mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-10-24 17:54:47 +01:00 
			
		
		
		
	Compare commits
	
		
			1 Commits
		
	
	
		
			specflow
			...
			6d7219b59d
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
|  | 6d7219b59d | 
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							| @@ -1,2 +0,0 @@ | ||||
|  | ||||
| mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench -DGRID_SYCL | ||||
| @@ -1,5 +0,0 @@ | ||||
| CXX=hipcc | ||||
| MPICXX=mpicxx  | ||||
| CXXFLAGS="-fPIC -I{$ROCM_PATH}/include/ -I${MPICH_DIR}/include -L/lib64 -I/opt/cray/pe/mpich/8.1.28/ofi/gnu/12.3/include -DGRID_HIP" | ||||
| LDFLAGS="-L/lib64 -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lamdhip64 -lhipblas -lrocblas -lmpi_gnu_123" | ||||
| hipcc $CXXFLAGS $LDFLAGS BatchBlasBench.cc -o BatchBlasBench | ||||
| @@ -1,2 +0,0 @@ | ||||
|  | ||||
| mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench -DGRID_SYCL | ||||
| @@ -59,7 +59,6 @@ Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| #include <Grid/lattice/Lattice.h>       | ||||
| #include <Grid/cshift/Cshift.h>        | ||||
| #include <Grid/stencil/Stencil.h>       | ||||
| #include <Grid/stencil/GeneralLocalStencil.h>       | ||||
| #include <Grid/parallelIO/BinaryIO.h> | ||||
| #include <Grid/algorithms/Algorithms.h>    | ||||
| NAMESPACE_CHECK(GridCore) | ||||
|   | ||||
| @@ -30,14 +30,9 @@ directory | ||||
|  | ||||
| #include <type_traits> | ||||
| #include <cassert> | ||||
| #include <exception> | ||||
|  | ||||
| #define NAMESPACE_BEGIN(A) namespace A { | ||||
| #define NAMESPACE_END(A)   } | ||||
| #define GRID_NAMESPACE_BEGIN NAMESPACE_BEGIN(Grid) | ||||
| #define GRID_NAMESPACE_END   NAMESPACE_END(Grid) | ||||
| #define NAMESPACE_CHECK(x) struct namespaceTEST##x {};  static_assert(std::is_same<namespaceTEST##x, ::namespaceTEST##x>::value,"Not in :: at"  );  | ||||
|  | ||||
| #define EXCEPTION_CHECK_BEGIN(A) try { | ||||
| #define EXCEPTION_CHECK_END(A)   } catch ( std::exception e ) { BACKTRACEFP(stderr); std::cerr << __PRETTY_FUNCTION__ << " : " <<__LINE__<< " Caught exception "<<e.what()<<std::endl; throw; } | ||||
|  | ||||
|   | ||||
| @@ -29,9 +29,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #ifndef GRID_ALGORITHMS_H | ||||
| #define GRID_ALGORITHMS_H | ||||
|  | ||||
| NAMESPACE_CHECK(blas); | ||||
| #include <Grid/algorithms/blas/BatchedBlas.h> | ||||
|  | ||||
| NAMESPACE_CHECK(algorithms); | ||||
| #include <Grid/algorithms/SparseMatrix.h> | ||||
| #include <Grid/algorithms/LinearOperator.h> | ||||
| @@ -47,11 +44,7 @@ NAMESPACE_CHECK(SparseMatrix); | ||||
| #include <Grid/algorithms/approx/RemezGeneral.h> | ||||
| #include <Grid/algorithms/approx/ZMobius.h> | ||||
| NAMESPACE_CHECK(approx); | ||||
| #include <Grid/algorithms/deflation/Deflation.h> | ||||
| #include <Grid/algorithms/deflation/MultiRHSBlockProject.h> | ||||
| #include <Grid/algorithms/deflation/MultiRHSDeflation.h> | ||||
| #include <Grid/algorithms/deflation/MultiRHSBlockCGLinalg.h> | ||||
| NAMESPACE_CHECK(deflation); | ||||
| #include <Grid/algorithms/iterative/Deflation.h> | ||||
| #include <Grid/algorithms/iterative/ConjugateGradient.h> | ||||
| NAMESPACE_CHECK(ConjGrad); | ||||
| #include <Grid/algorithms/iterative/BiCGSTAB.h> | ||||
| @@ -73,13 +66,11 @@ NAMESPACE_CHECK(BiCGSTAB); | ||||
| #include <Grid/algorithms/iterative/FlexibleCommunicationAvoidingGeneralisedMinimalResidual.h> | ||||
| #include <Grid/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h> | ||||
| #include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h> | ||||
| #include <Grid/algorithms/iterative/SimpleLanczos.h> | ||||
| #include <Grid/algorithms/iterative/PowerMethod.h> | ||||
| #include <Grid/algorithms/iterative/AdefGeneric.h> | ||||
| #include <Grid/algorithms/iterative/AdefMrhs.h> | ||||
|  | ||||
| NAMESPACE_CHECK(PowerMethod); | ||||
| #include <Grid/algorithms/multigrid/MultiGrid.h> | ||||
| NAMESPACE_CHECK(multigrid); | ||||
| #include <Grid/algorithms/CoarsenedMatrix.h> | ||||
| NAMESPACE_CHECK(CoarsendMatrix); | ||||
| #include <Grid/algorithms/FFT.h> | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -56,6 +56,243 @@ inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner, | ||||
|   blockSum(CoarseInner,fine_inner_msk); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| class Geometry { | ||||
| public: | ||||
|   int npoint; | ||||
|   int base; | ||||
|   std::vector<int> directions   ; | ||||
|   std::vector<int> displacements; | ||||
|   std::vector<int> points_dagger; | ||||
| 
 | ||||
|   Geometry(int _d)  { | ||||
|      | ||||
|     base = (_d==5) ? 1:0; | ||||
| 
 | ||||
|     // make coarse grid stencil for 4d , not 5d
 | ||||
|     if ( _d==5 ) _d=4; | ||||
| 
 | ||||
|     npoint = 2*_d+1; | ||||
|     directions.resize(npoint); | ||||
|     displacements.resize(npoint); | ||||
|     points_dagger.resize(npoint); | ||||
|     for(int d=0;d<_d;d++){ | ||||
|       directions[d   ] = d+base; | ||||
|       directions[d+_d] = d+base; | ||||
|       displacements[d  ] = +1; | ||||
|       displacements[d+_d]= -1; | ||||
|       points_dagger[d   ] = d+_d; | ||||
|       points_dagger[d+_d] = d; | ||||
|     } | ||||
|     directions   [2*_d]=0; | ||||
|     displacements[2*_d]=0; | ||||
|     points_dagger[2*_d]=2*_d; | ||||
|   } | ||||
| 
 | ||||
|   int point(int dir, int disp) { | ||||
|     assert(disp == -1 || disp == 0 || disp == 1); | ||||
|     assert(base+0 <= dir && dir < base+4); | ||||
| 
 | ||||
|     // directions faster index = new indexing
 | ||||
|     // 4d (base = 0):
 | ||||
|     // point 0  1  2  3  4  5  6  7  8
 | ||||
|     // dir   0  1  2  3  0  1  2  3  0
 | ||||
|     // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | ||||
|     // 5d (base = 1):
 | ||||
|     // point 0  1  2  3  4  5  6  7  8
 | ||||
|     // dir   1  2  3  4  1  2  3  4  0
 | ||||
|     // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | ||||
| 
 | ||||
|     // displacements faster index = old indexing
 | ||||
|     // 4d (base = 0):
 | ||||
|     // point 0  1  2  3  4  5  6  7  8
 | ||||
|     // dir   0  0  1  1  2  2  3  3  0
 | ||||
|     // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | ||||
|     // 5d (base = 1):
 | ||||
|     // point 0  1  2  3  4  5  6  7  8
 | ||||
|     // dir   1  1  2  2  3  3  4  4  0
 | ||||
|     // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | ||||
| 
 | ||||
|     if(dir == 0 and disp == 0) | ||||
|       return 8; | ||||
|     else // New indexing
 | ||||
|       return (1 - disp) / 2 * 4 + dir - base; | ||||
|     // else // Old indexing
 | ||||
|     //   return (4 * (dir - base) + 1 - disp) / 2;
 | ||||
|   } | ||||
| }; | ||||
|    | ||||
| template<class Fobj,class CComplex,int nbasis> | ||||
| class Aggregation   { | ||||
| public: | ||||
|   typedef iVector<CComplex,nbasis >             siteVector; | ||||
|   typedef Lattice<siteVector>                 CoarseVector; | ||||
|   typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix; | ||||
| 
 | ||||
|   typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | ||||
|   typedef Lattice<Fobj >        FineField; | ||||
| 
 | ||||
|   GridBase *CoarseGrid; | ||||
|   GridBase *FineGrid; | ||||
|   std::vector<Lattice<Fobj> > subspace; | ||||
|   int checkerboard; | ||||
|   int Checkerboard(void){return checkerboard;} | ||||
|   Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :  | ||||
|     CoarseGrid(_CoarseGrid), | ||||
|     FineGrid(_FineGrid), | ||||
|     subspace(nbasis,_FineGrid), | ||||
|     checkerboard(_checkerboard) | ||||
|   { | ||||
|   }; | ||||
|    | ||||
|   void Orthogonalise(void){ | ||||
|     CoarseScalar InnerProd(CoarseGrid);  | ||||
|     std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl; | ||||
|     blockOrthogonalise(InnerProd,subspace); | ||||
|   }  | ||||
|   void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){ | ||||
|     blockProject(CoarseVec,FineVec,subspace); | ||||
|   } | ||||
|   void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){ | ||||
|     FineVec.Checkerboard() = subspace[0].Checkerboard(); | ||||
|     blockPromote(CoarseVec,FineVec,subspace); | ||||
|   } | ||||
| 
 | ||||
|   virtual void CreateSubspace(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) { | ||||
| 
 | ||||
|     RealD scale; | ||||
| 
 | ||||
|     ConjugateGradient<FineField> CG(1.0e-2,100,false); | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
| 
 | ||||
|     for(int b=0;b<nn;b++){ | ||||
|        | ||||
|       subspace[b] = Zero(); | ||||
|       gaussian(RNG,noise); | ||||
|       scale = std::pow(norm2(noise),-0.5);  | ||||
|       noise=noise*scale; | ||||
|        | ||||
|       hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
| 
 | ||||
|       for(int i=0;i<1;i++){ | ||||
| 
 | ||||
| 	CG(hermop,noise,subspace[b]); | ||||
| 
 | ||||
| 	noise = subspace[b]; | ||||
| 	scale = std::pow(norm2(noise),-0.5);  | ||||
| 	noise=noise*scale; | ||||
| 
 | ||||
|       } | ||||
| 
 | ||||
|       hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl; | ||||
|       subspace[b]   = noise; | ||||
| 
 | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////
 | ||||
|   // World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
 | ||||
|   // and this is the best I found
 | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////
 | ||||
| 
 | ||||
|   virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop, | ||||
| 				       int nn, | ||||
| 				       double hi, | ||||
| 				       double lo, | ||||
| 				       int orderfilter, | ||||
| 				       int ordermin, | ||||
| 				       int orderstep, | ||||
| 				       double filterlo | ||||
| 				       ) { | ||||
| 
 | ||||
|     RealD scale; | ||||
| 
 | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|     FineField tmp(FineGrid); | ||||
| 
 | ||||
|     // New normalised noise
 | ||||
|     gaussian(RNG,noise); | ||||
|     scale = std::pow(norm2(noise),-0.5);  | ||||
|     noise=noise*scale; | ||||
| 
 | ||||
|     // Initial matrix element
 | ||||
|     hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
| 
 | ||||
|     int b =0; | ||||
|     { | ||||
|       // Filter
 | ||||
|       Chebyshev<FineField> Cheb(lo,hi,orderfilter); | ||||
|       Cheb(hermop,noise,Mn); | ||||
|       // normalise
 | ||||
|       scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale; | ||||
|       subspace[b]   = Mn; | ||||
|       hermop.Op(Mn,tmp);  | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       b++; | ||||
|     } | ||||
| 
 | ||||
|     // Generate a full sequence of Chebyshevs
 | ||||
|     { | ||||
|       lo=filterlo; | ||||
|       noise=Mn; | ||||
| 
 | ||||
|       FineField T0(FineGrid); T0 = noise;   | ||||
|       FineField T1(FineGrid);  | ||||
|       FineField T2(FineGrid); | ||||
|       FineField y(FineGrid); | ||||
|        | ||||
|       FineField *Tnm = &T0; | ||||
|       FineField *Tn  = &T1; | ||||
|       FineField *Tnp = &T2; | ||||
| 
 | ||||
|       // Tn=T1 = (xscale M + mscale)in
 | ||||
|       RealD xscale = 2.0/(hi-lo); | ||||
|       RealD mscale = -(hi+lo)/(hi-lo); | ||||
|       hermop.HermOp(T0,y); | ||||
|       T1=y*xscale+noise*mscale; | ||||
| 
 | ||||
|       for(int n=2;n<=ordermin+orderstep*(nn-2);n++){ | ||||
| 	 | ||||
| 	hermop.HermOp(*Tn,y); | ||||
| 
 | ||||
| 	autoView( y_v , y, AcceleratorWrite); | ||||
| 	autoView( Tn_v , (*Tn), AcceleratorWrite); | ||||
| 	autoView( Tnp_v , (*Tnp), AcceleratorWrite); | ||||
| 	autoView( Tnm_v , (*Tnm), AcceleratorWrite); | ||||
| 	const int Nsimd = CComplex::Nsimd(); | ||||
| 	accelerator_for(ss, FineGrid->oSites(), Nsimd, { | ||||
| 	  coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss)); | ||||
| 	  coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss)); | ||||
|         }); | ||||
| 
 | ||||
| 	// Possible more fine grained control is needed than a linear sweep,
 | ||||
| 	// but huge productivity gain if this is simple algorithm and not a tunable
 | ||||
| 	int m =1; | ||||
| 	if ( n>=ordermin ) m=n-ordermin; | ||||
| 	if ( (m%orderstep)==0 ) {  | ||||
| 	  Mn=*Tnp; | ||||
| 	  scale = std::pow(norm2(Mn),-0.5);         Mn=Mn*scale; | ||||
| 	  subspace[b] = Mn; | ||||
| 	  hermop.Op(Mn,tmp);  | ||||
| 	  std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
| 	  b++; | ||||
| 	} | ||||
| 
 | ||||
| 	// Cycle pointers to avoid copies
 | ||||
| 	FineField *swizzle = Tnm; | ||||
| 	Tnm    =Tn; | ||||
| 	Tn     =Tnp; | ||||
| 	Tnp    =swizzle; | ||||
| 	   | ||||
|       } | ||||
|     } | ||||
|     assert(b==nn); | ||||
|   } | ||||
| 
 | ||||
| }; | ||||
| 
 | ||||
| // Fine Object == (per site) type of fine field
 | ||||
| // nbasis      == number of deflation vectors
 | ||||
| template<class Fobj,class CComplex,int nbasis> | ||||
| @@ -99,7 +336,7 @@ public: | ||||
|   CoarseMatrix AselfInvEven; | ||||
|   CoarseMatrix AselfInvOdd; | ||||
| 
 | ||||
|   deviceVector<RealD> dag_factor; | ||||
|   Vector<RealD> dag_factor; | ||||
| 
 | ||||
|   ///////////////////////
 | ||||
|   // Interface
 | ||||
| @@ -124,13 +361,9 @@ public: | ||||
|     int npoint = geom.npoint; | ||||
|     typedef LatticeView<Cobj> Aview; | ||||
|        | ||||
|     deviceVector<Aview> AcceleratorViewContainer(geom.npoint); | ||||
|     hostVector<Aview>   hAcceleratorViewContainer(geom.npoint); | ||||
|     Vector<Aview> AcceleratorViewContainer; | ||||
|    | ||||
|     for(int p=0;p<geom.npoint;p++) { | ||||
|       hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead); | ||||
|       acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]); | ||||
|     } | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead)); | ||||
|     Aview *Aview_p = & AcceleratorViewContainer[0]; | ||||
| 
 | ||||
|     const int Nsimd = CComplex::Nsimd(); | ||||
| @@ -165,7 +398,7 @@ public: | ||||
|       coalescedWrite(out_v[ss](b),res); | ||||
|       }); | ||||
| 
 | ||||
|     for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose(); | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose(); | ||||
|   }; | ||||
| 
 | ||||
|   void Mdag (const CoarseVector &in, CoarseVector &out) | ||||
| @@ -194,14 +427,9 @@ public: | ||||
|     int npoint = geom.npoint; | ||||
|     typedef LatticeView<Cobj> Aview; | ||||
| 
 | ||||
|     Vector<Aview> AcceleratorViewContainer; | ||||
| 
 | ||||
|     deviceVector<Aview> AcceleratorViewContainer(geom.npoint); | ||||
|     hostVector<Aview>   hAcceleratorViewContainer(geom.npoint); | ||||
|    | ||||
|     for(int p=0;p<geom.npoint;p++) { | ||||
|       hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead); | ||||
|       acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]); | ||||
|     } | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead)); | ||||
|     Aview *Aview_p = & AcceleratorViewContainer[0]; | ||||
| 
 | ||||
|     const int Nsimd = CComplex::Nsimd(); | ||||
| @@ -210,10 +438,10 @@ public: | ||||
| 
 | ||||
|     int osites=Grid()->oSites(); | ||||
| 
 | ||||
|     deviceVector<int> points(geom.npoint); | ||||
|     for(int p=0; p<geom.npoint; p++) {  | ||||
|       acceleratorPut(points[p],geom.points_dagger[p]); | ||||
|     } | ||||
|     Vector<int> points(geom.npoint, 0); | ||||
|     for(int p=0; p<geom.npoint; p++) | ||||
|       points[p] = geom.points_dagger[p]; | ||||
| 
 | ||||
|     auto points_p = &points[0]; | ||||
| 
 | ||||
|     RealD* dag_factor_p = &dag_factor[0]; | ||||
| @@ -245,7 +473,7 @@ public: | ||||
|       coalescedWrite(out_v[ss](b),res); | ||||
|       }); | ||||
| 
 | ||||
|     for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose(); | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose(); | ||||
|   } | ||||
| 
 | ||||
|   void MdirComms(const CoarseVector &in) | ||||
| @@ -260,14 +488,8 @@ public: | ||||
|     out.Checkerboard() = in.Checkerboard(); | ||||
| 
 | ||||
|     typedef LatticeView<Cobj> Aview; | ||||
| 
 | ||||
|     deviceVector<Aview> AcceleratorViewContainer(geom.npoint); | ||||
|     hostVector<Aview>   hAcceleratorViewContainer(geom.npoint); | ||||
|    | ||||
|     for(int p=0;p<geom.npoint;p++) { | ||||
|       hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead); | ||||
|       acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]); | ||||
|     } | ||||
|     Vector<Aview> AcceleratorViewContainer; | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead)); | ||||
|     Aview *Aview_p = & AcceleratorViewContainer[0]; | ||||
| 
 | ||||
|     autoView( out_v , out, AcceleratorWrite); | ||||
| @@ -300,7 +522,7 @@ public: | ||||
|       } | ||||
|       coalescedWrite(out_v[ss](b),res); | ||||
|     }); | ||||
|     for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose(); | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose(); | ||||
|   } | ||||
|   void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out) | ||||
|   { | ||||
| @@ -484,20 +706,14 @@ public: | ||||
| 
 | ||||
|     // determine in what order we need the points
 | ||||
|     int npoint = geom.npoint-1; | ||||
|     deviceVector<int> points(npoint); | ||||
|     for(int p=0; p<npoint; p++) { | ||||
|       int val = (dag && !hermitian) ? geom.points_dagger[p] : p; | ||||
|       acceleratorPut(points[p], val); | ||||
|     } | ||||
|     Vector<int> points(npoint, 0); | ||||
|     for(int p=0; p<npoint; p++) | ||||
|       points[p] = (dag && !hermitian) ? geom.points_dagger[p] : p; | ||||
| 
 | ||||
|     auto points_p = &points[0]; | ||||
| 
 | ||||
|     deviceVector<Aview> AcceleratorViewContainer(geom.npoint); | ||||
|     hostVector<Aview>   hAcceleratorViewContainer(geom.npoint); | ||||
|    | ||||
|     for(int p=0;p<geom.npoint;p++) { | ||||
|       hAcceleratorViewContainer[p] = a[p].View(AcceleratorRead); | ||||
|       acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]); | ||||
|     } | ||||
|     Vector<Aview> AcceleratorViewContainer; | ||||
|     for(int p=0;p<npoint;p++) AcceleratorViewContainer.push_back(a[p].View(AcceleratorRead)); | ||||
|     Aview *Aview_p = & AcceleratorViewContainer[0]; | ||||
| 
 | ||||
|     const int Nsimd = CComplex::Nsimd(); | ||||
| @@ -560,7 +776,7 @@ public: | ||||
|       }); | ||||
|     } | ||||
| 
 | ||||
|     for(int p=0;p<npoint;p++) hAcceleratorViewContainer[p].ViewClose(); | ||||
|     for(int p=0;p<npoint;p++) AcceleratorViewContainer[p].ViewClose(); | ||||
|   } | ||||
|    | ||||
|   CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) 	: | ||||
| @@ -611,13 +827,11 @@ public: | ||||
|     } | ||||
| 
 | ||||
|     // GPU readable prefactor
 | ||||
|     std::vector<RealD> h_dag_factor(nbasis*nbasis); | ||||
|     thread_for(i, nbasis*nbasis, { | ||||
|       int j = i/nbasis; | ||||
|       int k = i%nbasis; | ||||
|       h_dag_factor[i] = dag_factor_eigen(j, k); | ||||
|       dag_factor[i] = dag_factor_eigen(j, k); | ||||
|     }); | ||||
|     acceleratorCopyToDevice(&h_dag_factor[0],&dag_factor[0],dag_factor.size()*sizeof(RealD)); | ||||
|   } | ||||
| 
 | ||||
|   void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop, | ||||
| @@ -168,7 +168,6 @@ public: | ||||
|   template<class vobj> | ||||
|   void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int sign){ | ||||
| #ifndef HAVE_FFTW | ||||
|     std::cerr << "FFTW is not compiled but is called"<<std::endl; | ||||
|     assert(0); | ||||
| #else | ||||
|     conformable(result.Grid(),vgrid); | ||||
| @@ -191,7 +190,6 @@ public: | ||||
|        | ||||
|     Lattice<sobj> pgbuf(&pencil_g); | ||||
|     autoView(pgbuf_v , pgbuf, CpuWrite); | ||||
|     //std::cout << "CPU view" << std::endl; | ||||
|  | ||||
|     typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar; | ||||
|     typedef typename FFTW<scalar>::FFTW_plan   FFTW_plan; | ||||
| @@ -215,7 +213,6 @@ public: | ||||
|     else if ( sign == forward ) div = 1.0; | ||||
|     else assert(0); | ||||
|        | ||||
|     //std::cout << GridLogPerformance<<"Making FFTW plan" << std::endl; | ||||
|     FFTW_plan p; | ||||
|     { | ||||
|       FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0]; | ||||
| @@ -229,7 +226,6 @@ public: | ||||
|     } | ||||
|        | ||||
|     // Barrel shift and collect global pencil | ||||
|     //std::cout << GridLogPerformance<<"Making pencil" << std::endl; | ||||
|     Coordinate lcoor(Nd), gcoor(Nd); | ||||
|     result = source; | ||||
|     int pc = processor_coor[dim]; | ||||
| @@ -251,7 +247,6 @@ public: | ||||
|       } | ||||
|     } | ||||
|        | ||||
|     //std::cout <<GridLogPerformance<< "Looping orthog" << std::endl; | ||||
|     // Loop over orthog coords | ||||
|     int NN=pencil_g.lSites(); | ||||
|     GridStopWatch timer; | ||||
| @@ -274,7 +269,6 @@ public: | ||||
|     usec += timer.useconds(); | ||||
|     flops+= flops_call*NN; | ||||
|        | ||||
|     //std::cout <<GridLogPerformance<< "Writing back results " << std::endl; | ||||
|     // writing out result | ||||
|     { | ||||
|       autoView(pgbuf_v,pgbuf,CpuRead); | ||||
| @@ -291,7 +285,6 @@ public: | ||||
|     } | ||||
|     result = result*div; | ||||
|        | ||||
|     //std::cout <<GridLogPerformance<< "Destroying plan " << std::endl; | ||||
|     // destroying plan | ||||
|     FFTW<scalar>::fftw_destroy_plan(p); | ||||
| #endif | ||||
|   | ||||
| @@ -103,38 +103,6 @@ public: | ||||
|     _Mat.MdagM(in,out); | ||||
|   } | ||||
| }; | ||||
| template<class Matrix,class Field> | ||||
| class MMdagLinearOperator : public LinearOperatorBase<Field> { | ||||
|   Matrix &_Mat; | ||||
| public: | ||||
|   MMdagLinearOperator(Matrix &Mat): _Mat(Mat){}; | ||||
|  | ||||
|   // Support for coarsening to a multigrid | ||||
|   void OpDiag (const Field &in, Field &out) { | ||||
|     _Mat.Mdiag(in,out); | ||||
|   } | ||||
|   void OpDir  (const Field &in, Field &out,int dir,int disp) { | ||||
|     _Mat.Mdir(in,out,dir,disp); | ||||
|   } | ||||
|   void OpDirAll  (const Field &in, std::vector<Field> &out){ | ||||
|     _Mat.MdirAll(in,out); | ||||
|   }; | ||||
|   void Op     (const Field &in, Field &out){ | ||||
|     _Mat.M(in,out); | ||||
|   } | ||||
|   void AdjOp     (const Field &in, Field &out){ | ||||
|     _Mat.Mdag(in,out); | ||||
|   } | ||||
|   void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
|     _Mat.MMdag(in,out); | ||||
|     ComplexD dot = innerProduct(in,out); | ||||
|     n1=real(dot); | ||||
|     n2=norm2(out); | ||||
|   } | ||||
|   void HermOp(const Field &in, Field &out){ | ||||
|     _Mat.MMdag(in,out); | ||||
|   } | ||||
| }; | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////// | ||||
| // Construct herm op and shift it for mgrid smoother | ||||
| @@ -177,44 +145,6 @@ public: | ||||
|   } | ||||
| }; | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////// | ||||
| // Create a shifted HermOp | ||||
| //////////////////////////////////////////////////////////////////// | ||||
| template<class Field> | ||||
| class ShiftedHermOpLinearOperator : public LinearOperatorBase<Field> { | ||||
|   LinearOperatorBase<Field> &_Mat; | ||||
|   RealD _shift; | ||||
| public: | ||||
|   ShiftedHermOpLinearOperator(LinearOperatorBase<Field> &Mat,RealD shift): _Mat(Mat), _shift(shift){}; | ||||
|   // Support for coarsening to a multigrid | ||||
|   void OpDiag (const Field &in, Field &out) { | ||||
|     assert(0); | ||||
|   } | ||||
|   void OpDir  (const Field &in, Field &out,int dir,int disp) { | ||||
|     assert(0); | ||||
|   } | ||||
|   void OpDirAll  (const Field &in, std::vector<Field> &out){ | ||||
|     assert(0); | ||||
|   }; | ||||
|   void Op     (const Field &in, Field &out){ | ||||
|     HermOp(in,out); | ||||
|   } | ||||
|   void AdjOp     (const Field &in, Field &out){ | ||||
|     HermOp(in,out); | ||||
|   } | ||||
|   void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
|     HermOp(in,out); | ||||
|     ComplexD dot = innerProduct(in,out); | ||||
|     n1=real(dot); | ||||
|     n2=norm2(out); | ||||
|   } | ||||
|   void HermOp(const Field &in, Field &out){ | ||||
|     _Mat.HermOp(in,out); | ||||
|     out = out + _shift*in; | ||||
|   } | ||||
| }; | ||||
|  | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////// | ||||
| // Wrap an already herm matrix | ||||
| //////////////////////////////////////////////////////////////////// | ||||
| @@ -277,38 +207,6 @@ public: | ||||
|     assert(0); | ||||
|   } | ||||
| }; | ||||
| template<class Matrix,class Field> | ||||
| class ShiftedNonHermitianLinearOperator : public LinearOperatorBase<Field> { | ||||
|   Matrix &_Mat; | ||||
|   RealD shift; | ||||
| public: | ||||
|   ShiftedNonHermitianLinearOperator(Matrix &Mat,RealD shft): _Mat(Mat),shift(shft){}; | ||||
|   // Support for coarsening to a multigrid | ||||
|   void OpDiag (const Field &in, Field &out) { | ||||
|     _Mat.Mdiag(in,out); | ||||
|     out = out + shift*in; | ||||
|   } | ||||
|   void OpDir  (const Field &in, Field &out,int dir,int disp) { | ||||
|     _Mat.Mdir(in,out,dir,disp); | ||||
|   } | ||||
|   void OpDirAll  (const Field &in, std::vector<Field> &out){ | ||||
|     _Mat.MdirAll(in,out); | ||||
|   }; | ||||
|   void Op     (const Field &in, Field &out){ | ||||
|     _Mat.M(in,out); | ||||
|     out = out + shift * in; | ||||
|   } | ||||
|   void AdjOp     (const Field &in, Field &out){ | ||||
|     _Mat.Mdag(in,out); | ||||
|     out = out + shift * in; | ||||
|   } | ||||
|   void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
|     assert(0); | ||||
|   } | ||||
|   void HermOp(const Field &in, Field &out){ | ||||
|     assert(0); | ||||
|   } | ||||
| }; | ||||
|  | ||||
| ////////////////////////////////////////////////////////// | ||||
| // Even Odd Schur decomp operators; there are several | ||||
|   | ||||
| @@ -45,11 +45,6 @@ public: | ||||
|     M(in,tmp); | ||||
|     Mdag(tmp,out); | ||||
|   } | ||||
|   virtual void  MMdag(const Field &in, Field &out) { | ||||
|     Field tmp (in.Grid()); | ||||
|     Mdag(in,tmp); | ||||
|     M(tmp,out); | ||||
|   } | ||||
|   virtual  void Mdiag    (const Field &in, Field &out)=0; | ||||
|   virtual  void Mdir     (const Field &in, Field &out,int dir, int disp)=0; | ||||
|   virtual  void MdirAll  (const Field &in, std::vector<Field> &out)=0; | ||||
|   | ||||
| @@ -59,7 +59,7 @@ public: | ||||
|     RealD diff = hi-lo; | ||||
|     RealD delta = diff*1.0e-9; | ||||
|     for (RealD x=lo; x<hi; x+=delta) { | ||||
|       delta*=1.02; | ||||
|       delta*=1.1; | ||||
|       RealD f = approx(x); | ||||
|       out<< x<<" "<<f<<std::endl; | ||||
|     } | ||||
| @@ -90,8 +90,9 @@ public: | ||||
|     order=_order; | ||||
|        | ||||
|     if(order < 2) exit(-1); | ||||
|     Coeffs.resize(order,0.0); | ||||
|     Coeffs[order-1] = 1.0; | ||||
|     Coeffs.resize(order); | ||||
|     Coeffs.assign(0.,order); | ||||
|     Coeffs[order-1] = 1.; | ||||
|   }; | ||||
|    | ||||
|   // PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's. | ||||
| @@ -131,26 +132,6 @@ public: | ||||
|       Coeffs[j] = s * 2.0/order; | ||||
|     } | ||||
|   }; | ||||
|   template<class functor> | ||||
|   void Init(RealD _lo,RealD _hi,int _order, functor & func) | ||||
|   { | ||||
|     lo=_lo; | ||||
|     hi=_hi; | ||||
|     order=_order; | ||||
|        | ||||
|     if(order < 2) exit(-1); | ||||
|     Coeffs.resize(order); | ||||
|     for(int j=0;j<order;j++){ | ||||
|       RealD s=0; | ||||
|       for(int k=0;k<order;k++){ | ||||
| 	RealD y=std::cos(M_PI*(k+0.5)/order); | ||||
| 	RealD x=0.5*(y*(hi-lo)+(hi+lo)); | ||||
| 	RealD f=func(x); | ||||
| 	s=s+f*std::cos( j*M_PI*(k+0.5)/order ); | ||||
|       } | ||||
|       Coeffs[j] = s * 2.0/order; | ||||
|     } | ||||
|   }; | ||||
|  | ||||
|      | ||||
|   void JacksonSmooth(void){ | ||||
|   | ||||
| @@ -40,7 +40,7 @@ public: | ||||
|   RealD norm; | ||||
|   RealD lo,hi; | ||||
|  | ||||
|   MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), tolerances(n), lo(_lo), hi(_hi) {;}; | ||||
|   MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), lo(_lo), hi(_hi) {;}; | ||||
|   RealD approx(RealD x); | ||||
|   void csv(std::ostream &out); | ||||
|   void gnuplot(std::ostream &out); | ||||
|   | ||||
| @@ -42,7 +42,6 @@ Author: Peter Boyle <pboyle@bnl.gov> | ||||
| #ifdef GRID_ONE_MKL | ||||
| #include <oneapi/mkl.hpp> | ||||
| #endif | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////	   | ||||
| // Need to rearrange lattice data to be in the right format for a | ||||
| // batched multiply. Might as well make these static, dense packed | ||||
| @@ -55,10 +54,10 @@ NAMESPACE_BEGIN(Grid); | ||||
|   typedef cublasHandle_t gridblasHandle_t; | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|   typedef sycl::queue *gridblasHandle_t; | ||||
|   typedef cl::sycl::queue *gridblasHandle_t; | ||||
| #endif | ||||
| #ifdef GRID_ONE_MKL | ||||
|   typedef sycl::queue *gridblasHandle_t; | ||||
|   typedef cl::sycl::queue *gridblasHandle_t; | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL) | ||||
|   typedef int32_t gridblasHandle_t; | ||||
| @@ -89,10 +88,9 @@ public: | ||||
|       gridblasHandle = theGridAccelerator; | ||||
| #endif | ||||
| #ifdef GRID_ONE_MKL | ||||
|       sycl::gpu_selector selector; | ||||
|       sycl::device selectedDevice { selector }; | ||||
|       sycl::property_list q_prop{sycl::property::queue::in_order()}; | ||||
|       gridblasHandle =new sycl::queue (selectedDevice,q_prop); | ||||
|       cl::sycl::cpu_selector selector; | ||||
|       cl::sycl::device selectedDevice { selector }; | ||||
|       gridblasHandle =new sycl::queue (selectedDevice); | ||||
| #endif | ||||
|       gridblasInit=1; | ||||
|     } | ||||
| @@ -208,9 +206,6 @@ public: | ||||
|     assert(Bkn.size()==batchCount); | ||||
|     assert(Cmn.size()==batchCount); | ||||
|  | ||||
|     //assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose | ||||
|     //assert(OpB!=GridBLAS_OP_T); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
| @@ -270,169 +265,26 @@ public: | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|       int64_t m64=m; | ||||
|       int64_t n64=n; | ||||
|       int64_t k64=k; | ||||
|       int64_t lda64=lda; | ||||
|       int64_t ldb64=ldb; | ||||
|       int64_t ldc64=ldc; | ||||
|       int64_t batchCount64=batchCount; | ||||
|  | ||||
|       oneapi::mkl::transpose iOpA; | ||||
|       oneapi::mkl::transpose iOpB; | ||||
|        | ||||
|       if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N; | ||||
|       if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T; | ||||
|       if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C; | ||||
|       if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N; | ||||
|       if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T; | ||||
|       if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C; | ||||
|  | ||||
|       oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle, | ||||
| 						  &iOpA, | ||||
| 						  &iOpB, | ||||
| 						  &m64,&n64,&k64, | ||||
| 						  (ComplexD *) &alpha_p[0], | ||||
| 						  (const ComplexD **)&Amk[0], (const int64_t *)&lda64, | ||||
| 						  (const ComplexD **)&Bkn[0], (const int64_t *)&ldb64, | ||||
| 						  (ComplexD *) &beta_p[0], | ||||
| 						  (ComplexD **)&Cmn[0], (const int64_t *)&ldc64, | ||||
| 						  (int64_t)1,&batchCount64,std::vector<sycl::event>()); | ||||
|       synchronise(); | ||||
| #if 0 | ||||
|       // This code was used to check the mat mul on Sunspot/OneMKL | ||||
|       std::cerr << " Called SYCL batched ZGEMM OpA "<< OpA << " OpB "<<OpB <<std::endl; | ||||
|       std::vector<ComplexD> A(m*k);  // pointer list to matrices | ||||
|       std::vector<ComplexD> B(k*n); | ||||
|       std::vector<ComplexD> C(m*n); | ||||
|       //      int sda = lda*k; | ||||
|       //      int sdb = ldb*k; | ||||
|       //      int sdc = ldc*n; | ||||
|       std::cerr << " Checking the GEMM results "<<std::endl; | ||||
|       for (int p = 0; p < 1; ++p) { | ||||
| 	ComplexD * Amk_p;  // pointer list to matrices | ||||
| 	ComplexD * Bkn_p;  // pointer list to matrices | ||||
| 	ComplexD * Cmn_p;  // pointer list to matrices | ||||
| 	acceleratorCopyFromDevice((void *)&Amk[p],(void *)&Amk_p,sizeof(ComplexD*)); | ||||
| 	acceleratorCopyFromDevice((void *)&Bkn[p],(void *)&Bkn_p,sizeof(ComplexD*)); | ||||
| 	acceleratorCopyFromDevice((void *)&Cmn[p],(void *)&Cmn_p,sizeof(ComplexD*)); | ||||
| 	std::cerr << " p " << p << " copied pointers "<<std::endl; | ||||
| 	acceleratorCopyFromDevice((void *)Amk_p,(void *)&A[0],m*k*sizeof(ComplexD)); | ||||
| 	acceleratorCopyFromDevice((void *)Bkn_p,(void *)&B[0],k*n*sizeof(ComplexD)); | ||||
| 	acceleratorCopyFromDevice((void *)Cmn_p,(void *)&C[0],m*n*sizeof(ComplexD)); | ||||
| 	std::cerr << " p " << p << " copied matrices "<<std::endl; | ||||
| 	std::cerr << " C[0] "<<C[0]<<std::endl; | ||||
| 	std::cerr << " A[0] "<<A[0]<<std::endl; | ||||
| 	std::cerr << " B[0] "<<B[0]<<std::endl; | ||||
| 	std::cerr << " m "<<m<<std::endl; | ||||
| 	std::cerr << " n "<<n<<std::endl; | ||||
| 	std::cerr << " k "<<k<<std::endl; | ||||
| 	for (int mm = 0; mm < m; ++mm) { | ||||
| 	  for (int nn = 0; nn < n; ++nn) { | ||||
| 	    ComplexD c_mn(0.0); | ||||
| 	    for (int kk = 0; kk < k; ++kk) { | ||||
| 	      int idx_a, idx_b; | ||||
| 	      //    int lda = m; // m x k column major | ||||
| 	      //    int ldb = k; // k x n column major | ||||
| 	      //    int ldc = m; // m x b column major | ||||
| 	      if(OpA!=GridBLAS_OP_N) { | ||||
| 		idx_a =kk + mm*lda; | ||||
| 	      } else { | ||||
| 		idx_a =mm + kk*lda; | ||||
| 	      } | ||||
| 	      if(OpB!=GridBLAS_OP_N) { | ||||
| 		idx_b =nn + kk*ldb; | ||||
| 	      } else { | ||||
| 		idx_b =kk + nn*ldb; | ||||
| 	      } | ||||
| 	      //	      std::cerr << " idx_a "<<idx_a<<" idx_b "<<idx_b<<std::endl; | ||||
|  | ||||
| 	      ComplexD Ac = A[idx_a]; | ||||
| 	      ComplexD Bc = B[idx_b]; | ||||
| 	      if(OpA==GridBLAS_OP_C) Ac = conjugate(Ac); | ||||
| 	      if(OpB==GridBLAS_OP_C) Bc = conjugate(Bc); | ||||
| 	       | ||||
| 	      c_mn += Ac*Bc; | ||||
| 	    } | ||||
| 	    std::cerr << " beta "<<beta<<" alpha "<<alpha<<" C_"<<mm<<","<<nn<<" "<<c_mn<<" "<<C[mm + nn*ldc]<<std::endl; | ||||
| 	  } | ||||
| 	} | ||||
|       } | ||||
| #endif | ||||
|     //MKL’s cblas_<T>gemm_batch & OneAPI | ||||
| #warning "oneMKL implementation not built " | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
|     // Need a default/reference implementation; use Eigen | ||||
|       if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n); | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n); | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk * eBkn ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk * eBkn ; | ||||
|         }); | ||||
|       } else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m); | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n); | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n); | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk.adjoint() * eBkn ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m); | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n); | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n); | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk.transpose() * eBkn ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n); | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk * eBkn.adjoint() ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n); | ||||
| 	  eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m); | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n); | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk.adjoint() * eBkn.adjoint() ; | ||||
| 	  } ); | ||||
|       } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m); | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n); | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk.transpose() * eBkn.transpose() ; | ||||
| 	  } ); | ||||
|       } else {  | ||||
| 	assert(0); | ||||
|     // Need a default/reference implementation | ||||
|     int sda = lda*k; | ||||
|     int sdb = ldb*k; | ||||
|     int sdc = ldc*n; | ||||
|     for (int p = 0; p < batchCount; ++p) { | ||||
|       for (int mm = 0; mm < m; ++mm) { | ||||
| 	for (int nn = 0; nn < n; ++nn) { | ||||
| 	  ComplexD c_mn(0.0); | ||||
| 	  for (int kk = 0; kk < k; ++kk) | ||||
| 	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb]; | ||||
| 	  Cmn[p][mm + nn*ldc] =  (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ]; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
|     //    synchronise(); | ||||
|      RealD t1=usecond(); | ||||
|      RealD flops = 8.0*m*n*k*batchCount; | ||||
|      RealD bytes = 1.0*sizeof(ComplexD)*(m*k+k*n+m*n)*batchCount; | ||||
| @@ -453,9 +305,6 @@ public: | ||||
|     RealD t2=usecond(); | ||||
|     int32_t batchCount = Amk.size(); | ||||
|  | ||||
|     //assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose | ||||
|     //assert(OpB!=GridBLAS_OP_T); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
| @@ -516,111 +365,26 @@ public: | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|       int64_t m64=m; | ||||
|       int64_t n64=n; | ||||
|       int64_t k64=k; | ||||
|       int64_t lda64=lda; | ||||
|       int64_t ldb64=ldb; | ||||
|       int64_t ldc64=ldc; | ||||
|       int64_t batchCount64=batchCount; | ||||
|  | ||||
|       oneapi::mkl::transpose iOpA; | ||||
|       oneapi::mkl::transpose iOpB; | ||||
|        | ||||
|       if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N; | ||||
|       if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T; | ||||
|       if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C; | ||||
|       if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N; | ||||
|       if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T; | ||||
|       if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C; | ||||
|  | ||||
|       oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle, | ||||
| 						  &iOpA, | ||||
| 						  &iOpB, | ||||
| 						  &m64,&n64,&k64, | ||||
| 						  (ComplexF *) &alpha_p[0], | ||||
| 						  (const ComplexF **)&Amk[0], (const int64_t *)&lda64, | ||||
| 						  (const ComplexF **)&Bkn[0], (const int64_t *)&ldb64, | ||||
| 						  (ComplexF *) &beta_p[0], | ||||
| 						  (ComplexF **)&Cmn[0], (const int64_t *)&ldc64, | ||||
| 						  (int64_t)1,&batchCount64,std::vector<sycl::event>()); | ||||
|     synchronise(); | ||||
|     //MKL’s cblas_<T>gemm_batch & OneAPI | ||||
| #warning "oneMKL implementation not built " | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
|     // Need a default/reference implementation; use Eigen | ||||
|       if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n); | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n); | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk * eBkn ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk * eBkn ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m); | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n); | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n); | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk.adjoint() * eBkn ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m); | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n); | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n); | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk.transpose() * eBkn ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n); | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk * eBkn.adjoint() ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n); | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk * eBkn.transpose() ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m); | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n); | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk.adjoint() * eBkn.adjoint() ; | ||||
| 	  } ); | ||||
|       } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m); | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n); | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk.transpose() * eBkn.transpose() ; | ||||
| 	  } ); | ||||
|       } else {  | ||||
| 	assert(0); | ||||
|     int sda = lda*k; | ||||
|     int sdb = ldb*k; | ||||
|     int sdc = ldc*n; | ||||
|     ComplexF alphaf(real(alpha),imag(alpha)); | ||||
|     ComplexF betaf(real(beta),imag(beta)); | ||||
|     // Need a default/reference implementation | ||||
|     for (int p = 0; p < batchCount; ++p) { | ||||
|       for (int mm = 0; mm < m; ++mm) { | ||||
| 	for (int nn = 0; nn < n; ++nn) { | ||||
| 	  ComplexF c_mn(0.0); | ||||
| 	  for (int kk = 0; kk < k; ++kk) | ||||
| 	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb]; | ||||
| 	  Cmn[p][mm + nn*ldc] =  (alphaf)*c_mn + (betaf)*Cmn[p][mm + nn*ldc ]; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
|      RealD t1=usecond(); | ||||
|      RealD flops = 8.0*m*n*k*batchCount; | ||||
| @@ -643,9 +407,6 @@ public: | ||||
|     RealD t2=usecond(); | ||||
|     int32_t batchCount = Amk.size(); | ||||
|  | ||||
|     assert(OpA!=GridBLAS_OP_C); // Real case no conjugate | ||||
|     assert(OpB!=GridBLAS_OP_C); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
| @@ -705,81 +466,24 @@ public: | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|       int64_t m64=m; | ||||
|       int64_t n64=n; | ||||
|       int64_t k64=k; | ||||
|       int64_t lda64=lda; | ||||
|       int64_t ldb64=ldb; | ||||
|       int64_t ldc64=ldc; | ||||
|       int64_t batchCount64=batchCount; | ||||
|  | ||||
|       oneapi::mkl::transpose iOpA; | ||||
|       oneapi::mkl::transpose iOpB; | ||||
|        | ||||
|       if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N; | ||||
|       if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T; | ||||
|       if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C; | ||||
|       if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N; | ||||
|       if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T; | ||||
|       if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C; | ||||
|  | ||||
|       oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle, | ||||
| 						  &iOpA, | ||||
| 						  &iOpB, | ||||
| 						  &m64,&n64,&k64, | ||||
| 						  (float *) &alpha_p[0], | ||||
| 						  (const float **)&Amk[0], (const int64_t *)&lda64, | ||||
| 						  (const float **)&Bkn[0], (const int64_t *)&ldb64, | ||||
| 						  (float *) &beta_p[0], | ||||
| 						  (float **)&Cmn[0], (const int64_t *)&ldc64, | ||||
| 						  (int64_t)1,&batchCount64,std::vector<sycl::event>()); | ||||
|       synchronise(); | ||||
|     //MKL’s cblas_<T>gemm_batch & OneAPI | ||||
| #warning "oneMKL implementation not built " | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
|     // Need a default/reference implementation; use Eigen | ||||
|       if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n); | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n); | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk * eBkn ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk * eBkn ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m); | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n); | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n); | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk.transpose() * eBkn ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n); | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk * eBkn.transpose() ;	   | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m); | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n); | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk.transpose() * eBkn.transpose() ; | ||||
| 	  }); | ||||
|       } else {  | ||||
| 	assert(0); | ||||
|     int sda = lda*k; | ||||
|     int sdb = ldb*k; | ||||
|     int sdc = ldc*n; | ||||
|     // Need a default/reference implementation | ||||
|     for (int p = 0; p < batchCount; ++p) { | ||||
|       for (int mm = 0; mm < m; ++mm) { | ||||
| 	for (int nn = 0; nn < n; ++nn) { | ||||
| 	  RealD c_mn(0.0); | ||||
| 	  for (int kk = 0; kk < k; ++kk) | ||||
| 	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb]; | ||||
| 	  Cmn[p][mm + nn*ldc] =  (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ]; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
|      RealD t1=usecond(); | ||||
|      RealD flops = 2.0*m*n*k*batchCount; | ||||
| @@ -790,6 +494,7 @@ public: | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|   // Double precision real GEMM | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|   void gemmBatched(GridBLASOperation_t OpA, | ||||
| 		   GridBLASOperation_t OpB, | ||||
| 		   int m,int n, int k, | ||||
| @@ -802,9 +507,6 @@ public: | ||||
|     RealD t2=usecond(); | ||||
|     int32_t batchCount = Amk.size(); | ||||
|  | ||||
|     assert(OpA!=GridBLAS_OP_C); // Real case no conjugate | ||||
|     assert(OpB!=GridBLAS_OP_C); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
| @@ -865,136 +567,161 @@ public: | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     /* | ||||
|       int64_t m64=m; | ||||
|       int64_t n64=n; | ||||
|       int64_t k64=k; | ||||
|       int64_t lda64=lda; | ||||
|       int64_t ldb64=ldb; | ||||
|       int64_t ldc64=ldc; | ||||
|       int64_t batchCount64=batchCount; | ||||
|  | ||||
|       oneapi::mkl::transpose iOpA; | ||||
|       oneapi::mkl::transpose iOpB; | ||||
|        | ||||
|       if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N; | ||||
|       if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T; | ||||
|       if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C; | ||||
|       if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N; | ||||
|       if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T; | ||||
|       if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C; | ||||
|  | ||||
|       oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle, | ||||
| 						  &iOpA, | ||||
| 						  &iOpB, | ||||
| 						  &m64,&n64,&k64, | ||||
| 						  (double *) &alpha_p[0], | ||||
| 						  (const double **)&Amk[0], (const int64_t *)&lda64, | ||||
| 						  (const double **)&Bkn[0], (const int64_t *)&ldb64, | ||||
| 						  (double *) &beta_p[0], | ||||
| 						  (double **)&Cmn[0], (const int64_t *)&ldc64, | ||||
| 						  (int64_t)1,&batchCount64,std::vector<sycl::event>()); | ||||
|       synchronise(); | ||||
|       oneapi::mkl::blas::column_major::gemm_batch(*theGridAccelerator, | ||||
|       onemkl::transpose::N, | ||||
|       onemkl::transpose::N, | ||||
|       &m64,&n64,&k64, | ||||
|       (double *) &alpha_p[0], | ||||
|       (double **)&Amk[0], lda, | ||||
|       (double **)&Bkn[0], ldb, | ||||
|       (double *) &beta_p[0], | ||||
|       (double **)&Cmn[0], ldc, | ||||
|       1,&batchCount64); | ||||
|      */ | ||||
|     //MKL’s cblas_<T>gemm_batch & OneAPI | ||||
| #warning "oneMKL implementation not built " | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
|     // Need a default/reference implementation; use Eigen | ||||
|       if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n); | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n); | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk * eBkn ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk * eBkn ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m); | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n); | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n); | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk.transpose() * eBkn ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n); | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk * eBkn.transpose() ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m); | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n); | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk.transpose() * eBkn.transpose() ; | ||||
| 	  }); | ||||
|       } else {  | ||||
| 	assert(0); | ||||
|     int sda = lda*k; | ||||
|     int sdb = ldb*k; | ||||
|     int sdc = ldc*n; | ||||
|     // Need a default/reference implementation | ||||
|     for (int p = 0; p < batchCount; ++p) { | ||||
|       for (int mm = 0; mm < m; ++mm) { | ||||
| 	for (int nn = 0; nn < n; ++nn) { | ||||
| 	  RealD c_mn(0.0); | ||||
| 	  for (int kk = 0; kk < k; ++kk) | ||||
| 	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb]; | ||||
| 	  Cmn[p][mm + nn*ldc] =  (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ]; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
|      RealD t1=usecond(); | ||||
|      RealD flops = 2.0*m*n*k*batchCount; | ||||
|      RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount; | ||||
|   } | ||||
|    | ||||
|   template<class CComplex> | ||||
|  | ||||
|    | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Strided case used by benchmark, but generally unused in Grid | ||||
|   // Keep a code example in double complex, but don't generate the single and real variants for now | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|    | ||||
|   void gemmStridedBatched(int m,int n, int k, | ||||
| 			  ComplexD alpha, | ||||
| 			  ComplexD* Amk,  // pointer list to matrices | ||||
| 			  ComplexD* Bkn, | ||||
| 			  ComplexD beta, | ||||
| 			  ComplexD* Cmn, | ||||
| 			  int batchCount) | ||||
|   { | ||||
|     // Use C-row major storage, so transpose calls | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
|     int sda = m*k; | ||||
|     int sdb = k*n; | ||||
|     int sdc = m*n; | ||||
|     deviceVector<ComplexD> alpha_p(1); | ||||
|     deviceVector<ComplexD> beta_p(1); | ||||
|     acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD)); | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD)); | ||||
|  | ||||
|     //    std::cout << "blasZgemmStridedBatched mnk  "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl; | ||||
|     //    std::cout << "blasZgemmStridedBatched ld   "<<lda<<","<<ldb<<","<<ldc<<std::endl; | ||||
|     //    std::cout << "blasZgemmStridedBatched sd   "<<sda<<","<<sdb<<","<<sdc<<std::endl; | ||||
| #ifdef GRID_HIP | ||||
|     auto err = hipblasZgemmStridedBatched(gridblasHandle, | ||||
| 					  HIPBLAS_OP_N, | ||||
| 					  HIPBLAS_OP_N, | ||||
| 					  m,n,k, | ||||
| 					  (hipblasDoubleComplex *) &alpha_p[0], | ||||
| 					  (hipblasDoubleComplex *) Amk, lda, sda, | ||||
| 					  (hipblasDoubleComplex *) Bkn, ldb, sdb, | ||||
| 					  (hipblasDoubleComplex *) &beta_p[0], | ||||
| 					  (hipblasDoubleComplex *) Cmn, ldc, sdc, | ||||
| 					  batchCount); | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasZgemmStridedBatched(gridblasHandle, | ||||
| 			      CUBLAS_OP_N, | ||||
| 			      CUBLAS_OP_N, | ||||
| 			      m,n,k, | ||||
| 			      (cuDoubleComplex *) &alpha_p[0], | ||||
| 			      (cuDoubleComplex *) Amk, lda, sda, | ||||
| 			      (cuDoubleComplex *) Bkn, ldb, sdb, | ||||
| 			      (cuDoubleComplex *) &beta_p[0], | ||||
| 			      (cuDoubleComplex *) Cmn, ldc, sdc, | ||||
| 			      batchCount); | ||||
| #endif | ||||
| #if defined(GRID_SYCL) || defined(GRID_ONE_MKL) | ||||
|     oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle, | ||||
| 						oneapi::mkl::transpose::N, | ||||
| 						oneapi::mkl::transpose::N, | ||||
| 						m,n,k, | ||||
| 						alpha, | ||||
| 						(const ComplexD *)Amk,lda,sda, | ||||
| 						(const ComplexD *)Bkn,ldb,sdb, | ||||
| 						beta, | ||||
| 						(ComplexD *)Cmn,ldc,sdc, | ||||
| 						batchCount); | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL) | ||||
|      // Need a default/reference implementation | ||||
|      for (int p = 0; p < batchCount; ++p) { | ||||
|        for (int mm = 0; mm < m; ++mm) { | ||||
| 	 for (int nn = 0; nn < n; ++nn) { | ||||
| 	   ComplexD c_mn(0.0); | ||||
| 	   for (int kk = 0; kk < k; ++kk) | ||||
| 	     c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb]; | ||||
| 	   Cmn[mm + nn*ldc + p*sdc] =  (alpha)*c_mn + (beta)*Cmn[mm + nn*ldc + p*sdc]; | ||||
| 	 } | ||||
|        } | ||||
|      } | ||||
| #endif | ||||
|   } | ||||
|  | ||||
|   double benchmark(int M, int N, int K, int BATCH) | ||||
|   { | ||||
|     int32_t N_A = M*K*BATCH; | ||||
|     int32_t N_B = K*N*BATCH; | ||||
|     int32_t N_C = M*N*BATCH; | ||||
|     deviceVector<CComplex> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(CComplex)); | ||||
|     deviceVector<CComplex> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(CComplex)); | ||||
|     deviceVector<CComplex> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(CComplex)); | ||||
|     CComplex alpha(1.0); | ||||
|     CComplex beta (1.0); | ||||
|     deviceVector<ComplexD> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(ComplexD)); | ||||
|     deviceVector<ComplexD> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(ComplexD)); | ||||
|     deviceVector<ComplexD> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(ComplexD)); | ||||
|     ComplexD alpha(1.0); | ||||
|     ComplexD beta (1.0); | ||||
|     RealD flops = 8.0*M*N*K*BATCH; | ||||
|     int ncall=1000; | ||||
|     deviceVector<CComplex *> As(BATCH); | ||||
|     deviceVector<CComplex *> Bs(BATCH); | ||||
|     deviceVector<CComplex *> Cs(BATCH); | ||||
|     for(int b = 0 ; b < BATCH;b++) { | ||||
|       CComplex *ptr; | ||||
|       ptr = &A[b*M*K];      acceleratorPut(As[b],ptr); | ||||
|       ptr = &B[b*K*N];      acceleratorPut(Bs[b],ptr); | ||||
|       ptr = &C[b*M*N];      acceleratorPut(Cs[b],ptr); | ||||
|     } | ||||
|  | ||||
|     // Warm up call | ||||
|     gemmBatched(M,N,K, | ||||
| 		alpha, | ||||
| 		As, // m x k  | ||||
| 		Bs, // k x n | ||||
| 		beta,  | ||||
| 		Cs); | ||||
|     synchronise(); | ||||
|  | ||||
|     int ncall=10; | ||||
|     RealD t0 = usecond(); | ||||
|     for(int i=0;i<ncall;i++){ | ||||
|       gemmBatched(M,N,K, | ||||
| 		  alpha, | ||||
| 		  As, // m x k  | ||||
| 		  Bs, // k x n | ||||
| 		  beta,  | ||||
| 		  Cs); | ||||
|       synchronise(); | ||||
|       gemmStridedBatched(M,N,K, | ||||
| 			 alpha, | ||||
| 			 &A[0], // m x k  | ||||
| 			 &B[0], // k x n | ||||
| 			 beta,  | ||||
| 			 &C[0], // m x n | ||||
| 			 BATCH); | ||||
|     } | ||||
|     synchronise(); | ||||
|     RealD t1 = usecond(); | ||||
|     RealD bytes = 1.0*sizeof(CComplex)*(M*N*2+N*K+M*K)*BATCH; | ||||
|     RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K)*BATCH; | ||||
|     flops = 8.0*M*N*K*BATCH*ncall; | ||||
|     flops = flops/(t1-t0)/1.e3; | ||||
|     return flops; // Returns gigaflops | ||||
|   } | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|   | ||||
| @@ -1,376 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: MultiRHSBlockCGLinalg.h | ||||
|  | ||||
|     Copyright (C) 2024 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| /* Need helper object for BLAS accelerated mrhs blockCG */ | ||||
| template<class Field> | ||||
| class MultiRHSBlockCGLinalg | ||||
| { | ||||
| public: | ||||
|  | ||||
|   typedef typename Field::scalar_type   scalar; | ||||
|   typedef typename Field::scalar_object scalar_object; | ||||
|   typedef typename Field::vector_object vector_object; | ||||
|  | ||||
|   deviceVector<scalar> BLAS_X;      // nrhs x vol -- the sources | ||||
|   deviceVector<scalar> BLAS_Y;      // nrhs x vol -- the result | ||||
|   deviceVector<scalar> BLAS_C;      // nrhs x nrhs -- the coefficients  | ||||
|   deviceVector<scalar> BLAS_Cred;   // nrhs x nrhs x oSites -- reduction buffer | ||||
|   deviceVector<scalar *> Xdip; | ||||
|   deviceVector<scalar *> Ydip; | ||||
|   deviceVector<scalar *> Cdip; | ||||
|    | ||||
|   MultiRHSBlockCGLinalg() {}; | ||||
|   ~MultiRHSBlockCGLinalg(){ Deallocate(); }; | ||||
|    | ||||
|   void Deallocate(void) | ||||
|   { | ||||
|     Xdip.resize(0); | ||||
|     Ydip.resize(0); | ||||
|     Cdip.resize(0); | ||||
|     BLAS_Cred.resize(0); | ||||
|     BLAS_C.resize(0); | ||||
|     BLAS_X.resize(0); | ||||
|     BLAS_Y.resize(0); | ||||
|   } | ||||
|   void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0) | ||||
|   { | ||||
|     std::vector<Field> Y_copy(AP.size(),AP[0].Grid()); | ||||
|     for(int r=0;r<AP.size();r++){ | ||||
|       Y_copy[r] = Y[r]; | ||||
|     } | ||||
|     MulMatrix(AP,m,X); | ||||
|     for(int r=0;r<AP.size();r++){ | ||||
|       AP[r] = scale*AP[r]+Y_copy[r]; | ||||
|     } | ||||
|   } | ||||
|   void MulMatrix(std::vector<Field> &Y, Eigen::MatrixXcd &m , const std::vector<Field> &X) | ||||
|   { | ||||
|     typedef typename Field::scalar_type scomplex; | ||||
|     GridBase *grid; | ||||
|     uint64_t vol; | ||||
|     uint64_t words; | ||||
|  | ||||
|     int nrhs = Y.size(); | ||||
|     grid  = X[0].Grid(); | ||||
|     vol   = grid->lSites(); | ||||
|     words = sizeof(scalar_object)/sizeof(scalar); | ||||
|     int64_t vw = vol * words; | ||||
|  | ||||
|     RealD t0 = usecond(); | ||||
|     BLAS_X.resize(nrhs * vw); // cost free if size doesn't change | ||||
|     BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change | ||||
|     BLAS_C.resize(nrhs * nrhs);// cost free if size doesn't change | ||||
|     RealD t1 = usecond(); | ||||
|  | ||||
|     ///////////////////////////////////////////// | ||||
|     // Copy in the multi-rhs sources | ||||
|     ///////////////////////////////////////////// | ||||
|     for(int r=0;r<nrhs;r++){ | ||||
|       int64_t offset = r*vw; | ||||
|       autoView(x_v,X[r],AcceleratorRead); | ||||
|       acceleratorCopyDeviceToDevice(&x_v[0],&BLAS_X[offset],sizeof(scalar_object)*vol); | ||||
|     } | ||||
|  | ||||
|     // Assumes Eigen storage contiguous | ||||
|     acceleratorCopyToDevice(&m(0,0),&BLAS_C[0],BLAS_C.size()*sizeof(scalar)); | ||||
|      | ||||
|   /* | ||||
|    * in Fortran column major notation (cuBlas order) | ||||
|    * | ||||
|    * Xxr = [X1(x)][..][Xn(x)] | ||||
|    * Yxr = [Y1(x)][..][Ym(x)] | ||||
|    * Y = X . C | ||||
|    */ | ||||
|     deviceVector<scalar *> Xd(1); | ||||
|     deviceVector<scalar *> Yd(1); | ||||
|     deviceVector<scalar *> Cd(1); | ||||
|  | ||||
|     scalar * Xh = & BLAS_X[0]; | ||||
|     scalar * Yh = & BLAS_Y[0]; | ||||
|     scalar * Ch = & BLAS_C[0]; | ||||
|  | ||||
|     acceleratorPut(Xd[0],Xh); | ||||
|     acceleratorPut(Yd[0],Yh); | ||||
|     acceleratorPut(Cd[0],Ch); | ||||
|  | ||||
|     RealD t2 = usecond(); | ||||
|     GridBLAS BLAS; | ||||
|     ///////////////////////////////////////// | ||||
|     // Y = X*C (transpose?) | ||||
|     ///////////////////////////////////////// | ||||
|     BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,  | ||||
|     		     vw,nrhs,nrhs, | ||||
| 		     scalar(1.0), | ||||
| 		     Xd, | ||||
| 		     Cd, | ||||
| 		     scalar(0.0),  // wipe out Y | ||||
| 		     Yd); | ||||
|     BLAS.synchronise(); | ||||
|     RealD t3 = usecond(); | ||||
|  | ||||
|     // Copy back Y = m X  | ||||
|     for(int r=0;r<nrhs;r++){ | ||||
|       int64_t offset = r*vw; | ||||
|       autoView(y_v,Y[r],AcceleratorWrite); | ||||
|       acceleratorCopyDeviceToDevice(&BLAS_Y[offset],&y_v[0],sizeof(scalar_object)*vol); | ||||
|     }     | ||||
|     RealD t4 = usecond(); | ||||
|     std::cout <<GridLogPerformance << "MulMatrix alloc    took "<< t1-t0<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "MulMatrix preamble took "<< t2-t1<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "MulMatrix blas     took "<< t3-t2<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "MulMatrix copy     took "<< t4-t3<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "MulMatrix total "<< t4-t0<<" us"<<std::endl; | ||||
|   } | ||||
|    | ||||
|   void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y) | ||||
|   { | ||||
| #if 0     | ||||
|     int nrhs; | ||||
|     GridBase *grid; | ||||
|     uint64_t vol; | ||||
|     uint64_t words; | ||||
|  | ||||
|     nrhs = X.size(); | ||||
|     assert(X.size()==Y.size()); | ||||
|     conformable(X[0],Y[0]); | ||||
|  | ||||
|     grid  = X[0].Grid(); | ||||
|     vol   = grid->lSites(); | ||||
|     words = sizeof(scalar_object)/sizeof(scalar); | ||||
|     int64_t vw = vol * words; | ||||
|  | ||||
|     RealD t0 = usecond(); | ||||
|     BLAS_X.resize(nrhs * vw); // cost free if size doesn't change | ||||
|     BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change | ||||
|     BLAS_C.resize(nrhs * nrhs);// cost free if size doesn't change | ||||
|     RealD t1 = usecond(); | ||||
|  | ||||
|     ///////////////////////////////////////////// | ||||
|     // Copy in the multi-rhs sources | ||||
|     ///////////////////////////////////////////// | ||||
|     for(int r=0;r<nrhs;r++){ | ||||
|       int64_t offset = r*vw; | ||||
|       autoView(x_v,X[r],AcceleratorRead); | ||||
|       acceleratorCopyDeviceToDevice(&x_v[0],&BLAS_X[offset],sizeof(scalar_object)*vol); | ||||
|       autoView(y_v,Y[r],AcceleratorRead); | ||||
|       acceleratorCopyDeviceToDevice(&y_v[0],&BLAS_Y[offset],sizeof(scalar_object)*vol); | ||||
|     } | ||||
|     RealD t2 = usecond(); | ||||
|  | ||||
|   /* | ||||
|    * in Fortran column major notation (cuBlas order) | ||||
|    * | ||||
|    * Xxr = [X1(x)][..][Xn(x)] | ||||
|    * | ||||
|    * Yxr = [Y1(x)][..][Ym(x)] | ||||
|    * | ||||
|    * C_rs = X^dag Y | ||||
|    */ | ||||
|     deviceVector<scalar *> Xd(1); | ||||
|     deviceVector<scalar *> Yd(1); | ||||
|     deviceVector<scalar *> Cd(1); | ||||
|  | ||||
|     scalar * Xh = & BLAS_X[0]; | ||||
|     scalar * Yh = & BLAS_Y[0]; | ||||
|     scalar * Ch = & BLAS_C[0]; | ||||
|  | ||||
|     acceleratorPut(Xd[0],Xh); | ||||
|     acceleratorPut(Yd[0],Yh); | ||||
|     acceleratorPut(Cd[0],Ch); | ||||
|  | ||||
|     GridBLAS BLAS; | ||||
|  | ||||
|     RealD t3 = usecond(); | ||||
|     ///////////////////////////////////////// | ||||
|     // C_rs = X^dag Y | ||||
|     ///////////////////////////////////////// | ||||
|     BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,  | ||||
|     		     nrhs,nrhs,vw, | ||||
| 		     ComplexD(1.0), | ||||
| 		     Xd, | ||||
| 		     Yd, | ||||
| 		     ComplexD(0.0),  // wipe out C | ||||
| 		     Cd); | ||||
|     BLAS.synchronise(); | ||||
|     RealD t4 = usecond(); | ||||
|  | ||||
|     std::vector<scalar> HOST_C(BLAS_C.size());      // nrhs . nrhs -- the coefficients  | ||||
|     acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar)); | ||||
|     grid->GlobalSumVector(&HOST_C[0],nrhs*nrhs); | ||||
|  | ||||
|     RealD t5 = usecond(); | ||||
|     for(int rr=0;rr<nrhs;rr++){ | ||||
|       for(int r=0;r<nrhs;r++){ | ||||
| 	int off = r+nrhs*rr; | ||||
| 	m(r,rr)=HOST_C[off]; | ||||
|       } | ||||
|     } | ||||
|     RealD t6 = usecond(); | ||||
|     uint64_t M=nrhs; | ||||
|     uint64_t N=nrhs; | ||||
|     uint64_t K=vw; | ||||
|     RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K); | ||||
|     RealD flops = 8.0*M*N*K; | ||||
|     flops = flops/(t4-t3)/1.e3; | ||||
|     bytes = bytes/(t4-t3)/1.e3; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix cp    t2 "<< t2-t1<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< flops<<" GF/s"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< bytes<<" GB/s"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix gsum t5 "<< t5-t4<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix cp   t6 "<< t6-t5<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl; | ||||
| #else | ||||
|     int nrhs; | ||||
|     GridBase *grid; | ||||
|     uint64_t vol; | ||||
|     uint64_t words; | ||||
|  | ||||
|     nrhs = X.size(); | ||||
|     assert(X.size()==Y.size()); | ||||
|     conformable(X[0],Y[0]); | ||||
|  | ||||
|     grid  = X[0].Grid(); | ||||
|     int rd0 =  grid->_rdimensions[0] * grid->_rdimensions[1]; | ||||
|     vol   = grid->oSites()/rd0; | ||||
|     words = rd0*sizeof(vector_object)/sizeof(scalar); | ||||
|     int64_t vw = vol * words; | ||||
|     assert(vw == grid->lSites()*sizeof(scalar_object)/sizeof(scalar)); | ||||
|  | ||||
|     RealD t0 = usecond(); | ||||
|     BLAS_X.resize(nrhs * vw); // cost free if size doesn't change | ||||
|     BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change | ||||
|     BLAS_Cred.resize(nrhs * nrhs * vol);// cost free if size doesn't change | ||||
|     RealD t1 = usecond(); | ||||
|  | ||||
|     ///////////////////////////////////////////// | ||||
|     // Copy in the multi-rhs sources -- layout batched BLAS ready | ||||
|     ///////////////////////////////////////////// | ||||
|     for(int r=0;r<nrhs;r++){ | ||||
|       autoView(x_v,X[r],AcceleratorRead); | ||||
|       autoView(y_v,Y[r],AcceleratorRead); | ||||
|       scalar *from_x=(scalar *)&x_v[0]; | ||||
|       scalar *from_y=(scalar *)&y_v[0]; | ||||
|       scalar *BX = &BLAS_X[0]; | ||||
|       scalar *BY = &BLAS_Y[0]; | ||||
|       accelerator_for(ssw,vw,1,{ | ||||
| 	  uint64_t ss=ssw/words; | ||||
| 	  uint64_t  w=ssw%words; | ||||
| 	  uint64_t offset = w+r*words+ss*nrhs*words; // [ss][rhs][words] | ||||
| 	  BX[offset] = from_x[ssw]; | ||||
| 	  BY[offset] = from_y[ssw]; | ||||
| 	}); | ||||
|     } | ||||
|     RealD t2 = usecond(); | ||||
|  | ||||
|   /* | ||||
|    * in Fortran column major notation (cuBlas order) | ||||
|    * | ||||
|    * Xxr = [X1(x)][..][Xn(x)] | ||||
|    * | ||||
|    * Yxr = [Y1(x)][..][Ym(x)] | ||||
|    * | ||||
|    * C_rs = X^dag Y | ||||
|    */ | ||||
|     Xdip.resize(vol); | ||||
|     Ydip.resize(vol); | ||||
|     Cdip.resize(vol); | ||||
|     std::vector<scalar *> Xh(vol); | ||||
|     std::vector<scalar *> Yh(vol); | ||||
|     std::vector<scalar *> Ch(vol); | ||||
|     for(uint64_t ss=0;ss<vol;ss++){ | ||||
|  | ||||
|       Xh[ss] = & BLAS_X[ss*nrhs*words]; | ||||
|       Yh[ss] = & BLAS_Y[ss*nrhs*words]; | ||||
|       Ch[ss] = & BLAS_Cred[ss*nrhs*nrhs]; | ||||
|  | ||||
|     } | ||||
|     acceleratorCopyToDevice(&Xh[0],&Xdip[0],vol*sizeof(scalar *)); | ||||
|     acceleratorCopyToDevice(&Yh[0],&Ydip[0],vol*sizeof(scalar *)); | ||||
|     acceleratorCopyToDevice(&Ch[0],&Cdip[0],vol*sizeof(scalar *)); | ||||
|      | ||||
|     GridBLAS BLAS; | ||||
|  | ||||
|     RealD t3 = usecond(); | ||||
|     ///////////////////////////////////////// | ||||
|     // C_rs = X^dag Y | ||||
|     ///////////////////////////////////////// | ||||
|     BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,  | ||||
|     		     nrhs,nrhs,words, | ||||
| 		     ComplexD(1.0), | ||||
| 		     Xdip, | ||||
| 		     Ydip, | ||||
| 		     ComplexD(0.0),  // wipe out C | ||||
| 		     Cdip); | ||||
|     BLAS.synchronise(); | ||||
|     RealD t4 = usecond(); | ||||
|  | ||||
|     std::vector<scalar> HOST_C(BLAS_Cred.size());      // nrhs . nrhs -- the coefficients  | ||||
|     acceleratorCopyFromDevice(&BLAS_Cred[0],&HOST_C[0],BLAS_Cred.size()*sizeof(scalar)); | ||||
|  | ||||
|     RealD t5 = usecond(); | ||||
|     m = Eigen::MatrixXcd::Zero(nrhs,nrhs); | ||||
|     for(int ss=0;ss<vol;ss++){ | ||||
|       Eigen::Map<Eigen::MatrixXcd> eC((std::complex<double> *)&HOST_C[ss*nrhs*nrhs],nrhs,nrhs); | ||||
|       m = m + eC; | ||||
|     } | ||||
|     RealD t6l = usecond(); | ||||
|     grid->GlobalSumVector((scalar *) &m(0,0),nrhs*nrhs); | ||||
|     RealD t6 = usecond(); | ||||
|     uint64_t M=nrhs; | ||||
|     uint64_t N=nrhs; | ||||
|     uint64_t K=vw; | ||||
|     RealD xybytes = grid->lSites()*sizeof(scalar_object); | ||||
|     RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K); | ||||
|     RealD flops = 8.0*M*N*K; | ||||
|     flops = flops/(t4-t3)/1.e3; | ||||
|     bytes = bytes/(t4-t3)/1.e3; | ||||
|     xybytes = 4*xybytes/(t2-t1)/1.e3; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix cp    t2 "<< t2-t1<<" us "<<xybytes<<" GB/s"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< flops<<" GF/s"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< bytes<<" GB/s"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix cp     t5 "<< t5-t4<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix lsum   t6l "<< t6l-t5<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix gsum   t6 "<< t6-t6l<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl; | ||||
| #endif | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -1,513 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: MultiRHSDeflation.h | ||||
|  | ||||
|     Copyright (C) 2023 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| /*  | ||||
|    MultiRHS block projection | ||||
|  | ||||
|    Import basis -> nblock x nbasis x  (block x internal)  | ||||
|    Import vector of fine lattice objects -> nblock x nrhs x (block x internal)  | ||||
|  | ||||
|    => coarse_(nrhs x nbasis )^block = via batched GEMM | ||||
|  | ||||
| //template<class vobj,class CComplex,int nbasis,class VLattice> | ||||
| //inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData, | ||||
| //			   const VLattice &fineData, | ||||
| //			   const VLattice &Basis) | ||||
| */ | ||||
