride[Orthog];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  autoView( X_v, X, CpuRead);
 | 
				
			||||||
 | 
					  autoView( Y_v, Y, CpuRead);
 | 
				
			||||||
 | 
					  autoView( R_v, R, CpuWrite);
 | 
				
			||||||
 | 
					  thread_region
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    Vector<vobj> s_x(Nblock);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    thread_for_collapse_in_region(2, n,nblock, {
 | 
				
			||||||
 | 
					     for(int b=0;b<block;b++){
 | 
				
			||||||
 | 
					      int o  = n*stride + b;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      for(int i=0;i<Nblock;i++){
 | 
				
			||||||
 | 
						s_x[i] = X_v[o+i*ostride];
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
    InsertSlice(Rs,RR,i,Orthog);
 | 
					
 | 
				
			||||||
 | 
					      vobj dot;
 | 
				
			||||||
 | 
					      for(int i=0;i<Nblock;i++){
 | 
				
			||||||
 | 
						dot = Y_v[o+i*ostride];
 | 
				
			||||||
 | 
						for(int j=0;j<Nblock;j++){
 | 
				
			||||||
 | 
						  dot = dot + s_x[j]*(scale*aa(j,i));
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						R_v[o+i*ostride]=dot;
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    }});
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  R=RR; // Copy back handles arguments aliasing case
 | 
					 | 
				
			||||||
  delete SliceGrid;
 | 
					 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0) 
 | 
					static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0) 
 | 
				
			||||||
{    
 | 
					{    
 | 
				
			||||||
  R=Zero();
 | 
					  typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
  sliceMaddMatrix(R,aa,X,R,Orthog,scale);
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  GridBase *FullGrid  = X.Grid();
 | 
				
			||||||
 | 
					  //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
 | 
				
			||||||
 | 
					  //  Lattice<vobj> Xslice(SliceGrid);
 | 
				
			||||||
 | 
					  //  Lattice<vobj> Rslice(SliceGrid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
				
			||||||
 | 
					  //  int nh =  FullGrid->_ndimension;
 | 
				
			||||||
 | 
					  //  int nl = SliceGrid->_ndimension;
 | 
				
			||||||
 | 
					  //  int nl=1;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  //FIXME package in a convenient iterator
 | 
				
			||||||
 | 
					  // thread_for2d_in_region
 | 
				
			||||||
 | 
					  //Should loop over a plane orthogonal to direction "Orthog"
 | 
				
			||||||
 | 
					  int stride=FullGrid->_slice_stride[Orthog];
 | 
				
			||||||
 | 
					  int block =FullGrid->_slice_block [Orthog];
 | 
				
			||||||
 | 
					  int nblock=FullGrid->_slice_nblock[Orthog];
 | 
				
			||||||
 | 
					  int ostride=FullGrid->_ostride[Orthog];
 | 
				
			||||||
 | 
					  autoView( R_v, R, CpuWrite);
 | 
				
			||||||
 | 
					  autoView( X_v, X, CpuRead);
 | 
				
			||||||
 | 
					  thread_region
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    std::vector<vobj> s_x(Nblock);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    thread_for_collapse_in_region( 2 ,n,nblock,{
 | 
				
			||||||
 | 
					    for(int b=0;b<block;b++){
 | 
				
			||||||
 | 
					      int o  = n*stride + b;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      for(int i=0;i<Nblock;i++){
 | 
				
			||||||
 | 
						s_x[i] = X_v[o+i*ostride];
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      vobj dot;
 | 
				
			||||||
 | 
					      for(int i=0;i<Nblock;i++){
 | 
				
			||||||
 | 
						dot = s_x[0]*(scale*aa(0,i));
 | 
				
			||||||
 | 
						for(int j=1;j<Nblock;j++){
 | 
				
			||||||
 | 
						  dot = dot + s_x[j]*(scale*aa(j,i));
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						R_v[o+i*ostride]=dot;
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    }});
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog) 
 | 
					static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog) 
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GridBase *SliceGrid = makeSubSliceGrid(lhs.Grid(),Orthog);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Lattice<vobj> ls(SliceGrid);
 | 
					 | 
				
			||||||
  Lattice<vobj> rs(SliceGrid);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					  typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
  int Nslice = lhs.Grid()->GlobalDimensions()[Orthog];
 | 
					  
 | 
				
			||||||
  mat = Eigen::MatrixXcd::Zero(Nslice,Nslice);
 | 
					  GridBase *FullGrid  = lhs.Grid();
 | 
				
			||||||
  for(int s=0;s<Nslice;s++){
 | 
					  //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
 | 
				
			||||||
    ExtractSlice(ls,lhs,s,Orthog);
 | 
					  
 | 
				
			||||||
    for(int ss=0;ss<Nslice;ss++){
 | 
					  int Nblock = FullGrid->GlobalDimensions()[Orthog];
 | 
				
			||||||
      ExtractSlice(rs,rhs,ss,Orthog);
 | 
					  
 | 
				
			||||||
      mat(s,ss) = innerProduct(ls,rs);
 | 
					  //  Lattice<vobj> Lslice(SliceGrid);
 | 
				
			||||||
 | 
					  //  Lattice<vobj> Rslice(SliceGrid);
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 | 
					  mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
				
			||||||
 | 
					  //  int nh =  FullGrid->_ndimension;
 | 
				
			||||||
 | 
					  //  int nl = SliceGrid->_ndimension;
 | 
				
			||||||
 | 
					  //  int nl = nh-1;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  //FIXME package in a convenient iterator
 | 
				
			||||||
 | 
					  //Should loop over a plane orthogonal to direction "Orthog"
 | 
				
			||||||
 | 
					  int stride=FullGrid->_slice_stride[Orthog];
 | 
				
			||||||
 | 
					  int block =FullGrid->_slice_block [Orthog];
 | 
				
			||||||
 | 
					  int nblock=FullGrid->_slice_nblock[Orthog];
 | 
				
			||||||
 | 
					  int ostride=FullGrid->_ostride[Orthog];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  typedef typename vobj::vector_typeD vector_typeD;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  autoView( lhs_v, lhs, CpuRead);
 | 
				
			||||||
 | 
					  autoView( rhs_v, rhs, CpuRead);
 | 
				
			||||||
 | 
					  thread_region
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    std::vector<vobj> Left(Nblock);
 | 
				
			||||||
 | 
					    std::vector<vobj> Right(Nblock);
 | 
				
			||||||
 | 
					    Eigen::MatrixXcd  mat_thread = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    thread_for_collapse_in_region( 2, n,nblock,{
 | 
				
			||||||
 | 
					    for(int b=0;b<block;b++){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      int o  = n*stride + b;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      for(int i=0;i<Nblock;i++){
 | 
				
			||||||
 | 
						Left [i] = lhs_v[o+i*ostride];
 | 
				
			||||||
 | 
						Right[i] = rhs_v[o+i*ostride];
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      for(int i=0;i<Nblock;i++){
 | 
				
			||||||
 | 
					      for(int j=0;j<Nblock;j++){
 | 
				
			||||||
 | 
						auto tmp = innerProduct(Left[i],Right[j]);
 | 
				
			||||||
 | 
						auto rtmp = TensorRemove(tmp);
 | 
				
			||||||
 | 
						auto red  =  Reduce(rtmp);
 | 
				
			||||||
 | 
						mat_thread(i,j) += std::complex<double>(real(red),imag(red));
 | 
				
			||||||
 | 
					      }}
 | 
				
			||||||
 | 
					    }});
 | 
				
			||||||
 | 
					    thread_critical
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      mat += mat_thread;
 | 
				
			||||||
    }  
 | 
					    }  
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  delete SliceGrid;
 | 
					
 | 
				
			||||||
 | 
					  for(int i=0;i<Nblock;i++){
 | 
				
			||||||
 | 
					  for(int j=0;j<Nblock;j++){
 | 
				
			||||||
 | 
					    ComplexD sum = mat(i,j);
 | 
				
			||||||
 | 
					    FullGrid->GlobalSum(sum);
 | 
				
			||||||
 | 
					    mat(i,j)=sum;
 | 
				
			||||||
 | 
					  }}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  return;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -208,18 +208,28 @@ inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osi
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  Integer numThreads, numBlocks;
 | 
					  Integer numThreads, numBlocks;
 | 
				
			||||||
  int ok = getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
 | 
					  int ok = getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
 | 
				
			||||||
  GRID_ASSERT(ok);
 | 
					  assert(ok);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  Integer smemSize = numThreads * sizeof(sobj);
 | 
					  Integer smemSize = numThreads * sizeof(sobj);
 | 
				
			||||||
  // Move out of UVM
 | 
					  // Move out of UVM
 | 
				
			||||||
  // Turns out I had messed up the synchronise after move to compute stream
 | 
					  // Turns out I had messed up the synchronise after move to compute stream
 | 
				
			||||||
  // as running this on the default stream fools the synchronise
 | 
					  // as running this on the default stream fools the synchronise
 | 
				
			||||||
  deviceVector<sobj> buffer(numBlocks);
 | 
					#undef UVM_BLOCK_BUFFER  
 | 
				
			||||||
 | 
					#ifndef UVM_BLOCK_BUFFER  
 | 
				
			||||||
 | 
					  commVector<sobj> buffer(numBlocks);
 | 
				
			||||||
  sobj *buffer_v = &buffer[0];
 | 
					  sobj *buffer_v = &buffer[0];
 | 
				
			||||||
  sobj result;
 | 
					  sobj result;
 | 
				
			||||||
  reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
 | 
					  reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
 | 
				
			||||||
  accelerator_barrier();
 | 
					  accelerator_barrier();
 | 
				
			||||||
  acceleratorCopyFromDevice(buffer_v,&result,sizeof(result));
 | 
					  acceleratorCopyFromDevice(buffer_v,&result,sizeof(result));
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
 | 
					  Vector<sobj> buffer(numBlocks);
 | 
				
			||||||
 | 
					  sobj *buffer_v = &buffer[0];
 | 
				
			||||||
 | 
					  sobj result;
 | 
				
			||||||
 | 
					  reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
 | 
				
			||||||
 | 
					  accelerator_barrier();
 | 
				
			||||||
 | 
					  result = *buffer_v;
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
  return result;
 | 
					  return result;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -234,7 +244,7 @@ inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osi
 | 
				
			|||||||
  
 | 
					  
 | 
				
			||||||
  const int words = sizeof(vobj)/sizeof(vector);
 | 
					  const int words = sizeof(vobj)/sizeof(vector);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  deviceVector<vector> buffer(osites);
 | 
					  Vector<vector> buffer(osites);
 | 
				
			||||||
  vector *dat = (vector *)lat;
 | 
					  vector *dat = (vector *)lat;
 | 
				
			||||||
  vector *buf = &buffer[0];
 | 
					  vector *buf = &buffer[0];
 | 
				
			||||||
  iScalar<vector> *tbuf =(iScalar<vector> *)  &buffer[0];
 | 
					  iScalar<vector> *tbuf =(iScalar<vector> *)  &buffer[0];
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -4,28 +4,29 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
// Possibly promote to double and sum
 | 
					// Possibly promote to double and sum
 | 
				
			||||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					/////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
template <class vobj>
 | 
					template <class vobj>
 | 
				
			||||||
inline typename vobj::scalar_objectD sumD_gpu_tensor(const vobj *lat, Integer osites) 
 | 
					inline typename vobj::scalar_objectD sumD_gpu_tensor(const vobj *lat, Integer osites) 
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					  typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
  typedef typename vobj::scalar_objectD sobjD;
 | 
					  typedef typename vobj::scalar_objectD sobjD;
 | 
				
			||||||
 | 
					  sobj *mysum =(sobj *) malloc_shared(sizeof(sobj),*theGridAccelerator);
 | 
				
			||||||
  sobj identity; zeroit(identity);
 | 
					  sobj identity; zeroit(identity);
 | 
				
			||||||
  sobj ret; zeroit(ret);
 | 
					  sobj ret ; 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  Integer nsimd= vobj::Nsimd();
 | 
					  Integer nsimd= vobj::Nsimd();
 | 
				
			||||||
  { 
 | 
					  
 | 
				
			||||||
    sycl::buffer<sobj, 1> abuff(&ret, {1});
 | 
					  theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
 | 
				
			||||||
    theGridAccelerator->submit([&](sycl::handler &cgh) {
 | 
					     auto Reduction = cl::sycl::reduction(mysum,identity,std::plus<>());
 | 
				
			||||||
      auto Reduction = sycl::reduction(abuff,cgh,identity,std::plus<>());
 | 
					     cgh.parallel_for(cl::sycl::range<1>{osites},
 | 
				
			||||||
      cgh.parallel_for(sycl::range<1>{osites},
 | 
					 | 
				
			||||||
		      Reduction,
 | 
							      Reduction,
 | 
				
			||||||
                      [=] (sycl::id<1> item, auto &sum) {
 | 
							      [=] (cl::sycl::id<1> item, auto &sum) {
 | 
				
			||||||
      auto osite   = item[0];
 | 
					      auto osite   = item[0];
 | 
				
			||||||
      sum +=Reduce(lat[osite]);
 | 
					      sum +=Reduce(lat[osite]);
 | 
				
			||||||
     });
 | 
					     });
 | 
				
			||||||
   });
 | 
					   });
 | 
				
			||||||
  }
 | 
					  theGridAccelerator->wait();
 | 
				
			||||||
 | 
					  ret = mysum[0];
 | 
				
			||||||
 | 
					  free(mysum,*theGridAccelerator);
 | 
				
			||||||
  sobjD dret; convertType(dret,ret);
 | 
					  sobjD dret; convertType(dret,ret);
 | 
				
			||||||
  return dret;
 | 
					  return dret;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
@@ -68,44 +69,57 @@ inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osite
 | 
				
			|||||||
  return result;
 | 
					  return result;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class Word> Word svm_xor(Word *vec,uint64_t L)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  Word identity;  identity=0;
 | 
					 | 
				
			||||||
  Word ret = 0;
 | 
					 | 
				
			||||||
  { 
 | 
					 | 
				
			||||||
    sycl::buffer<Word, 1> abuff(&ret, {1});
 | 
					 | 
				
			||||||
    theGridAccelerator->submit([&](sycl::handler &cgh) {
 | 
					 | 
				
			||||||
      auto Reduction = sycl::reduction(abuff,cgh,identity,std::bit_xor<>());
 | 
					 | 
				
			||||||
      cgh.parallel_for(sycl::range<1>{L},
 | 
					 | 
				
			||||||
                      Reduction,
 | 
					 | 
				
			||||||
                      [=] (sycl::id<1> index, auto &sum) {
 | 
					 | 
				
			||||||
                        sum ^=vec[index];
 | 
					 | 
				
			||||||
                      });
 | 
					 | 
				
			||||||
    });
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  theGridAccelerator->wait();
 | 
					 | 
				
			||||||
  return ret;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
template<class Word> Word checksum_gpu(Word *vec,uint64_t L)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  Word identity;  identity=0;
 | 
					 | 
				
			||||||
  Word ret = 0;
 | 
					 | 
				
			||||||
  { 
 | 
					 | 
				
			||||||
    sycl::buffer<Word, 1> abuff(&ret, {1});
 | 
					 | 
				
			||||||
    theGridAccelerator->submit([&](sycl::handler &cgh) {
 | 
					 | 
				
			||||||
      auto Reduction = sycl::reduction(abuff,cgh,identity,std::bit_xor<>());
 | 
					 | 
				
			||||||
      cgh.parallel_for(sycl::range<1>{L},
 | 
					 | 
				
			||||||
                       Reduction,
 | 
					 | 
				
			||||||
                       [=] (sycl::id<1> index, auto &sum) {
 | 
					 | 
				
			||||||
			 auto l = index % 61;
 | 
					 | 
				
			||||||
                         sum ^= vec[index]<<l | vec[index]>>(64-l);
 | 
					 | 
				
			||||||
                       });
 | 
					 | 
				
			||||||
    });
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  theGridAccelerator->wait();
 | 
					 | 
				
			||||||
  return ret;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					template<class Double> Double svm_reduce(Double *vec,uint64_t L)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  Double sumResult; zeroit(sumResult);
 | 
				
			||||||
 | 
					  Double *d_sum =(Double *)cl::sycl::malloc_shared(sizeof(Double),*theGridAccelerator);
 | 
				
			||||||
 | 
					  Double identity;  zeroit(identity);
 | 
				
			||||||
 | 
					  theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
 | 
				
			||||||
 | 
					     auto Reduction = cl::sycl::reduction(d_sum,identity,std::plus<>());
 | 
				
			||||||
 | 
					     cgh.parallel_for(cl::sycl::range<1>{L},
 | 
				
			||||||
 | 
							      Reduction,
 | 
				
			||||||
 | 
							      [=] (cl::sycl::id<1> index, auto &sum) {
 | 
				
			||||||
 | 
						 sum +=vec[index];
 | 
				
			||||||
 | 
					     });
 | 
				
			||||||
 | 
					   });
 | 
				
			||||||
 | 
					  theGridAccelerator->wait();
 | 
				
			||||||
 | 
					  Double ret = d_sum[0];
 | 
				
			||||||
 | 
					  free(d_sum,*theGridAccelerator);
 | 
				
			||||||
 | 
					  std::cout << " svm_reduce finished "<<L<<" sites sum = " << ret <<std::endl;
 | 
				
			||||||
 | 
					  return ret;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					template <class vobj>
 | 
				
			||||||
 | 
					inline typename vobj::scalar_objectD sumD_gpu_repack(const vobj *lat, Integer osites)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  typedef typename vobj::vector_type  vector;
 | 
				
			||||||
 | 
					  typedef typename vobj::scalar_type  scalar;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  typedef typename vobj::scalar_typeD scalarD;
 | 
				
			||||||
 | 
					  typedef typename vobj::scalar_objectD sobjD;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  sobjD ret;
 | 
				
			||||||
 | 
					  scalarD *ret_p = (scalarD *)&ret;
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 | 
					  const int nsimd = vobj::Nsimd();
 | 
				
