mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-11-03 05:24:32 +00:00 
			
		
		
		
	Compare commits
	
		
			2 Commits
		
	
	
		
			specflow
			...
			b15d9b294c
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 
						 | 
					b15d9b294c | ||
| 32e6d58356 | 
							
								
								
									
										4
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										4
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							@@ -1,7 +1,3 @@
 | 
				
			|||||||
# Doxygen stuff
 | 
					 | 
				
			||||||
html/*
 | 
					 | 
				
			||||||
latex/*
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
# Compiled Object files #
 | 
					# Compiled Object files #
 | 
				
			||||||
#########################
 | 
					#########################
 | 
				
			||||||
*.slo
 | 
					*.slo
 | 
				
			||||||
 
 | 
				
			|||||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							@@ -1,2 +0,0 @@
 | 
				
			|||||||
 | 
					 | 
				
			||||||
mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench -DGRID_SYCL
 | 
					 | 
				
			||||||
@@ -1,5 +0,0 @@
 | 
				
			|||||||
CXX=hipcc
 | 
					 | 
				
			||||||
MPICXX=mpicxx 
 | 
					 | 
				
			||||||
CXXFLAGS="-fPIC -I{$ROCM_PATH}/include/ -I${MPICH_DIR}/include -L/lib64 -I/opt/cray/pe/mpich/8.1.28/ofi/gnu/12.3/include -DGRID_HIP"
 | 
					 | 
				
			||||||
LDFLAGS="-L/lib64 -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lamdhip64 -lhipblas -lrocblas -lmpi_gnu_123"
 | 
					 | 
				
			||||||
hipcc $CXXFLAGS $LDFLAGS BatchBlasBench.cc -o BatchBlasBench
 | 
					 | 
				
			||||||
@@ -1,2 +0,0 @@
 | 
				
			|||||||
 | 
					 | 
				
			||||||
mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench -DGRID_SYCL
 | 
					 | 
				
			||||||
@@ -59,7 +59,6 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
#include <Grid/lattice/Lattice.h>      
 | 
					#include <Grid/lattice/Lattice.h>      
 | 
				
			||||||
#include <Grid/cshift/Cshift.h>       
 | 
					#include <Grid/cshift/Cshift.h>       
 | 
				
			||||||
#include <Grid/stencil/Stencil.h>      
 | 
					#include <Grid/stencil/Stencil.h>      
 | 
				
			||||||
#include <Grid/stencil/GeneralLocalStencil.h>      
 | 
					 | 
				
			||||||
#include <Grid/parallelIO/BinaryIO.h>
 | 
					#include <Grid/parallelIO/BinaryIO.h>
 | 
				
			||||||
#include <Grid/algorithms/Algorithms.h>   
 | 
					#include <Grid/algorithms/Algorithms.h>   
 | 
				
			||||||
NAMESPACE_CHECK(GridCore)
 | 
					NAMESPACE_CHECK(GridCore)
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -34,7 +34,7 @@
 | 
				
			|||||||
#pragma push_macro("__SYCL_DEVICE_ONLY__")
 | 
					#pragma push_macro("__SYCL_DEVICE_ONLY__")
 | 
				
			||||||
#undef __SYCL_DEVICE_ONLY__
 | 
					#undef __SYCL_DEVICE_ONLY__
 | 
				
			||||||
#define EIGEN_DONT_VECTORIZE
 | 
					#define EIGEN_DONT_VECTORIZE
 | 
				
			||||||
#undef EIGEN_USE_SYCL
 | 
					//#undef EIGEN_USE_SYCL
 | 
				
			||||||
#define __SYCL__REDEFINE__
 | 
					#define __SYCL__REDEFINE__
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -66,10 +66,6 @@ if BUILD_FERMION_REPS
 | 
				
			|||||||
  extra_sources+=$(ADJ_FERMION_FILES)
 | 
					  extra_sources+=$(ADJ_FERMION_FILES)
 | 
				
			||||||
  extra_sources+=$(TWOIND_FERMION_FILES)
 | 
					  extra_sources+=$(TWOIND_FERMION_FILES)
 | 
				
			||||||
endif
 | 
					endif
 | 
				
			||||||
if BUILD_SP
 | 
					 | 
				
			||||||
    extra_sources+=$(SP_FERMION_FILES)
 | 
					 | 
				
			||||||
    extra_sources+=$(SP_TWOIND_FERMION_FILES)
 | 
					 | 
				
			||||||
endif
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
lib_LIBRARIES = libGrid.a
 | 
					lib_LIBRARIES = libGrid.a
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -30,14 +30,9 @@ directory
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
#include <type_traits>
 | 
					#include <type_traits>
 | 
				
			||||||
#include <cassert>
 | 
					#include <cassert>
 | 
				
			||||||
#include <exception>
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
#define NAMESPACE_BEGIN(A) namespace A {
 | 
					#define NAMESPACE_BEGIN(A) namespace A {
 | 
				
			||||||
#define NAMESPACE_END(A)   }
 | 
					#define NAMESPACE_END(A)   }
 | 
				
			||||||
#define GRID_NAMESPACE_BEGIN NAMESPACE_BEGIN(Grid)
 | 
					#define GRID_NAMESPACE_BEGIN NAMESPACE_BEGIN(Grid)
 | 
				
			||||||
#define GRID_NAMESPACE_END   NAMESPACE_END(Grid)
 | 
					#define GRID_NAMESPACE_END   NAMESPACE_END(Grid)
 | 
				
			||||||
#define NAMESPACE_CHECK(x) struct namespaceTEST##x {};  static_assert(std::is_same<namespaceTEST##x, ::namespaceTEST##x>::value,"Not in :: at"  ); 
 | 
					#define NAMESPACE_CHECK(x) struct namespaceTEST##x {};  static_assert(std::is_same<namespaceTEST##x, ::namespaceTEST##x>::value,"Not in :: at"  ); 
 | 
				
			||||||
 | 
					 | 
				
			||||||
#define EXCEPTION_CHECK_BEGIN(A) try {
 | 
					 | 
				
			||||||
#define EXCEPTION_CHECK_END(A)   } catch ( std::exception e ) { BACKTRACEFP(stderr); std::cerr << __PRETTY_FUNCTION__ << " : " <<__LINE__<< " Caught exception "<<e.what()<<std::endl; throw; }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 
 | 
				
			|||||||
@@ -29,9 +29,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
#ifndef GRID_ALGORITHMS_H
 | 
					#ifndef GRID_ALGORITHMS_H
 | 
				
			||||||
#define GRID_ALGORITHMS_H
 | 
					#define GRID_ALGORITHMS_H
 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_CHECK(blas);
 | 
					 | 
				
			||||||
#include <Grid/algorithms/blas/BatchedBlas.h>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_CHECK(algorithms);
 | 
					NAMESPACE_CHECK(algorithms);
 | 
				
			||||||
#include <Grid/algorithms/SparseMatrix.h>
 | 
					#include <Grid/algorithms/SparseMatrix.h>
 | 
				
			||||||
#include <Grid/algorithms/LinearOperator.h>
 | 
					#include <Grid/algorithms/LinearOperator.h>
 | 
				
			||||||
@@ -47,11 +44,7 @@ NAMESPACE_CHECK(SparseMatrix);
 | 
				
			|||||||
#include <Grid/algorithms/approx/RemezGeneral.h>
 | 
					#include <Grid/algorithms/approx/RemezGeneral.h>
 | 
				
			||||||
#include <Grid/algorithms/approx/ZMobius.h>
 | 
					#include <Grid/algorithms/approx/ZMobius.h>
 | 
				
			||||||
NAMESPACE_CHECK(approx);
 | 
					NAMESPACE_CHECK(approx);
 | 
				
			||||||
#include <Grid/algorithms/deflation/Deflation.h>
 | 
					#include <Grid/algorithms/iterative/Deflation.h>
 | 
				
			||||||
#include <Grid/algorithms/deflation/MultiRHSBlockProject.h>
 | 
					 | 
				
			||||||
#include <Grid/algorithms/deflation/MultiRHSDeflation.h>
 | 
					 | 
				
			||||||
#include <Grid/algorithms/deflation/MultiRHSBlockCGLinalg.h>
 | 
					 | 
				
			||||||
NAMESPACE_CHECK(deflation);
 | 
					 | 
				
			||||||
#include <Grid/algorithms/iterative/ConjugateGradient.h>
 | 
					#include <Grid/algorithms/iterative/ConjugateGradient.h>
 | 
				
			||||||
NAMESPACE_CHECK(ConjGrad);
 | 
					NAMESPACE_CHECK(ConjGrad);
 | 
				
			||||||
#include <Grid/algorithms/iterative/BiCGSTAB.h>
 | 
					#include <Grid/algorithms/iterative/BiCGSTAB.h>
 | 
				
			||||||
@@ -73,13 +66,11 @@ NAMESPACE_CHECK(BiCGSTAB);
 | 
				
			|||||||
#include <Grid/algorithms/iterative/FlexibleCommunicationAvoidingGeneralisedMinimalResidual.h>
 | 
					#include <Grid/algorithms/iterative/FlexibleCommunicationAvoidingGeneralisedMinimalResidual.h>
 | 
				
			||||||
#include <Grid/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h>
 | 
					#include <Grid/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h>
 | 
				
			||||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
 | 
					#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
 | 
				
			||||||
#include <Grid/algorithms/iterative/SimpleLanczos.h>
 | 
					 | 
				
			||||||
#include <Grid/algorithms/iterative/PowerMethod.h>
 | 
					#include <Grid/algorithms/iterative/PowerMethod.h>
 | 
				
			||||||
#include <Grid/algorithms/iterative/AdefGeneric.h>
 | 
					
 | 
				
			||||||
#include <Grid/algorithms/iterative/AdefMrhs.h>
 | 
					 | 
				
			||||||
NAMESPACE_CHECK(PowerMethod);
 | 
					NAMESPACE_CHECK(PowerMethod);
 | 
				
			||||||
#include <Grid/algorithms/multigrid/MultiGrid.h>
 | 
					#include <Grid/algorithms/CoarsenedMatrix.h>
 | 
				
			||||||
NAMESPACE_CHECK(multigrid);
 | 
					NAMESPACE_CHECK(CoarsendMatrix);
 | 
				
			||||||
#include <Grid/algorithms/FFT.h>
 | 
					#include <Grid/algorithms/FFT.h>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -56,6 +56,243 @@ inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner,
 | 
				
			|||||||
  blockSum(CoarseInner,fine_inner_msk);
 | 
					  blockSum(CoarseInner,fine_inner_msk);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class Geometry {
 | 
				
			||||||
 | 
					public:
 | 
				
			||||||
 | 
					  int npoint;
 | 
				
			||||||
 | 
					  int base;
 | 
				
			||||||
 | 
					  std::vector<int> directions   ;
 | 
				
			||||||
 | 
					  std::vector<int> displacements;
 | 
				
			||||||
 | 
					  std::vector<int> points_dagger;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Geometry(int _d)  {
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    base = (_d==5) ? 1:0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // make coarse grid stencil for 4d , not 5d
 | 
				
			||||||
 | 
					    if ( _d==5 ) _d=4;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    npoint = 2*_d+1;
 | 
				
			||||||
 | 
					    directions.resize(npoint);
 | 
				
			||||||
 | 
					    displacements.resize(npoint);
 | 
				
			||||||
 | 
					    points_dagger.resize(npoint);
 | 
				
			||||||
 | 
					    for(int d=0;d<_d;d++){
 | 
				
			||||||
 | 
					      directions[d   ] = d+base;
 | 
				
			||||||
 | 
					      directions[d+_d] = d+base;
 | 
				
			||||||
 | 
					      displacements[d  ] = +1;
 | 
				
			||||||
 | 
					      displacements[d+_d]= -1;
 | 
				
			||||||
 | 
					      points_dagger[d   ] = d+_d;
 | 
				
			||||||
 | 
					      points_dagger[d+_d] = d;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    directions   [2*_d]=0;
 | 
				
			||||||
 | 
					    displacements[2*_d]=0;
 | 
				
			||||||
 | 
					    points_dagger[2*_d]=2*_d;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  int point(int dir, int disp) {
 | 
				
			||||||
 | 
					    assert(disp == -1 || disp == 0 || disp == 1);
 | 
				
			||||||
 | 
					    assert(base+0 <= dir && dir < base+4);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // directions faster index = new indexing
 | 
				
			||||||
 | 
					    // 4d (base = 0):
 | 
				
			||||||
 | 
					    // point 0  1  2  3  4  5  6  7  8
 | 
				
			||||||
 | 
					    // dir   0  1  2  3  0  1  2  3  0
 | 
				
			||||||
 | 
					    // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | 
				
			||||||
 | 
					    // 5d (base = 1):
 | 
				
			||||||
 | 
					    // point 0  1  2  3  4  5  6  7  8
 | 
				
			||||||
 | 
					    // dir   1  2  3  4  1  2  3  4  0
 | 
				
			||||||
 | 
					    // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // displacements faster index = old indexing
 | 
				
			||||||
 | 
					    // 4d (base = 0):
 | 
				
			||||||
 | 
					    // point 0  1  2  3  4  5  6  7  8
 | 
				
			||||||
 | 
					    // dir   0  0  1  1  2  2  3  3  0
 | 
				
			||||||
 | 
					    // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | 
				
			||||||
 | 
					    // 5d (base = 1):
 | 
				
			||||||
 | 
					    // point 0  1  2  3  4  5  6  7  8
 | 
				
			||||||
 | 
					    // dir   1  1  2  2  3  3  4  4  0
 | 
				
			||||||
 | 
					    // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if(dir == 0 and disp == 0)
 | 
				
			||||||
 | 
					      return 8;
 | 
				
			||||||
 | 
					    else // New indexing
 | 
				
			||||||
 | 
					      return (1 - disp) / 2 * 4 + dir - base;
 | 
				
			||||||
 | 
					    // else // Old indexing
 | 
				
			||||||
 | 
					    //   return (4 * (dir - base) + 1 - disp) / 2;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					};
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 | 
					template<class Fobj,class CComplex,int nbasis>
 | 
				
			||||||
 | 
					class Aggregation   {
 | 
				
			||||||
 | 
					public:
 | 
				
			||||||
 | 
					  typedef iVector<CComplex,nbasis >             siteVector;
 | 
				
			||||||
 | 
					  typedef Lattice<siteVector>                 CoarseVector;
 | 
				
			||||||
 | 
					  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
				
			||||||
 | 
					  typedef Lattice<Fobj >        FineField;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  GridBase *CoarseGrid;
 | 
				
			||||||
 | 
					  GridBase *FineGrid;
 | 
				
			||||||
 | 
					  std::vector<Lattice<Fobj> > subspace;
 | 
				
			||||||
 | 
					  int checkerboard;
 | 
				
			||||||
 | 
					  int Checkerboard(void){return checkerboard;}
 | 
				
			||||||
 | 
					  Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) : 
 | 
				
			||||||
 | 
					    CoarseGrid(_CoarseGrid),
 | 
				
			||||||
 | 
					    FineGrid(_FineGrid),
 | 
				
			||||||
 | 
					    subspace(nbasis,_FineGrid),
 | 
				
			||||||
 | 
					    checkerboard(_checkerboard)
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					  };
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 | 
					  void Orthogonalise(void){
 | 
				
			||||||
 | 
					    CoarseScalar InnerProd(CoarseGrid); 
 | 
				
			||||||
 | 
					    std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
 | 
				
			||||||
 | 
					    blockOrthogonalise(InnerProd,subspace);
 | 
				
			||||||
 | 
					  } 
 | 
				
			||||||
 | 
					  void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
 | 
				
			||||||
 | 
					    blockProject(CoarseVec,FineVec,subspace);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
 | 
				
			||||||
 | 
					    FineVec.Checkerboard() = subspace[0].Checkerboard();
 | 
				
			||||||
 | 
					    blockPromote(CoarseVec,FineVec,subspace);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  virtual void CreateSubspace(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    RealD scale;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    ConjugateGradient<FineField> CG(1.0e-2,100,false);
 | 
				
			||||||
 | 
					    FineField noise(FineGrid);
 | 
				
			||||||
 | 
					    FineField Mn(FineGrid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for(int b=0;b<nn;b++){
 | 
				
			||||||
 | 
					      
 | 
				
			||||||
 | 
					      subspace[b] = Zero();
 | 
				
			||||||
 | 
					      gaussian(RNG,noise);
 | 
				
			||||||
 | 
					      scale = std::pow(norm2(noise),-0.5); 
 | 
				
			||||||
 | 
					      noise=noise*scale;
 | 
				
			||||||
 | 
					      
 | 
				
			||||||
 | 
					      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      for(int i=0;i<1;i++){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						CG(hermop,noise,subspace[b]);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						noise = subspace[b];
 | 
				
			||||||
 | 
						scale = std::pow(norm2(noise),-0.5); 
 | 
				
			||||||
 | 
						noise=noise*scale;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
 | 
				
			||||||
 | 
					      subspace[b]   = noise;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					  // World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
 | 
				
			||||||
 | 
					  // and this is the best I found
 | 
				
			||||||
 | 
					  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
				
			||||||
 | 
									       int nn,
 | 
				
			||||||
 | 
									       double hi,
 | 
				
			||||||
 | 
									       double lo,
 | 
				
			||||||
 | 
									       int orderfilter,
 | 
				
			||||||
 | 
									       int ordermin,
 | 
				
			||||||
 | 
									       int orderstep,
 | 
				
			||||||
 | 
									       double filterlo
 | 
				
			||||||
 | 
									       ) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    RealD scale;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    FineField noise(FineGrid);
 | 
				
			||||||
 | 
					    FineField Mn(FineGrid);
 | 
				
			||||||
 | 
					    FineField tmp(FineGrid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // New normalised noise
 | 
				
			||||||
 | 
					    gaussian(RNG,noise);
 | 
				
			||||||
 | 
					    scale = std::pow(norm2(noise),-0.5); 
 | 
				
			||||||
 | 
					    noise=noise*scale;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // Initial matrix element
 | 
				
			||||||
 | 
					    hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    int b =0;
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      // Filter
 | 
				
			||||||
 | 
					      Chebyshev<FineField> Cheb(lo,hi,orderfilter);
 | 
				
			||||||
 | 
					      Cheb(hermop,noise,Mn);
 | 
				
			||||||
 | 
					      // normalise
 | 
				
			||||||
 | 
					      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
				
			||||||
 | 
					      subspace[b]   = Mn;
 | 
				
			||||||
 | 
					      hermop.Op(Mn,tmp); 
 | 
				
			||||||
 | 
					      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
				
			||||||
 | 
					      b++;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // Generate a full sequence of Chebyshevs
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      lo=filterlo;
 | 
				
			||||||
 | 
					      noise=Mn;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      FineField T0(FineGrid); T0 = noise;  
 | 
				
			||||||
 | 
					      FineField T1(FineGrid); 
 | 
				
			||||||
 | 
					      FineField T2(FineGrid);
 | 
				
			||||||
 | 
					      FineField y(FineGrid);
 | 
				
			||||||
 | 
					      
 | 
				
			||||||
 | 
					      FineField *Tnm = &T0;
 | 
				
			||||||
 | 
					      FineField *Tn  = &T1;
 | 
				
			||||||
 | 
					      FineField *Tnp = &T2;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      // Tn=T1 = (xscale M + mscale)in
 | 
				
			||||||
 | 
					      RealD xscale = 2.0/(hi-lo);
 | 
				
			||||||
 | 
					      RealD mscale = -(hi+lo)/(hi-lo);
 | 
				
			||||||
 | 
					      hermop.HermOp(T0,y);
 | 
				
			||||||
 | 
					      T1=y*xscale+noise*mscale;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
 | 
				
			||||||
 | 
						
 | 
				
			||||||
 | 
						hermop.HermOp(*Tn,y);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						autoView( y_v , y, AcceleratorWrite);
 | 
				
			||||||
 | 
						autoView( Tn_v , (*Tn), AcceleratorWrite);
 | 
				
			||||||
 | 
						autoView( Tnp_v , (*Tnp), AcceleratorWrite);
 | 
				
			||||||
 | 
						autoView( Tnm_v , (*Tnm), AcceleratorWrite);
 | 
				
			||||||
 | 
						const int Nsimd = CComplex::Nsimd();
 | 
				
			||||||
 | 
						accelerator_for(ss, FineGrid->oSites(), Nsimd, {
 | 
				
			||||||
 | 
						  coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
 | 
				
			||||||
 | 
						  coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
 | 
				
			||||||
 | 
					        });
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						// Possible more fine grained control is needed than a linear sweep,
 | 
				
			||||||
 | 
						// but huge productivity gain if this is simple algorithm and not a tunable
 | 
				
			||||||
 | 
						int m =1;
 | 
				
			||||||
 | 
						if ( n>=ordermin ) m=n-ordermin;
 | 
				
			||||||
 | 
						if ( (m%orderstep)==0 ) { 
 | 
				
			||||||
 | 
						  Mn=*Tnp;
 | 
				
			||||||
 | 
						  scale = std::pow(norm2(Mn),-0.5);         Mn=Mn*scale;
 | 
				
			||||||
 | 
						  subspace[b] = Mn;
 | 
				
			||||||
 | 
						  hermop.Op(Mn,tmp); 
 | 
				
			||||||
 | 
						  std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
				
			||||||
 | 
						  b++;
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						// Cycle pointers to avoid copies
 | 
				
			||||||
 | 
						FineField *swizzle = Tnm;
 | 
				
			||||||
 | 
						Tnm    =Tn;
 | 
				
			||||||
 | 
						Tn     =Tnp;
 | 
				
			||||||
 | 
						Tnp    =swizzle;
 | 
				
			||||||
 | 
						  
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    assert(b==nn);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
// Fine Object == (per site) type of fine field
 | 
					// Fine Object == (per site) type of fine field
 | 
				
			||||||
// nbasis      == number of deflation vectors
 | 
					// nbasis      == number of deflation vectors
 | 
				
			||||||
template<class Fobj,class CComplex,int nbasis>
 | 
					template<class Fobj,class CComplex,int nbasis>
 | 
				
			||||||
@@ -99,7 +336,7 @@ public:
 | 
				
			|||||||
  CoarseMatrix AselfInvEven;
 | 
					  CoarseMatrix AselfInvEven;
 | 
				
			||||||
  CoarseMatrix AselfInvOdd;
 | 
					  CoarseMatrix AselfInvOdd;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  deviceVector<RealD> dag_factor;
 | 
					  Vector<RealD> dag_factor;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  ///////////////////////
 | 
					  ///////////////////////
 | 
				
			||||||
  // Interface
 | 
					  // Interface
 | 
				
			||||||
@@ -124,13 +361,9 @@ public:
 | 
				
			|||||||
    int npoint = geom.npoint;
 | 
					    int npoint = geom.npoint;
 | 
				
			||||||
    typedef LatticeView<Cobj> Aview;
 | 
					    typedef LatticeView<Cobj> Aview;
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
 | 
					    Vector<Aview> AcceleratorViewContainer;
 | 
				
			||||||
    hostVector<Aview>   hAcceleratorViewContainer(geom.npoint);
 | 
					 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++) {
 | 
					    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
 | 
				
			||||||
      hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
 | 
					 | 
				
			||||||
      acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
					    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    const int Nsimd = CComplex::Nsimd();
 | 
					    const int Nsimd = CComplex::Nsimd();
 | 
				
			||||||
@@ -165,7 +398,7 @@ public:
 | 
				
			|||||||
      coalescedWrite(out_v[ss](b),res);
 | 
					      coalescedWrite(out_v[ss](b),res);
 | 
				
			||||||
      });
 | 
					      });
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
 | 
					    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
 | 
				
			||||||
  };
 | 
					  };
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void Mdag (const CoarseVector &in, CoarseVector &out)
 | 
					  void Mdag (const CoarseVector &in, CoarseVector &out)
 | 
				
			||||||
@@ -194,14 +427,9 @@ public:
 | 
				
			|||||||
    int npoint = geom.npoint;
 | 
					    int npoint = geom.npoint;
 | 
				
			||||||
    typedef LatticeView<Cobj> Aview;
 | 
					    typedef LatticeView<Cobj> Aview;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Vector<Aview> AcceleratorViewContainer;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
 | 
					    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
 | 
				
			||||||
    hostVector<Aview>   hAcceleratorViewContainer(geom.npoint);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++) {
 | 
					 | 
				
			||||||
      hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
 | 
					 | 
				
			||||||
      acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
					    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    const int Nsimd = CComplex::Nsimd();
 | 
					    const int Nsimd = CComplex::Nsimd();
 | 
				
			||||||
@@ -210,10 +438,10 @@ public:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    int osites=Grid()->oSites();
 | 
					    int osites=Grid()->oSites();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    deviceVector<int> points(geom.npoint);
 | 
					    Vector<int> points(geom.npoint, 0);
 | 
				
			||||||
    for(int p=0; p<geom.npoint; p++) { 
 | 
					    for(int p=0; p<geom.npoint; p++)
 | 
				
			||||||
      acceleratorPut(points[p],geom.points_dagger[p]);
 | 
					      points[p] = geom.points_dagger[p];
 | 
				
			||||||
    }
 | 
					
 | 
				
			||||||
    auto points_p = &points[0];
 | 
					    auto points_p = &points[0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    RealD* dag_factor_p = &dag_factor[0];
 | 
					    RealD* dag_factor_p = &dag_factor[0];
 | 
				
			||||||
@@ -245,7 +473,7 @@ public:
 | 
				
			|||||||
      coalescedWrite(out_v[ss](b),res);
 | 
					      coalescedWrite(out_v[ss](b),res);
 | 
				
			||||||
      });
 | 
					      });
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
 | 
					    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void MdirComms(const CoarseVector &in)
 | 
					  void MdirComms(const CoarseVector &in)
 | 
				
			||||||
@@ -260,14 +488,8 @@ public:
 | 
				
			|||||||
    out.Checkerboard() = in.Checkerboard();
 | 
					    out.Checkerboard() = in.Checkerboard();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    typedef LatticeView<Cobj> Aview;
 | 
					    typedef LatticeView<Cobj> Aview;
 | 
				
			||||||
 | 
					    Vector<Aview> AcceleratorViewContainer;
 | 
				
			||||||
    deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
 | 
					    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
 | 
				
			||||||
    hostVector<Aview>   hAcceleratorViewContainer(geom.npoint);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++) {
 | 
					 | 
				
			||||||
      hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
 | 
					 | 
				
			||||||
      acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
					    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    autoView( out_v , out, AcceleratorWrite);
 | 
					    autoView( out_v , out, AcceleratorWrite);
 | 
				
			||||||
@@ -300,7 +522,7 @@ public:
 | 
				
			|||||||
      }
 | 
					      }
 | 
				
			||||||
      coalescedWrite(out_v[ss](b),res);
 | 
					      coalescedWrite(out_v[ss](b),res);
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
 | 
					    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out)
 | 
					  void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
@@ -484,20 +706,14 @@ public:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    // determine in what order we need the points
 | 
					    // determine in what order we need the points
 | 
				
			||||||
    int npoint = geom.npoint-1;
 | 
					    int npoint = geom.npoint-1;
 | 
				
			||||||
    deviceVector<int> points(npoint);
 | 
					    Vector<int> points(npoint, 0);
 | 
				
			||||||
    for(int p=0; p<npoint; p++) {
 | 
					    for(int p=0; p<npoint; p++)
 | 
				
			||||||
      int val = (dag && !hermitian) ? geom.points_dagger[p] : p;
 | 
					      points[p] = (dag && !hermitian) ? geom.points_dagger[p] : p;
 | 
				
			||||||
      acceleratorPut(points[p], val);
 | 
					
 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    auto points_p = &points[0];
 | 
					    auto points_p = &points[0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
 | 
					    Vector<Aview> AcceleratorViewContainer;
 | 
				
			||||||
    hostVector<Aview>   hAcceleratorViewContainer(geom.npoint);
 | 
					    for(int p=0;p<npoint;p++) AcceleratorViewContainer.push_back(a[p].View(AcceleratorRead));
 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++) {
 | 
					 | 
				
			||||||
      hAcceleratorViewContainer[p] = a[p].View(AcceleratorRead);
 | 
					 | 
				
			||||||
      acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
					    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    const int Nsimd = CComplex::Nsimd();
 | 
					    const int Nsimd = CComplex::Nsimd();
 | 
				
			||||||
@@ -560,7 +776,7 @@ public:
 | 
				
			|||||||
      });
 | 
					      });
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    for(int p=0;p<npoint;p++) hAcceleratorViewContainer[p].ViewClose();
 | 
					    for(int p=0;p<npoint;p++) AcceleratorViewContainer[p].ViewClose();
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) 	:
 | 
					  CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) 	:
 | 
				
			||||||
@@ -611,13 +827,11 @@ public:
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // GPU readable prefactor
 | 
					    // GPU readable prefactor
 | 
				
			||||||
    std::vector<RealD> h_dag_factor(nbasis*nbasis);
 | 
					 | 
				
			||||||
    thread_for(i, nbasis*nbasis, {
 | 
					    thread_for(i, nbasis*nbasis, {
 | 
				
			||||||
      int j = i/nbasis;
 | 
					      int j = i/nbasis;
 | 
				
			||||||
      int k = i%nbasis;
 | 
					      int k = i%nbasis;
 | 
				
			||||||
      h_dag_factor[i] = dag_factor_eigen(j, k);
 | 
					      dag_factor[i] = dag_factor_eigen(j, k);
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
    acceleratorCopyToDevice(&h_dag_factor[0],&dag_factor[0],dag_factor.size()*sizeof(RealD));
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
					  void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
				
			||||||
@@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
#define _GRID_FFT_H_
 | 
					#define _GRID_FFT_H_
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#ifdef HAVE_FFTW
 | 
					#ifdef HAVE_FFTW
 | 
				
			||||||
#if defined(USE_MKL) || defined(GRID_SYCL)
 | 
					#ifdef USE_MKL
 | 
				
			||||||
#include <fftw/fftw3.h>
 | 
					#include <fftw/fftw3.h>
 | 
				
			||||||
#else
 | 
					#else
 | 
				
			||||||
#include <fftw3.h>
 | 
					#include <fftw3.h>
 | 
				
			||||||
@@ -168,7 +168,6 @@ public:
 | 
				
			|||||||
  template<class vobj>
 | 
					  template<class vobj>
 | 
				
			||||||
  void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int sign){
 | 
					  void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int sign){
 | 
				
			||||||
#ifndef HAVE_FFTW
 | 
					#ifndef HAVE_FFTW
 | 
				
			||||||
    std::cerr << "FFTW is not compiled but is called"<<std::endl;
 | 
					 | 
				
			||||||
    assert(0);
 | 
					    assert(0);
 | 
				
			||||||
#else
 | 
					#else
 | 
				
			||||||
    conformable(result.Grid(),vgrid);
 | 
					    conformable(result.Grid(),vgrid);
 | 
				
			||||||
@@ -191,7 +190,6 @@ public:
 | 
				
			|||||||
      
 | 
					      
 | 
				
			||||||
    Lattice<sobj> pgbuf(&pencil_g);
 | 
					    Lattice<sobj> pgbuf(&pencil_g);
 | 
				
			||||||
    autoView(pgbuf_v , pgbuf, CpuWrite);
 | 
					    autoView(pgbuf_v , pgbuf, CpuWrite);
 | 
				
			||||||
    //std::cout << "CPU view" << std::endl;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
 | 
					    typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
 | 
				
			||||||
    typedef typename FFTW<scalar>::FFTW_plan   FFTW_plan;
 | 
					    typedef typename FFTW<scalar>::FFTW_plan   FFTW_plan;
 | 
				
			||||||
@@ -215,7 +213,6 @@ public:
 | 
				
			|||||||
    else if ( sign == forward ) div = 1.0;
 | 
					    else if ( sign == forward ) div = 1.0;
 | 
				
			||||||
    else assert(0);
 | 
					    else assert(0);
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    //std::cout << GridLogPerformance<<"Making FFTW plan" << std::endl;
 | 
					 | 
				
			||||||
    FFTW_plan p;
 | 
					    FFTW_plan p;
 | 
				
			||||||
    {
 | 
					    {
 | 
				
			||||||
      FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0];
 | 
					      FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0];
 | 
				
			||||||
@@ -229,7 +226,6 @@ public:
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    // Barrel shift and collect global pencil
 | 
					    // Barrel shift and collect global pencil
 | 
				
			||||||
    //std::cout << GridLogPerformance<<"Making pencil" << std::endl;
 | 
					 | 
				
			||||||
    Coordinate lcoor(Nd), gcoor(Nd);
 | 
					    Coordinate lcoor(Nd), gcoor(Nd);
 | 
				
			||||||
    result = source;
 | 
					    result = source;
 | 
				
			||||||
    int pc = processor_coor[dim];
 | 
					    int pc = processor_coor[dim];
 | 
				
			||||||
@@ -251,7 +247,6 @@ public:
 | 
				
			|||||||
      }
 | 
					      }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    //std::cout <<GridLogPerformance<< "Looping orthog" << std::endl;
 | 
					 | 
				
			||||||
    // Loop over orthog coords
 | 
					    // Loop over orthog coords
 | 
				
			||||||
    int NN=pencil_g.lSites();
 | 
					    int NN=pencil_g.lSites();
 | 
				
			||||||
    GridStopWatch timer;
 | 
					    GridStopWatch timer;
 | 
				
			||||||
@@ -274,7 +269,6 @@ public:
 | 
				
			|||||||
    usec += timer.useconds();
 | 
					    usec += timer.useconds();
 | 
				
			||||||
    flops+= flops_call*NN;
 | 
					    flops+= flops_call*NN;
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    //std::cout <<GridLogPerformance<< "Writing back results " << std::endl;
 | 
					 | 
				
			||||||
    // writing out result
 | 
					    // writing out result
 | 
				
			||||||
    {
 | 
					    {
 | 
				
			||||||
      autoView(pgbuf_v,pgbuf,CpuRead);
 | 
					      autoView(pgbuf_v,pgbuf,CpuRead);
 | 
				
			||||||
@@ -291,7 +285,6 @@ public:
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
    result = result*div;
 | 
					    result = result*div;
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    //std::cout <<GridLogPerformance<< "Destroying plan " << std::endl;
 | 
					 | 
				
			||||||
    // destroying plan
 | 
					    // destroying plan
 | 
				
			||||||
    FFTW<scalar>::fftw_destroy_plan(p);
 | 
					    FFTW<scalar>::fftw_destroy_plan(p);
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -103,38 +103,6 @@ public:
 | 
				
			|||||||
    _Mat.MdagM(in,out);
 | 
					    _Mat.MdagM(in,out);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
template<class Matrix,class Field>
 | 
					 | 
				
			||||||
class MMdagLinearOperator : public LinearOperatorBase<Field> {
 | 
					 | 
				
			||||||
  Matrix &_Mat;
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  MMdagLinearOperator(Matrix &Mat): _Mat(Mat){};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  // Support for coarsening to a multigrid
 | 
					 | 
				
			||||||
  void OpDiag (const Field &in, Field &out) {
 | 
					 | 
				
			||||||
    _Mat.Mdiag(in,out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
					 | 
				
			||||||
    _Mat.Mdir(in,out,dir,disp);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
					 | 
				
			||||||
    _Mat.MdirAll(in,out);
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  void Op     (const Field &in, Field &out){
 | 
					 | 
				
			||||||
    _Mat.M(in,out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void AdjOp     (const Field &in, Field &out){
 | 
					 | 
				
			||||||
    _Mat.Mdag(in,out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
					 | 
				
			||||||
    _Mat.MMdag(in,out);
 | 
					 | 
				
			||||||
    ComplexD dot = innerProduct(in,out);
 | 
					 | 
				
			||||||
    n1=real(dot);
 | 
					 | 
				
			||||||
    n2=norm2(out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void HermOp(const Field &in, Field &out){
 | 
					 | 
				
			||||||
    _Mat.MMdag(in,out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////
 | 
				
			||||||
// Construct herm op and shift it for mgrid smoother
 | 
					// Construct herm op and shift it for mgrid smoother
 | 
				
			||||||
@@ -177,44 +145,6 @@ public:
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
// Create a shifted HermOp
 | 
					 | 
				
			||||||
////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
template<class Field>
 | 
					 | 
				
			||||||
class ShiftedHermOpLinearOperator : public LinearOperatorBase<Field> {
 | 
					 | 
				
			||||||
  LinearOperatorBase<Field> &_Mat;
 | 
					 | 
				
			||||||
  RealD _shift;
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  ShiftedHermOpLinearOperator(LinearOperatorBase<Field> &Mat,RealD shift): _Mat(Mat), _shift(shift){};
 | 
					 | 
				
			||||||
  // Support for coarsening to a multigrid
 | 
					 | 
				
			||||||
  void OpDiag (const Field &in, Field &out) {
 | 
					 | 
				
			||||||
    assert(0);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
					 | 
				
			||||||
    assert(0);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
					 | 
				
			||||||
    assert(0);
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  void Op     (const Field &in, Field &out){
 | 
					 | 
				
			||||||
    HermOp(in,out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void AdjOp     (const Field &in, Field &out){
 | 
					 | 
				
			||||||
    HermOp(in,out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
					 | 
				
			||||||
    HermOp(in,out);
 | 
					 | 
				
			||||||
    ComplexD dot = innerProduct(in,out);
 | 
					 | 
				
			||||||
    n1=real(dot);
 | 
					 | 
				
			||||||
    n2=norm2(out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void HermOp(const Field &in, Field &out){
 | 
					 | 
				
			||||||
    _Mat.HermOp(in,out);
 | 
					 | 
				
			||||||
    out = out + _shift*in;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////
 | 
				
			||||||
// Wrap an already herm matrix
 | 
					// Wrap an already herm matrix
 | 
				
			||||||
////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -277,38 +207,6 @@ public:
 | 
				
			|||||||
    assert(0);
 | 
					    assert(0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
template<class Matrix,class Field>
 | 
					 | 
				
			||||||
class ShiftedNonHermitianLinearOperator : public LinearOperatorBase<Field> {
 | 
					 | 
				
			||||||
  Matrix &_Mat;
 | 
					 | 
				
			||||||
  RealD shift;
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  ShiftedNonHermitianLinearOperator(Matrix &Mat,RealD shft): _Mat(Mat),shift(shft){};
 | 
					 | 
				
			||||||
  // Support for coarsening to a multigrid
 | 
					 | 
				
			||||||
  void OpDiag (const Field &in, Field &out) {
 | 
					 | 
				
			||||||
    _Mat.Mdiag(in,out);
 | 
					 | 
				
			||||||
    out = out + shift*in;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
					 | 
				
			||||||
    _Mat.Mdir(in,out,dir,disp);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
					 | 
				
			||||||
    _Mat.MdirAll(in,out);
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  void Op     (const Field &in, Field &out){
 | 
					 | 
				
			||||||
    _Mat.M(in,out);
 | 
					 | 
				
			||||||
    out = out + shift * in;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void AdjOp     (const Field &in, Field &out){
 | 
					 | 
				
			||||||
    _Mat.Mdag(in,out);
 | 
					 | 
				
			||||||
    out = out + shift * in;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
					 | 
				
			||||||
    assert(0);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void HermOp(const Field &in, Field &out){
 | 
					 | 
				
			||||||
    assert(0);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
//////////////////////////////////////////////////////////
 | 
					//////////////////////////////////////////////////////////
 | 
				
			||||||
// Even Odd Schur decomp operators; there are several
 | 
					// Even Odd Schur decomp operators; there are several
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -45,11 +45,6 @@ public:
 | 
				
			|||||||
    M(in,tmp);
 | 
					    M(in,tmp);
 | 
				
			||||||
    Mdag(tmp,out);
 | 
					    Mdag(tmp,out);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  virtual void  MMdag(const Field &in, Field &out) {
 | 
					 | 
				
			||||||
    Field tmp (in.Grid());
 | 
					 | 
				
			||||||
    Mdag(in,tmp);
 | 
					 | 
				
			||||||
    M(tmp,out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  virtual  void Mdiag    (const Field &in, Field &out)=0;
 | 
					  virtual  void Mdiag    (const Field &in, Field &out)=0;
 | 
				
			||||||
  virtual  void Mdir     (const Field &in, Field &out,int dir, int disp)=0;
 | 
					  virtual  void Mdir     (const Field &in, Field &out,int dir, int disp)=0;
 | 
				
			||||||
  virtual  void MdirAll  (const Field &in, std::vector<Field> &out)=0;
 | 
					  virtual  void MdirAll  (const Field &in, std::vector<Field> &out)=0;
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -59,7 +59,7 @@ public:
 | 
				
			|||||||
    RealD diff = hi-lo;
 | 
					    RealD diff = hi-lo;
 | 
				
			||||||
    RealD delta = diff*1.0e-9;
 | 
					    RealD delta = diff*1.0e-9;
 | 
				
			||||||
    for (RealD x=lo; x<hi; x+=delta) {
 | 
					    for (RealD x=lo; x<hi; x+=delta) {
 | 
				
			||||||
      delta*=1.02;
 | 
					      delta*=1.1;
 | 
				
			||||||
      RealD f = approx(x);
 | 
					      RealD f = approx(x);
 | 
				
			||||||
      out<< x<<" "<<f<<std::endl;
 | 
					      out<< x<<" "<<f<<std::endl;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
@@ -90,8 +90,9 @@ public:
 | 
				
			|||||||
    order=_order;
 | 
					    order=_order;
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    if(order < 2) exit(-1);
 | 
					    if(order < 2) exit(-1);
 | 
				
			||||||
    Coeffs.resize(order,0.0);
 | 
					    Coeffs.resize(order);
 | 
				
			||||||
    Coeffs[order-1] = 1.0;
 | 
					    Coeffs.assign(0.,order);
 | 
				
			||||||
 | 
					    Coeffs[order-1] = 1.;
 | 
				
			||||||
  };
 | 
					  };
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  // PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's.
 | 
					  // PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's.
 | 
				
			||||||
@@ -131,26 +132,6 @@ public:
 | 
				
			|||||||
      Coeffs[j] = s * 2.0/order;
 | 
					      Coeffs[j] = s * 2.0/order;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  };
 | 
					  };
 | 
				
			||||||
  template<class functor>
 | 
					 | 
				
			||||||
  void Init(RealD _lo,RealD _hi,int _order, functor & func)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    lo=_lo;
 | 
					 | 
				
			||||||
    hi=_hi;
 | 
					 | 
				
			||||||
    order=_order;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    if(order < 2) exit(-1);
 | 
					 | 
				
			||||||
    Coeffs.resize(order);
 | 
					 | 
				
			||||||
    for(int j=0;j<order;j++){
 | 
					 | 
				
			||||||
      RealD s=0;
 | 
					 | 
				
			||||||
      for(int k=0;k<order;k++){
 | 
					 | 
				
			||||||
	RealD y=std::cos(M_PI*(k+0.5)/order);
 | 
					 | 
				
			||||||
	RealD x=0.5*(y*(hi-lo)+(hi+lo));
 | 
					 | 
				
			||||||
	RealD f=func(x);
 | 
					 | 
				
			||||||
	s=s+f*std::cos( j*M_PI*(k+0.5)/order );
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      Coeffs[j] = s * 2.0/order;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
  void JacksonSmooth(void){
 | 
					  void JacksonSmooth(void){
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -40,7 +40,7 @@ public:
 | 
				
			|||||||
  RealD norm;
 | 
					  RealD norm;
 | 
				
			||||||
  RealD lo,hi;
 | 
					  RealD lo,hi;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), tolerances(n), lo(_lo), hi(_hi) {;};
 | 
					  MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), lo(_lo), hi(_hi) {;};
 | 
				
			||||||
  RealD approx(RealD x);
 | 
					  RealD approx(RealD x);
 | 
				
			||||||
  void csv(std::ostream &out);
 | 
					  void csv(std::ostream &out);
 | 
				
			||||||
  void gnuplot(std::ostream &out);
 | 
					  void gnuplot(std::ostream &out);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -293,7 +293,7 @@ static void sncndnFK(INTERNAL_PRECISION u, INTERNAL_PRECISION k,
 | 
				
			|||||||
 * Set type = 0 for the Zolotarev approximation, which is zero at x = 0, and
 | 
					 * Set type = 0 for the Zolotarev approximation, which is zero at x = 0, and
 | 
				
			||||||
 * type = 1 for the approximation which is infinite at x = 0. */
 | 
					 * type = 1 for the approximation which is infinite at x = 0. */
 | 
				
			||||||
 | 
					
 | 
				
			||||||
zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) {
 | 
					zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) {
 | 
				
			||||||
  INTERNAL_PRECISION A, c, cp, kp, ksq, sn, cn, dn, Kp, Kj, z, z0, t, M, F,
 | 
					  INTERNAL_PRECISION A, c, cp, kp, ksq, sn, cn, dn, Kp, Kj, z, z0, t, M, F,
 | 
				
			||||||
    l, invlambda, xi, xisq, *tv, s, opl;
 | 
					    l, invlambda, xi, xisq, *tv, s, opl;
 | 
				
			||||||
  int m, czero, ts;
 | 
					  int m, czero, ts;
 | 
				
			||||||
@@ -375,12 +375,12 @@ zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) {
 | 
				
			|||||||
  construct_partfrac(d);
 | 
					  construct_partfrac(d);
 | 
				
			||||||
  construct_contfrac(d);
 | 
					  construct_contfrac(d);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  /* Converting everything to ZOLO_PRECISION for external use only */
 | 
					  /* Converting everything to PRECISION for external use only */
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
 | 
					  zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
 | 
				
			||||||
  zd -> A = (ZOLO_PRECISION) d -> A;
 | 
					  zd -> A = (PRECISION) d -> A;
 | 
				
			||||||
  zd -> Delta = (ZOLO_PRECISION) d -> Delta;
 | 
					  zd -> Delta = (PRECISION) d -> Delta;
 | 
				
			||||||
  zd -> epsilon = (ZOLO_PRECISION) d -> epsilon;
 | 
					  zd -> epsilon = (PRECISION) d -> epsilon;
 | 
				
			||||||
  zd -> n = d -> n;
 | 
					  zd -> n = d -> n;
 | 
				
			||||||
  zd -> type = d -> type;
 | 
					  zd -> type = d -> type;
 | 
				
			||||||
  zd -> dn = d -> dn;
 | 
					  zd -> dn = d -> dn;
 | 
				
			||||||
@@ -390,24 +390,24 @@ zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) {
 | 
				
			|||||||
  zd -> deg_num = d -> deg_num;
 | 
					  zd -> deg_num = d -> deg_num;
 | 
				
			||||||
  zd -> deg_denom = d -> deg_denom;
 | 
					  zd -> deg_denom = d -> deg_denom;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION));
 | 
					  zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION));
 | 
				
			||||||
  for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m];
 | 
					  for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m];
 | 
				
			||||||
  free(d -> a);
 | 
					  free(d -> a);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION));
 | 
					  zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION));
 | 
				
			||||||
  for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m];
 | 
					  for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m];
 | 
				
			||||||
  free(d -> ap);
 | 
					  free(d -> ap);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION));
 | 
					  zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION));
 | 
				
			||||||
  for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m];
 | 
					  for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m];
 | 
				
			||||||
  free(d -> alpha);
 | 
					  free(d -> alpha);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION));
 | 
					  zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION));
 | 
				
			||||||
  for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m];
 | 
					  for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m];
 | 
				
			||||||
  free(d -> beta);
 | 
					  free(d -> beta);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION));
 | 
					  zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION));
 | 
				
			||||||
  for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m];
 | 
					  for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m];
 | 
				
			||||||
  free(d -> gamma);
 | 
					  free(d -> gamma);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  free(d);
 | 
					  free(d);
 | 
				
			||||||
@@ -426,7 +426,7 @@ void zolotarev_free(zolotarev_data *zdata)
 | 
				
			|||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) {
 | 
					zolotarev_data* higham(PRECISION epsilon, int n) {
 | 
				
			||||||
  INTERNAL_PRECISION A, M, c, cp, z, z0, t, epssq;
 | 
					  INTERNAL_PRECISION A, M, c, cp, z, z0, t, epssq;
 | 
				
			||||||
  int m, czero;
 | 
					  int m, czero;
 | 
				
			||||||
  zolotarev_data *zd;
 | 
					  zolotarev_data *zd;
 | 
				
			||||||
@@ -481,9 +481,9 @@ zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) {
 | 
				
			|||||||
  /* Converting everything to PRECISION for external use only */
 | 
					  /* Converting everything to PRECISION for external use only */
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
 | 
					  zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
 | 
				
			||||||
  zd -> A = (ZOLO_PRECISION) d -> A;
 | 
					  zd -> A = (PRECISION) d -> A;
 | 
				
			||||||
  zd -> Delta = (ZOLO_PRECISION) d -> Delta;
 | 
					  zd -> Delta = (PRECISION) d -> Delta;
 | 
				
			||||||
  zd -> epsilon = (ZOLO_PRECISION) d -> epsilon;
 | 
					  zd -> epsilon = (PRECISION) d -> epsilon;
 | 
				
			||||||
  zd -> n = d -> n;
 | 
					  zd -> n = d -> n;
 | 
				
			||||||
  zd -> type = d -> type;
 | 
					  zd -> type = d -> type;
 | 
				
			||||||
  zd -> dn = d -> dn;
 | 
					  zd -> dn = d -> dn;
 | 
				
			||||||
@@ -493,24 +493,24 @@ zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) {
 | 
				
			|||||||
  zd -> deg_num = d -> deg_num;
 | 
					  zd -> deg_num = d -> deg_num;
 | 
				
			||||||
  zd -> deg_denom = d -> deg_denom;
 | 
					  zd -> deg_denom = d -> deg_denom;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION));
 | 
					  zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION));
 | 
				
			||||||
  for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m];
 | 
					  for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m];
 | 
				
			||||||
  free(d -> a);
 | 
					  free(d -> a);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION));
 | 
					  zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION));
 | 
				
			||||||
  for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m];
 | 
					  for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m];
 | 
				
			||||||
  free(d -> ap);
 | 
					  free(d -> ap);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION));
 | 
					  zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION));
 | 
				
			||||||
  for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m];
 | 
					  for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m];
 | 
				
			||||||
  free(d -> alpha);
 | 
					  free(d -> alpha);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION));
 | 
					  zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION));
 | 
				
			||||||
  for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m];
 | 
					  for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m];
 | 
				
			||||||
  free(d -> beta);
 | 
					  free(d -> beta);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION));
 | 
					  zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION));
 | 
				
			||||||
  for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m];
 | 
					  for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m];
 | 
				
			||||||
  free(d -> gamma);
 | 
					  free(d -> gamma);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  free(d);
 | 
					  free(d);
 | 
				
			||||||
@@ -523,17 +523,17 @@ NAMESPACE_END(Grid);
 | 
				
			|||||||
#ifdef TEST
 | 
					#ifdef TEST
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#undef ZERO
 | 
					#undef ZERO
 | 
				
			||||||
#define ZERO ((ZOLO_PRECISION) 0)
 | 
					#define ZERO ((PRECISION) 0)
 | 
				
			||||||
#undef ONE
 | 
					#undef ONE
 | 
				
			||||||
#define ONE ((ZOLO_PRECISION) 1)
 | 
					#define ONE ((PRECISION) 1)
 | 
				
			||||||
#undef TWO
 | 
					#undef TWO
 | 
				
			||||||
#define TWO ((ZOLO_PRECISION) 2)
 | 
					#define TWO ((PRECISION) 2)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
/* Evaluate the rational approximation R(x) using the factored form */
 | 
					/* Evaluate the rational approximation R(x) using the factored form */
 | 
				
			||||||
 | 
					
 | 
				
			||||||
static ZOLO_PRECISION zolotarev_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
 | 
					static PRECISION zolotarev_eval(PRECISION x, zolotarev_data* rdata) {
 | 
				
			||||||
  int m;
 | 
					  int m;
 | 
				
			||||||
  ZOLO_PRECISION R;
 | 
					  PRECISION R;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  if (rdata -> type == 0) {
 | 
					  if (rdata -> type == 0) {
 | 
				
			||||||
    R = rdata -> A * x;
 | 
					    R = rdata -> A * x;
 | 
				
			||||||
@@ -551,9 +551,9 @@ static ZOLO_PRECISION zolotarev_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
/* Evaluate the rational approximation R(x) using the partial fraction form */
 | 
					/* Evaluate the rational approximation R(x) using the partial fraction form */
 | 
				
			||||||
 | 
					
 | 
				
			||||||
static ZOLO_PRECISION zolotarev_partfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
 | 
					static PRECISION zolotarev_partfrac_eval(PRECISION x, zolotarev_data* rdata) {
 | 
				
			||||||
  int m;
 | 
					  int m;
 | 
				
			||||||
  ZOLO_PRECISION R = rdata -> alpha[rdata -> da - 1];
 | 
					  PRECISION R = rdata -> alpha[rdata -> da - 1];
 | 
				
			||||||
  for (m = 0; m < rdata -> dd; m++)
 | 
					  for (m = 0; m < rdata -> dd; m++)
 | 
				
			||||||
    R += rdata -> alpha[m] / (x * x - rdata -> ap[m]);
 | 
					    R += rdata -> alpha[m] / (x * x - rdata -> ap[m]);
 | 
				
			||||||
  if (rdata -> type == 1) R += rdata -> alpha[rdata -> dd] / (x * x);
 | 
					  if (rdata -> type == 1) R += rdata -> alpha[rdata -> dd] / (x * x);
 | 
				
			||||||
@@ -568,18 +568,18 @@ static ZOLO_PRECISION zolotarev_partfrac_eval(ZOLO_PRECISION x, zolotarev_data*
 | 
				
			|||||||
 * non-signalling overflow this will work correctly since 1/(1/0) = 1/INF = 0,
 | 
					 * non-signalling overflow this will work correctly since 1/(1/0) = 1/INF = 0,
 | 
				
			||||||
 * but with signalling overflow you will get an error message. */
 | 
					 * but with signalling overflow you will get an error message. */
 | 
				
			||||||
 | 
					
 | 
				
			||||||
static ZOLO_PRECISION zolotarev_contfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
 | 
					static PRECISION zolotarev_contfrac_eval(PRECISION x, zolotarev_data* rdata) {
 | 
				
			||||||
  int m;
 | 
					  int m;
 | 
				
			||||||
  ZOLO_PRECISION R = rdata -> beta[0] * x;
 | 
					  PRECISION R = rdata -> beta[0] * x;
 | 
				
			||||||
  for (m = 1; m < rdata -> db; m++) R = rdata -> beta[m] * x + ONE / R;
 | 
					  for (m = 1; m < rdata -> db; m++) R = rdata -> beta[m] * x + ONE / R;
 | 
				
			||||||
  return R;
 | 
					  return R;
 | 
				
			||||||
}    
 | 
					}    
 | 
				
			||||||
 | 
					
 | 
				
			||||||
/* Evaluate the rational approximation R(x) using Cayley form */
 | 
					/* Evaluate the rational approximation R(x) using Cayley form */
 | 
				
			||||||
 | 
					
 | 
				
			||||||
static ZOLO_PRECISION zolotarev_cayley_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
 | 
					static PRECISION zolotarev_cayley_eval(PRECISION x, zolotarev_data* rdata) {
 | 
				
			||||||
  int m;
 | 
					  int m;
 | 
				
			||||||
  ZOLO_PRECISION T;
 | 
					  PRECISION T;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  T = rdata -> type == 0 ? ONE : -ONE;
 | 
					  T = rdata -> type == 0 ? ONE : -ONE;
 | 
				
			||||||
  for (m = 0; m < rdata -> n; m++)
 | 
					  for (m = 0; m < rdata -> n; m++)
 | 
				
			||||||
@@ -607,7 +607,7 @@ int main(int argc, char** argv) {
 | 
				
			|||||||
  int m, n, plotpts = 5000, type = 0;
 | 
					  int m, n, plotpts = 5000, type = 0;
 | 
				
			||||||
  float eps, x, ypferr, ycferr, ycaylerr, maxypferr, maxycferr, maxycaylerr;
 | 
					  float eps, x, ypferr, ycferr, ycaylerr, maxypferr, maxycferr, maxycaylerr;
 | 
				
			||||||
  zolotarev_data *rdata;
 | 
					  zolotarev_data *rdata;
 | 
				
			||||||
  ZOLO_PRECISION y;
 | 
					  PRECISION y;
 | 
				
			||||||
  FILE *plot_function, *plot_error, 
 | 
					  FILE *plot_function, *plot_error, 
 | 
				
			||||||
    *plot_partfrac, *plot_contfrac, *plot_cayley;
 | 
					    *plot_partfrac, *plot_contfrac, *plot_cayley;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -626,13 +626,13 @@ int main(int argc, char** argv) {
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  rdata = type == 2 
 | 
					  rdata = type == 2 
 | 
				
			||||||
    ? higham((ZOLO_PRECISION) eps, n) 
 | 
					    ? higham((PRECISION) eps, n) 
 | 
				
			||||||
    : zolotarev((ZOLO_PRECISION) eps, n, type);
 | 
					    : zolotarev((PRECISION) eps, n, type);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  printf("Zolotarev Test: R(epsilon = %g, n = %d, type = %d)\n\t" 
 | 
					  printf("Zolotarev Test: R(epsilon = %g, n = %d, type = %d)\n\t" 
 | 
				
			||||||
	 STRINGIFY(VERSION) "\n\t" STRINGIFY(HVERSION)
 | 
						 STRINGIFY(VERSION) "\n\t" STRINGIFY(HVERSION)
 | 
				
			||||||
	 "\n\tINTERNAL_PRECISION = " STRINGIFY(INTERNAL_PRECISION)
 | 
						 "\n\tINTERNAL_PRECISION = " STRINGIFY(INTERNAL_PRECISION)
 | 
				
			||||||
	 "\tZOLO_PRECISION = " STRINGIFY(ZOLO_PRECISION)
 | 
						 "\tPRECISION = " STRINGIFY(PRECISION)
 | 
				
			||||||
	 "\n\n\tRational approximation of degree (%d,%d), %s at x = 0\n"
 | 
						 "\n\n\tRational approximation of degree (%d,%d), %s at x = 0\n"
 | 
				
			||||||
	 "\tDelta = %g (maximum error)\n\n"
 | 
						 "\tDelta = %g (maximum error)\n\n"
 | 
				
			||||||
	 "\tA = %g (overall factor)\n",
 | 
						 "\tA = %g (overall factor)\n",
 | 
				
			||||||
@@ -681,15 +681,15 @@ int main(int argc, char** argv) {
 | 
				
			|||||||
    x = 2.4 * (float) m / plotpts - 1.2;
 | 
					    x = 2.4 * (float) m / plotpts - 1.2;
 | 
				
			||||||
    if (rdata -> type == 0 || fabs(x) * (float) plotpts > 1.0) {
 | 
					    if (rdata -> type == 0 || fabs(x) * (float) plotpts > 1.0) {
 | 
				
			||||||
      /* skip x = 0 for type 1, as R(0) is singular */
 | 
					      /* skip x = 0 for type 1, as R(0) is singular */
 | 
				
			||||||
      y = zolotarev_eval((ZOLO_PRECISION) x, rdata);
 | 
					      y = zolotarev_eval((PRECISION) x, rdata);
 | 
				
			||||||
      fprintf(plot_function, "%g %g\n", x, (float) y);
 | 
					      fprintf(plot_function, "%g %g\n", x, (float) y);
 | 
				
			||||||
      fprintf(plot_error, "%g %g\n",
 | 
					      fprintf(plot_error, "%g %g\n",
 | 
				
			||||||
	      x, (float)((y - ((x > 0.0 ? ONE : -ONE))) / rdata -> Delta));
 | 
						      x, (float)((y - ((x > 0.0 ? ONE : -ONE))) / rdata -> Delta));
 | 
				
			||||||
      ypferr = (float)((zolotarev_partfrac_eval((ZOLO_PRECISION) x, rdata) - y)
 | 
					      ypferr = (float)((zolotarev_partfrac_eval((PRECISION) x, rdata) - y)
 | 
				
			||||||
		       / rdata -> Delta);
 | 
							       / rdata -> Delta);
 | 
				
			||||||
      ycferr = (float)((zolotarev_contfrac_eval((ZOLO_PRECISION) x, rdata) - y)
 | 
					      ycferr = (float)((zolotarev_contfrac_eval((PRECISION) x, rdata) - y)
 | 
				
			||||||
		       / rdata -> Delta);
 | 
							       / rdata -> Delta);
 | 
				
			||||||
      ycaylerr = (float)((zolotarev_cayley_eval((ZOLO_PRECISION) x, rdata) - y)
 | 
					      ycaylerr = (float)((zolotarev_cayley_eval((PRECISION) x, rdata) - y)
 | 
				
			||||||
		       / rdata -> Delta);
 | 
							       / rdata -> Delta);
 | 
				
			||||||
      if (fabs(x) < 1.0 && fabs(x) > rdata -> epsilon) {
 | 
					      if (fabs(x) < 1.0 && fabs(x) > rdata -> epsilon) {
 | 
				
			||||||
	maxypferr = MAX(maxypferr, fabs(ypferr));
 | 
						maxypferr = MAX(maxypferr, fabs(ypferr));
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -9,10 +9,10 @@ NAMESPACE_BEGIN(Approx);
 | 
				
			|||||||
#define HVERSION Header Time-stamp: <14-OCT-2004 09:26:51.00 adk@MISSCONTRARY>
 | 
					#define HVERSION Header Time-stamp: <14-OCT-2004 09:26:51.00 adk@MISSCONTRARY>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#ifndef ZOLOTAREV_INTERNAL
 | 
					#ifndef ZOLOTAREV_INTERNAL
 | 
				
			||||||
#ifndef ZOLO_PRECISION
 | 
					#ifndef PRECISION
 | 
				
			||||||
#define ZOLO_PRECISION double
 | 
					#define PRECISION double
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
#define ZPRECISION ZOLO_PRECISION
 | 
					#define ZPRECISION PRECISION
 | 
				
			||||||
#define ZOLOTAREV_DATA zolotarev_data
 | 
					#define ZOLOTAREV_DATA zolotarev_data
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -77,8 +77,8 @@ typedef struct {
 | 
				
			|||||||
 * zolotarev_data structure. The arguments must satisfy the constraints that
 | 
					 * zolotarev_data structure. The arguments must satisfy the constraints that
 | 
				
			||||||
 * epsilon > 0, n > 0, and type = 0 or 1. */
 | 
					 * epsilon > 0, n > 0, and type = 0 or 1. */
 | 
				
			||||||
 | 
					
 | 
				
			||||||
ZOLOTAREV_DATA* higham(ZOLO_PRECISION epsilon, int n) ;
 | 
					ZOLOTAREV_DATA* higham(PRECISION epsilon, int n) ;
 | 
				
			||||||
ZOLOTAREV_DATA* zolotarev(ZOLO_PRECISION epsilon, int n, int type);
 | 
					ZOLOTAREV_DATA* zolotarev(PRECISION epsilon, int n, int type);
 | 
				
			||||||
void zolotarev_free(zolotarev_data *zdata);
 | 
					void zolotarev_free(zolotarev_data *zdata);
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -86,4 +86,3 @@ void zolotarev_free(zolotarev_data *zdata);
 | 
				
			|||||||
NAMESPACE_END(Approx);
 | 
					NAMESPACE_END(Approx);
 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 | 
					 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,34 +0,0 @@
 | 
				
			|||||||
/*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: BatchedBlas.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2023
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
*************************************************************************************/
 | 
					 | 
				
			||||||
/*  END LEGAL */
 | 
					 | 
				
			||||||
#include <Grid/GridCore.h>
 | 
					 | 
				
			||||||
#include <Grid/algorithms/blas/BatchedBlas.h>
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
gridblasHandle_t GridBLAS::gridblasHandle;
 | 
					 | 
				
			||||||
int              GridBLAS::gridblasInit;
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							@@ -1,376 +0,0 @@
 | 
				
			|||||||
/*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: MultiRHSBlockCGLinalg.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2024
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
*************************************************************************************/
 | 
					 | 
				
			||||||
/*  END LEGAL */
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/* Need helper object for BLAS accelerated mrhs blockCG */
 | 
					 | 
				
			||||||
template<class Field>
 | 
					 | 
				
			||||||
class MultiRHSBlockCGLinalg
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  typedef typename Field::scalar_type   scalar;
 | 
					 | 
				
			||||||
  typedef typename Field::scalar_object scalar_object;
 | 
					 | 
				
			||||||
  typedef typename Field::vector_object vector_object;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_X;      // nrhs x vol -- the sources
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_Y;      // nrhs x vol -- the result
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_C;      // nrhs x nrhs -- the coefficients 
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_Cred;   // nrhs x nrhs x oSites -- reduction buffer
 | 
					 | 
				
			||||||
  deviceVector<scalar *> Xdip;
 | 
					 | 
				
			||||||
  deviceVector<scalar *> Ydip;
 | 
					 | 
				
			||||||
  deviceVector<scalar *> Cdip;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  MultiRHSBlockCGLinalg() {};
 | 
					 | 
				
			||||||
  ~MultiRHSBlockCGLinalg(){ Deallocate(); };
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  void Deallocate(void)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    Xdip.resize(0);
 | 
					 | 
				
			||||||
    Ydip.resize(0);
 | 
					 | 
				
			||||||
    Cdip.resize(0);
 | 
					 | 
				
			||||||
    BLAS_Cred.resize(0);
 | 
					 | 
				
			||||||
    BLAS_C.resize(0);
 | 
					 | 
				
			||||||
    BLAS_X.resize(0);
 | 
					 | 
				
			||||||
    BLAS_Y.resize(0);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::vector<Field> Y_copy(AP.size(),AP[0].Grid());
 | 
					 | 
				
			||||||
    for(int r=0;r<AP.size();r++){
 | 
					 | 
				
			||||||
      Y_copy[r] = Y[r];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    MulMatrix(AP,m,X);
 | 
					 | 
				
			||||||
    for(int r=0;r<AP.size();r++){
 | 
					 | 
				
			||||||
      AP[r] = scale*AP[r]+Y_copy[r];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void MulMatrix(std::vector<Field> &Y, Eigen::MatrixXcd &m , const std::vector<Field> &X)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    typedef typename Field::scalar_type scomplex;
 | 
					 | 
				
			||||||
    GridBase *grid;
 | 
					 | 
				
			||||||
    uint64_t vol;
 | 
					 | 
				
			||||||
    uint64_t words;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int nrhs = Y.size();
 | 
					 | 
				
			||||||
    grid  = X[0].Grid();
 | 
					 | 
				
			||||||
    vol   = grid->lSites();
 | 
					 | 
				
			||||||
    words = sizeof(scalar_object)/sizeof(scalar);
 | 
					 | 
				
			||||||
    int64_t vw = vol * words;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t0 = usecond();
 | 
					 | 
				
			||||||
    BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
 | 
					 | 
				
			||||||
    BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
 | 
					 | 
				
			||||||
    BLAS_C.resize(nrhs * nrhs);// cost free if size doesn't change
 | 
					 | 
				
			||||||
    RealD t1 = usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Copy in the multi-rhs sources
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////
 | 
					 | 
				
			||||||
    for(int r=0;r<nrhs;r++){
 | 
					 | 
				
			||||||
      int64_t offset = r*vw;
 | 
					 | 
				
			||||||
      autoView(x_v,X[r],AcceleratorRead);
 | 
					 | 
				
			||||||
      acceleratorCopyDeviceToDevice(&x_v[0],&BLAS_X[offset],sizeof(scalar_object)*vol);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Assumes Eigen storage contiguous
 | 
					 | 
				
			||||||
    acceleratorCopyToDevice(&m(0,0),&BLAS_C[0],BLAS_C.size()*sizeof(scalar));
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
   * in Fortran column major notation (cuBlas order)
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Xxr = [X1(x)][..][Xn(x)]
 | 
					 | 
				
			||||||
   * Yxr = [Y1(x)][..][Ym(x)]
 | 
					 | 
				
			||||||
   * Y = X . C
 | 
					 | 
				
			||||||
   */
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Xd(1);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Yd(1);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Cd(1);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    scalar * Xh = & BLAS_X[0];
 | 
					 | 
				
			||||||
    scalar * Yh = & BLAS_Y[0];
 | 
					 | 
				
			||||||
    scalar * Ch = & BLAS_C[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    acceleratorPut(Xd[0],Xh);
 | 
					 | 
				
			||||||
    acceleratorPut(Yd[0],Yh);
 | 
					 | 
				
			||||||
    acceleratorPut(Cd[0],Ch);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t2 = usecond();
 | 
					 | 
				
			||||||
    GridBLAS BLAS;
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Y = X*C (transpose?)
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, 
 | 
					 | 
				
			||||||
    		     vw,nrhs,nrhs,
 | 
					 | 
				
			||||||
		     scalar(1.0),
 | 
					 | 
				
			||||||
		     Xd,
 | 
					 | 
				
			||||||
		     Cd,
 | 
					 | 
				
			||||||
		     scalar(0.0),  // wipe out Y
 | 
					 | 
				
			||||||
		     Yd);
 | 
					 | 
				
			||||||
    BLAS.synchronise();
 | 
					 | 
				
			||||||
    RealD t3 = usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Copy back Y = m X 
 | 
					 | 
				
			||||||
    for(int r=0;r<nrhs;r++){
 | 
					 | 
				
			||||||
      int64_t offset = r*vw;
 | 
					 | 
				
			||||||
      autoView(y_v,Y[r],AcceleratorWrite);
 | 
					 | 
				
			||||||
      acceleratorCopyDeviceToDevice(&BLAS_Y[offset],&y_v[0],sizeof(scalar_object)*vol);
 | 
					 | 
				
			||||||
    }    
 | 
					 | 
				
			||||||
    RealD t4 = usecond();
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance << "MulMatrix alloc    took "<< t1-t0<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "MulMatrix preamble took "<< t2-t1<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "MulMatrix blas     took "<< t3-t2<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "MulMatrix copy     took "<< t4-t3<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "MulMatrix total "<< t4-t0<<" us"<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
#if 0    
 | 
					 | 
				
			||||||
    int nrhs;
 | 
					 | 
				
			||||||
    GridBase *grid;
 | 
					 | 
				
			||||||
    uint64_t vol;
 | 
					 | 
				
			||||||
    uint64_t words;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    nrhs = X.size();
 | 
					 | 
				
			||||||
    assert(X.size()==Y.size());
 | 
					 | 
				
			||||||
    conformable(X[0],Y[0]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    grid  = X[0].Grid();
 | 
					 | 
				
			||||||
    vol   = grid->lSites();
 | 
					 | 
				
			||||||
    words = sizeof(scalar_object)/sizeof(scalar);
 | 
					 | 
				
			||||||
    int64_t vw = vol * words;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t0 = usecond();
 | 
					 | 
				
			||||||
    BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
 | 
					 | 
				
			||||||
    BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
 | 
					 | 
				
			||||||
    BLAS_C.resize(nrhs * nrhs);// cost free if size doesn't change
 | 
					 | 
				
			||||||
    RealD t1 = usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Copy in the multi-rhs sources
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////
 | 
					 | 
				
			||||||
    for(int r=0;r<nrhs;r++){
 | 
					 | 
				
			||||||
      int64_t offset = r*vw;
 | 
					 | 
				
			||||||
      autoView(x_v,X[r],AcceleratorRead);
 | 
					 | 
				
			||||||
      acceleratorCopyDeviceToDevice(&x_v[0],&BLAS_X[offset],sizeof(scalar_object)*vol);
 | 
					 | 
				
			||||||
      autoView(y_v,Y[r],AcceleratorRead);
 | 
					 | 
				
			||||||
      acceleratorCopyDeviceToDevice(&y_v[0],&BLAS_Y[offset],sizeof(scalar_object)*vol);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    RealD t2 = usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
   * in Fortran column major notation (cuBlas order)
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Xxr = [X1(x)][..][Xn(x)]
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Yxr = [Y1(x)][..][Ym(x)]
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * C_rs = X^dag Y
 | 
					 | 
				
			||||||
   */
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Xd(1);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Yd(1);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Cd(1);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    scalar * Xh = & BLAS_X[0];
 | 
					 | 
				
			||||||
    scalar * Yh = & BLAS_Y[0];
 | 
					 | 
				
			||||||
    scalar * Ch = & BLAS_C[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    acceleratorPut(Xd[0],Xh);
 | 
					 | 
				
			||||||
    acceleratorPut(Yd[0],Yh);
 | 
					 | 
				
			||||||
    acceleratorPut(Cd[0],Ch);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridBLAS BLAS;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t3 = usecond();
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    // C_rs = X^dag Y
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N, 
 | 
					 | 
				
			||||||
    		     nrhs,nrhs,vw,
 | 
					 | 
				
			||||||
		     ComplexD(1.0),
 | 
					 | 
				
			||||||
		     Xd,
 | 
					 | 
				
			||||||
		     Yd,
 | 
					 | 
				
			||||||
		     ComplexD(0.0),  // wipe out C
 | 
					 | 
				
			||||||
		     Cd);
 | 
					 | 
				
			||||||
    BLAS.synchronise();
 | 
					 | 
				
			||||||
    RealD t4 = usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<scalar> HOST_C(BLAS_C.size());      // nrhs . nrhs -- the coefficients 
 | 
					 | 
				
			||||||
    acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar));
 | 
					 | 
				
			||||||
    grid->GlobalSumVector(&HOST_C[0],nrhs*nrhs);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t5 = usecond();
 | 
					 | 
				
			||||||
    for(int rr=0;rr<nrhs;rr++){
 | 
					 | 
				
			||||||
      for(int r=0;r<nrhs;r++){
 | 
					 | 
				
			||||||
	int off = r+nrhs*rr;
 | 
					 | 
				
			||||||
	m(r,rr)=HOST_C[off];
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    RealD t6 = usecond();
 | 
					 | 
				
			||||||
    uint64_t M=nrhs;
 | 
					 | 
				
			||||||
    uint64_t N=nrhs;
 | 
					 | 
				
			||||||
    uint64_t K=vw;
 | 
					 | 
				
			||||||
    RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K);
 | 
					 | 
				
			||||||
    RealD flops = 8.0*M*N*K;
 | 
					 | 
				
			||||||
    flops = flops/(t4-t3)/1.e3;
 | 
					 | 
				
			||||||
    bytes = bytes/(t4-t3)/1.e3;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix cp    t2 "<< t2-t1<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< flops<<" GF/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< bytes<<" GB/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix gsum t5 "<< t5-t4<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix cp   t6 "<< t6-t5<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
    int nrhs;
 | 
					 | 
				
			||||||
    GridBase *grid;
 | 
					 | 
				
			||||||
    uint64_t vol;
 | 
					 | 
				
			||||||
    uint64_t words;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    nrhs = X.size();
 | 
					 | 
				
			||||||
    assert(X.size()==Y.size());
 | 
					 | 
				
			||||||
    conformable(X[0],Y[0]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    grid  = X[0].Grid();
 | 
					 | 
				
			||||||
    int rd0 =  grid->_rdimensions[0] * grid->_rdimensions[1];
 | 
					 | 
				
			||||||
    vol   = grid->oSites()/rd0;
 | 
					 | 
				
			||||||
    words = rd0*sizeof(vector_object)/sizeof(scalar);
 | 
					 | 
				
			||||||
    int64_t vw = vol * words;
 | 
					 | 
				
			||||||
    assert(vw == grid->lSites()*sizeof(scalar_object)/sizeof(scalar));
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t0 = usecond();
 | 
					 | 
				
			||||||
    BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
 | 
					 | 
				
			||||||
    BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
 | 
					 | 
				
			||||||
    BLAS_Cred.resize(nrhs * nrhs * vol);// cost free if size doesn't change
 | 
					 | 
				
			||||||
    RealD t1 = usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Copy in the multi-rhs sources -- layout batched BLAS ready
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////
 | 
					 | 
				
			||||||
    for(int r=0;r<nrhs;r++){
 | 
					 | 
				
			||||||
      autoView(x_v,X[r],AcceleratorRead);
 | 
					 | 
				
			||||||
      autoView(y_v,Y[r],AcceleratorRead);
 | 
					 | 
				
			||||||
      scalar *from_x=(scalar *)&x_v[0];
 | 
					 | 
				
			||||||
      scalar *from_y=(scalar *)&y_v[0];
 | 
					 | 
				
			||||||
      scalar *BX = &BLAS_X[0];
 | 
					 | 
				
			||||||
      scalar *BY = &BLAS_Y[0];
 | 
					 | 
				
			||||||
      accelerator_for(ssw,vw,1,{
 | 
					 | 
				
			||||||
	  uint64_t ss=ssw/words;
 | 
					 | 
				
			||||||
	  uint64_t  w=ssw%words;
 | 
					 | 
				
			||||||
	  uint64_t offset = w+r*words+ss*nrhs*words; // [ss][rhs][words]
 | 
					 | 
				
			||||||
	  BX[offset] = from_x[ssw];
 | 
					 | 
				
			||||||
	  BY[offset] = from_y[ssw];
 | 
					 | 
				
			||||||
	});
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    RealD t2 = usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
   * in Fortran column major notation (cuBlas order)
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Xxr = [X1(x)][..][Xn(x)]
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Yxr = [Y1(x)][..][Ym(x)]
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * C_rs = X^dag Y
 | 
					 | 
				
			||||||
   */
 | 
					 | 
				
			||||||
    Xdip.resize(vol);
 | 
					 | 
				
			||||||
    Ydip.resize(vol);
 | 
					 | 
				
			||||||
    Cdip.resize(vol);
 | 
					 | 
				
			||||||
    std::vector<scalar *> Xh(vol);
 | 
					 | 
				
			||||||
    std::vector<scalar *> Yh(vol);
 | 
					 | 
				
			||||||
    std::vector<scalar *> Ch(vol);
 | 
					 | 
				
			||||||
    for(uint64_t ss=0;ss<vol;ss++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      Xh[ss] = & BLAS_X[ss*nrhs*words];
 | 
					 | 
				
			||||||
      Yh[ss] = & BLAS_Y[ss*nrhs*words];
 | 
					 | 
				
			||||||
      Ch[ss] = & BLAS_Cred[ss*nrhs*nrhs];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    acceleratorCopyToDevice(&Xh[0],&Xdip[0],vol*sizeof(scalar *));
 | 
					 | 
				
			||||||
    acceleratorCopyToDevice(&Yh[0],&Ydip[0],vol*sizeof(scalar *));
 | 
					 | 
				
			||||||
    acceleratorCopyToDevice(&Ch[0],&Cdip[0],vol*sizeof(scalar *));
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    GridBLAS BLAS;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t3 = usecond();
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    // C_rs = X^dag Y
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N, 
 | 
					 | 
				
			||||||
    		     nrhs,nrhs,words,
 | 
					 | 
				
			||||||
		     ComplexD(1.0),
 | 
					 | 
				
			||||||
		     Xdip,
 | 
					 | 
				
			||||||
		     Ydip,
 | 
					 | 
				
			||||||
		     ComplexD(0.0),  // wipe out C
 | 
					 | 
				
			||||||
		     Cdip);
 | 
					 | 
				
			||||||
    BLAS.synchronise();
 | 
					 | 
				
			||||||
    RealD t4 = usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<scalar> HOST_C(BLAS_Cred.size());      // nrhs . nrhs -- the coefficients 
 | 
					 | 
				
			||||||
    acceleratorCopyFromDevice(&BLAS_Cred[0],&HOST_C[0],BLAS_Cred.size()*sizeof(scalar));
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t5 = usecond();
 | 
					 | 
				
			||||||
    m = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
					 | 
				
			||||||
    for(int ss=0;ss<vol;ss++){
 | 
					 | 
				
			||||||
      Eigen::Map<Eigen::MatrixXcd> eC((std::complex<double> *)&HOST_C[ss*nrhs*nrhs],nrhs,nrhs);
 | 
					 | 
				
			||||||
      m = m + eC;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    RealD t6l = usecond();
 | 
					 | 
				