|  | ||||
| template<class Field> | ||||
| class MultiRHSBlockProject | ||||
| { | ||||
| public: | ||||
|  | ||||
|   typedef typename Field::scalar_type   scalar; | ||||
|   typedef typename Field::scalar_object scalar_object; | ||||
|   typedef Field Fermion; | ||||
|  | ||||
|   int nbasis; | ||||
|   GridBase *coarse_grid; | ||||
|   GridBase *fine_grid; | ||||
|   uint64_t block_vol; | ||||
|   uint64_t fine_vol; | ||||
|   uint64_t coarse_vol; | ||||
|   uint64_t words; | ||||
|  | ||||
|   // Row major layout "C" order: | ||||
|   // BLAS_V[coarse_vol][nbasis][block_vol][words] | ||||
|   // BLAS_F[coarse_vol][nrhs][block_vol][words] | ||||
|   // BLAS_C[coarse_vol][nrhs][nbasis] | ||||
|   /* | ||||
|    * in Fortran column major notation (cuBlas order) | ||||
|    * | ||||
|    * Vxb = [v1(x)][..][vn(x)] ... x coarse vol | ||||
|    * | ||||
|    * Fxr = [r1(x)][..][rm(x)] ... x coarse vol | ||||
|    * | ||||
|    * Block project: | ||||
|    * C_br = V^dag F x coarse vol | ||||
|    * | ||||
|    * Block promote: | ||||
|    * F_xr = Vxb Cbr x coarse_vol | ||||
|    */   | ||||
|   deviceVector<scalar> BLAS_V;      // words * block_vol * nbasis x coarse_vol  | ||||
|   deviceVector<scalar> BLAS_F;      // nrhs x fine_vol * words   -- the sources | ||||
|   deviceVector<scalar> BLAS_C;      // nrhs x coarse_vol * nbasis -- the coarse coeffs | ||||
|  | ||||
|   RealD blasNorm2(deviceVector<scalar> &blas) | ||||
|   { | ||||
|     scalar ss(0.0); | ||||
|     std::vector<scalar> tmp(blas.size()); | ||||
|     acceleratorCopyFromDevice(&blas[0],&tmp[0],blas.size()*sizeof(scalar)); | ||||
|     for(int64_t s=0;s<blas.size();s++){ | ||||
|       ss=ss+tmp[s]*adj(tmp[s]); | ||||
|     } | ||||
|     coarse_grid->GlobalSum(ss); | ||||
|     return real(ss); | ||||
|   } | ||||
|    | ||||
|   MultiRHSBlockProject(){}; | ||||
|  ~MultiRHSBlockProject(){ Deallocate(); }; | ||||
|    | ||||
|   void Deallocate(void) | ||||
|   { | ||||
|     nbasis=0; | ||||
|     coarse_grid=nullptr; | ||||
|     fine_grid=nullptr; | ||||
|     fine_vol=0; | ||||
|     block_vol=0; | ||||
|     coarse_vol=0; | ||||
|     words=0; | ||||
|     BLAS_V.resize(0); | ||||
|     BLAS_F.resize(0); | ||||
|     BLAS_C.resize(0); | ||||
|   } | ||||
|   void Allocate(int _nbasis,GridBase *_fgrid,GridBase *_cgrid) | ||||
|   { | ||||
|     nbasis=_nbasis; | ||||
|  | ||||
|     fine_grid=_fgrid; | ||||
|     coarse_grid=_cgrid; | ||||
|  | ||||
|     fine_vol   = fine_grid->lSites(); | ||||
|     coarse_vol = coarse_grid->lSites(); | ||||
|     block_vol = fine_vol/coarse_vol; | ||||
|      | ||||
|     words = sizeof(scalar_object)/sizeof(scalar); | ||||
|  | ||||
|     BLAS_V.resize (fine_vol * words * nbasis ); | ||||
|   } | ||||
|   void ImportFineGridVectors(std::vector <Field > &vecs, deviceVector<scalar> &blas) | ||||
|   { | ||||
|     int nvec = vecs.size(); | ||||
|     typedef typename Field::vector_object vobj; | ||||
|     //    std::cout << GridLogMessage <<" BlockProjector importing "<<nvec<< " fine grid vectors" <<std::endl; | ||||
|  | ||||
|     assert(vecs[0].Grid()==fine_grid); | ||||
|  | ||||
|     subdivides(coarse_grid,fine_grid); // require they map | ||||
|  | ||||
|     int _ndimension = coarse_grid->_ndimension; | ||||
|     assert(block_vol == fine_grid->oSites() / coarse_grid->oSites()); | ||||
|      | ||||
|     Coordinate  block_r      (_ndimension); | ||||
|     for(int d=0 ; d<_ndimension;d++){ | ||||
|       block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d]; | ||||
|     } | ||||
|  | ||||
|     uint64_t sz = blas.size(); | ||||
|  | ||||
|     acceleratorMemSet(&blas[0],0,blas.size()*sizeof(scalar)); | ||||
|  | ||||
|     Coordinate fine_rdimensions = fine_grid->_rdimensions; | ||||
|     Coordinate coarse_rdimensions = coarse_grid->_rdimensions; | ||||
|     int64_t bv= block_vol; | ||||
|     for(int v=0;v<vecs.size();v++){ | ||||
|  | ||||
|       //      std::cout << " BlockProjector importing vector"<<v<<" "<<norm2(vecs[v])<<std::endl; | ||||
|       autoView( fineData   , vecs[v], AcceleratorRead); | ||||
|  | ||||
|       auto blasData_p  = &blas[0]; | ||||
|       auto fineData_p  = &fineData[0]; | ||||
|  | ||||
|       int64_t osites = fine_grid->oSites(); | ||||
|  | ||||
|       // loop over fine sites | ||||
|       const int Nsimd = vobj::Nsimd(); | ||||
|       //      std::cout << "sz "<<sz<<std::endl; | ||||
|       //      std::cout << "prod "<<Nsimd * coarse_grid->oSites() * block_vol * nvec * words<<std::endl; | ||||
|       assert(sz == Nsimd * coarse_grid->oSites() * block_vol * nvec * words); | ||||
|       uint64_t lwords= words; // local variable for copy in to GPU | ||||
|       accelerator_for(sf,osites,Nsimd,{ | ||||
| #ifdef GRID_SIMT | ||||
|         { | ||||
| 	  int lane=acceleratorSIMTlane(Nsimd); // buffer lane | ||||
| #else | ||||
| 	  for(int lane=0;lane<Nsimd;lane++) { | ||||
| #endif | ||||
| 	  // One thread per fine site | ||||
| 	  Coordinate coor_f(_ndimension); | ||||
| 	  Coordinate coor_b(_ndimension); | ||||
| 	  Coordinate coor_c(_ndimension); | ||||
|  | ||||
| 	  // Fine site to fine coor | ||||
| 	  Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions); | ||||
|  | ||||
| 	  for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d]; | ||||
| 	  for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d]; | ||||
| 	   | ||||
| 	  int sc;// coarse site | ||||
| 	  int sb;// block site | ||||
| 	  Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions); | ||||
| 	  Lexicographic::IndexFromCoor(coor_b,sb,block_r); | ||||
|  | ||||
|           scalar_object data = extractLane(lane,fineData[sf]); | ||||
|  | ||||
| 	  // BLAS layout address calculation | ||||
| 	  // words * block_vol * nbasis x coarse_vol | ||||
| 	  // coarse oSite x block vole x lanes | ||||
| 	  int64_t site = (lane*osites + sc*bv)*nvec | ||||
|    	               + v*bv | ||||
| 	               + sb; | ||||
|  | ||||
| 	  //	  assert(site*lwords<sz); | ||||
|  | ||||
| 	  scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords]; | ||||
|  | ||||
| 	  *ptr = data; | ||||
| #ifdef GRID_SIMT | ||||
| 	} | ||||
| #else | ||||
| 	} | ||||
| #endif | ||||
|       }); | ||||
|       //      std::cout << " import fine Blas norm "<<blasNorm2(blas)<<std::endl; | ||||
|       //      std::cout << " BlockProjector imported vector"<<v<<std::endl; | ||||
|     } | ||||
|   } | ||||
|   void ExportFineGridVectors(std::vector <Field> &vecs, deviceVector<scalar> &blas) | ||||
|   { | ||||
|     typedef typename Field::vector_object vobj; | ||||
|  | ||||
|     int nvec = vecs.size(); | ||||
|  | ||||
|     assert(vecs[0].Grid()==fine_grid); | ||||
|  | ||||
|     subdivides(coarse_grid,fine_grid); // require they map | ||||
|  | ||||
|     int _ndimension = coarse_grid->_ndimension; | ||||
|     assert(block_vol == fine_grid->oSites() / coarse_grid->oSites()); | ||||
|      | ||||
|     Coordinate  block_r      (_ndimension); | ||||
|     for(int d=0 ; d<_ndimension;d++){ | ||||
|       block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d]; | ||||
|     } | ||||
|     Coordinate fine_rdimensions = fine_grid->_rdimensions; | ||||
|     Coordinate coarse_rdimensions = coarse_grid->_rdimensions; | ||||
|  | ||||
|     //    std::cout << " export fine Blas norm "<<blasNorm2(blas)<<std::endl; | ||||
|  | ||||
|     int64_t bv= block_vol; | ||||
|     for(int v=0;v<vecs.size();v++){ | ||||
|  | ||||
|       autoView( fineData   , vecs[v], AcceleratorWrite); | ||||
|  | ||||
|       auto blasData_p  = &blas[0]; | ||||
|       auto fineData_p    = &fineData[0]; | ||||
|  | ||||
|       int64_t osites = fine_grid->oSites(); | ||||
|       uint64_t lwords = words; | ||||
|       //      std::cout << " Nsimd is "<<vobj::Nsimd() << std::endl; | ||||
|       //      std::cout << " lwords is "<<lwords << std::endl; | ||||
|       //      std::cout << " sizeof(scalar_object) is "<<sizeof(scalar_object) << std::endl; | ||||
|       // loop over fine sites | ||||
|       accelerator_for(sf,osites,vobj::Nsimd(),{ | ||||
|        | ||||
| #ifdef GRID_SIMT | ||||
|         { | ||||
| 	  int lane=acceleratorSIMTlane(vobj::Nsimd()); // buffer lane | ||||
| #else | ||||
| 	  for(int lane=0;lane<vobj::Nsimd();lane++) { | ||||
| #endif | ||||
| 	  // One thread per fine site | ||||
| 	  Coordinate coor_f(_ndimension); | ||||
| 	  Coordinate coor_b(_ndimension); | ||||
| 	  Coordinate coor_c(_ndimension); | ||||
|  | ||||
| 	  Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions); | ||||
|  | ||||
| 	  for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d]; | ||||
| 	  for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d]; | ||||
| 	   | ||||
| 	  int sc; | ||||
| 	  int sb; | ||||
| 	  Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions); | ||||
| 	  Lexicographic::IndexFromCoor(coor_b,sb,block_r); | ||||
|  | ||||
| 	  // BLAS layout address calculation | ||||
| 	  // words * block_vol * nbasis x coarse_vol 	   | ||||
| 	  int64_t site = (lane*osites + sc*bv)*nvec | ||||
|    	               + v*bv | ||||
| 	               + sb; | ||||
|  | ||||
| 	  scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords]; | ||||
|  | ||||
| 	  scalar_object data = *ptr; | ||||
|  | ||||
| 	  insertLane(lane,fineData[sf],data); | ||||
| #ifdef GRID_SIMT | ||||
| 	} | ||||
| #else | ||||
| 	} | ||||
| #endif | ||||
|       }); | ||||
|     } | ||||
|   } | ||||
|   template<class vobj> | ||||
|   void ImportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas) | ||||
|   { | ||||
|     int nvec = vecs.size(); | ||||
|     typedef typename vobj::scalar_object coarse_scalar_object; | ||||
|  | ||||
|     //    std::cout << " BlockProjector importing "<<nvec<< " coarse grid vectors" <<std::endl; | ||||
|  | ||||
|     assert(vecs[0].Grid()==coarse_grid); | ||||
|  | ||||
|     int _ndimension = coarse_grid->_ndimension; | ||||
|  | ||||
|     uint64_t sz = blas.size(); | ||||
|  | ||||
|     Coordinate coarse_rdimensions = coarse_grid->_rdimensions; | ||||
|      | ||||
|     for(int v=0;v<vecs.size();v++){ | ||||
|  | ||||
|       //      std::cout << " BlockProjector importing coarse vector"<<v<<" "<<norm2(vecs[v])<<std::endl; | ||||
|       autoView( coarseData   , vecs[v], AcceleratorRead); | ||||
|  | ||||
|       auto blasData_p  = &blas[0]; | ||||
|       auto coarseData_p  = &coarseData[0]; | ||||
|  | ||||
|       int64_t osites = coarse_grid->oSites(); | ||||
|  | ||||
|       // loop over fine sites | ||||
|       const int Nsimd = vobj::Nsimd(); | ||||
|       uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar); | ||||
|       assert(cwords==nbasis); | ||||
|        | ||||
|       accelerator_for(sc,osites,Nsimd,{ | ||||
| #ifdef GRID_SIMT | ||||
|         { | ||||
| 	  int lane=acceleratorSIMTlane(Nsimd); // buffer lane | ||||
| #else | ||||
| 	  for(int lane=0;lane<Nsimd;lane++) { | ||||
| #endif | ||||
|            // C_br per site | ||||
| 	    int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords; | ||||
| 	     | ||||
| 	    coarse_scalar_object data = extractLane(lane,coarseData[sc]); | ||||
|  | ||||
| 	    coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site]; | ||||
|  | ||||
| 	    *ptr = data; | ||||
| #ifdef GRID_SIMT | ||||
| 	} | ||||
| #else | ||||
| 	} | ||||
| #endif | ||||
|       }); | ||||
|       //      std::cout << " import coarsee Blas norm "<<blasNorm2(blas)<<std::endl; | ||||
|     } | ||||
|   } | ||||
|   template<class vobj> | ||||
|   void ExportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas) | ||||
|   { | ||||
|     int nvec = vecs.size(); | ||||
|     typedef typename vobj::scalar_object coarse_scalar_object; | ||||
|     //    std::cout << GridLogMessage<<" BlockProjector exporting "<<nvec<< " coarse grid vectors" <<std::endl; | ||||
|  | ||||
|     assert(vecs[0].Grid()==coarse_grid); | ||||
|  | ||||
|     int _ndimension = coarse_grid->_ndimension; | ||||
|      | ||||
|     uint64_t sz = blas.size(); | ||||
|  | ||||
|     Coordinate coarse_rdimensions = coarse_grid->_rdimensions; | ||||
|      | ||||
|     //    std::cout << " export coarsee Blas norm "<<blasNorm2(blas)<<std::endl; | ||||
|     for(int v=0;v<vecs.size();v++){ | ||||
|  | ||||
|       //  std::cout << " BlockProjector exporting coarse vector"<<v<<std::endl; | ||||
|       autoView( coarseData   , vecs[v], AcceleratorWrite); | ||||
|  | ||||
|       auto blasData_p  = &blas[0]; | ||||
|       auto coarseData_p  = &coarseData[0]; | ||||
|  | ||||
|       int64_t osites = coarse_grid->oSites(); | ||||
|  | ||||
|       // loop over fine sites | ||||
|       const int Nsimd = vobj::Nsimd(); | ||||
|       uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar); | ||||
|       assert(cwords==nbasis); | ||||
|        | ||||
|       accelerator_for(sc,osites,Nsimd,{ | ||||
| 	  // Wrap in a macro "FOR_ALL_LANES(lane,{ ... }); | ||||
| #ifdef GRID_SIMT | ||||
|         { | ||||
| 	  int lane=acceleratorSIMTlane(Nsimd); // buffer lane | ||||
| #else | ||||
| 	  for(int lane=0;lane<Nsimd;lane++) { | ||||
| #endif | ||||
| 	    int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords; | ||||
| 	    coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site]; | ||||
| 	    coarse_scalar_object data = *ptr; | ||||
| 	    insertLane(lane,coarseData[sc],data); | ||||
| #ifdef GRID_SIMT | ||||
| 	} | ||||
| #else | ||||
| 	} | ||||
| #endif | ||||
|       }); | ||||
|     } | ||||
|   } | ||||
|   void ImportBasis(std::vector < Field > &vecs) | ||||
|   { | ||||
|     //    std::cout << " BlockProjector Import basis size "<<vecs.size()<<std::endl; | ||||
|     ImportFineGridVectors(vecs,BLAS_V); | ||||
|   } | ||||
|  | ||||
|   template<class cobj> | ||||
|   void blockProject(std::vector<Field> &fine,std::vector< Lattice<cobj> > & coarse) | ||||
|   { | ||||
|     int nrhs=fine.size(); | ||||
|     int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar); | ||||
|     //    std::cout << "blockProject nbasis " <<nbasis<<" " << _nbasis<<std::endl; | ||||
|     assert(nbasis==_nbasis); | ||||
|      | ||||
|     BLAS_F.resize (fine_vol * words * nrhs ); | ||||
|     BLAS_C.resize (coarse_vol * nbasis * nrhs ); | ||||
|  | ||||
|     ///////////////////////////////////////////// | ||||
|     // Copy in the multi-rhs sources to same data layout | ||||
|     ///////////////////////////////////////////// | ||||
|     //    std::cout << "BlockProject import fine"<<std::endl; | ||||
|     ImportFineGridVectors(fine,BLAS_F); | ||||
|      | ||||
|     deviceVector<scalar *> Vd(coarse_vol); | ||||
|     deviceVector<scalar *> Fd(coarse_vol); | ||||
|     deviceVector<scalar *> Cd(coarse_vol); | ||||
|  | ||||
|     //    std::cout << "BlockProject pointers"<<std::endl; | ||||
|     for(int c=0;c<coarse_vol;c++){ | ||||
|       // BLAS_V[coarse_vol][nbasis][block_vol][words] | ||||
|       // BLAS_F[coarse_vol][nrhs][block_vol][words] | ||||
|       // BLAS_C[coarse_vol][nrhs][nbasis] | ||||
|       scalar * Vh = & BLAS_V[c*nbasis*block_vol*words]; | ||||
|       scalar * Fh = & BLAS_F[c*nrhs*block_vol*words]; | ||||
|       scalar * Ch = & BLAS_C[c*nrhs*nbasis]; | ||||
|  | ||||
|       acceleratorPut(Vd[c],Vh); | ||||
|       acceleratorPut(Fd[c],Fh); | ||||
|       acceleratorPut(Cd[c],Ch); | ||||
|     } | ||||
|  | ||||
|     GridBLAS BLAS; | ||||
|  | ||||
|     //    std::cout << "BlockProject BLAS"<<std::endl; | ||||
|     int64_t vw = block_vol * words; | ||||
|     ///////////////////////////////////////// | ||||
|     // C_br = V^dag R | ||||
|     ///////////////////////////////////////// | ||||
|     BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,  | ||||
|     		     nbasis,nrhs,vw, | ||||
| 		     scalar(1.0), | ||||
| 		     Vd, | ||||
| 		     Fd, | ||||
| 		     scalar(0.0),  // wipe out C | ||||
| 		     Cd); | ||||
|     BLAS.synchronise(); | ||||
|     //    std::cout << "BlockProject done"<<std::endl; | ||||
|     ExportCoarseGridVectors(coarse, BLAS_C); | ||||
|     //    std::cout << "BlockProject done"<<std::endl; | ||||
|  | ||||
|   } | ||||
|  | ||||
|   template<class cobj> | ||||
|   void blockPromote(std::vector<Field> &fine,std::vector<Lattice<cobj> > & coarse) | ||||
|   { | ||||
|     int nrhs=fine.size(); | ||||
|     int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar); | ||||
|     assert(nbasis==_nbasis); | ||||
|      | ||||
|     BLAS_F.resize (fine_vol * words * nrhs ); | ||||
|     BLAS_C.resize (coarse_vol * nbasis * nrhs ); | ||||
|  | ||||
|     ImportCoarseGridVectors(coarse, BLAS_C); | ||||
|  | ||||
|     GridBLAS BLAS; | ||||
|  | ||||
|     deviceVector<scalar *> Vd(coarse_vol); | ||||
|     deviceVector<scalar *> Fd(coarse_vol); | ||||
|     deviceVector<scalar *> Cd(coarse_vol); | ||||
|  | ||||
|     for(int c=0;c<coarse_vol;c++){ | ||||
|       // BLAS_V[coarse_vol][nbasis][block_vol][words] | ||||
|       // BLAS_F[coarse_vol][nrhs][block_vol][words] | ||||
|       // BLAS_C[coarse_vol][nrhs][nbasis] | ||||
|       scalar * Vh = & BLAS_V[c*nbasis*block_vol*words]; | ||||
|       scalar * Fh = & BLAS_F[c*nrhs*block_vol*words]; | ||||
|       scalar * Ch = & BLAS_C[c*nrhs*nbasis]; | ||||
|       acceleratorPut(Vd[c],Vh); | ||||
|       acceleratorPut(Fd[c],Fh); | ||||
|       acceleratorPut(Cd[c],Ch); | ||||
|     } | ||||
|  | ||||
|     ///////////////////////////////////////// | ||||
|     // Block promote: | ||||
|     // F_xr = Vxb Cbr (x coarse_vol) | ||||
|     ///////////////////////////////////////// | ||||
|  | ||||
|     int64_t vw = block_vol * words; | ||||
|     BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,  | ||||
|     		     vw,nrhs,nbasis, | ||||
| 		     scalar(1.0), | ||||
| 		     Vd, | ||||
| 		     Cd, | ||||
| 		     scalar(0.0),  // wipe out C | ||||
| 		     Fd); | ||||
|     BLAS.synchronise(); | ||||
|     //    std::cout << " blas call done"<<std::endl; | ||||
|      | ||||
|     ExportFineGridVectors(fine, BLAS_F); | ||||
|     //    std::cout << " exported "<<std::endl; | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -1,233 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: MultiRHSDeflation.h | ||||
|  | ||||
|     Copyright (C) 2023 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| /* Need helper object for BLAS accelerated mrhs projection | ||||
|  | ||||
|    i) MultiRHS Deflation | ||||
|  | ||||
|    Import Evecs -> nev x vol x internal  | ||||
|    Import vector of Lattice objects -> nrhs x vol x internal | ||||
|    => Cij (nrhs x Nev) via GEMM. | ||||
|    => Guess  (nrhs x vol x internal)  = C x evecs (via GEMM) | ||||
|    Export | ||||
|  | ||||
|     | ||||
|    ii) MultiRHS block projection | ||||
|  | ||||
|    Import basis -> nblock x nbasis x  (block x internal)  | ||||
|    Import vector of fine lattice objects -> nblock x nrhs x (block x internal)  | ||||
|  | ||||
|    => coarse_(nrhs x nbasis )^block = via batched GEMM | ||||
|  | ||||
|    iii)   Alternate interface:  | ||||
|    Import higher dim Lattice object-> vol x nrhs layout | ||||
|     | ||||
| */ | ||||
| template<class Field> | ||||
| class MultiRHSDeflation | ||||
| { | ||||
| public: | ||||
|  | ||||
|   typedef typename Field::scalar_type   scalar; | ||||
|   typedef typename Field::scalar_object scalar_object; | ||||
|  | ||||
|   int nev; | ||||
|   std::vector<RealD> eval; | ||||
|   GridBase *grid; | ||||
|   uint64_t vol; | ||||
|   uint64_t words; | ||||
|    | ||||
|   deviceVector<scalar> BLAS_E;      //  nev x vol -- the eigenbasis   (up to a 1/sqrt(lambda)) | ||||
|   deviceVector<scalar> BLAS_R;      // nrhs x vol -- the sources | ||||
|   deviceVector<scalar> BLAS_G;      // nrhs x vol -- the guess | ||||
|   deviceVector<scalar> BLAS_C;      // nrhs x nev -- the coefficients  | ||||
|    | ||||
|   MultiRHSDeflation(){}; | ||||
|   ~MultiRHSDeflation(){ Deallocate(); }; | ||||
|    | ||||
|   void Deallocate(void) | ||||
|   { | ||||
|     nev=0; | ||||
|     grid=nullptr; | ||||
|     vol=0; | ||||
|     words=0; | ||||
|     BLAS_E.resize(0); | ||||
|     BLAS_R.resize(0); | ||||
|     BLAS_C.resize(0); | ||||
|     BLAS_G.resize(0); | ||||
|   } | ||||
|   void Allocate(int _nev,GridBase *_grid) | ||||
|   { | ||||
|     nev=_nev; | ||||
|     grid=_grid; | ||||
|     vol   = grid->lSites(); | ||||
|     words = sizeof(scalar_object)/sizeof(scalar); | ||||
|     eval.resize(nev); | ||||
|     BLAS_E.resize (vol * words * nev ); | ||||
|     std::cout << GridLogMessage << " Allocate for "<<nev<<" eigenvectors and volume "<<vol<<std::endl; | ||||
|   } | ||||
|   void ImportEigenVector(Field &evec,RealD &_eval, int ev) | ||||
|   { | ||||
|     //    std::cout << " ev " <<ev<<" eval "<<_eval<< std::endl; | ||||
|     assert(ev<eval.size()); | ||||
|     eval[ev] = _eval; | ||||
|  | ||||
|     int64_t offset = ev*vol*words; | ||||
|     autoView(v,evec,AcceleratorRead); | ||||
|     acceleratorCopyDeviceToDevice(&v[0],&BLAS_E[offset],sizeof(scalar_object)*vol); | ||||
|  | ||||
|   } | ||||
|   void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval) | ||||
|   { | ||||
|     ImportEigenBasis(evec,_eval,0,evec.size()); | ||||
|   } | ||||
|   // Could use to import a batch of eigenvectors | ||||
|   void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval, int _ev0, int _nev) | ||||
|   { | ||||
|     assert(_ev0+_nev<=evec.size()); | ||||
|  | ||||
|     Allocate(_nev,evec[0].Grid()); | ||||
|      | ||||
|     // Imports a sub-batch of eigenvectors, _ev0, ..., _ev0+_nev-1 | ||||
|     for(int e=0;e<nev;e++){ | ||||
|       std::cout << "Importing eigenvector "<<e<<" evalue "<<_eval[_ev0+e]<<std::endl; | ||||
|       ImportEigenVector(evec[_ev0+e],_eval[_ev0+e],e); | ||||
|     } | ||||
|   } | ||||
|   void DeflateSources(std::vector<Field> &source,std::vector<Field> & guess) | ||||
|   { | ||||
|     int nrhs = source.size(); | ||||
|     assert(source.size()==guess.size()); | ||||
|     assert(grid == guess[0].Grid()); | ||||
|     conformable(guess[0],source[0]); | ||||
|  | ||||
|     int64_t vw = vol * words; | ||||
|  | ||||
|     RealD t0 = usecond(); | ||||
|     BLAS_R.resize(nrhs * vw); // cost free if size doesn't change | ||||
|     BLAS_G.resize(nrhs * vw); // cost free if size doesn't change | ||||
|     BLAS_C.resize(nev * nrhs);// cost free if size doesn't change | ||||
|  | ||||
|     ///////////////////////////////////////////// | ||||
|     // Copy in the multi-rhs sources | ||||
|     ///////////////////////////////////////////// | ||||
|     //    for(int r=0;r<nrhs;r++){ | ||||
|     //      std::cout << " source["<<r<<"] = "<<norm2(source[r])<<std::endl; | ||||
|     //    } | ||||
|     for(int r=0;r<nrhs;r++){ | ||||
|       int64_t offset = r*vw; | ||||
|       autoView(v,source[r],AcceleratorRead); | ||||
|       acceleratorCopyDeviceToDevice(&v[0],&BLAS_R[offset],sizeof(scalar_object)*vol); | ||||
|     } | ||||
|  | ||||
|   /* | ||||
|    * in Fortran column major notation (cuBlas order) | ||||
|    * | ||||
|    * Exe = [e1(x)][..][en(x)] | ||||
|    * | ||||
|    * Rxr = [r1(x)][..][rm(x)] | ||||
|    * | ||||
|    * C_er = E^dag R | ||||
|    * C_er = C_er / lambda_e  | ||||
|    * G_xr = Exe Cer | ||||
|    */ | ||||
|     deviceVector<scalar *> Ed(1); | ||||
|     deviceVector<scalar *> Rd(1); | ||||
|     deviceVector<scalar *> Cd(1); | ||||
|     deviceVector<scalar *> Gd(1); | ||||
|  | ||||
|     scalar * Eh = & BLAS_E[0]; | ||||
|     scalar * Rh = & BLAS_R[0]; | ||||
|     scalar * Ch = & BLAS_C[0]; | ||||
|     scalar * Gh = & BLAS_G[0]; | ||||
|  | ||||
|     acceleratorPut(Ed[0],Eh); | ||||
|     acceleratorPut(Rd[0],Rh); | ||||
|     acceleratorPut(Cd[0],Ch); | ||||
|     acceleratorPut(Gd[0],Gh); | ||||
|  | ||||
|     GridBLAS BLAS; | ||||
|  | ||||
|     ///////////////////////////////////////// | ||||
|     // C_er = E^dag R | ||||
|     ///////////////////////////////////////// | ||||
|     BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,  | ||||
|     		     nev,nrhs,vw, | ||||
| 		     scalar(1.0), | ||||
| 		     Ed, | ||||
| 		     Rd, | ||||
| 		     scalar(0.0),  // wipe out C | ||||
| 		     Cd); | ||||
|     BLAS.synchronise(); | ||||
|  | ||||
|     assert(BLAS_C.size()==nev*nrhs); | ||||
|  | ||||
|     std::vector<scalar> HOST_C(BLAS_C.size());      // nrhs . nev -- the coefficients  | ||||
|     acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar)); | ||||
|     grid->GlobalSumVector(&HOST_C[0],nev*nrhs); | ||||
|     for(int e=0;e<nev;e++){ | ||||
|       RealD lam(1.0/eval[e]); | ||||
|       for(int r=0;r<nrhs;r++){ | ||||
| 	int off = e+nev*r; | ||||
| 	HOST_C[off]=HOST_C[off] * lam; | ||||
| 	//	std::cout << "C["<<e<<"]["<<r<<"] ="<<HOST_C[off]<< " eval[e] "<<eval[e] <<std::endl; | ||||
|       } | ||||
|     } | ||||
|     acceleratorCopyToDevice(&HOST_C[0],&BLAS_C[0],BLAS_C.size()*sizeof(scalar)); | ||||
|  | ||||
|      | ||||
|     ///////////////////////////////////////// | ||||
|     // Guess G_xr = Exe Cer | ||||
|     ///////////////////////////////////////// | ||||
|     BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,  | ||||
| 		     vw,nrhs,nev, | ||||
| 		     scalar(1.0), | ||||
| 		     Ed, // x . nev | ||||
| 		     Cd, // nev . nrhs | ||||
| 		     scalar(0.0), | ||||
| 		     Gd); | ||||
|     BLAS.synchronise(); | ||||
|  | ||||
|     /////////////////////////////////////// | ||||
|     // Copy out the multirhs | ||||
|     /////////////////////////////////////// | ||||
|     for(int r=0;r<nrhs;r++){ | ||||
|       int64_t offset = r*vw; | ||||
|       autoView(v,guess[r],AcceleratorWrite); | ||||
|       acceleratorCopyDeviceToDevice(&BLAS_G[offset],&v[0],sizeof(scalar_object)*vol); | ||||
|     } | ||||
|     RealD t1 = usecond(); | ||||
|     std::cout << GridLogMessage << "MultiRHSDeflation for "<<nrhs<<" sources with "<<nev<<" eigenvectors took " << (t1-t0)/1e3 <<" ms"<<std::endl; | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -33,111 +33,109 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|    * Script A = SolverMatrix  | ||||
|    * Script P = Preconditioner | ||||
|    * | ||||
|    * Deflation methods considered | ||||
|    *      -- Solve P A x = P b        [ like Luscher ] | ||||
|    * DEF-1        M P A x = M P b     [i.e. left precon] | ||||
|    * DEF-2        P^T M A x = P^T M b | ||||
|    * ADEF-1       Preconditioner = M P + Q      [ Q + M + M A Q] | ||||
|    * ADEF-2       Preconditioner = P^T M + Q | ||||
|    * BNN          Preconditioner = P^T M P + Q | ||||
|    * BNN2         Preconditioner = M P + P^TM +Q - M P A M  | ||||
|    *  | ||||
|    * Implement ADEF-2 | ||||
|    * | ||||
|    * Vstart = P^Tx + Qb | ||||
|    * M1 = P^TM + Q | ||||
|    * M2=M3=1 | ||||
|    * Vout = x | ||||
|    */ | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| template<class Field> | ||||
| class TwoLevelCG : public LinearFunction<Field> | ||||
| // abstract base | ||||
| template<class Field, class CoarseField> | ||||
| class TwoLevelFlexiblePcg : public LinearFunction<Field> | ||||
| { | ||||
|  public: | ||||
|   int verbose; | ||||
|   RealD   Tolerance; | ||||
|   Integer MaxIterations; | ||||
|   const int mmax = 5; | ||||
|   GridBase *grid; | ||||
|   GridBase *coarsegrid; | ||||
|  | ||||
|   // Fine operator, Smoother, CoarseSolver | ||||
|   LinearOperatorBase<Field>   &_FineLinop; | ||||
|   LinearFunction<Field>   &_Smoother; | ||||
|   LinearOperatorBase<Field>   *_Linop | ||||
|   OperatorFunction<Field>     *_Smoother, | ||||
|   LinearFunction<CoarseField> *_CoarseSolver; | ||||
|  | ||||
|   // Need somthing that knows how to get from Coarse to fine and back again | ||||
|    | ||||
|   // more most opertor functions | ||||
|   TwoLevelCG(RealD tol, | ||||
| 	     Integer maxit, | ||||
| 	     LinearOperatorBase<Field>   &FineLinop, | ||||
| 	     LinearFunction<Field>       &Smoother, | ||||
| 	     GridBase *fine) :  | ||||
|   TwoLevelFlexiblePcg(RealD tol, | ||||
| 		     Integer maxit, | ||||
| 		     LinearOperatorBase<Field> *Linop, | ||||
| 		     LinearOperatorBase<Field> *SmootherLinop, | ||||
| 		     OperatorFunction<Field>   *Smoother, | ||||
| 		     OperatorFunction<CoarseField>  CoarseLinop | ||||
| 		     ) :  | ||||
|       Tolerance(tol),  | ||||
|       MaxIterations(maxit), | ||||
|       _FineLinop(FineLinop), | ||||
|       _Smoother(Smoother) | ||||
|       _Linop(Linop), | ||||
|       _PreconditionerLinop(PrecLinop), | ||||
|       _Preconditioner(Preconditioner) | ||||
|   {  | ||||
|     grid       = fine; | ||||
|     verbose=0; | ||||
|   }; | ||||
|  | ||||
|   virtual void operator() (const Field &src, Field &x) | ||||
|   { | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg starting single RHS"<<std::endl; | ||||
|   // The Pcg routine is common to all, but the various matrices differ from derived  | ||||
|   // implementation to derived implmentation | ||||
|   void operator() (const Field &src, Field &psi){ | ||||
|   void operator() (const Field &src, Field &psi){ | ||||
|  | ||||
|     psi.Checkerboard() = src.Checkerboard(); | ||||
|     grid             = src.Grid(); | ||||
|  | ||||
|     RealD f; | ||||
|     RealD rtzp,rtz,a,d,b; | ||||
|     RealD rptzp; | ||||
|     RealD tn; | ||||
|     RealD guess = norm2(psi); | ||||
|     RealD ssq   = norm2(src); | ||||
|     RealD rsq   = ssq*Tolerance*Tolerance; | ||||
|      | ||||
|     ///////////////////////////// | ||||
|     // Set up history vectors | ||||
|     ///////////////////////////// | ||||
|     int mmax = 5; | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl; | ||||
|     std::vector<Field> p(mmax,grid); | ||||
|     std::vector<Field> p  (mmax,grid); | ||||
|     std::vector<Field> mmp(mmax,grid); | ||||
|     std::vector<RealD> pAp(mmax); | ||||
|     Field z(grid); | ||||
|  | ||||
|     Field x  (grid); x = psi; | ||||
|     Field z  (grid); | ||||
|     Field tmp(grid); | ||||
|     Field  mp (grid); | ||||
|     Field  r  (grid); | ||||
|     Field  mu (grid); | ||||
|     Field r  (grid); | ||||
|     Field mu (grid); | ||||
|    | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg allocated"<<std::endl; | ||||
|     //Initial residual computation & set up | ||||
|     RealD guess   = norm2(x); | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg guess nrm "<<guess<<std::endl; | ||||
|     RealD src_nrm = norm2(src); | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg src nrm "<<src_nrm<<std::endl; | ||||
|      | ||||
|     if ( src_nrm == 0.0 ) { | ||||
|       std::cout << GridLogMessage<<"HDCG: fPcg given trivial source norm "<<src_nrm<<std::endl; | ||||
|       x=Zero(); | ||||
|     } | ||||
|     RealD tn; | ||||
|      | ||||
|     GridStopWatch HDCGTimer; | ||||
|     HDCGTimer.Start(); | ||||
|     ////////////////////////// | ||||
|     // x0 = Vstart -- possibly modify guess | ||||
|     ////////////////////////// | ||||
|     x=src; | ||||
|     Vstart(x,src); | ||||
|  | ||||
|     // r0 = b -A x0 | ||||
|     _FineLinop.HermOp(x,mmp[0]); | ||||
|     HermOp(x,mmp); // Shouldn't this be something else? | ||||
|     axpy (r, -1.0,mmp[0], src);    // Recomputes r=src-Ax0 | ||||
|     { | ||||
|       double n1 = norm2(x); | ||||
|       double n2 = norm2(mmp[0]); | ||||
|       double n3 = norm2(r); | ||||
|       std::cout<<GridLogMessage<<"x,vstart,r = "<<n1<<" "<<n2<<" "<<n3<<std::endl; | ||||
|     } | ||||
|  | ||||
|     ////////////////////////////////// | ||||
|     // Compute z = M1 x | ||||
|     ////////////////////////////////// | ||||
|     PcgM1(r,z); | ||||
|     M1(r,z,tmp,mp,SmootherMirs); | ||||
|     rtzp =real(innerProduct(r,z)); | ||||
|  | ||||
|     /////////////////////////////////////// | ||||
|     // Solve for Mss mu = P A z and set p = z-mu | ||||
|     // Def2 p = 1 - Q Az = Pright z | ||||
|     // Def2: p = 1 - Q Az = Pright z  | ||||
|     // Other algos M2 is trivial | ||||
|     /////////////////////////////////////// | ||||
|     PcgM2(z,p[0]); | ||||
|  | ||||
|     RealD ssq =  norm2(src); | ||||
|     RealD rsq =  ssq*Tolerance*Tolerance; | ||||
|  | ||||
|     std::cout << GridLogMessage<<"HDCG: k=0 residual "<<rtzp<<" rsq "<<rsq<<"\n"; | ||||
|  | ||||
|     Field pp(grid); | ||||
|     M2(z,p[0]); | ||||
|  | ||||
|     for (int k=0;k<=MaxIterations;k++){ | ||||
|      | ||||
| @@ -145,7 +143,7 @@ class TwoLevelCG : public LinearFunction<Field> | ||||
|       int peri_kp = (k+1) % mmax; | ||||
|  | ||||
|       rtz=rtzp; | ||||
|       d= PcgM3(p[peri_k],mmp[peri_k]); | ||||
|       d= M3(p[peri_k],mp,mmp[peri_k],tmp); | ||||
|       a = rtz/d; | ||||
|      | ||||
|       // Memorise this | ||||
| @@ -155,36 +153,21 @@ class TwoLevelCG : public LinearFunction<Field> | ||||
|       RealD rn = axpy_norm(r,-a,mmp[peri_k],r); | ||||
|  | ||||
|       // Compute z = M x | ||||
|       PcgM1(r,z); | ||||
|       M1(r,z,tmp,mp); | ||||
|  | ||||
|       { | ||||
| 	RealD n1,n2; | ||||
| 	n1=norm2(r); | ||||
| 	n2=norm2(z); | ||||
| 	std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : vector r,z "<<n1<<" "<<n2<<"\n"; | ||||
|       } | ||||
|       rtzp =real(innerProduct(r,z)); | ||||
|       std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : inner rtzp "<<rtzp<<"\n"; | ||||
|  | ||||
|       //    PcgM2(z,p[0]); | ||||
|       PcgM2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate | ||||
|       M2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate | ||||
|  | ||||
|       p[peri_kp]=mu; | ||||
|       p[peri_kp]=p[peri_k]; | ||||
|  | ||||
|       // Standard search direction  p -> z + b p     | ||||
|       // Standard search direction  p -> z + b p    ; b =  | ||||
|       b = (rtzp)/rtz; | ||||
|  | ||||
|       int northog; | ||||
|       // k=zero  <=> peri_kp=1;        northog = 1 | ||||
|       // k=1     <=> peri_kp=2;        northog = 2 | ||||
|       // ...               ...                  ... | ||||
|       // k=mmax-2<=> peri_kp=mmax-1;   northog = mmax-1 | ||||
|       // k=mmax-1<=> peri_kp=0;        northog = 1 | ||||
|  | ||||
|       //    northog     = (peri_kp==0)?1:peri_kp; // This is the fCG(mmax) algorithm | ||||
|       northog     = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm | ||||
|      | ||||
|       std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n"; | ||||
|       for(int back=0; back < northog; back++){ | ||||
| 	int peri_back = (k-back)%mmax; | ||||
| 	RealD pbApk= real(innerProduct(mmp[peri_back],p[peri_kp])); | ||||
| @@ -193,324 +176,75 @@ class TwoLevelCG : public LinearFunction<Field> | ||||
|       } | ||||
|  | ||||
|       RealD rrn=sqrt(rn/ssq); | ||||
|       RealD rtn=sqrt(rtz/ssq); | ||||
|       RealD rtnp=sqrt(rtzp/ssq); | ||||
|  | ||||
|       std::cout<<GridLogMessage<<"HDCG: fPcg k= "<<k<<" residual = "<<rrn<<"\n"; | ||||
|       std::cout<<GridLogMessage<<"TwoLevelfPcg: k= "<<k<<" residual = "<<rrn<<std::endl; | ||||
|  | ||||
|       // Stopping condition | ||||
|       if ( rn <= rsq ) {  | ||||
|  | ||||
| 	HDCGTimer.Stop(); | ||||
| 	std::cout<<GridLogMessage<<"HDCG: fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;; | ||||
| 	 | ||||
| 	_FineLinop.HermOp(x,mmp[0]);			   | ||||
| 	HermOp(x,mmp); // Shouldn't this be something else? | ||||
| 	axpy(tmp,-1.0,src,mmp[0]); | ||||
| 	 | ||||
| 	RealD  mmpnorm = sqrt(norm2(mmp[0])); | ||||
| 	RealD  xnorm   = sqrt(norm2(x)); | ||||
| 	RealD  srcnorm = sqrt(norm2(src)); | ||||
| 	RealD  tmpnorm = sqrt(norm2(tmp)); | ||||
| 	RealD  true_residual = tmpnorm/srcnorm; | ||||
| 	std::cout<<GridLogMessage | ||||
| 	       <<"HDCG: true residual is "<<true_residual | ||||
| 	       <<" solution "<<xnorm | ||||
| 	       <<" source "<<srcnorm | ||||
| 	       <<" mmp "<<mmpnorm	   | ||||
| 	       <<std::endl; | ||||
|        | ||||
| 	return; | ||||
| 	RealD psinorm = sqrt(norm2(x)); | ||||
| 	RealD srcnorm = sqrt(norm2(src)); | ||||
| 	RealD tmpnorm = sqrt(norm2(tmp)); | ||||
| 	RealD true_residual = tmpnorm/srcnorm; | ||||
| 	std::cout<<GridLogMessage<<"TwoLevelfPcg:   true residual is "<<true_residual<<std::endl; | ||||
| 	std::cout<<GridLogMessage<<"TwoLevelfPcg: target residual was"<<Tolerance<<std::endl; | ||||
| 	return k; | ||||
|       } | ||||
|  | ||||
|     } | ||||
|     HDCGTimer.Stop(); | ||||
|     std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl; | ||||
|     RealD  xnorm   = sqrt(norm2(x)); | ||||
|     RealD  srcnorm = sqrt(norm2(src)); | ||||
|     std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl; | ||||
|     // Non-convergence | ||||
|     assert(0); | ||||
|   } | ||||
|  | ||||
|  | ||||
|  | ||||
|   virtual void operator() (std::vector<Field> &src, std::vector<Field> &x) | ||||
|   { | ||||
|     std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl; | ||||
|     src[0].Grid()->Barrier(); | ||||
|     int nrhs = src.size(); | ||||
|     std::vector<RealD> f(nrhs); | ||||
|     std::vector<RealD> rtzp(nrhs); | ||||
|     std::vector<RealD> rtz(nrhs); | ||||
|     std::vector<RealD> a(nrhs); | ||||
|     std::vector<RealD> d(nrhs); | ||||
|     std::vector<RealD> b(nrhs); | ||||
|     std::vector<RealD> rptzp(nrhs); | ||||
|     ///////////////////////////// | ||||
|     // Set up history vectors | ||||
|     ///////////////////////////// | ||||
|     int mmax = 3; | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl; | ||||
|     src[0].Grid()->Barrier(); | ||||
|     std::vector<std::vector<Field> > p(nrhs);   for(int r=0;r<nrhs;r++)  p[r].resize(mmax,grid); | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg allocated p"<<std::endl; | ||||
|     src[0].Grid()->Barrier(); | ||||
|     std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid); | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg allocated mmp"<<std::endl; | ||||
|     src[0].Grid()->Barrier(); | ||||
|     std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax); | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg allocated pAp"<<std::endl; | ||||
|     src[0].Grid()->Barrier(); | ||||
|     std::vector<Field> z(nrhs,grid); | ||||
|     std::vector<Field>  mp (nrhs,grid); | ||||
|     std::vector<Field>  r  (nrhs,grid); | ||||
|     std::vector<Field>  mu (nrhs,grid); | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg allocated z,mp,r,mu"<<std::endl; | ||||
|     src[0].Grid()->Barrier(); | ||||
|  | ||||
|     //Initial residual computation & set up | ||||
|     std::vector<RealD> src_nrm(nrhs); | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       src_nrm[rhs]=norm2(src[rhs]); | ||||
|       assert(src_nrm[rhs]!=0.0); | ||||
|     } | ||||
|     std::vector<RealD> tn(nrhs); | ||||
|  | ||||
|     GridStopWatch HDCGTimer; | ||||
|     HDCGTimer.Start(); | ||||
|     ////////////////////////// | ||||
|     // x0 = Vstart -- possibly modify guess | ||||
|     ////////////////////////// | ||||
|     Vstart(x,src); | ||||
|  | ||||
|     for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|       // r0 = b -A x0 | ||||
|       _FineLinop.HermOp(x[rhs],mmp[rhs][0]); | ||||
|       axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]);    // Recomputes r=src-Ax0 | ||||
|     } | ||||
|  | ||||
|     ////////////////////////////////// | ||||
|     // Compute z = M1 x | ||||
|     ////////////////////////////////// | ||||
|     // This needs a multiRHS version for acceleration | ||||
|     PcgM1(r,z); | ||||
|  | ||||
|     std::vector<RealD> ssq(nrhs); | ||||
|     std::vector<RealD> rsq(nrhs); | ||||
|     std::vector<Field> pp(nrhs,grid); | ||||
|  | ||||
|     for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|       rtzp[rhs] =real(innerProduct(r[rhs],z[rhs])); | ||||
|       p[rhs][0]=z[rhs]; | ||||
|       ssq[rhs]=norm2(src[rhs]); | ||||
|       rsq[rhs]=  ssq[rhs]*Tolerance*Tolerance; | ||||
|       std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n"; | ||||
|     } | ||||
|  | ||||
|     std::vector<RealD> rn(nrhs); | ||||
|     for (int k=0;k<=MaxIterations;k++){ | ||||
|      | ||||
|       int peri_k  = k % mmax; | ||||
|       int peri_kp = (k+1) % mmax; | ||||
|  | ||||
|       for(int rhs=0;rhs<nrhs;rhs++){ | ||||
| 	rtz[rhs]=rtzp[rhs]; | ||||
| 	d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]); | ||||
| 	a[rhs] = rtz[rhs]/d[rhs]; | ||||
|      | ||||
| 	// Memorise this | ||||
| 	pAp[rhs][peri_k] = d[rhs]; | ||||
|  | ||||
| 	axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]); | ||||
| 	rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]); | ||||
|       } | ||||
|  | ||||
|       // Compute z = M x (for *all* RHS) | ||||
|       PcgM1(r,z); | ||||
|       std::cout << GridLogMessage<<"HDCG::fPcg M1 complete"<<std::endl; | ||||
|       grid->Barrier(); | ||||
|        | ||||
|       RealD max_rn=0.0; | ||||
|       for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|  | ||||
| 	rtzp[rhs] =real(innerProduct(r[rhs],z[rhs])); | ||||
|  | ||||
| 	std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n"; | ||||
| 	 | ||||
| 	mu[rhs]=z[rhs]; | ||||
|  | ||||
| 	p[rhs][peri_kp]=mu[rhs]; | ||||
|  | ||||
| 	// Standard search direction p == z + b p  | ||||
| 	b[rhs] = (rtzp[rhs])/rtz[rhs]; | ||||
|  | ||||
| 	int northog = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm | ||||
| 	std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n"; | ||||
| 	for(int back=0; back < northog; back++){ | ||||
| 	  int peri_back = (k-back)%mmax; | ||||
| 	  RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp])); | ||||
| 	  RealD beta = -pbApk/pAp[rhs][peri_back]; | ||||
| 	  axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]); | ||||
| 	} | ||||
|  | ||||
| 	RealD rrn=sqrt(rn[rhs]/ssq[rhs]); | ||||
| 	RealD rtn=sqrt(rtz[rhs]/ssq[rhs]); | ||||
| 	RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]); | ||||
| 	 | ||||
| 	std::cout<<GridLogMessage<<"HDCG: rhs "<<rhs<<"fPcg k= "<<k<<" residual = "<<rrn<<"\n"; | ||||
| 	if ( rrn > max_rn ) max_rn = rrn; | ||||
|       } | ||||
|  | ||||
|       // Stopping condition based on worst case | ||||
|       if ( max_rn <= Tolerance ) {  | ||||
|  | ||||
| 	HDCGTimer.Stop(); | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;; | ||||
|  | ||||
| 	for(int rhs=0;rhs<nrhs;rhs++){ | ||||
| 	  _FineLinop.HermOp(x[rhs],mmp[rhs][0]);			   | ||||
| 	  Field tmp(grid); | ||||
| 	  axpy(tmp,-1.0,src[rhs],mmp[rhs][0]); | ||||
|        | ||||
| 	  RealD  mmpnorm = sqrt(norm2(mmp[rhs][0])); | ||||
| 	  RealD  xnorm   = sqrt(norm2(x[rhs])); | ||||
| 	  RealD  srcnorm = sqrt(norm2(src[rhs])); | ||||
| 	  RealD  tmpnorm = sqrt(norm2(tmp)); | ||||
| 	  RealD  true_residual = tmpnorm/srcnorm; | ||||
| 	  std::cout<<GridLogMessage | ||||
| 		   <<"HDCG: true residual ["<<rhs<<"] is "<<true_residual | ||||
| 		   <<" solution "<<xnorm | ||||
| 		   <<" source "<<srcnorm | ||||
| 		   <<" mmp "<<mmpnorm	   | ||||
| 		   <<std::endl; | ||||
| 	} | ||||
| 	return; | ||||
|       } | ||||
|        | ||||
|     } | ||||
|     HDCGTimer.Stop(); | ||||
|     std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl; | ||||
|     for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|       RealD  xnorm   = sqrt(norm2(x[rhs])); | ||||
|       RealD  srcnorm = sqrt(norm2(src[rhs])); | ||||
|       std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl; | ||||
|     } | ||||
|   } | ||||
|    | ||||
|  | ||||
|  public: | ||||
|  | ||||
|   virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out) | ||||
|   { | ||||
|     std::cout << "PcgM1 default (cheat) mrhs version"<<std::endl; | ||||
|     for(int rhs=0;rhs<in.size();rhs++){ | ||||
|       this->PcgM1(in[rhs],out[rhs]); | ||||
|     } | ||||
|   } | ||||
|   virtual void PcgM1(Field & in, Field & out)     =0; | ||||
|   virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src) | ||||
|   { | ||||
|     std::cout << "Vstart default (cheat) mrhs version"<<std::endl; | ||||
|     for(int rhs=0;rhs<x.size();rhs++){ | ||||
|       this->Vstart(x[rhs],src[rhs]); | ||||
|     } | ||||
|   } | ||||
|   virtual void Vstart(Field & x,const Field & src)=0; | ||||
|   virtual void M(Field & in,Field & out,Field & tmp) { | ||||
|  | ||||
|   virtual void PcgM2(const Field & in, Field & out) { | ||||
|     out=in; | ||||
|   } | ||||
|  | ||||
|   virtual RealD PcgM3(const Field & p, Field & mmp){ | ||||
|     RealD dd; | ||||
|     _FineLinop.HermOp(p,mmp); | ||||
|     ComplexD dot = innerProduct(p,mmp); | ||||
|     dd=real(dot); | ||||
|     return dd; | ||||
|   } | ||||
|   virtual void M1(Field & in, Field & out) {// the smoother | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
|   // Only Def1 has non-trivial Vout. | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
|  | ||||
| }; | ||||
|    | ||||
| template<class Field, class CoarseField, class Aggregation> | ||||
| class TwoLevelADEF2 : public TwoLevelCG<Field> | ||||
| { | ||||
|  public: | ||||
|   /////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Need something that knows how to get from Coarse to fine and back again | ||||
|   //  void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){ | ||||
|   //  void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){ | ||||
|   /////////////////////////////////////////////////////////////////////////////////// | ||||
|   GridBase *coarsegrid; | ||||
|   Aggregation &_Aggregates;                     | ||||
|   LinearFunction<CoarseField> &_CoarseSolver; | ||||
|   LinearFunction<CoarseField> &_CoarseSolverPrecise; | ||||
|   /////////////////////////////////////////////////////////////////////////////////// | ||||
|    | ||||
|   // more most opertor functions | ||||
|   TwoLevelADEF2(RealD tol, | ||||
| 		Integer maxit, | ||||
| 		LinearOperatorBase<Field>    &FineLinop, | ||||
| 		LinearFunction<Field>        &Smoother, | ||||
| 		LinearFunction<CoarseField>  &CoarseSolver, | ||||
| 		LinearFunction<CoarseField>  &CoarseSolverPrecise, | ||||
| 		Aggregation &Aggregates | ||||
| 		) : | ||||
|       TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,Aggregates.FineGrid), | ||||
|       _CoarseSolver(CoarseSolver), | ||||
|       _CoarseSolverPrecise(CoarseSolverPrecise), | ||||
|       _Aggregates(Aggregates) | ||||
|   { | ||||
|     coarsegrid = Aggregates.CoarseGrid; | ||||
|   }; | ||||
|  | ||||
|   virtual void PcgM1(Field & in, Field & out) | ||||
|   { | ||||
|     GRID_TRACE("MultiGridPreconditioner "); | ||||
|     // [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min] | ||||
|     Field tmp(grid); | ||||
|     Field Min(grid); | ||||
|  | ||||
|     Field tmp(this->grid); | ||||
|     Field Min(this->grid); | ||||
|     CoarseField PleftProj(this->coarsegrid); | ||||
|     CoarseField PleftMss_proj(this->coarsegrid); | ||||
|     PcgM(in,Min); // Smoother call | ||||
|  | ||||
|     GridStopWatch SmootherTimer; | ||||
|     GridStopWatch MatrixTimer; | ||||
|     SmootherTimer.Start(); | ||||
|     this->_Smoother(in,Min); | ||||
|     SmootherTimer.Stop(); | ||||
|  | ||||
|     MatrixTimer.Start(); | ||||
|     this->_FineLinop.HermOp(Min,out); | ||||
|     MatrixTimer.Stop(); | ||||
|     HermOp(Min,out); | ||||
|     axpy(tmp,-1.0,out,in);          // tmp  = in - A Min | ||||
|  | ||||
|     GridStopWatch ProjTimer; | ||||
|     GridStopWatch CoarseTimer; | ||||
|     GridStopWatch PromTimer; | ||||
|     ProjTimer.Start(); | ||||
|     this->_Aggregates.ProjectToSubspace(PleftProj,tmp);      | ||||
|     ProjTimer.Stop(); | ||||
|     CoarseTimer.Start(); | ||||
|     this->_CoarseSolver(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s | ||||
|     CoarseTimer.Stop(); | ||||
|     PromTimer.Start(); | ||||
|     this->_Aggregates.PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]   | ||||
|     PromTimer.Stop(); | ||||
|     std::cout << GridLogPerformance << "PcgM1 breakdown "<<std::endl; | ||||
|     std::cout << GridLogPerformance << "\tSmoother   " << SmootherTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogPerformance << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogPerformance << "\tProj       " << ProjTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogPerformance << "\tCoarse     " << CoarseTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogPerformance << "\tProm       " << PromTimer.Elapsed() <<std::endl; | ||||
|  | ||||
|     ProjectToSubspace(tmp,PleftProj);      | ||||
|     ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s | ||||
|     PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]   | ||||
|     axpy(out,1.0,Min,tmp); // Min+tmp | ||||
|   } | ||||
|  | ||||
|   virtual void Vstart(Field & x,const Field & src) | ||||
|   { | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg Vstart "<<std::endl; | ||||
|   virtual void M2(const Field & in, Field & out) { | ||||
|     out=in; | ||||
|     // Must override for Def2 only | ||||
|     //  case PcgDef2: | ||||
|     //    Pright(in,out); | ||||
|     //    break; | ||||
|   } | ||||
|  | ||||
|   virtual RealD M3(const Field & p, Field & mmp){ | ||||
|     double d,dd; | ||||
|     HermOpAndNorm(p,mmp,d,dd); | ||||
|     return dd; | ||||
|     // Must override for Def1 only | ||||
|     //  case PcgDef1: | ||||
|     //    d=linop_d->Mprec(p,mmp,tmp,0,1);// Dag no | ||||
|     //      linop_d->Mprec(mmp,mp,tmp,1);// Dag yes | ||||
|     //    Pleft(mp,mmp); | ||||
|     //    d=real(linop_d->inner(p,mmp)); | ||||
|   } | ||||
|  | ||||
|   virtual void VstartDef2(Field & xconst Field & src){ | ||||
|     //case PcgDef2: | ||||
|     //case PcgAdef2:  | ||||
|     //case PcgAdef2f: | ||||
|     //case PcgV11f: | ||||
|     /////////////////////////////////// | ||||
|     // Choose x_0 such that  | ||||
|     // x_0 = guess +  (A_ss^inv) r_s = guess + Ass_inv [src -Aguess] | ||||
| @@ -522,78 +256,142 @@ class TwoLevelADEF2 : public TwoLevelCG<Field> | ||||
|     //                   = src_s - (A guess)_s - src_s  + (A guess)_s  | ||||
|     //                   = 0  | ||||
|     /////////////////////////////////// | ||||
|     Field r(this->grid); | ||||
|     Field mmp(this->grid); | ||||
|     CoarseField PleftProj(this->coarsegrid); | ||||
|     CoarseField PleftMss_proj(this->coarsegrid); | ||||
|     Field r(grid); | ||||
|     Field mmp(grid); | ||||
|      | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg Vstart projecting "<<std::endl; | ||||
|     this->_Aggregates.ProjectToSubspace(PleftProj,src);      | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg Vstart coarse solve "<<std::endl; | ||||
|     this->_CoarseSolverPrecise(PleftProj,PleftMss_proj); // Ass^{-1} r_s | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg Vstart promote "<<std::endl; | ||||
|     this->_Aggregates.PromoteFromSubspace(PleftMss_proj,x);   | ||||
|     HermOp(x,mmp); | ||||
|     axpy (r, -1.0, mmp, src);        // r_{-1} = src - A x | ||||
|     ProjectToSubspace(r,PleftProj);      | ||||
|     ApplyInverseCG(PleftProj,PleftMss_proj); // Ass^{-1} r_s | ||||
|     PromoteFromSubspace(PleftMss_proj,mmp);   | ||||
|     x=x+mmp; | ||||
|  | ||||
|   } | ||||
|  | ||||
| }; | ||||
|   virtual void Vstart(Field & x,const Field & src){ | ||||
|     return; | ||||
|   } | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
|   // Only Def1 has non-trivial Vout. Override in Def1 | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
|   virtual void   Vout  (Field & in, Field & out,Field & src){ | ||||
|     out = in; | ||||
|     //case PcgDef1: | ||||
|     //    //Qb + PT x | ||||
|     //    ProjectToSubspace(src,PleftProj);      | ||||
|     //    ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} r_s | ||||
|     //    PromoteFromSubspace(PleftMss_proj,tmp);   | ||||
|     //     | ||||
|     //    Pright(in,out); | ||||
|     //     | ||||
|     //    linop_d->axpy(out,tmp,out,1.0); | ||||
|     //    break; | ||||
|   } | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Pright and Pleft are common to all implementations | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   virtual void Pright(Field & in,Field & out){ | ||||
|     // P_R  = [ 1              0 ]  | ||||
|     //        [ -Mss^-1 Msb    0 ]  | ||||
|     Field in_sbar(grid); | ||||
|  | ||||
|     ProjectToSubspace(in,PleftProj);      | ||||
|     PromoteFromSubspace(PleftProj,out);   | ||||
|     axpy(in_sbar,-1.0,out,in);       // in_sbar = in - in_s  | ||||
|  | ||||
|     HermOp(in_sbar,out); | ||||
|     ProjectToSubspace(out,PleftProj);           // Mssbar in_sbar  (project) | ||||
|  | ||||
|     ApplyInverse     (PleftProj,PleftMss_proj); // Mss^{-1} Mssbar  | ||||
|     PromoteFromSubspace(PleftMss_proj,out);     //  | ||||
|  | ||||
|     axpy(out,-1.0,out,in_sbar);     // in_sbar - Mss^{-1} Mssbar in_sbar | ||||
|   } | ||||
|   virtual void Pleft (Field & in,Field & out){ | ||||
|     // P_L  = [ 1  -Mbs Mss^-1]  | ||||
|     //        [ 0   0         ]  | ||||
|     Field in_sbar(grid); | ||||
|     Field    tmp2(grid); | ||||
|     Field    Mtmp(grid); | ||||
|  | ||||
|     ProjectToSubspace(in,PleftProj);      | ||||
|     PromoteFromSubspace(PleftProj,out);   | ||||
|     axpy(in_sbar,-1.0,out,in);      // in_sbar = in - in_s | ||||
|  | ||||
|     ApplyInverse(PleftProj,PleftMss_proj); // Mss^{-1} in_s | ||||
|     PromoteFromSubspace(PleftMss_proj,out); | ||||
|  | ||||
|     HermOp(out,Mtmp); | ||||
|  | ||||
|     ProjectToSubspace(Mtmp,PleftProj);      // Msbar s Mss^{-1} | ||||
|     PromoteFromSubspace(PleftProj,tmp2); | ||||
|  | ||||
|     axpy(out,-1.0,tmp2,Mtmp); | ||||
|     axpy(out,-1.0,out,in_sbar);     // in_sbar - Msbars Mss^{-1} in_s | ||||
|   } | ||||
| } | ||||
|  | ||||
| template<class Field> | ||||
| class TwoLevelADEF1defl : public TwoLevelCG<Field> | ||||
| { | ||||
| public: | ||||
|   const std::vector<Field> &evec; | ||||
|   const std::vector<RealD> &eval; | ||||
| class TwoLevelFlexiblePcgADef2 : public TwoLevelFlexiblePcg<Field> { | ||||
|  public: | ||||
|   virtual void M(Field & in,Field & out,Field & tmp){ | ||||
|  | ||||
|   TwoLevelADEF1defl(RealD tol, | ||||
| 		   Integer maxit, | ||||
| 		   LinearOperatorBase<Field>   &FineLinop, | ||||
| 		   LinearFunction<Field>   &Smoother, | ||||
| 		   std::vector<Field> &_evec, | ||||
| 		   std::vector<RealD> &_eval) :  | ||||
|     TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,_evec[0].Grid()), | ||||
|     evec(_evec), | ||||
|     eval(_eval) | ||||
|   {}; | ||||
|  | ||||
|   // Can just inherit existing M2 | ||||
|   // Can just inherit existing M3 | ||||
|  | ||||
|   // Simple vstart - do nothing | ||||
|   virtual void Vstart(Field & x,const Field & src){ | ||||
|     x=src; // Could apply Q | ||||
|   }; | ||||
|  | ||||
|   // Override PcgM1 | ||||
|   virtual void PcgM1(Field & in, Field & out) | ||||
|   { | ||||
|     GRID_TRACE("EvecPreconditioner "); | ||||
|     int N=evec.size(); | ||||
|     Field Pin(this->grid); | ||||
|     Field Qin(this->grid); | ||||
|  | ||||
|     //MP  + Q = M(1-AQ) + Q = M | ||||
|     // // If we are eigenvector deflating in coarse space | ||||
|     // // Q   = Sum_i |phi_i> 1/lambda_i <phi_i| | ||||
|     // // A Q = Sum_i |phi_i> <phi_i| | ||||
|     // // M(1-AQ) = M(1-proj) + Q | ||||
|     Qin.Checkerboard()=in.Checkerboard(); | ||||
|     Qin = Zero(); | ||||
|     Pin = in; | ||||
|     for (int i=0;i<N;i++) { | ||||
|       const Field& tmp = evec[i]; | ||||
|       auto ip = TensorRemove(innerProduct(tmp,in)); | ||||
|       axpy(Qin, ip / eval[i],tmp,Qin); | ||||
|       axpy(Pin, -ip ,tmp,Pin); | ||||
|     } | ||||
|  | ||||
|     this->_Smoother(Pin,out); | ||||
|  | ||||
|     out = out + Qin; | ||||
|   }  | ||||
| }; | ||||
|   virtual void M1(Field & in, Field & out,Field & tmp,Field & mp){ | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|   } | ||||
|   virtual void M2(Field & in, Field & out){ | ||||
|  | ||||
|   } | ||||
|   virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp){ | ||||
|  | ||||
|   } | ||||
|   virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp){ | ||||
|  | ||||
|   } | ||||
| } | ||||
| /* | ||||
| template<class Field> | ||||
| class TwoLevelFlexiblePcgAD : public TwoLevelFlexiblePcg<Field> { | ||||
|  public: | ||||
|   virtual void M(Field & in,Field & out,Field & tmp);  | ||||
|   virtual void M1(Field & in, Field & out,Field & tmp,Field & mp); | ||||
|   virtual void M2(Field & in, Field & out); | ||||
|   virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp); | ||||
|   virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp); | ||||
| } | ||||
|  | ||||
| template<class Field> | ||||
| class TwoLevelFlexiblePcgDef1 : public TwoLevelFlexiblePcg<Field> { | ||||
|  public: | ||||
|   virtual void M(Field & in,Field & out,Field & tmp);  | ||||
|   virtual void M1(Field & in, Field & out,Field & tmp,Field & mp); | ||||
|   virtual void M2(Field & in, Field & out); | ||||
|   virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp); | ||||
|   virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp); | ||||
|   virtual void   Vout  (Field & in, Field & out,Field & src,Field & tmp); | ||||
| } | ||||
|  | ||||
| template<class Field> | ||||
| class TwoLevelFlexiblePcgDef2 : public TwoLevelFlexiblePcg<Field> { | ||||
|  public: | ||||
|   virtual void M(Field & in,Field & out,Field & tmp);  | ||||
|   virtual void M1(Field & in, Field & out,Field & tmp,Field & mp); | ||||
|   virtual void M2(Field & in, Field & out); | ||||
|   virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp); | ||||
|   virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp); | ||||
| } | ||||
|  | ||||
| template<class Field> | ||||
| class TwoLevelFlexiblePcgV11: public TwoLevelFlexiblePcg<Field> { | ||||
|  public: | ||||
|   virtual void M(Field & in,Field & out,Field & tmp);  | ||||
|   virtual void M1(Field & in, Field & out,Field & tmp,Field & mp); | ||||
|   virtual void M2(Field & in, Field & out); | ||||
|   virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp); | ||||
|   virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp); | ||||
| } | ||||
| */ | ||||
| #endif | ||||
|   | ||||
| @@ -1,734 +0,0 @@ | ||||
|     /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/iterative/AdefGeneric.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
|     *************************************************************************************/ | ||||
|     /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
|  | ||||
|   /* | ||||
|    * Compared to Tang-2009:  P=Pleft. P^T = PRight Q=MssInv.  | ||||
|    * Script A = SolverMatrix  | ||||
|    * Script P = Preconditioner | ||||
|    * | ||||
|    * Implement ADEF-2 | ||||
|    * | ||||
|    * Vstart = P^Tx + Qb | ||||
|    * M1 = P^TM + Q | ||||
|    * M2=M3=1 | ||||
|    */ | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| template<class Field> | ||||
| class TwoLevelCGmrhs | ||||
| { | ||||
|  public: | ||||
|   RealD   Tolerance; | ||||
|   Integer MaxIterations; | ||||
|   GridBase *grid; | ||||
|  | ||||
|   // Fine operator, Smoother, CoarseSolver | ||||
|   LinearOperatorBase<Field>   &_FineLinop; | ||||
|   LinearFunction<Field>   &_Smoother; | ||||
|   MultiRHSBlockCGLinalg<Field> _BlockCGLinalg; | ||||
|  | ||||
|   GridStopWatch ProjectTimer; | ||||
|   GridStopWatch PromoteTimer; | ||||
|   GridStopWatch DeflateTimer; | ||||
|   GridStopWatch CoarseTimer; | ||||
|   GridStopWatch FineTimer; | ||||
|   GridStopWatch SmoothTimer; | ||||
|   GridStopWatch InsertTimer; | ||||
|  | ||||
|   /* | ||||
|     Field rrr; | ||||
|   Field sss; | ||||
|   Field qqq; | ||||
|   Field zzz; | ||||
|   */   | ||||
|   // more most opertor functions | ||||
|   TwoLevelCGmrhs(RealD tol, | ||||
| 		 Integer maxit, | ||||
| 		 LinearOperatorBase<Field>   &FineLinop, | ||||
| 		 LinearFunction<Field>       &Smoother, | ||||
| 		 GridBase *fine) :  | ||||
|     Tolerance(tol),  | ||||
|     MaxIterations(maxit), | ||||
|     _FineLinop(FineLinop), | ||||
|     _Smoother(Smoother) | ||||
|     /* | ||||
|     rrr(fine), | ||||
|     sss(fine), | ||||
|     qqq(fine), | ||||
|     zzz(fine) | ||||
| */ | ||||
|   { | ||||
|     grid       = fine; | ||||
|   }; | ||||
|    | ||||
|   // Vector case | ||||
|   virtual void operator() (std::vector<Field> &src, std::vector<Field> &x) | ||||
|   { | ||||
|     //    SolveSingleSystem(src,x); | ||||
|     SolvePrecBlockCG(src,x); | ||||
|   } | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Thin QR factorisation (google it) | ||||
| //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   //Dimensions | ||||
|   // R_{ferm x Nblock} =  Q_{ferm x Nblock} x  C_{Nblock x Nblock} -> ferm x Nblock | ||||
|   // | ||||
|   // Rdag R = m_rr = Herm = L L^dag        <-- Cholesky decomposition (LLT routine in Eigen) | ||||
|   // | ||||
|   //   Q  C = R => Q = R C^{-1} | ||||
|   // | ||||
|   // Want  Ident = Q^dag Q = C^{-dag} R^dag R C^{-1} = C^{-dag} L L^dag C^{-1} = 1_{Nblock x Nblock}  | ||||
|   // | ||||
|   // Set C = L^{dag}, and then Q^dag Q = ident  | ||||
|   // | ||||
|   // Checks: | ||||
|   // Cdag C = Rdag R ; passes. | ||||
|   // QdagQ  = 1      ; passes | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   void ThinQRfact (Eigen::MatrixXcd &m_zz, | ||||
| 		   Eigen::MatrixXcd &C, | ||||
| 		   Eigen::MatrixXcd &Cinv, | ||||
| 		   std::vector<Field> &  Q, | ||||
| 		   std::vector<Field> & MQ, | ||||
| 		   const std::vector<Field> & Z, | ||||
| 		   const std::vector<Field> & MZ) | ||||
|   { | ||||
|     RealD t0=usecond(); | ||||
|     _BlockCGLinalg.InnerProductMatrix(m_zz,MZ,Z); | ||||
|     RealD t1=usecond(); | ||||
|  | ||||
|     m_zz = 0.5*(m_zz+m_zz.adjoint()); | ||||
|      | ||||
|     Eigen::MatrixXcd L    = m_zz.llt().matrixL();  | ||||
|      | ||||
|     C    = L.adjoint(); | ||||
|     Cinv = C.inverse(); | ||||
|      | ||||
|     RealD t3=usecond(); | ||||
|     _BlockCGLinalg.MulMatrix( Q,Cinv,Z); | ||||
|     _BlockCGLinalg.MulMatrix(MQ,Cinv,MZ); | ||||
|     RealD t4=usecond(); | ||||
|     std::cout << " ThinQRfact IP    :"<< t1-t0<<" us"<<std::endl; | ||||
|     std::cout << " ThinQRfact Eigen :"<< t3-t1<<" us"<<std::endl; | ||||
|     std::cout << " ThinQRfact MulMat:"<< t4-t3<<" us"<<std::endl; | ||||
|   } | ||||
|  | ||||
|   virtual void SolvePrecBlockCG (std::vector<Field> &src, std::vector<Field> &X) | ||||
|   { | ||||
|     std::cout << GridLogMessage<<"HDCG: mrhs fPrecBlockcg starting"<<std::endl; | ||||
|     src[0].Grid()->Barrier(); | ||||
|     int nrhs = src.size(); | ||||
|     //    std::vector<RealD> f(nrhs); | ||||
|     //    std::vector<RealD> rtzp(nrhs); | ||||
|     //    std::vector<RealD> rtz(nrhs); | ||||
|     //    std::vector<RealD> a(nrhs); | ||||
|     //    std::vector<RealD> d(nrhs); | ||||
|     //    std::vector<RealD> b(nrhs); | ||||
|     //    std::vector<RealD> rptzp(nrhs); | ||||
|  | ||||
|     //////////////////////////////////////////// | ||||
|     //Initial residual computation & set up | ||||
|     //////////////////////////////////////////// | ||||
|     std::vector<RealD> ssq(nrhs); | ||||
|     for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|       ssq[rhs]=norm2(src[rhs]); assert(ssq[rhs]!=0.0); | ||||
|     }       | ||||
|  | ||||
|     /////////////////////////// | ||||
|     // Fields -- eliminate duplicates between fPcg and block cg | ||||
|     /////////////////////////// | ||||
|     std::vector<Field> Mtmp(nrhs,grid); | ||||
|     std::vector<Field> tmp(nrhs,grid); | ||||
|     std::vector<Field>   Z(nrhs,grid); // Rename Z to R | ||||
|     std::vector<Field>  MZ(nrhs,grid); // Rename MZ to Z | ||||
|     std::vector<Field>   Q(nrhs,grid); //  | ||||
|     std::vector<Field>  MQ(nrhs,grid); // Rename to P | ||||
|     std::vector<Field>   D(nrhs,grid); | ||||
|     std::vector<Field>  AD(nrhs,grid); | ||||
|      | ||||
|     /************************************************************************ | ||||
|      * Preconditioned Block conjugate gradient rQ | ||||
|      * Generalise Sebastien Birk Thesis, after Dubrulle 2001. | ||||
|      * Introduce preconditioning following Saad Ch9 | ||||
|      ************************************************************************ | ||||
|      * Dimensions: | ||||
|      * | ||||
|      *   X,B etc... ==(Nferm x nrhs) | ||||
|      *  Matrix A==(Nferm x Nferm) | ||||
|      *   | ||||
|      * Nferm = Nspin x Ncolour x Ncomplex x Nlattice_site | ||||
|      * QC => Thin QR factorisation (google it) | ||||
|      * | ||||
|      * R = B-AX | ||||
|      * Z = Mi R | ||||
|      * QC = Z | ||||
|      * D = Q  | ||||
|      * for k:  | ||||
|      *   R  = AD | ||||
|      *   Z  = Mi R | ||||
|      *   M  = [D^dag R]^{-1} | ||||
|      *   X  = X + D M C | ||||
|      *   QS = Q - Z.M | ||||
|      *   D  = Q + D S^dag | ||||
|      *   C  = S C | ||||
|      */ | ||||
|     Eigen::MatrixXcd m_DZ     = Eigen::MatrixXcd::Identity(nrhs,nrhs); | ||||
|     Eigen::MatrixXcd m_M      = Eigen::MatrixXcd::Identity(nrhs,nrhs); | ||||
|     Eigen::MatrixXcd m_zz     = Eigen::MatrixXcd::Zero(nrhs,nrhs); | ||||
|     Eigen::MatrixXcd m_rr     = Eigen::MatrixXcd::Zero(nrhs,nrhs); | ||||
|      | ||||
|     Eigen::MatrixXcd m_C      = Eigen::MatrixXcd::Zero(nrhs,nrhs); | ||||
|     Eigen::MatrixXcd m_Cinv   = Eigen::MatrixXcd::Zero(nrhs,nrhs); | ||||
|     Eigen::MatrixXcd m_S      = Eigen::MatrixXcd::Zero(nrhs,nrhs); | ||||
|     Eigen::MatrixXcd m_Sinv   = Eigen::MatrixXcd::Zero(nrhs,nrhs); | ||||
|      | ||||
|     Eigen::MatrixXcd m_tmp    = Eigen::MatrixXcd::Identity(nrhs,nrhs); | ||||
|     Eigen::MatrixXcd m_tmp1   = Eigen::MatrixXcd::Identity(nrhs,nrhs); | ||||
|  | ||||
|     GridStopWatch HDCGTimer; | ||||
|  | ||||
|     ////////////////////////// | ||||
|     // x0 = Vstart -- possibly modify guess | ||||
|     ////////////////////////// | ||||
|     Vstart(X,src); | ||||
|  | ||||
|     ////////////////////////// | ||||
|     // R = B-AX | ||||
|     ////////////////////////// | ||||
|     for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|       // r0 = b -A x0 | ||||
|       _FineLinop.HermOp(X[rhs],tmp[rhs]); | ||||
|       axpy (Z[rhs], -1.0,tmp[rhs], src[rhs]);    // Computes R=Z=src - A X0 | ||||
|     } | ||||
|  | ||||
|     ////////////////////////////////// | ||||
|     // Compute MZ = M1 Z = M1 B - M1 A x0 | ||||
|     ////////////////////////////////// | ||||
|     PcgM1(Z,MZ);   | ||||
|  | ||||
|     ////////////////////////////////// | ||||
|     // QC = Z | ||||
|     ////////////////////////////////// | ||||
|     ThinQRfact (m_zz, m_C, m_Cinv, Q, MQ, Z, MZ); | ||||
|  | ||||
|     ////////////////////////////////// | ||||
|     // D=MQ | ||||
|     ////////////////////////////////// | ||||
|     for(int b=0;b<nrhs;b++) D[b]=MQ[b]; // LLT rotation of the MZ basis of search dirs | ||||
|  | ||||
|     std::cout << GridLogMessage<<"PrecBlockCGrQ vec computed initial residual and QR fact " <<std::endl; | ||||
|  | ||||
|     ProjectTimer.Reset(); | ||||
|     PromoteTimer.Reset(); | ||||
|     DeflateTimer.Reset(); | ||||
|     CoarseTimer.Reset(); | ||||
|     SmoothTimer.Reset(); | ||||
|     FineTimer.Reset(); | ||||
|     InsertTimer.Reset(); | ||||
|  | ||||
|     GridStopWatch M1Timer; | ||||
|     GridStopWatch M2Timer; | ||||
|     GridStopWatch M3Timer; | ||||
|     GridStopWatch LinalgTimer; | ||||
|     GridStopWatch InnerProdTimer; | ||||
|  | ||||
|     HDCGTimer.Start(); | ||||
|  | ||||
|     std::vector<RealD> rn(nrhs); | ||||
|     for (int k=0;k<=MaxIterations;k++){ | ||||
|  | ||||
|       //////////////////// | ||||
|       // Z  = AD | ||||
|       //////////////////// | ||||
|       M3Timer.Start(); | ||||
|       for(int b=0;b<nrhs;b++) _FineLinop.HermOp(D[b], Z[b]);       | ||||
|       M3Timer.Stop(); | ||||
|  | ||||
|       //////////////////// | ||||
|       // MZ  = M1 Z <==== the Multigrid preconditioner | ||||
|       //////////////////// | ||||
|       M1Timer.Start(); | ||||
|       PcgM1(Z,MZ); | ||||
|       M1Timer.Stop(); | ||||
|  | ||||
|       FineTimer.Start(); | ||||
|       //////////////////// | ||||
|       // M  = [D^dag Z]^{-1} = (<Ddag MZ>_M)^{-1} inner prod, generalising Saad derivation of Precon CG | ||||
|       //////////////////// | ||||
|       InnerProdTimer.Start(); | ||||
|       _BlockCGLinalg.InnerProductMatrix(m_DZ,D,Z); | ||||
|       InnerProdTimer.Stop(); | ||||
|       m_M       = m_DZ.inverse(); | ||||
|  | ||||
|       /////////////////////////// | ||||
|       // X  = X + D MC | ||||
|       /////////////////////////// | ||||
|       m_tmp     = m_M * m_C; | ||||
|       LinalgTimer.Start(); | ||||
|       _BlockCGLinalg.MaddMatrix(X,m_tmp, D,X);     // D are the search directions and X takes the updates  | ||||
|       LinalgTimer.Stop(); | ||||
|  | ||||
|       /////////////////////////// | ||||
|       // QS = Q - M Z | ||||
|       // (MQ) S = MQ - M (M1Z) | ||||