			||||||
 | 
					  const int words = sizeof(vobj)/sizeof(vector);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Vector<scalar> buffer(osites*nsimd);
 | 
				
			||||||
 | 
					  scalar *buf = &buffer[0];
 | 
				
			||||||
 | 
					  vector *dat = (vector *)lat;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  for(int w=0;w<words;w++) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    accelerator_for(ss,osites,nsimd,{
 | 
				
			||||||
 | 
						int lane = acceleratorSIMTlane(nsimd);
 | 
				
			||||||
 | 
						buf[ss*nsimd+lane] = dat[ss*words+w].getlane(lane);
 | 
				
			||||||
 | 
					    });
 | 
				
			||||||
 | 
					    //Precision change at this point is to late to gain precision
 | 
				
			||||||
 | 
					    ret_p[w] = svm_reduce(buf,nsimd*osites);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  return ret;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -53,10 +53,10 @@ inline int RNGfillable(GridBase *coarse,GridBase *fine)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  // trivially extended in higher dims, with locality guaranteeing RNG state is local to node
 | 
					  // trivially extended in higher dims, with locality guaranteeing RNG state is local to node
 | 
				
			||||||
  int lowerdims   = fine->_ndimension - coarse->_ndimension;
 | 
					  int lowerdims   = fine->_ndimension - coarse->_ndimension;
 | 
				
			||||||
  GRID_ASSERT(lowerdims >= 0);
 | 
					  assert(lowerdims >= 0);
 | 
				
			||||||
  for(int d=0;d<lowerdims;d++){
 | 
					  for(int d=0;d<lowerdims;d++){
 | 
				
			||||||
    GRID_ASSERT(fine->_simd_layout[d]==1);
 | 
					    assert(fine->_simd_layout[d]==1);
 | 
				
			||||||
    GRID_ASSERT(fine->_processors[d]==1);
 | 
					    assert(fine->_processors[d]==1);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  int multiplicity=1;
 | 
					  int multiplicity=1;
 | 
				
			||||||
@@ -66,9 +66,9 @@ inline int RNGfillable(GridBase *coarse,GridBase *fine)
 | 
				
			|||||||
  // local and global volumes subdivide cleanly after SIMDization
 | 
					  // local and global volumes subdivide cleanly after SIMDization
 | 
				
			||||||
  for(int d=0;d<rngdims;d++){
 | 
					  for(int d=0;d<rngdims;d++){
 | 
				
			||||||
    int fd= d+lowerdims;
 | 
					    int fd= d+lowerdims;
 | 
				
			||||||
    GRID_ASSERT(coarse->_processors[d]  == fine->_processors[fd]);
 | 
					    assert(coarse->_processors[d]  == fine->_processors[fd]);
 | 
				
			||||||
    GRID_ASSERT(coarse->_simd_layout[d] == fine->_simd_layout[fd]);
 | 
					    assert(coarse->_simd_layout[d] == fine->_simd_layout[fd]);
 | 
				
			||||||
    GRID_ASSERT(((fine->_rdimensions[fd] / coarse->_rdimensions[d])* coarse->_rdimensions[d])==fine->_rdimensions[fd]); 
 | 
					    assert(((fine->_rdimensions[fd] / coarse->_rdimensions[d])* coarse->_rdimensions[d])==fine->_rdimensions[fd]); 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    multiplicity = multiplicity *fine->_rdimensions[fd] / coarse->_rdimensions[d]; 
 | 
					    multiplicity = multiplicity *fine->_rdimensions[fd] / coarse->_rdimensions[d]; 
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -83,18 +83,18 @@ inline int RNGfillable_general(GridBase *coarse,GridBase *fine)
 | 
				
			|||||||
  int rngdims = coarse->_ndimension;
 | 
					  int rngdims = coarse->_ndimension;
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
  // trivially extended in higher dims, with locality guaranteeing RNG state is local to node
 | 
					  // trivially extended in higher dims, with locality guaranteeing RNG state is local to node
 | 
				
			||||||
  int lowerdims   = fine->_ndimension - coarse->_ndimension;  GRID_ASSERT(lowerdims >= 0);
 | 
					  int lowerdims   = fine->_ndimension - coarse->_ndimension;  assert(lowerdims >= 0);
 | 
				
			||||||
  // assumes that the higher dimensions are not using more processors
 | 
					  // assumes that the higher dimensions are not using more processors
 | 
				
			||||||
  // all further divisions are local
 | 
					  // all further divisions are local
 | 
				
			||||||
  for(int d=0;d<lowerdims;d++) GRID_ASSERT(fine->_processors[d]==1);
 | 
					  for(int d=0;d<lowerdims;d++) assert(fine->_processors[d]==1);
 | 
				
			||||||
  for(int d=0;d<rngdims;d++) GRID_ASSERT(coarse->_processors[d] == fine->_processors[d+lowerdims]);
 | 
					  for(int d=0;d<rngdims;d++) assert(coarse->_processors[d] == fine->_processors[d+lowerdims]);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // then divide the number of local sites
 | 
					  // then divide the number of local sites
 | 
				
			||||||
  // check that the total number of sims agree, meanse the iSites are the same
 | 
					  // check that the total number of sims agree, meanse the iSites are the same
 | 
				
			||||||
  GRID_ASSERT(fine->Nsimd() == coarse->Nsimd());
 | 
					  assert(fine->Nsimd() == coarse->Nsimd());
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // check that the two grids divide cleanly
 | 
					  // check that the two grids divide cleanly
 | 
				
			||||||
  GRID_ASSERT( (fine->lSites() / coarse->lSites() ) * coarse->lSites() == fine->lSites() );
 | 
					  assert( (fine->lSites() / coarse->lSites() ) * coarse->lSites() == fine->lSites() );
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  return fine->lSites() / coarse->lSites();
 | 
					  return fine->lSites() / coarse->lSites();
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
@@ -177,7 +177,7 @@ public:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    skip = skip<<shift;
 | 
					    skip = skip<<shift;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    GRID_ASSERT((skip >> shift)==site); // check for overflow
 | 
					    assert((skip >> shift)==site); // check for overflow
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    eng.discard(skip);
 | 
					    eng.discard(skip);
 | 
				
			||||||
#else
 | 
					#else
 | 
				
			||||||
@@ -218,7 +218,7 @@ public:
 | 
				
			|||||||
    GetState(saved,_generators[gen]);
 | 
					    GetState(saved,_generators[gen]);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  void SetState(std::vector<RngStateType> & saved,RngEngine &eng){
 | 
					  void SetState(std::vector<RngStateType> & saved,RngEngine &eng){
 | 
				
			||||||
    GRID_ASSERT(saved.size()==RngStateCount);
 | 
					    assert(saved.size()==RngStateCount);
 | 
				
			||||||
    std::stringstream ss;
 | 
					    std::stringstream ss;
 | 
				
			||||||
    for(int i=0;i<RngStateCount;i++){
 | 
					    for(int i=0;i<RngStateCount;i++){
 | 
				
			||||||
      ss<< saved[i]<<" ";
 | 
					      ss<< saved[i]<<" ";
 | 
				
			||||||
@@ -365,14 +365,9 @@ public:
 | 
				
			|||||||
    _bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
 | 
					    _bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
 | 
				
			||||||
    _uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
 | 
					    _uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist)
 | 
					
 | 
				
			||||||
  {
 | 
					  template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist){
 | 
				
			||||||
    if ( l.Grid()->_isCheckerBoarded ) {
 | 
					
 | 
				
			||||||
      Lattice<vobj> tmp(_grid);
 | 
					 | 
				
			||||||
      fill(tmp,dist);
 | 
					 | 
				
			||||||
      pickCheckerboard(l.Checkerboard(),l,tmp);
 | 
					 | 
				
			||||||
      return;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    typedef typename vobj::scalar_object scalar_object;
 | 
					    typedef typename vobj::scalar_object scalar_object;
 | 
				
			||||||
    typedef typename vobj::scalar_type scalar_type;
 | 
					    typedef typename vobj::scalar_type scalar_type;
 | 
				
			||||||
    typedef typename vobj::vector_type vector_type;
 | 
					    typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
@@ -435,7 +430,7 @@ public:
 | 
				
			|||||||
    ////////////////////////////////////////////////
 | 
					    ////////////////////////////////////////////////
 | 
				
			||||||
    thread_for( lidx, _grid->lSites(), {
 | 
					    thread_for( lidx, _grid->lSites(), {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	int64_t gidx;
 | 
						int gidx;
 | 
				
			||||||
	int o_idx;
 | 
						int o_idx;
 | 
				
			||||||
	int i_idx;
 | 
						int i_idx;
 | 
				
			||||||
	int rank;
 | 
						int rank;
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,5 +1,5 @@
 | 
				
			|||||||
#pragma once
 | 
					#pragma once
 | 
				
			||||||
 | 
					#include <type_traits>
 | 
				
			||||||
#if defined(GRID_CUDA)
 | 
					#if defined(GRID_CUDA)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#include <cub/cub.cuh>
 | 
					#include <cub/cub.cuh>
 | 
				
			||||||
@@ -21,18 +21,9 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#if defined(GRID_CUDA) || defined(GRID_HIP)
 | 
					#if defined(GRID_CUDA) || defined(GRID_HIP)
 | 
				
			||||||
template<class vobj>
 | 
					template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
 | 
				
			||||||
inline void sliceSumReduction_cub_small(const vobj *Data,
 | 
					 | 
				
			||||||
					std::vector<vobj> &lvSum,
 | 
					 | 
				
			||||||
					const int rd,
 | 
					 | 
				
			||||||
					const int e1,
 | 
					 | 
				
			||||||
					const int e2,
 | 
					 | 
				
			||||||
					const int stride,
 | 
					 | 
				
			||||||
					const int ostride,
 | 
					 | 
				
			||||||
					const int Nsimd)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  size_t subvol_size = e1*e2;
 | 
					  size_t subvol_size = e1*e2;
 | 
				
			||||||
  deviceVector<vobj> reduction_buffer(rd*subvol_size);
 | 
					  commVector<vobj> reduction_buffer(rd*subvol_size);
 | 
				
			||||||
  auto rb_p = &reduction_buffer[0];
 | 
					  auto rb_p = &reduction_buffer[0];
 | 
				
			||||||
  vobj zero_init;
 | 
					  vobj zero_init;
 | 
				
			||||||
  zeroit(zero_init);
 | 
					  zeroit(zero_init);
 | 
				
			||||||
@@ -55,7 +46,7 @@ inline void sliceSumReduction_cub_small(const vobj *Data,
 | 
				
			|||||||
  d_offsets = static_cast<int*>(acceleratorAllocDevice((rd+1)*sizeof(int)));
 | 
					  d_offsets = static_cast<int*>(acceleratorAllocDevice((rd+1)*sizeof(int)));
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  //copy offsets to device
 | 
					  //copy offsets to device
 | 
				
			||||||
  acceleratorCopyToDeviceAsynch(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream);
 | 
					  acceleratorCopyToDeviceAsync(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  gpuError_t gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), zero_init, computeStream);
 | 
					  gpuError_t gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), zero_init, computeStream);
 | 
				
			||||||
@@ -88,7 +79,7 @@ inline void sliceSumReduction_cub_small(const vobj *Data,
 | 
				
			|||||||
    exit(EXIT_FAILURE);
 | 
					    exit(EXIT_FAILURE);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  acceleratorCopyFromDeviceAsynch(d_out,&lvSum[0],rd*sizeof(vobj),computeStream);
 | 
					  acceleratorCopyFromDeviceAsync(d_out,&lvSum[0],rd*sizeof(vobj),computeStream);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  //sync after copy
 | 
					  //sync after copy
 | 
				
			||||||
  accelerator_barrier();
 | 
					  accelerator_barrier();
 | 
				
			||||||
@@ -99,34 +90,61 @@ inline void sliceSumReduction_cub_small(const vobj *Data,
 | 
				
			|||||||
  
 | 
					  
 | 
				
			||||||
 | 
					
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					template<class vobj> inline void sliceSumReduction_cub_large(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
 | 
				
			||||||
 | 
					  typedef typename vobj::vector_type vector;
 | 
				
			||||||
 | 
					  const int words = sizeof(vobj)/sizeof(vector);
 | 
				
			||||||
 | 
					  const int osites = rd*e1*e2;
 | 
				
			||||||
 | 
					  commVector<vector>buffer(osites);
 | 
				
			||||||
 | 
					  vector *dat = (vector *)Data;
 | 
				
			||||||
 | 
					  vector *buf = &buffer[0];
 | 
				
			||||||
 | 
					  Vector<vector> lvSum_small(rd);
 | 
				
			||||||
 | 
					  vector *lvSum_ptr = (vector *)&lvSum[0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  for (int w = 0; w < words; w++) {
 | 
				
			||||||
 | 
					    accelerator_for(ss,osites,1,{
 | 
				
			||||||
 | 
						    buf[ss] = dat[ss*words+w];
 | 
				
			||||||
 | 
					    });
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    sliceSumReduction_cub_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd);
 | 
				
			||||||
 | 
					      
 | 
				
			||||||
 | 
					    for (int r = 0; r < rd; r++) {
 | 
				
			||||||
 | 
					      lvSum_ptr[w+words*r]=lvSum_small[r];
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					template<class vobj> inline void sliceSumReduction_cub(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  autoView(Data_v, Data, AcceleratorRead); //hipcub/cub cannot deal with large vobjs so we split into small/large case.
 | 
				
			||||||
 | 
					    if constexpr (sizeof(vobj) <= 256) { 
 | 
				
			||||||
 | 
					      sliceSumReduction_cub_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    else {
 | 
				
			||||||
 | 
					      sliceSumReduction_cub_large(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#if defined(GRID_SYCL)
 | 
					#if defined(GRID_SYCL)
 | 
				
			||||||
template<class vobj>
 | 
					template<class vobj> inline void sliceSumReduction_sycl(const Lattice<vobj> &Data, Vector <vobj> &lvSum, const int  &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
 | 
				
			||||||
inline void sliceSumReduction_sycl_small(const vobj *Data,
 | 
					 | 
				
			||||||
					 std::vector <vobj> &lvSum,
 | 
					 | 
				
			||||||
					 const int  &rd,
 | 
					 | 
				
			||||||
					 const int &e1,
 | 
					 | 
				
			||||||
					 const int &e2,
 | 
					 | 
				
			||||||
					 const int &stride,
 | 
					 | 
				
			||||||
					 const int &ostride,
 | 
					 | 
				
			||||||
					 const int &Nsimd)
 | 
					 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
 | 
					  typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
  size_t subvol_size = e1*e2;
 | 
					  size_t subvol_size = e1*e2;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  vobj *mysum = (vobj *) malloc_shared(rd*sizeof(vobj),*theGridAccelerator);
 | 
					  vobj *mysum = (vobj *) malloc_shared(sizeof(vobj),*theGridAccelerator);
 | 
				
			||||||
  vobj vobj_zero;
 | 
					  vobj vobj_zero;
 | 
				
			||||||
  zeroit(vobj_zero);
 | 
					  zeroit(vobj_zero);
 | 
				
			||||||
  for (int r = 0; r<rd; r++) { 
 | 
					 | 
				
			||||||
    mysum[r] = vobj_zero; 
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
  deviceVector<vobj> reduction_buffer(rd*subvol_size);    
 | 
					  commVector<vobj> reduction_buffer(rd*subvol_size);    
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  auto rb_p = &reduction_buffer[0];
 | 
					  auto rb_p = &reduction_buffer[0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // autoView(Data_v, Data, AcceleratorRead);
 | 
					  autoView(Data_v, Data, AcceleratorRead);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //prepare reduction buffer 
 | 
					  //prepare reduction buffer 
 | 
				
			||||||
  accelerator_for2d( s,subvol_size, r,rd, (size_t)Nsimd,{ 
 | 
					  accelerator_for2d( s,subvol_size, r,rd, (size_t)Nsimd,{ 
 | 
				
			||||||
@@ -136,102 +154,30 @@ inline void sliceSumReduction_sycl_small(const vobj *Data,
 | 
				
			|||||||
      int so=r*ostride; // base offset for start of plane 
 | 
					      int so=r*ostride; // base offset for start of plane 
 | 
				
			||||||
      int ss= so+n*stride+b;
 | 
					      int ss= so+n*stride+b;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data[ss]));
 | 
					      coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data_v[ss]));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  });
 | 
					  });
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  for (int r = 0; r < rd; r++) {
 | 
					  for (int r = 0; r < rd; r++) {
 | 
				
			||||||
      theGridAccelerator->submit([&](sycl::handler &cgh) {
 | 
					      mysum[0] = vobj_zero; //dirty hack: cannot pass vobj_zero as identity to sycl::reduction as its not device_copyable
 | 
				
			||||||
          auto Reduction = sycl::reduction(&mysum[r],std::plus<>());
 | 
					      theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
 | 
				
			||||||
          cgh.parallel_for(sycl::range<1>{subvol_size},
 | 
					          auto Reduction = cl::sycl::reduction(mysum,std::plus<>());
 | 
				
			||||||
 | 
					          cgh.parallel_for(cl::sycl::range<1>{subvol_size},
 | 
				
			||||||
          Reduction,
 | 
					          Reduction,
 | 
				
			||||||
          [=](sycl::id<1> item, auto &sum) {
 | 
					          [=](cl::sycl::id<1> item, auto &sum) {
 | 
				
			||||||
              auto s = item[0];
 | 
					              auto s = item[0];
 | 
				
			||||||
              sum += rb_p[r*subvol_size+s];
 | 
					              sum += rb_p[r*subvol_size+s];
 | 
				
			||||||
          });
 | 
					          });
 | 
				
			||||||
      });
 | 
					      });
 | 
				
			||||||
      
 | 
					 | 
				
			||||||
     
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
      theGridAccelerator->wait();
 | 
					      theGridAccelerator->wait();
 | 
				
