mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-11-04 05:54:32 +00:00 
			
		
		
		
	Compare commits
	
		
			49 Commits
		
	
	
		
			rmhmc_merg
			...
			b58fd80379
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 
						 | 
					b58fd80379 | ||
| 
						 | 
					7f6e0f57d0 | ||
| 
						 | 
					cae27678d8 | ||
| 
						 | 
					48ff655bad | ||
| 
						 | 
					2525ad4623 | ||
| 
						 | 
					e7020017c5 | ||
| 
						 | 
					eacebfad74 | ||
| 
						 | 
					3bc2da5321 | ||
| 
						 | 
					2d710d6bfd | ||
| 
						 | 
					6532b7f32b | ||
| 
						 | 
					7b41b92d99 | ||
| 
						 | 
					dd557af84b | ||
| 
						 | 
					59b9d0e030 | ||
| 
						 | 
					b82eee4733 | ||
| 
						 | 
					6a87487544 | ||
| 
						 | 
					fcf5023845 | ||
| 
						 | 
					c8adad6d8b | ||
| 
						 | 
					737d3ffb98 | ||
| 
						 | 
					b01e67bab1 | ||
| 
						 | 
					8a70314f54 | ||
| 
						 | 
					36ae6e5aba | ||
| 
						 | 
					9db585cfeb | ||
| 
						 | 
					c564611ba7 | ||
| 
						 | 
					e187bcb85c | ||
| 
						 | 
					be18ffe3b4 | ||
| 
						 | 
					0d63dce4e2 | ||
| 
						 | 
					26b30e1551 | ||
| 
						 | 
					7fc58ac293 | ||
| 
						 | 
					3a86cce8c1 | ||
| 
						 | 
					37884d369f | ||
| 
						 | 
					9246e653cd | ||
| 
						 | 
					64283c8673 | ||
| 
						 | 
					755002da9c | ||
| 
						 | 
					31b8e8b437 | ||
| 
						 | 
					0ec0de97e6 | ||
| 
						 | 
					6c3ade5d89 | ||
| 
						 | 
					980c5f9a34 | ||
| 
						 | 
					471ca5f281 | ||
| 
						 | 
					e82ddcff5d | ||
| 
						 | 
					b9dcad89e8 | ||
| 
						 | 
					993f43ef4a | ||
| 
						 | 
					2b43308208 | ||
| 
						 | 
					04a1ac3a76 | ||
| 
						 | 
					990b8798bd | ||
| 
						 | 
					b334a73a44 | ||
| 
						 | 
					5d113d1c70 | ||
| 
						 | 
					c14977aeab | ||
| 
						 | 
					3e94838204 | ||
| 
						 | 
					c0a0b8ca62 | 
@@ -69,7 +69,8 @@ NAMESPACE_CHECK(BiCGSTAB);
 | 
			
		||||
#include <Grid/algorithms/iterative/PowerMethod.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_CHECK(PowerMethod);
 | 
			
		||||
#include <Grid/algorithms/CoarsenedMatrix.h>
 | 
			
		||||
#include <Grid/algorithms/multigrid/MultiGrid.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_CHECK(CoarsendMatrix);
 | 
			
		||||
#include <Grid/algorithms/FFT.h>
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -158,7 +158,20 @@ public:
 | 
			
		||||
    blockPromote(CoarseVec,FineVec,subspace);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspace(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) {
 | 
			
		||||
  virtual void CreateSubspaceRandom(GridParallelRNG  &RNG) {
 | 
			
		||||
    int nn=nbasis;
 | 
			
		||||
    RealD scale;
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    for(int b=0;b<nn;b++){
 | 
			
		||||
      subspace[b] = Zero();
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
      subspace[b] = noise;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  virtual void CreateSubspace(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis)
 | 
			
		||||
  {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
@@ -217,6 +230,11 @@ public:
 | 
			
		||||
    scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
    noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage<<" Chebyshev subspace pass-1 : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<" Chebyshev subspace pass-2 : nbasis"<<nn<<" min "
 | 
			
		||||
	      <<ordermin<<" step "<<orderstep
 | 
			
		||||
	      <<" lo"<<filterlo<<std::endl;
 | 
			
		||||
 | 
			
		||||
    // Initial matrix element
 | 
			
		||||
    hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
@@ -290,6 +308,44 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
    assert(b==nn);
 | 
			
		||||
  }
 | 
			
		||||
  virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
				       int nn,
 | 
			
		||||
				       double hi,
 | 
			
		||||
				       double lo,
 | 
			
		||||
				       int orderfilter
 | 
			
		||||
				       ) {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
 | 
			
		||||
    // New normalised noise
 | 
			
		||||
    std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<" Chebyshev subspace pure noise  : nbasis "<<nn<<std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    for(int b =0;b<nbasis;b++)
 | 
			
		||||
    {
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
      // Initial matrix element
 | 
			
		||||
      hermop.Op(noise,Mn);
 | 
			
		||||
      if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
      // Filter
 | 
			
		||||
      Chebyshev<FineField> Cheb(lo,hi,orderfilter);
 | 
			
		||||
      Cheb(hermop,noise,Mn);
 | 
			
		||||
      // normalise
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
			
		||||
      subspace[b]   = Mn;
 | 
			
		||||
      hermop.Op(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										573
									
								
								Grid/algorithms/GeneralCoarsenedMatrix.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										573
									
								
								Grid/algorithms/GeneralCoarsenedMatrix.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,573 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No)
 | 
			
		||||
 | 
			
		||||
#include <Grid/lattice/PaddedCell.h>
 | 
			
		||||
#include <Grid/stencil/GeneralLocalStencil.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
// Fixme need coalesced read gpermute
 | 
			
		||||
template<class vobj> void gpermute(vobj & inout,int perm){
 | 
			
		||||
  vobj tmp=inout;
 | 
			
		||||
  if (perm & 0x1 ) { permute(inout,tmp,0); tmp=inout;}
 | 
			
		||||
  if (perm & 0x2 ) { permute(inout,tmp,1); tmp=inout;}
 | 
			
		||||
  if (perm & 0x4 ) { permute(inout,tmp,2); tmp=inout;}
 | 
			
		||||
  if (perm & 0x8 ) { permute(inout,tmp,3); tmp=inout;}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////
 | 
			
		||||
// Reuse Aggregation class from CoarsenedMatrix for now
 | 
			
		||||
// Might think about *smoothed* Aggregation
 | 
			
		||||
// Equivalent of Geometry class in cartesian case
 | 
			
		||||
/////////////////////////////////////////////////////////////////
 | 
			
		||||
class NonLocalStencilGeometry {
 | 
			
		||||
public:
 | 
			
		||||
  int depth;
 | 
			
		||||
  int hops;
 | 
			
		||||
  int npoint;
 | 
			
		||||
  std::vector<Coordinate> shifts;
 | 
			
		||||
  Coordinate stencil_size;
 | 
			
		||||
  Coordinate stencil_lo;
 | 
			
		||||
  Coordinate stencil_hi;
 | 
			
		||||
  GridCartesian *grid;
 | 
			
		||||
  GridCartesian *Grid() {return grid;};
 | 
			
		||||
  int Depth(void){return 1;};   // Ghost zone depth
 | 
			
		||||
  int Hops(void){return hops;}; // # of hops=> level of corner fill in in stencil
 | 
			
		||||
 | 
			
		||||
  virtual int DimSkip(void) =0;
 | 
			
		||||
 | 
			
		||||
  virtual ~NonLocalStencilGeometry() {};
 | 
			
		||||
 | 
			
		||||
  int  Reverse(int point)
 | 
			
		||||
  {
 | 
			
		||||
    int Nd = Grid()->Nd();
 | 
			
		||||
    Coordinate shft = shifts[point];
 | 
			
		||||
    Coordinate rev(Nd);
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++) rev[mu]= -shft[mu];
 | 
			
		||||
    for(int p=0;p<npoint;p++){
 | 
			
		||||
      if(rev==shifts[p]){
 | 
			
		||||
	return p;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    assert(0);
 | 
			
		||||
    return -1;
 | 
			
		||||
  }
 | 
			
		||||
  void BuildShifts(void)
 | 
			
		||||
  {
 | 
			
		||||
    this->shifts.resize(0);
 | 
			
		||||
    int Nd = this->grid->Nd();
 | 
			
		||||
 | 
			
		||||
    int dd = this->DimSkip();
 | 
			
		||||
    for(int s0=this->stencil_lo[dd+0];s0<=this->stencil_hi[dd+0];s0++){
 | 
			
		||||
    for(int s1=this->stencil_lo[dd+1];s1<=this->stencil_hi[dd+1];s1++){
 | 
			
		||||
    for(int s2=this->stencil_lo[dd+2];s2<=this->stencil_hi[dd+2];s2++){
 | 
			
		||||
    for(int s3=this->stencil_lo[dd+3];s3<=this->stencil_hi[dd+3];s3++){
 | 
			
		||||
      Coordinate sft(Nd,0);
 | 
			
		||||
      sft[dd+0] = s0;
 | 
			
		||||
      sft[dd+1] = s1;
 | 
			
		||||
      sft[dd+2] = s2;
 | 
			
		||||
      sft[dd+3] = s3;
 | 
			
		||||
      int nhops = abs(s0)+abs(s1)+abs(s2)+abs(s3);
 | 
			
		||||
      if(nhops<=this->hops) this->shifts.push_back(sft);
 | 
			
		||||
    }}}}
 | 
			
		||||
    this->npoint = this->shifts.size();
 | 
			
		||||
    std::cout << GridLogMessage << "NonLocalStencilGeometry has "<< this->npoint << " terms in stencil "<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  NonLocalStencilGeometry(GridCartesian *_coarse_grid,int _hops) : grid(_coarse_grid), hops(_hops)
 | 
			
		||||
  {
 | 
			
		||||
    Coordinate latt = grid->GlobalDimensions();
 | 
			
		||||
    stencil_size.resize(grid->Nd());
 | 
			
		||||
    stencil_lo.resize(grid->Nd());
 | 
			
		||||
    stencil_hi.resize(grid->Nd());
 | 
			
		||||
    for(int d=0;d<grid->Nd();d++){
 | 
			
		||||
     if ( latt[d] == 1 ) {
 | 
			
		||||
      stencil_lo[d] = 0;
 | 
			
		||||
      stencil_hi[d] = 0;
 | 
			
		||||
      stencil_size[d]= 1;
 | 
			
		||||
     } else if ( latt[d] == 2 ) {
 | 
			
		||||
      stencil_lo[d] = -1;
 | 
			
		||||
      stencil_hi[d] = 0;
 | 
			
		||||
      stencil_size[d]= 2;
 | 
			
		||||
     } else if ( latt[d] > 2 ) {
 | 
			
		||||
       stencil_lo[d] = -1;
 | 
			
		||||
       stencil_hi[d] =  1;
 | 
			
		||||
       stencil_size[d]= 3;
 | 
			
		||||
     }
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// Need to worry about red-black now
 | 
			
		||||
class NonLocalStencilGeometry4D : public NonLocalStencilGeometry {
 | 
			
		||||
public:
 | 
			
		||||
  virtual int DimSkip(void) { return 0;};
 | 
			
		||||
  NonLocalStencilGeometry4D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops) { };
 | 
			
		||||
  virtual ~NonLocalStencilGeometry4D() {};
 | 
			
		||||
};
 | 
			
		||||
class NonLocalStencilGeometry5D : public NonLocalStencilGeometry {
 | 
			
		||||
public:
 | 
			
		||||
  virtual int DimSkip(void) { return 1; }; 
 | 
			
		||||
  NonLocalStencilGeometry5D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops)  { };
 | 
			
		||||
  virtual ~NonLocalStencilGeometry5D() {};
 | 
			
		||||
};
 | 
			
		||||
/*
 | 
			
		||||
 * Bunch of different options classes
 | 
			
		||||
 */
 | 
			
		||||
class NextToNextToNextToNearestStencilGeometry4D : public NonLocalStencilGeometry4D {
 | 
			
		||||
public:
 | 
			
		||||
  NextToNextToNextToNearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,4)
 | 
			
		||||
  {
 | 
			
		||||
    this->BuildShifts();
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
class NextToNextToNextToNearestStencilGeometry5D : public  NonLocalStencilGeometry5D {
 | 
			
		||||
public:
 | 
			
		||||
  NextToNextToNextToNearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,4)
 | 
			
		||||
  {
 | 
			
		||||
    this->BuildShifts();
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
class NextToNearestStencilGeometry4D : public  NonLocalStencilGeometry4D {
 | 
			
		||||
public:
 | 
			
		||||
  NextToNearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,2)
 | 
			
		||||
  {
 | 
			
		||||
    this->BuildShifts();
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
class NextToNearestStencilGeometry5D : public  NonLocalStencilGeometry5D {
 | 
			
		||||
public:
 | 
			
		||||
  NextToNearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,2)
 | 
			
		||||
  {
 | 
			
		||||
    this->BuildShifts();
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
class NearestStencilGeometry4D : public  NonLocalStencilGeometry4D {
 | 
			
		||||
public:
 | 
			
		||||
  NearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,1)
 | 
			
		||||
  {
 | 
			
		||||
    this->BuildShifts();
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
class NearestStencilGeometry5D : public  NonLocalStencilGeometry5D {
 | 
			
		||||
public:
 | 
			
		||||
  NearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,1)
 | 
			
		||||
  {
 | 
			
		||||
    this->BuildShifts();
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// Fine Object == (per site) type of fine field
 | 
			
		||||
// nbasis      == number of deflation vectors
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class GeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > >  {
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
 | 
			
		||||
  typedef iVector<CComplex,nbasis >           siteVector;
 | 
			
		||||
  typedef iMatrix<CComplex,nbasis >           siteMatrix;
 | 
			
		||||
  typedef Lattice<iScalar<CComplex> >         CoarseComplexField;
 | 
			
		||||
  typedef Lattice<siteVector>                 CoarseVector;
 | 
			
		||||
  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
			
		||||
  typedef iMatrix<CComplex,nbasis >  Cobj;
 | 
			
		||||
  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<Fobj >        FineField;
 | 
			
		||||
  typedef CoarseVector Field;
 | 
			
		||||
  ////////////////////
 | 
			
		||||
  // Data members
 | 
			
		||||
  ////////////////////
 | 
			
		||||
  int hermitian;
 | 
			
		||||
  GridBase      *       _FineGrid; 
 | 
			
		||||
  GridCartesian *       _CoarseGrid; 
 | 
			
		||||
  NonLocalStencilGeometry &geom;
 | 
			
		||||
  PaddedCell Cell;
 | 
			
		||||
  GeneralLocalStencil Stencil;
 | 
			
		||||
  
 | 
			
		||||
  std::vector<CoarseMatrix> _A;
 | 
			
		||||
  std::vector<CoarseMatrix> _Adag;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////
 | 
			
		||||
  // Interface
 | 
			
		||||
  ///////////////////////
 | 
			
		||||
  GridBase      * Grid(void)           { return _FineGrid; };   // this is all the linalg routines need to know
 | 
			
		||||
  GridBase      * FineGrid(void)       { return _FineGrid; };   // this is all the linalg routines need to know
 | 
			
		||||
  GridCartesian * CoarseGrid(void)     { return _CoarseGrid; };   // this is all the linalg routines need to know
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  void ProjectNearestNeighbour(RealD shift, GeneralCoarseOp &CopyMe)
 | 
			
		||||
  {
 | 
			
		||||
    int nfound=0;
 | 
			
		||||
    std::cout << " ProjectNearestNeighbour "<< CopyMe._A[0].Grid()<<std::endl;
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      for(int pp=0;pp<CopyMe.geom.npoint;pp++){
 | 
			
		||||
 	// Search for the same relative shift
 | 
			
		||||
	// Avoids brutal handling of Grid pointers
 | 
			
		||||
	if ( CopyMe.geom.shifts[pp]==geom.shifts[p] ) {
 | 
			
		||||
	  _A[p] = CopyMe.Cell.Extract(CopyMe._A[pp]);
 | 
			
		||||
	  _Adag[p] = CopyMe.Cell.Extract(CopyMe._Adag[pp]);
 | 
			
		||||
	  nfound++;
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    assert(nfound==geom.npoint);
 | 
			
		||||
    ExchangeCoarseLinks();
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  GeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridBase *FineGrid, GridCartesian * CoarseGrid)
 | 
			
		||||
    : geom(_geom),
 | 
			
		||||
      _FineGrid(FineGrid),
 | 
			
		||||
      _CoarseGrid(CoarseGrid),
 | 
			
		||||
      hermitian(1),
 | 
			
		||||
      Cell(_geom.Depth(),_CoarseGrid),
 | 
			
		||||
      Stencil(Cell.grids.back(),geom.shifts)
 | 
			
		||||
  {
 | 
			
		||||
    {
 | 
			
		||||
      int npoint = _geom.npoint;
 | 
			
		||||
      autoView( Stencil_v  , Stencil, AcceleratorRead);
 | 
			
		||||
      int osites=Stencil.Grid()->oSites();
 | 
			
		||||
      for(int ss=0;ss<osites;ss++){
 | 
			
		||||
	for(int point=0;point<npoint;point++){
 | 
			
		||||
	  auto SE = Stencil_v.GetEntry(point,ss);
 | 
			
		||||
	  int o = SE->_offset;
 | 
			
		||||
	  assert( o< osites);
 | 
			
		||||
	}
 | 
			
		||||
      }    
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    _A.resize(geom.npoint,CoarseGrid);
 | 
			
		||||
    _Adag.resize(geom.npoint,CoarseGrid);
 | 
			
		||||
  }
 | 
			
		||||
  void M (const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    Mult(_A,in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void Mdag (const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    if ( hermitian ) M(in,out);
 | 
			
		||||
    else Mult(_Adag,in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void Mult (std::vector<CoarseMatrix> &A,const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    RealD tviews=0;
 | 
			
		||||
    RealD ttot=0;
 | 
			
		||||
    RealD tmult=0;
 | 
			
		||||
    RealD texch=0;
 | 
			
		||||
    RealD text=0;
 | 
			
		||||
    ttot=-usecond();
 | 
			
		||||
    conformable(CoarseGrid(),in.Grid());
 | 
			
		||||
    conformable(in.Grid(),out.Grid());
 | 
			
		||||
    out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
    CoarseVector tin=in;
 | 
			
		||||
 | 
			
		||||
    texch-=usecond();
 | 
			
		||||
    CoarseVector pin  = Cell.Exchange(tin);
 | 
			
		||||
    texch+=usecond();
 | 
			
		||||
 | 
			
		||||
    CoarseVector pout(pin.Grid()); pout=Zero();
 | 
			
		||||
 | 
			
		||||
    int npoint = geom.npoint;
 | 
			
		||||
    typedef LatticeView<Cobj> Aview;
 | 
			
		||||
      
 | 
			
		||||
    const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
    
 | 
			
		||||
    int osites=pin.Grid()->oSites();
 | 
			
		||||
    //    int gsites=pin.Grid()->gSites();
 | 
			
		||||
 | 
			
		||||
    RealD flops = 1.0* npoint * nbasis * nbasis * 8 * osites;
 | 
			
		||||
    RealD bytes = (1.0*osites*sizeof(siteMatrix)*npoint+2.0*osites*sizeof(siteVector))*npoint;
 | 
			
		||||
      
 | 
			
		||||
    //    for(int point=0;point<npoint;point++){
 | 
			
		||||
    //      conformable(A[point],pin);
 | 
			
		||||
    //    }
 | 
			
		||||
 | 
			
		||||
    {
 | 
			
		||||
      tviews-=usecond();
 | 
			
		||||
      autoView( in_v , pin, AcceleratorRead);
 | 
			
		||||
      autoView( out_v , pout, AcceleratorWrite);
 | 
			
		||||
      autoView( Stencil_v  , Stencil, AcceleratorRead);
 | 
			
		||||
      tviews+=usecond();
 | 
			
		||||
      
 | 
			
		||||
      for(int point=0;point<npoint;point++){
 | 
			
		||||
	tviews-=usecond();
 | 
			
		||||
	autoView( A_v, A[point],AcceleratorRead);
 | 
			
		||||
	tviews+=usecond();
 | 
			
		||||
	tmult-=usecond();
 | 
			
		||||
	accelerator_for(sss, osites*nbasis, Nsimd, {
 | 
			
		||||
 | 
			
		||||
	    typedef decltype(coalescedRead(in_v[0]))    calcVector;
 | 
			
		||||
 | 
			
		||||
	    int ss = sss/nbasis;
 | 
			
		||||
	    int b  = sss%nbasis;
 | 
			
		||||
 | 
			
		||||
	    auto SE  = Stencil_v.GetEntry(point,ss);
 | 
			
		||||
	    auto nbr = coalescedReadGeneralPermute(in_v[SE->_offset],SE->_permute,Nd);
 | 
			
		||||
	    auto res = out_v(ss)(b);
 | 
			
		||||
	    for(int bb=0;bb<nbasis;bb++) {
 | 
			
		||||
	      res = res + coalescedRead(A_v[ss](b,bb))*nbr(bb);
 | 
			
		||||
	    }
 | 
			
		||||
	    coalescedWrite(out_v[ss](b),res);
 | 
			
		||||
	});
 | 
			
		||||
 | 
			
		||||
	tmult+=usecond();
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    text-=usecond();
 | 
			
		||||
    out = Cell.Extract(pout);
 | 
			
		||||
    text+=usecond();
 | 
			
		||||
    ttot+=usecond();
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Mult Aviews "<<tviews<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Mult exch "<<texch<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Mult mult "<<tmult<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Mult ext  "<<text<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Mult tot  "<<ttot<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Kernel "<< flops/tmult<<" mflop/s"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Kernel "<< bytes/tmult<<" MB/s"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse flops/s "<< flops/ttot<<" mflop/s"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse bytes   "<< bytes/1e6<<" MB"<<std::endl;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void PopulateAdag(void)
 | 
			
		||||
  {
 | 
			
		||||
    for(int64_t bidx=0;bidx<CoarseGrid()->gSites() ;bidx++){
 | 
			
		||||
      Coordinate bcoor;
 | 
			
		||||
      CoarseGrid()->GlobalIndexToGlobalCoor(bidx,bcoor);
 | 
			
		||||
      
 | 
			
		||||
      for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
	Coordinate scoor = bcoor;
 | 
			
		||||
	for(int mu=0;mu<bcoor.size();mu++){
 | 
			
		||||
	  int L = CoarseGrid()->GlobalDimensions()[mu];
 | 
			
		||||
	  scoor[mu] = (bcoor[mu] - geom.shifts[p][mu] + L) % L; // Modulo arithmetic
 | 
			
		||||
	}
 | 
			
		||||
	// Flip to poke/peekLocalSite and not too bad
 | 
			
		||||
	auto link = peekSite(_A[p],scoor);
 | 
			
		||||
	int pp = geom.Reverse(p);
 | 
			
		||||
	pokeSite(adj(link),_Adag[pp],bcoor);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  // 
 | 
			
		||||
  // A) Only reduced flops option is to use a padded cell of depth 4
 | 
			
		||||
  // and apply MpcDagMpc in the padded cell.
 | 
			
		||||
  //
 | 
			
		||||
  // Makes for ONE application of MpcDagMpc per vector instead of 30 or 80.
 | 
			
		||||
  // With the effective cell size around (B+8)^4 perhaps 12^4/4^4 ratio
 | 
			
		||||
  // Cost is 81x more, same as stencil size.
 | 
			
		||||
  //
 | 
			
		||||
  // But: can eliminate comms and do as local dirichlet.
 | 
			
		||||
  //
 | 
			
		||||
  // Local exchange gauge field once.
 | 
			
		||||
  // Apply to all vectors, local only computation.
 | 
			
		||||
  // Must exchange ghost subcells in reverse process of PaddedCell to take inner products
 | 
			
		||||
  //
 | 
			
		||||
  // B) Can reduce cost: pad by 1, apply Deo      (4^4+6^4+8^4+8^4 )/ (4x 4^4)
 | 
			
		||||
  //                     pad by 2, apply Doe
 | 
			
		||||
  //                     pad by 3, apply Deo
 | 
			
		||||
  //                     then break out 8x directions; cost is ~10x MpcDagMpc per vector
 | 
			
		||||
  //
 | 
			
		||||
  // => almost factor of 10 in setup cost, excluding data rearrangement
 | 
			
		||||
  //
 | 
			
		||||
  // Intermediates -- ignore the corner terms, leave approximate and force Hermitian
 | 
			
		||||
  // Intermediates -- pad by 2 and apply 1+8+24 = 33 times.
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////////
 | 
			
		||||
    // BFM HDCG style approach: Solve a system of equations to get Aij
 | 
			
		||||
    //////////////////////////////////////////////////////////
 | 
			
		||||
    /*
 | 
			
		||||
     *     Here, k,l index which possible shift within the 3^Nd "ball" connected by MdagM.
 | 
			
		||||
     *
 | 
			
		||||
     *     conj(phases[block]) proj[k][ block*Nvec+j ] =  \sum_ball  e^{i q_k . delta} < phi_{block,j} | MdagM | phi_{(block+delta),i} > 
 | 
			
		||||
     *                                                 =  \sum_ball e^{iqk.delta} A_ji
 | 
			
		||||
     *
 | 
			
		||||
     *     Must invert matrix M_k,l = e^[i q_k . delta_l]
 | 
			
		||||
     *
 | 
			
		||||
     *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
			
		||||
     */
 | 
			
		||||
  void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
			
		||||
		       Aggregation<Fobj,CComplex,nbasis> & Subspace)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
 | 
			
		||||
    GridBase *grid = FineGrid();
 | 
			
		||||
 | 
			
		||||
    RealD tproj=0.0;
 | 
			
		||||
    RealD teigen=0.0;
 | 
			
		||||
    RealD tmat=0.0;
 | 
			
		||||
    RealD tphase=0.0;
 | 
			
		||||
    RealD tinv=0.0;
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    // Orthogonalise the subblocks over the basis
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    CoarseScalar InnerProd(CoarseGrid()); 
 | 
			
		||||
    blockOrthogonalise(InnerProd,Subspace.subspace);
 | 
			
		||||
 | 
			
		||||
    const int npoint = geom.npoint;
 | 
			
		||||
      
 | 
			
		||||
    Coordinate clatt = CoarseGrid()->GlobalDimensions();
 | 
			
		||||
    int Nd = CoarseGrid()->Nd();
 | 
			
		||||
 | 
			
		||||
      /*
 | 
			
		||||
       *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
 | 
			
		||||
       *     Matrix index i is mapped to this shift via 
 | 
			
		||||
       *               geom.shifts[i]
 | 
			
		||||
       *
 | 
			
		||||
       *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block] 
 | 
			
		||||
       *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} > 
 | 
			
		||||
       *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
 | 
			
		||||
       *       = M_{kl} A_ji^{b.b+l}
 | 
			
		||||
       *
 | 
			
		||||
       *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
 | 
			
		||||
       *  
 | 
			
		||||
       *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
			
		||||
       *
 | 
			
		||||
       *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
 | 
			
		||||
       */
 | 
			
		||||
    teigen-=usecond();
 | 
			
		||||
    Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
			
		||||
    Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
			
		||||
    ComplexD ci(0.0,1.0);
 | 
			
		||||
    for(int k=0;k<npoint;k++){ // Loop over momenta
 | 
			
		||||
 | 
			
		||||
      for(int l=0;l<npoint;l++){ // Loop over nbr relative
 | 
			
		||||
	ComplexD phase(0.0,0.0);
 | 
			
		||||
	for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
			
		||||
	  phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
 | 
			
		||||
	}
 | 
			
		||||
	phase=exp(phase*ci);
 | 
			
		||||
	Mkl(k,l) = phase;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    invMkl = Mkl.inverse();
 | 
			