			||||||
    grid->GlobalSumVector((scalar *) &m(0,0),nrhs*nrhs);
 | 
					 | 
				
			||||||
    RealD t6 = usecond();
 | 
					 | 
				
			||||||
    uint64_t M=nrhs;
 | 
					 | 
				
			||||||
    uint64_t N=nrhs;
 | 
					 | 
				
			||||||
    uint64_t K=vw;
 | 
					 | 
				
			||||||
    RealD xybytes = grid->lSites()*sizeof(scalar_object);
 | 
					 | 
				
			||||||
    RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K);
 | 
					 | 
				
			||||||
    RealD flops = 8.0*M*N*K;
 | 
					 | 
				
			||||||
    flops = flops/(t4-t3)/1.e3;
 | 
					 | 
				
			||||||
    bytes = bytes/(t4-t3)/1.e3;
 | 
					 | 
				
			||||||
    xybytes = 4*xybytes/(t2-t1)/1.e3;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix cp    t2 "<< t2-t1<<" us "<<xybytes<<" GB/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< flops<<" GF/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< bytes<<" GB/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix cp     t5 "<< t5-t4<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix lsum   t6l "<< t6l-t5<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix gsum   t6 "<< t6-t6l<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
@@ -1,513 +0,0 @@
 | 
				
			|||||||
/*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: MultiRHSDeflation.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2023
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
*************************************************************************************/
 | 
					 | 
				
			||||||
/*  END LEGAL */
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/* 
 | 
					 | 
				
			||||||
   MultiRHS block projection
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Import basis -> nblock x nbasis x  (block x internal) 
 | 
					 | 
				
			||||||
   Import vector of fine lattice objects -> nblock x nrhs x (block x internal) 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   => coarse_(nrhs x nbasis )^block = via batched GEMM
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
//template<class vobj,class CComplex,int nbasis,class VLattice>
 | 
					 | 
				
			||||||
//inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
					 | 
				
			||||||
//			   const VLattice &fineData,
 | 
					 | 
				
			||||||
//			   const VLattice &Basis)
 | 
					 | 
				
			||||||
*/
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class Field>
 | 
					 | 
				
			||||||
class MultiRHSBlockProject
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  typedef typename Field::scalar_type   scalar;
 | 
					 | 
				
			||||||
  typedef typename Field::scalar_object scalar_object;
 | 
					 | 
				
			||||||
  typedef Field Fermion;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int nbasis;
 | 
					 | 
				
			||||||
  GridBase *coarse_grid;
 | 
					 | 
				
			||||||
  GridBase *fine_grid;
 | 
					 | 
				
			||||||
  uint64_t block_vol;
 | 
					 | 
				
			||||||
  uint64_t fine_vol;
 | 
					 | 
				
			||||||
  uint64_t coarse_vol;
 | 
					 | 
				
			||||||
  uint64_t words;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  // Row major layout "C" order:
 | 
					 | 
				
			||||||
  // BLAS_V[coarse_vol][nbasis][block_vol][words]
 | 
					 | 
				
			||||||
  // BLAS_F[coarse_vol][nrhs][block_vol][words]
 | 
					 | 
				
			||||||
  // BLAS_C[coarse_vol][nrhs][nbasis]
 | 
					 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
   * in Fortran column major notation (cuBlas order)
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Vxb = [v1(x)][..][vn(x)] ... x coarse vol
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Fxr = [r1(x)][..][rm(x)] ... x coarse vol
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Block project:
 | 
					 | 
				
			||||||
   * C_br = V^dag F x coarse vol
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Block promote:
 | 
					 | 
				
			||||||
   * F_xr = Vxb Cbr x coarse_vol
 | 
					 | 
				
			||||||
   */  
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_V;      // words * block_vol * nbasis x coarse_vol 
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_F;      // nrhs x fine_vol * words   -- the sources
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_C;      // nrhs x coarse_vol * nbasis -- the coarse coeffs
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  RealD blasNorm2(deviceVector<scalar> &blas)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    scalar ss(0.0);
 | 
					 | 
				
			||||||
    std::vector<scalar> tmp(blas.size());
 | 
					 | 
				
			||||||
    acceleratorCopyFromDevice(&blas[0],&tmp[0],blas.size()*sizeof(scalar));
 | 
					 | 
				
			||||||
    for(int64_t s=0;s<blas.size();s++){
 | 
					 | 
				
			||||||
      ss=ss+tmp[s]*adj(tmp[s]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    coarse_grid->GlobalSum(ss);
 | 
					 | 
				
			||||||
    return real(ss);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  MultiRHSBlockProject(){};
 | 
					 | 
				
			||||||
 ~MultiRHSBlockProject(){ Deallocate(); };
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  void Deallocate(void)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    nbasis=0;
 | 
					 | 
				
			||||||
    coarse_grid=nullptr;
 | 
					 | 
				
			||||||
    fine_grid=nullptr;
 | 
					 | 
				
			||||||
    fine_vol=0;
 | 
					 | 
				
			||||||
    block_vol=0;
 | 
					 | 
				
			||||||
    coarse_vol=0;
 | 
					 | 
				
			||||||
    words=0;
 | 
					 | 
				
			||||||
    BLAS_V.resize(0);
 | 
					 | 
				
			||||||
    BLAS_F.resize(0);
 | 
					 | 
				
			||||||
    BLAS_C.resize(0);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void Allocate(int _nbasis,GridBase *_fgrid,GridBase *_cgrid)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    nbasis=_nbasis;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    fine_grid=_fgrid;
 | 
					 | 
				
			||||||
    coarse_grid=_cgrid;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    fine_vol   = fine_grid->lSites();
 | 
					 | 
				
			||||||
    coarse_vol = coarse_grid->lSites();
 | 
					 | 
				
			||||||
    block_vol = fine_vol/coarse_vol;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    words = sizeof(scalar_object)/sizeof(scalar);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    BLAS_V.resize (fine_vol * words * nbasis );
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void ImportFineGridVectors(std::vector <Field > &vecs, deviceVector<scalar> &blas)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int nvec = vecs.size();
 | 
					 | 
				
			||||||
    typedef typename Field::vector_object vobj;
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage <<" BlockProjector importing "<<nvec<< " fine grid vectors" <<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    assert(vecs[0].Grid()==fine_grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    subdivides(coarse_grid,fine_grid); // require they map
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int _ndimension = coarse_grid->_ndimension;
 | 
					 | 
				
			||||||
    assert(block_vol == fine_grid->oSites() / coarse_grid->oSites());
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    Coordinate  block_r      (_ndimension);
 | 
					 | 
				
			||||||
    for(int d=0 ; d<_ndimension;d++){
 | 
					 | 
				
			||||||
      block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    uint64_t sz = blas.size();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    acceleratorMemSet(&blas[0],0,blas.size()*sizeof(scalar));
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Coordinate fine_rdimensions = fine_grid->_rdimensions;
 | 
					 | 
				
			||||||
    Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
 | 
					 | 
				
			||||||
    int64_t bv= block_vol;
 | 
					 | 
				
			||||||
    for(int v=0;v<vecs.size();v++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      //      std::cout << " BlockProjector importing vector"<<v<<" "<<norm2(vecs[v])<<std::endl;
 | 
					 | 
				
			||||||
      autoView( fineData   , vecs[v], AcceleratorRead);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      auto blasData_p  = &blas[0];
 | 
					 | 
				
			||||||
      auto fineData_p  = &fineData[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      int64_t osites = fine_grid->oSites();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // loop over fine sites
 | 
					 | 
				
			||||||
      const int Nsimd = vobj::Nsimd();
 | 
					 | 
				
			||||||
      //      std::cout << "sz "<<sz<<std::endl;
 | 
					 | 
				
			||||||
      //      std::cout << "prod "<<Nsimd * coarse_grid->oSites() * block_vol * nvec * words<<std::endl;
 | 
					 | 
				
			||||||
      assert(sz == Nsimd * coarse_grid->oSites() * block_vol * nvec * words);
 | 
					 | 
				
			||||||
      uint64_t lwords= words; // local variable for copy in to GPU
 | 
					 | 
				
			||||||
      accelerator_for(sf,osites,Nsimd,{
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
        {
 | 
					 | 
				
			||||||
	  int lane=acceleratorSIMTlane(Nsimd); // buffer lane
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	  for(int lane=0;lane<Nsimd;lane++) {
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
	  // One thread per fine site
 | 
					 | 
				
			||||||
	  Coordinate coor_f(_ndimension);
 | 
					 | 
				
			||||||
	  Coordinate coor_b(_ndimension);
 | 
					 | 
				
			||||||
	  Coordinate coor_c(_ndimension);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  // Fine site to fine coor
 | 
					 | 
				
			||||||
	  Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d];
 | 
					 | 
				
			||||||
	  for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d];
 | 
					 | 
				
			||||||
	  
 | 
					 | 
				
			||||||
	  int sc;// coarse site
 | 
					 | 
				
			||||||
	  int sb;// block site
 | 
					 | 
				
			||||||
	  Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions);
 | 
					 | 
				
			||||||
	  Lexicographic::IndexFromCoor(coor_b,sb,block_r);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
          scalar_object data = extractLane(lane,fineData[sf]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  // BLAS layout address calculation
 | 
					 | 
				
			||||||
	  // words * block_vol * nbasis x coarse_vol
 | 
					 | 
				
			||||||
	  // coarse oSite x block vole x lanes
 | 
					 | 
				
			||||||
	  int64_t site = (lane*osites + sc*bv)*nvec
 | 
					 | 
				
			||||||
   	               + v*bv
 | 
					 | 
				
			||||||
	               + sb;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  //	  assert(site*lwords<sz);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  *ptr = data;
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
      });
 | 
					 | 
				
			||||||
      //      std::cout << " import fine Blas norm "<<blasNorm2(blas)<<std::endl;
 | 
					 | 
				
			||||||
      //      std::cout << " BlockProjector imported vector"<<v<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void ExportFineGridVectors(std::vector <Field> &vecs, deviceVector<scalar> &blas)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    typedef typename Field::vector_object vobj;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int nvec = vecs.size();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    assert(vecs[0].Grid()==fine_grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    subdivides(coarse_grid,fine_grid); // require they map
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int _ndimension = coarse_grid->_ndimension;
 | 
					 | 
				
			||||||
    assert(block_vol == fine_grid->oSites() / coarse_grid->oSites());
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    Coordinate  block_r      (_ndimension);
 | 
					 | 
				
			||||||
    for(int d=0 ; d<_ndimension;d++){
 | 
					 | 
				
			||||||
      block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    Coordinate fine_rdimensions = fine_grid->_rdimensions;
 | 
					 | 
				
			||||||
    Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //    std::cout << " export fine Blas norm "<<blasNorm2(blas)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int64_t bv= block_vol;
 | 
					 | 
				
			||||||
    for(int v=0;v<vecs.size();v++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      autoView( fineData   , vecs[v], AcceleratorWrite);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      auto blasData_p  = &blas[0];
 | 
					 | 
				
			||||||
      auto fineData_p    = &fineData[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      int64_t osites = fine_grid->oSites();
 | 
					 | 
				
			||||||
      uint64_t lwords = words;
 | 
					 | 
				
			||||||
      //      std::cout << " Nsimd is "<<vobj::Nsimd() << std::endl;
 | 
					 | 
				
			||||||
      //      std::cout << " lwords is "<<lwords << std::endl;
 | 
					 | 
				
			||||||
      //      std::cout << " sizeof(scalar_object) is "<<sizeof(scalar_object) << std::endl;
 | 
					 | 
				
			||||||
      // loop over fine sites
 | 
					 | 
				
			||||||
      accelerator_for(sf,osites,vobj::Nsimd(),{
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
        {
 | 
					 | 
				
			||||||
	  int lane=acceleratorSIMTlane(vobj::Nsimd()); // buffer lane
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	  for(int lane=0;lane<vobj::Nsimd();lane++) {
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
	  // One thread per fine site
 | 
					 | 
				
			||||||
	  Coordinate coor_f(_ndimension);
 | 
					 | 
				
			||||||
	  Coordinate coor_b(_ndimension);
 | 
					 | 
				
			||||||
	  Coordinate coor_c(_ndimension);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d];
 | 
					 | 
				
			||||||
	  for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d];
 | 
					 | 
				
			||||||
	  
 | 
					 | 
				
			||||||
	  int sc;
 | 
					 | 
				
			||||||
	  int sb;
 | 
					 | 
				
			||||||
	  Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions);
 | 
					 | 
				
			||||||
	  Lexicographic::IndexFromCoor(coor_b,sb,block_r);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  // BLAS layout address calculation
 | 
					 | 
				
			||||||
	  // words * block_vol * nbasis x coarse_vol 	  
 | 
					 | 
				
			||||||
	  int64_t site = (lane*osites + sc*bv)*nvec
 | 
					 | 
				
			||||||
   	               + v*bv
 | 
					 | 
				
			||||||
	               + sb;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  scalar_object data = *ptr;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  insertLane(lane,fineData[sf],data);
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
      });
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  template<class vobj>
 | 
					 | 
				
			||||||
  void ImportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int nvec = vecs.size();
 | 
					 | 
				
			||||||
    typedef typename vobj::scalar_object coarse_scalar_object;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //    std::cout << " BlockProjector importing "<<nvec<< " coarse grid vectors" <<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    assert(vecs[0].Grid()==coarse_grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int _ndimension = coarse_grid->_ndimension;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    uint64_t sz = blas.size();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    for(int v=0;v<vecs.size();v++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      //      std::cout << " BlockProjector importing coarse vector"<<v<<" "<<norm2(vecs[v])<<std::endl;
 | 
					 | 
				
			||||||
      autoView( coarseData   , vecs[v], AcceleratorRead);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      auto blasData_p  = &blas[0];
 | 
					 | 
				
			||||||
      auto coarseData_p  = &coarseData[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      int64_t osites = coarse_grid->oSites();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // loop over fine sites
 | 
					 | 
				
			||||||
      const int Nsimd = vobj::Nsimd();
 | 
					 | 
				
			||||||
      uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar);
 | 
					 | 
				
			||||||
      assert(cwords==nbasis);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      accelerator_for(sc,osites,Nsimd,{
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
        {
 | 
					 | 
				
			||||||
	  int lane=acceleratorSIMTlane(Nsimd); // buffer lane
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	  for(int lane=0;lane<Nsimd;lane++) {
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
           // C_br per site
 | 
					 | 
				
			||||||
	    int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords;
 | 
					 | 
				
			||||||
	    
 | 
					 | 
				
			||||||
	    coarse_scalar_object data = extractLane(lane,coarseData[sc]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	    coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	    *ptr = data;
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
      });
 | 
					 | 
				
			||||||
      //      std::cout << " import coarsee Blas norm "<<blasNorm2(blas)<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  template<class vobj>
 | 
					 | 
				
			||||||
  void ExportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int nvec = vecs.size();
 | 
					 | 
				
			||||||
    typedef typename vobj::scalar_object coarse_scalar_object;
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage<<" BlockProjector exporting "<<nvec<< " coarse grid vectors" <<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    assert(vecs[0].Grid()==coarse_grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int _ndimension = coarse_grid->_ndimension;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    uint64_t sz = blas.size();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    //    std::cout << " export coarsee Blas norm "<<blasNorm2(blas)<<std::endl;
 | 
					 | 
				
			||||||
    for(int v=0;v<vecs.size();v++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      //  std::cout << " BlockProjector exporting coarse vector"<<v<<std::endl;
 | 
					 | 
				
			||||||
      autoView( coarseData   , vecs[v], AcceleratorWrite);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      auto blasData_p  = &blas[0];
 | 
					 | 
				
			||||||
      auto coarseData_p  = &coarseData[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      int64_t osites = coarse_grid->oSites();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // loop over fine sites
 | 
					 | 
				
			||||||
      const int Nsimd = vobj::Nsimd();
 | 
					 | 
				
			||||||
      uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar);
 | 
					 | 
				
			||||||
      assert(cwords==nbasis);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      accelerator_for(sc,osites,Nsimd,{
 | 
					 | 
				
			||||||
	  // Wrap in a macro "FOR_ALL_LANES(lane,{ ... });
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
        {
 | 
					 | 
				
			||||||
	  int lane=acceleratorSIMTlane(Nsimd); // buffer lane
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	  for(int lane=0;lane<Nsimd;lane++) {
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
	    int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords;
 | 
					 | 
				
			||||||
	    coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site];
 | 
					 | 
				
			||||||
	    coarse_scalar_object data = *ptr;
 | 
					 | 
				
			||||||
	    insertLane(lane,coarseData[sc],data);
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
      });
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void ImportBasis(std::vector < Field > &vecs)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    //    std::cout << " BlockProjector Import basis size "<<vecs.size()<<std::endl;
 | 
					 | 
				
			||||||
    ImportFineGridVectors(vecs,BLAS_V);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  template<class cobj>
 | 
					 | 
				
			||||||
  void blockProject(std::vector<Field> &fine,std::vector< Lattice<cobj> > & coarse)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int nrhs=fine.size();
 | 
					 | 
				
			||||||
    int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar);
 | 
					 | 
				
			||||||
    //    std::cout << "blockProject nbasis " <<nbasis<<" " << _nbasis<<std::endl;
 | 
					 | 
				
			||||||
    assert(nbasis==_nbasis);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    BLAS_F.resize (fine_vol * words * nrhs );
 | 
					 | 
				
			||||||
    BLAS_C.resize (coarse_vol * nbasis * nrhs );
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Copy in the multi-rhs sources to same data layout
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////
 | 
					 | 
				
			||||||
    //    std::cout << "BlockProject import fine"<<std::endl;
 | 
					 | 
				
			||||||
    ImportFineGridVectors(fine,BLAS_F);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Vd(coarse_vol);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Fd(coarse_vol);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Cd(coarse_vol);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //    std::cout << "BlockProject pointers"<<std::endl;
 | 
					 | 
				
			||||||
    for(int c=0;c<coarse_vol;c++){
 | 
					 | 
				
			||||||
      // BLAS_V[coarse_vol][nbasis][block_vol][words]
 | 
					 | 
				
			||||||
      // BLAS_F[coarse_vol][nrhs][block_vol][words]
 | 
					 | 
				
			||||||
      // BLAS_C[coarse_vol][nrhs][nbasis]
 | 
					 | 
				
			||||||
      scalar * Vh = & BLAS_V[c*nbasis*block_vol*words];
 | 
					 | 
				
			||||||
      scalar * Fh = & BLAS_F[c*nrhs*block_vol*words];
 | 
					 | 
				
			||||||
      scalar * Ch = & BLAS_C[c*nrhs*nbasis];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      acceleratorPut(Vd[c],Vh);
 | 
					 | 
				
			||||||
      acceleratorPut(Fd[c],Fh);
 | 
					 | 
				
			||||||
      acceleratorPut(Cd[c],Ch);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridBLAS BLAS;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //    std::cout << "BlockProject BLAS"<<std::endl;
 | 
					 | 
				
			||||||
    int64_t vw = block_vol * words;
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    // C_br = V^dag R
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N, 
 | 
					 | 
				
			||||||
    		     nbasis,nrhs,vw,
 | 
					 | 
				
			||||||
		     scalar(1.0),
 | 
					 | 
				
			||||||
		     Vd,
 | 
					 | 
				
			||||||
		     Fd,
 | 
					 | 
				
			||||||
		     scalar(0.0),  // wipe out C
 | 
					 | 
				
			||||||
		     Cd);
 | 
					 | 
				
			||||||
    BLAS.synchronise();
 | 
					 | 
				
			||||||
    //    std::cout << "BlockProject done"<<std::endl;
 | 
					 | 
				
			||||||
    ExportCoarseGridVectors(coarse, BLAS_C);
 | 
					 | 
				
			||||||
    //    std::cout << "BlockProject done"<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  template<class cobj>
 | 
					 | 
				
			||||||
  void blockPromote(std::vector<Field> &fine,std::vector<Lattice<cobj> > & coarse)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int nrhs=fine.size();
 | 
					 | 
				
			||||||
    int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar);
 | 
					 | 
				
			||||||
    assert(nbasis==_nbasis);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    BLAS_F.resize (fine_vol * words * nrhs );
 | 
					 | 
				
			||||||
    BLAS_C.resize (coarse_vol * nbasis * nrhs );
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ImportCoarseGridVectors(coarse, BLAS_C);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridBLAS BLAS;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Vd(coarse_vol);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Fd(coarse_vol);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Cd(coarse_vol);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int c=0;c<coarse_vol;c++){
 | 
					 | 
				
			||||||
      // BLAS_V[coarse_vol][nbasis][block_vol][words]
 | 
					 | 
				
			||||||
      // BLAS_F[coarse_vol][nrhs][block_vol][words]
 | 
					 | 
				
			||||||
      // BLAS_C[coarse_vol][nrhs][nbasis]
 | 
					 | 
				
			||||||
      scalar * Vh = & BLAS_V[c*nbasis*block_vol*words];
 | 
					 | 
				
			||||||
      scalar * Fh = & BLAS_F[c*nrhs*block_vol*words];
 | 
					 | 
				
			||||||
      scalar * Ch = & BLAS_C[c*nrhs*nbasis];
 | 
					 | 
				
			||||||
      acceleratorPut(Vd[c],Vh);
 | 
					 | 
				
			||||||
      acceleratorPut(Fd[c],Fh);
 | 
					 | 
				
			||||||
      acceleratorPut(Cd[c],Ch);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Block promote:
 | 
					 | 
				
			||||||
    // F_xr = Vxb Cbr (x coarse_vol)
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int64_t vw = block_vol * words;
 | 
					 | 
				
			||||||
    BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, 
 | 
					 | 
				
			||||||
    		     vw,nrhs,nbasis,
 | 
					 | 
				
			||||||
		     scalar(1.0),
 | 
					 | 
				
			||||||
		     Vd,
 | 
					 | 
				
			||||||
		     Cd,
 | 
					 | 
				
			||||||
		     scalar(0.0),  // wipe out C
 | 
					 | 
				
			||||||
		     Fd);
 | 
					 | 
				
			||||||
    BLAS.synchronise();
 | 
					 | 
				
			||||||
    //    std::cout << " blas call done"<<std::endl;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    ExportFineGridVectors(fine, BLAS_F);
 | 
					 | 
				
			||||||
    //    std::cout << " exported "<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
@@ -1,233 +0,0 @@
 | 
				
			|||||||
/*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: MultiRHSDeflation.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2023
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
*************************************************************************************/
 | 
					 | 
				
			||||||
/*  END LEGAL */
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/* Need helper object for BLAS accelerated mrhs projection
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   i) MultiRHS Deflation
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Import Evecs -> nev x vol x internal 
 | 
					 | 
				
			||||||
   Import vector of Lattice objects -> nrhs x vol x internal
 | 
					 | 
				
			||||||
   => Cij (nrhs x Nev) via GEMM.
 | 
					 | 
				
			||||||
   => Guess  (nrhs x vol x internal)  = C x evecs (via GEMM)
 | 
					 | 
				
			||||||
   Export
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   
 | 
					 | 
				
			||||||
   ii) MultiRHS block projection
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Import basis -> nblock x nbasis x  (block x internal) 
 | 
					 | 
				
			||||||
   Import vector of fine lattice objects -> nblock x nrhs x (block x internal) 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   => coarse_(nrhs x nbasis )^block = via batched GEMM
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   iii)   Alternate interface: 
 | 
					 | 
				
			||||||
   Import higher dim Lattice object-> vol x nrhs layout
 | 
					 | 
				
			||||||
   
 | 
					 | 
				
			||||||
*/
 | 
					 | 
				
			||||||
template<class Field>
 | 
					 | 
				
			||||||
class MultiRHSDeflation
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  typedef typename Field::scalar_type   scalar;
 | 
					 | 
				
			||||||
  typedef typename Field::scalar_object scalar_object;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int nev;
 | 
					 | 
				
			||||||
  std::vector<RealD> eval;
 | 
					 | 
				
			||||||
  GridBase *grid;
 | 
					 | 
				
			||||||
  uint64_t vol;
 | 
					 | 
				
			||||||
  uint64_t words;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_E;      //  nev x vol -- the eigenbasis   (up to a 1/sqrt(lambda))
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_R;      // nrhs x vol -- the sources
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_G;      // nrhs x vol -- the guess
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_C;      // nrhs x nev -- the coefficients 
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  MultiRHSDeflation(){};
 | 
					 | 
				
			||||||
  ~MultiRHSDeflation(){ Deallocate(); };
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  void Deallocate(void)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    nev=0;
 | 
					 | 
				
			||||||
    grid=nullptr;
 | 
					 | 
				
			||||||
    vol=0;
 | 
					 | 
				
			||||||
    words=0;
 | 
					 | 
				
			||||||
    BLAS_E.resize(0);
 | 
					 | 
				
			||||||
    BLAS_R.resize(0);
 | 
					 | 
				
			||||||
    BLAS_C.resize(0);
 | 
					 | 
				
			||||||
    BLAS_G.resize(0);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void Allocate(int _nev,GridBase *_grid)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    nev=_nev;
 | 
					 | 
				
			||||||
    grid=_grid;
 | 
					 | 
				
			||||||
    vol   = grid->lSites();
 | 
					 | 
				
			||||||
    words = sizeof(scalar_object)/sizeof(scalar);
 | 
					 | 
				
			||||||
    eval.resize(nev);
 | 
					 | 
				
			||||||
    BLAS_E.resize (vol * words * nev );
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << " Allocate for "<<nev<<" eigenvectors and volume "<<vol<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void ImportEigenVector(Field &evec,RealD &_eval, int ev)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    //    std::cout << " ev " <<ev<<" eval "<<_eval<< std::endl;
 | 
					 | 
				
			||||||
    assert(ev<eval.size());
 | 
					 | 
				
			||||||
    eval[ev] = _eval;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int64_t offset = ev*vol*words;
 | 
					 | 
				
			||||||
    autoView(v,evec,AcceleratorRead);
 | 
					 | 
				
			||||||
    acceleratorCopyDeviceToDevice(&v[0],&BLAS_E[offset],sizeof(scalar_object)*vol);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    ImportEigenBasis(evec,_eval,0,evec.size());
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  // Could use to import a batch of eigenvectors
 | 
					 | 
				
			||||||
  void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval, int _ev0, int _nev)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    assert(_ev0+_nev<=evec.size());
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Allocate(_nev,evec[0].Grid());
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    // Imports a sub-batch of eigenvectors, _ev0, ..., _ev0+_nev-1
 | 
					 | 
				
			||||||
    for(int e=0;e<nev;e++){
 | 
					 | 
				
			||||||
      std::cout << "Importing eigenvector "<<e<<" evalue "<<_eval[_ev0+e]<<std::endl;
 | 
					 | 
				
			||||||
      ImportEigenVector(evec[_ev0+e],_eval[_ev0+e],e);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void DeflateSources(std::vector<Field> &source,std::vector<Field> & guess)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int nrhs = source.size();
 | 
					 | 
				
			||||||
    assert(source.size()==guess.size());
 | 
					 | 
				
			||||||
    assert(grid == guess[0].Grid());
 | 
					 | 
				
			||||||
    conformable(guess[0],source[0]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int64_t vw = vol * words;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t0 = usecond();
 | 
					 | 
				
			||||||
    BLAS_R.resize(nrhs * vw); // cost free if size doesn't change
 | 
					 | 
				
			||||||
    BLAS_G.resize(nrhs * vw); // cost free if size doesn't change
 | 
					 | 
				
			||||||
    BLAS_C.resize(nev * nrhs);// cost free if size doesn't change
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Copy in the multi-rhs sources
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////
 | 
					 | 
				
			||||||
    //    for(int r=0;r<nrhs;r++){
 | 
					 | 
				
			||||||
    //      std::cout << " source["<<r<<"] = "<<norm2(source[r])<<std::endl;
 | 
					 | 
				
			||||||
    //    }
 | 
					 | 
				
			||||||
    for(int r=0;r<nrhs;r++){
 | 
					 | 
				
			||||||
      int64_t offset = r*vw;
 | 
					 | 
				
			||||||
      autoView(v,source[r],AcceleratorRead);
 | 
					 | 
				
			||||||
      acceleratorCopyDeviceToDevice(&v[0],&BLAS_R[offset],sizeof(scalar_object)*vol);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
   * in Fortran column major notation (cuBlas order)
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Exe = [e1(x)][..][en(x)]
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Rxr = [r1(x)][..][rm(x)]
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * C_er = E^dag R
 | 
					 | 
				
			||||||
   * C_er = C_er / lambda_e 
 | 
					 | 
				
			||||||
   * G_xr = Exe Cer
 | 
					 | 
				
			||||||
   */
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Ed(1);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Rd(1);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Cd(1);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Gd(1);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    scalar * Eh = & BLAS_E[0];
 | 
					 | 
				
			||||||
    scalar * Rh = & BLAS_R[0];
 | 
					 | 
				
			||||||
    scalar * Ch = & BLAS_C[0];
 | 
					 | 
				
			||||||
    scalar * Gh = & BLAS_G[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    acceleratorPut(Ed[0],Eh);
 | 
					 | 
				
			||||||
    acceleratorPut(Rd[0],Rh);
 | 
					 | 
				
			||||||
    acceleratorPut(Cd[0],Ch);
 | 
					 | 
				
			||||||
    acceleratorPut(Gd[0],Gh);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridBLAS BLAS;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    // C_er = E^dag R
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N, 
 | 
					 | 
				
			||||||
    		     nev,nrhs,vw,
 | 
					 | 
				
			||||||
		     scalar(1.0),
 | 
					 | 
				
			||||||
		     Ed,
 | 
					 | 
				
			||||||
		     Rd,
 | 
					 | 
				
			||||||
		     scalar(0.0),  // wipe out C
 | 
					 | 
				
			||||||
		     Cd);
 | 
					 | 
				
			||||||
    BLAS.synchronise();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    assert(BLAS_C.size()==nev*nrhs);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<scalar> HOST_C(BLAS_C.size());      // nrhs . nev -- the coefficients 
 | 
					 | 
				
			||||||
    acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar));
 | 
					 | 
				
			||||||
    grid->GlobalSumVector(&HOST_C[0],nev*nrhs);
 | 
					 | 
				
			||||||
    for(int e=0;e<nev;e++){
 | 
					 | 
				
			||||||
      RealD lam(1.0/eval[e]);
 | 
					 | 
				
			||||||
      for(int r=0;r<nrhs;r++){
 | 
					 | 
				
			||||||
	int off = e+nev*r;
 | 
					 | 
				
			||||||
	HOST_C[off]=HOST_C[off] * lam;
 | 
					 | 
				
			||||||
	//	std::cout << "C["<<e<<"]["<<r<<"] ="<<HOST_C[off]<< " eval[e] "<<eval[e] <<std::endl;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    acceleratorCopyToDevice(&HOST_C[0],&BLAS_C[0],BLAS_C.size()*sizeof(scalar));
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Guess G_xr = Exe Cer
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, 
 | 
					 | 
				
			||||||
		     vw,nrhs,nev,
 | 
					 | 
				
			||||||
		     scalar(1.0),
 | 
					 | 
				
			||||||
		     Ed, // x . nev
 | 
					 | 
				
			||||||
		     Cd, // nev . nrhs
 | 
					 | 
				
			||||||
		     scalar(0.0),
 | 
					 | 
				
			||||||
		     Gd);
 | 
					 | 
				
			||||||
    BLAS.synchronise();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ///////////////////////////////////////
 | 
					 | 
				
			||||||
    // Copy out the multirhs
 | 
					 | 
				
			||||||
    ///////////////////////////////////////
 | 
					 | 
				
			||||||
    for(int r=0;r<nrhs;r++){
 | 
					 | 
				
			||||||
      int64_t offset = r*vw;
 | 
					 | 
				
			||||||
      autoView(v,guess[r],AcceleratorWrite);
 | 
					 | 
				
			||||||
      acceleratorCopyDeviceToDevice(&BLAS_G[offset],&v[0],sizeof(scalar_object)*vol);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    RealD t1 = usecond();
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "MultiRHSDeflation for "<<nrhs<<" sources with "<<nev<<" eigenvectors took " << (t1-t0)/1e3 <<" ms"<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
@@ -33,111 +33,109 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
   * Script A = SolverMatrix 
 | 
					   * Script A = SolverMatrix 
 | 
				
			||||||
   * Script P = Preconditioner
 | 
					   * Script P = Preconditioner
 | 
				
			||||||
   *
 | 
					   *
 | 
				
			||||||
 | 
					   * Deflation methods considered
 | 
				
			||||||
 | 
					   *      -- Solve P A x = P b        [ like Luscher ]
 | 
				
			||||||
 | 
					   * DEF-1        M P A x = M P b     [i.e. left precon]
 | 
				
			||||||
 | 
					   * DEF-2        P^T M A x = P^T M b
 | 
				
			||||||
 | 
					   * ADEF-1       Preconditioner = M P + Q      [ Q + M + M A Q]
 | 
				
			||||||
 | 
					   * ADEF-2       Preconditioner = P^T M + Q
 | 
				
			||||||
 | 
					   * BNN          Preconditioner = P^T M P + Q
 | 
				
			||||||
 | 
					   * BNN2         Preconditioner = M P + P^TM +Q - M P A M 
 | 
				
			||||||
 | 
					   * 
 | 
				
			||||||
   * Implement ADEF-2
 | 
					   * Implement ADEF-2
 | 
				
			||||||
   *
 | 
					   *
 | 
				
			||||||
   * Vstart = P^Tx + Qb
 | 
					   * Vstart = P^Tx + Qb
 | 
				
			||||||
   * M1 = P^TM + Q
 | 
					   * M1 = P^TM + Q
 | 
				
			||||||
   * M2=M3=1
 | 
					   * M2=M3=1
 | 
				
			||||||
 | 
					   * Vout = x
 | 
				
			||||||
   */
 | 
					   */
 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					// abstract base
 | 
				
			||||||
template<class Field>
 | 
					template<class Field, class CoarseField>
 | 
				
			||||||
class TwoLevelCG : public LinearFunction<Field>
 | 
					class TwoLevelFlexiblePcg : public LinearFunction<Field>
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
 public:
 | 
					 public:
 | 
				
			||||||
 | 
					  int verbose;
 | 
				
			||||||
  RealD   Tolerance;
 | 
					  RealD   Tolerance;
 | 
				
			||||||
  Integer MaxIterations;
 | 
					  Integer MaxIterations;
 | 
				
			||||||
 | 
					  const int mmax = 5;
 | 
				
			||||||
  GridBase *grid;
 | 
					  GridBase *grid;
 | 
				
			||||||
 | 
					  GridBase *coarsegrid;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Fine operator, Smoother, CoarseSolver
 | 
					  LinearOperatorBase<Field>   *_Linop
 | 
				
			||||||
  LinearOperatorBase<Field>   &_FineLinop;
 | 
					  OperatorFunction<Field>     *_Smoother,
 | 
				
			||||||
  LinearFunction<Field>   &_Smoother;
 | 
					  LinearFunction<CoarseField> *_CoarseSolver;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  // Need somthing that knows how to get from Coarse to fine and back again
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  // more most opertor functions
 | 
					  // more most opertor functions
 | 
				
			||||||
  TwoLevelCG(RealD tol,
 | 
					  TwoLevelFlexiblePcg(RealD tol,
 | 
				
			||||||
		     Integer maxit,
 | 
							     Integer maxit,
 | 
				
			||||||
	     LinearOperatorBase<Field>   &FineLinop,
 | 
							     LinearOperatorBase<Field> *Linop,
 | 
				
			||||||
	     LinearFunction<Field>       &Smoother,
 | 
							     LinearOperatorBase<Field> *SmootherLinop,
 | 
				
			||||||
	     GridBase *fine) : 
 | 
							     OperatorFunction<Field>   *Smoother,
 | 
				
			||||||
 | 
							     OperatorFunction<CoarseField>  CoarseLinop
 | 
				
			||||||
 | 
							     ) : 
 | 
				
			||||||
      Tolerance(tol), 
 | 
					      Tolerance(tol), 
 | 
				
			||||||
      MaxIterations(maxit),
 | 
					      MaxIterations(maxit),
 | 
				
			||||||
      _FineLinop(FineLinop),
 | 
					      _Linop(Linop),
 | 
				
			||||||
      _Smoother(Smoother)
 | 
					      _PreconditionerLinop(PrecLinop),
 | 
				
			||||||
 | 
					      _Preconditioner(Preconditioner)
 | 
				
			||||||
  { 
 | 
					  { 
 | 
				
			||||||
    grid       = fine;
 | 
					    verbose=0;
 | 
				
			||||||
  };
 | 
					  };
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  virtual void operator() (const Field &src, Field &x)
 | 
					  // The Pcg routine is common to all, but the various matrices differ from derived 
 | 
				
			||||||
  {
 | 
					  // implementation to derived implmentation
 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg starting single RHS"<<std::endl;
 | 
					  void operator() (const Field &src, Field &psi){
 | 
				
			||||||
 | 
					  void operator() (const Field &src, Field &psi){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    psi.Checkerboard() = src.Checkerboard();
 | 
				
			||||||
 | 
					    grid             = src.Grid();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    RealD f;
 | 
					    RealD f;
 | 
				
			||||||
    RealD rtzp,rtz,a,d,b;
 | 
					    RealD rtzp,rtz,a,d,b;
 | 
				
			||||||
    RealD rptzp;
 | 
					    RealD rptzp;
 | 
				
			||||||
 | 
					    RealD tn;
 | 
				
			||||||
 | 
					    RealD guess = norm2(psi);
 | 
				
			||||||
 | 
					    RealD ssq   = norm2(src);
 | 
				
			||||||
 | 
					    RealD rsq   = ssq*Tolerance*Tolerance;
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    /////////////////////////////
 | 
					    /////////////////////////////
 | 
				
			||||||
    // Set up history vectors
 | 
					    // Set up history vectors
 | 
				
			||||||
    /////////////////////////////
 | 
					    /////////////////////////////
 | 
				
			||||||
    int mmax = 5;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
 | 
					 | 
				
			||||||
    std::vector<Field> p  (mmax,grid);
 | 
					    std::vector<Field> p  (mmax,grid);
 | 
				
			||||||
    std::vector<Field> mmp(mmax,grid);
 | 
					    std::vector<Field> mmp(mmax,grid);
 | 
				
			||||||
    std::vector<RealD> pAp(mmax);
 | 
					    std::vector<RealD> pAp(mmax);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Field x  (grid); x = psi;
 | 
				
			||||||
    Field z  (grid);
 | 
					    Field z  (grid);
 | 
				
			||||||
    Field tmp(grid);
 | 
					    Field tmp(grid);
 | 
				
			||||||
    Field  mp (grid);
 | 
					 | 
				
			||||||
    Field r  (grid);
 | 
					    Field r  (grid);
 | 
				
			||||||
    Field mu (grid);
 | 
					    Field mu (grid);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocated"<<std::endl;
 | 
					 | 
				
			||||||
    //Initial residual computation & set up
 | 
					 | 
				
			||||||
    RealD guess   = norm2(x);
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg guess nrm "<<guess<<std::endl;
 | 
					 | 
				
			||||||
    RealD src_nrm = norm2(src);
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg src nrm "<<src_nrm<<std::endl;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    if ( src_nrm == 0.0 ) {
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage<<"HDCG: fPcg given trivial source norm "<<src_nrm<<std::endl;
 | 
					 | 
				
			||||||
      x=Zero();
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    RealD tn;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    GridStopWatch HDCGTimer;
 | 
					 | 
				
			||||||
    HDCGTimer.Start();
 | 
					 | 
				
			||||||
    //////////////////////////
 | 
					    //////////////////////////
 | 
				
			||||||
    // x0 = Vstart -- possibly modify guess
 | 
					    // x0 = Vstart -- possibly modify guess
 | 
				
			||||||
    //////////////////////////
 | 
					    //////////////////////////
 | 
				
			||||||
 | 
					    x=src;
 | 
				
			||||||
    Vstart(x,src);
 | 
					    Vstart(x,src);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // r0 = b -A x0
 | 
					    // r0 = b -A x0
 | 
				
			||||||
    _FineLinop.HermOp(x,mmp[0]);
 | 
					    HermOp(x,mmp); // Shouldn't this be something else?
 | 
				
			||||||
    axpy (r, -1.0,mmp[0], src);    // Recomputes r=src-Ax0
 | 
					    axpy (r, -1.0,mmp[0], src);    // Recomputes r=src-Ax0
 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      double n1 = norm2(x);
 | 
					 | 
				
			||||||
      double n2 = norm2(mmp[0]);
 | 
					 | 
				
			||||||
      double n3 = norm2(r);
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage<<"x,vstart,r = "<<n1<<" "<<n2<<" "<<n3<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    //////////////////////////////////
 | 
					    //////////////////////////////////
 | 
				
			||||||
    // Compute z = M1 x
 | 
					    // Compute z = M1 x
 | 
				
			||||||
    //////////////////////////////////
 | 
					    //////////////////////////////////
 | 
				
			||||||
    PcgM1(r,z);
 | 
					    M1(r,z,tmp,mp,SmootherMirs);
 | 
				
			||||||
    rtzp =real(innerProduct(r,z));
 | 
					    rtzp =real(innerProduct(r,z));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    ///////////////////////////////////////
 | 
					    ///////////////////////////////////////
 | 
				
			||||||
    // Solve for Mss mu = P A z and set p = z-mu
 | 
					    // Solve for Mss mu = P A z and set p = z-mu
 | 
				
			||||||
    // Def2 p = 1 - Q Az = Pright z
 | 
					    // Def2: p = 1 - Q Az = Pright z 
 | 
				
			||||||
    // Other algos M2 is trivial
 | 
					    // Other algos M2 is trivial
 | 
				
			||||||
    ///////////////////////////////////////
 | 
					    ///////////////////////////////////////
 | 
				
			||||||
    PcgM2(z,p[0]);
 | 
					    M2(z,p[0]);
 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD ssq =  norm2(src);
 | 
					 | 
				
			||||||
    RealD rsq =  ssq*Tolerance*Tolerance;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: k=0 residual "<<rtzp<<" rsq "<<rsq<<"\n";
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Field pp(grid);
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    for (int k=0;k<=MaxIterations;k++){
 | 
					    for (int k=0;k<=MaxIterations;k++){
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
@@ -145,7 +143,7 @@ class TwoLevelCG : public LinearFunction<Field>
 | 
				
			|||||||
      int peri_kp = (k+1) % mmax;
 | 
					      int peri_kp = (k+1) % mmax;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      rtz=rtzp;
 | 
					      rtz=rtzp;
 | 
				
			||||||
      d= PcgM3(p[peri_k],mmp[peri_k]);
 | 
					      d= M3(p[peri_k],mp,mmp[peri_k],tmp);
 | 
				
			||||||
      a = rtz/d;
 | 
					      a = rtz/d;
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
      // Memorise this
 | 
					      // Memorise this
 | 
				
			||||||
@@ -155,36 +153,21 @@ class TwoLevelCG : public LinearFunction<Field>
 | 
				
			|||||||
      RealD rn = axpy_norm(r,-a,mmp[peri_k],r);
 | 
					      RealD rn = axpy_norm(r,-a,mmp[peri_k],r);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      // Compute z = M x
 | 
					      // Compute z = M x
 | 
				
			||||||
      PcgM1(r,z);
 | 
					      M1(r,z,tmp,mp);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      {
 | 
					 | 
				
			||||||
	RealD n1,n2;
 | 
					 | 
				
			||||||
	n1=norm2(r);
 | 
					 | 
				
			||||||
	n2=norm2(z);
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : vector r,z "<<n1<<" "<<n2<<"\n";
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      rtzp =real(innerProduct(r,z));
 | 
					      rtzp =real(innerProduct(r,z));
 | 
				
			||||||
      std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : inner rtzp "<<rtzp<<"\n";
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
      //    PcgM2(z,p[0]);
 | 
					      M2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
 | 
				
			||||||
      PcgM2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
      p[peri_kp]=mu;
 | 
					      p[peri_kp]=p[peri_k];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      // Standard search direction  p -> z + b p    
 | 
					      // Standard search direction  p -> z + b p    ; b = 
 | 
				
			||||||
      b = (rtzp)/rtz;
 | 
					      b = (rtzp)/rtz;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      int northog;
 | 
					      int northog;
 | 
				
			||||||
      // k=zero  <=> peri_kp=1;        northog = 1
 | 
					 | 
				
			||||||
      // k=1     <=> peri_kp=2;        northog = 2
 | 
					 | 
				
			||||||
      // ...               ...                  ...
 | 
					 | 
				
			||||||
      // k=mmax-2<=> peri_kp=mmax-1;   northog = mmax-1
 | 
					 | 
				
			||||||
      // k=mmax-1<=> peri_kp=0;        northog = 1
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      //    northog     = (peri_kp==0)?1:peri_kp; // This is the fCG(mmax) algorithm
 | 
					      //    northog     = (peri_kp==0)?1:peri_kp; // This is the fCG(mmax) algorithm
 | 
				
			||||||
      northog     = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm
 | 
					      northog     = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
      std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
 | 
					 | 
				
			||||||
      for(int back=0; back < northog; back++){
 | 
					      for(int back=0; back < northog; back++){
 | 
				
			||||||
	int peri_back = (k-back)%mmax;
 | 
						int peri_back = (k-back)%mmax;
 | 
				
			||||||
	RealD pbApk= real(innerProduct(mmp[peri_back],p[peri_kp]));
 | 
						RealD pbApk= real(innerProduct(mmp[peri_back],p[peri_kp]));
 | 
				
			||||||
@@ -193,324 +176,75 @@ class TwoLevelCG : public LinearFunction<Field>
 | 
				
			|||||||
      }
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      RealD rrn=sqrt(rn/ssq);
 | 
					      RealD rrn=sqrt(rn/ssq);
 | 
				
			||||||
      RealD rtn=sqrt(rtz/ssq);
 | 
					      std::cout<<GridLogMessage<<"TwoLevelfPcg: k= "<<k<<" residual = "<<rrn<<std::endl;
 | 
				
			||||||
      RealD rtnp=sqrt(rtzp/ssq);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage<<"HDCG: fPcg k= "<<k<<" residual = "<<rrn<<"\n";
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
      // Stopping condition
 | 
					      // Stopping condition
 | 
				
			||||||
      if ( rn <= rsq ) { 
 | 
					      if ( rn <= rsq ) { 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	HDCGTimer.Stop();
 | 
						HermOp(x,mmp); // Shouldn't this be something else?
 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	_FineLinop.HermOp(x,mmp[0]);			  
 | 
					 | 
				
			||||||
	axpy(tmp,-1.0,src,mmp[0]);
 | 
						axpy(tmp,-1.0,src,mmp[0]);
 | 
				
			||||||
	
 | 
						
 | 
				
			||||||
	RealD  mmpnorm = sqrt(norm2(mmp[0]));
 | 
						RealD psinorm = sqrt(norm2(x));
 | 
				
			||||||
	RealD  xnorm   = sqrt(norm2(x));
 | 
					 | 
				
			||||||
	RealD srcnorm = sqrt(norm2(src));
 | 
						RealD srcnorm = sqrt(norm2(src));
 | 
				
			||||||
	RealD tmpnorm = sqrt(norm2(tmp));
 | 
						RealD tmpnorm = sqrt(norm2(tmp));
 | 
				
			||||||
	RealD true_residual = tmpnorm/srcnorm;
 | 
						RealD true_residual = tmpnorm/srcnorm;
 | 
				
			||||||
	std::cout<<GridLogMessage
 | 
						std::cout<<GridLogMessage<<"TwoLevelfPcg:   true residual is "<<true_residual<<std::endl;
 | 
				
			||||||
	       <<"HDCG: true residual is "<<true_residual
 | 
						std::cout<<GridLogMessage<<"TwoLevelfPcg: target residual was"<<Tolerance<<std::endl;
 | 
				
			||||||
	       <<" solution "<<xnorm
 | 
						return k;
 | 
				
			||||||
	       <<" source "<<srcnorm
 | 
					 | 
				
			||||||
	       <<" mmp "<<mmpnorm	  
 | 
					 | 
				
			||||||
	       <<std::endl;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
	return;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    HDCGTimer.Stop();
 | 
					 | 
				
			||||||
    std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
 | 
					 | 
				
			||||||
    RealD  xnorm   = sqrt(norm2(x));
 | 
					 | 
				
			||||||
    RealD  srcnorm = sqrt(norm2(src));
 | 
					 | 
				
			||||||
    std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
 | 
					 | 
				
			||||||
    src[0].Grid()->Barrier();
 | 
					 | 
				
			||||||
    int nrhs = src.size();
 | 
					 | 
				
			||||||
    std::vector<RealD> f(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> rtzp(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> rtz(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> a(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> d(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> b(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> rptzp(nrhs);
 | 
					 | 
				
			||||||
    /////////////////////////////
 | 
					 | 
				
			||||||
    // Set up history vectors
 | 
					 | 
				
			||||||
    /////////////////////////////
 | 
					 | 
				
			||||||
    int mmax = 3;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
 | 
					 | 
				
			||||||
    src[0].Grid()->Barrier();
 | 
					 | 
				
			||||||
    std::vector<std::vector<Field> > p(nrhs);   for(int r=0;r<nrhs;r++)  p[r].resize(mmax,grid);
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocated p"<<std::endl;
 | 
					 | 
				
			||||||
    src[0].Grid()->Barrier();
 | 
					 | 
				
			||||||
    std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid);
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocated mmp"<<std::endl;
 | 
					 | 
				
			||||||
    src[0].Grid()->Barrier();
 | 
					 | 
				
			||||||
    std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax);
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocated pAp"<<std::endl;
 | 
					 | 
				
			||||||
    src[0].Grid()->Barrier();
 | 
					 | 
				
			||||||
    std::vector<Field> z(nrhs,grid);
 | 
					 | 
				
			||||||
    std::vector<Field>  mp (nrhs,grid);
 | 
					 | 
				
			||||||
    std::vector<Field>  r  (nrhs,grid);
 | 
					 | 
				
			||||||
    std::vector<Field>  mu (nrhs,grid);
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocated z,mp,r,mu"<<std::endl;
 | 
					 | 
				
			||||||
    src[0].Grid()->Barrier();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //Initial residual computation & set up
 | 
					 | 
				
			||||||
    std::vector<RealD> src_nrm(nrhs);
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
					 | 
				
			||||||
      src_nrm[rhs]=norm2(src[rhs]);
 | 
					 | 
				
			||||||
      assert(src_nrm[rhs]!=0.0);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    std::vector<RealD> tn(nrhs);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridStopWatch HDCGTimer;
 | 
					 | 
				
			||||||
    HDCGTimer.Start();
 | 
					 | 
				
			||||||
    //////////////////////////
 | 
					 | 
				
			||||||
    // x0 = Vstart -- possibly modify guess
 | 
					 | 
				
			||||||
    //////////////////////////
 | 
					 | 
				
			||||||
    Vstart(x,src);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
      // r0 = b -A x0
 | 
					 | 
				
			||||||
      _FineLinop.HermOp(x[rhs],mmp[rhs][0]);
 | 
					 | 
				
			||||||
      axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]);    // Recomputes r=src-Ax0
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //////////////////////////////////
 | 
					 | 
				
			||||||
    // Compute z = M1 x
 | 
					 | 
				
			||||||
    //////////////////////////////////
 | 
					 | 
				
			||||||
    // This needs a multiRHS version for acceleration
 | 
					 | 
				
			||||||
    PcgM1(r,z);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<RealD> ssq(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> rsq(nrhs);
 | 
					 | 
				
			||||||
    std::vector<Field> pp(nrhs,grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
      rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
 | 
					 | 
				
			||||||
      p[rhs][0]=z[rhs];
 | 
					 | 
				
			||||||
      ssq[rhs]=norm2(src[rhs]);
 | 
					 | 
				
			||||||
      rsq[rhs]=  ssq[rhs]*Tolerance*Tolerance;
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n";
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<RealD> rn(nrhs);
 | 
					 | 
				
			||||||
    for (int k=0;k<=MaxIterations;k++){
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
      int peri_k  = k % mmax;
 | 
					 | 
				
			||||||
      int peri_kp = (k+1) % mmax;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
	rtz[rhs]=rtzp[rhs];
 | 
					 | 
				
			||||||
	d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]);
 | 
					 | 
				
			||||||
	a[rhs] = rtz[rhs]/d[rhs];
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
	// Memorise this
 | 
					 | 
				
			||||||
	pAp[rhs][peri_k] = d[rhs];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]);
 | 
					 | 
				
			||||||
	rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]);
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Compute z = M x (for *all* RHS)
 | 
					 | 
				
			||||||
      PcgM1(r,z);
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage<<"HDCG::fPcg M1 complete"<<std::endl;
 | 
					 | 
				
			||||||
      grid->Barrier();
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      RealD max_rn=0.0;
 | 
					 | 
				
			||||||
      for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n";
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	mu[rhs]=z[rhs];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	p[rhs][peri_kp]=mu[rhs];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	// Standard search direction p == z + b p 
 | 
					 | 
				
			||||||
	b[rhs] = (rtzp[rhs])/rtz[rhs];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	int northog = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
 | 
					 | 
				
			||||||
	for(int back=0; back < northog; back++){
 | 
					 | 
				
			||||||
	  int peri_back = (k-back)%mmax;
 | 
					 | 
				
			||||||
	  RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp]));
 | 
					 | 
				
			||||||
	  RealD beta = -pbApk/pAp[rhs][peri_back];
 | 
					 | 
				
			||||||
	  axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]);
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	RealD rrn=sqrt(rn[rhs]/ssq[rhs]);
 | 
					 | 
				
			||||||
	RealD rtn=sqrt(rtz[rhs]/ssq[rhs]);
 | 
					 | 
				
			||||||
	RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]);
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: rhs "<<rhs<<"fPcg k= "<<k<<" residual = "<<rrn<<"\n";
 | 
					 | 
				
			||||||
	if ( rrn > max_rn ) max_rn = rrn;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Stopping condition based on worst case
 | 
					 | 
				
			||||||
      if ( max_rn <= Tolerance ) { 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	HDCGTimer.Stop();
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
	  _FineLinop.HermOp(x[rhs],mmp[rhs][0]);			  
 | 
					 | 
				
			||||||
	  Field tmp(grid);
 | 
					 | 
				
			||||||
	  axpy(tmp,-1.0,src[rhs],mmp[rhs][0]);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
	  RealD  mmpnorm = sqrt(norm2(mmp[rhs][0]));
 | 
					 | 
				
			||||||
	  RealD  xnorm   = sqrt(norm2(x[rhs]));
 | 
					 | 
				
			||||||
	  RealD  srcnorm = sqrt(norm2(src[rhs]));
 | 
					 | 
				
			||||||
	  RealD  tmpnorm = sqrt(norm2(tmp));
 | 
					 | 
				
			||||||
	  RealD  true_residual = tmpnorm/srcnorm;
 | 
					 | 
				
			||||||
	  std::cout<<GridLogMessage
 | 
					 | 
				
			||||||
		   <<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
 | 
					 | 
				
			||||||
		   <<" solution "<<xnorm
 | 
					 | 
				
			||||||
		   <<" source "<<srcnorm
 | 
					 | 
				
			||||||
		   <<" mmp "<<mmpnorm	  
 | 
					 | 
				
			||||||
		   <<std::endl;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	return;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    HDCGTimer.Stop();
 | 
					 | 
				
			||||||
    std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
      RealD  xnorm   = sqrt(norm2(x[rhs]));
 | 
					 | 
				
			||||||
      RealD  srcnorm = sqrt(norm2(src[rhs]));
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
 | 
					 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  
 | 
					    // Non-convergence
 | 
				
			||||||
 | 
					    assert(0);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 public:
 | 
					 public:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out)
 | 
					  virtual void M(Field & in,Field & out,Field & tmp) {
 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::cout << "PcgM1 default (cheat) mrhs version"<<std::endl;
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<in.size();rhs++){
 | 
					 | 
				
			||||||
      this->PcgM1(in[rhs],out[rhs]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  virtual void PcgM1(Field & in, Field & out)     =0;
 | 
					 | 
				
			||||||
  virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::cout << "Vstart default (cheat) mrhs version"<<std::endl;
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<x.size();rhs++){
 | 
					 | 
				
			||||||
      this->Vstart(x[rhs],src[rhs]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  virtual void Vstart(Field & x,const Field & src)=0;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  virtual void PcgM2(const Field & in, Field & out) {
 | 
					 | 
				
			||||||
    out=in;
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  virtual RealD PcgM3(const Field & p, Field & mmp){
 | 
					  virtual void M1(Field & in, Field & out) {// the smoother
 | 
				
			||||||
    RealD dd;
 | 
					 | 
				
			||||||
    _FineLinop.HermOp(p,mmp);
 | 
					 | 
				
			||||||
    ComplexD dot = innerProduct(p,mmp);
 | 
					 | 
				
			||||||
    dd=real(dot);
 | 
					 | 
				
			||||||
    return dd;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  /////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // Only Def1 has non-trivial Vout.
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
template<class Field, class CoarseField, class Aggregation>
 | 
					 | 
				
			||||||
class TwoLevelADEF2 : public TwoLevelCG<Field>
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
 public:
 | 
					 | 
				
			||||||
  ///////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // Need something that knows how to get from Coarse to fine and back again
 | 
					 | 
				
			||||||
  //  void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
 | 
					 | 
				
			||||||
  //  void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
 | 
					 | 
				
			||||||
  ///////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  GridBase *coarsegrid;
 | 
					 | 
				
			||||||
  Aggregation &_Aggregates;                    
 | 
					 | 
				
			||||||
  LinearFunction<CoarseField> &_CoarseSolver;
 | 
					 | 
				
			||||||
  LinearFunction<CoarseField> &_CoarseSolverPrecise;
 | 
					 | 
				
			||||||
  ///////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  // more most opertor functions
 | 
					 | 
				
			||||||
  TwoLevelADEF2(RealD tol,
 | 
					 | 
				
			||||||
		Integer maxit,
 | 
					 | 
				
			||||||
		LinearOperatorBase<Field>    &FineLinop,
 | 
					 | 
				
			||||||
		LinearFunction<Field>        &Smoother,
 | 
					 | 
				
			||||||
		LinearFunction<CoarseField>  &CoarseSolver,
 | 
					 | 
				
			||||||
		LinearFunction<CoarseField>  &CoarseSolverPrecise,
 | 
					 | 
				
			||||||
		Aggregation &Aggregates
 | 
					 | 
				
			||||||
		) :
 | 
					 | 
				
			||||||
      TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,Aggregates.FineGrid),
 | 
					 | 
				
			||||||
      _CoarseSolver(CoarseSolver),
 | 
					 | 
				
			||||||
      _CoarseSolverPrecise(CoarseSolverPrecise),
 | 
					 | 
				
			||||||
      _Aggregates(Aggregates)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    coarsegrid = Aggregates.CoarseGrid;
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void PcgM1(Field & in, Field & out)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    GRID_TRACE("MultiGridPreconditioner ");
 | 
					 | 
				
			||||||
    // [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
 | 
					    // [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
 | 
				
			||||||
 | 
					    Field tmp(grid);
 | 
				
			||||||
 | 
					    Field Min(grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    Field tmp(this->grid);
 | 
					    PcgM(in,Min); // Smoother call
 | 
				
			||||||
    Field Min(this->grid);
 | 
					 | 
				
			||||||
    CoarseField PleftProj(this->coarsegrid);
 | 
					 | 
				
			||||||
    CoarseField PleftMss_proj(this->coarsegrid);
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    GridStopWatch SmootherTimer;
 | 
					    HermOp(Min,out);
 | 
				
			||||||
    GridStopWatch MatrixTimer;
 | 
					 | 
				
			||||||
    SmootherTimer.Start();
 | 
					 | 
				
			||||||
    this->_Smoother(in,Min);
 | 
					 | 
				
			||||||
    SmootherTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    MatrixTimer.Start();
 | 
					 | 
				
			||||||
    this->_FineLinop.HermOp(Min,out);
 | 
					 | 
				
			||||||
    MatrixTimer.Stop();
 | 
					 | 
				
			||||||
    axpy(tmp,-1.0,out,in);          // tmp  = in - A Min
 | 
					    axpy(tmp,-1.0,out,in);          // tmp  = in - A Min
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    GridStopWatch ProjTimer;
 | 
					    ProjectToSubspace(tmp,PleftProj);     
 | 
				
			||||||
    GridStopWatch CoarseTimer;
 | 
					    ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
 | 
				
			||||||
    GridStopWatch PromTimer;
 | 
					    PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]  
 | 
				
			||||||
    ProjTimer.Start();
 | 
					 | 
				
			||||||
    this->_Aggregates.ProjectToSubspace(PleftProj,tmp);     
 | 
					 | 
				
			||||||
    ProjTimer.Stop();
 | 
					 | 
				
			||||||
    CoarseTimer.Start();
 | 
					 | 
				
			||||||
    this->_CoarseSolver(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
 | 
					 | 
				
			||||||
    CoarseTimer.Stop();
 | 
					 | 
				
			||||||
    PromTimer.Start();
 | 
					 | 
				
			||||||
    this->_Aggregates.PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]  
 | 
					 | 
				
			||||||
    PromTimer.Stop();
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PcgM1 breakdown "<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "\tSmoother   " << SmootherTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "\tProj       " << ProjTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "\tCoarse     " << CoarseTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "\tProm       " << PromTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    axpy(out,1.0,Min,tmp); // Min+tmp
 | 
					    axpy(out,1.0,Min,tmp); // Min+tmp
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  virtual void Vstart(Field & x,const Field & src)
 | 
					  virtual void M2(const Field & in, Field & out) {
 | 
				
			||||||
  {
 | 
					    out=in;
 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg Vstart "<<std::endl;
 | 
					    // Must override for Def2 only
 | 
				
			||||||
 | 
					    //  case PcgDef2:
 | 
				
			||||||
 | 
					    //    Pright(in,out);
 | 
				
			||||||
 | 
					    //    break;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  virtual RealD M3(const Field & p, Field & mmp){
 | 
				
			||||||
 | 
					    double d,dd;
 | 
				
			||||||
 | 
					    HermOpAndNorm(p,mmp,d,dd);
 | 
				
			||||||
 | 
					    return dd;
 | 
				
			||||||
 | 
					    // Must override for Def1 only
 | 
				
			||||||
 | 
					    //  case PcgDef1:
 | 
				
			||||||
 | 
					    //    d=linop_d->Mprec(p,mmp,tmp,0,1);// Dag no
 | 
				
			||||||
 | 
					    //      linop_d->Mprec(mmp,mp,tmp,1);// Dag yes
 | 
				
			||||||
 | 
					    //    Pleft(mp,mmp);
 | 
				
			||||||
 | 
					    //    d=real(linop_d->inner(p,mmp));
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  virtual void VstartDef2(Field & xconst Field & src){
 | 
				
			||||||
 | 
					    //case PcgDef2:
 | 
				
			||||||
 | 
					    //case PcgAdef2: 
 | 
				
			||||||
 | 
					    //case PcgAdef2f:
 | 
				
			||||||
 | 
					    //case PcgV11f:
 | 
				
			||||||
    ///////////////////////////////////
 | 
					    ///////////////////////////////////
 | 
				
			||||||
    // Choose x_0 such that 
 | 
					    // Choose x_0 such that 
 | 
				
			||||||
    // x_0 = guess +  (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
 | 
					    // x_0 = guess +  (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
 | 
				
			||||||
@@ -522,78 +256,142 @@ class TwoLevelADEF2 : public TwoLevelCG<Field>
 | 
				
			|||||||
    //                   = src_s - (A guess)_s - src_s  + (A guess)_s 
 | 
					    //                   = src_s - (A guess)_s - src_s  + (A guess)_s 
 | 
				
			||||||
    //                   = 0 
 | 
					    //                   = 0 
 | 
				
			||||||
    ///////////////////////////////////
 | 
					    ///////////////////////////////////
 | 
				
			||||||
    Field r(this->grid);
 | 
					    Field r(grid);
 | 
				
			||||||
    Field mmp(this->grid);
 | 
					    Field mmp(grid);
 | 
				
			||||||
    CoarseField PleftProj(this->coarsegrid);
 | 
					 | 
				
			||||||
    CoarseField PleftMss_proj(this->coarsegrid);
 | 
					 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg Vstart projecting "<<std::endl;
 | 
					    HermOp(x,mmp);
 | 
				
			||||||
    this->_Aggregates.ProjectToSubspace(PleftProj,src);     
 | 
					    axpy (r, -1.0, mmp, src);        // r_{-1} = src - A x
 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg Vstart coarse solve "<<std::endl;
 | 
					    ProjectToSubspace(r,PleftProj);     
 | 
				
			||||||
    this->_CoarseSolverPrecise(PleftProj,PleftMss_proj); // Ass^{-1} r_s
 | 
					    ApplyInverseCG(PleftProj,PleftMss_proj); // Ass^{-1} r_s
 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg Vstart promote "<<std::endl;
 | 
					    PromoteFromSubspace(PleftMss_proj,mmp);  
 | 
				
			||||||
    this->_Aggregates.PromoteFromSubspace(PleftMss_proj,x);  
 | 
					    x=x+mmp;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
};
 | 
					  virtual void Vstart(Field & x,const Field & src){
 | 
				
			||||||
 | 
					    return;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  /////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					  // Only Def1 has non-trivial Vout. Override in Def1
 | 
				
			||||||
 | 
					  /////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					  virtual void   Vout  (Field & in, Field & out,Field & src){
 | 
				
			||||||
 | 
					    out = in;
 | 
				
			||||||
 | 
					    //case PcgDef1:
 | 
				
			||||||
 | 
					    //    //Qb + PT x
 | 
				
			||||||
 | 
					    //    ProjectToSubspace(src,PleftProj);     
 | 
				
			||||||
 | 
					    //    ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} r_s
 | 
				
			||||||
 | 
					    //    PromoteFromSubspace(PleftMss_proj,tmp);  
 | 
				
			||||||
 | 
					    //    
 | 
				
			||||||
 | 
					    //    Pright(in,out);
 | 
				
			||||||
 | 
					    //    
 | 
				
			||||||
 | 
					    //    linop_d->axpy(out,tmp,out,1.0);
 | 
				
			||||||
 | 
					    //    break;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					  // Pright and Pleft are common to all implementations
 | 
				
			||||||
 | 
					  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					  virtual void Pright(Field & in,Field & out){
 | 
				
			||||||
 | 
					    // P_R  = [ 1              0 ] 
 | 
				
			||||||
 | 
					    //        [ -Mss^-1 Msb    0 ] 
 | 
				
			||||||
 | 
					    Field in_sbar(grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    ProjectToSubspace(in,PleftProj);     
 | 
				
			||||||
 | 
					    PromoteFromSubspace(PleftProj,out);  
 | 
				
			||||||
 | 
					    axpy(in_sbar,-1.0,out,in);       // in_sbar = in - in_s 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    HermOp(in_sbar,out);
 | 
				
			||||||
 | 
					    ProjectToSubspace(out,PleftProj);           // Mssbar in_sbar  (project)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    ApplyInverse     (PleftProj,PleftMss_proj); // Mss^{-1} Mssbar 
 | 
				
			||||||
 | 
					    PromoteFromSubspace(PleftMss_proj,out);     // 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    axpy(out,-1.0,out,in_sbar);     // in_sbar - Mss^{-1} Mssbar in_sbar
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  virtual void Pleft (Field & in,Field & out){
 | 
				
			||||||
 | 
					    // P_L  = [ 1  -Mbs Mss^-1] 
 | 
				
			||||||
 | 
					    //        [ 0   0         ] 
 | 
				
			||||||
 | 
					    Field in_sbar(grid);
 | 
				
			||||||
 | 
					    Field    tmp2(grid);
 | 
				
			||||||
 | 
					    Field    Mtmp(grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    ProjectToSubspace(in,PleftProj);     
 | 
				
			||||||
 | 
					    PromoteFromSubspace(PleftProj,out);  
 | 
				
			||||||
 | 
					    axpy(in_sbar,-1.0,out,in);      // in_sbar = in - in_s
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    ApplyInverse(PleftProj,PleftMss_proj); // Mss^{-1} in_s
 | 
				
			||||||
 | 
					    PromoteFromSubspace(PleftMss_proj,out);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    HermOp(out,Mtmp);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    ProjectToSubspace(Mtmp,PleftProj);      // Msbar s Mss^{-1}
 | 
				
			||||||
 | 
					    PromoteFromSubspace(PleftProj,tmp2);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    axpy(out,-1.0,tmp2,Mtmp);
 | 
				
			||||||
 | 
					    axpy(out,-1.0,out,in_sbar);     // in_sbar - Msbars Mss^{-1} in_s
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class Field>
 | 
					template<class Field>
 | 
				
			||||||
class TwoLevelADEF1defl : public TwoLevelCG<Field>
 | 
					class TwoLevelFlexiblePcgADef2 : public TwoLevelFlexiblePcg<Field> {
 | 
				
			||||||
{
 | 
					 | 
				
			||||||
 public:
 | 
					 public:
 | 
				
			||||||
  const std::vector<Field> &evec;
 | 
					  virtual void M(Field & in,Field & out,Field & tmp){
 | 
				
			||||||
  const std::vector<RealD> &eval;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  TwoLevelADEF1defl(RealD tol,
 | 
					  } 
 | 
				
			||||||
		   Integer maxit,
 | 
					  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp){
 | 
				
			||||||
		   LinearOperatorBase<Field>   &FineLinop,
 | 
					 | 
				
			||||||
		   LinearFunction<Field>   &Smoother,
 | 
					 | 
				
			||||||
		   std::vector<Field> &_evec,
 | 
					 | 
				
			||||||
		   std::vector<RealD> &_eval) : 
 | 
					 | 
				
			||||||
    TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,_evec[0].Grid()),
 | 
					 | 
				
			||||||
    evec(_evec),
 | 
					 | 
				
			||||||
    eval(_eval)
 | 
					 | 
				
			||||||
  {};
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Can just inherit existing M2
 | 
					  }
 | 
				
			||||||
  // Can just inherit existing M3
 | 
					  virtual void M2(Field & in, Field & out){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Simple vstart - do nothing
 | 
					  }
 | 
				
			||||||
  virtual void Vstart(Field & x,const Field & src){
 | 
					  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp){
 | 
				
			||||||
    x=src; // Could apply Q
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Override PcgM1
 | 
					  }
 | 
				
			||||||
  virtual void PcgM1(Field & in, Field & out)
 | 
					  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp){
 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    GRID_TRACE("EvecPreconditioner ");
 | 
					 | 
				
			||||||
    int N=evec.size();
 | 
					 | 
				
			||||||
    Field Pin(this->grid);
 | 
					 | 
				
			||||||
    Field Qin(this->grid);
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    //MP  + Q = M(1-AQ) + Q = M
 | 
					  }
 | 
				
			||||||
    // // If we are eigenvector deflating in coarse space
 | 
					}
 | 
				
			||||||
    // // Q   = Sum_i |phi_i> 1/lambda_i <phi_i|
 | 
					/*
 | 
				
			||||||
    // // A Q = Sum_i |phi_i> <phi_i|
 | 
					template<class Field>
 | 
				
			||||||
    // // M(1-AQ) = M(1-proj) + Q
 | 
					class TwoLevelFlexiblePcgAD : public TwoLevelFlexiblePcg<Field> {
 | 
				
			||||||
    Qin.Checkerboard()=in.Checkerboard();
 | 
					 public:
 | 
				
			||||||
    Qin = Zero();
 | 
					  virtual void M(Field & in,Field & out,Field & tmp); 
 | 
				
			||||||
    Pin = in;
 | 
					  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
 | 
				
			||||||
    for (int i=0;i<N;i++) {
 | 
					  virtual void M2(Field & in, Field & out);
 | 
				
			||||||
      const Field& tmp = evec[i];
 | 
					  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
 | 
				
			||||||
      auto ip = TensorRemove(innerProduct(tmp,in));
 | 
					  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
 | 
				
			||||||
      axpy(Qin, ip / eval[i],tmp,Qin);
 | 
					 | 
				
			||||||
      axpy(Pin, -ip ,tmp,Pin);
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    this->_Smoother(Pin,out);
 | 
					template<class Field>
 | 
				
			||||||
 | 
					class TwoLevelFlexiblePcgDef1 : public TwoLevelFlexiblePcg<Field> {
 | 
				
			||||||
    out = out + Qin;
 | 
					 public:
 | 
				
			||||||
 | 
					  virtual void M(Field & in,Field & out,Field & tmp); 
 | 
				
			||||||
 | 
					  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
 | 
				
			||||||
 | 
					  virtual void M2(Field & in, Field & out);
 | 
				
			||||||
 | 
					  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
 | 
				
			||||||
 | 
					  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
 | 
				
			||||||
 | 
					  virtual void   Vout  (Field & in, Field & out,Field & src,Field & tmp);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					template<class Field>
 | 
				
			||||||
 | 
					class TwoLevelFlexiblePcgDef2 : public TwoLevelFlexiblePcg<Field> {
 | 
				
			||||||
 | 
					 public:
 | 
				
			||||||
 | 
					  virtual void M(Field & in,Field & out,Field & tmp); 
 | 
				
			||||||
 | 
					  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
 | 
				
			||||||
 | 
					  virtual void M2(Field & in, Field & out);
 | 
				
			||||||
 | 
					  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
 | 
				
			||||||
 | 
					  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					template<class Field>
 | 
				
			||||||
 | 
					class TwoLevelFlexiblePcgV11: public TwoLevelFlexiblePcg<Field> {
 | 
				
			||||||
 | 
					 public:
 | 
				
			||||||
 | 
					  virtual void M(Field & in,Field & out,Field & tmp); 
 | 
				
			||||||
 | 
					  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
 | 
				
			||||||
 | 
					  virtual void M2(Field & in, Field & out);
 | 
				
			||||||
 | 
					  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
 | 
				
			||||||
 | 
					  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,734 +0,0 @@
 | 
				
			|||||||
    /*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: ./lib/algorithms/iterative/AdefGeneric.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2015
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
    *************************************************************************************/
 | 
					 | 
				
			||||||
    /*  END LEGAL */
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
   * Compared to Tang-2009:  P=Pleft. P^T = PRight Q=MssInv. 
 | 
					 | 
				
			||||||
   * Script A = SolverMatrix 
 | 
					 | 
				
			||||||
   * Script P = Preconditioner
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Implement ADEF-2
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Vstart = P^Tx + Qb
 | 
					 | 
				
			||||||
   * M1 = P^TM + Q
 | 
					 | 
				
			||||||
   * M2=M3=1
 | 
					 | 
				
			||||||
   */
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class Field>
 | 
					 | 
				
			||||||
class TwoLevelCGmrhs
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
 public:
 | 
					 | 
				
			||||||
  RealD   Tolerance;
 | 
					 | 
				
			||||||
  Integer MaxIterations;
 | 
					 | 
				
			||||||
  GridBase *grid;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  // Fine operator, Smoother, CoarseSolver
 | 
					 | 
				
			||||||
  LinearOperatorBase<Field>   &_FineLinop;
 | 
					 | 
				
			||||||
  LinearFunction<Field>   &_Smoother;
 | 
					 | 
				
			||||||
  MultiRHSBlockCGLinalg<Field> _BlockCGLinalg;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  GridStopWatch ProjectTimer;
 | 
					 | 
				
			||||||
  GridStopWatch PromoteTimer;
 | 
					 | 
				
			||||||
  GridStopWatch DeflateTimer;
 | 
					 | 
				
			||||||
  GridStopWatch CoarseTimer;
 | 
					 | 
				
			||||||
  GridStopWatch FineTimer;
 | 
					 | 
				
			||||||
  GridStopWatch SmoothTimer;
 | 
					 | 
				
			||||||
  GridStopWatch InsertTimer;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
    Field rrr;
 | 
					 | 
				
			||||||
  Field sss;
 | 
					 | 
				
			||||||
  Field qqq;
 | 
					 | 
				
			||||||
  Field zzz;
 | 
					 | 
				
			||||||
  */  
 | 
					 | 
				
			||||||
  // more most opertor functions
 | 
					 | 
				
			||||||
  TwoLevelCGmrhs(RealD tol,
 | 
					 | 
				
			||||||
		 Integer maxit,
 | 
					 | 
				
			||||||
		 LinearOperatorBase<Field>   &FineLinop,
 | 
					 | 
				
			||||||
		 LinearFunction<Field>       &Smoother,
 | 
					 | 
				
			||||||
		 GridBase *fine) : 
 | 
					 | 
				
			||||||
    Tolerance(tol), 
 | 
					 | 
				
			||||||
    MaxIterations(maxit),
 | 
					 | 
				
			||||||
    _FineLinop(FineLinop),
 | 
					 | 
				
			||||||
    _Smoother(Smoother)
 | 
					 | 
				
			||||||
    /*
 | 
					 | 
				
			||||||
    rrr(fine),
 | 
					 | 
				
			||||||
    sss(fine),
 | 
					 | 
				
			||||||
    qqq(fine),
 | 
					 | 
				
			||||||
    zzz(fine)
 | 
					 | 
				
			||||||
*/
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    grid       = fine;
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  // Vector case
 | 
					 | 
				
			||||||
  virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    //    SolveSingleSystem(src,x);
 | 
					 | 
				
			||||||
    SolvePrecBlockCG(src,x);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
// Thin QR factorisation (google it)
 | 
					 | 
				
			||||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  //Dimensions
 | 
					 | 
				
			||||||
  // R_{ferm x Nblock} =  Q_{ferm x Nblock} x  C_{Nblock x Nblock} -> ferm x Nblock
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Rdag R = m_rr = Herm = L L^dag        <-- Cholesky decomposition (LLT routine in Eigen)
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  //   Q  C = R => Q = R C^{-1}
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Want  Ident = Q^dag Q = C^{-dag} R^dag R C^{-1} = C^{-dag} L L^dag C^{-1} = 1_{Nblock x Nblock} 
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Set C = L^{dag}, and then Q^dag Q = ident 
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Checks:
 | 
					 | 
				
			||||||
  // Cdag C = Rdag R ; passes.
 | 
					 | 
				
			||||||
  // QdagQ  = 1      ; passes
 | 
					 | 
				
			||||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  void ThinQRfact (Eigen::MatrixXcd &m_zz,
 | 
					 | 
				
			||||||
		   Eigen::MatrixXcd &C,
 | 
					 | 
				
			||||||
		   Eigen::MatrixXcd &Cinv,
 | 
					 | 
				
			||||||
		   std::vector<Field> &  Q,
 | 
					 | 
				
			||||||
		   std::vector<Field> & MQ,
 | 
					 | 
				
			||||||
		   const std::vector<Field> & Z,
 | 
					 | 
				
			||||||
		   const std::vector<Field> & MZ)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    RealD t0=usecond();
 | 
					 | 
				
			||||||
    _BlockCGLinalg.InnerProductMatrix(m_zz,MZ,Z);
 | 
					 | 
				
			||||||
    RealD t1=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    m_zz = 0.5*(m_zz+m_zz.adjoint());
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd L    = m_zz.llt().matrixL(); 
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    C    = L.adjoint();
 | 
					 | 
				
			||||||
    Cinv = C.inverse();
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    RealD t3=usecond();
 | 
					 | 
				
			||||||
    _BlockCGLinalg.MulMatrix( Q,Cinv,Z);
 | 
					 | 
				
			||||||
    _BlockCGLinalg.MulMatrix(MQ,Cinv,MZ);
 | 
					 | 
				
			||||||
    RealD t4=usecond();
 | 
					 | 
				
			||||||
    std::cout << " ThinQRfact IP    :"<< t1-t0<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << " ThinQRfact Eigen :"<< t3-t1<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << " ThinQRfact MulMat:"<< t4-t3<<" us"<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void SolvePrecBlockCG (std::vector<Field> &src, std::vector<Field> &X)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: mrhs fPrecBlockcg starting"<<std::endl;
 | 
					 | 
				