			||||||
  for (int r = 0; r < rd; r++) {
 | 
					      lvSum[r] = mysum[0];
 | 
				
			||||||
    lvSum[r] = mysum[r];
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
  free(mysum,*theGridAccelerator);
 | 
					  free(mysum,*theGridAccelerator);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj>
 | 
					template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
 | 
				
			||||||
inline void sliceSumReduction_large(const vobj *Data,
 | 
					 | 
				
			||||||
				    std::vector<vobj> &lvSum,
 | 
					 | 
				
			||||||
				    const int rd,
 | 
					 | 
				
			||||||
				    const int e1,
 | 
					 | 
				
			||||||
				    const int e2,
 | 
					 | 
				
			||||||
				    const int stride,
 | 
					 | 
				
			||||||
				    const int ostride,
 | 
					 | 
				
			||||||
				    const int Nsimd)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  typedef typename vobj::vector_type vector;
 | 
					 | 
				
			||||||
  const int words = sizeof(vobj)/sizeof(vector);
 | 
					 | 
				
			||||||
  const int osites = rd*e1*e2;
 | 
					 | 
				
			||||||
  deviceVector<vector>buffer(osites);
 | 
					 | 
				
			||||||
  vector *dat = (vector *)Data;
 | 
					 | 
				
			||||||
  vector *buf = &buffer[0];
 | 
					 | 
				
			||||||
  std::vector<vector> lvSum_small(rd);
 | 
					 | 
				
			||||||
  vector *lvSum_ptr = (vector *)&lvSum[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  for (int w = 0; w < words; w++) {
 | 
					 | 
				
			||||||
    accelerator_for(ss,osites,1,{
 | 
					 | 
				
			||||||
	    buf[ss] = dat[ss*words+w];
 | 
					 | 
				
			||||||
    });
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    #if defined(GRID_CUDA) || defined(GRID_HIP)
 | 
					 | 
				
			||||||
      sliceSumReduction_cub_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd);
 | 
					 | 
				
			||||||
    #elif defined(GRID_SYCL)
 | 
					 | 
				
			||||||
      sliceSumReduction_sycl_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd);
 | 
					 | 
				
			||||||
    #endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for (int r = 0; r < rd; r++) {
 | 
					 | 
				
			||||||
      lvSum_ptr[w+words*r]=lvSum_small[r];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class vobj>
 | 
					 | 
				
			||||||
inline void sliceSumReduction_gpu(const Lattice<vobj> &Data,
 | 
					 | 
				
			||||||
				  std::vector<vobj> &lvSum,
 | 
					 | 
				
			||||||
				  const int rd,
 | 
					 | 
				
			||||||
				  const int e1,
 | 
					 | 
				
			||||||
				  const int e2,
 | 
					 | 
				
			||||||
				  const int stride,
 | 
					 | 
				
			||||||
				  const int ostride,
 | 
					 | 
				
			||||||
				  const int Nsimd)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  autoView(Data_v, Data, AcceleratorRead); //reduction libraries cannot deal with large vobjs so we split into small/large case.
 | 
					 | 
				
			||||||
    if constexpr (sizeof(vobj) <= 256) { 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      #if defined(GRID_CUDA) || defined(GRID_HIP)
 | 
					 | 
				
			||||||
        sliceSumReduction_cub_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
					 | 
				
			||||||
      #elif defined (GRID_SYCL)
 | 
					 | 
				
			||||||
        sliceSumReduction_sycl_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
					 | 
				
			||||||
      #endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    else {
 | 
					 | 
				
			||||||
      sliceSumReduction_large(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class vobj>
 | 
					 | 
				
			||||||
inline void sliceSumReduction_cpu(const Lattice<vobj> &Data,
 | 
					 | 
				
			||||||
				  std::vector<vobj> &lvSum,
 | 
					 | 
				
			||||||
				  const int &rd,
 | 
					 | 
				
			||||||
				  const int &e1,
 | 
					 | 
				
			||||||
				  const int &e2,
 | 
					 | 
				
			||||||
				  const int &stride,
 | 
					 | 
				
			||||||
				  const int &ostride,
 | 
					 | 
				
			||||||
				  const int &Nsimd)
 | 
					 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  // sum over reduced dimension planes, breaking out orthog dir
 | 
					  // sum over reduced dimension planes, breaking out orthog dir
 | 
				
			||||||
  // Parallel over orthog direction
 | 
					  // Parallel over orthog direction
 | 
				
			||||||
@@ -247,19 +193,19 @@ inline void sliceSumReduction_cpu(const Lattice<vobj> &Data,
 | 
				
			|||||||
  });
 | 
					  });
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data,
 | 
					template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd) 
 | 
				
			||||||
						   std::vector<vobj> &lvSum,
 | 
					 | 
				
			||||||
						   const int &rd,
 | 
					 | 
				
			||||||
						   const int &e1,
 | 
					 | 
				
			||||||
						   const int &e2,
 | 
					 | 
				
			||||||
						   const int &stride,
 | 
					 | 
				
			||||||
						   const int &ostride,
 | 
					 | 
				
			||||||
						   const int &Nsimd) 
 | 
					 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
 | 
					  #if defined(GRID_CUDA) || defined(GRID_HIP)
 | 
				
			||||||
  sliceSumReduction_gpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
					  
 | 
				
			||||||
 | 
					  sliceSumReduction_cub(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 | 
					  #elif defined(GRID_SYCL)
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 | 
					  sliceSumReduction_sycl(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
  #else
 | 
					  #else
 | 
				
			||||||
  sliceSumReduction_cpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
					  sliceSumReduction_cpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  #endif
 | 
					  #endif
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -31,15 +31,15 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
inline void subdivides(GridBase *coarse,GridBase *fine)
 | 
					inline void subdivides(GridBase *coarse,GridBase *fine)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GRID_ASSERT(coarse->_ndimension == fine->_ndimension);
 | 
					  assert(coarse->_ndimension == fine->_ndimension);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  int _ndimension = coarse->_ndimension;
 | 
					  int _ndimension = coarse->_ndimension;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // local and global volumes subdivide cleanly after SIMDization
 | 
					  // local and global volumes subdivide cleanly after SIMDization
 | 
				
			||||||
  for(int d=0;d<_ndimension;d++){
 | 
					  for(int d=0;d<_ndimension;d++){
 | 
				
			||||||
    GRID_ASSERT(coarse->_processors[d]  == fine->_processors[d]);
 | 
					    assert(coarse->_processors[d]  == fine->_processors[d]);
 | 
				
			||||||
    GRID_ASSERT(coarse->_simd_layout[d] == fine->_simd_layout[d]);
 | 
					    assert(coarse->_simd_layout[d] == fine->_simd_layout[d]);
 | 
				
			||||||
    GRID_ASSERT((fine->_rdimensions[d] / coarse->_rdimensions[d])* coarse->_rdimensions[d]==fine->_rdimensions[d]); 
 | 
					    assert((fine->_rdimensions[d] / coarse->_rdimensions[d])* coarse->_rdimensions[d]==fine->_rdimensions[d]); 
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -276,40 +276,25 @@ inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  autoView( coarseData_ , coarseData, AcceleratorWrite);
 | 
					  autoView( coarseData_ , coarseData, AcceleratorWrite);
 | 
				
			||||||
  autoView( ip_         , ip,         AcceleratorWrite);
 | 
					  autoView( ip_         , ip,         AcceleratorWrite);
 | 
				
			||||||
  RealD t_IP=0;
 | 
					 | 
				
			||||||
  RealD t_co=0;
 | 
					 | 
				
			||||||
  RealD t_za=0;
 | 
					 | 
				
			||||||
  for(int v=0;v<nbasis;v++) {
 | 
					  for(int v=0;v<nbasis;v++) {
 | 
				
			||||||
    t_IP-=usecond();
 | 
					 | 
				
			||||||
    blockInnerProductD(ip,Basis[v],fineDataRed); // ip = <basis|fine>
 | 
					    blockInnerProductD(ip,Basis[v],fineDataRed); // ip = <basis|fine>
 | 
				
			||||||
    t_IP+=usecond();
 | 
					 | 
				
			||||||
    t_co-=usecond();
 | 
					 | 
				
			||||||
    accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
 | 
					    accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
 | 
				
			||||||
	convertType(coarseData_[sc](v),ip_[sc]);
 | 
						convertType(coarseData_[sc](v),ip_[sc]);
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
    t_co+=usecond();
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // improve numerical stability of projection
 | 
					    // improve numerical stability of projection
 | 
				
			||||||
    // |fine> = |fine> - <basis|fine> |basis>
 | 
					    // |fine> = |fine> - <basis|fine> |basis>
 | 
				
			||||||
    ip=-ip;
 | 
					    ip=-ip;
 | 
				
			||||||
    t_za-=usecond();
 | 
					 | 
				
			||||||
    blockZAXPY(fineDataRed,ip,Basis[v],fineDataRed); 
 | 
					    blockZAXPY(fineDataRed,ip,Basis[v],fineDataRed); 
 | 
				
			||||||
    t_za+=usecond();
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  //  std::cout << GridLogPerformance << " blockProject : blockInnerProduct :  "<<t_IP<<" us"<<std::endl;
 | 
					 | 
				
			||||||
  //  std::cout << GridLogPerformance << " blockProject : conv              :  "<<t_co<<" us"<<std::endl;
 | 
					 | 
				
			||||||
  //  std::cout << GridLogPerformance << " blockProject : blockZaxpy        :  "<<t_za<<" us"<<std::endl;
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
// This only minimises data motion from CPU to GPU
 | 
					 | 
				
			||||||
// there is chance of better implementation that does a vxk loop of inner products to data share
 | 
					 | 
				
			||||||
// at the GPU thread level
 | 
					 | 
				
			||||||
template<class vobj,class CComplex,int nbasis,class VLattice>
 | 
					template<class vobj,class CComplex,int nbasis,class VLattice>
 | 
				
			||||||
inline void batchBlockProject(std::vector<Lattice<iVector<CComplex,nbasis>>> &coarseData,
 | 
					inline void batchBlockProject(std::vector<Lattice<iVector<CComplex,nbasis>>> &coarseData,
 | 
				
			||||||
                               const std::vector<Lattice<vobj>> &fineData,
 | 
					                               const std::vector<Lattice<vobj>> &fineData,
 | 
				
			||||||
                               const VLattice &Basis)
 | 
					                               const VLattice &Basis)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  int NBatch = fineData.size();
 | 
					  int NBatch = fineData.size();
 | 
				
			||||||
  GRID_ASSERT(coarseData.size() == NBatch);
 | 
					  assert(coarseData.size() == NBatch);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GridBase * fine  = fineData[0].Grid();
 | 
					  GridBase * fine  = fineData[0].Grid();
 | 
				
			||||||
  GridBase * coarse= coarseData[0].Grid();
 | 
					  GridBase * coarse= coarseData[0].Grid();
 | 
				
			||||||
@@ -344,7 +329,7 @@ template<class vobj,class vobj2,class CComplex>
 | 
				
			|||||||
  GridBase * coarse= coarseA.Grid();
 | 
					  GridBase * coarse= coarseA.Grid();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  fineZ.Checkerboard()=fineX.Checkerboard();
 | 
					  fineZ.Checkerboard()=fineX.Checkerboard();
 | 
				
			||||||
  GRID_ASSERT(fineX.Checkerboard()==fineY.Checkerboard());
 | 
					  assert(fineX.Checkerboard()==fineY.Checkerboard());
 | 
				
			||||||
  subdivides(coarse,fine); // require they map
 | 
					  subdivides(coarse,fine); // require they map
 | 
				
			||||||
  conformable(fineX,fineY);
 | 
					  conformable(fineX,fineY);
 | 
				
			||||||
  conformable(fineX,fineZ);
 | 
					  conformable(fineX,fineZ);
 | 
				
			||||||
@@ -356,7 +341,7 @@ template<class vobj,class vobj2,class CComplex>
 | 
				
			|||||||
  // FIXME merge with subdivide checking routine as this is redundant
 | 
					  // FIXME merge with subdivide checking routine as this is redundant
 | 
				
			||||||
  for(int d=0 ; d<_ndimension;d++){
 | 
					  for(int d=0 ; d<_ndimension;d++){
 | 
				
			||||||
    block_r[d] = fine->_rdimensions[d] / coarse->_rdimensions[d];
 | 
					    block_r[d] = fine->_rdimensions[d] / coarse->_rdimensions[d];
 | 
				
			||||||
    GRID_ASSERT(block_r[d]*coarse->_rdimensions[d]==fine->_rdimensions[d]);
 | 
					    assert(block_r[d]*coarse->_rdimensions[d]==fine->_rdimensions[d]);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  autoView( fineZ_  , fineZ, AcceleratorWrite);
 | 
					  autoView( fineZ_  , fineZ, AcceleratorWrite);
 | 
				
			||||||
@@ -408,15 +393,8 @@ template<class vobj,class CComplex>
 | 
				
			|||||||
  Lattice<dotp> coarse_inner(coarse);
 | 
					  Lattice<dotp> coarse_inner(coarse);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Precision promotion
 | 
					  // Precision promotion
 | 
				
			||||||
  RealD t;
 | 
					 | 
				
			||||||
  t=-usecond();
 | 
					 | 
				
			||||||
  fine_inner = localInnerProductD<vobj>(fineX,fineY);
 | 
					  fine_inner = localInnerProductD<vobj>(fineX,fineY);
 | 
				
			||||||
  //  t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : localInnerProductD "<<t<<" us"<<std::endl;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  t=-usecond();
 | 
					 | 
				
			||||||
  blockSum(coarse_inner,fine_inner);
 | 
					  blockSum(coarse_inner,fine_inner);
 | 
				
			||||||
  //  t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : blockSum "<<t<<" us"<<std::endl;
 | 
					 | 
				
			||||||
  t=-usecond();
 | 
					 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    autoView( CoarseInner_  , CoarseInner,AcceleratorWrite);
 | 
					    autoView( CoarseInner_  , CoarseInner,AcceleratorWrite);
 | 
				
			||||||
    autoView( coarse_inner_ , coarse_inner,AcceleratorRead);
 | 
					    autoView( coarse_inner_ , coarse_inner,AcceleratorRead);
 | 
				
			||||||
@@ -424,7 +402,6 @@ template<class vobj,class CComplex>
 | 
				
			|||||||
      convertType(CoarseInner_[ss], TensorRemove(coarse_inner_[ss]));
 | 
					      convertType(CoarseInner_[ss], TensorRemove(coarse_inner_[ss]));
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  //  t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : convertType "<<t<<" us"<<std::endl;
 | 
					 | 
				
			||||||
 
 | 
					 
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -467,9 +444,6 @@ inline void blockNormalise(Lattice<CComplex> &ip,Lattice<vobj> &fineX)
 | 
				
			|||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData) 
 | 
					inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData) 
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  const int maxsubsec=256;
 | 
					 | 
				
			||||||
  typedef iVector<vobj,maxsubsec> vSubsec;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  GridBase * fine  = fineData.Grid();
 | 
					  GridBase * fine  = fineData.Grid();
 | 
				
			||||||
  GridBase * coarse= coarseData.Grid();
 | 
					  GridBase * coarse= coarseData.Grid();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -495,34 +469,16 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
 | 
				
			|||||||
  Coordinate fine_rdimensions = fine->_rdimensions;
 | 
					  Coordinate fine_rdimensions = fine->_rdimensions;
 | 
				
			||||||
  Coordinate coarse_rdimensions = coarse->_rdimensions;
 | 
					  Coordinate coarse_rdimensions = coarse->_rdimensions;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  vobj zz = Zero();
 | 
					  accelerator_for(sc,coarse->oSites(),1,{
 | 
				
			||||||
 | 
					 | 
				
			||||||
  // Somewhat lazy calculation
 | 
					 | 
				
			||||||
  // Find the biggest power of two subsection divisor less than or equal to maxsubsec
 | 
					 | 
				
			||||||
  int subsec=maxsubsec;
 | 
					 | 
				
			||||||
  int subvol;
 | 
					 | 
				
			||||||
  subvol=blockVol/subsec;
 | 
					 | 
				
			||||||
  while(subvol*subsec!=blockVol){
 | 
					 | 
				
			||||||
    subsec = subsec/2;
 | 
					 | 
				
			||||||
    subvol=blockVol/subsec;
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Lattice<vSubsec> coarseTmp(coarse);
 | 
					 | 
				
			||||||
  autoView( coarseTmp_, coarseTmp, AcceleratorWriteDiscard);
 | 
					 | 
				
			||||||
  auto coarseTmp_p= &coarseTmp_[0];
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  // Sum within subsecs in a first kernel
 | 
					 | 
				
			||||||
  accelerator_for(sce,subsec*coarse->oSites(),vobj::Nsimd(),{
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      int sc=sce/subsec;
 | 
					 | 
				
			||||||
      int e=sce%subsec;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
      // One thread per sub block
 | 
					      // One thread per sub block
 | 
				
			||||||
      Coordinate coor_c(_ndimension);
 | 
					      Coordinate coor_c(_ndimension);
 | 
				
			||||||
      Lexicographic::CoorFromIndex(coor_c,sc,coarse_rdimensions);  // Block coordinate
 | 
					      Lexicographic::CoorFromIndex(coor_c,sc,coarse_rdimensions);  // Block coordinate
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      auto cd = coalescedRead(zz);
 | 
					      vobj cd = Zero();
 | 
				
			||||||
      for(int sb=e*subvol;sb<MIN((e+1)*subvol,blockVol);sb++){
 | 
					      
 | 
				
			||||||
 | 
					      for(int sb=0;sb<blockVol;sb++){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	int sf;
 | 
						int sf;
 | 
				
			||||||
	Coordinate coor_b(_ndimension);
 | 
						Coordinate coor_b(_ndimension);
 | 
				
			||||||
	Coordinate coor_f(_ndimension);
 | 
						Coordinate coor_f(_ndimension);
 | 
				
			||||||
@@ -530,21 +486,12 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
 | 
				
			|||||||
	for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d] + coor_b[d];
 | 
						for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d] + coor_b[d];
 | 
				