|       /////////////////////////// | ||||
|       LinalgTimer.Start(); | ||||
|       _BlockCGLinalg.MaddMatrix(tmp ,m_M, Z, Q,-1.0); | ||||
|       _BlockCGLinalg.MaddMatrix(Mtmp,m_M,MZ,MQ,-1.0); | ||||
|       ThinQRfact (m_zz, m_S, m_Sinv, Q, MQ, tmp, Mtmp); | ||||
|       LinalgTimer.Stop(); | ||||
|  | ||||
|       //////////////////////////// | ||||
|       // D  = MQ + D S^dag | ||||
|       //////////////////////////// | ||||
|       m_tmp = m_S.adjoint(); | ||||
|       LinalgTimer.Start(); | ||||
|       _BlockCGLinalg.MaddMatrix(D,m_tmp,D,MQ); | ||||
|       LinalgTimer.Stop(); | ||||
|  | ||||
|       //////////////////////////// | ||||
|       // C  = S C | ||||
|       //////////////////////////// | ||||
|       m_C = m_S*m_C; | ||||
|        | ||||
|       //////////////////////////// | ||||
|       // convergence monitor | ||||
|       //////////////////////////// | ||||
|       m_rr = m_C.adjoint() * m_C; | ||||
|        | ||||
|       FineTimer.Stop(); | ||||
|  | ||||
|       RealD max_resid=0; | ||||
|       RealD rrsum=0; | ||||
|       RealD sssum=0; | ||||
|       RealD rr; | ||||
|  | ||||
|       for(int b=0;b<nrhs;b++) { | ||||
| 	rrsum+=real(m_rr(b,b)); | ||||
| 	sssum+=ssq[b]; | ||||
| 	rr = real(m_rr(b,b))/ssq[b]; | ||||
| 	if ( rr > max_resid ) max_resid = rr; | ||||
|       } | ||||
|       std::cout << GridLogMessage << | ||||
| 	  "\t Prec BlockCGrQ Iteration "<<k<<" ave resid "<< std::sqrt(rrsum/sssum) << " max "<< std::sqrt(max_resid) <<std::endl; | ||||
|  | ||||
|  | ||||
|       if ( max_resid < Tolerance*Tolerance ) {  | ||||
|  | ||||
| 	HDCGTimer.Stop(); | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Linalg  "<<LinalgTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : fine H  "<<M3Timer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : prec M1 "<<M1Timer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"**** M1 breakdown:"<<std::endl; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Project "<<ProjectTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Promote "<<PromoteTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Deflate "<<DeflateTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Coarse  "<<CoarseTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Fine    "<<FineTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Smooth  "<<SmoothTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Insert  "<<InsertTimer.Elapsed()<<std::endl;; | ||||
|  | ||||
| 	for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|  | ||||
| 	  _FineLinop.HermOp(X[rhs],tmp[rhs]);			   | ||||
|  | ||||
| 	  Field mytmp(grid); | ||||
| 	  axpy(mytmp,-1.0,src[rhs],tmp[rhs]); | ||||
|        | ||||
| 	  RealD  xnorm   = sqrt(norm2(X[rhs])); | ||||
| 	  RealD  srcnorm = sqrt(norm2(src[rhs])); | ||||
| 	  RealD  tmpnorm = sqrt(norm2(mytmp)); | ||||
| 	  RealD  true_residual = tmpnorm/srcnorm; | ||||
| 	  std::cout<<GridLogMessage | ||||
| 		   <<"HDCG: true residual ["<<rhs<<"] is "<<true_residual | ||||
| 		   <<" solution "<<xnorm | ||||
| 		   <<" source "<<srcnorm | ||||
| 		   <<std::endl; | ||||
| 	} | ||||
| 	return; | ||||
|       } | ||||
|        | ||||
|     } | ||||
|     HDCGTimer.Stop(); | ||||
|     std::cout<<GridLogMessage<<"HDCG: PrecBlockCGrQ not converged "<<HDCGTimer.Elapsed()<<std::endl; | ||||
|     assert(0); | ||||
|   } | ||||
|  | ||||
|   virtual void SolveSingleSystem (std::vector<Field> &src, std::vector<Field> &x) | ||||
|   { | ||||
|     std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl; | ||||
|     src[0].Grid()->Barrier(); | ||||
|     int nrhs = src.size(); | ||||
|     std::vector<RealD> f(nrhs); | ||||
|     std::vector<RealD> rtzp(nrhs); | ||||
|     std::vector<RealD> rtz(nrhs); | ||||
|     std::vector<RealD> a(nrhs); | ||||
|     std::vector<RealD> d(nrhs); | ||||
|     std::vector<RealD> b(nrhs); | ||||
|     std::vector<RealD> rptzp(nrhs); | ||||
|     ///////////////////////////// | ||||
|     // Set up history vectors | ||||
|     ///////////////////////////// | ||||
|     int mmax = 3; | ||||
|  | ||||
|     std::vector<std::vector<Field> > p(nrhs);   for(int r=0;r<nrhs;r++)  p[r].resize(mmax,grid); | ||||
|     std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid); | ||||
|     std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax); | ||||
|  | ||||
|     std::vector<Field> z(nrhs,grid); | ||||
|     std::vector<Field>  mp (nrhs,grid); | ||||
|     std::vector<Field>  r  (nrhs,grid); | ||||
|     std::vector<Field>  mu (nrhs,grid); | ||||
|  | ||||
|     //Initial residual computation & set up | ||||
|     std::vector<RealD> src_nrm(nrhs); | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       src_nrm[rhs]=norm2(src[rhs]); | ||||
|       assert(src_nrm[rhs]!=0.0); | ||||
|     } | ||||
|     std::vector<RealD> tn(nrhs); | ||||
|  | ||||
|     GridStopWatch HDCGTimer; | ||||
|     ////////////////////////// | ||||
|     // x0 = Vstart -- possibly modify guess | ||||
|     ////////////////////////// | ||||
|     Vstart(x,src); | ||||
|  | ||||
|     for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|       // r0 = b -A x0 | ||||
|       _FineLinop.HermOp(x[rhs],mmp[rhs][0]); | ||||
|       axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]);    // Recomputes r=src-Ax0 | ||||
|     } | ||||
|  | ||||
|     ////////////////////////////////// | ||||
|     // Compute z = M1 x | ||||
|     ////////////////////////////////// | ||||
|     // This needs a multiRHS version for acceleration | ||||
|     PcgM1(r,z); | ||||
|  | ||||
|     std::vector<RealD> ssq(nrhs); | ||||
|     std::vector<RealD> rsq(nrhs); | ||||
|     std::vector<Field> pp(nrhs,grid); | ||||
|  | ||||
|     for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|       rtzp[rhs] =real(innerProduct(r[rhs],z[rhs])); | ||||
|       p[rhs][0]=z[rhs]; | ||||
|       ssq[rhs]=norm2(src[rhs]); | ||||
|       rsq[rhs]=  ssq[rhs]*Tolerance*Tolerance; | ||||
|       //      std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n"; | ||||
|     } | ||||
|  | ||||
|     ProjectTimer.Reset(); | ||||
|     PromoteTimer.Reset(); | ||||
|     DeflateTimer.Reset(); | ||||
|     CoarseTimer.Reset(); | ||||
|     SmoothTimer.Reset(); | ||||
|     FineTimer.Reset(); | ||||
|     InsertTimer.Reset(); | ||||
|  | ||||
|     GridStopWatch M1Timer; | ||||
|     GridStopWatch M2Timer; | ||||
|     GridStopWatch M3Timer; | ||||
|     GridStopWatch LinalgTimer; | ||||
|  | ||||
|     HDCGTimer.Start(); | ||||
|  | ||||
|     std::vector<RealD> rn(nrhs); | ||||
|     for (int k=0;k<=MaxIterations;k++){ | ||||
|      | ||||
|       int peri_k  = k % mmax; | ||||
|       int peri_kp = (k+1) % mmax; | ||||
|  | ||||
|       for(int rhs=0;rhs<nrhs;rhs++){ | ||||
| 	rtz[rhs]=rtzp[rhs]; | ||||
| 	M3Timer.Start(); | ||||
| 	d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]); | ||||
| 	M3Timer.Stop(); | ||||
| 	a[rhs] = rtz[rhs]/d[rhs]; | ||||
|  | ||||
| 	LinalgTimer.Start(); | ||||
| 	// Memorise this | ||||
| 	pAp[rhs][peri_k] = d[rhs]; | ||||
|  | ||||
| 	axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]); | ||||
| 	rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]); | ||||
| 	LinalgTimer.Stop(); | ||||
|       } | ||||
|  | ||||
|       // Compute z = M x (for *all* RHS) | ||||
|       M1Timer.Start(); | ||||
|       PcgM1(r,z); | ||||
|       M1Timer.Stop(); | ||||
|        | ||||
|       RealD max_rn=0.0; | ||||
|       LinalgTimer.Start(); | ||||
|       for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|  | ||||
| 	rtzp[rhs] =real(innerProduct(r[rhs],z[rhs])); | ||||
|  | ||||
| 	//	std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n"; | ||||
| 	mu[rhs]=z[rhs]; | ||||
|  | ||||
| 	p[rhs][peri_kp]=mu[rhs]; | ||||
|  | ||||
| 	// Standard search direction p == z + b p  | ||||
| 	b[rhs] = (rtzp[rhs])/rtz[rhs]; | ||||
|  | ||||
| 	int northog = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm | ||||
| 	for(int back=0; back < northog; back++){ | ||||
| 	  int peri_back = (k-back)%mmax; | ||||
| 	  RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp])); | ||||
| 	  RealD beta = -pbApk/pAp[rhs][peri_back]; | ||||
| 	  axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]); | ||||
| 	} | ||||
|  | ||||
| 	RealD rrn=sqrt(rn[rhs]/ssq[rhs]); | ||||
| 	RealD rtn=sqrt(rtz[rhs]/ssq[rhs]); | ||||
| 	RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]); | ||||
| 	 | ||||
| 	std::cout<<GridLogMessage<<"HDCG:fPcg rhs "<<rhs<<" k= "<<k<<" residual = "<<rrn<<"\n"; | ||||
| 	if ( rrn > max_rn ) max_rn = rrn; | ||||
|       } | ||||
|       LinalgTimer.Stop(); | ||||
|  | ||||
|       // Stopping condition based on worst case | ||||
|       if ( max_rn <= Tolerance ) {  | ||||
|  | ||||
| 	HDCGTimer.Stop(); | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Linalg  "<<LinalgTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : fine M3 "<<M3Timer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : prec M1 "<<M1Timer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"**** M1 breakdown:"<<std::endl; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Project "<<ProjectTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Promote "<<PromoteTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Deflate "<<DeflateTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Coarse  "<<CoarseTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Fine    "<<FineTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Smooth  "<<SmoothTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Insert  "<<InsertTimer.Elapsed()<<std::endl;; | ||||
|  | ||||
| 	for(int rhs=0;rhs<nrhs;rhs++){ | ||||
| 	  _FineLinop.HermOp(x[rhs],mmp[rhs][0]);			   | ||||
| 	  Field tmp(grid); | ||||
| 	  axpy(tmp,-1.0,src[rhs],mmp[rhs][0]); | ||||
|        | ||||
| 	  RealD  mmpnorm = sqrt(norm2(mmp[rhs][0])); | ||||
| 	  RealD  xnorm   = sqrt(norm2(x[rhs])); | ||||
| 	  RealD  srcnorm = sqrt(norm2(src[rhs])); | ||||
| 	  RealD  tmpnorm = sqrt(norm2(tmp)); | ||||
| 	  RealD  true_residual = tmpnorm/srcnorm; | ||||
| 	  std::cout<<GridLogMessage | ||||
| 		   <<"HDCG: true residual ["<<rhs<<"] is "<<true_residual | ||||
| 		   <<" solution "<<xnorm | ||||
| 		   <<" source "<<srcnorm | ||||
| 		   <<" mmp "<<mmpnorm	   | ||||
| 		   <<std::endl; | ||||
| 	} | ||||
| 	return; | ||||
|       } | ||||
|        | ||||
|     } | ||||
|     HDCGTimer.Stop(); | ||||
|     std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl; | ||||
|     for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|       RealD  xnorm   = sqrt(norm2(x[rhs])); | ||||
|       RealD  srcnorm = sqrt(norm2(src[rhs])); | ||||
|       std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl; | ||||
|     } | ||||
|   } | ||||
|    | ||||
|  | ||||
|  public: | ||||
|  | ||||
|   virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out) = 0; | ||||
|   virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src) = 0; | ||||
|   virtual void PcgM2(const Field & in, Field & out) { | ||||
|     out=in; | ||||
|   } | ||||
|  | ||||
|   virtual RealD PcgM3(const Field & p, Field & mmp){ | ||||
|     RealD dd; | ||||
|     _FineLinop.HermOp(p,mmp); | ||||
|     ComplexD dot = innerProduct(p,mmp); | ||||
|     dd=real(dot); | ||||
|     return dd; | ||||
|   } | ||||
|  | ||||
| }; | ||||
|  | ||||
| template<class Field, class CoarseField> | ||||
| class TwoLevelADEF2mrhs : public TwoLevelCGmrhs<Field> | ||||
| { | ||||
| public: | ||||
|   GridBase *coarsegrid; | ||||
|   GridBase *coarsegridmrhs; | ||||
|   LinearFunction<CoarseField> &_CoarseSolverMrhs; | ||||
|   LinearFunction<CoarseField> &_CoarseSolverPreciseMrhs; | ||||
|   MultiRHSBlockProject<Field>    &_Projector; | ||||
|   MultiRHSDeflation<CoarseField> &_Deflator; | ||||
|  | ||||
|    | ||||
|   TwoLevelADEF2mrhs(RealD tol, | ||||
| 		    Integer maxit, | ||||
| 		    LinearOperatorBase<Field>    &FineLinop, | ||||
| 		    LinearFunction<Field>        &Smoother, | ||||
| 		    LinearFunction<CoarseField>  &CoarseSolverMrhs, | ||||
| 		    LinearFunction<CoarseField>  &CoarseSolverPreciseMrhs, | ||||
| 		    MultiRHSBlockProject<Field>    &Projector, | ||||
| 		    MultiRHSDeflation<CoarseField> &Deflator, | ||||
| 		    GridBase *_coarsemrhsgrid) : | ||||
|     TwoLevelCGmrhs<Field>(tol, maxit,FineLinop,Smoother,Projector.fine_grid), | ||||
|     _CoarseSolverMrhs(CoarseSolverMrhs), | ||||
|     _CoarseSolverPreciseMrhs(CoarseSolverPreciseMrhs), | ||||
|     _Projector(Projector), | ||||
|     _Deflator(Deflator) | ||||
|   { | ||||
|     coarsegrid = Projector.coarse_grid; | ||||
|     coarsegridmrhs = _coarsemrhsgrid;// Thi could be in projector | ||||
|   }; | ||||
|  | ||||
|   // Override Vstart | ||||
|   virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src) | ||||
|   { | ||||
|     int nrhs=x.size(); | ||||
|     /////////////////////////////////// | ||||
|     // Choose x_0 such that  | ||||
|     // x_0 = guess +  (A_ss^inv) r_s = guess + Ass_inv [src -Aguess] | ||||
|     //                               = [1 - Ass_inv A] Guess + Assinv src | ||||
|     //                               = P^T guess + Assinv src  | ||||
|     //                               = Vstart  [Tang notation] | ||||
|     // This gives: | ||||
|     // W^T (src - A x_0) = src_s - A guess_s - r_s | ||||
|     //                   = src_s - (A guess)_s - src_s  + (A guess)_s  | ||||
|     //                   = 0  | ||||
|     /////////////////////////////////// | ||||
|     std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid); | ||||
|     std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid); | ||||
|     CoarseField PleftProjMrhs(this->coarsegridmrhs); | ||||
|     CoarseField PleftMss_projMrhs(this->coarsegridmrhs); | ||||
|  | ||||
|     this->_Projector.blockProject(src,PleftProj); | ||||
|     this->_Deflator.DeflateSources(PleftProj,PleftMss_proj); | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0); | ||||
|       InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess | ||||
|     } | ||||
|      | ||||
|     this->_CoarseSolverPreciseMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} r_s | ||||
|  | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); | ||||
|     } | ||||
|     this->_Projector.blockPromote(x,PleftMss_proj); | ||||
|   } | ||||
|  | ||||
|   virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out){ | ||||
|  | ||||
|     int nrhs=in.size(); | ||||
|  | ||||
|     // [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min] | ||||
|     std::vector<Field> tmp(nrhs,this->grid); | ||||
|     std::vector<Field> Min(nrhs,this->grid); | ||||
|  | ||||
|     std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid); | ||||
|     std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid); | ||||
|  | ||||
|     CoarseField PleftProjMrhs(this->coarsegridmrhs); | ||||
|     CoarseField PleftMss_projMrhs(this->coarsegridmrhs); | ||||
|  | ||||
|     //    this->rrr=in[0]; | ||||
|  | ||||
| #undef SMOOTHER_BLOCK_SOLVE | ||||
| #if SMOOTHER_BLOCK_SOLVE | ||||
|     this->SmoothTimer.Start(); | ||||
|     this->_Smoother(in,Min); | ||||
|     this->SmoothTimer.Stop(); | ||||
| #else | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       this->SmoothTimer.Start(); | ||||
|       this->_Smoother(in[rhs],Min[rhs]); | ||||
|       this->SmoothTimer.Stop(); | ||||
|     } | ||||
| #endif | ||||
|     //    this->sss=Min[0]; | ||||
|      | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|        | ||||
|       this->FineTimer.Start(); | ||||
|       this->_FineLinop.HermOp(Min[rhs],out[rhs]); | ||||
|       axpy(tmp[rhs],-1.0,out[rhs],in[rhs]);          // resid  = in - A Min | ||||
|       this->FineTimer.Stop(); | ||||
|  | ||||
|     } | ||||
|  | ||||
|     this->ProjectTimer.Start(); | ||||
|     this->_Projector.blockProject(tmp,PleftProj); | ||||
|     this->ProjectTimer.Stop(); | ||||
|     this->DeflateTimer.Start(); | ||||
|     this->_Deflator.DeflateSources(PleftProj,PleftMss_proj); | ||||
|     this->DeflateTimer.Stop(); | ||||
|     this->InsertTimer.Start(); | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0); | ||||
|       InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess | ||||
|     } | ||||
|     this->InsertTimer.Stop(); | ||||
|  | ||||
|     this->CoarseTimer.Start(); | ||||
|     this->_CoarseSolverMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} [in - A Min]_s | ||||
|     this->CoarseTimer.Stop(); | ||||
|  | ||||
|     this->InsertTimer.Start(); | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); | ||||
|     } | ||||
|     this->InsertTimer.Stop(); | ||||
|     this->PromoteTimer.Start(); | ||||
|     this->_Projector.blockPromote(tmp,PleftMss_proj);// tmp= Q[in - A Min]   | ||||
|     this->PromoteTimer.Stop(); | ||||
|     this->FineTimer.Start(); | ||||
|     //    this->qqq=tmp[0]; | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       axpy(out[rhs],1.0,Min[rhs],tmp[rhs]); // Min+tmp | ||||
|     } | ||||
|     //    this->zzz=out[0]; | ||||
|     this->FineTimer.Stop(); | ||||
|   } | ||||
| }; | ||||
|  | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|  | ||||
| @@ -31,58 +31,6 @@ directory | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class Field> | ||||
| void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){ | ||||
|   typedef typename Field::scalar_type scomplex; | ||||
|   int Nblock = X.size(); | ||||
|   for(int b=0;b<Nblock;b++){ | ||||
|   for(int bp=0;bp<Nblock;bp++) { | ||||
|     m(b,bp) = innerProduct(X[b],Y[bp]);   | ||||
|   }} | ||||
| } | ||||
| template<class Field> | ||||
| void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){ | ||||
|   // Should make this cache friendly with site outermost, parallel_for | ||||
|   // Deal with case AP aliases with either Y or X | ||||
|   // | ||||
|   //Could pack "X" and "AP" into a Nblock x Volume dense array. | ||||
|   // AP(Nrhs x vol) = Y(Nrhs x vol) + scale * m(nrhs x nrhs) * X(nrhs*vol) | ||||
|   typedef typename Field::scalar_type scomplex; | ||||
|   int Nblock = AP.size(); | ||||
|   std::vector<Field> tmp(Nblock,X[0]); | ||||
|   for(int b=0;b<Nblock;b++){ | ||||
|     tmp[b]   = Y[b]; | ||||
|     for(int bp=0;bp<Nblock;bp++) { | ||||
|       tmp[b] = tmp[b] +scomplex(scale*m(bp,b))*X[bp];  | ||||
|     } | ||||
|   } | ||||
|   for(int b=0;b<Nblock;b++){ | ||||
|     AP[b] = tmp[b]; | ||||
|   } | ||||
| } | ||||
| template<class Field> | ||||
| void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){ | ||||
|   // Should make this cache friendly with site outermost, parallel_for | ||||
|   typedef typename Field::scalar_type scomplex; | ||||
|   int Nblock = AP.size(); | ||||
|   for(int b=0;b<Nblock;b++){ | ||||
|     AP[b] = Zero(); | ||||
|     for(int bp=0;bp<Nblock;bp++) { | ||||
|       AP[b] += scomplex(m(bp,b))*X[bp];  | ||||
|     } | ||||
|   } | ||||
| } | ||||
| template<class Field> | ||||
| double normv(const std::vector<Field> &P){ | ||||
|   int Nblock = P.size(); | ||||
|   double nn = 0.0; | ||||
|   for(int b=0;b<Nblock;b++) { | ||||
|     nn+=norm2(P[b]); | ||||
|   } | ||||
|   return nn; | ||||
| } | ||||
|  | ||||
|  | ||||
| enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS, BlockCGVec, BlockCGrQVec }; | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| @@ -139,19 +87,10 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr, | ||||
|   sliceInnerProductMatrix(m_rr,R,R,Orthog); | ||||
|  | ||||
|   // Force manifest hermitian to avoid rounding related | ||||
|   /* | ||||
|   int rank=m_rr.rows(); | ||||
|   for(int r=0;r<rank;r++){ | ||||
|   for(int s=0;s<rank;s++){ | ||||
|     std::cout << "QR m_rr["<<r<<","<<s<<"] "<<m_rr(r,s)<<std::endl; | ||||
|   }} | ||||
|   */ | ||||
|   m_rr = 0.5*(m_rr+m_rr.adjoint()); | ||||
|  | ||||
|   Eigen::MatrixXcd L    = m_rr.llt().matrixL();  | ||||
|  | ||||
| //  ComplexD det = L.determinant(); | ||||
| //  std::cout << " Det m_rr "<<det<<std::endl; | ||||
|   C    = L.adjoint(); | ||||
|   Cinv = C.inverse(); | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -171,20 +110,11 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr, | ||||
| 		 const std::vector<Field> & R) | ||||
| { | ||||
|   InnerProductMatrix(m_rr,R,R); | ||||
|   /* | ||||
|   int rank=m_rr.rows(); | ||||
|   for(int r=0;r<rank;r++){ | ||||
|   for(int s=0;s<rank;s++){ | ||||
|     std::cout << "QRvec m_rr["<<r<<","<<s<<"] "<<m_rr(r,s)<<std::endl; | ||||
|   }} | ||||
|   */ | ||||
|  | ||||
|   m_rr = 0.5*(m_rr+m_rr.adjoint()); | ||||
|  | ||||
|   Eigen::MatrixXcd L    = m_rr.llt().matrixL();  | ||||
|  | ||||
|   //  ComplexD det = L.determinant(); | ||||
|   //  std::cout << " Det m_rr "<<det<<std::endl; | ||||
|  | ||||
|   C    = L.adjoint(); | ||||
|   Cinv = C.inverse(); | ||||
|  | ||||
| @@ -256,7 +186,6 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X) | ||||
|   sliceNorm(ssq,B,Orthog); | ||||
|   RealD sssum=0; | ||||
|   for(int b=0;b<Nblock;b++) sssum+=ssq[b]; | ||||
|   for(int b=0;b<Nblock;b++) std::cout << "src["<<b<<"]" << ssq[b] <<std::endl; | ||||
|  | ||||
|   sliceNorm(residuals,B,Orthog); | ||||
|   for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); } | ||||
| @@ -292,9 +221,6 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X) | ||||
|   Linop.HermOp(X, AD); | ||||
|   tmp = B - AD;   | ||||
|  | ||||
|   sliceNorm(residuals,tmp,Orthog); | ||||
|   for(int b=0;b<Nblock;b++) std::cout << "res["<<b<<"]" << residuals[b] <<std::endl; | ||||
|    | ||||
|   ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp); | ||||
|   D=Q; | ||||
|  | ||||
| @@ -310,8 +236,6 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X) | ||||
|   GridStopWatch SolverTimer; | ||||
|   SolverTimer.Start(); | ||||
|  | ||||
|   RealD max_resid=0; | ||||
|  | ||||
|   int k; | ||||
|   for (k = 1; k <= MaxIterations; k++) { | ||||
|  | ||||
| @@ -356,7 +280,7 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X) | ||||
|      */ | ||||
|     m_rr = m_C.adjoint() * m_C; | ||||
|  | ||||
|     max_resid=0; | ||||
|     RealD max_resid=0; | ||||
|     RealD rrsum=0; | ||||
|     RealD rr; | ||||
|  | ||||
| @@ -398,9 +322,7 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X) | ||||
|     } | ||||
|  | ||||
|   } | ||||
|  | ||||
|   std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge "<<k<<" / "<<MaxIterations | ||||
| 	    <<" residual "<< std::sqrt(max_resid)<< std::endl; | ||||
|   std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge" << std::endl; | ||||
|  | ||||
|   if (ErrorOnNoConverge) assert(0); | ||||
|   IterationsToComplete = k; | ||||
| @@ -544,6 +466,43 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field & | ||||
|   IterationsToComplete = k; | ||||
| } | ||||
|  | ||||
| void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){ | ||||
|   for(int b=0;b<Nblock;b++){ | ||||
|   for(int bp=0;bp<Nblock;bp++) { | ||||
|     m(b,bp) = innerProduct(X[b],Y[bp]);   | ||||
|   }} | ||||
| } | ||||
| void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){ | ||||
|   // Should make this cache friendly with site outermost, parallel_for | ||||
|   // Deal with case AP aliases with either Y or X | ||||
|   std::vector<Field> tmp(Nblock,X[0]); | ||||
|   for(int b=0;b<Nblock;b++){ | ||||
|     tmp[b]   = Y[b]; | ||||
|     for(int bp=0;bp<Nblock;bp++) { | ||||
|       tmp[b] = tmp[b] + scomplex(scale*m(bp,b))*X[bp];  | ||||
|     } | ||||
|   } | ||||
|   for(int b=0;b<Nblock;b++){ | ||||
|     AP[b] = tmp[b]; | ||||
|   } | ||||
| } | ||||
| void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){ | ||||
|   // Should make this cache friendly with site outermost, parallel_for | ||||
|   for(int b=0;b<Nblock;b++){ | ||||
|     AP[b] = Zero(); | ||||
|     for(int bp=0;bp<Nblock;bp++) { | ||||
|       AP[b] += scomplex(m(bp,b))*X[bp];  | ||||
|     } | ||||
|   } | ||||
| } | ||||
| double normv(const std::vector<Field> &P){ | ||||
|   double nn = 0.0; | ||||
|   for(int b=0;b<Nblock;b++) { | ||||
|     nn+=norm2(P[b]); | ||||
|   } | ||||
|   return nn; | ||||
| } | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////// | ||||
| // BlockCGrQvec implementation: | ||||
| //-------------------------- | ||||
| @@ -590,7 +549,6 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field | ||||
|  | ||||
|   RealD sssum=0; | ||||
|   for(int b=0;b<Nblock;b++){ ssq[b] = norm2(B[b]);} | ||||
|   for(int b=0;b<Nblock;b++){ std::cout << "ssq["<<b<<"] "<<ssq[b]<<std::endl;} | ||||
|   for(int b=0;b<Nblock;b++) sssum+=ssq[b]; | ||||
|  | ||||
|   for(int b=0;b<Nblock;b++){ residuals[b] = norm2(B[b]);} | ||||
| @@ -627,7 +585,6 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field | ||||
|   for(int b=0;b<Nblock;b++) { | ||||
|     Linop.HermOp(X[b], AD[b]); | ||||
|     tmp[b] = B[b] - AD[b];   | ||||
|     std::cout << "r0["<<b<<"] "<<norm2(tmp[b])<<std::endl; | ||||
|   } | ||||
|  | ||||
|   ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp); | ||||
|   | ||||
| @@ -38,7 +38,6 @@ NAMESPACE_BEGIN(Grid); | ||||
| // single input vec, single output vec. | ||||
| ///////////////////////////////////////////////////////////// | ||||
|  | ||||
|  | ||||
| template <class Field> | ||||
| class ConjugateGradient : public OperatorFunction<Field> { | ||||
| public: | ||||
| @@ -55,26 +54,11 @@ public: | ||||
|   ConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true) | ||||
|     : Tolerance(tol), | ||||
|       MaxIterations(maxit), | ||||
|       ErrorOnNoConverge(err_on_no_conv) | ||||
|   {}; | ||||
|       ErrorOnNoConverge(err_on_no_conv){}; | ||||
|  | ||||
|   virtual void LogIteration(int k,RealD a,RealD b){ | ||||
|     //    std::cout << "ConjugageGradient::LogIteration() "<<std::endl; | ||||
|   }; | ||||
|   virtual void LogBegin(void){ | ||||
|     std::cout << "ConjugageGradient::LogBegin() "<<std::endl; | ||||
|   }; | ||||
|   void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) { | ||||
|  | ||||
|     void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) { | ||||
|  | ||||
|       this->LogBegin(); | ||||
|  | ||||
|       GRID_TRACE("ConjugateGradient"); | ||||
|     GridStopWatch PreambleTimer; | ||||
|     GridStopWatch ConstructTimer; | ||||
|     GridStopWatch NormTimer; | ||||
|     GridStopWatch AssignTimer; | ||||
|     PreambleTimer.Start(); | ||||
|     GRID_TRACE("ConjugateGradient"); | ||||
|     psi.Checkerboard() = src.Checkerboard(); | ||||
|  | ||||
|     conformable(psi, src); | ||||
| @@ -82,32 +66,22 @@ public: | ||||
|     RealD cp, c, a, d, b, ssq, qq; | ||||
|     //RealD b_pred; | ||||
|  | ||||
|     // Was doing copies | ||||
|     ConstructTimer.Start(); | ||||
|     Field p  (src.Grid()); | ||||
|     Field mmp(src.Grid()); | ||||
|     Field r  (src.Grid()); | ||||
|     ConstructTimer.Stop(); | ||||
|     Field p(src); | ||||
|     Field mmp(src); | ||||
|     Field r(src); | ||||
|  | ||||
|     // Initial residual computation & set up | ||||
|     NormTimer.Start(); | ||||
|     ssq = norm2(src); | ||||
|     RealD guess = norm2(psi); | ||||
|     NormTimer.Stop(); | ||||
|     assert(std::isnan(guess) == 0); | ||||
|     AssignTimer.Start(); | ||||
|     if ( guess == 0.0 ) { | ||||
|       r = src; | ||||
|       p = r; | ||||
|       a = ssq; | ||||
|     } else {  | ||||
|       Linop.HermOpAndNorm(psi, mmp, d, b); | ||||
|       r = src - mmp; | ||||
|       p = r; | ||||
|       a = norm2(p); | ||||
|     } | ||||
|      | ||||
|     Linop.HermOpAndNorm(psi, mmp, d, b); | ||||
|      | ||||
|     r = src - mmp; | ||||
|     p = r; | ||||
|  | ||||
|     a = norm2(p); | ||||
|     cp = a; | ||||
|     AssignTimer.Stop(); | ||||
|     ssq = norm2(src); | ||||
|  | ||||
|     // Handle trivial case of zero src | ||||
|     if (ssq == 0.){ | ||||
| @@ -137,7 +111,6 @@ public: | ||||
|     std::cout << GridLogIterative << std::setprecision(8) | ||||
|               << "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl; | ||||
|  | ||||
|     PreambleTimer.Stop(); | ||||
|     GridStopWatch LinalgTimer; | ||||
|     GridStopWatch InnerTimer; | ||||
|     GridStopWatch AxpyNormTimer; | ||||
| @@ -183,7 +156,6 @@ public: | ||||
|       } | ||||
|       LinearCombTimer.Stop(); | ||||
|       LinalgTimer.Stop(); | ||||
|       LogIteration(k,a,b); | ||||
|  | ||||
|       IterationTimer.Stop(); | ||||
|       if ( (k % 500) == 0 ) { | ||||
| @@ -211,14 +183,13 @@ public: | ||||
| 		  << "\tTrue residual " << true_residual | ||||
| 		  << "\tTarget " << Tolerance << std::endl; | ||||
|  | ||||
| 	//	std::cout << GridLogMessage << "\tPreamble   " << PreambleTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tSolver Elapsed    " << SolverTimer.Elapsed() <<std::endl; | ||||
|         std::cout << GridLogPerformance << "Time breakdown "<<std::endl; | ||||
| 	std::cout << GridLogPerformance << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogPerformance << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogPerformance << "\t\tInner      " << InnerTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogPerformance << "\t\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl; | ||||
|         std::cout << GridLogMessage << "Time breakdown "<<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tInner      " << InnerTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl; | ||||
|  | ||||
| 	std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl; | ||||
|  | ||||
| @@ -231,143 +202,17 @@ public: | ||||
|       } | ||||
|     } | ||||
|     // Failed. Calculate true residual before giving up                                                          | ||||
|     // Linop.HermOpAndNorm(psi, mmp, d, qq); | ||||
|     //    p = mmp - src; | ||||
|     //TrueResidual = sqrt(norm2(p)/ssq); | ||||
|     //    TrueResidual = 1; | ||||
|     Linop.HermOpAndNorm(psi, mmp, d, qq); | ||||
|     p = mmp - src; | ||||
|  | ||||
|     std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations | ||||
|     	      <<" residual "<< std::sqrt(cp / ssq)<< std::endl; | ||||
|     SolverTimer.Stop(); | ||||
|     std::cout << GridLogMessage << "\tPreamble   " << PreambleTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogMessage << "\tConstruct  " << ConstructTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogMessage << "\tNorm       " << NormTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogMessage << "\tAssign     " << AssignTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogMessage << "\tSolver     " << SolverTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogMessage << "Solver breakdown "<<std::endl; | ||||
|     std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogMessage<< "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogPerformance << "\t\tInner      " << InnerTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogPerformance << "\t\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl; | ||||
|     TrueResidual = sqrt(norm2(p)/ssq); | ||||
|  | ||||
|     std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations<< std::endl; | ||||
|  | ||||
|     if (ErrorOnNoConverge) assert(0); | ||||
|     IterationsToComplete = k; | ||||
|  | ||||
|   } | ||||
| }; | ||||
|  | ||||
|  | ||||
| template <class Field> | ||||
| class ConjugateGradientPolynomial : public ConjugateGradient<Field> { | ||||
| public: | ||||
|   // Optionally record the CG polynomial | ||||
|   std::vector<double> ak; | ||||
|   std::vector<double> bk; | ||||
|   std::vector<double> poly_p; | ||||
|   std::vector<double> poly_r; | ||||
|   std::vector<double> poly_Ap; | ||||
|   std::vector<double> polynomial; | ||||
|  | ||||
| public: | ||||
|   ConjugateGradientPolynomial(RealD tol, Integer maxit, bool err_on_no_conv = true) | ||||
|     : ConjugateGradient<Field>(tol,maxit,err_on_no_conv) | ||||
|   { }; | ||||
|   void PolyHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) | ||||
|   { | ||||
|     Field tmp(src.Grid()); | ||||
|     Field AtoN(src.Grid()); | ||||
|     AtoN = src; | ||||
|     psi=AtoN*polynomial[0]; | ||||
|     for(int n=1;n<polynomial.size();n++){ | ||||
|       tmp = AtoN; | ||||
|       Linop.HermOp(tmp,AtoN); | ||||
|       psi = psi + polynomial[n]*AtoN; | ||||
|     } | ||||
|   } | ||||
|   void CGsequenceHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &x) | ||||
|   { | ||||
|     Field Ap(src.Grid()); | ||||
|     Field r(src.Grid()); | ||||
|     Field p(src.Grid()); | ||||
|     p=src; | ||||
|     r=src; | ||||
|     x=Zero(); | ||||
|     x.Checkerboard()=src.Checkerboard(); | ||||
|     for(int k=0;k<ak.size();k++){ | ||||
|       x = x + ak[k]*p; | ||||
|       Linop.HermOp(p,Ap); | ||||
|       r = r - ak[k] * Ap; | ||||
|       p = r + bk[k] * p; | ||||
|     } | ||||
|   } | ||||
|   void Solve(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) | ||||
|   { | ||||
|     psi=Zero(); | ||||
|     this->operator ()(Linop,src,psi); | ||||
|   } | ||||
|   virtual void LogBegin(void) | ||||
|   { | ||||
|     std::cout << "ConjugageGradientPolynomial::LogBegin() "<<std::endl; | ||||
|     ak.resize(0); | ||||
|     bk.resize(0); | ||||
|     polynomial.resize(0); | ||||
|     poly_Ap.resize(0); | ||||
|     poly_Ap.resize(0); | ||||
|     poly_p.resize(1); | ||||
|     poly_r.resize(1); | ||||
|     poly_p[0]=1.0; | ||||
|     poly_r[0]=1.0; | ||||
|   }; | ||||
|   virtual void LogIteration(int k,RealD a,RealD b) | ||||
|   { | ||||
|     // With zero guess, | ||||
|     // p = r = src | ||||
|     // | ||||
|     // iterate: | ||||
|     //   x =  x + a p | ||||
|     //   r =  r - a A p | ||||
|     //   p =  r + b p | ||||
|     // | ||||
|     // [0] | ||||
|     // r = x | ||||
|     // p = x | ||||
|     // Ap=0 | ||||
|     // | ||||
|     // [1] | ||||
|     // Ap = A x + 0  ==> shift poly P right by 1 and add 0. | ||||
|     // x  = x + a p  ==> add polynomials term by term  | ||||
|     // r  = r - a A p  ==> add polynomials term by term | ||||
|     // p  = r + b p  ==> add polynomials term by term | ||||
|     // | ||||
|     std::cout << "ConjugageGradientPolynomial::LogIteration() "<<k<<std::endl; | ||||
|     ak.push_back(a); | ||||
|     bk.push_back(b); | ||||
|     //  Ap= right_shift(p) | ||||
|     poly_Ap.resize(k+1); | ||||
|     poly_Ap[0]=0.0; | ||||
|     for(int i=0;i<k;i++){ | ||||
|       poly_Ap[i+1]=poly_p[i]; | ||||
|     } | ||||
|  | ||||
|     //  x = x + a p | ||||
|     polynomial.resize(k); | ||||
|     polynomial[k-1]=0.0; | ||||
|     for(int i=0;i<k;i++){ | ||||
|       polynomial[i] = polynomial[i] + a * poly_p[i]; | ||||
|     } | ||||
|      | ||||
|     //  r = r - a Ap | ||||
|     //  p = r + b p | ||||
|     poly_r.resize(k+1); | ||||
|     poly_p.resize(k+1); | ||||
|     poly_r[k] = poly_p[k] = 0.0; | ||||
|     for(int i=0;i<k+1;i++){ | ||||
|       poly_r[i] = poly_r[i] - a * poly_Ap[i]; | ||||
|       poly_p[i] = poly_r[i] + b * poly_p[i]; | ||||
|     } | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
|   | ||||
| @@ -116,14 +116,14 @@ NAMESPACE_BEGIN(Grid); | ||||
|       //Compute double precision rsd and also new RHS vector. | ||||
|       Linop_d.HermOp(sol_d, tmp_d); | ||||
|       RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector | ||||
|       std::cout<<GridLogMessage<<" rsd norm "<<norm<<std::endl; | ||||
|        | ||||
|       std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " <<outer_iter<<" residual "<< norm<< " target "<< stop<<std::endl; | ||||
|  | ||||
|       if(norm < OuterLoopNormMult * stop){ | ||||
| 	std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration converged on iteration " <<outer_iter <<std::endl; | ||||
| 	break; | ||||
|       } | ||||
|       while(norm * inner_tol * inner_tol < stop*1.01) inner_tol *= 2;  // inner_tol = sqrt(stop/norm) ?? | ||||
|       while(norm * inner_tol * inner_tol < stop) inner_tol *= 2;  // inner_tol = sqrt(stop/norm) ?? | ||||
|  | ||||
|       PrecChangeTimer.Start(); | ||||
|       precisionChange(src_f, src_d, pc_wk_dp_to_sp); | ||||
|   | ||||
| @@ -102,11 +102,11 @@ public: | ||||
|     assert(mass.size()==nshift); | ||||
|     assert(mresidual.size()==nshift); | ||||
|    | ||||
|     // remove dynamic sized arrays on stack; 2d is a pain with vector | ||||
|     std::vector<RealD>  bs(nshift); | ||||
|     std::vector<RealD>  rsq(nshift); | ||||
|     std::vector<std::array<RealD,2> >  z(nshift); | ||||
|     std::vector<int>     converged(nshift); | ||||
|     // dynamic sized arrays on stack; 2d is a pain with vector | ||||
|     RealD  bs[nshift]; | ||||
|     RealD  rsq[nshift]; | ||||
|     RealD  z[nshift][2]; | ||||
|     int     converged[nshift]; | ||||
|    | ||||
|     const int       primary =0; | ||||
|    | ||||
| @@ -144,7 +144,7 @@ public: | ||||
|     for(int s=0;s<nshift;s++){ | ||||
|       rsq[s] = cp * mresidual[s] * mresidual[s]; | ||||
|       std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s | ||||
| 	       <<" target resid^2 "<<rsq[s]<<std::endl; | ||||
| 	       <<" target resid "<<rsq[s]<<std::endl; | ||||
|       ps[s] = src; | ||||
|     } | ||||
|     // r and p for primary | ||||
|   | ||||
| @@ -123,11 +123,11 @@ public: | ||||
|     assert(mresidual.size()==nshift); | ||||
|    | ||||
|     // dynamic sized arrays on stack; 2d is a pain with vector | ||||
|     std::vector<RealD>  bs(nshift); | ||||
|     std::vector<RealD>  rsq(nshift); | ||||
|     std::vector<RealD>  rsqf(nshift); | ||||
|     std::vector<std::array<RealD,2> >  z(nshift); | ||||
|     std::vector<int>     converged(nshift); | ||||
|     RealD  bs[nshift]; | ||||
|     RealD  rsq[nshift]; | ||||
|     RealD  rsqf[nshift]; | ||||
|     RealD  z[nshift][2]; | ||||
|     int     converged[nshift]; | ||||
|    | ||||
|     const int       primary =0; | ||||
|    | ||||
|   | ||||
| @@ -156,11 +156,11 @@ public: | ||||
|     assert(mresidual.size()==nshift); | ||||
|    | ||||
|     // dynamic sized arrays on stack; 2d is a pain with vector | ||||
|     std::vector<RealD>  bs(nshift); | ||||
|     std::vector<RealD>  rsq(nshift); | ||||
|     std::vector<RealD>  rsqf(nshift); | ||||
|     std::vector<std::array<RealD,2> >  z(nshift); | ||||
|     std::vector<int>     converged(nshift); | ||||
|     RealD  bs[nshift]; | ||||
|     RealD  rsq[nshift]; | ||||
|     RealD  rsqf[nshift]; | ||||
|     RealD  z[nshift][2]; | ||||
|     int     converged[nshift]; | ||||
|    | ||||
|     const int       primary =0; | ||||
|    | ||||
|   | ||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							| @@ -79,16 +79,14 @@ template<class Field> class ImplicitlyRestartedLanczosHermOpTester  : public Imp | ||||
|     RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0); | ||||
|  | ||||
|     std::cout.precision(13); | ||||
|  | ||||
|     int conv=0; | ||||
|     if( (vv<eresid*eresid) ) conv = 1; | ||||
|  | ||||
|     std::cout<<GridLogIRL  << "[" << std::setw(3)<<j<<"] " | ||||
| 	     <<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")" | ||||
| 	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv | ||||
| 	     <<" target " << eresid*eresid << " conv " <<conv | ||||
| 	     <<std::endl; | ||||
|  | ||||
|     int conv=0; | ||||
|     if( (vv<eresid*eresid) ) conv = 1; | ||||
|  | ||||
|     return conv; | ||||
|   } | ||||
| }; | ||||
| @@ -245,10 +243,9 @@ until convergence | ||||
| 	_HermOp(src_n,tmp); | ||||
| 	//	std::cout << GridLogMessage<< tmp<<std::endl; exit(0); | ||||
| 	//	std::cout << GridLogIRL << " _HermOp " << norm2(tmp) << std::endl; | ||||
| //	RealD vnum = real(innerProduct(src_n,tmp)); // HermOp. | ||||
| 	RealD vnum = real(innerProduct(tmp,tmp)); // HermOp^2. | ||||
| 	RealD vnum = real(innerProduct(src_n,tmp)); // HermOp. | ||||
| 	RealD vden = norm2(src_n); | ||||
| 	RealD na = std::sqrt(vnum/vden); | ||||
| 	RealD na = vnum/vden; | ||||
| 	if (fabs(evalMaxApprox/na - 1.0) < 0.0001) | ||||
| 	  i=_MAX_ITER_IRL_MEVAPP_; | ||||
| 	evalMaxApprox = na; | ||||
| @@ -256,7 +253,6 @@ until convergence | ||||
| 	src_n = tmp; | ||||
|       } | ||||
|     } | ||||
|     std::cout << GridLogIRL << " Final evalMaxApprox  " << evalMaxApprox << std::endl; | ||||
| 	 | ||||
|     std::vector<RealD> lme(Nm);   | ||||
|     std::vector<RealD> lme2(Nm); | ||||
| @@ -461,7 +457,7 @@ until convergence | ||||
| 	    std::vector<Field>& evec, | ||||
| 	    Field& w,int Nm,int k) | ||||
|   { | ||||
|     std::cout<<GridLogDebug << "Lanczos step " <<k<<std::endl; | ||||
|     std::cout<<GridLogIRL << "Lanczos step " <<k<<std::endl; | ||||
|     const RealD tiny = 1.0e-20; | ||||
|     assert( k< Nm ); | ||||
|  | ||||
| @@ -469,7 +465,7 @@ until convergence | ||||
|  | ||||
|     Field& evec_k = evec[k]; | ||||
|  | ||||
|     _PolyOp(evec_k,w);    std::cout<<GridLogDebug << "PolyOp" <<std::endl; | ||||
|     _PolyOp(evec_k,w);    std::cout<<GridLogIRL << "PolyOp" <<std::endl; | ||||
|  | ||||
|     if(k>0) w -= lme[k-1] * evec[k-1]; | ||||
|  | ||||
| @@ -484,18 +480,18 @@ until convergence | ||||
|     lme[k] = beta; | ||||
|  | ||||
|     if ( (k>0) && ( (k % orth_period) == 0 )) { | ||||
|       std::cout<<GridLogDebug << "Orthogonalising " <<k<<std::endl; | ||||
|       std::cout<<GridLogIRL << "Orthogonalising " <<k<<std::endl; | ||||
|       orthogonalize(w,evec,k); // orthonormalise | ||||
|       std::cout<<GridLogDebug << "Orthogonalised " <<k<<std::endl; | ||||
|       std::cout<<GridLogIRL << "Orthogonalised " <<k<<std::endl; | ||||
|     } | ||||
|  | ||||
|     if(k < Nm-1) evec[k+1] = w; | ||||
|  | ||||
|     std::cout<<GridLogIRL << "Lanczos step alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl; | ||||
|     std::cout<<GridLogIRL << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl; | ||||
|     if ( beta < tiny )  | ||||
|       std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl; | ||||
|  | ||||
|     std::cout<<GridLogDebug << "Lanczos step complete " <<k<<std::endl; | ||||
|     std::cout<<GridLogIRL << "Lanczos step complete " <<k<<std::endl; | ||||
|   } | ||||
|  | ||||
|   void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme,  | ||||
|   | ||||
| @@ -33,7 +33,7 @@ NAMESPACE_BEGIN(Grid); | ||||
| /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Take a matrix and form an NE solver calling a Herm solver | ||||
| /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<class Field> class NormalEquations : public LinearFunction<Field>{ | ||||
| template<class Field> class NormalEquations { | ||||
| private: | ||||
|   SparseMatrixBase<Field> & _Matrix; | ||||
|   OperatorFunction<Field> & _HermitianSolver; | ||||
| @@ -60,33 +60,7 @@ public: | ||||
|   }      | ||||
| }; | ||||
|  | ||||
| template<class Field> class NormalResidual : public LinearFunction<Field>{ | ||||
| private: | ||||
|   SparseMatrixBase<Field> & _Matrix; | ||||
|   OperatorFunction<Field> & _HermitianSolver; | ||||
|   LinearFunction<Field>   & _Guess; | ||||
| public: | ||||
|  | ||||
|   ///////////////////////////////////////////////////// | ||||
|   // Wrap the usual normal equations trick | ||||
|   ///////////////////////////////////////////////////// | ||||
|  NormalResidual(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver, | ||||
| 		 LinearFunction<Field> &Guess)  | ||||
|    :  _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};  | ||||
|  | ||||
|   void operator() (const Field &in, Field &out){ | ||||
|   | ||||
|     Field res(in.Grid()); | ||||
|     Field tmp(in.Grid()); | ||||
|  | ||||
|     MMdagLinearOperator<SparseMatrixBase<Field>,Field> MMdagOp(_Matrix); | ||||
|     _Guess(in,res); | ||||
|     _HermitianSolver(MMdagOp,in,res);  // M Mdag res = in ; | ||||
|     _Matrix.Mdag(res,out);             // out = Mdag res | ||||
|   }      | ||||
| }; | ||||
|  | ||||
| template<class Field> class HPDSolver : public LinearFunction<Field> { | ||||
| template<class Field> class HPDSolver { | ||||
| private: | ||||
|   LinearOperatorBase<Field> & _Matrix; | ||||
|   OperatorFunction<Field> & _HermitianSolver; | ||||
| @@ -104,13 +78,13 @@ public: | ||||
|   void operator() (const Field &in, Field &out){ | ||||
|   | ||||
|     _Guess(in,out); | ||||
|     _HermitianSolver(_Matrix,in,out);  //M out = in | ||||
|     _HermitianSolver(_Matrix,in,out);  // Mdag M out = Mdag in | ||||
|  | ||||
|   }      | ||||
| }; | ||||
|  | ||||
|  | ||||
| template<class Field> class MdagMSolver : public LinearFunction<Field> { | ||||
| template<class Field> class MdagMSolver { | ||||
| private: | ||||
|   SparseMatrixBase<Field> & _Matrix; | ||||
|   OperatorFunction<Field> & _HermitianSolver; | ||||
|   | ||||
| @@ -20,7 +20,7 @@ template<class Field> class PowerMethod | ||||
|     RealD evalMaxApprox = 0.0;  | ||||
|     auto src_n = src;  | ||||
|     auto tmp = src;  | ||||
|     const int _MAX_ITER_EST_ = 200;  | ||||
|     const int _MAX_ITER_EST_ = 50;  | ||||
|  | ||||
|     for (int i=0;i<_MAX_ITER_EST_;i++) {  | ||||
|        | ||||
| @@ -30,17 +30,18 @@ template<class Field> class PowerMethod | ||||
|       RealD vden = norm2(src_n);  | ||||
|       RealD na = vnum/vden;  | ||||
|  | ||||
|       std::cout << GridLogMessage << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl; | ||||
|       std::cout << GridLogIterative << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl; | ||||
|        | ||||
|       //      if ( (fabs(evalMaxApprox/na - 1.0) < 0.0001) || (i==_MAX_ITER_EST_-1) ) {  | ||||
| 	// 	evalMaxApprox = na;  | ||||
| 	// 	return evalMaxApprox;  | ||||
|       //      }  | ||||
|       if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) {  | ||||
|  	evalMaxApprox = na;  | ||||
| 	std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl; | ||||
|  	return evalMaxApprox;  | ||||
|       }  | ||||
|       evalMaxApprox = na;  | ||||
|       src_n = tmp; | ||||
|     } | ||||
|     std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl; | ||||
|     return evalMaxApprox; | ||||
|     assert(0); | ||||
|     return 0; | ||||
|   } | ||||
| }; | ||||
| } | ||||
|   | ||||
| @@ -1,76 +0,0 @@ | ||||
| #pragma once | ||||
| namespace Grid { | ||||
|  | ||||
| class Band | ||||
| { | ||||
|   RealD lo, hi; | ||||
| public: | ||||
|   Band(RealD _lo,RealD _hi) | ||||
|   { | ||||
|     lo=_lo; | ||||
|     hi=_hi; | ||||
|   } | ||||
|   RealD operator() (RealD x){ | ||||
|     if ( x>lo && x<hi ){ | ||||
|       return 1.0; | ||||
|     } else { | ||||
|       return 0.0; | ||||
|     } | ||||
|   } | ||||
| }; | ||||
|  | ||||
| class PowerSpectrum | ||||
| {  | ||||
|  public:  | ||||
|  | ||||
|   template<typename T>  static RealD normalise(T& v)  | ||||
|   { | ||||
|     RealD nn = norm2(v); | ||||
|     nn = sqrt(nn); | ||||
|     v = v * (1.0/nn); | ||||
|     return nn; | ||||
|   } | ||||
|  | ||||
|   std::vector<RealD> ranges; | ||||
|   std::vector<int> order; | ||||
|    | ||||
|   PowerSpectrum(  std::vector<RealD> &bins, std::vector<int> &_order ) : ranges(bins), order(_order)  { }; | ||||
|  | ||||
|   template<class Field> | ||||
|   RealD operator()(LinearOperatorBase<Field> &HermOp, const Field &src)  | ||||
|   {  | ||||
|     GridBase *grid = src.Grid();  | ||||
|     int N=ranges.size(); | ||||
|     RealD hi = ranges[N-1]; | ||||
|  | ||||
|     RealD lo_band = 0.0; | ||||
|     RealD hi_band; | ||||
|     RealD nn=norm2(src); | ||||
|     RealD ss=0.0; | ||||
|  | ||||
|     Field tmp = src; | ||||
|  | ||||
|     for(int b=0;b<N;b++){ | ||||
|       hi_band = ranges[b]; | ||||
|       Band Notch(lo_band,hi_band); | ||||
|        | ||||
|       Chebyshev<Field> polynomial; | ||||
|       polynomial.Init(0.0,hi,order[b],Notch); | ||||
|       polynomial.JacksonSmooth(); | ||||
|  | ||||
|       polynomial(HermOp,src,tmp) ; | ||||
|  | ||||
|       RealD p=norm2(tmp); | ||||
|       ss=ss+p; | ||||
|       std::cout << GridLogMessage << " PowerSpectrum Band["<<lo_band<<","<<hi_band<<"] power "<<norm2(tmp)/nn<<std::endl; | ||||
|        | ||||
|       lo_band=hi_band; | ||||
|     } | ||||
|     std::cout << GridLogMessage << " PowerSpectrum total power "<<ss/nn<<std::endl; | ||||
|     std::cout << GridLogMessage << " PowerSpectrum total power (unnormalised) "<<nn<<std::endl; | ||||
|  | ||||
|     return 0; | ||||
|   }; | ||||
| }; | ||||
|    | ||||
| } | ||||
| @@ -74,7 +74,7 @@ public: | ||||
|  | ||||
|   void operator() (const Field &src, Field &psi){ | ||||
|  | ||||
|     //    psi=Zero(); | ||||
|     psi=Zero(); | ||||
|     RealD cp, ssq,rsq; | ||||
|     ssq=norm2(src); | ||||
|     rsq=Tolerance*Tolerance*ssq; | ||||
|   | ||||
| @@ -499,87 +499,6 @@ namespace Grid { | ||||
|       } | ||||
|   }; | ||||
|  | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Site diagonal is identity, left preconditioned by Mee^inv | ||||
|   // ( 1 - Mee^inv Meo Moo^inv Moe ) phi = Mee_inv ( Mee - Meo Moo^inv Moe Mee^inv  ) phi =  Mee_inv eta | ||||
|   // | ||||
|   // Solve: | ||||
|   // ( 1 - Mee^inv Meo Moo^inv Moe )^dag ( 1 - Mee^inv Meo Moo^inv Moe ) phi = ( 1 - Mee^inv Meo Moo^inv Moe )^dag  Mee_inv eta | ||||
|   // | ||||
|   // Old notation e<->o | ||||
|   // | ||||
|   // Left precon by Moo^-1 | ||||
|   //  b) (Doo^{dag} M_oo^-dag) (Moo^-1 Doo) psi_o =  [ (D_oo)^dag M_oo^-dag ] Moo^-1 L^{-1}  eta_o | ||||
|   //                                   eta_o'     = (D_oo)^dag  M_oo^-dag Moo^-1 (eta_o - Moe Mee^{-1} eta_e) | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   template<class Field> class SchurRedBlackDiagOneSolve : public SchurRedBlackBase<Field> { | ||||
|   public: | ||||
|     typedef CheckerBoardedSparseMatrixBase<Field> Matrix; | ||||
|  | ||||
|     ///////////////////////////////////////////////////// | ||||
|     // Wrap the usual normal equations Schur trick | ||||
|     ///////////////////////////////////////////////////// | ||||
|   SchurRedBlackDiagOneSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false, | ||||
|       const bool _solnAsInitGuess = false)   | ||||
|     : SchurRedBlackBase<Field>(HermitianRBSolver,initSubGuess,_solnAsInitGuess) {}; | ||||
|  | ||||
|     virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o) | ||||
|     { | ||||
|       GridBase *grid = _Matrix.RedBlackGrid(); | ||||
|       GridBase *fgrid= _Matrix.Grid(); | ||||
|  | ||||
|       SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix); | ||||
|        | ||||
|       Field   tmp(grid); | ||||
|       Field  Mtmp(grid); | ||||
|  | ||||
|       pickCheckerboard(Even,src_e,src); | ||||
|       pickCheckerboard(Odd ,src_o,src); | ||||
|      | ||||
|       ///////////////////////////////////////////////////// | ||||
|       // src_o = Mpcdag *MooeeInv * (source_o - Moe MeeInv source_e) | ||||
|       ///////////////////////////////////////////////////// | ||||
|       _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.Checkerboard() ==Even); | ||||
|       _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.Checkerboard() ==Odd);      | ||||
|       Mtmp=src_o-Mtmp;                  | ||||
|       _Matrix.MooeeInv(Mtmp,tmp);      assert( tmp.Checkerboard() ==Odd);      | ||||
|        | ||||
|       // get the right MpcDag | ||||
|       _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.Checkerboard() ==Odd);        | ||||
|     } | ||||
|  | ||||
|     virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol) | ||||
|     { | ||||
|       GridBase *grid = _Matrix.RedBlackGrid(); | ||||
|       GridBase *fgrid= _Matrix.Grid(); | ||||
|  | ||||
|       Field   tmp(grid); | ||||
|       Field   sol_e(grid); | ||||
|  | ||||
|  | ||||
|       /////////////////////////////////////////////////// | ||||
|       // sol_e = M_ee^-1 * ( src_e - Meo sol_o )... | ||||
|       /////////////////////////////////////////////////// | ||||
|       _Matrix.Meooe(sol_o,tmp);    assert(  tmp.Checkerboard()   ==Even); | ||||
|       tmp = src_e-tmp;             assert(  src_e.Checkerboard() ==Even); | ||||
|       _Matrix.MooeeInv(tmp,sol_e); assert(  sol_e.Checkerboard() ==Even); | ||||
|       | ||||
|       setCheckerboard(sol,sol_e);  assert(  sol_e.Checkerboard() ==Even); | ||||
|       setCheckerboard(sol,sol_o);  assert(  sol_o.Checkerboard() ==Odd ); | ||||
|     }; | ||||
|  | ||||
|     virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o) | ||||
|     { | ||||
|       SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix); | ||||
|       this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); | ||||
|     }; | ||||
|     virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o) | ||||
|     { | ||||
|       SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix); | ||||
|       this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  | ||||
|     } | ||||
|   }; | ||||
|  | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Site diagonal is identity, right preconditioned by Mee^inv | ||||
|   // ( 1 - Meo Moo^inv Moe Mee^inv  ) phi =( 1 - Meo Moo^inv Moe Mee^inv  ) Mee psi =  = eta  = eta | ||||
|   | ||||
| @@ -1,931 +0,0 @@ | ||||
|     /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/iterative/ImplicitlyRestartedLanczos.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Chulwoo Jung <chulwoo@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
|     *************************************************************************************/ | ||||
|     /*  END LEGAL */ | ||||
| #ifndef GRID_LANC_H | ||||
| #define GRID_LANC_H | ||||
|  | ||||
| #include <string.h>		//memset | ||||
|  | ||||
| #ifdef USE_LAPACK | ||||
| #ifdef USE_MKL | ||||
| #include<mkl_lapack.h> | ||||
| #else | ||||
| void LAPACK_dstegr (char *jobz, char *range, int *n, double *d, double *e, | ||||
| 		    double *vl, double *vu, int *il, int *iu, double *abstol, | ||||
| 		    int *m, double *w, double *z, int *ldz, int *isuppz, | ||||
| 		    double *work, int *lwork, int *iwork, int *liwork, | ||||
| 		    int *info); | ||||
| //#include <lapacke/lapacke.h> | ||||
| #endif | ||||
| #endif | ||||
|  | ||||
| //#include <Grid/algorithms/densematrix/DenseMatrix.h> | ||||
|  | ||||
| // eliminate temorary vector in calc() | ||||
| #define MEM_SAVE | ||||
|  | ||||
| namespace Grid | ||||
| { | ||||
|  | ||||
|   struct Bisection | ||||
|   { | ||||
|  | ||||
| #if 0 | ||||
|     static void get_eig2 (int row_num, std::vector < RealD > &ALPHA, | ||||
| 			  std::vector < RealD > &BETA, | ||||
| 			  std::vector < RealD > &eig) | ||||
|     { | ||||
|       int i, j; | ||||
|         std::vector < RealD > evec1 (row_num + 3); | ||||
|         std::vector < RealD > evec2 (row_num + 3); | ||||
|       RealD eps2; | ||||
|         ALPHA[1] = 0.; | ||||
|         BETHA[1] = 0.; | ||||
|       for (i = 0; i < row_num - 1; i++) | ||||
| 	{ | ||||
| 	  ALPHA[i + 1] = A[i * (row_num + 1)].real (); | ||||
| 	  BETHA[i + 2] = A[i * (row_num + 1) + 1].real (); | ||||
| 	} | ||||
|       ALPHA[row_num] = A[(row_num - 1) * (row_num + 1)].real (); | ||||
|         bisec (ALPHA, BETHA, row_num, 1, row_num, 1e-10, 1e-10, evec1, eps2); | ||||
|         bisec (ALPHA, BETHA, row_num, 1, row_num, 1e-16, 1e-16, evec2, eps2); | ||||
|  | ||||
|       // Do we really need to sort here? | ||||
|       int begin = 1; | ||||
|       int end = row_num; | ||||
|       int swapped = 1; | ||||
|       while (swapped) | ||||
| 	{ | ||||
| 	  swapped = 0; | ||||
| 	  for (i = begin; i < end; i++) | ||||
| 	    { | ||||
| 	      if (mag (evec2[i]) > mag (evec2[i + 1])) | ||||
| 		{ | ||||
| 		  swap (evec2 + i, evec2 + i + 1); | ||||
| 		  swapped = 1; | ||||
| 		} | ||||
| 	    } | ||||
| 	  end--; | ||||
| 	  for (i = end - 1; i >= begin; i--) | ||||
| 	    { | ||||
| 	      if (mag (evec2[i]) > mag (evec2[i + 1])) | ||||
| 		{ | ||||
| 		  swap (evec2 + i, evec2 + i + 1); | ||||
| 		  swapped = 1; | ||||
| 		} | ||||
| 	    } | ||||
| 	  begin++; | ||||
| 	} | ||||
|  | ||||
|       for (i = 0; i < row_num; i++) | ||||
| 	{ | ||||
| 	  for (j = 0; j < row_num; j++) | ||||
| 	    { | ||||
| 	      if (i == j) | ||||
| 		H[i * row_num + j] = evec2[i + 1]; | ||||
| 	      else | ||||
| 		H[i * row_num + j] = 0.; | ||||
| 	    } | ||||
| 	} | ||||
|     } | ||||
| #endif | ||||
|  | ||||
|     static void bisec (std::vector < RealD > &c, | ||||
| 		       std::vector < RealD > &b, | ||||
| 		       int n, | ||||
| 		       int m1, | ||||
| 		       int m2, | ||||
| 		       RealD eps1, | ||||
| 		       RealD relfeh, std::vector < RealD > &x, RealD & eps2) | ||||
|     { | ||||
|       std::vector < RealD > wu (n + 2); | ||||
|  | ||||
|       RealD h, q, x1, xu, x0, xmin, xmax; | ||||
|       int i, a, k; | ||||
|  | ||||
|       b[1] = 0.0; | ||||
|       xmin = c[n] - fabs (b[n]); | ||||
|       xmax = c[n] + fabs (b[n]); | ||||
|       for (i = 1; i < n; i++) | ||||
| 	{ | ||||
| 	  h = fabs (b[i]) + fabs (b[i + 1]); | ||||
| 	  if (c[i] + h > xmax) | ||||
| 	    xmax = c[i] + h; | ||||
| 	  if (c[i] - h < xmin) | ||||
| 	    xmin = c[i] - h; | ||||
| 	} | ||||
|       xmax *= 2.; | ||||
|  | ||||
|       eps2 = relfeh * ((xmin + xmax) > 0.0 ? xmax : -xmin); | ||||
|       if (eps1 <= 0.0) | ||||
| 	eps1 = eps2; | ||||
|       eps2 = 0.5 * eps1 + 7.0 * (eps2); | ||||
|       x0 = xmax; | ||||
|       for (i = m1; i <= m2; i++) | ||||
| 	{ | ||||
| 	  x[i] = xmax; | ||||
| 	  wu[i] = xmin; | ||||
| 	} | ||||
|  | ||||
|       for (k = m2; k >= m1; k--) | ||||
| 	{ | ||||
| 	  xu = xmin; | ||||
| 	  i = k; | ||||
| 	  do | ||||
| 	    { | ||||
| 	      if (xu < wu[i]) | ||||
| 		{ | ||||
| 		  xu = wu[i]; | ||||
| 		  i = m1 - 1; | ||||
| 		} | ||||
| 	      i--; | ||||
| 	    } | ||||
| 	  while (i >= m1); | ||||
| 	  if (x0 > x[k]) | ||||
| 	    x0 = x[k]; | ||||
| 	  while ((x0 - xu) > 2 * relfeh * (fabs (xu) + fabs (x0)) + eps1) | ||||
| 	    { | ||||
| 	      x1 = (xu + x0) / 2; | ||||
|  | ||||
| 	      a = 0; | ||||
| 	      q = 1.0; | ||||
| 	      for (i = 1; i <= n; i++) | ||||
| 		{ | ||||
| 		  q = | ||||
| 		    c[i] - x1 - | ||||
| 		    ((q != 0.0) ? b[i] * b[i] / q : fabs (b[i]) / relfeh); | ||||
| 		  if (q < 0) | ||||
| 		    a++; | ||||
| 		} | ||||
| //      printf("x1=%0.14e a=%d\n",x1,a); | ||||
| 	      if (a < k) | ||||
| 		{ | ||||
| 		  if (a < m1) | ||||
| 		    { | ||||
| 		      xu = x1; | ||||
| 		      wu[m1] = x1; | ||||
| 		    } | ||||
| 		  else | ||||
| 		    { | ||||
| 		      xu = x1; | ||||
| 		      wu[a + 1] = x1; | ||||
| 		      if (x[a] > x1) | ||||
| 			x[a] = x1; | ||||
| 		    } | ||||
| 		} | ||||
| 	      else | ||||
| 		x0 = x1; | ||||
| 	    } | ||||
| 	  printf ("x0=%0.14e xu=%0.14e k=%d\n", x0, xu, k); | ||||
| 	  x[k] = (x0 + xu) / 2; | ||||
| 	} | ||||
|     } | ||||
|   }; | ||||
|  | ||||
| ///////////////////////////////////////////////////////////// | ||||
| // Implicitly restarted lanczos | ||||
| ///////////////////////////////////////////////////////////// | ||||
|  | ||||
|  | ||||
|   template < class Field > class SimpleLanczos | ||||
|   { | ||||
|  | ||||
|     const RealD small = 1.0e-16; | ||||
|   public: | ||||
|     int lock; | ||||
|     int get; | ||||
|     int Niter; | ||||
|     int converged; | ||||
|  | ||||
|     int Nstop;			// Number of evecs checked for convergence | ||||
|     int Nk;			// Number of converged sought | ||||
|     int Np;			// Np -- Number of spare vecs in kryloc space | ||||
|     int Nm;			// Nm -- total number of vectors | ||||
|  | ||||
|  | ||||
|     RealD OrthoTime; | ||||
|  | ||||
|     RealD eresid; | ||||
|  | ||||
| //    SortEigen < Field > _sort; | ||||
|  | ||||
|     LinearFunction < Field > &_Linop; | ||||
|  | ||||
| //    OperatorFunction < Field > &_poly; | ||||
|  | ||||
|     ///////////////////////// | ||||
|     // Constructor | ||||
|     ///////////////////////// | ||||
|     void init (void) | ||||
|     { | ||||
|     }; | ||||
| //    void Abort (int ff, std::vector < RealD > &evals, DenseVector < Denstd::vector  < RealD > >&evecs); | ||||
|  | ||||
|     SimpleLanczos (LinearFunction < Field > &Linop,	// op | ||||
| //		   OperatorFunction < Field > &poly,	// polynmial | ||||
| 		   int _Nstop,	// sought vecs | ||||
| 		   int _Nk,	// sought vecs | ||||
| 		   int _Nm,	// spare vecs | ||||
| 		   RealD _eresid,	// resid in lmdue deficit  | ||||
| 		   int _Niter):	// Max iterations | ||||
|       | ||||
|       _Linop (Linop), | ||||
|  //     _poly (poly), | ||||
|       Nstop (_Nstop), Nk (_Nk), Nm (_Nm), eresid (_eresid), Niter (_Niter) | ||||
|     { | ||||
|       Np = Nm - Nk; | ||||
|       assert (Np > 0); | ||||
|     }; | ||||
|  | ||||
|     ///////////////////////// | ||||
|     // Sanity checked this routine (step) against Saad. | ||||
|     ///////////////////////// | ||||
|     void RitzMatrix (std::vector < Field > &evec, int k) | ||||
|     { | ||||
|  | ||||
|       if (1) | ||||
| 	return; | ||||
|  | ||||
|       GridBase *grid = evec[0].Grid(); | ||||
|       Field w (grid); | ||||
|       std::cout << GridLogMessage << "RitzMatrix " << std::endl; | ||||
|       for (int i = 0; i < k; i++) | ||||
| 	{ | ||||
| 	  _Linop(evec[i], w); | ||||
| //      _poly(_Linop,evec[i],w); | ||||
| 	  std::cout << GridLogMessage << "[" << i << "] "; | ||||
| 	  for (int j = 0; j < k; j++) | ||||
| 	    { | ||||
| 	      ComplexD in = innerProduct (evec[j], w); | ||||
| 	      if (fabs ((double) i - j) > 1) | ||||
| 		{ | ||||
| 		  if (abs (in) > 1.0e-9) | ||||
| 		    { | ||||
| 		      std::cout << GridLogMessage << "oops" << std::endl; | ||||
| 		      abort (); | ||||
| 		    } | ||||
| 		  else | ||||
| 		    std::cout << GridLogMessage << " 0 "; | ||||
| 		} | ||||
| 	      else | ||||
| 		{ | ||||
| 		  std::cout << GridLogMessage << " " << in << " "; | ||||
| 		} | ||||
| 	    } | ||||
| 	  std::cout << GridLogMessage << std::endl; | ||||
| 	} | ||||
|     } | ||||
|  | ||||
|     void step (std::vector < RealD > &lmd, | ||||
| 	       std::vector < RealD > &lme, | ||||
| 	       Field & last, Field & current, Field & next, uint64_t k) | ||||
|     { | ||||
|       if (lmd.size () <= k) | ||||
| 	lmd.resize (k + Nm); | ||||
|       if (lme.size () <= k) | ||||
| 	lme.resize (k + Nm); | ||||
|  | ||||
|  | ||||
| //      _poly(_Linop,current,next );   // 3. wk:=Avk−βkv_{k−1} | ||||
|       _Linop(current, next);	// 3. wk:=Avk−βkv_{k−1} | ||||
|       if (k > 0) | ||||
| 	{ | ||||
| 	  next -= lme[k - 1] * last; | ||||
| 	} | ||||
| //      std::cout<<GridLogMessage << "<last|next>" << innerProduct(last,next) <<std::endl; | ||||
|  | ||||
|       ComplexD zalph = innerProduct (current, next);	// 4. αk:=(wk,vk) | ||||
|       RealD alph = real (zalph); | ||||
|  | ||||
|       next = next - alph * current;	// 5. wk:=wk−αkvk | ||||
| //      std::cout<<GridLogMessage << "<current|next>" << innerProduct(current,next) <<std::endl; | ||||
|  | ||||
|       RealD beta = normalise (next);	// 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop | ||||
|       // 7. vk+1 := wk/βk+1 | ||||
| //       norm=beta; | ||||
|  | ||||
|       int interval = Nm / 100 + 1; | ||||
|       if ((k % interval) == 0) | ||||
| 	std:: | ||||
| 	  cout << GridLogMessage << k << " : alpha = " << zalph << " beta " << | ||||
| 	  beta << std::endl; | ||||
|       const RealD tiny = 1.0e-20; | ||||
|       if (beta < tiny) | ||||
| 	{ | ||||
| 	  std::cout << GridLogMessage << " beta is tiny " << beta << std:: | ||||
| 	    endl; | ||||
| 	} | ||||
|       lmd[k] = alph; | ||||
|       lme[k] = beta; | ||||
|  | ||||
|     } | ||||
|  | ||||
|     void qr_decomp (std::vector < RealD > &lmd, | ||||
| 		    std::vector  < RealD > &lme, | ||||
| 		    int Nk, | ||||
| 		    int Nm, | ||||
| 		    std::vector  < RealD > &Qt, RealD Dsh, int kmin, int kmax) | ||||
|     { | ||||
|       int k = kmin - 1; | ||||
|       RealD x; | ||||
|  | ||||
|       RealD Fden = 1.0 / hypot (lmd[k] - Dsh, lme[k]); | ||||
|       RealD c = (lmd[k] - Dsh) * Fden; | ||||
|       RealD s = -lme[k] * Fden; | ||||
|  | ||||
|       RealD tmpa1 = lmd[k]; | ||||
|       RealD tmpa2 = lmd[k + 1]; | ||||
|       RealD tmpb = lme[k]; | ||||
|  | ||||
|       lmd[k] = c * c * tmpa1 + s * s * tmpa2 - 2.0 * c * s * tmpb; | ||||
|       lmd[k + 1] = s * s * tmpa1 + c * c * tmpa2 + 2.0 * c * s * tmpb; | ||||
|       lme[k] = c * s * (tmpa1 - tmpa2) + (c * c - s * s) * tmpb; | ||||
|       x = -s * lme[k + 1]; | ||||
|       lme[k + 1] = c * lme[k + 1]; | ||||
|  | ||||
|       for (int i = 0; i < Nk; ++i) | ||||
| 	{ | ||||
| 	  RealD Qtmp1 = Qt[i + Nm * k]; | ||||
| 	  RealD Qtmp2 = Qt[i + Nm * (k + 1)]; | ||||
| 	  Qt[i + Nm * k] = c * Qtmp1 - s * Qtmp2; | ||||
| 	  Qt[i + Nm * (k + 1)] = s * Qtmp1 + c * Qtmp2; | ||||
| 	} | ||||
|  | ||||
|       // Givens transformations | ||||
|       for (int k = kmin; k < kmax - 1; ++k) | ||||
| 	{ | ||||
|  | ||||
| 	  RealD Fden = 1.0 / hypot (x, lme[k - 1]); | ||||
| 	  RealD c = lme[k - 1] * Fden; | ||||
| 	  RealD s = -x * Fden; | ||||
|  | ||||
| 	  RealD tmpa1 = lmd[k]; | ||||
| 	  RealD tmpa2 = lmd[k + 1]; | ||||
| 	  RealD tmpb = lme[k]; | ||||
|  | ||||
| 	  lmd[k] = c * c * tmpa1 + s * s * tmpa2 - 2.0 * c * s * tmpb; | ||||
| 	  lmd[k + 1] = s * s * tmpa1 + c * c * tmpa2 + 2.0 * c * s * tmpb; | ||||
| 	  lme[k] = c * s * (tmpa1 - tmpa2) + (c * c - s * s) * tmpb; | ||||
| 	  lme[k - 1] = c * lme[k - 1] - s * x; | ||||
|  | ||||
| 	  if (k != kmax - 2) | ||||
| 	    { | ||||
| 	      x = -s * lme[k + 1]; | ||||
| 	      lme[k + 1] = c * lme[k + 1]; | ||||
| 	    } | ||||
|  | ||||
| 	  for (int i = 0; i < Nk; ++i) | ||||
| 	    { | ||||
| 	      RealD Qtmp1 = Qt[i + Nm * k]; | ||||
| 	      RealD Qtmp2 = Qt[i + Nm * (k + 1)]; | ||||
| 	      Qt[i + Nm * k] = c * Qtmp1 - s * Qtmp2; | ||||
| 	      Qt[i + Nm * (k + 1)] = s * Qtmp1 + c * Qtmp2; | ||||
| 	    } | ||||
| 	} | ||||
|     } | ||||
|  | ||||
| #if 0 | ||||
| #ifdef USE_LAPACK | ||||
| #ifdef USE_MKL | ||||
| #define LAPACK_INT MKL_INT | ||||
| #else | ||||
| #define LAPACK_INT long long | ||||
| #endif | ||||
|     void diagonalize_lapack (std::vector  < RealD > &lmd, std::vector  < RealD > &lme, int N1,	// all | ||||
| 			     int N2,	// get | ||||
| 			     GridBase * grid) | ||||
|     { | ||||
|       const int size = Nm; | ||||
|       LAPACK_INT NN = N1; | ||||
|       double evals_tmp[NN]; | ||||
|       double DD[NN]; | ||||
|       double EE[NN]; | ||||
|       for (int i = 0; i < NN; i++) | ||||
| 	for (int j = i - 1; j <= i + 1; j++) | ||||
| 	  if (j < NN && j >= 0) | ||||
| 	    { | ||||
| 	      if (i == j) | ||||
| 		DD[i] = lmd[i]; | ||||
| 	      if (i == j) | ||||
| 		evals_tmp[i] = lmd[i]; | ||||
| 	      if (j == (i - 1)) | ||||
| 		EE[j] = lme[j]; | ||||
| 	    } | ||||
|       LAPACK_INT evals_found; | ||||
|       LAPACK_INT lwork = | ||||
| 	((18 * NN) > | ||||
| 	 (1 + 4 * NN + NN * NN) ? (18 * NN) : (1 + 4 * NN + NN * NN)); | ||||
|       LAPACK_INT liwork = 3 + NN * 10; | ||||
|       LAPACK_INT iwork[liwork]; | ||||
|       double work[lwork]; | ||||
|       LAPACK_INT isuppz[2 * NN]; | ||||
|       char jobz = 'N';		// calculate evals only | ||||
|       char range = 'I';		// calculate il-th to iu-th evals | ||||
|       //    char range = 'A'; // calculate all evals | ||||
|       char uplo = 'U';		// refer to upper half of original matrix | ||||
|       char compz = 'I';		// Compute eigenvectors of tridiagonal matrix | ||||
|       int ifail[NN]; | ||||
|       LAPACK_INT info; | ||||
| //  int total = QMP_get_number_of_nodes(); | ||||
| //  int node = QMP_get_node_number(); | ||||
| //  GridBase *grid = evec[0]._grid; | ||||
|       int total = grid->_Nprocessors; | ||||
|       int node = grid->_processor; | ||||
|       int interval = (NN / total) + 1; | ||||
|       double vl = 0.0, vu = 0.0; | ||||
|       LAPACK_INT il = interval * node + 1, iu = interval * (node + 1); | ||||
|       if (iu > NN) | ||||
| 	iu = NN; | ||||
|       double tol = 0.0; | ||||
|       if (1) | ||||
| 	{ | ||||
| 	  memset (evals_tmp, 0, sizeof (double) * NN); | ||||
| 	  if (il <= NN) | ||||
| 	    { | ||||
| 	      printf ("total=%d node=%d il=%d iu=%d\n", total, node, il, iu); | ||||
| #ifdef USE_MKL | ||||
| 	      dstegr (&jobz, &range, &NN, | ||||
| #else | ||||
| 	      LAPACK_dstegr (&jobz, &range, &NN, | ||||
| #endif | ||||
| 			     (double *) DD, (double *) EE, &vl, &vu, &il, &iu,	// these four are ignored if second parameteris 'A' | ||||
| 			     &tol,	// tolerance | ||||
| 			     &evals_found, evals_tmp, (double *) NULL, &NN, | ||||
| 			     isuppz, work, &lwork, iwork, &liwork, &info); | ||||
| 	      for (int i = iu - 1; i >= il - 1; i--) | ||||
| 		{ | ||||
| 		  printf ("node=%d evals_found=%d evals_tmp[%d] = %g\n", node, | ||||
| 			  evals_found, i - (il - 1), evals_tmp[i - (il - 1)]); | ||||
| 		  evals_tmp[i] = evals_tmp[i - (il - 1)]; | ||||
| 		  if (il > 1) | ||||
| 		    evals_tmp[i - (il - 1)] = 0.; | ||||
| 		} | ||||
| 	    } | ||||
| 	  { | ||||
| 	    grid->GlobalSumVector (evals_tmp, NN); | ||||
| 	  } | ||||
| 	} | ||||