			||||||
    src[0].Grid()->Barrier();
 | 
					 | 
				
			||||||
    int nrhs = src.size();
 | 
					 | 
				
			||||||
    //    std::vector<RealD> f(nrhs);
 | 
					 | 
				
			||||||
    //    std::vector<RealD> rtzp(nrhs);
 | 
					 | 
				
			||||||
    //    std::vector<RealD> rtz(nrhs);
 | 
					 | 
				
			||||||
    //    std::vector<RealD> a(nrhs);
 | 
					 | 
				
			||||||
    //    std::vector<RealD> d(nrhs);
 | 
					 | 
				
			||||||
    //    std::vector<RealD> b(nrhs);
 | 
					 | 
				
			||||||
    //    std::vector<RealD> rptzp(nrhs);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////
 | 
					 | 
				
			||||||
    //Initial residual computation & set up
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////
 | 
					 | 
				
			||||||
    std::vector<RealD> ssq(nrhs);
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
      ssq[rhs]=norm2(src[rhs]); assert(ssq[rhs]!=0.0);
 | 
					 | 
				
			||||||
    }      
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ///////////////////////////
 | 
					 | 
				
			||||||
    // Fields -- eliminate duplicates between fPcg and block cg
 | 
					 | 
				
			||||||
    ///////////////////////////
 | 
					 | 
				
			||||||
    std::vector<Field> Mtmp(nrhs,grid);
 | 
					 | 
				
			||||||
    std::vector<Field> tmp(nrhs,grid);
 | 
					 | 
				
			||||||
    std::vector<Field>   Z(nrhs,grid); // Rename Z to R
 | 
					 | 
				
			||||||
    std::vector<Field>  MZ(nrhs,grid); // Rename MZ to Z
 | 
					 | 
				
			||||||
    std::vector<Field>   Q(nrhs,grid); // 
 | 
					 | 
				
			||||||
    std::vector<Field>  MQ(nrhs,grid); // Rename to P
 | 
					 | 
				
			||||||
    std::vector<Field>   D(nrhs,grid);
 | 
					 | 
				
			||||||
    std::vector<Field>  AD(nrhs,grid);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    /************************************************************************
 | 
					 | 
				
			||||||
     * Preconditioned Block conjugate gradient rQ
 | 
					 | 
				
			||||||
     * Generalise Sebastien Birk Thesis, after Dubrulle 2001.
 | 
					 | 
				
			||||||
     * Introduce preconditioning following Saad Ch9
 | 
					 | 
				
			||||||
     ************************************************************************
 | 
					 | 
				
			||||||
     * Dimensions:
 | 
					 | 
				
			||||||
     *
 | 
					 | 
				
			||||||
     *   X,B etc... ==(Nferm x nrhs)
 | 
					 | 
				
			||||||
     *  Matrix A==(Nferm x Nferm)
 | 
					 | 
				
			||||||
     *  
 | 
					 | 
				
			||||||
     * Nferm = Nspin x Ncolour x Ncomplex x Nlattice_site
 | 
					 | 
				
			||||||
     * QC => Thin QR factorisation (google it)
 | 
					 | 
				
			||||||
     *
 | 
					 | 
				
			||||||
     * R = B-AX
 | 
					 | 
				
			||||||
     * Z = Mi R
 | 
					 | 
				
			||||||
     * QC = Z
 | 
					 | 
				
			||||||
     * D = Q 
 | 
					 | 
				
			||||||
     * for k: 
 | 
					 | 
				
			||||||
     *   R  = AD
 | 
					 | 
				
			||||||
     *   Z  = Mi R
 | 
					 | 
				
			||||||
     *   M  = [D^dag R]^{-1}
 | 
					 | 
				
			||||||
     *   X  = X + D M C
 | 
					 | 
				
			||||||
     *   QS = Q - Z.M
 | 
					 | 
				
			||||||
     *   D  = Q + D S^dag
 | 
					 | 
				
			||||||
     *   C  = S C
 | 
					 | 
				
			||||||
     */
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd m_DZ     = Eigen::MatrixXcd::Identity(nrhs,nrhs);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd m_M      = Eigen::MatrixXcd::Identity(nrhs,nrhs);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd m_zz     = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd m_rr     = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd m_C      = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd m_Cinv   = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd m_S      = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd m_Sinv   = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd m_tmp    = Eigen::MatrixXcd::Identity(nrhs,nrhs);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd m_tmp1   = Eigen::MatrixXcd::Identity(nrhs,nrhs);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridStopWatch HDCGTimer;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //////////////////////////
 | 
					 | 
				
			||||||
    // x0 = Vstart -- possibly modify guess
 | 
					 | 
				
			||||||
    //////////////////////////
 | 
					 | 
				
			||||||
    Vstart(X,src);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //////////////////////////
 | 
					 | 
				
			||||||
    // R = B-AX
 | 
					 | 
				
			||||||
    //////////////////////////
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
      // r0 = b -A x0
 | 
					 | 
				
			||||||
      _FineLinop.HermOp(X[rhs],tmp[rhs]);
 | 
					 | 
				
			||||||
      axpy (Z[rhs], -1.0,tmp[rhs], src[rhs]);    // Computes R=Z=src - A X0
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //////////////////////////////////
 | 
					 | 
				
			||||||
    // Compute MZ = M1 Z = M1 B - M1 A x0
 | 
					 | 
				
			||||||
    //////////////////////////////////
 | 
					 | 
				
			||||||
    PcgM1(Z,MZ);  
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //////////////////////////////////
 | 
					 | 
				
			||||||
    // QC = Z
 | 
					 | 
				
			||||||
    //////////////////////////////////
 | 
					 | 
				
			||||||
    ThinQRfact (m_zz, m_C, m_Cinv, Q, MQ, Z, MZ);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //////////////////////////////////
 | 
					 | 
				
			||||||
    // D=MQ
 | 
					 | 
				
			||||||
    //////////////////////////////////
 | 
					 | 
				
			||||||
    for(int b=0;b<nrhs;b++) D[b]=MQ[b]; // LLT rotation of the MZ basis of search dirs
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"PrecBlockCGrQ vec computed initial residual and QR fact " <<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ProjectTimer.Reset();
 | 
					 | 
				
			||||||
    PromoteTimer.Reset();
 | 
					 | 
				
			||||||
    DeflateTimer.Reset();
 | 
					 | 
				
			||||||
    CoarseTimer.Reset();
 | 
					 | 
				
			||||||
    SmoothTimer.Reset();
 | 
					 | 
				
			||||||
    FineTimer.Reset();
 | 
					 | 
				
			||||||
    InsertTimer.Reset();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridStopWatch M1Timer;
 | 
					 | 
				
			||||||
    GridStopWatch M2Timer;
 | 
					 | 
				
			||||||
    GridStopWatch M3Timer;
 | 
					 | 
				
			||||||
    GridStopWatch LinalgTimer;
 | 
					 | 
				
			||||||
    GridStopWatch InnerProdTimer;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    HDCGTimer.Start();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<RealD> rn(nrhs);
 | 
					 | 
				
			||||||
    for (int k=0;k<=MaxIterations;k++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      ////////////////////
 | 
					 | 
				
			||||||
      // Z  = AD
 | 
					 | 
				
			||||||
      ////////////////////
 | 
					 | 
				
			||||||
      M3Timer.Start();
 | 
					 | 
				
			||||||
      for(int b=0;b<nrhs;b++) _FineLinop.HermOp(D[b], Z[b]);      
 | 
					 | 
				
			||||||
      M3Timer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      ////////////////////
 | 
					 | 
				
			||||||
      // MZ  = M1 Z <==== the Multigrid preconditioner
 | 
					 | 
				
			||||||
      ////////////////////
 | 
					 | 
				
			||||||
      M1Timer.Start();
 | 
					 | 
				
			||||||
      PcgM1(Z,MZ);
 | 
					 | 
				
			||||||
      M1Timer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      FineTimer.Start();
 | 
					 | 
				
			||||||
      ////////////////////
 | 
					 | 
				
			||||||
      // M  = [D^dag Z]^{-1} = (<Ddag MZ>_M)^{-1} inner prod, generalising Saad derivation of Precon CG
 | 
					 | 
				
			||||||
      ////////////////////
 | 
					 | 
				
			||||||
      InnerProdTimer.Start();
 | 
					 | 
				
			||||||
      _BlockCGLinalg.InnerProductMatrix(m_DZ,D,Z);
 | 
					 | 
				
			||||||
      InnerProdTimer.Stop();
 | 
					 | 
				
			||||||
      m_M       = m_DZ.inverse();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      ///////////////////////////
 | 
					 | 
				
			||||||
      // X  = X + D MC
 | 
					 | 
				
			||||||
      ///////////////////////////
 | 
					 | 
				
			||||||
      m_tmp     = m_M * m_C;
 | 
					 | 
				
			||||||
      LinalgTimer.Start();
 | 
					 | 
				
			||||||
      _BlockCGLinalg.MaddMatrix(X,m_tmp, D,X);     // D are the search directions and X takes the updates 
 | 
					 | 
				
			||||||
      LinalgTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      ///////////////////////////
 | 
					 | 
				
			||||||
      // QS = Q - M Z
 | 
					 | 
				
			||||||
      // (MQ) S = MQ - M (M1Z)
 | 
					 | 
				
			||||||
      ///////////////////////////
 | 
					 | 
				
			||||||
      LinalgTimer.Start();
 | 
					 | 
				
			||||||
      _BlockCGLinalg.MaddMatrix(tmp ,m_M, Z, Q,-1.0);
 | 
					 | 
				
			||||||
      _BlockCGLinalg.MaddMatrix(Mtmp,m_M,MZ,MQ,-1.0);
 | 
					 | 
				
			||||||
      ThinQRfact (m_zz, m_S, m_Sinv, Q, MQ, tmp, Mtmp);
 | 
					 | 
				
			||||||
      LinalgTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      ////////////////////////////
 | 
					 | 
				
			||||||
      // D  = MQ + D S^dag
 | 
					 | 
				
			||||||
      ////////////////////////////
 | 
					 | 
				
			||||||
      m_tmp = m_S.adjoint();
 | 
					 | 
				
			||||||
      LinalgTimer.Start();
 | 
					 | 
				
			||||||
      _BlockCGLinalg.MaddMatrix(D,m_tmp,D,MQ);
 | 
					 | 
				
			||||||
      LinalgTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      ////////////////////////////
 | 
					 | 
				
			||||||
      // C  = S C
 | 
					 | 
				
			||||||
      ////////////////////////////
 | 
					 | 
				
			||||||
      m_C = m_S*m_C;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      ////////////////////////////
 | 
					 | 
				
			||||||
      // convergence monitor
 | 
					 | 
				
			||||||
      ////////////////////////////
 | 
					 | 
				
			||||||
      m_rr = m_C.adjoint() * m_C;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      FineTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      RealD max_resid=0;
 | 
					 | 
				
			||||||
      RealD rrsum=0;
 | 
					 | 
				
			||||||
      RealD sssum=0;
 | 
					 | 
				
			||||||
      RealD rr;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int b=0;b<nrhs;b++) {
 | 
					 | 
				
			||||||
	rrsum+=real(m_rr(b,b));
 | 
					 | 
				
			||||||
	sssum+=ssq[b];
 | 
					 | 
				
			||||||
	rr = real(m_rr(b,b))/ssq[b];
 | 
					 | 
				
			||||||
	if ( rr > max_resid ) max_resid = rr;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage <<
 | 
					 | 
				
			||||||
	  "\t Prec BlockCGrQ Iteration "<<k<<" ave resid "<< std::sqrt(rrsum/sssum) << " max "<< std::sqrt(max_resid) <<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      if ( max_resid < Tolerance*Tolerance ) { 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	HDCGTimer.Stop();
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Linalg  "<<LinalgTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : fine H  "<<M3Timer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : prec M1 "<<M1Timer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"**** M1 breakdown:"<<std::endl;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Project "<<ProjectTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Promote "<<PromoteTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Deflate "<<DeflateTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Coarse  "<<CoarseTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Fine    "<<FineTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Smooth  "<<SmoothTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Insert  "<<InsertTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  _FineLinop.HermOp(X[rhs],tmp[rhs]);			  
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  Field mytmp(grid);
 | 
					 | 
				
			||||||
	  axpy(mytmp,-1.0,src[rhs],tmp[rhs]);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
	  RealD  xnorm   = sqrt(norm2(X[rhs]));
 | 
					 | 
				
			||||||
	  RealD  srcnorm = sqrt(norm2(src[rhs]));
 | 
					 | 
				
			||||||
	  RealD  tmpnorm = sqrt(norm2(mytmp));
 | 
					 | 
				
			||||||
	  RealD  true_residual = tmpnorm/srcnorm;
 | 
					 | 
				
			||||||
	  std::cout<<GridLogMessage
 | 
					 | 
				
			||||||
		   <<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
 | 
					 | 
				
			||||||
		   <<" solution "<<xnorm
 | 
					 | 
				
			||||||
		   <<" source "<<srcnorm
 | 
					 | 
				
			||||||
		   <<std::endl;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	return;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    HDCGTimer.Stop();
 | 
					 | 
				
			||||||
    std::cout<<GridLogMessage<<"HDCG: PrecBlockCGrQ not converged "<<HDCGTimer.Elapsed()<<std::endl;
 | 
					 | 
				
			||||||
    assert(0);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void SolveSingleSystem (std::vector<Field> &src, std::vector<Field> &x)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
 | 
					 | 
				
			||||||
    src[0].Grid()->Barrier();
 | 
					 | 
				
			||||||
    int nrhs = src.size();
 | 
					 | 
				
			||||||
    std::vector<RealD> f(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> rtzp(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> rtz(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> a(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> d(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> b(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> rptzp(nrhs);
 | 
					 | 
				
			||||||
    /////////////////////////////
 | 
					 | 
				
			||||||
    // Set up history vectors
 | 
					 | 
				
			||||||
    /////////////////////////////
 | 
					 | 
				
			||||||
    int mmax = 3;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<std::vector<Field> > p(nrhs);   for(int r=0;r<nrhs;r++)  p[r].resize(mmax,grid);
 | 
					 | 
				
			||||||
    std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid);
 | 
					 | 
				
			||||||
    std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<Field> z(nrhs,grid);
 | 
					 | 
				
			||||||
    std::vector<Field>  mp (nrhs,grid);
 | 
					 | 
				
			||||||
    std::vector<Field>  r  (nrhs,grid);
 | 
					 | 
				
			||||||
    std::vector<Field>  mu (nrhs,grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //Initial residual computation & set up
 | 
					 | 
				
			||||||
    std::vector<RealD> src_nrm(nrhs);
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
					 | 
				
			||||||
      src_nrm[rhs]=norm2(src[rhs]);
 | 
					 | 
				
			||||||
      assert(src_nrm[rhs]!=0.0);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    std::vector<RealD> tn(nrhs);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridStopWatch HDCGTimer;
 | 
					 | 
				
			||||||
    //////////////////////////
 | 
					 | 
				
			||||||
    // x0 = Vstart -- possibly modify guess
 | 
					 | 
				
			||||||
    //////////////////////////
 | 
					 | 
				
			||||||
    Vstart(x,src);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
      // r0 = b -A x0
 | 
					 | 
				
			||||||
      _FineLinop.HermOp(x[rhs],mmp[rhs][0]);
 | 
					 | 
				
			||||||
      axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]);    // Recomputes r=src-Ax0
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //////////////////////////////////
 | 
					 | 
				
			||||||
    // Compute z = M1 x
 | 
					 | 
				
			||||||
    //////////////////////////////////
 | 
					 | 
				
			||||||
    // This needs a multiRHS version for acceleration
 | 
					 | 
				
			||||||
    PcgM1(r,z);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<RealD> ssq(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> rsq(nrhs);
 | 
					 | 
				
			||||||
    std::vector<Field> pp(nrhs,grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
      rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
 | 
					 | 
				
			||||||
      p[rhs][0]=z[rhs];
 | 
					 | 
				
			||||||
      ssq[rhs]=norm2(src[rhs]);
 | 
					 | 
				
			||||||
      rsq[rhs]=  ssq[rhs]*Tolerance*Tolerance;
 | 
					 | 
				
			||||||
      //      std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n";
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ProjectTimer.Reset();
 | 
					 | 
				
			||||||
    PromoteTimer.Reset();
 | 
					 | 
				
			||||||
    DeflateTimer.Reset();
 | 
					 | 
				
			||||||
    CoarseTimer.Reset();
 | 
					 | 
				
			||||||
    SmoothTimer.Reset();
 | 
					 | 
				
			||||||
    FineTimer.Reset();
 | 
					 | 
				
			||||||
    InsertTimer.Reset();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridStopWatch M1Timer;
 | 
					 | 
				
			||||||
    GridStopWatch M2Timer;
 | 
					 | 
				
			||||||
    GridStopWatch M3Timer;
 | 
					 | 
				
			||||||
    GridStopWatch LinalgTimer;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    HDCGTimer.Start();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<RealD> rn(nrhs);
 | 
					 | 
				
			||||||
    for (int k=0;k<=MaxIterations;k++){
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
      int peri_k  = k % mmax;
 | 
					 | 
				
			||||||
      int peri_kp = (k+1) % mmax;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
	rtz[rhs]=rtzp[rhs];
 | 
					 | 
				
			||||||
	M3Timer.Start();
 | 
					 | 
				
			||||||
	d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]);
 | 
					 | 
				
			||||||
	M3Timer.Stop();
 | 
					 | 
				
			||||||
	a[rhs] = rtz[rhs]/d[rhs];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	LinalgTimer.Start();
 | 
					 | 
				
			||||||
	// Memorise this
 | 
					 | 
				
			||||||
	pAp[rhs][peri_k] = d[rhs];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]);
 | 
					 | 
				
			||||||
	rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]);
 | 
					 | 
				
			||||||
	LinalgTimer.Stop();
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Compute z = M x (for *all* RHS)
 | 
					 | 
				
			||||||
      M1Timer.Start();
 | 
					 | 
				
			||||||
      PcgM1(r,z);
 | 
					 | 
				
			||||||
      M1Timer.Stop();
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      RealD max_rn=0.0;
 | 
					 | 
				
			||||||
      LinalgTimer.Start();
 | 
					 | 
				
			||||||
      for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	//	std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n";
 | 
					 | 
				
			||||||
	mu[rhs]=z[rhs];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	p[rhs][peri_kp]=mu[rhs];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	// Standard search direction p == z + b p 
 | 
					 | 
				
			||||||
	b[rhs] = (rtzp[rhs])/rtz[rhs];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	int northog = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm
 | 
					 | 
				
			||||||
	for(int back=0; back < northog; back++){
 | 
					 | 
				
			||||||
	  int peri_back = (k-back)%mmax;
 | 
					 | 
				
			||||||
	  RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp]));
 | 
					 | 
				
			||||||
	  RealD beta = -pbApk/pAp[rhs][peri_back];
 | 
					 | 
				
			||||||
	  axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]);
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	RealD rrn=sqrt(rn[rhs]/ssq[rhs]);
 | 
					 | 
				
			||||||
	RealD rtn=sqrt(rtz[rhs]/ssq[rhs]);
 | 
					 | 
				
			||||||
	RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]);
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG:fPcg rhs "<<rhs<<" k= "<<k<<" residual = "<<rrn<<"\n";
 | 
					 | 
				
			||||||
	if ( rrn > max_rn ) max_rn = rrn;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      LinalgTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Stopping condition based on worst case
 | 
					 | 
				
			||||||
      if ( max_rn <= Tolerance ) { 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	HDCGTimer.Stop();
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Linalg  "<<LinalgTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : fine M3 "<<M3Timer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : prec M1 "<<M1Timer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"**** M1 breakdown:"<<std::endl;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Project "<<ProjectTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Promote "<<PromoteTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Deflate "<<DeflateTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Coarse  "<<CoarseTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Fine    "<<FineTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Smooth  "<<SmoothTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Insert  "<<InsertTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
	  _FineLinop.HermOp(x[rhs],mmp[rhs][0]);			  
 | 
					 | 
				
			||||||
	  Field tmp(grid);
 | 
					 | 
				
			||||||
	  axpy(tmp,-1.0,src[rhs],mmp[rhs][0]);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
	  RealD  mmpnorm = sqrt(norm2(mmp[rhs][0]));
 | 
					 | 
				
			||||||
	  RealD  xnorm   = sqrt(norm2(x[rhs]));
 | 
					 | 
				
			||||||
	  RealD  srcnorm = sqrt(norm2(src[rhs]));
 | 
					 | 
				
			||||||
	  RealD  tmpnorm = sqrt(norm2(tmp));
 | 
					 | 
				
			||||||
	  RealD  true_residual = tmpnorm/srcnorm;
 | 
					 | 
				
			||||||
	  std::cout<<GridLogMessage
 | 
					 | 
				
			||||||
		   <<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
 | 
					 | 
				
			||||||
		   <<" solution "<<xnorm
 | 
					 | 
				
			||||||
		   <<" source "<<srcnorm
 | 
					 | 
				
			||||||
		   <<" mmp "<<mmpnorm	  
 | 
					 | 
				
			||||||
		   <<std::endl;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	return;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    HDCGTimer.Stop();
 | 
					 | 
				
			||||||
    std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
      RealD  xnorm   = sqrt(norm2(x[rhs]));
 | 
					 | 
				
			||||||
      RealD  srcnorm = sqrt(norm2(src[rhs]));
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 public:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out) = 0;
 | 
					 | 
				
			||||||
  virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src) = 0;
 | 
					 | 
				
			||||||
  virtual void PcgM2(const Field & in, Field & out) {
 | 
					 | 
				
			||||||
    out=in;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual RealD PcgM3(const Field & p, Field & mmp){
 | 
					 | 
				
			||||||
    RealD dd;
 | 
					 | 
				
			||||||
    _FineLinop.HermOp(p,mmp);
 | 
					 | 
				
			||||||
    ComplexD dot = innerProduct(p,mmp);
 | 
					 | 
				
			||||||
    dd=real(dot);
 | 
					 | 
				
			||||||
    return dd;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class Field, class CoarseField>
 | 
					 | 
				
			||||||
class TwoLevelADEF2mrhs : public TwoLevelCGmrhs<Field>
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  GridBase *coarsegrid;
 | 
					 | 
				
			||||||
  GridBase *coarsegridmrhs;
 | 
					 | 
				
			||||||
  LinearFunction<CoarseField> &_CoarseSolverMrhs;
 | 
					 | 
				
			||||||
  LinearFunction<CoarseField> &_CoarseSolverPreciseMrhs;
 | 
					 | 
				
			||||||
  MultiRHSBlockProject<Field>    &_Projector;
 | 
					 | 
				
			||||||
  MultiRHSDeflation<CoarseField> &_Deflator;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  TwoLevelADEF2mrhs(RealD tol,
 | 
					 | 
				
			||||||
		    Integer maxit,
 | 
					 | 
				
			||||||
		    LinearOperatorBase<Field>    &FineLinop,
 | 
					 | 
				
			||||||
		    LinearFunction<Field>        &Smoother,
 | 
					 | 
				
			||||||
		    LinearFunction<CoarseField>  &CoarseSolverMrhs,
 | 
					 | 
				
			||||||
		    LinearFunction<CoarseField>  &CoarseSolverPreciseMrhs,
 | 
					 | 
				
			||||||
		    MultiRHSBlockProject<Field>    &Projector,
 | 
					 | 
				
			||||||
		    MultiRHSDeflation<CoarseField> &Deflator,
 | 
					 | 
				
			||||||
		    GridBase *_coarsemrhsgrid) :
 | 
					 | 
				
			||||||
    TwoLevelCGmrhs<Field>(tol, maxit,FineLinop,Smoother,Projector.fine_grid),
 | 
					 | 
				
			||||||
    _CoarseSolverMrhs(CoarseSolverMrhs),
 | 
					 | 
				
			||||||
    _CoarseSolverPreciseMrhs(CoarseSolverPreciseMrhs),
 | 
					 | 
				
			||||||
    _Projector(Projector),
 | 
					 | 
				
			||||||
    _Deflator(Deflator)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    coarsegrid = Projector.coarse_grid;
 | 
					 | 
				
			||||||
    coarsegridmrhs = _coarsemrhsgrid;// Thi could be in projector
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  // Override Vstart
 | 
					 | 
				
			||||||
  virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int nrhs=x.size();
 | 
					 | 
				
			||||||
    ///////////////////////////////////
 | 
					 | 
				
			||||||
    // Choose x_0 such that 
 | 
					 | 
				
			||||||
    // x_0 = guess +  (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
 | 
					 | 
				
			||||||
    //                               = [1 - Ass_inv A] Guess + Assinv src
 | 
					 | 
				
			||||||
    //                               = P^T guess + Assinv src 
 | 
					 | 
				
			||||||
    //                               = Vstart  [Tang notation]
 | 
					 | 
				
			||||||
    // This gives:
 | 
					 | 
				
			||||||
    // W^T (src - A x_0) = src_s - A guess_s - r_s
 | 
					 | 
				
			||||||
    //                   = src_s - (A guess)_s - src_s  + (A guess)_s 
 | 
					 | 
				
			||||||
    //                   = 0 
 | 
					 | 
				
			||||||
    ///////////////////////////////////
 | 
					 | 
				
			||||||
    std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid);
 | 
					 | 
				
			||||||
    std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid);
 | 
					 | 
				
			||||||
    CoarseField PleftProjMrhs(this->coarsegridmrhs);
 | 
					 | 
				
			||||||
    CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    this->_Projector.blockProject(src,PleftProj);
 | 
					 | 
				
			||||||
    this->_Deflator.DeflateSources(PleftProj,PleftMss_proj);
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
					 | 
				
			||||||
      InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0);
 | 
					 | 
				
			||||||
      InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    this->_CoarseSolverPreciseMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} r_s
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
					 | 
				
			||||||
      ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    this->_Projector.blockPromote(x,PleftMss_proj);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int nrhs=in.size();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
 | 
					 | 
				
			||||||
    std::vector<Field> tmp(nrhs,this->grid);
 | 
					 | 
				
			||||||
    std::vector<Field> Min(nrhs,this->grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid);
 | 
					 | 
				
			||||||
    std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    CoarseField PleftProjMrhs(this->coarsegridmrhs);
 | 
					 | 
				
			||||||
    CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //    this->rrr=in[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#undef SMOOTHER_BLOCK_SOLVE
 | 
					 | 
				
			||||||
#if SMOOTHER_BLOCK_SOLVE
 | 
					 | 
				
			||||||
    this->SmoothTimer.Start();
 | 
					 | 
				
			||||||
    this->_Smoother(in,Min);
 | 
					 | 
				
			||||||
    this->SmoothTimer.Stop();
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
					 | 
				
			||||||
      this->SmoothTimer.Start();
 | 
					 | 
				
			||||||
      this->_Smoother(in[rhs],Min[rhs]);
 | 
					 | 
				
			||||||
      this->SmoothTimer.Stop();
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
    //    this->sss=Min[0];
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      this->FineTimer.Start();
 | 
					 | 
				
			||||||
      this->_FineLinop.HermOp(Min[rhs],out[rhs]);
 | 
					 | 
				
			||||||
      axpy(tmp[rhs],-1.0,out[rhs],in[rhs]);          // resid  = in - A Min
 | 
					 | 
				
			||||||
      this->FineTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    this->ProjectTimer.Start();
 | 
					 | 
				
			||||||
    this->_Projector.blockProject(tmp,PleftProj);
 | 
					 | 
				
			||||||
    this->ProjectTimer.Stop();
 | 
					 | 
				
			||||||
    this->DeflateTimer.Start();
 | 
					 | 
				
			||||||
    this->_Deflator.DeflateSources(PleftProj,PleftMss_proj);
 | 
					 | 
				
			||||||
    this->DeflateTimer.Stop();
 | 
					 | 
				
			||||||
    this->InsertTimer.Start();
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
					 | 
				
			||||||
      InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0);
 | 
					 | 
				
			||||||
      InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    this->InsertTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    this->CoarseTimer.Start();
 | 
					 | 
				
			||||||
    this->_CoarseSolverMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} [in - A Min]_s
 | 
					 | 
				
			||||||
    this->CoarseTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    this->InsertTimer.Start();
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
					 | 
				
			||||||
      ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    this->InsertTimer.Stop();
 | 
					 | 
				
			||||||
    this->PromoteTimer.Start();
 | 
					 | 
				
			||||||
    this->_Projector.blockPromote(tmp,PleftMss_proj);// tmp= Q[in - A Min]  
 | 
					 | 
				
			||||||
    this->PromoteTimer.Stop();
 | 
					 | 
				
			||||||
    this->FineTimer.Start();
 | 
					 | 
				
			||||||
    //    this->qqq=tmp[0];
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
					 | 
				
			||||||
      axpy(out[rhs],1.0,Min[rhs],tmp[rhs]); // Min+tmp
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    //    this->zzz=out[0];
 | 
					 | 
				
			||||||
    this->FineTimer.Stop();
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
@@ -31,58 +31,6 @@ directory
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					NAMESPACE_BEGIN(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class Field>
 | 
					 | 
				
			||||||
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){
 | 
					 | 
				
			||||||
  typedef typename Field::scalar_type scomplex;
 | 
					 | 
				
			||||||
  int Nblock = X.size();
 | 
					 | 
				
			||||||
  for(int b=0;b<Nblock;b++){
 | 
					 | 
				
			||||||
  for(int bp=0;bp<Nblock;bp++) {
 | 
					 | 
				
			||||||
    m(b,bp) = innerProduct(X[b],Y[bp]);  
 | 
					 | 
				
			||||||
  }}
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
template<class Field>
 | 
					 | 
				
			||||||
void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){
 | 
					 | 
				
			||||||
  // Should make this cache friendly with site outermost, parallel_for
 | 
					 | 
				
			||||||
  // Deal with case AP aliases with either Y or X
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  //Could pack "X" and "AP" into a Nblock x Volume dense array.
 | 
					 | 
				
			||||||
  // AP(Nrhs x vol) = Y(Nrhs x vol) + scale * m(nrhs x nrhs) * X(nrhs*vol)
 | 
					 | 
				
			||||||
  typedef typename Field::scalar_type scomplex;
 | 
					 | 
				
			||||||
  int Nblock = AP.size();
 | 
					 | 
				
			||||||
  std::vector<Field> tmp(Nblock,X[0]);
 | 
					 | 
				
			||||||
  for(int b=0;b<Nblock;b++){
 | 
					 | 
				
			||||||
    tmp[b]   = Y[b];
 | 
					 | 
				
			||||||
    for(int bp=0;bp<Nblock;bp++) {
 | 
					 | 
				
			||||||
      tmp[b] = tmp[b] +scomplex(scale*m(bp,b))*X[bp]; 
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  for(int b=0;b<Nblock;b++){
 | 
					 | 
				
			||||||
    AP[b] = tmp[b];
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
template<class Field>
 | 
					 | 
				
			||||||
void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){
 | 
					 | 
				
			||||||
  // Should make this cache friendly with site outermost, parallel_for
 | 
					 | 
				
			||||||
  typedef typename Field::scalar_type scomplex;
 | 
					 | 
				
			||||||
  int Nblock = AP.size();
 | 
					 | 
				
			||||||
  for(int b=0;b<Nblock;b++){
 | 
					 | 
				
			||||||
    AP[b] = Zero();
 | 
					 | 
				
			||||||
    for(int bp=0;bp<Nblock;bp++) {
 | 
					 | 
				
			||||||
      AP[b] += scomplex(m(bp,b))*X[bp]; 
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
template<class Field>
 | 
					 | 
				
			||||||
double normv(const std::vector<Field> &P){
 | 
					 | 
				
			||||||
  int Nblock = P.size();
 | 
					 | 
				
			||||||
  double nn = 0.0;
 | 
					 | 
				
			||||||
  for(int b=0;b<Nblock;b++) {
 | 
					 | 
				
			||||||
    nn+=norm2(P[b]);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  return nn;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS, BlockCGVec, BlockCGrQVec };
 | 
					enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS, BlockCGVec, BlockCGrQVec };
 | 
				
			||||||
 | 
					
 | 
				
			||||||
//////////////////////////////////////////////////////////////////////////
 | 
					//////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -139,19 +87,10 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
 | 
				
			|||||||
  sliceInnerProductMatrix(m_rr,R,R,Orthog);
 | 
					  sliceInnerProductMatrix(m_rr,R,R,Orthog);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Force manifest hermitian to avoid rounding related
 | 
					  // Force manifest hermitian to avoid rounding related
 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
  int rank=m_rr.rows();
 | 
					 | 
				
			||||||
  for(int r=0;r<rank;r++){
 | 
					 | 
				
			||||||
  for(int s=0;s<rank;s++){
 | 
					 | 
				
			||||||
    std::cout << "QR m_rr["<<r<<","<<s<<"] "<<m_rr(r,s)<<std::endl;
 | 
					 | 
				
			||||||
  }}
 | 
					 | 
				
			||||||
  */
 | 
					 | 
				
			||||||
  m_rr = 0.5*(m_rr+m_rr.adjoint());
 | 
					  m_rr = 0.5*(m_rr+m_rr.adjoint());
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  Eigen::MatrixXcd L    = m_rr.llt().matrixL(); 
 | 
					  Eigen::MatrixXcd L    = m_rr.llt().matrixL(); 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
//  ComplexD det = L.determinant();
 | 
					 | 
				
			||||||
//  std::cout << " Det m_rr "<<det<<std::endl;
 | 
					 | 
				
			||||||
  C    = L.adjoint();
 | 
					  C    = L.adjoint();
 | 
				
			||||||
  Cinv = C.inverse();
 | 
					  Cinv = C.inverse();
 | 
				
			||||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -171,20 +110,11 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
 | 
				
			|||||||
		 const std::vector<Field> & R)
 | 
							 const std::vector<Field> & R)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  InnerProductMatrix(m_rr,R,R);
 | 
					  InnerProductMatrix(m_rr,R,R);
 | 
				
			||||||
  /*
 | 
					
 | 
				
			||||||
  int rank=m_rr.rows();
 | 
					 | 
				
			||||||
  for(int r=0;r<rank;r++){
 | 
					 | 
				
			||||||
  for(int s=0;s<rank;s++){
 | 
					 | 
				
			||||||
    std::cout << "QRvec m_rr["<<r<<","<<s<<"] "<<m_rr(r,s)<<std::endl;
 | 
					 | 
				
			||||||
  }}
 | 
					 | 
				
			||||||
  */
 | 
					 | 
				
			||||||
  m_rr = 0.5*(m_rr+m_rr.adjoint());
 | 
					  m_rr = 0.5*(m_rr+m_rr.adjoint());
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  Eigen::MatrixXcd L    = m_rr.llt().matrixL(); 
 | 
					  Eigen::MatrixXcd L    = m_rr.llt().matrixL(); 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //  ComplexD det = L.determinant();
 | 
					 | 
				
			||||||
  //  std::cout << " Det m_rr "<<det<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  C    = L.adjoint();
 | 
					  C    = L.adjoint();
 | 
				
			||||||
  Cinv = C.inverse();
 | 
					  Cinv = C.inverse();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -256,7 +186,6 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
 | 
				
			|||||||
  sliceNorm(ssq,B,Orthog);
 | 
					  sliceNorm(ssq,B,Orthog);
 | 
				
			||||||
  RealD sssum=0;
 | 
					  RealD sssum=0;
 | 
				
			||||||
  for(int b=0;b<Nblock;b++) sssum+=ssq[b];
 | 
					  for(int b=0;b<Nblock;b++) sssum+=ssq[b];
 | 
				
			||||||
  for(int b=0;b<Nblock;b++) std::cout << "src["<<b<<"]" << ssq[b] <<std::endl;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  sliceNorm(residuals,B,Orthog);
 | 
					  sliceNorm(residuals,B,Orthog);
 | 
				
			||||||
  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
					  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
				
			||||||
@@ -292,9 +221,6 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
 | 
				
			|||||||
  Linop.HermOp(X, AD);
 | 
					  Linop.HermOp(X, AD);
 | 
				
			||||||
  tmp = B - AD;  
 | 
					  tmp = B - AD;  
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  sliceNorm(residuals,tmp,Orthog);
 | 
					 | 
				
			||||||
  for(int b=0;b<Nblock;b++) std::cout << "res["<<b<<"]" << residuals[b] <<std::endl;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
 | 
					  ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
 | 
				
			||||||
  D=Q;
 | 
					  D=Q;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -310,8 +236,6 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
 | 
				
			|||||||
  GridStopWatch SolverTimer;
 | 
					  GridStopWatch SolverTimer;
 | 
				
			||||||
  SolverTimer.Start();
 | 
					  SolverTimer.Start();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  RealD max_resid=0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int k;
 | 
					  int k;
 | 
				
			||||||
  for (k = 1; k <= MaxIterations; k++) {
 | 
					  for (k = 1; k <= MaxIterations; k++) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -356,7 +280,7 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
 | 
				
			|||||||
     */
 | 
					     */
 | 
				
			||||||
    m_rr = m_C.adjoint() * m_C;
 | 
					    m_rr = m_C.adjoint() * m_C;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    max_resid=0;
 | 
					    RealD max_resid=0;
 | 
				
			||||||
    RealD rrsum=0;
 | 
					    RealD rrsum=0;
 | 
				
			||||||
    RealD rr;
 | 
					    RealD rr;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -398,9 +322,7 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					  std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge" << std::endl;
 | 
				
			||||||
  std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge "<<k<<" / "<<MaxIterations
 | 
					 | 
				
			||||||
	    <<" residual "<< std::sqrt(max_resid)<< std::endl;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  if (ErrorOnNoConverge) assert(0);
 | 
					  if (ErrorOnNoConverge) assert(0);
 | 
				
			||||||
  IterationsToComplete = k;
 | 
					  IterationsToComplete = k;
 | 
				
			||||||
@@ -544,6 +466,43 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &
 | 
				
			|||||||
  IterationsToComplete = k;
 | 
					  IterationsToComplete = k;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){
 | 
				
			||||||
 | 
					  for(int b=0;b<Nblock;b++){
 | 
				
			||||||
 | 
					  for(int bp=0;bp<Nblock;bp++) {
 | 
				
			||||||
 | 
					    m(b,bp) = innerProduct(X[b],Y[bp]);  
 | 
				
			||||||
 | 
					  }}
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){
 | 
				
			||||||
 | 
					  // Should make this cache friendly with site outermost, parallel_for
 | 
				
			||||||
 | 
					  // Deal with case AP aliases with either Y or X
 | 
				
			||||||
 | 
					  std::vector<Field> tmp(Nblock,X[0]);
 | 
				
			||||||
 | 
					  for(int b=0;b<Nblock;b++){
 | 
				
			||||||
 | 
					    tmp[b]   = Y[b];
 | 
				
			||||||
 | 
					    for(int bp=0;bp<Nblock;bp++) {
 | 
				
			||||||
 | 
					      tmp[b] = tmp[b] + scomplex(scale*m(bp,b))*X[bp]; 
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  for(int b=0;b<Nblock;b++){
 | 
				
			||||||
 | 
					    AP[b] = tmp[b];
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){
 | 
				
			||||||
 | 
					  // Should make this cache friendly with site outermost, parallel_for
 | 
				
			||||||
 | 
					  for(int b=0;b<Nblock;b++){
 | 
				
			||||||
 | 
					    AP[b] = Zero();
 | 
				
			||||||
 | 
					    for(int bp=0;bp<Nblock;bp++) {
 | 
				
			||||||
 | 
					      AP[b] += scomplex(m(bp,b))*X[bp]; 
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					double normv(const std::vector<Field> &P){
 | 
				
			||||||
 | 
					  double nn = 0.0;
 | 
				
			||||||
 | 
					  for(int b=0;b<Nblock;b++) {
 | 
				
			||||||
 | 
					    nn+=norm2(P[b]);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  return nn;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
////////////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
// BlockCGrQvec implementation:
 | 
					// BlockCGrQvec implementation:
 | 
				
			||||||
//--------------------------
 | 
					//--------------------------
 | 
				
			||||||
@@ -590,7 +549,6 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  RealD sssum=0;
 | 
					  RealD sssum=0;
 | 
				
			||||||
  for(int b=0;b<Nblock;b++){ ssq[b] = norm2(B[b]);}
 | 
					  for(int b=0;b<Nblock;b++){ ssq[b] = norm2(B[b]);}
 | 
				
			||||||
  for(int b=0;b<Nblock;b++){ std::cout << "ssq["<<b<<"] "<<ssq[b]<<std::endl;}
 | 
					 | 
				
			||||||
  for(int b=0;b<Nblock;b++) sssum+=ssq[b];
 | 
					  for(int b=0;b<Nblock;b++) sssum+=ssq[b];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  for(int b=0;b<Nblock;b++){ residuals[b] = norm2(B[b]);}
 | 
					  for(int b=0;b<Nblock;b++){ residuals[b] = norm2(B[b]);}
 | 
				
			||||||
@@ -627,7 +585,6 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
 | 
				
			|||||||
  for(int b=0;b<Nblock;b++) {
 | 
					  for(int b=0;b<Nblock;b++) {
 | 
				
			||||||
    Linop.HermOp(X[b], AD[b]);
 | 
					    Linop.HermOp(X[b], AD[b]);
 | 
				
			||||||
    tmp[b] = B[b] - AD[b];  
 | 
					    tmp[b] = B[b] - AD[b];  
 | 
				
			||||||
    std::cout << "r0["<<b<<"] "<<norm2(tmp[b])<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
 | 
					  ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -38,7 +38,6 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
// single input vec, single output vec.
 | 
					// single input vec, single output vec.
 | 
				
			||||||
/////////////////////////////////////////////////////////////
 | 
					/////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
template <class Field>
 | 
					template <class Field>
 | 
				
			||||||
class ConjugateGradient : public OperatorFunction<Field> {
 | 
					class ConjugateGradient : public OperatorFunction<Field> {
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
@@ -55,26 +54,11 @@ public:
 | 
				
			|||||||
  ConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
 | 
					  ConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
 | 
				
			||||||
    : Tolerance(tol),
 | 
					    : Tolerance(tol),
 | 
				
			||||||
      MaxIterations(maxit),
 | 
					      MaxIterations(maxit),
 | 
				
			||||||
      ErrorOnNoConverge(err_on_no_conv)
 | 
					      ErrorOnNoConverge(err_on_no_conv){};
 | 
				
			||||||
  {};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void LogIteration(int k,RealD a,RealD b){
 | 
					 | 
				
			||||||
    //    std::cout << "ConjugageGradient::LogIteration() "<<std::endl;
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  virtual void LogBegin(void){
 | 
					 | 
				
			||||||
    std::cout << "ConjugageGradient::LogBegin() "<<std::endl;
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
 | 
					  void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      this->LogBegin();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GRID_TRACE("ConjugateGradient");
 | 
					    GRID_TRACE("ConjugateGradient");
 | 
				
			||||||
    GridStopWatch PreambleTimer;
 | 
					 | 
				
			||||||
    GridStopWatch ConstructTimer;
 | 
					 | 
				
			||||||
    GridStopWatch NormTimer;
 | 
					 | 
				
			||||||
    GridStopWatch AssignTimer;
 | 
					 | 
				
			||||||
    PreambleTimer.Start();
 | 
					 | 
				
			||||||
    psi.Checkerboard() = src.Checkerboard();
 | 
					    psi.Checkerboard() = src.Checkerboard();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    conformable(psi, src);
 | 
					    conformable(psi, src);
 | 
				
			||||||
@@ -82,32 +66,22 @@ public:
 | 
				
			|||||||
    RealD cp, c, a, d, b, ssq, qq;
 | 
					    RealD cp, c, a, d, b, ssq, qq;
 | 
				
			||||||
    //RealD b_pred;
 | 
					    //RealD b_pred;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // Was doing copies
 | 
					    Field p(src);
 | 
				
			||||||
    ConstructTimer.Start();
 | 
					    Field mmp(src);
 | 
				
			||||||
    Field p  (src.Grid());
 | 
					    Field r(src);
 | 
				
			||||||
    Field mmp(src.Grid());
 | 
					 | 
				
			||||||
    Field r  (src.Grid());
 | 
					 | 
				
			||||||
    ConstructTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // Initial residual computation & set up
 | 
					    // Initial residual computation & set up
 | 
				
			||||||
    NormTimer.Start();
 | 
					 | 
				
			||||||
    ssq = norm2(src);
 | 
					 | 
				
			||||||
    RealD guess = norm2(psi);
 | 
					    RealD guess = norm2(psi);
 | 
				
			||||||
    NormTimer.Stop();
 | 
					 | 
				
			||||||
    assert(std::isnan(guess) == 0);
 | 
					    assert(std::isnan(guess) == 0);
 | 
				
			||||||
    AssignTimer.Start();
 | 
					    
 | 
				
			||||||
    if ( guess == 0.0 ) {
 | 
					 | 
				
			||||||
      r = src;
 | 
					 | 
				
			||||||
      p = r;
 | 
					 | 
				
			||||||
      a = ssq;
 | 
					 | 
				
			||||||
    } else { 
 | 
					 | 
				
			||||||
    Linop.HermOpAndNorm(psi, mmp, d, b);
 | 
					    Linop.HermOpAndNorm(psi, mmp, d, b);
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
    r = src - mmp;
 | 
					    r = src - mmp;
 | 
				
			||||||
    p = r;
 | 
					    p = r;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    a = norm2(p);
 | 
					    a = norm2(p);
 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    cp = a;
 | 
					    cp = a;
 | 
				
			||||||
    AssignTimer.Stop();
 | 
					    ssq = norm2(src);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // Handle trivial case of zero src
 | 
					    // Handle trivial case of zero src
 | 
				
			||||||
    if (ssq == 0.){
 | 
					    if (ssq == 0.){
 | 
				
			||||||
@@ -137,7 +111,6 @@ public:
 | 
				
			|||||||
    std::cout << GridLogIterative << std::setprecision(8)
 | 
					    std::cout << GridLogIterative << std::setprecision(8)
 | 
				
			||||||
              << "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
 | 
					              << "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    PreambleTimer.Stop();
 | 
					 | 
				
			||||||
    GridStopWatch LinalgTimer;
 | 
					    GridStopWatch LinalgTimer;
 | 
				
			||||||
    GridStopWatch InnerTimer;
 | 
					    GridStopWatch InnerTimer;
 | 
				
			||||||
    GridStopWatch AxpyNormTimer;
 | 
					    GridStopWatch AxpyNormTimer;
 | 
				
			||||||
@@ -183,7 +156,6 @@ public:
 | 
				
			|||||||
      }
 | 
					      }
 | 
				
			||||||
      LinearCombTimer.Stop();
 | 
					      LinearCombTimer.Stop();
 | 
				
			||||||
      LinalgTimer.Stop();
 | 
					      LinalgTimer.Stop();
 | 
				
			||||||
      LogIteration(k,a,b);
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
      IterationTimer.Stop();
 | 
					      IterationTimer.Stop();
 | 
				
			||||||
      if ( (k % 500) == 0 ) {
 | 
					      if ( (k % 500) == 0 ) {
 | 
				
			||||||
@@ -211,14 +183,13 @@ public:
 | 
				
			|||||||
		  << "\tTrue residual " << true_residual
 | 
							  << "\tTrue residual " << true_residual
 | 
				
			||||||
		  << "\tTarget " << Tolerance << std::endl;
 | 
							  << "\tTarget " << Tolerance << std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	//	std::cout << GridLogMessage << "\tPreamble   " << PreambleTimer.Elapsed() <<std::endl;
 | 
					        std::cout << GridLogMessage << "Time breakdown "<<std::endl;
 | 
				
			||||||
	std::cout << GridLogMessage << "\tSolver Elapsed    " << SolverTimer.Elapsed() <<std::endl;
 | 
						std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed() <<std::endl;
 | 
				
			||||||
        std::cout << GridLogPerformance << "Time breakdown "<<std::endl;
 | 
						std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
				
			||||||
	std::cout << GridLogPerformance << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
						std::cout << GridLogMessage << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
				
			||||||
	std::cout << GridLogPerformance << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
						std::cout << GridLogMessage << "\tInner      " << InnerTimer.Elapsed() <<std::endl;
 | 
				
			||||||
	std::cout << GridLogPerformance << "\t\tInner      " << InnerTimer.Elapsed() <<std::endl;
 | 
						std::cout << GridLogMessage << "\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl;
 | 
				
			||||||
	std::cout << GridLogPerformance << "\t\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl;
 | 
						std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
 | 
				
			||||||
	std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
	std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl;
 | 
						std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -231,143 +202,17 @@ public:
 | 
				
			|||||||
      }
 | 
					      }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    // Failed. Calculate true residual before giving up                                                         
 | 
					    // Failed. Calculate true residual before giving up                                                         
 | 
				
			||||||
    // Linop.HermOpAndNorm(psi, mmp, d, qq);
 | 
					    Linop.HermOpAndNorm(psi, mmp, d, qq);
 | 
				
			||||||
    //    p = mmp - src;
 | 
					    p = mmp - src;
 | 
				
			||||||
    //TrueResidual = sqrt(norm2(p)/ssq);
 | 
					 | 
				
			||||||
    //    TrueResidual = 1;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations
 | 
					    TrueResidual = sqrt(norm2(p)/ssq);
 | 
				
			||||||
    	      <<" residual "<< std::sqrt(cp / ssq)<< std::endl;
 | 
					
 | 
				
			||||||
    SolverTimer.Stop();
 | 
					    std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations<< std::endl;
 | 
				
			||||||
    std::cout << GridLogMessage << "\tPreamble   " << PreambleTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "\tConstruct  " << ConstructTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "\tNorm       " << NormTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "\tAssign     " << AssignTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "\tSolver     " << SolverTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "Solver breakdown "<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<< "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "\t\tInner      " << InnerTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "\t\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if (ErrorOnNoConverge) assert(0);
 | 
					    if (ErrorOnNoConverge) assert(0);
 | 
				
			||||||
    IterationsToComplete = k;
 | 
					    IterationsToComplete = k;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template <class Field>
 | 
					 | 
				
			||||||
class ConjugateGradientPolynomial : public ConjugateGradient<Field> {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  // Optionally record the CG polynomial
 | 
					 | 
				
			||||||
  std::vector<double> ak;
 | 
					 | 
				
			||||||
  std::vector<double> bk;
 | 
					 | 
				
			||||||
  std::vector<double> poly_p;
 | 
					 | 
				
			||||||
  std::vector<double> poly_r;
 | 
					 | 
				
			||||||
  std::vector<double> poly_Ap;
 | 
					 | 
				
			||||||
  std::vector<double> polynomial;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  ConjugateGradientPolynomial(RealD tol, Integer maxit, bool err_on_no_conv = true)
 | 
					 | 
				
			||||||
    : ConjugateGradient<Field>(tol,maxit,err_on_no_conv)
 | 
					 | 
				
			||||||
  { };
 | 
					 | 
				
			||||||
  void PolyHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    Field tmp(src.Grid());
 | 
					 | 
				
			||||||
    Field AtoN(src.Grid());
 | 
					 | 
				
			||||||
    AtoN = src;
 | 
					 | 
				
			||||||
    psi=AtoN*polynomial[0];
 | 
					 | 
				
			||||||
    for(int n=1;n<polynomial.size();n++){
 | 
					 | 
				
			||||||
      tmp = AtoN;
 | 
					 | 
				
			||||||
      Linop.HermOp(tmp,AtoN);
 | 
					 | 
				
			||||||
      psi = psi + polynomial[n]*AtoN;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void CGsequenceHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &x)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    Field Ap(src.Grid());
 | 
					 | 
				
			||||||
    Field r(src.Grid());
 | 
					 | 
				
			||||||
    Field p(src.Grid());
 | 
					 | 
				
			||||||
    p=src;
 | 
					 | 
				
			||||||
    r=src;
 | 
					 | 
				
			||||||
    x=Zero();
 | 
					 | 
				
			||||||
    x.Checkerboard()=src.Checkerboard();
 | 
					 | 
				
			||||||
    for(int k=0;k<ak.size();k++){
 | 
					 | 
				
			||||||
      x = x + ak[k]*p;
 | 
					 | 
				
			||||||
      Linop.HermOp(p,Ap);
 | 
					 | 
				
			||||||
      r = r - ak[k] * Ap;
 | 
					 | 
				
			||||||
      p = r + bk[k] * p;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void Solve(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    psi=Zero();
 | 
					 | 
				
			||||||
    this->operator ()(Linop,src,psi);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  virtual void LogBegin(void)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::cout << "ConjugageGradientPolynomial::LogBegin() "<<std::endl;
 | 
					 | 
				
			||||||
    ak.resize(0);
 | 
					 | 
				
			||||||
    bk.resize(0);
 | 
					 | 
				
			||||||
    polynomial.resize(0);
 | 
					 | 
				
			||||||
    poly_Ap.resize(0);
 | 
					 | 
				
			||||||
    poly_Ap.resize(0);
 | 
					 | 
				
			||||||
    poly_p.resize(1);
 | 
					 | 
				
			||||||
    poly_r.resize(1);
 | 
					 | 
				
			||||||
    poly_p[0]=1.0;
 | 
					 | 
				
			||||||
    poly_r[0]=1.0;
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  virtual void LogIteration(int k,RealD a,RealD b)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    // With zero guess,
 | 
					 | 
				
			||||||
    // p = r = src
 | 
					 | 
				
			||||||
    //
 | 
					 | 
				
			||||||
    // iterate:
 | 
					 | 
				
			||||||
    //   x =  x + a p
 | 
					 | 
				
			||||||
    //   r =  r - a A p
 | 
					 | 
				
			||||||
    //   p =  r + b p
 | 
					 | 
				
			||||||
    //
 | 
					 | 
				
			||||||
    // [0]
 | 
					 | 
				
			||||||
    // r = x
 | 
					 | 
				
			||||||
    // p = x
 | 
					 | 
				
			||||||
    // Ap=0
 | 
					 | 
				
			||||||
    //
 | 
					 | 
				
			||||||
    // [1]
 | 
					 | 
				
			||||||
    // Ap = A x + 0  ==> shift poly P right by 1 and add 0.
 | 
					 | 
				
			||||||
    // x  = x + a p  ==> add polynomials term by term 
 | 
					 | 
				
			||||||
    // r  = r - a A p  ==> add polynomials term by term
 | 
					 | 
				
			||||||
    // p  = r + b p  ==> add polynomials term by term
 | 
					 | 
				
			||||||
    //
 | 
					 | 
				
			||||||
    std::cout << "ConjugageGradientPolynomial::LogIteration() "<<k<<std::endl;
 | 
					 | 
				
			||||||
    ak.push_back(a);
 | 
					 | 
				
			||||||
    bk.push_back(b);
 | 
					 | 
				
			||||||
    //  Ap= right_shift(p)
 | 
					 | 
				
			||||||
    poly_Ap.resize(k+1);
 | 
					 | 
				
			||||||
    poly_Ap[0]=0.0;
 | 
					 | 
				
			||||||
    for(int i=0;i<k;i++){
 | 
					 | 
				
			||||||
      poly_Ap[i+1]=poly_p[i];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //  x = x + a p
 | 
					 | 
				
			||||||
    polynomial.resize(k);
 | 
					 | 
				
			||||||
    polynomial[k-1]=0.0;
 | 
					 | 
				
			||||||
    for(int i=0;i<k;i++){
 | 
					 | 
				
			||||||
      polynomial[i] = polynomial[i] + a * poly_p[i];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    //  r = r - a Ap
 | 
					 | 
				
			||||||
    //  p = r + b p
 | 
					 | 
				
			||||||
    poly_r.resize(k+1);
 | 
					 | 
				
			||||||
    poly_p.resize(k+1);
 | 
					 | 
				
			||||||
    poly_r[k] = poly_p[k] = 0.0;
 | 
					 | 
				
			||||||
    for(int i=0;i<k+1;i++){
 | 
					 | 
				
			||||||
      poly_r[i] = poly_r[i] - a * poly_Ap[i];
 | 
					 | 
				
			||||||
      poly_p[i] = poly_r[i] + b * poly_p[i];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -116,14 +116,14 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
      //Compute double precision rsd and also new RHS vector.
 | 
					      //Compute double precision rsd and also new RHS vector.
 | 
				
			||||||
      Linop_d.HermOp(sol_d, tmp_d);
 | 
					      Linop_d.HermOp(sol_d, tmp_d);
 | 
				
			||||||
      RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector
 | 
					      RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector
 | 
				
			||||||
      std::cout<<GridLogMessage<<" rsd norm "<<norm<<std::endl;
 | 
					      
 | 
				
			||||||
      std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " <<outer_iter<<" residual "<< norm<< " target "<< stop<<std::endl;
 | 
					      std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " <<outer_iter<<" residual "<< norm<< " target "<< stop<<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      if(norm < OuterLoopNormMult * stop){
 | 
					      if(norm < OuterLoopNormMult * stop){
 | 
				
			||||||
	std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration converged on iteration " <<outer_iter <<std::endl;
 | 
						std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration converged on iteration " <<outer_iter <<std::endl;
 | 
				
			||||||
	break;
 | 
						break;
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
      while(norm * inner_tol * inner_tol < stop*1.01) inner_tol *= 2;  // inner_tol = sqrt(stop/norm) ??
 | 
					      while(norm * inner_tol * inner_tol < stop) inner_tol *= 2;  // inner_tol = sqrt(stop/norm) ??
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      PrecChangeTimer.Start();
 | 
					      PrecChangeTimer.Start();
 | 
				
			||||||
      precisionChange(src_f, src_d, pc_wk_dp_to_sp);
 | 
					      precisionChange(src_f, src_d, pc_wk_dp_to_sp);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -102,11 +102,11 @@ public:
 | 
				
			|||||||
    assert(mass.size()==nshift);
 | 
					    assert(mass.size()==nshift);
 | 
				
			||||||
    assert(mresidual.size()==nshift);
 | 
					    assert(mresidual.size()==nshift);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
    // remove dynamic sized arrays on stack; 2d is a pain with vector
 | 
					    // dynamic sized arrays on stack; 2d is a pain with vector
 | 
				
			||||||
    std::vector<RealD>  bs(nshift);
 | 
					    RealD  bs[nshift];
 | 
				
			||||||
    std::vector<RealD>  rsq(nshift);
 | 
					    RealD  rsq[nshift];
 | 
				
			||||||
    std::vector<std::array<RealD,2> >  z(nshift);
 | 
					    RealD  z[nshift][2];
 | 
				
			||||||
    std::vector<int>     converged(nshift);
 | 
					    int     converged[nshift];
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
    const int       primary =0;
 | 
					    const int       primary =0;
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
@@ -144,7 +144,7 @@ public:
 | 
				
			|||||||
    for(int s=0;s<nshift;s++){
 | 
					    for(int s=0;s<nshift;s++){
 | 
				
			||||||
      rsq[s] = cp * mresidual[s] * mresidual[s];
 | 
					      rsq[s] = cp * mresidual[s] * mresidual[s];
 | 
				
			||||||
      std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s
 | 
					      std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s
 | 
				
			||||||
	       <<" target resid^2 "<<rsq[s]<<std::endl;
 | 
						       <<" target resid "<<rsq[s]<<std::endl;
 | 
				
			||||||
      ps[s] = src;
 | 
					      ps[s] = src;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    // r and p for primary
 | 
					    // r and p for primary
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -123,11 +123,11 @@ public:
 | 
				
			|||||||
    assert(mresidual.size()==nshift);
 | 
					    assert(mresidual.size()==nshift);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
    // dynamic sized arrays on stack; 2d is a pain with vector
 | 
					    // dynamic sized arrays on stack; 2d is a pain with vector
 | 
				
			||||||
    std::vector<RealD>  bs(nshift);
 | 
					    RealD  bs[nshift];
 | 
				
			||||||
    std::vector<RealD>  rsq(nshift);
 | 
					    RealD  rsq[nshift];
 | 
				
			||||||
    std::vector<RealD>  rsqf(nshift);
 | 
					    RealD  rsqf[nshift];
 | 
				
			||||||
    std::vector<std::array<RealD,2> >  z(nshift);
 | 
					    RealD  z[nshift][2];
 | 
				
			||||||
    std::vector<int>     converged(nshift);
 | 
					    int     converged[nshift];
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
    const int       primary =0;
 | 
					    const int       primary =0;
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -156,11 +156,11 @@ public:
 | 
				
			|||||||
    assert(mresidual.size()==nshift);
 | 
					    assert(mresidual.size()==nshift);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
    // dynamic sized arrays on stack; 2d is a pain with vector
 | 
					    // dynamic sized arrays on stack; 2d is a pain with vector
 | 
				
			||||||
    std::vector<RealD>  bs(nshift);
 | 
					    RealD  bs[nshift];
 | 
				
			||||||
    std::vector<RealD>  rsq(nshift);
 | 
					    RealD  rsq[nshift];
 | 
				
			||||||
    std::vector<RealD>  rsqf(nshift);
 | 
					    RealD  rsqf[nshift];
 | 
				
			||||||
    std::vector<std::array<RealD,2> >  z(nshift);
 | 
					    RealD  z[nshift][2];
 | 
				
			||||||
    std::vector<int>     converged(nshift);
 | 
					    int     converged[nshift];
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
    const int       primary =0;
 | 
					    const int       primary =0;
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
 
 | 
				
			|||||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							@@ -79,16 +79,14 @@ template<class Field> class ImplicitlyRestartedLanczosHermOpTester  : public Imp
 | 
				
			|||||||
    RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
 | 
					    RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    std::cout.precision(13);
 | 
					    std::cout.precision(13);
 | 
				
			||||||
 | 
					 | 
				
			||||||
    int conv=0;
 | 
					 | 
				
			||||||
    if( (vv<eresid*eresid) ) conv = 1;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::cout<<GridLogIRL  << "[" << std::setw(3)<<j<<"] "
 | 
					    std::cout<<GridLogIRL  << "[" << std::setw(3)<<j<<"] "
 | 
				
			||||||
	     <<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
 | 
						     <<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
 | 
				
			||||||
	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
 | 
						     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
 | 
				
			||||||
	     <<" target " << eresid*eresid << " conv " <<conv
 | 
					 | 
				
			||||||
	     <<std::endl;
 | 
						     <<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    int conv=0;
 | 
				
			||||||
 | 
					    if( (vv<eresid*eresid) ) conv = 1;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    return conv;
 | 
					    return conv;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
@@ -245,10 +243,9 @@ until convergence
 | 
				
			|||||||
	_HermOp(src_n,tmp);
 | 
						_HermOp(src_n,tmp);
 | 
				
			||||||
	//	std::cout << GridLogMessage<< tmp<<std::endl; exit(0);
 | 
						//	std::cout << GridLogMessage<< tmp<<std::endl; exit(0);
 | 
				
			||||||
	//	std::cout << GridLogIRL << " _HermOp " << norm2(tmp) << std::endl;
 | 
						//	std::cout << GridLogIRL << " _HermOp " << norm2(tmp) << std::endl;
 | 
				
			||||||
//	RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
 | 
						RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
 | 
				
			||||||
	RealD vnum = real(innerProduct(tmp,tmp)); // HermOp^2.
 | 
					 | 
				
			||||||
	RealD vden = norm2(src_n);
 | 
						RealD vden = norm2(src_n);
 | 
				
			||||||
	RealD na = std::sqrt(vnum/vden);
 | 
						RealD na = vnum/vden;
 | 
				
			||||||
	if (fabs(evalMaxApprox/na - 1.0) < 0.0001)
 | 
						if (fabs(evalMaxApprox/na - 1.0) < 0.0001)
 | 
				
			||||||
	  i=_MAX_ITER_IRL_MEVAPP_;
 | 
						  i=_MAX_ITER_IRL_MEVAPP_;
 | 
				
			||||||
	evalMaxApprox = na;
 | 
						evalMaxApprox = na;
 | 
				
			||||||
@@ -256,7 +253,6 @@ until convergence
 | 
				
			|||||||
	src_n = tmp;
 | 
						src_n = tmp;
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    std::cout << GridLogIRL << " Final evalMaxApprox  " << evalMaxApprox << std::endl;
 | 
					 | 
				
			||||||
	
 | 
						
 | 
				
			||||||
    std::vector<RealD> lme(Nm);  
 | 
					    std::vector<RealD> lme(Nm);  
 | 
				
			||||||
    std::vector<RealD> lme2(Nm);
 | 
					    std::vector<RealD> lme2(Nm);
 | 
				
			||||||
@@ -423,15 +419,14 @@ until convergence
 | 
				
			|||||||
	}
 | 
						}
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      if ( Nconv < Nstop ) {
 | 
					      if ( Nconv < Nstop )
 | 
				
			||||||
	std::cout << GridLogIRL << "Nconv ("<<Nconv<<") < Nstop ("<<Nstop<<")"<<std::endl;
 | 
						std::cout << GridLogIRL << "Nconv ("<<Nconv<<") < Nstop ("<<Nstop<<")"<<std::endl;
 | 
				
			||||||
	std::cout << GridLogIRL << "returning Nstop vectors, the last "<< Nstop-Nconv << "of which might meet convergence criterion only approximately" <<std::endl;
 | 
					
 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      eval=eval2;
 | 
					      eval=eval2;
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
      //Keep only converged
 | 
					      //Keep only converged
 | 
				
			||||||
      eval.resize(Nstop);// was Nconv
 | 
					      eval.resize(Nconv);// Nstop?
 | 
				
			||||||
      evec.resize(Nstop,grid);// was Nconv
 | 
					      evec.resize(Nconv,grid);// Nstop?
 | 
				
			||||||
      basisSortInPlace(evec,eval,reverse);
 | 
					      basisSortInPlace(evec,eval,reverse);
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
@@ -461,7 +456,7 @@ until convergence
 | 
				
			|||||||
	    std::vector<Field>& evec,
 | 
						    std::vector<Field>& evec,
 | 
				
			||||||
	    Field& w,int Nm,int k)
 | 
						    Field& w,int Nm,int k)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    std::cout<<GridLogDebug << "Lanczos step " <<k<<std::endl;
 | 
					    std::cout<<GridLogIRL << "Lanczos step " <<k<<std::endl;
 | 
				
			||||||
    const RealD tiny = 1.0e-20;
 | 
					    const RealD tiny = 1.0e-20;
 | 
				
			||||||
    assert( k< Nm );
 | 
					    assert( k< Nm );
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -469,7 +464,7 @@ until convergence
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    Field& evec_k = evec[k];
 | 
					    Field& evec_k = evec[k];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    _PolyOp(evec_k,w);    std::cout<<GridLogDebug << "PolyOp" <<std::endl;
 | 
					    _PolyOp(evec_k,w);    std::cout<<GridLogIRL << "PolyOp" <<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if(k>0) w -= lme[k-1] * evec[k-1];
 | 
					    if(k>0) w -= lme[k-1] * evec[k-1];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -484,18 +479,18 @@ until convergence
 | 
				
			|||||||
    lme[k] = beta;
 | 
					    lme[k] = beta;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if ( (k>0) && ( (k % orth_period) == 0 )) {
 | 
					    if ( (k>0) && ( (k % orth_period) == 0 )) {
 | 
				
			||||||
      std::cout<<GridLogDebug << "Orthogonalising " <<k<<std::endl;
 | 
					      std::cout<<GridLogIRL << "Orthogonalising " <<k<<std::endl;
 | 
				
			||||||
      orthogonalize(w,evec,k); // orthonormalise
 | 
					      orthogonalize(w,evec,k); // orthonormalise
 | 
				
			||||||
      std::cout<<GridLogDebug << "Orthogonalised " <<k<<std::endl;
 | 
					      std::cout<<GridLogIRL << "Orthogonalised " <<k<<std::endl;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if(k < Nm-1) evec[k+1] = w;
 | 
					    if(k < Nm-1) evec[k+1] = w;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    std::cout<<GridLogIRL << "Lanczos step alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
 | 
					    std::cout<<GridLogIRL << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
 | 
				
			||||||
    if ( beta < tiny ) 
 | 
					    if ( beta < tiny ) 
 | 
				
			||||||
      std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
 | 
					      std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    std::cout<<GridLogDebug << "Lanczos step complete " <<k<<std::endl;
 | 
					    std::cout<<GridLogIRL << "Lanczos step complete " <<k<<std::endl;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme, 
 | 
					  void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme, 
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -33,7 +33,7 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
// Take a matrix and form an NE solver calling a Herm solver
 | 
					// Take a matrix and form an NE solver calling a Herm solver
 | 
				
			||||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
template<class Field> class NormalEquations : public LinearFunction<Field>{
 | 
					template<class Field> class NormalEquations {
 | 
				
			||||||
private:
 | 
					private:
 | 
				
			||||||
  SparseMatrixBase<Field> & _Matrix;
 | 
					  SparseMatrixBase<Field> & _Matrix;
 | 
				
			||||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
					  OperatorFunction<Field> & _HermitianSolver;
 | 
				
			||||||
@@ -60,33 +60,7 @@ public:
 | 
				
			|||||||
  }     
 | 
					  }     
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class Field> class NormalResidual : public LinearFunction<Field>{
 | 
					template<class Field> class HPDSolver {
 | 
				
			||||||
private:
 | 
					 | 
				
			||||||
  SparseMatrixBase<Field> & _Matrix;
 | 
					 | 
				
			||||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
					 | 
				
			||||||
  LinearFunction<Field>   & _Guess;
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // Wrap the usual normal equations trick
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
 NormalResidual(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver,
 | 
					 | 
				
			||||||
		 LinearFunction<Field> &Guess) 
 | 
					 | 
				
			||||||
   :  _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {}; 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void operator() (const Field &in, Field &out){
 | 
					 | 
				
			||||||
 
 | 
					 | 
				
			||||||
    Field res(in.Grid());
 | 
					 | 
				
			||||||
    Field tmp(in.Grid());
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    MMdagLinearOperator<SparseMatrixBase<Field>,Field> MMdagOp(_Matrix);
 | 
					 | 
				
			||||||
    _Guess(in,res);
 | 
					 | 
				
			||||||
    _HermitianSolver(MMdagOp,in,res);  // M Mdag res = in ;
 | 
					 | 
				
			||||||
    _Matrix.Mdag(res,out);             // out = Mdag res
 | 
					 | 
				
			||||||
  }     
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class Field> class HPDSolver : public LinearFunction<Field> {
 | 
					 | 
				
			||||||
private:
 | 
					private:
 | 
				
			||||||
  LinearOperatorBase<Field> & _Matrix;
 | 
					  LinearOperatorBase<Field> & _Matrix;
 | 
				
			||||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
					  OperatorFunction<Field> & _HermitianSolver;
 | 
				
			||||||
@@ -104,13 +78,13 @@ public:
 | 
				
			|||||||
  void operator() (const Field &in, Field &out){
 | 
					  void operator() (const Field &in, Field &out){
 | 
				
			||||||
 
 | 
					 
 | 
				
			||||||
    _Guess(in,out);
 | 
					    _Guess(in,out);
 | 
				
			||||||
    _HermitianSolver(_Matrix,in,out);  //M out = in
 | 
					    _HermitianSolver(_Matrix,in,out);  // Mdag M out = Mdag in
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  }     
 | 
					  }     
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class Field> class MdagMSolver : public LinearFunction<Field> {
 | 
					template<class Field> class MdagMSolver {
 | 
				
			||||||
private:
 | 
					private:
 | 
				
			||||||
  SparseMatrixBase<Field> & _Matrix;
 | 
					  SparseMatrixBase<Field> & _Matrix;
 | 
				
			||||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
					  OperatorFunction<Field> & _HermitianSolver;
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -20,7 +20,7 @@ template<class Field> class PowerMethod
 | 
				
			|||||||
    RealD evalMaxApprox = 0.0; 
 | 
					    RealD evalMaxApprox = 0.0; 
 | 
				
			||||||
    auto src_n = src; 
 | 
					    auto src_n = src; 
 | 
				
			||||||
    auto tmp = src; 
 | 
					    auto tmp = src; 
 | 
				
			||||||
    const int _MAX_ITER_EST_ = 200; 
 | 
					    const int _MAX_ITER_EST_ = 50; 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    for (int i=0;i<_MAX_ITER_EST_;i++) { 
 | 
					    for (int i=0;i<_MAX_ITER_EST_;i++) { 
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
@@ -30,17 +30,18 @@ template<class Field> class PowerMethod
 | 
				
			|||||||
      RealD vden = norm2(src_n); 
 | 
					      RealD vden = norm2(src_n); 
 | 
				
			||||||
      RealD na = vnum/vden; 
 | 
					      RealD na = vnum/vden; 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      std::cout << GridLogMessage << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
 | 
					      std::cout << GridLogIterative << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
      //      if ( (fabs(evalMaxApprox/na - 1.0) < 0.0001) || (i==_MAX_ITER_EST_-1) ) { 
 | 
					      if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) { 
 | 
				
			||||||
	// 	evalMaxApprox = na; 
 | 
					 | 
				
			||||||
	// 	return evalMaxApprox; 
 | 
					 | 
				
			||||||
      //      } 
 | 
					 | 
				
			||||||
 	evalMaxApprox = na; 
 | 
					 	evalMaxApprox = na; 
 | 
				
			||||||
      src_n = tmp;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
 | 
						std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
 | 
				
			||||||
 	return evalMaxApprox; 
 | 
					 	return evalMaxApprox; 
 | 
				
			||||||
      } 
 | 
					      } 
 | 
				
			||||||
 | 
					      evalMaxApprox = na; 
 | 
				
			||||||
 | 
					      src_n = tmp;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    assert(0);
 | 
				
			||||||
 | 
					    return 0;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,76 +0,0 @@
 | 
				
			|||||||
#pragma once
 | 
					 | 
				
			||||||
namespace Grid {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
class Band
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  RealD lo, hi;
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  Band(RealD _lo,RealD _hi)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    lo=_lo;
 | 
					 | 
				
			||||||
    hi=_hi;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  RealD operator() (RealD x){
 | 
					 | 
				
			||||||
    if ( x>lo && x<hi ){
 | 
					 | 
				
			||||||
      return 1.0;
 | 
					 | 
				
			||||||
    } else {
 | 
					 | 
				
			||||||
      return 0.0;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
class PowerSpectrum
 | 
					 | 
				
			||||||
{ 
 | 
					 | 
				
			||||||
 public: 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  template<typename T>  static RealD normalise(T& v) 
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    RealD nn = norm2(v);
 | 
					 | 
				
			||||||
    nn = sqrt(nn);
 | 
					 | 
				
			||||||
    v = v * (1.0/nn);
 | 
					 | 
				
			||||||
    return nn;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  std::vector<RealD> ranges;
 | 
					 | 
				
			||||||
  std::vector<int> order;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  PowerSpectrum(  std::vector<RealD> &bins, std::vector<int> &_order ) : ranges(bins), order(_order)  { };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  template<class Field>
 | 
					 | 
				
			||||||
  RealD operator()(LinearOperatorBase<Field> &HermOp, const Field &src) 
 | 
					 | 
				
			||||||
  { 
 | 
					 | 
				
			||||||
    GridBase *grid = src.Grid(); 
 | 
					 | 
				
			||||||
    int N=ranges.size();
 | 
					 | 
				
			||||||
    RealD hi = ranges[N-1];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD lo_band = 0.0;
 | 
					 | 
				
			||||||
    RealD hi_band;
 | 
					 | 
				
			||||||
    RealD nn=norm2(src);
 | 
					 | 
				
			||||||
    RealD ss=0.0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Field tmp = src;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int b=0;b<N;b++){
 | 
					 | 
				
			||||||
      hi_band = ranges[b];
 | 
					 | 
				
			||||||
      Band Notch(lo_band,hi_band);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      Chebyshev<Field> polynomial;
 | 
					 | 
				
			||||||
      polynomial.Init(0.0,hi,order[b],Notch);
 | 
					 | 
				
			||||||
      polynomial.JacksonSmooth();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      polynomial(HermOp,src,tmp) ;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      RealD p=norm2(tmp);
 | 
					 | 
				
			||||||
      ss=ss+p;
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage << " PowerSpectrum Band["<<lo_band<<","<<hi_band<<"] power "<<norm2(tmp)/nn<<std::endl;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      lo_band=hi_band;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << " PowerSpectrum total power "<<ss/nn<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << " PowerSpectrum total power (unnormalised) "<<nn<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    return 0;
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
@@ -74,7 +74,7 @@ public:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  void operator() (const Field &src, Field &psi){
 | 
					  void operator() (const Field &src, Field &psi){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    //    psi=Zero();
 | 
					    psi=Zero();
 | 
				
			||||||
    RealD cp, ssq,rsq;
 | 
					    RealD cp, ssq,rsq;
 | 
				
			||||||
    ssq=norm2(src);
 | 
					    ssq=norm2(src);
 | 
				
			||||||
    rsq=Tolerance*Tolerance*ssq;
 | 
					    rsq=Tolerance*Tolerance*ssq;
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -499,87 +499,6 @@ namespace Grid {
 | 
				
			|||||||
      }
 | 
					      }
 | 
				
			||||||
  };
 | 
					  };
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // Site diagonal is identity, left preconditioned by Mee^inv
 | 
					 | 
				
			||||||
  // ( 1 - Mee^inv Meo Moo^inv Moe ) phi = Mee_inv ( Mee - Meo Moo^inv Moe Mee^inv  ) phi =  Mee_inv eta
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Solve:
 | 
					 | 
				
			||||||
  // ( 1 - Mee^inv Meo Moo^inv Moe )^dag ( 1 - Mee^inv Meo Moo^inv Moe ) phi = ( 1 - Mee^inv Meo Moo^inv Moe )^dag  Mee_inv eta
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Old notation e<->o
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Left precon by Moo^-1
 | 
					 | 
				
			||||||
  //  b) (Doo^{dag} M_oo^-dag) (Moo^-1 Doo) psi_o =  [ (D_oo)^dag M_oo^-dag ] Moo^-1 L^{-1}  eta_o
 | 
					 | 
				
			||||||
  //                                   eta_o'     = (D_oo)^dag  M_oo^-dag Moo^-1 (eta_o - Moe Mee^{-1} eta_e)
 | 
					 | 
				
			||||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  template<class Field> class SchurRedBlackDiagOneSolve : public SchurRedBlackBase<Field> {
 | 
					 | 
				
			||||||
  public:
 | 
					 | 
				
			||||||
    typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Wrap the usual normal equations Schur trick
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  SchurRedBlackDiagOneSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
 | 
					 | 
				
			||||||
      const bool _solnAsInitGuess = false)  
 | 
					 | 
				
			||||||
    : SchurRedBlackBase<Field>(HermitianRBSolver,initSubGuess,_solnAsInitGuess) {};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
					 | 
				
			||||||
      GridBase *fgrid= _Matrix.Grid();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      Field   tmp(grid);
 | 
					 | 
				
			||||||
      Field  Mtmp(grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      pickCheckerboard(Even,src_e,src);
 | 
					 | 
				
			||||||
      pickCheckerboard(Odd ,src_o,src);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
      /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
      // src_o = Mpcdag *MooeeInv * (source_o - Moe MeeInv source_e)
 | 
					 | 
				
			||||||
      /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
      _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.Checkerboard() ==Even);
 | 
					 | 
				
			||||||
      _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.Checkerboard() ==Odd);     
 | 
					 | 
				
			||||||
      Mtmp=src_o-Mtmp;                 
 | 
					 | 
				
			||||||
      _Matrix.MooeeInv(Mtmp,tmp);      assert( tmp.Checkerboard() ==Odd);     
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      // get the right MpcDag
 | 
					 | 
				
			||||||
      _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.Checkerboard() ==Odd);       
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
					 | 
				
			||||||
      GridBase *fgrid= _Matrix.Grid();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      Field   tmp(grid);
 | 
					 | 
				
			||||||
      Field   sol_e(grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      ///////////////////////////////////////////////////
 | 
					 | 
				
			||||||
      // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
					 | 
				
			||||||
      ///////////////////////////////////////////////////
 | 
					 | 
				
			||||||
      _Matrix.Meooe(sol_o,tmp);    assert(  tmp.Checkerboard()   ==Even);
 | 
					 | 
				
			||||||
      tmp = src_e-tmp;             assert(  src_e.Checkerboard() ==Even);
 | 
					 | 
				
			||||||
      _Matrix.MooeeInv(tmp,sol_e); assert(  sol_e.Checkerboard() ==Even);
 | 
					 | 
				