		||||
    teigen+=usecond();
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Now compute the matrix elements of linop between the orthonormal
 | 
			
		||||
    // set of vectors.
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////
 | 
			
		||||
    FineField phaV(grid); // Phased block basis vector
 | 
			
		||||
    FineField MphaV(grid);// Matrix applied
 | 
			
		||||
    CoarseVector coarseInner(CoarseGrid());
 | 
			
		||||
 | 
			
		||||
    std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
 | 
			
		||||
    std::vector<CoarseVector>          FT(npoint,CoarseGrid());
 | 
			
		||||
    for(int i=0;i<nbasis;i++){// Loop over basis vectors
 | 
			
		||||
      std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
 | 
			
		||||
      for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
			
		||||
	/////////////////////////////////////////////////////
 | 
			
		||||
	// Stick a phase on every block
 | 
			
		||||
	/////////////////////////////////////////////////////
 | 
			
		||||
	tphase-=usecond();
 | 
			
		||||
	CoarseComplexField coor(CoarseGrid());
 | 
			
		||||
	CoarseComplexField pha(CoarseGrid());	pha=Zero();
 | 
			
		||||
	for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
	  LatticeCoordinate(coor,mu);
 | 
			
		||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
			
		||||
	  pha = pha + (TwoPiL * geom.shifts[p][mu]) * coor;
 | 
			
		||||
	}
 | 
			
		||||
	pha  =exp(pha*ci);
 | 
			
		||||
	phaV=Zero();
 | 
			
		||||
	blockZAXPY(phaV,pha,Subspace.subspace[i],phaV);
 | 
			
		||||
	tphase+=usecond();
 | 
			
		||||
 | 
			
		||||
	/////////////////////////////////////////////////////////////////////
 | 
			
		||||
	// Multiple phased subspace vector by matrix and project to subspace
 | 
			
		||||
	// Remove local bulk phase to leave relative phases
 | 
			
		||||
	/////////////////////////////////////////////////////////////////////
 | 
			
		||||
	tmat-=usecond();
 | 
			
		||||
	linop.Op(phaV,MphaV);
 | 
			
		||||
	tmat+=usecond();
 | 
			
		||||
 | 
			
		||||
	tproj-=usecond();
 | 
			
		||||
	blockProject(coarseInner,MphaV,Subspace.subspace);
 | 
			
		||||
	coarseInner = conjugate(pha) * coarseInner;
 | 
			
		||||
 | 
			
		||||
	ComputeProj[p] = coarseInner;
 | 
			
		||||
	tproj+=usecond();
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      tinv-=usecond();
 | 
			
		||||
      for(int k=0;k<npoint;k++){
 | 
			
		||||
	FT[k] = Zero();
 | 
			
		||||
	for(int l=0;l<npoint;l++){
 | 
			
		||||
	  FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
 | 
			
		||||
	}
 | 
			
		||||
      
 | 
			
		||||
	int osites=CoarseGrid()->oSites();
 | 
			
		||||
	autoView( A_v  , _A[k], AcceleratorWrite);
 | 
			
		||||
	autoView( FT_v  , FT[k], AcceleratorRead);
 | 
			
		||||
	accelerator_for(sss, osites, 1, {
 | 
			
		||||
	    for(int j=0;j<nbasis;j++){
 | 
			
		||||
	      A_v[sss](j,i) = FT_v[sss](j);
 | 
			
		||||
	    }
 | 
			
		||||
        });
 | 
			
		||||
      }
 | 
			
		||||
      tinv+=usecond();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      Coordinate coor({0,0,0,0,0});
 | 
			
		||||
      auto sval = peekSite(_A[p],coor);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Only needed if nonhermitian
 | 
			
		||||
    if ( ! hermitian ) {
 | 
			
		||||
      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl;
 | 
			
		||||
      PopulateAdag();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Need to write something to populate Adag from A
 | 
			
		||||
    std::cout << GridLogMessage<<"ExchangeCoarseLinks  "<<std::endl;
 | 
			
		||||
    ExchangeCoarseLinks();
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator eigen  "<<teigen<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator phase  "<<tphase<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator mat    "<<tmat <<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator proj   "<<tproj<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  void ExchangeCoarseLinks(void){
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      std::cout << "Exchange "<<p<<std::endl;
 | 
			
		||||
      _A[p] = Cell.Exchange(_A[p]);
 | 
			
		||||
      _Adag[p]= Cell.Exchange(_Adag[p]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  virtual  void Mdiag    (const Field &in, Field &out){ assert(0);};
 | 
			
		||||
  virtual  void Mdir     (const Field &in, Field &out,int dir, int disp){assert(0);};
 | 
			
		||||
  virtual  void MdirAll  (const Field &in, std::vector<Field> &out){assert(0);};
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -90,9 +90,8 @@ public:
 | 
			
		||||
    order=_order;
 | 
			
		||||
      
 | 
			
		||||
    if(order < 2) exit(-1);
 | 
			
		||||
    Coeffs.resize(order);
 | 
			
		||||
    Coeffs.assign(0.,order);
 | 
			
		||||
    Coeffs[order-1] = 1.;
 | 
			
		||||
    Coeffs.resize(order,0.0);
 | 
			
		||||
    Coeffs[order-1] = 1.0;
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
  // PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's.
 | 
			
		||||
 
 | 
			
		||||
@@ -33,15 +33,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
   * Script A = SolverMatrix 
 | 
			
		||||
   * Script P = Preconditioner
 | 
			
		||||
   *
 | 
			
		||||
   * Deflation methods considered
 | 
			
		||||
   *      -- Solve P A x = P b        [ like Luscher ]
 | 
			
		||||
   * DEF-1        M P A x = M P b     [i.e. left precon]
 | 
			
		||||
   * DEF-2        P^T M A x = P^T M b
 | 
			
		||||
   * ADEF-1       Preconditioner = M P + Q      [ Q + M + M A Q]
 | 
			
		||||
   * ADEF-2       Preconditioner = P^T M + Q
 | 
			
		||||
   * BNN          Preconditioner = P^T M P + Q
 | 
			
		||||
   * BNN2         Preconditioner = M P + P^TM +Q - M P A M 
 | 
			
		||||
   * 
 | 
			
		||||
   * Implement ADEF-2
 | 
			
		||||
   *
 | 
			
		||||
   * Vstart = P^Tx + Qb
 | 
			
		||||
@@ -49,202 +40,245 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
   * M2=M3=1
 | 
			
		||||
   * Vout = x
 | 
			
		||||
   */
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
// abstract base
 | 
			
		||||
template<class Field, class CoarseField>
 | 
			
		||||
class TwoLevelFlexiblePcg : public LinearFunction<Field>
 | 
			
		||||
template<class Field>
 | 
			
		||||
class TwoLevelCG : public LinearFunction<Field>
 | 
			
		||||
{
 | 
			
		||||
 public:
 | 
			
		||||
  int verbose;
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  const int mmax = 5;
 | 
			
		||||
  GridBase *grid;
 | 
			
		||||
  GridBase *coarsegrid;
 | 
			
		||||
 | 
			
		||||
  LinearOperatorBase<Field>   *_Linop
 | 
			
		||||
  OperatorFunction<Field>     *_Smoother,
 | 
			
		||||
  LinearFunction<CoarseField> *_CoarseSolver;
 | 
			
		||||
 | 
			
		||||
  // Need somthing that knows how to get from Coarse to fine and back again
 | 
			
		||||
  // Fine operator, Smoother, CoarseSolver
 | 
			
		||||
  LinearOperatorBase<Field>   &_FineLinop;
 | 
			
		||||
  LinearFunction<Field>   &_Smoother;
 | 
			
		||||
  
 | 
			
		||||
  // more most opertor functions
 | 
			
		||||
  TwoLevelFlexiblePcg(RealD tol,
 | 
			
		||||
  TwoLevelCG(RealD tol,
 | 
			
		||||
	     Integer maxit,
 | 
			
		||||
		     LinearOperatorBase<Field> *Linop,
 | 
			
		||||
		     LinearOperatorBase<Field> *SmootherLinop,
 | 
			
		||||
		     OperatorFunction<Field>   *Smoother,
 | 
			
		||||
		     OperatorFunction<CoarseField>  CoarseLinop
 | 
			
		||||
		     ) : 
 | 
			
		||||
	     LinearOperatorBase<Field>   &FineLinop,
 | 
			
		||||
	     LinearFunction<Field>       &Smoother,
 | 
			
		||||
	     GridBase *fine) : 
 | 
			
		||||
      Tolerance(tol), 
 | 
			
		||||
      MaxIterations(maxit),
 | 
			
		||||
      _Linop(Linop),
 | 
			
		||||
      _PreconditionerLinop(PrecLinop),
 | 
			
		||||
      _Preconditioner(Preconditioner)
 | 
			
		||||
      _FineLinop(FineLinop),
 | 
			
		||||
      _Smoother(Smoother)
 | 
			
		||||
  {
 | 
			
		||||
    verbose=0;
 | 
			
		||||
    grid       = fine;
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
  // The Pcg routine is common to all, but the various matrices differ from derived 
 | 
			
		||||
  // implementation to derived implmentation
 | 
			
		||||
  void operator() (const Field &src, Field &psi){
 | 
			
		||||
  void operator() (const Field &src, Field &psi){
 | 
			
		||||
 | 
			
		||||
    psi.Checkerboard() = src.Checkerboard();
 | 
			
		||||
    grid             = src.Grid();
 | 
			
		||||
 | 
			
		||||
  virtual void operator() (const Field &src, Field &psi)
 | 
			
		||||
  {
 | 
			
		||||
    Field resid(grid);
 | 
			
		||||
    RealD f;
 | 
			
		||||
    RealD rtzp,rtz,a,d,b;
 | 
			
		||||
    RealD rptzp;
 | 
			
		||||
    RealD tn;
 | 
			
		||||
    RealD guess = norm2(psi);
 | 
			
		||||
    RealD ssq   = norm2(src);
 | 
			
		||||
    RealD rsq   = ssq*Tolerance*Tolerance;
 | 
			
		||||
    
 | 
			
		||||
    /////////////////////////////
 | 
			
		||||
    // Set up history vectors
 | 
			
		||||
    /////////////////////////////
 | 
			
		||||
    std::vector<Field> p  (mmax,grid);
 | 
			
		||||
    std::vector<Field> mmp(mmax,grid);
 | 
			
		||||
    std::vector<RealD> pAp(mmax);
 | 
			
		||||
 | 
			
		||||
    Field x  (grid); x = psi;
 | 
			
		||||
    Field x(grid); 
 | 
			
		||||
    Field p(grid);
 | 
			
		||||
    Field z(grid);
 | 
			
		||||
    Field tmp(grid);
 | 
			
		||||
    Field mmp(grid);
 | 
			
		||||
    Field r  (grid);
 | 
			
		||||
    Field mu (grid);
 | 
			
		||||
    Field rp (grid);
 | 
			
		||||
    
 | 
			
		||||
    //Initial residual computation & set up
 | 
			
		||||
    RealD guess = norm2(psi);
 | 
			
		||||
    double tn;
 | 
			
		||||
 | 
			
		||||
    GridStopWatch HDCGTimer;
 | 
			
		||||
    HDCGTimer.Start();
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    // x0 = Vstart -- possibly modify guess
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    x=src;
 | 
			
		||||
    x=Zero();
 | 
			
		||||
    Vstart(x,src);
 | 
			
		||||
 | 
			
		||||
    // r0 = b -A x0
 | 
			
		||||
    HermOp(x,mmp); // Shouldn't this be something else?
 | 
			
		||||
    axpy (r, -1.0,mmp[0], src);    // Recomputes r=src-Ax0
 | 
			
		||||
    _FineLinop.HermOp(x,mmp);
 | 
			
		||||
 | 
			
		||||
    axpy(r, -1.0, mmp, src);    // Recomputes r=src-x0
 | 
			
		||||
    rp=r;
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // Compute z = M1 x
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    M1(r,z,tmp,mp,SmootherMirs);
 | 
			
		||||
    PcgM1(r,z);
 | 
			
		||||
    rtzp =real(innerProduct(r,z));
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    // Solve for Mss mu = P A z and set p = z-mu
 | 
			
		||||
    // Def2: p = 1 - Q Az = Pright z 
 | 
			
		||||
    // Other algos M2 is trivial
 | 
			
		||||
    // Except Def2, M2 is trivial
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    M2(z,p[0]);
 | 
			
		||||
    p=z;
 | 
			
		||||
 | 
			
		||||
    for (int k=0;k<=MaxIterations;k++){
 | 
			
		||||
    RealD ssq =  norm2(src);
 | 
			
		||||
    RealD rsq =  ssq*Tolerance*Tolerance;
 | 
			
		||||
 | 
			
		||||
      int peri_k  = k % mmax;
 | 
			
		||||
      int peri_kp = (k+1) % mmax;
 | 
			
		||||
    std::cout<<GridLogMessage<<"HDCG: k=0 residual "<<rtzp<<" target rsq "<<rsq<<" ssq "<<ssq<<std::endl;
 | 
			
		||||
    
 | 
			
		||||
    for (int k=1;k<=MaxIterations;k++){
 | 
			
		||||
 | 
			
		||||
      rtz=rtzp;
 | 
			
		||||
      d= M3(p[peri_k],mp,mmp[peri_k],tmp);
 | 
			
		||||
      d= PcgM3(p,mmp);
 | 
			
		||||
      a = rtz/d;
 | 
			
		||||
 | 
			
		||||
      // Memorise this
 | 
			
		||||
      pAp[peri_k] = d;
 | 
			
		||||
      axpy(x,a,p,x);
 | 
			
		||||
      RealD rn = axpy_norm(r,-a,mmp,r);
 | 
			
		||||
 | 
			
		||||
      axpy(x,a,p[peri_k],x);
 | 
			
		||||
      RealD rn = axpy_norm(r,-a,mmp[peri_k],r);
 | 
			
		||||
 | 
			
		||||
      // Compute z = M x
 | 
			
		||||
      M1(r,z,tmp,mp);
 | 
			
		||||
      PcgM1(r,z);
 | 
			
		||||
 | 
			
		||||
      rtzp =real(innerProduct(r,z));
 | 
			
		||||
 | 
			
		||||
      M2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
 | 
			
		||||
 | 
			
		||||
      p[peri_kp]=p[peri_k];
 | 
			
		||||
 | 
			
		||||
      // Standard search direction  p -> z + b p    ; b = 
 | 
			
		||||
      b = (rtzp)/rtz;
 | 
			
		||||
 | 
			
		||||
      int northog;
 | 
			
		||||
      //    northog     = (peri_kp==0)?1:peri_kp; // This is the fCG(mmax) algorithm
 | 
			
		||||
      northog     = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm
 | 
			
		||||
    
 | 
			
		||||
      for(int back=0; back < northog; back++){
 | 
			
		||||
	int peri_back = (k-back)%mmax;
 | 
			
		||||
	RealD pbApk= real(innerProduct(mmp[peri_back],p[peri_kp]));
 | 
			
		||||
	RealD beta = -pbApk/pAp[peri_back];
 | 
			
		||||
	axpy(p[peri_kp],beta,p[peri_back],p[peri_kp]);
 | 
			
		||||
      int ipcg=1; // almost free inexact preconditioned CG
 | 
			
		||||
      if (ipcg) {
 | 
			
		||||
	rptzp =real(innerProduct(rp,z));
 | 
			
		||||
      } else {
 | 
			
		||||
	rptzp =0;
 | 
			
		||||
      }
 | 
			
		||||
      b = (rtzp-rptzp)/rtz;
 | 
			
		||||
 | 
			
		||||
      PcgM2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
 | 
			
		||||
 | 
			
		||||
      axpy(p,b,p,mu);  // mu = A r
 | 
			
		||||
 | 
			
		||||
      RealD rrn=sqrt(rn/ssq);
 | 
			
		||||
      std::cout<<GridLogMessage<<"TwoLevelfPcg: k= "<<k<<" residual = "<<rrn<<std::endl;
 | 
			
		||||
      RealD rtn=sqrt(rtz/ssq);
 | 
			
		||||
      std::cout<<GridLogMessage<<"HDCG: Pcg k= "<<k<<" residual = "<<rrn<<std::endl;
 | 
			
		||||
 | 
			
		||||
      if ( ipcg ) {
 | 
			
		||||
	axpy(rp,0.0,r,r);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // Stopping condition
 | 
			
		||||
      if ( rn <= rsq ) { 
 | 
			
		||||
 | 
			
		||||
	HermOp(x,mmp); // Shouldn't this be something else?
 | 
			
		||||
	axpy(tmp,-1.0,src,mmp[0]);
 | 
			
		||||
	HDCGTimer.Stop();
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: Pcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
 | 
			
		||||
 | 
			
		||||
	RealD psinorm = sqrt(norm2(x));
 | 
			
		||||
	_FineLinop.HermOp(x,mmp);			  
 | 
			
		||||
	axpy(tmp,-1.0,src,mmp);
 | 
			
		||||
 | 
			
		||||
	RealD  mmpnorm = sqrt(norm2(mmp));
 | 
			
		||||
	RealD  xnorm   = sqrt(norm2(x));
 | 
			
		||||
	RealD  srcnorm = sqrt(norm2(src));
 | 
			
		||||
	RealD  tmpnorm = sqrt(norm2(tmp));
 | 
			
		||||
	RealD  true_residual = tmpnorm/srcnorm;
 | 
			
		||||
	std::cout<<GridLogMessage<<"TwoLevelfPcg:   true residual is "<<true_residual<<std::endl;
 | 
			
		||||
	std::cout<<GridLogMessage<<"TwoLevelfPcg: target residual was"<<Tolerance<<std::endl;
 | 
			
		||||
	return k;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: true residual is "<<true_residual
 | 
			
		||||
		 <<" solution "<<xnorm<<" source "<<srcnorm<<std::endl;
 | 
			
		||||
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    // Non-convergence
 | 
			
		||||
    assert(0);
 | 
			
		||||
    std::cout << "HDCG: Pcg not converged"<<std::endl;
 | 
			
		||||
    return ;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
 public:
 | 
			
		||||
 | 
			
		||||
  virtual void M(Field & in,Field & out,Field & tmp) {
 | 
			
		||||
  virtual void PcgM1(Field & in, Field & out)     =0;
 | 
			
		||||
  virtual void Vstart(Field & x,const Field & src)=0;
 | 
			
		||||
 | 
			
		||||
  virtual void PcgM2(const Field & in, Field & out) {
 | 
			
		||||
    out=in;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void M1(Field & in, Field & out) {// the smoother
 | 
			
		||||
  virtual RealD PcgM3(const Field & p, Field & mmp){
 | 
			
		||||
    RealD dd;
 | 
			
		||||
    _FineLinop.HermOp(p,mmp);
 | 
			
		||||
    ComplexD dot = innerProduct(p,mmp);
 | 
			
		||||
    dd=real(dot);
 | 
			
		||||
    return dd;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Only Def1 has non-trivial Vout.
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
  virtual void   Vout  (Field & in, Field & out,Field & src){
 | 
			
		||||
    out = in;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
  
 | 
			
		||||
template<class Field, class CoarseField, class Aggregation>
 | 
			
		||||
class TwoLevelADEF2 : public TwoLevelCG<Field>
 | 
			
		||||
{
 | 
			
		||||
 public:
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Need something that knows how to get from Coarse to fine and back again
 | 
			
		||||
  //  void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
 | 
			
		||||
  //  void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  GridBase *coarsegrid;
 | 
			
		||||
  Aggregation &_Aggregates;                    
 | 
			
		||||
  LinearFunction<CoarseField> &_CoarseSolver;
 | 
			
		||||
  LinearFunction<CoarseField> &_CoarseSolverPrecise;
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  
 | 
			
		||||
  // more most opertor functions
 | 
			
		||||
  TwoLevelADEF2(RealD tol,
 | 
			
		||||
		Integer maxit,
 | 
			
		||||
		LinearOperatorBase<Field>   &FineLinop,
 | 
			
		||||
		LinearFunction<Field>   &Smoother,
 | 
			
		||||
		LinearFunction<CoarseField>  &CoarseSolver,
 | 
			
		||||
		LinearFunction<CoarseField>  &CoarseSolverPrecise,
 | 
			
		||||
		Aggregation &Aggregates
 | 
			
		||||
		) :
 | 
			
		||||
    TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,Aggregates.FineGrid),
 | 
			
		||||
      _CoarseSolver(CoarseSolver),
 | 
			
		||||
      _CoarseSolverPrecise(CoarseSolverPrecise),
 | 
			
		||||
      _Aggregates(Aggregates)
 | 
			
		||||
  {
 | 
			
		||||
    coarsegrid = Aggregates.CoarseGrid;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  virtual void PcgM1(Field & in, Field & out)
 | 
			
		||||
  {
 | 
			
		||||
    // [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
 | 
			
		||||
    Field tmp(grid);
 | 
			
		||||
    Field Min(grid);
 | 
			
		||||
 | 
			
		||||
    PcgM(in,Min); // Smoother call
 | 
			
		||||
    Field tmp(this->grid);
 | 
			
		||||
    Field Min(this->grid);
 | 
			
		||||
    CoarseField PleftProj(this->coarsegrid);
 | 
			
		||||
    CoarseField PleftMss_proj(this->coarsegrid);
 | 
			
		||||
 | 
			
		||||
    HermOp(Min,out);
 | 
			
		||||
    GridStopWatch SmootherTimer;
 | 
			
		||||
    GridStopWatch MatrixTimer;
 | 
			
		||||
    SmootherTimer.Start();
 | 
			
		||||
    this->_Smoother(in,Min);
 | 
			
		||||
    SmootherTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    this->_FineLinop.HermOp(Min,out);
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
    axpy(tmp,-1.0,out,in);          // tmp  = in - A Min
 | 
			
		||||
 | 
			
		||||
    ProjectToSubspace(tmp,PleftProj);     
 | 
			
		||||
    ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
 | 
			
		||||
    PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]  
 | 
			
		||||
    GridStopWatch ProjTimer;
 | 
			
		||||
    GridStopWatch CoarseTimer;
 | 
			
		||||
    GridStopWatch PromTimer;
 | 
			
		||||
    ProjTimer.Start();
 | 
			
		||||
    this->_Aggregates.ProjectToSubspace(PleftProj,tmp);     
 | 
			
		||||
    ProjTimer.Stop();
 | 
			
		||||
    CoarseTimer.Start();
 | 
			
		||||
    this->_CoarseSolver(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
 | 
			
		||||
    CoarseTimer.Stop();
 | 
			
		||||
    PromTimer.Start();
 | 
			
		||||
    this->_Aggregates.PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]  
 | 
			
		||||
    PromTimer.Stop();
 | 
			
		||||
    std::cout << GridLogPerformance << "PcgM1 breakdown "<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\tSmoother   " << SmootherTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\tProj       " << ProjTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\tCoarse     " << CoarseTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\tProm       " << PromTimer.Elapsed() <<std::endl;
 | 
			
		||||
 | 
			
		||||
    axpy(out,1.0,Min,tmp); // Min+tmp
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void M2(const Field & in, Field & out) {
 | 
			
		||||
    out=in;
 | 
			
		||||
    // Must override for Def2 only
 | 
			
		||||
    //  case PcgDef2:
 | 
			
		||||
    //    Pright(in,out);
 | 
			
		||||
    //    break;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual RealD M3(const Field & p, Field & mmp){
 | 
			
		||||
    double d,dd;
 | 
			
		||||
    HermOpAndNorm(p,mmp,d,dd);
 | 
			
		||||
    return dd;
 | 
			
		||||
    // Must override for Def1 only
 | 
			
		||||
    //  case PcgDef1:
 | 
			
		||||
    //    d=linop_d->Mprec(p,mmp,tmp,0,1);// Dag no
 | 
			
		||||
    //      linop_d->Mprec(mmp,mp,tmp,1);// Dag yes
 | 
			
		||||
    //    Pleft(mp,mmp);
 | 
			
		||||
    //    d=real(linop_d->inner(p,mmp));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void VstartDef2(Field & xconst Field & src){
 | 
			
		||||
    //case PcgDef2:
 | 
			
		||||
    //case PcgAdef2: 
 | 
			
		||||
    //case PcgAdef2f:
 | 
			
		||||
    //case PcgV11f:
 | 
			
		||||
  virtual void Vstart(Field & x,const Field & src)
 | 
			
		||||
  {
 | 
			
		||||
    ///////////////////////////////////
 | 
			
		||||
    // Choose x_0 such that 
 | 
			
		||||
    // x_0 = guess +  (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
 | 
			
		||||
@@ -256,142 +290,72 @@ class TwoLevelFlexiblePcg : public LinearFunction<Field>
 | 
			
		||||
    //                   = src_s - (A guess)_s - src_s  + (A guess)_s 
 | 
			
		||||
    //                   = 0 
 | 
			
		||||
    ///////////////////////////////////
 | 
			
		||||
    Field r(grid);
 | 
			
		||||
    Field mmp(grid);
 | 
			
		||||
    Field r(this->grid);
 | 
			
		||||
    Field mmp(this->grid);
 | 
			
		||||
    CoarseField PleftProj(this->coarsegrid);
 | 
			
		||||
    CoarseField PleftMss_proj(this->coarsegrid);
 | 
			
		||||
 | 
			
		||||
    HermOp(x,mmp);
 | 
			
		||||
    axpy (r, -1.0, mmp, src);        // r_{-1} = src - A x
 | 
			
		||||
    ProjectToSubspace(r,PleftProj);     
 | 
			
		||||
    ApplyInverseCG(PleftProj,PleftMss_proj); // Ass^{-1} r_s
 | 
			
		||||
    PromoteFromSubspace(PleftMss_proj,mmp);  
 | 
			
		||||
    x=x+mmp;
 | 
			
		||||
    this->_Aggregates.ProjectToSubspace(PleftProj,src);     
 | 
			
		||||
    this->_CoarseSolverPrecise(PleftProj,PleftMss_proj); // Ass^{-1} r_s
 | 
			
		||||
    this->_Aggregates.PromoteFromSubspace(PleftMss_proj,x);  
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void Vstart(Field & x,const Field & src){
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Only Def1 has non-trivial Vout. Override in Def1
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
  virtual void   Vout  (Field & in, Field & out,Field & src){
 | 
			
		||||
    out = in;
 | 
			
		||||
    //case PcgDef1:
 | 
			
		||||
    //    //Qb + PT x
 | 
			
		||||
    //    ProjectToSubspace(src,PleftProj);     
 | 
			
		||||
    //    ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} r_s
 | 
			
		||||
    //    PromoteFromSubspace(PleftMss_proj,tmp);  
 | 
			
		||||
    //    
 | 
			
		||||
    //    Pright(in,out);
 | 
			
		||||
    //    
 | 
			
		||||
    //    linop_d->axpy(out,tmp,out,1.0);
 | 
			
		||||
    //    break;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Pright and Pleft are common to all implementations
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  virtual void Pright(Field & in,Field & out){
 | 
			
		||||
    // P_R  = [ 1              0 ] 
 | 
			
		||||
    //        [ -Mss^-1 Msb    0 ] 
 | 
			
		||||
    Field in_sbar(grid);
 | 
			
		||||
 | 
			
		||||
    ProjectToSubspace(in,PleftProj);     
 | 
			
		||||
    PromoteFromSubspace(PleftProj,out);  
 | 
			
		||||
    axpy(in_sbar,-1.0,out,in);       // in_sbar = in - in_s 
 | 
			
		||||
 | 
			
		||||
    HermOp(in_sbar,out);
 | 
			
		||||
    ProjectToSubspace(out,PleftProj);           // Mssbar in_sbar  (project)
 | 
			