			||||||
	Lexicographic::IndexFromCoor(coor_f,sf,fine_rdimensions);
 | 
						Lexicographic::IndexFromCoor(coor_f,sf,fine_rdimensions);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	cd=cd+coalescedRead(fineData_p[sf]);
 | 
						cd=cd+fineData_p[sf];
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      coalescedWrite(coarseTmp_[sc](e),cd);
 | 
					      coarseData_p[sc] = cd;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
   // Sum across subsecs in a second kernel
 | 
					 | 
				
			||||||
   accelerator_for(sc,coarse->oSites(),vobj::Nsimd(),{
 | 
					 | 
				
			||||||
      auto cd = coalescedRead(coarseTmp_p[sc](0));
 | 
					 | 
				
			||||||
      for(int e=1;e<subsec;e++){
 | 
					 | 
				
			||||||
	cd=cd+coalescedRead(coarseTmp_p[sc](e));
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      coalescedWrite(coarseData_p[sc],cd);
 | 
					 | 
				
			||||||
   });
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  return;
 | 
					  return;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -601,7 +548,7 @@ inline void blockOrthogonalise(Lattice<CComplex> &ip,std::vector<Lattice<vobj> >
 | 
				
			|||||||
  blockOrthonormalize(ip,Basis);
 | 
					  blockOrthonormalize(ip,Basis);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#ifdef GRID_ACCELERATED
 | 
					#if 0
 | 
				
			||||||
// TODO: CPU optimized version here
 | 
					// TODO: CPU optimized version here
 | 
				
			||||||
template<class vobj,class CComplex,int nbasis>
 | 
					template<class vobj,class CComplex,int nbasis>
 | 
				
			||||||
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
					inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
				
			||||||
@@ -613,7 +560,7 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
				
			|||||||
  int  _ndimension = coarse->_ndimension;
 | 
					  int  _ndimension = coarse->_ndimension;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // checks
 | 
					  // checks
 | 
				
			||||||
  GRID_ASSERT( nbasis == Basis.size() );
 | 
					  assert( nbasis == Basis.size() );
 | 
				
			||||||
  subdivides(coarse,fine); 
 | 
					  subdivides(coarse,fine); 
 | 
				
			||||||
  for(int i=0;i<nbasis;i++){
 | 
					  for(int i=0;i<nbasis;i++){
 | 
				
			||||||
    conformable(Basis[i].Grid(),fine);
 | 
					    conformable(Basis[i].Grid(),fine);
 | 
				
			||||||
@@ -627,37 +574,26 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
				
			|||||||
  autoView( fineData_   , fineData, AcceleratorWrite);
 | 
					  autoView( fineData_   , fineData, AcceleratorWrite);
 | 
				
			||||||
  autoView( coarseData_ , coarseData, AcceleratorRead);
 | 
					  autoView( coarseData_ , coarseData, AcceleratorRead);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  typedef LatticeView<vobj> Vview;
 | 
					 | 
				
			||||||
  std::vector<Vview> AcceleratorVecViewContainer_h; 
 | 
					 | 
				
			||||||
  for(int v=0;v<nbasis;v++) {
 | 
					 | 
				
			||||||
    AcceleratorVecViewContainer_h.push_back(Basis[v].View(AcceleratorRead));
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(nbasis); 
 | 
					 | 
				
			||||||
  acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],nbasis *sizeof(Vview));
 | 
					 | 
				
			||||||
  auto Basis_p = &AcceleratorVecViewContainer[0];
 | 
					 | 
				
			||||||
  // Loop with a cache friendly loop ordering
 | 
					  // Loop with a cache friendly loop ordering
 | 
				
			||||||
  Coordinate frdimensions=fine->_rdimensions;
 | 
					  accelerator_for(sf,fine->oSites(),1,{
 | 
				
			||||||
  Coordinate crdimensions=coarse->_rdimensions;
 | 
					 | 
				
			||||||
  accelerator_for(sf,fine->oSites(),vobj::Nsimd(),{
 | 
					 | 
				
			||||||
    int sc;
 | 
					    int sc;
 | 
				
			||||||
    Coordinate coor_c(_ndimension);
 | 
					    Coordinate coor_c(_ndimension);
 | 
				
			||||||
    Coordinate coor_f(_ndimension);
 | 
					    Coordinate coor_f(_ndimension);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    Lexicographic::CoorFromIndex(coor_f,sf,frdimensions);
 | 
					    Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
 | 
				
			||||||
    for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
 | 
					    for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
 | 
				
			||||||
    Lexicographic::IndexFromCoor(coor_c,sc,crdimensions);
 | 
					    Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    auto sum= coarseData_(sc)(0) *Basis_p[0](sf);
 | 
					    for(int i=0;i<nbasis;i++) {
 | 
				
			||||||
    for(int i=1;i<nbasis;i++) sum = sum + coarseData_(sc)(i)*Basis_p[i](sf);
 | 
					      /*      auto basis_ = Basis[i],  );*/
 | 
				
			||||||
    coalescedWrite(fineData_[sf],sum);
 | 
					      if(i==0) fineData_[sf]=coarseData_[sc](i) *basis_[sf]);
 | 
				
			||||||
  });
 | 
					      else     fineData_[sf]=fineData_[sf]+coarseData_[sc](i)*basis_[sf]);
 | 
				
			||||||
  for(int v=0;v<nbasis;v++) {
 | 
					 | 
				
			||||||
    AcceleratorVecViewContainer_h[v].ViewClose();
 | 
					 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					  });
 | 
				
			||||||
  return;
 | 
					  return;
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
#else
 | 
					#else
 | 
				
			||||||
// CPU version
 | 
					 | 
				
			||||||
template<class vobj,class CComplex,int nbasis,class VLattice>
 | 
					template<class vobj,class CComplex,int nbasis,class VLattice>
 | 
				
			||||||
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
					inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
				
			||||||
			 Lattice<vobj>   &fineData,
 | 
								 Lattice<vobj>   &fineData,
 | 
				
			||||||
@@ -687,7 +623,7 @@ inline void batchBlockPromote(const std::vector<Lattice<iVector<CComplex,nbasis>
 | 
				
			|||||||
                               const VLattice &Basis)
 | 
					                               const VLattice &Basis)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  int NBatch = coarseData.size();
 | 
					  int NBatch = coarseData.size();
 | 
				
			||||||
  GRID_ASSERT(fineData.size() == NBatch);
 | 
					  assert(fineData.size() == NBatch);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GridBase * fine   = fineData[0].Grid();
 | 
					  GridBase * fine   = fineData[0].Grid();
 | 
				
			||||||
  GridBase * coarse = coarseData[0].Grid();
 | 
					  GridBase * coarse = coarseData[0].Grid();
 | 
				
			||||||
@@ -715,12 +651,12 @@ void localConvert(const Lattice<vobj> &in,Lattice<vvobj> &out)
 | 
				
			|||||||
  int ni = ig->_ndimension;
 | 
					  int ni = ig->_ndimension;
 | 
				
			||||||
  int no = og->_ndimension;
 | 
					  int no = og->_ndimension;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GRID_ASSERT(ni == no);
 | 
					  assert(ni == no);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  for(int d=0;d<no;d++){
 | 
					  for(int d=0;d<no;d++){
 | 
				
			||||||
    GRID_ASSERT(ig->_processors[d]  == og->_processors[d]);
 | 
					    assert(ig->_processors[d]  == og->_processors[d]);
 | 
				
			||||||
    GRID_ASSERT(ig->_ldimensions[d] == og->_ldimensions[d]);
 | 
					    assert(ig->_ldimensions[d] == og->_ldimensions[d]);
 | 
				
			||||||
    GRID_ASSERT(ig->lSites() == og->lSites());
 | 
					    assert(ig->lSites() == og->lSites());
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  autoView(in_v,in,CpuRead);
 | 
					  autoView(in_v,in,CpuRead);
 | 
				
			||||||
@@ -744,102 +680,53 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
 | 
				
			|||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					  typedef typename vobj::scalar_type scalar_type;
 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  const int words=sizeof(vobj)/sizeof(vector_type);
 | 
					  static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
				
			||||||
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // checks should guarantee that the operations are local
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GridBase *Fg = From.Grid();
 | 
					  GridBase *Fg = From.Grid();
 | 
				
			||||||
  GridBase *Tg = To.Grid();
 | 
					  GridBase *Tg = To.Grid();
 | 
				
			||||||
  GRID_ASSERT(!Fg->_isCheckerBoarded);
 | 
					  assert(!Fg->_isCheckerBoarded);
 | 
				
			||||||
  GRID_ASSERT(!Tg->_isCheckerBoarded);
 | 
					  assert(!Tg->_isCheckerBoarded);
 | 
				
			||||||
  int Nsimd = Fg->Nsimd();
 | 
					  int Nsimd = Fg->Nsimd();
 | 
				
			||||||
  int nF = Fg->_ndimension;
 | 
					  int nF = Fg->_ndimension;
 | 
				
			||||||
  int nT = Tg->_ndimension;
 | 
					  int nT = Tg->_ndimension;
 | 
				
			||||||
  int nd = nF;
 | 
					  int nd = nF;
 | 
				
			||||||
  GRID_ASSERT(nF == nT);
 | 
					  assert(nF == nT);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  for(int d=0;d<nd;d++){
 | 
					  for(int d=0;d<nd;d++){
 | 
				
			||||||
    GRID_ASSERT(Fg->_processors[d]  == Tg->_processors[d]);
 | 
					    assert(Fg->_processors[d]  == Tg->_processors[d]);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					  // the above should guarantee that the operations are local
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  ///////////////////////////////////////////////////////////
 | 
					#if 1
 | 
				
			||||||
  // do the index calc on the GPU
 | 
					 | 
				
			||||||
  ///////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  Coordinate f_ostride = Fg->_ostride;
 | 
					 | 
				
			||||||
  Coordinate f_istride = Fg->_istride;
 | 
					 | 
				
			||||||
  Coordinate f_rdimensions = Fg->_rdimensions;
 | 
					 | 
				
			||||||
  Coordinate t_ostride = Tg->_ostride;
 | 
					 | 
				
			||||||
  Coordinate t_istride = Tg->_istride;
 | 
					 | 
				
			||||||
  Coordinate t_rdimensions = Tg->_rdimensions;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  size_t nsite = 1;
 | 
					  size_t nsite = 1;
 | 
				
			||||||
  for(int i=0;i<nd;i++) nsite *= RegionSize[i];
 | 
					  for(int i=0;i<nd;i++) nsite *= RegionSize[i];
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					  size_t tbytes = 4*nsite*sizeof(int);
 | 
				
			||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					  int *table = (int*)malloc(tbytes);
 | 
				
			||||||
 
 | 
					 
 | 
				
			||||||
  autoView(from_v,From,AcceleratorRead);
 | 
					  thread_for(idx, nsite, {
 | 
				
			||||||
  autoView(to_v,To,AcceleratorWrite);
 | 
					      Coordinate from_coor, to_coor;
 | 
				
			||||||
 | 
					      size_t rem = idx;
 | 
				
			||||||
  accelerator_for(idx,nsite,1,{
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      Coordinate from_coor, to_coor, base;
 | 
					 | 
				
			||||||
      Lexicographic::CoorFromIndex(base,idx,RegionSize);
 | 
					 | 
				
			||||||
      for(int i=0;i<nd;i++){
 | 
					      for(int i=0;i<nd;i++){
 | 
				
			||||||
	from_coor[i] = base[i] + FromLowerLeft[i];
 | 
						size_t base_i  = rem % RegionSize[i]; rem /= RegionSize[i];
 | 
				
			||||||
	to_coor[i] = base[i] + ToLowerLeft[i];
 | 
						from_coor[i] = base_i + FromLowerLeft[i];
 | 
				
			||||||
 | 
						to_coor[i] = base_i + ToLowerLeft[i];
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
      int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
 | 
					 | 
				
			||||||
      int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
 | 
					 | 
				
			||||||
      int to_oidx   = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
 | 
					 | 
				
			||||||
      int to_lane   = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
 | 
					 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
      const vector_type* from = (const vector_type *)&from_v[from_oidx];
 | 
					      int foidx = Fg->oIndex(from_coor);
 | 
				
			||||||
      vector_type* to = (vector_type *)&to_v[to_oidx];
 | 
					      int fiidx = Fg->iIndex(from_coor);
 | 
				
			||||||
      
 | 
					      int toidx = Tg->oIndex(to_coor);
 | 
				
			||||||
      scalar_type stmp;
 | 
					      int tiidx = Tg->iIndex(to_coor);
 | 
				
			||||||
      for(int w=0;w<words;w++){
 | 
					      int* tt = table + 4*idx;
 | 
				
			||||||
	stmp = getlane(from[w], from_lane);
 | 
					      tt[0] = foidx;
 | 
				
			||||||
	putlane(to[w], stmp, to_lane);
 | 
					      tt[1] = fiidx;
 | 
				
			||||||
      }
 | 
					      tt[2] = toidx;
 | 
				
			||||||
 | 
					      tt[3] = tiidx;
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
}
 | 
					 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
template<class vobj>
 | 
					  int* table_d = (int*)acceleratorAllocDevice(tbytes);
 | 
				
			||||||
void InsertSliceFast(const Lattice<vobj> &From,Lattice<vobj> & To,int slice, int orthog)
 | 
					  acceleratorCopyToDevice(table,table_d,tbytes);
 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  const int words=sizeof(vobj)/sizeof(vector_type);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // checks should guarantee that the operations are local
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  GridBase *Fg = From.Grid();
 | 
					 | 
				
			||||||
  GridBase *Tg = To.Grid();
 | 
					 | 
				
			||||||
  GRID_ASSERT(!Fg->_isCheckerBoarded);
 | 
					 | 
				
			||||||
  GRID_ASSERT(!Tg->_isCheckerBoarded);
 | 
					 | 
				
			||||||
  int Nsimd = Fg->Nsimd();
 | 
					 | 
				
			||||||
  int nF = Fg->_ndimension;
 | 
					 | 
				
			||||||
  int nT = Tg->_ndimension;
 | 
					 | 
				
			||||||
  GRID_ASSERT(nF+1 == nT);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ///////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // do the index calc on the GPU
 | 
					 | 
				
			||||||
  ///////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  Coordinate f_ostride = Fg->_ostride;
 | 
					 | 
				
			||||||
  Coordinate f_istride = Fg->_istride;
 | 
					 | 
				
			||||||
  Coordinate f_rdimensions = Fg->_rdimensions;
 | 
					 | 
				
			||||||
  Coordinate t_ostride = Tg->_ostride;
 | 
					 | 
				
			||||||
  Coordinate t_istride = Tg->_istride;
 | 
					 | 
				
			||||||
  Coordinate t_rdimensions = Tg->_rdimensions;
 | 
					 | 
				
			||||||
  Coordinate RegionSize = Fg->_ldimensions;
 | 
					 | 
				
			||||||
  size_t nsite = 1;
 | 
					 | 
				
			||||||
  for(int i=0;i<nF;i++) nsite *= RegionSize[i]; // whole volume of lower dim grid
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					  typedef typename vobj::scalar_type scalar_type;
 | 
				
			||||||
@@ -848,22 +735,12 @@ void InsertSliceFast(const Lattice<vobj> &From,Lattice<vobj> & To,int slice, int
 | 
				
			|||||||
  autoView(to_v,To,AcceleratorWrite);
 | 
					  autoView(to_v,To,AcceleratorWrite);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  accelerator_for(idx,nsite,1,{
 | 
					  accelerator_for(idx,nsite,1,{
 | 
				
			||||||
 | 
					      static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
				
			||||||
      Coordinate from_coor(nF), to_coor(nT);
 | 
					      int* tt = table_d + 4*idx;
 | 
				
			||||||
      Lexicographic::CoorFromIndex(from_coor,idx,RegionSize);
 | 
					      int from_oidx = *tt++;
 | 
				
			||||||
      int j=0;
 | 
					      int from_lane = *tt++;
 | 
				
			||||||
      for(int i=0;i<nT;i++){
 | 
					      int to_oidx = *tt++;
 | 
				
			||||||
	if ( i!=orthog ) { 
 | 
					      int to_lane = *tt;
 | 
				
			||||||
	  to_coor[i] = from_coor[j];
 | 
					 | 
				
			||||||
	  j++;
 | 
					 | 
				
			||||||
	} else {
 | 
					 | 
				
			||||||
	  to_coor[i] = slice;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      int from_oidx = 0; for(int d=0;d<nF;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
 | 
					 | 
				
			||||||
      int from_lane = 0; for(int d=0;d<nF;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
 | 
					 | 
				
			||||||
      int to_oidx   = 0; for(int d=0;d<nT;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
 | 
					 | 
				
			||||||
      int to_lane   = 0; for(int d=0;d<nT;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
      const vector_type* from = (const vector_type *)&from_v[from_oidx];
 | 
					      const vector_type* from = (const vector_type *)&from_v[from_oidx];
 | 
				
			||||||
      vector_type* to = (vector_type *)&to_v[to_oidx];
 | 
					      vector_type* to = (vector_type *)&to_v[to_oidx];
 | 
				
			||||||
@@ -874,77 +751,56 @@ void InsertSliceFast(const Lattice<vobj> &From,Lattice<vobj> & To,int slice, int
 | 
				
			|||||||
	putlane(to[w], stmp, to_lane);
 | 
						putlane(to[w], stmp, to_lane);
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 | 
					  acceleratorFreeDevice(table_d);    
 | 
				
			||||||
 | 
					  free(table);
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#else  
 | 
				
			||||||
 | 
					  Coordinate ldf = Fg->_ldimensions;
 | 
				
			||||||
 | 
					  Coordinate rdf = Fg->_rdimensions;
 | 
				
			||||||
 | 
					  Coordinate isf = Fg->_istride;
 | 
				
			||||||
 | 
					  Coordinate osf = Fg->_ostride;
 | 
				
			||||||
 | 
					  Coordinate rdt = Tg->_rdimensions;
 | 
				
			||||||
 | 
					  Coordinate ist = Tg->_istride;
 | 
				
			||||||
 | 
					  Coordinate ost = Tg->_ostride;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  autoView( t_v , To, CpuWrite);
 | 
				