			||||||
     
 | 
					 | 
				
			||||||
      setCheckerboard(sol,sol_e);  assert(  sol_e.Checkerboard() ==Even);
 | 
					 | 
				
			||||||
      setCheckerboard(sol,sol_o);  assert(  sol_o.Checkerboard() ==Odd );
 | 
					 | 
				
			||||||
    };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
					 | 
				
			||||||
      this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
 | 
					 | 
				
			||||||
    };
 | 
					 | 
				
			||||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
					 | 
				
			||||||
      this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); 
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Site diagonal is identity, right preconditioned by Mee^inv
 | 
					  // Site diagonal is identity, right preconditioned by Mee^inv
 | 
				
			||||||
  // ( 1 - Meo Moo^inv Moe Mee^inv  ) phi =( 1 - Meo Moo^inv Moe Mee^inv  ) Mee psi =  = eta  = eta
 | 
					  // ( 1 - Meo Moo^inv Moe Mee^inv  ) phi =( 1 - Meo Moo^inv Moe Mee^inv  ) Mee psi =  = eta  = eta
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,931 +0,0 @@
 | 
				
			|||||||
    /*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: ./lib/algorithms/iterative/ImplicitlyRestartedLanczos.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2015
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Chulwoo Jung <chulwoo@bnl.gov>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
    *************************************************************************************/
 | 
					 | 
				
			||||||
    /*  END LEGAL */
 | 
					 | 
				
			||||||
#ifndef GRID_LANC_H
 | 
					 | 
				
			||||||
#define GRID_LANC_H
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#include <string.h>		//memset
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#ifdef USE_LAPACK
 | 
					 | 
				
			||||||
#ifdef USE_MKL
 | 
					 | 
				
			||||||
#include<mkl_lapack.h>
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
void LAPACK_dstegr (char *jobz, char *range, int *n, double *d, double *e,
 | 
					 | 
				
			||||||
		    double *vl, double *vu, int *il, int *iu, double *abstol,
 | 
					 | 
				
			||||||
		    int *m, double *w, double *z, int *ldz, int *isuppz,
 | 
					 | 
				
			||||||
		    double *work, int *lwork, int *iwork, int *liwork,
 | 
					 | 
				
			||||||
		    int *info);
 | 
					 | 
				
			||||||
//#include <lapacke/lapacke.h>
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
//#include <Grid/algorithms/densematrix/DenseMatrix.h>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
// eliminate temorary vector in calc()
 | 
					 | 
				
			||||||
#define MEM_SAVE
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
namespace Grid
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  struct Bisection
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#if 0
 | 
					 | 
				
			||||||
    static void get_eig2 (int row_num, std::vector < RealD > &ALPHA,
 | 
					 | 
				
			||||||
			  std::vector < RealD > &BETA,
 | 
					 | 
				
			||||||
			  std::vector < RealD > &eig)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      int i, j;
 | 
					 | 
				
			||||||
        std::vector < RealD > evec1 (row_num + 3);
 | 
					 | 
				
			||||||
        std::vector < RealD > evec2 (row_num + 3);
 | 
					 | 
				
			||||||
      RealD eps2;
 | 
					 | 
				
			||||||
        ALPHA[1] = 0.;
 | 
					 | 
				
			||||||
        BETHA[1] = 0.;
 | 
					 | 
				
			||||||
      for (i = 0; i < row_num - 1; i++)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  ALPHA[i + 1] = A[i * (row_num + 1)].real ();
 | 
					 | 
				
			||||||
	  BETHA[i + 2] = A[i * (row_num + 1) + 1].real ();
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      ALPHA[row_num] = A[(row_num - 1) * (row_num + 1)].real ();
 | 
					 | 
				
			||||||
        bisec (ALPHA, BETHA, row_num, 1, row_num, 1e-10, 1e-10, evec1, eps2);
 | 
					 | 
				
			||||||
        bisec (ALPHA, BETHA, row_num, 1, row_num, 1e-16, 1e-16, evec2, eps2);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Do we really need to sort here?
 | 
					 | 
				
			||||||
      int begin = 1;
 | 
					 | 
				
			||||||
      int end = row_num;
 | 
					 | 
				
			||||||
      int swapped = 1;
 | 
					 | 
				
			||||||
      while (swapped)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  swapped = 0;
 | 
					 | 
				
			||||||
	  for (i = begin; i < end; i++)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      if (mag (evec2[i]) > mag (evec2[i + 1]))
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  swap (evec2 + i, evec2 + i + 1);
 | 
					 | 
				
			||||||
		  swapped = 1;
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	  end--;
 | 
					 | 
				
			||||||
	  for (i = end - 1; i >= begin; i--)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      if (mag (evec2[i]) > mag (evec2[i + 1]))
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  swap (evec2 + i, evec2 + i + 1);
 | 
					 | 
				
			||||||
		  swapped = 1;
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	  begin++;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for (i = 0; i < row_num; i++)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  for (j = 0; j < row_num; j++)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      if (i == j)
 | 
					 | 
				
			||||||
		H[i * row_num + j] = evec2[i + 1];
 | 
					 | 
				
			||||||
	      else
 | 
					 | 
				
			||||||
		H[i * row_num + j] = 0.;
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    static void bisec (std::vector < RealD > &c,
 | 
					 | 
				
			||||||
		       std::vector < RealD > &b,
 | 
					 | 
				
			||||||
		       int n,
 | 
					 | 
				
			||||||
		       int m1,
 | 
					 | 
				
			||||||
		       int m2,
 | 
					 | 
				
			||||||
		       RealD eps1,
 | 
					 | 
				
			||||||
		       RealD relfeh, std::vector < RealD > &x, RealD & eps2)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      std::vector < RealD > wu (n + 2);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      RealD h, q, x1, xu, x0, xmin, xmax;
 | 
					 | 
				
			||||||
      int i, a, k;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      b[1] = 0.0;
 | 
					 | 
				
			||||||
      xmin = c[n] - fabs (b[n]);
 | 
					 | 
				
			||||||
      xmax = c[n] + fabs (b[n]);
 | 
					 | 
				
			||||||
      for (i = 1; i < n; i++)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  h = fabs (b[i]) + fabs (b[i + 1]);
 | 
					 | 
				
			||||||
	  if (c[i] + h > xmax)
 | 
					 | 
				
			||||||
	    xmax = c[i] + h;
 | 
					 | 
				
			||||||
	  if (c[i] - h < xmin)
 | 
					 | 
				
			||||||
	    xmin = c[i] - h;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      xmax *= 2.;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      eps2 = relfeh * ((xmin + xmax) > 0.0 ? xmax : -xmin);
 | 
					 | 
				
			||||||
      if (eps1 <= 0.0)
 | 
					 | 
				
			||||||
	eps1 = eps2;
 | 
					 | 
				
			||||||
      eps2 = 0.5 * eps1 + 7.0 * (eps2);
 | 
					 | 
				
			||||||
      x0 = xmax;
 | 
					 | 
				
			||||||
      for (i = m1; i <= m2; i++)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  x[i] = xmax;
 | 
					 | 
				
			||||||
	  wu[i] = xmin;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for (k = m2; k >= m1; k--)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  xu = xmin;
 | 
					 | 
				
			||||||
	  i = k;
 | 
					 | 
				
			||||||
	  do
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      if (xu < wu[i])
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  xu = wu[i];
 | 
					 | 
				
			||||||
		  i = m1 - 1;
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
	      i--;
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	  while (i >= m1);
 | 
					 | 
				
			||||||
	  if (x0 > x[k])
 | 
					 | 
				
			||||||
	    x0 = x[k];
 | 
					 | 
				
			||||||
	  while ((x0 - xu) > 2 * relfeh * (fabs (xu) + fabs (x0)) + eps1)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      x1 = (xu + x0) / 2;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	      a = 0;
 | 
					 | 
				
			||||||
	      q = 1.0;
 | 
					 | 
				
			||||||
	      for (i = 1; i <= n; i++)
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  q =
 | 
					 | 
				
			||||||
		    c[i] - x1 -
 | 
					 | 
				
			||||||
		    ((q != 0.0) ? b[i] * b[i] / q : fabs (b[i]) / relfeh);
 | 
					 | 
				
			||||||
		  if (q < 0)
 | 
					 | 
				
			||||||
		    a++;
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
//      printf("x1=%0.14e a=%d\n",x1,a);
 | 
					 | 
				
			||||||
	      if (a < k)
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  if (a < m1)
 | 
					 | 
				
			||||||
		    {
 | 
					 | 
				
			||||||
		      xu = x1;
 | 
					 | 
				
			||||||
		      wu[m1] = x1;
 | 
					 | 
				
			||||||
		    }
 | 
					 | 
				
			||||||
		  else
 | 
					 | 
				
			||||||
		    {
 | 
					 | 
				
			||||||
		      xu = x1;
 | 
					 | 
				
			||||||
		      wu[a + 1] = x1;
 | 
					 | 
				
			||||||
		      if (x[a] > x1)
 | 
					 | 
				
			||||||
			x[a] = x1;
 | 
					 | 
				
			||||||
		    }
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
	      else
 | 
					 | 
				
			||||||
		x0 = x1;
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	  printf ("x0=%0.14e xu=%0.14e k=%d\n", x0, xu, k);
 | 
					 | 
				
			||||||
	  x[k] = (x0 + xu) / 2;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
// Implicitly restarted lanczos
 | 
					 | 
				
			||||||
/////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  template < class Field > class SimpleLanczos
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    const RealD small = 1.0e-16;
 | 
					 | 
				
			||||||
  public:
 | 
					 | 
				
			||||||
    int lock;
 | 
					 | 
				
			||||||
    int get;
 | 
					 | 
				
			||||||
    int Niter;
 | 
					 | 
				
			||||||
    int converged;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int Nstop;			// Number of evecs checked for convergence
 | 
					 | 
				
			||||||
    int Nk;			// Number of converged sought
 | 
					 | 
				
			||||||
    int Np;			// Np -- Number of spare vecs in kryloc space
 | 
					 | 
				
			||||||
    int Nm;			// Nm -- total number of vectors
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD OrthoTime;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD eresid;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
//    SortEigen < Field > _sort;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    LinearFunction < Field > &_Linop;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
//    OperatorFunction < Field > &_poly;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////
 | 
					 | 
				
			||||||
    // Constructor
 | 
					 | 
				
			||||||
    /////////////////////////
 | 
					 | 
				
			||||||
    void init (void)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
    };
 | 
					 | 
				
			||||||
//    void Abort (int ff, std::vector < RealD > &evals, DenseVector < Denstd::vector  < RealD > >&evecs);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    SimpleLanczos (LinearFunction < Field > &Linop,	// op
 | 
					 | 
				
			||||||
//		   OperatorFunction < Field > &poly,	// polynmial
 | 
					 | 
				
			||||||
		   int _Nstop,	// sought vecs
 | 
					 | 
				
			||||||
		   int _Nk,	// sought vecs
 | 
					 | 
				
			||||||
		   int _Nm,	// spare vecs
 | 
					 | 
				
			||||||
		   RealD _eresid,	// resid in lmdue deficit 
 | 
					 | 
				
			||||||
		   int _Niter):	// Max iterations
 | 
					 | 
				
			||||||
     
 | 
					 | 
				
			||||||
      _Linop (Linop),
 | 
					 | 
				
			||||||
 //     _poly (poly),
 | 
					 | 
				
			||||||
      Nstop (_Nstop), Nk (_Nk), Nm (_Nm), eresid (_eresid), Niter (_Niter)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      Np = Nm - Nk;
 | 
					 | 
				
			||||||
      assert (Np > 0);
 | 
					 | 
				
			||||||
    };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////
 | 
					 | 
				
			||||||
    // Sanity checked this routine (step) against Saad.
 | 
					 | 
				
			||||||
    /////////////////////////
 | 
					 | 
				
			||||||
    void RitzMatrix (std::vector < Field > &evec, int k)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      if (1)
 | 
					 | 
				
			||||||
	return;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      GridBase *grid = evec[0].Grid();
 | 
					 | 
				
			||||||
      Field w (grid);
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage << "RitzMatrix " << std::endl;
 | 
					 | 
				
			||||||
      for (int i = 0; i < k; i++)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  _Linop(evec[i], w);
 | 
					 | 
				
			||||||
//      _poly(_Linop,evec[i],w);
 | 
					 | 
				
			||||||
	  std::cout << GridLogMessage << "[" << i << "] ";
 | 
					 | 
				
			||||||
	  for (int j = 0; j < k; j++)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      ComplexD in = innerProduct (evec[j], w);
 | 
					 | 
				
			||||||
	      if (fabs ((double) i - j) > 1)
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  if (abs (in) > 1.0e-9)
 | 
					 | 
				
			||||||
		    {
 | 
					 | 
				
			||||||
		      std::cout << GridLogMessage << "oops" << std::endl;
 | 
					 | 
				
			||||||
		      abort ();
 | 
					 | 
				
			||||||
		    }
 | 
					 | 
				
			||||||
		  else
 | 
					 | 
				
			||||||
		    std::cout << GridLogMessage << " 0 ";
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
	      else
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  std::cout << GridLogMessage << " " << in << " ";
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	  std::cout << GridLogMessage << std::endl;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    void step (std::vector < RealD > &lmd,
 | 
					 | 
				
			||||||
	       std::vector < RealD > &lme,
 | 
					 | 
				
			||||||
	       Field & last, Field & current, Field & next, uint64_t k)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      if (lmd.size () <= k)
 | 
					 | 
				
			||||||
	lmd.resize (k + Nm);
 | 
					 | 
				
			||||||
      if (lme.size () <= k)
 | 
					 | 
				
			||||||
	lme.resize (k + Nm);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
//      _poly(_Linop,current,next );   // 3. wk:=Avk−βkv_{k−1}
 | 
					 | 
				
			||||||
      _Linop(current, next);	// 3. wk:=Avk−βkv_{k−1}
 | 
					 | 
				
			||||||
      if (k > 0)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  next -= lme[k - 1] * last;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
//      std::cout<<GridLogMessage << "<last|next>" << innerProduct(last,next) <<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      ComplexD zalph = innerProduct (current, next);	// 4. αk:=(wk,vk)
 | 
					 | 
				
			||||||
      RealD alph = real (zalph);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      next = next - alph * current;	// 5. wk:=wk−αkvk
 | 
					 | 
				
			||||||
//      std::cout<<GridLogMessage << "<current|next>" << innerProduct(current,next) <<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      RealD beta = normalise (next);	// 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
 | 
					 | 
				
			||||||
      // 7. vk+1 := wk/βk+1
 | 
					 | 
				
			||||||
//       norm=beta;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      int interval = Nm / 100 + 1;
 | 
					 | 
				
			||||||
      if ((k % interval) == 0)
 | 
					 | 
				
			||||||
	std::
 | 
					 | 
				
			||||||
	  cout << GridLogMessage << k << " : alpha = " << zalph << " beta " <<
 | 
					 | 
				
			||||||
	  beta << std::endl;
 | 
					 | 
				
			||||||
      const RealD tiny = 1.0e-20;
 | 
					 | 
				
			||||||
      if (beta < tiny)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  std::cout << GridLogMessage << " beta is tiny " << beta << std::
 | 
					 | 
				
			||||||
	    endl;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      lmd[k] = alph;
 | 
					 | 
				
			||||||
      lme[k] = beta;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    void qr_decomp (std::vector < RealD > &lmd,
 | 
					 | 
				
			||||||
		    std::vector  < RealD > &lme,
 | 
					 | 
				
			||||||
		    int Nk,
 | 
					 | 
				
			||||||
		    int Nm,
 | 
					 | 
				
			||||||
		    std::vector  < RealD > &Qt, RealD Dsh, int kmin, int kmax)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      int k = kmin - 1;
 | 
					 | 
				
			||||||
      RealD x;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      RealD Fden = 1.0 / hypot (lmd[k] - Dsh, lme[k]);
 | 
					 | 
				
			||||||
      RealD c = (lmd[k] - Dsh) * Fden;
 | 
					 | 
				
			||||||
      RealD s = -lme[k] * Fden;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      RealD tmpa1 = lmd[k];
 | 
					 | 
				
			||||||
      RealD tmpa2 = lmd[k + 1];
 | 
					 | 
				
			||||||
      RealD tmpb = lme[k];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      lmd[k] = c * c * tmpa1 + s * s * tmpa2 - 2.0 * c * s * tmpb;
 | 
					 | 
				
			||||||
      lmd[k + 1] = s * s * tmpa1 + c * c * tmpa2 + 2.0 * c * s * tmpb;
 | 
					 | 
				
			||||||
      lme[k] = c * s * (tmpa1 - tmpa2) + (c * c - s * s) * tmpb;
 | 
					 | 
				
			||||||
      x = -s * lme[k + 1];
 | 
					 | 
				
			||||||
      lme[k + 1] = c * lme[k + 1];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for (int i = 0; i < Nk; ++i)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  RealD Qtmp1 = Qt[i + Nm * k];
 | 
					 | 
				
			||||||
	  RealD Qtmp2 = Qt[i + Nm * (k + 1)];
 | 
					 | 
				
			||||||
	  Qt[i + Nm * k] = c * Qtmp1 - s * Qtmp2;
 | 
					 | 
				
			||||||
	  Qt[i + Nm * (k + 1)] = s * Qtmp1 + c * Qtmp2;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Givens transformations
 | 
					 | 
				
			||||||
      for (int k = kmin; k < kmax - 1; ++k)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  RealD Fden = 1.0 / hypot (x, lme[k - 1]);
 | 
					 | 
				
			||||||
	  RealD c = lme[k - 1] * Fden;
 | 
					 | 
				
			||||||
	  RealD s = -x * Fden;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  RealD tmpa1 = lmd[k];
 | 
					 | 
				
			||||||
	  RealD tmpa2 = lmd[k + 1];
 | 
					 | 
				
			||||||
	  RealD tmpb = lme[k];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  lmd[k] = c * c * tmpa1 + s * s * tmpa2 - 2.0 * c * s * tmpb;
 | 
					 | 
				
			||||||
	  lmd[k + 1] = s * s * tmpa1 + c * c * tmpa2 + 2.0 * c * s * tmpb;
 | 
					 | 
				
			||||||
	  lme[k] = c * s * (tmpa1 - tmpa2) + (c * c - s * s) * tmpb;
 | 
					 | 
				
			||||||
	  lme[k - 1] = c * lme[k - 1] - s * x;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  if (k != kmax - 2)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      x = -s * lme[k + 1];
 | 
					 | 
				
			||||||
	      lme[k + 1] = c * lme[k + 1];
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  for (int i = 0; i < Nk; ++i)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      RealD Qtmp1 = Qt[i + Nm * k];
 | 
					 | 
				
			||||||
	      RealD Qtmp2 = Qt[i + Nm * (k + 1)];
 | 
					 | 
				
			||||||
	      Qt[i + Nm * k] = c * Qtmp1 - s * Qtmp2;
 | 
					 | 
				
			||||||
	      Qt[i + Nm * (k + 1)] = s * Qtmp1 + c * Qtmp2;
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#if 0
 | 
					 | 
				
			||||||
#ifdef USE_LAPACK
 | 
					 | 
				
			||||||
#ifdef USE_MKL
 | 
					 | 
				
			||||||
#define LAPACK_INT MKL_INT
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
#define LAPACK_INT long long
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
    void diagonalize_lapack (std::vector  < RealD > &lmd, std::vector  < RealD > &lme, int N1,	// all
 | 
					 | 
				
			||||||
			     int N2,	// get
 | 
					 | 
				
			||||||
			     GridBase * grid)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      const int size = Nm;
 | 
					 | 
				
			||||||
      LAPACK_INT NN = N1;
 | 
					 | 
				
			||||||
      double evals_tmp[NN];
 | 
					 | 
				
			||||||
      double DD[NN];
 | 
					 | 
				
			||||||
      double EE[NN];
 | 
					 | 
				
			||||||
      for (int i = 0; i < NN; i++)
 | 
					 | 
				
			||||||
	for (int j = i - 1; j <= i + 1; j++)
 | 
					 | 
				
			||||||
	  if (j < NN && j >= 0)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      if (i == j)
 | 
					 | 
				
			||||||
		DD[i] = lmd[i];
 | 
					 | 
				
			||||||
	      if (i == j)
 | 
					 | 
				
			||||||
		evals_tmp[i] = lmd[i];
 | 
					 | 
				
			||||||
	      if (j == (i - 1))
 | 
					 | 
				
			||||||
		EE[j] = lme[j];
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
      LAPACK_INT evals_found;
 | 
					 | 
				
			||||||
      LAPACK_INT lwork =
 | 
					 | 
				
			||||||
	((18 * NN) >
 | 
					 | 
				
			||||||
	 (1 + 4 * NN + NN * NN) ? (18 * NN) : (1 + 4 * NN + NN * NN));
 | 
					 | 
				
			||||||
      LAPACK_INT liwork = 3 + NN * 10;
 | 
					 | 
				
			||||||
      LAPACK_INT iwork[liwork];
 | 
					 | 
				
			||||||
      double work[lwork];
 | 
					 | 
				
			||||||
      LAPACK_INT isuppz[2 * NN];
 | 
					 | 
				
			||||||
      char jobz = 'N';		// calculate evals only
 | 
					 | 
				
			||||||
      char range = 'I';		// calculate il-th to iu-th evals
 | 
					 | 
				
			||||||
      //    char range = 'A'; // calculate all evals
 | 
					 | 
				
			||||||
      char uplo = 'U';		// refer to upper half of original matrix
 | 
					 | 
				
			||||||
      char compz = 'I';		// Compute eigenvectors of tridiagonal matrix
 | 
					 | 
				
			||||||
      int ifail[NN];
 | 
					 | 
				
			||||||
      LAPACK_INT info;
 | 
					 | 
				
			||||||
//  int total = QMP_get_number_of_nodes();
 | 
					 | 
				
			||||||
//  int node = QMP_get_node_number();
 | 
					 | 
				
			||||||
//  GridBase *grid = evec[0]._grid;
 | 
					 | 
				
			||||||
      int total = grid->_Nprocessors;
 | 
					 | 
				
			||||||
      int node = grid->_processor;
 | 
					 | 
				
			||||||
      int interval = (NN / total) + 1;
 | 
					 | 
				
			||||||
      double vl = 0.0, vu = 0.0;
 | 
					 | 
				
			||||||
      LAPACK_INT il = interval * node + 1, iu = interval * (node + 1);
 | 
					 | 
				
			||||||
      if (iu > NN)
 | 
					 | 
				
			||||||
	iu = NN;
 | 
					 | 
				
			||||||
      double tol = 0.0;
 | 
					 | 
				
			||||||
      if (1)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  memset (evals_tmp, 0, sizeof (double) * NN);
 | 
					 | 
				
			||||||
	  if (il <= NN)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      printf ("total=%d node=%d il=%d iu=%d\n", total, node, il, iu);
 | 
					 | 
				
			||||||
#ifdef USE_MKL
 | 
					 | 
				
			||||||
	      dstegr (&jobz, &range, &NN,
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	      LAPACK_dstegr (&jobz, &range, &NN,
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
			     (double *) DD, (double *) EE, &vl, &vu, &il, &iu,	// these four are ignored if second parameteris 'A'
 | 
					 | 
				
			||||||
			     &tol,	// tolerance
 | 
					 | 
				
			||||||
			     &evals_found, evals_tmp, (double *) NULL, &NN,
 | 
					 | 
				
			||||||
			     isuppz, work, &lwork, iwork, &liwork, &info);
 | 
					 | 
				
			||||||
	      for (int i = iu - 1; i >= il - 1; i--)
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  printf ("node=%d evals_found=%d evals_tmp[%d] = %g\n", node,
 | 
					 | 
				
			||||||
			  evals_found, i - (il - 1), evals_tmp[i - (il - 1)]);
 | 
					 | 
				
			||||||
		  evals_tmp[i] = evals_tmp[i - (il - 1)];
 | 
					 | 
				
			||||||
		  if (il > 1)
 | 
					 | 
				
			||||||
		    evals_tmp[i - (il - 1)] = 0.;
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	  {
 | 
					 | 
				
			||||||
	    grid->GlobalSumVector (evals_tmp, NN);
 | 
					 | 
				
			||||||
	  }
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
// cheating a bit. It is better to sort instead of just reversing it, but the document of the routine says evals are sorted in increasing order. qr gives evals in decreasing order.
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
#undef LAPACK_INT
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    void diagonalize (std::vector  < RealD > &lmd,
 | 
					 | 
				
			||||||
		      std::vector  < RealD > &lme,
 | 
					 | 
				
			||||||
		      int N2, int N1, GridBase * grid)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#ifdef USE_LAPACK
 | 
					 | 
				
			||||||
      const int check_lapack = 0;	// just use lapack if 0, check against lapack if 1
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      if (!check_lapack)
 | 
					 | 
				
			||||||
	return diagonalize_lapack (lmd, lme, N2, N1, grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
//      diagonalize_lapack(lmd2,lme2,Nm2,Nm,Qt,grid);
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    static RealD normalise (Field & v)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      RealD nn = norm2 (v);
 | 
					 | 
				
			||||||
      nn = sqrt (nn);
 | 
					 | 
				
			||||||
      v = v * (1.0 / nn);
 | 
					 | 
				
			||||||
      return nn;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    void orthogonalize (Field & w, std::vector < Field > &evec, int k)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      double t0 = -usecond () / 1e6;
 | 
					 | 
				
			||||||
      typedef typename Field::scalar_type MyComplex;
 | 
					 | 
				
			||||||
      MyComplex ip;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      if (0)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  for (int j = 0; j < k; ++j)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      normalise (evec[j]);
 | 
					 | 
				
			||||||
	      for (int i = 0; i < j; i++)
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  ip = innerProduct (evec[i], evec[j]);	// are the evecs normalised? ; this assumes so.
 | 
					 | 
				
			||||||
		  evec[j] = evec[j] - ip * evec[i];
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for (int j = 0; j < k; ++j)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  ip = innerProduct (evec[j], w);	// are the evecs normalised? ; this assumes so.
 | 
					 | 
				
			||||||
	  w = w - ip * evec[j];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      normalise (w);
 | 
					 | 
				
			||||||
      t0 += usecond () / 1e6;
 | 
					 | 
				
			||||||
      OrthoTime += t0;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    void setUnit_Qt (int Nm, std::vector < RealD > &Qt)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      for (int i = 0; i < Qt.size (); ++i)
 | 
					 | 
				
			||||||
	Qt[i] = 0.0;
 | 
					 | 
				
			||||||
      for (int k = 0; k < Nm; ++k)
 | 
					 | 
				
			||||||
	Qt[k + k * Nm] = 1.0;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    void calc (std::vector < RealD > &eval, const Field & src, int &Nconv)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      GridBase *grid = src.Grid();
 | 
					 | 
				
			||||||
//      assert(grid == src._grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      std::
 | 
					 | 
				
			||||||
	cout << GridLogMessage << " -- Nk = " << Nk << " Np = " << Np << std::
 | 
					 | 
				
			||||||
	endl;
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage << " -- Nm = " << Nm << std::endl;
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage << " -- size of eval   = " << eval.
 | 
					 | 
				
			||||||
	size () << std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
//      assert(c.size() && Nm == eval.size());
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      std::vector < RealD > lme (Nm);
 | 
					 | 
				
			||||||
      std::vector < RealD > lmd (Nm);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      Field current (grid);
 | 
					 | 
				
			||||||
      Field last (grid);
 | 
					 | 
				
			||||||
      Field next (grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      Nconv = 0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      RealD beta_k;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Set initial vector
 | 
					 | 
				
			||||||
      // (uniform vector) Why not src??
 | 
					 | 
				
			||||||
      //      evec[0] = 1.0;
 | 
					 | 
				
			||||||
      current = src;
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage << "norm2(src)= " << norm2 (src) << std::
 | 
					 | 
				
			||||||
	endl;
 | 
					 | 
				
			||||||
      normalise (current);
 | 
					 | 
				
			||||||
      std::
 | 
					 | 
				
			||||||
	cout << GridLogMessage << "norm2(evec[0])= " << norm2 (current) <<
 | 
					 | 
				
			||||||
	std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Initial Nk steps
 | 
					 | 
				
			||||||
      OrthoTime = 0.;
 | 
					 | 
				
			||||||
      double t0 = usecond () / 1e6;
 | 
					 | 
				
			||||||
      RealD norm;		// sqrt norm of last vector
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      uint64_t iter = 0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      bool initted = false;
 | 
					 | 
				
			||||||
      std::vector < RealD > low (Nstop * 10);
 | 
					 | 
				
			||||||
      std::vector < RealD > high (Nstop * 10);
 | 
					 | 
				
			||||||
      RealD cont = 0.;
 | 
					 | 
				
			||||||
      while (1) {
 | 
					 | 
				
			||||||
	  cont = 0.;
 | 
					 | 
				
			||||||
	  std::vector < RealD > lme2 (Nm);
 | 
					 | 
				
			||||||
	  std::vector < RealD > lmd2 (Nm);
 | 
					 | 
				
			||||||
	  for (uint64_t k = 0; k < Nm; ++k, iter++) {
 | 
					 | 
				
			||||||
	      step (lmd, lme, last, current, next, iter);
 | 
					 | 
				
			||||||
	      last = current;
 | 
					 | 
				
			||||||
	      current = next;
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	  double t1 = usecond () / 1e6;
 | 
					 | 
				
			||||||
	  std::cout << GridLogMessage << "IRL::Initial steps: " << t1 -
 | 
					 | 
				
			||||||
	    t0 << "seconds" << std::endl;
 | 
					 | 
				
			||||||
	  t0 = t1;
 | 
					 | 
				
			||||||
	  std::
 | 
					 | 
				
			||||||
	    cout << GridLogMessage << "IRL::Initial steps:OrthoTime " <<
 | 
					 | 
				
			||||||
	    OrthoTime << "seconds" << std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  // getting eigenvalues
 | 
					 | 
				
			||||||
	  lmd2.resize (iter + 2);
 | 
					 | 
				
			||||||
	  lme2.resize (iter + 2);
 | 
					 | 
				
			||||||
	  for (uint64_t k = 0; k < iter; ++k) {
 | 
					 | 
				
			||||||
	      lmd2[k + 1] = lmd[k];
 | 
					 | 
				
			||||||
	      lme2[k + 2] = lme[k];
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	  t1 = usecond () / 1e6;
 | 
					 | 
				
			||||||
	  std::cout << GridLogMessage << "IRL:: copy: " << t1 -
 | 
					 | 
				
			||||||
	    t0 << "seconds" << std::endl;
 | 
					 | 
				
			||||||
	  t0 = t1;
 | 
					 | 
				
			||||||
	  {
 | 
					 | 
				
			||||||
	    int total = grid->_Nprocessors;
 | 
					 | 
				
			||||||
	    int node = grid->_processor;
 | 
					 | 
				
			||||||
	    int interval = (Nstop / total) + 1;
 | 
					 | 
				
			||||||
	    int iu = (iter + 1) - (interval * node + 1);
 | 
					 | 
				
			||||||
	    int il = (iter + 1) - (interval * (node + 1));
 | 
					 | 
				
			||||||
	    std::vector < RealD > eval2 (iter + 3);
 | 
					 | 
				
			||||||
	    RealD eps2;
 | 
					 | 
				
			||||||
	    Bisection::bisec (lmd2, lme2, iter, il, iu, 1e-16, 1e-10, eval2,
 | 
					 | 
				
			||||||
			      eps2);
 | 
					 | 
				
			||||||
//        diagonalize(eval2,lme2,iter,Nk,grid);
 | 
					 | 
				
			||||||
	    RealD diff = 0.;
 | 
					 | 
				
			||||||
	    for (int i = il; i <= iu; i++) {
 | 
					 | 
				
			||||||
		if (initted)
 | 
					 | 
				
			||||||
		  diff =
 | 
					 | 
				
			||||||
		    fabs (eval2[i] - high[iu-i]) / (fabs (eval2[i]) +
 | 
					 | 
				
			||||||
						      fabs (high[iu-i]));
 | 
					 | 
				
			||||||
		if (initted && (diff > eresid))
 | 
					 | 
				
			||||||
		  cont = 1.;
 | 
					 | 
				
			||||||
		if (initted)
 | 
					 | 
				
			||||||
		  printf ("eval[%d]=%0.14e %0.14e, %0.14e\n", i, eval2[i],
 | 
					 | 
				
			||||||
			  high[iu-i], diff);
 | 
					 | 
				
			||||||
		high[iu-i] = eval2[i];
 | 
					 | 
				
			||||||
	      }
 | 
					 | 
				
			||||||
	    il = (interval * node + 1);
 | 
					 | 
				
			||||||
	    iu = (interval * (node + 1));
 | 
					 | 
				
			||||||
	    Bisection::bisec (lmd2, lme2, iter, il, iu, 1e-16, 1e-10, eval2,
 | 
					 | 
				
			||||||
			      eps2);
 | 
					 | 
				
			||||||
	    for (int i = il; i <= iu; i++) {
 | 
					 | 
				
			||||||
		if (initted)
 | 
					 | 
				
			||||||
		  diff =
 | 
					 | 
				
			||||||
		    fabs (eval2[i] - low[i]) / (fabs (eval2[i]) +
 | 
					 | 
				
			||||||
						fabs (low[i]));
 | 
					 | 
				
			||||||
		if (initted && (diff > eresid))
 | 
					 | 
				
			||||||
		  cont = 1.;
 | 
					 | 
				
			||||||
		if (initted)
 | 
					 | 
				
			||||||
		  printf ("eval[%d]=%0.14e %0.14e, %0.14e\n", i, eval2[i],
 | 
					 | 
				
			||||||
			  low[i], diff);
 | 
					 | 
				
			||||||
		low[i] = eval2[i];
 | 
					 | 
				
			||||||
	      }
 | 
					 | 
				
			||||||
	    t1 = usecond () / 1e6;
 | 
					 | 
				
			||||||
	    std::cout << GridLogMessage << "IRL:: diagonalize: " << t1 -
 | 
					 | 
				
			||||||
	      t0 << "seconds" << std::endl;
 | 
					 | 
				
			||||||
	    t0 = t1;
 | 
					 | 
				
			||||||
	  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  for (uint64_t k = 0; k < Nk; ++k) {
 | 
					 | 
				
			||||||
//          eval[k] = eval2[k];
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	  if (initted)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      grid->GlobalSumVector (&cont, 1);
 | 
					 | 
				
			||||||
	      if (cont < 1.) return;
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	  initted = true;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#if 0
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/**
 | 
					 | 
				
			||||||
   There is some matrix Q such that for any vector y
 | 
					 | 
				
			||||||
   Q.e_1 = y and Q is unitary.
 | 
					 | 
				
			||||||
**/
 | 
					 | 
				
			||||||
    template < class T >
 | 
					 | 
				
			||||||
      static T orthQ (DenseMatrix < T > &Q, std::vector < T > y)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      int N = y.size ();	//Matrix Size
 | 
					 | 
				
			||||||
      Fill (Q, 0.0);
 | 
					 | 
				
			||||||
      T tau;
 | 
					 | 
				
			||||||
      for (int i = 0; i < N; i++)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  Q[i][0] = y[i];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      T sig = conj (y[0]) * y[0];
 | 
					 | 
				
			||||||
      T tau0 = fabs (sqrt (sig));
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for (int j = 1; j < N; j++)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  sig += conj (y[j]) * y[j];
 | 
					 | 
				
			||||||
	  tau = abs (sqrt (sig));
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  if (abs (tau0) > 0.0)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	      T gam = conj ((y[j] / tau) / tau0);
 | 
					 | 
				
			||||||
	      for (int k = 0; k <= j - 1; k++)
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  Q[k][j] = -gam * y[k];
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
	      Q[j][j] = tau0 / tau;
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	  else
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      Q[j - 1][j] = 1.0;
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	  tau0 = tau;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      return tau;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/**
 | 
					 | 
				
			||||||
	There is some matrix Q such that for any vector y
 | 
					 | 
				
			||||||
	Q.e_k = y and Q is unitary.
 | 
					 | 
				
			||||||
**/
 | 
					 | 
				
			||||||
    template < class T >
 | 
					 | 
				
			||||||
      static T orthU (DenseMatrix < T > &Q, std::vector < T > y)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      T tau = orthQ (Q, y);
 | 
					 | 
				
			||||||
      SL (Q);
 | 
					 | 
				
			||||||
      return tau;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/**
 | 
					 | 
				
			||||||
	Wind up with a matrix with the first con rows untouched
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
say con = 2
 | 
					 | 
				
			||||||
	Q is such that Qdag H Q has {x, x, val, 0, 0, 0, 0, ...} as 1st colum
 | 
					 | 
				
			||||||
	and the matrix is upper hessenberg
 | 
					 | 
				
			||||||
	and with f and Q appropriately modidied with Q is the arnoldi factorization
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
**/
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    template < class T > static void Lock (DenseMatrix < T > &H,	///Hess mtx     
 | 
					 | 
				
			||||||
					   DenseMatrix < T > &Q,	///Lock Transform
 | 
					 | 
				
			||||||
					   T val,	///value to be locked
 | 
					 | 
				
			||||||
					   int con,	///number already locked
 | 
					 | 
				
			||||||
					   RealD small, int dfg, bool herm)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      //ForceTridiagonal(H);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      int M = H.dim;
 | 
					 | 
				
			||||||
      DenseVector < T > vec;
 | 
					 | 
				
			||||||
      Resize (vec, M - con);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      DenseMatrix < T > AH;
 | 
					 | 
				
			||||||
      Resize (AH, M - con, M - con);
 | 
					 | 
				
			||||||
      AH = GetSubMtx (H, con, M, con, M);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      DenseMatrix < T > QQ;
 | 
					 | 
				
			||||||
      Resize (QQ, M - con, M - con);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      Unity (Q);
 | 
					 | 
				
			||||||
      Unity (QQ);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      DenseVector < T > evals;
 | 
					 | 
				
			||||||
      Resize (evals, M - con);
 | 
					 | 
				
			||||||
      DenseMatrix < T > evecs;
 | 
					 | 
				
			||||||
      Resize (evecs, M - con, M - con);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      Wilkinson < T > (AH, evals, evecs, small);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      int k = 0;
 | 
					 | 
				
			||||||
      RealD cold = abs (val - evals[k]);
 | 
					 | 
				
			||||||
      for (int i = 1; i < M - con; i++)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  RealD cnew = abs (val - evals[i]);
 | 
					 | 
				
			||||||
	  if (cnew < cold)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      k = i;
 | 
					 | 
				
			||||||
	      cold = cnew;
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      vec = evecs[k];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      ComplexD tau;
 | 
					 | 
				
			||||||
      orthQ (QQ, vec);
 | 
					 | 
				
			||||||
      //orthQM(QQ,AH,vec);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      AH = Hermitian (QQ) * AH;
 | 
					 | 
				
			||||||
      AH = AH * QQ;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for (int i = con; i < M; i++)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  for (int j = con; j < M; j++)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      Q[i][j] = QQ[i - con][j - con];
 | 
					 | 
				
			||||||
	      H[i][j] = AH[i - con][j - con];
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for (int j = M - 1; j > con + 2; j--)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  DenseMatrix < T > U;
 | 
					 | 
				
			||||||
	  Resize (U, j - 1 - con, j - 1 - con);
 | 
					 | 
				
			||||||
	  DenseVector < T > z;
 | 
					 | 
				
			||||||
	  Resize (z, j - 1 - con);
 | 
					 | 
				
			||||||
	  T nm = norm (z);
 | 
					 | 
				
			||||||
	  for (int k = con + 0; k < j - 1; k++)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      z[k - con] = conj (H (j, k + 1));
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	  normalise (z);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  RealD tmp = 0;
 | 
					 | 
				
			||||||
	  for (int i = 0; i < z.size () - 1; i++)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      tmp = tmp + abs (z[i]);
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  if (tmp < small / ((RealD) z.size () - 1.0))
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      continue;
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  tau = orthU (U, z);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  DenseMatrix < T > Hb;
 | 
					 | 
				
			||||||
	  Resize (Hb, j - 1 - con, M);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  for (int a = 0; a < M; a++)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      for (int b = 0; b < j - 1 - con; b++)
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  T sum = 0;
 | 
					 | 
				
			||||||
		  for (int c = 0; c < j - 1 - con; c++)
 | 
					 | 
				
			||||||
		    {
 | 
					 | 
				
			||||||
		      sum += H[a][con + 1 + c] * U[c][b];
 | 
					 | 
				
			||||||
		    }		//sum += H(a,con+1+c)*U(c,b);}
 | 
					 | 
				
			||||||
		  Hb[b][a] = sum;
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  for (int k = con + 1; k < j; k++)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      for (int l = 0; l < M; l++)
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  H[l][k] = Hb[k - 1 - con][l];
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
	    }			//H(Hb[k-1-con][l] , l,k);}}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  DenseMatrix < T > Qb;
 | 
					 | 
				
			||||||
	  Resize (Qb, M, M);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  for (int a = 0; a < M; a++)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      for (int b = 0; b < j - 1 - con; b++)
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  T sum = 0;
 | 
					 | 
				
			||||||
		  for (int c = 0; c < j - 1 - con; c++)
 | 
					 | 
				
			||||||
		    {
 | 
					 | 
				
			||||||
		      sum += Q[a][con + 1 + c] * U[c][b];
 | 
					 | 
				
			||||||
		    }		//sum += Q(a,con+1+c)*U(c,b);}
 | 
					 | 
				
			||||||
		  Qb[b][a] = sum;
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  for (int k = con + 1; k < j; k++)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      for (int l = 0; l < M; l++)
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  Q[l][k] = Qb[k - 1 - con][l];
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
	    }			//Q(Qb[k-1-con][l] , l,k);}}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  DenseMatrix < T > Hc;
 | 
					 | 
				
			||||||
	  Resize (Hc, M, M);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  for (int a = 0; a < j - 1 - con; a++)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      for (int b = 0; b < M; b++)
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  T sum = 0;
 | 
					 | 
				
			||||||
		  for (int c = 0; c < j - 1 - con; c++)
 | 
					 | 
				
			||||||
		    {
 | 
					 | 
				
			||||||
		      sum += conj (U[c][a]) * H[con + 1 + c][b];
 | 
					 | 
				
			||||||
		    }		//sum += conj( U(c,a) )*H(con+1+c,b);}
 | 
					 | 
				
			||||||
		  Hc[b][a] = sum;
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  for (int k = 0; k < M; k++)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      for (int l = con + 1; l < j; l++)
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  H[l][k] = Hc[k][l - 1 - con];
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
	    }			//H(Hc[k][l-1-con] , l,k);}}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
@@ -1,608 +0,0 @@
 | 
				
			|||||||
/*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: ./lib/algorithms/Aggregates.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2015
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
					 | 
				
			||||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
					 | 
				
			||||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
 | 
					 | 
				
			||||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
*************************************************************************************/
 | 
					 | 
				
			||||||
/*  END LEGAL */
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidualNonHermitian.h>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
inline RealD AggregatePowerLaw(RealD x)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  //  return std::pow(x,-4);
 | 
					 | 
				
			||||||
  //  return std::pow(x,-3);
 | 
					 | 
				
			||||||
  return std::pow(x,-5);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class Fobj,class CComplex,int nbasis>
 | 
					 | 
				
			||||||
class Aggregation {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  constexpr int Nbasis(void) { return nbasis; };
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  typedef iVector<CComplex,nbasis >             siteVector;
 | 
					 | 
				
			||||||
  typedef Lattice<siteVector>                 CoarseVector;
 | 
					 | 
				
			||||||
  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
					 | 
				
			||||||
  typedef Lattice<Fobj >        FineField;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  GridBase *CoarseGrid;
 | 
					 | 
				
			||||||
  GridBase *FineGrid;
 | 
					 | 
				
			||||||
  std::vector<Lattice<Fobj> > subspace;
 | 
					 | 
				
			||||||
  int checkerboard;
 | 
					 | 
				
			||||||
  int Checkerboard(void){return checkerboard;}
 | 
					 | 
				
			||||||
  Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) : 
 | 
					 | 
				
			||||||
    CoarseGrid(_CoarseGrid),
 | 
					 | 
				
			||||||
    FineGrid(_FineGrid),
 | 
					 | 
				
			||||||
    subspace(nbasis,_FineGrid),
 | 
					 | 
				
			||||||
    checkerboard(_checkerboard)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  void Orthogonalise(void){
 | 
					 | 
				
			||||||
    CoarseScalar InnerProd(CoarseGrid); 
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
 | 
					 | 
				
			||||||
    blockOrthogonalise(InnerProd,subspace);
 | 
					 | 
				
			||||||
  } 
 | 
					 | 
				
			||||||
  void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
 | 
					 | 
				
			||||||
    blockProject(CoarseVec,FineVec,subspace);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
 | 
					 | 
				
			||||||
    FineVec.Checkerboard() = subspace[0].Checkerboard();
 | 
					 | 
				
			||||||
    blockPromote(CoarseVec,FineVec,subspace);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void CreateSubspaceRandom(GridParallelRNG  &RNG) {
 | 
					 | 
				
			||||||
    int nn=nbasis;
 | 
					 | 
				
			||||||
    RealD scale;
 | 
					 | 
				
			||||||
    FineField noise(FineGrid);
 | 
					 | 
				
			||||||
    for(int b=0;b<nn;b++){
 | 
					 | 
				
			||||||
      subspace[b] = Zero();
 | 
					 | 
				
			||||||
      gaussian(RNG,noise);
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
      noise=noise*scale;
 | 
					 | 
				
			||||||
      subspace[b] = noise;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  virtual void CreateSubspace(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ConjugateGradient<FineField> CG(1.0e-3,400,false);
 | 
					 | 
				
			||||||
    FineField noise(FineGrid);
 | 
					 | 
				
			||||||
    FineField Mn(FineGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int b=0;b<nn;b++){
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      subspace[b] = Zero();
 | 
					 | 
				
			||||||
      gaussian(RNG,noise);
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
      noise=noise*scale;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int i=0;i<4;i++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	CG(hermop,noise,subspace[b]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	noise = subspace[b];
 | 
					 | 
				
			||||||
	scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
	noise=noise*scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
 | 
					 | 
				
			||||||
      subspace[b]   = noise;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void CreateSubspaceGCR(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &DiracOp,int nn=nbasis)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    RealD scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    TrivialPrecon<FineField> simple_fine;
 | 
					 | 
				
			||||||
    PrecGeneralisedConjugateResidualNonHermitian<FineField> GCR(0.001,30,DiracOp,simple_fine,12,12);
 | 
					 | 
				
			||||||
    FineField noise(FineGrid);
 | 
					 | 
				
			||||||
    FineField src(FineGrid);
 | 
					 | 
				
			||||||
    FineField guess(FineGrid);
 | 
					 | 
				
			||||||
    FineField Mn(FineGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int b=0;b<nn;b++){
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      subspace[b] = Zero();
 | 
					 | 
				
			||||||
      gaussian(RNG,noise);
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
      noise=noise*scale;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|Op|n> "<<innerProduct(noise,Mn)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int i=0;i<2;i++){
 | 
					 | 
				
			||||||
	//  void operator() (const Field &src, Field &psi){
 | 
					 | 
				
			||||||
#if 1
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage << " inverting on noise "<<std::endl;
 | 
					 | 
				
			||||||
	src = noise;
 | 
					 | 
				
			||||||
	guess=Zero();
 | 
					 | 
				
			||||||
	GCR(src,guess);
 | 
					 | 
				
			||||||
	subspace[b] = guess;
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage << " inverting on zero "<<std::endl;
 | 
					 | 
				
			||||||
	src=Zero();
 | 
					 | 
				
			||||||
	guess = noise;
 | 
					 | 
				
			||||||
	GCR(src,guess);
 | 
					 | 
				
			||||||
	subspace[b] = guess;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
	noise = subspace[b];
 | 
					 | 
				
			||||||
	scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
	noise=noise*scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|Op|f> "<<innerProduct(noise,Mn)<<std::endl;
 | 
					 | 
				
			||||||
      subspace[b]   = noise;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
 | 
					 | 
				
			||||||
  // and this is the best I found
 | 
					 | 
				
			||||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
					 | 
				
			||||||
				       int nn,
 | 
					 | 
				
			||||||
				       double hi,
 | 
					 | 
				
			||||||
				       double lo,
 | 
					 | 
				
			||||||
				       int orderfilter,
 | 
					 | 
				
			||||||
				       int ordermin,
 | 
					 | 
				
			||||||
				       int orderstep,
 | 
					 | 
				
			||||||
				       double filterlo
 | 
					 | 
				
			||||||
				       ) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    FineField noise(FineGrid);
 | 
					 | 
				
			||||||
    FineField Mn(FineGrid);
 | 
					 | 
				
			||||||
    FineField tmp(FineGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // New normalised noise
 | 
					 | 
				
			||||||
    gaussian(RNG,noise);
 | 
					 | 
				
			||||||
    scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
    noise=noise*scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<" Chebyshev subspace pass-1 : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<" Chebyshev subspace pass-2 : nbasis"<<nn<<" min "
 | 
					 | 
				
			||||||
	      <<ordermin<<" step "<<orderstep
 | 
					 | 
				
			||||||
	      <<" lo"<<filterlo<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Initial matrix element
 | 
					 | 
				
			||||||
    hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int b =0;
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      ComplexD ip;
 | 
					 | 
				
			||||||
      // Filter
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb(lo,hi,orderfilter);
 | 
					 | 
				
			||||||
      Cheb(hermop,noise,Mn);
 | 
					 | 
				
			||||||
      // normalise
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
					 | 
				
			||||||
      subspace[b]   = Mn;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      hermop.Op(Mn,tmp);
 | 
					 | 
				
			||||||
      ip= innerProduct(Mn,tmp); 
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      hermop.AdjOp(Mn,tmp); 
 | 
					 | 
				
			||||||
      ip = innerProduct(Mn,tmp); 
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
 | 
					 | 
				
			||||||
      b++;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Generate a full sequence of Chebyshevs
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      lo=filterlo;
 | 
					 | 
				
			||||||
      noise=Mn;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      FineField T0(FineGrid); T0 = noise;  
 | 
					 | 
				
			||||||
      FineField T1(FineGrid); 
 | 
					 | 
				
			||||||
      FineField T2(FineGrid);
 | 
					 | 
				
			||||||
      FineField y(FineGrid);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      FineField *Tnm = &T0;
 | 
					 | 
				
			||||||
      FineField *Tn  = &T1;
 | 
					 | 
				
			||||||
      FineField *Tnp = &T2;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Tn=T1 = (xscale M + mscale)in
 | 
					 | 
				
			||||||
      RealD xscale = 2.0/(hi-lo);
 | 
					 | 
				
			||||||
      RealD mscale = -(hi+lo)/(hi-lo);
 | 
					 | 
				
			||||||
      hermop.HermOp(T0,y);
 | 
					 | 
				
			||||||
      T1=y*xscale+noise*mscale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	hermop.HermOp(*Tn,y);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	autoView( y_v , y, AcceleratorWrite);
 | 
					 | 
				
			||||||
	autoView( Tn_v , (*Tn), AcceleratorWrite);
 | 
					 | 
				
			||||||
	autoView( Tnp_v , (*Tnp), AcceleratorWrite);
 | 
					 | 
				
			||||||
	autoView( Tnm_v , (*Tnm), AcceleratorWrite);
 | 
					 | 
				
			||||||
	const int Nsimd = CComplex::Nsimd();
 | 
					 | 
				
			||||||
	accelerator_for(ss, FineGrid->oSites(), Nsimd, {
 | 
					 | 
				
			||||||
	  coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
 | 
					 | 
				
			||||||
	  coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
 | 
					 | 
				
			||||||
        });
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	// Possible more fine grained control is needed than a linear sweep,
 | 
					 | 
				
			||||||
	// but huge productivity gain if this is simple algorithm and not a tunable
 | 
					 | 
				
			||||||
	int m =1;
 | 
					 | 
				
			||||||
	if ( n>=ordermin ) m=n-ordermin;
 | 
					 | 
				
			||||||
	if ( (m%orderstep)==0 ) { 
 | 
					 | 
				
			||||||
	  Mn=*Tnp;
 | 
					 | 
				
			||||||
	  scale = std::pow(norm2(Mn),-0.5);         Mn=Mn*scale;
 | 
					 | 
				
			||||||
	  subspace[b] = Mn;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  ComplexD ip;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  hermop.Op(Mn,tmp);
 | 
					 | 
				
			||||||
	  ip= innerProduct(Mn,tmp); 
 | 
					 | 
				
			||||||
	  std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  hermop.AdjOp(Mn,tmp); 
 | 
					 | 
				
			||||||
	  ip = innerProduct(Mn,tmp); 
 | 
					 | 
				
			||||||
	  std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
 | 
					 | 
				
			||||||
	  
 | 
					 | 
				
			||||||
	  b++;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	// Cycle pointers to avoid copies
 | 
					 | 
				
			||||||
	FineField *swizzle = Tnm;
 | 
					 | 
				
			||||||
	Tnm    =Tn;
 | 
					 | 
				
			||||||
	Tn     =Tnp;
 | 
					 | 
				
			||||||
	Tnp    =swizzle;
 | 
					 | 
				
			||||||
	  
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    assert(b==nn);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void CreateSubspacePolyCheby(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
					 | 
				
			||||||
				       int nn,
 | 
					 | 
				
			||||||
				       double hi,
 | 
					 | 
				
			||||||
				       double lo1,
 | 
					 | 
				
			||||||
				       int orderfilter,
 | 
					 | 
				
			||||||
				       double lo2,
 | 
					 | 
				
			||||||
				       int orderstep)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    RealD scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    FineField noise(FineGrid);
 | 
					 | 
				
			||||||
    FineField Mn(FineGrid);
 | 
					 | 
				
			||||||
    FineField tmp(FineGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // New normalised noise
 | 
					 | 
				
			||||||
    gaussian(RNG,noise);
 | 
					 | 
				
			||||||
    scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
    noise=noise*scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<" CreateSubspacePolyCheby "<<std::endl;
 | 
					 | 
				
			||||||
    // Initial matrix element
 | 
					 | 
				
			||||||
    hermop.Op(noise,Mn);
 | 
					 | 
				
			||||||
    std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int b =0;
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      // Filter
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage << "Cheby "<<lo1<<","<<hi<<" "<<orderstep<<std::endl;
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb(lo1,hi,orderfilter);
 | 
					 | 
				
			||||||
      Cheb(hermop,noise,Mn);
 | 
					 | 
				
			||||||
      // normalise
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
					 | 
				
			||||||
      subspace[b]   = Mn;
 | 
					 | 
				
			||||||
      hermop.Op(Mn,tmp); 
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|n> "<<norm2(Mn)<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Generate a full sequence of Chebyshevs
 | 
					 | 
				
			||||||
    for(int n=1;n<nn;n++){
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage << "Cheby "<<lo2<<","<<hi<<" "<<orderstep<<std::endl;
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb(lo2,hi,orderstep);
 | 
					 | 
				
			||||||
      Cheb(hermop,subspace[n-1],Mn);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int m=0;m<n;m++){
 | 
					 | 
				
			||||||
	ComplexD c = innerProduct(subspace[m],Mn);
 | 
					 | 
				
			||||||
	Mn = Mn - c*subspace[m];
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      // normalise
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(Mn),-0.5);
 | 
					 | 
				
			||||||
      Mn=Mn*scale;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      subspace[n]=Mn;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      hermop.Op(Mn,tmp); 
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<n<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<n<<"] <n|n> "<<norm2(Mn)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
					 | 
				
			||||||
				       int nn,
 | 
					 | 
				
			||||||
				       double hi,
 | 
					 | 
				
			||||||
				       double lo,
 | 
					 | 
				
			||||||
				       int orderfilter
 | 
					 | 
				
			||||||
				       ) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    FineField noise(FineGrid);
 | 
					 | 
				
			||||||
    FineField Mn(FineGrid);
 | 
					 | 
				
			||||||
    FineField tmp(FineGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // New normalised noise
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<" Chebyshev subspace pure noise  : nbasis "<<nn<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int b =0;b<nbasis;b++)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      gaussian(RNG,noise);
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
      noise=noise*scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Initial matrix element
 | 
					 | 
				
			||||||
      hermop.Op(noise,Mn);
 | 
					 | 
				
			||||||
      if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Filter
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb(lo,hi,orderfilter);
 | 
					 | 
				
			||||||
      Cheb(hermop,noise,Mn);
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Refine
 | 
					 | 
				
			||||||
      Chebyshev<FineField> PowerLaw(lo,hi,1000,AggregatePowerLaw);
 | 
					 | 
				
			||||||
      noise = Mn;
 | 
					 | 
				
			||||||
      PowerLaw(hermop,noise,Mn);
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // normalise
 | 
					 | 
				
			||||||
      subspace[b]   = Mn;
 | 
					 | 
				
			||||||
      hermop.Op(Mn,tmp); 
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void CreateSubspaceChebyshevPowerLaw(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
					 | 
				
			||||||
					       int nn,
 | 
					 | 
				
			||||||
					       double hi,
 | 
					 | 
				
			||||||
					       int orderfilter
 | 
					 | 
				
			||||||
					       ) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    FineField noise(FineGrid);
 | 
					 | 
				
			||||||
    FineField Mn(FineGrid);
 | 
					 | 
				
			||||||
    FineField tmp(FineGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // New normalised noise
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" [0,"<<hi<<"]"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<" Chebyshev subspace pure noise  : nbasis "<<nn<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int b =0;b<nbasis;b++)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      gaussian(RNG,noise);
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
      noise=noise*scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Initial matrix element
 | 
					 | 
				
			||||||
      hermop.Op(noise,Mn);
 | 
					 | 
				
			||||||
      if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
					 | 
				
			||||||
      // Filter
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb(0.0,hi,orderfilter,AggregatePowerLaw);
 | 
					 | 
				
			||||||
      Cheb(hermop,noise,Mn);
 | 
					 | 
				
			||||||
      // normalise
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
					 | 
				
			||||||
      subspace[b]   = Mn;
 | 
					 | 
				
			||||||
      hermop.Op(Mn,tmp); 
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  virtual void CreateSubspaceChebyshevNew(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
					 | 
				
			||||||
					  double hi
 | 
					 | 
				
			||||||
					  ) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    FineField noise(FineGrid);
 | 
					 | 
				
			||||||
    FineField Mn(FineGrid);
 | 
					 | 
				
			||||||
    FineField tmp(FineGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // New normalised noise
 | 
					 | 
				
			||||||
    for(int b =0;b<nbasis;b++)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      gaussian(RNG,noise);
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
      noise=noise*scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Initial matrix element
 | 
					 | 
				
			||||||
      hermop.Op(noise,Mn);
 | 
					 | 
				
			||||||
      if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
					 | 
				
			||||||
      // Filter
 | 
					 | 
				
			||||||
      //#opt2(x) =  acheb(x,3,90,300)* acheb(x,1,90,50) * acheb(x,0.5,90,200) * acheb(x,0.05,90,400) * acheb(x,0.01,90,1500)
 | 
					 | 
				
			||||||
      /*266
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb1(3.0,hi,300);
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb2(1.0,hi,50);
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb3(0.5,hi,300);
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb4(0.05,hi,500);
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb5(0.01,hi,2000);
 | 
					 | 
				
			||||||
      */
 | 
					 | 
				
			||||||
      /* 242 */
 | 
					 | 
				
			||||||
      /*
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb3(0.1,hi,300);
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb2(0.02,hi,1000);
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb1(0.003,hi,2000);
 | 
					 | 
				
			||||||
      8?
 | 
					 | 
				
			||||||
      */
 | 
					 | 
				
			||||||
      /* How many??
 | 
					 | 
				
			||||||
      */
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb2(0.001,hi,2500); // 169 iters on HDCG after refine
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb1(0.02,hi,600);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      //      Chebyshev<FineField> Cheb2(0.001,hi,1500);
 | 
					 | 
				
			||||||
      //      Chebyshev<FineField> Cheb1(0.02,hi,600);
 | 
					 | 
				
			||||||
      Cheb1(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale;
 | 
					 | 
				
			||||||
      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb1 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
      Cheb2(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale;
 | 
					 | 
				
			||||||
      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb2 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
      //      Cheb3(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale;
 | 
					 | 
				
			||||||
      //      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb3 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
      //      Cheb4(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale;
 | 
					 | 
				
			||||||
      //      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb4 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
      //      Cheb5(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale;
 | 
					 | 
				
			||||||
      //      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb5 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
      subspace[b]   = noise;
 | 
					 | 
				
			||||||
      hermop.Op(subspace[b],tmp); 
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<< " norm " << norm2(noise)<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void CreateSubspaceMultishift(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
					 | 
				
			||||||
					double Lo,double tol,int maxit)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    FineField noise(FineGrid);
 | 
					 | 
				
			||||||
    FineField Mn(FineGrid);
 | 
					 | 
				
			||||||
    FineField tmp(FineGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // New normalised noise
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<" Multishift subspace : Lo "<<Lo<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Filter
 | 
					 | 
				
			||||||
    // [ 1/6(x+Lo)  - 1/2(x+2Lo) + 1/2(x+3Lo)  -1/6(x+4Lo) = Lo^3 /[ (x+1Lo)(x+2Lo)(x+3Lo)(x+4Lo) ]
 | 
					 | 
				
			||||||
    //
 | 
					 | 
				
			||||||
    // 1/(x+Lo)  - 1/(x+2 Lo)
 | 
					 | 
				
			||||||
    double epsilon      = Lo/3;
 | 
					 | 
				
			||||||
    std::vector<RealD> alpha({1.0/6.0,-1.0/2.0,1.0/2.0,-1.0/6.0});
 | 
					 | 
				
			||||||
    std::vector<RealD> shifts({Lo,Lo+epsilon,Lo+2*epsilon,Lo+3*epsilon});
 | 
					 | 
				
			||||||
    std::vector<RealD> tols({tol,tol,tol,tol});
 | 
					 | 
				
			||||||
    std::cout << "sizes "<<alpha.size()<<" "<<shifts.size()<<" "<<tols.size()<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    MultiShiftFunction msf(4,0.0,95.0);
 | 
					 | 
				
			||||||
    std::cout << "msf constructed "<<std::endl;
 | 
					 | 
				
			||||||
    msf.poles=shifts;
 | 
					 | 
				
			||||||
    msf.residues=alpha;
 | 
					 | 
				
			||||||
    msf.tolerances=tols;
 | 
					 | 
				
			||||||
    msf.norm=0.0;
 | 
					 | 
				
			||||||
    msf.order=alpha.size();
 | 
					 | 
				
			||||||
    ConjugateGradientMultiShift<FineField> MSCG(maxit,msf);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    for(int b =0;b<nbasis;b++)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      gaussian(RNG,noise);
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
      noise=noise*scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Initial matrix element
 | 
					 | 
				
			||||||
      hermop.Op(noise,Mn);
 | 
					 | 
				
			||||||
      if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      MSCG(hermop,noise,Mn);
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
					 | 
				
			||||||
      subspace[b]   = Mn;
 | 
					 | 
				
			||||||
      hermop.Op(Mn,tmp); 
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  virtual void RefineSubspace(LinearOperatorBase<FineField> &hermop,
 | 
					 | 
				
			||||||
			      double Lo,double tol,int maxit)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    FineField tmp(FineGrid);
 | 
					 | 
				
			||||||
    for(int b =0;b<nbasis;b++)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      ConjugateGradient<FineField>  CGsloppy(tol,maxit,false);
 | 
					 | 
				
			||||||
      ShiftedHermOpLinearOperator<FineField> ShiftedFineHermOp(hermop,Lo);
 | 
					 | 
				
			||||||
      tmp=Zero();
 | 
					 | 
				
			||||||
      CGsloppy(hermop,subspace[b],tmp);
 | 
					 | 
				
			||||||
      RealD scale = std::pow(norm2(tmp),-0.5); 	tmp=tmp*scale;
 | 
					 | 
				
			||||||
      subspace[b]=tmp;
 | 
					 | 
				
			||||||
      hermop.Op(subspace[b],tmp);
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  virtual void RefineSubspaceHDCG(LinearOperatorBase<FineField> &hermop,
 | 
					 | 
				
			||||||
				  TwoLevelADEF2mrhs<FineField,CoarseVector> & theHDCG,
 | 
					 | 
				
			||||||
				  int nrhs)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::vector<FineField> src_mrhs(nrhs,FineGrid);
 | 
					 | 
				
			||||||
    std::vector<FineField> res_mrhs(nrhs,FineGrid);
 | 
					 | 
				
			||||||
    FineField tmp(FineGrid);
 | 
					 | 
				
			||||||
    for(int b =0;b<nbasis;b+=nrhs)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      tmp = subspace[b];
 | 
					 | 
				
			||||||
      RealD scale = std::pow(norm2(tmp),-0.5); 	tmp=tmp*scale;
 | 
					 | 
				
			||||||
      subspace[b] =tmp;
 | 
					 | 
				
			||||||
      hermop.Op(subspace[b],tmp);
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "before filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int r=0;r<MIN(nbasis-b,nrhs);r++){
 | 
					 | 
				
			||||||
	src_mrhs[r] = subspace[b+r];
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      for(int r=0;r<nrhs;r++){
 | 
					 | 
				
			||||||
	res_mrhs[r] = Zero();
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      theHDCG(src_mrhs,res_mrhs);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int r=0;r<MIN(nbasis-b,nrhs);r++){
 | 
					 | 
				
			||||||
	tmp = res_mrhs[r];
 | 
					 | 
				
			||||||
	RealD scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
 | 
					 | 
				
			||||||
	subspace[b+r]=tmp;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      hermop.Op(subspace[b],tmp);
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "after filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
@@ -1,629 +0,0 @@
 | 
				
			|||||||
/*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2015
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
*************************************************************************************/
 | 
					 | 
				
			||||||
/*  END LEGAL */
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#include <Grid/lattice/PaddedCell.h>
 | 
					 | 
				
			||||||
#include <Grid/stencil/GeneralLocalStencil.h>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
// Fine Object == (per site) type of fine field
 | 
					 | 
				
			||||||
// nbasis      == number of deflation vectors
 | 
					 | 
				
			||||||
template<class Fobj,class CComplex,int nbasis>
 | 
					 | 
				
			||||||
class GeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > >  {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
 | 
					 | 
				
			||||||
  typedef iVector<CComplex,nbasis >           siteVector;
 | 
					 | 
				
			||||||
  typedef iMatrix<CComplex,nbasis >           siteMatrix;
 | 
					 | 
				
			||||||
  typedef Lattice<iScalar<CComplex> >         CoarseComplexField;
 | 
					 | 
				
			||||||
  typedef Lattice<siteVector>                 CoarseVector;
 | 
					 | 
				
			||||||
  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
					 | 
				
			||||||
  typedef iMatrix<CComplex,nbasis >  Cobj;
 | 
					 | 
				
			||||||
  typedef iVector<CComplex,nbasis >  Cvec;
 | 
					 | 
				
			||||||
  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
					 | 
				
			||||||
  typedef Lattice<Fobj >        FineField;
 | 
					 | 
				
			||||||
  typedef Lattice<CComplex >    FineComplexField;
 | 
					 | 
				
			||||||
  typedef CoarseVector Field;
 | 
					 | 
				
			||||||
  ////////////////////
 | 
					 | 
				
			||||||
  // Data members
 | 
					 | 
				
			||||||
  ////////////////////
 | 
					 | 
				
			||||||
  int hermitian;
 | 
					 | 
				
			||||||
  GridBase      *       _FineGrid; 
 | 
					 | 
				
			||||||
  GridCartesian *       _CoarseGrid; 
 | 
					 | 
				
			||||||
  NonLocalStencilGeometry &geom;
 | 
					 | 
				
			||||||
  PaddedCell Cell;
 | 
					 | 
				
			||||||
  GeneralLocalStencil Stencil;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  std::vector<CoarseMatrix> _A;
 | 
					 | 
				
			||||||
  std::vector<CoarseMatrix> _Adag;
 | 
					 | 
				
			||||||
  std::vector<CoarseVector> MultTemporaries;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ///////////////////////
 | 
					 | 
				
			||||||
  // Interface
 | 
					 | 
				
			||||||
  ///////////////////////
 | 
					 | 
				
			||||||
  GridBase      * Grid(void)           { return _CoarseGrid; };   // this is all the linalg routines need to know
 | 
					 | 
				
			||||||
  GridBase      * FineGrid(void)       { return _FineGrid; };   // this is all the linalg routines need to know
 | 
					 | 
				
			||||||
  GridCartesian * CoarseGrid(void)     { return _CoarseGrid; };   // this is all the linalg routines need to know
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /*  void ShiftMatrix(RealD shift)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int Nd=_FineGrid->Nd(); 
 | 
					 | 
				
			||||||
    Coordinate zero_shift(Nd,0);
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
      if ( zero_shift==geom.shifts[p] ) {
 | 
					 | 
				
			||||||
	_A[p] = _A[p]+shift;
 | 
					 | 
				
			||||||
	//	_Adag[p] = _Adag[p]+shift;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }    
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void ProjectNearestNeighbour(RealD shift, GeneralCoarseOp &CopyMe)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int nfound=0;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage <<"GeneralCoarsenedMatrix::ProjectNearestNeighbour "<< CopyMe._A[0].Grid()<<std::endl;
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
      for(int pp=0;pp<CopyMe.geom.npoint;pp++){
 | 
					 | 
				
			||||||
 	// Search for the same relative shift
 | 
					 | 
				
			||||||
	// Avoids brutal handling of Grid pointers
 | 
					 | 
				
			||||||
	if ( CopyMe.geom.shifts[pp]==geom.shifts[p] ) {
 | 
					 | 
				
			||||||
	  _A[p] = CopyMe.Cell.Extract(CopyMe._A[pp]);
 | 
					 | 
				
			||||||
	  //	  _Adag[p] = CopyMe.Cell.Extract(CopyMe._Adag[pp]);
 | 
					 | 
				
			||||||
	  nfound++;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    assert(nfound==geom.npoint);
 | 
					 | 
				
			||||||
    ExchangeCoarseLinks();
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  */
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  GeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridBase *FineGrid, GridCartesian * CoarseGrid)
 | 
					 | 
				
			||||||
    : geom(_geom),
 | 
					 | 
				
			||||||
      _FineGrid(FineGrid),
 | 
					 | 
				
			||||||
      _CoarseGrid(CoarseGrid),
 | 
					 | 
				
			||||||
      hermitian(1),
 | 
					 | 
				
			||||||
      Cell(_geom.Depth(),_CoarseGrid),
 | 
					 | 
				
			||||||
      Stencil(Cell.grids.back(),geom.shifts)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      int npoint = _geom.npoint;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    _A.resize(geom.npoint,CoarseGrid);
 | 
					 | 
				
			||||||
    //    _Adag.resize(geom.npoint,CoarseGrid);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void M (const CoarseVector &in, CoarseVector &out)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    Mult(_A,in,out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void Mdag (const CoarseVector &in, CoarseVector &out)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    assert(hermitian);
 | 
					 | 
				
			||||||
    Mult(_A,in,out);
 | 
					 | 
				
			||||||
    //    if ( hermitian ) M(in,out);
 | 
					 | 
				
			||||||
    //    else Mult(_Adag,in,out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void Mult (std::vector<CoarseMatrix> &A,const CoarseVector &in, CoarseVector &out)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    RealD tviews=0;    RealD ttot=0;    RealD tmult=0;   RealD texch=0;    RealD text=0; RealD ttemps=0; RealD tcopy=0;
 | 
					 | 
				
			||||||
    RealD tmult2=0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ttot=-usecond();
 | 
					 | 
				
			||||||
    conformable(CoarseGrid(),in.Grid());
 | 
					 | 
				
			||||||
    conformable(in.Grid(),out.Grid());
 | 
					 | 
				
			||||||
    out.Checkerboard() = in.Checkerboard();
 | 
					 | 
				
			||||||
    CoarseVector tin=in;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    texch-=usecond();
 | 
					 | 
				
			||||||
    CoarseVector pin = Cell.ExchangePeriodic(tin);
 | 
					 | 
				
			||||||
    texch+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    CoarseVector pout(pin.Grid());
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int npoint = geom.npoint;
 | 
					 | 
				
			||||||
    typedef LatticeView<Cobj> Aview;
 | 
					 | 
				
			||||||
    typedef LatticeView<Cvec> Vview;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    const int Nsimd = CComplex::Nsimd();
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    int64_t osites=pin.Grid()->oSites();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
 | 
					 | 
				
			||||||
    RealD bytes = 1.0*osites*sizeof(siteMatrix)*npoint
 | 
					 | 
				
			||||||
                + 2.0*osites*sizeof(siteVector)*npoint;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      tviews-=usecond();
 | 
					 | 
				
			||||||
      autoView( in_v , pin, AcceleratorRead);
 | 
					 | 
				
			||||||
      autoView( out_v , pout, AcceleratorWriteDiscard);
 | 
					 | 
				
			||||||
      autoView( Stencil_v  , Stencil, AcceleratorRead);
 | 
					 | 
				
			||||||
      tviews+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Static and prereserve to keep UVM region live and not resized across multiple calls
 | 
					 | 
				
			||||||
      ttemps-=usecond();
 | 
					 | 
				
			||||||
      MultTemporaries.resize(npoint,pin.Grid());       
 | 
					 | 
				
			||||||
      ttemps+=usecond();
 | 
					 | 
				
			||||||
      std::vector<Aview> AcceleratorViewContainer_h;
 | 
					 | 
				
			||||||
      std::vector<Vview> AcceleratorVecViewContainer_h; 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      tviews-=usecond();
 | 
					 | 
				
			||||||
      for(int p=0;p<npoint;p++) {
 | 
					 | 
				
			||||||
	AcceleratorViewContainer_h.push_back(      A[p].View(AcceleratorRead));
 | 
					 | 
				
			||||||
	AcceleratorVecViewContainer_h.push_back(MultTemporaries[p].View(AcceleratorWrite));
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      tviews+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      static deviceVector<Aview> AcceleratorViewContainer; AcceleratorViewContainer.resize(npoint);
 | 
					 | 
				
			||||||
      static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(npoint); 
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      auto Aview_p = &AcceleratorViewContainer[0];
 | 
					 | 
				
			||||||
      auto Vview_p = &AcceleratorVecViewContainer[0];
 | 
					 | 
				
			||||||
      tcopy-=usecond();
 | 
					 | 
				
			||||||
      acceleratorCopyToDevice(&AcceleratorViewContainer_h[0],&AcceleratorViewContainer[0],npoint *sizeof(Aview));
 | 
					 | 
				
			||||||
      acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],npoint *sizeof(Vview));
 | 
					 | 
				
			||||||
      tcopy+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      tmult-=usecond();
 | 
					 | 
				
			||||||
      accelerator_for(spb, osites*nbasis*npoint, Nsimd, {
 | 
					 | 
				
			||||||
	  typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
 | 
					 | 
				
			||||||
	  int32_t ss   = spb/(nbasis*npoint);
 | 
					 | 
				
			||||||
	  int32_t bp   = spb%(nbasis*npoint);
 | 
					 | 
				
			||||||
	  int32_t point= bp/nbasis;
 | 
					 | 
				
			||||||
	  int32_t b    = bp%nbasis;
 | 
					 | 
				
			||||||
	  auto SE  = Stencil_v.GetEntry(point,ss);
 | 
					 | 
				
			||||||
	  auto nbr = coalescedReadGeneralPermute(in_v[SE->_offset],SE->_permute,Nd);
 | 
					 | 
				
			||||||
	  auto res = coalescedRead(Aview_p[point][ss](0,b))*nbr(0);
 | 
					 | 
				
			||||||
	  for(int bb=1;bb<nbasis;bb++) {
 | 
					 | 
				
			||||||
	    res = res + coalescedRead(Aview_p[point][ss](bb,b))*nbr(bb);
 | 
					 | 
				
			||||||
	  }
 | 
					 | 
				
			||||||
	  coalescedWrite(Vview_p[point][ss](b),res);
 | 
					 | 
				
			||||||
      });
 | 
					 | 
				
			||||||
      tmult2-=usecond();
 | 
					 | 
				
			||||||
      accelerator_for(sb, osites*nbasis, Nsimd, {
 | 
					 | 
				
			||||||
	  int ss = sb/nbasis;
 | 
					 | 
				
			||||||
	  int b  = sb%nbasis;
 | 
					 | 
				
			||||||
	  auto res = coalescedRead(Vview_p[0][ss](b));
 | 
					 | 
				
			||||||
	  for(int point=1;point<npoint;point++){
 | 
					 | 
				
			||||||
	    res = res + coalescedRead(Vview_p[point][ss](b));
 | 
					 | 
				
			||||||
	  }
 | 
					 | 
				
			||||||
	  coalescedWrite(out_v[ss](b),res);
 | 
					 | 
				
			||||||
      });
 | 
					 | 
				
			||||||
      tmult2+=usecond();
 | 
					 | 
				
			||||||
      tmult+=usecond();
 | 
					 | 
				
			||||||
      for(int p=0;p<npoint;p++) {
 | 
					 | 
				
			||||||
	AcceleratorViewContainer_h[p].ViewClose();
 | 
					 | 
				
			||||||
	AcceleratorVecViewContainer_h[p].ViewClose();
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    text-=usecond();
 | 
					 | 
				
			||||||
    out = Cell.Extract(pout);
 | 
					 | 
				
			||||||
    text+=usecond();
 | 
					 | 
				
			||||||
    ttot+=usecond();
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse 1rhs Mult Aviews "<<tviews<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse Mult exch "<<texch<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse Mult mult "<<tmult<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<" of which mult2  "<<tmult2<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse Mult ext  "<<text<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse Mult temps "<<ttemps<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse Mult copy  "<<tcopy<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse Mult tot  "<<ttot<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    //    std::cout << GridLogPerformance<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse Kernel flops "<< flops<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse Kernel flop/s "<< flops/tmult<<" mflop/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse Kernel bytes/s "<< bytes/tmult<<" MB/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse overall flops/s "<< flops/ttot<<" mflop/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse total bytes   "<< bytes/1e6<<" MB"<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  void PopulateAdag(void)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    for(int64_t bidx=0;bidx<CoarseGrid()->gSites() ;bidx++){
 | 
					 | 
				
			||||||
      Coordinate bcoor;
 | 
					 | 
				
			||||||
      CoarseGrid()->GlobalIndexToGlobalCoor(bidx,bcoor);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
	Coordinate scoor = bcoor;
 | 
					 | 
				
			||||||
	for(int mu=0;mu<bcoor.size();mu++){
 | 
					 | 
				
			||||||
	  int L = CoarseGrid()->GlobalDimensions()[mu];
 | 
					 | 
				
			||||||
	  scoor[mu] = (bcoor[mu] - geom.shifts[p][mu] + L) % L; // Modulo arithmetic
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	// Flip to poke/peekLocalSite and not too bad
 | 
					 | 
				
			||||||
	auto link = peekSite(_A[p],scoor);
 | 
					 | 
				
			||||||
	int pp = geom.Reverse(p);
 | 
					 | 
				
			||||||
	pokeSite(adj(link),_Adag[pp],bcoor);
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // 
 | 
					 | 
				
			||||||
  // A) Only reduced flops option is to use a padded cell of depth 4
 | 
					 | 
				
			||||||
  // and apply MpcDagMpc in the padded cell.
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Makes for ONE application of MpcDagMpc per vector instead of 30 or 80.
 | 
					 | 
				
			||||||
  // With the effective cell size around (B+8)^4 perhaps 12^4/4^4 ratio
 | 
					 | 
				
			||||||
  // Cost is 81x more, same as stencil size.
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // But: can eliminate comms and do as local dirichlet.
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Local exchange gauge field once.
 | 
					 | 
				
			||||||
  // Apply to all vectors, local only computation.
 | 
					 | 
				
			||||||
  // Must exchange ghost subcells in reverse process of PaddedCell to take inner products
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // B) Can reduce cost: pad by 1, apply Deo      (4^4+6^4+8^4+8^4 )/ (4x 4^4)
 | 
					 | 
				