		||||
 | 
			
		||||
    ApplyInverse     (PleftProj,PleftMss_proj); // Mss^{-1} Mssbar 
 | 
			
		||||
    PromoteFromSubspace(PleftMss_proj,out);     // 
 | 
			
		||||
 | 
			
		||||
    axpy(out,-1.0,out,in_sbar);     // in_sbar - Mss^{-1} Mssbar in_sbar
 | 
			
		||||
  }
 | 
			
		||||
  virtual void Pleft (Field & in,Field & out){
 | 
			
		||||
    // P_L  = [ 1  -Mbs Mss^-1] 
 | 
			
		||||
    //        [ 0   0         ] 
 | 
			
		||||
    Field in_sbar(grid);
 | 
			
		||||
    Field    tmp2(grid);
 | 
			
		||||
    Field    Mtmp(grid);
 | 
			
		||||
 | 
			
		||||
    ProjectToSubspace(in,PleftProj);     
 | 
			
		||||
    PromoteFromSubspace(PleftProj,out);  
 | 
			
		||||
    axpy(in_sbar,-1.0,out,in);      // in_sbar = in - in_s
 | 
			
		||||
 | 
			
		||||
    ApplyInverse(PleftProj,PleftMss_proj); // Mss^{-1} in_s
 | 
			
		||||
    PromoteFromSubspace(PleftMss_proj,out);
 | 
			
		||||
 | 
			
		||||
    HermOp(out,Mtmp);
 | 
			
		||||
 | 
			
		||||
    ProjectToSubspace(Mtmp,PleftProj);      // Msbar s Mss^{-1}
 | 
			
		||||
    PromoteFromSubspace(PleftProj,tmp2);
 | 
			
		||||
 | 
			
		||||
    axpy(out,-1.0,tmp2,Mtmp);
 | 
			
		||||
    axpy(out,-1.0,out,in_sbar);     // in_sbar - Msbars Mss^{-1} in_s
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class TwoLevelFlexiblePcgADef2 : public TwoLevelFlexiblePcg<Field> {
 | 
			
		||||
class TwoLevelADEF1defl : public TwoLevelCG<Field>
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  virtual void M(Field & in,Field & out,Field & tmp){
 | 
			
		||||
  const std::vector<Field> &evec;
 | 
			
		||||
  const std::vector<RealD> &eval;
 | 
			
		||||
  
 | 
			
		||||
  } 
 | 
			
		||||
  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp){
 | 
			
		||||
  TwoLevelADEF1defl(RealD tol,
 | 
			
		||||
		   Integer maxit,
 | 
			
		||||
		   LinearOperatorBase<Field>   &FineLinop,
 | 
			
		||||
		   LinearFunction<Field>   &Smoother,
 | 
			
		||||
		   std::vector<Field> &_evec,
 | 
			
		||||
		   std::vector<RealD> &_eval) : 
 | 
			
		||||
    TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,_evec[0].Grid()),
 | 
			
		||||
    evec(_evec),
 | 
			
		||||
    eval(_eval)
 | 
			
		||||
  {};
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  virtual void M2(Field & in, Field & out){
 | 
			
		||||
  // Can just inherit existing Vout
 | 
			
		||||
  // Can just inherit existing M2
 | 
			
		||||
  // Can just inherit existing M3
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp){
 | 
			
		||||
  // Simple vstart - do nothing
 | 
			
		||||
  virtual void Vstart(Field & x,const Field & src){ x=src; };
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp){
 | 
			
		||||
  // Override PcgM1
 | 
			
		||||
  virtual void PcgM1(Field & in, Field & out)
 | 
			
		||||
  {
 | 
			
		||||
    int N=evec.size();
 | 
			
		||||
    Field Pin(this->grid);
 | 
			
		||||
    Field Qin(this->grid);
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
/*
 | 
			
		||||
template<class Field>
 | 
			
		||||
class TwoLevelFlexiblePcgAD : public TwoLevelFlexiblePcg<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  virtual void M(Field & in,Field & out,Field & tmp); 
 | 
			
		||||
  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
 | 
			
		||||
  virtual void M2(Field & in, Field & out);
 | 
			
		||||
  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
 | 
			
		||||
  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
 | 
			
		||||
    //MP  + Q = M(1-AQ) + Q = M
 | 
			
		||||
    // // If we are eigenvector deflating in coarse space
 | 
			
		||||
    // // Q   = Sum_i |phi_i> 1/lambda_i <phi_i|
 | 
			
		||||
    // // A Q = Sum_i |phi_i> <phi_i|
 | 
			
		||||
    // // M(1-AQ) = M(1-proj) + Q
 | 
			
		||||
    Qin.Checkerboard()=in.Checkerboard();
 | 
			
		||||
    Qin = Zero();
 | 
			
		||||
    Pin = in;
 | 
			
		||||
    for (int i=0;i<N;i++) {
 | 
			
		||||
      const Field& tmp = evec[i];
 | 
			
		||||
      auto ip = TensorRemove(innerProduct(tmp,in));
 | 
			
		||||
      axpy(Qin, ip / eval[i],tmp,Qin);
 | 
			
		||||
      axpy(Pin, -ip ,tmp,Pin);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class TwoLevelFlexiblePcgDef1 : public TwoLevelFlexiblePcg<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  virtual void M(Field & in,Field & out,Field & tmp); 
 | 
			
		||||
  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
 | 
			
		||||
  virtual void M2(Field & in, Field & out);
 | 
			
		||||
  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
 | 
			
		||||
  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
 | 
			
		||||
  virtual void   Vout  (Field & in, Field & out,Field & src,Field & tmp);
 | 
			
		||||
}
 | 
			
		||||
    this->_Smoother(Pin,out);
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class TwoLevelFlexiblePcgDef2 : public TwoLevelFlexiblePcg<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  virtual void M(Field & in,Field & out,Field & tmp); 
 | 
			
		||||
  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
 | 
			
		||||
  virtual void M2(Field & in, Field & out);
 | 
			
		||||
  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
 | 
			
		||||
  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
 | 
			
		||||
    out = out + Qin;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class TwoLevelFlexiblePcgV11: public TwoLevelFlexiblePcg<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  virtual void M(Field & in,Field & out,Field & tmp); 
 | 
			
		||||
  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
 | 
			
		||||
  virtual void M2(Field & in, Field & out);
 | 
			
		||||
  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
 | 
			
		||||
  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
 | 
			
		||||
}
 | 
			
		||||
*/
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -183,13 +183,13 @@ public:
 | 
			
		||||
		  << "\tTrue residual " << true_residual
 | 
			
		||||
		  << "\tTarget " << Tolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage << "Time breakdown "<<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tInner      " << InnerTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
 | 
			
		||||
        std::cout << GridLogPerformance << "Time breakdown "<<std::endl;
 | 
			
		||||
	std::cout << GridLogPerformance << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogPerformance << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogPerformance << "\tInner      " << InnerTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogPerformance << "\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogPerformance << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl;
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -465,7 +465,7 @@ until convergence
 | 
			
		||||
 | 
			
		||||
    Field& evec_k = evec[k];
 | 
			
		||||
 | 
			
		||||
    _PolyOp(evec_k,w);    std::cout<<GridLogIRL << "PolyOp" <<std::endl;
 | 
			
		||||
    _PolyOp(evec_k,w);    std::cout<<GridLogDebug << "PolyOp" <<std::endl;
 | 
			
		||||
 | 
			
		||||
    if(k>0) w -= lme[k-1] * evec[k-1];
 | 
			
		||||
 | 
			
		||||
@@ -480,9 +480,9 @@ until convergence
 | 
			
		||||
    lme[k] = beta;
 | 
			
		||||
 | 
			
		||||
    if ( (k>0) && ( (k % orth_period) == 0 )) {
 | 
			
		||||
      std::cout<<GridLogIRL << "Orthogonalising " <<k<<std::endl;
 | 
			
		||||
      std::cout<<GridLogDebug << "Orthogonalising " <<k<<std::endl;
 | 
			
		||||
      orthogonalize(w,evec,k); // orthonormalise
 | 
			
		||||
      std::cout<<GridLogIRL << "Orthogonalised " <<k<<std::endl;
 | 
			
		||||
      std::cout<<GridLogDebug << "Orthogonalised " <<k<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if(k < Nm-1) evec[k+1] = w;
 | 
			
		||||
@@ -491,7 +491,7 @@ until convergence
 | 
			
		||||
    if ( beta < tiny ) 
 | 
			
		||||
      std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogIRL << "Lanczos step complete " <<k<<std::endl;
 | 
			
		||||
    std::cout<<GridLogDebug << "Lanczos step complete " <<k<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme, 
 | 
			
		||||
 
 | 
			
		||||
@@ -33,7 +33,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Take a matrix and form an NE solver calling a Herm solver
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Field> class NormalEquations {
 | 
			
		||||
template<class Field> class NormalEquations : public LinearFunction<Field>{
 | 
			
		||||
private:
 | 
			
		||||
  SparseMatrixBase<Field> & _Matrix;
 | 
			
		||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
			
		||||
@@ -60,7 +60,7 @@ public:
 | 
			
		||||
  }     
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field> class HPDSolver {
 | 
			
		||||
template<class Field> class HPDSolver : public LinearFunction<Field> {
 | 
			
		||||
private:
 | 
			
		||||
  LinearOperatorBase<Field> & _Matrix;
 | 
			
		||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
			
		||||
@@ -84,7 +84,7 @@ public:
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class Field> class MdagMSolver {
 | 
			
		||||
template<class Field> class MdagMSolver : public LinearFunction<Field> {
 | 
			
		||||
private:
 | 
			
		||||
  SparseMatrixBase<Field> & _Matrix;
 | 
			
		||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
			
		||||
 
 | 
			
		||||
@@ -20,7 +20,7 @@ template<class Field> class PowerMethod
 | 
			
		||||
    RealD evalMaxApprox = 0.0; 
 | 
			
		||||
    auto src_n = src; 
 | 
			
		||||
    auto tmp = src; 
 | 
			
		||||
    const int _MAX_ITER_EST_ = 50; 
 | 
			
		||||
    const int _MAX_ITER_EST_ = 100; 
 | 
			
		||||
 | 
			
		||||
    for (int i=0;i<_MAX_ITER_EST_;i++) { 
 | 
			
		||||
      
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										262
									
								
								Grid/algorithms/multigrid/Aggregates.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										262
									
								
								Grid/algorithms/multigrid/Aggregates.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,262 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/Aggregates.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class Aggregation {
 | 
			
		||||
public:
 | 
			
		||||
  typedef iVector<CComplex,nbasis >             siteVector;
 | 
			
		||||
  typedef Lattice<siteVector>                 CoarseVector;
 | 
			
		||||
  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<Fobj >        FineField;
 | 
			
		||||
 | 
			
		||||
  GridBase *CoarseGrid;
 | 
			
		||||
  GridBase *FineGrid;
 | 
			
		||||
  std::vector<Lattice<Fobj> > subspace;
 | 
			
		||||
  int checkerboard;
 | 
			
		||||
  int Checkerboard(void){return checkerboard;}
 | 
			
		||||
  Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) : 
 | 
			
		||||
    CoarseGrid(_CoarseGrid),
 | 
			
		||||
    FineGrid(_FineGrid),
 | 
			
		||||
    subspace(nbasis,_FineGrid),
 | 
			
		||||
    checkerboard(_checkerboard)
 | 
			
		||||
  {
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
  
 | 
			
		||||
  void Orthogonalise(void){
 | 
			
		||||
    CoarseScalar InnerProd(CoarseGrid); 
 | 
			
		||||
    //    std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
 | 
			
		||||
    blockOrthogonalise(InnerProd,subspace);
 | 
			
		||||
  } 
 | 
			
		||||
  void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
 | 
			
		||||
    blockProject(CoarseVec,FineVec,subspace);
 | 
			
		||||
  }
 | 
			
		||||
  void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
 | 
			
		||||
    FineVec.Checkerboard() = subspace[0].Checkerboard();
 | 
			
		||||
    blockPromote(CoarseVec,FineVec,subspace);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspaceRandom(GridParallelRNG  &RNG) {
 | 
			
		||||
    int nn=nbasis;
 | 
			
		||||
    RealD scale;
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    for(int b=0;b<nn;b++){
 | 
			
		||||
      subspace[b] = Zero();
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
      subspace[b] = noise;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  virtual void CreateSubspace(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis)
 | 
			
		||||
  {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    ConjugateGradient<FineField> CG(1.0e-2,100,false);
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
 | 
			
		||||
    for(int b=0;b<nn;b++){
 | 
			
		||||
      
 | 
			
		||||
      subspace[b] = Zero();
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
      
 | 
			
		||||
      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<1;i++){
 | 
			
		||||
 | 
			
		||||
	CG(hermop,noise,subspace[b]);
 | 
			
		||||
 | 
			
		||||
	noise = subspace[b];
 | 
			
		||||
	scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
	noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
      subspace[b]   = noise;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
 | 
			
		||||
  // and this is the best I found
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
				       int nn,
 | 
			
		||||
				       double hi,
 | 
			
		||||
				       double lo,
 | 
			
		||||
				       int orderfilter,
 | 
			
		||||
				       int ordermin,
 | 
			
		||||
				       int orderstep,
 | 
			
		||||
				       double filterlo
 | 
			
		||||
				       ) {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
 | 
			
		||||
    // New normalised noise
 | 
			
		||||
    gaussian(RNG,noise);
 | 
			
		||||
    scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
    noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage<<" Chebyshev subspace pass-1 : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<" Chebyshev subspace pass-2 : nbasis"<<nn<<" min "
 | 
			
		||||
	      <<ordermin<<" step "<<orderstep
 | 
			
		||||
	      <<" lo"<<filterlo<<std::endl;
 | 
			
		||||
 | 
			
		||||
    // Initial matrix element
 | 
			
		||||
    hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
    int b =0;
 | 
			
		||||
    {
 | 
			
		||||
      // Filter
 | 
			
		||||
      Chebyshev<FineField> Cheb(lo,hi,orderfilter);
 | 
			
		||||
      Cheb(hermop,noise,Mn);
 | 
			
		||||
      // normalise
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
			
		||||
      subspace[b]   = Mn;
 | 
			
		||||
      hermop.Op(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
      b++;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Generate a full sequence of Chebyshevs
 | 
			
		||||
    {
 | 
			
		||||
      lo=filterlo;
 | 
			
		||||
      noise=Mn;
 | 
			
		||||
 | 
			
		||||
      FineField T0(FineGrid); T0 = noise;  
 | 
			
		||||
      FineField T1(FineGrid); 
 | 
			
		||||
      FineField T2(FineGrid);
 | 
			
		||||
      FineField y(FineGrid);
 | 
			
		||||
      
 | 
			
		||||
      FineField *Tnm = &T0;
 | 
			
		||||
      FineField *Tn  = &T1;
 | 
			
		||||
      FineField *Tnp = &T2;
 | 
			
		||||
 | 
			
		||||
      // Tn=T1 = (xscale M + mscale)in
 | 
			
		||||
      RealD xscale = 2.0/(hi-lo);
 | 
			
		||||
      RealD mscale = -(hi+lo)/(hi-lo);
 | 
			
		||||
      hermop.HermOp(T0,y);
 | 
			
		||||
      T1=y*xscale+noise*mscale;
 | 
			
		||||
 | 
			
		||||
      for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
 | 
			
		||||
	
 | 
			
		||||
	hermop.HermOp(*Tn,y);
 | 
			
		||||
 | 
			
		||||
	autoView( y_v , y, AcceleratorWrite);
 | 
			
		||||
	autoView( Tn_v , (*Tn), AcceleratorWrite);
 | 
			
		||||
	autoView( Tnp_v , (*Tnp), AcceleratorWrite);
 | 
			
		||||
	autoView( Tnm_v , (*Tnm), AcceleratorWrite);
 | 
			
		||||
	const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
	accelerator_for(ss, FineGrid->oSites(), Nsimd, {
 | 
			
		||||
	  coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
 | 
			
		||||
	  coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
 | 
			
		||||
        });
 | 
			
		||||
 | 
			
		||||
	// Possible more fine grained control is needed than a linear sweep,
 | 
			
		||||
	// but huge productivity gain if this is simple algorithm and not a tunable
 | 
			
		||||
	int m =1;
 | 
			
		||||
	if ( n>=ordermin ) m=n-ordermin;
 | 
			
		||||
	if ( (m%orderstep)==0 ) { 
 | 
			
		||||
	  Mn=*Tnp;
 | 
			
		||||
	  scale = std::pow(norm2(Mn),-0.5);         Mn=Mn*scale;
 | 
			
		||||
	  subspace[b] = Mn;
 | 
			
		||||
	  hermop.Op(Mn,tmp); 
 | 
			
		||||
	  std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
	  b++;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Cycle pointers to avoid copies
 | 
			
		||||
	FineField *swizzle = Tnm;
 | 
			
		||||
	Tnm    =Tn;
 | 
			
		||||
	Tn     =Tnp;
 | 
			
		||||
	Tnp    =swizzle;
 | 
			
		||||
	  
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    assert(b==nn);
 | 
			
		||||
  }
 | 
			
		||||
  virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
				       int nn,
 | 
			
		||||
				       double hi,
 | 
			
		||||
				       double lo,
 | 
			
		||||
				       int orderfilter
 | 
			
		||||
				       ) {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
 | 
			
		||||
    // New normalised noise
 | 
			
		||||
    std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<" Chebyshev subspace pure noise  : nbasis "<<nn<<std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    for(int b =0;b<nbasis;b++)
 | 
			
		||||
    {
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
      // Initial matrix element
 | 
			
		||||
      hermop.Op(noise,Mn);
 | 
			
		||||
      if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
      // Filter
 | 
			
		||||
      Chebyshev<FineField> Cheb(lo,hi,orderfilter);
 | 
			
		||||
      Cheb(hermop,noise,Mn);
 | 
			
		||||
      // normalise
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
			
		||||
      subspace[b]   = Mn;
 | 
			
		||||
      hermop.Op(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
							
								
								
									
										814
									
								
								Grid/algorithms/multigrid/CoarsenedMatrix.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										814
									
								
								Grid/algorithms/multigrid/CoarsenedMatrix.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,814 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/CoarsenedMatrix.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef  GRID_ALGORITHM_COARSENED_MATRIX_H
 | 
			
		||||
#define  GRID_ALGORITHM_COARSENED_MATRIX_H
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No)
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class vobj,class CComplex>
 | 
			
		||||
inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner,
 | 
			
		||||
				    const Lattice<decltype(innerProduct(vobj(),vobj()))> &FineMask,
 | 
			
		||||
				    const Lattice<vobj> &fineX,
 | 
			
		||||
				    const Lattice<vobj> &fineY)
 | 
			
		||||
{
 | 
			
		||||
  typedef decltype(innerProduct(vobj(),vobj())) dotp;
 | 
			
		||||
 | 
			
		||||
  GridBase *coarse(CoarseInner.Grid());
 | 
			
		||||
  GridBase *fine  (fineX.Grid());
 | 
			
		||||
 | 
			
		||||
  Lattice<dotp> fine_inner(fine); fine_inner.Checkerboard() = fineX.Checkerboard();
 | 
			
		||||
  Lattice<dotp> fine_inner_msk(fine);
 | 
			
		||||
 | 
			
		||||
  // Multiply could be fused with innerProduct
 | 
			
		||||
  // Single block sum kernel could do both masks.
 | 
			
		||||
  fine_inner = localInnerProduct(fineX,fineY);
 | 
			
		||||
  mult(fine_inner_msk, fine_inner,FineMask);
 | 
			
		||||
  blockSum(CoarseInner,fine_inner_msk);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Fine Object == (per site) type of fine field
 | 
			
		||||
// nbasis      == number of deflation vectors
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class CoarsenedMatrix : public CheckerBoardedSparseMatrixBase<Lattice<iVector<CComplex,nbasis > > >  {
 | 
			
		||||
public:
 | 
			
		||||
    
 | 
			
		||||
  typedef iVector<CComplex,nbasis >           siteVector;
 | 
			
		||||
  typedef Lattice<CComplex >                  CoarseComplexField;
 | 
			
		||||
  typedef Lattice<siteVector>                 CoarseVector;
 | 
			
		||||
  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
			
		||||
  typedef iMatrix<CComplex,nbasis >  Cobj;
 | 
			
		||||
  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<Fobj >        FineField;
 | 
			
		||||
  typedef CoarseVector FermionField;
 | 
			
		||||
 | 
			
		||||
  // enrich interface, use default implementation as in FermionOperator ///////
 | 
			
		||||
  void Dminus(CoarseVector const& in, CoarseVector& out) { out = in; }
 | 
			
		||||
  void DminusDag(CoarseVector const& in, CoarseVector& out) { out = in; }
 | 
			
		||||
  void ImportPhysicalFermionSource(CoarseVector const& input, CoarseVector& imported) { imported = input; }
 | 
			
		||||
  void ImportUnphysicalFermion(CoarseVector const& input, CoarseVector& imported) { imported = input; }
 | 
			
		||||
  void ExportPhysicalFermionSolution(CoarseVector const& solution, CoarseVector& exported) { exported = solution; };
 | 
			
		||||
  void ExportPhysicalFermionSource(CoarseVector const& solution, CoarseVector& exported) { exported = solution; };
 | 
			
		||||
 | 
			
		||||
  ////////////////////
 | 
			
		||||
  // Data members
 | 
			
		||||
  ////////////////////
 | 
			
		||||
  Geometry         geom;
 | 
			
		||||
  GridBase *       _grid; 
 | 
			
		||||
  GridBase*        _cbgrid;
 | 
			
		||||
  int hermitian;
 | 
			
		||||
 | 
			
		||||
  CartesianStencil<siteVector,siteVector,DefaultImplParams> Stencil; 
 | 
			
		||||
  CartesianStencil<siteVector,siteVector,DefaultImplParams> StencilEven;
 | 
			
		||||
  CartesianStencil<siteVector,siteVector,DefaultImplParams> StencilOdd;
 | 
			
		||||
 | 
			
		||||
  std::vector<CoarseMatrix> A;
 | 
			
		||||
  std::vector<CoarseMatrix> Aeven;
 | 
			
		||||
  std::vector<CoarseMatrix> Aodd;
 | 
			
		||||
 | 
			
		||||
  CoarseMatrix AselfInv;
 | 
			
		||||
  CoarseMatrix AselfInvEven;
 | 
			
		||||
  CoarseMatrix AselfInvOdd;
 | 
			
		||||
 | 
			
		||||
  Vector<RealD> dag_factor;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////
 | 
			
		||||
  // Interface
 | 
			
		||||
  ///////////////////////
 | 
			
		||||
  GridBase * Grid(void)         { return _grid; };   // this is all the linalg routines need to know
 | 
			
		||||
  GridBase * RedBlackGrid()     { return _cbgrid; };
 | 
			
		||||
 | 
			
		||||
  int ConstEE() { return 0; }
 | 
			
		||||
 | 
			
		||||
  void M (const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    conformable(_grid,in.Grid());
 | 
			
		||||
    conformable(in.Grid(),out.Grid());
 | 
			
		||||
    out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
 | 
			
		||||
    SimpleCompressor<siteVector> compressor;
 | 
			
		||||
 | 
			
		||||
    Stencil.HaloExchange(in,compressor);
 | 
			
		||||
    autoView( in_v , in, AcceleratorRead);
 | 
			
		||||
    autoView( out_v , out, AcceleratorWrite);
 | 
			
		||||
    autoView( Stencil_v  , Stencil, AcceleratorRead);
 | 
			
		||||
    int npoint = geom.npoint;
 | 
			
		||||
    typedef LatticeView<Cobj> Aview;
 | 
			
		||||
      
 | 
			
		||||
    Vector<Aview> AcceleratorViewContainer;
 | 
			
		||||
  
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
 | 
			
		||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
			
		||||
 | 
			
		||||
    const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
    typedef decltype(coalescedRead(in_v[0])) calcVector;
 | 
			
		||||
    typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
 | 
			
		||||
 | 
			
		||||
    int osites=Grid()->oSites();
 | 
			
		||||
 | 
			
		||||
    accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, {
 | 
			
		||||
      int ss = sss/nbasis;
 | 
			
		||||
      int b  = sss%nbasis;
 | 
			
		||||
      calcComplex res = Zero();
 | 
			
		||||
      calcVector nbr;
 | 
			
		||||
      int ptype;
 | 
			
		||||
      StencilEntry *SE;
 | 
			
		||||
 | 
			
		||||
      for(int point=0;point<npoint;point++){
 | 
			
		||||
 | 
			
		||||
	SE=Stencil_v.GetEntry(ptype,point,ss);
 | 
			
		||||
	  
 | 
			
		||||
	if(SE->_is_local) { 
 | 
			
		||||
	  nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
 | 
			
		||||
	} else {
 | 
			
		||||
	  nbr = coalescedRead(Stencil_v.CommBuf()[SE->_offset]);
 | 
			
		||||
	}
 | 
			
		||||
	acceleratorSynchronise();
 | 
			
		||||
 | 
			
		||||
	for(int bb=0;bb<nbasis;bb++) {
 | 
			
		||||
	  res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      coalescedWrite(out_v[ss](b),res);
 | 
			
		||||
      });
 | 
			
		||||
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void Mdag (const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    if(hermitian) {
 | 
			
		||||
      // corresponds to Petrov-Galerkin coarsening
 | 
			
		||||
      return M(in,out);
 | 
			
		||||
    } else {
 | 
			
		||||
      // corresponds to Galerkin coarsening
 | 
			
		||||
      return MdagNonHermitian(in, out);
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void MdagNonHermitian(const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    conformable(_grid,in.Grid());
 | 
			
		||||
    conformable(in.Grid(),out.Grid());
 | 
			
		||||
    out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
 | 
			
		||||
    SimpleCompressor<siteVector> compressor;
 | 
			
		||||
 | 
			
		||||
    Stencil.HaloExchange(in,compressor);
 | 
			
		||||
    autoView( in_v , in, AcceleratorRead);
 | 
			
		||||
    autoView( out_v , out, AcceleratorWrite);
 | 
			
		||||
    autoView( Stencil_v  , Stencil, AcceleratorRead);
 | 
			
		||||
    int npoint = geom.npoint;
 | 
			
		||||
    typedef LatticeView<Cobj> Aview;
 | 
			
		||||
 | 
			
		||||
    Vector<Aview> AcceleratorViewContainer;
 | 
			
		||||
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
 | 
			
		||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
			
		||||
 | 
			
		||||
    const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
    typedef decltype(coalescedRead(in_v[0])) calcVector;
 | 
			
		||||
    typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
 | 
			
		||||
 | 
			
		||||
    int osites=Grid()->oSites();
 | 
			
		||||
 | 
			
		||||
    Vector<int> points(geom.npoint, 0);
 | 
			
		||||
    for(int p=0; p<geom.npoint; p++)
 | 
			
		||||
      points[p] = geom.points_dagger[p];
 | 
			
		||||
 | 
			
		||||
    auto points_p = &points[0];
 | 
			
		||||
 | 
			
		||||
    RealD* dag_factor_p = &dag_factor[0];
 | 
			
		||||
 | 
			
		||||
    accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, {
 | 
			
		||||
      int ss = sss/nbasis;
 | 
			
		||||
      int b  = sss%nbasis;
 | 
			
		||||
      calcComplex res = Zero();
 | 
			
		||||
      calcVector nbr;
 | 
			
		||||
      int ptype;
 | 
			
		||||
      StencilEntry *SE;
 | 
			
		||||
 | 
			
		||||
      for(int p=0;p<npoint;p++){
 | 
			
		||||
        int point = points_p[p];
 | 
			
		||||
 | 
			
		||||
	SE=Stencil_v.GetEntry(ptype,point,ss);
 | 
			
		||||
 | 
			
		||||
	if(SE->_is_local) {
 | 
			
		||||
	  nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
 | 
			
		||||
	} else {
 | 
			
		||||
	  nbr = coalescedRead(Stencil_v.CommBuf()[SE->_offset]);
 | 
			
		||||
	}
 | 
			
		||||
	acceleratorSynchronise();
 | 
			
		||||
 | 
			
		||||
	for(int bb=0;bb<nbasis;bb++) {
 | 
			
		||||
	  res = res + dag_factor_p[b*nbasis+bb]*coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      coalescedWrite(out_v[ss](b),res);
 | 
			