| // cheating a bit. It is better to sort instead of just reversing it, but the document of the routine says evals are sorted in increasing order. qr gives evals in decreasing order. | ||||
|     } | ||||
| #undef LAPACK_INT | ||||
| #endif | ||||
|  | ||||
|  | ||||
|     void diagonalize (std::vector  < RealD > &lmd, | ||||
| 		      std::vector  < RealD > &lme, | ||||
| 		      int N2, int N1, GridBase * grid) | ||||
|     { | ||||
|  | ||||
| #ifdef USE_LAPACK | ||||
|       const int check_lapack = 0;	// just use lapack if 0, check against lapack if 1 | ||||
|  | ||||
|       if (!check_lapack) | ||||
| 	return diagonalize_lapack (lmd, lme, N2, N1, grid); | ||||
|  | ||||
| //      diagonalize_lapack(lmd2,lme2,Nm2,Nm,Qt,grid); | ||||
| #endif | ||||
|     } | ||||
| #endif | ||||
|  | ||||
|     static RealD normalise (Field & v) | ||||
|     { | ||||
|       RealD nn = norm2 (v); | ||||
|       nn = sqrt (nn); | ||||
|       v = v * (1.0 / nn); | ||||
|       return nn; | ||||
|     } | ||||
|  | ||||
|     void orthogonalize (Field & w, std::vector < Field > &evec, int k) | ||||
|     { | ||||
|       double t0 = -usecond () / 1e6; | ||||
|       typedef typename Field::scalar_type MyComplex; | ||||
|       MyComplex ip; | ||||
|  | ||||
|       if (0) | ||||
| 	{ | ||||
| 	  for (int j = 0; j < k; ++j) | ||||
| 	    { | ||||
| 	      normalise (evec[j]); | ||||
| 	      for (int i = 0; i < j; i++) | ||||
| 		{ | ||||
| 		  ip = innerProduct (evec[i], evec[j]);	// are the evecs normalised? ; this assumes so. | ||||
| 		  evec[j] = evec[j] - ip * evec[i]; | ||||
| 		} | ||||
| 	    } | ||||
| 	} | ||||
|  | ||||
|       for (int j = 0; j < k; ++j) | ||||
| 	{ | ||||
| 	  ip = innerProduct (evec[j], w);	// are the evecs normalised? ; this assumes so. | ||||
| 	  w = w - ip * evec[j]; | ||||
| 	} | ||||
|       normalise (w); | ||||
|       t0 += usecond () / 1e6; | ||||
|       OrthoTime += t0; | ||||
|     } | ||||
|  | ||||
|     void setUnit_Qt (int Nm, std::vector < RealD > &Qt) | ||||
|     { | ||||
|       for (int i = 0; i < Qt.size (); ++i) | ||||
| 	Qt[i] = 0.0; | ||||
|       for (int k = 0; k < Nm; ++k) | ||||
| 	Qt[k + k * Nm] = 1.0; | ||||
|     } | ||||
|  | ||||
|  | ||||
|     void calc (std::vector < RealD > &eval, const Field & src, int &Nconv) | ||||
|     { | ||||
|  | ||||
|       GridBase *grid = src.Grid(); | ||||
| //      assert(grid == src._grid); | ||||
|  | ||||
|       std:: | ||||
| 	cout << GridLogMessage << " -- Nk = " << Nk << " Np = " << Np << std:: | ||||
| 	endl; | ||||
|       std::cout << GridLogMessage << " -- Nm = " << Nm << std::endl; | ||||
|       std::cout << GridLogMessage << " -- size of eval   = " << eval. | ||||
| 	size () << std::endl; | ||||
|  | ||||
| //      assert(c.size() && Nm == eval.size()); | ||||
|  | ||||
|       std::vector < RealD > lme (Nm); | ||||
|       std::vector < RealD > lmd (Nm); | ||||
|  | ||||
|  | ||||
|       Field current (grid); | ||||
|       Field last (grid); | ||||
|       Field next (grid); | ||||
|  | ||||
|       Nconv = 0; | ||||
|  | ||||
|       RealD beta_k; | ||||
|  | ||||
|       // Set initial vector | ||||
|       // (uniform vector) Why not src?? | ||||
|       //      evec[0] = 1.0; | ||||
|       current = src; | ||||
|       std::cout << GridLogMessage << "norm2(src)= " << norm2 (src) << std:: | ||||
| 	endl; | ||||
|       normalise (current); | ||||
|       std:: | ||||
| 	cout << GridLogMessage << "norm2(evec[0])= " << norm2 (current) << | ||||
| 	std::endl; | ||||
|  | ||||
|       // Initial Nk steps | ||||
|       OrthoTime = 0.; | ||||
|       double t0 = usecond () / 1e6; | ||||
|       RealD norm;		// sqrt norm of last vector | ||||
|  | ||||
|       uint64_t iter = 0; | ||||
|  | ||||
|       bool initted = false; | ||||
|       std::vector < RealD > low (Nstop * 10); | ||||
|       std::vector < RealD > high (Nstop * 10); | ||||
|       RealD cont = 0.; | ||||
|       while (1) { | ||||
| 	  cont = 0.; | ||||
| 	  std::vector < RealD > lme2 (Nm); | ||||
| 	  std::vector < RealD > lmd2 (Nm); | ||||
| 	  for (uint64_t k = 0; k < Nm; ++k, iter++) { | ||||
| 	      step (lmd, lme, last, current, next, iter); | ||||
| 	      last = current; | ||||
| 	      current = next; | ||||
| 	    } | ||||
| 	  double t1 = usecond () / 1e6; | ||||
| 	  std::cout << GridLogMessage << "IRL::Initial steps: " << t1 - | ||||
| 	    t0 << "seconds" << std::endl; | ||||
| 	  t0 = t1; | ||||
| 	  std:: | ||||
| 	    cout << GridLogMessage << "IRL::Initial steps:OrthoTime " << | ||||
| 	    OrthoTime << "seconds" << std::endl; | ||||
|  | ||||
| 	  // getting eigenvalues | ||||
| 	  lmd2.resize (iter + 2); | ||||
| 	  lme2.resize (iter + 2); | ||||
| 	  for (uint64_t k = 0; k < iter; ++k) { | ||||
| 	      lmd2[k + 1] = lmd[k]; | ||||
| 	      lme2[k + 2] = lme[k]; | ||||
| 	    } | ||||
| 	  t1 = usecond () / 1e6; | ||||
| 	  std::cout << GridLogMessage << "IRL:: copy: " << t1 - | ||||
| 	    t0 << "seconds" << std::endl; | ||||
| 	  t0 = t1; | ||||
| 	  { | ||||
| 	    int total = grid->_Nprocessors; | ||||
| 	    int node = grid->_processor; | ||||
| 	    int interval = (Nstop / total) + 1; | ||||
| 	    int iu = (iter + 1) - (interval * node + 1); | ||||
| 	    int il = (iter + 1) - (interval * (node + 1)); | ||||
| 	    std::vector < RealD > eval2 (iter + 3); | ||||
| 	    RealD eps2; | ||||
| 	    Bisection::bisec (lmd2, lme2, iter, il, iu, 1e-16, 1e-10, eval2, | ||||
| 			      eps2); | ||||
| //        diagonalize(eval2,lme2,iter,Nk,grid); | ||||
| 	    RealD diff = 0.; | ||||
| 	    for (int i = il; i <= iu; i++) { | ||||
| 		if (initted) | ||||
| 		  diff = | ||||
| 		    fabs (eval2[i] - high[iu-i]) / (fabs (eval2[i]) + | ||||
| 						      fabs (high[iu-i])); | ||||
| 		if (initted && (diff > eresid)) | ||||
| 		  cont = 1.; | ||||
| 		if (initted) | ||||
| 		  printf ("eval[%d]=%0.14e %0.14e, %0.14e\n", i, eval2[i], | ||||
| 			  high[iu-i], diff); | ||||
| 		high[iu-i] = eval2[i]; | ||||
| 	      } | ||||
| 	    il = (interval * node + 1); | ||||
| 	    iu = (interval * (node + 1)); | ||||
| 	    Bisection::bisec (lmd2, lme2, iter, il, iu, 1e-16, 1e-10, eval2, | ||||
| 			      eps2); | ||||
| 	    for (int i = il; i <= iu; i++) { | ||||
| 		if (initted) | ||||
| 		  diff = | ||||
| 		    fabs (eval2[i] - low[i]) / (fabs (eval2[i]) + | ||||
| 						fabs (low[i])); | ||||
| 		if (initted && (diff > eresid)) | ||||
| 		  cont = 1.; | ||||
| 		if (initted) | ||||
| 		  printf ("eval[%d]=%0.14e %0.14e, %0.14e\n", i, eval2[i], | ||||
| 			  low[i], diff); | ||||
| 		low[i] = eval2[i]; | ||||
| 	      } | ||||
| 	    t1 = usecond () / 1e6; | ||||
| 	    std::cout << GridLogMessage << "IRL:: diagonalize: " << t1 - | ||||
| 	      t0 << "seconds" << std::endl; | ||||
| 	    t0 = t1; | ||||
| 	  } | ||||
|  | ||||
| 	  for (uint64_t k = 0; k < Nk; ++k) { | ||||
| //          eval[k] = eval2[k]; | ||||
| 	    } | ||||
| 	  if (initted) | ||||
| 	    { | ||||
| 	      grid->GlobalSumVector (&cont, 1); | ||||
| 	      if (cont < 1.) return; | ||||
| 	    } | ||||
| 	  initted = true; | ||||
| 	} | ||||
|  | ||||
|     } | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| #if 0 | ||||
|  | ||||
| /** | ||||
|    There is some matrix Q such that for any vector y | ||||
|    Q.e_1 = y and Q is unitary. | ||||
| **/ | ||||
|     template < class T > | ||||
|       static T orthQ (DenseMatrix < T > &Q, std::vector < T > y) | ||||
|     { | ||||
|       int N = y.size ();	//Matrix Size | ||||
|       Fill (Q, 0.0); | ||||
|       T tau; | ||||
|       for (int i = 0; i < N; i++) | ||||
| 	{ | ||||
| 	  Q[i][0] = y[i]; | ||||
| 	} | ||||
|       T sig = conj (y[0]) * y[0]; | ||||
|       T tau0 = fabs (sqrt (sig)); | ||||
|  | ||||
|       for (int j = 1; j < N; j++) | ||||
| 	{ | ||||
| 	  sig += conj (y[j]) * y[j]; | ||||
| 	  tau = abs (sqrt (sig)); | ||||
|  | ||||
| 	  if (abs (tau0) > 0.0) | ||||
| 	    { | ||||
|  | ||||
| 	      T gam = conj ((y[j] / tau) / tau0); | ||||
| 	      for (int k = 0; k <= j - 1; k++) | ||||
| 		{ | ||||
| 		  Q[k][j] = -gam * y[k]; | ||||
| 		} | ||||
| 	      Q[j][j] = tau0 / tau; | ||||
| 	    } | ||||
| 	  else | ||||
| 	    { | ||||
| 	      Q[j - 1][j] = 1.0; | ||||
| 	    } | ||||
| 	  tau0 = tau; | ||||
| 	} | ||||
|       return tau; | ||||
|     } | ||||
|  | ||||
| /** | ||||
| 	There is some matrix Q such that for any vector y | ||||
| 	Q.e_k = y and Q is unitary. | ||||
| **/ | ||||
|     template < class T > | ||||
|       static T orthU (DenseMatrix < T > &Q, std::vector < T > y) | ||||
|     { | ||||
|       T tau = orthQ (Q, y); | ||||
|       SL (Q); | ||||
|       return tau; | ||||
|     } | ||||
|  | ||||
|  | ||||
| /** | ||||
| 	Wind up with a matrix with the first con rows untouched | ||||
|  | ||||
| say con = 2 | ||||
| 	Q is such that Qdag H Q has {x, x, val, 0, 0, 0, 0, ...} as 1st colum | ||||
| 	and the matrix is upper hessenberg | ||||
| 	and with f and Q appropriately modidied with Q is the arnoldi factorization | ||||
|  | ||||
| **/ | ||||
|  | ||||
|     template < class T > static void Lock (DenseMatrix < T > &H,	///Hess mtx      | ||||
| 					   DenseMatrix < T > &Q,	///Lock Transform | ||||
| 					   T val,	///value to be locked | ||||
| 					   int con,	///number already locked | ||||
| 					   RealD small, int dfg, bool herm) | ||||
|     { | ||||
|       //ForceTridiagonal(H); | ||||
|  | ||||
|       int M = H.dim; | ||||
|       DenseVector < T > vec; | ||||
|       Resize (vec, M - con); | ||||
|  | ||||
|       DenseMatrix < T > AH; | ||||
|       Resize (AH, M - con, M - con); | ||||
|       AH = GetSubMtx (H, con, M, con, M); | ||||
|  | ||||
|       DenseMatrix < T > QQ; | ||||
|       Resize (QQ, M - con, M - con); | ||||
|  | ||||
|       Unity (Q); | ||||
|       Unity (QQ); | ||||
|  | ||||
|       DenseVector < T > evals; | ||||
|       Resize (evals, M - con); | ||||
|       DenseMatrix < T > evecs; | ||||
|       Resize (evecs, M - con, M - con); | ||||
|  | ||||
|       Wilkinson < T > (AH, evals, evecs, small); | ||||
|  | ||||
|       int k = 0; | ||||
|       RealD cold = abs (val - evals[k]); | ||||
|       for (int i = 1; i < M - con; i++) | ||||
| 	{ | ||||
| 	  RealD cnew = abs (val - evals[i]); | ||||
| 	  if (cnew < cold) | ||||
| 	    { | ||||
| 	      k = i; | ||||
| 	      cold = cnew; | ||||
| 	    } | ||||
| 	} | ||||
|       vec = evecs[k]; | ||||
|  | ||||
|       ComplexD tau; | ||||
|       orthQ (QQ, vec); | ||||
|       //orthQM(QQ,AH,vec); | ||||
|  | ||||
|       AH = Hermitian (QQ) * AH; | ||||
|       AH = AH * QQ; | ||||
|  | ||||
|       for (int i = con; i < M; i++) | ||||
| 	{ | ||||
| 	  for (int j = con; j < M; j++) | ||||
| 	    { | ||||
| 	      Q[i][j] = QQ[i - con][j - con]; | ||||
| 	      H[i][j] = AH[i - con][j - con]; | ||||
| 	    } | ||||
| 	} | ||||
|  | ||||
|       for (int j = M - 1; j > con + 2; j--) | ||||
| 	{ | ||||
|  | ||||
| 	  DenseMatrix < T > U; | ||||
| 	  Resize (U, j - 1 - con, j - 1 - con); | ||||
| 	  DenseVector < T > z; | ||||
| 	  Resize (z, j - 1 - con); | ||||
| 	  T nm = norm (z); | ||||
| 	  for (int k = con + 0; k < j - 1; k++) | ||||
| 	    { | ||||
| 	      z[k - con] = conj (H (j, k + 1)); | ||||
| 	    } | ||||
| 	  normalise (z); | ||||
|  | ||||
| 	  RealD tmp = 0; | ||||
| 	  for (int i = 0; i < z.size () - 1; i++) | ||||
| 	    { | ||||
| 	      tmp = tmp + abs (z[i]); | ||||
| 	    } | ||||
|  | ||||
| 	  if (tmp < small / ((RealD) z.size () - 1.0)) | ||||
| 	    { | ||||
| 	      continue; | ||||
| 	    } | ||||
|  | ||||
| 	  tau = orthU (U, z); | ||||
|  | ||||
| 	  DenseMatrix < T > Hb; | ||||
| 	  Resize (Hb, j - 1 - con, M); | ||||
|  | ||||
| 	  for (int a = 0; a < M; a++) | ||||
| 	    { | ||||
| 	      for (int b = 0; b < j - 1 - con; b++) | ||||
| 		{ | ||||
| 		  T sum = 0; | ||||
| 		  for (int c = 0; c < j - 1 - con; c++) | ||||
| 		    { | ||||
| 		      sum += H[a][con + 1 + c] * U[c][b]; | ||||
| 		    }		//sum += H(a,con+1+c)*U(c,b);} | ||||
| 		  Hb[b][a] = sum; | ||||
| 		} | ||||
| 	    } | ||||
|  | ||||
| 	  for (int k = con + 1; k < j; k++) | ||||
| 	    { | ||||
| 	      for (int l = 0; l < M; l++) | ||||
| 		{ | ||||
| 		  H[l][k] = Hb[k - 1 - con][l]; | ||||
| 		} | ||||
| 	    }			//H(Hb[k-1-con][l] , l,k);}} | ||||
|  | ||||
| 	  DenseMatrix < T > Qb; | ||||
| 	  Resize (Qb, M, M); | ||||
|  | ||||
| 	  for (int a = 0; a < M; a++) | ||||
| 	    { | ||||
| 	      for (int b = 0; b < j - 1 - con; b++) | ||||
| 		{ | ||||
| 		  T sum = 0; | ||||
| 		  for (int c = 0; c < j - 1 - con; c++) | ||||
| 		    { | ||||
| 		      sum += Q[a][con + 1 + c] * U[c][b]; | ||||
| 		    }		//sum += Q(a,con+1+c)*U(c,b);} | ||||
| 		  Qb[b][a] = sum; | ||||
| 		} | ||||
| 	    } | ||||
|  | ||||
| 	  for (int k = con + 1; k < j; k++) | ||||
| 	    { | ||||
| 	      for (int l = 0; l < M; l++) | ||||
| 		{ | ||||
| 		  Q[l][k] = Qb[k - 1 - con][l]; | ||||
| 		} | ||||
| 	    }			//Q(Qb[k-1-con][l] , l,k);}} | ||||
|  | ||||
| 	  DenseMatrix < T > Hc; | ||||
| 	  Resize (Hc, M, M); | ||||
|  | ||||
| 	  for (int a = 0; a < j - 1 - con; a++) | ||||
| 	    { | ||||
| 	      for (int b = 0; b < M; b++) | ||||
| 		{ | ||||
| 		  T sum = 0; | ||||
| 		  for (int c = 0; c < j - 1 - con; c++) | ||||
| 		    { | ||||
| 		      sum += conj (U[c][a]) * H[con + 1 + c][b]; | ||||
| 		    }		//sum += conj( U(c,a) )*H(con+1+c,b);} | ||||
| 		  Hc[b][a] = sum; | ||||
| 		} | ||||
| 	    } | ||||
|  | ||||
| 	  for (int k = 0; k < M; k++) | ||||
| 	    { | ||||
| 	      for (int l = con + 1; l < j; l++) | ||||
| 		{ | ||||
| 		  H[l][k] = Hc[k][l - 1 - con]; | ||||
| 		} | ||||
| 	    }			//H(Hc[k][l-1-con] , l,k);}} | ||||
|  | ||||
| 	} | ||||
|     } | ||||
| #endif | ||||
|  | ||||
|  | ||||
|   }; | ||||
|  | ||||
| } | ||||
| #endif | ||||
| @@ -1,608 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/Aggregates.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local> | ||||
| Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| #include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidualNonHermitian.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| inline RealD AggregatePowerLaw(RealD x) | ||||
| { | ||||
|   //  return std::pow(x,-4); | ||||
|   //  return std::pow(x,-3); | ||||
|   return std::pow(x,-5); | ||||
| } | ||||
|  | ||||
| template<class Fobj,class CComplex,int nbasis> | ||||
| class Aggregation { | ||||
| public: | ||||
|   constexpr int Nbasis(void) { return nbasis; }; | ||||
|    | ||||
|   typedef iVector<CComplex,nbasis >             siteVector; | ||||
|   typedef Lattice<siteVector>                 CoarseVector; | ||||
|   typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix; | ||||
|  | ||||
|   typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field | ||||
|   typedef Lattice<Fobj >        FineField; | ||||
|  | ||||
|   GridBase *CoarseGrid; | ||||
|   GridBase *FineGrid; | ||||
|   std::vector<Lattice<Fobj> > subspace; | ||||
|   int checkerboard; | ||||
|   int Checkerboard(void){return checkerboard;} | ||||
|   Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :  | ||||
|     CoarseGrid(_CoarseGrid), | ||||
|     FineGrid(_FineGrid), | ||||
|     subspace(nbasis,_FineGrid), | ||||
|     checkerboard(_checkerboard) | ||||
|   { | ||||
|   }; | ||||
|    | ||||
|    | ||||
|   void Orthogonalise(void){ | ||||
|     CoarseScalar InnerProd(CoarseGrid);  | ||||
|     //    std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl; | ||||
|     blockOrthogonalise(InnerProd,subspace); | ||||
|   }  | ||||
|   void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){ | ||||
|     blockProject(CoarseVec,FineVec,subspace); | ||||
|   } | ||||
|   void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){ | ||||
|     FineVec.Checkerboard() = subspace[0].Checkerboard(); | ||||
|     blockPromote(CoarseVec,FineVec,subspace); | ||||
|   } | ||||
|  | ||||
|   virtual void CreateSubspaceRandom(GridParallelRNG  &RNG) { | ||||
|     int nn=nbasis; | ||||
|     RealD scale; | ||||
|     FineField noise(FineGrid); | ||||
|     for(int b=0;b<nn;b++){ | ||||
|       subspace[b] = Zero(); | ||||
|       gaussian(RNG,noise); | ||||
|       scale = std::pow(norm2(noise),-0.5);  | ||||
|       noise=noise*scale; | ||||
|       subspace[b] = noise; | ||||
|     } | ||||
|   } | ||||
|   virtual void CreateSubspace(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) | ||||
|   { | ||||
|  | ||||
|     RealD scale; | ||||
|  | ||||
|     ConjugateGradient<FineField> CG(1.0e-3,400,false); | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|  | ||||
|     for(int b=0;b<nn;b++){ | ||||
|        | ||||
|       subspace[b] = Zero(); | ||||
|       gaussian(RNG,noise); | ||||
|       scale = std::pow(norm2(noise),-0.5);  | ||||
|       noise=noise*scale; | ||||
|        | ||||
|       hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
|  | ||||
|       for(int i=0;i<4;i++){ | ||||
|  | ||||
| 	CG(hermop,noise,subspace[b]); | ||||
|  | ||||
| 	noise = subspace[b]; | ||||
| 	scale = std::pow(norm2(noise),-0.5);  | ||||
| 	noise=noise*scale; | ||||
|  | ||||
|       } | ||||
|  | ||||
|       hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl; | ||||
|       subspace[b]   = noise; | ||||
|  | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   virtual void CreateSubspaceGCR(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &DiracOp,int nn=nbasis) | ||||
|   { | ||||
|     RealD scale; | ||||
|  | ||||
|     TrivialPrecon<FineField> simple_fine; | ||||
|     PrecGeneralisedConjugateResidualNonHermitian<FineField> GCR(0.001,30,DiracOp,simple_fine,12,12); | ||||
|     FineField noise(FineGrid); | ||||
|     FineField src(FineGrid); | ||||
|     FineField guess(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|  | ||||
|     for(int b=0;b<nn;b++){ | ||||
|        | ||||
|       subspace[b] = Zero(); | ||||
|       gaussian(RNG,noise); | ||||
|       scale = std::pow(norm2(noise),-0.5);  | ||||
|       noise=noise*scale; | ||||
|        | ||||
|       DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|Op|n> "<<innerProduct(noise,Mn)<<std::endl; | ||||
|  | ||||
|       for(int i=0;i<2;i++){ | ||||
| 	//  void operator() (const Field &src, Field &psi){ | ||||
| #if 1 | ||||
| 	std::cout << GridLogMessage << " inverting on noise "<<std::endl; | ||||
| 	src = noise; | ||||
| 	guess=Zero(); | ||||
| 	GCR(src,guess); | ||||
| 	subspace[b] = guess; | ||||
| #else | ||||
| 	std::cout << GridLogMessage << " inverting on zero "<<std::endl; | ||||
| 	src=Zero(); | ||||
| 	guess = noise; | ||||
| 	GCR(src,guess); | ||||
| 	subspace[b] = guess; | ||||
| #endif | ||||
| 	noise = subspace[b]; | ||||
| 	scale = std::pow(norm2(noise),-0.5);  | ||||
| 	noise=noise*scale; | ||||
|  | ||||
|       } | ||||
|  | ||||
|       DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|Op|f> "<<innerProduct(noise,Mn)<<std::endl; | ||||
|       subspace[b]   = noise; | ||||
|  | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit) | ||||
|   // and this is the best I found | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|   virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop, | ||||
| 				       int nn, | ||||
| 				       double hi, | ||||
| 				       double lo, | ||||
| 				       int orderfilter, | ||||
| 				       int ordermin, | ||||
| 				       int orderstep, | ||||
| 				       double filterlo | ||||
| 				       ) { | ||||
|  | ||||
|     RealD scale; | ||||
|  | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|     FineField tmp(FineGrid); | ||||
|  | ||||
|     // New normalised noise | ||||
|     gaussian(RNG,noise); | ||||
|     scale = std::pow(norm2(noise),-0.5);  | ||||
|     noise=noise*scale; | ||||
|  | ||||
|     std::cout << GridLogMessage<<" Chebyshev subspace pass-1 : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl; | ||||
|     std::cout << GridLogMessage<<" Chebyshev subspace pass-2 : nbasis"<<nn<<" min " | ||||
| 	      <<ordermin<<" step "<<orderstep | ||||
| 	      <<" lo"<<filterlo<<std::endl; | ||||
|  | ||||
|     // Initial matrix element | ||||
|     hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
|  | ||||
|     int b =0; | ||||
|     { | ||||
|       ComplexD ip; | ||||
|       // Filter | ||||
|       Chebyshev<FineField> Cheb(lo,hi,orderfilter); | ||||
|       Cheb(hermop,noise,Mn); | ||||
|       // normalise | ||||
|       scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale; | ||||
|       subspace[b]   = Mn; | ||||
|  | ||||
|       hermop.Op(Mn,tmp); | ||||
|       ip= innerProduct(Mn,tmp);  | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl; | ||||
|  | ||||
|       hermop.AdjOp(Mn,tmp);  | ||||
|       ip = innerProduct(Mn,tmp);  | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl; | ||||
|       b++; | ||||
|     } | ||||
|  | ||||
|     // Generate a full sequence of Chebyshevs | ||||
|     { | ||||
|       lo=filterlo; | ||||
|       noise=Mn; | ||||
|  | ||||
|       FineField T0(FineGrid); T0 = noise;   | ||||
|       FineField T1(FineGrid);  | ||||
|       FineField T2(FineGrid); | ||||
|       FineField y(FineGrid); | ||||
|        | ||||
|       FineField *Tnm = &T0; | ||||
|       FineField *Tn  = &T1; | ||||
|       FineField *Tnp = &T2; | ||||
|  | ||||
|       // Tn=T1 = (xscale M + mscale)in | ||||
|       RealD xscale = 2.0/(hi-lo); | ||||
|       RealD mscale = -(hi+lo)/(hi-lo); | ||||
|       hermop.HermOp(T0,y); | ||||
|       T1=y*xscale+noise*mscale; | ||||
|  | ||||
|       for(int n=2;n<=ordermin+orderstep*(nn-2);n++){ | ||||
| 	 | ||||
| 	hermop.HermOp(*Tn,y); | ||||
|  | ||||
| 	autoView( y_v , y, AcceleratorWrite); | ||||
| 	autoView( Tn_v , (*Tn), AcceleratorWrite); | ||||
| 	autoView( Tnp_v , (*Tnp), AcceleratorWrite); | ||||
| 	autoView( Tnm_v , (*Tnm), AcceleratorWrite); | ||||
| 	const int Nsimd = CComplex::Nsimd(); | ||||
| 	accelerator_for(ss, FineGrid->oSites(), Nsimd, { | ||||
| 	  coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss)); | ||||
| 	  coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss)); | ||||
|         }); | ||||
|  | ||||
| 	// Possible more fine grained control is needed than a linear sweep, | ||||
| 	// but huge productivity gain if this is simple algorithm and not a tunable | ||||
| 	int m =1; | ||||
| 	if ( n>=ordermin ) m=n-ordermin; | ||||
| 	if ( (m%orderstep)==0 ) {  | ||||
| 	  Mn=*Tnp; | ||||
| 	  scale = std::pow(norm2(Mn),-0.5);         Mn=Mn*scale; | ||||
| 	  subspace[b] = Mn; | ||||
|  | ||||
|  | ||||
| 	  ComplexD ip; | ||||
|  | ||||
| 	  hermop.Op(Mn,tmp); | ||||
| 	  ip= innerProduct(Mn,tmp);  | ||||
| 	  std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl; | ||||
|  | ||||
| 	  hermop.AdjOp(Mn,tmp);  | ||||
| 	  ip = innerProduct(Mn,tmp);  | ||||
| 	  std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl; | ||||
| 	   | ||||
| 	  b++; | ||||
| 	} | ||||
|  | ||||
| 	// Cycle pointers to avoid copies | ||||
| 	FineField *swizzle = Tnm; | ||||
| 	Tnm    =Tn; | ||||
| 	Tn     =Tnp; | ||||
| 	Tnp    =swizzle; | ||||
| 	   | ||||
|       } | ||||
|     } | ||||
|     assert(b==nn); | ||||
|   } | ||||
|  | ||||
|  | ||||
|   virtual void CreateSubspacePolyCheby(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop, | ||||
| 				       int nn, | ||||
| 				       double hi, | ||||
| 				       double lo1, | ||||
| 				       int orderfilter, | ||||
| 				       double lo2, | ||||
| 				       int orderstep) | ||||
|   { | ||||
|     RealD scale; | ||||
|  | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|     FineField tmp(FineGrid); | ||||
|  | ||||
|     // New normalised noise | ||||
|     gaussian(RNG,noise); | ||||
|     scale = std::pow(norm2(noise),-0.5);  | ||||
|     noise=noise*scale; | ||||
|  | ||||
|     std::cout << GridLogMessage<<" CreateSubspacePolyCheby "<<std::endl; | ||||
|     // Initial matrix element | ||||
|     hermop.Op(noise,Mn); | ||||
|     std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
|  | ||||
|     int b =0; | ||||
|     { | ||||
|       // Filter | ||||
|       std::cout << GridLogMessage << "Cheby "<<lo1<<","<<hi<<" "<<orderstep<<std::endl; | ||||
|       Chebyshev<FineField> Cheb(lo1,hi,orderfilter); | ||||
|       Cheb(hermop,noise,Mn); | ||||
|       // normalise | ||||
|       scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale; | ||||
|       subspace[b]   = Mn; | ||||
|       hermop.Op(Mn,tmp);  | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|n> "<<norm2(Mn)<<std::endl; | ||||
|     } | ||||
|  | ||||
|     // Generate a full sequence of Chebyshevs | ||||
|     for(int n=1;n<nn;n++){ | ||||
|       std::cout << GridLogMessage << "Cheby "<<lo2<<","<<hi<<" "<<orderstep<<std::endl; | ||||
|       Chebyshev<FineField> Cheb(lo2,hi,orderstep); | ||||
|       Cheb(hermop,subspace[n-1],Mn); | ||||
|  | ||||
|       for(int m=0;m<n;m++){ | ||||
| 	ComplexD c = innerProduct(subspace[m],Mn); | ||||
| 	Mn = Mn - c*subspace[m]; | ||||
|       } | ||||
|        | ||||
|       // normalise | ||||
|       scale = std::pow(norm2(Mn),-0.5); | ||||
|       Mn=Mn*scale; | ||||
|        | ||||
|       subspace[n]=Mn; | ||||
|        | ||||
|       hermop.Op(Mn,tmp);  | ||||
|       std::cout<<GridLogMessage << "filt ["<<n<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       std::cout<<GridLogMessage << "filt ["<<n<<"] <n|n> "<<norm2(Mn)<<std::endl; | ||||
|  | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop, | ||||
| 				       int nn, | ||||
| 				       double hi, | ||||
| 				       double lo, | ||||
| 				       int orderfilter | ||||
| 				       ) { | ||||
|  | ||||
|     RealD scale; | ||||
|  | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|     FineField tmp(FineGrid); | ||||
|  | ||||
|     // New normalised noise | ||||
|     std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl; | ||||
|     std::cout << GridLogMessage<<" Chebyshev subspace pure noise  : nbasis "<<nn<<std::endl; | ||||
|  | ||||
|  | ||||
|     for(int b =0;b<nbasis;b++) | ||||
|     { | ||||
|       gaussian(RNG,noise); | ||||
|       scale = std::pow(norm2(noise),-0.5);  | ||||
|       noise=noise*scale; | ||||
|  | ||||
|       // Initial matrix element | ||||
|       hermop.Op(noise,Mn); | ||||
|       if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
|  | ||||
|       // Filter | ||||
|       Chebyshev<FineField> Cheb(lo,hi,orderfilter); | ||||
|       Cheb(hermop,noise,Mn); | ||||
|       scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale; | ||||
|  | ||||
|       // Refine | ||||
|       Chebyshev<FineField> PowerLaw(lo,hi,1000,AggregatePowerLaw); | ||||
|       noise = Mn; | ||||
|       PowerLaw(hermop,noise,Mn); | ||||
|       scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale; | ||||
|  | ||||
|       // normalise | ||||
|       subspace[b]   = Mn; | ||||
|       hermop.Op(Mn,tmp);  | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|     } | ||||
|  | ||||
|   } | ||||
|  | ||||
|   virtual void CreateSubspaceChebyshevPowerLaw(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop, | ||||
| 					       int nn, | ||||
| 					       double hi, | ||||
| 					       int orderfilter | ||||
| 					       ) { | ||||
|  | ||||
|     RealD scale; | ||||
|  | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|     FineField tmp(FineGrid); | ||||
|  | ||||
|     // New normalised noise | ||||
|     std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" [0,"<<hi<<"]"<<std::endl; | ||||
|     std::cout << GridLogMessage<<" Chebyshev subspace pure noise  : nbasis "<<nn<<std::endl; | ||||
|  | ||||
|     for(int b =0;b<nbasis;b++) | ||||
|     { | ||||
|       gaussian(RNG,noise); | ||||
|       scale = std::pow(norm2(noise),-0.5);  | ||||
|       noise=noise*scale; | ||||
|  | ||||
|       // Initial matrix element | ||||
|       hermop.Op(noise,Mn); | ||||
|       if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
|       // Filter | ||||
|       Chebyshev<FineField> Cheb(0.0,hi,orderfilter,AggregatePowerLaw); | ||||
|       Cheb(hermop,noise,Mn); | ||||
|       // normalise | ||||
|       scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale; | ||||
|       subspace[b]   = Mn; | ||||
|       hermop.Op(Mn,tmp);  | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|     } | ||||
|  | ||||
|   } | ||||
|   virtual void CreateSubspaceChebyshevNew(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop, | ||||
| 					  double hi | ||||
| 					  ) { | ||||
|  | ||||
|     RealD scale; | ||||
|  | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|     FineField tmp(FineGrid); | ||||
|  | ||||
|     // New normalised noise | ||||
|     for(int b =0;b<nbasis;b++) | ||||
|     { | ||||
|       gaussian(RNG,noise); | ||||
|       scale = std::pow(norm2(noise),-0.5);  | ||||
|       noise=noise*scale; | ||||
|  | ||||
|       // Initial matrix element | ||||
|       hermop.Op(noise,Mn); | ||||
|       if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
|       // Filter | ||||
|       //#opt2(x) =  acheb(x,3,90,300)* acheb(x,1,90,50) * acheb(x,0.5,90,200) * acheb(x,0.05,90,400) * acheb(x,0.01,90,1500) | ||||
|       /*266 | ||||
|       Chebyshev<FineField> Cheb1(3.0,hi,300); | ||||
|       Chebyshev<FineField> Cheb2(1.0,hi,50); | ||||
|       Chebyshev<FineField> Cheb3(0.5,hi,300); | ||||
|       Chebyshev<FineField> Cheb4(0.05,hi,500); | ||||
|       Chebyshev<FineField> Cheb5(0.01,hi,2000); | ||||
|       */ | ||||
|       /* 242 */ | ||||
|       /* | ||||
|       Chebyshev<FineField> Cheb3(0.1,hi,300); | ||||
|       Chebyshev<FineField> Cheb2(0.02,hi,1000); | ||||
|       Chebyshev<FineField> Cheb1(0.003,hi,2000); | ||||
|       8? | ||||
|       */ | ||||
|       /* How many?? | ||||
|       */ | ||||
|       Chebyshev<FineField> Cheb2(0.001,hi,2500); // 169 iters on HDCG after refine | ||||
|       Chebyshev<FineField> Cheb1(0.02,hi,600); | ||||
|  | ||||
|       //      Chebyshev<FineField> Cheb2(0.001,hi,1500); | ||||
|       //      Chebyshev<FineField> Cheb1(0.02,hi,600); | ||||
|       Cheb1(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale; | ||||
|       hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb1 <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       Cheb2(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale; | ||||
|       hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb2 <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       //      Cheb3(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale; | ||||
|       //      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb3 <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       //      Cheb4(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale; | ||||
|       //      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb4 <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       //      Cheb5(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale; | ||||
|       //      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb5 <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       subspace[b]   = noise; | ||||
|       hermop.Op(subspace[b],tmp);  | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<< " norm " << norm2(noise)<<std::endl; | ||||
|     } | ||||
|  | ||||
|   } | ||||
|  | ||||
|   virtual void CreateSubspaceMultishift(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop, | ||||
| 					double Lo,double tol,int maxit) | ||||
|   { | ||||
|  | ||||
|     RealD scale; | ||||
|  | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|     FineField tmp(FineGrid); | ||||
|  | ||||
|     // New normalised noise | ||||
|     std::cout << GridLogMessage<<" Multishift subspace : Lo "<<Lo<<std::endl; | ||||
|  | ||||
|     // Filter | ||||
|     // [ 1/6(x+Lo)  - 1/2(x+2Lo) + 1/2(x+3Lo)  -1/6(x+4Lo) = Lo^3 /[ (x+1Lo)(x+2Lo)(x+3Lo)(x+4Lo) ] | ||||
|     // | ||||
|     // 1/(x+Lo)  - 1/(x+2 Lo) | ||||
|     double epsilon      = Lo/3; | ||||
|     std::vector<RealD> alpha({1.0/6.0,-1.0/2.0,1.0/2.0,-1.0/6.0}); | ||||
|     std::vector<RealD> shifts({Lo,Lo+epsilon,Lo+2*epsilon,Lo+3*epsilon}); | ||||
|     std::vector<RealD> tols({tol,tol,tol,tol}); | ||||
|     std::cout << "sizes "<<alpha.size()<<" "<<shifts.size()<<" "<<tols.size()<<std::endl; | ||||
|  | ||||
|     MultiShiftFunction msf(4,0.0,95.0); | ||||
|     std::cout << "msf constructed "<<std::endl; | ||||
|     msf.poles=shifts; | ||||
|     msf.residues=alpha; | ||||
|     msf.tolerances=tols; | ||||
|     msf.norm=0.0; | ||||
|     msf.order=alpha.size(); | ||||
|     ConjugateGradientMultiShift<FineField> MSCG(maxit,msf); | ||||
|      | ||||
|     for(int b =0;b<nbasis;b++) | ||||
|     { | ||||
|       gaussian(RNG,noise); | ||||
|       scale = std::pow(norm2(noise),-0.5);  | ||||
|       noise=noise*scale; | ||||
|  | ||||
|       // Initial matrix element | ||||
|       hermop.Op(noise,Mn); | ||||
|       if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
|  | ||||
|       MSCG(hermop,noise,Mn); | ||||
|       scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale; | ||||
|       subspace[b]   = Mn; | ||||
|       hermop.Op(Mn,tmp);  | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|  | ||||
|     } | ||||
|  | ||||
|   } | ||||
|   virtual void RefineSubspace(LinearOperatorBase<FineField> &hermop, | ||||
| 			      double Lo,double tol,int maxit) | ||||
|   { | ||||
|     FineField tmp(FineGrid); | ||||
|     for(int b =0;b<nbasis;b++) | ||||
|     { | ||||
|       ConjugateGradient<FineField>  CGsloppy(tol,maxit,false); | ||||
|       ShiftedHermOpLinearOperator<FineField> ShiftedFineHermOp(hermop,Lo); | ||||
|       tmp=Zero(); | ||||
|       CGsloppy(hermop,subspace[b],tmp); | ||||
|       RealD scale = std::pow(norm2(tmp),-0.5); 	tmp=tmp*scale; | ||||
|       subspace[b]=tmp; | ||||
|       hermop.Op(subspace[b],tmp); | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|     } | ||||
|   } | ||||
|   virtual void RefineSubspaceHDCG(LinearOperatorBase<FineField> &hermop, | ||||
| 				  TwoLevelADEF2mrhs<FineField,CoarseVector> & theHDCG, | ||||
| 				  int nrhs) | ||||
|   { | ||||
|     std::vector<FineField> src_mrhs(nrhs,FineGrid); | ||||
|     std::vector<FineField> res_mrhs(nrhs,FineGrid); | ||||
|     FineField tmp(FineGrid); | ||||
|     for(int b =0;b<nbasis;b+=nrhs) | ||||
|     { | ||||
|       tmp = subspace[b]; | ||||
|       RealD scale = std::pow(norm2(tmp),-0.5); 	tmp=tmp*scale; | ||||
|       subspace[b] =tmp; | ||||
|       hermop.Op(subspace[b],tmp); | ||||
|       std::cout<<GridLogMessage << "before filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|  | ||||
|       for(int r=0;r<MIN(nbasis-b,nrhs);r++){ | ||||
| 	src_mrhs[r] = subspace[b+r]; | ||||
|       } | ||||
|       for(int r=0;r<nrhs;r++){ | ||||
| 	res_mrhs[r] = Zero(); | ||||
|       } | ||||
|       theHDCG(src_mrhs,res_mrhs); | ||||
|  | ||||
|       for(int r=0;r<MIN(nbasis-b,nrhs);r++){ | ||||
| 	tmp = res_mrhs[r]; | ||||
| 	RealD scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale; | ||||
| 	subspace[b+r]=tmp; | ||||
|       } | ||||
|       hermop.Op(subspace[b],tmp); | ||||
|       std::cout<<GridLogMessage << "after filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|     } | ||||
|   } | ||||
|  | ||||
|    | ||||
|    | ||||
| }; | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| @@ -1,629 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| #include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No) | ||||
|  | ||||
| #include <Grid/lattice/PaddedCell.h> | ||||
| #include <Grid/stencil/GeneralLocalStencil.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| // Fine Object == (per site) type of fine field | ||||
| // nbasis      == number of deflation vectors | ||||
| template<class Fobj,class CComplex,int nbasis> | ||||
| class GeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > >  { | ||||
| public: | ||||
|  | ||||
|   typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp; | ||||
|   typedef iVector<CComplex,nbasis >           siteVector; | ||||
|   typedef iMatrix<CComplex,nbasis >           siteMatrix; | ||||
|   typedef Lattice<iScalar<CComplex> >         CoarseComplexField; | ||||
|   typedef Lattice<siteVector>                 CoarseVector; | ||||
|   typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix; | ||||
|   typedef iMatrix<CComplex,nbasis >  Cobj; | ||||
|   typedef iVector<CComplex,nbasis >  Cvec; | ||||
|   typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field | ||||
|   typedef Lattice<Fobj >        FineField; | ||||
|   typedef Lattice<CComplex >    FineComplexField; | ||||
|   typedef CoarseVector Field; | ||||
|   //////////////////// | ||||
|   // Data members | ||||
|   //////////////////// | ||||
|   int hermitian; | ||||
|   GridBase      *       _FineGrid;  | ||||
|   GridCartesian *       _CoarseGrid;  | ||||
|   NonLocalStencilGeometry &geom; | ||||
|   PaddedCell Cell; | ||||
|   GeneralLocalStencil Stencil; | ||||
|    | ||||
|   std::vector<CoarseMatrix> _A; | ||||
|   std::vector<CoarseMatrix> _Adag; | ||||
|   std::vector<CoarseVector> MultTemporaries; | ||||
|  | ||||
|   /////////////////////// | ||||
|   // Interface | ||||
|   /////////////////////// | ||||
|   GridBase      * Grid(void)           { return _CoarseGrid; };   // this is all the linalg routines need to know | ||||
|   GridBase      * FineGrid(void)       { return _FineGrid; };   // this is all the linalg routines need to know | ||||
|   GridCartesian * CoarseGrid(void)     { return _CoarseGrid; };   // this is all the linalg routines need to know | ||||
|  | ||||
|   /*  void ShiftMatrix(RealD shift) | ||||
|   { | ||||
|     int Nd=_FineGrid->Nd();  | ||||
|     Coordinate zero_shift(Nd,0); | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       if ( zero_shift==geom.shifts[p] ) { | ||||
| 	_A[p] = _A[p]+shift; | ||||
| 	//	_Adag[p] = _Adag[p]+shift; | ||||
|       } | ||||
|     }     | ||||
|   } | ||||
|   void ProjectNearestNeighbour(RealD shift, GeneralCoarseOp &CopyMe) | ||||
|   { | ||||
|     int nfound=0; | ||||
|     std::cout << GridLogMessage <<"GeneralCoarsenedMatrix::ProjectNearestNeighbour "<< CopyMe._A[0].Grid()<<std::endl; | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       for(int pp=0;pp<CopyMe.geom.npoint;pp++){ | ||||
|  	// Search for the same relative shift | ||||
| 	// Avoids brutal handling of Grid pointers | ||||
| 	if ( CopyMe.geom.shifts[pp]==geom.shifts[p] ) { | ||||
| 	  _A[p] = CopyMe.Cell.Extract(CopyMe._A[pp]); | ||||
| 	  //	  _Adag[p] = CopyMe.Cell.Extract(CopyMe._Adag[pp]); | ||||
| 	  nfound++; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
|     assert(nfound==geom.npoint); | ||||
|     ExchangeCoarseLinks(); | ||||
|   } | ||||
|   */ | ||||
|    | ||||
|   GeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridBase *FineGrid, GridCartesian * CoarseGrid) | ||||
|     : geom(_geom), | ||||
|       _FineGrid(FineGrid), | ||||
|       _CoarseGrid(CoarseGrid), | ||||
|       hermitian(1), | ||||
|       Cell(_geom.Depth(),_CoarseGrid), | ||||
|       Stencil(Cell.grids.back(),geom.shifts) | ||||
|   { | ||||
|     { | ||||
|       int npoint = _geom.npoint; | ||||
|     } | ||||
|     _A.resize(geom.npoint,CoarseGrid); | ||||
|     //    _Adag.resize(geom.npoint,CoarseGrid); | ||||
|   } | ||||
|   void M (const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     Mult(_A,in,out); | ||||
|   } | ||||
|   void Mdag (const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     assert(hermitian); | ||||
|     Mult(_A,in,out); | ||||
|     //    if ( hermitian ) M(in,out); | ||||
|     //    else Mult(_Adag,in,out); | ||||
|   } | ||||
|   void Mult (std::vector<CoarseMatrix> &A,const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     RealD tviews=0;    RealD ttot=0;    RealD tmult=0;   RealD texch=0;    RealD text=0; RealD ttemps=0; RealD tcopy=0; | ||||
|     RealD tmult2=0; | ||||
|  | ||||
|     ttot=-usecond(); | ||||
|     conformable(CoarseGrid(),in.Grid()); | ||||
|     conformable(in.Grid(),out.Grid()); | ||||
|     out.Checkerboard() = in.Checkerboard(); | ||||
|     CoarseVector tin=in; | ||||
|  | ||||
|     texch-=usecond(); | ||||
|     CoarseVector pin = Cell.ExchangePeriodic(tin); | ||||
|     texch+=usecond(); | ||||
|  | ||||
|     CoarseVector pout(pin.Grid()); | ||||
|  | ||||
|     int npoint = geom.npoint; | ||||
|     typedef LatticeView<Cobj> Aview; | ||||
|     typedef LatticeView<Cvec> Vview; | ||||
|        | ||||
|     const int Nsimd = CComplex::Nsimd(); | ||||
|      | ||||
|     int64_t osites=pin.Grid()->oSites(); | ||||
|  | ||||
|     RealD flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd(); | ||||
|     RealD bytes = 1.0*osites*sizeof(siteMatrix)*npoint | ||||
|                 + 2.0*osites*sizeof(siteVector)*npoint; | ||||
|        | ||||
|     { | ||||
|       tviews-=usecond(); | ||||
|       autoView( in_v , pin, AcceleratorRead); | ||||
|       autoView( out_v , pout, AcceleratorWriteDiscard); | ||||
|       autoView( Stencil_v  , Stencil, AcceleratorRead); | ||||
|       tviews+=usecond(); | ||||
|  | ||||
|       // Static and prereserve to keep UVM region live and not resized across multiple calls | ||||
|       ttemps-=usecond(); | ||||
|       MultTemporaries.resize(npoint,pin.Grid());        | ||||
|       ttemps+=usecond(); | ||||
|       std::vector<Aview> AcceleratorViewContainer_h; | ||||
|       std::vector<Vview> AcceleratorVecViewContainer_h;  | ||||
|  | ||||
|       tviews-=usecond(); | ||||
|       for(int p=0;p<npoint;p++) { | ||||
| 	AcceleratorViewContainer_h.push_back(      A[p].View(AcceleratorRead)); | ||||
| 	AcceleratorVecViewContainer_h.push_back(MultTemporaries[p].View(AcceleratorWrite)); | ||||
|       } | ||||
|       tviews+=usecond(); | ||||
|  | ||||
|       static deviceVector<Aview> AcceleratorViewContainer; AcceleratorViewContainer.resize(npoint); | ||||
|       static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(npoint);  | ||||
|        | ||||
|       auto Aview_p = &AcceleratorViewContainer[0]; | ||||
|       auto Vview_p = &AcceleratorVecViewContainer[0]; | ||||
|       tcopy-=usecond(); | ||||
|       acceleratorCopyToDevice(&AcceleratorViewContainer_h[0],&AcceleratorViewContainer[0],npoint *sizeof(Aview)); | ||||
|       acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],npoint *sizeof(Vview)); | ||||
|       tcopy+=usecond(); | ||||
|  | ||||
|       tmult-=usecond(); | ||||
|       accelerator_for(spb, osites*nbasis*npoint, Nsimd, { | ||||
| 	  typedef decltype(coalescedRead(in_v[0](0))) calcComplex; | ||||
| 	  int32_t ss   = spb/(nbasis*npoint); | ||||
| 	  int32_t bp   = spb%(nbasis*npoint); | ||||
| 	  int32_t point= bp/nbasis; | ||||
| 	  int32_t b    = bp%nbasis; | ||||
| 	  auto SE  = Stencil_v.GetEntry(point,ss); | ||||
| 	  auto nbr = coalescedReadGeneralPermute(in_v[SE->_offset],SE->_permute,Nd); | ||||
| 	  auto res = coalescedRead(Aview_p[point][ss](0,b))*nbr(0); | ||||
| 	  for(int bb=1;bb<nbasis;bb++) { | ||||
| 	    res = res + coalescedRead(Aview_p[point][ss](bb,b))*nbr(bb); | ||||
| 	  } | ||||
| 	  coalescedWrite(Vview_p[point][ss](b),res); | ||||
|       }); | ||||
|       tmult2-=usecond(); | ||||
|       accelerator_for(sb, osites*nbasis, Nsimd, { | ||||
| 	  int ss = sb/nbasis; | ||||
| 	  int b  = sb%nbasis; | ||||
| 	  auto res = coalescedRead(Vview_p[0][ss](b)); | ||||
| 	  for(int point=1;point<npoint;point++){ | ||||
| 	    res = res + coalescedRead(Vview_p[point][ss](b)); | ||||
| 	  } | ||||
| 	  coalescedWrite(out_v[ss](b),res); | ||||
|       }); | ||||
|       tmult2+=usecond(); | ||||
|       tmult+=usecond(); | ||||
|       for(int p=0;p<npoint;p++) { | ||||
| 	AcceleratorViewContainer_h[p].ViewClose(); | ||||
| 	AcceleratorVecViewContainer_h[p].ViewClose(); | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     text-=usecond(); | ||||
|     out = Cell.Extract(pout); | ||||
|     text+=usecond(); | ||||
|     ttot+=usecond(); | ||||
|      | ||||
|     std::cout << GridLogPerformance<<"Coarse 1rhs Mult Aviews "<<tviews<<" us"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Mult exch "<<texch<<" us"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Mult mult "<<tmult<<" us"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<" of which mult2  "<<tmult2<<" us"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Mult ext  "<<text<<" us"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Mult temps "<<ttemps<<" us"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Mult copy  "<<tcopy<<" us"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Mult tot  "<<ttot<<" us"<<std::endl; | ||||
|     //    std::cout << GridLogPerformance<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Kernel flops "<< flops<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Kernel flop/s "<< flops/tmult<<" mflop/s"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Kernel bytes/s "<< bytes/tmult<<" MB/s"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse overall flops/s "<< flops/ttot<<" mflop/s"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse total bytes   "<< bytes/1e6<<" MB"<<std::endl; | ||||
|  | ||||
|   }; | ||||
|    | ||||
|   void PopulateAdag(void) | ||||
|   { | ||||
|     for(int64_t bidx=0;bidx<CoarseGrid()->gSites() ;bidx++){ | ||||
|       Coordinate bcoor; | ||||
|       CoarseGrid()->GlobalIndexToGlobalCoor(bidx,bcoor); | ||||
|        | ||||
|       for(int p=0;p<geom.npoint;p++){ | ||||
| 	Coordinate scoor = bcoor; | ||||
| 	for(int mu=0;mu<bcoor.size();mu++){ | ||||
| 	  int L = CoarseGrid()->GlobalDimensions()[mu]; | ||||
| 	  scoor[mu] = (bcoor[mu] - geom.shifts[p][mu] + L) % L; // Modulo arithmetic | ||||
| 	} | ||||
| 	// Flip to poke/peekLocalSite and not too bad | ||||
| 	auto link = peekSite(_A[p],scoor); | ||||
| 	int pp = geom.Reverse(p); | ||||
| 	pokeSite(adj(link),_Adag[pp],bcoor); | ||||
|       } | ||||
|     } | ||||
|   } | ||||
|   ///////////////////////////////////////////////////////////// | ||||
|   //  | ||||
|   // A) Only reduced flops option is to use a padded cell of depth 4 | ||||
|   // and apply MpcDagMpc in the padded cell. | ||||
|   // | ||||
|   // Makes for ONE application of MpcDagMpc per vector instead of 30 or 80. | ||||
|   // With the effective cell size around (B+8)^4 perhaps 12^4/4^4 ratio | ||||
|   // Cost is 81x more, same as stencil size. | ||||
|   // | ||||
|   // But: can eliminate comms and do as local dirichlet. | ||||
|   // | ||||
|   // Local exchange gauge field once. | ||||
|   // Apply to all vectors, local only computation. | ||||
|   // Must exchange ghost subcells in reverse process of PaddedCell to take inner products | ||||
|   // | ||||
|   // B) Can reduce cost: pad by 1, apply Deo      (4^4+6^4+8^4+8^4 )/ (4x 4^4) | ||||
|   //                     pad by 2, apply Doe | ||||
|   //                     pad by 3, apply Deo | ||||
|   //                     then break out 8x directions; cost is ~10x MpcDagMpc per vector | ||||
|   // | ||||
|   // => almost factor of 10 in setup cost, excluding data rearrangement | ||||
|   // | ||||
|   // Intermediates -- ignore the corner terms, leave approximate and force Hermitian | ||||
|   // Intermediates -- pad by 2 and apply 1+8+24 = 33 times. | ||||
|   ///////////////////////////////////////////////////////////// | ||||
|  | ||||
|     ////////////////////////////////////////////////////////// | ||||
|     // BFM HDCG style approach: Solve a system of equations to get Aij | ||||
|     ////////////////////////////////////////////////////////// | ||||
|     /* | ||||
|      *     Here, k,l index which possible shift within the 3^Nd "ball" connected by MdagM. | ||||
|      * | ||||
|      *     conj(phases[block]) proj[k][ block*Nvec+j ] =  \sum_ball  e^{i q_k . delta} < phi_{block,j} | MdagM | phi_{(block+delta),i} >  | ||||
|      *                                                 =  \sum_ball e^{iqk.delta} A_ji | ||||
|      * | ||||
|      *     Must invert matrix M_k,l = e^[i q_k . delta_l] | ||||
|      * | ||||
|      *     Where q_k = delta_k . (2*M_PI/global_nb[mu]) | ||||
|      */ | ||||
| #if 0 | ||||
|   void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop, | ||||
| 		       Aggregation<Fobj,CComplex,nbasis> & Subspace) | ||||
|   { | ||||
|     std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl; | ||||
|     GridBase *grid = FineGrid(); | ||||
|  | ||||
|     RealD tproj=0.0; | ||||
|     RealD teigen=0.0; | ||||
|     RealD tmat=0.0; | ||||
|     RealD tphase=0.0; | ||||
|     RealD tinv=0.0; | ||||
|  | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     // Orthogonalise the subblocks over the basis | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     CoarseScalar InnerProd(CoarseGrid());  | ||||
|     blockOrthogonalise(InnerProd,Subspace.subspace); | ||||
|  | ||||
|     const int npoint = geom.npoint; | ||||
|        | ||||
|     Coordinate clatt = CoarseGrid()->GlobalDimensions(); | ||||
|     int Nd = CoarseGrid()->Nd(); | ||||
|  | ||||
|       /* | ||||
|        *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM. | ||||
|        *     Matrix index i is mapped to this shift via  | ||||
|        *               geom.shifts[i] | ||||
|        * | ||||
|        *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]  | ||||
|        *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >  | ||||
|        *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l} | ||||
|        *       = M_{kl} A_ji^{b.b+l} | ||||
|        * | ||||
|        *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l] | ||||
|        *   | ||||
|        *     Where q_k = delta_k . (2*M_PI/global_nb[mu]) | ||||
|        * | ||||
|        *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j} | ||||
|        */ | ||||
|     teigen-=usecond(); | ||||
|     Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     ComplexD ci(0.0,1.0); | ||||
|     for(int k=0;k<npoint;k++){ // Loop over momenta | ||||
|  | ||||
|       for(int l=0;l<npoint;l++){ // Loop over nbr relative | ||||
| 	ComplexD phase(0.0,0.0); | ||||
| 	for(int mu=0;mu<Nd;mu++){ | ||||
| 	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	  phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu]; | ||||
| 	} | ||||
| 	phase=exp(phase*ci); | ||||
| 	Mkl(k,l) = phase; | ||||
|       } | ||||
|     } | ||||
|     invMkl = Mkl.inverse(); | ||||
|     teigen+=usecond(); | ||||
|  | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     // Now compute the matrix elements of linop between the orthonormal | ||||
|     // set of vectors. | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     FineField phaV(grid); // Phased block basis vector | ||||
|     FineField MphaV(grid);// Matrix applied | ||||
|     CoarseVector coarseInner(CoarseGrid()); | ||||
|  | ||||
|     std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid()); | ||||
|     std::vector<CoarseVector>          FT(npoint,CoarseGrid()); | ||||
|     for(int i=0;i<nbasis;i++){// Loop over basis vectors | ||||
|       std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl; | ||||
|       for(int p=0;p<npoint;p++){ // Loop over momenta in npoint | ||||
| 	///////////////////////////////////////////////////// | ||||
| 	// Stick a phase on every block | ||||
| 	///////////////////////////////////////////////////// | ||||
| 	tphase-=usecond(); | ||||
| 	CoarseComplexField coor(CoarseGrid()); | ||||
| 	CoarseComplexField pha(CoarseGrid());	pha=Zero(); | ||||
| 	for(int mu=0;mu<Nd;mu++){ | ||||
| 	  LatticeCoordinate(coor,mu); | ||||
| 	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	  pha = pha + (TwoPiL * geom.shifts[p][mu]) * coor; | ||||
| 	} | ||||
| 	pha  =exp(pha*ci); | ||||
| 	phaV=Zero(); | ||||
| 	blockZAXPY(phaV,pha,Subspace.subspace[i],phaV); | ||||
| 	tphase+=usecond(); | ||||
|  | ||||
| 	///////////////////////////////////////////////////////////////////// | ||||
| 	// Multiple phased subspace vector by matrix and project to subspace | ||||
| 	// Remove local bulk phase to leave relative phases | ||||
| 	///////////////////////////////////////////////////////////////////// | ||||
| 	tmat-=usecond(); | ||||
| 	linop.Op(phaV,MphaV); | ||||
| 	tmat+=usecond(); | ||||
|  | ||||
| 	tproj-=usecond(); | ||||
| 	blockProject(coarseInner,MphaV,Subspace.subspace); | ||||
| 	coarseInner = conjugate(pha) * coarseInner; | ||||
|  | ||||
| 	ComputeProj[p] = coarseInner; | ||||
| 	tproj+=usecond(); | ||||
|  | ||||
|       } | ||||
|  | ||||
|       tinv-=usecond(); | ||||
|       for(int k=0;k<npoint;k++){ | ||||
| 	FT[k] = Zero(); | ||||
| 	for(int l=0;l<npoint;l++){ | ||||
| 	  FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l]; | ||||
| 	} | ||||
|        | ||||
| 	int osites=CoarseGrid()->oSites(); | ||||
| 	autoView( A_v  , _A[k], AcceleratorWrite); | ||||
| 	autoView( FT_v  , FT[k], AcceleratorRead); | ||||
| 	accelerator_for(sss, osites, 1, { | ||||
| 	    for(int j=0;j<nbasis;j++){ | ||||
| 	      A_v[sss](i,j) = FT_v[sss](j); | ||||
| 	    } | ||||
|         }); | ||||
|       } | ||||
|       tinv+=usecond(); | ||||
|     } | ||||
|  | ||||
|     // Only needed if nonhermitian | ||||
|     if ( ! hermitian ) { | ||||
|       //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl; | ||||
|       //      PopulateAdag(); | ||||
|     } | ||||
|  | ||||
|     // Need to write something to populate Adag from A | ||||
|     ExchangeCoarseLinks(); | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator eigen  "<<teigen<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator phase  "<<tphase<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator mat    "<<tmat <<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator proj   "<<tproj<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl; | ||||
|   } | ||||
| #else | ||||
|   ////////////////////////////////////////////////////////////////////// | ||||
|   // Galerkin projection of matrix | ||||
|   ////////////////////////////////////////////////////////////////////// | ||||
|   void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop, | ||||
| 		       Aggregation<Fobj,CComplex,nbasis> & Subspace) | ||||
|   { | ||||
|     CoarsenOperator(linop,Subspace,Subspace); | ||||
|   } | ||||
|   ////////////////////////////////////////////////////////////////////// | ||||
|   // Petrov - Galerkin projection of matrix | ||||
|   ////////////////////////////////////////////////////////////////////// | ||||
|   void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop, | ||||
| 		       Aggregation<Fobj,CComplex,nbasis> & U, | ||||
| 		       Aggregation<Fobj,CComplex,nbasis> & V) | ||||
|   { | ||||
|     std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl; | ||||
|     GridBase *grid = FineGrid(); | ||||
|  | ||||
|     RealD tproj=0.0; | ||||
|     RealD teigen=0.0; | ||||
|     RealD tmat=0.0; | ||||
|     RealD tphase=0.0; | ||||
|     RealD tphaseBZ=0.0; | ||||
|     RealD tinv=0.0; | ||||
|  | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     // Orthogonalise the subblocks over the basis | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     CoarseScalar InnerProd(CoarseGrid());  | ||||
|     blockOrthogonalise(InnerProd,V.subspace); | ||||
|     blockOrthogonalise(InnerProd,U.subspace); | ||||
|  | ||||
|     const int npoint = geom.npoint; | ||||
|        | ||||
|     Coordinate clatt = CoarseGrid()->GlobalDimensions(); | ||||
|     int Nd = CoarseGrid()->Nd(); | ||||
|  | ||||
|       /* | ||||
|        *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM. | ||||
|        *     Matrix index i is mapped to this shift via  | ||||
|        *               geom.shifts[i] | ||||
|        * | ||||
|        *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]  | ||||
|        *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >  | ||||
|        *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l} | ||||
|        *       = M_{kl} A_ji^{b.b+l} | ||||
|        * | ||||
|        *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l] | ||||
|        *   | ||||
|        *     Where q_k = delta_k . (2*M_PI/global_nb[mu]) | ||||
|        * | ||||
|        *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j} | ||||
|        */ | ||||
|     teigen-=usecond(); | ||||
|     Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     ComplexD ci(0.0,1.0); | ||||
|     for(int k=0;k<npoint;k++){ // Loop over momenta | ||||
|  | ||||
|       for(int l=0;l<npoint;l++){ // Loop over nbr relative | ||||
| 	ComplexD phase(0.0,0.0); | ||||
| 	for(int mu=0;mu<Nd;mu++){ | ||||
| 	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	  phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu]; | ||||
| 	} | ||||
| 	phase=exp(phase*ci); | ||||
| 	Mkl(k,l) = phase; | ||||
|       } | ||||
|     } | ||||
|     invMkl = Mkl.inverse(); | ||||
|     teigen+=usecond(); | ||||
|  | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     // Now compute the matrix elements of linop between the orthonormal | ||||
|     // set of vectors. | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     FineField phaV(grid); // Phased block basis vector | ||||
|     FineField MphaV(grid);// Matrix applied | ||||
|     std::vector<FineComplexField> phaF(npoint,grid); | ||||
|     std::vector<CoarseComplexField> pha(npoint,CoarseGrid()); | ||||
|      | ||||
|     CoarseVector coarseInner(CoarseGrid()); | ||||
|      | ||||
|     typedef typename CComplex::scalar_type SComplex; | ||||
|     FineComplexField one(grid); one=SComplex(1.0); | ||||
|     FineComplexField zz(grid); zz = Zero(); | ||||
|     tphase=-usecond(); | ||||
|     for(int p=0;p<npoint;p++){ // Loop over momenta in npoint | ||||
|       ///////////////////////////////////////////////////// | ||||
|       // Stick a phase on every block | ||||
|       ///////////////////////////////////////////////////// | ||||
|       CoarseComplexField coor(CoarseGrid()); | ||||
|       pha[p]=Zero(); | ||||
|       for(int mu=0;mu<Nd;mu++){ | ||||
| 	LatticeCoordinate(coor,mu); | ||||
| 	RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	pha[p] = pha[p] + (TwoPiL * geom.shifts[p][mu]) * coor; | ||||
|       } | ||||
|       pha[p]  =exp(pha[p]*ci); | ||||
|  | ||||
|       blockZAXPY(phaF[p],pha[p],one,zz); | ||||
|        | ||||
|     } | ||||
|     tphase+=usecond(); | ||||
|      | ||||
|     std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid()); | ||||
|     std::vector<CoarseVector>          FT(npoint,CoarseGrid()); | ||||
|     for(int i=0;i<nbasis;i++){// Loop over basis vectors | ||||
|       std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl; | ||||
|       for(int p=0;p<npoint;p++){ // Loop over momenta in npoint | ||||
| 	tphaseBZ-=usecond(); | ||||
| 	phaV = phaF[p]*V.subspace[i]; | ||||
| 	tphaseBZ+=usecond(); | ||||
|  | ||||
| 	///////////////////////////////////////////////////////////////////// | ||||
| 	// Multiple phased subspace vector by matrix and project to subspace | ||||
| 	// Remove local bulk phase to leave relative phases | ||||
| 	///////////////////////////////////////////////////////////////////// | ||||
| 	tmat-=usecond(); | ||||
| 	linop.Op(phaV,MphaV); | ||||
| 	tmat+=usecond(); | ||||
| 	//	std::cout << i << " " <<p << " MphaV "<<norm2(MphaV)<<" "<<norm2(phaV)<<std::endl; | ||||
|  | ||||
| 	tproj-=usecond(); | ||||
| 	blockProject(coarseInner,MphaV,U.subspace); | ||||
| 	coarseInner = conjugate(pha[p]) * coarseInner; | ||||
|  | ||||
| 	ComputeProj[p] = coarseInner; | ||||
| 	tproj+=usecond(); | ||||
| 	//	std::cout << i << " " <<p << " ComputeProj "<<norm2(ComputeProj[p])<<std::endl; | ||||
|  | ||||
|       } | ||||
|  | ||||
|       tinv-=usecond(); | ||||
|       for(int k=0;k<npoint;k++){ | ||||
| 	FT[k] = Zero(); | ||||
| 	for(int l=0;l<npoint;l++){ | ||||
| 	  FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l]; | ||||
| 	} | ||||
|        | ||||
| 	int osites=CoarseGrid()->oSites(); | ||||
| 	autoView( A_v  , _A[k], AcceleratorWrite); | ||||
| 	autoView( FT_v  , FT[k], AcceleratorRead); | ||||
| 	accelerator_for(sss, osites, 1, { | ||||
| 	    for(int j=0;j<nbasis;j++){ | ||||
| 	      A_v[sss](i,j) = FT_v[sss](j); | ||||
| 	    } | ||||
|         }); | ||||
|       } | ||||
|       tinv+=usecond(); | ||||
|     } | ||||
|  | ||||
|     // Only needed if nonhermitian | ||||
|     if ( ! hermitian ) { | ||||
|       //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl; | ||||
|       //      PopulateAdag(); | ||||
|     } | ||||
|  | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       std::cout << " _A["<<p<<"] "<<norm2(_A[p])<<std::endl; | ||||
|     } | ||||
|  | ||||
|     // Need to write something to populate Adag from A | ||||
|     ExchangeCoarseLinks(); | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator eigen  "<<teigen<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator phase  "<<tphase<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator mat    "<<tmat <<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator proj   "<<tproj<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl; | ||||
|   } | ||||
| #endif   | ||||
|   void ExchangeCoarseLinks(void){ | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       _A[p] = Cell.ExchangePeriodic(_A[p]); | ||||
|       //      _Adag[p]= Cell.ExchangePeriodic(_Adag[p]); | ||||
|     } | ||||
|   } | ||||
|   virtual  void Mdiag    (const Field &in, Field &out){ assert(0);}; | ||||
|   virtual  void Mdir     (const Field &in, Field &out,int dir, int disp){assert(0);}; | ||||
|   virtual  void MdirAll  (const Field &in, std::vector<Field> &out){assert(0);}; | ||||
| }; | ||||
|  | ||||
|  | ||||
|    | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -1,729 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/GeneralCoarsenedMatrixMultiRHS.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| // Fine Object == (per site) type of fine field | ||||
| // nbasis      == number of deflation vectors | ||||
| template<class Fobj,class CComplex,int nbasis> | ||||
| class MultiGeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > >  { | ||||
| public: | ||||
|   typedef typename CComplex::scalar_object SComplex; | ||||
|   typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp; | ||||
|   typedef MultiGeneralCoarsenedMatrix<Fobj,CComplex,nbasis> MultiGeneralCoarseOp; | ||||
|  | ||||
|   typedef iVector<CComplex,nbasis >           siteVector; | ||||
|   typedef iMatrix<CComplex,nbasis >           siteMatrix; | ||||
|   typedef iVector<SComplex,nbasis >           calcVector; | ||||
|   typedef iMatrix<SComplex,nbasis >           calcMatrix; | ||||
|   typedef Lattice<iScalar<CComplex> >         CoarseComplexField; | ||||
|   typedef Lattice<siteVector>                 CoarseVector; | ||||
|   typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix; | ||||
|   typedef iMatrix<CComplex,nbasis >  Cobj; | ||||
|   typedef iVector<CComplex,nbasis >  Cvec; | ||||
|   typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field | ||||
|   typedef Lattice<Fobj >        FineField; | ||||
|   typedef Lattice<CComplex >    FineComplexField; | ||||
|   typedef CoarseVector Field; | ||||
|  | ||||
|   //////////////////// | ||||
|   // Data members | ||||
|   //////////////////// | ||||
|   GridCartesian *       _CoarseGridMulti;  | ||||
|   NonLocalStencilGeometry geom; | ||||
|   NonLocalStencilGeometry geom_srhs; | ||||
|   PaddedCell Cell; | ||||
|   GeneralLocalStencil Stencil; | ||||
|  | ||||
|   deviceVector<calcVector> BLAS_B; | ||||
|   deviceVector<calcVector> BLAS_C; | ||||
|   std::vector<deviceVector<calcMatrix> > BLAS_A; | ||||
|  | ||||
|   std::vector<deviceVector<ComplexD *> > BLAS_AP; | ||||
|   std::vector<deviceVector<ComplexD *> > BLAS_BP; | ||||
|   deviceVector<ComplexD *>               BLAS_CP; | ||||
|  | ||||
|   /////////////////////// | ||||
|   // Interface | ||||
|   /////////////////////// | ||||
|   GridBase      * Grid(void)           { return _CoarseGridMulti; };   // this is all the linalg routines need to know | ||||
|   GridCartesian * CoarseGrid(void)     { return _CoarseGridMulti; };   // this is all the linalg routines need to know | ||||
|  | ||||
|   // Can be used to do I/O on the operator matrices externally | ||||
|   void SetMatrix (int p,CoarseMatrix & A) | ||||
|   { | ||||
|     assert(A.size()==geom_srhs.npoint); | ||||
|     GridtoBLAS(A[p],BLAS_A[p]); | ||||
|   } | ||||
|   void GetMatrix (int p,CoarseMatrix & A) | ||||
|   { | ||||
|     assert(A.size()==geom_srhs.npoint); | ||||
|     BLAStoGrid(A[p],BLAS_A[p]); | ||||
|   } | ||||
|   void CopyMatrix (GeneralCoarseOp &_Op) | ||||
|   { | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       auto Aup = _Op.Cell.Extract(_Op._A[p]); | ||||
|       //Unpadded | ||||
|       GridtoBLAS(Aup,BLAS_A[p]); | ||||
|     } | ||||
|   } | ||||
|   /* | ||||
|   void CheckMatrix (GeneralCoarseOp &_Op) | ||||
|   { | ||||
|     std::cout <<"************* Checking the little direc operator mRHS"<<std::endl; | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       //Unpadded | ||||
|       auto Aup = _Op.Cell.Extract(_Op._A[p]); | ||||
|       auto Ack = Aup; | ||||
|       BLAStoGrid(Ack,BLAS_A[p]); | ||||
|       std::cout << p<<" Ack "<<norm2(Ack)<<std::endl; | ||||
|       std::cout << p<<" Aup "<<norm2(Aup)<<std::endl; | ||||
|     } | ||||
|     std::cout <<"************* "<<std::endl; | ||||
|   } | ||||
|   */ | ||||
|    | ||||
|   MultiGeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridCartesian *CoarseGridMulti) : | ||||
|     _CoarseGridMulti(CoarseGridMulti), | ||||
|     geom_srhs(_geom), | ||||
|     geom(_CoarseGridMulti,_geom.hops,_geom.skip+1), | ||||
|     Cell(geom.Depth(),_CoarseGridMulti), | ||||
|     Stencil(Cell.grids.back(),geom.shifts) // padded cell stencil | ||||
|   { | ||||
|     int32_t padded_sites   = Cell.grids.back()->lSites(); | ||||
|     int32_t unpadded_sites = CoarseGridMulti->lSites(); | ||||
|      | ||||
|     int32_t nrhs  = CoarseGridMulti->FullDimensions()[0];  // # RHS | ||||
|     int32_t orhs  = nrhs/CComplex::Nsimd(); | ||||
|  | ||||
|     padded_sites   = padded_sites/nrhs; | ||||
|     unpadded_sites = unpadded_sites/nrhs; | ||||
|      | ||||
|     ///////////////////////////////////////////////// | ||||
|     // Device data vector storage | ||||
|     ///////////////////////////////////////////////// | ||||
|     BLAS_A.resize(geom.npoint); | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       BLAS_A[p].resize (unpadded_sites); // no ghost zone, npoint elements | ||||
|     } | ||||
|      | ||||
|     BLAS_B.resize(nrhs *padded_sites);   // includes ghost zone | ||||
|     BLAS_C.resize(nrhs *unpadded_sites); // no ghost zone | ||||
|     BLAS_AP.resize(geom.npoint); | ||||
|     BLAS_BP.resize(geom.npoint); | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       BLAS_AP[p].resize(unpadded_sites); | ||||
|       BLAS_BP[p].resize(unpadded_sites); | ||||
|     } | ||||
|     BLAS_CP.resize(unpadded_sites); | ||||
|  | ||||
|     ///////////////////////////////////////////////// | ||||
|     // Pointers to data | ||||
|     ///////////////////////////////////////////////// | ||||
|  | ||||
|     // Site identity mapping for A | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       for(int ss=0;ss<unpadded_sites;ss++){ | ||||
| 	ComplexD *ptr = (ComplexD *)&BLAS_A[p][ss]; | ||||
| 	acceleratorPut(BLAS_AP[p][ss],ptr); | ||||
|       } | ||||
|     } | ||||
|     // Site identity mapping for C | ||||
|     for(int ss=0;ss<unpadded_sites;ss++){ | ||||
|       ComplexD *ptr = (ComplexD *)&BLAS_C[ss*nrhs]; | ||||
|       acceleratorPut(BLAS_CP[ss],ptr); | ||||
|     } | ||||
|  | ||||
|     // Neighbour table is more complicated | ||||
|     int32_t j=0; // Interior point counter (unpadded) | ||||
|     for(int32_t s=0;s<padded_sites;s++){ // 4 volume, padded | ||||
|       int ghost_zone=0; | ||||
|       for(int32_t point = 0 ; point < geom.npoint; point++){ | ||||
| 	int i=s*orhs*geom.npoint+point; | ||||
| 	if( Stencil._entries[i]._wrap ) { // stencil is indexed by the oSite of the CoarseGridMulti, hence orhs factor | ||||
| 	  ghost_zone=1; // If general stencil wrapped in any direction, wrap=1 | ||||
| 	} | ||||
|       } | ||||
|  | ||||
|       if( ghost_zone==0) { | ||||
| 	for(int32_t point = 0 ; point < geom.npoint; point++){ | ||||
| 	  int i=s*orhs*geom.npoint+point; | ||||
|  	  int32_t nbr = Stencil._entries[i]._offset*CComplex::Nsimd(); // oSite -> lSite | ||||
| 	  assert(nbr<BLAS_B.size()); | ||||
| 	  ComplexD * ptr = (ComplexD *)&BLAS_B[nbr]; | ||||
| 	  acceleratorPut(BLAS_BP[point][j],ptr); // neighbour indexing in ghost zone volume | ||||
| 	} | ||||
| 	j++; | ||||
|       } | ||||
|     } | ||||
|     assert(j==unpadded_sites); | ||||
|   } | ||||