			||||||
  //                     pad by 2, apply Doe
 | 
					 | 
				
			||||||
  //                     pad by 3, apply Deo
 | 
					 | 
				
			||||||
  //                     then break out 8x directions; cost is ~10x MpcDagMpc per vector
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // => almost factor of 10 in setup cost, excluding data rearrangement
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Intermediates -- ignore the corner terms, leave approximate and force Hermitian
 | 
					 | 
				
			||||||
  // Intermediates -- pad by 2 and apply 1+8+24 = 33 times.
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // BFM HDCG style approach: Solve a system of equations to get Aij
 | 
					 | 
				
			||||||
    //////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    /*
 | 
					 | 
				
			||||||
     *     Here, k,l index which possible shift within the 3^Nd "ball" connected by MdagM.
 | 
					 | 
				
			||||||
     *
 | 
					 | 
				
			||||||
     *     conj(phases[block]) proj[k][ block*Nvec+j ] =  \sum_ball  e^{i q_k . delta} < phi_{block,j} | MdagM | phi_{(block+delta),i} > 
 | 
					 | 
				
			||||||
     *                                                 =  \sum_ball e^{iqk.delta} A_ji
 | 
					 | 
				
			||||||
     *
 | 
					 | 
				
			||||||
     *     Must invert matrix M_k,l = e^[i q_k . delta_l]
 | 
					 | 
				
			||||||
     *
 | 
					 | 
				
			||||||
     *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
					 | 
				
			||||||
     */
 | 
					 | 
				
			||||||
#if 0
 | 
					 | 
				
			||||||
  void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
					 | 
				
			||||||
		       Aggregation<Fobj,CComplex,nbasis> & Subspace)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
 | 
					 | 
				
			||||||
    GridBase *grid = FineGrid();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD tproj=0.0;
 | 
					 | 
				
			||||||
    RealD teigen=0.0;
 | 
					 | 
				
			||||||
    RealD tmat=0.0;
 | 
					 | 
				
			||||||
    RealD tphase=0.0;
 | 
					 | 
				
			||||||
    RealD tinv=0.0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Orthogonalise the subblocks over the basis
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    CoarseScalar InnerProd(CoarseGrid()); 
 | 
					 | 
				
			||||||
    blockOrthogonalise(InnerProd,Subspace.subspace);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    const int npoint = geom.npoint;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    Coordinate clatt = CoarseGrid()->GlobalDimensions();
 | 
					 | 
				
			||||||
    int Nd = CoarseGrid()->Nd();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      /*
 | 
					 | 
				
			||||||
       *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
 | 
					 | 
				
			||||||
       *     Matrix index i is mapped to this shift via 
 | 
					 | 
				
			||||||
       *               geom.shifts[i]
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block] 
 | 
					 | 
				
			||||||
       *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} > 
 | 
					 | 
				
			||||||
       *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
 | 
					 | 
				
			||||||
       *       = M_{kl} A_ji^{b.b+l}
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
 | 
					 | 
				
			||||||
       *  
 | 
					 | 
				
			||||||
       *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
 | 
					 | 
				
			||||||
       */
 | 
					 | 
				
			||||||
    teigen-=usecond();
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
					 | 
				
			||||||
    ComplexD ci(0.0,1.0);
 | 
					 | 
				
			||||||
    for(int k=0;k<npoint;k++){ // Loop over momenta
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int l=0;l<npoint;l++){ // Loop over nbr relative
 | 
					 | 
				
			||||||
	ComplexD phase(0.0,0.0);
 | 
					 | 
				
			||||||
	for(int mu=0;mu<Nd;mu++){
 | 
					 | 
				
			||||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
					 | 
				
			||||||
	  phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	phase=exp(phase*ci);
 | 
					 | 
				
			||||||
	Mkl(k,l) = phase;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    invMkl = Mkl.inverse();
 | 
					 | 
				
			||||||
    teigen+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ///////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Now compute the matrix elements of linop between the orthonormal
 | 
					 | 
				
			||||||
    // set of vectors.
 | 
					 | 
				
			||||||
    ///////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    FineField phaV(grid); // Phased block basis vector
 | 
					 | 
				
			||||||
    FineField MphaV(grid);// Matrix applied
 | 
					 | 
				
			||||||
    CoarseVector coarseInner(CoarseGrid());
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
 | 
					 | 
				
			||||||
    std::vector<CoarseVector>          FT(npoint,CoarseGrid());
 | 
					 | 
				
			||||||
    for(int i=0;i<nbasis;i++){// Loop over basis vectors
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
 | 
					 | 
				
			||||||
      for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
					 | 
				
			||||||
	/////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	// Stick a phase on every block
 | 
					 | 
				
			||||||
	/////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	tphase-=usecond();
 | 
					 | 
				
			||||||
	CoarseComplexField coor(CoarseGrid());
 | 
					 | 
				
			||||||
	CoarseComplexField pha(CoarseGrid());	pha=Zero();
 | 
					 | 
				
			||||||
	for(int mu=0;mu<Nd;mu++){
 | 
					 | 
				
			||||||
	  LatticeCoordinate(coor,mu);
 | 
					 | 
				
			||||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
					 | 
				
			||||||
	  pha = pha + (TwoPiL * geom.shifts[p][mu]) * coor;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	pha  =exp(pha*ci);
 | 
					 | 
				
			||||||
	phaV=Zero();
 | 
					 | 
				
			||||||
	blockZAXPY(phaV,pha,Subspace.subspace[i],phaV);
 | 
					 | 
				
			||||||
	tphase+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	/////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	// Multiple phased subspace vector by matrix and project to subspace
 | 
					 | 
				
			||||||
	// Remove local bulk phase to leave relative phases
 | 
					 | 
				
			||||||
	/////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	tmat-=usecond();
 | 
					 | 
				
			||||||
	linop.Op(phaV,MphaV);
 | 
					 | 
				
			||||||
	tmat+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	tproj-=usecond();
 | 
					 | 
				
			||||||
	blockProject(coarseInner,MphaV,Subspace.subspace);
 | 
					 | 
				
			||||||
	coarseInner = conjugate(pha) * coarseInner;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	ComputeProj[p] = coarseInner;
 | 
					 | 
				
			||||||
	tproj+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      tinv-=usecond();
 | 
					 | 
				
			||||||
      for(int k=0;k<npoint;k++){
 | 
					 | 
				
			||||||
	FT[k] = Zero();
 | 
					 | 
				
			||||||
	for(int l=0;l<npoint;l++){
 | 
					 | 
				
			||||||
	  FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
	int osites=CoarseGrid()->oSites();
 | 
					 | 
				
			||||||
	autoView( A_v  , _A[k], AcceleratorWrite);
 | 
					 | 
				
			||||||
	autoView( FT_v  , FT[k], AcceleratorRead);
 | 
					 | 
				
			||||||
	accelerator_for(sss, osites, 1, {
 | 
					 | 
				
			||||||
	    for(int j=0;j<nbasis;j++){
 | 
					 | 
				
			||||||
	      A_v[sss](i,j) = FT_v[sss](j);
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
        });
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      tinv+=usecond();
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Only needed if nonhermitian
 | 
					 | 
				
			||||||
    if ( ! hermitian ) {
 | 
					 | 
				
			||||||
      //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl;
 | 
					 | 
				
			||||||
      //      PopulateAdag();
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Need to write something to populate Adag from A
 | 
					 | 
				
			||||||
    ExchangeCoarseLinks();
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator eigen  "<<teigen<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator phase  "<<tphase<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator mat    "<<tmat <<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator proj   "<<tproj<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // Galerkin projection of matrix
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
					 | 
				
			||||||
		       Aggregation<Fobj,CComplex,nbasis> & Subspace)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    CoarsenOperator(linop,Subspace,Subspace);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // Petrov - Galerkin projection of matrix
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
					 | 
				
			||||||
		       Aggregation<Fobj,CComplex,nbasis> & U,
 | 
					 | 
				
			||||||
		       Aggregation<Fobj,CComplex,nbasis> & V)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
 | 
					 | 
				
			||||||
    GridBase *grid = FineGrid();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD tproj=0.0;
 | 
					 | 
				
			||||||
    RealD teigen=0.0;
 | 
					 | 
				
			||||||
    RealD tmat=0.0;
 | 
					 | 
				
			||||||
    RealD tphase=0.0;
 | 
					 | 
				
			||||||
    RealD tphaseBZ=0.0;
 | 
					 | 
				
			||||||
    RealD tinv=0.0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Orthogonalise the subblocks over the basis
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    CoarseScalar InnerProd(CoarseGrid()); 
 | 
					 | 
				
			||||||
    blockOrthogonalise(InnerProd,V.subspace);
 | 
					 | 
				
			||||||
    blockOrthogonalise(InnerProd,U.subspace);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    const int npoint = geom.npoint;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    Coordinate clatt = CoarseGrid()->GlobalDimensions();
 | 
					 | 
				
			||||||
    int Nd = CoarseGrid()->Nd();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      /*
 | 
					 | 
				
			||||||
       *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
 | 
					 | 
				
			||||||
       *     Matrix index i is mapped to this shift via 
 | 
					 | 
				
			||||||
       *               geom.shifts[i]
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block] 
 | 
					 | 
				
			||||||
       *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} > 
 | 
					 | 
				
			||||||
       *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
 | 
					 | 
				
			||||||
       *       = M_{kl} A_ji^{b.b+l}
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
 | 
					 | 
				
			||||||
       *  
 | 
					 | 
				
			||||||
       *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
 | 
					 | 
				
			||||||
       */
 | 
					 | 
				
			||||||
    teigen-=usecond();
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
					 | 
				
			||||||
    ComplexD ci(0.0,1.0);
 | 
					 | 
				
			||||||
    for(int k=0;k<npoint;k++){ // Loop over momenta
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int l=0;l<npoint;l++){ // Loop over nbr relative
 | 
					 | 
				
			||||||
	ComplexD phase(0.0,0.0);
 | 
					 | 
				
			||||||
	for(int mu=0;mu<Nd;mu++){
 | 
					 | 
				
			||||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
					 | 
				
			||||||
	  phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	phase=exp(phase*ci);
 | 
					 | 
				
			||||||
	Mkl(k,l) = phase;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    invMkl = Mkl.inverse();
 | 
					 | 
				
			||||||
    teigen+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ///////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Now compute the matrix elements of linop between the orthonormal
 | 
					 | 
				
			||||||
    // set of vectors.
 | 
					 | 
				
			||||||
    ///////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    FineField phaV(grid); // Phased block basis vector
 | 
					 | 
				
			||||||
    FineField MphaV(grid);// Matrix applied
 | 
					 | 
				
			||||||
    std::vector<FineComplexField> phaF(npoint,grid);
 | 
					 | 
				
			||||||
    std::vector<CoarseComplexField> pha(npoint,CoarseGrid());
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    CoarseVector coarseInner(CoarseGrid());
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    typedef typename CComplex::scalar_type SComplex;
 | 
					 | 
				
			||||||
    FineComplexField one(grid); one=SComplex(1.0);
 | 
					 | 
				
			||||||
    FineComplexField zz(grid); zz = Zero();
 | 
					 | 
				
			||||||
    tphase=-usecond();
 | 
					 | 
				
			||||||
    for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
					 | 
				
			||||||
      /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
      // Stick a phase on every block
 | 
					 | 
				
			||||||
      /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
      CoarseComplexField coor(CoarseGrid());
 | 
					 | 
				
			||||||
      pha[p]=Zero();
 | 
					 | 
				
			||||||
      for(int mu=0;mu<Nd;mu++){
 | 
					 | 
				
			||||||
	LatticeCoordinate(coor,mu);
 | 
					 | 
				
			||||||
	RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
					 | 
				
			||||||
	pha[p] = pha[p] + (TwoPiL * geom.shifts[p][mu]) * coor;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      pha[p]  =exp(pha[p]*ci);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      blockZAXPY(phaF[p],pha[p],one,zz);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    tphase+=usecond();
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
 | 
					 | 
				
			||||||
    std::vector<CoarseVector>          FT(npoint,CoarseGrid());
 | 
					 | 
				
			||||||
    for(int i=0;i<nbasis;i++){// Loop over basis vectors
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
 | 
					 | 
				
			||||||
      for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
					 | 
				
			||||||
	tphaseBZ-=usecond();
 | 
					 | 
				
			||||||
	phaV = phaF[p]*V.subspace[i];
 | 
					 | 
				
			||||||
	tphaseBZ+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	/////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	// Multiple phased subspace vector by matrix and project to subspace
 | 
					 | 
				
			||||||
	// Remove local bulk phase to leave relative phases
 | 
					 | 
				
			||||||
	/////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	tmat-=usecond();
 | 
					 | 
				
			||||||
	linop.Op(phaV,MphaV);
 | 
					 | 
				
			||||||
	tmat+=usecond();
 | 
					 | 
				
			||||||
	//	std::cout << i << " " <<p << " MphaV "<<norm2(MphaV)<<" "<<norm2(phaV)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	tproj-=usecond();
 | 
					 | 
				
			||||||
	blockProject(coarseInner,MphaV,U.subspace);
 | 
					 | 
				
			||||||
	coarseInner = conjugate(pha[p]) * coarseInner;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	ComputeProj[p] = coarseInner;
 | 
					 | 
				
			||||||
	tproj+=usecond();
 | 
					 | 
				
			||||||
	//	std::cout << i << " " <<p << " ComputeProj "<<norm2(ComputeProj[p])<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      tinv-=usecond();
 | 
					 | 
				
			||||||
      for(int k=0;k<npoint;k++){
 | 
					 | 
				
			||||||
	FT[k] = Zero();
 | 
					 | 
				
			||||||
	for(int l=0;l<npoint;l++){
 | 
					 | 
				
			||||||
	  FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
	int osites=CoarseGrid()->oSites();
 | 
					 | 
				
			||||||
	autoView( A_v  , _A[k], AcceleratorWrite);
 | 
					 | 
				
			||||||
	autoView( FT_v  , FT[k], AcceleratorRead);
 | 
					 | 
				
			||||||
	accelerator_for(sss, osites, 1, {
 | 
					 | 
				
			||||||
	    for(int j=0;j<nbasis;j++){
 | 
					 | 
				
			||||||
	      A_v[sss](i,j) = FT_v[sss](j);
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
        });
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      tinv+=usecond();
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Only needed if nonhermitian
 | 
					 | 
				
			||||||
    if ( ! hermitian ) {
 | 
					 | 
				
			||||||
      //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl;
 | 
					 | 
				
			||||||
      //      PopulateAdag();
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
      std::cout << " _A["<<p<<"] "<<norm2(_A[p])<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Need to write something to populate Adag from A
 | 
					 | 
				
			||||||
    ExchangeCoarseLinks();
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator eigen  "<<teigen<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator phase  "<<tphase<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator mat    "<<tmat <<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator proj   "<<tproj<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
#endif  
 | 
					 | 
				
			||||||
  void ExchangeCoarseLinks(void){
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
      _A[p] = Cell.ExchangePeriodic(_A[p]);
 | 
					 | 
				
			||||||
      //      _Adag[p]= Cell.ExchangePeriodic(_Adag[p]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  virtual  void Mdiag    (const Field &in, Field &out){ assert(0);};
 | 
					 | 
				
			||||||
  virtual  void Mdir     (const Field &in, Field &out,int dir, int disp){assert(0);};
 | 
					 | 
				
			||||||
  virtual  void MdirAll  (const Field &in, std::vector<Field> &out){assert(0);};
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
@@ -1,729 +0,0 @@
 | 
				
			|||||||
/*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: ./lib/algorithms/GeneralCoarsenedMatrixMultiRHS.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2015
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
*************************************************************************************/
 | 
					 | 
				
			||||||
/*  END LEGAL */
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
// Fine Object == (per site) type of fine field
 | 
					 | 
				
			||||||
// nbasis      == number of deflation vectors
 | 
					 | 
				
			||||||
template<class Fobj,class CComplex,int nbasis>
 | 
					 | 
				
			||||||
class MultiGeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > >  {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  typedef typename CComplex::scalar_object SComplex;
 | 
					 | 
				
			||||||
  typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
 | 
					 | 
				
			||||||
  typedef MultiGeneralCoarsenedMatrix<Fobj,CComplex,nbasis> MultiGeneralCoarseOp;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  typedef iVector<CComplex,nbasis >           siteVector;
 | 
					 | 
				
			||||||
  typedef iMatrix<CComplex,nbasis >           siteMatrix;
 | 
					 | 
				
			||||||
  typedef iVector<SComplex,nbasis >           calcVector;
 | 
					 | 
				
			||||||
  typedef iMatrix<SComplex,nbasis >           calcMatrix;
 | 
					 | 
				
			||||||
  typedef Lattice<iScalar<CComplex> >         CoarseComplexField;
 | 
					 | 
				
			||||||
  typedef Lattice<siteVector>                 CoarseVector;
 | 
					 | 
				
			||||||
  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
					 | 
				
			||||||
  typedef iMatrix<CComplex,nbasis >  Cobj;
 | 
					 | 
				
			||||||
  typedef iVector<CComplex,nbasis >  Cvec;
 | 
					 | 
				
			||||||
  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
					 | 
				
			||||||
  typedef Lattice<Fobj >        FineField;
 | 
					 | 
				
			||||||
  typedef Lattice<CComplex >    FineComplexField;
 | 
					 | 
				
			||||||
  typedef CoarseVector Field;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ////////////////////
 | 
					 | 
				
			||||||
  // Data members
 | 
					 | 
				
			||||||
  ////////////////////
 | 
					 | 
				
			||||||
  GridCartesian *       _CoarseGridMulti; 
 | 
					 | 
				
			||||||
  NonLocalStencilGeometry geom;
 | 
					 | 
				
			||||||
  NonLocalStencilGeometry geom_srhs;
 | 
					 | 
				
			||||||
  PaddedCell Cell;
 | 
					 | 
				
			||||||
  GeneralLocalStencil Stencil;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  deviceVector<calcVector> BLAS_B;
 | 
					 | 
				
			||||||
  deviceVector<calcVector> BLAS_C;
 | 
					 | 
				
			||||||
  std::vector<deviceVector<calcMatrix> > BLAS_A;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  std::vector<deviceVector<ComplexD *> > BLAS_AP;
 | 
					 | 
				
			||||||
  std::vector<deviceVector<ComplexD *> > BLAS_BP;
 | 
					 | 
				
			||||||
  deviceVector<ComplexD *>               BLAS_CP;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ///////////////////////
 | 
					 | 
				
			||||||
  // Interface
 | 
					 | 
				
			||||||
  ///////////////////////
 | 
					 | 
				
			||||||
  GridBase      * Grid(void)           { return _CoarseGridMulti; };   // this is all the linalg routines need to know
 | 
					 | 
				
			||||||
  GridCartesian * CoarseGrid(void)     { return _CoarseGridMulti; };   // this is all the linalg routines need to know
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  // Can be used to do I/O on the operator matrices externally
 | 
					 | 
				
			||||||
  void SetMatrix (int p,CoarseMatrix & A)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    assert(A.size()==geom_srhs.npoint);
 | 
					 | 
				
			||||||
    GridtoBLAS(A[p],BLAS_A[p]);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void GetMatrix (int p,CoarseMatrix & A)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    assert(A.size()==geom_srhs.npoint);
 | 
					 | 
				
			||||||
    BLAStoGrid(A[p],BLAS_A[p]);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void CopyMatrix (GeneralCoarseOp &_Op)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
      auto Aup = _Op.Cell.Extract(_Op._A[p]);
 | 
					 | 
				
			||||||
      //Unpadded
 | 
					 | 
				
			||||||
      GridtoBLAS(Aup,BLAS_A[p]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
  void CheckMatrix (GeneralCoarseOp &_Op)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::cout <<"************* Checking the little direc operator mRHS"<<std::endl;
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
      //Unpadded
 | 
					 | 
				
			||||||
      auto Aup = _Op.Cell.Extract(_Op._A[p]);
 | 
					 | 
				
			||||||
      auto Ack = Aup;
 | 
					 | 
				
			||||||
      BLAStoGrid(Ack,BLAS_A[p]);
 | 
					 | 
				
			||||||
      std::cout << p<<" Ack "<<norm2(Ack)<<std::endl;
 | 
					 | 
				
			||||||
      std::cout << p<<" Aup "<<norm2(Aup)<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    std::cout <<"************* "<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  */
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  MultiGeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridCartesian *CoarseGridMulti) :
 | 
					 | 
				
			||||||
    _CoarseGridMulti(CoarseGridMulti),
 | 
					 | 
				
			||||||
    geom_srhs(_geom),
 | 
					 | 
				
			||||||
    geom(_CoarseGridMulti,_geom.hops,_geom.skip+1),
 | 
					 | 
				
			||||||
    Cell(geom.Depth(),_CoarseGridMulti),
 | 
					 | 
				
			||||||
    Stencil(Cell.grids.back(),geom.shifts) // padded cell stencil
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int32_t padded_sites   = Cell.grids.back()->lSites();
 | 
					 | 
				
			||||||
    int32_t unpadded_sites = CoarseGridMulti->lSites();
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    int32_t nrhs  = CoarseGridMulti->FullDimensions()[0];  // # RHS
 | 
					 | 
				
			||||||
    int32_t orhs  = nrhs/CComplex::Nsimd();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    padded_sites   = padded_sites/nrhs;
 | 
					 | 
				
			||||||
    unpadded_sites = unpadded_sites/nrhs;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Device data vector storage
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    BLAS_A.resize(geom.npoint);
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
      BLAS_A[p].resize (unpadded_sites); // no ghost zone, npoint elements
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    BLAS_B.resize(nrhs *padded_sites);   // includes ghost zone
 | 
					 | 
				
			||||||
    BLAS_C.resize(nrhs *unpadded_sites); // no ghost zone
 | 
					 | 
				
			||||||
    BLAS_AP.resize(geom.npoint);
 | 
					 | 
				
			||||||
    BLAS_BP.resize(geom.npoint);
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
      BLAS_AP[p].resize(unpadded_sites);
 | 
					 | 
				
			||||||
      BLAS_BP[p].resize(unpadded_sites);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    BLAS_CP.resize(unpadded_sites);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Pointers to data
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Site identity mapping for A
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
      for(int ss=0;ss<unpadded_sites;ss++){
 | 
					 | 
				
			||||||
	ComplexD *ptr = (ComplexD *)&BLAS_A[p][ss];
 | 
					 | 
				
			||||||
	acceleratorPut(BLAS_AP[p][ss],ptr);
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    // Site identity mapping for C
 | 
					 | 
				
			||||||
    for(int ss=0;ss<unpadded_sites;ss++){
 | 
					 | 
				
			||||||
      ComplexD *ptr = (ComplexD *)&BLAS_C[ss*nrhs];
 | 
					 | 
				
			||||||
      acceleratorPut(BLAS_CP[ss],ptr);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Neighbour table is more complicated
 | 
					 | 
				
			||||||
    int32_t j=0; // Interior point counter (unpadded)
 | 
					 | 
				
			||||||
    for(int32_t s=0;s<padded_sites;s++){ // 4 volume, padded
 | 
					 | 
				
			||||||
      int ghost_zone=0;
 | 
					 | 
				
			||||||
      for(int32_t point = 0 ; point < geom.npoint; point++){
 | 
					 | 
				
			||||||
	int i=s*orhs*geom.npoint+point;
 | 
					 | 
				
			||||||
	if( Stencil._entries[i]._wrap ) { // stencil is indexed by the oSite of the CoarseGridMulti, hence orhs factor
 | 
					 | 
				
			||||||
	  ghost_zone=1; // If general stencil wrapped in any direction, wrap=1
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      if( ghost_zone==0) {
 | 
					 | 
				
			||||||
	for(int32_t point = 0 ; point < geom.npoint; point++){
 | 
					 | 
				
			||||||
	  int i=s*orhs*geom.npoint+point;
 | 
					 | 
				
			||||||
 	  int32_t nbr = Stencil._entries[i]._offset*CComplex::Nsimd(); // oSite -> lSite
 | 
					 | 
				
			||||||
	  assert(nbr<BLAS_B.size());
 | 
					 | 
				
			||||||
	  ComplexD * ptr = (ComplexD *)&BLAS_B[nbr];
 | 
					 | 
				
			||||||
	  acceleratorPut(BLAS_BP[point][j],ptr); // neighbour indexing in ghost zone volume
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	j++;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    assert(j==unpadded_sites);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  template<class vobj> void GridtoBLAS(const Lattice<vobj> &from,deviceVector<typename vobj::scalar_object> &to)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  GridBase *Fg = from.Grid();
 | 
					 | 
				
			||||||
  assert(!Fg->_isCheckerBoarded);
 | 
					 | 
				
			||||||
  int nd = Fg->_ndimension;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  to.resize(Fg->lSites());
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Coordinate LocalLatt = Fg->LocalDimensions();
 | 
					 | 
				
			||||||
  size_t nsite = 1;
 | 
					 | 
				
			||||||
  for(int i=0;i<nd;i++) nsite *= LocalLatt[i];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // do the index calc on the GPU
 | 
					 | 
				
			||||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  Coordinate f_ostride = Fg->_ostride;
 | 
					 | 
				
			||||||
  Coordinate f_istride = Fg->_istride;
 | 
					 | 
				
			||||||
  Coordinate f_rdimensions = Fg->_rdimensions;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  autoView(from_v,from,AcceleratorRead);
 | 
					 | 
				
			||||||
  auto to_v = &to[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  const int words=sizeof(vobj)/sizeof(vector_type);
 | 
					 | 
				
			||||||
  accelerator_for(idx,nsite,1,{
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      Coordinate from_coor, base;
 | 
					 | 
				
			||||||
      Lexicographic::CoorFromIndex(base,idx,LocalLatt);
 | 
					 | 
				
			||||||
      for(int i=0;i<nd;i++){
 | 
					 | 
				
			||||||
	from_coor[i] = base[i];
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
 | 
					 | 
				
			||||||
      int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      const vector_type* from = (const vector_type *)&from_v[from_oidx];
 | 
					 | 
				
			||||||
      scalar_type* to = (scalar_type *)&to_v[idx];
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      scalar_type stmp;
 | 
					 | 
				
			||||||
      for(int w=0;w<words;w++){
 | 
					 | 
				
			||||||
	stmp = getlane(from[w], from_lane);
 | 
					 | 
				
			||||||
	to[w] = stmp;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    });
 | 
					 | 
				
			||||||
  }    
 | 
					 | 
				
			||||||
  template<class vobj> void BLAStoGrid(Lattice<vobj> &grid,deviceVector<typename vobj::scalar_object> &in)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  GridBase *Tg = grid.Grid();
 | 
					 | 
				
			||||||
  assert(!Tg->_isCheckerBoarded);
 | 
					 | 
				
			||||||
  int nd = Tg->_ndimension;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  assert(in.size()==Tg->lSites());
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Coordinate LocalLatt = Tg->LocalDimensions();
 | 
					 | 
				
			||||||
  size_t nsite = 1;
 | 
					 | 
				
			||||||
  for(int i=0;i<nd;i++) nsite *= LocalLatt[i];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // do the index calc on the GPU
 | 
					 | 
				
			||||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  Coordinate t_ostride = Tg->_ostride;
 | 
					 | 
				
			||||||
  Coordinate t_istride = Tg->_istride;
 | 
					 | 
				
			||||||
  Coordinate t_rdimensions = Tg->_rdimensions;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  autoView(to_v,grid,AcceleratorWrite);
 | 
					 | 
				
			||||||
  auto from_v = &in[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  const int words=sizeof(vobj)/sizeof(vector_type);
 | 
					 | 
				
			||||||
  accelerator_for(idx,nsite,1,{
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      Coordinate to_coor, base;
 | 
					 | 
				
			||||||
      Lexicographic::CoorFromIndex(base,idx,LocalLatt);
 | 
					 | 
				
			||||||
      for(int i=0;i<nd;i++){
 | 
					 | 
				
			||||||
	to_coor[i] = base[i];
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      int to_oidx = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
 | 
					 | 
				
			||||||
      int to_lane = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      vector_type* to = (vector_type *)&to_v[to_oidx];
 | 
					 | 
				
			||||||
      scalar_type* from = (scalar_type *)&from_v[idx];
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      scalar_type stmp;
 | 
					 | 
				
			||||||
      for(int w=0;w<words;w++){
 | 
					 | 
				
			||||||
	stmp=from[w];
 | 
					 | 
				
			||||||
	putlane(to[w], stmp, to_lane);
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    });
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
					 | 
				
			||||||
		       Aggregation<Fobj,CComplex,nbasis> & Subspace,
 | 
					 | 
				
			||||||
		       GridBase *CoarseGrid)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
#if 0
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridBase *grid = Subspace.FineGrid;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Orthogonalise the subblocks over the basis
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    CoarseScalar InnerProd(CoarseGrid); 
 | 
					 | 
				
			||||||
    blockOrthogonalise(InnerProd,Subspace.subspace);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    const int npoint = geom_srhs.npoint;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Coordinate clatt = CoarseGrid->GlobalDimensions();
 | 
					 | 
				
			||||||
    int Nd = CoarseGrid->Nd();
 | 
					 | 
				
			||||||
      /*
 | 
					 | 
				
			||||||
       *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
 | 
					 | 
				
			||||||
       *     Matrix index i is mapped to this shift via 
 | 
					 | 
				
			||||||
       *               geom.shifts[i]
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block] 
 | 
					 | 
				
			||||||
       *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} > 
 | 
					 | 
				
			||||||
       *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
 | 
					 | 
				
			||||||
       *       = M_{kl} A_ji^{b.b+l}
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
 | 
					 | 
				
			||||||
       *  
 | 
					 | 
				
			||||||
       *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
 | 
					 | 
				
			||||||
       */
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
					 | 
				
			||||||
    ComplexD ci(0.0,1.0);
 | 
					 | 
				
			||||||
    for(int k=0;k<npoint;k++){ // Loop over momenta
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int l=0;l<npoint;l++){ // Loop over nbr relative
 | 
					 | 
				
			||||||
	ComplexD phase(0.0,0.0);
 | 
					 | 
				
			||||||
	for(int mu=0;mu<Nd;mu++){
 | 
					 | 
				
			||||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
					 | 
				
			||||||
	  phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	phase=exp(phase*ci);
 | 
					 | 
				
			||||||
	Mkl(k,l) = phase;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    invMkl = Mkl.inverse();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ///////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Now compute the matrix elements of linop between the orthonormal
 | 
					 | 
				
			||||||
    // set of vectors.
 | 
					 | 
				
			||||||
    ///////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    FineField phaV(grid); // Phased block basis vector
 | 
					 | 
				
			||||||
    FineField MphaV(grid);// Matrix applied
 | 
					 | 
				
			||||||
    std::vector<FineComplexField> phaF(npoint,grid);
 | 
					 | 
				
			||||||
    std::vector<CoarseComplexField> pha(npoint,CoarseGrid);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    CoarseVector coarseInner(CoarseGrid);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    typedef typename CComplex::scalar_type SComplex;
 | 
					 | 
				
			||||||
    FineComplexField one(grid); one=SComplex(1.0);
 | 
					 | 
				
			||||||
    FineComplexField zz(grid); zz = Zero();
 | 
					 | 
				
			||||||
    for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
					 | 
				
			||||||
      /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
      // Stick a phase on every block
 | 
					 | 
				
			||||||
      /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
      CoarseComplexField coor(CoarseGrid);
 | 
					 | 
				
			||||||
      pha[p]=Zero();
 | 
					 | 
				
			||||||
      for(int mu=0;mu<Nd;mu++){
 | 
					 | 
				
			||||||
	LatticeCoordinate(coor,mu);
 | 
					 | 
				
			||||||
	RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
					 | 
				
			||||||
	pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      pha[p]  =exp(pha[p]*ci);	
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      blockZAXPY(phaF[p],pha[p],one,zz);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Could save on temporary storage here
 | 
					 | 
				
			||||||
    std::vector<CoarseMatrix> _A;
 | 
					 | 
				
			||||||
    _A.resize(geom_srhs.npoint,CoarseGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid);
 | 
					 | 
				
			||||||
    CoarseVector          FT(CoarseGrid);
 | 
					 | 
				
			||||||
    for(int i=0;i<nbasis;i++){// Loop over basis vectors
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
 | 
					 | 
				
			||||||
      for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	phaV = phaF[p]*Subspace.subspace[i];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	/////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	// Multiple phased subspace vector by matrix and project to subspace
 | 
					 | 
				
			||||||
	// Remove local bulk phase to leave relative phases
 | 
					 | 
				
			||||||
	/////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	linop.Op(phaV,MphaV);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	// Fixme, could use batched block projector here
 | 
					 | 
				
			||||||
	blockProject(coarseInner,MphaV,Subspace.subspace);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	coarseInner = conjugate(pha[p]) * coarseInner;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	ComputeProj[p] = coarseInner;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix.
 | 
					 | 
				
			||||||
      for(int k=0;k<npoint;k++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	FT = Zero();
 | 
					 | 
				
			||||||
	for(int l=0;l<npoint;l++){
 | 
					 | 
				
			||||||
	  FT= FT+ invMkl(l,k)*ComputeProj[l];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
	int osites=CoarseGrid->oSites();
 | 
					 | 
				
			||||||
	autoView( A_v  , _A[k], AcceleratorWrite);
 | 
					 | 
				
			||||||
	autoView( FT_v  , FT, AcceleratorRead);
 | 
					 | 
				
			||||||
	accelerator_for(sss, osites, 1, {
 | 
					 | 
				
			||||||
	    for(int j=0;j<nbasis;j++){
 | 
					 | 
				
			||||||
	      A_v[sss](i,j) = FT_v[sss](j);
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
        });
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Only needed if nonhermitian
 | 
					 | 
				
			||||||
    //    if ( ! hermitian ) {
 | 
					 | 
				
			||||||
    //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl;
 | 
					 | 
				
			||||||
    //      PopulateAdag();
 | 
					 | 
				
			||||||
    //    }
 | 
					 | 
				
			||||||
    // Need to write something to populate Adag from A
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int p=0;p<geom_srhs.npoint;p++){
 | 
					 | 
				
			||||||
      GridtoBLAS(_A[p],BLAS_A[p]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    /*
 | 
					 | 
				
			||||||
Grid : Message : 11698.730546 s : CoarsenOperator eigen  1334 us
 | 
					 | 
				
			||||||
Grid : Message : 11698.730563 s : CoarsenOperator phase  34729 us
 | 
					 | 
				
			||||||
Grid : Message : 11698.730565 s : CoarsenOperator phaseBZ 2423814 us
 | 
					 | 
				
			||||||
Grid : Message : 11698.730566 s : CoarsenOperator mat    127890998 us
 | 
					 | 
				
			||||||
Grid : Message : 11698.730567 s : CoarsenOperator proj   515840840 us
 | 
					 | 
				
			||||||
Grid : Message : 11698.730568 s : CoarsenOperator inv    103948313 us
 | 
					 | 
				
			||||||
Takes 600s to compute matrix elements, DOMINATED by the block project.
 | 
					 | 
				
			||||||
Easy to speed up with the batched block project.
 | 
					 | 
				
			||||||
Store npoint vectors, get npoint x Nbasis block projection, and 81 fold faster.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
// Block project below taks to 240s
 | 
					 | 
				
			||||||
Grid : Message : 328.193418 s : CoarsenOperator phase      38338 us
 | 
					 | 
				
			||||||
Grid : Message : 328.193434 s : CoarsenOperator phaseBZ  1711226 us
 | 
					 | 
				
			||||||
Grid : Message : 328.193436 s : CoarsenOperator mat    122213270 us
 | 
					 | 
				
			||||||
//Grid : Message : 328.193438 s : CoarsenOperator proj   1181154 us <-- this is mistimed
 | 
					 | 
				
			||||||
//Grid : Message : 11698.730568 s : CoarsenOperator inv  103948313 us <-- Cut this ~10x if lucky by loop fusion
 | 
					 | 
				
			||||||
     */
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
    RealD tproj=0.0;
 | 
					 | 
				
			||||||
    RealD tmat=0.0;
 | 
					 | 
				
			||||||
    RealD tphase=0.0;
 | 
					 | 
				
			||||||
    RealD tphaseBZ=0.0;
 | 
					 | 
				
			||||||
    RealD tinv=0.0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridBase *grid = Subspace.FineGrid;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Orthogonalise the subblocks over the basis
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    CoarseScalar InnerProd(CoarseGrid); 
 | 
					 | 
				
			||||||
    blockOrthogonalise(InnerProd,Subspace.subspace);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    MultiRHSBlockProject<Lattice<Fobj> >    Projector;
 | 
					 | 
				
			||||||
    Projector.Allocate(nbasis,grid,CoarseGrid);
 | 
					 | 
				
			||||||
    Projector.ImportBasis(Subspace.subspace);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    const int npoint = geom_srhs.npoint;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Coordinate clatt = CoarseGrid->GlobalDimensions();
 | 
					 | 
				
			||||||
    int Nd = CoarseGrid->Nd();
 | 
					 | 
				
			||||||
      /*
 | 
					 | 
				
			||||||
       *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
 | 
					 | 
				
			||||||
       *     Matrix index i is mapped to this shift via 
 | 
					 | 
				
			||||||
       *               geom.shifts[i]
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block] 
 | 
					 | 
				
			||||||
       *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} > 
 | 
					 | 
				
			||||||
       *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
 | 
					 | 
				
			||||||
       *       = M_{kl} A_ji^{b.b+l}
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
 | 
					 | 
				
			||||||
       *  
 | 
					 | 
				
			||||||
       *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
 | 
					 | 
				
			||||||
       */
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
					 | 
				
			||||||
    ComplexD ci(0.0,1.0);
 | 
					 | 
				
			||||||
    for(int k=0;k<npoint;k++){ // Loop over momenta
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int l=0;l<npoint;l++){ // Loop over nbr relative
 | 
					 | 
				
			||||||
	ComplexD phase(0.0,0.0);
 | 
					 | 
				
			||||||
	for(int mu=0;mu<Nd;mu++){
 | 
					 | 
				
			||||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
					 | 
				
			||||||
	  phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	phase=exp(phase*ci);
 | 
					 | 
				
			||||||
	Mkl(k,l) = phase;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    invMkl = Mkl.inverse();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ///////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Now compute the matrix elements of linop between the orthonormal
 | 
					 | 
				
			||||||
    // set of vectors.
 | 
					 | 
				
			||||||
    ///////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    FineField phaV(grid); // Phased block basis vector
 | 
					 | 
				
			||||||
    FineField MphaV(grid);// Matrix applied
 | 
					 | 
				
			||||||
    std::vector<FineComplexField> phaF(npoint,grid);
 | 
					 | 
				
			||||||
    std::vector<CoarseComplexField> pha(npoint,CoarseGrid);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    CoarseVector coarseInner(CoarseGrid);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    tphase=-usecond();
 | 
					 | 
				
			||||||
    typedef typename CComplex::scalar_type SComplex;
 | 
					 | 
				
			||||||
    FineComplexField one(grid); one=SComplex(1.0);
 | 
					 | 
				
			||||||
    FineComplexField zz(grid); zz = Zero();
 | 
					 | 
				
			||||||
    for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
					 | 
				
			||||||
      /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
      // Stick a phase on every block
 | 
					 | 
				
			||||||
      /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
      CoarseComplexField coor(CoarseGrid);
 | 
					 | 
				
			||||||
      pha[p]=Zero();
 | 
					 | 
				
			||||||
      for(int mu=0;mu<Nd;mu++){
 | 
					 | 
				
			||||||
	LatticeCoordinate(coor,mu);
 | 
					 | 
				
			||||||
	RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
					 | 
				
			||||||
	pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      pha[p]  =exp(pha[p]*ci);	
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      blockZAXPY(phaF[p],pha[p],one,zz);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    tphase+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Could save on temporary storage here
 | 
					 | 
				
			||||||
    std::vector<CoarseMatrix> _A;
 | 
					 | 
				
			||||||
    _A.resize(geom_srhs.npoint,CoarseGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Count use small chunks than npoint == 81 and save memory
 | 
					 | 
				
			||||||
    int batch = 9;
 | 
					 | 
				
			||||||
    std::vector<FineField>    _MphaV(batch,grid);
 | 
					 | 
				
			||||||
    std::vector<CoarseVector> TmpProj(batch,CoarseGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid);
 | 
					 | 
				
			||||||
    CoarseVector          FT(CoarseGrid);
 | 
					 | 
				
			||||||
    for(int i=0;i<nbasis;i++){// Loop over basis vectors
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      //      std::cout << GridLogMessage << " phasing the fine vector "<<std::endl;
 | 
					 | 
				
			||||||
      // Fixme : do this in batches
 | 
					 | 
				
			||||||
      for(int p=0;p<npoint;p+=batch){ // Loop over momenta in npoint
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	for(int b=0;b<MIN(batch,npoint-p);b++){
 | 
					 | 
				
			||||||
	  tphaseBZ-=usecond();
 | 
					 | 
				
			||||||
	  phaV = phaF[p+b]*Subspace.subspace[i];
 | 
					 | 
				
			||||||
	  tphaseBZ+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  /////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	  // Multiple phased subspace vector by matrix and project to subspace
 | 
					 | 
				
			||||||
	  // Remove local bulk phase to leave relative phases
 | 
					 | 
				
			||||||
	  /////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	  // Memory footprint was an issue
 | 
					 | 
				
			||||||
	  tmat-=usecond();
 | 
					 | 
				
			||||||
	  linop.Op(phaV,MphaV);
 | 
					 | 
				
			||||||
	  _MphaV[b] = MphaV;
 | 
					 | 
				
			||||||
	  tmat+=usecond();
 | 
					 | 
				
			||||||
	}      
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	//	std::cout << GridLogMessage << " Calling block project "<<std::endl;
 | 
					 | 
				
			||||||
	tproj-=usecond();
 | 
					 | 
				
			||||||
	Projector.blockProject(_MphaV,TmpProj);
 | 
					 | 
				
			||||||
	tproj+=usecond();
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	//	std::cout << GridLogMessage << " conj phasing the coarse vectors "<<std::endl;
 | 
					 | 
				
			||||||
	for(int b=0;b<MIN(batch,npoint-p);b++){
 | 
					 | 
				
			||||||
	  ComputeProj[p+b] = conjugate(pha[p+b])*TmpProj[b];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix.
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      // std::cout << GridLogMessage << " Starting FT inv "<<std::endl;
 | 
					 | 
				
			||||||
      tinv-=usecond();
 | 
					 | 
				
			||||||
      for(int k=0;k<npoint;k++){
 | 
					 | 
				
			||||||
	FT = Zero();
 | 
					 | 
				
			||||||
	// 81 kernel calls as many ComputeProj vectors
 | 
					 | 
				
			||||||
	// Could fuse with a vector of views, but ugly
 | 
					 | 
				
			||||||
	// Could unroll the expression and run fewer kernels -- much more attractive
 | 
					 | 
				
			||||||
	// Could also do non blocking.
 | 
					 | 
				
			||||||
#if 0	
 | 
					 | 
				
			||||||
	for(int l=0;l<npoint;l++){
 | 
					 | 
				
			||||||
	  FT= FT+ invMkl(l,k)*ComputeProj[l];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	const int radix = 9;
 | 
					 | 
				
			||||||
	int ll;
 | 
					 | 
				
			||||||
	for(ll=0;ll+radix-1<npoint;ll+=radix){
 | 
					 | 
				
			||||||
	  // When ll = npoint-radix, ll+radix-1 = npoint-1, and we do it all.
 | 
					 | 
				
			||||||
	  FT = FT 
 | 
					 | 
				
			||||||
	    + invMkl(ll+0,k)*ComputeProj[ll+0]
 | 
					 | 
				
			||||||
	    + invMkl(ll+1,k)*ComputeProj[ll+1]
 | 
					 | 
				
			||||||
	    + invMkl(ll+2,k)*ComputeProj[ll+2]
 | 
					 | 
				
			||||||
	    + invMkl(ll+3,k)*ComputeProj[ll+3]
 | 
					 | 
				
			||||||
	    + invMkl(ll+4,k)*ComputeProj[ll+4]
 | 
					 | 
				
			||||||
	    + invMkl(ll+5,k)*ComputeProj[ll+5]
 | 
					 | 
				
			||||||
	    + invMkl(ll+6,k)*ComputeProj[ll+6]
 | 
					 | 
				
			||||||
	    + invMkl(ll+7,k)*ComputeProj[ll+7]
 | 
					 | 
				
			||||||
	    + invMkl(ll+8,k)*ComputeProj[ll+8];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	for(int l=ll;l<npoint;l++){
 | 
					 | 
				
			||||||
	  FT= FT+ invMkl(l,k)*ComputeProj[l];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
	// 1 kernel call -- must be cheaper
 | 
					 | 
				
			||||||
	int osites=CoarseGrid->oSites();
 | 
					 | 
				
			||||||
	autoView( A_v  , _A[k], AcceleratorWrite);
 | 
					 | 
				
			||||||
	autoView( FT_v  , FT, AcceleratorRead);
 | 
					 | 
				
			||||||
	accelerator_for(sss, osites, 1, {
 | 
					 | 
				
			||||||
	    for(int j=0;j<nbasis;j++){
 | 
					 | 
				
			||||||
	      A_v[sss](i,j) = FT_v[sss](j);
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
        });
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      tinv+=usecond();
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Only needed if nonhermitian
 | 
					 | 
				
			||||||
    //    if ( ! hermitian ) {
 | 
					 | 
				
			||||||
    //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl;
 | 
					 | 
				
			||||||
    //      PopulateAdag();
 | 
					 | 
				
			||||||
    //    }
 | 
					 | 
				
			||||||
    // Need to write something to populate Adag from A
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage << " Calling GridtoBLAS "<<std::endl;
 | 
					 | 
				
			||||||
    for(int p=0;p<geom_srhs.npoint;p++){
 | 
					 | 
				
			||||||
      GridtoBLAS(_A[p],BLAS_A[p]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator phase  "<<tphase<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator mat    "<<tmat <<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator proj   "<<tproj<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void Mdag(const CoarseVector &in, CoarseVector &out)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    this->M(in,out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void M (const CoarseVector &in, CoarseVector &out)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage << "New Mrhs coarse"<<std::endl;
 | 
					 | 
				
			||||||
    conformable(CoarseGrid(),in.Grid());
 | 
					 | 
				
			||||||
    conformable(in.Grid(),out.Grid());
 | 
					 | 
				
			||||||
    out.Checkerboard() = in.Checkerboard();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t_tot;
 | 
					 | 
				
			||||||
    RealD t_exch;
 | 
					 | 
				
			||||||
    RealD t_GtoB;
 | 
					 | 
				
			||||||
    RealD t_BtoG;
 | 
					 | 
				
			||||||
    RealD t_mult;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    t_tot=-usecond();
 | 
					 | 
				
			||||||
    CoarseVector tin=in;
 | 
					 | 
				
			||||||
    t_exch=-usecond();
 | 
					 | 
				
			||||||
    CoarseVector pin = Cell.ExchangePeriodic(tin); //padded input
 | 
					 | 
				
			||||||
    t_exch+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    CoarseVector pout(pin.Grid());
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int npoint = geom.npoint;
 | 
					 | 
				
			||||||
    typedef calcMatrix* Aview;
 | 
					 | 
				
			||||||
    typedef LatticeView<Cvec> Vview;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    const int Nsimd = CComplex::Nsimd();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int64_t nrhs  =pin.Grid()->GlobalDimensions()[0];
 | 
					 | 
				
			||||||
    assert(nrhs>=1);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD flops,bytes;
 | 
					 | 
				
			||||||
    int64_t osites=in.Grid()->oSites(); // unpadded
 | 
					 | 
				
			||||||
    int64_t unpadded_vol = CoarseGrid()->lSites()/nrhs;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
 | 
					 | 
				
			||||||
    bytes = 1.0*osites*sizeof(siteMatrix)*npoint/pin.Grid()->GlobalDimensions()[0]
 | 
					 | 
				
			||||||
          + 2.0*osites*sizeof(siteVector)*npoint;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    t_GtoB=-usecond();
 | 
					 | 
				
			||||||
    GridtoBLAS(pin,BLAS_B);
 | 
					 | 
				
			||||||
    t_GtoB+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridBLAS BLAS;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    t_mult=-usecond();
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
      RealD c = 1.0;
 | 
					 | 
				
			||||||
      if (p==0) c = 0.0;
 | 
					 | 
				
			||||||
      ComplexD beta(c);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      BLAS.gemmBatched(nbasis,nrhs,nbasis,
 | 
					 | 
				
			||||||
		       ComplexD(1.0),
 | 
					 | 
				
			||||||
		       BLAS_AP[p], 
 | 
					 | 
				
			||||||
		       BLAS_BP[p], 
 | 
					 | 
				
			||||||
		       ComplexD(c), 
 | 
					 | 
				
			||||||
		       BLAS_CP);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    BLAS.synchronise();
 | 
					 | 
				
			||||||
    t_mult+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    t_BtoG=-usecond();
 | 
					 | 
				
			||||||
    BLAStoGrid(out,BLAS_C);
 | 
					 | 
				
			||||||
    t_BtoG+=usecond();
 | 
					 | 
				
			||||||
    t_tot+=usecond();
 | 
					 | 
				
			||||||
    /*
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "New Mrhs coarse DONE "<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"Coarse Mult exch "<<t_exch<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"Coarse Mult mult "<<t_mult<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"Coarse Mult GtoB  "<<t_GtoB<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"Coarse Mult BtoG  "<<t_BtoG<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"Coarse Mult tot  "<<t_tot<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    */
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage<<std::endl;
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage<<"Coarse Kernel flops "<< flops<<std::endl;
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage<<"Coarse Kernel flop/s "<< flops/t_mult<<" mflop/s"<<std::endl;
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage<<"Coarse Kernel bytes/s "<< bytes/t_mult/1000<<" GB/s"<<std::endl;
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage<<"Coarse overall flops/s "<< flops/t_tot<<" mflop/s"<<std::endl;
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage<<"Coarse total bytes   "<< bytes/1e6<<" MB"<<std::endl;
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  virtual  void Mdiag    (const Field &in, Field &out){ assert(0);};
 | 
					 | 
				
			||||||
  virtual  void Mdir     (const Field &in, Field &out,int dir, int disp){assert(0);};
 | 
					 | 
				
			||||||
  virtual  void MdirAll  (const Field &in, std::vector<Field> &out){assert(0);};
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
@@ -1,238 +0,0 @@
 | 
				
			|||||||
/*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2015
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
*************************************************************************************/
 | 
					 | 
				
			||||||
/*  END LEGAL */
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
// Geometry class in cartesian case
 | 
					 | 
				
			||||||
/////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
class Geometry {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  int npoint;
 | 
					 | 
				
			||||||
  int base;
 | 
					 | 
				
			||||||
  std::vector<int> directions   ;
 | 
					 | 
				
			||||||
  std::vector<int> displacements;
 | 
					 | 
				
			||||||
  std::vector<int> points_dagger;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Geometry(int _d)  {
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    base = (_d==5) ? 1:0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // make coarse grid stencil for 4d , not 5d
 | 
					 | 
				
			||||||
    if ( _d==5 ) _d=4;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    npoint = 2*_d+1;
 | 
					 | 
				
			||||||
    directions.resize(npoint);
 | 
					 | 
				
			||||||
    displacements.resize(npoint);
 | 
					 | 
				
			||||||
    points_dagger.resize(npoint);
 | 
					 | 
				
			||||||
    for(int d=0;d<_d;d++){
 | 
					 | 
				
			||||||
      directions[d   ] = d+base;
 | 
					 | 
				
			||||||
      directions[d+_d] = d+base;
 | 
					 | 
				
			||||||
      displacements[d  ] = +1;
 | 
					 | 
				
			||||||
      displacements[d+_d]= -1;
 | 
					 | 
				
			||||||
      points_dagger[d   ] = d+_d;
 | 
					 | 
				
			||||||
      points_dagger[d+_d] = d;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    directions   [2*_d]=0;
 | 
					 | 
				
			||||||
    displacements[2*_d]=0;
 | 
					 | 
				
			||||||
    points_dagger[2*_d]=2*_d;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int point(int dir, int disp) {
 | 
					 | 
				
			||||||
    assert(disp == -1 || disp == 0 || disp == 1);
 | 
					 | 
				
			||||||
    assert(base+0 <= dir && dir < base+4);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // directions faster index = new indexing
 | 
					 | 
				
			||||||
    // 4d (base = 0):
 | 
					 | 
				
			||||||
    // point 0  1  2  3  4  5  6  7  8
 | 
					 | 
				
			||||||
    // dir   0  1  2  3  0  1  2  3  0
 | 
					 | 
				
			||||||
    // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | 
					 | 
				
			||||||
    // 5d (base = 1):
 | 
					 | 
				
			||||||
    // point 0  1  2  3  4  5  6  7  8
 | 
					 | 
				
			||||||
    // dir   1  2  3  4  1  2  3  4  0
 | 
					 | 
				
			||||||
    // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // displacements faster index = old indexing
 | 
					 | 
				
			||||||
    // 4d (base = 0):
 | 
					 | 
				
			||||||
    // point 0  1  2  3  4  5  6  7  8
 | 
					 | 
				
			||||||
    // dir   0  0  1  1  2  2  3  3  0
 | 
					 | 
				
			||||||
    // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | 
					 | 
				
			||||||
    // 5d (base = 1):
 | 
					 | 
				
			||||||
    // point 0  1  2  3  4  5  6  7  8
 | 
					 | 
				
			||||||
    // dir   1  1  2  2  3  3  4  4  0
 | 
					 | 
				
			||||||
    // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if(dir == 0 and disp == 0)
 | 
					 | 
				
			||||||
      return 8;
 | 
					 | 
				
			||||||
    else // New indexing
 | 
					 | 
				
			||||||
      return (1 - disp) / 2 * 4 + dir - base;
 | 
					 | 
				
			||||||
    // else // Old indexing
 | 
					 | 
				
			||||||
    //   return (4 * (dir - base) + 1 - disp) / 2;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
// Less local equivalent of Geometry class in cartesian case
 | 
					 | 
				
			||||||
/////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
class NonLocalStencilGeometry {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  //  int depth;
 | 
					 | 
				
			||||||
  int skip;
 | 
					 | 
				
			||||||
  int hops;
 | 
					 | 
				
			||||||
  int npoint;
 | 
					 | 
				
			||||||
  std::vector<Coordinate> shifts;
 | 
					 | 
				
			||||||
  Coordinate stencil_size;
 | 
					 | 
				
			||||||
  Coordinate stencil_lo;
 | 
					 | 
				
			||||||
  Coordinate stencil_hi;
 | 
					 | 
				
			||||||
  GridCartesian *grid;
 | 
					 | 
				
			||||||
  GridCartesian *Grid() {return grid;};
 | 
					 | 
				
			||||||
  int Depth(void){return 1;};   // Ghost zone depth
 | 
					 | 
				
			||||||
  int Hops(void){return hops;}; // # of hops=> level of corner fill in in stencil
 | 
					 | 
				
			||||||
  int DimSkip(void){return skip;};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual ~NonLocalStencilGeometry() {};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int  Reverse(int point)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int Nd = Grid()->Nd();
 | 
					 | 
				
			||||||
    Coordinate shft = shifts[point];
 | 
					 | 
				
			||||||
    Coordinate rev(Nd);
 | 
					 | 
				
			||||||
    for(int mu=0;mu<Nd;mu++) rev[mu]= -shft[mu];
 | 
					 | 
				
			||||||
    for(int p=0;p<npoint;p++){
 | 
					 | 
				
			||||||
      if(rev==shifts[p]){
 | 
					 | 
				
			||||||
	return p;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    assert(0);
 | 
					 | 
				
			||||||
    return -1;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void BuildShifts(void)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    this->shifts.resize(0);
 | 
					 | 
				
			||||||
    int Nd = this->grid->Nd();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int dd = this->DimSkip();
 | 
					 | 
				
			||||||
    for(int s0=this->stencil_lo[dd+0];s0<=this->stencil_hi[dd+0];s0++){
 | 
					 | 
				
			||||||
    for(int s1=this->stencil_lo[dd+1];s1<=this->stencil_hi[dd+1];s1++){
 | 
					 | 
				
			||||||
    for(int s2=this->stencil_lo[dd+2];s2<=this->stencil_hi[dd+2];s2++){
 | 
					 | 
				
			||||||
    for(int s3=this->stencil_lo[dd+3];s3<=this->stencil_hi[dd+3];s3++){
 | 
					 | 
				
			||||||
      Coordinate sft(Nd,0);
 | 
					 | 
				
			||||||
      sft[dd+0] = s0;
 | 
					 | 
				
			||||||
      sft[dd+1] = s1;
 | 
					 | 
				
			||||||
      sft[dd+2] = s2;
 | 
					 | 
				
			||||||
      sft[dd+3] = s3;
 | 
					 | 
				
			||||||
      int nhops = abs(s0)+abs(s1)+abs(s2)+abs(s3);
 | 
					 | 
				
			||||||
      if(nhops<=this->hops) this->shifts.push_back(sft);
 | 
					 | 
				
			||||||
    }}}}
 | 
					 | 
				
			||||||
    this->npoint = this->shifts.size();
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "NonLocalStencilGeometry has "<< this->npoint << " terms in stencil "<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  NonLocalStencilGeometry(GridCartesian *_coarse_grid,int _hops,int _skip) : grid(_coarse_grid), hops(_hops), skip(_skip)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    Coordinate latt = grid->GlobalDimensions();
 | 
					 | 
				
			||||||
    stencil_size.resize(grid->Nd());
 | 
					 | 
				
			||||||
    stencil_lo.resize(grid->Nd());
 | 
					 | 
				
			||||||
    stencil_hi.resize(grid->Nd());
 | 
					 | 
				
			||||||
    for(int d=0;d<grid->Nd();d++){
 | 
					 | 
				
			||||||
     if ( latt[d] == 1 ) {
 | 
					 | 
				
			||||||
      stencil_lo[d] = 0;
 | 
					 | 
				
			||||||
      stencil_hi[d] = 0;
 | 
					 | 
				
			||||||
      stencil_size[d]= 1;
 | 
					 | 
				
			||||||
     } else if ( latt[d] == 2 ) {
 | 
					 | 
				
			||||||
      stencil_lo[d] = -1;
 | 
					 | 
				
			||||||
      stencil_hi[d] = 0;
 | 
					 | 
				
			||||||
      stencil_size[d]= 2;
 | 
					 | 
				
			||||||
     } else if ( latt[d] > 2 ) {
 | 
					 | 
				
			||||||
       stencil_lo[d] = -1;
 | 
					 | 
				
			||||||
       stencil_hi[d] =  1;
 | 
					 | 
				
			||||||
       stencil_size[d]= 3;
 | 
					 | 
				
			||||||
     }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    this->BuildShifts();
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
// Need to worry about red-black now
 | 
					 | 
				
			||||||
class NonLocalStencilGeometry4D : public NonLocalStencilGeometry {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  virtual int DerivedDimSkip(void) { return 0;};
 | 
					 | 
				
			||||||
  NonLocalStencilGeometry4D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,0) { };
 | 
					 | 
				
			||||||
  virtual ~NonLocalStencilGeometry4D() {};
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
class NonLocalStencilGeometry5D : public NonLocalStencilGeometry {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  virtual int DerivedDimSkip(void) { return 1; }; 
 | 
					 | 
				
			||||||
  NonLocalStencilGeometry5D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,1)  { };
 | 
					 | 
				
			||||||
  virtual ~NonLocalStencilGeometry5D() {};
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
/*
 | 
					 | 
				
			||||||
 * Bunch of different options classes
 | 
					 | 
				
			||||||
 */
 | 
					 | 
				
			||||||
class NextToNextToNextToNearestStencilGeometry4D : public NonLocalStencilGeometry4D {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  NextToNextToNextToNearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,4)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
class NextToNextToNextToNearestStencilGeometry5D : public  NonLocalStencilGeometry5D {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  NextToNextToNextToNearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,4)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
class NextToNearestStencilGeometry4D : public  NonLocalStencilGeometry4D {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  NextToNearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,2)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
class NextToNearestStencilGeometry5D : public  NonLocalStencilGeometry5D {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  NextToNearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,2)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
class NearestStencilGeometry4D : public  NonLocalStencilGeometry4D {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  NearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,1)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
class NearestStencilGeometry5D : public  NonLocalStencilGeometry5D {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  NearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,1)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
@@ -1,34 +0,0 @@
 | 
				
			|||||||
    /*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: Grid/algorithms/multigrid/MultiGrid.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2023
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
    *************************************************************************************/
 | 
					 | 
				
			||||||
    /*  END LEGAL */
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#include <Grid/algorithms/multigrid/Aggregates.h>
 | 
					 | 
				
			||||||
#include <Grid/algorithms/multigrid/Geometry.h>
 | 
					 | 
				
			||||||
#include <Grid/algorithms/multigrid/CoarsenedMatrix.h>
 | 
					 | 
				
			||||||
#include <Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h>
 | 
					 | 
				
			||||||
#include <Grid/algorithms/multigrid/GeneralCoarsenedMatrixMultiRHS.h>
 | 
					 | 
				
			||||||
@@ -54,9 +54,6 @@ public:
 | 
				
			|||||||
    size_type bytes = __n*sizeof(_Tp);
 | 
					    size_type bytes = __n*sizeof(_Tp);
 | 
				
			||||||
    profilerAllocate(bytes);
 | 
					    profilerAllocate(bytes);
 | 
				
			||||||
    _Tp *ptr = (_Tp*) MemoryManager::CpuAllocate(bytes);
 | 
					    _Tp *ptr = (_Tp*) MemoryManager::CpuAllocate(bytes);
 | 
				
			||||||
    if ( (_Tp*)ptr == (_Tp *) NULL ) {
 | 
					 | 
				
			||||||
      printf("Grid CPU Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
 | 
					    assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
 | 
				
			||||||
    return ptr;
 | 
					    return ptr;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -69,7 +66,7 @@ public:
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop
 | 
					  // FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop
 | 
				
			||||||
  void construct(pointer __p, const _Tp& __val) { };
 | 
					  void construct(pointer __p, const _Tp& __val) { assert(0);};
 | 
				
			||||||
  void construct(pointer __p) { };
 | 
					  void construct(pointer __p) { };
 | 
				
			||||||
  void destroy(pointer __p) { };
 | 
					  void destroy(pointer __p) { };
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
@@ -103,9 +100,6 @@ public:
 | 
				
			|||||||
    size_type bytes = __n*sizeof(_Tp);
 | 
					    size_type bytes = __n*sizeof(_Tp);
 | 
				
			||||||
    profilerAllocate(bytes);
 | 
					    profilerAllocate(bytes);
 | 
				
			||||||
    _Tp *ptr = (_Tp*) MemoryManager::SharedAllocate(bytes);
 | 
					    _Tp *ptr = (_Tp*) MemoryManager::SharedAllocate(bytes);
 | 
				
			||||||
    if ( (_Tp*)ptr == (_Tp *) NULL ) {
 | 
					 | 
				
			||||||
      printf("Grid Shared Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
 | 
					    assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
 | 
				
			||||||
    return ptr;
 | 
					    return ptr;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -151,9 +145,6 @@ public:
 | 
				
			|||||||
    size_type bytes = __n*sizeof(_Tp);
 | 
					    size_type bytes = __n*sizeof(_Tp);
 | 
				
			||||||
    profilerAllocate(bytes);
 | 
					    profilerAllocate(bytes);
 | 
				
			||||||
    _Tp *ptr = (_Tp*) MemoryManager::AcceleratorAllocate(bytes);
 | 
					    _Tp *ptr = (_Tp*) MemoryManager::AcceleratorAllocate(bytes);
 | 
				
			||||||
    if ( (_Tp*)ptr == (_Tp *) NULL ) {
 | 
					 | 
				
			||||||
      printf("Grid Device Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
 | 
					    assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
 | 
				
			||||||
    return ptr;
 | 
					    return ptr;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -174,48 +165,18 @@ template<typename _Tp>  inline bool operator!=(const devAllocator<_Tp>&, const d
 | 
				
			|||||||
////////////////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
// Template typedefs
 | 
					// Template typedefs
 | 
				
			||||||
////////////////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
template<class T> using hostVector          = std::vector<T,alignedAllocator<T> >;           // Needs autoview
 | 
					#ifdef ACCELERATOR_CSHIFT
 | 
				
			||||||
template<class T> using Vector              = std::vector<T,uvmAllocator<T> >;               // Really want to deprecate
 | 
					// Cshift on device
 | 
				
			||||||
template<class T> using uvmVector           = std::vector<T,uvmAllocator<T> >;               // auto migrating page
 | 
					template<class T> using cshiftAllocator = devAllocator<T>;
 | 
				
			||||||
template<class T> using deviceVector        = std::vector<T,devAllocator<T> >;               // device vector
 | 
					#else
 | 
				
			||||||
 | 
					// Cshift on host
 | 
				
			||||||
 | 
					template<class T> using cshiftAllocator = std::allocator<T>;
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
/*
 | 
					template<class T> using Vector        = std::vector<T,uvmAllocator<T> >;           
 | 
				
			||||||
template<class T> class vecView
 | 
					template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;           
 | 
				
			||||||
{
 | 
					template<class T> using commVector = std::vector<T,devAllocator<T> >;
 | 
				
			||||||
 protected:
 | 
					template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
 | 
				
			||||||
  T * data;
 | 
					 | 
				
			||||||
  uint64_t size;
 | 
					 | 
				
			||||||
  ViewMode mode;
 | 
					 | 
				
			||||||
  void * cpu_ptr;
 | 
					 | 
				
			||||||
 public:
 | 
					 | 
				
			||||||
  // Rvalue accessor
 | 
					 | 
				
			||||||
  accelerator_inline T & operator[](size_t i) const { return this->data[i]; };
 | 
					 | 
				
			||||||
  vecView(Vector<T> &refer_to_me,ViewMode _mode)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    cpu_ptr = &refer_to_me[0];
 | 
					 | 
				
			||||||
    size = refer_to_me.size();
 | 
					 | 
				
			||||||
    mode = _mode;
 | 
					 | 
				
			||||||
    data =(T *) MemoryManager::ViewOpen(cpu_ptr,
 | 
					 | 
				
			||||||
					size*sizeof(T),
 | 
					 | 
				
			||||||
					mode,
 | 
					 | 
				
			||||||
					AdviseDefault);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void ViewClose(void)
 | 
					 | 
				
			||||||
  { // Inform the manager
 | 
					 | 
				
			||||||
    MemoryManager::ViewClose(this->cpu_ptr,this->mode);    
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class T> vecView<T> VectorView(Vector<T> &vec,ViewMode _mode)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  vecView<T> ret(vec,_mode); // does the open
 | 
					 | 
				
			||||||
  return ret;                // must be closed
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#define autoVecView(v_v,v,mode)					\
 | 
					 | 
				
			||||||
  auto v_v = VectorView(v,mode);				\
 | 
					 | 
				
			||||||
  ViewCloser<decltype(v_v)> _autoView##v_v(v_v);
 | 
					 | 
				
			||||||
*/
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -16,44 +16,6 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
uint64_t total_shared;
 | 
					uint64_t total_shared;
 | 
				
			||||||
uint64_t total_device;
 | 
					uint64_t total_device;
 | 
				
			||||||
uint64_t total_host;;
 | 
					uint64_t total_host;;
 | 
				
			||||||
 | 
					 | 
				
			||||||
#if defined(__has_feature)
 | 
					 | 
				
			||||||
#if __has_feature(leak_sanitizer)
 | 
					 | 
				
			||||||
#define ASAN_LEAK_CHECK
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#ifdef ASAN_LEAK_CHECK
 | 
					 | 
				
			||||||
#include <sanitizer/asan_interface.h>
 | 
					 | 
				
			||||||
#include <sanitizer/common_interface_defs.h>
 | 
					 | 
				
			||||||
#include <sanitizer/lsan_interface.h>
 | 
					 | 
				
			||||||
#define LEAK_CHECK(A) { __lsan_do_recoverable_leak_check(); }
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
#define LEAK_CHECK(A) { }
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
void MemoryManager::DisplayMallinfo(void)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
#ifdef __linux__
 | 
					 | 
				
			||||||
  struct mallinfo mi; // really want mallinfo2, but glibc version isn't uniform
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  mi = mallinfo();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  std::cout << "MemoryManager: Total non-mmapped bytes (arena):       "<< (size_t)mi.arena<<std::endl;
 | 
					 | 
				
			||||||
  std::cout << "MemoryManager: # of free chunks (ordblks):            "<< (size_t)mi.ordblks<<std::endl;
 | 
					 | 
				
			||||||
  std::cout << "MemoryManager: # of free fastbin blocks (smblks):     "<< (size_t)mi.smblks<<std::endl;
 | 
					 | 
				
			||||||
  std::cout << "MemoryManager: # of mapped regions (hblks):           "<< (size_t)mi.hblks<<std::endl;
 | 
					 | 
				
			||||||
  std::cout << "MemoryManager: Bytes in mapped regions (hblkhd):      "<< (size_t)mi.hblkhd<<std::endl;
 | 
					 | 
				
			||||||
  std::cout << "MemoryManager: Max. total allocated space (usmblks):  "<< (size_t)mi.usmblks<<std::endl;
 | 
					 | 
				
			||||||
  std::cout << "MemoryManager: Free bytes held in fastbins (fsmblks): "<< (size_t)mi.fsmblks<<std::endl;
 | 
					 | 
				
			||||||
  std::cout << "MemoryManager: Total allocated space (uordblks):      "<< (size_t)mi.uordblks<<std::endl;
 | 
					 | 
				
			||||||
  std::cout << "MemoryManager: Total free space (fordblks):           "<< (size_t)mi.fordblks<<std::endl;
 | 
					 | 
				
			||||||
  std::cout << "MemoryManager: Topmost releasable block (keepcost):   "<< (size_t)mi.keepcost<<std::endl;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  LEAK_CHECK();
 | 
					 | 
				
			||||||
 
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
void MemoryManager::PrintBytes(void)
 | 
					void MemoryManager::PrintBytes(void)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  std::cout << " MemoryManager : ------------------------------------ "<<std::endl;
 | 
					  std::cout << " MemoryManager : ------------------------------------ "<<std::endl;
 | 
				
			||||||
@@ -73,7 +35,7 @@ void MemoryManager::PrintBytes(void)
 | 
				
			|||||||
#ifdef GRID_CUDA
 | 
					#ifdef GRID_CUDA
 | 
				
			||||||
  cuda_mem();
 | 
					  cuda_mem();
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
  DisplayMallinfo();
 | 
					  