		||||
      });
 | 
			
		||||
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MdirComms(const CoarseVector &in)
 | 
			
		||||
  {
 | 
			
		||||
    SimpleCompressor<siteVector> compressor;
 | 
			
		||||
    Stencil.HaloExchange(in,compressor);
 | 
			
		||||
  }
 | 
			
		||||
  void MdirCalc(const CoarseVector &in, CoarseVector &out, int point)
 | 
			
		||||
  {
 | 
			
		||||
    conformable(_grid,in.Grid());
 | 
			
		||||
    conformable(_grid,out.Grid());
 | 
			
		||||
    out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
 | 
			
		||||
    typedef LatticeView<Cobj> Aview;
 | 
			
		||||
    Vector<Aview> AcceleratorViewContainer;
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
 | 
			
		||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
			
		||||
 | 
			
		||||
    autoView( out_v , out, AcceleratorWrite);
 | 
			
		||||
    autoView( in_v  , in, AcceleratorRead);
 | 
			
		||||
    autoView( Stencil_v  , Stencil, AcceleratorRead);
 | 
			
		||||
 | 
			
		||||
    const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
    typedef decltype(coalescedRead(in_v[0])) calcVector;
 | 
			
		||||
    typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
 | 
			
		||||
 | 
			
		||||
    accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, {
 | 
			
		||||
      int ss = sss/nbasis;
 | 
			
		||||
      int b  = sss%nbasis;
 | 
			
		||||
      calcComplex res = Zero();
 | 
			
		||||
      calcVector nbr;
 | 
			
		||||
      int ptype;
 | 
			
		||||
      StencilEntry *SE;
 | 
			
		||||
 | 
			
		||||
      SE=Stencil_v.GetEntry(ptype,point,ss);
 | 
			
		||||
	  
 | 
			
		||||
      if(SE->_is_local) { 
 | 
			
		||||
	nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
 | 
			
		||||
      } else {
 | 
			
		||||
	nbr = coalescedRead(Stencil_v.CommBuf()[SE->_offset]);
 | 
			
		||||
      }
 | 
			
		||||
      acceleratorSynchronise();
 | 
			
		||||
 | 
			
		||||
      for(int bb=0;bb<nbasis;bb++) {
 | 
			
		||||
	res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
 | 
			
		||||
      }
 | 
			
		||||
      coalescedWrite(out_v[ss](b),res);
 | 
			
		||||
    });
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
  }
 | 
			
		||||
  void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out)
 | 
			
		||||
  {
 | 
			
		||||
    this->MdirComms(in);
 | 
			
		||||
    int ndir=geom.npoint-1;
 | 
			
		||||
    if ((out.size()!=ndir)&&(out.size()!=ndir+1)) { 
 | 
			
		||||
      std::cout <<"MdirAll out size "<< out.size()<<std::endl;
 | 
			
		||||
      std::cout <<"MdirAll ndir "<< ndir<<std::endl;
 | 
			
		||||
      assert(0);
 | 
			
		||||
    }
 | 
			
		||||
    for(int p=0;p<ndir;p++){
 | 
			
		||||
      MdirCalc(in,out[p],p);
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
  void Mdir(const CoarseVector &in, CoarseVector &out, int dir, int disp){
 | 
			
		||||
 | 
			
		||||
    this->MdirComms(in);
 | 
			
		||||
 | 
			
		||||
    MdirCalc(in,out,geom.point(dir,disp));
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void Mdiag(const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    int point=geom.npoint-1;
 | 
			
		||||
    MdirCalc(in, out, point); // No comms
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void Mooee(const CoarseVector &in, CoarseVector &out) {
 | 
			
		||||
    MooeeInternal(in, out, DaggerNo, InverseNo);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MooeeInv(const CoarseVector &in, CoarseVector &out) {
 | 
			
		||||
    MooeeInternal(in, out, DaggerNo, InverseYes);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MooeeDag(const CoarseVector &in, CoarseVector &out) {
 | 
			
		||||
    MooeeInternal(in, out, DaggerYes, InverseNo);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MooeeInvDag(const CoarseVector &in, CoarseVector &out) {
 | 
			
		||||
    MooeeInternal(in, out, DaggerYes, InverseYes);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void Meooe(const CoarseVector &in, CoarseVector &out) {
 | 
			
		||||
    if(in.Checkerboard() == Odd) {
 | 
			
		||||
      DhopEO(in, out, DaggerNo);
 | 
			
		||||
    } else {
 | 
			
		||||
      DhopOE(in, out, DaggerNo);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MeooeDag(const CoarseVector &in, CoarseVector &out) {
 | 
			
		||||
    if(in.Checkerboard() == Odd) {
 | 
			
		||||
      DhopEO(in, out, DaggerYes);
 | 
			
		||||
    } else {
 | 
			
		||||
      DhopOE(in, out, DaggerYes);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void Dhop(const CoarseVector &in, CoarseVector &out, int dag) {
 | 
			
		||||
    conformable(in.Grid(), _grid); // verifies full grid
 | 
			
		||||
    conformable(in.Grid(), out.Grid());
 | 
			
		||||
 | 
			
		||||
    out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
 | 
			
		||||
    DhopInternal(Stencil, A, in, out, dag);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void DhopOE(const CoarseVector &in, CoarseVector &out, int dag) {
 | 
			
		||||
    conformable(in.Grid(), _cbgrid);    // verifies half grid
 | 
			
		||||
    conformable(in.Grid(), out.Grid()); // drops the cb check
 | 
			
		||||
 | 
			
		||||
    assert(in.Checkerboard() == Even);
 | 
			
		||||
    out.Checkerboard() = Odd;
 | 
			
		||||
 | 
			
		||||
    DhopInternal(StencilEven, Aodd, in, out, dag);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void DhopEO(const CoarseVector &in, CoarseVector &out, int dag) {
 | 
			
		||||
    conformable(in.Grid(), _cbgrid);    // verifies half grid
 | 
			
		||||
    conformable(in.Grid(), out.Grid()); // drops the cb check
 | 
			
		||||
 | 
			
		||||
    assert(in.Checkerboard() == Odd);
 | 
			
		||||
    out.Checkerboard() = Even;
 | 
			
		||||
 | 
			
		||||
    DhopInternal(StencilOdd, Aeven, in, out, dag);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MooeeInternal(const CoarseVector &in, CoarseVector &out, int dag, int inv) {
 | 
			
		||||
    out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
    assert(in.Checkerboard() == Odd || in.Checkerboard() == Even);
 | 
			
		||||
 | 
			
		||||
    CoarseMatrix *Aself = nullptr;
 | 
			
		||||
    if(in.Grid()->_isCheckerBoarded) {
 | 
			
		||||
      if(in.Checkerboard() == Odd) {
 | 
			
		||||
        Aself = (inv) ? &AselfInvOdd : &Aodd[geom.npoint-1];
 | 
			
		||||
        DselfInternal(StencilOdd, *Aself, in, out, dag);
 | 
			
		||||
      } else {
 | 
			
		||||
        Aself = (inv) ? &AselfInvEven : &Aeven[geom.npoint-1];
 | 
			
		||||
        DselfInternal(StencilEven, *Aself, in, out, dag);
 | 
			
		||||
      }
 | 
			
		||||
    } else {
 | 
			
		||||
      Aself = (inv) ? &AselfInv : &A[geom.npoint-1];
 | 
			
		||||
      DselfInternal(Stencil, *Aself, in, out, dag);
 | 
			
		||||
    }
 | 
			
		||||
    assert(Aself != nullptr);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void DselfInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, CoarseMatrix &a,
 | 
			
		||||
                       const CoarseVector &in, CoarseVector &out, int dag) {
 | 
			
		||||
    int point = geom.npoint-1;
 | 
			
		||||
    autoView( out_v, out, AcceleratorWrite);
 | 
			
		||||
    autoView( in_v,  in,  AcceleratorRead);
 | 
			
		||||
    autoView( st_v,  st,  AcceleratorRead);
 | 
			
		||||
    autoView( a_v,   a,   AcceleratorRead);
 | 
			
		||||
 | 
			
		||||
    const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
    typedef decltype(coalescedRead(in_v[0])) calcVector;
 | 
			
		||||
    typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
 | 
			
		||||
 | 
			
		||||
    RealD* dag_factor_p = &dag_factor[0];
 | 
			
		||||
 | 
			
		||||
    if(dag) {
 | 
			
		||||
      accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, {
 | 
			
		||||
        int ss = sss/nbasis;
 | 
			
		||||
        int b  = sss%nbasis;
 | 
			
		||||
        calcComplex res = Zero();
 | 
			
		||||
        calcVector nbr;
 | 
			
		||||
        int ptype;
 | 
			
		||||
        StencilEntry *SE;
 | 
			
		||||
 | 
			
		||||
        SE=st_v.GetEntry(ptype,point,ss);
 | 
			
		||||
 | 
			
		||||
        if(SE->_is_local) {
 | 
			
		||||
          nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
 | 
			
		||||
        } else {
 | 
			
		||||
          nbr = coalescedRead(st_v.CommBuf()[SE->_offset]);
 | 
			
		||||
        }
 | 
			
		||||
        acceleratorSynchronise();
 | 
			
		||||
 | 
			
		||||
        for(int bb=0;bb<nbasis;bb++) {
 | 
			
		||||
          res = res + dag_factor_p[b*nbasis+bb]*coalescedRead(a_v[ss](b,bb))*nbr(bb);
 | 
			
		||||
        }
 | 
			
		||||
        coalescedWrite(out_v[ss](b),res);
 | 
			
		||||
      });
 | 
			
		||||
    } else {
 | 
			
		||||
      accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, {
 | 
			
		||||
        int ss = sss/nbasis;
 | 
			
		||||
        int b  = sss%nbasis;
 | 
			
		||||
        calcComplex res = Zero();
 | 
			
		||||
        calcVector nbr;
 | 
			
		||||
        int ptype;
 | 
			
		||||
        StencilEntry *SE;
 | 
			
		||||
 | 
			
		||||
        SE=st_v.GetEntry(ptype,point,ss);
 | 
			
		||||
 | 
			
		||||
        if(SE->_is_local) {
 | 
			
		||||
          nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
 | 
			
		||||
        } else {
 | 
			
		||||
          nbr = coalescedRead(st_v.CommBuf()[SE->_offset]);
 | 
			
		||||
        }
 | 
			
		||||
        acceleratorSynchronise();
 | 
			
		||||
 | 
			
		||||
        for(int bb=0;bb<nbasis;bb++) {
 | 
			
		||||
          res = res + coalescedRead(a_v[ss](b,bb))*nbr(bb);
 | 
			
		||||
        }
 | 
			
		||||
        coalescedWrite(out_v[ss](b),res);
 | 
			
		||||
      });
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void DhopInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, std::vector<CoarseMatrix> &a,
 | 
			
		||||
                    const CoarseVector &in, CoarseVector &out, int dag) {
 | 
			
		||||
    SimpleCompressor<siteVector> compressor;
 | 
			
		||||
 | 
			
		||||
    st.HaloExchange(in,compressor);
 | 
			
		||||
    autoView( in_v,  in,  AcceleratorRead);
 | 
			
		||||
    autoView( out_v, out, AcceleratorWrite);
 | 
			
		||||
    autoView( st_v , st,  AcceleratorRead);
 | 
			
		||||
    typedef LatticeView<Cobj> Aview;
 | 
			
		||||
 | 
			
		||||
    // determine in what order we need the points
 | 
			
		||||
    int npoint = geom.npoint-1;
 | 
			
		||||
    Vector<int> points(npoint, 0);
 | 
			
		||||
    for(int p=0; p<npoint; p++)
 | 
			
		||||
      points[p] = (dag && !hermitian) ? geom.points_dagger[p] : p;
 | 
			
		||||
 | 
			
		||||
    auto points_p = &points[0];
 | 
			
		||||
 | 
			
		||||
    Vector<Aview> AcceleratorViewContainer;
 | 
			
		||||
    for(int p=0;p<npoint;p++) AcceleratorViewContainer.push_back(a[p].View(AcceleratorRead));
 | 
			
		||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
			
		||||
 | 
			
		||||
    const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
    typedef decltype(coalescedRead(in_v[0])) calcVector;
 | 
			
		||||
    typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
 | 
			
		||||
 | 
			
		||||
    RealD* dag_factor_p = &dag_factor[0];
 | 
			
		||||
 | 
			
		||||
    if(dag) {
 | 
			
		||||
      accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, {
 | 
			
		||||
        int ss = sss/nbasis;
 | 
			
		||||
        int b  = sss%nbasis;
 | 
			
		||||
        calcComplex res = Zero();
 | 
			
		||||
        calcVector nbr;
 | 
			
		||||
        int ptype;
 | 
			
		||||
        StencilEntry *SE;
 | 
			
		||||
 | 
			
		||||
        for(int p=0;p<npoint;p++){
 | 
			
		||||
          int point = points_p[p];
 | 
			
		||||
          SE=st_v.GetEntry(ptype,point,ss);
 | 
			
		||||
 | 
			
		||||
          if(SE->_is_local) {
 | 
			
		||||
            nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
 | 
			
		||||
          } else {
 | 
			
		||||
            nbr = coalescedRead(st_v.CommBuf()[SE->_offset]);
 | 
			
		||||
          }
 | 
			
		||||
          acceleratorSynchronise();
 | 
			
		||||
 | 
			
		||||
          for(int bb=0;bb<nbasis;bb++) {
 | 
			
		||||
            res = res + dag_factor_p[b*nbasis+bb]*coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
 | 
			
		||||
          }
 | 
			
		||||
        }
 | 
			
		||||
        coalescedWrite(out_v[ss](b),res);
 | 
			
		||||
      });
 | 
			
		||||
    } else {
 | 
			
		||||
      accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, {
 | 
			
		||||
        int ss = sss/nbasis;
 | 
			
		||||
        int b  = sss%nbasis;
 | 
			
		||||
        calcComplex res = Zero();
 | 
			
		||||
        calcVector nbr;
 | 
			
		||||
        int ptype;
 | 
			
		||||
        StencilEntry *SE;
 | 
			
		||||
 | 
			
		||||
        for(int p=0;p<npoint;p++){
 | 
			
		||||
          int point = points_p[p];
 | 
			
		||||
          SE=st_v.GetEntry(ptype,point,ss);
 | 
			
		||||
 | 
			
		||||
          if(SE->_is_local) {
 | 
			
		||||
            nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
 | 
			
		||||
          } else {
 | 
			
		||||
            nbr = coalescedRead(st_v.CommBuf()[SE->_offset]);
 | 
			
		||||
          }
 | 
			
		||||
          acceleratorSynchronise();
 | 
			
		||||
 | 
			
		||||
          for(int bb=0;bb<nbasis;bb++) {
 | 
			
		||||
            res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
 | 
			
		||||
          }
 | 
			
		||||
        }
 | 
			
		||||
        coalescedWrite(out_v[ss](b),res);
 | 
			
		||||
      });
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for(int p=0;p<npoint;p++) AcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) 	:
 | 
			
		||||
    _grid(&CoarseGrid),
 | 
			
		||||
    _cbgrid(new GridRedBlackCartesian(&CoarseGrid)),
 | 
			
		||||
    geom(CoarseGrid._ndimension),
 | 
			
		||||
    hermitian(hermitian_),
 | 
			
		||||
    Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements),
 | 
			
		||||
    StencilEven(_cbgrid,geom.npoint,Even,geom.directions,geom.displacements),
 | 
			
		||||
    StencilOdd(_cbgrid,geom.npoint,Odd,geom.directions,geom.displacements),
 | 
			
		||||
    A(geom.npoint,&CoarseGrid),
 | 
			
		||||
    Aeven(geom.npoint,_cbgrid),
 | 
			
		||||
    Aodd(geom.npoint,_cbgrid),
 | 
			
		||||
    AselfInv(&CoarseGrid),
 | 
			
		||||
    AselfInvEven(_cbgrid),
 | 
			
		||||
    AselfInvOdd(_cbgrid),
 | 
			
		||||
    dag_factor(nbasis*nbasis)
 | 
			
		||||
  {
 | 
			
		||||
    fillFactor();
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  CoarsenedMatrix(GridCartesian &CoarseGrid, GridRedBlackCartesian &CoarseRBGrid, int hermitian_=0) 	:
 | 
			
		||||
 | 
			
		||||
    _grid(&CoarseGrid),
 | 
			
		||||
    _cbgrid(&CoarseRBGrid),
 | 
			
		||||
    geom(CoarseGrid._ndimension),
 | 
			
		||||
    hermitian(hermitian_),
 | 
			
		||||
    Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements),
 | 
			
		||||
    StencilEven(&CoarseRBGrid,geom.npoint,Even,geom.directions,geom.displacements),
 | 
			
		||||
    StencilOdd(&CoarseRBGrid,geom.npoint,Odd,geom.directions,geom.displacements),
 | 
			
		||||
    A(geom.npoint,&CoarseGrid),
 | 
			
		||||
    Aeven(geom.npoint,&CoarseRBGrid),
 | 
			
		||||
    Aodd(geom.npoint,&CoarseRBGrid),
 | 
			
		||||
    AselfInv(&CoarseGrid),
 | 
			
		||||
    AselfInvEven(&CoarseRBGrid),
 | 
			
		||||
    AselfInvOdd(&CoarseRBGrid),
 | 
			
		||||
    dag_factor(nbasis*nbasis)
 | 
			
		||||
  {
 | 
			
		||||
    fillFactor();
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void fillFactor() {
 | 
			
		||||
    Eigen::MatrixXd dag_factor_eigen = Eigen::MatrixXd::Ones(nbasis, nbasis);
 | 
			
		||||
    if(!hermitian) {
 | 
			
		||||
      const int nb = nbasis/2;
 | 
			
		||||
      dag_factor_eigen.block(0,nb,nb,nb) *= -1.0;
 | 
			
		||||
      dag_factor_eigen.block(nb,0,nb,nb) *= -1.0;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // GPU readable prefactor
 | 
			
		||||
    thread_for(i, nbasis*nbasis, {
 | 
			
		||||
      int j = i/nbasis;
 | 
			
		||||
      int k = i%nbasis;
 | 
			
		||||
      dag_factor[i] = dag_factor_eigen(j, k);
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
			
		||||
		       Aggregation<Fobj,CComplex,nbasis> & Subspace)
 | 
			
		||||
  {
 | 
			
		||||
    typedef Lattice<typename Fobj::tensor_reduced> FineComplexField;
 | 
			
		||||
    typedef typename Fobj::scalar_type scalar_type;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage<< "CoarsenMatrix "<< std::endl;
 | 
			
		||||
 | 
			
		||||
    FineComplexField one(FineGrid); one=scalar_type(1.0,0.0);
 | 
			
		||||
    FineComplexField zero(FineGrid); zero=scalar_type(0.0,0.0);
 | 
			
		||||
 | 
			
		||||
    std::vector<FineComplexField> masks(geom.npoint,FineGrid);
 | 
			
		||||
    FineComplexField imask(FineGrid); // contributions from within this block
 | 
			
		||||
    FineComplexField omask(FineGrid); // contributions from outwith this block
 | 
			
		||||
 | 
			
		||||
    FineComplexField evenmask(FineGrid);
 | 
			
		||||
    FineComplexField oddmask(FineGrid); 
 | 
			
		||||
 | 
			
		||||
    FineField     phi(FineGrid);
 | 
			
		||||
    FineField     tmp(FineGrid);
 | 
			
		||||
    FineField     zz(FineGrid); zz=Zero();
 | 
			
		||||
    FineField    Mphi(FineGrid);
 | 
			
		||||
    FineField    Mphie(FineGrid);
 | 
			
		||||
    FineField    Mphio(FineGrid);
 | 
			
		||||
    std::vector<FineField>     Mphi_p(geom.npoint,FineGrid);
 | 
			
		||||
 | 
			
		||||
    Lattice<iScalar<vInteger> > coor (FineGrid);
 | 
			
		||||
    Lattice<iScalar<vInteger> > bcoor(FineGrid);
 | 
			
		||||
    Lattice<iScalar<vInteger> > bcb  (FineGrid); bcb = Zero();
 | 
			
		||||
 | 
			
		||||
    CoarseVector iProj(Grid()); 
 | 
			
		||||
    CoarseVector oProj(Grid()); 
 | 
			
		||||
    CoarseVector SelfProj(Grid()); 
 | 
			
		||||
    CoarseComplexField iZProj(Grid()); 
 | 
			
		||||
    CoarseComplexField oZProj(Grid()); 
 | 
			
		||||
 | 
			
		||||
    CoarseScalar InnerProd(Grid()); 
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage<< "CoarsenMatrix Orthog "<< std::endl;
 | 
			
		||||
    // Orthogonalise the subblocks over the basis
 | 
			
		||||
    blockOrthogonalise(InnerProd,Subspace.subspace);
 | 
			
		||||
 | 
			
		||||
    // Compute the matrix elements of linop between this orthonormal
 | 
			
		||||
    // set of vectors.
 | 
			
		||||
    std::cout << GridLogMessage<< "CoarsenMatrix masks "<< std::endl;
 | 
			
		||||
    int self_stencil=-1;
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++)
 | 
			
		||||
    { 
 | 
			
		||||
      int dir   = geom.directions[p];
 | 
			
		||||
      int disp  = geom.displacements[p];
 | 
			
		||||
      A[p]=Zero();
 | 
			
		||||
      if( geom.displacements[p]==0){
 | 
			
		||||
	self_stencil=p;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      Integer block=(FineGrid->_rdimensions[dir])/(Grid()->_rdimensions[dir]);
 | 
			
		||||
 | 
			
		||||
      LatticeCoordinate(coor,dir);
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////////////////////////////////
 | 
			
		||||
      // Work out even and odd block checkerboarding for fast diagonal term
 | 
			
		||||
      ///////////////////////////////////////////////////////
 | 
			
		||||
      if ( disp==1 ) {
 | 
			
		||||
	bcb   = bcb + div(coor,block);
 | 
			
		||||
      }
 | 
			
		||||
	
 | 
			
		||||
      if ( disp==0 ) {
 | 
			
		||||
	  masks[p]= Zero();
 | 
			
		||||
      } else if ( disp==1 ) {
 | 
			
		||||
	masks[p] = where(mod(coor,block)==(block-1),one,zero);
 | 
			
		||||
      } else if ( disp==-1 ) {
 | 
			
		||||
	masks[p] = where(mod(coor,block)==(Integer)0,one,zero);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    evenmask = where(mod(bcb,2)==(Integer)0,one,zero);
 | 
			
		||||
    oddmask  = one-evenmask;
 | 
			
		||||
 | 
			
		||||
    assert(self_stencil!=-1);
 | 
			
		||||
 | 
			
		||||
    for(int i=0;i<nbasis;i++){
 | 
			
		||||
 | 
			
		||||
      phi=Subspace.subspace[i];
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage<< "CoarsenMatrix vector "<<i << std::endl;
 | 
			
		||||
      linop.OpDirAll(phi,Mphi_p);
 | 
			
		||||
      linop.OpDiag  (phi,Mphi_p[geom.npoint-1]);
 | 
			
		||||
 | 
			
		||||
      for(int p=0;p<geom.npoint;p++){ 
 | 
			
		||||
 | 
			
		||||
	Mphi = Mphi_p[p];
 | 
			
		||||
 | 
			
		||||
	int dir   = geom.directions[p];
 | 
			
		||||
	int disp  = geom.displacements[p];
 | 
			
		||||
 | 
			
		||||
	if ( (disp==-1) || (!hermitian ) ) {
 | 
			
		||||
 | 
			
		||||
	  ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
	  // Pick out contributions coming from this cell and neighbour cell
 | 
			
		||||
	  ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
	  omask = masks[p];
 | 
			
		||||
	  imask = one-omask;
 | 
			
		||||
	
 | 
			
		||||
	  for(int j=0;j<nbasis;j++){
 | 
			
		||||
	    
 | 
			
		||||
	    blockMaskedInnerProduct(oZProj,omask,Subspace.subspace[j],Mphi);
 | 
			
		||||
	    
 | 
			
		||||
	    autoView( iZProj_v , iZProj, AcceleratorRead) ;
 | 
			
		||||
	    autoView( oZProj_v , oZProj, AcceleratorRead) ;
 | 
			
		||||
	    autoView( A_p     ,  A[p], AcceleratorWrite);
 | 
			
		||||
	    autoView( A_self  , A[self_stencil], AcceleratorWrite);
 | 
			
		||||
 | 
			
		||||
	    accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_p[ss](j,i),oZProj_v(ss)); });
 | 
			
		||||
	    if ( hermitian && (disp==-1) ) {
 | 
			
		||||
	      for(int pp=0;pp<geom.npoint;pp++){// Find the opposite link and set <j|A|i> = <i|A|j>*
 | 
			
		||||
		int dirp   = geom.directions[pp];
 | 
			
		||||
		int dispp  = geom.displacements[pp];
 | 
			
		||||
		if ( (dirp==dir) && (dispp==1) ){
 | 
			
		||||
		  auto sft = conjugate(Cshift(oZProj,dir,1));
 | 
			
		||||
		  autoView( sft_v    ,  sft  , AcceleratorWrite);
 | 
			
		||||
		  autoView( A_pp     ,  A[pp], AcceleratorWrite);
 | 
			
		||||
		  accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_pp[ss](i,j),sft_v(ss)); });
 | 
			
		||||
		}
 | 
			
		||||
	      }
 | 
			
		||||
	    }
 | 
			
		||||
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////////////////////
 | 
			
		||||
      // Faster alternate self coupling.. use hermiticity to save 2x
 | 
			
		||||
      ///////////////////////////////////////////
 | 
			
		||||
      {
 | 
			
		||||
	mult(tmp,phi,evenmask);  linop.Op(tmp,Mphie);
 | 
			
		||||
	mult(tmp,phi,oddmask );  linop.Op(tmp,Mphio);
 | 
			
		||||
 | 
			
		||||
	{
 | 
			
		||||
	  autoView( tmp_      , tmp, AcceleratorWrite);
 | 
			
		||||
	  autoView( evenmask_ , evenmask, AcceleratorRead);
 | 
			
		||||
	  autoView( oddmask_  ,  oddmask, AcceleratorRead);
 | 
			
		||||
	  autoView( Mphie_    ,  Mphie, AcceleratorRead);
 | 
			
		||||
	  autoView( Mphio_    ,  Mphio, AcceleratorRead);
 | 
			
		||||
	  accelerator_for(ss, FineGrid->oSites(), Fobj::Nsimd(),{ 
 | 
			
		||||
	      coalescedWrite(tmp_[ss],evenmask_(ss)*Mphie_(ss) + oddmask_(ss)*Mphio_(ss));
 | 
			
		||||
	    });
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	blockProject(SelfProj,tmp,Subspace.subspace);
 | 
			
		||||
 | 
			
		||||
	autoView( SelfProj_ , SelfProj, AcceleratorRead);
 | 
			
		||||
	autoView( A_self  , A[self_stencil], AcceleratorWrite);
 | 
			
		||||
 | 
			
		||||
	accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{
 | 
			
		||||
	  for(int j=0;j<nbasis;j++){
 | 
			
		||||
	    coalescedWrite(A_self[ss](j,i), SelfProj_(ss)(j));
 | 
			
		||||
	  }
 | 
			
		||||
	});
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    if(hermitian) {
 | 
			
		||||
      std::cout << GridLogMessage << " ForceHermitian, new code "<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    InvertSelfStencilLink(); std::cout << GridLogMessage << "Coarse self link inverted" << std::endl;
 | 
			
		||||
    FillHalfCbs(); std::cout << GridLogMessage << "Coarse half checkerboards filled" << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void InvertSelfStencilLink() {
 | 
			
		||||
    std::cout << GridLogDebug << "CoarsenedMatrix::InvertSelfStencilLink" << std::endl;
 | 
			
		||||
    int localVolume = Grid()->lSites();
 | 
			
		||||
 | 
			
		||||
    typedef typename Cobj::scalar_object scalar_object;
 | 
			
		||||
 | 
			
		||||
    autoView(Aself_v,    A[geom.npoint-1], CpuRead);
 | 
			
		||||
    autoView(AselfInv_v, AselfInv,         CpuWrite);
 | 
			
		||||
    thread_for(site, localVolume, { // NOTE: Not able to bring this to GPU because of Eigen + peek/poke
 | 
			
		||||
      Eigen::MatrixXcd selfLinkEigen    = Eigen::MatrixXcd::Zero(nbasis, nbasis);
 | 
			
		||||
      Eigen::MatrixXcd selfLinkInvEigen = Eigen::MatrixXcd::Zero(nbasis, nbasis);
 | 
			
		||||
 | 
			
		||||
      scalar_object selfLink    = Zero();
 | 
			
		||||
      scalar_object selfLinkInv = Zero();
 | 
			
		||||
 | 
			
		||||
      Coordinate lcoor;
 | 
			
		||||
 | 
			
		||||
      Grid()->LocalIndexToLocalCoor(site, lcoor);
 | 
			
		||||
      peekLocalSite(selfLink, Aself_v, lcoor);
 | 
			
		||||
 | 
			
		||||
      for (int i = 0; i < nbasis; ++i)
 | 
			
		||||
        for (int j = 0; j < nbasis; ++j)
 | 
			
		||||
          selfLinkEigen(i, j) = static_cast<ComplexD>(TensorRemove(selfLink(i, j)));
 | 
			
		||||
 | 
			
		||||
      selfLinkInvEigen = selfLinkEigen.inverse();
 | 
			
		||||
 | 
			
		||||
      for(int i = 0; i < nbasis; ++i)
 | 
			
		||||
        for(int j = 0; j < nbasis; ++j)
 | 
			
		||||
          selfLinkInv(i, j) = selfLinkInvEigen(i, j);
 | 
			
		||||
 | 
			
		||||
      pokeLocalSite(selfLinkInv, AselfInv_v, lcoor);
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void FillHalfCbs() {
 | 
			
		||||
    std::cout << GridLogDebug << "CoarsenedMatrix::FillHalfCbs" << std::endl;
 | 
			
		||||
    for(int p = 0; p < geom.npoint; ++p) {
 | 
			
		||||
      pickCheckerboard(Even, Aeven[p], A[p]);
 | 
			
		||||
      pickCheckerboard(Odd, Aodd[p], A[p]);
 | 
			
		||||
    }
 | 
			
		||||
    pickCheckerboard(Even, AselfInvEven, AselfInv);
 | 
			
		||||
    pickCheckerboard(Odd, AselfInvOdd, AselfInv);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
							