			||||||
 | 
					  autoView( f_v , From, CpuRead);
 | 
				
			||||||
 | 
					  thread_for(idx,Fg->lSites(),{
 | 
				
			||||||
 | 
					    sobj s;
 | 
				
			||||||
 | 
					    Coordinate Fcoor(nd);
 | 
				
			||||||
 | 
					    Coordinate Tcoor(nd);
 | 
				
			||||||
 | 
					    Lexicographic::CoorFromIndex(Fcoor,idx,ldf);
 | 
				
			||||||
 | 
					    int in_region=1;
 | 
				
			||||||
 | 
					    for(int d=0;d<nd;d++){
 | 
				
			||||||
 | 
					      if ( (Fcoor[d] < FromLowerLeft[d]) || (Fcoor[d]>=FromLowerLeft[d]+RegionSize[d]) ){ 
 | 
				
			||||||
 | 
						in_region=0;
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
 | 
					      Tcoor[d] = ToLowerLeft[d]+ Fcoor[d]-FromLowerLeft[d];
 | 
				
			||||||
template<class vobj>
 | 
					 | 
				
			||||||
void ExtractSliceFast(Lattice<vobj> &To,const Lattice<vobj> & From,int slice, int orthog)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  const int words=sizeof(vobj)/sizeof(vector_type);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // checks should guarantee that the operations are local
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  GridBase *Fg = From.Grid();
 | 
					 | 
				
			||||||
  GridBase *Tg = To.Grid();
 | 
					 | 
				
			||||||
  GRID_ASSERT(!Fg->_isCheckerBoarded);
 | 
					 | 
				
			||||||
  GRID_ASSERT(!Tg->_isCheckerBoarded);
 | 
					 | 
				
			||||||
  int Nsimd = Fg->Nsimd();
 | 
					 | 
				
			||||||
  int nF = Fg->_ndimension;
 | 
					 | 
				
			||||||
  int nT = Tg->_ndimension;
 | 
					 | 
				
			||||||
  GRID_ASSERT(nT+1 == nF);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ///////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // do the index calc on the GPU
 | 
					 | 
				
			||||||
  ///////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  Coordinate f_ostride = Fg->_ostride;
 | 
					 | 
				
			||||||
  Coordinate f_istride = Fg->_istride;
 | 
					 | 
				
			||||||
  Coordinate f_rdimensions = Fg->_rdimensions;
 | 
					 | 
				
			||||||
  Coordinate t_ostride = Tg->_ostride;
 | 
					 | 
				
			||||||
  Coordinate t_istride = Tg->_istride;
 | 
					 | 
				
			||||||
  Coordinate t_rdimensions = Tg->_rdimensions;
 | 
					 | 
				
			||||||
  Coordinate RegionSize = Tg->_ldimensions;
 | 
					 | 
				
			||||||
  size_t nsite = 1;
 | 
					 | 
				
			||||||
  for(int i=0;i<nT;i++) nsite *= RegionSize[i]; // whole volume of lower dim grid
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  autoView(from_v,From,AcceleratorRead);
 | 
					 | 
				
			||||||
  autoView(to_v,To,AcceleratorWrite);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  accelerator_for(idx,nsite,1,{
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      Coordinate from_coor(nF), to_coor(nT);
 | 
					 | 
				
			||||||
      Lexicographic::CoorFromIndex(to_coor,idx,RegionSize);
 | 
					 | 
				
			||||||
      int j=0;
 | 
					 | 
				
			||||||
      for(int i=0;i<nF;i++){
 | 
					 | 
				
			||||||
	if ( i!=orthog ) { 
 | 
					 | 
				
			||||||
	  from_coor[i] = to_coor[j];
 | 
					 | 
				
			||||||
	  j++;
 | 
					 | 
				
			||||||
	} else {
 | 
					 | 
				
			||||||
	  from_coor[i] = slice;
 | 
					 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
      }
 | 
					    if (in_region) {
 | 
				
			||||||
      int from_oidx = 0; for(int d=0;d<nF;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
 | 
					#if 0      
 | 
				
			||||||
      int from_lane = 0; for(int d=0;d<nF;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
 | 
					      Integer idx_f = 0; for(int d=0;d<nd;d++) idx_f+=isf[d]*(Fcoor[d]/rdf[d]); // inner index from
 | 
				
			||||||
      int to_oidx   = 0; for(int d=0;d<nT;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
 | 
					      Integer idx_t = 0; for(int d=0;d<nd;d++) idx_t+=ist[d]*(Tcoor[d]/rdt[d]); // inner index to
 | 
				
			||||||
      int to_lane   = 0; for(int d=0;d<nT;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
 | 
					      Integer odx_f = 0; for(int d=0;d<nd;d++) odx_f+=osf[d]*(Fcoor[d]%rdf[d]); // outer index from
 | 
				
			||||||
 | 
					      Integer odx_t = 0; for(int d=0;d<nd;d++) odx_t+=ost[d]*(Tcoor[d]%rdt[d]); // outer index to
 | 
				
			||||||
      const vector_type* from = (const vector_type *)&from_v[from_oidx];
 | 
					      scalar_type * fp = (scalar_type *)&f_v[odx_f];
 | 
				
			||||||
      vector_type* to = (vector_type *)&to_v[to_oidx];
 | 
					      scalar_type * tp = (scalar_type *)&t_v[odx_t];
 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      scalar_type stmp;
 | 
					 | 
				
			||||||
      for(int w=0;w<words;w++){
 | 
					      for(int w=0;w<words;w++){
 | 
				
			||||||
	stmp = getlane(from[w], from_lane);
 | 
						tp[w].putlane(fp[w].getlane(idx_f),idx_t);
 | 
				
			||||||
	putlane(to[w], stmp, to_lane);
 | 
					      }
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
 | 
					    peekLocalSite(s,f_v,Fcoor);
 | 
				
			||||||
 | 
					    pokeLocalSite(s,t_v,Tcoor);
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  });
 | 
					  });
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice, int orthog)
 | 
					void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice, int orthog)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
@@ -955,16 +811,16 @@ void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice
 | 
				
			|||||||
  int nl = lg->_ndimension;
 | 
					  int nl = lg->_ndimension;
 | 
				
			||||||
  int nh = hg->_ndimension;
 | 
					  int nh = hg->_ndimension;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GRID_ASSERT(nl+1 == nh);
 | 
					  assert(nl+1 == nh);
 | 
				
			||||||
  GRID_ASSERT(orthog<nh);
 | 
					  assert(orthog<nh);
 | 
				
			||||||
  GRID_ASSERT(orthog>=0);
 | 
					  assert(orthog>=0);
 | 
				
			||||||
  GRID_ASSERT(hg->_processors[orthog]==1);
 | 
					  assert(hg->_processors[orthog]==1);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  int dl; dl = 0;
 | 
					  int dl; dl = 0;
 | 
				
			||||||
  for(int d=0;d<nh;d++){
 | 
					  for(int d=0;d<nh;d++){
 | 
				
			||||||
    if ( d != orthog) {
 | 
					    if ( d != orthog) {
 | 
				
			||||||
      GRID_ASSERT(lg->_processors[dl]  == hg->_processors[d]);
 | 
					      assert(lg->_processors[dl]  == hg->_processors[d]);
 | 
				
			||||||
      GRID_ASSERT(lg->_ldimensions[dl] == hg->_ldimensions[d]);
 | 
					      assert(lg->_ldimensions[dl] == hg->_ldimensions[d]);
 | 
				
			||||||
      dl++;
 | 
					      dl++;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -981,14 +837,8 @@ void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice
 | 
				
			|||||||
    hcoor[orthog] = slice;
 | 
					    hcoor[orthog] = slice;
 | 
				
			||||||
    for(int d=0;d<nh;d++){
 | 
					    for(int d=0;d<nh;d++){
 | 
				
			||||||
      if ( d!=orthog ) { 
 | 
					      if ( d!=orthog ) { 
 | 
				
			||||||
	hcoor[d]=lcoor[ddl];
 | 
						hcoor[d]=lcoor[ddl++];
 | 
				
			||||||
	if ( hg->_checker_dim == d ) {
 | 
					 | 
				
			||||||
	  hcoor[d]=hcoor[d]*2; // factor in the full coor for peekLocalSite
 | 
					 | 
				
			||||||
	  lcoor[ddl]=lcoor[ddl]*2; // factor in the full coor for peekLocalSite
 | 
					 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
	ddl++;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    peekLocalSite(s,lowDimv,lcoor);
 | 
					    peekLocalSite(s,lowDimv,lcoor);
 | 
				
			||||||
    pokeLocalSite(s,higherDimv,hcoor);
 | 
					    pokeLocalSite(s,higherDimv,hcoor);
 | 
				
			||||||
@@ -1005,17 +855,16 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
 | 
				
			|||||||
  int nl = lg->_ndimension;
 | 
					  int nl = lg->_ndimension;
 | 
				
			||||||
  int nh = hg->_ndimension;
 | 
					  int nh = hg->_ndimension;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GRID_ASSERT(nl+1 == nh);
 | 
					  assert(nl+1 == nh);
 | 
				
			||||||
  GRID_ASSERT(orthog<nh);
 | 
					  assert(orthog<nh);
 | 
				
			||||||
  GRID_ASSERT(orthog>=0);
 | 
					  assert(orthog>=0);
 | 
				
			||||||
  GRID_ASSERT(hg->_processors[orthog]==1);
 | 
					  assert(hg->_processors[orthog]==1);
 | 
				
			||||||
  lowDim.Checkerboard() = higherDim.Checkerboard();
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  int dl; dl = 0;
 | 
					  int dl; dl = 0;
 | 
				
			||||||
  for(int d=0;d<nh;d++){
 | 
					  for(int d=0;d<nh;d++){
 | 
				
			||||||
    if ( d != orthog) {
 | 
					    if ( d != orthog) {
 | 
				
			||||||
      GRID_ASSERT(lg->_processors[dl]  == hg->_processors[d]);
 | 
					      assert(lg->_processors[dl]  == hg->_processors[d]);
 | 
				
			||||||
      GRID_ASSERT(lg->_ldimensions[dl] == hg->_ldimensions[d]);
 | 
					      assert(lg->_ldimensions[dl] == hg->_ldimensions[d]);
 | 
				
			||||||
      dl++;
 | 
					      dl++;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -1027,16 +876,11 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
 | 
				
			|||||||
    Coordinate lcoor(nl);
 | 
					    Coordinate lcoor(nl);
 | 
				
			||||||
    Coordinate hcoor(nh);
 | 
					    Coordinate hcoor(nh);
 | 
				
			||||||
    lg->LocalIndexToLocalCoor(idx,lcoor);
 | 
					    lg->LocalIndexToLocalCoor(idx,lcoor);
 | 
				
			||||||
    hcoor[orthog] = slice;
 | 
					 | 
				
			||||||
    int ddl=0;
 | 
					    int ddl=0;
 | 
				
			||||||
 | 
					    hcoor[orthog] = slice;
 | 
				
			||||||
    for(int d=0;d<nh;d++){
 | 
					    for(int d=0;d<nh;d++){
 | 
				
			||||||
      if ( d!=orthog ) { 
 | 
					      if ( d!=orthog ) { 
 | 
				
			||||||
	hcoor[d]=lcoor[ddl];
 | 
						hcoor[d]=lcoor[ddl++];
 | 
				
			||||||
	if ( hg->_checker_dim == d ) {
 | 
					 | 
				
			||||||
	  hcoor[d]=hcoor[d]*2;     // factor in the full gridd coor for peekLocalSite
 | 
					 | 
				
			||||||
	  lcoor[ddl]=lcoor[ddl]*2; // factor in the full coor for peekLocalSite
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	ddl++;
 | 
					 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    peekLocalSite(s,higherDimv,hcoor);
 | 
					    peekLocalSite(s,higherDimv,hcoor);
 | 
				
			||||||
@@ -1045,7 +889,9 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
//Can I implement with local copyregion??
 | 
					
 | 
				
			||||||
 | 
					//Insert subvolume orthogonal to direction 'orthog' with slice index 'slice_lo' from 'lowDim' onto slice index 'slice_hi' of higherDim
 | 
				
			||||||
 | 
					//The local dimensions of both 'lowDim' and 'higherDim' orthogonal to 'orthog' should be the same
 | 
				
			||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
 | 
					void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
@@ -1056,28 +902,131 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
 | 
				
			|||||||
  int nl = lg->_ndimension;
 | 
					  int nl = lg->_ndimension;
 | 
				
			||||||
  int nh = hg->_ndimension;
 | 
					  int nh = hg->_ndimension;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GRID_ASSERT(nl == nh);
 | 
					  assert(nl == nh);
 | 
				
			||||||
  GRID_ASSERT(orthog<nh);
 | 
					  assert(orthog<nh);
 | 
				
			||||||
  GRID_ASSERT(orthog>=0);
 | 
					  assert(orthog>=0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  for(int d=0;d<nh;d++){
 | 
					  for(int d=0;d<nh;d++){
 | 
				
			||||||
    if ( d!=orthog ) {
 | 
					    if ( d!=orthog ) {
 | 
				
			||||||
      GRID_ASSERT(lg->_processors[d]  == hg->_processors[d]);
 | 
					      assert(lg->_processors[d]  == hg->_processors[d]);
 | 
				
			||||||
      GRID_ASSERT(lg->_ldimensions[d] == hg->_ldimensions[d]);
 | 
					      assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  Coordinate sz = lg->_ldimensions;
 | 
					
 | 
				
			||||||
  sz[orthog]=1;
 | 
					#if 1
 | 
				
			||||||
  Coordinate f_ll(nl,0); f_ll[orthog]=slice_lo;
 | 
					  size_t nsite = lg->lSites()/lg->LocalDimensions()[orthog];
 | 
				
			||||||
  Coordinate t_ll(nh,0); t_ll[orthog]=slice_hi;
 | 
					  size_t tbytes = 4*nsite*sizeof(int);
 | 
				
			||||||
  localCopyRegion(lowDim,higherDim,f_ll,t_ll,sz);
 | 
					  int *table = (int*)malloc(tbytes);
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 | 
					  thread_for(idx,nsite,{
 | 
				
			||||||
 | 
					    Coordinate lcoor(nl);
 | 
				
			||||||
 | 
					    Coordinate hcoor(nh);
 | 
				
			||||||
 | 
					    lcoor[orthog] = slice_lo;
 | 
				
			||||||
 | 
					    hcoor[orthog] = slice_hi;
 | 
				
			||||||
 | 
					    size_t rem = idx;
 | 
				
			||||||
 | 
					    for(int mu=0;mu<nl;mu++){
 | 
				
			||||||
 | 
					      if(mu != orthog){
 | 
				
			||||||
 | 
						int xmu = rem % lg->LocalDimensions()[mu];  rem /= lg->LocalDimensions()[mu];
 | 
				
			||||||
 | 
						lcoor[mu] = hcoor[mu] = xmu;
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    int loidx = lg->oIndex(lcoor);
 | 
				
			||||||
 | 
					    int liidx = lg->iIndex(lcoor);
 | 
				
			||||||
 | 
					    int hoidx = hg->oIndex(hcoor);
 | 
				
			||||||
 | 
					    int hiidx = hg->iIndex(hcoor);
 | 
				
			||||||
 | 
					    int* tt = table + 4*idx;
 | 
				
			||||||
 | 
					    tt[0] = loidx;
 | 
				
			||||||
 | 
					    tt[1] = liidx;
 | 
				
			||||||
 | 
					    tt[2] = hoidx;
 | 
				
			||||||
 | 
					    tt[3] = hiidx;
 | 
				
			||||||
 | 
					    });
 | 
				
			||||||
 | 
					   
 | 
				
			||||||
 | 
					  int* table_d = (int*)acceleratorAllocDevice(tbytes);
 | 
				
			||||||
 | 
					  acceleratorCopyToDevice(table,table_d,tbytes);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
 | 
					  typedef typename vobj::scalar_type scalar_type;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  autoView(lowDim_v,lowDim,AcceleratorRead);
 | 
				
			||||||
 | 
					  autoView(higherDim_v,higherDim,AcceleratorWrite);
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 | 
					  accelerator_for(idx,nsite,1,{
 | 
				
			||||||
 | 
					      static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
				
			||||||
 | 
					      int* tt = table_d + 4*idx;
 | 
				
			||||||
 | 
					      int from_oidx = *tt++;
 | 
				
			||||||
 | 
					      int from_lane = *tt++;
 | 
				
			||||||
 | 
					      int to_oidx = *tt++;
 | 
				
			||||||
 | 
					      int to_lane = *tt;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      const vector_type* from = (const vector_type *)&lowDim_v[from_oidx];
 | 
				
			||||||
 | 
					      vector_type* to = (vector_type *)&higherDim_v[to_oidx];
 | 
				
			||||||
 | 
					      
 | 
				
			||||||
 | 
					      scalar_type stmp;
 | 
				
			||||||
 | 
					      for(int w=0;w<words;w++){
 | 
				
			||||||
 | 
						stmp = getlane(from[w], from_lane);
 | 
				
			||||||
 | 
						putlane(to[w], stmp, to_lane);
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    });
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 | 
					  acceleratorFreeDevice(table_d);    
 | 
				
			||||||
 | 
					  free(table);
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
 | 
					  // the above should guarantee that the operations are local
 | 
				