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
uint64_t MemoryManager::DeviceCacheBytes() { return CacheBytes[Acc] + CacheBytes[AccHuge] + CacheBytes[AccSmall]; }
 | 
					uint64_t MemoryManager::DeviceCacheBytes() { return CacheBytes[Acc] + CacheBytes[AccHuge] + CacheBytes[AccSmall]; }
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -209,10 +209,9 @@ private:
 | 
				
			|||||||
  static void     CpuViewClose(uint64_t Ptr);
 | 
					  static void     CpuViewClose(uint64_t Ptr);
 | 
				
			||||||
  static uint64_t CpuViewOpen(uint64_t  CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
 | 
					  static uint64_t CpuViewOpen(uint64_t  CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 | 
					  static void NotifyDeletion(void * CpuPtr);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 public:
 | 
					 public:
 | 
				
			||||||
  static void DisplayMallinfo(void);
 | 
					 | 
				
			||||||
  static void NotifyDeletion(void * CpuPtr);
 | 
					 | 
				
			||||||
  static void Print(void);
 | 
					  static void Print(void);
 | 
				
			||||||
  static void PrintAll(void);
 | 
					  static void PrintAll(void);
 | 
				
			||||||
  static void PrintState( void* CpuPtr);
 | 
					  static void PrintState( void* CpuPtr);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,15 +1,16 @@
 | 
				
			|||||||
#include <Grid/GridCore.h>
 | 
					#include <Grid/GridCore.h>
 | 
				
			||||||
#ifndef GRID_UVM
 | 
					#ifndef GRID_UVM
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#warning "Using explicit device memory copies"
 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					NAMESPACE_BEGIN(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#define MAXLINE 512
 | 
					#define MAXLINE 512
 | 
				
			||||||
static char print_buffer [ MAXLINE ];
 | 
					static char print_buffer [ MAXLINE ];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer << std::endl;
 | 
					#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer;
 | 
				
			||||||
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug  << print_buffer << std::endl;
 | 
					#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer;
 | 
				
			||||||
//#define dprintf(...) 
 | 
					//#define dprintf(...) 
 | 
				
			||||||
//#define mprintf(...) 
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////
 | 
				
			||||||
// For caching copies of data on device
 | 
					// For caching copies of data on device
 | 
				
			||||||
@@ -110,7 +111,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
 | 
				
			|||||||
  ///////////////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////////////
 | 
				
			||||||
  assert(AccCache.state!=Empty);
 | 
					  assert(AccCache.state!=Empty);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  dprintf("MemoryManager: Discard(%lx) %lx",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr); 
 | 
					  mprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr); 
 | 
				
			||||||
  assert(AccCache.accLock==0);
 | 
					  assert(AccCache.accLock==0);
 | 
				
			||||||
  assert(AccCache.cpuLock==0);
 | 
					  assert(AccCache.cpuLock==0);
 | 
				
			||||||
  assert(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
					  assert(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
				
			||||||
@@ -120,7 +121,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
 | 
				
			|||||||
    DeviceBytes   -=AccCache.bytes;
 | 
					    DeviceBytes   -=AccCache.bytes;
 | 
				
			||||||
    LRUremove(AccCache);
 | 
					    LRUremove(AccCache);
 | 
				
			||||||
    AccCache.AccPtr=(uint64_t) NULL;
 | 
					    AccCache.AccPtr=(uint64_t) NULL;
 | 
				
			||||||
    dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);  
 | 
					    dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);  
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  uint64_t CpuPtr = AccCache.CpuPtr;
 | 
					  uint64_t CpuPtr = AccCache.CpuPtr;
 | 
				
			||||||
  EntryErase(CpuPtr);
 | 
					  EntryErase(CpuPtr);
 | 
				
			||||||
@@ -140,7 +141,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
 | 
				
			|||||||
  ///////////////////////////////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  assert(AccCache.state!=Empty);
 | 
					  assert(AccCache.state!=Empty);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld",
 | 
					  mprintf("MemoryManager: Evict cpu %lx acc %lx cpuLock %ld accLock %ld\n",
 | 
				
			||||||
	  (uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr,
 | 
						  (uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr,
 | 
				
			||||||
	  (uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock); 
 | 
						  (uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock); 
 | 
				
			||||||
  if (AccCache.accLock!=0) return;
 | 
					  if (AccCache.accLock!=0) return;
 | 
				
			||||||
@@ -154,7 +155,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
 | 
				
			|||||||
    AccCache.AccPtr=(uint64_t)NULL;
 | 
					    AccCache.AccPtr=(uint64_t)NULL;
 | 
				
			||||||
    AccCache.state=CpuDirty; // CPU primary now
 | 
					    AccCache.state=CpuDirty; // CPU primary now
 | 
				
			||||||
    DeviceBytes   -=AccCache.bytes;
 | 
					    DeviceBytes   -=AccCache.bytes;
 | 
				
			||||||
    dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld ",(uint64_t)AccCache.AccPtr,DeviceBytes);  
 | 
					    dprintf("MemoryManager: Free(%lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);  
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  //  uint64_t CpuPtr = AccCache.CpuPtr;
 | 
					  //  uint64_t CpuPtr = AccCache.CpuPtr;
 | 
				
			||||||
  DeviceEvictions++;
 | 
					  DeviceEvictions++;
 | 
				
			||||||
@@ -168,7 +169,7 @@ void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
 | 
				
			|||||||
  assert(AccCache.AccPtr!=(uint64_t)NULL);
 | 
					  assert(AccCache.AccPtr!=(uint64_t)NULL);
 | 
				
			||||||
  assert(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
					  assert(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
				
			||||||
  acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
 | 
					  acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
 | 
				
			||||||
  mprintf("MemoryManager: acceleratorCopyFromDevice Flush size %ld AccPtr %lx -> CpuPtr %lx",(uint64_t)AccCache.bytes,(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
 | 
					  mprintf("MemoryManager: Flush  %lx -> %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
 | 
				
			||||||
  DeviceToHostBytes+=AccCache.bytes;
 | 
					  DeviceToHostBytes+=AccCache.bytes;
 | 
				
			||||||
  DeviceToHostXfer++;
 | 
					  DeviceToHostXfer++;
 | 
				
			||||||
  AccCache.state=Consistent;
 | 
					  AccCache.state=Consistent;
 | 
				
			||||||
@@ -183,9 +184,7 @@ void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
 | 
				
			|||||||
    AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
 | 
					    AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
 | 
				
			||||||
    DeviceBytes+=AccCache.bytes;
 | 
					    DeviceBytes+=AccCache.bytes;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  mprintf("MemoryManager: acceleratorCopyToDevice   Clone size %ld AccPtr %lx <- CpuPtr %lx",
 | 
					  mprintf("MemoryManager: Clone %lx <- %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
 | 
				
			||||||
	  (uint64_t)AccCache.bytes,
 | 
					 | 
				
			||||||
	  (uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
 | 
					 | 
				
			||||||
  acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
 | 
					  acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
 | 
				
			||||||
  HostToDeviceBytes+=AccCache.bytes;
 | 
					  HostToDeviceBytes+=AccCache.bytes;
 | 
				
			||||||
  HostToDeviceXfer++;
 | 
					  HostToDeviceXfer++;
 | 
				
			||||||
@@ -211,7 +210,7 @@ void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache)
 | 
				
			|||||||
void MemoryManager::ViewClose(void* Ptr,ViewMode mode)
 | 
					void MemoryManager::ViewClose(void* Ptr,ViewMode mode)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
 | 
					  if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
 | 
				
			||||||
    dprintf("AcceleratorViewClose %lx",(uint64_t)Ptr);
 | 
					    dprintf("AcceleratorViewClose %lx\n",(uint64_t)Ptr);
 | 
				
			||||||
    AcceleratorViewClose((uint64_t)Ptr);
 | 
					    AcceleratorViewClose((uint64_t)Ptr);
 | 
				
			||||||
  } else if( (mode==CpuRead)||(mode==CpuWrite)){
 | 
					  } else if( (mode==CpuRead)||(mode==CpuWrite)){
 | 
				
			||||||
    CpuViewClose((uint64_t)Ptr);
 | 
					    CpuViewClose((uint64_t)Ptr);
 | 
				
			||||||
@@ -223,7 +222,7 @@ void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvis
 | 
				
			|||||||
{
 | 
					{
 | 
				
			||||||
  uint64_t CpuPtr = (uint64_t)_CpuPtr;
 | 
					  uint64_t CpuPtr = (uint64_t)_CpuPtr;
 | 
				
			||||||
  if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
 | 
					  if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
 | 
				
			||||||
    dprintf("AcceleratorViewOpen %lx",(uint64_t)CpuPtr);
 | 
					    dprintf("AcceleratorViewOpen %lx\n",(uint64_t)CpuPtr);
 | 
				
			||||||
    return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint);
 | 
					    return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint);
 | 
				
			||||||
  } else if( (mode==CpuRead)||(mode==CpuWrite)){
 | 
					  } else if( (mode==CpuRead)||(mode==CpuWrite)){
 | 
				
			||||||
    return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint);
 | 
					    return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint);
 | 
				
			||||||
@@ -234,9 +233,6 @@ void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvis
 | 
				
			|||||||
}
 | 
					}
 | 
				
			||||||
void  MemoryManager::EvictVictims(uint64_t bytes)
 | 
					void  MemoryManager::EvictVictims(uint64_t bytes)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  if(bytes>=DeviceMaxBytes) {
 | 
					 | 
				
			||||||
    printf("EvictVictims bytes %ld DeviceMaxBytes %ld\n",bytes,DeviceMaxBytes);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  assert(bytes<DeviceMaxBytes);
 | 
					  assert(bytes<DeviceMaxBytes);
 | 
				
			||||||
  while(bytes+DeviceLRUBytes > DeviceMaxBytes){
 | 
					  while(bytes+DeviceLRUBytes > DeviceMaxBytes){
 | 
				
			||||||
    if ( DeviceLRUBytes > 0){
 | 
					    if ( DeviceLRUBytes > 0){
 | 
				
			||||||
@@ -269,7 +265,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
 | 
				
			|||||||
  assert(AccCache.cpuLock==0);  // Programming error
 | 
					  assert(AccCache.cpuLock==0);  // Programming error
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  if(AccCache.state!=Empty) {
 | 
					  if(AccCache.state!=Empty) {
 | 
				
			||||||
    dprintf("ViewOpen found entry %lx %lx : sizes %ld %ld accLock %ld",
 | 
					    dprintf("ViewOpen found entry %lx %lx : %ld %ld accLock %ld\n",
 | 
				
			||||||
		    (uint64_t)AccCache.CpuPtr,
 | 
							    (uint64_t)AccCache.CpuPtr,
 | 
				
			||||||
		    (uint64_t)CpuPtr,
 | 
							    (uint64_t)CpuPtr,
 | 
				
			||||||
		    (uint64_t)AccCache.bytes,
 | 
							    (uint64_t)AccCache.bytes,
 | 
				
			||||||
@@ -309,7 +305,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
 | 
				
			|||||||
      AccCache.state  = Consistent; // Empty + AccRead => Consistent
 | 
					      AccCache.state  = Consistent; // Empty + AccRead => Consistent
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    AccCache.accLock= 1;
 | 
					    AccCache.accLock= 1;
 | 
				
			||||||
    dprintf("Copied Empty entry into device accLock= %d",AccCache.accLock);
 | 
					    dprintf("Copied Empty entry into device accLock= %d\n",AccCache.accLock);
 | 
				
			||||||
  } else if(AccCache.state==CpuDirty ){
 | 
					  } else if(AccCache.state==CpuDirty ){
 | 
				
			||||||
    if(mode==AcceleratorWriteDiscard) {
 | 
					    if(mode==AcceleratorWriteDiscard) {
 | 
				
			||||||
      CpuDiscard(AccCache);
 | 
					      CpuDiscard(AccCache);
 | 
				
			||||||
@@ -322,21 +318,21 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
 | 
				
			|||||||
      AccCache.state  = Consistent; // CpuDirty + AccRead => Consistent
 | 
					      AccCache.state  = Consistent; // CpuDirty + AccRead => Consistent
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    AccCache.accLock++;
 | 
					    AccCache.accLock++;
 | 
				
			||||||
    dprintf("CpuDirty entry into device ++accLock= %d",AccCache.accLock);
 | 
					    dprintf("CpuDirty entry into device ++accLock= %d\n",AccCache.accLock);
 | 
				
			||||||
  } else if(AccCache.state==Consistent) {
 | 
					  } else if(AccCache.state==Consistent) {
 | 
				
			||||||
    if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
 | 
					    if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
 | 
				
			||||||
      AccCache.state  = AccDirty;   // Consistent + AcceleratorWrite=> AccDirty
 | 
					      AccCache.state  = AccDirty;   // Consistent + AcceleratorWrite=> AccDirty
 | 
				
			||||||
    else
 | 
					    else
 | 
				
			||||||
      AccCache.state  = Consistent; // Consistent + AccRead => Consistent
 | 
					      AccCache.state  = Consistent; // Consistent + AccRead => Consistent
 | 
				
			||||||
    AccCache.accLock++;
 | 
					    AccCache.accLock++;
 | 
				
			||||||
    dprintf("Consistent entry into device ++accLock= %d",AccCache.accLock);
 | 
					    dprintf("Consistent entry into device ++accLock= %d\n",AccCache.accLock);
 | 
				
			||||||
  } else if(AccCache.state==AccDirty) {
 | 
					  } else if(AccCache.state==AccDirty) {
 | 
				
			||||||
    if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
 | 
					    if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
 | 
				
			||||||
      AccCache.state  = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty
 | 
					      AccCache.state  = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty
 | 
				
			||||||
    else
 | 
					    else
 | 
				
			||||||
      AccCache.state  = AccDirty; // AccDirty + AccRead => AccDirty
 | 
					      AccCache.state  = AccDirty; // AccDirty + AccRead => AccDirty
 | 
				
			||||||
    AccCache.accLock++;
 | 
					    AccCache.accLock++;
 | 
				
			||||||
    dprintf("AccDirty entry ++accLock= %d",AccCache.accLock);
 | 
					    dprintf("AccDirty entry ++accLock= %d\n",AccCache.accLock);
 | 
				
			||||||
  } else {
 | 
					  } else {
 | 
				
			||||||
    assert(0);
 | 
					    assert(0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -345,7 +341,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
 | 
				
			|||||||
  // If view is opened on device must remove from LRU
 | 
					  // If view is opened on device must remove from LRU
 | 
				
			||||||
  if(AccCache.LRU_valid==1){
 | 
					  if(AccCache.LRU_valid==1){
 | 
				
			||||||
    // must possibly remove from LRU as now locked on GPU
 | 
					    // must possibly remove from LRU as now locked on GPU
 | 
				
			||||||
    dprintf("AccCache entry removed from LRU ");
 | 
					    dprintf("AccCache entry removed from LRU \n");
 | 
				
			||||||
    LRUremove(AccCache);
 | 
					    LRUremove(AccCache);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -368,10 +364,10 @@ void MemoryManager::AcceleratorViewClose(uint64_t CpuPtr)
 | 
				
			|||||||
  AccCache.accLock--;
 | 
					  AccCache.accLock--;
 | 
				
			||||||
  // Move to LRU queue if not locked and close on device
 | 
					  // Move to LRU queue if not locked and close on device
 | 
				
			||||||
  if(AccCache.accLock==0) {
 | 
					  if(AccCache.accLock==0) {
 | 
				
			||||||
    dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
 | 
					    dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
 | 
				
			||||||
    LRUinsert(AccCache);
 | 
					    LRUinsert(AccCache);
 | 
				
			||||||
  } else {
 | 
					  } else {
 | 
				
			||||||
    dprintf("AccleratorViewClose %lx AccLock decremented to %ld",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
 | 
					    dprintf("AccleratorViewClose %lx AccLock decremented to %ld\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void MemoryManager::CpuViewClose(uint64_t CpuPtr)
 | 
					void MemoryManager::CpuViewClose(uint64_t CpuPtr)
 | 
				
			||||||
@@ -478,7 +474,6 @@ void  MemoryManager::Print(void)
 | 
				
			|||||||
  std::cout << GridLogMessage << DeviceEvictions  << " Evictions from device " << std::endl;
 | 
					  std::cout << GridLogMessage << DeviceEvictions  << " Evictions from device " << std::endl;
 | 
				
			||||||
  std::cout << GridLogMessage << DeviceDestroy    << " Destroyed vectors on device " << std::endl;
 | 
					  std::cout << GridLogMessage << DeviceDestroy    << " Destroyed vectors on device " << std::endl;
 | 
				
			||||||
  std::cout << GridLogMessage << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl;
 | 
					  std::cout << GridLogMessage << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl;
 | 
				
			||||||
  acceleratorMem();
 | 
					 | 
				
			||||||
  std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
 | 
					  std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void  MemoryManager::PrintAll(void)
 | 
					void  MemoryManager::PrintAll(void)
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -15,10 +15,10 @@ void check_huge_pages(void *Buf,uint64_t BYTES)
 | 
				
			|||||||
  uint64_t virt_pfn = (uint64_t)Buf / page_size;
 | 
					  uint64_t virt_pfn = (uint64_t)Buf / page_size;
 | 
				
			||||||
  off_t offset = sizeof(uint64_t) * virt_pfn;
 | 
					  off_t offset = sizeof(uint64_t) * virt_pfn;
 | 
				
			||||||
  uint64_t npages = (BYTES + page_size-1) / page_size;
 | 
					  uint64_t npages = (BYTES + page_size-1) / page_size;
 | 
				
			||||||
  std::vector<uint64_t> pagedata(npages);
 | 
					  uint64_t pagedata[npages];
 | 
				
			||||||
  uint64_t ret = lseek(fd, offset, SEEK_SET);
 | 
					  uint64_t ret = lseek(fd, offset, SEEK_SET);
 | 
				
			||||||
  assert(ret == offset);
 | 
					  assert(ret == offset);
 | 
				
			||||||
  ret = ::read(fd, &pagedata[0], sizeof(uint64_t)*npages);
 | 
					  ret = ::read(fd, pagedata, sizeof(uint64_t)*npages);
 | 
				
			||||||
  assert(ret == sizeof(uint64_t) * npages);
 | 
					  assert(ret == sizeof(uint64_t) * npages);
 | 
				
			||||||
  int nhugepages = npages / 512;
 | 
					  int nhugepages = npages / 512;
 | 
				
			||||||
  int n4ktotal, nnothuge;
 | 
					  int n4ktotal, nnothuge;
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -70,8 +70,8 @@ public:
 | 
				
			|||||||
  Coordinate _istride;    // Inner stride i.e. within simd lane
 | 
					  Coordinate _istride;    // Inner stride i.e. within simd lane
 | 
				
			||||||
  int _osites;                  // _isites*_osites = product(dimensions).
 | 
					  int _osites;                  // _isites*_osites = product(dimensions).
 | 
				
			||||||
  int _isites;
 | 
					  int _isites;
 | 
				
			||||||
  int64_t _fsites;                  // _isites*_osites = product(dimensions).
 | 
					  int _fsites;                  // _isites*_osites = product(dimensions).
 | 
				
			||||||
  int64_t _gsites;
 | 
					  int _gsites;
 | 
				
			||||||
  Coordinate _slice_block;// subslice information
 | 
					  Coordinate _slice_block;// subslice information
 | 
				
			||||||
  Coordinate _slice_stride;
 | 
					  Coordinate _slice_stride;
 | 
				
			||||||
  Coordinate _slice_nblock;
 | 
					  Coordinate _slice_nblock;
 | 
				
			||||||
@@ -82,7 +82,6 @@ public:
 | 
				
			|||||||
  bool _isCheckerBoarded; 
 | 
					  bool _isCheckerBoarded; 
 | 
				
			||||||
  int        LocallyPeriodic;
 | 
					  int        LocallyPeriodic;
 | 
				
			||||||
  Coordinate _checker_dim_mask;
 | 
					  Coordinate _checker_dim_mask;
 | 
				
			||||||
  int              _checker_dim;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -184,7 +183,7 @@ public:
 | 
				
			|||||||
  inline int Nsimd(void)  const { return _isites; };// Synonymous with iSites
 | 
					  inline int Nsimd(void)  const { return _isites; };// Synonymous with iSites
 | 
				
			||||||
  inline int oSites(void) const { return _osites; };
 | 
					  inline int oSites(void) const { return _osites; };
 | 
				
			||||||
  inline int lSites(void) const { return _isites*_osites; }; 
 | 
					  inline int lSites(void) const { return _isites*_osites; }; 
 | 
				
			||||||
  inline int64_t gSites(void) const { return (int64_t)_isites*(int64_t)_osites*(int64_t)_Nprocessors; }; 
 | 
					  inline int gSites(void) const { return _isites*_osites*_Nprocessors; }; 
 | 
				
			||||||
  inline int Nd    (void) const { return _ndimension;};
 | 
					  inline int Nd    (void) const { return _ndimension;};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  inline const Coordinate LocalStarts(void)             { return _lstart;    };
 | 
					  inline const Coordinate LocalStarts(void)             { return _lstart;    };
 | 
				
			||||||
@@ -215,7 +214,7 @@ public:
 | 
				
			|||||||
  ////////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Global addressing
 | 
					  // Global addressing
 | 
				
			||||||
  ////////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////////
 | 
				
			||||||
  void GlobalIndexToGlobalCoor(int64_t gidx,Coordinate &gcoor){
 | 
					  void GlobalIndexToGlobalCoor(int gidx,Coordinate &gcoor){
 | 
				
			||||||
    assert(gidx< gSites());
 | 
					    assert(gidx< gSites());
 | 
				
			||||||
    Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
 | 
					    Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -223,7 +222,7 @@ public:
 | 
				
			|||||||
    assert(lidx<lSites());
 | 
					    assert(lidx<lSites());
 | 
				
			||||||
    Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
 | 
					    Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int64_t & gidx){
 | 
					  void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int & gidx){
 | 
				
			||||||
    gidx=0;
 | 
					    gidx=0;
 | 
				
			||||||
    int mult=1;
 | 
					    int mult=1;
 | 
				
			||||||
    for(int mu=0;mu<_ndimension;mu++) {
 | 
					    for(int mu=0;mu<_ndimension;mu++) {
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -38,7 +38,7 @@ class GridCartesian: public GridBase {
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
  int dummy;
 | 
					  int dummy;
 | 
				
			||||||
  //  Coordinate _checker_dim_mask;
 | 
					  Coordinate _checker_dim_mask;
 | 
				
			||||||
  virtual int  CheckerBoardFromOindexTable (int Oindex) {
 | 
					  virtual int  CheckerBoardFromOindexTable (int Oindex) {
 | 
				
			||||||
    return 0;
 | 
					    return 0;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -106,7 +106,6 @@ public:
 | 
				
			|||||||
    _rdimensions.resize(_ndimension);
 | 
					    _rdimensions.resize(_ndimension);
 | 
				
			||||||
    _simd_layout.resize(_ndimension);
 | 
					    _simd_layout.resize(_ndimension);
 | 
				
			||||||
    _checker_dim_mask.resize(_ndimension);;
 | 
					    _checker_dim_mask.resize(_ndimension);;
 | 
				
			||||||
    _checker_dim = -1;
 | 
					 | 
				
			||||||
    _lstart.resize(_ndimension);
 | 
					    _lstart.resize(_ndimension);
 | 
				
			||||||
    _lend.resize(_ndimension);
 | 
					    _lend.resize(_ndimension);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -57,10 +57,9 @@ class GridRedBlackCartesian : public GridBase
 | 
				
			|||||||
{
 | 
					{
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
  //  Coordinate _checker_dim_mask;
 | 
					  //  Coordinate _checker_dim_mask;
 | 
				
			||||||
  //  int              _checker_dim;
 | 
					  int              _checker_dim;
 | 
				
			||||||
  std::vector<int> _checker_board;
 | 
					  std::vector<int> _checker_board;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  virtual int isCheckerBoarded(void) const { return 1; };
 | 
					 | 
				
			||||||
  virtual int CheckerBoarded(int dim){
 | 
					  virtual int CheckerBoarded(int dim){
 | 
				
			||||||
    if( dim==_checker_dim) return 1;
 | 
					    if( dim==_checker_dim) return 1;
 | 
				
			||||||
    else return 0;
 | 
					    else return 0;
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -57,29 +57,18 @@ int                      CartesianCommunicator::ProcessorCount(void)    { return
 | 
				
			|||||||
// very VERY rarely (Log, serial RNG) we need world without a grid
 | 
					// very VERY rarely (Log, serial RNG) we need world without a grid
 | 
				
			||||||
////////////////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#ifdef USE_GRID_REDUCTION
 | 
					 | 
				
			||||||
void CartesianCommunicator::GlobalSum(ComplexF &c)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  GlobalSumP2P(c);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
void CartesianCommunicator::GlobalSum(ComplexD &c)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  GlobalSumP2P(c);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
void CartesianCommunicator::GlobalSum(ComplexF &c)
 | 
					void CartesianCommunicator::GlobalSum(ComplexF &c)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GlobalSumVector((float *)&c,2);
 | 
					  GlobalSumVector((float *)&c,2);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::GlobalSum(ComplexD &c)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  GlobalSumVector((double *)&c,2);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
void CartesianCommunicator::GlobalSumVector(ComplexF *c,int N)
 | 
					void CartesianCommunicator::GlobalSumVector(ComplexF *c,int N)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GlobalSumVector((float *)c,2*N);
 | 
					  GlobalSumVector((float *)c,2*N);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					void CartesianCommunicator::GlobalSum(ComplexD &c)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  GlobalSumVector((double *)&c,2);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N)
 | 
					void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GlobalSumVector((double *)c,2*N);
 | 
					  GlobalSumVector((double *)c,2*N);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -33,8 +33,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
///////////////////////////////////
 | 
					///////////////////////////////////
 | 
				
			||||||
#include <Grid/communicator/SharedMemory.h>
 | 
					#include <Grid/communicator/SharedMemory.h>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#define NVLINK_GET
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					NAMESPACE_BEGIN(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
extern bool Stencil_force_mpi ;
 | 
					extern bool Stencil_force_mpi ;
 | 
				
			||||||
@@ -130,35 +128,6 @@ public:
 | 
				
			|||||||
  void GlobalXOR(uint32_t &);
 | 
					  void GlobalXOR(uint32_t &);
 | 
				
			||||||
  void GlobalXOR(uint64_t &);
 | 
					  void GlobalXOR(uint64_t &);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  template<class obj> void GlobalSumP2P(obj &o)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::vector<obj> column;
 | 
					 | 
				
			||||||
    obj accum = o;
 | 
					 | 
				
			||||||
    int source,dest;
 | 
					 | 
				
			||||||
    for(int d=0;d<_ndimension;d++){
 | 
					 | 
				
			||||||
      column.resize(_processors[d]);
 | 
					 | 
				
			||||||
      column[0] = accum;
 | 
					 | 
				
			||||||
      std::vector<MpiCommsRequest_t> list;
 | 
					 | 
				
			||||||
      for(int p=1;p<_processors[d];p++){
 | 
					 | 
				
			||||||
	ShiftedRanks(d,p,source,dest);
 | 
					 | 
				
			||||||
	SendToRecvFromBegin(list,
 | 
					 | 
				
			||||||
			    &column[0],
 | 
					 | 
				
			||||||
			    dest,
 | 
					 | 
				
			||||||
			    &column[p],
 | 
					 | 
				
			||||||
			    source,
 | 
					 | 
				
			||||||
			    sizeof(obj),d*100+p);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      if (!list.empty()) // avoid triggering assert in comms == none
 | 
					 | 
				
			||||||
	CommsComplete(list);
 | 
					 | 
				
			||||||
      for(int p=1;p<_processors[d];p++){
 | 
					 | 
				
			||||||
	accum = accum + column[p];
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    Broadcast(0,accum);
 | 
					 | 
				
			||||||
    o=accum;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  template<class obj> void GlobalSum(obj &o){
 | 
					  template<class obj> void GlobalSum(obj &o){
 | 
				
			||||||
    typedef typename obj::scalar_type scalar_type;
 | 
					    typedef typename obj::scalar_type scalar_type;
 | 
				
			||||||
    int words = sizeof(obj)/sizeof(scalar_type);
 | 
					    int words = sizeof(obj)/sizeof(scalar_type);
 | 
				
			||||||
@@ -169,14 +138,6 @@ public:
 | 
				
			|||||||
  ////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Face exchange, buffer swap in translational invariant way
 | 
					  // Face exchange, buffer swap in translational invariant way
 | 
				
			||||||
  ////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////
 | 
				
			||||||
  void CommsComplete(std::vector<MpiCommsRequest_t> &list);
 | 
					 | 
				
			||||||
  void SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list,
 | 
					 | 
				
			||||||
			   void *xmit,
 | 
					 | 
				
			||||||
			   int dest,
 | 
					 | 
				
			||||||
			   void *recv,
 | 
					 | 
				
			||||||
			   int from,
 | 
					 | 
				
			||||||
			   int bytes,int dir);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  void SendToRecvFrom(void *xmit,
 | 
					  void SendToRecvFrom(void *xmit,
 | 
				
			||||||
		      int xmit_to_rank,
 | 
							      int xmit_to_rank,
 | 
				
			||||||
		      void *recv,
 | 
							      void *recv,
 | 
				
			||||||
@@ -189,17 +150,6 @@ public:
 | 
				
			|||||||
			       int recv_from_rank,int do_recv,
 | 
								       int recv_from_rank,int do_recv,
 | 
				
			||||||
			       int bytes,int dir);
 | 
								       int bytes,int dir);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  double StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
 | 
					 | 
				
			||||||
				      void *xmit,
 | 
					 | 
				
			||||||
				      int xmit_to_rank,int do_xmit,
 | 
					 | 
				
			||||||
				      void *recv,
 | 
					 | 
				
			||||||
				      int recv_from_rank,int do_recv,
 | 
					 | 
				
			||||||
				      int xbytes,int rbytes,int dir);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  // Could do a PollHtoD and have a CommsMerge dependence
 | 
					 | 
				
			||||||
  void StencilSendToRecvFromPollDtoH (std::vector<CommsRequest_t> &list);
 | 
					 | 
				
			||||||
  void StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
					  double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
				
			||||||
				    void *xmit,
 | 
									    void *xmit,
 | 
				
			||||||
				    int xmit_to_rank,int do_xmit,
 | 
									    int xmit_to_rank,int do_xmit,
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -30,7 +30,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					NAMESPACE_BEGIN(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
Grid_MPI_Comm       CartesianCommunicator::communicator_world;
 | 
					Grid_MPI_Comm       CartesianCommunicator::communicator_world;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
////////////////////////////////////////////
 | 
					////////////////////////////////////////////
 | 
				
			||||||
@@ -258,25 +257,6 @@ CartesianCommunicator::~CartesianCommunicator()
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
#ifdef USE_GRID_REDUCTION
 | 
					 | 
				
			||||||
void CartesianCommunicator::GlobalSum(float &f){
 | 
					 | 
				
			||||||
  CartesianCommunicator::GlobalSumP2P(f);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
void CartesianCommunicator::GlobalSum(double &d)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  CartesianCommunicator::GlobalSumP2P(d);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
void CartesianCommunicator::GlobalSum(float &f){
 | 
					 | 
				
			||||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
 | 
					 | 
				
			||||||
  assert(ierr==0);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
void CartesianCommunicator::GlobalSum(double &d)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
 | 
					 | 
				
			||||||
  assert(ierr==0);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
void CartesianCommunicator::GlobalSum(uint32_t &u){
 | 
					void CartesianCommunicator::GlobalSum(uint32_t &u){
 | 
				
			||||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
 | 
					  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
 | 
				
			||||||
  assert(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
@@ -307,54 +287,25 @@ void CartesianCommunicator::GlobalMax(double &d)
 | 
				
			|||||||
  int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator);
 | 
					  int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator);
 | 
				
			||||||
  assert(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					void CartesianCommunicator::GlobalSum(float &f){
 | 
				
			||||||
 | 
					  int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
 | 
				
			||||||
 | 
					  assert(ierr==0);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::GlobalSumVector(float *f,int N)
 | 
					void CartesianCommunicator::GlobalSumVector(float *f,int N)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator);
 | 
					  int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator);
 | 
				
			||||||
  assert(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					void CartesianCommunicator::GlobalSum(double &d)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
 | 
				
			||||||
 | 
					  assert(ierr==0);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::GlobalSumVector(double *d,int N)
 | 
					void CartesianCommunicator::GlobalSumVector(double *d,int N)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
 | 
					  int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
 | 
				
			||||||
  assert(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					 | 
				
			||||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list,
 | 
					 | 
				
			||||||
						void *xmit,
 | 
					 | 
				
			||||||
						int dest,
 | 
					 | 
				
			||||||
						void *recv,
 | 
					 | 
				
			||||||
						int from,
 | 
					 | 
				
			||||||
						int bytes,int dir)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  MPI_Request xrq;
 | 
					 | 
				
			||||||
  MPI_Request rrq;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  assert(dest != _processor);
 | 
					 | 
				
			||||||
  assert(from != _processor);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int tag;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  tag= dir+from*32;
 | 
					 | 
				
			||||||
  int ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator,&rrq);
 | 
					 | 
				
			||||||
  assert(ierr==0);
 | 
					 | 
				
			||||||
  list.push_back(rrq);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  tag= dir+_processor*32;
 | 
					 | 
				
			||||||
  ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator,&xrq);
 | 
					 | 
				
			||||||
  assert(ierr==0);
 | 
					 | 
				
			||||||
  list.push_back(xrq);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
void CartesianCommunicator::CommsComplete(std::vector<MpiCommsRequest_t> &list)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  int nreq=list.size();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  if (nreq==0) return;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  std::vector<MPI_Status> status(nreq);
 | 
					 | 
				
			||||||
  int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
 | 
					 | 
				
			||||||
  assert(ierr==0);
 | 
					 | 
				
			||||||
  list.resize(0);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
// Basic Halo comms primitive
 | 
					// Basic Halo comms primitive
 | 
				
			||||||
void CartesianCommunicator::SendToRecvFrom(void *xmit,
 | 
					void CartesianCommunicator::SendToRecvFrom(void *xmit,
 | 
				
			||||||
					   int dest,
 | 
										   int dest,
 | 
				
			||||||
@@ -362,7 +313,9 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
 | 
				
			|||||||
					   int from,
 | 
										   int from,
 | 
				
			||||||
					   int bytes)
 | 
										   int bytes)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  std::vector<MpiCommsRequest_t> reqs(0);
 | 
					  std::vector<CommsRequest_t> reqs(0);
 | 
				
			||||||
 | 
					  unsigned long  xcrc = crc32(0L, Z_NULL, 0);
 | 
				
			||||||
 | 
					  unsigned long  rcrc = crc32(0L, Z_NULL, 0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  int myrank = _processor;
 | 
					  int myrank = _processor;
 | 
				
			||||||
  int ierr;
 | 
					  int ierr;
 | 
				
			||||||
@@ -378,6 +331,9 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
 | 
				
			|||||||
		    communicator,MPI_STATUS_IGNORE);
 | 
							    communicator,MPI_STATUS_IGNORE);
 | 
				
			||||||
  assert(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  //  xcrc = crc32(xcrc,(unsigned char *)xmit,bytes);
 | 
				
			||||||
 | 
					  //  rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
 | 
				
			||||||
 | 
					  //  printf("proc %d SendToRecvFrom %d bytes xcrc %lx rcrc %lx\n",_processor,bytes,xcrc,rcrc); fflush
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
// Basic Halo comms primitive
 | 
					// Basic Halo comms primitive
 | 
				
			||||||
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
 | 
					double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
 | 
				
			||||||
@@ -387,25 +343,11 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
 | 
				
			|||||||
						     int bytes,int dir)
 | 
											     int bytes,int dir)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  std::vector<CommsRequest_t> list;
 | 
					  std::vector<CommsRequest_t> list;
 | 
				
			||||||
  double offbytes = StencilSendToRecvFromPrepare(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
 | 
					  double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
 | 
				
			||||||
  offbytes       += StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
 | 
					 | 
				
			||||||
  StencilSendToRecvFromComplete(list,dir);
 | 
					  StencilSendToRecvFromComplete(list,dir);
 | 
				
			||||||
  return offbytes;
 | 
					  return offbytes;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {};
 | 
					 | 
				
			||||||
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {};
 | 
					 | 
				
			||||||
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
 | 
					 | 
				
			||||||
							   void *xmit,
 | 
					 | 
				
			||||||
							   int dest,int dox,
 | 
					 | 
				
			||||||
							   void *recv,
 | 
					 | 
				
			||||||
							   int from,int dor,
 | 
					 | 
				
			||||||
							   int xbytes,int rbytes,int dir)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  return 0.0; // Do nothing -- no preparation required
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
					double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
				
			||||||
							 void *xmit,
 | 
												 void *xmit,
 | 
				
			||||||
							 int dest,int dox,
 | 
												 int dest,int dox,
 | 
				
			||||||
@@ -438,15 +380,8 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
 | 
				
			|||||||
      list.push_back(rrq);
 | 
					      list.push_back(rrq);
 | 
				
			||||||
      off_node_bytes+=rbytes;
 | 
					      off_node_bytes+=rbytes;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
#ifdef NVLINK_GET
 | 
					 | 
				
			||||||
    else { 
 | 
					 | 
				
			||||||
      void *shm = (void *) this->ShmBufferTranslate(from,xmit);
 | 
					 | 
				
			||||||
      assert(shm!=NULL);
 | 
					 | 
				
			||||||
      acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
#endif
 | 
					  
 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  // This is a NVLINK PUT  
 | 
					 | 
				
			||||||
  if (dox) {
 | 
					  if (dox) {
 | 
				
			||||||
    if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
					    if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
				
			||||||
      tag= dir+_processor*32;
 | 
					      tag= dir+_processor*32;
 | 
				
			||||||
@@ -455,343 +390,25 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
 | 
				
			|||||||
      list.push_back(xrq);
 | 
					      list.push_back(xrq);
 | 
				
			||||||
      off_node_bytes+=xbytes;
 | 
					      off_node_bytes+=xbytes;
 | 
				
			||||||
    } else {
 | 
					    } else {
 | 
				
			||||||
#ifndef NVLINK_GET
 | 
					 | 
				
			||||||
      void *shm = (void *) this->ShmBufferTranslate(dest,recv);
 | 
					      void *shm = (void *) this->ShmBufferTranslate(dest,recv);
 | 
				
			||||||
      assert(shm!=NULL);
 | 
					      assert(shm!=NULL);
 | 
				
			||||||
      acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
 | 
					      acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  return off_node_bytes;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  return off_node_bytes;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
 | 
					void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  int nreq=list.size();
 | 
					  int nreq=list.size();
 | 
				
			||||||
  /*finishes Get/Put*/
 | 
					 | 
				
			||||||
  acceleratorCopySynchronise();
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  if (nreq==0) return;
 | 
					  if (nreq==0) return;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  std::vector<MPI_Status> status(nreq);
 | 
					  std::vector<MPI_Status> status(nreq);
 | 
				
			||||||
  int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
 | 
					  int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
 | 
				
			||||||
  assert(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
  list.resize(0);
 | 
					  list.resize(0);
 | 
				
			||||||
  this->StencilBarrier(); 
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					 | 
				
			||||||
#else /* NOT     ... ACCELERATOR_AWARE_MPI */
 | 
					 | 
				
			||||||
///////////////////////////////////////////
 | 
					 | 
				
			||||||
// Pipeline mode through host memory
 | 
					 | 
				
			||||||
///////////////////////////////////////////
 | 
					 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
   * In prepare (phase 1):
 | 
					 | 
				
			||||||
   * PHASE 1: (prepare)
 | 
					 | 
				
			||||||
   * - post MPI receive buffers asynch
 | 
					 | 
				
			||||||
   * - post device - host send buffer transfer asynch
 | 
					 | 
				
			||||||
   * PHASE 2: (Begin)
 | 
					 | 
				
			||||||
   * - complete all copies
 | 
					 | 
				
			||||||
   * - post MPI send asynch
 | 
					 | 
				
			||||||
   * - post device - device transfers
 | 
					 | 
				
			||||||
   * PHASE 3: (Complete)
 | 
					 | 
				
			||||||
   * - MPI_waitall
 | 
					 | 
				
			||||||
   * - host-device transfers
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   *********************************
 | 
					 | 
				
			||||||
   * NB could split this further:
 | 
					 | 
				
			||||||
   *--------------------------------
 | 
					 | 
				
			||||||
   * PHASE 1: (Prepare)
 | 
					 | 
				
			||||||
   * - post MPI receive buffers asynch
 | 
					 | 
				
			||||||
   * - post device - host send buffer transfer asynch
 | 
					 | 
				
			||||||
   * PHASE 2: (BeginInterNode)
 | 
					 | 
				
			||||||
   * - complete all copies 
 | 
					 | 
				
			||||||
   * - post MPI send asynch
 | 
					 | 
				
			||||||
   * PHASE 3: (BeginIntraNode)
 | 
					 | 
				
			||||||
   * - post device - device transfers
 | 
					 | 
				
			||||||
   * PHASE 4: (Complete)
 | 
					 | 
				
			||||||
   * - MPI_waitall
 | 
					 | 
				
			||||||
   * - host-device transfers asynch
 | 
					 | 
				
			||||||
   * - (complete all copies) 
 | 
					 | 
				
			||||||
   */
 | 
					 | 
				
			||||||
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
 | 
					 | 
				
			||||||
							   void *xmit,
 | 
					 | 
				
			||||||
							   int dest,int dox,
 | 
					 | 
				
			||||||
							   void *recv,
 | 
					 | 
				
			||||||
							   int from,int dor,
 | 
					 | 
				
			||||||
							   int xbytes,int rbytes,int dir)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
/*
 | 
					 | 
				
			||||||
 * Bring sequence from Stencil.h down to lower level.
 | 
					 | 
				
			||||||
 * Assume using XeLink is ok
 | 
					 | 
				
			||||||
 */  
 | 
					 | 
				
			||||||
  int ncomm  =communicator_halo.size();
 | 
					 | 
				
			||||||
  int commdir=dir%ncomm;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  MPI_Request xrq;
 | 
					 | 
				
			||||||
  MPI_Request rrq;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int ierr;
 | 
					 | 
				
			||||||
  int gdest = ShmRanks[dest];
 | 
					 | 
				
			||||||
  int gfrom = ShmRanks[from];
 | 
					 | 
				
			||||||
  int gme   = ShmRanks[_processor];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  assert(dest != _processor);
 | 
					 | 
				
			||||||
  assert(from != _processor);
 | 
					 | 
				
			||||||
  assert(gme  == ShmRank);
 | 
					 | 
				
			||||||
  double off_node_bytes=0.0;
 | 
					 | 
				
			||||||
  int tag;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void * host_recv = NULL;
 | 
					 | 
				
			||||||
  void * host_xmit = NULL;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
   * PHASE 1: (Prepare)
 | 
					 | 
				
			||||||
   * - post MPI receive buffers asynch
 | 
					 | 
				
			||||||
   * - post device - host send buffer transfer asynch
 | 
					 | 
				
			||||||
   */
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  if ( dor ) {
 | 
					 | 
				
			||||||
    if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
					 | 
				
			||||||
      tag= dir+from*32;
 | 
					 | 
				
			||||||
      host_recv = this->HostBufferMalloc(rbytes);
 | 
					 | 
				
			||||||
      ierr=MPI_Irecv(host_recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
 | 
					 | 
				
			||||||
      assert(ierr==0);
 | 
					 | 
				
			||||||
      CommsRequest_t srq;
 | 
					 | 
				
			||||||
      srq.PacketType = InterNodeRecv;
 | 
					 | 
				
			||||||
      srq.bytes      = rbytes;
 | 
					 | 
				
			||||||
      srq.req        = rrq;
 | 
					 | 
				
			||||||
      srq.host_buf   = host_recv;
 | 
					 | 
				
			||||||
      srq.device_buf = recv;
 | 
					 | 
				
			||||||
      list.push_back(srq);
 | 
					 | 
				
			||||||
      off_node_bytes+=rbytes;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  if (dox) {
 | 
					 | 
				
			||||||
    if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      tag= dir+_processor*32;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      host_xmit = this->HostBufferMalloc(xbytes);
 | 
					 | 
				
			||||||
      CommsRequest_t srq;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      srq.ev = acceleratorCopyFromDeviceAsynch(xmit, host_xmit,xbytes); // Make this Asynch
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      //      ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
 | 
					 | 
				
			||||||
      //      assert(ierr==0);
 | 
					 | 
				
			||||||
      //      off_node_bytes+=xbytes;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      srq.PacketType = InterNodeXmit;
 | 
					 | 
				
			||||||
      srq.bytes      = xbytes;
 | 
					 | 
				
			||||||
      //      srq.req        = xrq;
 | 
					 | 
				
			||||||
      srq.host_buf   = host_xmit;
 | 
					 | 
				
			||||||
      srq.device_buf = xmit;
 | 
					 | 
				
			||||||
      srq.tag        = tag;
 | 
					 | 
				
			||||||
      srq.dest       = dest;
 | 
					 | 
				
			||||||
      srq.commdir    = commdir;
 | 
					 | 
				
			||||||
      list.push_back(srq);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  return off_node_bytes;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
/*
 | 
					 | 
				
			||||||
 * In the interest of better pipelining, poll for completion on each DtoH and 
 | 
					 | 
				
			||||||
 * start MPI_ISend in the meantime
 | 
					 | 
				
			||||||
 */
 | 
					 | 
				
			||||||
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  int pending = 0;
 | 
					 | 
				
			||||||
  do {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    pending = 0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int idx = 0; idx<list.size();idx++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      if ( list[idx].PacketType==InterNodeRecv ) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	int flag = 0;
 | 
					 | 
				
			||||||
	MPI_Status status;
 | 
					 | 
				
			||||||
	int ierr = MPI_Test(&list[idx].req,&flag,&status);
 | 
					 | 
				
			||||||
	assert(ierr==0);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	if ( flag ) {
 | 
					 | 
				
			||||||
	  //	  std::cout << " PollIrecv "<<idx<<" flag "<<flag<<std::endl;
 | 
					 | 
				
			||||||
	  acceleratorCopyToDeviceAsynch(list[idx].host_buf,list[idx].device_buf,list[idx].bytes);
 | 
					 | 
				
			||||||
	  list[idx].PacketType=InterNodeReceiveHtoD;
 | 
					 | 
				
			||||||
	} else {
 | 
					 | 
				
			||||||
	  pending ++;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    //    std::cout << " PollIrecv "<<pending<<" pending requests"<<std::endl;
 | 
					 | 
				
			||||||
  } while ( pending );
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  int pending = 0;
 | 
					 | 
				
			||||||
  do {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    pending = 0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int idx = 0; idx<list.size();idx++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      if ( list[idx].PacketType==InterNodeXmit ) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	if ( acceleratorEventIsComplete(list[idx].ev) ) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  void *host_xmit = list[idx].host_buf;
 | 
					 | 
				
			||||||
	  uint32_t xbytes = list[idx].bytes;
 | 
					 | 
				
			||||||
	  int dest        = list[idx].dest;
 | 
					 | 
				
			||||||
	  int tag         = list[idx].tag;
 | 
					 | 
				
			||||||
	  int commdir     = list[idx].commdir;
 | 
					 | 
				
			||||||
	  ///////////////////
 | 
					 | 
				
			||||||
	  // Send packet
 | 
					 | 
				
			||||||
	  ///////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  //	  std::cout << " DtoH is complete for index "<<idx<<" calling MPI_Isend "<<std::endl;
 | 
					 | 
				
			||||||
	  
 | 
					 | 
				
			||||||
	  MPI_Request xrq;
 | 
					 | 
				
			||||||
	  int ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
 | 
					 | 
				
			||||||
	  assert(ierr==0);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  list[idx].req        = xrq; // Update the MPI request in the list
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  list[idx].PacketType=InterNodeXmitISend;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	} else {
 | 
					 | 
				
			||||||
	  // not done, so return to polling loop
 | 
					 | 
				
			||||||
	  pending++;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  } while (pending);
 | 
					 | 
				
			||||||
}  
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
					 | 
				
			||||||
							 void *xmit,
 | 
					 | 
				
			||||||
							 int dest,int dox,
 | 
					 | 
				
			||||||
							 void *recv,
 | 
					 | 
				
			||||||
							 int from,int dor,
 | 
					 | 
				
			||||||
							 int xbytes,int rbytes,int dir)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  int ncomm  =communicator_halo.size();
 | 
					 | 
				
			||||||
  int commdir=dir%ncomm;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  MPI_Request xrq;
 | 
					 | 
				
			||||||
  MPI_Request rrq;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int ierr;
 | 
					 | 
				
			||||||
  int gdest = ShmRanks[dest];
 | 
					 | 
				
			||||||
  int gfrom = ShmRanks[from];
 | 
					 | 
				
			||||||
  int gme   = ShmRanks[_processor];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  assert(dest != _processor);
 | 
					 | 
				
			||||||
  assert(from != _processor);
 | 
					 | 
				
			||||||
  assert(gme  == ShmRank);
 | 
					 | 
				
			||||||
  double off_node_bytes=0.0;
 | 
					 | 
				
			||||||
  int tag;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void * host_xmit = NULL;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ////////////////////////////////
 | 
					 | 
				
			||||||
  // Receives already posted
 | 
					 | 
				
			||||||
  // Copies already started
 | 
					 | 
				
			||||||
  ////////////////////////////////
 | 
					 | 
				
			||||||
  /*  
 | 
					 | 
				
			||||||
   * PHASE 2: (Begin)
 | 
					 | 
				
			||||||
   * - complete all copies
 | 
					 | 
				
			||||||
   * - post MPI send asynch
 | 
					 | 
				
			||||||
   */
 | 
					 | 
				
			||||||
#ifdef NVLINK_GET
 | 
					 | 
				
			||||||
  if ( dor ) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if ( ! ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) ) {
 | 
					 | 
				
			||||||
      // Intranode
 | 
					 | 
				
			||||||
      void *shm = (void *) this->ShmBufferTranslate(from,xmit);
 | 
					 | 
				
			||||||
      assert(shm!=NULL);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      CommsRequest_t srq;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      srq.ev = acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      srq.PacketType = IntraNodeRecv;
 | 
					 | 
				
			||||||
      srq.bytes      = xbytes;
 | 
					 | 
				
			||||||
      //      srq.req        = xrq;
 | 
					 | 
				
			||||||
      srq.host_buf   = NULL;
 | 
					 | 
				
			||||||
      srq.device_buf = xmit;
 | 
					 | 
				
			||||||
      srq.tag        = -1;
 | 
					 | 
				
			||||||
      srq.dest       = dest;
 | 
					 | 
				
			||||||
      srq.commdir    = dir;
 | 
					 | 
				
			||||||
      list.push_back(srq);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }  
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
  if (dox) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if ( !( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) ) {
 | 
					 | 
				
			||||||
      // Intranode
 | 
					 | 
				
			||||||
      void *shm = (void *) this->ShmBufferTranslate(dest,recv);
 | 
					 | 
				
			||||||
      assert(shm!=NULL);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      CommsRequest_t srq;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      srq.ev = acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      srq.PacketType = IntraNodeXmit;
 | 
					 | 
				
			||||||
      srq.bytes      = xbytes;
 | 
					 | 
				
			||||||
      //      srq.req        = xrq;
 | 
					 | 
				
			||||||
      srq.host_buf   = NULL;
 | 
					 | 
				
			||||||
      srq.device_buf = xmit;
 | 
					 | 
				
			||||||
      srq.tag        = -1;
 | 
					 | 
				
			||||||
      srq.dest       = dest;
 | 
					 | 
				
			||||||
      srq.commdir    = dir;
 | 
					 | 
				
			||||||
      list.push_back(srq);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  return off_node_bytes;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  acceleratorCopySynchronise(); // Complete all pending copy transfers D2D
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  std::vector<MPI_Status> status;
 | 
					 | 
				
			||||||
  std::vector<MPI_Request> MpiRequests;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
  for(int r=0;r<list.size();r++){
 | 
					 | 
				
			||||||
    // Must check each Send buf is clear to reuse
 | 
					 | 
				
			||||||
    if ( list[r].PacketType == InterNodeXmitISend ) MpiRequests.push_back(list[r].req);
 | 
					 | 
				
			||||||
    //    if ( list[r].PacketType == InterNodeRecv ) MpiRequests.push_back(list[r].req); // Already "Test" passed
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int nreq=MpiRequests.size();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  if (nreq>0) {
 | 
					 | 
				
			||||||
    status.resize(MpiRequests.size());
 | 
					 | 
				
			||||||
    int ierr = MPI_Waitall(MpiRequests.size(),&MpiRequests[0],&status[0]); // Sends are guaranteed in order. No harm in not completing.
 | 
					 | 
				
			||||||
    assert(ierr==0);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  //  for(int r=0;r<nreq;r++){
 | 
					 | 
				
			||||||
  //    if ( list[r].PacketType==InterNodeRecv ) {
 | 
					 | 
				
			||||||
  //      acceleratorCopyToDeviceAsynch(list[r].host_buf,list[r].device_buf,list[r].bytes);
 | 
					 | 
				
			||||||
  //    }
 | 
					 | 
				
			||||||
  //  }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  list.resize(0);               // Delete the list
 | 
					 | 
				
			||||||
  this->HostBufferFreeAll();    // Clean up the buffer allocs
 | 
					 | 
				
			||||||
#ifndef NVLINK_GET
 | 
					 | 
				
			||||||
  this->StencilBarrier(); // if PUT must check our nbrs have filled our receive buffers.
 | 
					 | 
				
			||||||
#endif   
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
////////////////////////////////////////////
 | 
					 | 
				
			||||||
// END PIPELINE MODE / NO CUDA AWARE MPI
 | 
					 | 
				
			||||||
////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
void CartesianCommunicator::StencilBarrier(void)
 | 
					void CartesianCommunicator::StencilBarrier(void)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  MPI_Barrier  (ShmComm);
 | 
					  MPI_Barrier  (ShmComm);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -91,17 +91,6 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
 | 
				
			|||||||
{
 | 
					{
 | 
				
			||||||
  assert(0);
 | 
					  assert(0);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ assert(list.size()==0);}
 | 
					 | 
				
			||||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
					 | 
				
			||||||
						void *xmit,
 | 
					 | 
				
			||||||
						int dest,
 | 
					 | 
				
			||||||
						void *recv,
 | 
					 | 
				
			||||||
						int from,
 | 
					 | 
				
			||||||
						int bytes,int dir)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  assert(0);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,uint64_t words,uint64_t bytes)
 | 
					void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,uint64_t words,uint64_t bytes)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  bcopy(in,out,bytes*words);
 | 
					  bcopy(in,out,bytes*words);
 | 
				
			||||||
@@ -132,17 +121,6 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
 | 
				
			|||||||
{
 | 
					{
 | 
				
			||||||
  return 2.0*bytes;
 | 
					  return 2.0*bytes;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {};
 | 
					 | 
				
			||||||
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {};
 | 
					 | 
				
			||||||
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
 | 
					 | 
				
			||||||
							   void *xmit,
 | 
					 | 
				
			||||||
							   int xmit_to_rank,int dox,
 | 
					 | 
				
			||||||
							   void *recv,
 | 
					 | 
				
			||||||
							   int recv_from_rank,int dor,
 | 
					 | 
				
			||||||
							   int xbytes,int rbytes, int dir)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  return 0.0;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
					double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
				
			||||||
							 void *xmit,
 | 
												 void *xmit,
 | 
				
			||||||
							 int xmit_to_rank,int dox,
 | 
												 int xmit_to_rank,int dox,
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -40,9 +40,6 @@ int                 GlobalSharedMemory::_ShmAlloc;
 | 
				
			|||||||
uint64_t            GlobalSharedMemory::_ShmAllocBytes;
 | 
					uint64_t            GlobalSharedMemory::_ShmAllocBytes;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
std::vector<void *> GlobalSharedMemory::WorldShmCommBufs;
 | 
					std::vector<void *> GlobalSharedMemory::WorldShmCommBufs;
 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
void * GlobalSharedMemory::HostCommBuf;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
Grid_MPI_Comm       GlobalSharedMemory::WorldShmComm;
 | 
					Grid_MPI_Comm       GlobalSharedMemory::WorldShmComm;
 | 
				
			||||||
int                 GlobalSharedMemory::WorldShmRank;
 | 
					int                 GlobalSharedMemory::WorldShmRank;
 | 
				
			||||||
@@ -69,26 +66,6 @@ void GlobalSharedMemory::SharedMemoryFree(void)
 | 
				
			|||||||
/////////////////////////////////
 | 
					/////////////////////////////////
 | 
				
			||||||
// Alloc, free shmem region
 | 
					// Alloc, free shmem region
 | 
				
			||||||
/////////////////////////////////
 | 
					/////////////////////////////////
 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
void *SharedMemory::HostBufferMalloc(size_t bytes){
 | 
					 | 
				
			||||||
  void *ptr = (void *)host_heap_top;
 | 
					 | 
				
			||||||
  host_heap_top  += bytes;
 | 
					 | 
				
			||||||
  host_heap_bytes+= bytes;
 | 
					 | 
				
			||||||
  if (host_heap_bytes >= host_heap_size) {
 | 
					 | 
				
			||||||
    std::cout<< " HostBufferMalloc exceeded heap size -- try increasing with --shm <MB> flag" <<std::endl;
 | 
					 | 
				
			||||||
    std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl;
 | 
					 | 
				
			||||||
    std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout<< " Current bytes is " << (host_heap_bytes/(1024*1024)) <<"MB"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout<< " Current heap  is " << (host_heap_size/(1024*1024)) <<"MB"<<std::endl;
 | 
					 | 
				
			||||||
    assert(host_heap_bytes<host_heap_size);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  return ptr;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
void SharedMemory::HostBufferFreeAll(void) { 
 | 
					 | 
				
			||||||
  host_heap_top  =(size_t)HostCommBuf;
 | 
					 | 
				
			||||||
  host_heap_bytes=0;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
void *SharedMemory::ShmBufferMalloc(size_t bytes){
 | 
					void *SharedMemory::ShmBufferMalloc(size_t bytes){
 | 
				
			||||||
  //  bytes = (bytes+sizeof(vRealD))&(~(sizeof(vRealD)-1));// align up bytes
 | 
					  //  bytes = (bytes+sizeof(vRealD))&(~(sizeof(vRealD)-1));// align up bytes
 | 
				
			||||||
  void *ptr = (void *)heap_top;
 | 
					  void *ptr = (void *)heap_top;
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -46,40 +46,8 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
#if defined (GRID_COMMS_MPI3) 
 | 
					#if defined (GRID_COMMS_MPI3) 
 | 
				
			||||||
typedef MPI_Comm    Grid_MPI_Comm;
 | 
					typedef MPI_Comm    Grid_MPI_Comm;
 | 
				
			||||||
typedef MPI_Request MpiCommsRequest_t;
 | 
					 | 
				
			||||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
typedef MPI_Request CommsRequest_t;
 | 
					typedef MPI_Request CommsRequest_t;
 | 
				
			||||||
#else 
 | 
					#else 
 | 
				
			||||||
/*
 | 
					 | 
				
			||||||
 * Enable state transitions as each packet flows.
 | 
					 | 
				
			||||||
 */
 | 
					 | 
				
			||||||
enum PacketType_t {
 | 
					 | 
				
			||||||
  FaceGather,
 | 
					 | 
				
			||||||
  InterNodeXmit,
 | 
					 | 
				
			||||||
  InterNodeRecv,
 | 
					 | 
				
			||||||
  IntraNodeXmit,
 | 
					 | 
				
			||||||
  IntraNodeRecv,
 | 
					 | 
				
			||||||
  InterNodeXmitISend,
 | 
					 | 
				
			||||||
  InterNodeReceiveHtoD
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
/*
 | 
					 | 
				
			||||||
 *Package arguments needed for various actions along packet flow
 | 
					 | 
				
			||||||
 */
 | 
					 | 
				
			||||||
typedef struct {
 | 
					 | 
				
			||||||
  PacketType_t PacketType;
 | 
					 | 
				
			||||||
  void *host_buf;
 | 
					 | 
				
			||||||
  void *device_buf;
 | 
					 | 
				
			||||||
  int dest;
 | 
					 | 
				
			||||||
  int tag;
 | 
					 | 
				
			||||||
  int commdir;
 | 
					 | 
				
			||||||
  unsigned long bytes;
 | 
					 | 
				
			||||||
  acceleratorEvent_t ev;
 | 
					 | 
				
			||||||
  MpiCommsRequest_t req;
 | 
					 | 
				
			||||||
} CommsRequest_t;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#else 
 | 
					 | 
				
			||||||
typedef int MpiCommsRequest_t;
 | 
					 | 
				
			||||||
typedef int CommsRequest_t;
 | 
					typedef int CommsRequest_t;
 | 
				
			||||||
typedef int Grid_MPI_Comm;
 | 
					typedef int Grid_MPI_Comm;
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
@@ -107,9 +75,7 @@ public:
 | 
				
			|||||||
  static int           Hugepages;
 | 
					  static int           Hugepages;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  static std::vector<void *> WorldShmCommBufs;
 | 
					  static std::vector<void *> WorldShmCommBufs;
 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					
 | 
				
			||||||
  static void *HostCommBuf;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  static Grid_MPI_Comm WorldComm;
 | 
					  static Grid_MPI_Comm WorldComm;
 | 
				
			||||||
  static int           WorldRank;
 | 
					  static int           WorldRank;
 | 
				
			||||||
  static int           WorldSize;
 | 
					  static int           WorldSize;
 | 
				
			||||||
@@ -137,7 +103,7 @@ public:
 | 
				
			|||||||
  ///////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////
 | 
				
			||||||
  static void SharedMemoryAllocate(uint64_t bytes, int flags);
 | 
					  static void SharedMemoryAllocate(uint64_t bytes, int flags);
 | 
				
			||||||
  static void SharedMemoryFree(void);
 | 
					  static void SharedMemoryFree(void);
 | 
				
			||||||
  //  static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
 | 
					  static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
 | 
				
			||||||
  static void SharedMemoryZero(void *dest,size_t bytes);
 | 
					  static void SharedMemoryZero(void *dest,size_t bytes);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
@@ -154,13 +120,6 @@ private:
 | 
				
			|||||||
  size_t heap_bytes;
 | 
					  size_t heap_bytes;
 | 
				
			||||||
  size_t heap_size;
 | 
					  size_t heap_size;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
  size_t host_heap_top;  // set in free all
 | 
					 | 
				
			||||||
  size_t host_heap_bytes;// set in free all
 | 
					 | 
				
			||||||
  void *HostCommBuf;     // set in SetCommunicator
 | 
					 | 
				
			||||||
  size_t host_heap_size; // set in SetCommunicator
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
protected:
 | 
					protected:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  Grid_MPI_Comm    ShmComm; // for barriers
 | 
					  Grid_MPI_Comm    ShmComm; // for barriers
 | 
				
			||||||
@@ -192,10 +151,7 @@ public:
 | 
				
			|||||||
  void *ShmBufferTranslate(int rank,void * local_p);
 | 
					  void *ShmBufferTranslate(int rank,void * local_p);
 | 
				
			||||||
  void *ShmBufferMalloc(size_t bytes);
 | 
					  void *ShmBufferMalloc(size_t bytes);
 | 
				
			||||||
  void  ShmBufferFreeAll(void) ;
 | 
					  void  ShmBufferFreeAll(void) ;
 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					  
 | 
				
			||||||
  void *HostBufferMalloc(size_t bytes);
 | 
					 | 
				
			||||||
  void HostBufferFreeAll(void);
 | 
					 | 
				
			||||||
#endif  
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////
 | 
					  //////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Make info on Nodes & ranks and Shared memory available
 | 
					  // Make info on Nodes & ranks and Shared memory available
 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////
 | 
					  //////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -39,16 +39,9 @@ Author: Christoph Lehner <christoph@lhnr.de>
 | 
				
			|||||||
#include <hip/hip_runtime_api.h>
 | 
					#include <hip/hip_runtime_api.h>
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
#ifdef GRID_SYCL
 | 
					#ifdef GRID_SYCL
 | 
				
			||||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
#define GRID_SYCL_LEVEL_ZERO_IPC
 | 
					#define GRID_SYCL_LEVEL_ZERO_IPC
 | 
				
			||||||
#define SHM_SOCKETS
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
#ifdef HAVE_NUMAIF_H
 | 
					 | 
				
			||||||
  #warning " Using NUMAIF "
 | 
					 | 
				
			||||||
#include <numaif.h>
 | 
					 | 
				
			||||||
#endif 
 | 
					 | 
				
			||||||
#endif 
 | 
					 | 
				
			||||||
#include <syscall.h>
 | 
					#include <syscall.h>
 | 
				
			||||||
 | 
					#define SHM_SOCKETS 
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#include <sys/socket.h>
 | 
					#include <sys/socket.h>
 | 
				
			||||||
@@ -518,6 +511,46 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			|||||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
// Hugetlbfs mapping intended
 | 
					// Hugetlbfs mapping intended
 | 
				
			||||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					#if defined(GRID_CUDA) ||defined(GRID_HIP)  || defined(GRID_SYCL)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					//if defined(GRID_SYCL)
 | 
				
			||||||
 | 
					#if 0
 | 
				
			||||||
 | 
					void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  void * ShmCommBuf ; 
 | 
				
			||||||
 | 
					  assert(_ShmSetup==1);
 | 
				
			||||||
 | 
					  assert(_ShmAlloc==0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					  // allocate the pointer array for shared windows for our group
 | 
				
			||||||
 | 
					  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					  MPI_Barrier(WorldShmComm);
 | 
				
			||||||
 | 
					  WorldShmCommBufs.resize(WorldShmSize);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					  // Each MPI rank should allocate our own buffer
 | 
				
			||||||
 | 
					  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					  ShmCommBuf = acceleratorAllocDevice(bytes);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  if (ShmCommBuf == (void *)NULL ) {
 | 
				
			||||||
 | 
					    std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
 | 
				
			||||||
 | 
					    exit(EXIT_FAILURE);  
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  std::cout << WorldRank << Mheader " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes 
 | 
				
			||||||
 | 
						    << "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  SharedMemoryZero(ShmCommBuf,bytes);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  assert(WorldShmSize == 1);
 | 
				
			||||||
 | 
					  for(int r=0;r<WorldShmSize;r++){
 | 
				
			||||||
 | 
					    WorldShmCommBufs[r] = ShmCommBuf;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  _ShmAllocBytes=bytes;
 | 
				
			||||||
 | 
					  _ShmAlloc=1;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#if defined(GRID_CUDA) ||defined(GRID_HIP) ||defined(GRID_SYCL)  
 | 
					#if defined(GRID_CUDA) ||defined(GRID_HIP) ||defined(GRID_SYCL)  
 | 
				
			||||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
					void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
@@ -541,40 +574,6 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			|||||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Each MPI rank should allocate our own buffer
 | 
					  // Each MPI rank should allocate our own buffer
 | 
				
			||||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
  // printf("Host buffer allocate for GPU non-aware MPI\n");
 | 
					 | 
				
			||||||
#if 0
 | 
					 | 
				
			||||||
  HostCommBuf= acceleratorAllocHost(bytes);
 | 
					 | 
				
			||||||
#else 
 | 
					 | 
				
			||||||
  HostCommBuf= malloc(bytes); /// CHANGE THIS TO malloc_host
 | 
					 | 
				
			||||||
#if 0
 | 
					 | 
				
			||||||
  #warning "Moving host buffers to specific NUMA domain"
 | 
					 | 
				
			||||||
  int numa;
 | 
					 | 
				
			||||||
  char *numa_name=(char *)getenv("MPI_BUF_NUMA");
 | 
					 | 
				
			||||||
  if(numa_name) {
 | 
					 | 
				
			||||||
    unsigned long page_size = sysconf(_SC_PAGESIZE);
 | 
					 | 
				
			||||||
    numa = atoi(numa_name);
 | 
					 | 
				
			||||||
    unsigned long page_count = bytes/page_size;
 | 
					 | 
				
			||||||
    std::vector<void *> pages(page_count);
 | 
					 | 
				
			||||||
    std::vector<int>    nodes(page_count,numa);
 | 
					 | 
				
			||||||
    std::vector<int>    status(page_count,-1);
 | 
					 | 
				
			||||||
    for(unsigned long p=0;p<page_count;p++){
 | 
					 | 
				
			||||||
      pages[p] =(void *) ((uint64_t) HostCommBuf + p*page_size);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    int ret = move_pages(0,
 | 
					 | 
				
			||||||
			 page_count,
 | 
					 | 
				
			||||||
			 &pages[0],
 | 
					 | 
				
			||||||
			 &nodes[0],
 | 
					 | 
				
			||||||
			 &status[0],
 | 
					 | 
				
			||||||
			 MPOL_MF_MOVE);
 | 
					 | 
				
			||||||
    printf("Host buffer move to numa domain %d : move_pages returned %d\n",numa,ret);
 | 
					 | 
				
			||||||
    if (ret) perror(" move_pages failed for reason:");
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
#endif  
 | 
					 | 
				
			||||||
  acceleratorPin(HostCommBuf,bytes);
 | 
					 | 
				
			||||||
#endif  
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#endif  
 | 
					 | 
				
			||||||
  ShmCommBuf = acceleratorAllocDevice(bytes);
 | 
					  ShmCommBuf = acceleratorAllocDevice(bytes);
 | 
				
			||||||
  if (ShmCommBuf == (void *)NULL ) {
 | 
					  if (ShmCommBuf == (void *)NULL ) {
 | 
				
			||||||
    std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
 | 
					    std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
 | 
				
			||||||
@@ -605,8 +604,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			|||||||
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
 | 
					#ifdef GRID_SYCL_LEVEL_ZERO_IPC
 | 
				
			||||||
    typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t;
 | 
					    typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    auto zeDevice    = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
 | 
					    auto zeDevice    = cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_device());
 | 
				
			||||||
    auto zeContext   = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
 | 
					    auto zeContext   = cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_context());
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    ze_ipc_mem_handle_t ihandle;
 | 
					    ze_ipc_mem_handle_t ihandle;
 | 
				
			||||||
    clone_mem_t handle;
 | 
					    clone_mem_t handle;
 | 
				
			||||||
@@ -739,6 +738,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			|||||||
  _ShmAllocBytes=bytes;
 | 
					  _ShmAllocBytes=bytes;
 | 
				
			||||||
  _ShmAlloc=1;
 | 
					  _ShmAlloc=1;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#else 
 | 
					#else 
 | 
				
			||||||
#ifdef GRID_MPI3_SHMMMAP
 | 
					#ifdef GRID_MPI3_SHMMMAP
 | 
				
			||||||
@@ -916,14 +916,14 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
 | 
				
			|||||||
  bzero(dest,bytes);
 | 
					  bzero(dest,bytes);
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
//void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
 | 
					void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
 | 
				
			||||||
//{
 | 
					{
 | 
				
			||||||
//#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
 | 
					#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
 | 
				
			||||||
//  acceleratorCopyToDevice(src,dest,bytes);
 | 
					  acceleratorCopyToDevice(src,dest,bytes);
 | 
				
			||||||
//#else   
 | 
					#else   
 | 
				
			||||||
//  bcopy(src,dest,bytes);
 | 
					  bcopy(src,dest,bytes);
 | 
				
			||||||
//#endif
 | 
					#endif
 | 
				
			||||||
//}
 | 
					}
 | 
				
			||||||
////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////
 | 
				
			||||||
// Global shared functionality finished
 | 
					// Global shared functionality finished
 | 
				
			||||||
// Now move to per communicator functionality
 | 
					// Now move to per communicator functionality
 | 
				
			||||||
@@ -959,16 +959,9 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
 | 
				
			|||||||
    MPI_Allreduce(MPI_IN_PLACE,&wsr,1,MPI_UINT32_T,MPI_SUM,ShmComm);
 | 
					    MPI_Allreduce(MPI_IN_PLACE,&wsr,1,MPI_UINT32_T,MPI_SUM,ShmComm);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    ShmCommBufs[r] = GlobalSharedMemory::WorldShmCommBufs[wsr];
 | 
					    ShmCommBufs[r] = GlobalSharedMemory::WorldShmCommBufs[wsr];
 | 
				
			||||||
    //    std::cerr << " SetCommunicator rank "<<r<<" comm "<<ShmCommBufs[r] <<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  ShmBufferFreeAll();
 | 
					  ShmBufferFreeAll();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
  host_heap_size = heap_size;
 | 
					 | 
				
			||||||
  HostCommBuf= GlobalSharedMemory::HostCommBuf;
 | 
					 | 
				
			||||||
  HostBufferFreeAll();
 | 
					 | 
				
			||||||
#endif  
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////////////////////////////
 | 
					  /////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // find comm ranks in our SHM group (i.e. which ranks are on our node)
 | 
					  // find comm ranks in our SHM group (i.e. which ranks are on our node)
 | 
				
			||||||
  /////////////////////////////////////////////////////////////////////
 | 
					  /////////////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -990,7 +983,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  SharedMemoryTest();
 | 
					  //SharedMemoryTest();
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
//////////////////////////////////////////////////////////////////
 | 
					//////////////////////////////////////////////////////////////////
 | 
				
			||||||
// On node barrier
 | 
					// On node barrier
 | 
				
			||||||
@@ -1012,18 +1005,19 @@ void SharedMemory::SharedMemoryTest(void)
 | 
				
			|||||||
       check[0]=GlobalSharedMemory::WorldNode;
 | 
					       check[0]=GlobalSharedMemory::WorldNode;
 | 
				
			||||||
       check[1]=r;
 | 
					       check[1]=r;
 | 
				
			||||||
       check[2]=magic;
 | 
					       check[2]=magic;
 | 
				
			||||||
       acceleratorCopyToDevice(check,ShmCommBufs[r],3*sizeof(uint64_t));
 | 
					       GlobalSharedMemory::SharedMemoryCopy( ShmCommBufs[r], check, 3*sizeof(uint64_t));
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  ShmBarrier();
 | 
					  ShmBarrier();
 | 
				
			||||||
  for(uint64_t r=0;r<ShmSize;r++){
 | 
					  for(uint64_t r=0;r<ShmSize;r++){
 | 
				
			||||||
    acceleratorCopyFromDevice(ShmCommBufs[r],check,3*sizeof(uint64_t));
 | 
					    ShmBarrier();
 | 
				
			||||||
 | 
					    GlobalSharedMemory::SharedMemoryCopy(check,ShmCommBufs[r], 3*sizeof(uint64_t));
 | 
				
			||||||
 | 
					    ShmBarrier();
 | 
				
			||||||
    assert(check[0]==GlobalSharedMemory::WorldNode);
 | 
					    assert(check[0]==GlobalSharedMemory::WorldNode);
 | 
				
			||||||
    assert(check[1]==r);
 | 
					    assert(check[1]==r);
 | 
				
			||||||
    assert(check[2]==magic);
 | 
					    assert(check[2]==magic);
 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
    ShmBarrier();
 | 
					    ShmBarrier();
 | 
				
			||||||
  std::cout << GridLogDebug << " SharedMemoryTest has passed "<<std::endl;
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
void *SharedMemory::ShmBuffer(int rank)
 | 
					void *SharedMemory::ShmBuffer(int rank)
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -51,6 +51,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
#endif 
 | 
					#endif 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					NAMESPACE_BEGIN(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr> 
 | 
					template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr> 
 | 
				
			||||||
auto Cshift(const Expression &expr,int dim,int shift)  -> decltype(closure(expr)) 
 | 
					auto Cshift(const Expression &expr,int dim,int shift)  -> decltype(closure(expr)) 
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -29,28 +29,13 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					NAMESPACE_BEGIN(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
extern std::vector<std::pair<int,int> > Cshift_table; 
 | 
					extern Vector<std::pair<int,int> > Cshift_table; 
 | 
				
			||||||
extern deviceVector<std::pair<int,int> > Cshift_table_device; 
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
inline std::pair<int,int> *MapCshiftTable(void)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  // GPU version
 | 
					 | 
				
			||||||
  uint64_t sz=Cshift_table.size();
 | 
					 | 
				
			||||||
  if (Cshift_table_device.size()!=sz )    {
 | 
					 | 
				
			||||||
    Cshift_table_device.resize(sz);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  acceleratorCopyToDevice((void *)&Cshift_table[0],
 | 
					 | 
				
			||||||
			  (void *)&Cshift_table_device[0],
 | 
					 | 
				
			||||||
			  sizeof(Cshift_table[0])*sz);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  return &Cshift_table_device[0];
 | 
					 | 
				
			||||||
  // CPU version use identify map
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
///////////////////////////////////////////////////////////////////
 | 
					///////////////////////////////////////////////////////////////////
 | 
				
			||||||
// Gather for when there is no need to SIMD split 
 | 
					// Gather for when there is no need to SIMD split 
 | 
				
			||||||
///////////////////////////////////////////////////////////////////
 | 
					///////////////////////////////////////////////////////////////////
 | 
				
			||||||
template<class vobj> void 
 | 
					template<class vobj> void 
 | 
				
			||||||
Gather_plane_simple (const Lattice<vobj> &rhs,deviceVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
 | 
					Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  int rd = rhs.Grid()->_rdimensions[dimension];
 | 
					  int rd = rhs.Grid()->_rdimensions[dimension];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -89,11 +74,18 @@ Gather_plane_simple (const Lattice<vobj> &rhs,deviceVector<vobj> &buffer,int dim
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    auto buffer_p = & buffer[0];
 | 
					    auto buffer_p = & buffer[0];
 | 
				
			||||||
    auto table = MapCshiftTable();
 | 
					    auto table = &Cshift_table[0];
 | 
				
			||||||
 | 
					#ifdef ACCELERATOR_CSHIFT    
 | 
				
			||||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
					    autoView(rhs_v , rhs, AcceleratorRead);
 | 
				
			||||||
    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
					    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
				
			||||||
	coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second]));
 | 
						coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second]));
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
 | 
					    autoView(rhs_v , rhs, CpuRead);
 | 
				
			||||||
 | 
					    thread_for(i,ent,{
 | 
				
			||||||
 | 
					      buffer_p[table[i].first]=rhs_v[table[i].second];
 | 
				
			||||||
 | 
					    });
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -118,6 +110,7 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
 | 
				
			|||||||
  int n1=rhs.Grid()->_slice_stride[dimension];
 | 
					  int n1=rhs.Grid()->_slice_stride[dimension];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  if ( cbmask ==0x3){
 | 
					  if ( cbmask ==0x3){
 | 
				
			||||||
 | 
					#ifdef ACCELERATOR_CSHIFT
 | 
				
			||||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
					    autoView(rhs_v , rhs, AcceleratorRead);
 | 
				
			||||||
    accelerator_for(nn,e1*e2,1,{
 | 
					    accelerator_for(nn,e1*e2,1,{
 | 
				
			||||||
	int n = nn%e1;
 | 
						int n = nn%e1;
 | 
				
			||||||
@@ -128,10 +121,21 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
 | 
				
			|||||||
	vobj temp =rhs_v[so+o+b];
 | 
						vobj temp =rhs_v[so+o+b];
 | 
				
			||||||
	extract<vobj>(temp,pointers,offset);
 | 
						extract<vobj>(temp,pointers,offset);
 | 
				
			||||||
      });
 | 
					      });
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
 | 
					    autoView(rhs_v , rhs, CpuRead);
 | 
				
			||||||
 | 
					    thread_for2d(n,e1,b,e2,{
 | 
				
			||||||
 | 
						int o      =   n*n1;
 | 
				
			||||||
 | 
						int offset = b+n*e2;
 | 
				
			||||||
 | 
						
 | 
				
			||||||
 | 
						vobj temp =rhs_v[so+o+b];
 | 
				
			||||||
 | 
						extract<vobj>(temp,pointers,offset);
 | 
				
			||||||
 | 
					      });
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
  } else { 
 | 
					  } else { 
 | 
				
			||||||
    Coordinate rdim=rhs.Grid()->_rdimensions;
 | 
					    Coordinate rdim=rhs.Grid()->_rdimensions;
 | 
				
			||||||
    Coordinate cdm =rhs.Grid()->_checker_dim_mask;
 | 
					    Coordinate cdm =rhs.Grid()->_checker_dim_mask;
 | 
				
			||||||
    std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb?
 | 
					    std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb?
 | 
				
			||||||
 | 
					#ifdef ACCELERATOR_CSHIFT    
 | 
				
			||||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
					    autoView(rhs_v , rhs, AcceleratorRead);
 | 
				
			||||||
    accelerator_for(nn,e1*e2,1,{
 | 
					    accelerator_for(nn,e1*e2,1,{
 | 
				
			||||||
	int n = nn%e1;
 | 
						int n = nn%e1;
 | 
				
			||||||
@@ -152,13 +156,33 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
 | 
				
			|||||||
	  extract<vobj>(temp,pointers,offset);
 | 
						  extract<vobj>(temp,pointers,offset);
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
      });
 | 
					      });
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
 | 
					    autoView(rhs_v , rhs, CpuRead);
 | 
				
			||||||
 | 
					    thread_for2d(n,e1,b,e2,{
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						Coordinate coor;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						int o=n*n1;
 | 
				
			||||||
 | 
						int oindex = o+b;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					       	int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						int ocb=1<<cb;
 | 
				
			||||||
 | 
						int offset = b+n*e2;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						if ( ocb & cbmask ) {
 | 
				
			||||||
 | 
						  vobj temp =rhs_v[so+o+b];
 | 
				
			||||||
 | 
						  extract<vobj>(temp,pointers,offset);
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					      });
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
//////////////////////////////////////////////////////
 | 
					//////////////////////////////////////////////////////
 | 
				
			||||||
// Scatter for when there is no need to SIMD split
 | 
					// Scatter for when there is no need to SIMD split
 | 
				
			||||||
//////////////////////////////////////////////////////
 | 
					//////////////////////////////////////////////////////
 | 
				
			||||||
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,deviceVector<vobj> &buffer, int dimension,int plane,int cbmask)
 | 
					template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<vobj> &buffer, int dimension,int plane,int cbmask)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  int rd = rhs.Grid()->_rdimensions[dimension];
 | 
					  int rd = rhs.Grid()->_rdimensions[dimension];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -201,11 +225,18 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,deviceVector<
 | 
				
			|||||||
  
 | 
					  
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    auto buffer_p = & buffer[0];
 | 
					    auto buffer_p = & buffer[0];
 | 
				
			||||||
    auto table = MapCshiftTable();
 | 
					    auto table = &Cshift_table[0];
 | 
				
			||||||
 | 
					#ifdef ACCELERATOR_CSHIFT    
 | 
				
			||||||
    autoView( rhs_v, rhs, AcceleratorWrite);
 | 
					    autoView( rhs_v, rhs, AcceleratorWrite);
 | 
				
			||||||
    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
					    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
				
			||||||
	coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second]));
 | 
						coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second]));
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
 | 
					    autoView( rhs_v, rhs, CpuWrite);
 | 
				
			||||||
 | 
					    thread_for(i,ent,{
 | 
				
			||||||
 | 
					      rhs_v[table[i].first]=buffer_p[table[i].second];
 | 
				
			||||||
 | 
					    });
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -228,6 +259,7 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
 | 
				
			|||||||
  if(cbmask ==0x3 ) {
 | 
					  if(cbmask ==0x3 ) {
 | 
				
			||||||
    int _slice_stride = rhs.Grid()->_slice_stride[dimension];
 | 
					    int _slice_stride = rhs.Grid()->_slice_stride[dimension];
 | 
				
			||||||
    int _slice_block = rhs.Grid()->_slice_block[dimension];
 | 
					    int _slice_block = rhs.Grid()->_slice_block[dimension];
 | 
				
			||||||
 | 
					#ifdef ACCELERATOR_CSHIFT    
 | 
				
			||||||
    autoView( rhs_v , rhs, AcceleratorWrite);
 | 
					    autoView( rhs_v , rhs, AcceleratorWrite);
 | 
				
			||||||
    accelerator_for(nn,e1*e2,1,{
 | 
					    accelerator_for(nn,e1*e2,1,{
 | 
				
			||||||
	int n = nn%e1;
 | 
						int n = nn%e1;
 | 
				
			||||||
@@ -236,6 +268,14 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
 | 
				
			|||||||
	int offset = b+n*_slice_block;
 | 
						int offset = b+n*_slice_block;
 | 
				
			||||||
	merge(rhs_v[so+o+b],pointers,offset);
 | 
						merge(rhs_v[so+o+b],pointers,offset);
 | 
				
			||||||
      });
 | 
					      });
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
 | 
					    autoView( rhs_v , rhs, CpuWrite);
 | 
				
			||||||
 | 
					    thread_for2d(n,e1,b,e2,{
 | 
				
			||||||
 | 
						int o      = n*_slice_stride;
 | 
				
			||||||
 | 
						int offset = b+n*_slice_block;
 | 
				
			||||||
 | 
						merge(rhs_v[so+o+b],pointers,offset);
 | 
				
			||||||
 | 
					    });
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
  } else { 
 | 
					  } else { 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // Case of SIMD split AND checker dim cannot currently be hit, except in 
 | 
					    // Case of SIMD split AND checker dim cannot currently be hit, except in 
 | 
				
			||||||
@@ -257,6 +297,30 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#if (defined(GRID_CUDA) || defined(GRID_HIP)) && defined(ACCELERATOR_CSHIFT)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					template <typename T>
 | 
				
			||||||
 | 
					T iDivUp(T a, T b) // Round a / b to nearest higher integer value
 | 
				
			||||||
 | 
					{ return (a % b != 0) ? (a / b + 1) : (a / b); }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					template <typename T>
 | 
				
			||||||
 | 
					__global__ void populate_Cshift_table(T* vector, T lo, T ro, T e1, T e2, T stride)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					    int idx = blockIdx.x*blockDim.x + threadIdx.x;
 | 
				
			||||||
 | 
					    if (idx >= e1*e2) return;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    int n, b, o;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    n = idx / e2;
 | 
				
			||||||
 | 
					    b = idx % e2;
 | 
				
			||||||
 | 
					    o = n*stride + b;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    vector[2*idx + 0] = lo + o;
 | 
				
			||||||
 | 
					    vector[2*idx + 1] = ro + o;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
//////////////////////////////////////////////////////
 | 
					//////////////////////////////////////////////////////
 | 
				
			||||||
// local to node block strided copies
 | 
					// local to node block strided copies
 | 
				
			||||||
//////////////////////////////////////////////////////
 | 
					//////////////////////////////////////////////////////
 | 
				
			||||||
@@ -281,12 +345,20 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
 | 
				
			|||||||
  int ent=0;
 | 
					  int ent=0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  if(cbmask == 0x3 ){
 | 
					  if(cbmask == 0x3 ){
 | 
				
			||||||
 | 
					#if (defined(GRID_CUDA) || defined(GRID_HIP)) && defined(ACCELERATOR_CSHIFT)
 | 
				
			||||||
 | 
					    ent = e1*e2;
 | 
				
			||||||
 | 
					    dim3 blockSize(acceleratorThreads());
 | 
				
			||||||
 | 
					    dim3 gridSize(iDivUp((unsigned int)ent, blockSize.x));
 | 
				
			||||||
 | 
					    populate_Cshift_table<<<gridSize, blockSize>>>(&Cshift_table[0].first, lo, ro, e1, e2, stride);
 | 
				
			||||||
 | 
					    accelerator_barrier();
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
    for(int n=0;n<e1;n++){
 | 
					    for(int n=0;n<e1;n++){
 | 
				
			||||||
      for(int b=0;b<e2;b++){
 | 
					      for(int b=0;b<e2;b++){
 | 
				
			||||||
        int o =n*stride+b;
 | 
					        int o =n*stride+b;
 | 
				
			||||||
	Cshift_table[ent++] = std::pair<int,int>(lo+o,ro+o);
 | 
						Cshift_table[ent++] = std::pair<int,int>(lo+o,ro+o);
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
  } else { 
 | 
					  } else { 
 | 
				
			||||||
    for(int n=0;n<e1;n++){
 | 
					    for(int n=0;n<e1;n++){
 | 
				
			||||||
      for(int b=0;b<e2;b++){
 | 
					      for(int b=0;b<e2;b++){
 | 
				
			||||||
@@ -300,12 +372,20 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    auto table = MapCshiftTable();
 | 
					    auto table = &Cshift_table[0];
 | 
				
			||||||
 | 
					#ifdef ACCELERATOR_CSHIFT    
 | 
				
			||||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
					    autoView(rhs_v , rhs, AcceleratorRead);
 | 
				
			||||||
    autoView(lhs_v , lhs, AcceleratorWrite);
 | 
					    autoView(lhs_v , lhs, AcceleratorWrite);
 | 
				
			||||||
    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
					    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
				
			||||||
      coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second]));
 | 
					      coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second]));
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
 | 
					    autoView(rhs_v , rhs, CpuRead);
 | 
				
			||||||
 | 
					    autoView(lhs_v , lhs, CpuWrite);
 | 
				
			||||||
 | 
					    thread_for(i,ent,{
 | 
				
			||||||
 | 
					      lhs_v[table[i].first]=rhs_v[table[i].second];
 | 
				
			||||||
 | 
					    });
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -329,11 +409,19 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
 | 
				
			|||||||
  int ent=0;
 | 
					  int ent=0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  if ( cbmask == 0x3 ) {
 | 
					  if ( cbmask == 0x3 ) {
 | 
				
			||||||
 | 
					#if (defined(GRID_CUDA) || defined(GRID_HIP)) && defined(ACCELERATOR_CSHIFT)
 | 
				