								
								
									
										418
									
								
								Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										418
									
								
								Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,418 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No)
 | 
			
		||||
 | 
			
		||||
#include <Grid/lattice/PaddedCell.h>
 | 
			
		||||
#include <Grid/stencil/GeneralLocalStencil.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
// Fine Object == (per site) type of fine field
 | 
			
		||||
// nbasis      == number of deflation vectors
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class GeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > >  {
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
 | 
			
		||||
  typedef iVector<CComplex,nbasis >           siteVector;
 | 
			
		||||
  typedef iMatrix<CComplex,nbasis >           siteMatrix;
 | 
			
		||||
  typedef Lattice<iScalar<CComplex> >         CoarseComplexField;
 | 
			
		||||
  typedef Lattice<siteVector>                 CoarseVector;
 | 
			
		||||
  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
			
		||||
  typedef iMatrix<CComplex,nbasis >  Cobj;
 | 
			
		||||
  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<Fobj >        FineField;
 | 
			
		||||
  typedef CoarseVector Field;
 | 
			
		||||
  ////////////////////
 | 
			
		||||
  // Data members
 | 
			
		||||
  ////////////////////
 | 
			
		||||
  int hermitian;
 | 
			
		||||
  GridBase      *       _FineGrid; 
 | 
			
		||||
  GridCartesian *       _CoarseGrid; 
 | 
			
		||||
  NonLocalStencilGeometry &geom;
 | 
			
		||||
  PaddedCell Cell;
 | 
			
		||||
  GeneralLocalStencil Stencil;
 | 
			
		||||
  
 | 
			
		||||
  std::vector<CoarseMatrix> _A;
 | 
			
		||||
  std::vector<CoarseMatrix> _Adag;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////
 | 
			
		||||
  // Interface
 | 
			
		||||
  ///////////////////////
 | 
			
		||||
  GridBase      * Grid(void)           { return _FineGrid; };   // this is all the linalg routines need to know
 | 
			
		||||
  GridBase      * FineGrid(void)       { return _FineGrid; };   // this is all the linalg routines need to know
 | 
			
		||||
  GridCartesian * CoarseGrid(void)     { return _CoarseGrid; };   // this is all the linalg routines need to know
 | 
			
		||||
 | 
			
		||||
  void ProjectNearestNeighbour(RealD shift, GeneralCoarseOp &CopyMe)
 | 
			
		||||
  {
 | 
			
		||||
    int nfound=0;
 | 
			
		||||
    std::cout << GridLogMessage <<"GeneralCoarsenedMatrix::ProjectNearestNeighbour "<< CopyMe._A[0].Grid()<<std::endl;
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      for(int pp=0;pp<CopyMe.geom.npoint;pp++){
 | 
			
		||||
 	// Search for the same relative shift
 | 
			
		||||
	// Avoids brutal handling of Grid pointers
 | 
			
		||||
	if ( CopyMe.geom.shifts[pp]==geom.shifts[p] ) {
 | 
			
		||||
	  _A[p] = CopyMe.Cell.Extract(CopyMe._A[pp]);
 | 
			
		||||
	  _Adag[p] = CopyMe.Cell.Extract(CopyMe._Adag[pp]);
 | 
			
		||||
	  nfound++;
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    assert(nfound==geom.npoint);
 | 
			
		||||
    ExchangeCoarseLinks();
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  GeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridBase *FineGrid, GridCartesian * CoarseGrid)
 | 
			
		||||
    : geom(_geom),
 | 
			
		||||
      _FineGrid(FineGrid),
 | 
			
		||||
      _CoarseGrid(CoarseGrid),
 | 
			
		||||
      hermitian(1),
 | 
			
		||||
      Cell(_geom.Depth(),_CoarseGrid),
 | 
			
		||||
      Stencil(Cell.grids.back(),geom.shifts)
 | 
			
		||||
  {
 | 
			
		||||
    {
 | 
			
		||||
      int npoint = _geom.npoint;
 | 
			
		||||
      autoView( Stencil_v  , Stencil, AcceleratorRead);
 | 
			
		||||
      int osites=Stencil.Grid()->oSites();
 | 
			
		||||
      for(int ss=0;ss<osites;ss++){
 | 
			
		||||
	for(int point=0;point<npoint;point++){
 | 
			
		||||
	  auto SE = Stencil_v.GetEntry(point,ss);
 | 
			
		||||
	  int o = SE->_offset;
 | 
			
		||||
	  assert( o< osites);
 | 
			
		||||
	}
 | 
			
		||||
      }    
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    _A.resize(geom.npoint,CoarseGrid);
 | 
			
		||||
    _Adag.resize(geom.npoint,CoarseGrid);
 | 
			
		||||
  }
 | 
			
		||||
  void M (const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    Mult(_A,in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void Mdag (const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    if ( hermitian ) M(in,out);
 | 
			
		||||
    else Mult(_Adag,in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void Mult (std::vector<CoarseMatrix> &A,const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    RealD tviews=0;
 | 
			
		||||
    RealD ttot=0;
 | 
			
		||||
    RealD tmult=0;
 | 
			
		||||
    RealD texch=0;
 | 
			
		||||
    RealD text=0;
 | 
			
		||||
    ttot=-usecond();
 | 
			
		||||
    conformable(CoarseGrid(),in.Grid());
 | 
			
		||||
    conformable(in.Grid(),out.Grid());
 | 
			
		||||
    out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
    CoarseVector tin=in;
 | 
			
		||||
 | 
			
		||||
    texch-=usecond();
 | 
			
		||||
    CoarseVector pin  = Cell.Exchange(tin);
 | 
			
		||||
    texch+=usecond();
 | 
			
		||||
 | 
			
		||||
    CoarseVector pout(pin.Grid()); pout=Zero();
 | 
			
		||||
 | 
			
		||||
    int npoint = geom.npoint;
 | 
			
		||||
    typedef LatticeView<Cobj> Aview;
 | 
			
		||||
      
 | 
			
		||||
    const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
    
 | 
			
		||||
    int osites=pin.Grid()->oSites();
 | 
			
		||||
    //    int gsites=pin.Grid()->gSites();
 | 
			
		||||
 | 
			
		||||
    RealD flops = 1.0* npoint * nbasis * nbasis * 8 * osites;
 | 
			
		||||
    RealD bytes = (1.0*osites*sizeof(siteMatrix)*npoint+2.0*osites*sizeof(siteVector))*npoint;
 | 
			
		||||
      
 | 
			
		||||
    //    for(int point=0;point<npoint;point++){
 | 
			
		||||
    //      conformable(A[point],pin);
 | 
			
		||||
    //    }
 | 
			
		||||
 | 
			
		||||
    {
 | 
			
		||||
      tviews-=usecond();
 | 
			
		||||
      autoView( in_v , pin, AcceleratorRead);
 | 
			
		||||
      autoView( out_v , pout, AcceleratorWrite);
 | 
			
		||||
      autoView( Stencil_v  , Stencil, AcceleratorRead);
 | 
			
		||||
      tviews+=usecond();
 | 
			
		||||
      
 | 
			
		||||
      for(int point=0;point<npoint;point++){
 | 
			
		||||
	tviews-=usecond();
 | 
			
		||||
	autoView( A_v, A[point],AcceleratorRead);
 | 
			
		||||
	tviews+=usecond();
 | 
			
		||||
	tmult-=usecond();
 | 
			
		||||
	accelerator_for(sss, osites*nbasis, Nsimd, {
 | 
			
		||||
 | 
			
		||||
	    typedef decltype(coalescedRead(in_v[0]))    calcVector;
 | 
			
		||||
 | 
			
		||||
	    int ss = sss/nbasis;
 | 
			
		||||
	    int b  = sss%nbasis;
 | 
			
		||||
 | 
			
		||||
	    auto SE  = Stencil_v.GetEntry(point,ss);
 | 
			
		||||
	    auto nbr = coalescedReadGeneralPermute(in_v[SE->_offset],SE->_permute,Nd);
 | 
			
		||||
	    auto res = out_v(ss)(b);
 | 
			
		||||
	    for(int bb=0;bb<nbasis;bb++) {
 | 
			
		||||
	      res = res + coalescedRead(A_v[ss](b,bb))*nbr(bb);
 | 
			
		||||
	    }
 | 
			
		||||
	    coalescedWrite(out_v[ss](b),res);
 | 
			
		||||
	});
 | 
			
		||||
 | 
			
		||||
	tmult+=usecond();
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    text-=usecond();
 | 
			
		||||
    out = Cell.Extract(pout);
 | 
			
		||||
    text+=usecond();
 | 
			
		||||
    ttot+=usecond();
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Mult Aviews "<<tviews<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Mult exch "<<texch<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Mult mult "<<tmult<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Mult ext  "<<text<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Mult tot  "<<ttot<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Kernel flop/s "<< flops/tmult<<" mflop/s"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Kernel bytes/s"<< bytes/tmult<<" MB/s"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse overall flops/s "<< flops/ttot<<" mflop/s"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse total bytes   "<< bytes/1e6<<" MB"<<std::endl;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void PopulateAdag(void)
 | 
			
		||||
  {
 | 
			
		||||
    for(int64_t bidx=0;bidx<CoarseGrid()->gSites() ;bidx++){
 | 
			
		||||
      Coordinate bcoor;
 | 
			
		||||
      CoarseGrid()->GlobalIndexToGlobalCoor(bidx,bcoor);
 | 
			
		||||
      
 | 
			
		||||
      for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
	Coordinate scoor = bcoor;
 | 
			
		||||
	for(int mu=0;mu<bcoor.size();mu++){
 | 
			
		||||
	  int L = CoarseGrid()->GlobalDimensions()[mu];
 | 
			
		||||
	  scoor[mu] = (bcoor[mu] - geom.shifts[p][mu] + L) % L; // Modulo arithmetic
 | 
			
		||||
	}
 | 
			
		||||
	// Flip to poke/peekLocalSite and not too bad
 | 
			
		||||
	auto link = peekSite(_A[p],scoor);
 | 
			
		||||
	int pp = geom.Reverse(p);
 | 
			
		||||
	pokeSite(adj(link),_Adag[pp],bcoor);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  // 
 | 
			
		||||
  // A) Only reduced flops option is to use a padded cell of depth 4
 | 
			
		||||
  // and apply MpcDagMpc in the padded cell.
 | 
			
		||||
  //
 | 
			
		||||
  // Makes for ONE application of MpcDagMpc per vector instead of 30 or 80.
 | 
			
		||||
  // With the effective cell size around (B+8)^4 perhaps 12^4/4^4 ratio
 | 
			
		||||
  // Cost is 81x more, same as stencil size.
 | 
			
		||||
  //
 | 
			
		||||
  // But: can eliminate comms and do as local dirichlet.
 | 
			
		||||
  //
 | 
			
		||||
  // Local exchange gauge field once.
 | 
			
		||||
  // Apply to all vectors, local only computation.
 | 
			
		||||
  // Must exchange ghost subcells in reverse process of PaddedCell to take inner products
 | 
			
		||||
  //
 | 
			
		||||
  // B) Can reduce cost: pad by 1, apply Deo      (4^4+6^4+8^4+8^4 )/ (4x 4^4)
 | 
			
		||||
  //                     pad by 2, apply Doe
 | 
			
		||||
  //                     pad by 3, apply Deo
 | 
			
		||||
  //                     then break out 8x directions; cost is ~10x MpcDagMpc per vector
 | 
			
		||||
  //
 | 
			
		||||
  // => almost factor of 10 in setup cost, excluding data rearrangement
 | 
			
		||||
  //
 | 
			
		||||
  // Intermediates -- ignore the corner terms, leave approximate and force Hermitian
 | 
			
		||||
  // Intermediates -- pad by 2 and apply 1+8+24 = 33 times.
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////////
 | 
			
		||||
    // BFM HDCG style approach: Solve a system of equations to get Aij
 | 
			
		||||
    //////////////////////////////////////////////////////////
 | 
			
		||||
    /*
 | 
			
		||||
     *     Here, k,l index which possible shift within the 3^Nd "ball" connected by MdagM.
 | 
			
		||||
     *
 | 
			
		||||
     *     conj(phases[block]) proj[k][ block*Nvec+j ] =  \sum_ball  e^{i q_k . delta} < phi_{block,j} | MdagM | phi_{(block+delta),i} > 
 | 
			
		||||
     *                                                 =  \sum_ball e^{iqk.delta} A_ji
 | 
			
		||||
     *
 | 
			
		||||
     *     Must invert matrix M_k,l = e^[i q_k . delta_l]
 | 
			
		||||
     *
 | 
			
		||||
     *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
			
		||||
     */
 | 
			
		||||
  void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
			
		||||
		       Aggregation<Fobj,CComplex,nbasis> & Subspace)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
 | 
			
		||||
    GridBase *grid = FineGrid();
 | 
			
		||||
 | 
			
		||||
    RealD tproj=0.0;
 | 
			
		||||
    RealD teigen=0.0;
 | 
			
		||||
    RealD tmat=0.0;
 | 
			
		||||
    RealD tphase=0.0;
 | 
			
		||||
    RealD tinv=0.0;
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    // Orthogonalise the subblocks over the basis
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    CoarseScalar InnerProd(CoarseGrid()); 
 | 
			
		||||
    blockOrthogonalise(InnerProd,Subspace.subspace);
 | 
			
		||||
 | 
			
		||||
    const int npoint = geom.npoint;
 | 
			
		||||
      
 | 
			
		||||
    Coordinate clatt = CoarseGrid()->GlobalDimensions();
 | 
			
		||||
    int Nd = CoarseGrid()->Nd();
 | 
			
		||||
 | 
			
		||||
      /*
 | 
			
		||||
       *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
 | 
			
		||||
       *     Matrix index i is mapped to this shift via 
 | 
			
		||||
       *               geom.shifts[i]
 | 
			
		||||
       *
 | 
			
		||||
       *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block] 
 | 
			
		||||
       *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} > 
 | 
			
		||||
       *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
 | 
			
		||||
       *       = M_{kl} A_ji^{b.b+l}
 | 
			
		||||
       *
 | 
			
		||||
       *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
 | 
			
		||||
       *  
 | 
			
		||||
       *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
			
		||||
       *
 | 
			
		||||
       *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
 | 
			
		||||
       */
 | 
			
		||||
    teigen-=usecond();
 | 
			
		||||
    Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
			
		||||
    Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
			
		||||
    ComplexD ci(0.0,1.0);
 | 
			
		||||
    for(int k=0;k<npoint;k++){ // Loop over momenta
 | 
			
		||||
 | 
			
		||||
      for(int l=0;l<npoint;l++){ // Loop over nbr relative
 | 
			
		||||
	ComplexD phase(0.0,0.0);
 | 
			
		||||
	for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
			
		||||
	  phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
 | 
			
		||||
	}
 | 
			
		||||
	phase=exp(phase*ci);
 | 
			
		||||
	Mkl(k,l) = phase;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    invMkl = Mkl.inverse();
 | 
			
		||||
    teigen+=usecond();
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Now compute the matrix elements of linop between the orthonormal
 | 
			
		||||
    // set of vectors.
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////
 | 
			
		||||
    FineField phaV(grid); // Phased block basis vector
 | 
			
		||||
    FineField MphaV(grid);// Matrix applied
 | 
			
		||||
    CoarseVector coarseInner(CoarseGrid());
 | 
			
		||||
 | 
			
		||||
    std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
 | 
			
		||||
    std::vector<CoarseVector>          FT(npoint,CoarseGrid());
 | 
			
		||||
    for(int i=0;i<nbasis;i++){// Loop over basis vectors
 | 
			
		||||
      std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
 | 
			
		||||
      for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
			
		||||
	/////////////////////////////////////////////////////
 | 
			
		||||
	// Stick a phase on every block
 | 
			
		||||
	/////////////////////////////////////////////////////
 | 
			
		||||
	tphase-=usecond();
 | 
			
		||||
	CoarseComplexField coor(CoarseGrid());
 | 
			
		||||
	CoarseComplexField pha(CoarseGrid());	pha=Zero();
 | 
			
		||||
	for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
	  LatticeCoordinate(coor,mu);
 | 
			
		||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
			
		||||
	  pha = pha + (TwoPiL * geom.shifts[p][mu]) * coor;
 | 
			
		||||
	}
 | 
			
		||||
	pha  =exp(pha*ci);
 | 
			
		||||
	phaV=Zero();
 | 
			
		||||
	blockZAXPY(phaV,pha,Subspace.subspace[i],phaV);
 | 
			
		||||
	tphase+=usecond();
 | 
			
		||||
 | 
			
		||||
	/////////////////////////////////////////////////////////////////////
 | 
			
		||||
	// Multiple phased subspace vector by matrix and project to subspace
 | 
			
		||||
	// Remove local bulk phase to leave relative phases
 | 
			
		||||
	/////////////////////////////////////////////////////////////////////
 | 
			
		||||
	tmat-=usecond();
 | 
			
		||||
	linop.Op(phaV,MphaV);
 | 
			
		||||
	tmat+=usecond();
 | 
			
		||||
 | 
			
		||||
	tproj-=usecond();
 | 
			
		||||
	blockProject(coarseInner,MphaV,Subspace.subspace);
 | 
			
		||||
	coarseInner = conjugate(pha) * coarseInner;
 | 
			
		||||
 | 
			
		||||
	ComputeProj[p] = coarseInner;
 | 
			
		||||
	tproj+=usecond();
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      tinv-=usecond();
 | 
			
		||||
      for(int k=0;k<npoint;k++){
 | 
			
		||||
	FT[k] = Zero();
 | 
			
		||||
	for(int l=0;l<npoint;l++){
 | 
			
		||||
	  FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
 | 
			
		||||
	}
 | 
			
		||||
      
 | 
			
		||||
	int osites=CoarseGrid()->oSites();
 | 
			
		||||
	autoView( A_v  , _A[k], AcceleratorWrite);
 | 
			
		||||
	autoView( FT_v  , FT[k], AcceleratorRead);
 | 
			
		||||
	accelerator_for(sss, osites, 1, {
 | 
			
		||||
	    for(int j=0;j<nbasis;j++){
 | 
			
		||||
	      A_v[sss](j,i) = FT_v[sss](j);
 | 
			
		||||
	    }
 | 
			
		||||
        });
 | 
			
		||||
      }
 | 
			
		||||
      tinv+=usecond();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      Coordinate coor({0,0,0,0,0});
 | 
			
		||||
      auto sval = peekSite(_A[p],coor);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Only needed if nonhermitian
 | 
			
		||||
    if ( ! hermitian ) {
 | 
			
		||||
      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl;
 | 
			
		||||
      PopulateAdag();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Need to write something to populate Adag from A
 | 
			
		||||
    ExchangeCoarseLinks();
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator eigen  "<<teigen<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator phase  "<<tphase<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator mat    "<<tmat <<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator proj   "<<tproj<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  void ExchangeCoarseLinks(void){
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      _A[p] = Cell.Exchange(_A[p]);
 | 
			
		||||
      _Adag[p]= Cell.Exchange(_Adag[p]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  virtual  void Mdiag    (const Field &in, Field &out){ assert(0);};
 | 
			
		||||
  virtual  void Mdir     (const Field &in, Field &out,int dir, int disp){assert(0);};
 | 
			
		||||
  virtual  void MdirAll  (const Field &in, std::vector<Field> &out){assert(0);};
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
							
								
								
									
										243
									
								
								Grid/algorithms/multigrid/Geometry.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										243
									
								
								Grid/algorithms/multigrid/Geometry.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,243 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////
 | 
			
		||||
// Geometry class in cartesian case
 | 
			
		||||
/////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
class Geometry {
 | 
			
		||||
public:
 | 
			
		||||
  int npoint;
 | 
			
		||||
  int base;
 | 
			
		||||
  std::vector<int> directions   ;
 | 
			
		||||
  std::vector<int> displacements;
 | 
			
		||||
  std::vector<int> points_dagger;
 | 
			
		||||
 | 
			
		||||
  Geometry(int _d)  {
 | 
			
		||||
    
 | 
			
		||||
    base = (_d==5) ? 1:0;
 | 
			
		||||
 | 
			
		||||
    // make coarse grid stencil for 4d , not 5d
 | 
			
		||||
    if ( _d==5 ) _d=4;
 | 
			
		||||
 | 
			
		||||
    npoint = 2*_d+1;
 | 
			
		||||
    directions.resize(npoint);
 | 
			
		||||
    displacements.resize(npoint);
 | 
			
		||||
    points_dagger.resize(npoint);
 | 
			
		||||
    for(int d=0;d<_d;d++){
 | 
			
		||||
      directions[d   ] = d+base;
 | 
			
		||||
      directions[d+_d] = d+base;
 | 
			
		||||
      displacements[d  ] = +1;
 | 
			
		||||
      displacements[d+_d]= -1;
 | 
			
		||||
      points_dagger[d   ] = d+_d;
 | 
			
		||||
      points_dagger[d+_d] = d;
 | 
			
		||||
    }
 | 
			
		||||
    directions   [2*_d]=0;
 | 
			
		||||
    displacements[2*_d]=0;
 | 
			
		||||
    points_dagger[2*_d]=2*_d;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int point(int dir, int disp) {
 | 
			
		||||
    assert(disp == -1 || disp == 0 || disp == 1);
 | 
			
		||||
    assert(base+0 <= dir && dir < base+4);
 | 
			
		||||
 | 
			
		||||
    // directions faster index = new indexing
 | 
			
		||||
    // 4d (base = 0):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   0  1  2  3  0  1  2  3  0
 | 
			
		||||
    // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | 
			
		||||
    // 5d (base = 1):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   1  2  3  4  1  2  3  4  0
 | 
			
		||||
    // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | 
			
		||||
 | 
			
		||||
    // displacements faster index = old indexing
 | 
			
		||||
    // 4d (base = 0):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   0  0  1  1  2  2  3  3  0
 | 
			
		||||
    // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | 
			
		||||
    // 5d (base = 1):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   1  1  2  2  3  3  4  4  0
 | 
			
		||||
    // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | 
			
		||||
 | 
			
		||||
    if(dir == 0 and disp == 0)
 | 
			
		||||
      return 8;
 | 
			
		||||
    else // New indexing
 | 
			
		||||
      return (1 - disp) / 2 * 4 + dir - base;
 | 
			
		||||
    // else // Old indexing
 | 
			
		||||
    //   return (4 * (dir - base) + 1 - disp) / 2;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////
 | 
			
		||||
// Less local equivalent of Geometry class in cartesian case
 | 
			
		||||
/////////////////////////////////////////////////////////////////
 | 
			
		||||
class NonLocalStencilGeometry {
 | 
			
		||||
public:
 | 
			
		||||
  int depth;
 | 
			
		||||
  int hops;
 | 
			
		||||
  int npoint;
 | 
			
		||||
  std::vector<Coordinate> shifts;
 | 
			
		||||
  Coordinate stencil_size;
 | 
			
		||||
  Coordinate stencil_lo;
 | 
			
		||||
  Coordinate stencil_hi;
 | 
			
		||||
  GridCartesian *grid;
 | 
			
		||||
  GridCartesian *Grid() {return grid;};
 | 
			
		||||
  int Depth(void){return 1;};   // Ghost zone depth
 | 
			
		||||
  int Hops(void){return hops;}; // # of hops=> level of corner fill in in stencil
 | 
			
		||||
 | 
			
		||||
  virtual int DimSkip(void) =0;
 | 
			
		||||
 | 
			
		||||
  virtual ~NonLocalStencilGeometry() {};
 | 
			
		||||
 | 
			
		||||
  int  Reverse(int point)
 | 
			
		||||
  {
 | 
			
		||||
    int Nd = Grid()->Nd();
 | 
			
		||||
    Coordinate shft = shifts[point];
 | 
			
		||||
    Coordinate rev(Nd);
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++) rev[mu]= -shft[mu];
 | 
			
		||||
    for(int p=0;p<npoint;p++){
 | 
			
		||||
      if(rev==shifts[p]){
 | 
			
		||||
	return p;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    assert(0);
 | 
			