|   template<class vobj> void GridtoBLAS(const Lattice<vobj> &from,deviceVector<typename vobj::scalar_object> &to) | ||||
|   { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   GridBase *Fg = from.Grid(); | ||||
|   assert(!Fg->_isCheckerBoarded); | ||||
|   int nd = Fg->_ndimension; | ||||
|  | ||||
|   to.resize(Fg->lSites()); | ||||
|  | ||||
|   Coordinate LocalLatt = Fg->LocalDimensions(); | ||||
|   size_t nsite = 1; | ||||
|   for(int i=0;i<nd;i++) nsite *= LocalLatt[i]; | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // do the index calc on the GPU | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   Coordinate f_ostride = Fg->_ostride; | ||||
|   Coordinate f_istride = Fg->_istride; | ||||
|   Coordinate f_rdimensions = Fg->_rdimensions; | ||||
|  | ||||
|   autoView(from_v,from,AcceleratorRead); | ||||
|   auto to_v = &to[0]; | ||||
|  | ||||
|   const int words=sizeof(vobj)/sizeof(vector_type); | ||||
|   accelerator_for(idx,nsite,1,{ | ||||
|        | ||||
|       Coordinate from_coor, base; | ||||
|       Lexicographic::CoorFromIndex(base,idx,LocalLatt); | ||||
|       for(int i=0;i<nd;i++){ | ||||
| 	from_coor[i] = base[i]; | ||||
|       } | ||||
|       int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]); | ||||
|       int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]); | ||||
|  | ||||
|       const vector_type* from = (const vector_type *)&from_v[from_oidx]; | ||||
|       scalar_type* to = (scalar_type *)&to_v[idx]; | ||||
|        | ||||
|       scalar_type stmp; | ||||
|       for(int w=0;w<words;w++){ | ||||
| 	stmp = getlane(from[w], from_lane); | ||||
| 	to[w] = stmp; | ||||
|       } | ||||
|     }); | ||||
|   }     | ||||
|   template<class vobj> void BLAStoGrid(Lattice<vobj> &grid,deviceVector<typename vobj::scalar_object> &in) | ||||
|   { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   GridBase *Tg = grid.Grid(); | ||||
|   assert(!Tg->_isCheckerBoarded); | ||||
|   int nd = Tg->_ndimension; | ||||
|    | ||||
|   assert(in.size()==Tg->lSites()); | ||||
|  | ||||
|   Coordinate LocalLatt = Tg->LocalDimensions(); | ||||
|   size_t nsite = 1; | ||||
|   for(int i=0;i<nd;i++) nsite *= LocalLatt[i]; | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // do the index calc on the GPU | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   Coordinate t_ostride = Tg->_ostride; | ||||
|   Coordinate t_istride = Tg->_istride; | ||||
|   Coordinate t_rdimensions = Tg->_rdimensions; | ||||
|  | ||||
|   autoView(to_v,grid,AcceleratorWrite); | ||||
|   auto from_v = &in[0]; | ||||
|  | ||||
|   const int words=sizeof(vobj)/sizeof(vector_type); | ||||
|   accelerator_for(idx,nsite,1,{ | ||||
|        | ||||
|       Coordinate to_coor, base; | ||||
|       Lexicographic::CoorFromIndex(base,idx,LocalLatt); | ||||
|       for(int i=0;i<nd;i++){ | ||||
| 	to_coor[i] = base[i]; | ||||
|       } | ||||
|       int to_oidx = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]); | ||||
|       int to_lane = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]); | ||||
|  | ||||
|       vector_type* to = (vector_type *)&to_v[to_oidx]; | ||||
|       scalar_type* from = (scalar_type *)&from_v[idx]; | ||||
|        | ||||
|       scalar_type stmp; | ||||
|       for(int w=0;w<words;w++){ | ||||
| 	stmp=from[w]; | ||||
| 	putlane(to[w], stmp, to_lane); | ||||
|       } | ||||
|     }); | ||||
|   } | ||||
|   void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop, | ||||
| 		       Aggregation<Fobj,CComplex,nbasis> & Subspace, | ||||
| 		       GridBase *CoarseGrid) | ||||
|   { | ||||
| #if 0 | ||||
|     std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl; | ||||
|  | ||||
|     GridBase *grid = Subspace.FineGrid; | ||||
|  | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     // Orthogonalise the subblocks over the basis | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     CoarseScalar InnerProd(CoarseGrid);  | ||||
|     blockOrthogonalise(InnerProd,Subspace.subspace); | ||||
|  | ||||
|     const int npoint = geom_srhs.npoint; | ||||
|  | ||||
|     Coordinate clatt = CoarseGrid->GlobalDimensions(); | ||||
|     int Nd = CoarseGrid->Nd(); | ||||
|       /* | ||||
|        *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM. | ||||
|        *     Matrix index i is mapped to this shift via  | ||||
|        *               geom.shifts[i] | ||||
|        * | ||||
|        *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]  | ||||
|        *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >  | ||||
|        *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l} | ||||
|        *       = M_{kl} A_ji^{b.b+l} | ||||
|        * | ||||
|        *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l] | ||||
|        *   | ||||
|        *     Where q_k = delta_k . (2*M_PI/global_nb[mu]) | ||||
|        * | ||||
|        *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j} | ||||
|        */ | ||||
|     Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     ComplexD ci(0.0,1.0); | ||||
|     for(int k=0;k<npoint;k++){ // Loop over momenta | ||||
|  | ||||
|       for(int l=0;l<npoint;l++){ // Loop over nbr relative | ||||
| 	ComplexD phase(0.0,0.0); | ||||
| 	for(int mu=0;mu<Nd;mu++){ | ||||
| 	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	  phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu]; | ||||
| 	} | ||||
| 	phase=exp(phase*ci); | ||||
| 	Mkl(k,l) = phase; | ||||
|       } | ||||
|     } | ||||
|     invMkl = Mkl.inverse(); | ||||
|  | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     // Now compute the matrix elements of linop between the orthonormal | ||||
|     // set of vectors. | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     FineField phaV(grid); // Phased block basis vector | ||||
|     FineField MphaV(grid);// Matrix applied | ||||
|     std::vector<FineComplexField> phaF(npoint,grid); | ||||
|     std::vector<CoarseComplexField> pha(npoint,CoarseGrid); | ||||
|      | ||||
|     CoarseVector coarseInner(CoarseGrid); | ||||
|      | ||||
|     typedef typename CComplex::scalar_type SComplex; | ||||
|     FineComplexField one(grid); one=SComplex(1.0); | ||||
|     FineComplexField zz(grid); zz = Zero(); | ||||
|     for(int p=0;p<npoint;p++){ // Loop over momenta in npoint | ||||
|       ///////////////////////////////////////////////////// | ||||
|       // Stick a phase on every block | ||||
|       ///////////////////////////////////////////////////// | ||||
|       CoarseComplexField coor(CoarseGrid); | ||||
|       pha[p]=Zero(); | ||||
|       for(int mu=0;mu<Nd;mu++){ | ||||
| 	LatticeCoordinate(coor,mu); | ||||
| 	RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor; | ||||
|       } | ||||
|       pha[p]  =exp(pha[p]*ci);	 | ||||
|  | ||||
|       blockZAXPY(phaF[p],pha[p],one,zz); | ||||
|     } | ||||
|  | ||||
|     // Could save on temporary storage here | ||||
|     std::vector<CoarseMatrix> _A; | ||||
|     _A.resize(geom_srhs.npoint,CoarseGrid); | ||||
|  | ||||
|     std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid); | ||||
|     CoarseVector          FT(CoarseGrid); | ||||
|     for(int i=0;i<nbasis;i++){// Loop over basis vectors | ||||
|       std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl; | ||||
|       for(int p=0;p<npoint;p++){ // Loop over momenta in npoint | ||||
|  | ||||
| 	phaV = phaF[p]*Subspace.subspace[i]; | ||||
|  | ||||
| 	///////////////////////////////////////////////////////////////////// | ||||
| 	// Multiple phased subspace vector by matrix and project to subspace | ||||
| 	// Remove local bulk phase to leave relative phases | ||||
| 	///////////////////////////////////////////////////////////////////// | ||||
| 	linop.Op(phaV,MphaV); | ||||
|  | ||||
| 	// Fixme, could use batched block projector here | ||||
| 	blockProject(coarseInner,MphaV,Subspace.subspace); | ||||
|  | ||||
| 	coarseInner = conjugate(pha[p]) * coarseInner; | ||||
|  | ||||
| 	ComputeProj[p] = coarseInner; | ||||
|       } | ||||
|  | ||||
|       // Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix. | ||||
|       for(int k=0;k<npoint;k++){ | ||||
|  | ||||
| 	FT = Zero(); | ||||
| 	for(int l=0;l<npoint;l++){ | ||||
| 	  FT= FT+ invMkl(l,k)*ComputeProj[l]; | ||||
| 	} | ||||
|        | ||||
| 	int osites=CoarseGrid->oSites(); | ||||
| 	autoView( A_v  , _A[k], AcceleratorWrite); | ||||
| 	autoView( FT_v  , FT, AcceleratorRead); | ||||
| 	accelerator_for(sss, osites, 1, { | ||||
| 	    for(int j=0;j<nbasis;j++){ | ||||
| 	      A_v[sss](i,j) = FT_v[sss](j); | ||||
| 	    } | ||||
|         }); | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     // Only needed if nonhermitian | ||||
|     //    if ( ! hermitian ) { | ||||
|     //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl; | ||||
|     //      PopulateAdag(); | ||||
|     //    } | ||||
|     // Need to write something to populate Adag from A | ||||
|  | ||||
|     for(int p=0;p<geom_srhs.npoint;p++){ | ||||
|       GridtoBLAS(_A[p],BLAS_A[p]); | ||||
|     } | ||||
|     /* | ||||
| Grid : Message : 11698.730546 s : CoarsenOperator eigen  1334 us | ||||
| Grid : Message : 11698.730563 s : CoarsenOperator phase  34729 us | ||||
| Grid : Message : 11698.730565 s : CoarsenOperator phaseBZ 2423814 us | ||||
| Grid : Message : 11698.730566 s : CoarsenOperator mat    127890998 us | ||||
| Grid : Message : 11698.730567 s : CoarsenOperator proj   515840840 us | ||||
| Grid : Message : 11698.730568 s : CoarsenOperator inv    103948313 us | ||||
| Takes 600s to compute matrix elements, DOMINATED by the block project. | ||||
| Easy to speed up with the batched block project. | ||||
| Store npoint vectors, get npoint x Nbasis block projection, and 81 fold faster. | ||||
|  | ||||
| // Block project below taks to 240s | ||||
| Grid : Message : 328.193418 s : CoarsenOperator phase      38338 us | ||||
| Grid : Message : 328.193434 s : CoarsenOperator phaseBZ  1711226 us | ||||
| Grid : Message : 328.193436 s : CoarsenOperator mat    122213270 us | ||||
| //Grid : Message : 328.193438 s : CoarsenOperator proj   1181154 us <-- this is mistimed | ||||
| //Grid : Message : 11698.730568 s : CoarsenOperator inv  103948313 us <-- Cut this ~10x if lucky by loop fusion | ||||
|      */ | ||||
| #else | ||||
|     RealD tproj=0.0; | ||||
|     RealD tmat=0.0; | ||||
|     RealD tphase=0.0; | ||||
|     RealD tphaseBZ=0.0; | ||||
|     RealD tinv=0.0; | ||||
|  | ||||
|     std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl; | ||||
|  | ||||
|     GridBase *grid = Subspace.FineGrid; | ||||
|  | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     // Orthogonalise the subblocks over the basis | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     CoarseScalar InnerProd(CoarseGrid);  | ||||
|     blockOrthogonalise(InnerProd,Subspace.subspace); | ||||
|  | ||||
|  | ||||
|     MultiRHSBlockProject<Lattice<Fobj> >    Projector; | ||||
|     Projector.Allocate(nbasis,grid,CoarseGrid); | ||||
|     Projector.ImportBasis(Subspace.subspace); | ||||
|      | ||||
|     const int npoint = geom_srhs.npoint; | ||||
|  | ||||
|     Coordinate clatt = CoarseGrid->GlobalDimensions(); | ||||
|     int Nd = CoarseGrid->Nd(); | ||||
|       /* | ||||
|        *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM. | ||||
|        *     Matrix index i is mapped to this shift via  | ||||
|        *               geom.shifts[i] | ||||
|        * | ||||
|        *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]  | ||||
|        *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >  | ||||
|        *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l} | ||||
|        *       = M_{kl} A_ji^{b.b+l} | ||||
|        * | ||||
|        *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l] | ||||
|        *   | ||||
|        *     Where q_k = delta_k . (2*M_PI/global_nb[mu]) | ||||
|        * | ||||
|        *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j} | ||||
|        */ | ||||
|     Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     ComplexD ci(0.0,1.0); | ||||
|     for(int k=0;k<npoint;k++){ // Loop over momenta | ||||
|  | ||||
|       for(int l=0;l<npoint;l++){ // Loop over nbr relative | ||||
| 	ComplexD phase(0.0,0.0); | ||||
| 	for(int mu=0;mu<Nd;mu++){ | ||||
| 	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	  phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu]; | ||||
| 	} | ||||
| 	phase=exp(phase*ci); | ||||
| 	Mkl(k,l) = phase; | ||||
|       } | ||||
|     } | ||||
|     invMkl = Mkl.inverse(); | ||||
|  | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     // Now compute the matrix elements of linop between the orthonormal | ||||
|     // set of vectors. | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     FineField phaV(grid); // Phased block basis vector | ||||
|     FineField MphaV(grid);// Matrix applied | ||||
|     std::vector<FineComplexField> phaF(npoint,grid); | ||||
|     std::vector<CoarseComplexField> pha(npoint,CoarseGrid); | ||||
|      | ||||
|     CoarseVector coarseInner(CoarseGrid); | ||||
|      | ||||
|     tphase=-usecond(); | ||||
|     typedef typename CComplex::scalar_type SComplex; | ||||
|     FineComplexField one(grid); one=SComplex(1.0); | ||||
|     FineComplexField zz(grid); zz = Zero(); | ||||
|     for(int p=0;p<npoint;p++){ // Loop over momenta in npoint | ||||
|       ///////////////////////////////////////////////////// | ||||
|       // Stick a phase on every block | ||||
|       ///////////////////////////////////////////////////// | ||||
|       CoarseComplexField coor(CoarseGrid); | ||||
|       pha[p]=Zero(); | ||||
|       for(int mu=0;mu<Nd;mu++){ | ||||
| 	LatticeCoordinate(coor,mu); | ||||
| 	RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor; | ||||
|       } | ||||
|       pha[p]  =exp(pha[p]*ci);	 | ||||
|  | ||||
|       blockZAXPY(phaF[p],pha[p],one,zz); | ||||
|     } | ||||
|     tphase+=usecond(); | ||||
|  | ||||
|     // Could save on temporary storage here | ||||
|     std::vector<CoarseMatrix> _A; | ||||
|     _A.resize(geom_srhs.npoint,CoarseGrid); | ||||
|  | ||||
|     // Count use small chunks than npoint == 81 and save memory | ||||
|     int batch = 9; | ||||
|     std::vector<FineField>    _MphaV(batch,grid); | ||||
|     std::vector<CoarseVector> TmpProj(batch,CoarseGrid); | ||||
|  | ||||
|     std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid); | ||||
|     CoarseVector          FT(CoarseGrid); | ||||
|     for(int i=0;i<nbasis;i++){// Loop over basis vectors | ||||
|       std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl; | ||||
|  | ||||
|       //      std::cout << GridLogMessage << " phasing the fine vector "<<std::endl; | ||||
|       // Fixme : do this in batches | ||||
|       for(int p=0;p<npoint;p+=batch){ // Loop over momenta in npoint | ||||
|  | ||||
| 	for(int b=0;b<MIN(batch,npoint-p);b++){ | ||||
| 	  tphaseBZ-=usecond(); | ||||
| 	  phaV = phaF[p+b]*Subspace.subspace[i]; | ||||
| 	  tphaseBZ+=usecond(); | ||||
|  | ||||
| 	  ///////////////////////////////////////////////////////////////////// | ||||
| 	  // Multiple phased subspace vector by matrix and project to subspace | ||||
| 	  // Remove local bulk phase to leave relative phases | ||||
| 	  ///////////////////////////////////////////////////////////////////// | ||||
| 	  // Memory footprint was an issue | ||||
| 	  tmat-=usecond(); | ||||
| 	  linop.Op(phaV,MphaV); | ||||
| 	  _MphaV[b] = MphaV; | ||||
| 	  tmat+=usecond(); | ||||
| 	}       | ||||
|  | ||||
| 	//	std::cout << GridLogMessage << " Calling block project "<<std::endl; | ||||
| 	tproj-=usecond(); | ||||
| 	Projector.blockProject(_MphaV,TmpProj); | ||||
| 	tproj+=usecond(); | ||||
| 	 | ||||
| 	//	std::cout << GridLogMessage << " conj phasing the coarse vectors "<<std::endl; | ||||
| 	for(int b=0;b<MIN(batch,npoint-p);b++){ | ||||
| 	  ComputeProj[p+b] = conjugate(pha[p+b])*TmpProj[b]; | ||||
| 	} | ||||
|       } | ||||
|  | ||||
|       // Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix. | ||||
|        | ||||
|       // std::cout << GridLogMessage << " Starting FT inv "<<std::endl; | ||||
|       tinv-=usecond(); | ||||
|       for(int k=0;k<npoint;k++){ | ||||
| 	FT = Zero(); | ||||
| 	// 81 kernel calls as many ComputeProj vectors | ||||
| 	// Could fuse with a vector of views, but ugly | ||||
| 	// Could unroll the expression and run fewer kernels -- much more attractive | ||||
| 	// Could also do non blocking. | ||||
| #if 0	 | ||||
| 	for(int l=0;l<npoint;l++){ | ||||
| 	  FT= FT+ invMkl(l,k)*ComputeProj[l]; | ||||
| 	} | ||||
| #else | ||||
| 	const int radix = 9; | ||||
| 	int ll; | ||||
| 	for(ll=0;ll+radix-1<npoint;ll+=radix){ | ||||
| 	  // When ll = npoint-radix, ll+radix-1 = npoint-1, and we do it all. | ||||
| 	  FT = FT  | ||||
| 	    + invMkl(ll+0,k)*ComputeProj[ll+0] | ||||
| 	    + invMkl(ll+1,k)*ComputeProj[ll+1] | ||||
| 	    + invMkl(ll+2,k)*ComputeProj[ll+2] | ||||
| 	    + invMkl(ll+3,k)*ComputeProj[ll+3] | ||||
| 	    + invMkl(ll+4,k)*ComputeProj[ll+4] | ||||
| 	    + invMkl(ll+5,k)*ComputeProj[ll+5] | ||||
| 	    + invMkl(ll+6,k)*ComputeProj[ll+6] | ||||
| 	    + invMkl(ll+7,k)*ComputeProj[ll+7] | ||||
| 	    + invMkl(ll+8,k)*ComputeProj[ll+8]; | ||||
| 	} | ||||
| 	for(int l=ll;l<npoint;l++){ | ||||
| 	  FT= FT+ invMkl(l,k)*ComputeProj[l]; | ||||
| 	} | ||||
| #endif | ||||
|        | ||||
| 	// 1 kernel call -- must be cheaper | ||||
| 	int osites=CoarseGrid->oSites(); | ||||
| 	autoView( A_v  , _A[k], AcceleratorWrite); | ||||
| 	autoView( FT_v  , FT, AcceleratorRead); | ||||
| 	accelerator_for(sss, osites, 1, { | ||||
| 	    for(int j=0;j<nbasis;j++){ | ||||
| 	      A_v[sss](i,j) = FT_v[sss](j); | ||||
| 	    } | ||||
|         }); | ||||
|       } | ||||
|       tinv+=usecond(); | ||||
|     } | ||||
|  | ||||
|     // Only needed if nonhermitian | ||||
|     //    if ( ! hermitian ) { | ||||
|     //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl; | ||||
|     //      PopulateAdag(); | ||||
|     //    } | ||||
|     // Need to write something to populate Adag from A | ||||
|     //    std::cout << GridLogMessage << " Calling GridtoBLAS "<<std::endl; | ||||
|     for(int p=0;p<geom_srhs.npoint;p++){ | ||||
|       GridtoBLAS(_A[p],BLAS_A[p]); | ||||
|     } | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator phase  "<<tphase<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator mat    "<<tmat <<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator proj   "<<tproj<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl; | ||||
| #endif | ||||
|   } | ||||
|   void Mdag(const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     this->M(in,out); | ||||
|   } | ||||
|   void M (const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     //    std::cout << GridLogMessage << "New Mrhs coarse"<<std::endl; | ||||
|     conformable(CoarseGrid(),in.Grid()); | ||||
|     conformable(in.Grid(),out.Grid()); | ||||
|     out.Checkerboard() = in.Checkerboard(); | ||||
|  | ||||
|     RealD t_tot; | ||||
|     RealD t_exch; | ||||
|     RealD t_GtoB; | ||||
|     RealD t_BtoG; | ||||
|     RealD t_mult; | ||||
|  | ||||
|     t_tot=-usecond(); | ||||
|     CoarseVector tin=in; | ||||
|     t_exch=-usecond(); | ||||
|     CoarseVector pin = Cell.ExchangePeriodic(tin); //padded input | ||||
|     t_exch+=usecond(); | ||||
|  | ||||
|     CoarseVector pout(pin.Grid()); | ||||
|  | ||||
|     int npoint = geom.npoint; | ||||
|     typedef calcMatrix* Aview; | ||||
|     typedef LatticeView<Cvec> Vview; | ||||
|        | ||||
|     const int Nsimd = CComplex::Nsimd(); | ||||
|  | ||||
|     int64_t nrhs  =pin.Grid()->GlobalDimensions()[0]; | ||||
|     assert(nrhs>=1); | ||||
|  | ||||
|     RealD flops,bytes; | ||||
|     int64_t osites=in.Grid()->oSites(); // unpadded | ||||
|     int64_t unpadded_vol = CoarseGrid()->lSites()/nrhs; | ||||
|      | ||||
|     flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd(); | ||||
|     bytes = 1.0*osites*sizeof(siteMatrix)*npoint/pin.Grid()->GlobalDimensions()[0] | ||||
|           + 2.0*osites*sizeof(siteVector)*npoint; | ||||
|      | ||||
|  | ||||
|     t_GtoB=-usecond(); | ||||
|     GridtoBLAS(pin,BLAS_B); | ||||
|     t_GtoB+=usecond(); | ||||
|  | ||||
|     GridBLAS BLAS; | ||||
|  | ||||
|     t_mult=-usecond(); | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       RealD c = 1.0; | ||||
|       if (p==0) c = 0.0; | ||||
|       ComplexD beta(c); | ||||
|  | ||||
|       BLAS.gemmBatched(nbasis,nrhs,nbasis, | ||||
| 		       ComplexD(1.0), | ||||
| 		       BLAS_AP[p],  | ||||
| 		       BLAS_BP[p],  | ||||
| 		       ComplexD(c),  | ||||
| 		       BLAS_CP); | ||||
|     } | ||||
|     BLAS.synchronise(); | ||||
|     t_mult+=usecond(); | ||||
|  | ||||
|     t_BtoG=-usecond(); | ||||
|     BLAStoGrid(out,BLAS_C); | ||||
|     t_BtoG+=usecond(); | ||||
|     t_tot+=usecond(); | ||||
|     /* | ||||
|     std::cout << GridLogMessage << "New Mrhs coarse DONE "<<std::endl; | ||||
|     std::cout << GridLogMessage<<"Coarse Mult exch "<<t_exch<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"Coarse Mult mult "<<t_mult<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"Coarse Mult GtoB  "<<t_GtoB<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"Coarse Mult BtoG  "<<t_BtoG<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"Coarse Mult tot  "<<t_tot<<" us"<<std::endl; | ||||
|     */ | ||||
|     //    std::cout << GridLogMessage<<std::endl; | ||||
|     //    std::cout << GridLogMessage<<"Coarse Kernel flops "<< flops<<std::endl; | ||||
|     //    std::cout << GridLogMessage<<"Coarse Kernel flop/s "<< flops/t_mult<<" mflop/s"<<std::endl; | ||||
|     //    std::cout << GridLogMessage<<"Coarse Kernel bytes/s "<< bytes/t_mult/1000<<" GB/s"<<std::endl; | ||||
|     //    std::cout << GridLogMessage<<"Coarse overall flops/s "<< flops/t_tot<<" mflop/s"<<std::endl; | ||||
|     //    std::cout << GridLogMessage<<"Coarse total bytes   "<< bytes/1e6<<" MB"<<std::endl; | ||||
|   }; | ||||
|   virtual  void Mdiag    (const Field &in, Field &out){ assert(0);}; | ||||
|   virtual  void Mdir     (const Field &in, Field &out,int dir, int disp){assert(0);}; | ||||
|   virtual  void MdirAll  (const Field &in, std::vector<Field> &out){assert(0);}; | ||||
| }; | ||||
|    | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -1,238 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////// | ||||
| // Geometry class in cartesian case | ||||
| ///////////////////////////////////////////////////////////////// | ||||
|  | ||||
| class Geometry { | ||||
| public: | ||||
|   int npoint; | ||||
|   int base; | ||||
|   std::vector<int> directions   ; | ||||
|   std::vector<int> displacements; | ||||
|   std::vector<int> points_dagger; | ||||
|  | ||||
|   Geometry(int _d)  { | ||||
|      | ||||
|     base = (_d==5) ? 1:0; | ||||
|  | ||||
|     // make coarse grid stencil for 4d , not 5d | ||||
|     if ( _d==5 ) _d=4; | ||||
|  | ||||
|     npoint = 2*_d+1; | ||||
|     directions.resize(npoint); | ||||
|     displacements.resize(npoint); | ||||
|     points_dagger.resize(npoint); | ||||
|     for(int d=0;d<_d;d++){ | ||||
|       directions[d   ] = d+base; | ||||
|       directions[d+_d] = d+base; | ||||
|       displacements[d  ] = +1; | ||||
|       displacements[d+_d]= -1; | ||||
|       points_dagger[d   ] = d+_d; | ||||
|       points_dagger[d+_d] = d; | ||||
|     } | ||||
|     directions   [2*_d]=0; | ||||
|     displacements[2*_d]=0; | ||||
|     points_dagger[2*_d]=2*_d; | ||||
|   } | ||||
|  | ||||
|   int point(int dir, int disp) { | ||||
|     assert(disp == -1 || disp == 0 || disp == 1); | ||||
|     assert(base+0 <= dir && dir < base+4); | ||||
|  | ||||
|     // directions faster index = new indexing | ||||
|     // 4d (base = 0): | ||||
|     // point 0  1  2  3  4  5  6  7  8 | ||||
|     // dir   0  1  2  3  0  1  2  3  0 | ||||
|     // disp +1 +1 +1 +1 -1 -1 -1 -1  0 | ||||
|     // 5d (base = 1): | ||||
|     // point 0  1  2  3  4  5  6  7  8 | ||||
|     // dir   1  2  3  4  1  2  3  4  0 | ||||
|     // disp +1 +1 +1 +1 -1 -1 -1 -1  0 | ||||
|  | ||||
|     // displacements faster index = old indexing | ||||
|     // 4d (base = 0): | ||||
|     // point 0  1  2  3  4  5  6  7  8 | ||||
|     // dir   0  0  1  1  2  2  3  3  0 | ||||
|     // disp +1 -1 +1 -1 +1 -1 +1 -1  0 | ||||
|     // 5d (base = 1): | ||||
|     // point 0  1  2  3  4  5  6  7  8 | ||||
|     // dir   1  1  2  2  3  3  4  4  0 | ||||
|     // disp +1 -1 +1 -1 +1 -1 +1 -1  0 | ||||
|  | ||||
|     if(dir == 0 and disp == 0) | ||||
|       return 8; | ||||
|     else // New indexing | ||||
|       return (1 - disp) / 2 * 4 + dir - base; | ||||
|     // else // Old indexing | ||||
|     //   return (4 * (dir - base) + 1 - disp) / 2; | ||||
|   } | ||||
| }; | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////// | ||||
| // Less local equivalent of Geometry class in cartesian case | ||||
| ///////////////////////////////////////////////////////////////// | ||||
| class NonLocalStencilGeometry { | ||||
| public: | ||||
|   //  int depth; | ||||
|   int skip; | ||||
|   int hops; | ||||
|   int npoint; | ||||
|   std::vector<Coordinate> shifts; | ||||
|   Coordinate stencil_size; | ||||
|   Coordinate stencil_lo; | ||||
|   Coordinate stencil_hi; | ||||
|   GridCartesian *grid; | ||||
|   GridCartesian *Grid() {return grid;}; | ||||
|   int Depth(void){return 1;};   // Ghost zone depth | ||||
|   int Hops(void){return hops;}; // # of hops=> level of corner fill in in stencil | ||||
|   int DimSkip(void){return skip;}; | ||||
|  | ||||
|   virtual ~NonLocalStencilGeometry() {}; | ||||
|  | ||||
|   int  Reverse(int point) | ||||
|   { | ||||
|     int Nd = Grid()->Nd(); | ||||
|     Coordinate shft = shifts[point]; | ||||
|     Coordinate rev(Nd); | ||||
|     for(int mu=0;mu<Nd;mu++) rev[mu]= -shft[mu]; | ||||
|     for(int p=0;p<npoint;p++){ | ||||
|       if(rev==shifts[p]){ | ||||
| 	return p; | ||||
|       } | ||||
|     } | ||||
|     assert(0); | ||||
|     return -1; | ||||
|   } | ||||
|   void BuildShifts(void) | ||||
|   { | ||||
|     this->shifts.resize(0); | ||||
|     int Nd = this->grid->Nd(); | ||||
|  | ||||
|     int dd = this->DimSkip(); | ||||
|     for(int s0=this->stencil_lo[dd+0];s0<=this->stencil_hi[dd+0];s0++){ | ||||
|     for(int s1=this->stencil_lo[dd+1];s1<=this->stencil_hi[dd+1];s1++){ | ||||
|     for(int s2=this->stencil_lo[dd+2];s2<=this->stencil_hi[dd+2];s2++){ | ||||
|     for(int s3=this->stencil_lo[dd+3];s3<=this->stencil_hi[dd+3];s3++){ | ||||
|       Coordinate sft(Nd,0); | ||||
|       sft[dd+0] = s0; | ||||
|       sft[dd+1] = s1; | ||||
|       sft[dd+2] = s2; | ||||
|       sft[dd+3] = s3; | ||||
|       int nhops = abs(s0)+abs(s1)+abs(s2)+abs(s3); | ||||
|       if(nhops<=this->hops) this->shifts.push_back(sft); | ||||
|     }}}} | ||||
|     this->npoint = this->shifts.size(); | ||||
|     std::cout << GridLogMessage << "NonLocalStencilGeometry has "<< this->npoint << " terms in stencil "<<std::endl; | ||||
|   } | ||||
|    | ||||
|   NonLocalStencilGeometry(GridCartesian *_coarse_grid,int _hops,int _skip) : grid(_coarse_grid), hops(_hops), skip(_skip) | ||||
|   { | ||||
|     Coordinate latt = grid->GlobalDimensions(); | ||||
|     stencil_size.resize(grid->Nd()); | ||||
|     stencil_lo.resize(grid->Nd()); | ||||
|     stencil_hi.resize(grid->Nd()); | ||||
|     for(int d=0;d<grid->Nd();d++){ | ||||
|      if ( latt[d] == 1 ) { | ||||
|       stencil_lo[d] = 0; | ||||
|       stencil_hi[d] = 0; | ||||
|       stencil_size[d]= 1; | ||||
|      } else if ( latt[d] == 2 ) { | ||||
|       stencil_lo[d] = -1; | ||||
|       stencil_hi[d] = 0; | ||||
|       stencil_size[d]= 2; | ||||
|      } else if ( latt[d] > 2 ) { | ||||
|        stencil_lo[d] = -1; | ||||
|        stencil_hi[d] =  1; | ||||
|        stencil_size[d]= 3; | ||||
|      } | ||||
|     } | ||||
|     this->BuildShifts(); | ||||
|   }; | ||||
|  | ||||
| }; | ||||
|  | ||||
| // Need to worry about red-black now | ||||
| class NonLocalStencilGeometry4D : public NonLocalStencilGeometry { | ||||
| public: | ||||
|   virtual int DerivedDimSkip(void) { return 0;}; | ||||
|   NonLocalStencilGeometry4D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,0) { }; | ||||
|   virtual ~NonLocalStencilGeometry4D() {}; | ||||
| }; | ||||
| class NonLocalStencilGeometry5D : public NonLocalStencilGeometry { | ||||
| public: | ||||
|   virtual int DerivedDimSkip(void) { return 1; };  | ||||
|   NonLocalStencilGeometry5D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,1)  { }; | ||||
|   virtual ~NonLocalStencilGeometry5D() {}; | ||||
| }; | ||||
| /* | ||||
|  * Bunch of different options classes | ||||
|  */ | ||||
| class NextToNextToNextToNearestStencilGeometry4D : public NonLocalStencilGeometry4D { | ||||
| public: | ||||
|   NextToNextToNextToNearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,4) | ||||
|   { | ||||
|   }; | ||||
| }; | ||||
| class NextToNextToNextToNearestStencilGeometry5D : public  NonLocalStencilGeometry5D { | ||||
| public: | ||||
|   NextToNextToNextToNearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,4) | ||||
|   { | ||||
|   }; | ||||
| }; | ||||
| class NextToNearestStencilGeometry4D : public  NonLocalStencilGeometry4D { | ||||
| public: | ||||
|   NextToNearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,2) | ||||
|   { | ||||
|   }; | ||||
| }; | ||||
| class NextToNearestStencilGeometry5D : public  NonLocalStencilGeometry5D { | ||||
| public: | ||||
|   NextToNearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,2) | ||||
|   { | ||||
|   }; | ||||
| }; | ||||
| class NearestStencilGeometry4D : public  NonLocalStencilGeometry4D { | ||||
| public: | ||||
|   NearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,1) | ||||
|   { | ||||
|   }; | ||||
| }; | ||||
| class NearestStencilGeometry5D : public  NonLocalStencilGeometry5D { | ||||
| public: | ||||
|   NearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,1) | ||||
|   { | ||||
|   }; | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -1,34 +0,0 @@ | ||||
|     /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
|     Source file: Grid/algorithms/multigrid/MultiGrid.h | ||||
|  | ||||
|     Copyright (C) 2023 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
|     *************************************************************************************/ | ||||
|     /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| #include <Grid/algorithms/multigrid/Aggregates.h> | ||||
| #include <Grid/algorithms/multigrid/Geometry.h> | ||||
| #include <Grid/algorithms/multigrid/CoarsenedMatrix.h> | ||||
| #include <Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h> | ||||
| #include <Grid/algorithms/multigrid/GeneralCoarsenedMatrixMultiRHS.h> | ||||
| @@ -54,9 +54,6 @@ public: | ||||
|     size_type bytes = __n*sizeof(_Tp); | ||||
|     profilerAllocate(bytes); | ||||
|     _Tp *ptr = (_Tp*) MemoryManager::CpuAllocate(bytes); | ||||
|     if ( (_Tp*)ptr == (_Tp *) NULL ) { | ||||
|       printf("Grid CPU Allocator got NULL for %lu bytes\n",(unsigned long) bytes ); | ||||
|     } | ||||
|     assert( ( (_Tp*)ptr != (_Tp *)NULL ) ); | ||||
|     return ptr; | ||||
|   } | ||||
| @@ -69,7 +66,7 @@ public: | ||||
|   } | ||||
|  | ||||
|   // FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop | ||||
|   void construct(pointer __p, const _Tp& __val) { }; | ||||
|   void construct(pointer __p, const _Tp& __val) { assert(0);}; | ||||
|   void construct(pointer __p) { }; | ||||
|   void destroy(pointer __p) { }; | ||||
| }; | ||||
| @@ -103,9 +100,6 @@ public: | ||||
|     size_type bytes = __n*sizeof(_Tp); | ||||
|     profilerAllocate(bytes); | ||||
|     _Tp *ptr = (_Tp*) MemoryManager::SharedAllocate(bytes); | ||||
|     if ( (_Tp*)ptr == (_Tp *) NULL ) { | ||||
|       printf("Grid Shared Allocator got NULL for %lu bytes\n",(unsigned long) bytes ); | ||||
|     } | ||||
|     assert( ( (_Tp*)ptr != (_Tp *)NULL ) ); | ||||
|     return ptr; | ||||
|   } | ||||
| @@ -151,9 +145,6 @@ public: | ||||
|     size_type bytes = __n*sizeof(_Tp); | ||||
|     profilerAllocate(bytes); | ||||
|     _Tp *ptr = (_Tp*) MemoryManager::AcceleratorAllocate(bytes); | ||||
|     if ( (_Tp*)ptr == (_Tp *) NULL ) { | ||||
|       printf("Grid Device Allocator got NULL for %lu bytes\n",(unsigned long) bytes ); | ||||
|     } | ||||
|     assert( ( (_Tp*)ptr != (_Tp *)NULL ) ); | ||||
|     return ptr; | ||||
|   } | ||||
| @@ -174,48 +165,19 @@ template<typename _Tp>  inline bool operator!=(const devAllocator<_Tp>&, const d | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
| // Template typedefs | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
| template<class T> using hostVector          = std::vector<T,alignedAllocator<T> >;           // Needs autoview | ||||
| template<class T> using Vector              = std::vector<T,uvmAllocator<T> >;               // Really want to deprecate | ||||
| template<class T> using uvmVector           = std::vector<T,uvmAllocator<T> >;               // auto migrating page | ||||
| template<class T> using deviceVector        = std::vector<T,devAllocator<T> >;               // device vector | ||||
| #ifdef ACCELERATOR_CSHIFT | ||||
| // Cshift on device | ||||
| template<class T> using cshiftAllocator = devAllocator<T>; | ||||
| #else | ||||
| // Cshift on host | ||||
| template<class T> using cshiftAllocator = std::allocator<T>; | ||||
| #endif | ||||
|  | ||||
| /* | ||||
| template<class T> class vecView | ||||
| { | ||||
|  protected: | ||||
|   T * data; | ||||
|   uint64_t size; | ||||
|   ViewMode mode; | ||||
|   void * cpu_ptr; | ||||
|  public: | ||||
|   // Rvalue accessor | ||||
|   accelerator_inline T & operator[](size_t i) const { return this->data[i]; }; | ||||
|   vecView(Vector<T> &refer_to_me,ViewMode _mode) | ||||
|   { | ||||
|     cpu_ptr = &refer_to_me[0]; | ||||
|     size = refer_to_me.size(); | ||||
|     mode = _mode; | ||||
|     data =(T *) MemoryManager::ViewOpen(cpu_ptr, | ||||
| 					size*sizeof(T), | ||||
| 					mode, | ||||
| 					AdviseDefault); | ||||
|   } | ||||
|   void ViewClose(void) | ||||
|   { // Inform the manager | ||||
|     MemoryManager::ViewClose(this->cpu_ptr,this->mode);     | ||||
|   } | ||||
| }; | ||||
|  | ||||
| template<class T> vecView<T> VectorView(Vector<T> &vec,ViewMode _mode) | ||||
| { | ||||
|   vecView<T> ret(vec,_mode); // does the open | ||||
|   return ret;                // must be closed | ||||
| } | ||||
|  | ||||
| #define autoVecView(v_v,v,mode)					\ | ||||
|   auto v_v = VectorView(v,mode);				\ | ||||
|   ViewCloser<decltype(v_v)> _autoView##v_v(v_v); | ||||
| */ | ||||
| template<class T> using Vector        = std::vector<T,uvmAllocator<T> >;            | ||||
| template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;            | ||||
| template<class T> using commVector = std::vector<T,devAllocator<T> >; | ||||
| template<class T> using deviceVector  = std::vector<T,devAllocator<T> >; | ||||
| template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|   | ||||
| @@ -16,44 +16,6 @@ NAMESPACE_BEGIN(Grid); | ||||
| uint64_t total_shared; | ||||
| uint64_t total_device; | ||||
| uint64_t total_host;; | ||||
|  | ||||
| #if defined(__has_feature) | ||||
| #if __has_feature(leak_sanitizer) | ||||
| #define ASAN_LEAK_CHECK | ||||
| #endif | ||||
| #endif | ||||
|  | ||||
| #ifdef ASAN_LEAK_CHECK | ||||
| #include <sanitizer/asan_interface.h> | ||||
| #include <sanitizer/common_interface_defs.h> | ||||
| #include <sanitizer/lsan_interface.h> | ||||
| #define LEAK_CHECK(A) { __lsan_do_recoverable_leak_check(); } | ||||
| #else | ||||
| #define LEAK_CHECK(A) { } | ||||
| #endif | ||||
|  | ||||
| void MemoryManager::DisplayMallinfo(void) | ||||
| { | ||||
| #ifdef __linux__ | ||||
|   struct mallinfo mi; // really want mallinfo2, but glibc version isn't uniform | ||||
|    | ||||
|   mi = mallinfo(); | ||||
|  | ||||
|   std::cout << "MemoryManager: Total non-mmapped bytes (arena):       "<< (size_t)mi.arena<<std::endl; | ||||
|   std::cout << "MemoryManager: # of free chunks (ordblks):            "<< (size_t)mi.ordblks<<std::endl; | ||||
|   std::cout << "MemoryManager: # of free fastbin blocks (smblks):     "<< (size_t)mi.smblks<<std::endl; | ||||
|   std::cout << "MemoryManager: # of mapped regions (hblks):           "<< (size_t)mi.hblks<<std::endl; | ||||
|   std::cout << "MemoryManager: Bytes in mapped regions (hblkhd):      "<< (size_t)mi.hblkhd<<std::endl; | ||||
|   std::cout << "MemoryManager: Max. total allocated space (usmblks):  "<< (size_t)mi.usmblks<<std::endl; | ||||
|   std::cout << "MemoryManager: Free bytes held in fastbins (fsmblks): "<< (size_t)mi.fsmblks<<std::endl; | ||||
|   std::cout << "MemoryManager: Total allocated space (uordblks):      "<< (size_t)mi.uordblks<<std::endl; | ||||
|   std::cout << "MemoryManager: Total free space (fordblks):           "<< (size_t)mi.fordblks<<std::endl; | ||||
|   std::cout << "MemoryManager: Topmost releasable block (keepcost):   "<< (size_t)mi.keepcost<<std::endl; | ||||
| #endif | ||||
|   LEAK_CHECK(); | ||||
|   | ||||
| } | ||||
|  | ||||
| void MemoryManager::PrintBytes(void) | ||||
| { | ||||
|   std::cout << " MemoryManager : ------------------------------------ "<<std::endl; | ||||
| @@ -73,7 +35,7 @@ void MemoryManager::PrintBytes(void) | ||||
| #ifdef GRID_CUDA | ||||
|   cuda_mem(); | ||||
| #endif | ||||
|   DisplayMallinfo(); | ||||
|    | ||||
| } | ||||
|  | ||||
| uint64_t MemoryManager::DeviceCacheBytes() { return CacheBytes[Acc] + CacheBytes[AccHuge] + CacheBytes[AccSmall]; } | ||||
|   | ||||
| @@ -209,10 +209,9 @@ private: | ||||
|   static void     CpuViewClose(uint64_t Ptr); | ||||
|   static uint64_t CpuViewOpen(uint64_t  CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint); | ||||
| #endif | ||||
|   static void NotifyDeletion(void * CpuPtr); | ||||
|  | ||||
|  public: | ||||
|   static void DisplayMallinfo(void); | ||||
|   static void NotifyDeletion(void * CpuPtr); | ||||
|   static void Print(void); | ||||
|   static void PrintAll(void); | ||||
|   static void PrintState( void* CpuPtr); | ||||
|   | ||||
| @@ -1,15 +1,16 @@ | ||||
| #include <Grid/GridCore.h> | ||||
| #ifndef GRID_UVM | ||||
|  | ||||
| #warning "Using explicit device memory copies" | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| #define MAXLINE 512 | ||||
| static char print_buffer [ MAXLINE ]; | ||||
|  | ||||
| #define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer << std::endl; | ||||
| #define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug  << print_buffer << std::endl; | ||||
| #define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer; | ||||
| #define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer; | ||||
| //#define dprintf(...)  | ||||
| //#define mprintf(...)  | ||||
|  | ||||
|  | ||||
| //////////////////////////////////////////////////////////// | ||||
| // For caching copies of data on device | ||||
| @@ -110,7 +111,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache) | ||||
|   /////////////////////////////////////////////////////////// | ||||
|   assert(AccCache.state!=Empty); | ||||
|    | ||||
|   dprintf("MemoryManager: Discard(%lx) %lx",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);  | ||||
|   mprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);  | ||||
|   assert(AccCache.accLock==0); | ||||
|   assert(AccCache.cpuLock==0); | ||||
|   assert(AccCache.CpuPtr!=(uint64_t)NULL); | ||||
| @@ -120,7 +121,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache) | ||||
|     DeviceBytes   -=AccCache.bytes; | ||||
|     LRUremove(AccCache); | ||||
|     AccCache.AccPtr=(uint64_t) NULL; | ||||
|     dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);   | ||||
|     dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);   | ||||
|   } | ||||
|   uint64_t CpuPtr = AccCache.CpuPtr; | ||||
|   EntryErase(CpuPtr); | ||||
| @@ -140,7 +141,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache) | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|   assert(AccCache.state!=Empty); | ||||
|    | ||||
|   mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld", | ||||
|   mprintf("MemoryManager: Evict cpu %lx acc %lx cpuLock %ld accLock %ld\n", | ||||
| 	  (uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr, | ||||
| 	  (uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock);  | ||||
|   if (AccCache.accLock!=0) return; | ||||
| @@ -154,7 +155,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache) | ||||
|     AccCache.AccPtr=(uint64_t)NULL; | ||||
|     AccCache.state=CpuDirty; // CPU primary now | ||||
|     DeviceBytes   -=AccCache.bytes; | ||||
|     dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld ",(uint64_t)AccCache.AccPtr,DeviceBytes);   | ||||
|     dprintf("MemoryManager: Free(%lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);   | ||||
|   } | ||||
|   //  uint64_t CpuPtr = AccCache.CpuPtr; | ||||
|   DeviceEvictions++; | ||||
| @@ -168,7 +169,7 @@ void MemoryManager::Flush(AcceleratorViewEntry &AccCache) | ||||
|   assert(AccCache.AccPtr!=(uint64_t)NULL); | ||||
|   assert(AccCache.CpuPtr!=(uint64_t)NULL); | ||||
|   acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes); | ||||
|   mprintf("MemoryManager: acceleratorCopyFromDevice Flush size %ld AccPtr %lx -> CpuPtr %lx",(uint64_t)AccCache.bytes,(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout); | ||||
|   mprintf("MemoryManager: Flush  %lx -> %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout); | ||||
|   DeviceToHostBytes+=AccCache.bytes; | ||||
|   DeviceToHostXfer++; | ||||
|   AccCache.state=Consistent; | ||||
| @@ -183,9 +184,7 @@ void MemoryManager::Clone(AcceleratorViewEntry &AccCache) | ||||
|     AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes); | ||||
|     DeviceBytes+=AccCache.bytes; | ||||
|   } | ||||
|   mprintf("MemoryManager: acceleratorCopyToDevice   Clone size %ld AccPtr %lx <- CpuPtr %lx", | ||||
| 	  (uint64_t)AccCache.bytes, | ||||
| 	  (uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout); | ||||
|   mprintf("MemoryManager: Clone %lx <- %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout); | ||||
|   acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes); | ||||
|   HostToDeviceBytes+=AccCache.bytes; | ||||
|   HostToDeviceXfer++; | ||||
| @@ -211,7 +210,7 @@ void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache) | ||||
| void MemoryManager::ViewClose(void* Ptr,ViewMode mode) | ||||
| { | ||||
|   if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){ | ||||
|     dprintf("AcceleratorViewClose %lx",(uint64_t)Ptr); | ||||
|     dprintf("AcceleratorViewClose %lx\n",(uint64_t)Ptr); | ||||
|     AcceleratorViewClose((uint64_t)Ptr); | ||||
|   } else if( (mode==CpuRead)||(mode==CpuWrite)){ | ||||
|     CpuViewClose((uint64_t)Ptr); | ||||
| @@ -223,7 +222,7 @@ void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvis | ||||
| { | ||||
|   uint64_t CpuPtr = (uint64_t)_CpuPtr; | ||||
|   if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){ | ||||
|     dprintf("AcceleratorViewOpen %lx",(uint64_t)CpuPtr); | ||||
|     dprintf("AcceleratorViewOpen %lx\n",(uint64_t)CpuPtr); | ||||
|     return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint); | ||||
|   } else if( (mode==CpuRead)||(mode==CpuWrite)){ | ||||
|     return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint); | ||||
| @@ -234,9 +233,6 @@ void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvis | ||||
| } | ||||
| void  MemoryManager::EvictVictims(uint64_t bytes) | ||||
| { | ||||
|   if(bytes>=DeviceMaxBytes) { | ||||
|     printf("EvictVictims bytes %ld DeviceMaxBytes %ld\n",bytes,DeviceMaxBytes); | ||||
|   } | ||||
|   assert(bytes<DeviceMaxBytes); | ||||
|   while(bytes+DeviceLRUBytes > DeviceMaxBytes){ | ||||
|     if ( DeviceLRUBytes > 0){ | ||||
| @@ -269,7 +265,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod | ||||
|   assert(AccCache.cpuLock==0);  // Programming error | ||||
|  | ||||
|   if(AccCache.state!=Empty) { | ||||
|     dprintf("ViewOpen found entry %lx %lx : sizes %ld %ld accLock %ld", | ||||
|     dprintf("ViewOpen found entry %lx %lx : %ld %ld accLock %ld\n", | ||||
| 		    (uint64_t)AccCache.CpuPtr, | ||||
| 		    (uint64_t)CpuPtr, | ||||
| 		    (uint64_t)AccCache.bytes, | ||||
| @@ -309,7 +305,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod | ||||
|       AccCache.state  = Consistent; // Empty + AccRead => Consistent | ||||
|     } | ||||
|     AccCache.accLock= 1; | ||||
|     dprintf("Copied Empty entry into device accLock= %d",AccCache.accLock); | ||||
|     dprintf("Copied Empty entry into device accLock= %d\n",AccCache.accLock); | ||||
|   } else if(AccCache.state==CpuDirty ){ | ||||
|     if(mode==AcceleratorWriteDiscard) { | ||||
|       CpuDiscard(AccCache); | ||||
| @@ -322,21 +318,21 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod | ||||
|       AccCache.state  = Consistent; // CpuDirty + AccRead => Consistent | ||||
|     } | ||||
|     AccCache.accLock++; | ||||
|     dprintf("CpuDirty entry into device ++accLock= %d",AccCache.accLock); | ||||
|     dprintf("CpuDirty entry into device ++accLock= %d\n",AccCache.accLock); | ||||
|   } else if(AccCache.state==Consistent) { | ||||
|     if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard)) | ||||
|       AccCache.state  = AccDirty;   // Consistent + AcceleratorWrite=> AccDirty | ||||
|     else | ||||
|       AccCache.state  = Consistent; // Consistent + AccRead => Consistent | ||||
|     AccCache.accLock++; | ||||
|     dprintf("Consistent entry into device ++accLock= %d",AccCache.accLock); | ||||
|     dprintf("Consistent entry into device ++accLock= %d\n",AccCache.accLock); | ||||
|   } else if(AccCache.state==AccDirty) { | ||||
|     if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard)) | ||||
|       AccCache.state  = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty | ||||
|     else | ||||
|       AccCache.state  = AccDirty; // AccDirty + AccRead => AccDirty | ||||
|     AccCache.accLock++; | ||||
|     dprintf("AccDirty entry ++accLock= %d",AccCache.accLock); | ||||
|     dprintf("AccDirty entry ++accLock= %d\n",AccCache.accLock); | ||||
|   } else { | ||||
|     assert(0); | ||||
|   } | ||||
| @@ -345,7 +341,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod | ||||
|   // If view is opened on device must remove from LRU | ||||
|   if(AccCache.LRU_valid==1){ | ||||
|     // must possibly remove from LRU as now locked on GPU | ||||
|     dprintf("AccCache entry removed from LRU "); | ||||
|     dprintf("AccCache entry removed from LRU \n"); | ||||
|     LRUremove(AccCache); | ||||
|   } | ||||
|  | ||||
| @@ -368,10 +364,10 @@ void MemoryManager::AcceleratorViewClose(uint64_t CpuPtr) | ||||
|   AccCache.accLock--; | ||||
|   // Move to LRU queue if not locked and close on device | ||||
|   if(AccCache.accLock==0) { | ||||
|     dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock); | ||||
|     dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock); | ||||
|     LRUinsert(AccCache); | ||||
|   } else { | ||||
|     dprintf("AccleratorViewClose %lx AccLock decremented to %ld",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock); | ||||
|     dprintf("AccleratorViewClose %lx AccLock decremented to %ld\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock); | ||||
|   } | ||||
| } | ||||
| void MemoryManager::CpuViewClose(uint64_t CpuPtr) | ||||
| @@ -478,7 +474,6 @@ void  MemoryManager::Print(void) | ||||
|   std::cout << GridLogMessage << DeviceEvictions  << " Evictions from device " << std::endl; | ||||
|   std::cout << GridLogMessage << DeviceDestroy    << " Destroyed vectors on device " << std::endl; | ||||
|   std::cout << GridLogMessage << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl; | ||||
|   acceleratorMem(); | ||||
|   std::cout << GridLogMessage << "--------------------------------------------" << std::endl; | ||||
| } | ||||
| void  MemoryManager::PrintAll(void) | ||||
|   | ||||
| @@ -15,10 +15,10 @@ void check_huge_pages(void *Buf,uint64_t BYTES) | ||||
|   uint64_t virt_pfn = (uint64_t)Buf / page_size; | ||||
|   off_t offset = sizeof(uint64_t) * virt_pfn; | ||||
|   uint64_t npages = (BYTES + page_size-1) / page_size; | ||||
|   std::vector<uint64_t> pagedata(npages); | ||||
|   uint64_t pagedata[npages]; | ||||
|   uint64_t ret = lseek(fd, offset, SEEK_SET); | ||||
|   assert(ret == offset); | ||||
|   ret = ::read(fd, &pagedata[0], sizeof(uint64_t)*npages); | ||||
|   ret = ::read(fd, pagedata, sizeof(uint64_t)*npages); | ||||
|   assert(ret == sizeof(uint64_t) * npages); | ||||
|   int nhugepages = npages / 512; | ||||
|   int n4ktotal, nnothuge; | ||||
|   | ||||
| @@ -70,8 +70,8 @@ public: | ||||
|   Coordinate _istride;    // Inner stride i.e. within simd lane | ||||
|   int _osites;                  // _isites*_osites = product(dimensions). | ||||
|   int _isites; | ||||
|   int64_t _fsites;                  // _isites*_osites = product(dimensions). | ||||
|   int64_t _gsites; | ||||
|   int _fsites;                  // _isites*_osites = product(dimensions). | ||||
|   int _gsites; | ||||
|   Coordinate _slice_block;// subslice information | ||||
|   Coordinate _slice_stride; | ||||
|   Coordinate _slice_nblock; | ||||
| @@ -82,7 +82,6 @@ public: | ||||
|   bool _isCheckerBoarded;  | ||||
|   int        LocallyPeriodic; | ||||
|   Coordinate _checker_dim_mask; | ||||
|   int              _checker_dim; | ||||
|  | ||||
| public: | ||||
|  | ||||
| @@ -90,7 +89,7 @@ public: | ||||
|   // Checkerboarding interface is virtual and overridden by  | ||||
|   // GridCartesian / GridRedBlackCartesian | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   virtual int CheckerBoarded(int dim) =0; | ||||
|   virtual int CheckerBoarded(int dim)=0; | ||||
|   virtual int CheckerBoard(const Coordinate &site)=0; | ||||
|   virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0; | ||||
|   virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0; | ||||
| @@ -184,7 +183,7 @@ public: | ||||
|   inline int Nsimd(void)  const { return _isites; };// Synonymous with iSites | ||||
|   inline int oSites(void) const { return _osites; }; | ||||
|   inline int lSites(void) const { return _isites*_osites; };  | ||||
|   inline int64_t gSites(void) const { return (int64_t)_isites*(int64_t)_osites*(int64_t)_Nprocessors; };  | ||||
|   inline int gSites(void) const { return _isites*_osites*_Nprocessors; };  | ||||
|   inline int Nd    (void) const { return _ndimension;}; | ||||
|  | ||||
|   inline const Coordinate LocalStarts(void)             { return _lstart;    }; | ||||
| @@ -215,7 +214,7 @@ public: | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Global addressing | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   void GlobalIndexToGlobalCoor(int64_t gidx,Coordinate &gcoor){ | ||||
|   void GlobalIndexToGlobalCoor(int gidx,Coordinate &gcoor){ | ||||
|     assert(gidx< gSites()); | ||||
|     Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions); | ||||
|   } | ||||
| @@ -223,7 +222,7 @@ public: | ||||
|     assert(lidx<lSites()); | ||||
|     Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions); | ||||
|   } | ||||
|   void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int64_t & gidx){ | ||||
|   void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int & gidx){ | ||||
|     gidx=0; | ||||
|     int mult=1; | ||||
|     for(int mu=0;mu<_ndimension;mu++) { | ||||
|   | ||||
| @@ -38,7 +38,7 @@ class GridCartesian: public GridBase { | ||||
|  | ||||
| public: | ||||
|   int dummy; | ||||
|   //  Coordinate _checker_dim_mask; | ||||
|   Coordinate _checker_dim_mask; | ||||
|   virtual int  CheckerBoardFromOindexTable (int Oindex) { | ||||
|     return 0; | ||||
|   } | ||||
| @@ -46,7 +46,7 @@ public: | ||||
|   { | ||||
|     return 0; | ||||
|   } | ||||
|   virtual int CheckerBoarded(int dim) { | ||||
|   virtual int CheckerBoarded(int dim){ | ||||
|     return 0; | ||||
|   } | ||||
|   virtual int CheckerBoard(const Coordinate &site){ | ||||
| @@ -106,7 +106,6 @@ public: | ||||
|     _rdimensions.resize(_ndimension); | ||||
|     _simd_layout.resize(_ndimension); | ||||
|     _checker_dim_mask.resize(_ndimension);; | ||||
|     _checker_dim = -1; | ||||
|     _lstart.resize(_ndimension); | ||||
|     _lend.resize(_ndimension); | ||||
|  | ||||
|   | ||||
| @@ -57,10 +57,9 @@ class GridRedBlackCartesian : public GridBase | ||||
| { | ||||
| public: | ||||
|   //  Coordinate _checker_dim_mask; | ||||
|   //  int              _checker_dim; | ||||
|   int              _checker_dim; | ||||
|   std::vector<int> _checker_board; | ||||
|  | ||||
|   virtual int isCheckerBoarded(void) const { return 1; }; | ||||
|   virtual int CheckerBoarded(int dim){ | ||||
|     if( dim==_checker_dim) return 1; | ||||
|     else return 0; | ||||
|   | ||||
| @@ -57,29 +57,18 @@ int                      CartesianCommunicator::ProcessorCount(void)    { return | ||||
| // very VERY rarely (Log, serial RNG) we need world without a grid | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
| #ifdef USE_GRID_REDUCTION | ||||
| void CartesianCommunicator::GlobalSum(ComplexF &c) | ||||
| { | ||||
|   GlobalSumP2P(c); | ||||
| } | ||||
| void CartesianCommunicator::GlobalSum(ComplexD &c) | ||||
| { | ||||
|   GlobalSumP2P(c); | ||||
| } | ||||
| #else | ||||
| void CartesianCommunicator::GlobalSum(ComplexF &c) | ||||
| { | ||||
|   GlobalSumVector((float *)&c,2); | ||||
| } | ||||
| void CartesianCommunicator::GlobalSum(ComplexD &c) | ||||
| { | ||||
|   GlobalSumVector((double *)&c,2); | ||||
| } | ||||
| #endif | ||||
| void CartesianCommunicator::GlobalSumVector(ComplexF *c,int N) | ||||
| { | ||||
|   GlobalSumVector((float *)c,2*N); | ||||
| } | ||||
| void CartesianCommunicator::GlobalSum(ComplexD &c) | ||||
| { | ||||
|   GlobalSumVector((double *)&c,2); | ||||
| } | ||||
| void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N) | ||||
| { | ||||
|   GlobalSumVector((double *)c,2*N); | ||||
|   | ||||
| @@ -33,8 +33,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| /////////////////////////////////// | ||||
| #include <Grid/communicator/SharedMemory.h> | ||||
|  | ||||
| #define NVLINK_GET | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| extern bool Stencil_force_mpi ; | ||||
| @@ -130,35 +128,6 @@ public: | ||||
|   void GlobalXOR(uint32_t &); | ||||
|   void GlobalXOR(uint64_t &); | ||||
|    | ||||
|   template<class obj> void GlobalSumP2P(obj &o) | ||||
|   { | ||||
|     std::vector<obj> column; | ||||
|     obj accum = o; | ||||
|     int source,dest; | ||||
|     for(int d=0;d<_ndimension;d++){ | ||||
|       column.resize(_processors[d]); | ||||
|       column[0] = accum; | ||||
|       std::vector<MpiCommsRequest_t> list; | ||||
|       for(int p=1;p<_processors[d];p++){ | ||||
| 	ShiftedRanks(d,p,source,dest); | ||||
| 	SendToRecvFromBegin(list, | ||||
| 			    &column[0], | ||||
| 			    dest, | ||||
| 			    &column[p], | ||||
| 			    source, | ||||
| 			    sizeof(obj),d*100+p); | ||||
|  | ||||
|       } | ||||
|       if (!list.empty()) // avoid triggering assert in comms == none | ||||
| 	CommsComplete(list); | ||||
|       for(int p=1;p<_processors[d];p++){ | ||||
| 	accum = accum + column[p]; | ||||
|       } | ||||
|     } | ||||
|     Broadcast(0,accum); | ||||
|     o=accum; | ||||
|   } | ||||
|  | ||||
|   template<class obj> void GlobalSum(obj &o){ | ||||
|     typedef typename obj::scalar_type scalar_type; | ||||
|     int words = sizeof(obj)/sizeof(scalar_type); | ||||
| @@ -169,14 +138,6 @@ public: | ||||
|   //////////////////////////////////////////////////////////// | ||||
|   // Face exchange, buffer swap in translational invariant way | ||||
|   //////////////////////////////////////////////////////////// | ||||
|   void CommsComplete(std::vector<MpiCommsRequest_t> &list); | ||||
|   void SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list, | ||||
| 			   void *xmit, | ||||
| 			   int dest, | ||||
| 			   void *recv, | ||||
| 			   int from, | ||||
| 			   int bytes,int dir); | ||||
|    | ||||
|   void SendToRecvFrom(void *xmit, | ||||
| 		      int xmit_to_rank, | ||||
| 		      void *recv, | ||||
| @@ -189,17 +150,6 @@ public: | ||||
| 			       int recv_from_rank,int do_recv, | ||||
| 			       int bytes,int dir); | ||||
|  | ||||
|   double StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list, | ||||
| 				      void *xmit, | ||||
| 				      int xmit_to_rank,int do_xmit, | ||||
| 				      void *recv, | ||||
| 				      int recv_from_rank,int do_recv, | ||||
| 				      int xbytes,int rbytes,int dir); | ||||
|  | ||||
|   // Could do a PollHtoD and have a CommsMerge dependence | ||||
|   void StencilSendToRecvFromPollDtoH (std::vector<CommsRequest_t> &list); | ||||
|   void StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list); | ||||
|  | ||||
|   double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list, | ||||
| 				    void *xmit, | ||||
| 				    int xmit_to_rank,int do_xmit, | ||||
|   | ||||
| @@ -30,7 +30,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| Grid_MPI_Comm       CartesianCommunicator::communicator_world; | ||||
|  | ||||
| //////////////////////////////////////////// | ||||
| @@ -258,25 +257,6 @@ CartesianCommunicator::~CartesianCommunicator() | ||||
|     } | ||||
|   } | ||||
| } | ||||
| #ifdef USE_GRID_REDUCTION | ||||
| void CartesianCommunicator::GlobalSum(float &f){ | ||||
|   CartesianCommunicator::GlobalSumP2P(f); | ||||
| } | ||||
| void CartesianCommunicator::GlobalSum(double &d) | ||||
| { | ||||
|   CartesianCommunicator::GlobalSumP2P(d); | ||||
| } | ||||
| #else | ||||
| void CartesianCommunicator::GlobalSum(float &f){ | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator); | ||||
|   assert(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::GlobalSum(double &d) | ||||
| { | ||||
|   int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator); | ||||
|   assert(ierr==0); | ||||
| } | ||||
| #endif | ||||
| void CartesianCommunicator::GlobalSum(uint32_t &u){ | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator); | ||||
|   assert(ierr==0); | ||||
| @@ -307,54 +287,25 @@ void CartesianCommunicator::GlobalMax(double &d) | ||||
|   int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator); | ||||
|   assert(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::GlobalSum(float &f){ | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator); | ||||
|   assert(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::GlobalSumVector(float *f,int N) | ||||
| { | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator); | ||||
|   assert(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::GlobalSum(double &d) | ||||
| { | ||||
|   int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator); | ||||
|   assert(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::GlobalSumVector(double *d,int N) | ||||
| { | ||||
|   int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator); | ||||
|   assert(ierr==0); | ||||
| } | ||||
|  | ||||
| void CartesianCommunicator::SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list, | ||||
| 						void *xmit, | ||||
| 						int dest, | ||||
| 						void *recv, | ||||
| 						int from, | ||||
| 						int bytes,int dir) | ||||
| { | ||||
|   MPI_Request xrq; | ||||
|   MPI_Request rrq; | ||||
|  | ||||
|   assert(dest != _processor); | ||||
|   assert(from != _processor); | ||||
|  | ||||
|   int tag; | ||||
|  | ||||
|   tag= dir+from*32; | ||||
|   int ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator,&rrq); | ||||
|   assert(ierr==0); | ||||
|   list.push_back(rrq); | ||||
|    | ||||
|   tag= dir+_processor*32; | ||||
|   ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator,&xrq); | ||||
|   assert(ierr==0); | ||||
|   list.push_back(xrq); | ||||
| } | ||||
| void CartesianCommunicator::CommsComplete(std::vector<MpiCommsRequest_t> &list) | ||||
| { | ||||
|   int nreq=list.size(); | ||||
|  | ||||
|   if (nreq==0) return; | ||||
|  | ||||
|   std::vector<MPI_Status> status(nreq); | ||||
|   int ierr = MPI_Waitall(nreq,&list[0],&status[0]); | ||||
|   assert(ierr==0); | ||||
|   list.resize(0); | ||||
| } | ||||
|  | ||||
| // Basic Halo comms primitive | ||||
| void CartesianCommunicator::SendToRecvFrom(void *xmit, | ||||
| 					   int dest, | ||||
| @@ -362,7 +313,9 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit, | ||||
| 					   int from, | ||||
| 					   int bytes) | ||||
| { | ||||
|   std::vector<MpiCommsRequest_t> reqs(0); | ||||
|   std::vector<CommsRequest_t> reqs(0); | ||||
|   unsigned long  xcrc = crc32(0L, Z_NULL, 0); | ||||
|   unsigned long  rcrc = crc32(0L, Z_NULL, 0); | ||||
|  | ||||
|   int myrank = _processor; | ||||
|   int ierr; | ||||
| @@ -378,6 +331,9 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit, | ||||
| 		    communicator,MPI_STATUS_IGNORE); | ||||
|   assert(ierr==0); | ||||
|  | ||||
|   //  xcrc = crc32(xcrc,(unsigned char *)xmit,bytes); | ||||
|   //  rcrc = crc32(rcrc,(unsigned char *)recv,bytes); | ||||
|   //  printf("proc %d SendToRecvFrom %d bytes xcrc %lx rcrc %lx\n",_processor,bytes,xcrc,rcrc); fflush | ||||
| } | ||||
| // Basic Halo comms primitive | ||||
| double CartesianCommunicator::StencilSendToRecvFrom( void *xmit, | ||||
| @@ -387,25 +343,11 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit, | ||||
| 						     int bytes,int dir) | ||||
| { | ||||
|   std::vector<CommsRequest_t> list; | ||||
|   double offbytes = StencilSendToRecvFromPrepare(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir); | ||||
|   offbytes       += StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir); | ||||
|   double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir); | ||||
|   StencilSendToRecvFromComplete(list,dir); | ||||
|   return offbytes; | ||||
| } | ||||
|  | ||||
|  | ||||
| #ifdef ACCELERATOR_AWARE_MPI | ||||
| void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {}; | ||||
| void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {}; | ||||
| double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list, | ||||
| 							   void *xmit, | ||||
| 							   int dest,int dox, | ||||
| 							   void *recv, | ||||
| 							   int from,int dor, | ||||
| 							   int xbytes,int rbytes,int dir) | ||||
| { | ||||
|   return 0.0; // Do nothing -- no preparation required | ||||
| } | ||||
| double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list, | ||||
| 							 void *xmit, | ||||
| 							 int dest,int dox, | ||||
| @@ -438,15 +380,8 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques | ||||
|       list.push_back(rrq); | ||||
|       off_node_bytes+=rbytes; | ||||
|     } | ||||
| #ifdef NVLINK_GET | ||||
|     else {  | ||||
|       void *shm = (void *) this->ShmBufferTranslate(from,xmit); | ||||
|       assert(shm!=NULL); | ||||
|       acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes); | ||||
|     } | ||||
| #endif | ||||
|   } | ||||
|   // This is a NVLINK PUT   | ||||
|    | ||||
|   if (dox) { | ||||
|     if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) { | ||||
|       tag= dir+_processor*32; | ||||
| @@ -455,343 +390,25 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques | ||||
|       list.push_back(xrq); | ||||
|       off_node_bytes+=xbytes; | ||||
|     } else { | ||||
| #ifndef NVLINK_GET | ||||
|       void *shm = (void *) this->ShmBufferTranslate(dest,recv); | ||||
|       assert(shm!=NULL); | ||||
|       acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes); | ||||
| #endif | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   return off_node_bytes; | ||||
| } | ||||
|  | ||||
| void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir) | ||||
| { | ||||
|   int nreq=list.size(); | ||||
|   /*finishes Get/Put*/ | ||||
|   acceleratorCopySynchronise(); | ||||
|  | ||||
|   if (nreq==0) return; | ||||
|  | ||||
|   std::vector<MPI_Status> status(nreq); | ||||
|   int ierr = MPI_Waitall(nreq,&list[0],&status[0]); | ||||
|   assert(ierr==0); | ||||
|   list.resize(0); | ||||
|   this->StencilBarrier();  | ||||
| } | ||||
|  | ||||
| #else /* NOT     ... ACCELERATOR_AWARE_MPI */ | ||||
| /////////////////////////////////////////// | ||||
| // Pipeline mode through host memory | ||||
| /////////////////////////////////////////// | ||||
|   /* | ||||
|    * In prepare (phase 1): | ||||
|    * PHASE 1: (prepare) | ||||
|    * - post MPI receive buffers asynch | ||||
|    * - post device - host send buffer transfer asynch | ||||
|    * PHASE 2: (Begin) | ||||
|    * - complete all copies | ||||
|    * - post MPI send asynch | ||||
|    * - post device - device transfers | ||||
|    * PHASE 3: (Complete) | ||||
|    * - MPI_waitall | ||||
|    * - host-device transfers | ||||
|    * | ||||
|    ********************************* | ||||
|    * NB could split this further: | ||||
|    *-------------------------------- | ||||
|    * PHASE 1: (Prepare) | ||||
|    * - post MPI receive buffers asynch | ||||
|    * - post device - host send buffer transfer asynch | ||||
|    * PHASE 2: (BeginInterNode) | ||||
|    * - complete all copies  | ||||
|    * - post MPI send asynch | ||||
|    * PHASE 3: (BeginIntraNode) | ||||
|    * - post device - device transfers | ||||
|    * PHASE 4: (Complete) | ||||
|    * - MPI_waitall | ||||
|    * - host-device transfers asynch | ||||
|    * - (complete all copies)  | ||||
|    */ | ||||
| double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list, | ||||
| 							   void *xmit, | ||||
| 							   int dest,int dox, | ||||
| 							   void *recv, | ||||
| 							   int from,int dor, | ||||
| 							   int xbytes,int rbytes,int dir) | ||||
| { | ||||
| /* | ||||
|  * Bring sequence from Stencil.h down to lower level. | ||||
|  * Assume using XeLink is ok | ||||
|  */   | ||||
|   int ncomm  =communicator_halo.size(); | ||||
|   int commdir=dir%ncomm; | ||||
|  | ||||
|   MPI_Request xrq; | ||||
|   MPI_Request rrq; | ||||
|  | ||||
|   int ierr; | ||||
|   int gdest = ShmRanks[dest]; | ||||
|   int gfrom = ShmRanks[from]; | ||||
|   int gme   = ShmRanks[_processor]; | ||||
|  | ||||
|   assert(dest != _processor); | ||||
|   assert(from != _processor); | ||||
|   assert(gme  == ShmRank); | ||||
|   double off_node_bytes=0.0; | ||||
|   int tag; | ||||
|  | ||||
|   void * host_recv = NULL; | ||||
|   void * host_xmit = NULL; | ||||
|  | ||||
|   /* | ||||
|    * PHASE 1: (Prepare) | ||||
|    * - post MPI receive buffers asynch | ||||
|    * - post device - host send buffer transfer asynch | ||||
|    */ | ||||
|    | ||||
|   if ( dor ) { | ||||
|     if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) { | ||||
|       tag= dir+from*32; | ||||
|       host_recv = this->HostBufferMalloc(rbytes); | ||||
|       ierr=MPI_Irecv(host_recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq); | ||||
|       assert(ierr==0); | ||||
|       CommsRequest_t srq; | ||||
|       srq.PacketType = InterNodeRecv; | ||||
|       srq.bytes      = rbytes; | ||||
|       srq.req        = rrq; | ||||
|       srq.host_buf   = host_recv; | ||||
|       srq.device_buf = recv; | ||||
|       list.push_back(srq); | ||||
|       off_node_bytes+=rbytes; | ||||
|     } | ||||
|   } | ||||
|    | ||||
|   if (dox) { | ||||
|     if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) { | ||||
|  | ||||
|       tag= dir+_processor*32; | ||||
|  | ||||
|       host_xmit = this->HostBufferMalloc(xbytes); | ||||
|       CommsRequest_t srq; | ||||
|  | ||||
|       srq.ev = acceleratorCopyFromDeviceAsynch(xmit, host_xmit,xbytes); // Make this Asynch | ||||
|        | ||||
|       //      ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq); | ||||
|       //      assert(ierr==0); | ||||
|       //      off_node_bytes+=xbytes; | ||||
|  | ||||
|       srq.PacketType = InterNodeXmit; | ||||
|       srq.bytes      = xbytes; | ||||
|       //      srq.req        = xrq; | ||||
|       srq.host_buf   = host_xmit; | ||||
|       srq.device_buf = xmit; | ||||
|       srq.tag        = tag; | ||||
|       srq.dest       = dest; | ||||
|       srq.commdir    = commdir; | ||||
|       list.push_back(srq); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   return off_node_bytes; | ||||
| } | ||||
| /* | ||||
|  * In the interest of better pipelining, poll for completion on each DtoH and  | ||||
|  * start MPI_ISend in the meantime | ||||
|  */ | ||||
| void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) | ||||
| { | ||||
|   int pending = 0; | ||||
|   do { | ||||
|  | ||||
|     pending = 0; | ||||
|  | ||||
|     for(int idx = 0; idx<list.size();idx++){ | ||||
|  | ||||
|       if ( list[idx].PacketType==InterNodeRecv ) { | ||||