			||||||
 | 
					    ent = e1*e2;
 | 
				
			||||||
 | 
					    dim3 blockSize(acceleratorThreads());
 | 
				
			||||||
 | 
					    dim3 gridSize(iDivUp((unsigned int)ent, blockSize.x));
 | 
				
			||||||
 | 
					    populate_Cshift_table<<<gridSize, blockSize>>>(&Cshift_table[0].first, lo, ro, e1, e2, stride);
 | 
				
			||||||
 | 
					    accelerator_barrier();
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
    for(int n=0;n<e1;n++){
 | 
					    for(int n=0;n<e1;n++){
 | 
				
			||||||
    for(int b=0;b<e2;b++){
 | 
					    for(int b=0;b<e2;b++){
 | 
				
			||||||
      int o  =n*stride;
 | 
					      int o  =n*stride;
 | 
				
			||||||
      Cshift_table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b);
 | 
					      Cshift_table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b);
 | 
				
			||||||
    }}
 | 
					    }}
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
  } else {
 | 
					  } else {
 | 
				
			||||||
    for(int n=0;n<e1;n++){
 | 
					    for(int n=0;n<e1;n++){
 | 
				
			||||||
    for(int b=0;b<e2;b++){
 | 
					    for(int b=0;b<e2;b++){
 | 
				
			||||||
@@ -344,12 +432,20 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    auto table = MapCshiftTable();
 | 
					    auto table = &Cshift_table[0];
 | 
				
			||||||
 | 
					#ifdef ACCELERATOR_CSHIFT    
 | 
				
			||||||
    autoView( rhs_v, rhs, AcceleratorRead);
 | 
					    autoView( rhs_v, rhs, AcceleratorRead);
 | 
				
			||||||
    autoView( lhs_v, lhs, AcceleratorWrite);
 | 
					    autoView( lhs_v, lhs, AcceleratorWrite);
 | 
				
			||||||
    accelerator_for(i,ent,1,{
 | 
					    accelerator_for(i,ent,1,{
 | 
				
			||||||
      permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
 | 
					      permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
 | 
					    autoView( rhs_v, rhs, CpuRead);
 | 
				
			||||||
 | 
					    autoView( lhs_v, lhs, CpuWrite);
 | 
				
			||||||
 | 
					    thread_for(i,ent,{
 | 
				
			||||||
 | 
					      permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
 | 
				
			||||||
 | 
					    });
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -31,7 +31,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_BEGIN(Grid); 
 | 
					NAMESPACE_BEGIN(Grid); 
 | 
				
			||||||
const int Cshift_verbose=0;
 | 
					
 | 
				
			||||||
template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift)
 | 
					template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
@@ -52,8 +52,7 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
 | 
				
			|||||||
  int comm_dim        = rhs.Grid()->_processors[dimension] >1 ;
 | 
					  int comm_dim        = rhs.Grid()->_processors[dimension] >1 ;
 | 
				
			||||||
  int splice_dim      = rhs.Grid()->_simd_layout[dimension]>1 && (comm_dim);
 | 
					  int splice_dim      = rhs.Grid()->_simd_layout[dimension]>1 && (comm_dim);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  RealD t1,t0;
 | 
					
 | 
				
			||||||
  t0=usecond();
 | 
					 | 
				
			||||||
  if ( !comm_dim ) {
 | 
					  if ( !comm_dim ) {
 | 
				
			||||||
    //std::cout << "CSHIFT: Cshift_local" <<std::endl;
 | 
					    //std::cout << "CSHIFT: Cshift_local" <<std::endl;
 | 
				
			||||||
    Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding
 | 
					    Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding
 | 
				
			||||||
@@ -64,8 +63,6 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
 | 
				
			|||||||
    //std::cout << "CSHIFT: Cshift_comms" <<std::endl;
 | 
					    //std::cout << "CSHIFT: Cshift_comms" <<std::endl;
 | 
				
			||||||
    Cshift_comms(ret,rhs,dimension,shift);
 | 
					    Cshift_comms(ret,rhs,dimension,shift);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  t1=usecond();
 | 
					 | 
				
			||||||
  if(Cshift_verbose) std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl;
 | 
					 | 
				
			||||||
  return ret;
 | 
					  return ret;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -94,7 +91,7 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob
 | 
				
			|||||||
  sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
 | 
					  sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
 | 
				
			||||||
  sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
 | 
					  sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //  std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.Checkerboard()<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
 | 
					  //std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.checkerboard<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
 | 
				
			||||||
  if ( sshift[0] == sshift[1] ) {
 | 
					  if ( sshift[0] == sshift[1] ) {
 | 
				
			||||||
    //std::cout << "Single pass Cshift_comms" <<std::endl;
 | 
					    //std::cout << "Single pass Cshift_comms" <<std::endl;
 | 
				
			||||||
    Cshift_comms_simd(ret,rhs,dimension,shift,0x3);
 | 
					    Cshift_comms_simd(ret,rhs,dimension,shift,0x3);
 | 
				
			||||||
@@ -104,6 +101,8 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob
 | 
				
			|||||||
    Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
 | 
					    Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					#define ACCELERATOR_CSHIFT_NO_COPY
 | 
				
			||||||
 | 
					#ifdef ACCELERATOR_CSHIFT_NO_COPY
 | 
				
			||||||
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
					template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
@@ -123,29 +122,21 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
 | 
				
			|||||||
  assert(shift<fd);
 | 
					  assert(shift<fd);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
 | 
					  int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
 | 
				
			||||||
  static deviceVector<vobj> send_buf; send_buf.resize(buffer_size);
 | 
					  static cshiftVector<vobj> send_buf; send_buf.resize(buffer_size);
 | 
				
			||||||
  static deviceVector<vobj> recv_buf; recv_buf.resize(buffer_size);
 | 
					  static cshiftVector<vobj> recv_buf; recv_buf.resize(buffer_size);
 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
  static hostVector<vobj> hsend_buf; hsend_buf.resize(buffer_size);
 | 
					 | 
				
			||||||
  static hostVector<vobj> hrecv_buf; hrecv_buf.resize(buffer_size);
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
  int cb= (cbmask==0x2)? Odd : Even;
 | 
					  int cb= (cbmask==0x2)? Odd : Even;
 | 
				
			||||||
  int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
 | 
					  int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
 | 
				
			||||||
  RealD tcopy=0.0;
 | 
					
 | 
				
			||||||
  RealD tgather=0.0;
 | 
					 | 
				
			||||||
  RealD tscatter=0.0;
 | 
					 | 
				
			||||||
  RealD tcomms=0.0;
 | 
					 | 
				
			||||||
  uint64_t xbytes=0;
 | 
					 | 
				
			||||||
  for(int x=0;x<rd;x++){       
 | 
					  for(int x=0;x<rd;x++){       
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    int sx        =  (x+sshift)%rd;
 | 
					    int sx        =  (x+sshift)%rd;
 | 
				
			||||||
    int comm_proc = ((x+sshift)/rd)%pd;
 | 
					    int comm_proc = ((x+sshift)/rd)%pd;
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    if (comm_proc==0) {
 | 
					    if (comm_proc==0) {
 | 
				
			||||||
      tcopy-=usecond();
 | 
					
 | 
				
			||||||
      Copy_plane(ret,rhs,dimension,x,sx,cbmask); 
 | 
					      Copy_plane(ret,rhs,dimension,x,sx,cbmask); 
 | 
				
			||||||
      tcopy+=usecond();
 | 
					
 | 
				
			||||||
    } else {
 | 
					    } else {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      int words = buffer_size;
 | 
					      int words = buffer_size;
 | 
				
			||||||
@@ -153,52 +144,26 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
      int bytes = words * sizeof(vobj);
 | 
					      int bytes = words * sizeof(vobj);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      tgather-=usecond();
 | 
					 | 
				
			||||||
      Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask);
 | 
					      Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask);
 | 
				
			||||||
      tgather+=usecond();
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
      //      int rank           = grid->_processor;
 | 
					      //      int rank           = grid->_processor;
 | 
				
			||||||
      int recv_from_rank;
 | 
					      int recv_from_rank;
 | 
				
			||||||
      int xmit_to_rank;
 | 
					      int xmit_to_rank;
 | 
				
			||||||
 | 
					 | 
				
			||||||
      grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
 | 
					      grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      tcomms-=usecond();
 | 
					 | 
				
			||||||
      grid->Barrier();
 | 
					      grid->Barrier();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
      grid->SendToRecvFrom((void *)&send_buf[0],
 | 
					      grid->SendToRecvFrom((void *)&send_buf[0],
 | 
				
			||||||
			   xmit_to_rank,
 | 
								   xmit_to_rank,
 | 
				
			||||||
			   (void *)&recv_buf[0],
 | 
								   (void *)&recv_buf[0],
 | 
				
			||||||
			   recv_from_rank,
 | 
								   recv_from_rank,
 | 
				
			||||||
			   bytes);
 | 
								   bytes);
 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
      // bouncy bouncy
 | 
					 | 
				
			||||||
      acceleratorCopyFromDevice(&send_buf[0],&hsend_buf[0],bytes);
 | 
					 | 
				
			||||||
      grid->SendToRecvFrom((void *)&hsend_buf[0],
 | 
					 | 
				
			||||||
			   xmit_to_rank,
 | 
					 | 
				
			||||||
			   (void *)&hrecv_buf[0],
 | 
					 | 
				
			||||||
			   recv_from_rank,
 | 
					 | 
				
			||||||
			   bytes);
 | 
					 | 
				
			||||||
      acceleratorCopyToDevice(&hrecv_buf[0],&recv_buf[0],bytes);
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
      xbytes+=bytes;
 | 
					 | 
				
			||||||
      grid->Barrier();
 | 
					      grid->Barrier();
 | 
				
			||||||
      tcomms+=usecond();
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
      tscatter-=usecond();
 | 
					 | 
				
			||||||
      Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask);
 | 
					      Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask);
 | 
				
			||||||
      tscatter+=usecond();
 | 
					 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  if (Cshift_verbose){
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
					template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
				
			||||||
@@ -225,12 +190,6 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
				
			|||||||
  assert(shift>=0);
 | 
					  assert(shift>=0);
 | 
				
			||||||
  assert(shift<fd);
 | 
					  assert(shift<fd);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  RealD tcopy=0.0;
 | 
					 | 
				
			||||||
  RealD tgather=0.0;
 | 
					 | 
				
			||||||
  RealD tscatter=0.0;
 | 
					 | 
				
			||||||
  RealD tcomms=0.0;
 | 
					 | 
				
			||||||
  uint64_t xbytes=0;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  int permute_type=grid->PermuteType(dimension);
 | 
					  int permute_type=grid->PermuteType(dimension);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  ///////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////
 | 
				
			||||||
@@ -239,8 +198,8 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
				
			|||||||
  int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
 | 
					  int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
 | 
				
			||||||
  //  int words = sizeof(vobj)/sizeof(vector_type);
 | 
					  //  int words = sizeof(vobj)/sizeof(vector_type);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  static std::vector<deviceVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd);
 | 
					  static std::vector<cshiftVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd);
 | 
				
			||||||
  static std::vector<deviceVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd);
 | 
					  static std::vector<cshiftVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd);
 | 
				
			||||||
  scalar_object *  recv_buf_extract_mpi;
 | 
					  scalar_object *  recv_buf_extract_mpi;
 | 
				
			||||||
  scalar_object *  send_buf_extract_mpi;
 | 
					  scalar_object *  send_buf_extract_mpi;
 | 
				
			||||||
 
 | 
					 
 | 
				
			||||||
@@ -248,10 +207,6 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
				
			|||||||
    send_buf_extract[s].resize(buffer_size);
 | 
					    send_buf_extract[s].resize(buffer_size);
 | 
				
			||||||
    recv_buf_extract[s].resize(buffer_size);
 | 
					    recv_buf_extract[s].resize(buffer_size);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
  hostVector<scalar_object> hsend_buf; hsend_buf.resize(buffer_size);
 | 
					 | 
				
			||||||
  hostVector<scalar_object> hrecv_buf; hrecv_buf.resize(buffer_size);
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  int bytes = buffer_size*sizeof(scalar_object);
 | 
					  int bytes = buffer_size*sizeof(scalar_object);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -272,9 +227,7 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
				
			|||||||
      pointers[i] = &send_buf_extract[i][0];
 | 
					      pointers[i] = &send_buf_extract[i][0];
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    int sx   = (x+sshift)%rd;
 | 
					    int sx   = (x+sshift)%rd;
 | 
				
			||||||
    tgather-=usecond();
 | 
					 | 
				
			||||||
    Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
 | 
					    Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
 | 
				
			||||||
    tgather+=usecond();
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    for(int i=0;i<Nsimd;i++){
 | 
					    for(int i=0;i<Nsimd;i++){
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
@@ -299,31 +252,17 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
				
			|||||||
      if(nbr_proc){
 | 
					      if(nbr_proc){
 | 
				
			||||||
	grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank); 
 | 
						grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank); 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	tcomms-=usecond();
 | 
					 | 
				
			||||||
	grid->Barrier();
 | 
						grid->Barrier();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
 | 
						send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
 | 
				
			||||||
	recv_buf_extract_mpi = &recv_buf_extract[i][0];
 | 
						recv_buf_extract_mpi = &recv_buf_extract[i][0];
 | 
				
			||||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
	grid->SendToRecvFrom((void *)send_buf_extract_mpi,
 | 
						grid->SendToRecvFrom((void *)send_buf_extract_mpi,
 | 
				
			||||||
			     xmit_to_rank,
 | 
								     xmit_to_rank,
 | 
				
			||||||
			     (void *)recv_buf_extract_mpi,
 | 
								     (void *)recv_buf_extract_mpi,
 | 
				
			||||||
			     recv_from_rank,
 | 
								     recv_from_rank,
 | 
				
			||||||
			     bytes);
 | 
								     bytes);
 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
      // bouncy bouncy
 | 
					 | 
				
			||||||
	acceleratorCopyFromDevice((void *)send_buf_extract_mpi,(void *)&hsend_buf[0],bytes);
 | 
					 | 
				
			||||||
	grid->SendToRecvFrom((void *)&hsend_buf[0],
 | 
					 | 
				
			||||||
			     xmit_to_rank,
 | 
					 | 
				
			||||||
			     (void *)&hrecv_buf[0],
 | 
					 | 
				
			||||||
			     recv_from_rank,
 | 
					 | 
				
			||||||
			     bytes);
 | 
					 | 
				
			||||||
	acceleratorCopyToDevice((void *)&hrecv_buf[0],(void *)recv_buf_extract_mpi,bytes);
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
	xbytes+=bytes;
 | 
					 | 
				
			||||||
	grid->Barrier();
 | 
						grid->Barrier();
 | 
				
			||||||
	tcomms+=usecond();
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
	rpointers[i] = &recv_buf_extract[i][0];
 | 
						rpointers[i] = &recv_buf_extract[i][0];
 | 
				
			||||||
      } else { 
 | 
					      } else { 
 | 
				
			||||||
@@ -331,19 +270,198 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
				
			|||||||
      }
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    tscatter-=usecond();
 | 
					 | 
				
			||||||
    Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
 | 
					    Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
 | 
				
			||||||
    tscatter+=usecond();
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  if(Cshift_verbose){
 | 
					
 | 
				
			||||||
    std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
					}
 | 
				
			||||||
    std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
					#else 
 | 
				
			||||||
    std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
					template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
				
			||||||
    std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
					{
 | 
				
			||||||
    std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
 | 
					  typedef typename vobj::scalar_type scalar_type;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  GridBase *grid=rhs.Grid();
 | 
				
			||||||
 | 
					  Lattice<vobj> temp(rhs.Grid());
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  int fd              = rhs.Grid()->_fdimensions[dimension];
 | 
				
			||||||
 | 
					  int rd              = rhs.Grid()->_rdimensions[dimension];
 | 
				
			||||||
 | 
					  int pd              = rhs.Grid()->_processors[dimension];
 | 
				
			||||||
 | 
					  int simd_layout     = rhs.Grid()->_simd_layout[dimension];
 | 
				
			||||||
 | 
					  int comm_dim        = rhs.Grid()->_processors[dimension] >1 ;
 | 
				
			||||||
 | 
					  assert(simd_layout==1);
 | 
				
			||||||
 | 
					  assert(comm_dim==1);
 | 
				
			||||||
 | 
					  assert(shift>=0);
 | 
				
			||||||
 | 
					  assert(shift<fd);
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 | 
					  int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
 | 
				
			||||||
 | 
					  static cshiftVector<vobj> send_buf_v; send_buf_v.resize(buffer_size);
 | 
				
			||||||
 | 
					  static cshiftVector<vobj> recv_buf_v; recv_buf_v.resize(buffer_size);
 | 
				
			||||||
 | 
					  vobj *send_buf;
 | 
				
			||||||
 | 
					  vobj *recv_buf;
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    grid->ShmBufferFreeAll();
 | 
				
			||||||
 | 
					    size_t bytes = buffer_size*sizeof(vobj);
 | 
				
			||||||
 | 
					    send_buf=(vobj *)grid->ShmBufferMalloc(bytes);
 | 
				
			||||||
 | 
					    recv_buf=(vobj *)grid->ShmBufferMalloc(bytes);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					  int cb= (cbmask==0x2)? Odd : Even;
 | 
				
			||||||
 | 
					  int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  for(int x=0;x<rd;x++){       
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    int sx        =  (x+sshift)%rd;
 | 
				
			||||||
 | 
					    int comm_proc = ((x+sshift)/rd)%pd;
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    if (comm_proc==0) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      Copy_plane(ret,rhs,dimension,x,sx,cbmask); 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    } else {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      int words = buffer_size;
 | 
				
			||||||
 | 
					      if (cbmask != 0x3) words=words>>1;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      int bytes = words * sizeof(vobj);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      //      int rank           = grid->_processor;
 | 
				
			||||||
 | 
					      int recv_from_rank;
 | 
				
			||||||
 | 
					      int xmit_to_rank;
 | 
				
			||||||
 | 
					      grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      grid->Barrier();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes);
 | 
				
			||||||
 | 
					      grid->SendToRecvFrom((void *)&send_buf[0],
 | 
				
			||||||
 | 
								   xmit_to_rank,
 | 
				
			||||||
 | 
								   (void *)&recv_buf[0],
 | 
				
			||||||
 | 
								   recv_from_rank,
 | 
				
			||||||
 | 
								   bytes);
 | 
				
			||||||
 | 
					      acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      grid->Barrier();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask);
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  GridBase *grid=rhs.Grid();
 | 
				
			||||||
 | 
					  const int Nsimd = grid->Nsimd();
 | 
				
			||||||
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
 | 
					  typedef typename vobj::scalar_object scalar_object;
 | 
				
			||||||
 | 
					  typedef typename vobj::scalar_type scalar_type;
 | 
				
			||||||
 | 
					   
 | 
				
			||||||
 | 
					  int fd = grid->_fdimensions[dimension];
 | 
				
			||||||
 | 
					  int rd = grid->_rdimensions[dimension];
 | 
				
			||||||
 | 
					  int ld = grid->_ldimensions[dimension];
 | 
				
			||||||
 | 
					  int pd = grid->_processors[dimension];
 | 
				
			||||||
 | 
					  int simd_layout     = grid->_simd_layout[dimension];
 | 
				
			||||||
 | 
					  int comm_dim        = grid->_processors[dimension] >1 ;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  //std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
 | 
				
			||||||
 | 
					  //    << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout 
 | 
				
			||||||
 | 
					  //    << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  assert(comm_dim==1);
 | 
				
			||||||
 | 
					  assert(simd_layout==2);
 | 
				
			||||||
 | 
					  assert(shift>=0);
 | 
				
			||||||
 | 
					  assert(shift<fd);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  int permute_type=grid->PermuteType(dimension);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  ///////////////////////////////////////////////
 | 
				
			||||||
 | 
					  // Simd direction uses an extract/merge pair
 | 
				
			||||||
 | 
					  ///////////////////////////////////////////////
 | 
				
			||||||
 | 
					  int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
 | 
				
			||||||
 | 
					  //  int words = sizeof(vobj)/sizeof(vector_type);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  static std::vector<cshiftVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd);
 | 
				
			||||||
 | 
					  static std::vector<cshiftVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd);
 | 
				
			||||||
 | 
					  scalar_object *  recv_buf_extract_mpi;
 | 
				
			||||||
 | 
					  scalar_object *  send_buf_extract_mpi;
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    size_t bytes = sizeof(scalar_object)*buffer_size;
 | 
				
			||||||
 | 
					    grid->ShmBufferFreeAll();
 | 
				
			||||||
 | 
					    send_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
 | 
				
			||||||
 | 
					    recv_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  for(int s=0;s<Nsimd;s++){
 | 
				
			||||||
 | 
					    send_buf_extract[s].resize(buffer_size);
 | 
				
			||||||
 | 
					    recv_buf_extract[s].resize(buffer_size);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  int bytes = buffer_size*sizeof(scalar_object);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  ExtractPointerArray<scalar_object>  pointers(Nsimd); // 
 | 
				
			||||||
 | 
					  ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  ///////////////////////////////////////////
 | 
				
			||||||
 | 
					  // Work out what to send where
 | 
				
			||||||
 | 
					  ///////////////////////////////////////////
 | 
				
			||||||
 | 
					  int cb    = (cbmask==0x2)? Odd : Even;
 | 
				
			||||||
 | 
					  int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  // loop over outer coord planes orthog to dim
 | 
				
			||||||
 | 
					  for(int x=0;x<rd;x++){       
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // FIXME call local permute copy if none are offnode.
 | 
				
			||||||
 | 
					    for(int i=0;i<Nsimd;i++){       
 | 
				
			||||||
 | 
					      pointers[i] = &send_buf_extract[i][0];
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    int sx   = (x+sshift)%rd;
 | 
				
			||||||
 | 
					    Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for(int i=0;i<Nsimd;i++){
 | 
				
			||||||
 | 
					      
 | 
				
			||||||
 | 
					      int inner_bit = (Nsimd>>(permute_type+1));
 | 
				
			||||||
 | 
					      int ic= (i&inner_bit)? 1:0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      int my_coor          = rd*ic + x;
 | 
				
			||||||
 | 
					      int nbr_coor         = my_coor+sshift;
 | 
				
			||||||
 | 
					      int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      int nbr_ic   = (nbr_coor%ld)/rd;    // inner coord of peer
 | 
				
			||||||
 | 
					      int nbr_ox   = (nbr_coor%rd);       // outer coord of peer
 | 
				
			||||||
 | 
					      int nbr_lane = (i&(~inner_bit));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      int recv_from_rank;
 | 
				
			||||||
 | 
					      int xmit_to_rank;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      if (nbr_ic) nbr_lane|=inner_bit;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      assert (sx == nbr_ox);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      if(nbr_proc){
 | 
				
			||||||
 | 
						grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank); 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						grid->Barrier();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes);
 | 
				
			||||||
 | 
						grid->SendToRecvFrom((void *)send_buf_extract_mpi,
 | 
				
			||||||
 | 
								     xmit_to_rank,
 | 
				
			||||||
 | 
								     (void *)recv_buf_extract_mpi,
 | 
				
			||||||
 | 
								     recv_from_rank,
 | 
				
			||||||
 | 
								     bytes);
 | 
				
			||||||
 | 
						acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						grid->Barrier();
 | 
				
			||||||
 | 
						rpointers[i] = &recv_buf_extract[i][0];
 | 
				
			||||||
 | 
					      } else { 
 | 
				
			||||||
 | 
						rpointers[i] = &send_buf_extract[nbr_lane][0];
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
NAMESPACE_END(Grid); 
 | 
					NAMESPACE_END(Grid); 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,5 +1,4 @@
 | 
				
			|||||||
#include <Grid/GridCore.h>       
 | 
					#include <Grid/GridCore.h>       
 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					NAMESPACE_BEGIN(Grid);
 | 
				
			||||||
std::vector<std::pair<int,int> > Cshift_table; 
 | 
					Vector<std::pair<int,int> > Cshift_table; 
 | 
				
			||||||
deviceVector<std::pair<int,int> > Cshift_table_device; 
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -35,7 +35,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
#include <Grid/lattice/Lattice_transpose.h>
 | 
					#include <Grid/lattice/Lattice_transpose.h>
 | 
				
			||||||
#include <Grid/lattice/Lattice_local.h>
 | 
					#include <Grid/lattice/Lattice_local.h>
 | 
				
			||||||
#include <Grid/lattice/Lattice_reduction.h>
 | 
					#include <Grid/lattice/Lattice_reduction.h>
 | 
				
			||||||
#include <Grid/lattice/Lattice_crc.h>
 | 
					 | 
				
			||||||
#include <Grid/lattice/Lattice_peekpoke.h>
 | 
					#include <Grid/lattice/Lattice_peekpoke.h>
 | 
				
			||||||
#include <Grid/lattice/Lattice_reality.h>
 | 
					#include <Grid/lattice/Lattice_reality.h>
 | 
				
			||||||
#include <Grid/lattice/Lattice_real_imag.h>
 | 
					#include <Grid/lattice/Lattice_real_imag.h>
 | 
				
			||||||
@@ -47,4 +46,4 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
#include <Grid/lattice/Lattice_unary.h>
 | 
					#include <Grid/lattice/Lattice_unary.h>
 | 
				
			||||||
#include <Grid/lattice/Lattice_transfer.h>
 | 
					#include <Grid/lattice/Lattice_transfer.h>
 | 
				
			||||||
#include <Grid/lattice/Lattice_basis.h>
 | 
					#include <Grid/lattice/Lattice_basis.h>
 | 
				
			||||||
#include <Grid/lattice/PaddedCell.h>
 | 
					#include <Grid/lattice/Lattice_crc.h>
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -345,9 +345,7 @@ GridUnopClass(UnaryNot, Not(a));
 | 
				
			|||||||
GridUnopClass(UnaryTrace, trace(a));
 | 
					GridUnopClass(UnaryTrace, trace(a));
 | 
				
			||||||
GridUnopClass(UnaryTranspose, transpose(a));
 | 
					GridUnopClass(UnaryTranspose, transpose(a));
 | 
				
			||||||
GridUnopClass(UnaryTa, Ta(a));
 | 
					GridUnopClass(UnaryTa, Ta(a));
 | 
				
			||||||
GridUnopClass(UnarySpTa, SpTa(a));
 | 
					 | 
				
			||||||
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
 | 
					GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
 | 
				
			||||||
GridUnopClass(UnaryProjectOnSpGroup, ProjectOnSpGroup(a));
 | 
					 | 
				
			||||||
GridUnopClass(UnaryTimesI, timesI(a));
 | 
					GridUnopClass(UnaryTimesI, timesI(a));
 | 
				
			||||||
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
 | 
					GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
 | 
				
			||||||
GridUnopClass(UnaryAbs, abs(a));
 | 
					GridUnopClass(UnaryAbs, abs(a));
 | 
				
			||||||
@@ -458,9 +456,7 @@ GRID_DEF_UNOP(operator!, UnaryNot);
 | 
				
			|||||||
GRID_DEF_UNOP(trace, UnaryTrace);
 | 
					GRID_DEF_UNOP(trace, UnaryTrace);
 | 
				
			||||||
GRID_DEF_UNOP(transpose, UnaryTranspose);
 | 
					GRID_DEF_UNOP(transpose, UnaryTranspose);
 | 
				
			||||||
GRID_DEF_UNOP(Ta, UnaryTa);
 | 
					GRID_DEF_UNOP(Ta, UnaryTa);
 | 
				
			||||||
GRID_DEF_UNOP(SpTa, UnarySpTa);
 | 
					 | 
				
			||||||
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
 | 
					GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
 | 
				
			||||||
GRID_DEF_UNOP(ProjectOnSpGroup, UnaryProjectOnSpGroup);
 | 
					 | 
				
			||||||
GRID_DEF_UNOP(timesI, UnaryTimesI);
 | 
					GRID_DEF_UNOP(timesI, UnaryTimesI);
 | 
				
			||||||
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
 | 
					GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
 | 
				
			||||||
GRID_DEF_UNOP(abs, UnaryAbs);  // abs overloaded in cmath C++98; DON'T do the
 | 
					GRID_DEF_UNOP(abs, UnaryAbs);  // abs overloaded in cmath C++98; DON'T do the
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -257,68 +257,18 @@ void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice
 | 
				
			|||||||
  });
 | 
					  });
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#define FAST_AXPY_NORM
 | 
					 | 
				
			||||||
template<class sobj,class vobj> inline
 | 
					template<class sobj,class vobj> inline
 | 
				
			||||||
RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
 | 
					RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GRID_TRACE("axpy_norm");
 | 
					  GRID_TRACE("axpy_norm");
 | 
				
			||||||
#ifdef FAST_AXPY_NORM
 | 
					 | 
				
			||||||
    return axpy_norm_fast(ret,a,x,y);
 | 
					    return axpy_norm_fast(ret,a,x,y);
 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
  ret = a*x+y;
 | 
					 | 
				
			||||||
  RealD nn=norm2(ret);
 | 
					 | 
				
			||||||
  return nn;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
template<class sobj,class vobj> inline
 | 
					template<class sobj,class vobj> inline
 | 
				
			||||||
RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
 | 
					RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GRID_TRACE("axpby_norm");
 | 
					  GRID_TRACE("axpby_norm");
 | 
				
			||||||
#ifdef FAST_AXPY_NORM
 | 
					 | 
				
			||||||
    return axpby_norm_fast(ret,a,b,x,y);
 | 
					    return axpby_norm_fast(ret,a,b,x,y);
 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
  ret = a*x+b*y;
 | 
					 | 
				
			||||||
  RealD nn=norm2(ret);
 | 
					 | 
				
			||||||
  return nn;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
/// Trace product
 | 
					 | 
				
			||||||
template<class obj> auto traceProduct(const Lattice<obj> &rhs_1,const Lattice<obj> &rhs_2)
 | 
					 | 
				
			||||||
  -> Lattice<decltype(trace(obj()))>
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  typedef decltype(trace(obj())) robj;
 | 
					 | 
				
			||||||
  Lattice<robj> ret_i(rhs_1.Grid());
 | 
					 | 
				
			||||||
  autoView( rhs1 , rhs_1, AcceleratorRead);
 | 
					 | 
				
			||||||
  autoView( rhs2 , rhs_2, AcceleratorRead);
 | 
					 | 
				
			||||||
  autoView( ret , ret_i, AcceleratorWrite);
 | 
					 | 
				
			||||||
  ret.Checkerboard() = rhs_1.Checkerboard();
 | 
					 | 
				
			||||||
  accelerator_for(ss,rhs1.size(),obj::Nsimd(),{
 | 
					 | 
				
			||||||
      coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2(ss)));
 | 
					 | 
				
			||||||
  });
 | 
					 | 
				
			||||||
  return ret_i;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class obj1,class obj2> auto traceProduct(const Lattice<obj1> &rhs_1,const obj2 &rhs2)
 | 
					 | 
				
			||||||
  -> Lattice<decltype(trace(obj1()))>
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  typedef decltype(trace(obj1())) robj;
 | 
					 | 
				
			||||||
  Lattice<robj> ret_i(rhs_1.Grid());
 | 
					 | 
				
			||||||
  autoView( rhs1 , rhs_1, AcceleratorRead);
 | 
					 | 
				
			||||||
  autoView( ret , ret_i, AcceleratorWrite);
 | 
					 | 
				
			||||||
  ret.Checkerboard() = rhs_1.Checkerboard();
 | 
					 | 
				
			||||||
  accelerator_for(ss,rhs1.size(),obj1::Nsimd(),{
 | 
					 | 
				
			||||||
      coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2));
 | 
					 | 
				
			||||||
  });
 | 
					 | 
				
			||||||
  return ret_i;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
template<class obj1,class obj2> auto traceProduct(const obj2 &rhs_2,const Lattice<obj1> &rhs_1)
 | 
					 | 
				
			||||||
  -> Lattice<decltype(trace(obj1()))>
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  return traceProduct(rhs_1,rhs_2);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -234,23 +234,10 @@ public:
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){
 | 
					  template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){
 | 
				
			||||||
    vobj vtmp;
 | 
					 | 
				
			||||||
    vtmp = r;
 | 
					 | 
				
			||||||
#if 0
 | 
					 | 
				
			||||||
    deviceVector<vobj> vvtmp(1);
 | 
					 | 
				
			||||||
    acceleratorPut(vvtmp[0],vtmp);
 | 
					 | 
				
			||||||
    vobj *vvtmp_p = & vvtmp[0];
 | 
					 | 
				
			||||||
    auto me  = View(AcceleratorWrite);
 | 
					 | 
				
			||||||
    accelerator_for(ss,me.size(),vobj::Nsimd(),{
 | 
					 | 
				
			||||||
	auto stmp=coalescedRead(*vvtmp_p);
 | 
					 | 
				
			||||||
	coalescedWrite(me[ss],stmp);
 | 
					 | 
				
			||||||
    });
 | 
					 | 
				
			||||||
#else    
 | 
					 | 
				
			||||||
    auto me  = View(CpuWrite);
 | 
					    auto me  = View(CpuWrite);
 | 
				
			||||||
    thread_for(ss,me.size(),{
 | 
					    thread_for(ss,me.size(),{
 | 
				
			||||||
	me[ss]= r;
 | 
						me[ss]= r;
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
#endif    
 | 
					 | 
				
			||||||
    me.ViewClose();
 | 
					    me.ViewClose();
 | 
				
			||||||
    return *this;
 | 
					    return *this;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -373,7 +360,7 @@ public:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
 | 
					template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					  typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
  for(int64_t g=0;g<o.Grid()->_gsites;g++){
 | 
					  for(int g=0;g<o.Grid()->_gsites;g++){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    Coordinate gcoor;
 | 
					    Coordinate gcoor;
 | 
				
			||||||
    o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);
 | 
					    o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -53,19 +53,36 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
 | 
				
			|||||||
  typedef decltype(basis[0]) Field;
 | 
					  typedef decltype(basis[0]) Field;
 | 
				
			||||||
  typedef decltype(basis[0].View(AcceleratorRead)) View;
 | 
					  typedef decltype(basis[0].View(AcceleratorRead)) View;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  hostVector<View>  h_basis_v(basis.size());
 | 
					  Vector<View> basis_v; basis_v.reserve(basis.size());
 | 
				
			||||||
  deviceVector<View> d_basis_v(basis.size());
 | 
					  typedef typename std::remove_reference<decltype(basis_v[0][0])>::type vobj;
 | 
				
			||||||
  typedef typename std::remove_reference<decltype(h_basis_v[0][0])>::type vobj;
 | 
					 | 
				
			||||||
  typedef typename std::remove_reference<decltype(Qt(0,0))>::type Coeff_t;
 | 
					  typedef typename std::remove_reference<decltype(Qt(0,0))>::type Coeff_t;
 | 
				
			||||||
 | 
					 | 
				
			||||||
  GridBase* grid = basis[0].Grid();
 | 
					  GridBase* grid = basis[0].Grid();
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
  for(int k=0;k<basis.size();k++){
 | 
					  for(int k=0;k<basis.size();k++){
 | 
				
			||||||
    h_basis_v[k] = basis[k].View(AcceleratorWrite);
 | 
					    basis_v.push_back(basis[k].View(AcceleratorWrite));
 | 
				
			||||||
    acceleratorPut(d_basis_v[k],h_basis_v[k]);
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  View *basis_vp = &d_basis_v[0];
 | 
					#if ( (!defined(GRID_CUDA)) )
 | 
				
			||||||
 | 
					  int max_threads = thread_max();
 | 
				
			||||||
 | 
					  Vector < vobj > Bt(Nm * max_threads);
 | 
				
			||||||
 | 
					  thread_region
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      vobj* B = &Bt[Nm * thread_num()];
 | 
				
			||||||
 | 
					      thread_for_in_region(ss, grid->oSites(),{
 | 
				
			||||||
 | 
						  for(int j=j0; j<j1; ++j) B[j]=0.;
 | 
				
			||||||
 | 
					      
 | 
				
			||||||
 | 
						  for(int j=j0; j<j1; ++j){
 | 
				
			||||||
 | 
						    for(int k=k0; k<k1; ++k){
 | 
				
			||||||
 | 
						      B[j] +=Qt(j,k) * basis_v[k][ss];
 | 
				
			||||||
 | 
						    }
 | 
				
			||||||
 | 
						  }
 | 
				
			||||||
 | 
						  for(int j=j0; j<j1; ++j){
 | 
				
			||||||
 | 
						    basis_v[j][ss] = B[j];
 | 
				
			||||||
 | 
						  }
 | 
				
			||||||
 | 
						});
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
 | 
					  View *basis_vp = &basis_v[0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  int nrot = j1-j0;
 | 
					  int nrot = j1-j0;
 | 
				
			||||||
  if (!nrot) // edge case not handled gracefully by Cuda
 | 
					  if (!nrot) // edge case not handled gracefully by Cuda
 | 
				
			||||||
@@ -74,19 +91,17 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
 | 
				
			|||||||
  uint64_t oSites   =grid->oSites();
 | 
					  uint64_t oSites   =grid->oSites();
 | 
				
			||||||
  uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead
 | 
					  uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  deviceVector <vobj> Bt(siteBlock * nrot); 
 | 
					  Vector <vobj> Bt(siteBlock * nrot); 
 | 
				
			||||||
  auto Bp=&Bt[0];
 | 
					  auto Bp=&Bt[0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // GPU readable copy of matrix
 | 
					  // GPU readable copy of matrix
 | 
				
			||||||
  hostVector<Coeff_t> h_Qt_jv(Nm*Nm);
 | 
					  Vector<Coeff_t> Qt_jv(Nm*Nm);
 | 
				
			||||||
  deviceVector<Coeff_t> Qt_jv(Nm*Nm);
 | 
					 | 
				
			||||||
  Coeff_t *Qt_p = & Qt_jv[0];
 | 
					  Coeff_t *Qt_p = & Qt_jv[0];
 | 
				
			||||||
  thread_for(i,Nm*Nm,{
 | 
					  thread_for(i,Nm*Nm,{
 | 
				
			||||||
      int j = i/Nm;
 | 
					      int j = i/Nm;
 | 
				
			||||||
      int k = i%Nm;
 | 
					      int k = i%Nm;
 | 
				
			||||||
      h_Qt_jv[i]=Qt(j,k);
 | 
					      Qt_p[i]=Qt(j,k);
 | 
				
			||||||
  });
 | 
					  });
 | 
				
			||||||
  acceleratorCopyToDevice(&h_Qt_jv[0],Qt_p,Nm*Nm*sizeof(Coeff_t));
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Block the loop to keep storage footprint down
 | 
					  // Block the loop to keep storage footprint down
 | 
				
			||||||
  for(uint64_t s=0;s<oSites;s+=siteBlock){
 | 
					  for(uint64_t s=0;s<oSites;s+=siteBlock){
 | 
				
			||||||
@@ -122,8 +137,9 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
 | 
				
			|||||||
	coalescedWrite(basis_vp[jj][sss],coalescedRead(Bp[ss*nrot+j]));
 | 
						coalescedWrite(basis_vp[jj][sss],coalescedRead(Bp[ss*nrot+j]));
 | 
				
			||||||
      });
 | 
					      });
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose();
 | 
					  for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
// Extract a single rotated vector
 | 
					// Extract a single rotated vector
 | 
				
			||||||
@@ -136,19 +152,16 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  result.Checkerboard() = basis[0].Checkerboard();
 | 
					  result.Checkerboard() = basis[0].Checkerboard();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  hostVector<View>  h_basis_v(basis.size());
 | 
					  Vector<View> basis_v; basis_v.reserve(basis.size());
 | 
				
			||||||
  deviceVector<View> d_basis_v(basis.size());
 | 
					 | 
				
			||||||
  for(int k=0;k<basis.size();k++){
 | 
					  for(int k=0;k<basis.size();k++){
 | 
				
			||||||
    h_basis_v[k]=basis[k].View(AcceleratorRead);
 | 
					    basis_v.push_back(basis[k].View(AcceleratorRead));
 | 
				
			||||||
    acceleratorPut(d_basis_v[k],h_basis_v[k]);
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					 | 
				
			||||||
  vobj zz=Zero();
 | 
					  vobj zz=Zero();
 | 
				
			||||||
  deviceVector<double> Qt_jv(Nm);
 | 
					  Vector<double> Qt_jv(Nm);
 | 
				
			||||||
  double * Qt_j = & Qt_jv[0];
 | 
					  double * Qt_j = & Qt_jv[0];
 | 
				
			||||||
  for(int k=0;k<Nm;++k) acceleratorPut(Qt_j[k],Qt(j,k));
 | 
					  for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  auto basis_vp=& d_basis_v[0];
 | 
					  auto basis_vp=& basis_v[0];
 | 
				
			||||||
  autoView(result_v,result,AcceleratorWrite);
 | 
					  autoView(result_v,result,AcceleratorWrite);
 | 
				
			||||||
  accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
 | 
					  accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
 | 
				
			||||||
    vobj zzz=Zero();
 | 
					    vobj zzz=Zero();
 | 
				
			||||||
@@ -158,7 +171,7 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
    coalescedWrite(result_v[ss], B);
 | 
					    coalescedWrite(result_v[ss], B);
 | 
				
			||||||
  });
 | 
					  });
 | 
				
			||||||
  for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose();
 | 
					  for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class Field>
 | 
					template<class Field>
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					NAMESPACE_BEGIN(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj> void DumpSliceNorm(std::string s,const Lattice<vobj> &f,int mu=-1)
 | 
					template<class vobj> void DumpSliceNorm(std::string s,Lattice<vobj> &f,int mu=-1)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  auto ff = localNorm2(f);
 | 
					  auto ff = localNorm2(f);
 | 
				
			||||||
  if ( mu==-1 ) mu = f.Grid()->Nd()-1;
 | 
					  if ( mu==-1 ) mu = f.Grid()->Nd()-1;
 | 
				
			||||||
@@ -42,13 +42,13 @@ template<class vobj> void DumpSliceNorm(std::string s,const Lattice<vobj> &f,int
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj> uint32_t crc(const Lattice<vobj> & buf)
 | 
					template<class vobj> uint32_t crc(Lattice<vobj> & buf)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  autoView( buf_v , buf, CpuRead);
 | 
					  autoView( buf_v , buf, CpuRead);
 | 
				
			||||||
  return ::crc32(0L,(unsigned char *)&buf_v[0],(size_t)sizeof(vobj)*buf.oSites());
 | 
					  return ::crc32(0L,(unsigned char *)&buf_v[0],(size_t)sizeof(vobj)*buf.oSites());
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#define CRC(U) std::cerr << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
 | 
					#define CRC(U) std::cout << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -165,7 +165,7 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  int Nsimd = grid->Nsimd();
 | 
					  int Nsimd = grid->Nsimd();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //  assert( l.Checkerboard()== grid->CheckerBoard(site));
 | 
					  assert( l.Checkerboard()== grid->CheckerBoard(site));
 | 
				
			||||||
  assert( sizeof(sobj)*Nsimd == sizeof(vobj));
 | 
					  assert( sizeof(sobj)*Nsimd == sizeof(vobj));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
					  static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
				
			||||||
@@ -179,7 +179,7 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
 | 
				
			|||||||
  for(int w=0;w<words;w++){
 | 
					  for(int w=0;w<words;w++){
 | 
				
			||||||
    pt[w] = getlane(vp[w],idx);
 | 
					    pt[w] = getlane(vp[w],idx);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  //  std::cout << "peekLocalSite "<<site<<" "<<odx<<","<<idx<<" "<<s<<std::endl;
 | 
					      
 | 
				
			||||||
  return;
 | 
					  return;
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
template<class vobj,class sobj>
 | 
					template<class vobj,class sobj>
 | 
				
			||||||
@@ -202,7 +202,7 @@ inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  int Nsimd = grid->Nsimd();
 | 
					  int Nsimd = grid->Nsimd();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //  assert( l.Checkerboard()== grid->CheckerBoard(site));
 | 
					  assert( l.Checkerboard()== grid->CheckerBoard(site));
 | 
				
			||||||
  assert( sizeof(sobj)*Nsimd == sizeof(vobj));
 | 
					  assert( sizeof(sobj)*Nsimd == sizeof(vobj));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
					  static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -31,7 +31,6 @@ Author: Christoph Lehner <christoph@lhnr.de>
 | 
				
			|||||||
#if defined(GRID_SYCL)
 | 
					#if defined(GRID_SYCL)
 | 
				
			||||||
#include <Grid/lattice/Lattice_reduction_sycl.h>
 | 
					#include <Grid/lattice/Lattice_reduction_sycl.h>
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
#include <Grid/lattice/Lattice_slicesum_core.h>
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					NAMESPACE_BEGIN(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -46,7 +45,7 @@ inline typename vobj::scalar_object sum_cpu(const vobj *arg, Integer osites)
 | 
				
			|||||||
  //  const int Nsimd = vobj::Nsimd();
 | 
					  //  const int Nsimd = vobj::Nsimd();
 | 
				
			||||||
  const int nthread = GridThread::GetThreads();
 | 
					  const int nthread = GridThread::GetThreads();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  std::vector<sobj> sumarray(nthread);
 | 
					  Vector<sobj> sumarray(nthread);
 | 
				
			||||||
  for(int i=0;i<nthread;i++){
 | 
					  for(int i=0;i<nthread;i++){
 | 
				
			||||||
    sumarray[i]=Zero();
 | 
					    sumarray[i]=Zero();
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -75,7 +74,7 @@ inline typename vobj::scalar_objectD sumD_cpu(const vobj *arg, Integer osites)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  const int nthread = GridThread::GetThreads();
 | 
					  const int nthread = GridThread::GetThreads();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  std::vector<sobj> sumarray(nthread);
 | 
					  Vector<sobj> sumarray(nthread);
 | 
				
			||||||
  for(int i=0;i<nthread;i++){
 | 
					  for(int i=0;i<nthread;i++){
 | 
				
			||||||
    sumarray[i]=Zero();
 | 
					    sumarray[i]=Zero();
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -204,27 +203,6 @@ template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){
 | 
				
			|||||||
  return real(nrm); 
 | 
					  return real(nrm); 
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class Op,class T1>
 | 
					 | 
				
			||||||
inline auto norm2(const LatticeUnaryExpression<Op,T1> & expr)  ->RealD
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  return norm2(closure(expr));
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class Op,class T1,class T2>
 | 
					 | 
				
			||||||
inline auto norm2(const LatticeBinaryExpression<Op,T1,T2> & expr)      ->RealD
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  return norm2(closure(expr));
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class Op,class T1,class T2,class T3>
 | 
					 | 
				
			||||||
inline auto norm2(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)      ->RealD
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  return norm2(closure(expr));
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
//The global maximum of the site norm2
 | 
					//The global maximum of the site norm2
 | 
				
			||||||
template<class vobj> inline RealD maxLocalNorm2(const Lattice<vobj> &arg)
 | 
					template<class vobj> inline RealD maxLocalNorm2(const Lattice<vobj> &arg)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
@@ -264,8 +242,24 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
 | 
				
			|||||||
  const uint64_t sites = grid->oSites();
 | 
					  const uint64_t sites = grid->oSites();
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  // Might make all code paths go this way.
 | 
					  // Might make all code paths go this way.
 | 
				
			||||||
 | 
					#if 0
 | 
				
			||||||
 | 
					  typedef decltype(innerProductD(vobj(),vobj())) inner_t;
 | 
				
			||||||
 | 
					  Vector<inner_t> inner_tmp(sites);
 | 
				
			||||||
 | 
					  auto inner_tmp_v = &inner_tmp[0];
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    autoView( left_v , left, AcceleratorRead);
 | 
				
			||||||
 | 
					    autoView( right_v,right, AcceleratorRead);
 | 
				
			||||||
 | 
					    // This code could read coalesce
 | 
				
			||||||
 | 
					    // GPU - SIMT lane compliance...
 | 
				
			||||||
 | 
					    accelerator_for( ss, sites, nsimd,{
 | 
				
			||||||
 | 
						auto x_l = left_v(ss);
 | 
				
			||||||
 | 
						auto y_l = right_v(ss);
 | 
				
			||||||
 | 
						coalescedWrite(inner_tmp_v[ss],innerProductD(x_l,y_l));
 | 
				
			||||||
 | 
					    });
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
  typedef decltype(innerProduct(vobj(),vobj())) inner_t;
 | 
					  typedef decltype(innerProduct(vobj(),vobj())) inner_t;
 | 
				
			||||||
  deviceVector<inner_t> inner_tmp(sites);
 | 
					  Vector<inner_t> inner_tmp(sites);
 | 
				
			||||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
					  auto inner_tmp_v = &inner_tmp[0];
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
@@ -279,57 +273,18 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
 | 
				
			|||||||
	coalescedWrite(inner_tmp_v[ss],innerProduct(x_l,y_l));
 | 
						coalescedWrite(inner_tmp_v[ss],innerProduct(x_l,y_l));
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
  // This is in single precision and fails some tests
 | 
					  // This is in single precision and fails some tests
 | 
				
			||||||
  auto anrm = sumD(inner_tmp_v,sites);  
 | 
					  auto anrm = sumD(inner_tmp_v,sites);  
 | 
				
			||||||
  nrm = anrm;
 | 
					  nrm = anrm;
 | 
				
			||||||
  return nrm;
 | 
					  return nrm;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) {
 | 
					inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) {
 | 
				
			||||||
  GridBase *grid = left.Grid();
 | 
					  GridBase *grid = left.Grid();
 | 
				
			||||||
 | 
					 | 
				
			||||||
  bool ok;
 | 
					 | 
				
			||||||
#ifdef GRID_SYCL
 | 
					 | 
				
			||||||
  uint64_t csum=0;
 | 
					 | 
				
			||||||
  uint64_t csum2=0;
 | 
					 | 
				
			||||||
  if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    // Hack
 | 
					 | 
				
			||||||
    // Fast integer xor checksum. Can also be used in comms now.
 | 
					 | 
				
			||||||
    autoView(l_v,left,AcceleratorRead);
 | 
					 | 
				
			||||||
    Integer words = left.Grid()->oSites()*sizeof(vobj)/sizeof(uint64_t);
 | 
					 | 
				
			||||||
    uint64_t *base= (uint64_t *)&l_v[0];
 | 
					 | 
				
			||||||
    csum=svm_xor(base,words);
 | 
					 | 
				
			||||||
    ok = FlightRecorder::CsumLog(csum);
 | 
					 | 
				
			||||||
    if ( !ok ) {
 | 
					 | 
				
			||||||
      csum2=svm_xor(base,words);
 | 
					 | 
				
			||||||
      std::cerr<< " Bad CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
 | 
					 | 
				
			||||||
    } else {
 | 
					 | 
				
			||||||
      //      csum2=svm_xor(base,words);
 | 
					 | 
				
			||||||
      //      std::cerr<< " ok CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    assert(ok);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  FlightRecorder::StepLog("rank inner product");
 | 
					 | 
				
			||||||
  ComplexD nrm = rankInnerProduct(left,right);
 | 
					  ComplexD nrm = rankInnerProduct(left,right);
 | 
				
			||||||
  //  ComplexD nrmck=nrm;
 | 
					 | 
				
			||||||
  RealD local = real(nrm);
 | 
					 | 
				
			||||||
  ok = FlightRecorder::NormLog(real(nrm));
 | 
					 | 
				
			||||||
  if ( !ok ) {
 | 
					 | 
				
			||||||
    ComplexD nrm2 = rankInnerProduct(left,right);
 | 
					 | 
				
			||||||
    RealD local2 = real(nrm2);
 | 
					 | 
				
			||||||
    std::cerr<< " Bad NORM " << local << " recomputed as "<<local2<<std::endl;
 | 
					 | 
				
			||||||
    assert(ok);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  FlightRecorder::StepLog("Start global sum");
 | 
					 | 
				
			||||||
  //  grid->GlobalSumP2P(nrm);
 | 
					 | 
				
			||||||
  grid->GlobalSum(nrm);
 | 
					  grid->GlobalSum(nrm);
 | 
				
			||||||
  FlightRecorder::StepLog("Finished global sum");
 | 
					 | 
				
			||||||
  //  std::cout << " norm "<< nrm << " p2p norm "<<nrmck<<std::endl;
 | 
					 | 
				
			||||||
  FlightRecorder::ReductionLog(local,real(nrm)); 
 | 
					 | 
				
			||||||
  return nrm;
 | 
					  return nrm;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -365,9 +320,20 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
 | 
				
			|||||||
  autoView( x_v, x, AcceleratorRead);
 | 
					  autoView( x_v, x, AcceleratorRead);
 | 
				
			||||||
  autoView( y_v, y, AcceleratorRead);
 | 
					  autoView( y_v, y, AcceleratorRead);
 | 
				
			||||||
  autoView( z_v, z, AcceleratorWrite);
 | 
					  autoView( z_v, z, AcceleratorWrite);
 | 
				
			||||||
 | 
					#if 0
 | 
				
			||||||
 | 
					  typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t;
 | 
				
			||||||
 | 
					  Vector<inner_t> inner_tmp(sites);
 | 
				
			||||||
 | 
					  auto inner_tmp_v = &inner_tmp[0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  accelerator_for( ss, sites, nsimd,{
 | 
				
			||||||
 | 
					      auto tmp = a*x_v(ss)+b*y_v(ss);
 | 
				
			||||||
 | 
					      coalescedWrite(inner_tmp_v[ss],innerProductD(tmp,tmp));
 | 
				
			||||||
 | 
					      coalescedWrite(z_v[ss],tmp);
 | 
				
			||||||
 | 
					  });
 | 
				
			||||||
 | 
					  nrm = real(TensorRemove(sum(inner_tmp_v,sites)));
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
  typedef decltype(innerProduct(x_v[0],y_v[0])) inner_t;
 | 
					  typedef decltype(innerProduct(x_v[0],y_v[0])) inner_t;
 | 
				
			||||||
  deviceVector<inner_t> inner_tmp;
 | 
					  Vector<inner_t> inner_tmp(sites);
 | 
				
			||||||
  inner_tmp.resize(sites);
 | 
					 | 
				
			||||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
					  auto inner_tmp_v = &inner_tmp[0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  accelerator_for( ss, sites, nsimd,{
 | 
					  accelerator_for( ss, sites, nsimd,{
 | 
				
			||||||
@@ -375,44 +341,9 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
 | 
				
			|||||||
      coalescedWrite(inner_tmp_v[ss],innerProduct(tmp,tmp));
 | 
					      coalescedWrite(inner_tmp_v[ss],innerProduct(tmp,tmp));
 | 
				
			||||||
      coalescedWrite(z_v[ss],tmp);
 | 
					      coalescedWrite(z_v[ss],tmp);
 | 
				
			||||||
  });
 | 
					  });
 | 
				
			||||||
  bool ok;
 | 
					 | 
				
			||||||
#ifdef GRID_SYCL
 | 
					 | 
				
			||||||
  uint64_t csum=0;
 | 
					 | 
				
			||||||
  uint64_t csum2=0;
 | 
					 | 
				
			||||||
  if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    // z_v
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      Integer words = sites*sizeof(vobj)/sizeof(uint64_t);
 | 
					 | 
				
			||||||
      uint64_t *base= (uint64_t *)&z_v[0];
 | 
					 | 
				
			||||||
      csum=svm_xor(base,words);
 | 
					 | 
				
			||||||
      ok = FlightRecorder::CsumLog(csum);
 | 
					 | 
				
			||||||
      if ( !ok ) {
 | 
					 | 
				
			||||||
	csum2=svm_xor(base,words);
 | 
					 | 
				
			||||||
	std::cerr<< " Bad z_v CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      assert(ok);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    // inner_v
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      Integer words = sites*sizeof(inner_t)/sizeof(uint64_t);
 | 
					 | 
				
			||||||
      uint64_t *base= (uint64_t *)&inner_tmp_v[0];
 | 
					 | 
				
			||||||
      csum=svm_xor(base,words);
 | 
					 | 
				
			||||||
      ok = FlightRecorder::CsumLog(csum);
 | 
					 | 
				
			||||||
      if ( !ok ) {
 | 
					 | 
				
			||||||
	csum2=svm_xor(base,words);
 | 
					 | 
				
			||||||
	std::cerr<< " Bad inner_tmp_v CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      assert(ok);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  nrm = real(TensorRemove(sumD(inner_tmp_v,sites)));
 | 
					  nrm = real(TensorRemove(sumD(inner_tmp_v,sites)));
 | 
				
			||||||
  ok = FlightRecorder::NormLog(real(nrm));
 | 
					#endif
 | 
				
			||||||
  assert(ok);
 | 
					 | 
				
			||||||
  RealD local = real(nrm);
 | 
					 | 
				
			||||||
  grid->GlobalSum(nrm);
 | 
					  grid->GlobalSum(nrm);
 | 
				
			||||||
  FlightRecorder::ReductionLog(local,real(nrm));
 | 
					 | 
				
			||||||
  return nrm; 
 | 
					  return nrm; 
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 
 | 
					 
 | 
				
			||||||
@@ -422,7 +353,7 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti
 | 
				
			|||||||
  conformable(left,right);
 | 
					  conformable(left,right);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  typedef typename vobj::vector_typeD vector_type;
 | 
					  typedef typename vobj::vector_typeD vector_type;
 | 
				
			||||||
  std::vector<ComplexD> tmp(2);
 | 
					  Vector<ComplexD> tmp(2);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GridBase *grid = left.Grid();
 | 
					  GridBase *grid = left.Grid();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -432,8 +363,8 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti
 | 
				
			|||||||
  // GPU
 | 
					  // GPU
 | 
				
			||||||
  typedef decltype(innerProductD(vobj(),vobj())) inner_t;
 | 
					  typedef decltype(innerProductD(vobj(),vobj())) inner_t;
 | 
				
			||||||
  typedef decltype(innerProductD(vobj(),vobj())) norm_t;
 | 
					  typedef decltype(innerProductD(vobj(),vobj())) norm_t;
 | 
				
			||||||
  deviceVector<inner_t> inner_tmp(sites);
 | 
					  Vector<inner_t> inner_tmp(sites);
 | 
				
			||||||
  deviceVector<norm_t>  norm_tmp(sites);
 | 
					  Vector<norm_t>  norm_tmp(sites);
 | 
				
			||||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
					  auto inner_tmp_v = &inner_tmp[0];
 | 
				
			||||||
  auto norm_tmp_v = &norm_tmp[0];
 | 
					  auto norm_tmp_v = &norm_tmp[0];
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
@@ -483,9 +414,7 @@ inline auto sum(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)
 | 
				
			|||||||
// sliceSum, sliceInnerProduct, sliceAxpy, sliceNorm etc...
 | 
					// sliceSum, sliceInnerProduct, sliceAxpy, sliceNorm etc...
 | 
				
			||||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					//////////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,
 | 
					template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<typename vobj::scalar_object> &result,int orthogdim)
 | 
				
			||||||
					  std::vector<typename vobj::scalar_object> &result,
 | 
					 | 
				
			||||||
					  int orthogdim)
 | 
					 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  ///////////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////////
 | 
				
			||||||
  // FIXME precision promoted summation
 | 
					  // FIXME precision promoted summation
 | 
				
			||||||
@@ -507,8 +436,8 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,
 | 
				
			|||||||
  int ld=grid->_ldimensions[orthogdim];
 | 
					  int ld=grid->_ldimensions[orthogdim];
 | 
				
			||||||
  int rd=grid->_rdimensions[orthogdim];
 | 
					  int rd=grid->_rdimensions[orthogdim];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  std::vector<vobj> lvSum(rd); // will locally sum vectors first
 | 
					  Vector<vobj> lvSum(rd); // will locally sum vectors first
 | 
				
			||||||
  std::vector<sobj> lsSum(ld,Zero());                    // sum across these down to scalars
 | 
					  Vector<sobj> lsSum(ld,Zero());                    // sum across these down to scalars
 | 
				
			||||||
  ExtractBuffer<sobj> extracted(Nsimd);                  // splitting the SIMD
 | 
					  ExtractBuffer<sobj> extracted(Nsimd);                  // splitting the SIMD
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  result.resize(fd); // And then global sum to return the same vector to every node 
 | 
					  result.resize(fd); // And then global sum to return the same vector to every node 
 | 
				
			||||||
@@ -519,10 +448,19 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,
 | 
				
			|||||||
  int e1=    grid->_slice_nblock[orthogdim];
 | 
					  int e1=    grid->_slice_nblock[orthogdim];
 | 
				
			||||||
  int e2=    grid->_slice_block [orthogdim];
 | 
					  int e2=    grid->_slice_block [orthogdim];
 | 
				
			||||||
  int stride=grid->_slice_stride[orthogdim];
 | 
					  int stride=grid->_slice_stride[orthogdim];
 | 
				
			||||||
  int ostride=grid->_ostride[orthogdim];
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //Reduce Data down to lvSum
 | 
					  // sum over reduced dimension planes, breaking out orthog dir
 | 
				
			||||||
  sliceSumReduction(Data,lvSum,rd, e1,e2,stride,ostride,Nsimd);
 | 
					  // Parallel over orthog direction
 | 
				
			||||||
 | 
					  autoView( Data_v, Data, CpuRead);
 | 
				
			||||||
 | 
					  thread_for( r,rd, {
 | 
				
			||||||
 | 
					    int so=r*grid->_ostride[orthogdim]; // base offset for start of plane 
 | 
				
			||||||
 | 
					    for(int n=0;n<e1;n++){
 | 
				
			||||||
 | 
					      for(int b=0;b<e2;b++){
 | 
				
			||||||
 | 
						int ss= so+n*stride+b;
 | 
				
			||||||
 | 
						lvSum[r]=lvSum[r]+Data_v[ss];
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  });
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Sum across simd lanes in the plane, breaking out orthog dir.
 | 
					  // Sum across simd lanes in the plane, breaking out orthog dir.
 | 
				
			||||||
  Coordinate icoor(Nd);
 | 
					  Coordinate icoor(Nd);
 | 
				
			||||||
@@ -556,8 +494,6 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,
 | 
				
			|||||||
  scalar_type * ptr = (scalar_type *) &result[0];
 | 
					  scalar_type * ptr = (scalar_type *) &result[0];
 | 
				
			||||||
  int words = fd*sizeof(sobj)/sizeof(scalar_type);
 | 
					  int words = fd*sizeof(sobj)/sizeof(scalar_type);
 | 
				
			||||||
  grid->GlobalSumVector(ptr, words);
 | 
					  grid->GlobalSumVector(ptr, words);
 | 
				
			||||||
  //  std::cout << GridLogMessage << " sliceSum local"<<t_sum<<" us, host+mpi "<<t_rest<<std::endl;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
template<class vobj> inline
 | 
					template<class vobj> inline
 | 
				
			||||||
std::vector<typename vobj::scalar_object> 
 | 
					std::vector<typename vobj::scalar_object> 
 | 
				
			||||||
@@ -568,20 +504,6 @@ sliceSum(const Lattice<vobj> &Data,int orthogdim)
 | 
				
			|||||||
  return result;
 | 
					  return result;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
/*
 | 
					 | 
				
			||||||
Reimplement
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
1)
 | 
					 | 
				
			||||||
template<class vobj>
 | 
					 | 
				
			||||||
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0) 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
2)
 | 
					 | 
				
			||||||
template<class vobj>
 | 
					 | 
				
			||||||
static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog) 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
3)
 | 
					 | 
				
			||||||
-- Make Slice Mul Matrix call sliceMaddMatrix
 | 
					 | 
				
			||||||
 */
 | 
					 | 
				
			||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim) 
 | 
					static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim) 
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
@@ -601,8 +523,8 @@ static void sliceInnerProductVector( std::vector<ComplexD> & result, const Latti
 | 
				
			|||||||
  int ld=grid->_ldimensions[orthogdim];
 | 
					  int ld=grid->_ldimensions[orthogdim];
 | 
				
			||||||
  int rd=grid->_rdimensions[orthogdim];
 | 
					  int rd=grid->_rdimensions[orthogdim];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  std::vector<vector_type> lvSum(rd); // will locally sum vectors first
 | 
					  Vector<vector_type> lvSum(rd); // will locally sum vectors first
 | 
				
			||||||
  std::vector<scalar_type > lsSum(ld,scalar_type(0.0));                    // sum across these down to scalars
 | 
					  Vector<scalar_type > lsSum(ld,scalar_type(0.0));                    // sum across these down to scalars
 | 
				
			||||||
  ExtractBuffer<iScalar<scalar_type> > extracted(Nsimd);   // splitting the SIMD  
 | 
					  ExtractBuffer<iScalar<scalar_type> > extracted(Nsimd);   // splitting the SIMD  
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  result.resize(fd); // And then global sum to return the same vector to every node for IO to file
 | 
					  result.resize(fd); // And then global sum to return the same vector to every node for IO to file
 | 
				
			||||||
@@ -732,96 +654,203 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
inline GridBase         *makeSubSliceGrid(const GridBase *BlockSolverGrid,int Orthog)
 | 
					inline GridBase         *makeSubSliceGrid(const GridBase *BlockSolverGrid,int Orthog)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  int NN    = BlockSolverGrid->_ndimension;
 | 
					  int NN    = BlockSolverGrid->_ndimension;
 | 
				
			||||||
  int nsimd = BlockSolverGrid->Nsimd();
 | 
					  int nsimd = BlockSolverGrid->Nsimd();
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  std::vector<int> latt_phys(NN-1);
 | 
					  std::vector<int> latt_phys(0);
 | 
				
			||||||
  Coordinate simd_phys;
 | 
					  std::vector<int> simd_phys(0);
 | 
				
			||||||
  std::vector<int>  mpi_phys(NN-1);
 | 
					  std::vector<int>  mpi_phys(0);
 | 
				
			||||||
  Coordinate checker_dim_mask(NN-1);
 | 
					 | 
				
			||||||
  int checker_dim=-1;
 | 
					 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  int dd;
 | 
					 | 
				
			||||||
  for(int d=0;d<NN;d++){
 | 
					  for(int d=0;d<NN;d++){
 | 
				
			||||||
    if( d!=Orthog ) { 
 | 
					    if( d!=Orthog ) { 
 | 
				
			||||||
      latt_phys[dd]=BlockSolverGrid->_fdimensions[d];
 | 
					      latt_phys.push_back(BlockSolverGrid->_fdimensions[d]);
 | 
				
			||||||
      mpi_phys[dd] =BlockSolverGrid->_processors[d];
 | 
					      simd_phys.push_back(BlockSolverGrid->_simd_layout[d]);
 | 
				
			||||||
      checker_dim_mask[dd] = BlockSolverGrid->_checker_dim_mask[d];
 | 
					      mpi_phys.push_back(BlockSolverGrid->_processors[d]);
 | 
				
			||||||
      if ( d == BlockSolverGrid->_checker_dim ) checker_dim = dd;
 | 
					 | 
				
			||||||
      dd++;
 | 
					 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  simd_phys=GridDefaultSimd(latt_phys.size(),nsimd);
 | 
					  return (GridBase *)new GridCartesian(latt_phys,simd_phys,mpi_phys); 
 | 
				
			||||||
  GridCartesian *tmp         = new GridCartesian(latt_phys,simd_phys,mpi_phys);
 | 
					 | 
				
			||||||
  if(BlockSolverGrid->_isCheckerBoarded) {
 | 
					 | 
				
			||||||
    GridRedBlackCartesian *ret = new GridRedBlackCartesian(tmp,checker_dim_mask,checker_dim);
 | 
					 | 
				
			||||||
    delete tmp;
 | 
					 | 
				
			||||||
    return (GridBase *) ret;
 | 
					 | 
				
			||||||
  } else { 
 | 
					 | 
				
			||||||
    return (GridBase *) tmp;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0) 
 | 
					static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0) 
 | 
				
			||||||
{    
 | 
					{    
 | 
				
			||||||
  GridBase *FullGrid = X.Grid();
 | 
					 | 
				
			||||||
  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Lattice<vobj> Ys(SliceGrid);
 | 
					 | 
				
			||||||
  Lattice<vobj> Rs(SliceGrid);
 | 
					 | 
				
			||||||
  Lattice<vobj> Xs(SliceGrid);
 | 
					 | 
				
			||||||
  Lattice<vobj> RR(FullGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  RR = R; // Copies checkerboard for insert
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					  typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
  int Nslice = X.Grid()->GlobalDimensions()[Orthog];
 | 
					
 | 
				
			||||||
  for(int i=0;i<Nslice;i++){
 | 
					  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
				
			||||||
    ExtractSlice(Ys,Y,i,Orthog);
 | 
					
 | 
				
			||||||
    ExtractSlice(Rs,R,i,Orthog);
 | 
					  GridBase *FullGrid  = X.Grid();
 | 
				
			||||||
    Rs=Ys;
 | 
					  //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
 | 
				
			||||||
    for(int j=0;j<Nslice;j++){
 | 
					
 | 
				
			||||||
      ExtractSlice(Xs,X,j,Orthog);
 | 
					  //  Lattice<vobj> Xslice(SliceGrid);
 | 
				
			||||||
      Rs = Rs + Xs*(scale*aa(j,i));
 | 
					  //  Lattice<vobj> Rslice(SliceGrid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
				
			||||||
 | 
					  //  int nh =  FullGrid->_ndimension;
 | 
				
			||||||
 | 
					  //  int nl = SliceGrid->_ndimension;
 | 
				
			||||||
 | 
					  //  int nl = nh-1;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  //FIXME package in a convenient iterator
 | 
				
			||||||
 | 
					  //Should loop over a plane orthogonal to direction "Orthog"
 | 
				
			||||||
 | 
					  int stride=FullGrid->_slice_stride[Orthog];
 | 
				
			||||||
 | 
					  int block =FullGrid->_slice_block [Orthog];
 | 
				
			||||||
 | 
					  int nblock=FullGrid->_slice_nblock[Orthog];
 | 
				
			||||||
 | 
					  int ostride=FullGrid->_ostride[Orthog];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  autoView( X_v, X, CpuRead);
 | 
				
			||||||
 | 
					  autoView( Y_v, Y, CpuRead);
 | 
				
			||||||
 | 
					  autoView( R_v, R, CpuWrite);
 | 
				
			||||||
 | 
					  thread_region
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    Vector<vobj> s_x(Nblock);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    thread_for_collapse_in_region(2, n,nblock, {
 | 
				
			||||||
 | 
					     for(int b=0;b<block;b++){
 | 
				
			||||||
 | 
					      int o  = n*stride + b;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      for(int i=0;i<Nblock;i++){
 | 
				
			||||||
 | 
						s_x[i] = X_v[o+i*ostride];
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
    InsertSlice(Rs,RR,i,Orthog);
 | 
					
 | 
				
			||||||
 | 
					      vobj dot;
 | 
				
			||||||
 | 
					      for(int i=0;i<Nblock;i++){
 | 
				
			||||||
 | 
						dot = Y_v[o+i*ostride];
 | 
				
			||||||
 | 
						for(int j=0;j<Nblock;j++){
 | 
				
			||||||
 | 
						  dot = dot + s_x[j]*(scale*aa(j,i));
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						R_v[o+i*ostride]=dot;
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    }});
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  R=RR; // Copy back handles arguments aliasing case
 | 
					 | 
				
			||||||
  delete SliceGrid;
 | 
					 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0) 
 | 
					static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0) 
 | 
				
			||||||
{    
 | 
					{    
 | 
				
			||||||
  R=Zero();
 | 
					  typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
  sliceMaddMatrix(R,aa,X,R,Orthog,scale);
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  GridBase *FullGrid  = X.Grid();
 | 
				
			||||||
 | 
					  //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
 | 
				
			||||||
 | 
					  //  Lattice<vobj> Xslice(SliceGrid);
 | 
				
			||||||
 | 
					  //  Lattice<vobj> Rslice(SliceGrid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
				
			||||||
 | 
					  //  int nh =  FullGrid->_ndimension;
 | 
				
			||||||
 | 
					  //  int nl = SliceGrid->_ndimension;
 | 
				
			||||||
 | 
					  //  int nl=1;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  //FIXME package in a convenient iterator
 | 
				
			||||||
 | 
					  // thread_for2d_in_region
 | 
				
			||||||
 | 
					  //Should loop over a plane orthogonal to direction "Orthog"
 | 
				
			||||||
 | 
					  int stride=FullGrid->_slice_stride[Orthog];
 | 
				
			||||||
 | 
					  int block =FullGrid->_slice_block [Orthog];
 | 
				
			||||||
 | 
					  int nblock=FullGrid->_slice_nblock[Orthog];
 | 
				
			||||||
 | 
					  int ostride=FullGrid->_ostride[Orthog];
 | 
				
			||||||
 | 
					  autoView( R_v, R, CpuWrite);
 | 
				
			||||||
 | 
					  autoView( X_v, X, CpuRead);
 | 
				
			||||||
 | 
					  thread_region
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    std::vector<vobj> s_x(Nblock);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    thread_for_collapse_in_region( 2 ,n,nblock,{
 | 
				
			||||||
 | 
					    for(int b=0;b<block;b++){
 | 
				
			||||||
 | 
					      int o  = n*stride + b;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      for(int i=0;i<Nblock;i++){
 | 
				
			||||||
 | 
						s_x[i] = X_v[o+i*ostride];
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      vobj dot;
 | 
				
			||||||
 | 
					      for(int i=0;i<Nblock;i++){
 | 
				
			||||||
 | 
						dot = s_x[0]*(scale*aa(0,i));
 | 
				
			||||||
 | 
						for(int j=1;j<Nblock;j++){
 | 
				
			||||||
 | 
						  dot = dot + s_x[j]*(scale*aa(j,i));
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						R_v[o+i*ostride]=dot;
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    }});
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog) 
 | 
					static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog) 
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GridBase *SliceGrid = makeSubSliceGrid(lhs.Grid(),Orthog);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Lattice<vobj> ls(SliceGrid);
 | 
					 | 
				
			||||||
  Lattice<vobj> rs(SliceGrid);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					  typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
  int Nslice = lhs.Grid()->GlobalDimensions()[Orthog];
 | 
					  
 | 
				
			||||||
  mat = Eigen::MatrixXcd::Zero(Nslice,Nslice);
 | 
					  GridBase *FullGrid  = lhs.Grid();
 | 
				
			||||||
  for(int s=0;s<Nslice;s++){
 | 
					  //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
 | 
				
			||||||
    ExtractSlice(ls,lhs,s,Orthog);
 | 
					  
 | 
				
			||||||
    for(int ss=0;ss<Nslice;ss++){
 | 
					  int Nblock = FullGrid->GlobalDimensions()[Orthog];
 | 
				
			||||||
      ExtractSlice(rs,rhs,ss,Orthog);
 | 
					  
 | 
				
			||||||
      mat(s,ss) = innerProduct(ls,rs);
 | 
					  //  Lattice<vobj> Lslice(SliceGrid);
 | 
				
			||||||
 | 
					  //  Lattice<vobj> Rslice(SliceGrid);
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 | 
					  mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
				
			||||||
 | 
					  //  int nh =  FullGrid->_ndimension;
 | 
				
			||||||
 | 
					  //  int nl = SliceGrid->_ndimension;
 | 
				
			||||||
 | 
					  //  int nl = nh-1;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  //FIXME package in a convenient iterator
 | 
				
			||||||
 | 
					  //Should loop over a plane orthogonal to direction "Orthog"
 | 
				
			||||||
 | 
					  int stride=FullGrid->_slice_stride[Orthog];
 | 
				
			||||||
 | 
					  int block =FullGrid->_slice_block [Orthog];
 | 
				
			||||||
 | 
					  int nblock=FullGrid->_slice_nblock[Orthog];
 | 
				
			||||||
 | 
					  int ostride=FullGrid->_ostride[Orthog];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  typedef typename vobj::vector_typeD vector_typeD;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  autoView( lhs_v, lhs, CpuRead);
 | 
				
			||||||
 | 
					  autoView( rhs_v, rhs, CpuRead);
 | 
				
			||||||
 | 
					  thread_region
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    std::vector<vobj> Left(Nblock);
 | 
				
			||||||
 | 
					    std::vector<vobj> Right(Nblock);
 | 
				
			||||||
 | 
					    Eigen::MatrixXcd  mat_thread = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    thread_for_collapse_in_region( 2, n,nblock,{
 | 
				
			||||||
 | 
					    for(int b=0;b<block;b++){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      int o  = n*stride + b;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      for(int i=0;i<Nblock;i++){
 | 
				
			||||||
 | 
						Left [i] = lhs_v[o+i*ostride];
 | 
				
			||||||
 | 
						Right[i] = rhs_v[o+i*ostride];
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      for(int i=0;i<Nblock;i++){
 | 
				
			||||||
 | 
					      for(int j=0;j<Nblock;j++){
 | 
				
			||||||
 | 
						auto tmp = innerProduct(Left[i],Right[j]);
 | 
				
			||||||
 | 
						auto rtmp = TensorRemove(tmp);
 | 
				
			||||||
 | 
						auto red  =  Reduce(rtmp);
 | 
				
			||||||
 | 
						mat_thread(i,j) += std::complex<double>(real(red),imag(red));
 | 
				
			||||||
 | 
					      }}
 | 
				
			||||||
 | 
					    }});
 | 
				
			||||||
 | 
					    thread_critical
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      mat += mat_thread;
 | 
				
			||||||
    }  
 | 
					    }  
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  delete SliceGrid;
 | 
					
 | 
				
			||||||
 | 
					  for(int i=0;i<Nblock;i++){
 | 
				
			||||||
 | 
					  for(int j=0;j<Nblock;j++){
 | 
				
			||||||
 | 
					    ComplexD sum = mat(i,j);
 | 
				
			||||||
 | 
					    FullGrid->GlobalSum(sum);
 | 
				
			||||||
 | 
					    mat(i,j)=sum;
 | 
				
			||||||
 | 
					  }}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  return;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -30,7 +30,7 @@ int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &
 | 
				
			|||||||
  cudaGetDevice(&device);
 | 
					  cudaGetDevice(&device);
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
#ifdef GRID_HIP
 | 
					#ifdef GRID_HIP
 | 
				
			||||||
  auto r=hipGetDevice(&device);
 | 
					  hipGetDevice(&device);
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  Iterator warpSize            = gpu_props[device].warpSize;
 | 
					  Iterator warpSize            = gpu_props[device].warpSize;
 | 
				
			||||||
@@ -214,12 +214,22 @@ inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osi
 | 
				
			|||||||
  // Move out of UVM
 | 
					  // Move out of UVM
 | 
				
			||||||
  // Turns out I had messed up the synchronise after move to compute stream
 | 
					  // Turns out I had messed up the synchronise after move to compute stream
 | 
				
			||||||
  // as running this on the default stream fools the synchronise
 | 
					  // as running this on the default stream fools the synchronise
 | 
				
			||||||
  deviceVector<sobj> buffer(numBlocks);
 | 
					#undef UVM_BLOCK_BUFFER  
 | 
				
			||||||
 | 
					#ifndef UVM_BLOCK_BUFFER  
 | 
				
			||||||
 | 
					  commVector<sobj> buffer(numBlocks);
 | 
				
			||||||
  sobj *buffer_v = &buffer[0];
 | 
					  sobj *buffer_v = &buffer[0];
 | 
				
			||||||
  sobj result;
 | 
					  sobj result;
 | 
				
			||||||
  reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
 | 
					  reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
 | 
				
			||||||
  accelerator_barrier();
 | 
					  accelerator_barrier();
 | 
				
			||||||
  acceleratorCopyFromDevice(buffer_v,&result,sizeof(result));
 | 
					  acceleratorCopyFromDevice(buffer_v,&result,sizeof(result));
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
 | 
					  Vector<sobj> buffer(numBlocks);
 | 
				
			||||||
 | 
					  sobj *buffer_v = &buffer[0];
 | 
				
			||||||
 | 
					  sobj result;
 | 
				
			||||||
 | 
					  reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
 | 
				
			||||||
 | 
					  accelerator_barrier();
 | 
				
			||||||
 | 
					  result = *buffer_v;
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
  return result;
 | 
					  return result;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -234,7 +244,7 @@ inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osi
 | 
				
			|||||||
  
 | 
					  
 | 
				
			||||||
  const int words = sizeof(vobj)/sizeof(vector);
 | 
					  const int words = sizeof(vobj)/sizeof(vector);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  deviceVector<vector> buffer(osites);
 | 
					  Vector<vector> buffer(osites);
 | 
				