			||||||
 | 
					  autoView(lowDimv,lowDim,CpuRead);
 | 
				
			||||||
 | 
					  autoView(higherDimv,higherDim,CpuWrite);
 | 
				
			||||||
 | 
					  thread_for(idx,lg->lSites(),{
 | 
				
			||||||
 | 
					    sobj s;
 | 
				
			||||||
 | 
					    Coordinate lcoor(nl);
 | 
				
			||||||
 | 
					    Coordinate hcoor(nh);
 | 
				
			||||||
 | 
					    lg->LocalIndexToLocalCoor(idx,lcoor);
 | 
				
			||||||
 | 
					    if( lcoor[orthog] == slice_lo ) { 
 | 
				
			||||||
 | 
					      hcoor=lcoor;
 | 
				
			||||||
 | 
					      hcoor[orthog] = slice_hi;
 | 
				
			||||||
 | 
					      peekLocalSite(s,lowDimv,lcoor);
 | 
				
			||||||
 | 
					      pokeLocalSite(s,higherDimv,hcoor);
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  });
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
 | 
					void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  InsertSliceLocal(higherDim,lowDim,slice_hi,slice_lo,orthog);
 | 
					  typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  GridBase *lg = lowDim.Grid();
 | 
				
			||||||
 | 
					  GridBase *hg = higherDim.Grid();
 | 
				
			||||||
 | 
					  int nl = lg->_ndimension;
 | 
				
			||||||
 | 
					  int nh = hg->_ndimension;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  assert(nl == nh);
 | 
				
			||||||
 | 
					  assert(orthog<nh);
 | 
				
			||||||
 | 
					  assert(orthog>=0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  for(int d=0;d<nh;d++){
 | 
				
			||||||
 | 
					    if ( d!=orthog ) {
 | 
				
			||||||
 | 
					    assert(lg->_processors[d]  == hg->_processors[d]);
 | 
				
			||||||
 | 
					    assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  // the above should guarantee that the operations are local
 | 
				
			||||||
 | 
					  autoView(lowDimv,lowDim,CpuWrite);
 | 
				
			||||||
 | 
					  autoView(higherDimv,higherDim,CpuRead);
 | 
				
			||||||
 | 
					  thread_for(idx,lg->lSites(),{
 | 
				
			||||||
 | 
					    sobj s;
 | 
				
			||||||
 | 
					    Coordinate lcoor(nl);
 | 
				
			||||||
 | 
					    Coordinate hcoor(nh);
 | 
				
			||||||
 | 
					    lg->LocalIndexToLocalCoor(idx,lcoor);
 | 
				
			||||||
 | 
					    if( lcoor[orthog] == slice_lo ) { 
 | 
				
			||||||
 | 
					      hcoor=lcoor;
 | 
				
			||||||
 | 
					      hcoor[orthog] = slice_hi;
 | 
				
			||||||
 | 
					      peekLocalSite(s,higherDimv,hcoor);
 | 
				
			||||||
 | 
					      pokeLocalSite(s,lowDimv,lcoor);
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  });
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -1093,7 +1042,7 @@ void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  subdivides(cg,fg); 
 | 
					  subdivides(cg,fg); 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GRID_ASSERT(cg->_ndimension==fg->_ndimension);
 | 
					  assert(cg->_ndimension==fg->_ndimension);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  Coordinate ratio(cg->_ndimension);
 | 
					  Coordinate ratio(cg->_ndimension);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -1103,7 +1052,7 @@ void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  Coordinate fcoor(nd);
 | 
					  Coordinate fcoor(nd);
 | 
				
			||||||
  Coordinate ccoor(nd);
 | 
					  Coordinate ccoor(nd);
 | 
				
			||||||
  for(int64_t g=0;g<fg->gSites();g++){
 | 
					  for(int g=0;g<fg->gSites();g++){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    fg->GlobalIndexToGlobalCoor(g,fcoor);
 | 
					    fg->GlobalIndexToGlobalCoor(g,fcoor);
 | 
				
			||||||
    for(int d=0;d<nd;d++){
 | 
					    for(int d=0;d<nd;d++){
 | 
				
			||||||
@@ -1157,7 +1106,7 @@ unvectorizeToLexOrdArray(std::vector<sobj> &out, const Lattice<vobj> &in)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
      int lex;
 | 
					      int lex;
 | 
				
			||||||
      Lexicographic::IndexFromCoor(lcoor, lex, in_grid->_ldimensions);
 | 
					      Lexicographic::IndexFromCoor(lcoor, lex, in_grid->_ldimensions);
 | 
				
			||||||
      GRID_ASSERT(lex < out.size());
 | 
					      assert(lex < out.size());
 | 
				
			||||||
      out_ptrs[lane] = &out[lex];
 | 
					      out_ptrs[lane] = &out[lex];
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
@@ -1221,7 +1170,7 @@ vectorizeFromLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out)
 | 
				
			|||||||
  typedef typename vobj::vector_type vtype;
 | 
					  typedef typename vobj::vector_type vtype;
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  GridBase* grid = out.Grid();
 | 
					  GridBase* grid = out.Grid();
 | 
				
			||||||
  GRID_ASSERT(in.size()==grid->lSites());
 | 
					  assert(in.size()==grid->lSites());
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  const int ndim     = grid->Nd();
 | 
					  const int ndim     = grid->Nd();
 | 
				
			||||||
  constexpr int nsimd    = vtype::Nsimd();
 | 
					  constexpr int nsimd    = vtype::Nsimd();
 | 
				
			||||||
@@ -1268,7 +1217,7 @@ vectorizeFromRevLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out)
 | 
				
			|||||||
  typedef typename vobj::vector_type vtype;
 | 
					  typedef typename vobj::vector_type vtype;
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  GridBase* grid = out._grid;
 | 
					  GridBase* grid = out._grid;
 | 
				
			||||||
  GRID_ASSERT(in.size()==grid->lSites());
 | 
					  assert(in.size()==grid->lSites());
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  int ndim     = grid->Nd();
 | 
					  int ndim     = grid->Nd();
 | 
				
			||||||
  int nsimd    = vtype::Nsimd();
 | 
					  int nsimd    = vtype::Nsimd();
 | 
				
			||||||
@@ -1329,9 +1278,9 @@ void precisionChangeFast(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
 | 
				
			|||||||
template<class VobjOut, class VobjIn>
 | 
					template<class VobjOut, class VobjIn>
 | 
				
			||||||
void precisionChangeOrig(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
 | 
					void precisionChangeOrig(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GRID_ASSERT(out.Grid()->Nd() == in.Grid()->Nd());
 | 
					  assert(out.Grid()->Nd() == in.Grid()->Nd());
 | 
				
			||||||
  for(int d=0;d<out.Grid()->Nd();d++){
 | 
					  for(int d=0;d<out.Grid()->Nd();d++){
 | 
				
			||||||
    GRID_ASSERT(out.Grid()->FullDimensions()[d] == in.Grid()->FullDimensions()[d]);
 | 
					    assert(out.Grid()->FullDimensions()[d] == in.Grid()->FullDimensions()[d]);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  out.Checkerboard() = in.Checkerboard();
 | 
					  out.Checkerboard() = in.Checkerboard();
 | 
				
			||||||
  GridBase *in_grid=in.Grid();
 | 
					  GridBase *in_grid=in.Grid();
 | 
				
			||||||
@@ -1382,9 +1331,9 @@ class precisionChangeWorkspace{
 | 
				
			|||||||
public:
 | 
					public:
 | 
				
			||||||
  precisionChangeWorkspace(GridBase *out_grid, GridBase *in_grid): _out_grid(out_grid), _in_grid(in_grid){
 | 
					  precisionChangeWorkspace(GridBase *out_grid, GridBase *in_grid): _out_grid(out_grid), _in_grid(in_grid){
 | 
				
			||||||
    //Build a map between the sites and lanes of the output field and the input field as we cannot use the Grids on the device
 | 
					    //Build a map between the sites and lanes of the output field and the input field as we cannot use the Grids on the device
 | 
				
			||||||
    GRID_ASSERT(out_grid->Nd() == in_grid->Nd());
 | 
					    assert(out_grid->Nd() == in_grid->Nd());
 | 
				
			||||||
    for(int d=0;d<out_grid->Nd();d++){
 | 
					    for(int d=0;d<out_grid->Nd();d++){
 | 
				
			||||||
      GRID_ASSERT(out_grid->FullDimensions()[d] == in_grid->FullDimensions()[d]);
 | 
					      assert(out_grid->FullDimensions()[d] == in_grid->FullDimensions()[d]);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    int Nsimd_out = out_grid->Nsimd();
 | 
					    int Nsimd_out = out_grid->Nsimd();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -1549,7 +1498,7 @@ void Grid_split(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  int full_vecs   = full.size();
 | 
					  int full_vecs   = full.size();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GRID_ASSERT(full_vecs>=1);
 | 
					  assert(full_vecs>=1);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GridBase * full_grid = full[0].Grid();
 | 
					  GridBase * full_grid = full[0].Grid();
 | 
				
			||||||
  GridBase *split_grid = split.Grid();
 | 
					  GridBase *split_grid = split.Grid();
 | 
				
			||||||
@@ -1567,18 +1516,18 @@ void Grid_split(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split)
 | 
				
			|||||||
  //////////////////////////////
 | 
					  //////////////////////////////
 | 
				
			||||||
  // Checks
 | 
					  // Checks
 | 
				
			||||||
  //////////////////////////////
 | 
					  //////////////////////////////
 | 
				
			||||||
  GRID_ASSERT(full_grid->_ndimension==split_grid->_ndimension);
 | 
					  assert(full_grid->_ndimension==split_grid->_ndimension);
 | 
				
			||||||
  for(int n=0;n<full_vecs;n++){
 | 
					  for(int n=0;n<full_vecs;n++){
 | 
				
			||||||
    GRID_ASSERT(full[n].Checkerboard() == cb);
 | 
					    assert(full[n].Checkerboard() == cb);
 | 
				
			||||||
    for(int d=0;d<ndim;d++){
 | 
					    for(int d=0;d<ndim;d++){
 | 
				
			||||||
      GRID_ASSERT(full[n].Grid()->_gdimensions[d]==split.Grid()->_gdimensions[d]);
 | 
					      assert(full[n].Grid()->_gdimensions[d]==split.Grid()->_gdimensions[d]);
 | 
				
			||||||
      GRID_ASSERT(full[n].Grid()->_fdimensions[d]==split.Grid()->_fdimensions[d]);
 | 
					      assert(full[n].Grid()->_fdimensions[d]==split.Grid()->_fdimensions[d]);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  int   nvector   =full_nproc/split_nproc; 
 | 
					  int   nvector   =full_nproc/split_nproc; 
 | 
				
			||||||
  GRID_ASSERT(nvector*split_nproc==full_nproc);
 | 
					  assert(nvector*split_nproc==full_nproc);
 | 
				
			||||||
  GRID_ASSERT(nvector == full_vecs);
 | 
					  assert(nvector == full_vecs);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  Coordinate ratio(ndim);
 | 
					  Coordinate ratio(ndim);
 | 
				
			||||||
  for(int d=0;d<ndim;d++){
 | 
					  for(int d=0;d<ndim;d++){
 | 
				
			||||||
@@ -1622,7 +1571,7 @@ void Grid_split(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
      int fvol   = lsites;
 | 
					      int fvol   = lsites;
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
      int chunk  = (nvec*fvol)/sP;          GRID_ASSERT(chunk*sP == nvec*fvol);
 | 
					      int chunk  = (nvec*fvol)/sP;          assert(chunk*sP == nvec*fvol);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      // Loop over reordered data post A2A
 | 
					      // Loop over reordered data post A2A
 | 
				
			||||||
      thread_for(c, chunk, {
 | 
					      thread_for(c, chunk, {
 | 
				
			||||||
@@ -1675,7 +1624,7 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  int full_vecs   = full.size();
 | 
					  int full_vecs   = full.size();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GRID_ASSERT(full_vecs>=1);
 | 
					  assert(full_vecs>=1);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GridBase * full_grid = full[0].Grid();
 | 
					  GridBase * full_grid = full[0].Grid();
 | 
				
			||||||
  GridBase *split_grid = split.Grid();
 | 
					  GridBase *split_grid = split.Grid();
 | 
				
			||||||
@@ -1693,18 +1642,18 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split)
 | 
				
			|||||||
  //////////////////////////////
 | 
					  //////////////////////////////
 | 
				
			||||||
  // Checks
 | 
					  // Checks
 | 
				
			||||||
  //////////////////////////////
 | 
					  //////////////////////////////
 | 
				
			||||||
  GRID_ASSERT(full_grid->_ndimension==split_grid->_ndimension);
 | 
					  assert(full_grid->_ndimension==split_grid->_ndimension);
 | 
				
			||||||
  for(int n=0;n<full_vecs;n++){
 | 
					  for(int n=0;n<full_vecs;n++){
 | 
				
			||||||
    GRID_ASSERT(full[n].Checkerboard() == cb);
 | 
					    assert(full[n].Checkerboard() == cb);
 | 
				
			||||||
    for(int d=0;d<ndim;d++){
 | 
					    for(int d=0;d<ndim;d++){
 | 
				
			||||||
      GRID_ASSERT(full[n].Grid()->_gdimensions[d]==split.Grid()->_gdimensions[d]);
 | 
					      assert(full[n].Grid()->_gdimensions[d]==split.Grid()->_gdimensions[d]);
 | 
				
			||||||
      GRID_ASSERT(full[n].Grid()->_fdimensions[d]==split.Grid()->_fdimensions[d]);
 | 
					      assert(full[n].Grid()->_fdimensions[d]==split.Grid()->_fdimensions[d]);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  int   nvector   =full_nproc/split_nproc; 
 | 
					  int   nvector   =full_nproc/split_nproc; 
 | 
				
			||||||
  GRID_ASSERT(nvector*split_nproc==full_nproc);
 | 
					  assert(nvector*split_nproc==full_nproc);
 | 
				
			||||||
  GRID_ASSERT(nvector == full_vecs);
 | 
					  assert(nvector == full_vecs);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  Coordinate ratio(ndim);
 | 
					  Coordinate ratio(ndim);
 | 
				
			||||||
  for(int d=0;d<ndim;d++){
 | 
					  for(int d=0;d<ndim;d++){
 | 
				
			||||||
@@ -1740,7 +1689,7 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split)
 | 
				
			|||||||
      auto lsites= rsites/M;                // Decreases rsites by M
 | 
					      auto lsites= rsites/M;                // Decreases rsites by M
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
      int fvol   = lsites;
 | 
					      int fvol   = lsites;
 | 
				
			||||||
      int chunk  = (nvec*fvol)/sP;          GRID_ASSERT(chunk*sP == nvec*fvol);
 | 
					      int chunk  = (nvec*fvol)/sP;          assert(chunk*sP == nvec*fvol);
 | 
				
			||||||
	
 | 
						
 | 
				
			||||||
      {
 | 
					      {
 | 
				
			||||||
	// Loop over reordered data post A2A
 | 
						// Loop over reordered data post A2A
 | 
				
			||||||
@@ -1789,35 +1738,5 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split)
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
//////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
// Faster but less accurate blockProject
 | 
					 | 
				
			||||||
//////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
template<class vobj,class CComplex,int nbasis,class VLattice>
 | 
					 | 
				
			||||||
inline void blockProjectFast(Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
					 | 
				
			||||||
			     const             Lattice<vobj>   &fineData,
 | 
					 | 
				
			||||||
			     const VLattice &Basis)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  GridBase * fine  = fineData.Grid();
 | 
					 | 
				
			||||||
  GridBase * coarse= coarseData.Grid();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Lattice<iScalar<CComplex> > ip(coarse);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  autoView( coarseData_ , coarseData, AcceleratorWrite);
 | 
					 | 
				
			||||||
  autoView( ip_         , ip,         AcceleratorWrite);
 | 
					 | 
				
			||||||
  RealD t_IP=0;
 | 
					 | 
				
			||||||
  RealD t_co=0;
 | 
					 | 
				
			||||||
  for(int v=0;v<nbasis;v++) {
 | 
					 | 
				
			||||||
    t_IP-=usecond();
 | 
					 | 
				
			||||||
    blockInnerProductD(ip,Basis[v],fineData); 
 | 
					 | 
				
			||||||
    t_IP+=usecond();
 | 
					 | 
				
			||||||
    t_co-=usecond();
 | 
					 | 
				
			||||||
    accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
 | 
					 | 
				
			||||||
	convertType(coarseData_[sc](v),ip_[sc]);
 | 
					 | 
				
			||||||
      });
 | 
					 | 
				
			||||||
    t_co+=usecond();
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -106,47 +106,6 @@ public:
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					 | 
				
			||||||
#ifdef GRID_LOG_VIEWS
 | 
					 | 
				
			||||||
// Little autoscope assister
 | 
					 | 
				
			||||||
template<class View> 
 | 
					 | 
				
			||||||
class ViewCloser
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  View v;  // Take a copy of view and call view close when I go out of scope automatically
 | 
					 | 
				
			||||||
  const char* filename; int line, mode;
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  ViewCloser(View &_v, const char* _filename, int _line, int _mode) :
 | 
					 | 
				
			||||||
    v(_v), filename(_filename), line(_line), mode(_mode) {
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    switch (mode){
 | 
					 | 
				
			||||||
    case AcceleratorRead:
 | 
					 | 
				
			||||||
    case AcceleratorWrite:
 | 
					 | 
				
			||||||
    case CpuRead:
 | 
					 | 
				
			||||||
    case CpuWrite:
 | 
					 | 
				
			||||||
      ViewLogger::LogOpen(filename, line, 1, mode, &v[0], v.size() * sizeof(v[0]));
 | 
					 | 
				
			||||||
      break;
 | 
					 | 
				
			||||||
    } 
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  ~ViewCloser() {
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    switch (mode) {
 | 
					 | 
				
			||||||
    case AcceleratorWriteDiscard:
 | 
					 | 
				
			||||||
    case AcceleratorWrite:
 | 
					 | 
				
			||||||
    case CpuWrite:
 | 
					 | 
				
			||||||
      ViewLogger::LogClose(filename, line, -1, mode, &v[0], v.size() * sizeof(v[0]));
 | 
					 | 
				
			||||||
      break;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    v.ViewClose();
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#define autoView(l_v,l,mode)				\
 | 
					 | 
				