		||||
    return -1;
 | 
			
		||||
  }
 | 
			
		||||
  void BuildShifts(void)
 | 
			
		||||
  {
 | 
			
		||||
    this->shifts.resize(0);
 | 
			
		||||
    int Nd = this->grid->Nd();
 | 
			
		||||
 | 
			
		||||
    int dd = this->DimSkip();
 | 
			
		||||
    for(int s0=this->stencil_lo[dd+0];s0<=this->stencil_hi[dd+0];s0++){
 | 
			
		||||
    for(int s1=this->stencil_lo[dd+1];s1<=this->stencil_hi[dd+1];s1++){
 | 
			
		||||
    for(int s2=this->stencil_lo[dd+2];s2<=this->stencil_hi[dd+2];s2++){
 | 
			
		||||
    for(int s3=this->stencil_lo[dd+3];s3<=this->stencil_hi[dd+3];s3++){
 | 
			
		||||
      Coordinate sft(Nd,0);
 | 
			
		||||
      sft[dd+0] = s0;
 | 
			
		||||
      sft[dd+1] = s1;
 | 
			
		||||
      sft[dd+2] = s2;
 | 
			
		||||
      sft[dd+3] = s3;
 | 
			
		||||
      int nhops = abs(s0)+abs(s1)+abs(s2)+abs(s3);
 | 
			
		||||
      if(nhops<=this->hops) this->shifts.push_back(sft);
 | 
			
		||||
    }}}}
 | 
			
		||||
    this->npoint = this->shifts.size();
 | 
			
		||||
    std::cout << GridLogMessage << "NonLocalStencilGeometry has "<< this->npoint << " terms in stencil "<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  NonLocalStencilGeometry(GridCartesian *_coarse_grid,int _hops) : grid(_coarse_grid), hops(_hops)
 | 
			
		||||
  {
 | 
			
		||||
    Coordinate latt = grid->GlobalDimensions();
 | 
			
		||||
    stencil_size.resize(grid->Nd());
 | 
			
		||||
    stencil_lo.resize(grid->Nd());
 | 
			
		||||
    stencil_hi.resize(grid->Nd());
 | 
			
		||||
    for(int d=0;d<grid->Nd();d++){
 | 
			
		||||
     if ( latt[d] == 1 ) {
 | 
			
		||||
      stencil_lo[d] = 0;
 | 
			
		||||
      stencil_hi[d] = 0;
 | 
			
		||||
      stencil_size[d]= 1;
 | 
			
		||||
     } else if ( latt[d] == 2 ) {
 | 
			
		||||
      stencil_lo[d] = -1;
 | 
			
		||||
      stencil_hi[d] = 0;
 | 
			
		||||
      stencil_size[d]= 2;
 | 
			
		||||
     } else if ( latt[d] > 2 ) {
 | 
			
		||||
       stencil_lo[d] = -1;
 | 
			
		||||
       stencil_hi[d] =  1;
 | 
			
		||||
       stencil_size[d]= 3;
 | 
			
		||||
     }
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// Need to worry about red-black now
 | 
			
		||||
class NonLocalStencilGeometry4D : public NonLocalStencilGeometry {
 | 
			
		||||
public:
 | 
			
		||||
  virtual int DimSkip(void) { return 0;};
 | 
			
		||||
  NonLocalStencilGeometry4D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops) { };
 | 
			
		||||
  virtual ~NonLocalStencilGeometry4D() {};
 | 
			
		||||
};
 | 
			
		||||
class NonLocalStencilGeometry5D : public NonLocalStencilGeometry {
 | 
			
		||||
public:
 | 
			
		||||
  virtual int DimSkip(void) { return 1; }; 
 | 
			
		||||
  NonLocalStencilGeometry5D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops)  { };
 | 
			
		||||
  virtual ~NonLocalStencilGeometry5D() {};
 | 
			
		||||
};
 | 
			
		||||
/*
 | 
			
		||||
 * Bunch of different options classes
 | 
			
		||||
 */
 | 
			
		||||
class NextToNextToNextToNearestStencilGeometry4D : public NonLocalStencilGeometry4D {
 | 
			
		||||
public:
 | 
			
		||||
  NextToNextToNextToNearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,4)
 | 
			
		||||
  {
 | 
			
		||||
    this->BuildShifts();
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
class NextToNextToNextToNearestStencilGeometry5D : public  NonLocalStencilGeometry5D {
 | 
			
		||||
public:
 | 
			
		||||
  NextToNextToNextToNearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,4)
 | 
			
		||||
  {
 | 
			
		||||
    this->BuildShifts();
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
class NextToNearestStencilGeometry4D : public  NonLocalStencilGeometry4D {
 | 
			
		||||
public:
 | 
			
		||||
  NextToNearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,2)
 | 
			
		||||
  {
 | 
			
		||||
    this->BuildShifts();
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
class NextToNearestStencilGeometry5D : public  NonLocalStencilGeometry5D {
 | 
			
		||||
public:
 | 
			
		||||
  NextToNearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,2)
 | 
			
		||||
  {
 | 
			
		||||
    this->BuildShifts();
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
class NearestStencilGeometry4D : public  NonLocalStencilGeometry4D {
 | 
			
		||||
public:
 | 
			
		||||
  NearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,1)
 | 
			
		||||
  {
 | 
			
		||||
    this->BuildShifts();
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
class NearestStencilGeometry5D : public  NonLocalStencilGeometry5D {
 | 
			
		||||
public:
 | 
			
		||||
  NearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,1)
 | 
			
		||||
  {
 | 
			
		||||
    this->BuildShifts();
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
							
								
								
									
										33
									
								
								Grid/algorithms/multigrid/Multigrid.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										33
									
								
								Grid/algorithms/multigrid/Multigrid.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,33 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
    Source file: Grid/algorithms/multigrid/MultiGrid.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2023
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <Grid/algorithms/multigrid/Aggregates.h>
 | 
			
		||||
#include <Grid/algorithms/multigrid/Geometry.h>
 | 
			
		||||
#include <Grid/algorithms/multigrid/CoarsenedMatrix.h>
 | 
			
		||||
#include <Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h>
 | 
			
		||||
@@ -70,8 +70,8 @@ public:
 | 
			
		||||
  Coordinate _istride;    // Inner stride i.e. within simd lane
 | 
			
		||||
  int _osites;                  // _isites*_osites = product(dimensions).
 | 
			
		||||
  int _isites;
 | 
			
		||||
  int _fsites;                  // _isites*_osites = product(dimensions).
 | 
			
		||||
  int _gsites;
 | 
			
		||||
  int64_t _fsites;                  // _isites*_osites = product(dimensions).
 | 
			
		||||
  int64_t _gsites;
 | 
			
		||||
  Coordinate _slice_block;// subslice information
 | 
			
		||||
  Coordinate _slice_stride;
 | 
			
		||||
  Coordinate _slice_nblock;
 | 
			
		||||
@@ -183,7 +183,7 @@ public:
 | 
			
		||||
  inline int Nsimd(void)  const { return _isites; };// Synonymous with iSites
 | 
			
		||||
  inline int oSites(void) const { return _osites; };
 | 
			
		||||
  inline int lSites(void) const { return _isites*_osites; }; 
 | 
			
		||||
  inline int gSites(void) const { return _isites*_osites*_Nprocessors; }; 
 | 
			
		||||
  inline int64_t gSites(void) const { return (int64_t)_isites*(int64_t)_osites*(int64_t)_Nprocessors; }; 
 | 
			
		||||
  inline int Nd    (void) const { return _ndimension;};
 | 
			
		||||
 | 
			
		||||
  inline const Coordinate LocalStarts(void)             { return _lstart;    };
 | 
			
		||||
@@ -214,7 +214,7 @@ public:
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Global addressing
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  void GlobalIndexToGlobalCoor(int gidx,Coordinate &gcoor){
 | 
			
		||||
  void GlobalIndexToGlobalCoor(int64_t gidx,Coordinate &gcoor){
 | 
			
		||||
    assert(gidx< gSites());
 | 
			
		||||
    Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
 | 
			
		||||
  }
 | 
			
		||||
@@ -222,7 +222,7 @@ public:
 | 
			
		||||
    assert(lidx<lSites());
 | 
			
		||||
    Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
 | 
			
		||||
  }
 | 
			
		||||
  void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int & gidx){
 | 
			
		||||
  void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int64_t & gidx){
 | 
			
		||||
    gidx=0;
 | 
			
		||||
    int mult=1;
 | 
			
		||||
    for(int mu=0;mu<_ndimension;mu++) {
 | 
			
		||||
 
 | 
			
		||||
@@ -360,7 +360,7 @@ public:
 | 
			
		||||
 | 
			
		||||
template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  for(int g=0;g<o.Grid()->_gsites;g++){
 | 
			
		||||
  for(int64_t g=0;g<o.Grid()->_gsites;g++){
 | 
			
		||||
 | 
			
		||||
    Coordinate gcoor;
 | 
			
		||||
    o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);
 | 
			
		||||
 
 | 
			
		||||
@@ -361,9 +361,14 @@ public:
 | 
			
		||||
    _bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
 | 
			
		||||
    _uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist){
 | 
			
		||||
 | 
			
		||||
  template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist)
 | 
			
		||||
  {
 | 
			
		||||
    if ( l.Grid()->_isCheckerBoarded ) {
 | 
			
		||||
      Lattice<vobj> tmp(_grid);
 | 
			
		||||
      fill(tmp,dist);
 | 
			
		||||
      pickCheckerboard(l.Checkerboard(),l,tmp);
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
    typedef typename vobj::scalar_object scalar_object;
 | 
			
		||||
    typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
    typedef typename vobj::vector_type vector_type;
 | 
			
		||||
@@ -427,7 +432,7 @@ public:
 | 
			
		||||
#if 1
 | 
			
		||||
    thread_for( lidx, _grid->lSites(), {
 | 
			
		||||
 | 
			
		||||
	int gidx;
 | 
			
		||||
	int64_t gidx;
 | 
			
		||||
	int o_idx;
 | 
			
		||||
	int i_idx;
 | 
			
		||||
	int rank;
 | 
			
		||||
 
 | 
			
		||||
@@ -471,13 +471,13 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
 | 
			
		||||
 | 
			
		||||
  vobj zz = Zero();
 | 
			
		||||
  
 | 
			
		||||
  accelerator_for(sc,coarse->oSites(),1,{
 | 
			
		||||
  accelerator_for(sc,coarse->oSites(),vobj::Nsimd(),{
 | 
			
		||||
 | 
			
		||||
      // One thread per sub block
 | 
			
		||||
      Coordinate coor_c(_ndimension);
 | 
			
		||||
      Lexicographic::CoorFromIndex(coor_c,sc,coarse_rdimensions);  // Block coordinate
 | 
			
		||||
 | 
			
		||||
      vobj cd = zz;
 | 
			
		||||
      auto cd = coalescedRead(zz);
 | 
			
		||||
      
 | 
			
		||||
      for(int sb=0;sb<blockVol;sb++){
 | 
			
		||||
 | 
			
		||||
@@ -488,10 +488,10 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
 | 
			
		||||
	for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d] + coor_b[d];
 | 
			
		||||
	Lexicographic::IndexFromCoor(coor_f,sf,fine_rdimensions);
 | 
			
		||||
 | 
			
		||||
	cd=cd+fineData_p[sf];
 | 
			
		||||
	cd=cd+coalescedRead(fineData_p[sf]);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      coarseData_p[sc] = cd;
 | 
			
		||||
      coalescedWrite(coarseData_p[sc],cd);
 | 
			
		||||
 | 
			
		||||
    });
 | 
			
		||||
  return;
 | 
			
		||||
@@ -1054,7 +1054,7 @@ void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine)
 | 
			
		||||
 | 
			
		||||
  Coordinate fcoor(nd);
 | 
			
		||||
  Coordinate ccoor(nd);
 | 
			
		||||
  for(int g=0;g<fg->gSites();g++){
 | 
			
		||||
  for(int64_t g=0;g<fg->gSites();g++){
 | 
			
		||||
 | 
			
		||||
    fg->GlobalIndexToGlobalCoor(g,fcoor);
 | 
			
		||||
    for(int d=0;d<nd;d++){
 | 
			
		||||
 
 | 
			
		||||
@@ -63,8 +63,9 @@ public:
 | 
			
		||||
    dims=_grid->Nd();
 | 
			
		||||
    AllocateGrids();
 | 
			
		||||
    Coordinate local     =unpadded_grid->LocalDimensions();
 | 
			
		||||
    Coordinate procs     =unpadded_grid->ProcessorGrid();
 | 
			
		||||
    for(int d=0;d<dims;d++){
 | 
			
		||||
      assert(local[d]>=depth);
 | 
			
		||||
      if ( procs[d] > 1 ) assert(local[d]>=depth);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void DeleteGrids(void)
 | 
			
		||||
@@ -85,7 +86,9 @@ public:
 | 
			
		||||
    // expand up one dim at a time
 | 
			
		||||
    for(int d=0;d<dims;d++){
 | 
			
		||||
 | 
			
		||||
      if ( processors[d] > 1 ) { 
 | 
			
		||||
	plocal[d] += 2*depth; 
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      for(int d=0;d<dims;d++){
 | 
			
		||||
	global[d] = plocal[d]*processors[d];
 | 
			
		||||
@@ -97,11 +100,17 @@ public:
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  inline Lattice<vobj> Extract(const Lattice<vobj> &in) const
 | 
			
		||||
  {
 | 
			
		||||
    Coordinate processors=unpadded_grid->_processors;
 | 
			
		||||
 | 
			
		||||
    Lattice<vobj> out(unpadded_grid);
 | 
			
		||||
 | 
			
		||||
    Coordinate local     =unpadded_grid->LocalDimensions();
 | 
			
		||||
    Coordinate fll(dims,depth); // depends on the MPI spread
 | 
			
		||||
    // depends on the MPI spread      
 | 
			
		||||
    Coordinate fll(dims,depth);
 | 
			
		||||
    Coordinate tll(dims,0); // depends on the MPI spread
 | 
			
		||||
    for(int d=0;d<dims;d++){
 | 
			
		||||
      if( processors[d]==1 ) fll[d]=0;
 | 
			
		||||
    }
 | 
			
		||||
    localCopyRegion(in,out,fll,tll,local);
 | 
			
		||||
    return out;
 | 
			
		||||
  }
 | 
			
		||||
@@ -120,6 +129,7 @@ public:
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  inline Lattice<vobj> Expand(int dim, const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
 | 
			
		||||
  {
 | 
			
		||||
    Coordinate processors=unpadded_grid->_processors;
 | 
			
		||||
    GridBase *old_grid = in.Grid();
 | 
			
		||||
    GridCartesian *new_grid = grids[dim];//These are new grids
 | 
			
		||||
    Lattice<vobj>  padded(new_grid);
 | 
			
		||||
@@ -133,6 +143,18 @@ public:
 | 
			
		||||
 | 
			
		||||
    double tins=0, tshift=0;
 | 
			
		||||
 | 
			
		||||
    int islocal = 0 ;
 | 
			
		||||
    if ( processors[dim] == 1 ) islocal = 1;
 | 
			
		||||
 | 
			
		||||
    if ( islocal ) {
 | 
			
		||||
      
 | 
			
		||||
      double t = usecond();
 | 
			
		||||
      for(int x=0;x<local[dim];x++){
 | 
			
		||||
	InsertSliceLocal(in,padded,x,x,dim);
 | 
			
		||||
      }
 | 
			
		||||
      tins += usecond() - t;
 | 
			
		||||
      
 | 
			
		||||
    } else { 
 | 
			
		||||
      // Middle bit
 | 
			
		||||
      double t = usecond();
 | 
			
		||||
      for(int x=0;x<local[dim];x++){
 | 
			
		||||
@@ -161,7 +183,7 @@ public:
 | 
			
		||||
	InsertSliceLocal(shifted,padded,x,x,dim);
 | 
			
		||||
      }
 | 
			
		||||
      tins += usecond() - t;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogPerformance << "PaddedCell::Expand timings: cshift:" << tshift/1000 << "ms, insert-slice:" << tins/1000 << "ms" << std::endl;
 | 
			
		||||
    
 | 
			
		||||
    return padded;
 | 
			
		||||
 
 | 
			
		||||
@@ -487,7 +487,7 @@ public:
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      { //view scope
 | 
			
		||||
	autoView( gStaple_v , gStaple, AcceleratorWrite);
 | 
			
		||||
	auto gStencil_v = gStencil.View();
 | 
			
		||||
	auto gStencil_v = gStencil.View(AcceleratorRead);
 | 
			
		||||
	
 | 
			
		||||
	accelerator_for(ss, ggrid->oSites(), ggrid->Nsimd(), {
 | 
			
		||||
	    decltype(coalescedRead(Ug_dirs_v[0][0])) stencil_ss;
 | 
			
		||||
@@ -1199,7 +1199,7 @@ public:
 | 
			
		||||
 | 
			
		||||
      { //view scope
 | 
			
		||||
	autoView( gStaple_v , gStaple, AcceleratorWrite);
 | 
			
		||||
	auto gStencil_v = gStencil.View();
 | 
			
		||||
	auto gStencil_v = gStencil.View(AcceleratorRead);
 | 
			
		||||
 | 
			
		||||
	accelerator_for(ss, ggrid->oSites(), ggrid->Nsimd(), {
 | 
			
		||||
	    decltype(coalescedRead(Ug_dirs_v[0][0])) stencil_ss;
 | 
			
		||||
 
 | 
			
		||||
@@ -1130,6 +1130,14 @@ static_assert(sizeof(SIMD_Ftype) == sizeof(SIMD_Itype), "SIMD vector lengths inc
 | 
			
		||||
#endif
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
// Fixme need coalesced read gpermute
 | 
			
		||||
template<class vobj> void gpermute(vobj & inout,int perm){
 | 
			
		||||
  vobj tmp=inout;
 | 
			
		||||
  if (perm & 0x1 ) { permute(inout,tmp,0); tmp=inout;}
 | 
			
		||||
  if (perm & 0x2 ) { permute(inout,tmp,1); tmp=inout;}
 | 
			
		||||
  if (perm & 0x4 ) { permute(inout,tmp,2); tmp=inout;}
 | 
			
		||||
  if (perm & 0x8 ) { permute(inout,tmp,3); tmp=inout;}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -46,7 +46,7 @@ class GeneralLocalStencilView {
 | 
			
		||||
  accelerator_inline GeneralStencilEntry * GetEntry(int point,int osite) { 
 | 
			
		||||
    return & this->_entries_p[point+this->_npoints*osite]; 
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void ViewClose(void){};
 | 
			
		||||
};
 | 
			
		||||
////////////////////////////////////////
 | 
			
		||||
// The Stencil Class itself
 | 
			
		||||
@@ -61,7 +61,7 @@ protected:
 | 
			
		||||
public: 
 | 
			
		||||
  GridBase *Grid(void) const { return _grid; }
 | 
			
		||||
 | 
			
		||||
  View_type View(void) const {
 | 
			
		||||
  View_type View(int mode) const {
 | 
			
		||||
    View_type accessor(*( (View_type *) this));
 | 
			
		||||
    return accessor;
 | 
			
		||||
  }
 | 
			
		||||
 
 | 
			
		||||
@@ -137,6 +137,18 @@ inline void cuda_mem(void)
 | 
			
		||||
    dim3 cu_blocks ((num1+nt-1)/nt,num2,1);				\
 | 
			
		||||
    LambdaApply<<<cu_blocks,cu_threads,0,computeStream>>>(num1,num2,nsimd,lambda);	\
 | 
			
		||||
  }
 | 
			
		||||
#define prof_accelerator_for2dNB( iter1, num1, iter2, num2, nsimd, ... )	\
 | 
			
		||||
  {									\
 | 
			
		||||
    int nt=acceleratorThreads();					\
 | 
			
		||||
    typedef uint64_t Iterator;						\
 | 
			
		||||
    auto lambda = [=] accelerator					\
 | 
			
		||||
      (Iterator iter1,Iterator iter2,Iterator lane) mutable {		\
 | 
			
		||||
      __VA_ARGS__;							\
 | 
			
		||||
    };									\
 | 
			
		||||
    dim3 cu_threads(nsimd,acceleratorThreads(),1);			\
 | 
			
		||||
    dim3 cu_blocks ((num1+nt-1)/nt,num2,1);				\
 | 
			
		||||
    ProfileLambdaApply<<<cu_blocks,cu_threads,0,computeStream>>>(num1,num2,nsimd,lambda); \
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
#define accelerator_for6dNB(iter1, num1,				\
 | 
			
		||||
                            iter2, num2,				\
 | 
			
		||||
@@ -157,6 +169,20 @@ inline void cuda_mem(void)
 | 
			
		||||
    Lambda6Apply<<<cu_blocks,cu_threads,0,computeStream>>>(num1,num2,num3,num4,num5,num6,lambda); \
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#define accelerator_for2dNB( iter1, num1, iter2, num2, nsimd, ... )	\
 | 
			
		||||
  {									\
 | 
			
		||||
    int nt=acceleratorThreads();					\
 | 
			
		||||
    typedef uint64_t Iterator;						\
 | 
			
		||||
    auto lambda = [=] accelerator					\
 | 
			
		||||
      (Iterator iter1,Iterator iter2,Iterator lane) mutable {		\
 | 
			
		||||
      __VA_ARGS__;							\
 | 
			
		||||
    };									\
 | 
			
		||||
    dim3 cu_threads(nsimd,acceleratorThreads(),1);			\
 | 
			
		||||
    dim3 cu_blocks ((num1+nt-1)/nt,num2,1);				\
 | 
			
		||||
    LambdaApply<<<cu_blocks,cu_threads,0,computeStream>>>(num1,num2,nsimd,lambda);	\
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
template<typename lambda>  __global__
 | 
			
		||||
void LambdaApply(uint64_t num1, uint64_t num2, uint64_t num3, lambda Lambda)
 | 
			
		||||
{
 | 
			
		||||
@@ -168,6 +194,17 @@ void LambdaApply(uint64_t num1, uint64_t num2, uint64_t num3, lambda Lambda)
 | 
			
		||||
    Lambda(x,y,z);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
template<typename lambda>  __global__
 | 
			
		||||
void ProfileLambdaApply(uint64_t num1, uint64_t num2, uint64_t num3, lambda Lambda)
 | 
			
		||||
{
 | 
			
		||||
  // Weird permute is to make lane coalesce for large blocks
 | 
			
		||||
  uint64_t x = threadIdx.y + blockDim.y*blockIdx.x;
 | 
			
		||||
  uint64_t y = threadIdx.z + blockDim.z*blockIdx.y;
 | 
			
		||||
  uint64_t z = threadIdx.x;
 | 
			
		||||
  if ( (x < num1) && (y<num2) && (z<num3) ) {
 | 
			
		||||
    Lambda(x,y,z);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<typename lambda>  __global__
 | 
			
		||||
void Lambda6Apply(uint64_t num1, uint64_t num2, uint64_t num3,
 | 
			
		||||
@@ -208,6 +245,7 @@ inline void *acceleratorAllocShared(size_t bytes)
 | 
			
		||||
  if( err != cudaSuccess ) {
 | 
			
		||||
    ptr = (void *) NULL;
 | 
			
		||||
    printf(" cudaMallocManaged failed for %d %s \n",bytes,cudaGetErrorString(err));
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  return ptr;
 | 
			
		||||
};
 | 
			
		||||
@@ -460,6 +498,9 @@ inline void acceleratorCopySynchronise(void) { hipStreamSynchronize(copyStream);
 | 
			
		||||
#if defined(GRID_SYCL) || defined(GRID_CUDA) || defined(GRID_HIP)
 | 
			
		||||
// FIXME -- the non-blocking nature got broken March 30 2023 by PAB
 | 
			
		||||
#define accelerator_forNB( iter1, num1, nsimd, ... ) accelerator_for2dNB( iter1, num1, iter2, 1, nsimd, {__VA_ARGS__} );  
 | 
			
		||||
#define prof_accelerator_for( iter1, num1, nsimd, ... ) \
 | 
			
		||||
  prof_accelerator_for2dNB( iter1, num1, iter2, 1, nsimd, {__VA_ARGS__} );\
 | 
			
		||||
  accelerator_barrier(dummy);
 | 
			
		||||
 | 
			
		||||
#define accelerator_for( iter, num, nsimd, ... )		\
 | 
			
		||||
  accelerator_forNB(iter, num, nsimd, { __VA_ARGS__ } );	\
 | 
			
		||||
 
 | 
			
		||||
@@ -94,6 +94,13 @@ static constexpr int MaxDims = GRID_MAX_LATTICE_DIMENSION;
 | 
			
		||||
 | 
			
		||||
typedef AcceleratorVector<int,MaxDims> Coordinate;
 | 
			
		||||
 | 
			
		||||
template<class T,int _ndim>
 | 
			
		||||
inline bool operator==(const AcceleratorVector<T,_ndim> &v,const AcceleratorVector<T,_ndim> &w)
 | 
			
		||||
{
 | 
			
		||||
  if (v.size()!=w.size()) return false;
 | 
			
		||||
  for(int i=0;i<v.size();i++) if ( v[i]!=w[i] ) return false;
 | 
			
		||||
  return true;
 | 
			
		||||
}
 | 
			
		||||
template<class T,int _ndim>
 | 
			
		||||
inline std::ostream & operator<<(std::ostream &os, const AcceleratorVector<T,_ndim> &v)
 | 
			
		||||
{
 | 
			
		||||
 
 | 
			
		||||
@@ -8,7 +8,7 @@ namespace Grid{
 | 
			
		||||
  public:
 | 
			
		||||
 | 
			
		||||
    template<class coor_t>
 | 
			
		||||
    static accelerator_inline void CoorFromIndex (coor_t& coor,int index,const coor_t &dims){
 | 
			
		||||
    static accelerator_inline void CoorFromIndex (coor_t& coor,int64_t index,const coor_t &dims){
 | 
			
		||||
      int nd= dims.size();
 | 
			
		||||
      coor.resize(nd);
 | 
			
		||||
      for(int d=0;d<nd;d++){
 | 
			
		||||
@@ -18,28 +18,45 @@ namespace Grid{
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class coor_t>
 | 
			
		||||
    static accelerator_inline void IndexFromCoor (const coor_t& coor,int &index,const coor_t &dims){
 | 
			
		||||
    static accelerator_inline void IndexFromCoor (const coor_t& coor,int64_t &index,const coor_t &dims){
 | 
			
		||||
      int nd=dims.size();
 | 
			
		||||
      int stride=1;
 | 
			
		||||
      index=0;
 | 
			
		||||
      for(int d=0;d<nd;d++){
 | 
			
		||||
	index = index+stride*coor[d];
 | 
			
		||||
	index = index+(int64_t)stride*coor[d];
 | 
			
		||||
	stride=stride*dims[d];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    template<class coor_t>
 | 
			
		||||
    static accelerator_inline void IndexFromCoor (const coor_t& coor,int &index,const coor_t &dims){
 | 
			
		||||
      int64_t index64;
 | 
			
		||||
      IndexFromCoor(coor,index64,dims);
 | 
			
		||||
      assert(index64<2*1024*1024*1024LL);
 | 
			
		||||
      index = (int) index64;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class coor_t>
 | 
			
		||||
    static inline void IndexFromCoorReversed (const coor_t& coor,int &index,const coor_t &dims){
 | 
			
		||||
    static inline void IndexFromCoorReversed (const coor_t& coor,int64_t &index,const coor_t &dims){
 | 
			
		||||
      int nd=dims.size();
 | 
			
		||||
      int stride=1;
 | 
			
		||||
      index=0;
 | 
			
		||||
      for(int d=nd-1;d>=0;d--){
 | 
			
		||||
	index = index+stride*coor[d];
 | 
			
		||||
	index = index+(int64_t)stride*coor[d];
 | 
			
		||||
	stride=stride*dims[d];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    template<class coor_t>
 | 
			
		||||
    static inline void CoorFromIndexReversed (coor_t& coor,int index,const coor_t &dims){
 | 
			
		||||
    static inline void IndexFromCoorReversed (const coor_t& coor,int &index,const coor_t &dims){
 | 
			
		||||
      int64_t index64;
 | 
			
		||||
      IndexFromCoorReversed(coor,index64,dims);
 | 
			
		||||
      if ( index64>=2*1024*1024*1024LL ){
 | 
			
		||||
	std::cout << " IndexFromCoorReversed " << coor<<" index " << index64<< " dims "<<dims<<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
      assert(index64<2*1024*1024*1024LL);
 | 
			
		||||
      index = (int) index64;
 | 
			
		||||
    }
 | 
			
		||||
    template<class coor_t>
 | 
			
		||||
    static inline void CoorFromIndexReversed (coor_t& coor,int64_t index,const coor_t &dims){
 | 
			
		||||
      int nd= dims.size();
 | 
			
		||||
      coor.resize(nd);
 | 
			
		||||
      for(int d=nd-1;d>=0;d--){
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										43
									
								
								systems/Frontier/benchmarks/bench2.slurm
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										43
									
								
								systems/Frontier/benchmarks/bench2.slurm
									
									
									