|  | ||||
| 	int flag = 0; | ||||
| 	MPI_Status status; | ||||
| 	int ierr = MPI_Test(&list[idx].req,&flag,&status); | ||||
| 	assert(ierr==0); | ||||
|  | ||||
| 	if ( flag ) { | ||||
| 	  //	  std::cout << " PollIrecv "<<idx<<" flag "<<flag<<std::endl; | ||||
| 	  acceleratorCopyToDeviceAsynch(list[idx].host_buf,list[idx].device_buf,list[idx].bytes); | ||||
| 	  list[idx].PacketType=InterNodeReceiveHtoD; | ||||
| 	} else { | ||||
| 	  pending ++; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
|     //    std::cout << " PollIrecv "<<pending<<" pending requests"<<std::endl; | ||||
|   } while ( pending ); | ||||
|    | ||||
| } | ||||
| void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) | ||||
| { | ||||
|   int pending = 0; | ||||
|   do { | ||||
|  | ||||
|     pending = 0; | ||||
|  | ||||
|     for(int idx = 0; idx<list.size();idx++){ | ||||
|  | ||||
|       if ( list[idx].PacketType==InterNodeXmit ) { | ||||
|  | ||||
| 	if ( acceleratorEventIsComplete(list[idx].ev) ) { | ||||
|  | ||||
| 	  void *host_xmit = list[idx].host_buf; | ||||
| 	  uint32_t xbytes = list[idx].bytes; | ||||
| 	  int dest        = list[idx].dest; | ||||
| 	  int tag         = list[idx].tag; | ||||
| 	  int commdir     = list[idx].commdir; | ||||
| 	  /////////////////// | ||||
| 	  // Send packet | ||||
| 	  /////////////////// | ||||
|  | ||||
| 	  //	  std::cout << " DtoH is complete for index "<<idx<<" calling MPI_Isend "<<std::endl; | ||||
| 	   | ||||
| 	  MPI_Request xrq; | ||||
| 	  int ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq); | ||||
| 	  assert(ierr==0); | ||||
|  | ||||
| 	  list[idx].req        = xrq; // Update the MPI request in the list | ||||
|  | ||||
| 	  list[idx].PacketType=InterNodeXmitISend; | ||||
|  | ||||
| 	} else { | ||||
| 	  // not done, so return to polling loop | ||||
| 	  pending++; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
|   } while (pending); | ||||
| }   | ||||
|  | ||||
| double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list, | ||||
| 							 void *xmit, | ||||
| 							 int dest,int dox, | ||||
| 							 void *recv, | ||||
| 							 int from,int dor, | ||||
| 							 int xbytes,int rbytes,int dir) | ||||
| { | ||||
|   int ncomm  =communicator_halo.size(); | ||||
|   int commdir=dir%ncomm; | ||||
|  | ||||
|   MPI_Request xrq; | ||||
|   MPI_Request rrq; | ||||
|  | ||||
|   int ierr; | ||||
|   int gdest = ShmRanks[dest]; | ||||
|   int gfrom = ShmRanks[from]; | ||||
|   int gme   = ShmRanks[_processor]; | ||||
|  | ||||
|   assert(dest != _processor); | ||||
|   assert(from != _processor); | ||||
|   assert(gme  == ShmRank); | ||||
|   double off_node_bytes=0.0; | ||||
|   int tag; | ||||
|  | ||||
|   void * host_xmit = NULL; | ||||
|  | ||||
|   //////////////////////////////// | ||||
|   // Receives already posted | ||||
|   // Copies already started | ||||
|   //////////////////////////////// | ||||
|   /*   | ||||
|    * PHASE 2: (Begin) | ||||
|    * - complete all copies | ||||
|    * - post MPI send asynch | ||||
|    */ | ||||
| #ifdef NVLINK_GET | ||||
|   if ( dor ) { | ||||
|  | ||||
|     if ( ! ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) ) { | ||||
|       // Intranode | ||||
|       void *shm = (void *) this->ShmBufferTranslate(from,xmit); | ||||
|       assert(shm!=NULL); | ||||
|  | ||||
|       CommsRequest_t srq; | ||||
|  | ||||
|       srq.ev = acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes); | ||||
|  | ||||
|       srq.PacketType = IntraNodeRecv; | ||||
|       srq.bytes      = xbytes; | ||||
|       //      srq.req        = xrq; | ||||
|       srq.host_buf   = NULL; | ||||
|       srq.device_buf = xmit; | ||||
|       srq.tag        = -1; | ||||
|       srq.dest       = dest; | ||||
|       srq.commdir    = dir; | ||||
|       list.push_back(srq); | ||||
|     } | ||||
|   }   | ||||
| #else | ||||
|   if (dox) { | ||||
|  | ||||
|     if ( !( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) ) { | ||||
|       // Intranode | ||||
|       void *shm = (void *) this->ShmBufferTranslate(dest,recv); | ||||
|       assert(shm!=NULL); | ||||
|  | ||||
|       CommsRequest_t srq; | ||||
|        | ||||
|       srq.ev = acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes); | ||||
|  | ||||
|       srq.PacketType = IntraNodeXmit; | ||||
|       srq.bytes      = xbytes; | ||||
|       //      srq.req        = xrq; | ||||
|       srq.host_buf   = NULL; | ||||
|       srq.device_buf = xmit; | ||||
|       srq.tag        = -1; | ||||
|       srq.dest       = dest; | ||||
|       srq.commdir    = dir; | ||||
|       list.push_back(srq); | ||||
|        | ||||
|     } | ||||
|   } | ||||
| #endif | ||||
|   return off_node_bytes; | ||||
| } | ||||
| void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir) | ||||
| { | ||||
|   acceleratorCopySynchronise(); // Complete all pending copy transfers D2D | ||||
|  | ||||
|   std::vector<MPI_Status> status; | ||||
|   std::vector<MPI_Request> MpiRequests; | ||||
|      | ||||
|   for(int r=0;r<list.size();r++){ | ||||
|     // Must check each Send buf is clear to reuse | ||||
|     if ( list[r].PacketType == InterNodeXmitISend ) MpiRequests.push_back(list[r].req); | ||||
|     //    if ( list[r].PacketType == InterNodeRecv ) MpiRequests.push_back(list[r].req); // Already "Test" passed | ||||
|   } | ||||
|  | ||||
|   int nreq=MpiRequests.size(); | ||||
|  | ||||
|   if (nreq>0) { | ||||
|     status.resize(MpiRequests.size()); | ||||
|     int ierr = MPI_Waitall(MpiRequests.size(),&MpiRequests[0],&status[0]); // Sends are guaranteed in order. No harm in not completing. | ||||
|     assert(ierr==0); | ||||
|   } | ||||
|    | ||||
|   //  for(int r=0;r<nreq;r++){ | ||||
|   //    if ( list[r].PacketType==InterNodeRecv ) { | ||||
|   //      acceleratorCopyToDeviceAsynch(list[r].host_buf,list[r].device_buf,list[r].bytes); | ||||
|   //    } | ||||
|   //  } | ||||
|    | ||||
|    | ||||
|   list.resize(0);               // Delete the list | ||||
|   this->HostBufferFreeAll();    // Clean up the buffer allocs | ||||
| #ifndef NVLINK_GET | ||||
|   this->StencilBarrier(); // if PUT must check our nbrs have filled our receive buffers. | ||||
| #endif    | ||||
| } | ||||
| #endif | ||||
| //////////////////////////////////////////// | ||||
| // END PIPELINE MODE / NO CUDA AWARE MPI | ||||
| //////////////////////////////////////////// | ||||
|  | ||||
| void CartesianCommunicator::StencilBarrier(void) | ||||
| { | ||||
|   MPI_Barrier  (ShmComm); | ||||
|   | ||||
| @@ -91,17 +91,6 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit, | ||||
| { | ||||
|   assert(0); | ||||
| } | ||||
| void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ assert(list.size()==0);} | ||||
| void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list, | ||||
| 						void *xmit, | ||||
| 						int dest, | ||||
| 						void *recv, | ||||
| 						int from, | ||||
| 						int bytes,int dir) | ||||
| { | ||||
|   assert(0); | ||||
| } | ||||
|  | ||||
| void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,uint64_t words,uint64_t bytes) | ||||
| { | ||||
|   bcopy(in,out,bytes*words); | ||||
| @@ -132,17 +121,6 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit, | ||||
| { | ||||
|   return 2.0*bytes; | ||||
| } | ||||
| void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {}; | ||||
| void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {}; | ||||
| double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list, | ||||
| 							   void *xmit, | ||||
| 							   int xmit_to_rank,int dox, | ||||
| 							   void *recv, | ||||
| 							   int recv_from_rank,int dor, | ||||
| 							   int xbytes,int rbytes, int dir) | ||||
| { | ||||
|   return 0.0; | ||||
| } | ||||
| double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list, | ||||
| 							 void *xmit, | ||||
| 							 int xmit_to_rank,int dox, | ||||
|   | ||||
| @@ -40,9 +40,6 @@ int                 GlobalSharedMemory::_ShmAlloc; | ||||
| uint64_t            GlobalSharedMemory::_ShmAllocBytes; | ||||
|  | ||||
| std::vector<void *> GlobalSharedMemory::WorldShmCommBufs; | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
| void * GlobalSharedMemory::HostCommBuf; | ||||
| #endif | ||||
|  | ||||
| Grid_MPI_Comm       GlobalSharedMemory::WorldShmComm; | ||||
| int                 GlobalSharedMemory::WorldShmRank; | ||||
| @@ -69,26 +66,6 @@ void GlobalSharedMemory::SharedMemoryFree(void) | ||||
| ///////////////////////////////// | ||||
| // Alloc, free shmem region | ||||
| ///////////////////////////////// | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
| void *SharedMemory::HostBufferMalloc(size_t bytes){ | ||||
|   void *ptr = (void *)host_heap_top; | ||||
|   host_heap_top  += bytes; | ||||
|   host_heap_bytes+= bytes; | ||||
|   if (host_heap_bytes >= host_heap_size) { | ||||
|     std::cout<< " HostBufferMalloc exceeded heap size -- try increasing with --shm <MB> flag" <<std::endl; | ||||
|     std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl; | ||||
|     std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl; | ||||
|     std::cout<< " Current bytes is " << (host_heap_bytes/(1024*1024)) <<"MB"<<std::endl; | ||||
|     std::cout<< " Current heap  is " << (host_heap_size/(1024*1024)) <<"MB"<<std::endl; | ||||
|     assert(host_heap_bytes<host_heap_size); | ||||
|   } | ||||
|   return ptr; | ||||
| } | ||||
| void SharedMemory::HostBufferFreeAll(void) {  | ||||
|   host_heap_top  =(size_t)HostCommBuf; | ||||
|   host_heap_bytes=0; | ||||
| } | ||||
| #endif | ||||
| void *SharedMemory::ShmBufferMalloc(size_t bytes){ | ||||
|   //  bytes = (bytes+sizeof(vRealD))&(~(sizeof(vRealD)-1));// align up bytes | ||||
|   void *ptr = (void *)heap_top; | ||||
|   | ||||
| @@ -46,40 +46,8 @@ NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| #if defined (GRID_COMMS_MPI3)  | ||||
| typedef MPI_Comm    Grid_MPI_Comm; | ||||
| typedef MPI_Request MpiCommsRequest_t; | ||||
| #ifdef ACCELERATOR_AWARE_MPI | ||||
| typedef MPI_Request CommsRequest_t; | ||||
| #else  | ||||
| /* | ||||
|  * Enable state transitions as each packet flows. | ||||
|  */ | ||||
| enum PacketType_t { | ||||
|   FaceGather, | ||||
|   InterNodeXmit, | ||||
|   InterNodeRecv, | ||||
|   IntraNodeXmit, | ||||
|   IntraNodeRecv, | ||||
|   InterNodeXmitISend, | ||||
|   InterNodeReceiveHtoD | ||||
| }; | ||||
| /* | ||||
|  *Package arguments needed for various actions along packet flow | ||||
|  */ | ||||
| typedef struct { | ||||
|   PacketType_t PacketType; | ||||
|   void *host_buf; | ||||
|   void *device_buf; | ||||
|   int dest; | ||||
|   int tag; | ||||
|   int commdir; | ||||
|   unsigned long bytes; | ||||
|   acceleratorEvent_t ev; | ||||
|   MpiCommsRequest_t req; | ||||
| } CommsRequest_t; | ||||
| #endif | ||||
|  | ||||
| #else  | ||||
| typedef int MpiCommsRequest_t; | ||||
| typedef int CommsRequest_t; | ||||
| typedef int Grid_MPI_Comm; | ||||
| #endif | ||||
| @@ -107,9 +75,7 @@ public: | ||||
|   static int           Hugepages; | ||||
|  | ||||
|   static std::vector<void *> WorldShmCommBufs; | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|   static void *HostCommBuf; | ||||
| #endif | ||||
|  | ||||
|   static Grid_MPI_Comm WorldComm; | ||||
|   static int           WorldRank; | ||||
|   static int           WorldSize; | ||||
| @@ -137,7 +103,7 @@ public: | ||||
|   /////////////////////////////////////////////////// | ||||
|   static void SharedMemoryAllocate(uint64_t bytes, int flags); | ||||
|   static void SharedMemoryFree(void); | ||||
|   //  static void SharedMemoryCopy(void *dest,void *src,size_t bytes); | ||||
|   static void SharedMemoryCopy(void *dest,void *src,size_t bytes); | ||||
|   static void SharedMemoryZero(void *dest,size_t bytes); | ||||
|  | ||||
| }; | ||||
| @@ -154,13 +120,6 @@ private: | ||||
|   size_t heap_bytes; | ||||
|   size_t heap_size; | ||||
|  | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|   size_t host_heap_top;  // set in free all | ||||
|   size_t host_heap_bytes;// set in free all | ||||
|   void *HostCommBuf;     // set in SetCommunicator | ||||
|   size_t host_heap_size; // set in SetCommunicator | ||||
| #endif | ||||
|    | ||||
| protected: | ||||
|  | ||||
|   Grid_MPI_Comm    ShmComm; // for barriers | ||||
| @@ -192,10 +151,7 @@ public: | ||||
|   void *ShmBufferTranslate(int rank,void * local_p); | ||||
|   void *ShmBufferMalloc(size_t bytes); | ||||
|   void  ShmBufferFreeAll(void) ; | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|   void *HostBufferMalloc(size_t bytes); | ||||
|   void HostBufferFreeAll(void); | ||||
| #endif   | ||||
|    | ||||
|   ////////////////////////////////////////////////////////////////////////// | ||||
|   // Make info on Nodes & ranks and Shared memory available | ||||
|   ////////////////////////////////////////////////////////////////////////// | ||||
|   | ||||
| @@ -39,16 +39,9 @@ Author: Christoph Lehner <christoph@lhnr.de> | ||||
| #include <hip/hip_runtime_api.h> | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
| #ifdef ACCELERATOR_AWARE_MPI | ||||
| #define GRID_SYCL_LEVEL_ZERO_IPC | ||||
| #define SHM_SOCKETS | ||||
| #else | ||||
| #ifdef HAVE_NUMAIF_H | ||||
|   #warning " Using NUMAIF " | ||||
| #include <numaif.h> | ||||
| #endif  | ||||
| #endif  | ||||
| #include <syscall.h> | ||||
| #define SHM_SOCKETS  | ||||
| #endif | ||||
|  | ||||
| #include <sys/socket.h> | ||||
| @@ -519,6 +512,46 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| // Hugetlbfs mapping intended | ||||
| //////////////////////////////////////////////////////////////////////////////////////////// | ||||
| #if defined(GRID_CUDA) ||defined(GRID_HIP)  || defined(GRID_SYCL) | ||||
|  | ||||
| //if defined(GRID_SYCL) | ||||
| #if 0 | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| { | ||||
|   void * ShmCommBuf ;  | ||||
|   assert(_ShmSetup==1); | ||||
|   assert(_ShmAlloc==0); | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // allocate the pointer array for shared windows for our group | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   MPI_Barrier(WorldShmComm); | ||||
|   WorldShmCommBufs.resize(WorldShmSize); | ||||
|  | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Each MPI rank should allocate our own buffer | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   ShmCommBuf = acceleratorAllocDevice(bytes); | ||||
|  | ||||
|   if (ShmCommBuf == (void *)NULL ) { | ||||
|     std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl; | ||||
|     exit(EXIT_FAILURE);   | ||||
|   } | ||||
|  | ||||
|   std::cout << WorldRank << Mheader " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes  | ||||
| 	    << "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl; | ||||
|  | ||||
|   SharedMemoryZero(ShmCommBuf,bytes); | ||||
|  | ||||
|   assert(WorldShmSize == 1); | ||||
|   for(int r=0;r<WorldShmSize;r++){ | ||||
|     WorldShmCommBufs[r] = ShmCommBuf; | ||||
|   } | ||||
|   _ShmAllocBytes=bytes; | ||||
|   _ShmAlloc=1; | ||||
| } | ||||
| #endif | ||||
|  | ||||
| #if defined(GRID_CUDA) ||defined(GRID_HIP) ||defined(GRID_SYCL)   | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| { | ||||
|   void * ShmCommBuf ;  | ||||
| @@ -541,40 +574,6 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Each MPI rank should allocate our own buffer | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|   // printf("Host buffer allocate for GPU non-aware MPI\n"); | ||||
| #if 0 | ||||
|   HostCommBuf= acceleratorAllocHost(bytes); | ||||
| #else  | ||||
|   HostCommBuf= malloc(bytes); /// CHANGE THIS TO malloc_host | ||||
| #if 0 | ||||
|   #warning "Moving host buffers to specific NUMA domain" | ||||
|   int numa; | ||||
|   char *numa_name=(char *)getenv("MPI_BUF_NUMA"); | ||||
|   if(numa_name) { | ||||
|     unsigned long page_size = sysconf(_SC_PAGESIZE); | ||||
|     numa = atoi(numa_name); | ||||
|     unsigned long page_count = bytes/page_size; | ||||
|     std::vector<void *> pages(page_count); | ||||
|     std::vector<int>    nodes(page_count,numa); | ||||
|     std::vector<int>    status(page_count,-1); | ||||
|     for(unsigned long p=0;p<page_count;p++){ | ||||
|       pages[p] =(void *) ((uint64_t) HostCommBuf + p*page_size); | ||||
|     } | ||||
|     int ret = move_pages(0, | ||||
| 			 page_count, | ||||
| 			 &pages[0], | ||||
| 			 &nodes[0], | ||||
| 			 &status[0], | ||||
| 			 MPOL_MF_MOVE); | ||||
|     printf("Host buffer move to numa domain %d : move_pages returned %d\n",numa,ret); | ||||
|     if (ret) perror(" move_pages failed for reason:"); | ||||
|   } | ||||
| #endif   | ||||
|   acceleratorPin(HostCommBuf,bytes); | ||||
| #endif   | ||||
|  | ||||
| #endif   | ||||
|   ShmCommBuf = acceleratorAllocDevice(bytes); | ||||
|   if (ShmCommBuf == (void *)NULL ) { | ||||
|     std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl; | ||||
| @@ -605,8 +604,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| #ifdef GRID_SYCL_LEVEL_ZERO_IPC | ||||
|     typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t; | ||||
|  | ||||
|     auto zeDevice    = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device()); | ||||
|     auto zeContext   = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context()); | ||||
|     auto zeDevice    = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device()); | ||||
|     auto zeContext   = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context()); | ||||
|        | ||||
|     ze_ipc_mem_handle_t ihandle; | ||||
|     clone_mem_t handle; | ||||
| @@ -739,6 +738,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
|   _ShmAllocBytes=bytes; | ||||
|   _ShmAlloc=1; | ||||
| } | ||||
| #endif | ||||
|  | ||||
| #else  | ||||
| #ifdef GRID_MPI3_SHMMMAP | ||||
| @@ -916,14 +916,14 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes) | ||||
|   bzero(dest,bytes); | ||||
| #endif | ||||
| } | ||||
| //void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes) | ||||
| //{ | ||||
| //#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL) | ||||
| //  acceleratorCopyToDevice(src,dest,bytes); | ||||
| //#else    | ||||
| //  bcopy(src,dest,bytes); | ||||
| //#endif | ||||
| //} | ||||
| void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes) | ||||
| { | ||||
| #if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL) | ||||
|   acceleratorCopyToDevice(src,dest,bytes); | ||||
| #else    | ||||
|   bcopy(src,dest,bytes); | ||||
| #endif | ||||
| } | ||||
| //////////////////////////////////////////////////////// | ||||
| // Global shared functionality finished | ||||
| // Now move to per communicator functionality | ||||
| @@ -959,16 +959,9 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm) | ||||
|     MPI_Allreduce(MPI_IN_PLACE,&wsr,1,MPI_UINT32_T,MPI_SUM,ShmComm); | ||||
|  | ||||
|     ShmCommBufs[r] = GlobalSharedMemory::WorldShmCommBufs[wsr]; | ||||
|     //    std::cerr << " SetCommunicator rank "<<r<<" comm "<<ShmCommBufs[r] <<std::endl; | ||||
|   } | ||||
|   ShmBufferFreeAll(); | ||||
|  | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|   host_heap_size = heap_size; | ||||
|   HostCommBuf= GlobalSharedMemory::HostCommBuf; | ||||
|   HostBufferFreeAll(); | ||||
| #endif   | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
|   // find comm ranks in our SHM group (i.e. which ranks are on our node) | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
| @@ -990,7 +983,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm) | ||||
|   } | ||||
| #endif | ||||
|  | ||||
|   SharedMemoryTest(); | ||||
|   //SharedMemoryTest(); | ||||
| } | ||||
| ////////////////////////////////////////////////////////////////// | ||||
| // On node barrier | ||||
| @@ -1012,18 +1005,19 @@ void SharedMemory::SharedMemoryTest(void) | ||||
|        check[0]=GlobalSharedMemory::WorldNode; | ||||
|        check[1]=r; | ||||
|        check[2]=magic; | ||||
|        acceleratorCopyToDevice(check,ShmCommBufs[r],3*sizeof(uint64_t)); | ||||
|        GlobalSharedMemory::SharedMemoryCopy( ShmCommBufs[r], check, 3*sizeof(uint64_t)); | ||||
|     } | ||||
|   } | ||||
|   ShmBarrier(); | ||||
|   for(uint64_t r=0;r<ShmSize;r++){ | ||||
|     acceleratorCopyFromDevice(ShmCommBufs[r],check,3*sizeof(uint64_t)); | ||||
|     ShmBarrier(); | ||||
|     GlobalSharedMemory::SharedMemoryCopy(check,ShmCommBufs[r], 3*sizeof(uint64_t)); | ||||
|     ShmBarrier(); | ||||
|     assert(check[0]==GlobalSharedMemory::WorldNode); | ||||
|     assert(check[1]==r); | ||||
|     assert(check[2]==magic); | ||||
|     ShmBarrier(); | ||||
|   } | ||||
|   ShmBarrier(); | ||||
|   std::cout << GridLogDebug << " SharedMemoryTest has passed "<<std::endl; | ||||
| } | ||||
|  | ||||
| void *SharedMemory::ShmBuffer(int rank) | ||||
|   | ||||
| @@ -51,6 +51,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #endif  | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>  | ||||
| auto Cshift(const Expression &expr,int dim,int shift)  -> decltype(closure(expr))  | ||||
| { | ||||
|   | ||||
| @@ -30,11 +30,12 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| extern std::vector<std::pair<int,int> > Cshift_table;  | ||||
| extern deviceVector<std::pair<int,int> > Cshift_table_device;  | ||||
| extern commVector<std::pair<int,int> > Cshift_table_device;  | ||||
|  | ||||
| inline std::pair<int,int> *MapCshiftTable(void) | ||||
| { | ||||
|   // GPU version | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|   uint64_t sz=Cshift_table.size(); | ||||
|   if (Cshift_table_device.size()!=sz )    { | ||||
|     Cshift_table_device.resize(sz); | ||||
| @@ -44,13 +45,16 @@ inline std::pair<int,int> *MapCshiftTable(void) | ||||
| 			  sizeof(Cshift_table[0])*sz); | ||||
|  | ||||
|   return &Cshift_table_device[0]; | ||||
| #else  | ||||
|   return &Cshift_table[0]; | ||||
| #endif | ||||
|   // CPU version use identify map | ||||
| } | ||||
| /////////////////////////////////////////////////////////////////// | ||||
| // Gather for when there is no need to SIMD split  | ||||
| /////////////////////////////////////////////////////////////////// | ||||
| template<class vobj> void  | ||||
| Gather_plane_simple (const Lattice<vobj> &rhs,deviceVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0) | ||||
| Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0) | ||||
| { | ||||
|   int rd = rhs.Grid()->_rdimensions[dimension]; | ||||
|  | ||||
| @@ -90,10 +94,17 @@ Gather_plane_simple (const Lattice<vobj> &rhs,deviceVector<vobj> &buffer,int dim | ||||
|   { | ||||
|     auto buffer_p = & buffer[0]; | ||||
|     auto table = MapCshiftTable(); | ||||
| #ifdef ACCELERATOR_CSHIFT | ||||
|     autoView(rhs_v , rhs, AcceleratorRead); | ||||
|     accelerator_for(i,ent,vobj::Nsimd(),{ | ||||
| 	coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second])); | ||||
|     }); | ||||
| #else | ||||
|     autoView(rhs_v , rhs, CpuRead); | ||||
|     thread_for(i,ent,{ | ||||
|       buffer_p[table[i].first]=rhs_v[table[i].second]; | ||||
|     }); | ||||
| #endif | ||||
|   } | ||||
| } | ||||
|  | ||||
| @@ -118,6 +129,7 @@ Gather_plane_extract(const Lattice<vobj> &rhs, | ||||
|   int n1=rhs.Grid()->_slice_stride[dimension]; | ||||
|  | ||||
|   if ( cbmask ==0x3){ | ||||
| #ifdef ACCELERATOR_CSHIFT | ||||
|     autoView(rhs_v , rhs, AcceleratorRead); | ||||
|     accelerator_for(nn,e1*e2,1,{ | ||||
| 	int n = nn%e1; | ||||
| @@ -128,10 +140,21 @@ Gather_plane_extract(const Lattice<vobj> &rhs, | ||||
| 	vobj temp =rhs_v[so+o+b]; | ||||
| 	extract<vobj>(temp,pointers,offset); | ||||
|       }); | ||||
| #else | ||||
|     autoView(rhs_v , rhs, CpuRead); | ||||
|     thread_for2d(n,e1,b,e2,{ | ||||
| 	int o      =   n*n1; | ||||
| 	int offset = b+n*e2; | ||||
| 	 | ||||
| 	vobj temp =rhs_v[so+o+b]; | ||||
| 	extract<vobj>(temp,pointers,offset); | ||||
|       }); | ||||
| #endif | ||||
|   } else {  | ||||
|     Coordinate rdim=rhs.Grid()->_rdimensions; | ||||
|     Coordinate cdm =rhs.Grid()->_checker_dim_mask; | ||||
|     std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb? | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     autoView(rhs_v , rhs, AcceleratorRead); | ||||
|     accelerator_for(nn,e1*e2,1,{ | ||||
| 	int n = nn%e1; | ||||
| @@ -152,13 +175,33 @@ Gather_plane_extract(const Lattice<vobj> &rhs, | ||||
| 	  extract<vobj>(temp,pointers,offset); | ||||
| 	} | ||||
|       }); | ||||
| #else | ||||
|     autoView(rhs_v , rhs, CpuRead); | ||||
|     thread_for2d(n,e1,b,e2,{ | ||||
|  | ||||
| 	Coordinate coor; | ||||
|  | ||||
| 	int o=n*n1; | ||||
| 	int oindex = o+b; | ||||
|  | ||||
|        	int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm); | ||||
|  | ||||
| 	int ocb=1<<cb; | ||||
| 	int offset = b+n*e2; | ||||
|  | ||||
| 	if ( ocb & cbmask ) { | ||||
| 	  vobj temp =rhs_v[so+o+b]; | ||||
| 	  extract<vobj>(temp,pointers,offset); | ||||
| 	} | ||||
|       }); | ||||
| #endif | ||||
|   } | ||||
| } | ||||
|  | ||||
| ////////////////////////////////////////////////////// | ||||
| // Scatter for when there is no need to SIMD split | ||||
| ////////////////////////////////////////////////////// | ||||
| template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,deviceVector<vobj> &buffer, int dimension,int plane,int cbmask) | ||||
| template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<vobj> &buffer, int dimension,int plane,int cbmask) | ||||
| { | ||||
|   int rd = rhs.Grid()->_rdimensions[dimension]; | ||||
|  | ||||
| @@ -202,10 +245,17 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,deviceVector< | ||||
|   { | ||||
|     auto buffer_p = & buffer[0]; | ||||
|     auto table = MapCshiftTable(); | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     autoView( rhs_v, rhs, AcceleratorWrite); | ||||
|     accelerator_for(i,ent,vobj::Nsimd(),{ | ||||
| 	coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second])); | ||||
|     }); | ||||
| #else | ||||
|     autoView( rhs_v, rhs, CpuWrite); | ||||
|     thread_for(i,ent,{ | ||||
|       rhs_v[table[i].first]=buffer_p[table[i].second]; | ||||
|     }); | ||||
| #endif | ||||
|   } | ||||
| } | ||||
|  | ||||
| @@ -228,6 +278,7 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA | ||||
|   if(cbmask ==0x3 ) { | ||||
|     int _slice_stride = rhs.Grid()->_slice_stride[dimension]; | ||||
|     int _slice_block = rhs.Grid()->_slice_block[dimension]; | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     autoView( rhs_v , rhs, AcceleratorWrite); | ||||
|     accelerator_for(nn,e1*e2,1,{ | ||||
| 	int n = nn%e1; | ||||
| @@ -236,6 +287,14 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA | ||||
| 	int offset = b+n*_slice_block; | ||||
| 	merge(rhs_v[so+o+b],pointers,offset); | ||||
|       }); | ||||
| #else | ||||
|     autoView( rhs_v , rhs, CpuWrite); | ||||
|     thread_for2d(n,e1,b,e2,{ | ||||
| 	int o      = n*_slice_stride; | ||||
| 	int offset = b+n*_slice_block; | ||||
| 	merge(rhs_v[so+o+b],pointers,offset); | ||||
|     }); | ||||
| #endif | ||||
|   } else {  | ||||
|  | ||||
|     // Case of SIMD split AND checker dim cannot currently be hit, except in  | ||||
| @@ -301,11 +360,19 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs | ||||
|  | ||||
|   { | ||||
|     auto table = MapCshiftTable(); | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     autoView(rhs_v , rhs, AcceleratorRead); | ||||
|     autoView(lhs_v , lhs, AcceleratorWrite); | ||||
|     accelerator_for(i,ent,vobj::Nsimd(),{ | ||||
|       coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second])); | ||||
|     }); | ||||
| #else | ||||
|     autoView(rhs_v , rhs, CpuRead); | ||||
|     autoView(lhs_v , lhs, CpuWrite); | ||||
|     thread_for(i,ent,{ | ||||
|       lhs_v[table[i].first]=rhs_v[table[i].second]; | ||||
|     }); | ||||
| #endif | ||||
|   } | ||||
| } | ||||
|  | ||||
| @@ -345,11 +412,19 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo | ||||
|  | ||||
|   { | ||||
|     auto table = MapCshiftTable(); | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     autoView( rhs_v, rhs, AcceleratorRead); | ||||
|     autoView( lhs_v, lhs, AcceleratorWrite); | ||||
|     accelerator_for(i,ent,1,{ | ||||
|       permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type); | ||||
|     }); | ||||
| #else | ||||
|     autoView( rhs_v, rhs, CpuRead); | ||||
|     autoView( lhs_v, lhs, CpuWrite); | ||||
|     thread_for(i,ent,{ | ||||
|       permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type); | ||||
|     }); | ||||
| #endif | ||||
|   } | ||||
| } | ||||
|  | ||||
|   | ||||
| @@ -31,7 +31,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid);  | ||||
| const int Cshift_verbose=0; | ||||
|  | ||||
| template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift) | ||||
| { | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
| @@ -55,17 +55,17 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension | ||||
|   RealD t1,t0; | ||||
|   t0=usecond(); | ||||
|   if ( !comm_dim ) { | ||||
|     //    std::cout << "CSHIFT: Cshift_local" <<std::endl; | ||||
|     //std::cout << "CSHIFT: Cshift_local" <<std::endl; | ||||
|     Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding | ||||
|   } else if ( splice_dim ) { | ||||
|     //    std::cout << "CSHIFT: Cshift_comms_simd call - splice_dim = " << splice_dim << " shift " << shift << " dimension = " << dimension << std::endl; | ||||
|     //std::cout << "CSHIFT: Cshift_comms_simd call - splice_dim = " << splice_dim << " shift " << shift << " dimension = " << dimension << std::endl; | ||||
|     Cshift_comms_simd(ret,rhs,dimension,shift); | ||||
|   } else { | ||||
|     //    std::cout << "CSHIFT: Cshift_comms" <<std::endl; | ||||
|     //std::cout << "CSHIFT: Cshift_comms" <<std::endl; | ||||
|     Cshift_comms(ret,rhs,dimension,shift); | ||||
|   } | ||||
|   t1=usecond(); | ||||
|   if(Cshift_verbose) std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl; | ||||
|   //  std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl; | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
| @@ -94,16 +94,18 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob | ||||
|   sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even); | ||||
|   sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd); | ||||
|  | ||||
|   //  std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.Checkerboard()<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl; | ||||
|   //std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.checkerboard<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl; | ||||
|   if ( sshift[0] == sshift[1] ) { | ||||
|     //    std::cout << "Single pass Cshift_comms" <<std::endl; | ||||
|     //std::cout << "Single pass Cshift_comms" <<std::endl; | ||||
|     Cshift_comms_simd(ret,rhs,dimension,shift,0x3); | ||||
|   } else { | ||||
|     //    std::cout << "Two pass Cshift_comms" <<std::endl; | ||||
|     //std::cout << "Two pass Cshift_comms" <<std::endl; | ||||
|     Cshift_comms_simd(ret,rhs,dimension,shift,0x1);// if checkerboard is unfavourable take two passes | ||||
|     Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration | ||||
|   } | ||||
| } | ||||
| #define ACCELERATOR_CSHIFT_NO_COPY | ||||
| #ifdef ACCELERATOR_CSHIFT_NO_COPY | ||||
| template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) | ||||
| { | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
| @@ -123,12 +125,8 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r | ||||
|   assert(shift<fd); | ||||
|    | ||||
|   int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension]; | ||||
|   static deviceVector<vobj> send_buf; send_buf.resize(buffer_size); | ||||
|   static deviceVector<vobj> recv_buf; recv_buf.resize(buffer_size); | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|   static hostVector<vobj> hsend_buf; hsend_buf.resize(buffer_size); | ||||
|   static hostVector<vobj> hrecv_buf; hrecv_buf.resize(buffer_size); | ||||
| #endif | ||||
|   static cshiftVector<vobj> send_buf; send_buf.resize(buffer_size); | ||||
|   static cshiftVector<vobj> recv_buf; recv_buf.resize(buffer_size); | ||||
|      | ||||
|   int cb= (cbmask==0x2)? Odd : Even; | ||||
|   int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb); | ||||
| @@ -160,31 +158,18 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r | ||||
|       //      int rank           = grid->_processor; | ||||
|       int recv_from_rank; | ||||
|       int xmit_to_rank; | ||||
|  | ||||
|       grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank); | ||||
|        | ||||
|       tcomms-=usecond(); | ||||
|       grid->Barrier(); | ||||
|       //      grid->Barrier(); | ||||
|  | ||||
| #ifdef ACCELERATOR_AWARE_MPI | ||||
|       grid->SendToRecvFrom((void *)&send_buf[0], | ||||
| 			   xmit_to_rank, | ||||
| 			   (void *)&recv_buf[0], | ||||
| 			   recv_from_rank, | ||||
| 			   bytes); | ||||
| #else | ||||
|       // bouncy bouncy | ||||
|       acceleratorCopyFromDevice(&send_buf[0],&hsend_buf[0],bytes); | ||||
|       grid->SendToRecvFrom((void *)&hsend_buf[0], | ||||
| 			   xmit_to_rank, | ||||
| 			   (void *)&hrecv_buf[0], | ||||
| 			   recv_from_rank, | ||||
| 			   bytes); | ||||
|       acceleratorCopyToDevice(&hrecv_buf[0],&recv_buf[0],bytes); | ||||
| #endif | ||||
|  | ||||
|       xbytes+=bytes; | ||||
|       grid->Barrier(); | ||||
|       //      grid->Barrier(); | ||||
|       tcomms+=usecond(); | ||||
|  | ||||
|       tscatter-=usecond(); | ||||
| @@ -192,13 +177,13 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r | ||||
|       tscatter+=usecond(); | ||||
|     } | ||||
|   } | ||||
|   if (Cshift_verbose){ | ||||
|     std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl; | ||||
|   } | ||||
|   /* | ||||
|   std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl; | ||||
|   */ | ||||
| } | ||||
|  | ||||
| template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) | ||||
| @@ -216,9 +201,9 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|   int simd_layout     = grid->_simd_layout[dimension]; | ||||
|   int comm_dim        = grid->_processors[dimension] >1 ; | ||||
|  | ||||
|   //  std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd | ||||
|   //	    << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout  | ||||
|   //	    << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl; | ||||
|   //std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd | ||||
|   //    << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout  | ||||
|   //    << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl; | ||||
|  | ||||
|   assert(comm_dim==1); | ||||
|   assert(simd_layout==2); | ||||
| @@ -239,8 +224,8 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|   int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension]; | ||||
|   //  int words = sizeof(vobj)/sizeof(vector_type); | ||||
|  | ||||
|   static std::vector<deviceVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd); | ||||
|   static std::vector<deviceVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd); | ||||
|   static std::vector<cshiftVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd); | ||||
|   static std::vector<cshiftVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd); | ||||
|   scalar_object *  recv_buf_extract_mpi; | ||||
|   scalar_object *  send_buf_extract_mpi; | ||||
|   | ||||
| @@ -248,10 +233,6 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|     send_buf_extract[s].resize(buffer_size); | ||||
|     recv_buf_extract[s].resize(buffer_size); | ||||
|   } | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|   hostVector<scalar_object> hsend_buf; hsend_buf.resize(buffer_size); | ||||
|   hostVector<scalar_object> hrecv_buf; hrecv_buf.resize(buffer_size); | ||||
| #endif | ||||
|  | ||||
|   int bytes = buffer_size*sizeof(scalar_object); | ||||
|  | ||||
| @@ -300,29 +281,18 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
| 	grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);  | ||||
|  | ||||
| 	tcomms-=usecond(); | ||||
| 	grid->Barrier(); | ||||
| 	//	grid->Barrier(); | ||||
|  | ||||
| 	send_buf_extract_mpi = &send_buf_extract[nbr_lane][0]; | ||||
| 	recv_buf_extract_mpi = &recv_buf_extract[i][0]; | ||||
| #ifdef ACCELERATOR_AWARE_MPI | ||||
| 	grid->SendToRecvFrom((void *)send_buf_extract_mpi, | ||||
| 			     xmit_to_rank, | ||||
| 			     (void *)recv_buf_extract_mpi, | ||||
| 			     recv_from_rank, | ||||
| 			     bytes); | ||||
| #else | ||||
|       // bouncy bouncy | ||||
| 	acceleratorCopyFromDevice((void *)send_buf_extract_mpi,(void *)&hsend_buf[0],bytes); | ||||
| 	grid->SendToRecvFrom((void *)&hsend_buf[0], | ||||
| 			     xmit_to_rank, | ||||
| 			     (void *)&hrecv_buf[0], | ||||
| 			     recv_from_rank, | ||||
| 			     bytes); | ||||
| 	acceleratorCopyToDevice((void *)&hrecv_buf[0],(void *)recv_buf_extract_mpi,bytes); | ||||
| #endif | ||||
|  | ||||
| 	xbytes+=bytes; | ||||
| 	grid->Barrier(); | ||||
| 	//	grid->Barrier(); | ||||
| 	tcomms+=usecond(); | ||||
|  | ||||
| 	rpointers[i] = &recv_buf_extract[i][0]; | ||||
| @@ -335,15 +305,242 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|     Scatter_plane_merge(ret,rpointers,dimension,x,cbmask); | ||||
|     tscatter+=usecond(); | ||||
|   } | ||||
|   if(Cshift_verbose){ | ||||
|     std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl; | ||||
|   /* | ||||
|   std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl; | ||||
|   */ | ||||
| } | ||||
| #else  | ||||
| template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) | ||||
| { | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|  | ||||
|   GridBase *grid=rhs.Grid(); | ||||
|   Lattice<vobj> temp(rhs.Grid()); | ||||
|  | ||||
|   int fd              = rhs.Grid()->_fdimensions[dimension]; | ||||
|   int rd              = rhs.Grid()->_rdimensions[dimension]; | ||||
|   int pd              = rhs.Grid()->_processors[dimension]; | ||||
|   int simd_layout     = rhs.Grid()->_simd_layout[dimension]; | ||||
|   int comm_dim        = rhs.Grid()->_processors[dimension] >1 ; | ||||
|   assert(simd_layout==1); | ||||
|   assert(comm_dim==1); | ||||
|   assert(shift>=0); | ||||
|   assert(shift<fd); | ||||
|   RealD tcopy=0.0; | ||||
|   RealD tgather=0.0; | ||||
|   RealD tscatter=0.0; | ||||
|   RealD tcomms=0.0; | ||||
|   uint64_t xbytes=0; | ||||
|    | ||||
|   int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension]; | ||||
|   static cshiftVector<vobj> send_buf_v; send_buf_v.resize(buffer_size); | ||||
|   static cshiftVector<vobj> recv_buf_v; recv_buf_v.resize(buffer_size); | ||||
|   vobj *send_buf; | ||||
|   vobj *recv_buf; | ||||
|   { | ||||
|     grid->ShmBufferFreeAll(); | ||||
|     size_t bytes = buffer_size*sizeof(vobj); | ||||
|     send_buf=(vobj *)grid->ShmBufferMalloc(bytes); | ||||
|     recv_buf=(vobj *)grid->ShmBufferMalloc(bytes); | ||||
|   } | ||||
|      | ||||
|   int cb= (cbmask==0x2)? Odd : Even; | ||||
|   int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb); | ||||
|  | ||||
|   for(int x=0;x<rd;x++){        | ||||
|  | ||||
|     int sx        =  (x+sshift)%rd; | ||||
|     int comm_proc = ((x+sshift)/rd)%pd; | ||||
|      | ||||
|     if (comm_proc==0) { | ||||
|  | ||||
|       tcopy-=usecond(); | ||||
|       Copy_plane(ret,rhs,dimension,x,sx,cbmask);  | ||||
|       tcopy+=usecond(); | ||||
|  | ||||
|     } else { | ||||
|  | ||||
|       int words = buffer_size; | ||||
|       if (cbmask != 0x3) words=words>>1; | ||||
|  | ||||
|       int bytes = words * sizeof(vobj); | ||||
|  | ||||
|       tgather-=usecond(); | ||||
|       Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask); | ||||
|       tgather+=usecond(); | ||||
|  | ||||
|       //      int rank           = grid->_processor; | ||||
|       int recv_from_rank; | ||||
|       int xmit_to_rank; | ||||
|       grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank); | ||||
|  | ||||
|  | ||||
|       tcomms-=usecond(); | ||||
|       //      grid->Barrier(); | ||||
|  | ||||
|       acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes); | ||||
|       grid->SendToRecvFrom((void *)&send_buf[0], | ||||
| 			   xmit_to_rank, | ||||
| 			   (void *)&recv_buf[0], | ||||
| 			   recv_from_rank, | ||||
| 			   bytes); | ||||
|       xbytes+=bytes; | ||||
|       acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes); | ||||
|  | ||||
|       //      grid->Barrier(); | ||||
|       tcomms+=usecond(); | ||||
|  | ||||
|       tscatter-=usecond(); | ||||
|       Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask); | ||||
|       tscatter+=usecond(); | ||||
|     } | ||||
|   } | ||||
|   /* | ||||
|   std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl; | ||||
|   */ | ||||
| } | ||||
|  | ||||
| template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) | ||||
| { | ||||
|   GridBase *grid=rhs.Grid(); | ||||
|   const int Nsimd = grid->Nsimd(); | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_object scalar_object; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|     | ||||
|   int fd = grid->_fdimensions[dimension]; | ||||
|   int rd = grid->_rdimensions[dimension]; | ||||
|   int ld = grid->_ldimensions[dimension]; | ||||
|   int pd = grid->_processors[dimension]; | ||||
|   int simd_layout     = grid->_simd_layout[dimension]; | ||||
|   int comm_dim        = grid->_processors[dimension] >1 ; | ||||
|  | ||||
|   //std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd | ||||
|   //    << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout  | ||||
|   //    << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl; | ||||
|  | ||||
|   assert(comm_dim==1); | ||||
|   assert(simd_layout==2); | ||||
|   assert(shift>=0); | ||||
|   assert(shift<fd); | ||||
|   RealD tcopy=0.0; | ||||
|   RealD tgather=0.0; | ||||
|   RealD tscatter=0.0; | ||||
|   RealD tcomms=0.0; | ||||
|   uint64_t xbytes=0; | ||||
|  | ||||
|   int permute_type=grid->PermuteType(dimension); | ||||
|  | ||||
|   /////////////////////////////////////////////// | ||||
|   // Simd direction uses an extract/merge pair | ||||
|   /////////////////////////////////////////////// | ||||
|   int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension]; | ||||
|   //  int words = sizeof(vobj)/sizeof(vector_type); | ||||
|  | ||||
|   static std::vector<cshiftVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd); | ||||
|   static std::vector<cshiftVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd); | ||||
|   scalar_object *  recv_buf_extract_mpi; | ||||
|   scalar_object *  send_buf_extract_mpi; | ||||
|   { | ||||
|     size_t bytes = sizeof(scalar_object)*buffer_size; | ||||
|     grid->ShmBufferFreeAll(); | ||||
|     send_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes); | ||||
|     recv_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes); | ||||
|   } | ||||
|   for(int s=0;s<Nsimd;s++){ | ||||
|     send_buf_extract[s].resize(buffer_size); | ||||
|     recv_buf_extract[s].resize(buffer_size); | ||||
|   } | ||||
|  | ||||
|   int bytes = buffer_size*sizeof(scalar_object); | ||||
|  | ||||
|   ExtractPointerArray<scalar_object>  pointers(Nsimd); //  | ||||
|   ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers | ||||
|  | ||||
|   /////////////////////////////////////////// | ||||
|   // Work out what to send where | ||||
|   /////////////////////////////////////////// | ||||
|   int cb    = (cbmask==0x2)? Odd : Even; | ||||
|   int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb); | ||||
|  | ||||
|   // loop over outer coord planes orthog to dim | ||||
|   for(int x=0;x<rd;x++){        | ||||
|  | ||||
|     // FIXME call local permute copy if none are offnode. | ||||
|     for(int i=0;i<Nsimd;i++){        | ||||
|       pointers[i] = &send_buf_extract[i][0]; | ||||
|     } | ||||
|     tgather-=usecond(); | ||||
|     int sx   = (x+sshift)%rd; | ||||
|     Gather_plane_extract(rhs,pointers,dimension,sx,cbmask); | ||||
|     tgather+=usecond(); | ||||
|  | ||||
|     for(int i=0;i<Nsimd;i++){ | ||||
|        | ||||
|       int inner_bit = (Nsimd>>(permute_type+1)); | ||||
|       int ic= (i&inner_bit)? 1:0; | ||||
|  | ||||
|       int my_coor          = rd*ic + x; | ||||
|       int nbr_coor         = my_coor+sshift; | ||||
|       int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors | ||||
|  | ||||
|       int nbr_ic   = (nbr_coor%ld)/rd;    // inner coord of peer | ||||
|       int nbr_ox   = (nbr_coor%rd);       // outer coord of peer | ||||
|       int nbr_lane = (i&(~inner_bit)); | ||||
|  | ||||
|       int recv_from_rank; | ||||
|       int xmit_to_rank; | ||||
|  | ||||
|       if (nbr_ic) nbr_lane|=inner_bit; | ||||
|  | ||||
|       assert (sx == nbr_ox); | ||||
|  | ||||
|       if(nbr_proc){ | ||||
| 	grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);  | ||||
|  | ||||
| 	tcomms-=usecond(); | ||||
| 	//	grid->Barrier(); | ||||
|  | ||||
| 	acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes); | ||||
| 	grid->SendToRecvFrom((void *)send_buf_extract_mpi, | ||||
| 			     xmit_to_rank, | ||||
| 			     (void *)recv_buf_extract_mpi, | ||||
| 			     recv_from_rank, | ||||
| 			     bytes); | ||||
| 	acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes); | ||||
| 	xbytes+=bytes; | ||||
|  | ||||
| 	//	grid->Barrier(); | ||||
| 	tcomms+=usecond(); | ||||
| 	rpointers[i] = &recv_buf_extract[i][0]; | ||||
|       } else {  | ||||
| 	rpointers[i] = &send_buf_extract[nbr_lane][0]; | ||||
|       } | ||||
|  | ||||
|     } | ||||
|     tscatter-=usecond(); | ||||
|     Scatter_plane_merge(ret,rpointers,dimension,x,cbmask); | ||||
|     tscatter+=usecond(); | ||||
|  | ||||
|   } | ||||
|   /* | ||||
|   std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s"<<std::endl; | ||||
|   */ | ||||
| } | ||||
| #endif | ||||
| NAMESPACE_END(Grid);  | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -1,5 +1,5 @@ | ||||
| #include <Grid/GridCore.h>        | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| std::vector<std::pair<int,int> > Cshift_table;  | ||||
| deviceVector<std::pair<int,int> > Cshift_table_device;  | ||||
| commVector<std::pair<int,int> > Cshift_table_device;  | ||||
| NAMESPACE_END(Grid); | ||||
|   | ||||
| @@ -257,30 +257,17 @@ void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice | ||||
|   }); | ||||
| } | ||||
|  | ||||
| #define FAST_AXPY_NORM | ||||
| template<class sobj,class vobj> inline | ||||
| RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y) | ||||
| { | ||||
|   GRID_TRACE("axpy_norm"); | ||||
| #ifdef FAST_AXPY_NORM | ||||
|   return axpy_norm_fast(ret,a,x,y); | ||||
| #else | ||||
|   ret = a*x+y; | ||||
|   RealD nn=norm2(ret); | ||||
|   return nn; | ||||
| #endif | ||||
|     return axpy_norm_fast(ret,a,x,y); | ||||
| } | ||||
| template<class sobj,class vobj> inline | ||||
| RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y) | ||||
| { | ||||
|   GRID_TRACE("axpby_norm"); | ||||
| #ifdef FAST_AXPY_NORM | ||||
|   return axpby_norm_fast(ret,a,b,x,y); | ||||
| #else | ||||
|   ret = a*x+b*y; | ||||
|   RealD nn=norm2(ret); | ||||
|   return nn; | ||||
| #endif | ||||
|     return axpby_norm_fast(ret,a,b,x,y); | ||||
| } | ||||
|  | ||||
| /// Trace product | ||||
|   | ||||
| @@ -234,23 +234,10 @@ public: | ||||
|   } | ||||
|  | ||||
|   template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){ | ||||
|     vobj vtmp; | ||||
|     vtmp = r; | ||||
| #if 0 | ||||
|     deviceVector<vobj> vvtmp(1); | ||||
|     acceleratorPut(vvtmp[0],vtmp); | ||||
|     vobj *vvtmp_p = & vvtmp[0]; | ||||
|     auto me  = View(AcceleratorWrite); | ||||
|     accelerator_for(ss,me.size(),vobj::Nsimd(),{ | ||||
| 	auto stmp=coalescedRead(*vvtmp_p); | ||||
| 	coalescedWrite(me[ss],stmp); | ||||
|     }); | ||||
| #else     | ||||
|     auto me  = View(CpuWrite); | ||||
|     thread_for(ss,me.size(),{ | ||||
|        me[ss]= r; | ||||
|       }); | ||||
| #endif     | ||||
| 	me[ss]= r; | ||||
|     }); | ||||
|     me.ViewClose(); | ||||
|     return *this; | ||||
|   } | ||||
| @@ -373,7 +360,7 @@ public: | ||||
|  | ||||
| template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){ | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   for(int64_t g=0;g<o.Grid()->_gsites;g++){ | ||||
|   for(int g=0;g<o.Grid()->_gsites;g++){ | ||||
|  | ||||
|     Coordinate gcoor; | ||||
|     o.Grid()->GlobalIndexToGlobalCoor(g,gcoor); | ||||
|   | ||||
| @@ -53,19 +53,36 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm) | ||||
|   typedef decltype(basis[0]) Field; | ||||
|   typedef decltype(basis[0].View(AcceleratorRead)) View; | ||||
|  | ||||
|   hostVector<View>  h_basis_v(basis.size()); | ||||
|   deviceVector<View> d_basis_v(basis.size()); | ||||
|   typedef typename std::remove_reference<decltype(h_basis_v[0][0])>::type vobj; | ||||
|   Vector<View> basis_v; basis_v.reserve(basis.size()); | ||||
|   typedef typename std::remove_reference<decltype(basis_v[0][0])>::type vobj; | ||||
|   typedef typename std::remove_reference<decltype(Qt(0,0))>::type Coeff_t; | ||||
|  | ||||
|   GridBase* grid = basis[0].Grid(); | ||||
|        | ||||
|   for(int k=0;k<basis.size();k++){ | ||||
|     h_basis_v[k] = basis[k].View(AcceleratorWrite); | ||||
|     acceleratorPut(d_basis_v[k],h_basis_v[k]); | ||||
|     basis_v.push_back(basis[k].View(AcceleratorWrite)); | ||||
|   } | ||||
|  | ||||
|   View *basis_vp = &d_basis_v[0]; | ||||
| #if ( !(defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)) ) | ||||
|   int max_threads = thread_max(); | ||||
|   Vector < vobj > Bt(Nm * max_threads); | ||||
|   thread_region | ||||
|     { | ||||
|       vobj* B = &Bt[Nm * thread_num()]; | ||||
|       thread_for_in_region(ss, grid->oSites(),{ | ||||
| 	  for(int j=j0; j<j1; ++j) B[j]=0.; | ||||
|        | ||||
| 	  for(int j=j0; j<j1; ++j){ | ||||
| 	    for(int k=k0; k<k1; ++k){ | ||||
| 	      B[j] +=Qt(j,k) * basis_v[k][ss]; | ||||
| 	    } | ||||
| 	  } | ||||
| 	  for(int j=j0; j<j1; ++j){ | ||||
| 	    basis_v[j][ss] = B[j]; | ||||
| 	  } | ||||
| 	}); | ||||
|     } | ||||
| #else | ||||
|   View *basis_vp = &basis_v[0]; | ||||
|  | ||||
|   int nrot = j1-j0; | ||||
|   if (!nrot) // edge case not handled gracefully by Cuda | ||||
| @@ -74,19 +91,17 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm) | ||||
|   uint64_t oSites   =grid->oSites(); | ||||
|   uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead | ||||
|  | ||||
|   deviceVector <vobj> Bt(siteBlock * nrot);  | ||||
|   Vector <vobj> Bt(siteBlock * nrot);  | ||||
|   auto Bp=&Bt[0]; | ||||
|  | ||||
|   // GPU readable copy of matrix | ||||
|   hostVector<Coeff_t> h_Qt_jv(Nm*Nm); | ||||
|   deviceVector<Coeff_t> Qt_jv(Nm*Nm); | ||||
|   Vector<Coeff_t> Qt_jv(Nm*Nm); | ||||
|   Coeff_t *Qt_p = & Qt_jv[0]; | ||||
|   thread_for(i,Nm*Nm,{ | ||||
|       int j = i/Nm; | ||||
|       int k = i%Nm; | ||||
|       h_Qt_jv[i]=Qt(j,k); | ||||
|       Qt_p[i]=Qt(j,k); | ||||
|   }); | ||||
|   acceleratorCopyToDevice(&h_Qt_jv[0],Qt_p,Nm*Nm*sizeof(Coeff_t)); | ||||
|  | ||||
|   // Block the loop to keep storage footprint down | ||||
|   for(uint64_t s=0;s<oSites;s+=siteBlock){ | ||||
| @@ -122,8 +137,9 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm) | ||||
| 	coalescedWrite(basis_vp[jj][sss],coalescedRead(Bp[ss*nrot+j])); | ||||
|       }); | ||||
|   } | ||||
| #endif | ||||
|  | ||||
|   for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose(); | ||||
|   for(int k=0;k<basis.size();k++) basis_v[k].ViewClose(); | ||||
| } | ||||
|  | ||||
| // Extract a single rotated vector | ||||
| @@ -136,19 +152,16 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in | ||||
|  | ||||
|   result.Checkerboard() = basis[0].Checkerboard(); | ||||
|  | ||||
|   hostVector<View>  h_basis_v(basis.size()); | ||||
|   deviceVector<View> d_basis_v(basis.size()); | ||||
|   Vector<View> basis_v; basis_v.reserve(basis.size()); | ||||
|   for(int k=0;k<basis.size();k++){ | ||||
|     h_basis_v[k]=basis[k].View(AcceleratorRead); | ||||
|     acceleratorPut(d_basis_v[k],h_basis_v[k]); | ||||
|     basis_v.push_back(basis[k].View(AcceleratorRead)); | ||||
|   } | ||||
|  | ||||
|   vobj zz=Zero(); | ||||
|   deviceVector<double> Qt_jv(Nm); | ||||
|   Vector<double> Qt_jv(Nm); | ||||
|   double * Qt_j = & Qt_jv[0]; | ||||
|   for(int k=0;k<Nm;++k) acceleratorPut(Qt_j[k],Qt(j,k)); | ||||
|   for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k); | ||||
|  | ||||
|   auto basis_vp=& d_basis_v[0]; | ||||
|   auto basis_vp=& basis_v[0]; | ||||
|   autoView(result_v,result,AcceleratorWrite); | ||||
|   accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{ | ||||
|     vobj zzz=Zero(); | ||||
| @@ -158,7 +171,7 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in | ||||
|     } | ||||
|     coalescedWrite(result_v[ss], B); | ||||
|   }); | ||||
|   for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose(); | ||||
|   for(int k=0;k<basis.size();k++) basis_v[k].ViewClose(); | ||||
| } | ||||
|  | ||||
| template<class Field> | ||||
|   | ||||
| @@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class vobj> void DumpSliceNorm(std::string s,const Lattice<vobj> &f,int mu=-1) | ||||
| template<class vobj> void DumpSliceNorm(std::string s,Lattice<vobj> &f,int mu=-1) | ||||
| { | ||||
|   auto ff = localNorm2(f); | ||||
|   if ( mu==-1 ) mu = f.Grid()->Nd()-1; | ||||
|   | ||||
| @@ -165,7 +165,7 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site) | ||||
|  | ||||
|   int Nsimd = grid->Nsimd(); | ||||
|  | ||||
|   //  assert( l.Checkerboard()== grid->CheckerBoard(site)); | ||||
|   assert( l.Checkerboard()== grid->CheckerBoard(site)); | ||||
|   assert( sizeof(sobj)*Nsimd == sizeof(vobj)); | ||||
|  | ||||
|   static const int words=sizeof(vobj)/sizeof(vector_type); | ||||
| @@ -179,7 +179,7 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site) | ||||
|   for(int w=0;w<words;w++){ | ||||
|     pt[w] = getlane(vp[w],idx); | ||||
|   } | ||||
|   //  std::cout << "peekLocalSite "<<site<<" "<<odx<<","<<idx<<" "<<s<<std::endl; | ||||
|        | ||||
|   return; | ||||
| }; | ||||
| template<class vobj,class sobj> | ||||
| @@ -202,7 +202,7 @@ inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site) | ||||
|  | ||||
|   int Nsimd = grid->Nsimd(); | ||||
|  | ||||
|   //  assert( l.Checkerboard()== grid->CheckerBoard(site)); | ||||
|   assert( l.Checkerboard()== grid->CheckerBoard(site)); | ||||
|   assert( sizeof(sobj)*Nsimd == sizeof(vobj)); | ||||
|  | ||||
|   static const int words=sizeof(vobj)/sizeof(vector_type); | ||||
|   | ||||
| @@ -46,7 +46,7 @@ inline typename vobj::scalar_object sum_cpu(const vobj *arg, Integer osites) | ||||
|   //  const int Nsimd = vobj::Nsimd(); | ||||
|   const int nthread = GridThread::GetThreads(); | ||||
|  | ||||
|   std::vector<sobj> sumarray(nthread); | ||||
|   Vector<sobj> sumarray(nthread); | ||||
|   for(int i=0;i<nthread;i++){ | ||||
|     sumarray[i]=Zero(); | ||||
|   } | ||||
| @@ -75,7 +75,7 @@ inline typename vobj::scalar_objectD sumD_cpu(const vobj *arg, Integer osites) | ||||
|  | ||||
|   const int nthread = GridThread::GetThreads(); | ||||
|  | ||||
|   std::vector<sobj> sumarray(nthread); | ||||
|   Vector<sobj> sumarray(nthread); | ||||
|   for(int i=0;i<nthread;i++){ | ||||
|     sumarray[i]=Zero(); | ||||
|   } | ||||
| @@ -204,27 +204,6 @@ template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){ | ||||
|   return real(nrm);  | ||||
| } | ||||
|  | ||||
|  | ||||
| template<class Op,class T1> | ||||
| inline auto norm2(const LatticeUnaryExpression<Op,T1> & expr)  ->RealD | ||||
| { | ||||
|   return norm2(closure(expr)); | ||||
| } | ||||
|  | ||||
| template<class Op,class T1,class T2> | ||||
| inline auto norm2(const LatticeBinaryExpression<Op,T1,T2> & expr)      ->RealD | ||||
| { | ||||
|   return norm2(closure(expr)); | ||||
| } | ||||
|  | ||||
|  | ||||
| template<class Op,class T1,class T2,class T3> | ||||
| inline auto norm2(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)      ->RealD | ||||
| { | ||||
|   return norm2(closure(expr)); | ||||
| } | ||||
|  | ||||
|  | ||||
| //The global maximum of the site norm2 | ||||
| template<class vobj> inline RealD maxLocalNorm2(const Lattice<vobj> &arg) | ||||
| { | ||||
| @@ -264,8 +243,24 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> & | ||||
|   const uint64_t sites = grid->oSites(); | ||||
|    | ||||
|   // Might make all code paths go this way. | ||||
| #if 0 | ||||
|   typedef decltype(innerProductD(vobj(),vobj())) inner_t; | ||||
|   Vector<inner_t> inner_tmp(sites); | ||||
|   auto inner_tmp_v = &inner_tmp[0]; | ||||
|   { | ||||
|     autoView( left_v , left, AcceleratorRead); | ||||
|     autoView( right_v,right, AcceleratorRead); | ||||
|     // This code could read coalesce | ||||
|     // GPU - SIMT lane compliance... | ||||
|     accelerator_for( ss, sites, nsimd,{ | ||||
| 	auto x_l = left_v(ss); | ||||
| 	auto y_l = right_v(ss); | ||||
| 	coalescedWrite(inner_tmp_v[ss],innerProductD(x_l,y_l)); | ||||
|     }); | ||||
|   } | ||||
| #else | ||||
|   typedef decltype(innerProduct(vobj(),vobj())) inner_t; | ||||
|   deviceVector<inner_t> inner_tmp(sites); | ||||
|   Vector<inner_t> inner_tmp(sites); | ||||
|   auto inner_tmp_v = &inner_tmp[0]; | ||||
|      | ||||
|   { | ||||
| @@ -279,6 +274,7 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> & | ||||
| 	coalescedWrite(inner_tmp_v[ss],innerProduct(x_l,y_l)); | ||||
|     }); | ||||
|   } | ||||
| #endif | ||||
|   // This is in single precision and fails some tests | ||||
|   auto anrm = sumD(inner_tmp_v,sites);   | ||||
|   nrm = anrm; | ||||
| @@ -289,47 +285,13 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> & | ||||
| template<class vobj> | ||||
| inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) { | ||||
|   GridBase *grid = left.Grid(); | ||||
|  | ||||
|   bool ok; | ||||
| #ifdef GRID_SYCL | ||||
|   uint64_t csum=0; | ||||
|   uint64_t csum2=0; | ||||
|   if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone) | ||||
|   { | ||||
|     // Hack | ||||
|     // Fast integer xor checksum. Can also be used in comms now. | ||||
|     autoView(l_v,left,AcceleratorRead); | ||||
|     Integer words = left.Grid()->oSites()*sizeof(vobj)/sizeof(uint64_t); | ||||
|     uint64_t *base= (uint64_t *)&l_v[0]; | ||||
|     csum=svm_xor(base,words); | ||||
|     ok = FlightRecorder::CsumLog(csum); | ||||
|     if ( !ok ) { | ||||
|       csum2=svm_xor(base,words); | ||||
|       std::cerr<< " Bad CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl; | ||||
|     } else { | ||||
|       //      csum2=svm_xor(base,words); | ||||
|       //      std::cerr<< " ok CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl; | ||||
|     } | ||||
|     assert(ok); | ||||
|   } | ||||
| #endif | ||||
|   FlightRecorder::StepLog("rank inner product"); | ||||
|   uint32_t csum=0; | ||||
|   //  Uint32Checksum(left,csum); | ||||
|   ComplexD nrm = rankInnerProduct(left,right); | ||||
|   //  ComplexD nrmck=nrm; | ||||
|   RealD local = real(nrm); | ||||
|   ok = FlightRecorder::NormLog(real(nrm)); | ||||
|   if ( !ok ) { | ||||
|     ComplexD nrm2 = rankInnerProduct(left,right); | ||||
|     RealD local2 = real(nrm2); | ||||
|     std::cerr<< " Bad NORM " << local << " recomputed as "<<local2<<std::endl; | ||||
|     assert(ok); | ||||
|   } | ||||
|   FlightRecorder::StepLog("Start global sum"); | ||||
|   //  grid->GlobalSumP2P(nrm); | ||||
|   GridNormLog(real(nrm),csum); // Could log before and after global sum to distinguish local and MPI | ||||
|   grid->GlobalSum(nrm); | ||||
|   FlightRecorder::StepLog("Finished global sum"); | ||||
|   //  std::cout << " norm "<< nrm << " p2p norm "<<nrmck<<std::endl; | ||||
|   FlightRecorder::ReductionLog(local,real(nrm));  | ||||
|   GridMPINormLog(local,real(nrm));  | ||||
|   return nrm; | ||||
| } | ||||
|  | ||||
| @@ -365,9 +327,20 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt | ||||
|   autoView( x_v, x, AcceleratorRead); | ||||
|   autoView( y_v, y, AcceleratorRead); | ||||
|   autoView( z_v, z, AcceleratorWrite); | ||||
| #if 0 | ||||
|   typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t; | ||||
|   Vector<inner_t> inner_tmp(sites); | ||||
|   auto inner_tmp_v = &inner_tmp[0]; | ||||
|  | ||||
|   accelerator_for( ss, sites, nsimd,{ | ||||
|       auto tmp = a*x_v(ss)+b*y_v(ss); | ||||
|       coalescedWrite(inner_tmp_v[ss],innerProductD(tmp,tmp)); | ||||
|       coalescedWrite(z_v[ss],tmp); | ||||
|   }); | ||||
|   nrm = real(TensorRemove(sum(inner_tmp_v,sites))); | ||||
| #else | ||||
|   typedef decltype(innerProduct(x_v[0],y_v[0])) inner_t; | ||||
|   deviceVector<inner_t> inner_tmp; | ||||
|   inner_tmp.resize(sites); | ||||
|   Vector<inner_t> inner_tmp(sites); | ||||
|   auto inner_tmp_v = &inner_tmp[0]; | ||||
|  | ||||
|   accelerator_for( ss, sites, nsimd,{ | ||||
| @@ -375,44 +348,9 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt | ||||
|       coalescedWrite(inner_tmp_v[ss],innerProduct(tmp,tmp)); | ||||
|       coalescedWrite(z_v[ss],tmp); | ||||
|   }); | ||||
|   bool ok; | ||||
| #ifdef GRID_SYCL | ||||
|   uint64_t csum=0; | ||||
|   uint64_t csum2=0; | ||||
|   if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone) | ||||
|   { | ||||
|     // z_v | ||||
|     { | ||||
|       Integer words = sites*sizeof(vobj)/sizeof(uint64_t); | ||||
|       uint64_t *base= (uint64_t *)&z_v[0]; | ||||
|       csum=svm_xor(base,words); | ||||
|       ok = FlightRecorder::CsumLog(csum); | ||||
|       if ( !ok ) { | ||||
| 	csum2=svm_xor(base,words); | ||||
| 	std::cerr<< " Bad z_v CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl; | ||||
|       } | ||||
|       assert(ok); | ||||
|     } | ||||
|     // inner_v | ||||
|     { | ||||
|       Integer words = sites*sizeof(inner_t)/sizeof(uint64_t); | ||||
|       uint64_t *base= (uint64_t *)&inner_tmp_v[0]; | ||||
|       csum=svm_xor(base,words); | ||||
|       ok = FlightRecorder::CsumLog(csum); | ||||
|       if ( !ok ) { | ||||
| 	csum2=svm_xor(base,words); | ||||
| 	std::cerr<< " Bad inner_tmp_v CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl; | ||||
|       } | ||||
|       assert(ok); | ||||
|     } | ||||
|   } | ||||
| #endif | ||||
|   nrm = real(TensorRemove(sumD(inner_tmp_v,sites))); | ||||
|   ok = FlightRecorder::NormLog(real(nrm)); | ||||
|   assert(ok); | ||||
|   RealD local = real(nrm); | ||||
| #endif | ||||
|   grid->GlobalSum(nrm); | ||||
|   FlightRecorder::ReductionLog(local,real(nrm)); | ||||
|   return nrm;  | ||||
| } | ||||
|   | ||||
| @@ -422,7 +360,7 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti | ||||
|   conformable(left,right); | ||||
|  | ||||
|   typedef typename vobj::vector_typeD vector_type; | ||||
|   std::vector<ComplexD> tmp(2); | ||||
|   Vector<ComplexD> tmp(2); | ||||
|  | ||||
|   GridBase *grid = left.Grid(); | ||||
|  | ||||
| @@ -432,8 +370,8 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti | ||||
|   // GPU | ||||
|   typedef decltype(innerProductD(vobj(),vobj())) inner_t; | ||||
|   typedef decltype(innerProductD(vobj(),vobj())) norm_t; | ||||
|   deviceVector<inner_t> inner_tmp(sites); | ||||
|   deviceVector<norm_t>  norm_tmp(sites); | ||||
|   Vector<inner_t> inner_tmp(sites); | ||||
|   Vector<norm_t>  norm_tmp(sites); | ||||
|   auto inner_tmp_v = &inner_tmp[0]; | ||||
|   auto norm_tmp_v = &norm_tmp[0]; | ||||
|   { | ||||
| @@ -483,9 +421,7 @@ inline auto sum(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr) | ||||
| // sliceSum, sliceInnerProduct, sliceAxpy, sliceNorm etc... | ||||
| ////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
| template<class vobj> inline void sliceSum(const Lattice<vobj> &Data, | ||||
| 					  std::vector<typename vobj::scalar_object> &result, | ||||
| 					  int orthogdim) | ||||
| template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<typename vobj::scalar_object> &result,int orthogdim) | ||||
| { | ||||
|   /////////////////////////////////////////////////////// | ||||
|   // FIXME precision promoted summation | ||||
| @@ -507,8 +443,8 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data, | ||||
|   int ld=grid->_ldimensions[orthogdim]; | ||||
|   int rd=grid->_rdimensions[orthogdim]; | ||||
|  | ||||
|   std::vector<vobj> lvSum(rd); // will locally sum vectors first | ||||
|   std::vector<sobj> lsSum(ld,Zero());                    // sum across these down to scalars | ||||
|   Vector<vobj> lvSum(rd); // will locally sum vectors first | ||||
|   Vector<sobj> lsSum(ld,Zero());                    // sum across these down to scalars | ||||
|   ExtractBuffer<sobj> extracted(Nsimd);                  // splitting the SIMD | ||||
|  | ||||
|   result.resize(fd); // And then global sum to return the same vector to every node  | ||||
| @@ -556,8 +492,6 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data, | ||||
|   scalar_type * ptr = (scalar_type *) &result[0]; | ||||
|   int words = fd*sizeof(sobj)/sizeof(scalar_type); | ||||
|   grid->GlobalSumVector(ptr, words); | ||||
|   //  std::cout << GridLogMessage << " sliceSum local"<<t_sum<<" us, host+mpi "<<t_rest<<std::endl; | ||||
|    | ||||
| } | ||||
| template<class vobj> inline | ||||
| std::vector<typename vobj::scalar_object>  | ||||
| @@ -568,20 +502,7 @@ sliceSum(const Lattice<vobj> &Data,int orthogdim) | ||||
|   return result; | ||||
| } | ||||
|  | ||||
| /* | ||||
| Reimplement | ||||
|  | ||||
| 1) | ||||
| template<class vobj> | ||||
| static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)  | ||||
|  | ||||
| 2) | ||||
| template<class vobj> | ||||
| static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)  | ||||
|  | ||||
| 3) | ||||
| -- Make Slice Mul Matrix call sliceMaddMatrix | ||||
|  */ | ||||
| template<class vobj> | ||||
| static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)  | ||||
| { | ||||
| @@ -601,8 +522,8 @@ static void sliceInnerProductVector( std::vector<ComplexD> & result, const Latti | ||||
|   int ld=grid->_ldimensions[orthogdim]; | ||||
|   int rd=grid->_rdimensions[orthogdim]; | ||||
|  | ||||
|   std::vector<vector_type> lvSum(rd); // will locally sum vectors first | ||||
|   std::vector<scalar_type > lsSum(ld,scalar_type(0.0));                    // sum across these down to scalars | ||||
|   Vector<vector_type> lvSum(rd); // will locally sum vectors first | ||||
|   Vector<scalar_type > lsSum(ld,scalar_type(0.0));                    // sum across these down to scalars | ||||
|   ExtractBuffer<iScalar<scalar_type> > extracted(Nsimd);   // splitting the SIMD   | ||||
|  | ||||
|   result.resize(fd); // And then global sum to return the same vector to every node for IO to file | ||||
| @@ -732,96 +653,203 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice | ||||
|   } | ||||
| }; | ||||
|  | ||||
| /* | ||||
| inline GridBase         *makeSubSliceGrid(const GridBase *BlockSolverGrid,int Orthog) | ||||
| { | ||||
|   int NN    = BlockSolverGrid->_ndimension; | ||||
|   int nsimd = BlockSolverGrid->Nsimd(); | ||||
|    | ||||
|   std::vector<int> latt_phys(NN-1); | ||||
|   Coordinate simd_phys; | ||||
|   std::vector<int>  mpi_phys(NN-1); | ||||
|   Coordinate checker_dim_mask(NN-1); | ||||
|   int checker_dim=-1; | ||||
|   std::vector<int> latt_phys(0); | ||||
|   std::vector<int> simd_phys(0); | ||||
|   std::vector<int>  mpi_phys(0); | ||||
|    | ||||
|   int dd; | ||||
|   for(int d=0;d<NN;d++){ | ||||
|     if( d!=Orthog ) {  | ||||
|       latt_phys[dd]=BlockSolverGrid->_fdimensions[d]; | ||||
|       mpi_phys[dd] =BlockSolverGrid->_processors[d]; | ||||
|       checker_dim_mask[dd] = BlockSolverGrid->_checker_dim_mask[d]; | ||||
|       if ( d == BlockSolverGrid->_checker_dim ) checker_dim = dd; | ||||
|       dd++; | ||||
|       latt_phys.push_back(BlockSolverGrid->_fdimensions[d]); | ||||
|       simd_phys.push_back(BlockSolverGrid->_simd_layout[d]); | ||||
|       mpi_phys.push_back(BlockSolverGrid->_processors[d]); | ||||
|     } | ||||
|   } | ||||
|   simd_phys=GridDefaultSimd(latt_phys.size(),nsimd); | ||||
|   GridCartesian *tmp         = new GridCartesian(latt_phys,simd_phys,mpi_phys); | ||||
|   if(BlockSolverGrid->_isCheckerBoarded) { | ||||
|     GridRedBlackCartesian *ret = new GridRedBlackCartesian(tmp,checker_dim_mask,checker_dim); | ||||
|     delete tmp; | ||||
|     return (GridBase *) ret; | ||||
|   } else {  | ||||
|     return (GridBase *) tmp; | ||||
|   } | ||||
|   return (GridBase *)new GridCartesian(latt_phys,simd_phys,mpi_phys);  | ||||
| } | ||||
| */ | ||||
|  | ||||
| template<class vobj> | ||||
| static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)  | ||||
| {     | ||||
|   GridBase *FullGrid = X.Grid(); | ||||
|   GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog); | ||||
|  | ||||