			||||||
	  auto l_v = l.View(mode);			\
 | 
					 | 
				
			||||||
	  ViewCloser<decltype(l_v)> _autoView##l_v(l_v,__FILE__,__LINE__,mode);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
// Little autoscope assister
 | 
					// Little autoscope assister
 | 
				
			||||||
template<class View> 
 | 
					template<class View> 
 | 
				
			||||||
class ViewCloser
 | 
					class ViewCloser
 | 
				
			||||||
@@ -160,7 +119,6 @@ class ViewCloser
 | 
				
			|||||||
#define autoView(l_v,l,mode)				\
 | 
					#define autoView(l_v,l,mode)				\
 | 
				
			||||||
	  auto l_v = l.View(mode);			\
 | 
						  auto l_v = l.View(mode);			\
 | 
				
			||||||
	  ViewCloser<decltype(l_v)> _autoView##l_v(l_v);
 | 
						  ViewCloser<decltype(l_v)> _autoView##l_v(l_v);
 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
/////////////////////////////////////////////////////////////////////////////////////////
 | 
					/////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
// Lattice expression types used by ET to assemble the AST
 | 
					// Lattice expression types used by ET to assemble the AST
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -45,188 +45,6 @@ struct CshiftImplGauge: public CshiftImplBase<typename Gimpl::GaugeLinkField::ve
 | 
				
			|||||||
  typename Gimpl::GaugeLinkField Cshift(const typename Gimpl::GaugeLinkField &in, int dir, int shift) const override{ return Gimpl::CshiftLink(in,dir,shift); }
 | 
					  typename Gimpl::GaugeLinkField Cshift(const typename Gimpl::GaugeLinkField &in, int dir, int shift) const override{ return Gimpl::CshiftLink(in,dir,shift); }
 | 
				
			||||||
};  
 | 
					};  
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
/*
 | 
					 | 
				
			||||||
 *
 | 
					 | 
				
			||||||
 * TODO: 
 | 
					 | 
				
			||||||
 *  -- address elementsof vobj via thread block in Scatter/Gather
 | 
					 | 
				
			||||||
 *  -- overlap comms with motion in Face_exchange
 | 
					 | 
				
			||||||
 *
 | 
					 | 
				
			||||||
 */
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class vobj> inline void ScatterSlice(const deviceVector<vobj> &buf,
 | 
					 | 
				
			||||||
					      Lattice<vobj> &lat,
 | 
					 | 
				
			||||||
					      int x,
 | 
					 | 
				
			||||||
					      int dim,
 | 
					 | 
				
			||||||
					      int offset=0)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  const int Nsimd=vobj::Nsimd();
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  GridBase *grid = lat.Grid();
 | 
					 | 
				
			||||||
  Coordinate simd = grid->_simd_layout;
 | 
					 | 
				
			||||||
  int Nd          = grid->Nd();
 | 
					 | 
				
			||||||
  int block       = grid->_slice_block[dim];
 | 
					 | 
				
			||||||
  int stride      = grid->_slice_stride[dim];
 | 
					 | 
				
			||||||
  int nblock      = grid->_slice_nblock[dim];
 | 
					 | 
				
			||||||
  int rd          = grid->_rdimensions[dim];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int ox = x%rd;
 | 
					 | 
				
			||||||
  int ix = x/rd;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int isites = 1; for(int d=0;d<Nd;d++) if( d!=dim) isites*=simd[d];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Coordinate rsimd= simd;  rsimd[dim]=1; // maybe reduce Nsimd
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int rNsimd = 1; for(int d=0;d<Nd;d++) rNsimd*=rsimd[d];
 | 
					 | 
				
			||||||
  int rNsimda= Nsimd/simd[dim]; // should be equal
 | 
					 | 
				
			||||||
  GRID_ASSERT(rNsimda==rNsimd);
 | 
					 | 
				
			||||||
  int face_ovol=block*nblock;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  //  GRID_ASSERT(buf.size()==face_ovol*rNsimd);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /*This will work GPU ONLY unless rNsimd is put in the lexico index*/
 | 
					 | 
				
			||||||
  //Let's make it work on GPU and then make a special accelerator_for that
 | 
					 | 
				
			||||||
  //doesn't hide the SIMD direction and keeps explicit in the threadIdx
 | 
					 | 
				
			||||||
  //for cross platform
 | 
					 | 
				
			||||||
  // FIXME -- can put internal indices into thread loop
 | 
					 | 
				
			||||||
  auto buf_p = & buf[0];
 | 
					 | 
				
			||||||
  autoView(lat_v, lat, AcceleratorWrite);
 | 
					 | 
				
			||||||
  accelerator_for(ss, face_ovol/simd[dim],Nsimd,{
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // scalar layout won't coalesce
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
      {
 | 
					 | 
				
			||||||
	int blane=acceleratorSIMTlane(Nsimd); // buffer lane
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
      for(int blane=0;blane<Nsimd;blane++) {
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
	int olane=blane%rNsimd;               // reduced lattice lane
 | 
					 | 
				
			||||||
	int obit =blane/rNsimd;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	///////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	// osite -- potentially one bit from simd in the buffer: (ss<<1)|obit
 | 
					 | 
				
			||||||
	///////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	int ssp = ss*simd[dim]+obit;
 | 
					 | 
				
			||||||
	int b    = ssp%block;
 | 
					 | 
				
			||||||
	int n    = ssp/block;
 | 
					 | 
				
			||||||
	int osite= b+n*stride + ox*block;
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	////////////////////////////////////////////
 | 
					 | 
				
			||||||
	// isite -- map lane within buffer to lane within lattice
 | 
					 | 
				
			||||||
	////////////////////////////////////////////
 | 
					 | 
				
			||||||
	Coordinate icoor;
 | 
					 | 
				
			||||||
	int lane;
 | 
					 | 
				
			||||||
	Lexicographic::CoorFromIndex(icoor,olane,rsimd);
 | 
					 | 
				
			||||||
	icoor[dim]=ix;
 | 
					 | 
				
			||||||
	Lexicographic::IndexFromCoor(icoor,lane,simd);
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	///////////////////////////////////////////
 | 
					 | 
				
			||||||
	// Transfer into lattice - will coalesce
 | 
					 | 
				
			||||||
	///////////////////////////////////////////
 | 
					 | 
				
			||||||
	//	sobj obj = extractLane(blane,buf_p[ss+offset]);
 | 
					 | 
				
			||||||
	//	insertLane(lane,lat_v[osite],obj);
 | 
					 | 
				
			||||||
	const int words=sizeof(vobj)/sizeof(vector_type);
 | 
					 | 
				
			||||||
	vector_type * from = (vector_type *)&buf_p[ss+offset];
 | 
					 | 
				
			||||||
	vector_type * to   = (vector_type *)&lat_v[osite];
 | 
					 | 
				
			||||||
	scalar_type stmp;
 | 
					 | 
				
			||||||
	for(int w=0;w<words;w++){
 | 
					 | 
				
			||||||
	  stmp = getlane(from[w], blane);
 | 
					 | 
				
			||||||
	  putlane(to[w], stmp, lane);
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
  });
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class vobj> inline void GatherSlice(deviceVector<vobj> &buf,
 | 
					 | 
				
			||||||
					     const Lattice<vobj> &lat,
 | 
					 | 
				
			||||||
					     int x,
 | 
					 | 
				
			||||||
					     int dim,
 | 
					 | 
				
			||||||
					     int offset=0)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  const int Nsimd=vobj::Nsimd();
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  autoView(lat_v, lat, AcceleratorRead);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  GridBase *grid = lat.Grid();
 | 
					 | 
				
			||||||
  Coordinate simd = grid->_simd_layout;
 | 
					 | 
				
			||||||
  int Nd          = grid->Nd();
 | 
					 | 
				
			||||||
  int block       = grid->_slice_block[dim];
 | 
					 | 
				
			||||||
  int stride      = grid->_slice_stride[dim];
 | 
					 | 
				
			||||||
  int nblock      = grid->_slice_nblock[dim];
 | 
					 | 
				
			||||||
  int rd          = grid->_rdimensions[dim];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int ox = x%rd;
 | 
					 | 
				
			||||||
  int ix = x/rd;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int isites = 1; for(int d=0;d<Nd;d++) if( d!=dim) isites*=simd[d];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Coordinate rsimd= simd;  rsimd[dim]=1; // maybe reduce Nsimd
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int rNsimd = 1; for(int d=0;d<Nd;d++) rNsimd*=rsimd[d];
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  int face_ovol=block*nblock;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  //  GRID_ASSERT(buf.size()==face_ovol*rNsimd);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /*This will work GPU ONLY unless rNsimd is put in the lexico index*/
 | 
					 | 
				
			||||||
  //Let's make it work on GPU and then make a special accelerator_for that
 | 
					 | 
				
			||||||
  //doesn't hide the SIMD direction and keeps explicit in the threadIdx
 | 
					 | 
				
			||||||
  //for cross platform
 | 
					 | 
				
			||||||
  //For CPU perhaps just run a loop over Nsimd
 | 
					 | 
				
			||||||
  auto buf_p = & buf[0];
 | 
					 | 
				
			||||||
  accelerator_for(ss, face_ovol/simd[dim],Nsimd,{
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // scalar layout won't coalesce
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
      {
 | 
					 | 
				
			||||||
	int blane=acceleratorSIMTlane(Nsimd); // buffer lane
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
      for(int blane=0;blane<Nsimd;blane++) {
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
	int olane=blane%rNsimd;               // reduced lattice lane
 | 
					 | 
				
			||||||
	int obit =blane/rNsimd;
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	////////////////////////////////////////////
 | 
					 | 
				
			||||||
	// osite
 | 
					 | 
				
			||||||
	////////////////////////////////////////////
 | 
					 | 
				
			||||||
	int ssp = ss*simd[dim]+obit;
 | 
					 | 
				
			||||||
	int b    = ssp%block;
 | 
					 | 
				
			||||||
	int n    = ssp/block;
 | 
					 | 
				
			||||||
	int osite= b+n*stride + ox*block;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	////////////////////////////////////////////
 | 
					 | 
				
			||||||
	// isite -- map lane within buffer to lane within lattice
 | 
					 | 
				
			||||||
	////////////////////////////////////////////
 | 
					 | 
				
			||||||
	Coordinate icoor;
 | 
					 | 
				
			||||||
	int lane;
 | 
					 | 
				
			||||||
	Lexicographic::CoorFromIndex(icoor,olane,rsimd);
 | 
					 | 
				
			||||||
	icoor[dim]=ix;
 | 
					 | 
				
			||||||
	Lexicographic::IndexFromCoor(icoor,lane,simd);
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	///////////////////////////////////////////
 | 
					 | 
				
			||||||
	// Take out of lattice
 | 
					 | 
				
			||||||
	///////////////////////////////////////////
 | 
					 | 
				
			||||||
	//	sobj obj = extractLane(lane,lat_v[osite]);
 | 
					 | 
				
			||||||
	//	insertLane(blane,buf_p[ss+offset],obj);
 | 
					 | 
				
			||||||
	const int words=sizeof(vobj)/sizeof(vector_type);
 | 
					 | 
				
			||||||
	vector_type * to    = (vector_type *)&buf_p[ss+offset];
 | 
					 | 
				
			||||||
	vector_type * from  = (vector_type *)&lat_v[osite];
 | 
					 | 
				
			||||||
	scalar_type stmp;
 | 
					 | 
				
			||||||
	for(int w=0;w<words;w++){
 | 
					 | 
				
			||||||
	  stmp = getlane(from[w], lane);
 | 
					 | 
				
			||||||
	  putlane(to[w], stmp, blane);
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
  });
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
class PaddedCell {
 | 
					class PaddedCell {
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
  GridCartesian * unpadded_grid;
 | 
					  GridCartesian * unpadded_grid;
 | 
				
			||||||
@@ -245,19 +63,15 @@ public:
 | 
				
			|||||||
    dims=_grid->Nd();
 | 
					    dims=_grid->Nd();
 | 
				
			||||||
    AllocateGrids();
 | 
					    AllocateGrids();
 | 
				
			||||||
    Coordinate local     =unpadded_grid->LocalDimensions();
 | 
					    Coordinate local     =unpadded_grid->LocalDimensions();
 | 
				
			||||||
    Coordinate procs     =unpadded_grid->ProcessorGrid();
 | 
					 | 
				
			||||||
    for(int d=0;d<dims;d++){
 | 
					    for(int d=0;d<dims;d++){
 | 
				
			||||||
      if ( procs[d] > 1 ) GRID_ASSERT(local[d]>=depth);
 | 
					      assert(local[d]>=depth);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  void DeleteGrids(void)
 | 
					  void DeleteGrids(void)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    Coordinate processors=unpadded_grid->_processors;
 | 
					 | 
				
			||||||
    for(int d=0;d<grids.size();d++){
 | 
					    for(int d=0;d<grids.size();d++){
 | 
				
			||||||
      if ( processors[d] > 1 ) { 
 | 
					 | 
				
			||||||
      delete grids[d];
 | 
					      delete grids[d];
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    grids.resize(0);
 | 
					    grids.resize(0);
 | 
				
			||||||
  };
 | 
					  };
 | 
				
			||||||
  void AllocateGrids(void)
 | 
					  void AllocateGrids(void)
 | 
				
			||||||
@@ -267,36 +81,27 @@ public:
 | 
				
			|||||||
    Coordinate processors=unpadded_grid->_processors;
 | 
					    Coordinate processors=unpadded_grid->_processors;
 | 
				
			||||||
    Coordinate plocal    =unpadded_grid->LocalDimensions();
 | 
					    Coordinate plocal    =unpadded_grid->LocalDimensions();
 | 
				
			||||||
    Coordinate global(dims);
 | 
					    Coordinate global(dims);
 | 
				
			||||||
    GridCartesian *old_grid = unpadded_grid;
 | 
					
 | 
				
			||||||
    // expand up one dim at a time
 | 
					    // expand up one dim at a time
 | 
				
			||||||
    for(int d=0;d<dims;d++){
 | 
					    for(int d=0;d<dims;d++){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      if ( processors[d] > 1 ) { 
 | 
					 | 
				
			||||||
      plocal[d] += 2*depth; 
 | 
					      plocal[d] += 2*depth; 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      for(int d=0;d<dims;d++){
 | 
					      for(int d=0;d<dims;d++){
 | 
				
			||||||
	global[d] = plocal[d]*processors[d];
 | 
						global[d] = plocal[d]*processors[d];
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	old_grid = new GridCartesian(global,simd,processors);
 | 
					      grids.push_back(new GridCartesian(global,simd,processors));
 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      grids.push_back(old_grid);
 | 
					 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  };
 | 
					  };
 | 
				
			||||||
  template<class vobj>
 | 
					  template<class vobj>
 | 
				
			||||||
  inline Lattice<vobj> Extract(const Lattice<vobj> &in) const
 | 
					  inline Lattice<vobj> Extract(const Lattice<vobj> &in) const
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    Coordinate processors=unpadded_grid->_processors;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Lattice<vobj> out(unpadded_grid);
 | 
					    Lattice<vobj> out(unpadded_grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    Coordinate local     =unpadded_grid->LocalDimensions();
 | 
					    Coordinate local     =unpadded_grid->LocalDimensions();
 | 
				
			||||||
    // depends on the MPI spread      
 | 
					    Coordinate fll(dims,depth); // depends on the MPI spread
 | 
				
			||||||
    Coordinate fll(dims,depth);
 | 
					 | 
				
			||||||
    Coordinate tll(dims,0); // depends on the MPI spread
 | 
					    Coordinate tll(dims,0); // depends on the MPI spread
 | 
				
			||||||
    for(int d=0;d<dims;d++){
 | 
					 | 
				
			||||||
      if( processors[d]==1 ) fll[d]=0;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    localCopyRegion(in,out,fll,tll,local);
 | 
					    localCopyRegion(in,out,fll,tll,local);
 | 
				
			||||||
    return out;
 | 
					    return out;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -311,22 +116,10 @@ public:
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
    return tmp;
 | 
					    return tmp;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  template<class vobj>
 | 
					 | 
				
			||||||
  inline Lattice<vobj> ExchangePeriodic(const Lattice<vobj> &in) const
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    GridBase *old_grid = in.Grid();
 | 
					 | 
				
			||||||
    int dims = old_grid->Nd();
 | 
					 | 
				
			||||||
    Lattice<vobj> tmp = in;
 | 
					 | 
				
			||||||
    for(int d=0;d<dims;d++){
 | 
					 | 
				
			||||||
      tmp = ExpandPeriodic(d,tmp); // rvalue && assignment
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    return tmp;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  // expand up one dim at a time
 | 
					  // expand up one dim at a time
 | 
				
			||||||
  template<class vobj>
 | 
					  template<class vobj>
 | 
				
			||||||
  inline Lattice<vobj> Expand(int dim, const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
 | 
					  inline Lattice<vobj> Expand(int dim, const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    Coordinate processors=unpadded_grid->_processors;
 | 
					 | 
				
			||||||
    GridBase *old_grid = in.Grid();
 | 
					    GridBase *old_grid = in.Grid();
 | 
				
			||||||
    GridCartesian *new_grid = grids[dim];//These are new grids
 | 
					    GridCartesian *new_grid = grids[dim];//These are new grids
 | 
				
			||||||
    Lattice<vobj>  padded(new_grid);
 | 
					    Lattice<vobj>  padded(new_grid);
 | 
				
			||||||
@@ -336,30 +129,10 @@ public:
 | 
				
			|||||||
    if(dim==0) conformable(old_grid,unpadded_grid);
 | 
					    if(dim==0) conformable(old_grid,unpadded_grid);
 | 
				
			||||||
    else       conformable(old_grid,grids[dim-1]);
 | 
					    else       conformable(old_grid,grids[dim-1]);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    double tins=0, tshift=0;
 | 
					    double tins=0, tshift=0;
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    int islocal = 0 ;
 | 
					 | 
				
			||||||
    if ( processors[dim] == 1 ) islocal = 1;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if ( islocal ) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // replace with a copy and maybe grid swizzle
 | 
					 | 
				