									
									
										Executable file
									
								
							@@ -0,0 +1,43 @@
 | 
			
		||||
#!/bin/bash -l
 | 
			
		||||
#SBATCH --job-name=bench
 | 
			
		||||
##SBATCH --partition=small-g
 | 
			
		||||
#SBATCH --nodes=2
 | 
			
		||||
#SBATCH --ntasks-per-node=8
 | 
			
		||||
#SBATCH --cpus-per-task=7
 | 
			
		||||
#SBATCH --gpus-per-node=8
 | 
			
		||||
#SBATCH --time=00:10:00
 | 
			
		||||
#SBATCH --account=phy157_dwf
 | 
			
		||||
#SBATCH --gpu-bind=none
 | 
			
		||||
#SBATCH --exclusive
 | 
			
		||||
#SBATCH --mem=0
 | 
			
		||||
 | 
			
		||||
cat << EOF > select_gpu
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
export GPU_MAP=(0 1 2 3 7 6 5 4)
 | 
			
		||||
export NUMA_MAP=(3 3 1 1 2 2 0 0)
 | 
			
		||||
export GPU=\${GPU_MAP[\$SLURM_LOCALID]}
 | 
			
		||||
export NUMA=\${NUMA_MAP[\$SLURM_LOCALID]}
 | 
			
		||||
export HIP_VISIBLE_DEVICES=\$GPU
 | 
			
		||||
unset ROCR_VISIBLE_DEVICES
 | 
			
		||||
echo RANK \$SLURM_LOCALID using GPU \$GPU    
 | 
			
		||||
exec numactl -m \$NUMA -N \$NUMA \$*
 | 
			
		||||
EOF
 | 
			
		||||
 | 
			
		||||
chmod +x ./select_gpu
 | 
			
		||||
 | 
			
		||||
root=$HOME/Frontier/Grid/systems/Frontier/
 | 
			
		||||
source ${root}/sourceme.sh
 | 
			
		||||
 | 
			
		||||
export OMP_NUM_THREADS=7
 | 
			
		||||
export MPICH_GPU_SUPPORT_ENABLED=1
 | 
			
		||||
export MPICH_SMP_SINGLE_COPY_MODE=XPMEM
 | 
			
		||||
 | 
			
		||||
for vol in 32.32.32.64
 | 
			
		||||
do
 | 
			
		||||
srun ./select_gpu ./Benchmark_dwf_fp32 --mpi 2.2.2.2 --accelerator-threads 8 --comms-overlap --shm 2048 --shm-mpi 0 --grid $vol  > log.shm0.ov.$vol
 | 
			
		||||
srun ./select_gpu ./Benchmark_dwf_fp32 --mpi 2.2.2.2 --accelerator-threads 8 --comms-overlap --shm 2048 --shm-mpi 1 --grid $vol  > log.shm1.ov.$vol
 | 
			
		||||
 | 
			
		||||
srun ./select_gpu ./Benchmark_dwf_fp32 --mpi 2.2.2.2 --accelerator-threads 8 --comms-sequential --shm 2048 --shm-mpi 0 --grid $vol  > log.shm0.seq.$vol
 | 
			
		||||
srun ./select_gpu ./Benchmark_dwf_fp32 --mpi 2.2.2.2 --accelerator-threads 8 --comms-sequential --shm 2048 --shm-mpi 1 --grid $vol > log.shm1.seq.$vol
 | 
			
		||||
done
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										23
									
								
								systems/Frontier/config-command
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										23
									
								
								systems/Frontier/config-command
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,23 @@
 | 
			
		||||
CLIME=`spack find --paths c-lime@2-3-9 | grep c-lime| cut -c 15-`
 | 
			
		||||
../../configure --enable-comms=mpi-auto \
 | 
			
		||||
--with-lime=$CLIME \
 | 
			
		||||
--enable-unified=no \
 | 
			
		||||
--enable-shm=nvlink \
 | 
			
		||||
--enable-tracing=timer \
 | 
			
		||||
--enable-accelerator=hip \
 | 
			
		||||
--enable-gen-simd-width=64 \
 | 
			
		||||
--disable-gparity \
 | 
			
		||||
--disable-fermion-reps \
 | 
			
		||||
--enable-simd=GPU \
 | 
			
		||||
--enable-accelerator-cshift \
 | 
			
		||||
--with-gmp=$OLCF_GMP_ROOT \
 | 
			
		||||
--with-fftw=$FFTW_DIR/.. \
 | 
			
		||||
--with-mpfr=/opt/cray/pe/gcc/mpfr/3.1.4/ \
 | 
			
		||||
--disable-fermion-reps \
 | 
			
		||||
CXX=hipcc MPICXX=mpicxx \
 | 
			
		||||
CXXFLAGS="-fPIC -I{$ROCM_PATH}/include/ -std=c++14 -I${MPICH_DIR}/include -L/lib64 " \
 | 
			
		||||
 LDFLAGS="-L/lib64 -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lamdhip64 "
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										13
									
								
								systems/Frontier/mpiwrapper.sh
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										13
									
								
								systems/Frontier/mpiwrapper.sh
									
									
									
									
									
										Executable file
									
								
							@@ -0,0 +1,13 @@
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
 | 
			
		||||
lrank=$SLURM_LOCALID
 | 
			
		||||
lgpu=(0 1 2 3 7 6 5 4)
 | 
			
		||||
 | 
			
		||||
export ROCR_VISIBLE_DEVICES=${lgpu[$lrank]}
 | 
			
		||||
 | 
			
		||||
echo "`hostname` - $lrank device=$ROCR_VISIBLE_DEVICES "
 | 
			
		||||
 | 
			
		||||
$*
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										13
									
								
								systems/Frontier/sourceme.sh
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										13
									
								
								systems/Frontier/sourceme.sh
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,13 @@
 | 
			
		||||
. /autofs/nccs-svm1_home1/paboyle/Crusher/Grid/spack/share/spack/setup-env.sh
 | 
			
		||||
spack load c-lime
 | 
			
		||||
#export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/sw/crusher/spack-envs/base/opt/cray-sles15-zen3/gcc-11.2.0/gperftools-2.9.1-72ubwtuc5wcz2meqltbfdb76epufgzo2/lib
 | 
			
		||||
module load emacs 
 | 
			
		||||
module load PrgEnv-gnu
 | 
			
		||||
module load rocm
 | 
			
		||||
module load cray-mpich/8.1.23
 | 
			
		||||
module load gmp
 | 
			
		||||
module load cray-fftw
 | 
			
		||||
module load craype-accel-amd-gfx90a
 | 
			
		||||
export LD_LIBRARY_PATH=/opt/gcc/mpfr/3.1.4/lib:$LD_LIBRARY_PATH
 | 
			
		||||
#Hack for lib
 | 
			
		||||
#export LD_LIBRARY_PATH=`pwd`:$LD_LIBRARY_PATH
 | 
			
		||||
							
								
								
									
										9
									
								
								systems/Frontier/wrap.sh
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										9
									
								
								systems/Frontier/wrap.sh
									
									
									
									
									
										Executable file
									
								
							@@ -0,0 +1,9 @@
 | 
			
		||||
#!/bin/sh
 | 
			
		||||
 | 
			
		||||
export HIP_VISIBLE_DEVICES=$ROCR_VISIBLE_DEVICES
 | 
			
		||||
unset ROCR_VISIBLE_DEVICES
 | 
			
		||||
 | 
			
		||||
#rank=$SLURM_PROCID
 | 
			
		||||
#rocprof -d rocprof.$rank -o rocprof.$rank/results.rank$SLURM_PROCID.csv --sys-trace $@
 | 
			
		||||
 | 
			
		||||
$@
 | 
			
		||||
@@ -1,4 +1,3 @@
 | 
			
		||||
BREW=/opt/local/
 | 
			
		||||
MPICXX=mpicxx ../../configure --enable-simd=GEN --enable-comms=mpi-auto --enable-unified=yes --prefix $HOME/QCD/GridInstall --with-lime=/Users/peterboyle/QCD/SciDAC/install/ --with-openssl=$BREW --disable-fermion-reps --disable-gparity --disable-debug
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										235
									
								
								tests/debug/Test_general_coarse.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										235
									
								
								tests/debug/Test_general_coarse.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,235 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./tests/Test_padded_cell.cc
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2023
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
#include <Grid/lattice/PaddedCell.h>
 | 
			
		||||
#include <Grid/stencil/GeneralLocalStencil.h>
 | 
			
		||||
 | 
			
		||||
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidual.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidualNonHermitian.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/BiCGSTAB.h>
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 | 
			
		||||
///////////////////////
 | 
			
		||||
// Tells little dirac op to use MdagM as the .Op()
 | 
			
		||||
///////////////////////
 | 
			
		||||
template<class Field>
 | 
			
		||||
class HermOpAdaptor : public LinearOperatorBase<Field>
 | 
			
		||||
{
 | 
			
		||||
  LinearOperatorBase<Field> & wrapped;
 | 
			
		||||
public:
 | 
			
		||||
  HermOpAdaptor(LinearOperatorBase<Field> &wrapme) : wrapped(wrapme)  {};
 | 
			
		||||
  void OpDiag (const Field &in, Field &out) {    assert(0);  }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {    assert(0);  }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){    assert(0);  };
 | 
			
		||||
  void Op     (const Field &in, Field &out){
 | 
			
		||||
    wrapped.HermOp(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void AdjOp     (const Field &in, Field &out){
 | 
			
		||||
    wrapped.HermOp(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){    assert(0);  }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){
 | 
			
		||||
    wrapped.HermOp(in,out);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
int main (int argc, char ** argv)
 | 
			
		||||
{
 | 
			
		||||
  Grid_init(&argc,&argv);
 | 
			
		||||
 | 
			
		||||
  const int Ls=4;
 | 
			
		||||
 | 
			
		||||
  GridCartesian         * UGrid   = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
 | 
			
		||||
								   GridDefaultSimd(Nd,vComplex::Nsimd()),
 | 
			
		||||
								   GridDefaultMpi());
 | 
			
		||||
  GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
 | 
			
		||||
 | 
			
		||||
  GridCartesian         * FGrid   = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
 | 
			
		||||
  GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
 | 
			
		||||
 | 
			
		||||
  // Construct a coarsened grid
 | 
			
		||||
  Coordinate clatt = GridDefaultLatt();
 | 
			
		||||
  for(int d=0;d<clatt.size();d++){
 | 
			
		||||
    clatt[d] = clatt[d]/2;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  GridCartesian *Coarse4d =  SpaceTimeGrid::makeFourDimGrid(clatt,
 | 
			
		||||
							    GridDefaultSimd(Nd,vComplex::Nsimd()),
 | 
			
		||||
							    GridDefaultMpi());;
 | 
			
		||||
  GridCartesian *Coarse5d =  SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
 | 
			
		||||
 | 
			
		||||
  std::vector<int> seeds4({1,2,3,4});
 | 
			
		||||
  std::vector<int> seeds5({5,6,7,8});
 | 
			
		||||
  std::vector<int> cseeds({5,6,7,8});
 | 
			
		||||
  GridParallelRNG          RNG5(FGrid);   RNG5.SeedFixedIntegers(seeds5);
 | 
			
		||||
  GridParallelRNG          RNG4(UGrid);   RNG4.SeedFixedIntegers(seeds4);
 | 
			
		||||
  GridParallelRNG          CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds);
 | 
			
		||||
 | 
			
		||||
  LatticeFermion    src(FGrid); random(RNG5,src);
 | 
			
		||||
  LatticeFermion result(FGrid); result=Zero();
 | 
			
		||||
  LatticeFermion    ref(FGrid); ref=Zero();
 | 
			
		||||
  LatticeFermion    tmp(FGrid);
 | 
			
		||||
  LatticeFermion    err(FGrid);
 | 
			
		||||
  LatticeGaugeField Umu(UGrid);
 | 
			
		||||
  SU<Nc>::HotConfiguration(RNG4,Umu);
 | 
			
		||||
  //  Umu=Zero();
 | 
			
		||||
  
 | 
			
		||||
  RealD mass=0.1;
 | 
			
		||||
  RealD M5=1.8;
 | 
			
		||||
 | 
			
		||||
  DomainWallFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
 | 
			
		||||
 | 
			
		||||
  const int nbasis = 16;
 | 
			
		||||
  const int cb = 0 ;
 | 
			
		||||
  LatticeFermion prom(FGrid);
 | 
			
		||||
 | 
			
		||||
  std::vector<LatticeFermion> subspace(nbasis,FGrid);
 | 
			
		||||
 | 
			
		||||
  std::cout<<GridLogMessage<<"Calling Aggregation class" <<std::endl;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////
 | 
			
		||||
  // Squared operator is in HermOp
 | 
			
		||||
  ///////////////////////////////////////////////////////////
 | 
			
		||||
  MdagMLinearOperator<DomainWallFermionD,LatticeFermion> HermDefOp(Ddwf);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////
 | 
			
		||||
  // Random aggregation space
 | 
			
		||||
  ///////////////////////////////////////////////////
 | 
			
		||||
  std::cout<<GridLogMessage << "Building random aggregation class"<< std::endl;
 | 
			
		||||
  typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
 | 
			
		||||
  Subspace Aggregates(Coarse5d,FGrid,cb);
 | 
			
		||||
  Aggregates.CreateSubspaceRandom(RNG5);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////
 | 
			
		||||
  // Build little dirac op
 | 
			
		||||
  ///////////////////////////////////////////////////
 | 
			
		||||
  std::cout<<GridLogMessage << "Building little Dirac operator"<< std::endl;
 | 
			
		||||
 | 
			
		||||
  typedef GeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LittleDiracOperator;
 | 
			
		||||
  typedef LittleDiracOperator::CoarseVector CoarseVector;
 | 
			
		||||
 | 
			
		||||
  NextToNearestStencilGeometry5D geom(Coarse5d);
 | 
			
		||||
  LittleDiracOperator LittleDiracOp(geom,FGrid,Coarse5d);
 | 
			
		||||
  LittleDiracOperator LittleDiracOpCol(geom,FGrid,Coarse5d);
 | 
			
		||||
 | 
			
		||||
  HermOpAdaptor<LatticeFermionD> HOA(HermDefOp);
 | 
			
		||||
 | 
			
		||||
  int pp=16;
 | 
			
		||||
  LittleDiracOp.CoarsenOperator(HOA,Aggregates);
 | 
			
		||||
  
 | 
			
		||||
  ///////////////////////////////////////////////////
 | 
			
		||||
  // Test the operator
 | 
			
		||||
  ///////////////////////////////////////////////////
 | 
			
		||||
  CoarseVector c_src (Coarse5d);
 | 
			
		||||
  CoarseVector c_res (Coarse5d);
 | 
			
		||||
  CoarseVector c_res_dag(Coarse5d);
 | 
			
		||||
  CoarseVector c_proj(Coarse5d);
 | 
			
		||||
 | 
			
		||||
  subspace=Aggregates.subspace;
 | 
			
		||||
 | 
			
		||||
  //  random(CRNG,c_src);
 | 
			
		||||
  c_src = 1.0;
 | 
			
		||||
 | 
			
		||||
  blockPromote(c_src,err,subspace);
 | 
			
		||||
 | 
			
		||||
  prom=Zero();
 | 
			
		||||
  for(int b=0;b<nbasis;b++){
 | 
			
		||||
    prom=prom+subspace[b];
 | 
			
		||||
  }
 | 
			
		||||
  err=err-prom; 
 | 
			
		||||
  std::cout<<GridLogMessage<<"Promoted back from subspace: err "<<norm2(err)<<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage<<"c_src "<<norm2(c_src)<<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage<<"prom  "<<norm2(prom)<<std::endl;
 | 
			
		||||
 | 
			
		||||
  HermDefOp.HermOp(prom,tmp);
 | 
			
		||||
 | 
			
		||||
  blockProject(c_proj,tmp,subspace);
 | 
			
		||||
  std::cout<<GridLogMessage<<" Called Big Dirac Op "<<norm2(tmp)<<std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout<<GridLogMessage<<" Calling little Dirac Op "<<std::endl;
 | 
			
		||||
  LittleDiracOp.M(c_src,c_res);
 | 
			
		||||
  LittleDiracOp.Mdag(c_src,c_res_dag);
 | 
			
		||||
 | 
			
		||||
  std::cout<<GridLogMessage<<"Little dop : "<<norm2(c_res)<<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage<<"Little dop dag : "<<norm2(c_res_dag)<<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage<<"Big dop in subspace : "<<norm2(c_proj)<<std::endl;
 | 
			
		||||
 | 
			
		||||
  c_proj = c_proj - c_res;
 | 
			
		||||
  std::cout<<GridLogMessage<<" ldop error: "<<norm2(c_proj)<<std::endl;
 | 
			
		||||
 | 
			
		||||
  c_res_dag = c_res_dag - c_res;
 | 
			
		||||
  std::cout<<GridLogMessage<<"Little dopDag - dop: "<<norm2(c_res_dag)<<std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout<<GridLogMessage << "Testing Hermiticity stochastically "<< std::endl;
 | 
			
		||||
  CoarseVector phi(Coarse5d);
 | 
			
		||||
  CoarseVector chi(Coarse5d);
 | 
			
		||||
  CoarseVector Aphi(Coarse5d);
 | 
			
		||||
  CoarseVector Achi(Coarse5d);
 | 
			
		||||
 | 
			
		||||
  random(CRNG,phi);
 | 
			
		||||
  random(CRNG,chi);
 | 
			
		||||
 | 
			
		||||
  std::cout<<GridLogMessage<<"Made randoms "<<norm2(phi)<<" " << norm2(chi)<<std::endl;
 | 
			
		||||
 | 
			
		||||
  LittleDiracOp.M(phi,Aphi);
 | 
			
		||||
 | 
			
		||||
  LittleDiracOp.Mdag(chi,Achi);
 | 
			
		||||
 | 
			
		||||
  std::cout<<GridLogMessage<<"Aphi "<<norm2(Aphi)<<" A chi" << norm2(Achi)<<std::endl;
 | 
			
		||||
 | 
			
		||||
  ComplexD pAc = innerProduct(chi,Aphi);
 | 
			
		||||
  ComplexD cAp = innerProduct(phi,Achi);
 | 
			
		||||
  ComplexD cAc = innerProduct(chi,Achi);
 | 
			
		||||
  ComplexD pAp = innerProduct(phi,Aphi);
 | 
			
		||||
 | 
			
		||||
  std::cout<<GridLogMessage<< "pAc "<<pAc<<" cAp "<< cAp<< " diff "<<pAc-adj(cAp)<<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage<< "pAp "<<pAp<<" cAc "<< cAc<<"Should be real"<< std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout<<GridLogMessage<<"Testing linearity"<<std::endl;
 | 
			
		||||
  CoarseVector PhiPlusChi(Coarse5d);
 | 
			
		||||
  CoarseVector APhiPlusChi(Coarse5d);
 | 
			
		||||
  CoarseVector linerr(Coarse5d);
 | 
			
		||||
  PhiPlusChi = phi+chi;
 | 
			
		||||
  LittleDiracOp.M(PhiPlusChi,APhiPlusChi);
 | 
			
		||||
 | 
			
		||||
  linerr= APhiPlusChi-Aphi;
 | 
			
		||||
  linerr= linerr-Achi;
 | 
			
		||||
  std::cout<<GridLogMessage<<"**Diff "<<norm2(linerr)<<std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout<<GridLogMessage<<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage<<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
 | 
			
		||||
  
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
  return 0;
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										408
									
								
								tests/debug/Test_general_coarse_hdcg.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										408
									
								
								tests/debug/Test_general_coarse_hdcg.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,408 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./tests/Test_general_coarse_hdcg.cc
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2023
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
#include <Grid/lattice/PaddedCell.h>
 | 
			
		||||
#include <Grid/stencil/GeneralLocalStencil.h>
 | 
			
		||||
//#include <Grid/algorithms/GeneralCoarsenedMatrix.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/AdefGeneric.h>
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 | 
			
		||||
template<class Coarsened>
 | 
			
		||||
void SaveOperator(Coarsened &Operator,std::string file)
 | 
			
		||||
{
 | 
			
		||||
#ifdef HAVE_LIME
 | 
			
		||||
  emptyUserRecord record;
 | 
			
		||||
  ScidacWriter WR(Operator.Grid()->IsBoss());
 | 
			
		||||
  assert(Operator._A.size()==Operator.geom.npoint);
 | 
			
		||||
  WR.open(file);
 | 
			
		||||
  for(int p=0;p<Operator._A.size();p++){
 | 
			
		||||
    auto tmp = Operator.Cell.Extract(Operator._A[p]);
 | 
			
		||||
    WR.writeScidacFieldRecord(tmp,record);
 | 
			
		||||
  }
 | 
			
		||||
  WR.close();
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
template<class Coarsened>
 | 
			
		||||
void LoadOperator(Coarsened Operator,std::string file)
 | 
			
		||||
{
 | 
			
		||||
#ifdef HAVE_LIME
 | 
			
		||||
  emptyUserRecord record;
 | 
			
		||||
  Grid::ScidacReader RD ;
 | 
			
		||||
  RD.open(file);
 | 
			
		||||
  assert(Operator._A.size()==Operator.geom.npoint);
 | 
			
		||||
  for(int p=0;p<Operator.geom.npoint;p++){
 | 
			
		||||
    conformable(Operator._A[p].Grid(),Operator.CoarseGrid());
 | 
			
		||||
    RD.readScidacFieldRecord(Operator._A[p],record);
 | 
			
		||||
  }    
 | 
			
		||||
  RD.close();
 | 
			
		||||
  Operator.ExchangeCoarseLinks();
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
template<class aggregation>
 | 
			
		||||
void SaveBasis(aggregation &Agg,std::string file)
 | 
			
		||||
{
 | 
			
		||||
#ifdef HAVE_LIME
 | 
			
		||||
  emptyUserRecord record;
 | 
			
		||||
  ScidacWriter WR(Agg.FineGrid->IsBoss());
 | 
			
		||||
  WR.open(file);
 | 
			
		||||
  for(int b=0;b<Agg.subspace.size();b++){
 | 
			
		||||
    WR.writeScidacFieldRecord(Agg.subspace[b],record);
 | 
			
		||||
  }
 | 
			
		||||
  WR.close();
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
template<class aggregation>
 | 
			
		||||
void LoadBasis(aggregation &Agg, std::string file)
 | 
			
		||||
{
 | 
			
		||||
#ifdef HAVE_LIME
 | 
			
		||||
  emptyUserRecord record;
 | 
			
		||||
  ScidacReader RD ;
 | 
			
		||||
  RD.open(file);
 | 
			
		||||
  for(int b=0;b<Agg.subspace.size();b++){
 | 
			
		||||
    RD.readScidacFieldRecord(Agg.subspace[b],record);
 | 
			
		||||
  }    
 | 
			
		||||
  RD.close();
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class Field> class TestSolver : public LinearFunction<Field> {
 | 
			
		||||
public:
 | 
			
		||||
  TestSolver() {};
 | 
			
		||||
  void operator() (const Field &in, Field &out){    out = Zero();  }     
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
RealD InverseApproximation(RealD x){
 | 
			
		||||
  return 1.0/x;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Want Op in CoarsenOp to call MatPcDagMatPc
 | 
			
		||||
template<class Field>
 | 
			
		||||
class HermOpAdaptor : public LinearOperatorBase<Field>
 | 
			
		||||
{
 | 
			
		||||
  LinearOperatorBase<Field> & wrapped;
 | 
			
		||||
public:
 | 
			
		||||
  HermOpAdaptor(LinearOperatorBase<Field> &wrapme) : wrapped(wrapme)  {};
 | 
			
		||||
  void Op     (const Field &in, Field &out)   { wrapped.HermOp(in,out);  }
 | 
			
		||||
  void HermOp(const Field &in, Field &out)    { wrapped.HermOp(in,out); }
 | 
			
		||||
  void AdjOp     (const Field &in, Field &out){ wrapped.HermOp(in,out);  }
 | 
			
		||||
  void OpDiag (const Field &in, Field &out)                  {    assert(0);  }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {    assert(0);  }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out)  {    assert(0);  };
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){    assert(0);  }
 | 
			
		||||
};
 | 
			
		||||
template<class Field,class Matrix> class ChebyshevSmoother : public LinearFunction<Field>
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  using LinearFunction<Field>::operator();
 | 
			
		||||
  typedef LinearOperatorBase<Field> FineOperator;
 | 
			
		||||
  FineOperator   & _SmootherOperator;
 | 
			
		||||
  Chebyshev<Field> Cheby;
 | 
			
		||||
  ChebyshevSmoother(RealD _lo,RealD _hi,int _ord, FineOperator &SmootherOperator) :
 | 
			
		||||
    _SmootherOperator(SmootherOperator),
 | 
			
		||||
    Cheby(_lo,_hi,_ord,InverseApproximation)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage<<" Chebyshev smoother order "<<_ord<<" ["<<_lo<<","<<_hi<<"]"<<std::endl;
 | 
			
		||||
  };
 | 
			
		||||
  void operator() (const Field &in, Field &out) 
 | 
			
		||||
  {
 | 
			
		||||
    Field tmp(in.Grid());
 | 
			
		||||
    tmp = in;
 | 
			
		||||
    Cheby(_SmootherOperator,tmp,out);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
int main (int argc, char ** argv)
 | 
			
		||||
{
 | 
			
		||||
  Grid_init(&argc,&argv);
 | 
			
		||||
 | 
			
		||||
  const int Ls=16;
 | 
			
		||||
  const int nbasis = 40;
 | 
			
		||||
  const int cb = 0 ;
 | 
			
		||||
  RealD mass=0.01;
 | 
			
		||||
  RealD M5=1.8;
 | 
			
		||||
  RealD b=1.5;
 | 
			
		||||
  RealD c=0.5;
 | 
			
		||||
 | 
			
		||||
  GridCartesian         * UGrid   = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
 | 
			
		||||
								   GridDefaultSimd(Nd,vComplex::Nsimd()),
 | 
			
		||||
								   GridDefaultMpi());
 | 
			
		||||
  GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
 | 
			
		||||
  GridCartesian         * FGrid   = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
 | 
			
		||||
  GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
 | 
			
		||||
 | 
			
		||||
  // Construct a coarsened grid with 4^4 cell
 | 
			
		||||
  Coordinate clatt = GridDefaultLatt();
 | 
			
		||||
  for(int d=0;d<clatt.size();d++){
 | 
			
		||||
    clatt[d] = clatt[d]/4;
 | 
			
		||||
  }
 | 
			
		||||
  GridCartesian *Coarse4d =  SpaceTimeGrid::makeFourDimGrid(clatt,
 | 
			
		||||
							    GridDefaultSimd(Nd,vComplex::Nsimd()),
 | 
			
		||||
							    GridDefaultMpi());;
 | 
			
		||||
  GridCartesian *Coarse5d =  SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////// RNGs /////////////////////////////////
 | 
			