|   Lattice<vobj> Ys(SliceGrid); | ||||
|   Lattice<vobj> Rs(SliceGrid); | ||||
|   Lattice<vobj> Xs(SliceGrid); | ||||
|   Lattice<vobj> RR(FullGrid); | ||||
|  | ||||
|   RR = R; // Copies checkerboard for insert | ||||
|    | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   int Nslice = X.Grid()->GlobalDimensions()[Orthog]; | ||||
|   for(int i=0;i<Nslice;i++){ | ||||
|     ExtractSlice(Ys,Y,i,Orthog); | ||||
|     ExtractSlice(Rs,R,i,Orthog); | ||||
|     Rs=Ys; | ||||
|     for(int j=0;j<Nslice;j++){ | ||||
|       ExtractSlice(Xs,X,j,Orthog); | ||||
|       Rs = Rs + Xs*(scale*aa(j,i)); | ||||
|     } | ||||
|     InsertSlice(Rs,RR,i,Orthog); | ||||
|  | ||||
|   int Nblock = X.Grid()->GlobalDimensions()[Orthog]; | ||||
|  | ||||
|   GridBase *FullGrid  = X.Grid(); | ||||
|   //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog); | ||||
|  | ||||
|   //  Lattice<vobj> Xslice(SliceGrid); | ||||
|   //  Lattice<vobj> Rslice(SliceGrid); | ||||
|  | ||||
|   assert( FullGrid->_simd_layout[Orthog]==1); | ||||
|   //  int nh =  FullGrid->_ndimension; | ||||
|   //  int nl = SliceGrid->_ndimension; | ||||
|   //  int nl = nh-1; | ||||
|  | ||||
|   //FIXME package in a convenient iterator | ||||
|   //Should loop over a plane orthogonal to direction "Orthog" | ||||
|   int stride=FullGrid->_slice_stride[Orthog]; | ||||
|   int block =FullGrid->_slice_block [Orthog]; | ||||
|   int nblock=FullGrid->_slice_nblock[Orthog]; | ||||
|   int ostride=FullGrid->_ostride[Orthog]; | ||||
|  | ||||
|   autoView( X_v, X, CpuRead); | ||||
|   autoView( Y_v, Y, CpuRead); | ||||
|   autoView( R_v, R, CpuWrite); | ||||
|   thread_region | ||||
|   { | ||||
|     Vector<vobj> s_x(Nblock); | ||||
|  | ||||
|     thread_for_collapse_in_region(2, n,nblock, { | ||||
|      for(int b=0;b<block;b++){ | ||||
|       int o  = n*stride + b; | ||||
|  | ||||
|       for(int i=0;i<Nblock;i++){ | ||||
| 	s_x[i] = X_v[o+i*ostride]; | ||||
|       } | ||||
|  | ||||
|       vobj dot; | ||||
|       for(int i=0;i<Nblock;i++){ | ||||
| 	dot = Y_v[o+i*ostride]; | ||||
| 	for(int j=0;j<Nblock;j++){ | ||||
| 	  dot = dot + s_x[j]*(scale*aa(j,i)); | ||||
| 	} | ||||
| 	R_v[o+i*ostride]=dot; | ||||
|       } | ||||
|     }}); | ||||
|   } | ||||
|   R=RR; // Copy back handles arguments aliasing case | ||||
|   delete SliceGrid; | ||||
| }; | ||||
|  | ||||
| template<class vobj> | ||||
| static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)  | ||||
| {     | ||||
|   R=Zero(); | ||||
|   sliceMaddMatrix(R,aa,X,R,Orthog,scale); | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   int Nblock = X.Grid()->GlobalDimensions()[Orthog]; | ||||
|  | ||||
|   GridBase *FullGrid  = X.Grid(); | ||||
|   //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog); | ||||
|   //  Lattice<vobj> Xslice(SliceGrid); | ||||
|   //  Lattice<vobj> Rslice(SliceGrid); | ||||
|  | ||||
|   assert( FullGrid->_simd_layout[Orthog]==1); | ||||
|   //  int nh =  FullGrid->_ndimension; | ||||
|   //  int nl = SliceGrid->_ndimension; | ||||
|   //  int nl=1; | ||||
|  | ||||
|   //FIXME package in a convenient iterator | ||||
|   // thread_for2d_in_region | ||||
|   //Should loop over a plane orthogonal to direction "Orthog" | ||||
|   int stride=FullGrid->_slice_stride[Orthog]; | ||||
|   int block =FullGrid->_slice_block [Orthog]; | ||||
|   int nblock=FullGrid->_slice_nblock[Orthog]; | ||||
|   int ostride=FullGrid->_ostride[Orthog]; | ||||
|   autoView( R_v, R, CpuWrite); | ||||
|   autoView( X_v, X, CpuRead); | ||||
|   thread_region | ||||
|   { | ||||
|     std::vector<vobj> s_x(Nblock); | ||||
|  | ||||
|  | ||||
|     thread_for_collapse_in_region( 2 ,n,nblock,{ | ||||
|     for(int b=0;b<block;b++){ | ||||
|       int o  = n*stride + b; | ||||
|  | ||||
|       for(int i=0;i<Nblock;i++){ | ||||
| 	s_x[i] = X_v[o+i*ostride]; | ||||
|       } | ||||
|  | ||||
|       vobj dot; | ||||
|       for(int i=0;i<Nblock;i++){ | ||||
| 	dot = s_x[0]*(scale*aa(0,i)); | ||||
| 	for(int j=1;j<Nblock;j++){ | ||||
| 	  dot = dot + s_x[j]*(scale*aa(j,i)); | ||||
| 	} | ||||
| 	R_v[o+i*ostride]=dot; | ||||
|       } | ||||
|     }}); | ||||
|   } | ||||
| }; | ||||
|  | ||||
|  | ||||
| template<class vobj> | ||||
| static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)  | ||||
| { | ||||
|   GridBase *SliceGrid = makeSubSliceGrid(lhs.Grid(),Orthog); | ||||
|  | ||||
|   Lattice<vobj> ls(SliceGrid); | ||||
|   Lattice<vobj> rs(SliceGrid); | ||||
|    | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   int Nslice = lhs.Grid()->GlobalDimensions()[Orthog]; | ||||
|   mat = Eigen::MatrixXcd::Zero(Nslice,Nslice); | ||||
|   for(int s=0;s<Nslice;s++){ | ||||
|     ExtractSlice(ls,lhs,s,Orthog); | ||||
|     for(int ss=0;ss<Nslice;ss++){ | ||||
|       ExtractSlice(rs,rhs,ss,Orthog); | ||||
|       mat(s,ss) = innerProduct(ls,rs); | ||||
|    | ||||
|   GridBase *FullGrid  = lhs.Grid(); | ||||
|   //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog); | ||||
|    | ||||
|   int Nblock = FullGrid->GlobalDimensions()[Orthog]; | ||||
|    | ||||
|   //  Lattice<vobj> Lslice(SliceGrid); | ||||
|   //  Lattice<vobj> Rslice(SliceGrid); | ||||
|    | ||||
|   mat = Eigen::MatrixXcd::Zero(Nblock,Nblock); | ||||
|  | ||||
|   assert( FullGrid->_simd_layout[Orthog]==1); | ||||
|   //  int nh =  FullGrid->_ndimension; | ||||
|   //  int nl = SliceGrid->_ndimension; | ||||
|   //  int nl = nh-1; | ||||
|  | ||||
|   //FIXME package in a convenient iterator | ||||
|   //Should loop over a plane orthogonal to direction "Orthog" | ||||
|   int stride=FullGrid->_slice_stride[Orthog]; | ||||
|   int block =FullGrid->_slice_block [Orthog]; | ||||
|   int nblock=FullGrid->_slice_nblock[Orthog]; | ||||
|   int ostride=FullGrid->_ostride[Orthog]; | ||||
|  | ||||
|   typedef typename vobj::vector_typeD vector_typeD; | ||||
|  | ||||
|   autoView( lhs_v, lhs, CpuRead); | ||||
|   autoView( rhs_v, rhs, CpuRead); | ||||
|   thread_region | ||||
|   { | ||||
|     std::vector<vobj> Left(Nblock); | ||||
|     std::vector<vobj> Right(Nblock); | ||||
|     Eigen::MatrixXcd  mat_thread = Eigen::MatrixXcd::Zero(Nblock,Nblock); | ||||
|  | ||||
|     thread_for_collapse_in_region( 2, n,nblock,{ | ||||
|     for(int b=0;b<block;b++){ | ||||
|  | ||||
|       int o  = n*stride + b; | ||||
|  | ||||
|       for(int i=0;i<Nblock;i++){ | ||||
| 	Left [i] = lhs_v[o+i*ostride]; | ||||
| 	Right[i] = rhs_v[o+i*ostride]; | ||||
|       } | ||||
|  | ||||
|       for(int i=0;i<Nblock;i++){ | ||||
|       for(int j=0;j<Nblock;j++){ | ||||
| 	auto tmp = innerProduct(Left[i],Right[j]); | ||||
| 	auto rtmp = TensorRemove(tmp); | ||||
| 	auto red  =  Reduce(rtmp); | ||||
| 	mat_thread(i,j) += std::complex<double>(real(red),imag(red)); | ||||
|       }} | ||||
|     }}); | ||||
|     thread_critical | ||||
|     { | ||||
|       mat += mat_thread; | ||||
|     }   | ||||
|   } | ||||
|   delete SliceGrid; | ||||
|  | ||||
|   for(int i=0;i<Nblock;i++){ | ||||
|   for(int j=0;j<Nblock;j++){ | ||||
|     ComplexD sum = mat(i,j); | ||||
|     FullGrid->GlobalSum(sum); | ||||
|     mat(i,j)=sum; | ||||
|   }} | ||||
|  | ||||
|   return; | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|   | ||||
| @@ -214,12 +214,22 @@ inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osi | ||||
|   // Move out of UVM | ||||
|   // Turns out I had messed up the synchronise after move to compute stream | ||||
|   // as running this on the default stream fools the synchronise | ||||
|   deviceVector<sobj> buffer(numBlocks); | ||||
| #undef UVM_BLOCK_BUFFER   | ||||
| #ifndef UVM_BLOCK_BUFFER   | ||||
|   commVector<sobj> buffer(numBlocks); | ||||
|   sobj *buffer_v = &buffer[0]; | ||||
|   sobj result; | ||||
|   reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size); | ||||
|   accelerator_barrier(); | ||||
|   acceleratorCopyFromDevice(buffer_v,&result,sizeof(result)); | ||||
| #else | ||||
|   Vector<sobj> buffer(numBlocks); | ||||
|   sobj *buffer_v = &buffer[0]; | ||||
|   sobj result; | ||||
|   reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size); | ||||
|   accelerator_barrier(); | ||||
|   result = *buffer_v; | ||||
| #endif | ||||
|   return result; | ||||
| } | ||||
|  | ||||
| @@ -234,7 +244,7 @@ inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osi | ||||
|    | ||||
|   const int words = sizeof(vobj)/sizeof(vector); | ||||
|  | ||||
|   deviceVector<vector> buffer(osites); | ||||
|   Vector<vector> buffer(osites); | ||||
|   vector *dat = (vector *)lat; | ||||
|   vector *buf = &buffer[0]; | ||||
|   iScalar<vector> *tbuf =(iScalar<vector> *)  &buffer[0]; | ||||
|   | ||||
| @@ -4,28 +4,29 @@ NAMESPACE_BEGIN(Grid); | ||||
| // Possibly promote to double and sum | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|  | ||||
| template <class vobj> | ||||
| inline typename vobj::scalar_objectD sumD_gpu_tensor(const vobj *lat, Integer osites)  | ||||
| { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_objectD sobjD; | ||||
|  | ||||
|   sobj *mysum =(sobj *) malloc_shared(sizeof(sobj),*theGridAccelerator); | ||||
|   sobj identity; zeroit(identity); | ||||
|   sobj ret; zeroit(ret); | ||||
|   sobj ret ;  | ||||
|  | ||||
|   Integer nsimd= vobj::Nsimd(); | ||||
|   {  | ||||
|     sycl::buffer<sobj, 1> abuff(&ret, {1}); | ||||
|     theGridAccelerator->submit([&](sycl::handler &cgh) { | ||||
|       auto Reduction = sycl::reduction(abuff,cgh,identity,std::plus<>()); | ||||
|       cgh.parallel_for(sycl::range<1>{osites}, | ||||
|                       Reduction, | ||||
|                       [=] (sycl::id<1> item, auto &sum) { | ||||
|                         auto osite   = item[0]; | ||||
|                         sum +=Reduce(lat[osite]); | ||||
|                       }); | ||||
|     }); | ||||
|   } | ||||
|    | ||||
|   theGridAccelerator->submit([&](cl::sycl::handler &cgh) { | ||||
|      auto Reduction = cl::sycl::reduction(mysum,identity,std::plus<>()); | ||||
|      cgh.parallel_for(cl::sycl::range<1>{osites}, | ||||
| 		      Reduction, | ||||
| 		      [=] (cl::sycl::id<1> item, auto &sum) { | ||||
|       auto osite   = item[0]; | ||||
|       sum +=Reduce(lat[osite]); | ||||
|      }); | ||||
|    }); | ||||
|   theGridAccelerator->wait(); | ||||
|   ret = mysum[0]; | ||||
|   free(mysum,*theGridAccelerator); | ||||
|   sobjD dret; convertType(dret,ret); | ||||
|   return dret; | ||||
| } | ||||
| @@ -68,25 +69,57 @@ inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osite | ||||
|   return result; | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| template<class Word> Word svm_xor(Word *vec,uint64_t L) | ||||
| /* | ||||
| template<class Double> Double svm_reduce(Double *vec,uint64_t L) | ||||
| { | ||||
|   Word identity;  identity=0; | ||||
|   Word ret = 0; | ||||
|   {  | ||||
|     sycl::buffer<Word, 1> abuff(&ret, {1}); | ||||
|     theGridAccelerator->submit([&](sycl::handler &cgh) { | ||||
|       auto Reduction = sycl::reduction(abuff,cgh,identity,std::bit_xor<>()); | ||||
|       cgh.parallel_for(sycl::range<1>{L}, | ||||
|                       Reduction, | ||||
|                       [=] (sycl::id<1> index, auto &sum) { | ||||
|                         sum ^=vec[index]; | ||||
|                       }); | ||||
|     }); | ||||
|   } | ||||
|   Double sumResult; zeroit(sumResult); | ||||
|   Double *d_sum =(Double *)cl::sycl::malloc_shared(sizeof(Double),*theGridAccelerator); | ||||
|   Double identity;  zeroit(identity); | ||||
|   theGridAccelerator->submit([&](cl::sycl::handler &cgh) { | ||||
|      auto Reduction = cl::sycl::reduction(d_sum,identity,std::plus<>()); | ||||
|      cgh.parallel_for(cl::sycl::range<1>{L}, | ||||
| 		      Reduction, | ||||
| 		      [=] (cl::sycl::id<1> index, auto &sum) { | ||||
| 	 sum +=vec[index]; | ||||
|      }); | ||||
|    }); | ||||
|   theGridAccelerator->wait(); | ||||
|   Double ret = d_sum[0]; | ||||
|   free(d_sum,*theGridAccelerator); | ||||
|   std::cout << " svm_reduce finished "<<L<<" sites sum = " << ret <<std::endl; | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| template <class vobj> | ||||
| inline typename vobj::scalar_objectD sumD_gpu_repack(const vobj *lat, Integer osites) | ||||
| { | ||||
|   typedef typename vobj::vector_type  vector; | ||||
|   typedef typename vobj::scalar_type  scalar; | ||||
|  | ||||
|   typedef typename vobj::scalar_typeD scalarD; | ||||
|   typedef typename vobj::scalar_objectD sobjD; | ||||
|  | ||||
|   sobjD ret; | ||||
|   scalarD *ret_p = (scalarD *)&ret; | ||||
|    | ||||
|   const int nsimd = vobj::Nsimd(); | ||||
|   const int words = sizeof(vobj)/sizeof(vector); | ||||
|  | ||||
|   Vector<scalar> buffer(osites*nsimd); | ||||
|   scalar *buf = &buffer[0]; | ||||
|   vector *dat = (vector *)lat; | ||||
|  | ||||
|   for(int w=0;w<words;w++) { | ||||
|  | ||||
|     accelerator_for(ss,osites,nsimd,{ | ||||
| 	int lane = acceleratorSIMTlane(nsimd); | ||||
| 	buf[ss*nsimd+lane] = dat[ss*words+w].getlane(lane); | ||||
|     }); | ||||
|     //Precision change at this point is to late to gain precision | ||||
|     ret_p[w] = svm_reduce(buf,nsimd*osites); | ||||
|   } | ||||
|   return ret; | ||||
| } | ||||
| */ | ||||
|   | ||||
| @@ -365,14 +365,9 @@ public: | ||||
|     _bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1}); | ||||
|     _uid.resize(_vol,std::uniform_int_distribution<uint32_t>() ); | ||||
|   } | ||||
|   template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist) | ||||
|   { | ||||
|     if ( l.Grid()->_isCheckerBoarded ) { | ||||
|       Lattice<vobj> tmp(_grid); | ||||
|       fill(tmp,dist); | ||||
|       pickCheckerboard(l.Checkerboard(),l,tmp); | ||||
|       return; | ||||
|     } | ||||
|  | ||||
|   template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist){ | ||||
|  | ||||
|     typedef typename vobj::scalar_object scalar_object; | ||||
|     typedef typename vobj::scalar_type scalar_type; | ||||
|     typedef typename vobj::vector_type vector_type; | ||||
| @@ -435,7 +430,7 @@ public: | ||||
|     //////////////////////////////////////////////// | ||||
|     thread_for( lidx, _grid->lSites(), { | ||||
|  | ||||
| 	int64_t gidx; | ||||
| 	int gidx; | ||||
| 	int o_idx; | ||||
| 	int i_idx; | ||||
| 	int rank; | ||||
|   | ||||
| @@ -21,18 +21,9 @@ NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| #if defined(GRID_CUDA) || defined(GRID_HIP) | ||||
| template<class vobj> | ||||
| inline void sliceSumReduction_cub_small(const vobj *Data, | ||||
| 					std::vector<vobj> &lvSum, | ||||
| 					const int rd, | ||||
| 					const int e1, | ||||
| 					const int e2, | ||||
| 					const int stride, | ||||
| 					const int ostride, | ||||
| 					const int Nsimd) | ||||
| { | ||||
| template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) { | ||||
|   size_t subvol_size = e1*e2; | ||||
|   deviceVector<vobj> reduction_buffer(rd*subvol_size); | ||||
|   commVector<vobj> reduction_buffer(rd*subvol_size); | ||||
|   auto rb_p = &reduction_buffer[0]; | ||||
|   vobj zero_init; | ||||
|   zeroit(zero_init); | ||||
| @@ -55,7 +46,7 @@ inline void sliceSumReduction_cub_small(const vobj *Data, | ||||
|   d_offsets = static_cast<int*>(acceleratorAllocDevice((rd+1)*sizeof(int))); | ||||
|    | ||||
|   //copy offsets to device | ||||
|   acceleratorCopyToDeviceAsynch(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream); | ||||
|   acceleratorCopyToDeviceAsync(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream); | ||||
|    | ||||
|    | ||||
|   gpuError_t gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), zero_init, computeStream); | ||||
| @@ -88,7 +79,7 @@ inline void sliceSumReduction_cub_small(const vobj *Data, | ||||
|     exit(EXIT_FAILURE); | ||||
|   } | ||||
|    | ||||
|   acceleratorCopyFromDeviceAsynch(d_out,&lvSum[0],rd*sizeof(vobj),computeStream); | ||||
|   acceleratorCopyFromDeviceAsync(d_out,&lvSum[0],rd*sizeof(vobj),computeStream); | ||||
|    | ||||
|   //sync after copy | ||||
|   accelerator_barrier(); | ||||
| @@ -103,15 +94,7 @@ inline void sliceSumReduction_cub_small(const vobj *Data, | ||||
|  | ||||
|  | ||||
| #if defined(GRID_SYCL) | ||||
| template<class vobj> | ||||
| inline void sliceSumReduction_sycl_small(const vobj *Data, | ||||
| 					 std::vector <vobj> &lvSum, | ||||
| 					 const int  &rd, | ||||
| 					 const int &e1, | ||||
| 					 const int &e2, | ||||
| 					 const int &stride, | ||||
| 					 const int &ostride, | ||||
| 					 const int &Nsimd) | ||||
| template<class vobj> inline void sliceSumReduction_sycl_small(const vobj *Data, Vector <vobj> &lvSum, const int  &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd) | ||||
| { | ||||
|   size_t subvol_size = e1*e2; | ||||
|  | ||||
| @@ -122,7 +105,7 @@ inline void sliceSumReduction_sycl_small(const vobj *Data, | ||||
|     mysum[r] = vobj_zero;  | ||||
|   } | ||||
|  | ||||
|   deviceVector<vobj> reduction_buffer(rd*subvol_size);     | ||||
|   commVector<vobj> reduction_buffer(rd*subvol_size);     | ||||
|  | ||||
|   auto rb_p = &reduction_buffer[0]; | ||||
|  | ||||
| @@ -141,11 +124,11 @@ inline void sliceSumReduction_sycl_small(const vobj *Data, | ||||
|   }); | ||||
|  | ||||
|   for (int r = 0; r < rd; r++) { | ||||
|       theGridAccelerator->submit([&](sycl::handler &cgh) { | ||||
|           auto Reduction = sycl::reduction(&mysum[r],std::plus<>()); | ||||
|           cgh.parallel_for(sycl::range<1>{subvol_size}, | ||||
|       theGridAccelerator->submit([&](cl::sycl::handler &cgh) { | ||||
|           auto Reduction = cl::sycl::reduction(&mysum[r],std::plus<>()); | ||||
|           cgh.parallel_for(cl::sycl::range<1>{subvol_size}, | ||||
|           Reduction, | ||||
|           [=](sycl::id<1> item, auto &sum) { | ||||
|           [=](cl::sycl::id<1> item, auto &sum) { | ||||
|               auto s = item[0]; | ||||
|               sum += rb_p[r*subvol_size+s]; | ||||
|           }); | ||||
| @@ -161,23 +144,14 @@ inline void sliceSumReduction_sycl_small(const vobj *Data, | ||||
| } | ||||
| #endif | ||||
|  | ||||
| template<class vobj> | ||||
| inline void sliceSumReduction_large(const vobj *Data, | ||||
| 				    std::vector<vobj> &lvSum, | ||||
| 				    const int rd, | ||||
| 				    const int e1, | ||||
| 				    const int e2, | ||||
| 				    const int stride, | ||||
| 				    const int ostride, | ||||
| 				    const int Nsimd) | ||||
| { | ||||
| template<class vobj> inline void sliceSumReduction_large(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) { | ||||
|   typedef typename vobj::vector_type vector; | ||||
|   const int words = sizeof(vobj)/sizeof(vector); | ||||
|   const int osites = rd*e1*e2; | ||||
|   deviceVector<vector>buffer(osites); | ||||
|   commVector<vector>buffer(osites); | ||||
|   vector *dat = (vector *)Data; | ||||
|   vector *buf = &buffer[0]; | ||||
|   std::vector<vector> lvSum_small(rd); | ||||
|   Vector<vector> lvSum_small(rd); | ||||
|   vector *lvSum_ptr = (vector *)&lvSum[0]; | ||||
|  | ||||
|   for (int w = 0; w < words; w++) { | ||||
| @@ -194,18 +168,13 @@ inline void sliceSumReduction_large(const vobj *Data, | ||||
|     for (int r = 0; r < rd; r++) { | ||||
|       lvSum_ptr[w+words*r]=lvSum_small[r]; | ||||
|     } | ||||
|  | ||||
|   } | ||||
|  | ||||
|    | ||||
| } | ||||
|  | ||||
| template<class vobj> | ||||
| inline void sliceSumReduction_gpu(const Lattice<vobj> &Data, | ||||
| 				  std::vector<vobj> &lvSum, | ||||
| 				  const int rd, | ||||
| 				  const int e1, | ||||
| 				  const int e2, | ||||
| 				  const int stride, | ||||
| 				  const int ostride, | ||||
| 				  const int Nsimd) | ||||
| template<class vobj> inline void sliceSumReduction_gpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) | ||||
| { | ||||
|   autoView(Data_v, Data, AcceleratorRead); //reduction libraries cannot deal with large vobjs so we split into small/large case. | ||||
|     if constexpr (sizeof(vobj) <= 256) {  | ||||
| @@ -223,15 +192,7 @@ inline void sliceSumReduction_gpu(const Lattice<vobj> &Data, | ||||
| } | ||||
|  | ||||
|  | ||||
| template<class vobj> | ||||
| inline void sliceSumReduction_cpu(const Lattice<vobj> &Data, | ||||
| 				  std::vector<vobj> &lvSum, | ||||
| 				  const int &rd, | ||||
| 				  const int &e1, | ||||
| 				  const int &e2, | ||||
| 				  const int &stride, | ||||
| 				  const int &ostride, | ||||
| 				  const int &Nsimd) | ||||
| template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd) | ||||
| { | ||||
|   // sum over reduced dimension planes, breaking out orthog dir | ||||
|   // Parallel over orthog direction | ||||
| @@ -247,20 +208,16 @@ inline void sliceSumReduction_cpu(const Lattice<vobj> &Data, | ||||
|   }); | ||||
| } | ||||
|  | ||||
| template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data, | ||||
| 						   std::vector<vobj> &lvSum, | ||||
| 						   const int &rd, | ||||
| 						   const int &e1, | ||||
| 						   const int &e2, | ||||
| 						   const int &stride, | ||||
| 						   const int &ostride, | ||||
| 						   const int &Nsimd)  | ||||
| template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)  | ||||
| { | ||||
| #if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL) | ||||
|   #if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL) | ||||
|    | ||||
|   sliceSumReduction_gpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd); | ||||
| #else | ||||
|    | ||||
|   #else | ||||
|   sliceSumReduction_cpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd); | ||||
| #endif | ||||
|  | ||||
|   #endif | ||||
| } | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -276,33 +276,18 @@ inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData, | ||||
|  | ||||
|   autoView( coarseData_ , coarseData, AcceleratorWrite); | ||||
|   autoView( ip_         , ip,         AcceleratorWrite); | ||||
|   RealD t_IP=0; | ||||
|   RealD t_co=0; | ||||
|   RealD t_za=0; | ||||
|   for(int v=0;v<nbasis;v++) { | ||||
|     t_IP-=usecond(); | ||||
|     blockInnerProductD(ip,Basis[v],fineDataRed); // ip = <basis|fine> | ||||
|     t_IP+=usecond(); | ||||
|     t_co-=usecond(); | ||||
|     accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), { | ||||
| 	convertType(coarseData_[sc](v),ip_[sc]); | ||||
|     }); | ||||
|     t_co+=usecond(); | ||||
|  | ||||
|     // improve numerical stability of projection | ||||
|     // |fine> = |fine> - <basis|fine> |basis> | ||||
|     ip=-ip; | ||||
|     t_za-=usecond(); | ||||
|     blockZAXPY(fineDataRed,ip,Basis[v],fineDataRed);  | ||||
|     t_za+=usecond(); | ||||
|   } | ||||
|   //  std::cout << GridLogPerformance << " blockProject : blockInnerProduct :  "<<t_IP<<" us"<<std::endl; | ||||
|   //  std::cout << GridLogPerformance << " blockProject : conv              :  "<<t_co<<" us"<<std::endl; | ||||
|   //  std::cout << GridLogPerformance << " blockProject : blockZaxpy        :  "<<t_za<<" us"<<std::endl; | ||||
| } | ||||
| // This only minimises data motion from CPU to GPU | ||||
| // there is chance of better implementation that does a vxk loop of inner products to data share | ||||
| // at the GPU thread level | ||||
| template<class vobj,class CComplex,int nbasis,class VLattice> | ||||
| inline void batchBlockProject(std::vector<Lattice<iVector<CComplex,nbasis>>> &coarseData, | ||||
|                                const std::vector<Lattice<vobj>> &fineData, | ||||
| @@ -408,15 +393,8 @@ template<class vobj,class CComplex> | ||||
|   Lattice<dotp> coarse_inner(coarse); | ||||
|  | ||||
|   // Precision promotion | ||||
|   RealD t; | ||||
|   t=-usecond(); | ||||
|   fine_inner = localInnerProductD<vobj>(fineX,fineY); | ||||
|   //  t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : localInnerProductD "<<t<<" us"<<std::endl; | ||||
|    | ||||
|   t=-usecond(); | ||||
|   blockSum(coarse_inner,fine_inner); | ||||
|   //  t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : blockSum "<<t<<" us"<<std::endl; | ||||
|   t=-usecond(); | ||||
|   { | ||||
|     autoView( CoarseInner_  , CoarseInner,AcceleratorWrite); | ||||
|     autoView( coarse_inner_ , coarse_inner,AcceleratorRead); | ||||
| @@ -424,7 +402,6 @@ template<class vobj,class CComplex> | ||||
|       convertType(CoarseInner_[ss], TensorRemove(coarse_inner_[ss])); | ||||
|     }); | ||||
|   } | ||||
|   //  t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : convertType "<<t<<" us"<<std::endl; | ||||
|   | ||||
| } | ||||
|  | ||||
| @@ -467,9 +444,6 @@ inline void blockNormalise(Lattice<CComplex> &ip,Lattice<vobj> &fineX) | ||||
| template<class vobj> | ||||
| inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)  | ||||
| { | ||||
|   const int maxsubsec=256; | ||||
|   typedef iVector<vobj,maxsubsec> vSubsec; | ||||
|  | ||||
|   GridBase * fine  = fineData.Grid(); | ||||
|   GridBase * coarse= coarseData.Grid(); | ||||
|  | ||||
| @@ -489,40 +463,22 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData) | ||||
|   autoView( coarseData_ , coarseData, AcceleratorWrite); | ||||
|   autoView( fineData_   , fineData, AcceleratorRead); | ||||
|  | ||||
|   auto coarseData_p  = &coarseData_[0]; | ||||
|   auto fineData_p    = &fineData_[0]; | ||||
|   auto coarseData_p = &coarseData_[0]; | ||||
|   auto fineData_p = &fineData_[0]; | ||||
|    | ||||
|   Coordinate fine_rdimensions = fine->_rdimensions; | ||||
|   Coordinate coarse_rdimensions = coarse->_rdimensions; | ||||
|  | ||||
|   vobj zz = Zero(); | ||||
|  | ||||
|   // Somewhat lazy calculation | ||||
|   // Find the biggest power of two subsection divisor less than or equal to maxsubsec | ||||
|   int subsec=maxsubsec; | ||||
|   int subvol; | ||||
|   subvol=blockVol/subsec; | ||||
|   while(subvol*subsec!=blockVol){ | ||||
|     subsec = subsec/2; | ||||
|     subvol=blockVol/subsec; | ||||
|   }; | ||||
|  | ||||
|   Lattice<vSubsec> coarseTmp(coarse); | ||||
|   autoView( coarseTmp_, coarseTmp, AcceleratorWriteDiscard); | ||||
|   auto coarseTmp_p= &coarseTmp_[0]; | ||||
|    | ||||
|   // Sum within subsecs in a first kernel | ||||
|   accelerator_for(sce,subsec*coarse->oSites(),vobj::Nsimd(),{ | ||||
|  | ||||
|       int sc=sce/subsec; | ||||
|       int e=sce%subsec; | ||||
|   accelerator_for(sc,coarse->oSites(),1,{ | ||||
|  | ||||
|       // One thread per sub block | ||||
|       Coordinate coor_c(_ndimension); | ||||
|       Lexicographic::CoorFromIndex(coor_c,sc,coarse_rdimensions);  // Block coordinate | ||||
|  | ||||
|       auto cd = coalescedRead(zz); | ||||
|       for(int sb=e*subvol;sb<MIN((e+1)*subvol,blockVol);sb++){ | ||||
|       vobj cd = Zero(); | ||||
|        | ||||
|       for(int sb=0;sb<blockVol;sb++){ | ||||
|  | ||||
| 	int sf; | ||||
| 	Coordinate coor_b(_ndimension); | ||||
| 	Coordinate coor_f(_ndimension); | ||||
| @@ -530,21 +486,12 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData) | ||||
| 	for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d] + coor_b[d]; | ||||
| 	Lexicographic::IndexFromCoor(coor_f,sf,fine_rdimensions); | ||||
|  | ||||
| 	cd=cd+coalescedRead(fineData_p[sf]); | ||||
| 	cd=cd+fineData_p[sf]; | ||||
|       } | ||||
|  | ||||
|       coalescedWrite(coarseTmp_[sc](e),cd); | ||||
|       coarseData_p[sc] = cd; | ||||
|  | ||||
|     }); | ||||
|    // Sum across subsecs in a second kernel | ||||
|    accelerator_for(sc,coarse->oSites(),vobj::Nsimd(),{ | ||||
|       auto cd = coalescedRead(coarseTmp_p[sc](0)); | ||||
|       for(int e=1;e<subsec;e++){ | ||||
| 	cd=cd+coalescedRead(coarseTmp_p[sc](e)); | ||||
|       } | ||||
|       coalescedWrite(coarseData_p[sc],cd); | ||||
|    }); | ||||
|  | ||||
|   return; | ||||
| } | ||||
|  | ||||
| @@ -601,7 +548,7 @@ inline void blockOrthogonalise(Lattice<CComplex> &ip,std::vector<Lattice<vobj> > | ||||
|   blockOrthonormalize(ip,Basis); | ||||
| } | ||||
|  | ||||
| #ifdef GRID_ACCELERATED | ||||
| #if 0 | ||||
| // TODO: CPU optimized version here | ||||
| template<class vobj,class CComplex,int nbasis> | ||||
| inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData, | ||||
| @@ -627,37 +574,26 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData, | ||||
|   autoView( fineData_   , fineData, AcceleratorWrite); | ||||
|   autoView( coarseData_ , coarseData, AcceleratorRead); | ||||
|  | ||||
|   typedef LatticeView<vobj> Vview; | ||||
|   std::vector<Vview> AcceleratorVecViewContainer_h;  | ||||
|   for(int v=0;v<nbasis;v++) { | ||||
|     AcceleratorVecViewContainer_h.push_back(Basis[v].View(AcceleratorRead)); | ||||
|   } | ||||
|   static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(nbasis);  | ||||
|   acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],nbasis *sizeof(Vview)); | ||||
|   auto Basis_p = &AcceleratorVecViewContainer[0]; | ||||
|   // Loop with a cache friendly loop ordering | ||||
|   Coordinate frdimensions=fine->_rdimensions; | ||||
|   Coordinate crdimensions=coarse->_rdimensions; | ||||
|   accelerator_for(sf,fine->oSites(),vobj::Nsimd(),{ | ||||
|   accelerator_for(sf,fine->oSites(),1,{ | ||||
|     int sc; | ||||
|     Coordinate coor_c(_ndimension); | ||||
|     Coordinate coor_f(_ndimension); | ||||
|  | ||||
|     Lexicographic::CoorFromIndex(coor_f,sf,frdimensions); | ||||
|     Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions); | ||||
|     for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d]; | ||||
|     Lexicographic::IndexFromCoor(coor_c,sc,crdimensions); | ||||
|     Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions); | ||||
|  | ||||
|     auto sum= coarseData_(sc)(0) *Basis_p[0](sf); | ||||
|     for(int i=1;i<nbasis;i++) sum = sum + coarseData_(sc)(i)*Basis_p[i](sf); | ||||
|     coalescedWrite(fineData_[sf],sum); | ||||
|     for(int i=0;i<nbasis;i++) { | ||||
|       /*      auto basis_ = Basis[i],  );*/ | ||||
|       if(i==0) fineData_[sf]=coarseData_[sc](i) *basis_[sf]); | ||||
|       else     fineData_[sf]=fineData_[sf]+coarseData_[sc](i)*basis_[sf]); | ||||
|     } | ||||
|   }); | ||||
|   for(int v=0;v<nbasis;v++) { | ||||
|     AcceleratorVecViewContainer_h[v].ViewClose(); | ||||
|   } | ||||
|   return; | ||||
|    | ||||
| } | ||||
| #else | ||||
| // CPU version | ||||
| template<class vobj,class CComplex,int nbasis,class VLattice> | ||||
| inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData, | ||||
| 			 Lattice<vobj>   &fineData, | ||||
| @@ -744,11 +680,7 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   const int words=sizeof(vobj)/sizeof(vector_type); | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // checks should guarantee that the operations are local | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   static const int words=sizeof(vobj)/sizeof(vector_type); | ||||
|  | ||||
|   GridBase *Fg = From.Grid(); | ||||
|   GridBase *Tg = To.Grid(); | ||||
| @@ -763,83 +695,38 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro | ||||
|   for(int d=0;d<nd;d++){ | ||||
|     assert(Fg->_processors[d]  == Tg->_processors[d]); | ||||
|   } | ||||
|   // the above should guarantee that the operations are local | ||||
|    | ||||
|   /////////////////////////////////////////////////////////// | ||||
|   // do the index calc on the GPU | ||||
|   /////////////////////////////////////////////////////////// | ||||
|   Coordinate f_ostride = Fg->_ostride; | ||||
|   Coordinate f_istride = Fg->_istride; | ||||
|   Coordinate f_rdimensions = Fg->_rdimensions; | ||||
|   Coordinate t_ostride = Tg->_ostride; | ||||
|   Coordinate t_istride = Tg->_istride; | ||||
|   Coordinate t_rdimensions = Tg->_rdimensions; | ||||
| #if 1 | ||||
|  | ||||
|   size_t nsite = 1; | ||||
|   for(int i=0;i<nd;i++) nsite *= RegionSize[i]; | ||||
|    | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   size_t tbytes = 4*nsite*sizeof(int); | ||||
|   int *table = (int*)malloc(tbytes); | ||||
|   | ||||
|   autoView(from_v,From,AcceleratorRead); | ||||
|   autoView(to_v,To,AcceleratorWrite); | ||||
|  | ||||
|   accelerator_for(idx,nsite,1,{ | ||||
|  | ||||
|       Coordinate from_coor, to_coor, base; | ||||
|       Lexicographic::CoorFromIndex(base,idx,RegionSize); | ||||
|   thread_for(idx, nsite, { | ||||
|       Coordinate from_coor, to_coor; | ||||
|       size_t rem = idx; | ||||
|       for(int i=0;i<nd;i++){ | ||||
| 	from_coor[i] = base[i] + FromLowerLeft[i]; | ||||
| 	to_coor[i] = base[i] + ToLowerLeft[i]; | ||||
| 	size_t base_i  = rem % RegionSize[i]; rem /= RegionSize[i]; | ||||
| 	from_coor[i] = base_i + FromLowerLeft[i]; | ||||
| 	to_coor[i] = base_i + ToLowerLeft[i]; | ||||
|       } | ||||
|       int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]); | ||||
|       int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]); | ||||
|       int to_oidx   = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]); | ||||
|       int to_lane   = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]); | ||||
|        | ||||
|       const vector_type* from = (const vector_type *)&from_v[from_oidx]; | ||||
|       vector_type* to = (vector_type *)&to_v[to_oidx]; | ||||
|       int foidx = Fg->oIndex(from_coor); | ||||
|       int fiidx = Fg->iIndex(from_coor); | ||||
|       int toidx = Tg->oIndex(to_coor); | ||||
|       int tiidx = Tg->iIndex(to_coor); | ||||
|       int* tt = table + 4*idx; | ||||
|       tt[0] = foidx; | ||||
|       tt[1] = fiidx; | ||||
|       tt[2] = toidx; | ||||
|       tt[3] = tiidx; | ||||
|     }); | ||||
|    | ||||
|       scalar_type stmp; | ||||
|       for(int w=0;w<words;w++){ | ||||
| 	stmp = getlane(from[w], from_lane); | ||||
| 	putlane(to[w], stmp, to_lane); | ||||
|       } | ||||
|   }); | ||||
| } | ||||
|  | ||||
| template<class vobj> | ||||
| void InsertSliceFast(const Lattice<vobj> &From,Lattice<vobj> & To,int slice, int orthog) | ||||
| { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   const int words=sizeof(vobj)/sizeof(vector_type); | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // checks should guarantee that the operations are local | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   GridBase *Fg = From.Grid(); | ||||
|   GridBase *Tg = To.Grid(); | ||||
|   assert(!Fg->_isCheckerBoarded); | ||||
|   assert(!Tg->_isCheckerBoarded); | ||||
|   int Nsimd = Fg->Nsimd(); | ||||
|   int nF = Fg->_ndimension; | ||||
|   int nT = Tg->_ndimension; | ||||
|   assert(nF+1 == nT); | ||||
|  | ||||
|   /////////////////////////////////////////////////////////// | ||||
|   // do the index calc on the GPU | ||||
|   /////////////////////////////////////////////////////////// | ||||
|   Coordinate f_ostride = Fg->_ostride; | ||||
|   Coordinate f_istride = Fg->_istride; | ||||
|   Coordinate f_rdimensions = Fg->_rdimensions; | ||||
|   Coordinate t_ostride = Tg->_ostride; | ||||
|   Coordinate t_istride = Tg->_istride; | ||||
|   Coordinate t_rdimensions = Tg->_rdimensions; | ||||
|   Coordinate RegionSize = Fg->_ldimensions; | ||||
|   size_t nsite = 1; | ||||
|   for(int i=0;i<nF;i++) nsite *= RegionSize[i]; // whole volume of lower dim grid | ||||
|   int* table_d = (int*)acceleratorAllocDevice(tbytes); | ||||
|   acceleratorCopyToDevice(table,table_d,tbytes); | ||||
|  | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
| @@ -848,22 +735,12 @@ void InsertSliceFast(const Lattice<vobj> &From,Lattice<vobj> & To,int slice, int | ||||
|   autoView(to_v,To,AcceleratorWrite); | ||||
|    | ||||
|   accelerator_for(idx,nsite,1,{ | ||||
|  | ||||
|       Coordinate from_coor(nF), to_coor(nT); | ||||
|       Lexicographic::CoorFromIndex(from_coor,idx,RegionSize); | ||||
|       int j=0; | ||||
|       for(int i=0;i<nT;i++){ | ||||
| 	if ( i!=orthog ) {  | ||||
| 	  to_coor[i] = from_coor[j]; | ||||
| 	  j++; | ||||
| 	} else { | ||||
| 	  to_coor[i] = slice; | ||||
| 	} | ||||
|       } | ||||
|       int from_oidx = 0; for(int d=0;d<nF;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]); | ||||
|       int from_lane = 0; for(int d=0;d<nF;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]); | ||||
|       int to_oidx   = 0; for(int d=0;d<nT;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]); | ||||
|       int to_lane   = 0; for(int d=0;d<nT;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]); | ||||
|       static const int words=sizeof(vobj)/sizeof(vector_type); | ||||
|       int* tt = table_d + 4*idx; | ||||
|       int from_oidx = *tt++; | ||||
|       int from_lane = *tt++; | ||||
|       int to_oidx = *tt++; | ||||
|       int to_lane = *tt; | ||||
|  | ||||
|       const vector_type* from = (const vector_type *)&from_v[from_oidx]; | ||||
|       vector_type* to = (vector_type *)&to_v[to_oidx]; | ||||
| @@ -873,78 +750,57 @@ void InsertSliceFast(const Lattice<vobj> &From,Lattice<vobj> & To,int slice, int | ||||
| 	stmp = getlane(from[w], from_lane); | ||||
| 	putlane(to[w], stmp, to_lane); | ||||
|       } | ||||
|   }); | ||||
| } | ||||
|     }); | ||||
|    | ||||
| template<class vobj> | ||||
| void ExtractSliceFast(Lattice<vobj> &To,const Lattice<vobj> & From,int slice, int orthog) | ||||
| { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   acceleratorFreeDevice(table_d);     | ||||
|   free(table); | ||||
|    | ||||
|   const int words=sizeof(vobj)/sizeof(vector_type); | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // checks should guarantee that the operations are local | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   GridBase *Fg = From.Grid(); | ||||
|   GridBase *Tg = To.Grid(); | ||||
|   assert(!Fg->_isCheckerBoarded); | ||||
|   assert(!Tg->_isCheckerBoarded); | ||||
|   int Nsimd = Fg->Nsimd(); | ||||
|   int nF = Fg->_ndimension; | ||||
|   int nT = Tg->_ndimension; | ||||
|   assert(nT+1 == nF); | ||||
| #else   | ||||
|   Coordinate ldf = Fg->_ldimensions; | ||||
|   Coordinate rdf = Fg->_rdimensions; | ||||
|   Coordinate isf = Fg->_istride; | ||||
|   Coordinate osf = Fg->_ostride; | ||||
|   Coordinate rdt = Tg->_rdimensions; | ||||
|   Coordinate ist = Tg->_istride; | ||||
|   Coordinate ost = Tg->_ostride; | ||||
|  | ||||
|   /////////////////////////////////////////////////////////// | ||||
|   // do the index calc on the GPU | ||||
|   /////////////////////////////////////////////////////////// | ||||
|   Coordinate f_ostride = Fg->_ostride; | ||||
|   Coordinate f_istride = Fg->_istride; | ||||
|   Coordinate f_rdimensions = Fg->_rdimensions; | ||||
|   Coordinate t_ostride = Tg->_ostride; | ||||
|   Coordinate t_istride = Tg->_istride; | ||||
|   Coordinate t_rdimensions = Tg->_rdimensions; | ||||
|   Coordinate RegionSize = Tg->_ldimensions; | ||||
|   size_t nsite = 1; | ||||
|   for(int i=0;i<nT;i++) nsite *= RegionSize[i]; // whole volume of lower dim grid | ||||
|  | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|  | ||||
|   autoView(from_v,From,AcceleratorRead); | ||||
|   autoView(to_v,To,AcceleratorWrite); | ||||
|  | ||||
|   accelerator_for(idx,nsite,1,{ | ||||
|  | ||||
|       Coordinate from_coor(nF), to_coor(nT); | ||||
|       Lexicographic::CoorFromIndex(to_coor,idx,RegionSize); | ||||
|       int j=0; | ||||
|       for(int i=0;i<nF;i++){ | ||||
| 	if ( i!=orthog ) {  | ||||
| 	  from_coor[i] = to_coor[j]; | ||||
| 	  j++; | ||||
| 	} else { | ||||
| 	  from_coor[i] = slice; | ||||
| 	} | ||||
|   autoView( t_v , To, CpuWrite); | ||||
|   autoView( f_v , From, CpuRead); | ||||
|   thread_for(idx,Fg->lSites(),{ | ||||
|     sobj s; | ||||
|     Coordinate Fcoor(nd); | ||||
|     Coordinate Tcoor(nd); | ||||
|     Lexicographic::CoorFromIndex(Fcoor,idx,ldf); | ||||
|     int in_region=1; | ||||
|     for(int d=0;d<nd;d++){ | ||||
|       if ( (Fcoor[d] < FromLowerLeft[d]) || (Fcoor[d]>=FromLowerLeft[d]+RegionSize[d]) ){  | ||||
| 	in_region=0; | ||||
|       } | ||||
|       int from_oidx = 0; for(int d=0;d<nF;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]); | ||||
|       int from_lane = 0; for(int d=0;d<nF;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]); | ||||
|       int to_oidx   = 0; for(int d=0;d<nT;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]); | ||||
|       int to_lane   = 0; for(int d=0;d<nT;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]); | ||||
|  | ||||
|       const vector_type* from = (const vector_type *)&from_v[from_oidx]; | ||||
|       vector_type* to = (vector_type *)&to_v[to_oidx]; | ||||
|        | ||||
|       scalar_type stmp; | ||||
|       Tcoor[d] = ToLowerLeft[d]+ Fcoor[d]-FromLowerLeft[d]; | ||||
|     } | ||||
|     if (in_region) { | ||||
| #if 0       | ||||
|       Integer idx_f = 0; for(int d=0;d<nd;d++) idx_f+=isf[d]*(Fcoor[d]/rdf[d]); // inner index from | ||||
|       Integer idx_t = 0; for(int d=0;d<nd;d++) idx_t+=ist[d]*(Tcoor[d]/rdt[d]); // inner index to | ||||
|       Integer odx_f = 0; for(int d=0;d<nd;d++) odx_f+=osf[d]*(Fcoor[d]%rdf[d]); // outer index from | ||||
|       Integer odx_t = 0; for(int d=0;d<nd;d++) odx_t+=ost[d]*(Tcoor[d]%rdt[d]); // outer index to | ||||
|       scalar_type * fp = (scalar_type *)&f_v[odx_f]; | ||||
|       scalar_type * tp = (scalar_type *)&t_v[odx_t]; | ||||
|       for(int w=0;w<words;w++){ | ||||
| 	stmp = getlane(from[w], from_lane); | ||||
| 	putlane(to[w], stmp, to_lane); | ||||
| 	tp[w].putlane(fp[w].getlane(idx_f),idx_t); | ||||
|       } | ||||
| #else | ||||
|     peekLocalSite(s,f_v,Fcoor); | ||||
|     pokeLocalSite(s,t_v,Tcoor); | ||||
| #endif | ||||
|     } | ||||
|   }); | ||||
|  | ||||
| #endif | ||||
| } | ||||
|  | ||||
|  | ||||
| template<class vobj> | ||||
| void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice, int orthog) | ||||
| { | ||||
| @@ -981,14 +837,8 @@ void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice | ||||
|     hcoor[orthog] = slice; | ||||
|     for(int d=0;d<nh;d++){ | ||||
|       if ( d!=orthog ) {  | ||||
| 	hcoor[d]=lcoor[ddl]; | ||||
| 	if ( hg->_checker_dim == d ) { | ||||
| 	  hcoor[d]=hcoor[d]*2; // factor in the full coor for peekLocalSite | ||||
| 	  lcoor[ddl]=lcoor[ddl]*2; // factor in the full coor for peekLocalSite | ||||
| 	} | ||||
| 	ddl++; | ||||
| 	hcoor[d]=lcoor[ddl++]; | ||||
|       } | ||||
|        | ||||
|     } | ||||
|     peekLocalSite(s,lowDimv,lcoor); | ||||
|     pokeLocalSite(s,higherDimv,hcoor); | ||||
| @@ -1009,7 +859,6 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic | ||||
|   assert(orthog<nh); | ||||
|   assert(orthog>=0); | ||||
|   assert(hg->_processors[orthog]==1); | ||||
|   lowDim.Checkerboard() = higherDim.Checkerboard(); | ||||
|  | ||||
|   int dl; dl = 0; | ||||
|   for(int d=0;d<nh;d++){ | ||||
| @@ -1027,16 +876,11 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic | ||||
|     Coordinate lcoor(nl); | ||||
|     Coordinate hcoor(nh); | ||||
|     lg->LocalIndexToLocalCoor(idx,lcoor); | ||||
|     hcoor[orthog] = slice; | ||||
|     int ddl=0; | ||||
|     hcoor[orthog] = slice; | ||||
|     for(int d=0;d<nh;d++){ | ||||
|       if ( d!=orthog ) {  | ||||
| 	hcoor[d]=lcoor[ddl]; | ||||
| 	if ( hg->_checker_dim == d ) { | ||||
| 	  hcoor[d]=hcoor[d]*2;     // factor in the full gridd coor for peekLocalSite | ||||
| 	  lcoor[ddl]=lcoor[ddl]*2; // factor in the full coor for peekLocalSite | ||||
| 	} | ||||
| 	ddl++; | ||||
| 	hcoor[d]=lcoor[ddl++]; | ||||
|       } | ||||
|     } | ||||
|     peekLocalSite(s,higherDimv,hcoor); | ||||
| @@ -1045,7 +889,9 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic | ||||
|  | ||||
| } | ||||
|  | ||||
| //Can I implement with local copyregion?? | ||||
|  | ||||
| //Insert subvolume orthogonal to direction 'orthog' with slice index 'slice_lo' from 'lowDim' onto slice index 'slice_hi' of higherDim | ||||
| //The local dimensions of both 'lowDim' and 'higherDim' orthogonal to 'orthog' should be the same | ||||
| template<class vobj> | ||||
| void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog) | ||||
| { | ||||
| @@ -1066,18 +912,121 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int | ||||
|       assert(lg->_ldimensions[d] == hg->_ldimensions[d]); | ||||
|     } | ||||
|   } | ||||
|   Coordinate sz = lg->_ldimensions; | ||||
|   sz[orthog]=1; | ||||
|   Coordinate f_ll(nl,0); f_ll[orthog]=slice_lo; | ||||
|   Coordinate t_ll(nh,0); t_ll[orthog]=slice_hi; | ||||
|   localCopyRegion(lowDim,higherDim,f_ll,t_ll,sz); | ||||
|  | ||||
| #if 1 | ||||
|   size_t nsite = lg->lSites()/lg->LocalDimensions()[orthog]; | ||||
|   size_t tbytes = 4*nsite*sizeof(int); | ||||
|   int *table = (int*)malloc(tbytes); | ||||
|    | ||||
|   thread_for(idx,nsite,{ | ||||
|     Coordinate lcoor(nl); | ||||
|     Coordinate hcoor(nh); | ||||
|     lcoor[orthog] = slice_lo; | ||||
|     hcoor[orthog] = slice_hi; | ||||
|     size_t rem = idx; | ||||
|     for(int mu=0;mu<nl;mu++){ | ||||
|       if(mu != orthog){ | ||||
| 	int xmu = rem % lg->LocalDimensions()[mu];  rem /= lg->LocalDimensions()[mu]; | ||||
| 	lcoor[mu] = hcoor[mu] = xmu; | ||||
|       } | ||||
|     } | ||||
|     int loidx = lg->oIndex(lcoor); | ||||
|     int liidx = lg->iIndex(lcoor); | ||||
|     int hoidx = hg->oIndex(hcoor); | ||||
|     int hiidx = hg->iIndex(hcoor); | ||||
|     int* tt = table + 4*idx; | ||||
|     tt[0] = loidx; | ||||
|     tt[1] = liidx; | ||||
|     tt[2] = hoidx; | ||||
|     tt[3] = hiidx; | ||||
|     }); | ||||
|     | ||||
|   int* table_d = (int*)acceleratorAllocDevice(tbytes); | ||||
|   acceleratorCopyToDevice(table,table_d,tbytes); | ||||
|  | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|  | ||||
|   autoView(lowDim_v,lowDim,AcceleratorRead); | ||||
|   autoView(higherDim_v,higherDim,AcceleratorWrite); | ||||
|    | ||||
|   accelerator_for(idx,nsite,1,{ | ||||
|       static const int words=sizeof(vobj)/sizeof(vector_type); | ||||
|       int* tt = table_d + 4*idx; | ||||
|       int from_oidx = *tt++; | ||||
|       int from_lane = *tt++; | ||||
|       int to_oidx = *tt++; | ||||
|       int to_lane = *tt; | ||||
|  | ||||
|       const vector_type* from = (const vector_type *)&lowDim_v[from_oidx]; | ||||
|       vector_type* to = (vector_type *)&higherDim_v[to_oidx]; | ||||
|        | ||||
|       scalar_type stmp; | ||||
|       for(int w=0;w<words;w++){ | ||||
| 	stmp = getlane(from[w], from_lane); | ||||
| 	putlane(to[w], stmp, to_lane); | ||||
|       } | ||||
|     }); | ||||
|    | ||||
|   acceleratorFreeDevice(table_d);     | ||||
|   free(table); | ||||
|    | ||||
| #else | ||||
|   // the above should guarantee that the operations are local | ||||
|   autoView(lowDimv,lowDim,CpuRead); | ||||
|   autoView(higherDimv,higherDim,CpuWrite); | ||||
|   thread_for(idx,lg->lSites(),{ | ||||
|     sobj s; | ||||
|     Coordinate lcoor(nl); | ||||
|     Coordinate hcoor(nh); | ||||
|     lg->LocalIndexToLocalCoor(idx,lcoor); | ||||
|     if( lcoor[orthog] == slice_lo ) {  | ||||
|       hcoor=lcoor; | ||||
|       hcoor[orthog] = slice_hi; | ||||
|       peekLocalSite(s,lowDimv,lcoor); | ||||
|       pokeLocalSite(s,higherDimv,hcoor); | ||||
|     } | ||||
|   }); | ||||
| #endif | ||||
| } | ||||
|  | ||||
|  | ||||
| template<class vobj> | ||||
| void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog) | ||||
| { | ||||
|   InsertSliceLocal(higherDim,lowDim,slice_hi,slice_lo,orthog); | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|  | ||||
|   GridBase *lg = lowDim.Grid(); | ||||
|   GridBase *hg = higherDim.Grid(); | ||||
|   int nl = lg->_ndimension; | ||||
|   int nh = hg->_ndimension; | ||||
|  | ||||
|   assert(nl == nh); | ||||
|   assert(orthog<nh); | ||||
|   assert(orthog>=0); | ||||
|  | ||||
|   for(int d=0;d<nh;d++){ | ||||
|     if ( d!=orthog ) { | ||||
|     assert(lg->_processors[d]  == hg->_processors[d]); | ||||
|     assert(lg->_ldimensions[d] == hg->_ldimensions[d]); | ||||
|   } | ||||
|   } | ||||
|  | ||||
|   // the above should guarantee that the operations are local | ||||
|   autoView(lowDimv,lowDim,CpuWrite); | ||||
|   autoView(higherDimv,higherDim,CpuRead); | ||||
|   thread_for(idx,lg->lSites(),{ | ||||
|     sobj s; | ||||
|     Coordinate lcoor(nl); | ||||
|     Coordinate hcoor(nh); | ||||
|     lg->LocalIndexToLocalCoor(idx,lcoor); | ||||
|     if( lcoor[orthog] == slice_lo ) {  | ||||
|       hcoor=lcoor; | ||||
|       hcoor[orthog] = slice_hi; | ||||
|       peekLocalSite(s,higherDimv,hcoor); | ||||
|       pokeLocalSite(s,lowDimv,lcoor); | ||||
|     } | ||||
|   }); | ||||
| } | ||||
|  | ||||
|  | ||||
| @@ -1103,7 +1052,7 @@ void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine) | ||||
|  | ||||
|   Coordinate fcoor(nd); | ||||
|   Coordinate ccoor(nd); | ||||
|   for(int64_t g=0;g<fg->gSites();g++){ | ||||
|   for(int g=0;g<fg->gSites();g++){ | ||||
|  | ||||
|     fg->GlobalIndexToGlobalCoor(g,fcoor); | ||||
|     for(int d=0;d<nd;d++){ | ||||
| @@ -1789,35 +1738,5 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split) | ||||
|   } | ||||
| } | ||||
|  | ||||
| ////////////////////////////////////////////////////// | ||||
| // Faster but less accurate blockProject | ||||
| ////////////////////////////////////////////////////// | ||||
| template<class vobj,class CComplex,int nbasis,class VLattice> | ||||
| inline void blockProjectFast(Lattice<iVector<CComplex,nbasis > > &coarseData, | ||||
| 			     const             Lattice<vobj>   &fineData, | ||||
| 			     const VLattice &Basis) | ||||
| { | ||||
|   GridBase * fine  = fineData.Grid(); | ||||
|   GridBase * coarse= coarseData.Grid(); | ||||
|  | ||||
|   Lattice<iScalar<CComplex> > ip(coarse); | ||||
|  | ||||
|   autoView( coarseData_ , coarseData, AcceleratorWrite); | ||||
|   autoView( ip_         , ip,         AcceleratorWrite); | ||||
|   RealD t_IP=0; | ||||
|   RealD t_co=0; | ||||
|   for(int v=0;v<nbasis;v++) { | ||||
|     t_IP-=usecond(); | ||||
|     blockInnerProductD(ip,Basis[v],fineData);  | ||||
|     t_IP+=usecond(); | ||||
|     t_co-=usecond(); | ||||
|     accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), { | ||||
| 	convertType(coarseData_[sc](v),ip_[sc]); | ||||
|       }); | ||||
|     t_co+=usecond(); | ||||
|   } | ||||
| } | ||||
|  | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|   | ||||
| @@ -45,188 +45,6 @@ struct CshiftImplGauge: public CshiftImplBase<typename Gimpl::GaugeLinkField::ve | ||||
|   typename Gimpl::GaugeLinkField Cshift(const typename Gimpl::GaugeLinkField &in, int dir, int shift) const override{ return Gimpl::CshiftLink(in,dir,shift); } | ||||
| };   | ||||
|  | ||||
|  | ||||
| /* | ||||
|  * | ||||
|  * TODO:  | ||||
|  *  -- address elementsof vobj via thread block in Scatter/Gather | ||||
|  *  -- overlap comms with motion in Face_exchange | ||||
|  * | ||||
|  */ | ||||
|  | ||||
| template<class vobj> inline void ScatterSlice(const deviceVector<vobj> &buf, | ||||
| 					      Lattice<vobj> &lat, | ||||
| 					      int x, | ||||
| 					      int dim, | ||||
| 					      int offset=0) | ||||
| { | ||||
|   const int Nsimd=vobj::Nsimd(); | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   GridBase *grid = lat.Grid(); | ||||
|   Coordinate simd = grid->_simd_layout; | ||||
|   int Nd          = grid->Nd(); | ||||
|   int block       = grid->_slice_block[dim]; | ||||
|   int stride      = grid->_slice_stride[dim]; | ||||
|   int nblock      = grid->_slice_nblock[dim]; | ||||
|   int rd          = grid->_rdimensions[dim]; | ||||
|  | ||||
|   int ox = x%rd; | ||||
|   int ix = x/rd; | ||||
|  | ||||
|   int isites = 1; for(int d=0;d<Nd;d++) if( d!=dim) isites*=simd[d]; | ||||
|  | ||||
|   Coordinate rsimd= simd;  rsimd[dim]=1; // maybe reduce Nsimd | ||||
|  | ||||
|   int rNsimd = 1; for(int d=0;d<Nd;d++) rNsimd*=rsimd[d]; | ||||
|   int rNsimda= Nsimd/simd[dim]; // should be equal | ||||
|   assert(rNsimda==rNsimd); | ||||
|   int face_ovol=block*nblock; | ||||
|  | ||||
|   //  assert(buf.size()==face_ovol*rNsimd); | ||||
|  | ||||
|   /*This will work GPU ONLY unless rNsimd is put in the lexico index*/ | ||||
|   //Let's make it work on GPU and then make a special accelerator_for that | ||||
|   //doesn't hide the SIMD direction and keeps explicit in the threadIdx | ||||
|   //for cross platform | ||||
|   // FIXME -- can put internal indices into thread loop | ||||
|   auto buf_p = & buf[0]; | ||||
|   autoView(lat_v, lat, AcceleratorWrite); | ||||
|   accelerator_for(ss, face_ovol/simd[dim],Nsimd,{ | ||||
|  | ||||
|     // scalar layout won't coalesce | ||||
| #ifdef GRID_SIMT | ||||
|       { | ||||
| 	int blane=acceleratorSIMTlane(Nsimd); // buffer lane | ||||
| #else | ||||
|       for(int blane=0;blane<Nsimd;blane++) { | ||||
| #endif | ||||
| 	int olane=blane%rNsimd;               // reduced lattice lane | ||||
| 	int obit =blane/rNsimd; | ||||
|  | ||||
| 	/////////////////////////////////////////////////////////////// | ||||
| 	// osite -- potentially one bit from simd in the buffer: (ss<<1)|obit | ||||
| 	/////////////////////////////////////////////////////////////// | ||||
| 	int ssp = ss*simd[dim]+obit; | ||||
| 	int b    = ssp%block; | ||||
| 	int n    = ssp/block; | ||||
| 	int osite= b+n*stride + ox*block; | ||||
| 	 | ||||
| 	//////////////////////////////////////////// | ||||
| 	// isite -- map lane within buffer to lane within lattice | ||||
| 	//////////////////////////////////////////// | ||||
| 	Coordinate icoor; | ||||
| 	int lane; | ||||
| 	Lexicographic::CoorFromIndex(icoor,olane,rsimd); | ||||
| 	icoor[dim]=ix; | ||||
| 	Lexicographic::IndexFromCoor(icoor,lane,simd); | ||||
| 	 | ||||
| 	/////////////////////////////////////////// | ||||
| 	// Transfer into lattice - will coalesce | ||||
| 	/////////////////////////////////////////// | ||||
| 	//	sobj obj = extractLane(blane,buf_p[ss+offset]); | ||||
| 	//	insertLane(lane,lat_v[osite],obj); | ||||
| 	const int words=sizeof(vobj)/sizeof(vector_type); | ||||
| 	vector_type * from = (vector_type *)&buf_p[ss+offset]; | ||||
| 	vector_type * to   = (vector_type *)&lat_v[osite]; | ||||
| 	scalar_type stmp; | ||||
| 	for(int w=0;w<words;w++){ | ||||
| 	  stmp = getlane(from[w], blane); | ||||
| 	  putlane(to[w], stmp, lane); | ||||
| 	} | ||||
|       } | ||||
|   }); | ||||
| } | ||||
|  | ||||
| template<class vobj> inline void GatherSlice(deviceVector<vobj> &buf, | ||||
| 					     const Lattice<vobj> &lat, | ||||
| 					     int x, | ||||
| 					     int dim, | ||||
| 					     int offset=0) | ||||
| { | ||||
|   const int Nsimd=vobj::Nsimd(); | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   autoView(lat_v, lat, AcceleratorRead); | ||||
|  | ||||
|   GridBase *grid = lat.Grid(); | ||||
|   Coordinate simd = grid->_simd_layout; | ||||
|   int Nd          = grid->Nd(); | ||||
|   int block       = grid->_slice_block[dim]; | ||||
|   int stride      = grid->_slice_stride[dim]; | ||||
|   int nblock      = grid->_slice_nblock[dim]; | ||||
|   int rd          = grid->_rdimensions[dim]; | ||||
|  | ||||
|   int ox = x%rd; | ||||
|   int ix = x/rd; | ||||
|  | ||||
|   int isites = 1; for(int d=0;d<Nd;d++) if( d!=dim) isites*=simd[d]; | ||||
|  | ||||
|   Coordinate rsimd= simd;  rsimd[dim]=1; // maybe reduce Nsimd | ||||
|  | ||||
|   int rNsimd = 1; for(int d=0;d<Nd;d++) rNsimd*=rsimd[d]; | ||||
|    | ||||
|   int face_ovol=block*nblock; | ||||
|  | ||||
|   //  assert(buf.size()==face_ovol*rNsimd); | ||||
|  | ||||
|   /*This will work GPU ONLY unless rNsimd is put in the lexico index*/ | ||||
|   //Let's make it work on GPU and then make a special accelerator_for that | ||||
|   //doesn't hide the SIMD direction and keeps explicit in the threadIdx | ||||
|   //for cross platform | ||||
|   //For CPU perhaps just run a loop over Nsimd | ||||
|   auto buf_p = & buf[0]; | ||||
|   accelerator_for(ss, face_ovol/simd[dim],Nsimd,{ | ||||
|  | ||||
|     // scalar layout won't coalesce | ||||
| #ifdef GRID_SIMT | ||||
|       { | ||||
| 	int blane=acceleratorSIMTlane(Nsimd); // buffer lane | ||||
| #else | ||||
|       for(int blane=0;blane<Nsimd;blane++) { | ||||
| #endif | ||||
| 	int olane=blane%rNsimd;               // reduced lattice lane | ||||
| 	int obit =blane/rNsimd; | ||||
| 	 | ||||
| 	//////////////////////////////////////////// | ||||
| 	// osite | ||||
| 	//////////////////////////////////////////// | ||||
| 	int ssp = ss*simd[dim]+obit; | ||||
| 	int b    = ssp%block; | ||||
| 	int n    = ssp/block; | ||||
| 	int osite= b+n*stride + ox*block; | ||||
|  | ||||
| 	//////////////////////////////////////////// | ||||
| 	// isite -- map lane within buffer to lane within lattice | ||||
| 	//////////////////////////////////////////// | ||||
| 	Coordinate icoor; | ||||
| 	int lane; | ||||
| 	Lexicographic::CoorFromIndex(icoor,olane,rsimd); | ||||
| 	icoor[dim]=ix; | ||||
| 	Lexicographic::IndexFromCoor(icoor,lane,simd); | ||||
| 	 | ||||
| 	/////////////////////////////////////////// | ||||
| 	// Take out of lattice | ||||
| 	/////////////////////////////////////////// | ||||
| 	//	sobj obj = extractLane(lane,lat_v[osite]); | ||||
| 	//	insertLane(blane,buf_p[ss+offset],obj); | ||||
| 	const int words=sizeof(vobj)/sizeof(vector_type); | ||||
| 	vector_type * to    = (vector_type *)&buf_p[ss+offset]; | ||||
| 	vector_type * from  = (vector_type *)&lat_v[osite]; | ||||
| 	scalar_type stmp; | ||||
| 	for(int w=0;w<words;w++){ | ||||
| 	  stmp = getlane(from[w], lane); | ||||
| 	  putlane(to[w], stmp, blane); | ||||
| 	} | ||||
|       } | ||||
|   }); | ||||
| } | ||||
|  | ||||
|  | ||||
| class PaddedCell { | ||||
| public: | ||||
|   GridCartesian * unpadded_grid; | ||||
| @@ -245,18 +63,14 @@ public: | ||||
|     dims=_grid->Nd(); | ||||
|     AllocateGrids(); | ||||
|     Coordinate local     =unpadded_grid->LocalDimensions(); | ||||
|     Coordinate procs     =unpadded_grid->ProcessorGrid(); | ||||
|     for(int d=0;d<dims;d++){ | ||||
|       if ( procs[d] > 1 ) assert(local[d]>=depth); | ||||
|       assert(local[d]>=depth); | ||||
|     } | ||||
|   } | ||||
|   void DeleteGrids(void) | ||||
|   { | ||||
|     Coordinate processors=unpadded_grid->_processors; | ||||
|     for(int d=0;d<grids.size();d++){ | ||||
|       if ( processors[d] > 1 ) {  | ||||
| 	delete grids[d]; | ||||
|       } | ||||
|       delete grids[d]; | ||||
|     } | ||||
|     grids.resize(0); | ||||
|   }; | ||||
| @@ -267,36 +81,27 @@ public: | ||||
|     Coordinate processors=unpadded_grid->_processors; | ||||
|     Coordinate plocal    =unpadded_grid->LocalDimensions(); | ||||
|     Coordinate global(dims); | ||||
|     GridCartesian *old_grid = unpadded_grid; | ||||
|  | ||||
|     // expand up one dim at a time | ||||
|     for(int d=0;d<dims;d++){ | ||||
|  | ||||
|       if ( processors[d] > 1 ) {  | ||||
| 	plocal[d] += 2*depth;  | ||||
|       plocal[d] += 2*depth;  | ||||
|  | ||||
| 	for(int d=0;d<dims;d++){ | ||||
| 	  global[d] = plocal[d]*processors[d]; | ||||
| 	} | ||||
|  | ||||
| 	old_grid = new GridCartesian(global,simd,processors); | ||||
|       for(int d=0;d<dims;d++){ | ||||
| 	global[d] = plocal[d]*processors[d]; | ||||
|       } | ||||
|       grids.push_back(old_grid); | ||||
|  | ||||
|       grids.push_back(new GridCartesian(global,simd,processors)); | ||||
|     } | ||||
|   }; | ||||
|   template<class vobj> | ||||
|   inline Lattice<vobj> Extract(const Lattice<vobj> &in) const | ||||
|   { | ||||
|     Coordinate processors=unpadded_grid->_processors; | ||||
|  | ||||
|     Lattice<vobj> out(unpadded_grid); | ||||
|  | ||||
|     Coordinate local     =unpadded_grid->LocalDimensions(); | ||||
|     // depends on the MPI spread       | ||||
|     Coordinate fll(dims,depth); | ||||
|     Coordinate fll(dims,depth); // depends on the MPI spread | ||||
|     Coordinate tll(dims,0); // depends on the MPI spread | ||||
|     for(int d=0;d<dims;d++){ | ||||
|       if( processors[d]==1 ) fll[d]=0; | ||||
|     } | ||||
|     localCopyRegion(in,out,fll,tll,local); | ||||
|     return out; | ||||
|   } | ||||
| @@ -311,22 +116,10 @@ public: | ||||
|     } | ||||
|     return tmp; | ||||
|   } | ||||
|   template<class vobj> | ||||
|   inline Lattice<vobj> ExchangePeriodic(const Lattice<vobj> &in) const | ||||
|   { | ||||
|     GridBase *old_grid = in.Grid(); | ||||
|     int dims = old_grid->Nd(); | ||||
|     Lattice<vobj> tmp = in; | ||||
|     for(int d=0;d<dims;d++){ | ||||
|       tmp = ExpandPeriodic(d,tmp); // rvalue && assignment | ||||
|     } | ||||
|     return tmp; | ||||
|   } | ||||
|   // expand up one dim at a time | ||||
|   template<class vobj> | ||||
|   inline Lattice<vobj> Expand(int dim, const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const | ||||
|   { | ||||
|     Coordinate processors=unpadded_grid->_processors; | ||||
|     GridBase *old_grid = in.Grid(); | ||||
|     GridCartesian *new_grid = grids[dim];//These are new grids | ||||
|     Lattice<vobj>  padded(new_grid); | ||||
| @@ -336,266 +129,46 @@ public: | ||||
|     if(dim==0) conformable(old_grid,unpadded_grid); | ||||
|     else       conformable(old_grid,grids[dim-1]); | ||||
|  | ||||
|     std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl; | ||||
|  | ||||
|     double tins=0, tshift=0; | ||||
|      | ||||
|     int islocal = 0 ; | ||||
|     if ( processors[dim] == 1 ) islocal = 1; | ||||
|  | ||||
|     if ( islocal ) { | ||||
|  | ||||
|       // replace with a copy and maybe grid swizzle | ||||
|       // return in;?? | ||||
|       double t = usecond(); | ||||
|       padded = in; | ||||
|       tins += usecond() - t; | ||||
|        | ||||
|     } else { | ||||
|  | ||||
|       ////////////////////////////////////////////// | ||||
|       // Replace sequence with | ||||
|       // --------------------- | ||||
|       // (i) Gather high face(s); start comms | ||||
|       // (ii) Gather low  face(s); start comms | ||||
|       // (iii) Copy middle bit with localCopyRegion | ||||
|       // (iv) Complete high face(s), insert slice(s) | ||||
|       // (iv) Complete low  face(s), insert slice(s) | ||||
|       ////////////////////////////////////////////// | ||||
|       // Middle bit | ||||
|       double t = usecond(); | ||||
|       for(int x=0;x<local[dim];x++){ | ||||
| 	InsertSliceLocal(in,padded,x,depth+x,dim); | ||||
|       } | ||||
|       tins += usecond() - t; | ||||
|      | ||||
|       // High bit | ||||
|       t = usecond(); | ||||
|       shifted = cshift.Cshift(in,dim,depth); | ||||
|       tshift += usecond() - t; | ||||
|  | ||||
|       t=usecond(); | ||||
|       for(int x=0;x<depth;x++){ | ||||
| 	InsertSliceLocal(shifted,padded,local[dim]-depth+x,depth+local[dim]+x,dim); | ||||
|       } | ||||
|       tins += usecond() - t; | ||||
|      | ||||
|       // Low bit | ||||
|       t = usecond(); | ||||
|       shifted = cshift.Cshift(in,dim,-depth); | ||||
|       tshift += usecond() - t; | ||||
|      | ||||
|       t = usecond(); | ||||
|       for(int x=0;x<depth;x++){ | ||||
| 	InsertSliceLocal(shifted,padded,x,x,dim); | ||||
|       } | ||||
|       tins += usecond() - t; | ||||
|  | ||||
|     // Middle bit | ||||
|     double t = usecond(); | ||||
|     for(int x=0;x<local[dim];x++){ | ||||
|       InsertSliceLocal(in,padded,x,depth+x,dim); | ||||
|     } | ||||
|     tins += usecond() - t; | ||||
|      | ||||
|     // High bit | ||||
|     t = usecond(); | ||||
|     shifted = cshift.Cshift(in,dim,depth); | ||||
|     tshift += usecond() - t; | ||||
|  | ||||
|     t=usecond(); | ||||
|     for(int x=0;x<depth;x++){ | ||||
|       InsertSliceLocal(shifted,padded,local[dim]-depth+x,depth+local[dim]+x,dim); | ||||
|     } | ||||
|     tins += usecond() - t; | ||||
|      | ||||
|     // Low bit | ||||
|     t = usecond(); | ||||
|     shifted = cshift.Cshift(in,dim,-depth); | ||||
|     tshift += usecond() - t; | ||||
|      | ||||
|     t = usecond(); | ||||
|     for(int x=0;x<depth;x++){ | ||||
|       InsertSliceLocal(shifted,padded,x,x,dim); | ||||
|     } | ||||
|     tins += usecond() - t; | ||||
|  | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand timings: cshift:" << tshift/1000 << "ms, insert-slice:" << tins/1000 << "ms" << std::endl; | ||||
|      | ||||
|     return padded; | ||||
|   } | ||||
|  | ||||
|   template<class vobj> | ||||
|   inline Lattice<vobj> ExpandPeriodic(int dim, const Lattice<vobj> &in) const | ||||
|   { | ||||
|     Coordinate processors=unpadded_grid->_processors; | ||||
|     GridBase *old_grid = in.Grid(); | ||||
|     GridCartesian *new_grid = grids[dim];//These are new grids | ||||
|     Lattice<vobj>  padded(new_grid); | ||||
|     //    Lattice<vobj> shifted(old_grid);     | ||||
|     Coordinate local     =old_grid->LocalDimensions(); | ||||
|     Coordinate plocal    =new_grid->LocalDimensions(); | ||||
|     if(dim==0) conformable(old_grid,unpadded_grid); | ||||
|     else       conformable(old_grid,grids[dim-1]); | ||||
|  | ||||
|     //    std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl; | ||||
|     double tins=0, tshift=0; | ||||
|  | ||||
|     int islocal = 0 ; | ||||
|     if ( processors[dim] == 1 ) islocal = 1; | ||||
|  | ||||
|     if ( islocal ) { | ||||
|       padded=in; // slightly different interface could avoid a copy operation | ||||
|     } else { | ||||
|       Face_exchange(in,padded,dim,depth); | ||||
|       return padded; | ||||
|     } | ||||
|     return padded; | ||||
|   } | ||||
|   template<class vobj> | ||||
|   void Face_exchange(const Lattice<vobj> &from, | ||||
| 		     Lattice<vobj> &to, | ||||
| 		     int dimension,int depth) const | ||||
|   { | ||||
|     typedef typename vobj::vector_type vector_type; | ||||
|     typedef typename vobj::scalar_type scalar_type; | ||||
|     typedef typename vobj::scalar_object sobj; | ||||
|  | ||||
|     RealD t_gather=0.0; | ||||
|     RealD t_scatter=0.0; | ||||
|     RealD t_comms=0.0; | ||||
|     RealD t_copy=0.0; | ||||
|      | ||||
|     //    std::cout << GridLogMessage << "dimension " <<dimension<<std::endl; | ||||
|     //    DumpSliceNorm(std::string("Face_exchange from"),from,dimension); | ||||
|     GridBase *grid=from.Grid(); | ||||
|     GridBase *new_grid=to.Grid(); | ||||
|  | ||||
|     Coordinate lds = from.Grid()->_ldimensions; | ||||
|     Coordinate nlds=   to.Grid()->_ldimensions; | ||||
|     Coordinate simd= from.Grid()->_simd_layout; | ||||
|     int ld    = lds[dimension]; | ||||
|     int nld   = to.Grid()->_ldimensions[dimension]; | ||||
|     const int Nsimd = vobj::Nsimd(); | ||||
|  | ||||
|     assert(depth<=lds[dimension]); // A must be on neighbouring node | ||||
|     assert(depth>0);   // A caller bug if zero | ||||
|     assert(ld+2*depth==nld); | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     // Face size and byte calculations | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     int buffer_size = 1; | ||||
|     for(int d=0;d<lds.size();d++){ | ||||
|       if ( d!= dimension) buffer_size=buffer_size*lds[d]; | ||||
|     } | ||||
|     buffer_size = buffer_size  / Nsimd; | ||||
|     int rNsimd = Nsimd / simd[dimension]; | ||||
|     assert( buffer_size == from.Grid()->_slice_nblock[dimension]*from.Grid()->_slice_block[dimension] / simd[dimension]); | ||||
|  | ||||
|     static deviceVector<vobj> send_buf;  | ||||
|     static deviceVector<vobj> recv_buf; | ||||
|     send_buf.resize(buffer_size*2*depth);     | ||||
|     recv_buf.resize(buffer_size*2*depth); | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|     static hostVector<vobj> hsend_buf;  | ||||
|     static hostVector<vobj> hrecv_buf; | ||||
|     hsend_buf.resize(buffer_size*2*depth);     | ||||
|     hrecv_buf.resize(buffer_size*2*depth); | ||||
| #endif     | ||||
|  | ||||
|     std::vector<MpiCommsRequest_t> fwd_req;    | ||||
|     std::vector<MpiCommsRequest_t> bwd_req;    | ||||
|  | ||||
|     int words = buffer_size; | ||||
|     int bytes = words * sizeof(vobj); | ||||
|  | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     // Communication coords | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     int comm_proc = 1; | ||||
|     int xmit_to_rank; | ||||
|     int recv_from_rank; | ||||
|     grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank); | ||||
|  | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     // Gather all surface terms up to depth "d" | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     RealD t; | ||||
|     RealD t_tot=-usecond(); | ||||
|     int plane=0; | ||||
|     for ( int d=0;d < depth ; d ++ ) { | ||||
|       int tag = d*1024 + dimension*2+0; | ||||
|  | ||||
|       t=usecond(); | ||||
|       GatherSlice(send_buf,from,d,dimension,plane*buffer_size); plane++; | ||||
|       t_gather+=usecond()-t; | ||||
|  | ||||
|       t=usecond(); | ||||
| #ifdef ACCELERATOR_AWARE_MPI | ||||
|       grid->SendToRecvFromBegin(fwd_req, | ||||
| 				(void *)&send_buf[d*buffer_size], xmit_to_rank, | ||||
| 				(void *)&recv_buf[d*buffer_size], recv_from_rank, bytes, tag); | ||||
| #else | ||||
|       acceleratorCopyFromDevice(&send_buf[d*buffer_size],&hsend_buf[d*buffer_size],bytes); | ||||
|       grid->SendToRecvFromBegin(fwd_req, | ||||
| 				(void *)&hsend_buf[d*buffer_size], xmit_to_rank, | ||||