			||||||
      // return in;??
 | 
					 | 
				
			||||||
      double t = usecond();
 | 
					 | 
				
			||||||
      padded = in;
 | 
					 | 
				
			||||||
      tins += usecond() - t;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    } else {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      //////////////////////////////////////////////
 | 
					 | 
				
			||||||
      // Replace sequence with
 | 
					 | 
				
			||||||
      // ---------------------
 | 
					 | 
				
			||||||
      // (i) Gather high face(s); start comms
 | 
					 | 
				
			||||||
      // (ii) Gather low  face(s); start comms
 | 
					 | 
				
			||||||
      // (iii) Copy middle bit with localCopyRegion
 | 
					 | 
				
			||||||
      // (iv) Complete high face(s), insert slice(s)
 | 
					 | 
				
			||||||
      // (iv) Complete low  face(s), insert slice(s)
 | 
					 | 
				
			||||||
      //////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Middle bit
 | 
					    // Middle bit
 | 
				
			||||||
    double t = usecond();
 | 
					    double t = usecond();
 | 
				
			||||||
    for(int x=0;x<local[dim];x++){
 | 
					    for(int x=0;x<local[dim];x++){
 | 
				
			||||||
@@ -389,213 +162,13 @@ public:
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
    tins += usecond() - t;
 | 
					    tins += usecond() - t;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PaddedCell::Expand timings: cshift:" << tshift/1000 << "ms, insert-slice:" << tins/1000 << "ms" << std::endl;
 | 
					    std::cout << GridLogPerformance << "PaddedCell::Expand timings: cshift:" << tshift/1000 << "ms, insert-slice:" << tins/1000 << "ms" << std::endl;
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    return padded;
 | 
					    return padded;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  template<class vobj>
 | 
					 | 
				
			||||||
  inline Lattice<vobj> ExpandPeriodic(int dim, const Lattice<vobj> &in) const
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    Coordinate processors=unpadded_grid->_processors;
 | 
					 | 
				
			||||||
    GridBase *old_grid = in.Grid();
 | 
					 | 
				
			||||||
    GridCartesian *new_grid = grids[dim];//These are new grids
 | 
					 | 
				
			||||||
    Lattice<vobj>  padded(new_grid);
 | 
					 | 
				
			||||||
    //    Lattice<vobj> shifted(old_grid);    
 | 
					 | 
				
			||||||
    Coordinate local     =old_grid->LocalDimensions();
 | 
					 | 
				
			||||||
    Coordinate plocal    =new_grid->LocalDimensions();
 | 
					 | 
				
			||||||
    if(dim==0) conformable(old_grid,unpadded_grid);
 | 
					 | 
				
			||||||
    else       conformable(old_grid,grids[dim-1]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //    std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl;
 | 
					 | 
				
			||||||
    double tins=0, tshift=0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int islocal = 0 ;
 | 
					 | 
				
			||||||
    if ( processors[dim] == 1 ) islocal = 1;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if ( islocal ) {
 | 
					 | 
				
			||||||
      padded=in; // slightly different interface could avoid a copy operation
 | 
					 | 
				
			||||||
    } else {
 | 
					 | 
				
			||||||
      Face_exchange(in,padded,dim,depth);
 | 
					 | 
				
			||||||
      return padded;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    return padded;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  template<class vobj>
 | 
					 | 
				
			||||||
  void Face_exchange(const Lattice<vobj> &from,
 | 
					 | 
				
			||||||
		     Lattice<vobj> &to,
 | 
					 | 
				
			||||||
		     int dimension,int depth) const
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    typedef typename vobj::vector_type vector_type;
 | 
					 | 
				
			||||||
    typedef typename vobj::scalar_type scalar_type;
 | 
					 | 
				
			||||||
    typedef typename vobj::scalar_object sobj;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t_gather=0.0;
 | 
					 | 
				
			||||||
    RealD t_scatter=0.0;
 | 
					 | 
				
			||||||
    RealD t_comms=0.0;
 | 
					 | 
				
			||||||
    RealD t_copy=0.0;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage << "dimension " <<dimension<<std::endl;
 | 
					 | 
				
			||||||
    //    DumpSliceNorm(std::string("Face_exchange from"),from,dimension);
 | 
					 | 
				
			||||||
    GridBase *grid=from.Grid();
 | 
					 | 
				
			||||||
    GridBase *new_grid=to.Grid();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Coordinate lds = from.Grid()->_ldimensions;
 | 
					 | 
				
			||||||
    Coordinate nlds=   to.Grid()->_ldimensions;
 | 
					 | 
				
			||||||
    Coordinate simd= from.Grid()->_simd_layout;
 | 
					 | 
				
			||||||
    int ld    = lds[dimension];
 | 
					 | 
				
			||||||
    int nld   = to.Grid()->_ldimensions[dimension];
 | 
					 | 
				
			||||||
    const int Nsimd = vobj::Nsimd();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GRID_ASSERT(depth<=lds[dimension]); // A must be on neighbouring node
 | 
					 | 
				
			||||||
    GRID_ASSERT(depth>0);   // A caller bug if zero
 | 
					 | 
				
			||||||
    GRID_ASSERT(ld+2*depth==nld);
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Face size and byte calculations
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    int buffer_size = 1;
 | 
					 | 
				
			||||||
    for(int d=0;d<lds.size();d++){
 | 
					 | 
				
			||||||
      if ( d!= dimension) buffer_size=buffer_size*lds[d];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    buffer_size = buffer_size  / Nsimd;
 | 
					 | 
				
			||||||
    int rNsimd = Nsimd / simd[dimension];
 | 
					 | 
				
			||||||
    GRID_ASSERT( buffer_size == from.Grid()->_slice_nblock[dimension]*from.Grid()->_slice_block[dimension] / simd[dimension]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    static deviceVector<vobj> send_buf; 
 | 
					 | 
				
			||||||
    static deviceVector<vobj> recv_buf;
 | 
					 | 
				
			||||||
    send_buf.resize(buffer_size*2*depth);    
 | 
					 | 
				
			||||||
    recv_buf.resize(buffer_size*2*depth);
 | 
					 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
    static hostVector<vobj> hsend_buf; 
 | 
					 | 
				
			||||||
    static hostVector<vobj> hrecv_buf;
 | 
					 | 
				
			||||||
    hsend_buf.resize(buffer_size*2*depth);    
 | 
					 | 
				
			||||||
    hrecv_buf.resize(buffer_size*2*depth);
 | 
					 | 
				
			||||||
#endif    
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<MpiCommsRequest_t> fwd_req;   
 | 
					 | 
				
			||||||
    std::vector<MpiCommsRequest_t> bwd_req;   
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int words = buffer_size;
 | 
					 | 
				
			||||||
    int bytes = words * sizeof(vobj);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Communication coords
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    int comm_proc = 1;
 | 
					 | 
				
			||||||
    int xmit_to_rank;
 | 
					 | 
				
			||||||
    int recv_from_rank;
 | 
					 | 
				
			||||||
    grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Gather all surface terms up to depth "d"
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    RealD t;
 | 
					 | 
				
			||||||
    RealD t_tot=-usecond();
 | 
					 | 
				
			||||||
    int plane=0;
 | 
					 | 
				
			||||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
					 | 
				
			||||||
      int tag = d*1024 + dimension*2+0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      t=usecond();
 | 
					 | 
				
			||||||
      GatherSlice(send_buf,from,d,dimension,plane*buffer_size); plane++;
 | 
					 | 
				
			||||||
      t_gather+=usecond()-t;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      t=usecond();
 | 
					 | 
				
			||||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
      grid->SendToRecvFromBegin(fwd_req,
 | 
					 | 
				
			||||||
				(void *)&send_buf[d*buffer_size], xmit_to_rank,
 | 
					 | 
				
			||||||
				(void *)&recv_buf[d*buffer_size], recv_from_rank, bytes, tag);
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
      acceleratorCopyFromDevice(&send_buf[d*buffer_size],&hsend_buf[d*buffer_size],bytes);
 | 
					 | 
				
			||||||
      grid->SendToRecvFromBegin(fwd_req,
 | 
					 | 
				
			||||||
				(void *)&hsend_buf[d*buffer_size], xmit_to_rank,
 | 
					 | 
				
			||||||
				(void *)&hrecv_buf[d*buffer_size], recv_from_rank, bytes, tag);
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
      t_comms+=usecond()-t;
 | 
					 | 
				
			||||||
     }
 | 
					 | 
				
			||||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
					 | 
				
			||||||
      int tag = d*1024 + dimension*2+1;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      t=usecond();
 | 
					 | 
				
			||||||
      GatherSlice(send_buf,from,ld-depth+d,dimension,plane*buffer_size); plane++;
 | 
					 | 
				
			||||||
      t_gather+= usecond() - t;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      t=usecond();
 | 
					 | 
				
			||||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
      grid->SendToRecvFromBegin(bwd_req,
 | 
					 | 
				
			||||||
				(void *)&send_buf[(d+depth)*buffer_size], recv_from_rank,
 | 
					 | 
				
			||||||
				(void *)&recv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag);
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
      acceleratorCopyFromDevice(&send_buf[(d+depth)*buffer_size],&hsend_buf[(d+depth)*buffer_size],bytes);
 | 
					 | 
				
			||||||
      grid->SendToRecvFromBegin(bwd_req,
 | 
					 | 
				
			||||||
				(void *)&hsend_buf[(d+depth)*buffer_size], recv_from_rank,
 | 
					 | 
				
			||||||
				(void *)&hrecv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag);
 | 
					 | 
				
			||||||
#endif      
 | 
					 | 
				
			||||||
      t_comms+=usecond()-t;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Copy interior -- overlap this with comms
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    int Nd = new_grid->Nd();
 | 
					 | 
				
			||||||
    Coordinate LL(Nd,0);
 | 
					 | 
				
			||||||
    Coordinate sz = grid->_ldimensions;
 | 
					 | 
				
			||||||
    Coordinate toLL(Nd,0);
 | 
					 | 
				
			||||||
    toLL[dimension]=depth;
 | 
					 | 
				
			||||||
    t=usecond();
 | 
					 | 
				
			||||||
    localCopyRegion(from,to,LL,toLL,sz);
 | 
					 | 
				
			||||||
    t_copy= usecond() - t;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Scatter all faces
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    plane=0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    t=usecond();
 | 
					 | 
				
			||||||
    grid->CommsComplete(fwd_req);
 | 
					 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
					 | 
				
			||||||
      acceleratorCopyToDevice(&hrecv_buf[d*buffer_size],&recv_buf[d*buffer_size],bytes);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
    t_comms+= usecond() - t;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    t=usecond();
 | 
					 | 
				
			||||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
					 | 
				
			||||||
      ScatterSlice(recv_buf,to,nld-depth+d,dimension,plane*buffer_size); plane++;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    t_scatter= usecond() - t;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    t=usecond();
 | 
					 | 
				
			||||||
    grid->CommsComplete(bwd_req);
 | 
					 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
					 | 
				
			||||||
      acceleratorCopyToDevice(&hrecv_buf[(d+depth)*buffer_size],&recv_buf[(d+depth)*buffer_size],bytes);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
    t_comms+= usecond() - t;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    t=usecond();
 | 
					 | 
				
			||||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
					 | 
				
			||||||
      ScatterSlice(recv_buf,to,d,dimension,plane*buffer_size); plane++;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    t_scatter+= usecond() - t;
 | 
					 | 
				
			||||||
    t_tot+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: gather :" << t_gather/1000  << "ms"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: scatter:" << t_scatter/1000   << "ms"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: copy   :" << t_copy/1000      << "ms"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: comms  :" << t_comms/1000     << "ms"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: total  :" << t_tot/1000     << "ms"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: gather :" << depth*4.0*bytes/t_gather << "MB/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: scatter:" << depth*4.0*bytes/t_scatter<< "MB/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: comms  :" << (RealD)4.0*bytes/t_comms   << "MB/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: face bytes  :" << depth*bytes/1e6 << "MB"<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 
 | 
					 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
 
 | 
				
			|||||||
@@ -69,7 +69,6 @@ GridLogger GridLogMemory (1, "Memory", GridLogColours, "NORMAL");
 | 
				
			|||||||
GridLogger GridLogTracing(1, "Tracing", GridLogColours, "NORMAL");
 | 
					GridLogger GridLogTracing(1, "Tracing", GridLogColours, "NORMAL");
 | 
				
			||||||
GridLogger GridLogDebug  (1, "Debug", GridLogColours, "PURPLE");
 | 
					GridLogger GridLogDebug  (1, "Debug", GridLogColours, "PURPLE");
 | 
				
			||||||
GridLogger GridLogPerformance(1, "Performance", GridLogColours, "GREEN");
 | 
					GridLogger GridLogPerformance(1, "Performance", GridLogColours, "GREEN");
 | 
				
			||||||
GridLogger GridLogComms      (1, "Comms",  GridLogColours, "BLUE");
 | 
					 | 
				
			||||||
GridLogger GridLogDslash     (1, "Dslash", GridLogColours, "BLUE");
 | 
					GridLogger GridLogDslash     (1, "Dslash", GridLogColours, "BLUE");
 | 
				
			||||||
GridLogger GridLogIterative  (1, "Iterative", GridLogColours, "BLUE");
 | 
					GridLogger GridLogIterative  (1, "Iterative", GridLogColours, "BLUE");
 | 
				
			||||||
GridLogger GridLogIntegrator (1, "Integrator", GridLogColours, "BLUE");
 | 
					GridLogger GridLogIntegrator (1, "Integrator", GridLogColours, "BLUE");
 | 
				
			||||||
@@ -85,7 +84,6 @@ void GridLogConfigure(std::vector<std::string> &logstreams) {
 | 
				
			|||||||
  GridLogDebug.Active(0);
 | 
					  GridLogDebug.Active(0);
 | 
				
			||||||
  GridLogPerformance.Active(0);
 | 
					  GridLogPerformance.Active(0);
 | 
				
			||||||
  GridLogDslash.Active(0);
 | 
					  GridLogDslash.Active(0);
 | 
				
			||||||
  GridLogComms.Active(0);
 | 
					 | 
				
			||||||
  GridLogIntegrator.Active(1);
 | 
					  GridLogIntegrator.Active(1);
 | 
				
			||||||
  GridLogColours.Active(0);
 | 
					  GridLogColours.Active(0);
 | 
				
			||||||
  GridLogHMC.Active(1);
 | 
					  GridLogHMC.Active(1);
 | 
				
			||||||
@@ -99,7 +97,6 @@ void GridLogConfigure(std::vector<std::string> &logstreams) {
 | 
				
			|||||||
    if (logstreams[i] == std::string("Debug"))       GridLogDebug.Active(1);
 | 
					    if (logstreams[i] == std::string("Debug"))       GridLogDebug.Active(1);
 | 
				
			||||||
    if (logstreams[i] == std::string("Performance")) GridLogPerformance.Active(1);
 | 
					    if (logstreams[i] == std::string("Performance")) GridLogPerformance.Active(1);
 | 
				
			||||||
    if (logstreams[i] == std::string("Dslash"))      GridLogDslash.Active(1);
 | 
					    if (logstreams[i] == std::string("Dslash"))      GridLogDslash.Active(1);
 | 
				
			||||||
    if (logstreams[i] == std::string("Comms"))       GridLogComms.Active(1);
 | 
					 | 
				
			||||||
    if (logstreams[i] == std::string("NoIntegrator"))GridLogIntegrator.Active(0);
 | 
					    if (logstreams[i] == std::string("NoIntegrator"))GridLogIntegrator.Active(0);
 | 
				
			||||||
    if (logstreams[i] == std::string("NoHMC"))       GridLogHMC.Active(0);
 | 
					    if (logstreams[i] == std::string("NoHMC"))       GridLogHMC.Active(0);
 | 
				
			||||||
    if (logstreams[i] == std::string("Colours"))     GridLogColours.Active(1);
 | 
					    if (logstreams[i] == std::string("Colours"))     GridLogColours.Active(1);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -33,6 +33,10 @@
 | 
				
			|||||||
#ifndef GRID_LOG_H
 | 
					#ifndef GRID_LOG_H
 | 
				
			||||||
#define GRID_LOG_H
 | 
					#define GRID_LOG_H
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#ifdef HAVE_EXECINFO_H
 | 
				
			||||||
 | 
					#include <execinfo.h>
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					NAMESPACE_BEGIN(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
//////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					//////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -176,7 +180,6 @@ extern GridLogger GridLogError;
 | 
				
			|||||||
extern GridLogger GridLogWarning;
 | 
					extern GridLogger GridLogWarning;
 | 
				
			||||||
extern GridLogger GridLogMessage;
 | 
					extern GridLogger GridLogMessage;
 | 
				
			||||||
extern GridLogger GridLogDebug;
 | 
					extern GridLogger GridLogDebug;
 | 
				
			||||||
extern GridLogger GridLogComms;
 | 
					 | 
				
			||||||
extern GridLogger GridLogPerformance;
 | 
					extern GridLogger GridLogPerformance;
 | 
				
			||||||
extern GridLogger GridLogDslash;
 | 
					extern GridLogger GridLogDslash;
 | 
				
			||||||
extern GridLogger GridLogIterative;
 | 
					extern GridLogger GridLogIterative;
 | 
				
			||||||
@@ -223,6 +226,8 @@ inline void Grid_pass(Args&&... args) {
 | 
				
			|||||||
    std::cout << "\033[32m" << GridLogMessage << msg << "\033[0m" << std::endl;
 | 
					    std::cout << "\033[32m" << GridLogMessage << msg << "\033[0m" << std::endl;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#define _NBACKTRACE (256)
 | 
				
			||||||
 | 
					extern void * Grid_backtrace_buffer[_NBACKTRACE];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#define BACKTRACEFILE() {						\
 | 
					#define BACKTRACEFILE() {						\
 | 
				
			||||||
    char string[20];							\
 | 
					    char string[20];							\
 | 
				
			||||||
 
 | 
				
			|||||||
Some files were not shown because too many files have changed in this diff Show More
		Reference in New Issue
	
	Block a user