		||||
  std::vector<int> seeds4({1,2,3,4});
 | 
			
		||||
  std::vector<int> seeds5({5,6,7,8});
 | 
			
		||||
  std::vector<int> cseeds({5,6,7,8});
 | 
			
		||||
 | 
			
		||||
  GridParallelRNG          RNG5(FGrid);   RNG5.SeedFixedIntegers(seeds5);
 | 
			
		||||
  GridParallelRNG          RNG4(UGrid);   RNG4.SeedFixedIntegers(seeds4);
 | 
			
		||||
  GridParallelRNG          CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////// Configuration /////////////////////////////////
 | 
			
		||||
  LatticeGaugeField Umu(UGrid);
 | 
			
		||||
 | 
			
		||||
  FieldMetaData header;
 | 
			
		||||
  std::string file("ckpoint_lat.4000");
 | 
			
		||||
  NerscIO::readConfiguration(Umu,header,file);
 | 
			
		||||
 | 
			
		||||
  //////////////////////// Fermion action //////////////////////////////////
 | 
			
		||||
  MobiusFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c);
 | 
			
		||||
 | 
			
		||||
  SchurDiagMooeeOperator<MobiusFermionD, LatticeFermion> HermOpEO(Ddwf);
 | 
			
		||||
 | 
			
		||||
  typedef HermOpAdaptor<LatticeFermionD> HermFineMatrix;
 | 
			
		||||
  HermFineMatrix FineHermOp(HermOpEO);
 | 
			
		||||
  
 | 
			
		||||
  LatticeFermion result(FrbGrid); result=Zero();
 | 
			
		||||
 | 
			
		||||
  LatticeFermion    src(FrbGrid); random(RNG5,src);
 | 
			
		||||
 | 
			
		||||
  // Run power method on FineHermOp
 | 
			
		||||
  PowerMethod<LatticeFermion>       PM;   PM(HermOpEO,src);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  ///////////// Coarse basis and Little Dirac Operator ///////
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  typedef GeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LittleDiracOperator;
 | 
			
		||||
  typedef LittleDiracOperator::CoarseVector CoarseVector;
 | 
			
		||||
 | 
			
		||||
  NextToNextToNextToNearestStencilGeometry5D geom(Coarse5d);
 | 
			
		||||
  NearestStencilGeometry5D geom_nn(Coarse5d);
 | 
			
		||||
  
 | 
			
		||||
  // Warning: This routine calls PVdagM.Op, not PVdagM.HermOp
 | 
			
		||||
  typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
 | 
			
		||||
  Subspace Aggregates(Coarse5d,FrbGrid,cb);
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  // Need to check about red-black grid coarsening
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  LittleDiracOperator LittleDiracOp(geom,FrbGrid,Coarse5d);
 | 
			
		||||
 | 
			
		||||
  bool load=false;
 | 
			
		||||
  if ( load ) {
 | 
			
		||||
    LoadBasis(Aggregates,"Subspace.scidac");
 | 
			
		||||
    LoadOperator(LittleDiracOp,"LittleDiracOp.scidac");
 | 
			
		||||
  } else {
 | 
			
		||||
    Aggregates.CreateSubspaceChebyshev(RNG5,HermOpEO,nbasis,
 | 
			
		||||
				       95.0,0.1,
 | 
			
		||||
				       //				     400,200,200 -- 48 iters
 | 
			
		||||
				       //				     600,200,200 -- 38 iters, 162s
 | 
			
		||||
				       //				     600,200,100 -- 38 iters, 169s
 | 
			
		||||
				       //				     600,200,50  -- 88 iters. 370s 
 | 
			
		||||
				       600,
 | 
			
		||||
				       200,
 | 
			
		||||
				       100,
 | 
			
		||||
				       0.0);
 | 
			
		||||
    LittleDiracOp.CoarsenOperator(FineHermOp,Aggregates);
 | 
			
		||||
    SaveBasis(Aggregates,"Subspace.scidac");
 | 
			
		||||
    SaveOperator(LittleDiracOp,"LittleDiracOp.scidac");
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  // Try projecting to one hop only
 | 
			
		||||
  LittleDiracOperator LittleDiracOpProj(geom_nn,FrbGrid,Coarse5d);
 | 
			
		||||
  LittleDiracOpProj.ProjectNearestNeighbour(0.2,LittleDiracOp);
 | 
			
		||||
 | 
			
		||||
  typedef HermitianLinearOperator<LittleDiracOperator,CoarseVector> HermMatrix;
 | 
			
		||||
  HermMatrix CoarseOp (LittleDiracOp);
 | 
			
		||||
  HermMatrix CoarseOpProj (LittleDiracOpProj);
 | 
			
		||||
  
 | 
			
		||||
  //////////////////////////////////////////
 | 
			
		||||
  // Build a coarse lanczos
 | 
			
		||||
  //////////////////////////////////////////
 | 
			
		||||
  Chebyshev<CoarseVector>      IRLCheby(0.5,60.0,71);  // 1 iter
 | 
			
		||||
  FunctionHermOp<CoarseVector> IRLOpCheby(IRLCheby,CoarseOp);
 | 
			
		||||
  PlainHermOp<CoarseVector>    IRLOp    (CoarseOp);
 | 
			
		||||
  int Nk=48;
 | 
			
		||||
  int Nm=64;
 | 
			
		||||
  int Nstop=Nk;
 | 
			
		||||
  ImplicitlyRestartedLanczos<CoarseVector> IRL(IRLOpCheby,IRLOp,Nstop,Nk,Nm,1.0e-5,20);
 | 
			
		||||
 | 
			
		||||
  int Nconv;
 | 
			
		||||
  std::vector<RealD>            eval(Nm);
 | 
			
		||||
  std::vector<CoarseVector>     evec(Nm,Coarse5d);
 | 
			
		||||
  CoarseVector c_src(Coarse5d); c_src=1.0;
 | 
			
		||||
  CoarseVector c_res(Coarse5d); 
 | 
			
		||||
  CoarseVector c_ref(Coarse5d); 
 | 
			
		||||
 | 
			
		||||
  PowerMethod<CoarseVector>       cPM;   cPM(CoarseOp,c_src);
 | 
			
		||||
 | 
			
		||||
  IRL.calc(eval,evec,c_src,Nconv);
 | 
			
		||||
  DeflatedGuesser<CoarseVector> DeflCoarseGuesser(evec,eval);
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  //////////////////////////////////////////
 | 
			
		||||
  // Build a coarse space solver
 | 
			
		||||
  //////////////////////////////////////////
 | 
			
		||||
  int maxit=20000;
 | 
			
		||||
  ConjugateGradient<CoarseVector>  CG(1.0e-8,maxit,false);
 | 
			
		||||
  ConjugateGradient<LatticeFermionD>  CGfine(1.0e-8,10000,false);
 | 
			
		||||
  ZeroGuesser<CoarseVector> CoarseZeroGuesser;
 | 
			
		||||
 | 
			
		||||
  //  HPDSolver<CoarseVector> HPDSolve(CoarseOp,CG,CoarseZeroGuesser);
 | 
			
		||||
  HPDSolver<CoarseVector> HPDSolve(CoarseOp,CG,DeflCoarseGuesser);
 | 
			
		||||
  c_res=Zero();
 | 
			
		||||
  HPDSolve(c_src,c_res); c_ref = c_res;
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Deflated (with real op EV's) solve for the projected coarse op
 | 
			
		||||
  // Work towards ADEF1 in the coarse space
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  HPDSolver<CoarseVector> HPDSolveProj(CoarseOpProj,CG,DeflCoarseGuesser);
 | 
			
		||||
  c_res=Zero();
 | 
			
		||||
  HPDSolveProj(c_src,c_res);
 | 
			
		||||
  c_res = c_res - c_ref;
 | 
			
		||||
  std::cout << "Projected solver error "<<norm2(c_res)<<std::endl;
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Coarse ADEF1 with deflation space
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////
 | 
			
		||||
  ChebyshevSmoother<CoarseVector,HermMatrix > CoarseSmoother(4.0,45.,16,CoarseOpProj);  // 311
 | 
			
		||||
  //  ChebyshevSmoother<CoarseVector,HermMatrix > CoarseSmoother(0.5,36.,10,CoarseOpProj);  // 311
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////
 | 
			
		||||
  // CG, Cheby mode spacing 200,200
 | 
			
		||||
  // Unprojected Coarse CG solve to 1e-8 : 190 iters, 4.9s
 | 
			
		||||
  // Unprojected Coarse CG solve to 4e-2 :  33 iters, 0.8s
 | 
			
		||||
  // Projected Coarse CG solve to 1e-8 : 100 iters, 0.36s
 | 
			
		||||
  ////////////////////////////////////////////////////////
 | 
			
		||||
  // CoarseSmoother(1.0,48.,8,CoarseOpProj); 48 evecs 
 | 
			
		||||
  ////////////////////////////////////////////////////////
 | 
			
		||||
  // ADEF1 Coarse solve to 1e-8 : 44 iters, 2.34s  2.1x gain
 | 
			
		||||
  // ADEF1 Coarse solve to 4e-2 : 7 iters, 0.4s
 | 
			
		||||
  // HDCG 38 iters 162s
 | 
			
		||||
  //
 | 
			
		||||
  // CoarseSmoother(1.0,40.,8,CoarseOpProj); 48 evecs 
 | 
			
		||||
  // ADEF1 Coarse solve to 1e-8 : 37 iters, 2.0s  2.1x gain
 | 
			
		||||
  // ADEF1 Coarse solve to 4e-2 : 6 iters, 0.36s
 | 
			
		||||
  // HDCG 38 iters 169s
 | 
			
		||||
 | 
			
		||||
  TwoLevelADEF1defl<CoarseVector>
 | 
			
		||||
    cADEF1(1.0e-8, 100,
 | 
			
		||||
	   CoarseOp,
 | 
			
		||||
	   CoarseSmoother,
 | 
			
		||||
	   evec,eval);
 | 
			
		||||
 | 
			
		||||
  c_res=Zero();
 | 
			
		||||
  cADEF1(c_src,c_res);
 | 
			
		||||
  c_res = c_res - c_ref;
 | 
			
		||||
  std::cout << "cADEF1 solver error "<<norm2(c_res)<<std::endl;
 | 
			
		||||
  
 | 
			
		||||
  cADEF1.Tolerance = 1.0e-9;
 | 
			
		||||
  c_res=Zero();
 | 
			
		||||
  cADEF1(c_src,c_res);
 | 
			
		||||
  c_res = c_res - c_ref;
 | 
			
		||||
  std::cout << "cADEF1 solver error "<<norm2(c_res)<<std::endl;
 | 
			
		||||
  
 | 
			
		||||
  //////////////////////////////////////////
 | 
			
		||||
  // Build a smoother
 | 
			
		||||
  //////////////////////////////////////////
 | 
			
		||||
  //  ChebyshevSmoother<LatticeFermionD,HermFineMatrix > Smoother(10.0,100.0,10,FineHermOp); //499
 | 
			
		||||
  //  ChebyshevSmoother<LatticeFermionD,HermFineMatrix > Smoother(3.0,100.0,10,FineHermOp);  //383
 | 
			
		||||
  //  ChebyshevSmoother<LatticeFermionD,HermFineMatrix > Smoother(1.0,100.0,10,FineHermOp);  //328
 | 
			
		||||
  //  std::vector<RealD> los({0.5,1.0,3.0}); // 147/142/146 nbasis 1
 | 
			
		||||
  //  std::vector<RealD> los({1.0,2.0}); // Nbasis 24: 88,86 iterations
 | 
			
		||||
  //  std::vector<RealD> los({2.0,4.0}); // Nbasis 32 == 52, iters
 | 
			
		||||
  //  std::vector<RealD> los({2.0,4.0}); // Nbasis 40 == 36,36 iters
 | 
			
		||||
 | 
			
		||||
  //
 | 
			
		||||
  // Turns approx 2700 iterations into 340 fine multiplies with Nbasis 40
 | 
			
		||||
  // Need to measure cost of coarse space.
 | 
			
		||||
  //
 | 
			
		||||
  // -- i) Reduce coarse residual   -- 0.04
 | 
			
		||||
  // -- ii) Lanczos on coarse space -- done
 | 
			
		||||
  // -- iii) Possible 1 hop project and/or preconditioning it - easy - PrecCG it and
 | 
			
		||||
  //         use a limited stencil. Reread BFM code to check on evecs / deflation strategy with prec
 | 
			
		||||
  //
 | 
			
		||||
  std::vector<RealD> los({3.0}); // Nbasis 40 == 36,36 iters
 | 
			
		||||
 | 
			
		||||
  //  std::vector<int> ords({7,8,10}); // Nbasis 40 == 40,38,36 iters (320,342,396 mults)
 | 
			
		||||
  std::vector<int> ords({7}); // Nbasis 40 == 40 iters (320 mults)  
 | 
			
		||||
 | 
			
		||||
  for(int l=0;l<los.size();l++){
 | 
			
		||||
 | 
			
		||||
    RealD lo = los[l];
 | 
			
		||||
 | 
			
		||||
    for(int o=0;o<ords.size();o++){
 | 
			
		||||
 | 
			
		||||
      ConjugateGradient<CoarseVector>  CGsloppy(4.0e-2,maxit,false);
 | 
			
		||||
      HPDSolver<CoarseVector> HPDSolveSloppy(CoarseOp,CGsloppy,DeflCoarseGuesser);
 | 
			
		||||
      
 | 
			
		||||
      //    ChebyshevSmoother<LatticeFermionD,HermFineMatrix > Smoother(lo,92,10,FineHermOp); // 36 best case
 | 
			
		||||
      ChebyshevSmoother<LatticeFermionD,HermFineMatrix > Smoother(lo,92,ords[o],FineHermOp);  // 311
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////////////
 | 
			
		||||
      // Build a HDCG solver
 | 
			
		||||
      //////////////////////////////////////////
 | 
			
		||||
      TwoLevelADEF2<LatticeFermion,CoarseVector,Subspace>
 | 
			
		||||
	HDCG(1.0e-8, 3000,
 | 
			
		||||
	     FineHermOp,
 | 
			
		||||
	     Smoother,
 | 
			
		||||
	     HPDSolveSloppy,
 | 
			
		||||
	     HPDSolve,
 | 
			
		||||
	     Aggregates);
 | 
			
		||||
 | 
			
		||||
      result=Zero();
 | 
			
		||||
      HDCG(src,result);
 | 
			
		||||
 | 
			
		||||
      TwoLevelADEF2<LatticeFermion,CoarseVector,Subspace>
 | 
			
		||||
	HDCGdefl(1.0e-8, 100,
 | 
			
		||||
		 FineHermOp,
 | 
			
		||||
		 Smoother,
 | 
			
		||||
		 cADEF1,
 | 
			
		||||
		 HPDSolve,
 | 
			
		||||
		 Aggregates);
 | 
			
		||||
      
 | 
			
		||||
      result=Zero();
 | 
			
		||||
      HDCGdefl(src,result);
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Standard CG
 | 
			
		||||
  result=Zero();
 | 
			
		||||
  CGfine(HermOpEO, src, result);
 | 
			
		||||
  
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
  return 0;
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										267
									
								
								tests/debug/Test_general_coarse_pvdagm.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										267
									
								
								tests/debug/Test_general_coarse_pvdagm.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,267 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./tests/Test_padded_cell.cc
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2023
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
#include <Grid/lattice/PaddedCell.h>
 | 
			
		||||
#include <Grid/stencil/GeneralLocalStencil.h>
 | 
			
		||||
 | 
			
		||||
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidual.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidualNonHermitian.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/BiCGSTAB.h>
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class HermOpAdaptor : public LinearOperatorBase<Field>
 | 
			
		||||
{
 | 
			
		||||
  LinearOperatorBase<Field> & wrapped;
 | 
			
		||||
public:
 | 
			
		||||
  HermOpAdaptor(LinearOperatorBase<Field> &wrapme) : wrapped(wrapme)  {};
 | 
			
		||||
  void OpDiag (const Field &in, Field &out) {    assert(0);  }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {    assert(0);  }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){    assert(0);  };
 | 
			
		||||
  void Op     (const Field &in, Field &out){
 | 
			
		||||
    wrapped.HermOp(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void AdjOp     (const Field &in, Field &out){
 | 
			
		||||
    wrapped.HermOp(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){    assert(0);  }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){
 | 
			
		||||
    wrapped.HermOp(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Matrix,class Field>
 | 
			
		||||
class PVdagMLinearOperator : public LinearOperatorBase<Field> {
 | 
			
		||||
  Matrix &_Mat;
 | 
			
		||||
  Matrix &_PV;
 | 
			
		||||
public:
 | 
			
		||||
  PVdagMLinearOperator(Matrix &Mat,Matrix &PV): _Mat(Mat),_PV(PV){};
 | 
			
		||||
 | 
			
		||||
  void OpDiag (const Field &in, Field &out) {    assert(0);  }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {    assert(0);  }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){    assert(0);  };
 | 
			
		||||
  void Op     (const Field &in, Field &out){
 | 
			
		||||
    Field tmp(in.Grid());
 | 
			
		||||
    _Mat.M(in,tmp);
 | 
			
		||||
    _PV.Mdag(tmp,out);
 | 
			
		||||
  }
 | 
			
		||||
  void AdjOp     (const Field &in, Field &out){
 | 
			
		||||
    Field tmp(in.Grid());
 | 
			
		||||
    _PV.M(tmp,out);
 | 
			
		||||
    _Mat.Mdag(in,tmp);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){    assert(0);  }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){
 | 
			
		||||
    std::cout << "HermOp"<<std::endl;
 | 
			
		||||
    Field tmp(in.Grid());
 | 
			
		||||
    _Mat.M(in,tmp);
 | 
			
		||||
    _PV.Mdag(tmp,out);
 | 
			
		||||
    _PV.M(out,tmp);
 | 
			
		||||
    _Mat.Mdag(tmp,out);
 | 
			
		||||
    std::cout << "HermOp done "<<norm2(out)<<std::endl;
 | 
			
		||||
    
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field> class DumbOperator  : public LinearOperatorBase<Field> {
 | 
			
		||||
public:
 | 
			
		||||
  LatticeComplex scale;
 | 
			
		||||
  DumbOperator(GridBase *grid) : scale(grid)
 | 
			
		||||
  {
 | 
			
		||||
    scale = 0.0;
 | 
			
		||||
    LatticeComplex scalesft(grid);
 | 
			
		||||
    LatticeComplex scaletmp(grid);
 | 
			
		||||
    for(int d=0;d<4;d++){
 | 
			
		||||
      Lattice<iScalar<vInteger> > x(grid); LatticeCoordinate(x,d+1);
 | 
			
		||||
      LatticeCoordinate(scaletmp,d+1);
 | 
			
		||||
      scalesft = Cshift(scaletmp,d+1,1);
 | 
			
		||||
      scale = 100.0*scale + where( mod(x    ,2)==(Integer)0, scalesft,scaletmp);
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << " scale\n" << scale << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  // Support for coarsening to a multigrid
 | 
			
		||||
  void OpDiag (const Field &in, Field &out) {};
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp){};
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out) {};
 | 
			
		||||
 | 
			
		||||
  void Op     (const Field &in, Field &out){
 | 
			
		||||
    out = scale * in;
 | 
			
		||||
  }
 | 
			
		||||
  void AdjOp  (const Field &in, Field &out){
 | 
			
		||||
    out = scale * in;
 | 
			
		||||
  }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){
 | 
			
		||||
    double n1, n2;
 | 
			
		||||
    HermOpAndNorm(in,out,n1,n2);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,double &n1,double &n2){
 | 
			
		||||
    ComplexD dot;
 | 
			
		||||
 | 
			
		||||
    out = scale * in;
 | 
			
		||||
 | 
			
		||||
    dot= innerProduct(in,out);
 | 
			
		||||
    n1=real(dot);
 | 
			
		||||
 | 
			
		||||
    dot = innerProduct(out,out);
 | 
			
		||||
    n2=real(dot);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
int main (int argc, char ** argv)
 | 
			
		||||
{
 | 
			
		||||
  Grid_init(&argc,&argv);
 | 
			
		||||
 | 
			
		||||
  const int Ls=2;
 | 
			
		||||
 | 
			
		||||
  GridCartesian         * UGrid   = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
 | 
			
		||||
  GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
 | 
			
		||||
 | 
			
		||||
  GridCartesian         * FGrid   = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
 | 
			
		||||
  GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
 | 
			
		||||
 | 
			
		||||
  // Construct a coarsened grid
 | 
			
		||||
  Coordinate clatt = GridDefaultLatt();
 | 
			
		||||
  for(int d=0;d<clatt.size();d++){
 | 
			
		||||
    clatt[d] = clatt[d]/4;
 | 
			
		||||
  }
 | 
			
		||||
  GridCartesian *Coarse4d =  SpaceTimeGrid::makeFourDimGrid(clatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());;
 | 
			
		||||
  GridCartesian *Coarse5d =  SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
 | 
			
		||||
 | 
			
		||||
  std::vector<int> seeds4({1,2,3,4});
 | 
			
		||||
  std::vector<int> seeds5({5,6,7,8});
 | 
			
		||||
  std::vector<int> cseeds({5,6,7,8});
 | 
			
		||||
  GridParallelRNG          RNG5(FGrid);   RNG5.SeedFixedIntegers(seeds5);
 | 
			
		||||
  GridParallelRNG          RNG4(UGrid);   RNG4.SeedFixedIntegers(seeds4);
 | 
			
		||||
  GridParallelRNG          CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds);
 | 
			
		||||
 | 
			
		||||
  LatticeFermion    src(FGrid); random(RNG5,src);
 | 
			
		||||
  LatticeFermion result(FGrid); result=Zero();
 | 
			
		||||
  LatticeFermion    ref(FGrid); ref=Zero();
 | 
			
		||||
  LatticeFermion    tmp(FGrid);
 | 
			
		||||
  LatticeFermion    err(FGrid);
 | 
			
		||||
  LatticeGaugeField Umu(UGrid);
 | 
			
		||||
 | 
			
		||||
  FieldMetaData header;
 | 
			
		||||
  std::string file("ckpoint_lat.4000");
 | 
			
		||||
  NerscIO::readConfiguration(Umu,header,file);
 | 
			
		||||
  //Umu = 1.0;
 | 
			
		||||
  
 | 
			
		||||
  RealD mass=0.5;
 | 
			
		||||
  RealD M5=1.8;
 | 
			
		||||
 | 
			
		||||
  DomainWallFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
 | 
			
		||||
  DomainWallFermionD Dpv(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,1.0,M5);
 | 
			
		||||
 | 
			
		||||
  const int nbasis = 1;
 | 
			
		||||
  const int cb = 0 ;
 | 
			
		||||
  LatticeFermion prom(FGrid);
 | 
			
		||||
 | 
			
		||||
  typedef GeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LittleDiracOperator;
 | 
			
		||||
  typedef LittleDiracOperator::CoarseVector CoarseVector;
 | 
			
		||||
 | 
			
		||||
  NextToNearestStencilGeometry5D geom(Coarse5d);
 | 
			
		||||
 | 
			
		||||
  std::cout<<GridLogMessage<<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage<<std::endl;
 | 
			
		||||
  
 | 
			
		||||
  PVdagMLinearOperator<DomainWallFermionD,LatticeFermionD> PVdagM(Ddwf,Dpv);
 | 
			
		||||
  HermOpAdaptor<LatticeFermionD> HOA(PVdagM);
 | 
			
		||||
 | 
			
		||||
  // Run power method on HOA??
 | 
			
		||||
  PowerMethod<LatticeFermion>       PM;   PM(HOA,src);
 | 
			
		||||
 
 | 
			
		||||
  // Warning: This routine calls PVdagM.Op, not PVdagM.HermOp
 | 
			
		||||
  typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
 | 
			
		||||
  Subspace AggregatesPD(Coarse5d,FGrid,cb);
 | 
			
		||||
  AggregatesPD.CreateSubspaceChebyshev(RNG5,
 | 
			
		||||
				       HOA,
 | 
			
		||||
				       nbasis,
 | 
			
		||||
				       5000.0,
 | 
			
		||||
				       0.02,
 | 
			
		||||
				       100,
 | 
			
		||||
				       50,
 | 
			
		||||
				       50,
 | 
			
		||||
				       0.0);
 | 
			
		||||
  
 | 
			
		||||
  LittleDiracOperator LittleDiracOpPV(geom,FGrid,Coarse5d);
 | 
			
		||||
  LittleDiracOpPV.CoarsenOperator(PVdagM,AggregatesPD);
 | 
			
		||||
 | 
			
		||||
  std::cout<<GridLogMessage<<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage<<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage<<"Testing coarsened operator "<<std::endl;
 | 
			
		||||
  
 | 
			
		||||
  CoarseVector c_src (Coarse5d);
 | 
			
		||||
  CoarseVector c_res (Coarse5d);
 | 
			
		||||
  CoarseVector c_proj(Coarse5d);
 | 
			
		||||
 | 
			
		||||
  std::vector<LatticeFermion> subspace(nbasis,FGrid);
 | 
			
		||||
  subspace=AggregatesPD.subspace;
 | 
			
		||||
 | 
			
		||||
  Complex one(1.0);
 | 
			
		||||
  c_src = one;  // 1 in every element for vector 1.
 | 
			
		||||
  blockPromote(c_src,err,subspace);
 | 
			
		||||
 | 
			
		||||
  prom=Zero();
 | 
			
		||||
  for(int b=0;b<nbasis;b++){
 | 
			
		||||
    prom=prom+subspace[b];
 | 
			
		||||
  }
 | 
			
		||||
  err=err-prom; 
 | 
			
		||||
  std::cout<<GridLogMessage<<"Promoted back from subspace: err "<<norm2(err)<<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage<<"c_src "<<norm2(c_src)<<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage<<"prom  "<<norm2(prom)<<std::endl;
 | 
			
		||||
 | 
			
		||||
  PVdagM.Op(prom,tmp);
 | 
			
		||||
  blockProject(c_proj,tmp,subspace);
 | 
			
		||||
  std::cout<<GridLogMessage<<" Called Big Dirac Op "<<norm2(tmp)<<std::endl;
 | 
			
		||||
 | 
			
		||||
  LittleDiracOpPV.M(c_src,c_res);
 | 
			
		||||
  std::cout<<GridLogMessage<<" Called Little Dirac Op c_src "<< norm2(c_src) << "  c_res "<< norm2(c_res) <<std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout<<GridLogMessage<<"Little dop : "<<norm2(c_res)<<std::endl;
 | 
			
		||||
  //  std::cout<<GridLogMessage<<" Little "<< c_res<<std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout<<GridLogMessage<<"Big dop in subspace : "<<norm2(c_proj)<<std::endl;
 | 
			
		||||
  //  std::cout<<GridLogMessage<<" Big "<< c_proj<<std::endl;
 | 
			
		||||
  c_proj = c_proj - c_res;
 | 
			
		||||
  std::cout<<GridLogMessage<<" ldop error: "<<norm2(c_proj)<<std::endl;
 | 
			
		||||
  //  std::cout<<GridLogMessage<<" error "<< c_proj<<std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout<<GridLogMessage<<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage<<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage << "Done "<< std::endl;
 | 
			
		||||
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
  return 0;
 | 
			
		||||
}
 | 
			
		||||
		Reference in New Issue
	
	Block a user