| 				(void *)&hrecv_buf[d*buffer_size], recv_from_rank, bytes, tag); | ||||
| #endif | ||||
|       t_comms+=usecond()-t; | ||||
|      } | ||||
|     for ( int d=0;d < depth ; d ++ ) { | ||||
|       int tag = d*1024 + dimension*2+1; | ||||
|  | ||||
|       t=usecond(); | ||||
|       GatherSlice(send_buf,from,ld-depth+d,dimension,plane*buffer_size); plane++; | ||||
|       t_gather+= usecond() - t; | ||||
|  | ||||
|       t=usecond(); | ||||
| #ifdef ACCELERATOR_AWARE_MPI | ||||
|       grid->SendToRecvFromBegin(bwd_req, | ||||
| 				(void *)&send_buf[(d+depth)*buffer_size], recv_from_rank, | ||||
| 				(void *)&recv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag); | ||||
| #else | ||||
|       acceleratorCopyFromDevice(&send_buf[(d+depth)*buffer_size],&hsend_buf[(d+depth)*buffer_size],bytes); | ||||
|       grid->SendToRecvFromBegin(bwd_req, | ||||
| 				(void *)&hsend_buf[(d+depth)*buffer_size], recv_from_rank, | ||||
| 				(void *)&hrecv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag); | ||||
| #endif       | ||||
|       t_comms+=usecond()-t; | ||||
|     } | ||||
|  | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     // Copy interior -- overlap this with comms | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     int Nd = new_grid->Nd(); | ||||
|     Coordinate LL(Nd,0); | ||||
|     Coordinate sz = grid->_ldimensions; | ||||
|     Coordinate toLL(Nd,0); | ||||
|     toLL[dimension]=depth; | ||||
|     t=usecond(); | ||||
|     localCopyRegion(from,to,LL,toLL,sz); | ||||
|     t_copy= usecond() - t; | ||||
|      | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     // Scatter all faces | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     plane=0; | ||||
|  | ||||
|     t=usecond(); | ||||
|     grid->CommsComplete(fwd_req); | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|     for ( int d=0;d < depth ; d ++ ) { | ||||
|       acceleratorCopyToDevice(&hrecv_buf[d*buffer_size],&recv_buf[d*buffer_size],bytes); | ||||
|     } | ||||
| #endif | ||||
|     t_comms+= usecond() - t; | ||||
|      | ||||
|     t=usecond(); | ||||
|     for ( int d=0;d < depth ; d ++ ) { | ||||
|       ScatterSlice(recv_buf,to,nld-depth+d,dimension,plane*buffer_size); plane++; | ||||
|     } | ||||
|     t_scatter= usecond() - t; | ||||
|  | ||||
|     t=usecond(); | ||||
|     grid->CommsComplete(bwd_req); | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|     for ( int d=0;d < depth ; d ++ ) { | ||||
|       acceleratorCopyToDevice(&hrecv_buf[(d+depth)*buffer_size],&recv_buf[(d+depth)*buffer_size],bytes); | ||||
|     } | ||||
| #endif | ||||
|     t_comms+= usecond() - t; | ||||
|      | ||||
|     t=usecond(); | ||||
|     for ( int d=0;d < depth ; d ++ ) { | ||||
|       ScatterSlice(recv_buf,to,d,dimension,plane*buffer_size); plane++; | ||||
|     } | ||||
|     t_scatter+= usecond() - t; | ||||
|     t_tot+=usecond(); | ||||
|  | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: gather :" << t_gather/1000  << "ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: scatter:" << t_scatter/1000   << "ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: copy   :" << t_copy/1000      << "ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: comms  :" << t_comms/1000     << "ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: total  :" << t_tot/1000     << "ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: gather :" << depth*4.0*bytes/t_gather << "MB/s"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: scatter:" << depth*4.0*bytes/t_scatter<< "MB/s"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: comms  :" << (RealD)4.0*bytes/t_comms   << "MB/s"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: face bytes  :" << depth*bytes/1e6 << "MB"<<std::endl; | ||||
|   } | ||||
|    | ||||
| }; | ||||
|   | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -165,7 +165,7 @@ class BinaryIO { | ||||
| 	 * FIXME -- 128^3 x 256 x 16 will overflow. | ||||
| 	 */ | ||||
| 	 | ||||
| 	int64_t global_site; | ||||
| 	int global_site; | ||||
|  | ||||
| 	Lexicographic::CoorFromIndex(coor,local_site,local_vol); | ||||
|  | ||||
| @@ -175,8 +175,8 @@ class BinaryIO { | ||||
|  | ||||
| 	Lexicographic::IndexFromCoor(coor,global_site,global_vol); | ||||
|  | ||||
| 	uint64_t gsite29   = global_site%29; | ||||
| 	uint64_t gsite31   = global_site%31; | ||||
| 	uint32_t gsite29   = global_site%29; | ||||
| 	uint32_t gsite31   = global_site%31; | ||||
| 	 | ||||
| 	site_crc = crc32(0,(unsigned char *)site_buf,sizeof(fobj)); | ||||
| 	//	std::cout << "Site "<<local_site << " crc "<<std::hex<<site_crc<<std::dec<<std::endl; | ||||
| @@ -545,9 +545,7 @@ class BinaryIO { | ||||
| 				       const std::string &format, | ||||
| 				       uint32_t &nersc_csum, | ||||
| 				       uint32_t &scidac_csuma, | ||||
| 				       uint32_t &scidac_csumb, | ||||
| 				       int control=BINARYIO_LEXICOGRAPHIC | ||||
| 				       ) | ||||
| 				       uint32_t &scidac_csumb) | ||||
|   { | ||||
|     typedef typename vobj::scalar_object sobj; | ||||
|     typedef typename vobj::Realified::scalar_type word;    word w=0; | ||||
| @@ -558,7 +556,7 @@ class BinaryIO { | ||||
|     std::vector<sobj> scalardata(lsites);  | ||||
|     std::vector<fobj>     iodata(lsites); // Munge, checksum, byte order in here | ||||
|      | ||||
|     IOobject(w,grid,iodata,file,offset,format,BINARYIO_READ|control, | ||||
|     IOobject(w,grid,iodata,file,offset,format,BINARYIO_READ|BINARYIO_LEXICOGRAPHIC, | ||||
| 	     nersc_csum,scidac_csuma,scidac_csumb); | ||||
|  | ||||
|     GridStopWatch timer;  | ||||
| @@ -584,8 +582,7 @@ class BinaryIO { | ||||
| 					  const std::string &format, | ||||
| 					  uint32_t &nersc_csum, | ||||
| 					  uint32_t &scidac_csuma, | ||||
| 					  uint32_t &scidac_csumb, | ||||
| 					  int control=BINARYIO_LEXICOGRAPHIC) | ||||
| 					  uint32_t &scidac_csumb) | ||||
|   { | ||||
|     typedef typename vobj::scalar_object sobj; | ||||
|     typedef typename vobj::Realified::scalar_type word;    word w=0; | ||||
| @@ -610,7 +607,7 @@ class BinaryIO { | ||||
|     while (attemptsLeft >= 0) | ||||
|     { | ||||
|       grid->Barrier(); | ||||
|       IOobject(w,grid,iodata,file,offset,format,BINARYIO_WRITE|control, | ||||
|       IOobject(w,grid,iodata,file,offset,format,BINARYIO_WRITE|BINARYIO_LEXICOGRAPHIC, | ||||
| 	             nersc_csum,scidac_csuma,scidac_csumb); | ||||
|       if (checkWrite) | ||||
|       { | ||||
| @@ -620,7 +617,7 @@ class BinaryIO { | ||||
|  | ||||
|         std::cout << GridLogMessage << "writeLatticeObject: read back object" << std::endl; | ||||
|         grid->Barrier(); | ||||
|         IOobject(w,grid,ckiodata,file,ckoffset,format,BINARYIO_READ|control, | ||||
|         IOobject(w,grid,ckiodata,file,ckoffset,format,BINARYIO_READ|BINARYIO_LEXICOGRAPHIC, | ||||
| 	               cknersc_csum,ckscidac_csuma,ckscidac_csumb); | ||||
|         if ((cknersc_csum != nersc_csum) or (ckscidac_csuma != scidac_csuma) or (ckscidac_csumb != scidac_csumb)) | ||||
|         { | ||||
|   | ||||
| @@ -162,14 +162,8 @@ template<class vobj> void ScidacMetaData(Lattice<vobj> & field, | ||||
|  { | ||||
|    uint32_t scidac_checksuma = stoull(scidacChecksum_.suma,0,16); | ||||
|    uint32_t scidac_checksumb = stoull(scidacChecksum_.sumb,0,16); | ||||
|    std::cout << GridLogMessage << " scidacChecksumVerify computed "<<scidac_csuma<<" expected "<<scidac_checksuma <<std::endl; | ||||
|    std::cout << GridLogMessage << " scidacChecksumVerify computed "<<scidac_csumb<<" expected "<<scidac_checksumb <<std::endl; | ||||
|    if ( scidac_csuma !=scidac_checksuma) { | ||||
|      return 0; | ||||
|    }; | ||||
|    if ( scidac_csumb !=scidac_checksumb) { | ||||
|      return 0; | ||||
|    }; | ||||
|    if ( scidac_csuma !=scidac_checksuma) return 0; | ||||
|    if ( scidac_csumb !=scidac_checksumb) return 0; | ||||
|    return 1; | ||||
|  } | ||||
|  | ||||
| @@ -212,7 +206,7 @@ class GridLimeReader : public BinaryIO { | ||||
|   // Read a generic lattice field and verify checksum | ||||
|   //////////////////////////////////////////// | ||||
|   template<class vobj> | ||||
|   void readLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name,int control=BINARYIO_LEXICOGRAPHIC) | ||||
|   void readLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name) | ||||
|   { | ||||
|     typedef typename vobj::scalar_object sobj; | ||||
|     scidacChecksum scidacChecksum_; | ||||
| @@ -244,7 +238,7 @@ class GridLimeReader : public BinaryIO { | ||||
| 	uint64_t offset= ftello(File); | ||||
| 	//	std::cout << " ReadLatticeObject from offset "<<offset << std::endl; | ||||
| 	BinarySimpleMunger<sobj,sobj> munge; | ||||
| 	BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb,control); | ||||
| 	BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb); | ||||
| 	std::cout << GridLogMessage << "SciDAC checksum A " << std::hex << scidac_csuma << std::dec << std::endl; | ||||
| 	std::cout << GridLogMessage << "SciDAC checksum B " << std::hex << scidac_csumb << std::dec << std::endl; | ||||
| 	///////////////////////////////////////////// | ||||
| @@ -414,7 +408,7 @@ class GridLimeWriter : public BinaryIO | ||||
|   // in communicator used by the field.Grid() | ||||
|   //////////////////////////////////////////////////// | ||||
|   template<class vobj> | ||||
|   void writeLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name,int control=BINARYIO_LEXICOGRAPHIC) | ||||
|   void writeLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name) | ||||
|   { | ||||
|     //////////////////////////////////////////////////////////////////// | ||||
|     // NB: FILE and iostream are jointly writing disjoint sequences in the | ||||
| @@ -465,7 +459,7 @@ class GridLimeWriter : public BinaryIO | ||||
|     /////////////////////////////////////////// | ||||
|     std::string format = getFormatString<vobj>(); | ||||
|     BinarySimpleMunger<sobj,sobj> munge; | ||||
|     BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset1, format,nersc_csum,scidac_csuma,scidac_csumb,control); | ||||
|     BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset1, format,nersc_csum,scidac_csuma,scidac_csumb); | ||||
|  | ||||
|     /////////////////////////////////////////// | ||||
|     // Wind forward and close the record | ||||
| @@ -518,8 +512,7 @@ class ScidacWriter : public GridLimeWriter { | ||||
|   //////////////////////////////////////////////// | ||||
|   template <class vobj, class userRecord> | ||||
|   void writeScidacFieldRecord(Lattice<vobj> &field,userRecord _userRecord, | ||||
|                               const unsigned int recordScientificPrec = 0, | ||||
| 			      int control=BINARYIO_LEXICOGRAPHIC) | ||||
|                               const unsigned int recordScientificPrec = 0)  | ||||
|   { | ||||
|     GridBase * grid = field.Grid(); | ||||
|  | ||||
| @@ -541,7 +534,7 @@ class ScidacWriter : public GridLimeWriter { | ||||
|       writeLimeObject(0,0,_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML)); | ||||
|     } | ||||
|     // Collective call | ||||
|     writeLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA),control);      // Closes message with checksum | ||||
|     writeLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA));      // Closes message with checksum | ||||
|   } | ||||
| }; | ||||
|  | ||||
| @@ -560,8 +553,7 @@ class ScidacReader : public GridLimeReader { | ||||
|   // Write generic lattice field in scidac format | ||||
|   //////////////////////////////////////////////// | ||||
|   template <class vobj, class userRecord> | ||||
|   void readScidacFieldRecord(Lattice<vobj> &field,userRecord &_userRecord, | ||||
| 			     int control=BINARYIO_LEXICOGRAPHIC)  | ||||
|   void readScidacFieldRecord(Lattice<vobj> &field,userRecord &_userRecord)  | ||||
|   { | ||||
|     typedef typename vobj::scalar_object sobj; | ||||
|     GridBase * grid = field.Grid(); | ||||
| @@ -579,7 +571,7 @@ class ScidacReader : public GridLimeReader { | ||||
|     readLimeObject(header ,std::string("FieldMetaData"),std::string(GRID_FORMAT)); // Open message  | ||||
|     readLimeObject(_userRecord,_userRecord.SerialisableClassName(),std::string(SCIDAC_RECORD_XML)); | ||||
|     readLimeObject(_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML)); | ||||
|     readLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA),control); | ||||
|     readLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA)); | ||||
|   } | ||||
|   void skipPastBinaryRecord(void) { | ||||
|     std::string rec_name(ILDG_BINARY_DATA); | ||||
|   | ||||
| @@ -132,10 +132,6 @@ public: | ||||
| template <class GaugeField > | ||||
| class EmptyAction : public Action <GaugeField> | ||||
| { | ||||
|   using Action<GaugeField>::refresh; | ||||
|   using Action<GaugeField>::Sinitial; | ||||
|   using Action<GaugeField>::deriv; | ||||
|  | ||||
|   virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) { assert(0);}; // refresh pseudofermions | ||||
|   virtual RealD S(const GaugeField& U) { return 0.0;};                             // evaluate the action | ||||
|   virtual void deriv(const GaugeField& U, GaugeField& dSdU) { assert(0); };        // evaluate the action derivative | ||||
|   | ||||
| @@ -55,11 +55,6 @@ public: | ||||
|   RealD alpha; // Mobius scale | ||||
|   RealD k;     // EOFA normalization constant | ||||
|  | ||||
|   // Device resident | ||||
|   deviceVector<Coeff_t> d_shift_coefficients; | ||||
|   deviceVector<Coeff_t> d_MooeeInv_shift_lc; | ||||
|   deviceVector<Coeff_t> d_MooeeInv_shift_norm; | ||||
|    | ||||
|   virtual void Instantiatable(void) = 0; | ||||
|  | ||||
|   // EOFA-specific operations | ||||
| @@ -97,11 +92,6 @@ public: | ||||
|     this->k = this->alpha * (_mq3-_mq2) * std::pow(this->alpha+1.0,2*Ls) / | ||||
|       ( std::pow(this->alpha+1.0,Ls) + _mq2*std::pow(this->alpha-1.0,Ls) ) / | ||||
|       ( std::pow(this->alpha+1.0,Ls) + _mq3*std::pow(this->alpha-1.0,Ls) ); | ||||
|      | ||||
|     d_shift_coefficients.resize(Ls); | ||||
|     d_MooeeInv_shift_lc.resize(Ls); | ||||
|     d_MooeeInv_shift_norm.resize(Ls); | ||||
|  | ||||
|   }; | ||||
| }; | ||||
|  | ||||
|   | ||||
| @@ -90,16 +90,16 @@ public: | ||||
|   void M5D(const FermionField &psi, | ||||
| 	   const FermionField &phi, | ||||
| 	   FermionField &chi, | ||||
| 	   std::vector<Coeff_t> &lower, | ||||
| 	   std::vector<Coeff_t> &diag, | ||||
| 	   std::vector<Coeff_t> &upper); | ||||
| 	   Vector<Coeff_t> &lower, | ||||
| 	   Vector<Coeff_t> &diag, | ||||
| 	   Vector<Coeff_t> &upper); | ||||
|  | ||||
|   void M5Ddag(const FermionField &psi, | ||||
| 	      const FermionField &phi, | ||||
| 	      FermionField &chi, | ||||
| 	      std::vector<Coeff_t> &lower, | ||||
| 	      std::vector<Coeff_t> &diag, | ||||
| 	      std::vector<Coeff_t> &upper); | ||||
| 	      Vector<Coeff_t> &lower, | ||||
| 	      Vector<Coeff_t> &diag, | ||||
| 	      Vector<Coeff_t> &upper); | ||||
|  | ||||
|   virtual void   Instantiatable(void)=0; | ||||
|  | ||||
| @@ -119,51 +119,35 @@ public: | ||||
|   RealD mass_plus, mass_minus; | ||||
|  | ||||
|   // Save arguments to SetCoefficientsInternal | ||||
|   std::vector<Coeff_t> _gamma; | ||||
|   Vector<Coeff_t> _gamma; | ||||
|   RealD                _zolo_hi; | ||||
|   RealD                _b; | ||||
|   RealD                _c; | ||||
|  | ||||
|   // possible boost | ||||
|   std::vector<ComplexD> qmu; | ||||
|   void set_qmu(std::vector<ComplexD> _qmu) { qmu=_qmu; assert(qmu.size()==Nd);}; | ||||
|   void addQmu(const FermionField &in, FermionField &out, int dag); | ||||
|    | ||||
|   // Cayley form Moebius (tanh and zolotarev) | ||||
|   std::vector<Coeff_t> omega; | ||||
|   std::vector<Coeff_t> bs;    // S dependent coeffs | ||||
|   std::vector<Coeff_t> cs; | ||||
|   std::vector<Coeff_t> as; | ||||
|   Vector<Coeff_t> omega; | ||||
|   Vector<Coeff_t> bs;    // S dependent coeffs | ||||
|   Vector<Coeff_t> cs; | ||||
|   Vector<Coeff_t> as; | ||||
|   // For preconditioning Cayley form | ||||
|   std::vector<Coeff_t> bee; | ||||
|   std::vector<Coeff_t> cee; | ||||
|   std::vector<Coeff_t> aee; | ||||
|   std::vector<Coeff_t> beo; | ||||
|   std::vector<Coeff_t> ceo; | ||||
|   std::vector<Coeff_t> aeo; | ||||
|   Vector<Coeff_t> bee; | ||||
|   Vector<Coeff_t> cee; | ||||
|   Vector<Coeff_t> aee; | ||||
|   Vector<Coeff_t> beo; | ||||
|   Vector<Coeff_t> ceo; | ||||
|   Vector<Coeff_t> aeo; | ||||
|   // LDU factorisation of the eeoo matrix | ||||
|   std::vector<Coeff_t> lee; | ||||
|   std::vector<Coeff_t> leem; | ||||
|   std::vector<Coeff_t> uee; | ||||
|   std::vector<Coeff_t> ueem; | ||||
|   std::vector<Coeff_t> dee; | ||||
|  | ||||
|   // Device memory | ||||
|   deviceVector<Coeff_t> d_diag; | ||||
|   deviceVector<Coeff_t> d_upper; | ||||
|   deviceVector<Coeff_t> d_lower; | ||||
|  | ||||
|   deviceVector<Coeff_t> d_lee; | ||||
|   deviceVector<Coeff_t> d_dee; | ||||
|   deviceVector<Coeff_t> d_uee; | ||||
|   deviceVector<Coeff_t> d_leem; | ||||
|   deviceVector<Coeff_t> d_ueem; | ||||
|   Vector<Coeff_t> lee; | ||||
|   Vector<Coeff_t> leem; | ||||
|   Vector<Coeff_t> uee; | ||||
|   Vector<Coeff_t> ueem; | ||||
|   Vector<Coeff_t> dee; | ||||
|  | ||||
|   // Matrices of 5d ee inverse params | ||||
|   //  std::vector<iSinglet<Simd> >  MatpInv; | ||||
|   //  std::vector<iSinglet<Simd> >  MatmInv; | ||||
|   //  std::vector<iSinglet<Simd> >  MatpInvDag; | ||||
|   //  std::vector<iSinglet<Simd> >  MatmInvDag; | ||||
|   Vector<iSinglet<Simd> >  MatpInv; | ||||
|   Vector<iSinglet<Simd> >  MatmInv; | ||||
|   Vector<iSinglet<Simd> >  MatpInvDag; | ||||
|   Vector<iSinglet<Simd> >  MatmInvDag; | ||||
|  | ||||
|   /////////////////////////////////////////////////////////////// | ||||
|   // Conserved current utilities | ||||
| @@ -203,7 +187,7 @@ public: | ||||
| protected: | ||||
|   virtual void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c); | ||||
|   virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c); | ||||
|   virtual void SetCoefficientsInternal(RealD zolo_hi,std::vector<Coeff_t> & gamma,RealD b,RealD c); | ||||
|   virtual void SetCoefficientsInternal(RealD zolo_hi,Vector<Coeff_t> & gamma,RealD b,RealD c); | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|   | ||||
| @@ -1,196 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
|     Source file: ./lib/qcd/action/fermion/CompactWilsonCloverFermion5D.h | ||||
|  | ||||
|     Copyright (C) 2020 - 2025 | ||||
|  | ||||
|     Author: Daniel Richtmann <daniel.richtmann@gmail.com> | ||||
|     Author: Nils Meyer <nils.meyer@ur.de> | ||||
|     Author: Christoph Lehner <christoph@lhnr.de> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
|     *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| #include <Grid/qcd/action/fermion/WilsonFermion5D.h> | ||||
| #include <Grid/qcd/action/fermion/WilsonCloverTypes.h> | ||||
| #include <Grid/qcd/action/fermion/WilsonCloverHelpers.h> | ||||
| #include <Grid/qcd/action/fermion/CloverHelpers.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| // see Grid/qcd/action/fermion/CompactWilsonCloverFermion.h for description | ||||
|  | ||||
| template<class Impl, class CloverHelpers> | ||||
| class CompactWilsonCloverFermion5D : public WilsonFermion5D<Impl>, | ||||
| 				     public WilsonCloverHelpers<Impl>, | ||||
| 				     public CompactWilsonCloverHelpers<Impl> { | ||||
|   ///////////////////////////////////////////// | ||||
|   // Sizes | ||||
|   ///////////////////////////////////////////// | ||||
|  | ||||
| public: | ||||
|  | ||||
|   INHERIT_COMPACT_CLOVER_SIZES(Impl); | ||||
|  | ||||
|   ///////////////////////////////////////////// | ||||
|   // Type definitions | ||||
|   ///////////////////////////////////////////// | ||||
|  | ||||
| public: | ||||
|  | ||||
|   INHERIT_IMPL_TYPES(Impl); | ||||
|   INHERIT_CLOVER_TYPES(Impl); | ||||
|   INHERIT_COMPACT_CLOVER_TYPES(Impl); | ||||
|  | ||||
|   typedef WilsonFermion5D<Impl>            WilsonBase; | ||||
|   typedef WilsonCloverHelpers<Impl>        Helpers; | ||||
|   typedef CompactWilsonCloverHelpers<Impl> CompactHelpers; | ||||
|  | ||||
|   ///////////////////////////////////////////// | ||||
|   // Constructors | ||||
|   ///////////////////////////////////////////// | ||||
|  | ||||
| public: | ||||
|  | ||||
|   CompactWilsonCloverFermion5D(GaugeField& _Umu, | ||||
| 			       GridCartesian         &FiveDimGrid, | ||||
| 			       GridRedBlackCartesian &FiveDimRedBlackGrid, | ||||
| 			       GridCartesian         &FourDimGrid, | ||||
| 			       GridRedBlackCartesian &FourDimRedBlackGrid, | ||||
| 			       const RealD _mass, | ||||
| 			       const RealD _csw_r = 0.0, | ||||
| 			       const RealD _csw_t = 0.0, | ||||
| 			       const RealD _cF = 1.0, | ||||
| 			       const ImplParams& impl_p = ImplParams()); | ||||
|  | ||||
|   ///////////////////////////////////////////// | ||||
|   // Member functions (implementing interface) | ||||
|   ///////////////////////////////////////////// | ||||
|  | ||||
| public: | ||||
|  | ||||
|   virtual void Instantiatable() {}; | ||||
|   int          ConstEE()     override { return 0; }; | ||||
|   int          isTrivialEE() override { return 0; }; | ||||
|  | ||||
|   void Dhop(const FermionField& in, FermionField& out, int dag) override; | ||||
|  | ||||
|   void DhopOE(const FermionField& in, FermionField& out, int dag) override; | ||||
|  | ||||
|   void DhopEO(const FermionField& in, FermionField& out, int dag) override; | ||||
|  | ||||
|   void DhopDir(const FermionField& in, FermionField& out, int dir, int disp) override; | ||||
|  | ||||
|   void DhopDirAll(const FermionField& in, std::vector<FermionField>& out) /* override */; | ||||
|  | ||||
|   void M(const FermionField& in, FermionField& out) override; | ||||
|  | ||||
|   void Mdag(const FermionField& in, FermionField& out) override; | ||||
|  | ||||
|   void Meooe(const FermionField& in, FermionField& out) override; | ||||
|  | ||||
|   void MeooeDag(const FermionField& in, FermionField& out) override; | ||||
|  | ||||
|   void Mooee(const FermionField& in, FermionField& out) override; | ||||
|  | ||||
|   void MooeeDag(const FermionField& in, FermionField& out) override; | ||||
|  | ||||
|   void MooeeInv(const FermionField& in, FermionField& out) override; | ||||
|  | ||||
|   void MooeeInvDag(const FermionField& in, FermionField& out) override; | ||||
|  | ||||
|   void Mdir(const FermionField& in, FermionField& out, int dir, int disp) override; | ||||
|  | ||||
|   void MdirAll(const FermionField& in, std::vector<FermionField>& out) override; | ||||
|  | ||||
|   void MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) override; | ||||
|  | ||||
|   void MooDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override; | ||||
|  | ||||
|   void MeeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override; | ||||
|  | ||||
|   ///////////////////////////////////////////// | ||||
|   // Member functions (internals) | ||||
|   ///////////////////////////////////////////// | ||||
|  | ||||
|   void MooeeInternal(const FermionField&        in, | ||||
|                      FermionField&              out, | ||||
|                      const CloverDiagonalField& diagonal, | ||||
|                      const CloverTriangleField& triangle); | ||||
|  | ||||
|   ///////////////////////////////////////////// | ||||
|   // Helpers | ||||
|   ///////////////////////////////////////////// | ||||
|  | ||||
|   void ImportGauge(const GaugeField& _Umu) override; | ||||
|  | ||||
|   ///////////////////////////////////////////// | ||||
|   // Helpers | ||||
|   ///////////////////////////////////////////// | ||||
|  | ||||
| private: | ||||
|  | ||||
|   template<class Field> | ||||
|   const MaskField* getCorrectMaskField(const Field &in) const { | ||||
|     if(in.Grid()->_isCheckerBoarded) { | ||||
|       if(in.Checkerboard() == Odd) { | ||||
|         return &this->BoundaryMaskOdd; | ||||
|       } else { | ||||
|         return &this->BoundaryMaskEven; | ||||
|       } | ||||
|     } else { | ||||
|       return &this->BoundaryMask; | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   template<class Field> | ||||
|   void ApplyBoundaryMask(Field& f) { | ||||
|     const MaskField* m = getCorrectMaskField(f); assert(m != nullptr); | ||||
|     assert(m != nullptr); | ||||
|     CompactHelpers::ApplyBoundaryMask(f, *m); | ||||
|   } | ||||
|  | ||||
|   ///////////////////////////////////////////// | ||||
|   // Member Data | ||||
|   ///////////////////////////////////////////// | ||||
|  | ||||
| public: | ||||
|  | ||||
|   RealD csw_r; | ||||
|   RealD csw_t; | ||||
|   RealD cF; | ||||
|   int n_rhs; | ||||
|    | ||||
|   bool fixedBoundaries; | ||||
|  | ||||
|   CloverDiagonalField Diagonal,    DiagonalEven,    DiagonalOdd; | ||||
|   CloverDiagonalField DiagonalInv, DiagonalInvEven, DiagonalInvOdd; | ||||
|  | ||||
|   CloverTriangleField Triangle,    TriangleEven,    TriangleOdd; | ||||
|   CloverTriangleField TriangleInv, TriangleInvEven, TriangleInvOdd; | ||||
|  | ||||
|   FermionField Tmp; | ||||
|  | ||||
|   MaskField BoundaryMask, BoundaryMaskEven, BoundaryMaskOdd; | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -60,50 +60,6 @@ public: | ||||
|   //      virtual void   Instantiatable(void)=0; | ||||
|   virtual void   Instantiatable(void) =0; | ||||
|  | ||||
|   void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary, std::vector<double> twist) | ||||
|   { | ||||
|     std::cout << "Free Propagator for PartialFraction"<<std::endl; | ||||
|     FermionField in_k(in.Grid()); | ||||
|     FermionField prop_k(in.Grid()); | ||||
|      | ||||
|     FFT theFFT((GridCartesian *) in.Grid()); | ||||
|  | ||||
|     //phase for boundary condition | ||||
|     ComplexField coor(in.Grid()); | ||||
|     ComplexField ph(in.Grid());  ph = Zero(); | ||||
|     FermionField in_buf(in.Grid()); in_buf = Zero(); | ||||
|     typedef typename Simd::scalar_type Scalar; | ||||
|     Scalar ci(0.0,1.0); | ||||
|     assert(twist.size() == Nd);//check that twist is Nd | ||||
|     assert(boundary.size() == Nd);//check that boundary conditions is Nd | ||||
|     int shift = 0; | ||||
|     for(unsigned int nu = 0; nu < Nd; nu++) | ||||
|       { | ||||
| 	// Shift coordinate lattice index by 1 to account for 5th dimension. | ||||
| 	LatticeCoordinate(coor, nu + shift); | ||||
| 	double boundary_phase = ::acos(real(boundary[nu])); | ||||
| 	ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu+shift]))); | ||||
| 	//momenta for propagator shifted by twist+boundary | ||||
| 	twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI)); | ||||
|       } | ||||
|     in_buf = exp(ci*ph*(-1.0))*in; | ||||
|  | ||||
|     theFFT.FFT_all_dim(in_k,in,FFT::forward); | ||||
|     this->MomentumSpacePropagatorHw(prop_k,in_k,mass,twist); | ||||
|     theFFT.FFT_all_dim(out,prop_k,FFT::backward); | ||||
|      | ||||
|     //phase for boundary condition | ||||
|     out = out * exp(ci*ph); | ||||
|   }; | ||||
|  | ||||
|   virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) { | ||||
|     std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions | ||||
|     std::vector<Complex> boundary; | ||||
|     for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions | ||||
|     FreePropagator(in,out,mass,boundary,twist); | ||||
|   }; | ||||
|  | ||||
|    | ||||
|   // Efficient support for multigrid coarsening | ||||
|   virtual void  Mdir (const FermionField &in, FermionField &out,int dir,int disp); | ||||
|   virtual void  MdirAll(const FermionField &in, std::vector<FermionField> &out); | ||||
| @@ -134,12 +90,12 @@ protected: | ||||
|   RealD mass; | ||||
|   RealD R; | ||||
|   RealD ZoloHiInv; | ||||
|   std::vector<double> Beta; | ||||
|   std::vector<double> cc;; | ||||
|   std::vector<double> cc_d;; | ||||
|   std::vector<double> sqrt_cc; | ||||
|   std::vector<double> See; | ||||
|   std::vector<double> Aee; | ||||
|   Vector<double> Beta; | ||||
|   Vector<double> cc;; | ||||
|   Vector<double> cc_d;; | ||||
|   Vector<double> sqrt_cc; | ||||
|   Vector<double> See; | ||||
|   Vector<double> Aee; | ||||
|  | ||||
| }; | ||||
|  | ||||
|   | ||||
| @@ -69,10 +69,10 @@ public: | ||||
|   // Instantiate different versions depending on Impl | ||||
|   ///////////////////////////////////////////////////// | ||||
|   void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi, | ||||
| 	   std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper); | ||||
| 	   Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper); | ||||
|  | ||||
|   void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi, | ||||
| 	      std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper); | ||||
| 	      Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper); | ||||
|  | ||||
|   virtual void RefreshShiftCoefficients(RealD new_shift); | ||||
|  | ||||
| @@ -83,7 +83,7 @@ public: | ||||
| 			RealD _M5, const ImplParams& p=ImplParams()); | ||||
|  | ||||
| protected: | ||||
|   void SetCoefficientsInternal(RealD zolo_hi, std::vector<Coeff_t>& gamma, RealD b, RealD c); | ||||
|   void SetCoefficientsInternal(RealD zolo_hi, Vector<Coeff_t>& gamma, RealD b, RealD c); | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|   | ||||
| @@ -55,7 +55,6 @@ NAMESPACE_CHECK(Wilson); | ||||
| NAMESPACE_CHECK(WilsonTM); | ||||
| #include <Grid/qcd/action/fermion/WilsonCloverFermion.h> // 4d wilson clover fermions | ||||
| #include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h> // 4d compact wilson clover fermions | ||||
| #include <Grid/qcd/action/fermion/CompactWilsonCloverFermion5D.h> // 5d compact wilson clover fermions | ||||
| NAMESPACE_CHECK(WilsonClover); | ||||
| #include <Grid/qcd/action/fermion/WilsonFermion5D.h>     // 5d base used by all 5d overlap types | ||||
| NAMESPACE_CHECK(Wilson5D); | ||||
| @@ -165,17 +164,12 @@ typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiS | ||||
|  | ||||
| // Compact Clover fermions | ||||
| template <typename WImpl> using CompactWilsonClover = CompactWilsonCloverFermion<WImpl, CompactCloverHelpers<WImpl>>; | ||||
| template <typename WImpl> using CompactWilsonClover5D = CompactWilsonCloverFermion5D<WImpl, CompactCloverHelpers<WImpl>>; | ||||
| template <typename WImpl> using CompactWilsonExpClover = CompactWilsonCloverFermion<WImpl, CompactExpCloverHelpers<WImpl>>; | ||||
|  | ||||
| typedef CompactWilsonClover<WilsonImplD2> CompactWilsonCloverFermionD2; | ||||
| typedef CompactWilsonClover<WilsonImplF> CompactWilsonCloverFermionF; | ||||
| typedef CompactWilsonClover<WilsonImplD> CompactWilsonCloverFermionD; | ||||
|  | ||||
| typedef CompactWilsonClover5D<WilsonImplD2> CompactWilsonCloverFermion5DD2; | ||||
| typedef CompactWilsonClover5D<WilsonImplF> CompactWilsonCloverFermion5DF; | ||||
| typedef CompactWilsonClover5D<WilsonImplD> CompactWilsonCloverFermion5DD; | ||||
|  | ||||
| typedef CompactWilsonExpClover<WilsonImplD2> CompactWilsonExpCloverFermionD2; | ||||
| typedef CompactWilsonExpClover<WilsonImplF> CompactWilsonExpCloverFermionF; | ||||
| typedef CompactWilsonExpClover<WilsonImplD> CompactWilsonExpCloverFermionD; | ||||
|   | ||||
| @@ -102,11 +102,11 @@ public: | ||||
| 		     GaugeField &mat,  | ||||
| 		     const FermionField &A, const FermionField &B, int dag); | ||||
|  | ||||
|   void DhopInternal(StencilImpl &st, DoubledGaugeField &U,DoubledGaugeField &UUU, | ||||
|   void DhopInternal(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU, | ||||
|                     const FermionField &in, FermionField &out, int dag); | ||||
|   void DhopInternalSerialComms(StencilImpl &st, DoubledGaugeField &U,DoubledGaugeField &UUU, | ||||
|   void DhopInternalSerialComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU, | ||||
|                     const FermionField &in, FermionField &out, int dag); | ||||
|   void DhopInternalOverlappedComms(StencilImpl &st, DoubledGaugeField &U,DoubledGaugeField &UUU, | ||||
|   void DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU, | ||||
|                     const FermionField &in, FermionField &out, int dag); | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////// | ||||
| @@ -164,6 +164,8 @@ public: | ||||
|   DoubledGaugeField UUUmuEven; | ||||
|   DoubledGaugeField UUUmuOdd; | ||||
|  | ||||
|   LebesgueOrder Lebesgue; | ||||
|   LebesgueOrder LebesgueEvenOdd; | ||||
|    | ||||
|   /////////////////////////////////////////////////////////////// | ||||
|   // Conserved current utilities | ||||
|   | ||||
| @@ -100,6 +100,7 @@ public: | ||||
| 		     int dag); | ||||
|      | ||||
|   void DhopInternal(StencilImpl & st, | ||||
| 		    LebesgueOrder &lo, | ||||
| 		    DoubledGaugeField &U, | ||||
| 		    DoubledGaugeField &UUU, | ||||
| 		    const FermionField &in,  | ||||
| @@ -107,6 +108,7 @@ public: | ||||
| 		    int dag); | ||||
|      | ||||
|     void DhopInternalOverlappedComms(StencilImpl & st, | ||||
| 		      LebesgueOrder &lo, | ||||
| 		      DoubledGaugeField &U, | ||||
| 		      DoubledGaugeField &UUU, | ||||
| 		      const FermionField &in,  | ||||
| @@ -114,6 +116,7 @@ public: | ||||
| 		      int dag); | ||||
|  | ||||
|     void DhopInternalSerialComms(StencilImpl & st, | ||||
| 		      LebesgueOrder &lo, | ||||
| 		      DoubledGaugeField &U, | ||||
| 		      DoubledGaugeField &UUU, | ||||
| 		      const FermionField &in,  | ||||
| @@ -189,6 +192,8 @@ public: | ||||
|   DoubledGaugeField UUUmuEven; | ||||
|   DoubledGaugeField UUUmuOdd; | ||||
|      | ||||
|   LebesgueOrder Lebesgue; | ||||
|   LebesgueOrder LebesgueEvenOdd; | ||||
|      | ||||
|   // Comms buffer | ||||
|   //  std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> >  comm_buf; | ||||
|   | ||||
| @@ -42,11 +42,11 @@ public: | ||||
|  | ||||
| public: | ||||
|   // Shift operator coefficients for red-black preconditioned Mobius EOFA | ||||
|   std::vector<Coeff_t> Mooee_shift; | ||||
|   std::vector<Coeff_t> MooeeInv_shift_lc; | ||||
|   std::vector<Coeff_t> MooeeInv_shift_norm; | ||||
|   std::vector<Coeff_t> MooeeInvDag_shift_lc; | ||||
|   std::vector<Coeff_t> MooeeInvDag_shift_norm; | ||||
|   Vector<Coeff_t> Mooee_shift; | ||||
|   Vector<Coeff_t> MooeeInv_shift_lc; | ||||
|   Vector<Coeff_t> MooeeInv_shift_norm; | ||||
|   Vector<Coeff_t> MooeeInvDag_shift_lc; | ||||
|   Vector<Coeff_t> MooeeInvDag_shift_norm; | ||||
|  | ||||
|   virtual void Instantiatable(void) {}; | ||||
|  | ||||
| @@ -74,18 +74,18 @@ public: | ||||
|   // Instantiate different versions depending on Impl | ||||
|   ///////////////////////////////////////////////////// | ||||
|   void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi, | ||||
| 	   std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper); | ||||
| 	   Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper); | ||||
|  | ||||
|   void M5D_shift(const FermionField& psi, const FermionField& phi, FermionField& chi, | ||||
| 		 std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper, | ||||
| 		 std::vector<Coeff_t>& shift_coeffs); | ||||
| 		 Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper, | ||||
| 		 Vector<Coeff_t>& shift_coeffs); | ||||
|  | ||||
|   void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi, | ||||
| 	      std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper); | ||||
| 	      Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper); | ||||
|  | ||||
|   void M5Ddag_shift(const FermionField& psi, const FermionField& phi, FermionField& chi, | ||||
| 		    std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper, | ||||
| 		    std::vector<Coeff_t>& shift_coeffs); | ||||
| 		    Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper, | ||||
| 		    Vector<Coeff_t>& shift_coeffs); | ||||
|  | ||||
|   virtual void RefreshShiftCoefficients(RealD new_shift); | ||||
|  | ||||
|   | ||||
| @@ -102,11 +102,11 @@ public: | ||||
| 		     GaugeField &mat,  | ||||
| 		     const FermionField &A, const FermionField &B, int dag); | ||||
|  | ||||
|   void DhopInternal(StencilImpl &st, DoubledGaugeField &U, | ||||
|   void DhopInternal(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, | ||||
|                     const FermionField &in, FermionField &out, int dag); | ||||
|   void DhopInternalSerialComms(StencilImpl &st, DoubledGaugeField &U, | ||||
|   void DhopInternalSerialComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, | ||||
| 			       const FermionField &in, FermionField &out, int dag); | ||||
|   void DhopInternalOverlappedComms(StencilImpl &st, DoubledGaugeField &U, | ||||
|   void DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, | ||||
| 				   const FermionField &in, FermionField &out, int dag); | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////// | ||||
| @@ -152,6 +152,9 @@ public: | ||||
|   DoubledGaugeField UmuEven; | ||||
|   DoubledGaugeField UmuOdd; | ||||
|  | ||||
|   LebesgueOrder Lebesgue; | ||||
|   LebesgueOrder LebesgueEvenOdd; | ||||
|    | ||||
|   /////////////////////////////////////////////////////////////// | ||||
|   // Conserved current utilities | ||||
|   /////////////////////////////////////////////////////////////// | ||||
|   | ||||
| @@ -42,7 +42,7 @@ public: | ||||
|  | ||||
|      void  MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) { | ||||
|        this->MomentumSpacePropagatorHw(out,in,_m,twist); | ||||
|      }; | ||||
|   }; | ||||
|  | ||||
|   // Constructors | ||||
|   OverlapWilsonCayleyTanhFermion(GaugeField &_Umu, | ||||
|   | ||||
| @@ -41,10 +41,6 @@ public: | ||||
| public: | ||||
|  | ||||
|   // Constructors | ||||
|   virtual void   Instantiatable(void){}; | ||||
|   void  MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) { | ||||
|     this->MomentumSpacePropagatorHw(out,in,_m,twist); | ||||
|   }; | ||||
|  | ||||
|   OverlapWilsonCayleyZolotarevFermion(GaugeField &_Umu, | ||||
| 				      GridCartesian         &FiveDimGrid, | ||||
|   | ||||
| @@ -41,9 +41,6 @@ public: | ||||
| public: | ||||
|  | ||||
|   virtual void   Instantiatable(void){}; | ||||
|   void  MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) { | ||||
|     this->MomentumSpacePropagatorHw(out,in,_m,twist); | ||||
|   }; | ||||
|   // Constructors | ||||
|   OverlapWilsonContFracTanhFermion(GaugeField &_Umu, | ||||
| 				   GridCartesian         &FiveDimGrid, | ||||
|   | ||||
| @@ -40,9 +40,6 @@ public: | ||||
|   INHERIT_IMPL_TYPES(Impl); | ||||
|  | ||||
|   virtual void   Instantiatable(void){}; | ||||
|   void  MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) { | ||||
|     this->MomentumSpacePropagatorHw(out,in,_m,twist); | ||||
|   }; | ||||
|   // Constructors | ||||
|   OverlapWilsonContFracZolotarevFermion(GaugeField &_Umu, | ||||
| 					GridCartesian         &FiveDimGrid, | ||||
|   | ||||
| @@ -41,9 +41,6 @@ public: | ||||
| public: | ||||
|  | ||||
|   virtual void   Instantiatable(void){}; | ||||
|   void  MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) { | ||||
|     this->MomentumSpacePropagatorHw(out,in,_m,twist); | ||||
|   }; | ||||
|   // Constructors | ||||
|   OverlapWilsonPartialFractionTanhFermion(GaugeField &_Umu, | ||||
| 					  GridCartesian         &FiveDimGrid, | ||||
|   | ||||
| @@ -40,11 +40,6 @@ public: | ||||
|   INHERIT_IMPL_TYPES(Impl); | ||||
|  | ||||
|   virtual void   Instantiatable(void){}; | ||||
|  | ||||
|   void  MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) { | ||||
|     this->MomentumSpacePropagatorHw(out,in,_m,twist); | ||||
|   }; | ||||
|  | ||||
|   // Constructors | ||||
|   OverlapWilsonPartialFractionZolotarevFermion(GaugeField &_Umu, | ||||
| 					       GridCartesian         &FiveDimGrid, | ||||
|   | ||||
| @@ -39,7 +39,7 @@ class PartialFractionFermion5D : public WilsonFermion5D<Impl> | ||||
| public: | ||||
|   INHERIT_IMPL_TYPES(Impl); | ||||
|  | ||||
|   const int part_frac_chroma_convention=0; | ||||
|   const int part_frac_chroma_convention=1; | ||||
|  | ||||
|   void   Meooe_internal(const FermionField &in, FermionField &out,int dag); | ||||
|   void   Mooee_internal(const FermionField &in, FermionField &out,int dag); | ||||
| @@ -83,78 +83,19 @@ public: | ||||
| 			   GridRedBlackCartesian &FourDimRedBlackGrid, | ||||
| 			   RealD _mass,RealD M5,const ImplParams &p= ImplParams()); | ||||
|  | ||||
|   PartialFractionFermion5D(GaugeField &_Umu, | ||||
| 			   GridCartesian         &FiveDimGrid, | ||||
| 			   GridRedBlackCartesian &FiveDimRedBlackGrid, | ||||
| 			   GridCartesian         &FourDimGrid, | ||||
| 			   GridRedBlackCartesian &FourDimRedBlackGrid, | ||||
| 			   RealD _mass,RealD M5,std::vector<RealD> &_qmu,const ImplParams &p= ImplParams()); | ||||
|  | ||||
|   void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary, std::vector<double> twist) | ||||
|   { | ||||
|     std::cout << "Free Propagator for PartialFraction"<<std::endl; | ||||
|     FermionField in_k(in.Grid()); | ||||
|     FermionField prop_k(in.Grid()); | ||||
|      | ||||
|     FFT theFFT((GridCartesian *) in.Grid()); | ||||
|  | ||||
|     //phase for boundary condition | ||||
|     ComplexField coor(in.Grid()); | ||||
|     ComplexField ph(in.Grid());  ph = Zero(); | ||||
|     FermionField in_buf(in.Grid()); in_buf = Zero(); | ||||
|     typedef typename Simd::scalar_type Scalar; | ||||
|     Scalar ci(0.0,1.0); | ||||
|     assert(twist.size() == Nd);//check that twist is Nd | ||||
|     assert(boundary.size() == Nd);//check that boundary conditions is Nd | ||||
|     int shift = 0; | ||||
|     for(unsigned int nu = 0; nu < Nd; nu++) | ||||
|       { | ||||
| 	// Shift coordinate lattice index by 1 to account for 5th dimension. | ||||
| 	LatticeCoordinate(coor, nu + shift); | ||||
| 	double boundary_phase = ::acos(real(boundary[nu])); | ||||
| 	ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu+shift]))); | ||||
| 	//momenta for propagator shifted by twist+boundary | ||||
| 	twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI)); | ||||
|       } | ||||
|     in_buf = exp(ci*ph*(-1.0))*in; | ||||
|  | ||||
|     theFFT.FFT_all_dim(in_k,in,FFT::forward); | ||||
|     if ( this->qmu.size() ){ | ||||
|       this->MomentumSpacePropagatorHwQ(prop_k,in_k,mass,twist,this->qmu); | ||||
|     } else { | ||||
|       this->MomentumSpacePropagatorHw(prop_k,in_k,mass,twist); | ||||
|     } | ||||
|     theFFT.FFT_all_dim(out,prop_k,FFT::backward); | ||||
|      | ||||
|     //phase for boundary condition | ||||
|     out = out * exp(ci*ph); | ||||
|   }; | ||||
|  | ||||
|   virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) { | ||||
|     std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions | ||||
|     std::vector<Complex> boundary; | ||||
|     for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions | ||||
|     FreePropagator(in,out,mass,boundary,twist); | ||||
|   }; | ||||
|  | ||||
|   void set_qmu(std::vector<RealD> _qmu) { qmu=_qmu; assert(qmu.size()==Nd);}; | ||||
|   void addQmu(const FermionField &in, FermionField &out, int dag); | ||||
|  | ||||
| protected: | ||||
|  | ||||
|   virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale); | ||||
|   virtual void SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata); | ||||
|  | ||||
|   std::vector<RealD> qmu; | ||||
|  | ||||
|   // Part frac | ||||
|   RealD mass; | ||||
|   RealD dw_diag; | ||||
|   RealD R; | ||||
|   RealD amax; | ||||
|   RealD scale; | ||||
|   std::vector<double> p;  | ||||
|   std::vector<double> q; | ||||
|   Vector<double> p;  | ||||
|   Vector<double> q; | ||||
|  | ||||
| }; | ||||
|  | ||||
|   | ||||
| @@ -35,7 +35,7 @@ template<class Matrix, class Field> | ||||
| class KappaSimilarityTransform { | ||||
| public: | ||||
|   INHERIT_IMPL_TYPES(Matrix); | ||||
|   std::vector<Coeff_t> kappa, kappaDag, kappaInv, kappaInvDag; | ||||
|   Vector<Coeff_t> kappa, kappaDag, kappaInv, kappaInvDag; | ||||
|  | ||||
|   KappaSimilarityTransform (Matrix &zmob) { | ||||
|     for (int i=0;i<(int)zmob.bs.size();i++) { | ||||
|   | ||||
| @@ -49,10 +49,10 @@ template<class Impl> class StaggeredKernels : public FermionOperator<Impl> , pub | ||||
|     | ||||
|  public: | ||||
|  | ||||
|   void DhopImproved(StencilImpl &st, | ||||
|   void DhopImproved(StencilImpl &st, LebesgueOrder &lo,  | ||||
| 		    DoubledGaugeField &U, DoubledGaugeField &UUU,  | ||||
| 		    const FermionField &in, FermionField &out, int dag, int interior,int exterior); | ||||
|   void DhopNaive(StencilImpl &st, | ||||
|   void DhopNaive(StencilImpl &st, LebesgueOrder &lo,  | ||||
| 		 DoubledGaugeField &U, | ||||
| 		 const FermionField &in, FermionField &out, int dag, int interior,int exterior); | ||||
|    | ||||
|   | ||||
| @@ -47,7 +47,7 @@ public: | ||||
|   static int PartialCompressionFactor(GridBase *grid) { return 1;} | ||||
| #endif | ||||
|   template<class vobj,class cobj,class compressor> | ||||
|   static void Gather_plane_simple (deviceVector<std::pair<int,int> >& table, | ||||
|   static void Gather_plane_simple (commVector<std::pair<int,int> >& table, | ||||
| 				   const Lattice<vobj> &rhs, | ||||
| 				   cobj *buffer, | ||||
| 				   compressor &compress, | ||||
| @@ -109,7 +109,7 @@ public: | ||||
|   // Reorder the fifth dim to be s=Ls-1 , s=0, s=1,...,Ls-2. | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   template<class vobj,class cobj,class compressor> | ||||
|   static void Gather_plane_exchange(deviceVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs, | ||||
|   static void Gather_plane_exchange(commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs, | ||||
| 				    std::vector<cobj *> pointers,int dimension,int plane,int cbmask, | ||||
| 				    compressor &compress,int type,int partial) | ||||
|   { | ||||
| @@ -197,7 +197,7 @@ public: | ||||
| #endif | ||||
|    | ||||
|   template<class vobj,class cobj,class compressor> | ||||
|   static void Gather_plane_simple (deviceVector<std::pair<int,int> >& table, | ||||
|   static void Gather_plane_simple (commVector<std::pair<int,int> >& table, | ||||
| 					 const Lattice<vobj> &rhs, | ||||
| 					 cobj *buffer, | ||||
| 					 compressor &compress, | ||||
| @@ -208,7 +208,7 @@ public: | ||||
|     else        FaceGatherSimple::Gather_plane_simple(table,rhs,buffer,compress,off,so,partial); | ||||
|   } | ||||
|   template<class vobj,class cobj,class compressor> | ||||
|   static void Gather_plane_exchange(deviceVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs, | ||||
|   static void Gather_plane_exchange(commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs, | ||||
| 				    std::vector<cobj *> pointers,int dimension,int plane,int cbmask, | ||||
| 				    compressor &compress,int type,int partial) | ||||
|   { | ||||
| @@ -402,6 +402,7 @@ public: | ||||
|  | ||||
|   typedef CartesianStencil<vobj,cobj,Parameters> Base; | ||||
|   typedef typename Base::View_type View_type; | ||||
|   typedef typename Base::StencilVector StencilVector; | ||||
|  | ||||
|   //  Vector<int> surface_list; | ||||
|   WilsonStencil(GridBase *grid, | ||||
| @@ -415,6 +416,29 @@ public: | ||||
|     this->same_node.resize(npoints); | ||||
|   }; | ||||
|  | ||||
|   /* | ||||
|   void BuildSurfaceList(int Ls,int vol4){ | ||||
|  | ||||
|     // find same node for SHM | ||||
|     // Here we know the distance is 1 for WilsonStencil | ||||
|     for(int point=0;point<this->_npoints;point++){ | ||||
|       this->same_node[point] = this->SameNode(point); | ||||
|     } | ||||
|      | ||||
|     for(int site = 0 ;site< vol4;site++){ | ||||
|       int local = 1; | ||||
|       for(int point=0;point<this->_npoints;point++){ | ||||
| 	if( (!this->GetNodeLocal(site*Ls,point)) && (!this->same_node[point]) ){  | ||||
| 	  local = 0; | ||||
| 	} | ||||
|       } | ||||
|       if(local == 0) {  | ||||
| 	surface_list.push_back(site); | ||||
|       } | ||||
|     } | ||||
|   } | ||||
|   */ | ||||
|    | ||||
|   template < class compressor> | ||||
|   void HaloExchangeOpt(const Lattice<vobj> &source,compressor &compress)  | ||||
|   { | ||||
| @@ -484,11 +508,6 @@ public: | ||||
|     this->face_table_computed=1; | ||||
|     assert(this->u_comm_offset==this->_unified_buffer_size); | ||||
|     accelerator_barrier(); | ||||
| #ifdef NVLINK_GET | ||||
|     this->_grid->StencilBarrier(); // He can now get mu local gather, I can get his | ||||
|     // Synch shared memory on a single nodes; could use an asynchronous barrier here and defer check | ||||
|     // Or issue barrier AFTER the DMA is running | ||||
| #endif     | ||||
|   } | ||||
|  | ||||
| }; | ||||
|   | ||||
| @@ -126,17 +126,14 @@ public: | ||||
|   void DerivInternal(StencilImpl &st, DoubledGaugeField &U, GaugeField &mat, | ||||
|                      const FermionField &A, const FermionField &B, int dag); | ||||
|  | ||||
|   void DhopInternal(StencilImpl &st, | ||||
| 		    DoubledGaugeField &U, | ||||
|   void DhopInternal(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, | ||||
|                     const FermionField &in, FermionField &out, int dag); | ||||
|  | ||||
|   void DhopInternalSerial(StencilImpl &st, | ||||
| 			  DoubledGaugeField &U, | ||||
| 			  const FermionField &in, FermionField &out, int dag); | ||||
|   void DhopInternalSerial(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, | ||||
|                     const FermionField &in, FermionField &out, int dag); | ||||
|  | ||||
|   void DhopInternalOverlappedComms(StencilImpl &st, | ||||
| 				   DoubledGaugeField &U, | ||||
| 				   const FermionField &in, FermionField &out, int dag); | ||||
|   void DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, | ||||
|                     const FermionField &in, FermionField &out, int dag); | ||||
|  | ||||
|   // Constructor | ||||
|   WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid, | ||||
| @@ -171,6 +168,9 @@ public: | ||||
|   DoubledGaugeField UmuEven; | ||||
|   DoubledGaugeField UmuOdd; | ||||
|  | ||||
|   LebesgueOrder Lebesgue; | ||||
|   LebesgueOrder LebesgueEvenOdd; | ||||
|  | ||||
|   WilsonAnisotropyCoefficients anisotropyCoeff; | ||||
|  | ||||
|   /////////////////////////////////////////////////////////////// | ||||
|   | ||||
| @@ -91,13 +91,13 @@ public: | ||||
|   virtual void   Mdag (const FermionField &in, FermionField &out){assert(0);}; | ||||
|  | ||||
|   // half checkerboard operations; leave unimplemented as abstract for now | ||||
|   virtual void   Meooe       (const FermionField &in, FermionField &out); | ||||
|   virtual void   Mooee       (const FermionField &in, FermionField &out); | ||||
|   virtual void   MooeeInv    (const FermionField &in, FermionField &out); | ||||
|   virtual void   Meooe       (const FermionField &in, FermionField &out){assert(0);}; | ||||
|   virtual void   Mooee       (const FermionField &in, FermionField &out){assert(0);}; | ||||
|   virtual void   MooeeInv    (const FermionField &in, FermionField &out){assert(0);}; | ||||
|  | ||||
|   virtual void   MeooeDag    (const FermionField &in, FermionField &out); | ||||
|   virtual void   MooeeDag    (const FermionField &in, FermionField &out); | ||||
|   virtual void   MooeeInvDag (const FermionField &in, FermionField &out); | ||||
|   virtual void   MeooeDag    (const FermionField &in, FermionField &out){assert(0);}; | ||||
|   virtual void   MooeeDag    (const FermionField &in, FermionField &out){assert(0);}; | ||||
|   virtual void   MooeeInvDag (const FermionField &in, FermionField &out){assert(0);}; | ||||
|   virtual void   Mdir   (const FermionField &in, FermionField &out,int dir,int disp){assert(0);};   // case by case Wilson, Clover, Cayley, ContFrac, PartFrac | ||||
|   virtual void   MdirAll(const FermionField &in, std::vector<FermionField> &out){assert(0);};   // case by case Wilson, Clover, Cayley, ContFrac, PartFrac | ||||
|  | ||||
| @@ -109,8 +109,6 @@ public: | ||||
|   void MomentumSpacePropagatorHt_5d(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ; | ||||
|   void MomentumSpacePropagatorHt(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ; | ||||
|   void MomentumSpacePropagatorHw(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ; | ||||
|   void MomentumSpacePropagatorHwQ(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist, | ||||
| 				  std::vector<double> qmu) ; | ||||
|  | ||||
|   // Implement hopping term non-hermitian hopping term; half cb or both | ||||
|   // Implement s-diagonal DW | ||||
| @@ -119,9 +117,6 @@ public: | ||||
|   void DhopOE(const FermionField &in, FermionField &out,int dag); | ||||
|   void DhopEO(const FermionField &in, FermionField &out,int dag); | ||||
|  | ||||
|   void DhopComms  (const FermionField &in, FermionField &out); | ||||
|   void DhopCalc   (const FermionField &in, FermionField &out,uint64_t *ids); | ||||
|    | ||||
|   // add a DhopComm | ||||
|   // -- suboptimal interface will presently trigger multiple comms. | ||||
|   void DhopDir(const FermionField &in, FermionField &out,int dir,int disp); | ||||
| @@ -140,18 +135,21 @@ public: | ||||
| 		     int dag); | ||||
|      | ||||
|   void DhopInternal(StencilImpl & st, | ||||
| 		    LebesgueOrder &lo, | ||||
| 		    DoubledGaugeField &U, | ||||
| 		    const FermionField &in,  | ||||
| 		    FermionField &out, | ||||
| 		    int dag); | ||||
|  | ||||
|   void DhopInternalOverlappedComms(StencilImpl & st, | ||||
| 				   LebesgueOrder &lo, | ||||
| 				   DoubledGaugeField &U, | ||||
| 				   const FermionField &in,  | ||||
| 				   FermionField &out, | ||||
| 				   int dag); | ||||
|  | ||||
|   void DhopInternalSerialComms(StencilImpl & st, | ||||
| 			       LebesgueOrder &lo, | ||||
| 			       DoubledGaugeField &U, | ||||
| 			       const FermionField &in,  | ||||
| 			       FermionField &out, | ||||
| @@ -205,6 +203,9 @@ public: | ||||
|   DoubledGaugeField UmuEven; | ||||
|   DoubledGaugeField UmuOdd; | ||||
|      | ||||
|   LebesgueOrder Lebesgue; | ||||
|   LebesgueOrder LebesgueEvenOdd; | ||||
|      | ||||
|   // Comms buffer | ||||
|   //  std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> >  comm_buf; | ||||
|  | ||||
|   | ||||
| @@ -57,10 +57,6 @@ public: | ||||
| 			 int Ls, int Nsite, const FermionField &in, FermionField &out, | ||||
| 			 int interior=1,int exterior=1) ; | ||||
|  | ||||
|   static void DhopKernel(int Opt,StencilImpl &st,  DoubledGaugeField &U, SiteHalfSpinor * buf, | ||||
| 			 int Ls, int Nsite, const FermionField &in, FermionField &out, | ||||
| 			 uint64_t *ids); | ||||
|    | ||||
|   static void DhopDagKernel(int Opt,StencilImpl &st,  DoubledGaugeField &U, SiteHalfSpinor * buf, | ||||
| 			    int Ls, int Nsite, const FermionField &in, FermionField &out, | ||||
| 			    int interior=1,int exterior=1) ; | ||||
|   | ||||
| @@ -58,7 +58,7 @@ public: | ||||
|   { | ||||
|     //    RealD eps = 1.0; | ||||
|     std::cout<<GridLogMessage << "ZMobiusFermion (b="<<b<<",c="<<c<<") with Ls= "<<this->Ls<<" gamma passed in"<<std::endl; | ||||
|     std::vector<Coeff_t> zgamma(this->Ls); | ||||
|     Vector<Coeff_t> zgamma(this->Ls); | ||||
|     for(int s=0;s<this->Ls;s++){ | ||||
|       zgamma[s] = gamma[s]; | ||||
|     } | ||||
|   | ||||
| @@ -49,7 +49,6 @@ CayleyFermion5D<Impl>::CayleyFermion5D(GaugeField &_Umu, | ||||
| 			FourDimRedBlackGrid,_M5,p), | ||||
|   mass_plus(_mass), mass_minus(_mass) | ||||
| {  | ||||
|   // qmu defaults to zero size; | ||||
| } | ||||
|  | ||||
| /////////////////////////////////////////////////////////////// | ||||
| @@ -157,18 +156,18 @@ template<class Impl> | ||||
| void CayleyFermion5D<Impl>::M5D   (const FermionField &psi, FermionField &chi) | ||||
| { | ||||
|   int Ls=this->Ls; | ||||
|   std::vector<Coeff_t> diag (Ls,1.0); | ||||
|   std::vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1]=mass_minus; | ||||
|   std::vector<Coeff_t> lower(Ls,-1.0); lower[0]   =mass_plus; | ||||
|   Vector<Coeff_t> diag (Ls,1.0); | ||||
|   Vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1]=mass_minus; | ||||
|   Vector<Coeff_t> lower(Ls,-1.0); lower[0]   =mass_plus; | ||||
|   M5D(psi,chi,chi,lower,diag,upper); | ||||
| } | ||||
| template<class Impl> | ||||
| void CayleyFermion5D<Impl>::Meooe5D    (const FermionField &psi, FermionField &Din) | ||||
| { | ||||
|   int Ls=this->Ls; | ||||
|   std::vector<Coeff_t> diag = bs; | ||||
|   std::vector<Coeff_t> upper= cs; | ||||
|   std::vector<Coeff_t> lower= cs;  | ||||
|   Vector<Coeff_t> diag = bs; | ||||
|   Vector<Coeff_t> upper= cs; | ||||
|   Vector<Coeff_t> lower= cs;  | ||||
|   upper[Ls-1]=-mass_minus*upper[Ls-1]; | ||||
|   lower[0]   =-mass_plus*lower[0]; | ||||
|   M5D(psi,psi,Din,lower,diag,upper); | ||||
| @@ -177,9 +176,9 @@ void CayleyFermion5D<Impl>::Meooe5D    (const FermionField &psi, FermionField &D | ||||
| template<class Impl> void CayleyFermion5D<Impl>::Meo5D     (const FermionField &psi, FermionField &chi) | ||||
| { | ||||
|   int Ls=this->Ls; | ||||
|   std::vector<Coeff_t> diag = beo; | ||||
|   std::vector<Coeff_t> upper(Ls); | ||||
|   std::vector<Coeff_t> lower(Ls); | ||||
|   Vector<Coeff_t> diag = beo; | ||||
|   Vector<Coeff_t> upper(Ls); | ||||
|   Vector<Coeff_t> lower(Ls); | ||||
|   for(int i=0;i<Ls;i++) { | ||||
|     upper[i]=-ceo[i]; | ||||
|     lower[i]=-ceo[i]; | ||||
| @@ -192,9 +191,9 @@ template<class Impl> | ||||
| void CayleyFermion5D<Impl>::Mooee       (const FermionField &psi, FermionField &chi) | ||||
| { | ||||
|   int Ls=this->Ls; | ||||
|   std::vector<Coeff_t> diag = bee; | ||||
|   std::vector<Coeff_t> upper(Ls); | ||||
|   std::vector<Coeff_t> lower(Ls); | ||||
|   Vector<Coeff_t> diag = bee; | ||||
|   Vector<Coeff_t> upper(Ls); | ||||
|   Vector<Coeff_t> lower(Ls); | ||||
|   for(int i=0;i<Ls;i++) { | ||||
|     upper[i]=-cee[i]; | ||||
|     lower[i]=-cee[i]; | ||||
| @@ -207,9 +206,9 @@ template<class Impl> | ||||
| void CayleyFermion5D<Impl>::MooeeDag    (const FermionField &psi, FermionField &chi) | ||||
| { | ||||
|   int Ls=this->Ls; | ||||
|   std::vector<Coeff_t> diag = bee; | ||||
|   std::vector<Coeff_t> upper(Ls); | ||||
|   std::vector<Coeff_t> lower(Ls); | ||||
|   Vector<Coeff_t> diag = bee; | ||||
|   Vector<Coeff_t> upper(Ls); | ||||
|   Vector<Coeff_t> lower(Ls); | ||||
|  | ||||
|   for (int s=0;s<Ls;s++){ | ||||
|     // Assemble the 5d matrix | ||||
| @@ -237,9 +236,9 @@ template<class Impl> | ||||
| void CayleyFermion5D<Impl>::M5Ddag (const FermionField &psi, FermionField &chi) | ||||
| { | ||||
|   int Ls=this->Ls; | ||||
|   std::vector<Coeff_t> diag(Ls,1.0); | ||||
|   std::vector<Coeff_t> upper(Ls,-1.0); | ||||
|   std::vector<Coeff_t> lower(Ls,-1.0); | ||||
|   Vector<Coeff_t> diag(Ls,1.0); | ||||
|   Vector<Coeff_t> upper(Ls,-1.0); | ||||
|   Vector<Coeff_t> lower(Ls,-1.0); | ||||
|   upper[Ls-1]=-mass_plus*upper[Ls-1]; | ||||
|   lower[0]   =-mass_minus*lower[0]; | ||||
|   M5Ddag(psi,chi,chi,lower,diag,upper); | ||||
| @@ -249,9 +248,9 @@ template<class Impl> | ||||
| void CayleyFermion5D<Impl>::MeooeDag5D    (const FermionField &psi, FermionField &Din) | ||||
| { | ||||
|   int Ls=this->Ls; | ||||
|   std::vector<Coeff_t> diag =bs; | ||||
|   std::vector<Coeff_t> upper=cs; | ||||
|   std::vector<Coeff_t> lower=cs;  | ||||
|   Vector<Coeff_t> diag =bs; | ||||
|   Vector<Coeff_t> upper=cs; | ||||
|   Vector<Coeff_t> lower=cs;  | ||||
|  | ||||
|   for (int s=0;s<Ls;s++){ | ||||
|     if ( s== 0 ) { | ||||
| @@ -271,34 +270,6 @@ void CayleyFermion5D<Impl>::MeooeDag5D    (const FermionField &psi, FermionField | ||||
|   M5Ddag(psi,psi,Din,lower,diag,upper); | ||||
| } | ||||
|  | ||||
| template<class Impl> | ||||
| void CayleyFermion5D<Impl>::addQmu(const FermionField &psi,FermionField &chi, int dag) | ||||
| { | ||||
|   if ( qmu.size() ) { | ||||
|  | ||||
|     Gamma::Algebra Gmu [] = { | ||||
|       Gamma::Algebra::GammaX, | ||||
|       Gamma::Algebra::GammaY, | ||||
|       Gamma::Algebra::GammaZ, | ||||
|       Gamma::Algebra::GammaT | ||||
|     }; | ||||
|     std::vector<ComplexD> coeff(Nd); | ||||
|     ComplexD ci(0,1); | ||||
|  | ||||
|     assert(qmu.size()==Nd); | ||||
|  | ||||
|     for(int mu=0;mu<Nd;mu++){ | ||||
|        coeff[mu] = ci*qmu[mu]; | ||||
|        if ( dag ) coeff[mu] = conjugate(coeff[mu]); | ||||
|     } | ||||
|  | ||||
|     chi = chi + Gamma(Gmu[0])*psi*coeff[0]; | ||||
|     for(int mu=1;mu<Nd;mu++){ | ||||
|       chi = chi + Gamma(Gmu[mu])*psi*coeff[mu]; | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| template<class Impl> | ||||
| void CayleyFermion5D<Impl>::M    (const FermionField &psi, FermionField &chi) | ||||
| { | ||||
| @@ -308,10 +279,6 @@ void CayleyFermion5D<Impl>::M    (const FermionField &psi, FermionField &chi) | ||||
|   Meooe5D(psi,Din); | ||||
|    | ||||
|   this->DW(Din,chi,DaggerNo); | ||||
|  | ||||
|   // add i q_mu gamma_mu here | ||||
|   addQmu(Din,chi,DaggerNo); | ||||
|    | ||||
|   // ((b D_W + D_w hop terms +1) on s-diag | ||||
|   axpby(chi,1.0,1.0,chi,psi);  | ||||
|    | ||||
| @@ -329,9 +296,6 @@ void CayleyFermion5D<Impl>::Mdag (const FermionField &psi, FermionField &chi) | ||||
|   // Apply Dw | ||||
|   this->DW(psi,Din,DaggerYes);  | ||||
|    | ||||
|   // add -i conj(q_mu) gamma_mu here ... if qmu is real, gammm_5 hermitian, otherwise not. | ||||
|   addQmu(psi,Din,DaggerYes); | ||||
|    | ||||
|   MeooeDag5D(Din,chi); | ||||
|    | ||||
|   M5Ddag(psi,chi); | ||||
| @@ -430,7 +394,7 @@ void CayleyFermion5D<Impl>::MeoDeriv(GaugeField &mat,const FermionField &U,const | ||||
| template<class Impl> | ||||
| void CayleyFermion5D<Impl>::SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c) | ||||
| { | ||||
|   std::vector<Coeff_t> gamma(this->Ls); | ||||
|   Vector<Coeff_t> gamma(this->Ls); | ||||
|   for(int s=0;s<this->Ls;s++) gamma[s] = zdata->gamma[s]; | ||||
|   SetCoefficientsInternal(1.0,gamma,b,c); | ||||
| } | ||||
| @@ -438,13 +402,13 @@ void CayleyFermion5D<Impl>::SetCoefficientsTanh(Approx::zolotarev_data *zdata,Re | ||||
| template<class Impl> | ||||
| void CayleyFermion5D<Impl>::SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata,RealD b,RealD c) | ||||
| { | ||||
|   std::vector<Coeff_t> gamma(this->Ls); | ||||
|   Vector<Coeff_t> gamma(this->Ls); | ||||
|   for(int s=0;s<this->Ls;s++) gamma[s] = zdata->gamma[s]; | ||||
|   SetCoefficientsInternal(zolo_hi,gamma,b,c); | ||||
| } | ||||
| //Zolo | ||||
| template<class Impl> | ||||
| void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,std::vector<Coeff_t> & gamma,RealD b,RealD c) | ||||
| void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,Vector<Coeff_t> & gamma,RealD b,RealD c) | ||||
| { | ||||
|   int Ls=this->Ls; | ||||
|  | ||||
| @@ -565,18 +529,6 @@ void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,std::vector<Co | ||||
|     dee[Ls-1] += delta_d; | ||||
|   }   | ||||
|  | ||||
|   ////////////////////////////////////////// | ||||
|   // Device buffers | ||||
|   ////////////////////////////////////////// | ||||
|   d_diag.resize(Ls); | ||||
|   d_upper.resize(Ls); | ||||
|   d_lower.resize(Ls); | ||||
|  | ||||
|   d_dee.resize(Ls); | ||||
|   d_lee.resize(Ls); | ||||
|   d_uee.resize(Ls); | ||||
|   d_leem.resize(Ls); | ||||
|   d_ueem.resize(Ls); | ||||
|   //  int inv=1; | ||||
|   //  this->MooeeInternalCompute(0,inv,MatpInv,MatmInv); | ||||
|   //  this->MooeeInternalCompute(1,inv,MatpInvDag,MatmInvDag); | ||||
|   | ||||
| @@ -43,9 +43,9 @@ void | ||||
| CayleyFermion5D<Impl>::M5D(const FermionField &psi_i, | ||||
| 			       const FermionField &phi_i,  | ||||
| 			       FermionField &chi_i, | ||||
| 			       std::vector<Coeff_t> &lower, | ||||
| 			       std::vector<Coeff_t> &diag, | ||||
| 			       std::vector<Coeff_t> &upper) | ||||
| 			       Vector<Coeff_t> &lower, | ||||
| 			       Vector<Coeff_t> &diag, | ||||
| 			       Vector<Coeff_t> &upper) | ||||
| { | ||||
|    | ||||
|   chi_i.Checkerboard()=psi_i.Checkerboard(); | ||||
| @@ -55,16 +55,12 @@ CayleyFermion5D<Impl>::M5D(const FermionField &psi_i, | ||||
|   autoView(chi , chi_i,AcceleratorWrite); | ||||
|   assert(phi.Checkerboard() == psi.Checkerboard()); | ||||
|  | ||||
|   auto pdiag = &diag[0]; | ||||
|   auto pupper = &upper[0]; | ||||
|   auto plower = &lower[0]; | ||||
|  | ||||
|   int Ls =this->Ls; | ||||
|  | ||||
|   acceleratorCopyToDevice(&diag[0] ,&this->d_diag[0],Ls*sizeof(Coeff_t)); | ||||
|   acceleratorCopyToDevice(&upper[0],&this->d_upper[0],Ls*sizeof(Coeff_t)); | ||||
|   acceleratorCopyToDevice(&lower[0],&this->d_lower[0],Ls*sizeof(Coeff_t)); | ||||
|    | ||||
|   auto pdiag = &d_diag[0]; | ||||
|   auto pupper = &d_upper[0]; | ||||
|   auto plower = &d_lower[0]; | ||||
|  | ||||
|   // 10 = 3 complex mult + 2 complex add | ||||
|   // Flops = 10.0*(Nc*Ns) *Ls*vol (/2 for red black counting) | ||||
|   uint64_t nloop = grid->oSites(); | ||||
| @@ -86,9 +82,9 @@ void | ||||
| CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i, | ||||
| 			      const FermionField &phi_i,  | ||||
| 			      FermionField &chi_i, | ||||
| 			      std::vector<Coeff_t> &lower, | ||||
| 			      std::vector<Coeff_t> &diag, | ||||
| 			      std::vector<Coeff_t> &upper) | ||||
| 			      Vector<Coeff_t> &lower, | ||||
| 			      Vector<Coeff_t> &diag, | ||||
| 			      Vector<Coeff_t> &upper) | ||||
| { | ||||
|   chi_i.Checkerboard()=psi_i.Checkerboard(); | ||||
|   GridBase *grid=psi_i.Grid(); | ||||
| @@ -97,16 +93,12 @@ CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i, | ||||
|   autoView(chi , chi_i,AcceleratorWrite); | ||||
|   assert(phi.Checkerboard() == psi.Checkerboard()); | ||||
|  | ||||
|   auto pdiag = &diag[0]; | ||||
|   auto pupper = &upper[0]; | ||||
|   auto plower = &lower[0]; | ||||
|  | ||||
|   int Ls=this->Ls; | ||||
|  | ||||
|   acceleratorCopyToDevice(&diag[0] ,&this->d_diag[0],Ls*sizeof(Coeff_t)); | ||||
|   acceleratorCopyToDevice(&upper[0],&this->d_upper[0],Ls*sizeof(Coeff_t)); | ||||
|   acceleratorCopyToDevice(&lower[0],&this->d_lower[0],Ls*sizeof(Coeff_t)); | ||||
|    | ||||
|   auto pdiag = &d_diag[0]; | ||||
|   auto pupper = &d_upper[0]; | ||||
|   auto plower = &d_lower[0]; | ||||
|  | ||||
|   // Flops = 6.0*(Nc*Ns) *Ls*vol | ||||
|   uint64_t nloop = grid->oSites(); | ||||
|   accelerator_for(sss,nloop,Simd::Nsimd(),{ | ||||
| @@ -134,17 +126,11 @@ CayleyFermion5D<Impl>::MooeeInv    (const FermionField &psi_i, FermionField &chi | ||||
|  | ||||
|   int Ls=this->Ls; | ||||
|  | ||||
|   acceleratorCopyToDevice(&lee[0],&d_lee[0],Ls*sizeof(Coeff_t)); | ||||
|   acceleratorCopyToDevice(&dee[0],&d_dee[0],Ls*sizeof(Coeff_t)); | ||||
|   acceleratorCopyToDevice(&uee[0],&d_uee[0],Ls*sizeof(Coeff_t)); | ||||
|   acceleratorCopyToDevice(&leem[0],&d_leem[0],Ls*sizeof(Coeff_t)); | ||||
|   acceleratorCopyToDevice(&ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t)); | ||||
|  | ||||
|   auto plee  = & d_lee [0]; | ||||
|   auto pdee  = & d_dee [0]; | ||||
|   auto puee  = & d_uee [0]; | ||||
|   auto pleem = & d_leem[0]; | ||||
|   auto pueem = & d_ueem[0]; | ||||
|   auto plee  = & lee [0]; | ||||
|   auto pdee  = & dee [0]; | ||||
|   auto puee  = & uee [0]; | ||||
|   auto pleem = & leem[0]; | ||||
|   auto pueem = & ueem[0]; | ||||
|  | ||||
|   uint64_t nloop = grid->oSites()/Ls; | ||||
|   accelerator_for(sss,nloop,Simd::Nsimd(),{ | ||||
| @@ -196,17 +182,11 @@ CayleyFermion5D<Impl>::MooeeInvDag (const FermionField &psi_i, FermionField &chi | ||||
|   autoView(psi , psi_i,AcceleratorRead); | ||||
|   autoView(chi , chi_i,AcceleratorWrite); | ||||
|  | ||||
|   acceleratorCopyToDevice(&lee[0],&d_lee[0],Ls*sizeof(Coeff_t)); | ||||
|   acceleratorCopyToDevice(&dee[0],&d_dee[0],Ls*sizeof(Coeff_t)); | ||||
|   acceleratorCopyToDevice(&uee[0],&d_uee[0],Ls*sizeof(Coeff_t)); | ||||
|   acceleratorCopyToDevice(&leem[0],&d_leem[0],Ls*sizeof(Coeff_t)); | ||||
|   acceleratorCopyToDevice(&ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t)); | ||||
|  | ||||
|   auto plee  = & d_lee [0]; | ||||
|   auto pdee  = & d_dee [0]; | ||||
|   auto puee  = & d_uee [0]; | ||||
|   auto pleem = & d_leem[0]; | ||||
|   auto pueem = & d_ueem[0]; | ||||
|   auto plee  = & lee [0]; | ||||
|   auto pdee  = & dee [0]; | ||||
|   auto puee  = & uee [0]; | ||||
|   auto pleem = & leem[0]; | ||||
|   auto pueem = & ueem[0]; | ||||
|  | ||||
|   assert(psi.Checkerboard() == psi.Checkerboard()); | ||||
|  | ||||
|   | ||||
| @@ -1,5 +1,3 @@ | ||||
| #if 0 | ||||
| 
 | ||||
| /*************************************************************************************
 | ||||
| 
 | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
| @@ -820,5 +818,3 @@ CayleyFermion5D<Impl>::MooeeInternal(const FermionField &psi, FermionField &chi, | ||||
| } | ||||
| 
 | ||||
| NAMESPACE_END(Grid); | ||||
| 
 | ||||
| #endif | ||||
Some files were not shown because too many files have changed in this diff Show More
		Reference in New Issue
	
	Block a user