			||||||
  vector *dat = (vector *)lat;
 | 
					  vector *dat = (vector *)lat;
 | 
				
			||||||
  vector *buf = &buffer[0];
 | 
					  vector *buf = &buffer[0];
 | 
				
			||||||
  iScalar<vector> *tbuf =(iScalar<vector> *)  &buffer[0];
 | 
					  iScalar<vector> *tbuf =(iScalar<vector> *)  &buffer[0];
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -4,28 +4,29 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
// Possibly promote to double and sum
 | 
					// Possibly promote to double and sum
 | 
				
			||||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					/////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
template <class vobj>
 | 
					template <class vobj>
 | 
				
			||||||
inline typename vobj::scalar_objectD sumD_gpu_tensor(const vobj *lat, Integer osites) 
 | 
					inline typename vobj::scalar_objectD sumD_gpu_tensor(const vobj *lat, Integer osites) 
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					  typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
  typedef typename vobj::scalar_objectD sobjD;
 | 
					  typedef typename vobj::scalar_objectD sobjD;
 | 
				
			||||||
 | 
					  sobj *mysum =(sobj *) malloc_shared(sizeof(sobj),*theGridAccelerator);
 | 
				
			||||||
  sobj identity; zeroit(identity);
 | 
					  sobj identity; zeroit(identity);
 | 
				
			||||||
  sobj ret; zeroit(ret);
 | 
					  sobj ret ; 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  Integer nsimd= vobj::Nsimd();
 | 
					  Integer nsimd= vobj::Nsimd();
 | 
				
			||||||
  { 
 | 
					  
 | 
				
			||||||
    sycl::buffer<sobj, 1> abuff(&ret, {1});
 | 
					  theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
 | 
				
			||||||
    theGridAccelerator->submit([&](sycl::handler &cgh) {
 | 
					     auto Reduction = cl::sycl::reduction(mysum,identity,std::plus<>());
 | 
				
			||||||
      auto Reduction = sycl::reduction(abuff,cgh,identity,std::plus<>());
 | 
					     cgh.parallel_for(cl::sycl::range<1>{osites},
 | 
				
			||||||
      cgh.parallel_for(sycl::range<1>{osites},
 | 
					 | 
				
			||||||
		      Reduction,
 | 
							      Reduction,
 | 
				
			||||||
                      [=] (sycl::id<1> item, auto &sum) {
 | 
							      [=] (cl::sycl::id<1> item, auto &sum) {
 | 
				
			||||||
      auto osite   = item[0];
 | 
					      auto osite   = item[0];
 | 
				
			||||||
      sum +=Reduce(lat[osite]);
 | 
					      sum +=Reduce(lat[osite]);
 | 
				
			||||||
     });
 | 
					     });
 | 
				
			||||||
   });
 | 
					   });
 | 
				
			||||||
  }
 | 
					  theGridAccelerator->wait();
 | 
				
			||||||
 | 
					  ret = mysum[0];
 | 
				
			||||||
 | 
					  free(mysum,*theGridAccelerator);
 | 
				
			||||||
  sobjD dret; convertType(dret,ret);
 | 
					  sobjD dret; convertType(dret,ret);
 | 
				
			||||||
  return dret;
 | 
					  return dret;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
@@ -68,25 +69,57 @@ inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osite
 | 
				
			|||||||
  return result;
 | 
					  return result;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class Word> Word svm_xor(Word *vec,uint64_t L)
 | 
					/*
 | 
				
			||||||
 | 
					template<class Double> Double svm_reduce(Double *vec,uint64_t L)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  Word identity;  identity=0;
 | 
					  Double sumResult; zeroit(sumResult);
 | 
				
			||||||
  Word ret = 0;
 | 
					  Double *d_sum =(Double *)cl::sycl::malloc_shared(sizeof(Double),*theGridAccelerator);
 | 
				
			||||||
  { 
 | 
					  Double identity;  zeroit(identity);
 | 
				
			||||||
    sycl::buffer<Word, 1> abuff(&ret, {1});
 | 
					  theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
 | 
				
			||||||
    theGridAccelerator->submit([&](sycl::handler &cgh) {
 | 
					     auto Reduction = cl::sycl::reduction(d_sum,identity,std::plus<>());
 | 
				
			||||||
      auto Reduction = sycl::reduction(abuff,cgh,identity,std::bit_xor<>());
 | 
					     cgh.parallel_for(cl::sycl::range<1>{L},
 | 
				
			||||||
      cgh.parallel_for(sycl::range<1>{L},
 | 
					 | 
				
			||||||
		      Reduction,
 | 
							      Reduction,
 | 
				
			||||||
                      [=] (sycl::id<1> index, auto &sum) {
 | 
							      [=] (cl::sycl::id<1> index, auto &sum) {
 | 
				
			||||||
                        sum ^=vec[index];
 | 
						 sum +=vec[index];
 | 
				
			||||||
     });
 | 
					     });
 | 
				
			||||||
   });
 | 
					   });
 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  theGridAccelerator->wait();
 | 
					  theGridAccelerator->wait();
 | 
				
			||||||
 | 
					  Double ret = d_sum[0];
 | 
				
			||||||
 | 
					  free(d_sum,*theGridAccelerator);
 | 
				
			||||||
 | 
					  std::cout << " svm_reduce finished "<<L<<" sites sum = " << ret <<std::endl;
 | 
				
			||||||
  return ret;
 | 
					  return ret;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					template <class vobj>
 | 
				
			||||||
 | 
					inline typename vobj::scalar_objectD sumD_gpu_repack(const vobj *lat, Integer osites)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  typedef typename vobj::vector_type  vector;
 | 
				
			||||||
 | 
					  typedef typename vobj::scalar_type  scalar;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  typedef typename vobj::scalar_typeD scalarD;
 | 
				
			||||||
 | 
					  typedef typename vobj::scalar_objectD sobjD;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  sobjD ret;
 | 
				
			||||||
 | 
					  scalarD *ret_p = (scalarD *)&ret;
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 | 
					  const int nsimd = vobj::Nsimd();
 | 
				
			||||||
 | 
					  const int words = sizeof(vobj)/sizeof(vector);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Vector<scalar> buffer(osites*nsimd);
 | 
				
			||||||
 | 
					  scalar *buf = &buffer[0];
 | 
				
			||||||
 | 
					  vector *dat = (vector *)lat;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  for(int w=0;w<words;w++) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    accelerator_for(ss,osites,nsimd,{
 | 
				
			||||||
 | 
						int lane = acceleratorSIMTlane(nsimd);
 | 
				
			||||||
 | 
						buf[ss*nsimd+lane] = dat[ss*words+w].getlane(lane);
 | 
				
			||||||
 | 
					    });
 | 
				
			||||||
 | 
					    //Precision change at this point is to late to gain precision
 | 
				
			||||||
 | 
					    ret_p[w] = svm_reduce(buf,nsimd*osites);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  return ret;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -152,7 +152,6 @@ public:
 | 
				
			|||||||
#ifdef RNG_FAST_DISCARD
 | 
					#ifdef RNG_FAST_DISCARD
 | 
				
			||||||
  static void Skip(RngEngine &eng,uint64_t site)
 | 
					  static void Skip(RngEngine &eng,uint64_t site)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
#if 0
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////////////////////////////////////
 | 
					    /////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
    // Skip by 2^40 elements between successive lattice sites
 | 
					    // Skip by 2^40 elements between successive lattice sites
 | 
				
			||||||
    // This goes by 10^12.
 | 
					    // This goes by 10^12.
 | 
				
			||||||
@@ -180,9 +179,6 @@ public:
 | 
				
			|||||||
    assert((skip >> shift)==site); // check for overflow
 | 
					    assert((skip >> shift)==site); // check for overflow
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    eng.discard(skip);
 | 
					    eng.discard(skip);
 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
    eng.discardhi(site);
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
    //      std::cout << " Engine  " <<site << " state " <<eng<<std::endl;
 | 
					    //      std::cout << " Engine  " <<site << " state " <<eng<<std::endl;
 | 
				
			||||||
  } 
 | 
					  } 
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
@@ -365,14 +361,9 @@ public:
 | 
				
			|||||||
    _bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
 | 
					    _bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
 | 
				
			||||||
    _uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
 | 
					    _uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist)
 | 
					
 | 
				
			||||||
  {
 | 
					  template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist){
 | 
				
			||||||
    if ( l.Grid()->_isCheckerBoarded ) {
 | 
					
 | 
				
			||||||
      Lattice<vobj> tmp(_grid);
 | 
					 | 
				
			||||||
      fill(tmp,dist);
 | 
					 | 
				
			||||||
      pickCheckerboard(l.Checkerboard(),l,tmp);
 | 
					 | 
				
			||||||
      return;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    typedef typename vobj::scalar_object scalar_object;
 | 
					    typedef typename vobj::scalar_object scalar_object;
 | 
				
			||||||
    typedef typename vobj::scalar_type scalar_type;
 | 
					    typedef typename vobj::scalar_type scalar_type;
 | 
				
			||||||
    typedef typename vobj::vector_type vector_type;
 | 
					    typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
@@ -416,7 +407,7 @@ public:
 | 
				
			|||||||
      std::cout << GridLogMessage << "Seed SHA256: " << GridChecksum::sha256_string(seeds) << std::endl;
 | 
					      std::cout << GridLogMessage << "Seed SHA256: " << GridChecksum::sha256_string(seeds) << std::endl;
 | 
				
			||||||
      SeedFixedIntegers(seeds);
 | 
					      SeedFixedIntegers(seeds);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  void SeedFixedIntegers(const std::vector<int> &seeds, int britney=0){
 | 
					  void SeedFixedIntegers(const std::vector<int> &seeds){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // Everyone generates the same seed_seq based on input seeds
 | 
					    // Everyone generates the same seed_seq based on input seeds
 | 
				
			||||||
    CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size());
 | 
					    CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size());
 | 
				
			||||||
@@ -433,9 +424,10 @@ public:
 | 
				
			|||||||
    // MT implementation does not implement fast discard even though
 | 
					    // MT implementation does not implement fast discard even though
 | 
				
			||||||
    // in principle this is possible
 | 
					    // in principle this is possible
 | 
				
			||||||
    ////////////////////////////////////////////////
 | 
					    ////////////////////////////////////////////////
 | 
				
			||||||
 | 
					#if 1
 | 
				
			||||||
    thread_for( lidx, _grid->lSites(), {
 | 
					    thread_for( lidx, _grid->lSites(), {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	int64_t gidx;
 | 
						int gidx;
 | 
				
			||||||
	int o_idx;
 | 
						int o_idx;
 | 
				
			||||||
	int i_idx;
 | 
						int i_idx;
 | 
				
			||||||
	int rank;
 | 
						int rank;
 | 
				
			||||||
@@ -453,12 +445,29 @@ public:
 | 
				
			|||||||
	
 | 
						
 | 
				
			||||||
	int l_idx=generator_idx(o_idx,i_idx);
 | 
						int l_idx=generator_idx(o_idx,i_idx);
 | 
				
			||||||
	_generators[l_idx] = master_engine;
 | 
						_generators[l_idx] = master_engine;
 | 
				
			||||||
	if ( britney ) { 
 | 
						Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
 | 
				
			||||||
	  Skip(_generators[l_idx],l_idx); // Skip to next RNG sequence
 | 
					    });
 | 
				
			||||||
	} else { 	
 | 
					#else
 | 
				
			||||||
 | 
					    // Everybody loops over global volume.
 | 
				
			||||||
 | 
					    thread_for( gidx, _grid->_gsites, {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						// Where is it?
 | 
				
			||||||
 | 
						int rank;
 | 
				
			||||||
 | 
						int o_idx;
 | 
				
			||||||
 | 
						int i_idx;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						Coordinate gcoor;
 | 
				
			||||||
 | 
						_grid->GlobalIndexToGlobalCoor(gidx,gcoor);
 | 
				
			||||||
 | 
						_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
 | 
				
			||||||
 | 
						
 | 
				
			||||||
 | 
						// If this is one of mine we take it
 | 
				
			||||||
 | 
						if( rank == _grid->ThisRank() ){
 | 
				
			||||||
 | 
						  int l_idx=generator_idx(o_idx,i_idx);
 | 
				
			||||||
 | 
						  _generators[l_idx] = master_engine;
 | 
				
			||||||
	  Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
 | 
						  Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
#else 
 | 
					#else 
 | 
				
			||||||
    ////////////////////////////////////////////////////////////////
 | 
					    ////////////////////////////////////////////////////////////////
 | 
				
			||||||
    // Machine and thread decomposition dependent seeding is efficient
 | 
					    // Machine and thread decomposition dependent seeding is efficient
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,267 +0,0 @@
 | 
				
			|||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#if defined(GRID_CUDA)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#include <cub/cub.cuh>
 | 
					 | 
				
			||||||
#define gpucub cub
 | 
					 | 
				
			||||||
#define gpuError_t cudaError_t
 | 
					 | 
				
			||||||
#define gpuSuccess cudaSuccess
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#elif defined(GRID_HIP)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#include <hipcub/hipcub.hpp>
 | 
					 | 
				
			||||||
#define gpucub hipcub
 | 
					 | 
				
			||||||
#define gpuError_t hipError_t
 | 
					 | 
				
			||||||
#define gpuSuccess hipSuccess
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#if defined(GRID_CUDA) || defined(GRID_HIP)
 | 
					 | 
				
			||||||
template<class vobj>
 | 
					 | 
				
			||||||
inline void sliceSumReduction_cub_small(const vobj *Data,
 | 
					 | 
				
			||||||
					std::vector<vobj> &lvSum,
 | 
					 | 
				
			||||||
					const int rd,
 | 
					 | 
				
			||||||
					const int e1,
 | 
					 | 
				
			||||||
					const int e2,
 | 
					 | 
				
			||||||
					const int stride,
 | 
					 | 
				
			||||||
					const int ostride,
 | 
					 | 
				
			||||||
					const int Nsimd)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  size_t subvol_size = e1*e2;
 | 
					 | 
				
			||||||
  deviceVector<vobj> reduction_buffer(rd*subvol_size);
 | 
					 | 
				
			||||||
  auto rb_p = &reduction_buffer[0];
 | 
					 | 
				
			||||||
  vobj zero_init;
 | 
					 | 
				
			||||||
  zeroit(zero_init);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  void *temp_storage_array = NULL;
 | 
					 | 
				
			||||||
  size_t temp_storage_bytes = 0;
 | 
					 | 
				
			||||||
  vobj *d_out;
 | 
					 | 
				
			||||||
  int* d_offsets;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  std::vector<int> offsets(rd+1,0);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  for (int i = 0; i < offsets.size(); i++) {
 | 
					 | 
				
			||||||
    offsets[i] = i*subvol_size;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  //Allocate memory for output and offset arrays on device
 | 
					 | 
				
			||||||
  d_out = static_cast<vobj*>(acceleratorAllocDevice(rd*sizeof(vobj)));
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  d_offsets = static_cast<int*>(acceleratorAllocDevice((rd+1)*sizeof(int)));
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  //copy offsets to device
 | 
					 | 
				
			||||||
  acceleratorCopyToDeviceAsynch(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  gpuError_t gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), zero_init, computeStream);
 | 
					 | 
				
			||||||
  if (gpuErr!=gpuSuccess) {
 | 
					 | 
				
			||||||
    std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce (setup)! Error: " << gpuErr <<std::endl;
 | 
					 | 
				
			||||||
    exit(EXIT_FAILURE);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  //allocate memory for temp_storage_array  
 | 
					 | 
				
			||||||
  temp_storage_array = acceleratorAllocDevice(temp_storage_bytes);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  //prepare buffer for reduction
 | 
					 | 
				
			||||||
  //use non-blocking accelerator_for to avoid syncs (ok because we submit to same computeStream)
 | 
					 | 
				
			||||||
  //use 2d accelerator_for to avoid launch latencies found when serially looping over rd 
 | 
					 | 
				
			||||||
  accelerator_for2dNB( s,subvol_size, r,rd, Nsimd,{ 
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    int n = s / e2;
 | 
					 | 
				
			||||||
    int b = s % e2;
 | 
					 | 
				
			||||||
    int so=r*ostride; // base offset for start of plane 
 | 
					 | 
				
			||||||
    int ss= so+n*stride+b;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data[ss]));
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  });
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  //issue segmented reductions in computeStream
 | 
					 | 
				
			||||||
  gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p, d_out, rd, d_offsets, d_offsets+1,::gpucub::Sum(), zero_init, computeStream);
 | 
					 | 
				
			||||||
  if (gpuErr!=gpuSuccess) {
 | 
					 | 
				
			||||||
    std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce! Error: " << gpuErr <<std::endl;
 | 
					 | 
				
			||||||
    exit(EXIT_FAILURE);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  acceleratorCopyFromDeviceAsynch(d_out,&lvSum[0],rd*sizeof(vobj),computeStream);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  //sync after copy
 | 
					 | 
				
			||||||
  accelerator_barrier();
 | 
					 | 
				
			||||||
 
 | 
					 | 
				
			||||||
  acceleratorFreeDevice(temp_storage_array);
 | 
					 | 
				
			||||||
  acceleratorFreeDevice(d_out);
 | 
					 | 
				
			||||||
  acceleratorFreeDevice(d_offsets);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
#endif 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#if defined(GRID_SYCL)
 | 
					 | 
				
			||||||
template<class vobj>
 | 
					 | 
				
			||||||
inline void sliceSumReduction_sycl_small(const vobj *Data,
 | 
					 | 
				
			||||||
					 std::vector <vobj> &lvSum,
 | 
					 | 
				
			||||||
					 const int  &rd,
 | 
					 | 
				
			||||||
					 const int &e1,
 | 
					 | 
				
			||||||
					 const int &e2,
 | 
					 | 
				
			||||||
					 const int &stride,
 | 
					 | 
				
			||||||
					 const int &ostride,
 | 
					 | 
				
			||||||
					 const int &Nsimd)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  size_t subvol_size = e1*e2;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  vobj *mysum = (vobj *) malloc_shared(rd*sizeof(vobj),*theGridAccelerator);
 | 
					 | 
				
			||||||
  vobj vobj_zero;
 | 
					 | 
				
			||||||
  zeroit(vobj_zero);
 | 
					 | 
				
			||||||
  for (int r = 0; r<rd; r++) { 
 | 
					 | 
				
			||||||
    mysum[r] = vobj_zero; 
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  deviceVector<vobj> reduction_buffer(rd*subvol_size);    
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  auto rb_p = &reduction_buffer[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  // autoView(Data_v, Data, AcceleratorRead);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  //prepare reduction buffer 
 | 
					 | 
				
			||||||
  accelerator_for2d( s,subvol_size, r,rd, (size_t)Nsimd,{ 
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
      int n = s / e2;
 | 
					 | 
				
			||||||
      int b = s % e2;
 | 
					 | 
				
			||||||
      int so=r*ostride; // base offset for start of plane 
 | 
					 | 
				
			||||||
      int ss= so+n*stride+b;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data[ss]));
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  });
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  for (int r = 0; r < rd; r++) {
 | 
					 | 
				
			||||||
      theGridAccelerator->submit([&](sycl::handler &cgh) {
 | 
					 | 
				
			||||||
          auto Reduction = sycl::reduction(&mysum[r],std::plus<>());
 | 
					 | 
				
			||||||
          cgh.parallel_for(sycl::range<1>{subvol_size},
 | 
					 | 
				
			||||||
          Reduction,
 | 
					 | 
				
			||||||
          [=](sycl::id<1> item, auto &sum) {
 | 
					 | 
				
			||||||
              auto s = item[0];
 | 
					 | 
				
			||||||
              sum += rb_p[r*subvol_size+s];
 | 
					 | 
				
			||||||
          });
 | 
					 | 
				
			||||||
      });
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
     
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  theGridAccelerator->wait();
 | 
					 | 
				
			||||||
  for (int r = 0; r < rd; r++) {
 | 
					 | 
				
			||||||
    lvSum[r] = mysum[r];
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  free(mysum,*theGridAccelerator);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class vobj>
 | 
					 | 
				
			||||||
inline void sliceSumReduction_large(const vobj *Data,
 | 
					 | 
				
			||||||
				    std::vector<vobj> &lvSum,
 | 
					 | 
				
			||||||
				    const int rd,
 | 
					 | 
				
			||||||
				    const int e1,
 | 
					 | 
				
			||||||
				    const int e2,
 | 
					 | 
				
			||||||
				    const int stride,
 | 
					 | 
				
			||||||
				    const int ostride,
 | 
					 | 
				
			||||||
				    const int Nsimd)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  typedef typename vobj::vector_type vector;
 | 
					 | 
				
			||||||
  const int words = sizeof(vobj)/sizeof(vector);
 | 
					 | 
				
			||||||
  const int osites = rd*e1*e2;
 | 
					 | 
				
			||||||
  deviceVector<vector>buffer(osites);
 | 
					 | 
				
			||||||
  vector *dat = (vector *)Data;
 | 
					 | 
				
			||||||
  vector *buf = &buffer[0];
 | 
					 | 
				
			||||||
  std::vector<vector> lvSum_small(rd);
 | 
					 | 
				
			||||||
  vector *lvSum_ptr = (vector *)&lvSum[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  for (int w = 0; w < words; w++) {
 | 
					 | 
				
			||||||
    accelerator_for(ss,osites,1,{
 | 
					 | 
				
			||||||
	    buf[ss] = dat[ss*words+w];
 | 
					 | 
				
			||||||
    });
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    #if defined(GRID_CUDA) || defined(GRID_HIP)
 | 
					 | 
				
			||||||
      sliceSumReduction_cub_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd);
 | 
					 | 
				
			||||||
    #elif defined(GRID_SYCL)
 | 
					 | 
				
			||||||
      sliceSumReduction_sycl_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd);
 | 
					 | 
				
			||||||
    #endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for (int r = 0; r < rd; r++) {
 | 
					 | 
				
			||||||
      lvSum_ptr[w+words*r]=lvSum_small[r];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class vobj>
 | 
					 | 
				
			||||||
inline void sliceSumReduction_gpu(const Lattice<vobj> &Data,
 | 
					 | 
				
			||||||
				  std::vector<vobj> &lvSum,
 | 
					 | 
				
			||||||
				  const int rd,
 | 
					 | 
				
			||||||
				  const int e1,
 | 
					 | 
				
			||||||
				  const int e2,
 | 
					 | 
				
			||||||
				  const int stride,
 | 
					 | 
				
			||||||
				  const int ostride,
 | 
					 | 
				
			||||||
				  const int Nsimd)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  autoView(Data_v, Data, AcceleratorRead); //reduction libraries cannot deal with large vobjs so we split into small/large case.
 | 
					 | 
				
			||||||
    if constexpr (sizeof(vobj) <= 256) { 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      #if defined(GRID_CUDA) || defined(GRID_HIP)
 | 
					 | 
				
			||||||
        sliceSumReduction_cub_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
					 | 
				
			||||||
      #elif defined (GRID_SYCL)
 | 
					 | 
				
			||||||
        sliceSumReduction_sycl_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
					 | 
				
			||||||
      #endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    else {
 | 
					 | 
				
			||||||
      sliceSumReduction_large(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class vobj>
 | 
					 | 
				
			||||||
inline void sliceSumReduction_cpu(const Lattice<vobj> &Data,
 | 
					 | 
				
			||||||
				  std::vector<vobj> &lvSum,
 | 
					 | 
				
			||||||
				  const int &rd,
 | 
					 | 
				
			||||||
				  const int &e1,
 | 
					 | 
				
			||||||
				  const int &e2,
 | 
					 | 
				
			||||||
				  const int &stride,
 | 
					 | 
				
			||||||
				  const int &ostride,
 | 
					 | 
				
			||||||
				  const int &Nsimd)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  // sum over reduced dimension planes, breaking out orthog dir
 | 
					 | 
				
			||||||
  // Parallel over orthog direction
 | 
					 | 
				
			||||||
  autoView( Data_v, Data, CpuRead);
 | 
					 | 
				
			||||||
  thread_for( r,rd, {
 | 
					 | 
				
			||||||
    int so=r*ostride; // base offset for start of plane 
 | 
					 | 
				
			||||||
    for(int n=0;n<e1;n++){
 | 
					 | 
				
			||||||
      for(int b=0;b<e2;b++){
 | 
					 | 
				
			||||||
        int ss= so+n*stride+b;
 | 
					 | 
				
			||||||
        lvSum[r]=lvSum[r]+Data_v[ss];
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  });
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data,
 | 
					 | 
				
			||||||
						   std::vector<vobj> &lvSum,
 | 
					 | 
				
			||||||
						   const int &rd,
 | 
					 | 
				
			||||||
						   const int &e1,
 | 
					 | 
				
			||||||
						   const int &e2,
 | 
					 | 
				
			||||||
						   const int &stride,
 | 
					 | 
				
			||||||
						   const int &ostride,
 | 
					 | 
				
			||||||
						   const int &Nsimd) 
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
 | 
					 | 
				
			||||||
  sliceSumReduction_gpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
  sliceSumReduction_cpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
@@ -66,65 +66,6 @@ inline auto TraceIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<
 | 
				
			|||||||
  return ret;
 | 
					  return ret;
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<int N, class Vec>
 | 
					 | 
				
			||||||
Lattice<iScalar<iScalar<iScalar<Vec> > > > Determinant(const Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  GridBase *grid=Umu.Grid();
 | 
					 | 
				
			||||||
  auto lvol = grid->lSites();
 | 
					 | 
				
			||||||
  Lattice<iScalar<iScalar<iScalar<Vec> > > > ret(grid);
 | 
					 | 
				
			||||||
  typedef typename Vec::scalar_type scalar;
 | 
					 | 
				
			||||||
  autoView(Umu_v,Umu,CpuRead);
 | 
					 | 
				
			||||||
  autoView(ret_v,ret,CpuWrite);
 | 
					 | 
				
			||||||
  thread_for(site,lvol,{
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
 | 
					 | 
				
			||||||
    Coordinate lcoor;
 | 
					 | 
				
			||||||
    grid->LocalIndexToLocalCoor(site, lcoor);
 | 
					 | 
				
			||||||
    iScalar<iScalar<iMatrix<scalar, N> > > Us;
 | 
					 | 
				
			||||||
    peekLocalSite(Us, Umu_v, lcoor);
 | 
					 | 
				
			||||||
    for(int i=0;i<N;i++){
 | 
					 | 
				
			||||||
      for(int j=0;j<N;j++){
 | 
					 | 
				
			||||||
	scalar tmp= Us()()(i,j);
 | 
					 | 
				
			||||||
	ComplexD ztmp(real(tmp),imag(tmp));
 | 
					 | 
				
			||||||
	EigenU(i,j)=ztmp;
 | 
					 | 
				
			||||||
      }}
 | 
					 | 
				
			||||||
    ComplexD detD  = EigenU.determinant();
 | 
					 | 
				
			||||||
    typename Vec::scalar_type det(detD.real(),detD.imag());
 | 
					 | 
				
			||||||
    pokeLocalSite(det,ret_v,lcoor);
 | 
					 | 
				
			||||||
  });
 | 
					 | 
				
			||||||
  return ret;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<int N>
 | 
					 | 
				
			||||||
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > Inverse(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  GridBase *grid=Umu.Grid();
 | 
					 | 
				
			||||||
  auto lvol = grid->lSites();
 | 
					 | 
				
			||||||
  Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > ret(grid);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  autoView(Umu_v,Umu,CpuRead);
 | 
					 | 
				
			||||||
  autoView(ret_v,ret,CpuWrite);
 | 
					 | 
				
			||||||
  thread_for(site,lvol,{
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
 | 
					 | 
				
			||||||
    Coordinate lcoor;
 | 
					 | 
				
			||||||
    grid->LocalIndexToLocalCoor(site, lcoor);
 | 
					 | 
				
			||||||
    iScalar<iScalar<iMatrix<ComplexD, N> > > Us;
 | 
					 | 
				
			||||||
    iScalar<iScalar<iMatrix<ComplexD, N> > > Ui;
 | 
					 | 
				
			||||||
    peekLocalSite(Us, Umu_v, lcoor);
 | 
					 | 
				
			||||||
    for(int i=0;i<N;i++){
 | 
					 | 
				
			||||||
      for(int j=0;j<N;j++){
 | 
					 | 
				
			||||||
	EigenU(i,j) = Us()()(i,j);
 | 
					 | 
				
			||||||
      }}
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd EigenUinv = EigenU.inverse();
 | 
					 | 
				
			||||||
    for(int i=0;i<N;i++){
 | 
					 | 
				
			||||||
      for(int j=0;j<N;j++){
 | 
					 | 
				
			||||||
	Ui()()(i,j) = EigenUinv(i,j);
 | 
					 | 
				
			||||||
      }}
 | 
					 | 
				
			||||||
    pokeLocalSite(Ui,ret_v,lcoor);
 | 
					 | 
				
			||||||
  });
 | 
					 | 
				
			||||||
  return ret;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -276,33 +276,18 @@ inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  autoView( coarseData_ , coarseData, AcceleratorWrite);
 | 
					  autoView( coarseData_ , coarseData, AcceleratorWrite);
 | 
				
			||||||
  autoView( ip_         , ip,         AcceleratorWrite);
 | 
					  autoView( ip_         , ip,         AcceleratorWrite);
 | 
				
			||||||
  RealD t_IP=0;
 | 
					 | 
				
			||||||
  RealD t_co=0;
 | 
					 | 
				
			||||||
  RealD t_za=0;
 | 
					 | 
				
			||||||
  for(int v=0;v<nbasis;v++) {
 | 
					  for(int v=0;v<nbasis;v++) {
 | 
				
			||||||
    t_IP-=usecond();
 | 
					 | 
				
			||||||
    blockInnerProductD(ip,Basis[v],fineDataRed); // ip = <basis|fine>
 | 
					    blockInnerProductD(ip,Basis[v],fineDataRed); // ip = <basis|fine>
 | 
				
			||||||
    t_IP+=usecond();
 | 
					 | 
				
			||||||
    t_co-=usecond();
 | 
					 | 
				
			||||||
    accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
 | 
					    accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
 | 
				
			||||||
	convertType(coarseData_[sc](v),ip_[sc]);
 | 
						convertType(coarseData_[sc](v),ip_[sc]);
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
    t_co+=usecond();
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // improve numerical stability of projection
 | 
					    // improve numerical stability of projection
 | 
				
			||||||
    // |fine> = |fine> - <basis|fine> |basis>
 | 
					    // |fine> = |fine> - <basis|fine> |basis>
 | 
				
			||||||
    ip=-ip;
 | 
					    ip=-ip;
 | 
				
			||||||
    t_za-=usecond();
 | 
					 | 
				
			||||||
    blockZAXPY(fineDataRed,ip,Basis[v],fineDataRed); 
 | 
					    blockZAXPY(fineDataRed,ip,Basis[v],fineDataRed); 
 | 
				
			||||||
    t_za+=usecond();
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  //  std::cout << GridLogPerformance << " blockProject : blockInnerProduct :  "<<t_IP<<" us"<<std::endl;
 | 
					 | 
				
			||||||
  //  std::cout << GridLogPerformance << " blockProject : conv              :  "<<t_co<<" us"<<std::endl;
 | 
					 | 
				
			||||||
  //  std::cout << GridLogPerformance << " blockProject : blockZaxpy        :  "<<t_za<<" us"<<std::endl;
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
// This only minimises data motion from CPU to GPU
 | 
					 | 
				
			||||||
// there is chance of better implementation that does a vxk loop of inner products to data share
 | 
					 | 
				
			||||||
// at the GPU thread level
 | 
					 | 
				
			||||||
template<class vobj,class CComplex,int nbasis,class VLattice>
 | 
					template<class vobj,class CComplex,int nbasis,class VLattice>
 | 
				
			||||||
inline void batchBlockProject(std::vector<Lattice<iVector<CComplex,nbasis>>> &coarseData,
 | 
					inline void batchBlockProject(std::vector<Lattice<iVector<CComplex,nbasis>>> &coarseData,
 | 
				
			||||||
                               const std::vector<Lattice<vobj>> &fineData,
 | 
					                               const std::vector<Lattice<vobj>> &fineData,
 | 
				
			||||||
@@ -408,15 +393,8 @@ template<class vobj,class CComplex>
 | 
				
			|||||||
  Lattice<dotp> coarse_inner(coarse);
 | 
					  Lattice<dotp> coarse_inner(coarse);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Precision promotion
 | 
					  // Precision promotion
 | 
				
			||||||
  RealD t;
 | 
					 | 
				
			||||||
  t=-usecond();
 | 
					 | 
				
			||||||
  fine_inner = localInnerProductD<vobj>(fineX,fineY);
 | 
					  fine_inner = localInnerProductD<vobj>(fineX,fineY);
 | 
				
			||||||
  //  t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : localInnerProductD "<<t<<" us"<<std::endl;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  t=-usecond();
 | 
					 | 
				
			||||||
  blockSum(coarse_inner,fine_inner);
 | 
					  blockSum(coarse_inner,fine_inner);
 | 
				
			||||||
  //  t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : blockSum "<<t<<" us"<<std::endl;
 | 
					 | 
				
			||||||
  t=-usecond();
 | 
					 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    autoView( CoarseInner_  , CoarseInner,AcceleratorWrite);
 | 
					    autoView( CoarseInner_  , CoarseInner,AcceleratorWrite);
 | 
				
			||||||
    autoView( coarse_inner_ , coarse_inner,AcceleratorRead);
 | 
					    autoView( coarse_inner_ , coarse_inner,AcceleratorRead);
 | 
				
			||||||
@@ -424,7 +402,6 @@ template<class vobj,class CComplex>
 | 
				
			|||||||
      convertType(CoarseInner_[ss], TensorRemove(coarse_inner_[ss]));
 | 
					      convertType(CoarseInner_[ss], TensorRemove(coarse_inner_[ss]));
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  //  t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : convertType "<<t<<" us"<<std::endl;
 | 
					 | 
				
			||||||
 
 | 
					 
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -467,9 +444,6 @@ inline void blockNormalise(Lattice<CComplex> &ip,Lattice<vobj> &fineX)
 | 
				
			|||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData) 
 | 
					inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData) 
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  const int maxsubsec=256;
 | 
					 | 
				
			||||||
  typedef iVector<vobj,maxsubsec> vSubsec;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  GridBase * fine  = fineData.Grid();
 | 
					  GridBase * fine  = fineData.Grid();
 | 
				
			||||||
  GridBase * coarse= coarseData.Grid();
 | 
					  GridBase * coarse= coarseData.Grid();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -497,32 +471,16 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  vobj zz = Zero();
 | 
					  vobj zz = Zero();
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  // Somewhat lazy calculation
 | 
					  accelerator_for(sc,coarse->oSites(),1,{
 | 
				
			||||||
  // Find the biggest power of two subsection divisor less than or equal to maxsubsec
 | 
					 | 
				
			||||||
  int subsec=maxsubsec;
 | 
					 | 
				
			||||||
  int subvol;
 | 
					 | 
				
			||||||
  subvol=blockVol/subsec;
 | 
					 | 
				
			||||||
  while(subvol*subsec!=blockVol){
 | 
					 | 
				
			||||||
    subsec = subsec/2;
 | 
					 | 
				
			||||||
    subvol=blockVol/subsec;
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Lattice<vSubsec> coarseTmp(coarse);
 | 
					 | 
				
			||||||
  autoView( coarseTmp_, coarseTmp, AcceleratorWriteDiscard);
 | 
					 | 
				
			||||||
  auto coarseTmp_p= &coarseTmp_[0];
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  // Sum within subsecs in a first kernel
 | 
					 | 
				
			||||||
  accelerator_for(sce,subsec*coarse->oSites(),vobj::Nsimd(),{
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      int sc=sce/subsec;
 | 
					 | 
				
			||||||
      int e=sce%subsec;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
      // One thread per sub block
 | 
					      // One thread per sub block
 | 
				
			||||||
      Coordinate coor_c(_ndimension);
 | 
					      Coordinate coor_c(_ndimension);
 | 
				
			||||||
      Lexicographic::CoorFromIndex(coor_c,sc,coarse_rdimensions);  // Block coordinate
 | 
					      Lexicographic::CoorFromIndex(coor_c,sc,coarse_rdimensions);  // Block coordinate
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      auto cd = coalescedRead(zz);
 | 
					      vobj cd = zz;
 | 
				
			||||||
      for(int sb=e*subvol;sb<MIN((e+1)*subvol,blockVol);sb++){
 | 
					      
 | 
				
			||||||
 | 
					      for(int sb=0;sb<blockVol;sb++){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	int sf;
 | 
						int sf;
 | 
				
			||||||
	Coordinate coor_b(_ndimension);
 | 
						Coordinate coor_b(_ndimension);
 | 
				
			||||||
	Coordinate coor_f(_ndimension);
 | 
						Coordinate coor_f(_ndimension);
 | 
				
			||||||
@@ -530,21 +488,12 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
 | 
				
			|||||||
	for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d] + coor_b[d];
 | 
						for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d] + coor_b[d];
 | 
				
			||||||
	Lexicographic::IndexFromCoor(coor_f,sf,fine_rdimensions);
 | 
						Lexicographic::IndexFromCoor(coor_f,sf,fine_rdimensions);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	cd=cd+coalescedRead(fineData_p[sf]);
 | 
						cd=cd+fineData_p[sf];
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      coalescedWrite(coarseTmp_[sc](e),cd);
 | 
					      coarseData_p[sc] = cd;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
   // Sum across subsecs in a second kernel
 | 
					 | 
				
			||||||
   accelerator_for(sc,coarse->oSites(),vobj::Nsimd(),{
 | 
					 | 
				
			||||||
      auto cd = coalescedRead(coarseTmp_p[sc](0));
 | 
					 | 
				
			||||||
      for(int e=1;e<subsec;e++){
 | 
					 | 
				
			||||||
	cd=cd+coalescedRead(coarseTmp_p[sc](e));
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      coalescedWrite(coarseData_p[sc],cd);
 | 
					 | 
				
			||||||
   });
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  return;
 | 
					  return;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -601,7 +550,7 @@ inline void blockOrthogonalise(Lattice<CComplex> &ip,std::vector<Lattice<vobj> >
 | 
				
			|||||||
  blockOrthonormalize(ip,Basis);
 | 
					  blockOrthonormalize(ip,Basis);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#ifdef GRID_ACCELERATED
 | 
					#if 0
 | 
				
			||||||
// TODO: CPU optimized version here
 | 
					// TODO: CPU optimized version here
 | 
				
			||||||
template<class vobj,class CComplex,int nbasis>
 | 
					template<class vobj,class CComplex,int nbasis>
 | 
				
			||||||
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
					inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
				
			||||||
@@ -627,37 +576,26 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
				
			|||||||
  autoView( fineData_   , fineData, AcceleratorWrite);
 | 
					  autoView( fineData_   , fineData, AcceleratorWrite);
 | 
				
			||||||
  autoView( coarseData_ , coarseData, AcceleratorRead);
 | 
					  autoView( coarseData_ , coarseData, AcceleratorRead);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  typedef LatticeView<vobj> Vview;
 | 
					 | 
				
			||||||
  std::vector<Vview> AcceleratorVecViewContainer_h; 
 | 
					 | 
				
			||||||
  for(int v=0;v<nbasis;v++) {
 | 
					 | 
				
			||||||
    AcceleratorVecViewContainer_h.push_back(Basis[v].View(AcceleratorRead));
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(nbasis); 
 | 
					 | 
				
			||||||
  acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],nbasis *sizeof(Vview));
 | 
					 | 
				
			||||||
  auto Basis_p = &AcceleratorVecViewContainer[0];
 | 
					 | 
				
			||||||
  // Loop with a cache friendly loop ordering
 | 
					  // Loop with a cache friendly loop ordering
 | 
				
			||||||
  Coordinate frdimensions=fine->_rdimensions;
 | 
					  accelerator_for(sf,fine->oSites(),1,{
 | 
				
			||||||
  Coordinate crdimensions=coarse->_rdimensions;
 | 
					 | 
				
			||||||
  accelerator_for(sf,fine->oSites(),vobj::Nsimd(),{
 | 
					 | 
				
			||||||
    int sc;
 | 
					    int sc;
 | 
				
			||||||
    Coordinate coor_c(_ndimension);
 | 
					    Coordinate coor_c(_ndimension);
 | 
				
			||||||
    Coordinate coor_f(_ndimension);
 | 
					    Coordinate coor_f(_ndimension);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    Lexicographic::CoorFromIndex(coor_f,sf,frdimensions);
 | 
					    Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
 | 
				
			||||||
    for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
 | 
					    for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
 | 
				
			||||||
    Lexicographic::IndexFromCoor(coor_c,sc,crdimensions);
 | 
					    Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    auto sum= coarseData_(sc)(0) *Basis_p[0](sf);
 | 
					    for(int i=0;i<nbasis;i++) {
 | 
				
			||||||
    for(int i=1;i<nbasis;i++) sum = sum + coarseData_(sc)(i)*Basis_p[i](sf);
 | 
					      /*      auto basis_ = Basis[i],  );*/
 | 
				
			||||||
    coalescedWrite(fineData_[sf],sum);
 | 
					      if(i==0) fineData_[sf]=coarseData_[sc](i) *basis_[sf]);
 | 
				
			||||||
  });
 | 
					      else     fineData_[sf]=fineData_[sf]+coarseData_[sc](i)*basis_[sf]);
 | 
				
			||||||
  for(int v=0;v<nbasis;v++) {
 | 
					 | 
				
			||||||
    AcceleratorVecViewContainer_h[v].ViewClose();
 | 
					 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					  });
 | 
				
			||||||
  return;
 | 
					  return;
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
#else
 | 
					#else
 | 
				
			||||||
// CPU version
 | 
					 | 
				
			||||||
template<class vobj,class CComplex,int nbasis,class VLattice>
 | 
					template<class vobj,class CComplex,int nbasis,class VLattice>
 | 
				
			||||||
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
					inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
				
			||||||
			 Lattice<vobj>   &fineData,
 | 
								 Lattice<vobj>   &fineData,
 | 
				
			||||||
@@ -744,11 +682,7 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
 | 
				
			|||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					  typedef typename vobj::scalar_type scalar_type;
 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  const int words=sizeof(vobj)/sizeof(vector_type);
 | 
					  static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
				
			||||||
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // checks should guarantee that the operations are local
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GridBase *Fg = From.Grid();
 | 
					  GridBase *Fg = From.Grid();
 | 
				
			||||||
  GridBase *Tg = To.Grid();
 | 
					  GridBase *Tg = To.Grid();
 | 
				
			||||||
@@ -764,186 +698,48 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
 | 
				
			|||||||
    assert(Fg->_processors[d]  == Tg->_processors[d]);
 | 
					    assert(Fg->_processors[d]  == Tg->_processors[d]);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  ///////////////////////////////////////////////////////////
 | 
					  // the above should guarantee that the operations are local
 | 
				
			||||||
  // do the index calc on the GPU
 | 
					  Coordinate ldf = Fg->_ldimensions;
 | 
				
			||||||
  ///////////////////////////////////////////////////////////
 | 
					  Coordinate rdf = Fg->_rdimensions;
 | 
				
			||||||
  Coordinate f_ostride = Fg->_ostride;
 | 
					  Coordinate isf = Fg->_istride;
 | 
				
			||||||
  Coordinate f_istride = Fg->_istride;
 | 
					  Coordinate osf = Fg->_ostride;
 | 
				
			||||||
  Coordinate f_rdimensions = Fg->_rdimensions;
 | 
					  Coordinate rdt = Tg->_rdimensions;
 | 
				
			||||||
  Coordinate t_ostride = Tg->_ostride;
 | 
					  Coordinate ist = Tg->_istride;
 | 
				
			||||||
  Coordinate t_istride = Tg->_istride;
 | 
					  Coordinate ost = Tg->_ostride;
 | 
				
			||||||
  Coordinate t_rdimensions = Tg->_rdimensions;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  size_t nsite = 1;
 | 
					  autoView( t_v , To, CpuWrite);
 | 
				
			||||||
  for(int i=0;i<nd;i++) nsite *= RegionSize[i];
 | 
					  autoView( f_v , From, CpuRead);
 | 
				
			||||||
 | 
					  thread_for(idx,Fg->lSites(),{
 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					    sobj s;
 | 
				
			||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					    Coordinate Fcoor(nd);
 | 
				
			||||||
 | 
					    Coordinate Tcoor(nd);
 | 
				
			||||||
  autoView(from_v,From,AcceleratorRead);
 | 
					    Lexicographic::CoorFromIndex(Fcoor,idx,ldf);
 | 
				
			||||||
  autoView(to_v,To,AcceleratorWrite);
 | 
					    int in_region=1;
 | 
				
			||||||
 | 
					    for(int d=0;d<nd;d++){
 | 
				
			||||||
  accelerator_for(idx,nsite,1,{
 | 
					      if ( (Fcoor[d] < FromLowerLeft[d]) || (Fcoor[d]>=FromLowerLeft[d]+RegionSize[d]) ){ 
 | 
				
			||||||
 | 
						in_region=0;
 | 
				
			||||||
      Coordinate from_coor, to_coor, base;
 | 
					 | 
				
			||||||
      Lexicographic::CoorFromIndex(base,idx,RegionSize);
 | 
					 | 
				
			||||||
      for(int i=0;i<nd;i++){
 | 
					 | 
				
			||||||
	from_coor[i] = base[i] + FromLowerLeft[i];
 | 
					 | 
				
			||||||
	to_coor[i] = base[i] + ToLowerLeft[i];
 | 
					 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
      int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
 | 
					      Tcoor[d] = ToLowerLeft[d]+ Fcoor[d]-FromLowerLeft[d];
 | 
				
			||||||
      int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
 | 
					    }
 | 
				
			||||||
      int to_oidx   = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
 | 
					    if (in_region) {
 | 
				
			||||||
      int to_lane   = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
 | 
					#if 0      
 | 
				
			||||||
 | 
					      Integer idx_f = 0; for(int d=0;d<nd;d++) idx_f+=isf[d]*(Fcoor[d]/rdf[d]); // inner index from
 | 
				
			||||||
      const vector_type* from = (const vector_type *)&from_v[from_oidx];
 | 
					      Integer idx_t = 0; for(int d=0;d<nd;d++) idx_t+=ist[d]*(Tcoor[d]/rdt[d]); // inner index to
 | 
				
			||||||
      vector_type* to = (vector_type *)&to_v[to_oidx];
 | 
					      Integer odx_f = 0; for(int d=0;d<nd;d++) odx_f+=osf[d]*(Fcoor[d]%rdf[d]); // outer index from
 | 
				
			||||||
      
 | 
					      Integer odx_t = 0; for(int d=0;d<nd;d++) odx_t+=ost[d]*(Tcoor[d]%rdt[d]); // outer index to
 | 
				
			||||||
      scalar_type stmp;
 | 
					      scalar_type * fp = (scalar_type *)&f_v[odx_f];
 | 
				
			||||||
 | 
					      scalar_type * tp = (scalar_type *)&t_v[odx_t];
 | 
				
			||||||
      for(int w=0;w<words;w++){
 | 
					      for(int w=0;w<words;w++){
 | 
				
			||||||
	stmp = getlane(from[w], from_lane);
 | 
						tp[w].putlane(fp[w].getlane(idx_f),idx_t);
 | 
				
			||||||
	putlane(to[w], stmp, to_lane);
 | 
					      }
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
 | 
					    peekLocalSite(s,f_v,Fcoor);
 | 
				
			||||||
 | 
					    pokeLocalSite(s,t_v,Tcoor);
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  });
 | 
					  });
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj>
 | 
					 | 
				
			||||||
void InsertSliceFast(const Lattice<vobj> &From,Lattice<vobj> & To,int slice, int orthog)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  const int words=sizeof(vobj)/sizeof(vector_type);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // checks should guarantee that the operations are local
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  GridBase *Fg = From.Grid();
 | 
					 | 
				
			||||||
  GridBase *Tg = To.Grid();
 | 
					 | 
				
			||||||
  assert(!Fg->_isCheckerBoarded);
 | 
					 | 
				
			||||||
  assert(!Tg->_isCheckerBoarded);
 | 
					 | 
				
			||||||
  int Nsimd = Fg->Nsimd();
 | 
					 | 
				
			||||||
  int nF = Fg->_ndimension;
 | 
					 | 
				
			||||||
  int nT = Tg->_ndimension;
 | 
					 | 
				
			||||||
  assert(nF+1 == nT);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ///////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // do the index calc on the GPU
 | 
					 | 
				
			||||||
  ///////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  Coordinate f_ostride = Fg->_ostride;
 | 
					 | 
				
			||||||
  Coordinate f_istride = Fg->_istride;
 | 
					 | 
				
			||||||
  Coordinate f_rdimensions = Fg->_rdimensions;
 | 
					 | 
				
			||||||
  Coordinate t_ostride = Tg->_ostride;
 | 
					 | 
				
			||||||
  Coordinate t_istride = Tg->_istride;
 | 
					 | 
				
			||||||
  Coordinate t_rdimensions = Tg->_rdimensions;
 | 
					 | 
				
			||||||
  Coordinate RegionSize = Fg->_ldimensions;
 | 
					 | 
				
			||||||
  size_t nsite = 1;
 | 
					 | 
				
			||||||
  for(int i=0;i<nF;i++) nsite *= RegionSize[i]; // whole volume of lower dim grid
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  autoView(from_v,From,AcceleratorRead);
 | 
					 | 
				
			||||||
  autoView(to_v,To,AcceleratorWrite);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  accelerator_for(idx,nsite,1,{
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      Coordinate from_coor(nF), to_coor(nT);
 | 
					 | 
				
			||||||
      Lexicographic::CoorFromIndex(from_coor,idx,RegionSize);
 | 
					 | 
				
			||||||
      int j=0;
 | 
					 | 
				
			||||||
      for(int i=0;i<nT;i++){
 | 
					 | 
				
			||||||
	if ( i!=orthog ) { 
 | 
					 | 
				
			||||||
	  to_coor[i] = from_coor[j];
 | 
					 | 
				
			||||||
	  j++;
 | 
					 | 
				
			||||||
	} else {
 | 
					 | 
				
			||||||
	  to_coor[i] = slice;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      int from_oidx = 0; for(int d=0;d<nF;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
 | 
					 | 
				
			||||||
      int from_lane = 0; for(int d=0;d<nF;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
 | 
					 | 
				
			||||||
      int to_oidx   = 0; for(int d=0;d<nT;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
 | 
					 | 
				
			||||||
      int to_lane   = 0; for(int d=0;d<nT;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      const vector_type* from = (const vector_type *)&from_v[from_oidx];
 | 
					 | 
				
			||||||
      vector_type* to = (vector_type *)&to_v[to_oidx];
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      scalar_type stmp;
 | 
					 | 
				
			||||||
      for(int w=0;w<words;w++){
 | 
					 | 
				
			||||||
	stmp = getlane(from[w], from_lane);
 | 
					 | 
				
			||||||
	putlane(to[w], stmp, to_lane);
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
  });
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class vobj>
 | 
					 | 
				
			||||||
void ExtractSliceFast(Lattice<vobj> &To,const Lattice<vobj> & From,int slice, int orthog)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  const int words=sizeof(vobj)/sizeof(vector_type);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // checks should guarantee that the operations are local
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  GridBase *Fg = From.Grid();
 | 
					 | 
				
			||||||
  GridBase *Tg = To.Grid();
 | 
					 | 
				
			||||||
  assert(!Fg->_isCheckerBoarded);
 | 
					 | 
				
			||||||
  assert(!Tg->_isCheckerBoarded);
 | 
					 | 
				
			||||||
  int Nsimd = Fg->Nsimd();
 | 
					 | 
				
			||||||
  int nF = Fg->_ndimension;
 | 
					 | 
				
			||||||
  int nT = Tg->_ndimension;
 | 
					 | 
				
			||||||
  assert(nT+1 == nF);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ///////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // do the index calc on the GPU
 | 
					 | 
				
			||||||
  ///////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  Coordinate f_ostride = Fg->_ostride;
 | 
					 | 
				
			||||||
  Coordinate f_istride = Fg->_istride;
 | 
					 | 
				
			||||||
  Coordinate f_rdimensions = Fg->_rdimensions;
 | 
					 | 
				
			||||||
  Coordinate t_ostride = Tg->_ostride;
 | 
					 | 
				
			||||||
  Coordinate t_istride = Tg->_istride;
 | 
					 | 
				
			||||||
  Coordinate t_rdimensions = Tg->_rdimensions;
 | 
					 | 
				
			||||||
  Coordinate RegionSize = Tg->_ldimensions;
 | 
					 | 
				
			||||||
  size_t nsite = 1;
 | 
					 | 
				
			||||||
  for(int i=0;i<nT;i++) nsite *= RegionSize[i]; // whole volume of lower dim grid
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  autoView(from_v,From,AcceleratorRead);
 | 
					 | 
				
			||||||
  autoView(to_v,To,AcceleratorWrite);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  accelerator_for(idx,nsite,1,{
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      Coordinate from_coor(nF), to_coor(nT);
 | 
					 | 
				
			||||||
      Lexicographic::CoorFromIndex(to_coor,idx,RegionSize);
 | 
					 | 
				
			||||||
      int j=0;
 | 
					 | 
				
			||||||
      for(int i=0;i<nF;i++){
 | 
					 | 
				
			||||||
	if ( i!=orthog ) { 
 | 
					 | 
				
			||||||
	  from_coor[i] = to_coor[j];
 | 
					 | 
				
			||||||
	  j++;
 | 
					 | 
				
			||||||
	} else {
 | 
					 | 
				
			||||||
	  from_coor[i] = slice;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      int from_oidx = 0; for(int d=0;d<nF;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
 | 
					 | 
				
			||||||
      int from_lane = 0; for(int d=0;d<nF;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
 | 
					 | 
				
			||||||
      int to_oidx   = 0; for(int d=0;d<nT;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
 | 
					 | 
				
			||||||
      int to_lane   = 0; for(int d=0;d<nT;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      const vector_type* from = (const vector_type *)&from_v[from_oidx];
 | 
					 | 
				
			||||||
      vector_type* to = (vector_type *)&to_v[to_oidx];
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      scalar_type stmp;
 | 
					 | 
				
			||||||
      for(int w=0;w<words;w++){
 | 
					 | 
				
			||||||
	stmp = getlane(from[w], from_lane);
 | 
					 | 
				
			||||||
	putlane(to[w], stmp, to_lane);
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
  });
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice, int orthog)
 | 
					void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice, int orthog)
 | 
				
			||||||
@@ -981,14 +777,8 @@ void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice
 | 
				
			|||||||
    hcoor[orthog] = slice;
 | 
					    hcoor[orthog] = slice;
 | 
				
			||||||
    for(int d=0;d<nh;d++){
 | 
					    for(int d=0;d<nh;d++){
 | 
				
			||||||
      if ( d!=orthog ) { 
 | 
					      if ( d!=orthog ) { 
 | 
				
			||||||
	hcoor[d]=lcoor[ddl];
 | 
						hcoor[d]=lcoor[ddl++];
 | 
				
			||||||
	if ( hg->_checker_dim == d ) {
 | 
					 | 
				
			||||||
	  hcoor[d]=hcoor[d]*2; // factor in the full coor for peekLocalSite
 | 
					 | 
				
			||||||
	  lcoor[ddl]=lcoor[ddl]*2; // factor in the full coor for peekLocalSite
 | 
					 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
	ddl++;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    peekLocalSite(s,lowDimv,lcoor);
 | 
					    peekLocalSite(s,lowDimv,lcoor);
 | 
				
			||||||
    pokeLocalSite(s,higherDimv,hcoor);
 | 
					    pokeLocalSite(s,higherDimv,hcoor);
 | 
				
			||||||
@@ -1009,7 +799,6 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
 | 
				
			|||||||
  assert(orthog<nh);
 | 
					  assert(orthog<nh);
 | 
				
			||||||
  assert(orthog>=0);
 | 
					  assert(orthog>=0);
 | 
				
			||||||
  assert(hg->_processors[orthog]==1);
 | 
					  assert(hg->_processors[orthog]==1);
 | 
				
			||||||
  lowDim.Checkerboard() = higherDim.Checkerboard();
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  int dl; dl = 0;
 | 
					  int dl; dl = 0;
 | 
				
			||||||
  for(int d=0;d<nh;d++){
 | 
					  for(int d=0;d<nh;d++){
 | 
				
			||||||
@@ -1027,16 +816,11 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
 | 
				
			|||||||
    Coordinate lcoor(nl);
 | 
					    Coordinate lcoor(nl);
 | 
				
			||||||
    Coordinate hcoor(nh);
 | 
					    Coordinate hcoor(nh);
 | 
				
			||||||
    lg->LocalIndexToLocalCoor(idx,lcoor);
 | 
					    lg->LocalIndexToLocalCoor(idx,lcoor);
 | 
				
			||||||
    hcoor[orthog] = slice;
 | 
					 | 
				
			||||||
    int ddl=0;
 | 
					    int ddl=0;
 | 
				
			||||||
 | 
					    hcoor[orthog] = slice;
 | 
				
			||||||
    for(int d=0;d<nh;d++){
 | 
					    for(int d=0;d<nh;d++){
 | 
				
			||||||
      if ( d!=orthog ) { 
 | 
					      if ( d!=orthog ) { 
 | 
				
			||||||
	hcoor[d]=lcoor[ddl];
 | 
						hcoor[d]=lcoor[ddl++];
 | 
				
			||||||
	if ( hg->_checker_dim == d ) {
 | 
					 | 
				
			||||||
	  hcoor[d]=hcoor[d]*2;     // factor in the full gridd coor for peekLocalSite
 | 
					 | 
				
			||||||
	  lcoor[ddl]=lcoor[ddl]*2; // factor in the full coor for peekLocalSite
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	ddl++;
 | 
					 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    peekLocalSite(s,higherDimv,hcoor);
 | 
					    peekLocalSite(s,higherDimv,hcoor);
 | 
				
			||||||
@@ -1045,7 +829,7 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
//Can I implement with local copyregion??
 | 
					
 | 
				
			||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
 | 
					void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
@@ -1066,18 +850,61 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
 | 
				
			|||||||
      assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
 | 
					      assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  Coordinate sz = lg->_ldimensions;
 | 
					
 | 
				
			||||||
  sz[orthog]=1;
 | 
					  // the above should guarantee that the operations are local
 | 
				
			||||||
  Coordinate f_ll(nl,0); f_ll[orthog]=slice_lo;
 | 
					  autoView(lowDimv,lowDim,CpuRead);
 | 
				
			||||||
  Coordinate t_ll(nh,0); t_ll[orthog]=slice_hi;
 | 
					  autoView(higherDimv,higherDim,CpuWrite);
 | 
				
			||||||
  localCopyRegion(lowDim,higherDim,f_ll,t_ll,sz);
 | 
					  thread_for(idx,lg->lSites(),{
 | 
				
			||||||
 | 
					    sobj s;
 | 
				
			||||||
 | 
					    Coordinate lcoor(nl);
 | 
				
			||||||
 | 
					    Coordinate hcoor(nh);
 | 
				
			||||||
 | 
					    lg->LocalIndexToLocalCoor(idx,lcoor);
 | 
				
			||||||
 | 
					    if( lcoor[orthog] == slice_lo ) { 
 | 
				
			||||||
 | 
					      hcoor=lcoor;
 | 
				
			||||||
 | 
					      hcoor[orthog] = slice_hi;
 | 
				
			||||||
 | 
					      peekLocalSite(s,lowDimv,lcoor);
 | 
				
			||||||
 | 
					      pokeLocalSite(s,higherDimv,hcoor);
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  });
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
 | 
					void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  InsertSliceLocal(higherDim,lowDim,slice_hi,slice_lo,orthog);
 | 
					  typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  GridBase *lg = lowDim.Grid();
 | 
				
			||||||
 | 
					  GridBase *hg = higherDim.Grid();
 | 
				
			||||||
 | 
					  int nl = lg->_ndimension;
 | 
				
			||||||
 | 
					  int nh = hg->_ndimension;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  assert(nl == nh);
 | 
				
			||||||
 | 
					  assert(orthog<nh);
 | 
				
			||||||
 | 
					  assert(orthog>=0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  for(int d=0;d<nh;d++){
 | 
				
			||||||
 | 
					    if ( d!=orthog ) {
 | 
				
			||||||
 | 
					    assert(lg->_processors[d]  == hg->_processors[d]);
 | 
				
			||||||
 | 
					    assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  // the above should guarantee that the operations are local
 | 
				
			||||||
 | 
					  autoView(lowDimv,lowDim,CpuWrite);
 | 
				
			||||||
 | 
					  autoView(higherDimv,higherDim,CpuRead);
 | 
				
			||||||
 | 
					  thread_for(idx,lg->lSites(),{
 | 
				
			||||||
 | 
					    sobj s;
 | 
				
			||||||
 | 
					    Coordinate lcoor(nl);
 | 
				
			||||||
 | 
					    Coordinate hcoor(nh);
 | 
				
			||||||
 | 
					    lg->LocalIndexToLocalCoor(idx,lcoor);
 | 
				
			||||||
 | 
					    if( lcoor[orthog] == slice_lo ) { 
 | 
				
			||||||
 | 
					      hcoor=lcoor;
 | 
				
			||||||
 | 
					      hcoor[orthog] = slice_hi;
 | 
				
			||||||
 | 
					      peekLocalSite(s,higherDimv,hcoor);
 | 
				
			||||||
 | 
					      pokeLocalSite(s,lowDimv,lcoor);
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  });
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -1103,7 +930,7 @@ void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  Coordinate fcoor(nd);
 | 
					  Coordinate fcoor(nd);
 | 
				
			||||||
  Coordinate ccoor(nd);
 | 
					  Coordinate ccoor(nd);
 | 
				
			||||||
  for(int64_t g=0;g<fg->gSites();g++){
 | 
					  for(int g=0;g<fg->gSites();g++){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    fg->GlobalIndexToGlobalCoor(g,fcoor);
 | 
					    fg->GlobalIndexToGlobalCoor(g,fcoor);
 | 
				
			||||||
    for(int d=0;d<nd;d++){
 | 
					    for(int d=0;d<nd;d++){
 | 
				
			||||||
@@ -1789,35 +1616,5 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split)
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
//////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
// Faster but less accurate blockProject
 | 
					 | 
				
			||||||
//////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
template<class vobj,class CComplex,int nbasis,class VLattice>
 | 
					 | 
				
			||||||
inline void blockProjectFast(Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
					 | 
				
			||||||
			     const             Lattice<vobj>   &fineData,
 | 
					 | 
				
			||||||
			     const VLattice &Basis)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  GridBase * fine  = fineData.Grid();
 | 
					 | 
				
			||||||
  GridBase * coarse= coarseData.Grid();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Lattice<iScalar<CComplex> > ip(coarse);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  autoView( coarseData_ , coarseData, AcceleratorWrite);
 | 
					 | 
				
			||||||
  autoView( ip_         , ip,         AcceleratorWrite);
 | 
					 | 
				
			||||||
  RealD t_IP=0;
 | 
					 | 
				
			||||||
  RealD t_co=0;
 | 
					 | 
				
			||||||
  for(int v=0;v<nbasis;v++) {
 | 
					 | 
				
			||||||
    t_IP-=usecond();
 | 
					 | 
				
			||||||
    blockInnerProductD(ip,Basis[v],fineData); 
 | 
					 | 
				
			||||||
    t_IP+=usecond();
 | 
					 | 
				
			||||||
    t_co-=usecond();
 | 
					 | 
				
			||||||
    accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
 | 
					 | 
				
			||||||
	convertType(coarseData_[sc](v),ip_[sc]);
 | 
					 | 
				
			||||||
      });
 | 
					 | 
				
			||||||
    t_co+=usecond();
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -45,7 +45,6 @@ public:
 | 
				
			|||||||
  };
 | 
					  };
 | 
				
			||||||
  // Host only
 | 
					  // Host only
 | 
				
			||||||
  GridBase * getGrid(void) const { return _grid; };
 | 
					  GridBase * getGrid(void) const { return _grid; };
 | 
				
			||||||
  vobj* getHostPointer(void) const { return _odata; };
 | 
					 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
/////////////////////////////////////////////////////////////////////////////////////////
 | 
					/////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -26,214 +26,14 @@ Author: Peter Boyle pboyle@bnl.gov
 | 
				
			|||||||
/*  END LEGAL */
 | 
					/*  END LEGAL */
 | 
				
			||||||
#pragma once
 | 
					#pragma once
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#include<Grid/cshift/Cshift.h>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					NAMESPACE_BEGIN(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
//Allow the user to specify how the C-shift is performed, e.g. to respect the appropriate boundary conditions
 | 
					 | 
				
			||||||
template<typename vobj>
 | 
					 | 
				
			||||||
struct CshiftImplBase{
 | 
					 | 
				
			||||||
  virtual Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const = 0;
 | 
					 | 
				
			||||||
  virtual ~CshiftImplBase(){}
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
template<typename vobj>
 | 
					 | 
				
			||||||
struct CshiftImplDefault: public CshiftImplBase<vobj>{
 | 
					 | 
				
			||||||
  Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const override{ return Grid::Cshift(in,dir,shift); }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
template<typename Gimpl>
 | 
					 | 
				
			||||||
struct CshiftImplGauge: public CshiftImplBase<typename Gimpl::GaugeLinkField::vector_object>{
 | 
					 | 
				
			||||||
  typename Gimpl::GaugeLinkField Cshift(const typename Gimpl::GaugeLinkField &in, int dir, int shift) const override{ return Gimpl::CshiftLink(in,dir,shift); }
 | 
					 | 
				
			||||||
};  
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/*
 | 
					 | 
				
			||||||
 *
 | 
					 | 
				
			||||||
 * TODO: 
 | 
					 | 
				
			||||||
 *  -- address elementsof vobj via thread block in Scatter/Gather
 | 
					 | 
				
			||||||
 *  -- overlap comms with motion in Face_exchange
 | 
					 | 
				
			||||||
 *
 | 
					 | 
				
			||||||
 */
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class vobj> inline void ScatterSlice(const deviceVector<vobj> &buf,
 | 
					 | 
				
			||||||
					      Lattice<vobj> &lat,
 | 
					 | 
				
			||||||
					      int x,
 | 
					 | 
				
			||||||
					      int dim,
 | 
					 | 
				
			||||||
					      int offset=0)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  const int Nsimd=vobj::Nsimd();
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  GridBase *grid = lat.Grid();
 | 
					 | 
				
			||||||
  Coordinate simd = grid->_simd_layout;
 | 
					 | 
				
			||||||
  int Nd          = grid->Nd();
 | 
					 | 
				
			||||||
  int block       = grid->_slice_block[dim];
 | 
					 | 
				
			||||||
  int stride      = grid->_slice_stride[dim];
 | 
					 | 
				
			||||||
  int nblock      = grid->_slice_nblock[dim];
 | 
					 | 
				
			||||||
  int rd          = grid->_rdimensions[dim];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int ox = x%rd;
 | 
					 | 
				
			||||||
  int ix = x/rd;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int isites = 1; for(int d=0;d<Nd;d++) if( d!=dim) isites*=simd[d];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Coordinate rsimd= simd;  rsimd[dim]=1; // maybe reduce Nsimd
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int rNsimd = 1; for(int d=0;d<Nd;d++) rNsimd*=rsimd[d];
 | 
					 | 
				
			||||||
  int rNsimda= Nsimd/simd[dim]; // should be equal
 | 
					 | 
				
			||||||
  assert(rNsimda==rNsimd);
 | 
					 | 
				
			||||||
  int face_ovol=block*nblock;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  //  assert(buf.size()==face_ovol*rNsimd);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /*This will work GPU ONLY unless rNsimd is put in the lexico index*/
 | 
					 | 
				
			||||||
  //Let's make it work on GPU and then make a special accelerator_for that
 | 
					 | 
				
			||||||
  //doesn't hide the SIMD direction and keeps explicit in the threadIdx
 | 
					 | 
				
			||||||
  //for cross platform
 | 
					 | 
				
			||||||
  // FIXME -- can put internal indices into thread loop
 | 
					 | 
				
			||||||
  auto buf_p = & buf[0];
 | 
					 | 
				
			||||||
  autoView(lat_v, lat, AcceleratorWrite);
 | 
					 | 
				
			||||||
  accelerator_for(ss, face_ovol/simd[dim],Nsimd,{
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // scalar layout won't coalesce
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
      {
 | 
					 | 
				
			||||||
	int blane=acceleratorSIMTlane(Nsimd); // buffer lane
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
      for(int blane=0;blane<Nsimd;blane++) {
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
	int olane=blane%rNsimd;               // reduced lattice lane
 | 
					 | 
				
			||||||
	int obit =blane/rNsimd;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	///////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	// osite -- potentially one bit from simd in the buffer: (ss<<1)|obit
 | 
					 | 
				
			||||||
	///////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	int ssp = ss*simd[dim]+obit;
 | 
					 | 
				
			||||||
	int b    = ssp%block;
 | 
					 | 
				
			||||||
	int n    = ssp/block;
 | 
					 | 
				
			||||||
	int osite= b+n*stride + ox*block;
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	////////////////////////////////////////////
 | 
					 | 
				
			||||||
	// isite -- map lane within buffer to lane within lattice
 | 
					 | 
				
			||||||
	////////////////////////////////////////////
 | 
					 | 
				
			||||||
	Coordinate icoor;
 | 
					 | 
				
			||||||
	int lane;
 | 
					 | 
				
			||||||
	Lexicographic::CoorFromIndex(icoor,olane,rsimd);
 | 
					 | 
				
			||||||
	icoor[dim]=ix;
 | 
					 | 
				
			||||||
	Lexicographic::IndexFromCoor(icoor,lane,simd);
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	///////////////////////////////////////////
 | 
					 | 
				
			||||||
	// Transfer into lattice - will coalesce
 | 
					 | 
				
			||||||
	///////////////////////////////////////////
 | 
					 | 
				
			||||||
	//	sobj obj = extractLane(blane,buf_p[ss+offset]);
 | 
					 | 
				
			||||||
	//	insertLane(lane,lat_v[osite],obj);
 | 
					 | 
				
			||||||
	const int words=sizeof(vobj)/sizeof(vector_type);
 | 
					 | 
				
			||||||
	vector_type * from = (vector_type *)&buf_p[ss+offset];
 | 
					 | 
				
			||||||
	vector_type * to   = (vector_type *)&lat_v[osite];
 | 
					 | 
				
			||||||
	scalar_type stmp;
 | 
					 | 
				
			||||||
	for(int w=0;w<words;w++){
 | 
					 | 
				
			||||||
	  stmp = getlane(from[w], blane);
 | 
					 | 
				
			||||||
	  putlane(to[w], stmp, lane);
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
  });
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class vobj> inline void GatherSlice(deviceVector<vobj> &buf,
 | 
					 | 
				
			||||||
					     const Lattice<vobj> &lat,
 | 
					 | 
				
			||||||
					     int x,
 | 
					 | 
				
			||||||
					     int dim,
 | 
					 | 
				
			||||||
					     int offset=0)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  const int Nsimd=vobj::Nsimd();
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  autoView(lat_v, lat, AcceleratorRead);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  GridBase *grid = lat.Grid();
 | 
					 | 
				
			||||||
  Coordinate simd = grid->_simd_layout;
 | 
					 | 
				
			||||||
  int Nd          = grid->Nd();
 | 
					 | 
				
			||||||
  int block       = grid->_slice_block[dim];
 | 
					 | 
				
			||||||
  int stride      = grid->_slice_stride[dim];
 | 
					 | 
				
			||||||
  int nblock      = grid->_slice_nblock[dim];
 | 
					 | 
				
			||||||
  int rd          = grid->_rdimensions[dim];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int ox = x%rd;
 | 
					 | 
				
			||||||
  int ix = x/rd;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int isites = 1; for(int d=0;d<Nd;d++) if( d!=dim) isites*=simd[d];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Coordinate rsimd= simd;  rsimd[dim]=1; // maybe reduce Nsimd
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int rNsimd = 1; for(int d=0;d<Nd;d++) rNsimd*=rsimd[d];
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  int face_ovol=block*nblock;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  //  assert(buf.size()==face_ovol*rNsimd);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /*This will work GPU ONLY unless rNsimd is put in the lexico index*/
 | 
					 | 
				
			||||||
  //Let's make it work on GPU and then make a special accelerator_for that
 | 
					 | 
				
			||||||
  //doesn't hide the SIMD direction and keeps explicit in the threadIdx
 | 
					 | 
				
			||||||
  //for cross platform
 | 
					 | 
				
			||||||
  //For CPU perhaps just run a loop over Nsimd
 | 
					 | 
				
			||||||
  auto buf_p = & buf[0];
 | 
					 | 
				
			||||||
  accelerator_for(ss, face_ovol/simd[dim],Nsimd,{
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // scalar layout won't coalesce
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
      {
 | 
					 | 
				
			||||||
	int blane=acceleratorSIMTlane(Nsimd); // buffer lane
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
      for(int blane=0;blane<Nsimd;blane++) {
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
	int olane=blane%rNsimd;               // reduced lattice lane
 | 
					 | 
				
			||||||
	int obit =blane/rNsimd;
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	////////////////////////////////////////////
 | 
					 | 
				
			||||||
	// osite
 | 
					 | 
				
			||||||
	////////////////////////////////////////////
 | 
					 | 
				
			||||||
	int ssp = ss*simd[dim]+obit;
 | 
					 | 
				
			||||||
	int b    = ssp%block;
 | 
					 | 
				
			||||||
	int n    = ssp/block;
 | 
					 | 
				
			||||||
	int osite= b+n*stride + ox*block;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	////////////////////////////////////////////
 | 
					 | 
				
			||||||
	// isite -- map lane within buffer to lane within lattice
 | 
					 | 
				
			||||||
	////////////////////////////////////////////
 | 
					 | 
				
			||||||
	Coordinate icoor;
 | 
					 | 
				
			||||||
	int lane;
 | 
					 | 
				
			||||||
	Lexicographic::CoorFromIndex(icoor,olane,rsimd);
 | 
					 | 
				
			||||||
	icoor[dim]=ix;
 | 
					 | 
				
			||||||
	Lexicographic::IndexFromCoor(icoor,lane,simd);
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	///////////////////////////////////////////
 | 
					 | 
				
			||||||
	// Take out of lattice
 | 
					 | 
				
			||||||
	///////////////////////////////////////////
 | 
					 | 
				
			||||||
	//	sobj obj = extractLane(lane,lat_v[osite]);
 | 
					 | 
				
			||||||
	//	insertLane(blane,buf_p[ss+offset],obj);
 | 
					 | 
				
			||||||
	const int words=sizeof(vobj)/sizeof(vector_type);
 | 
					 | 
				
			||||||
	vector_type * to    = (vector_type *)&buf_p[ss+offset];
 | 
					 | 
				
			||||||
	vector_type * from  = (vector_type *)&lat_v[osite];
 | 
					 | 
				
			||||||
	scalar_type stmp;
 | 
					 | 
				
			||||||
	for(int w=0;w<words;w++){
 | 
					 | 
				
			||||||
	  stmp = getlane(from[w], lane);
 | 
					 | 
				
			||||||
	  putlane(to[w], stmp, blane);
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
  });
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
class PaddedCell {
 | 
					class PaddedCell {
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
  GridCartesian * unpadded_grid;
 | 
					  GridCartesian * unpadded_grid;
 | 
				
			||||||
  int dims;
 | 
					  int dims;
 | 
				
			||||||
  int depth;
 | 
					  int depth;
 | 
				
			||||||
  std::vector<GridCartesian *> grids;
 | 
					  std::vector<GridCartesian *> grids;
 | 
				
			||||||
 | 
					 | 
				
			||||||
  ~PaddedCell()
 | 
					  ~PaddedCell()
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    DeleteGrids();
 | 
					    DeleteGrids();
 | 
				
			||||||
@@ -245,19 +45,15 @@ public:
 | 
				
			|||||||
    dims=_grid->Nd();
 | 
					    dims=_grid->Nd();
 | 
				
			||||||
    AllocateGrids();
 | 
					    AllocateGrids();
 | 
				
			||||||
    Coordinate local     =unpadded_grid->LocalDimensions();
 | 
					    Coordinate local     =unpadded_grid->LocalDimensions();
 | 
				
			||||||
    Coordinate procs     =unpadded_grid->ProcessorGrid();
 | 
					 | 
				
			||||||
    for(int d=0;d<dims;d++){
 | 
					    for(int d=0;d<dims;d++){
 | 
				
			||||||
      if ( procs[d] > 1 ) assert(local[d]>=depth);
 | 
					      assert(local[d]>=depth);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  void DeleteGrids(void)
 | 
					  void DeleteGrids(void)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    Coordinate processors=unpadded_grid->_processors;
 | 
					 | 
				
			||||||
    for(int d=0;d<grids.size();d++){
 | 
					    for(int d=0;d<grids.size();d++){
 | 
				
			||||||
      if ( processors[d] > 1 ) { 
 | 
					 | 
				
			||||||
      delete grids[d];
 | 
					      delete grids[d];
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    grids.resize(0);
 | 
					    grids.resize(0);
 | 
				
			||||||
  };
 | 
					  };
 | 
				
			||||||
  void AllocateGrids(void)
 | 
					  void AllocateGrids(void)
 | 
				
			||||||
@@ -267,66 +63,45 @@ public:
 | 
				
			|||||||
    Coordinate processors=unpadded_grid->_processors;
 | 
					    Coordinate processors=unpadded_grid->_processors;
 | 
				
			||||||
    Coordinate plocal    =unpadded_grid->LocalDimensions();
 | 
					    Coordinate plocal    =unpadded_grid->LocalDimensions();
 | 
				
			||||||
    Coordinate global(dims);
 | 
					    Coordinate global(dims);
 | 
				
			||||||
    GridCartesian *old_grid = unpadded_grid;
 | 
					
 | 
				
			||||||
    // expand up one dim at a time
 | 
					    // expand up one dim at a time
 | 
				
			||||||
    for(int d=0;d<dims;d++){
 | 
					    for(int d=0;d<dims;d++){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      if ( processors[d] > 1 ) { 
 | 
					 | 
				
			||||||
      plocal[d] += 2*depth; 
 | 
					      plocal[d] += 2*depth; 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      for(int d=0;d<dims;d++){
 | 
					      for(int d=0;d<dims;d++){
 | 
				
			||||||
	global[d] = plocal[d]*processors[d];
 | 
						global[d] = plocal[d]*processors[d];
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	old_grid = new GridCartesian(global,simd,processors);
 | 
					      grids.push_back(new GridCartesian(global,simd,processors));
 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      grids.push_back(old_grid);
 | 
					 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  };
 | 
					  };
 | 
				
			||||||
  template<class vobj>
 | 
					  template<class vobj>
 | 
				
			||||||
  inline Lattice<vobj> Extract(const Lattice<vobj> &in) const
 | 
					  inline Lattice<vobj> Extract(Lattice<vobj> &in)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    Coordinate processors=unpadded_grid->_processors;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Lattice<vobj> out(unpadded_grid);
 | 
					    Lattice<vobj> out(unpadded_grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    Coordinate local     =unpadded_grid->LocalDimensions();
 | 
					    Coordinate local     =unpadded_grid->LocalDimensions();
 | 
				
			||||||
    // depends on the MPI spread      
 | 
					    Coordinate fll(dims,depth); // depends on the MPI spread
 | 
				
			||||||
    Coordinate fll(dims,depth);
 | 
					 | 
				
			||||||
    Coordinate tll(dims,0); // depends on the MPI spread
 | 
					    Coordinate tll(dims,0); // depends on the MPI spread
 | 
				
			||||||
    for(int d=0;d<dims;d++){
 | 
					 | 
				
			||||||
      if( processors[d]==1 ) fll[d]=0;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    localCopyRegion(in,out,fll,tll,local);
 | 
					    localCopyRegion(in,out,fll,tll,local);
 | 
				
			||||||
    return out;
 | 
					    return out;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  template<class vobj>
 | 
					  template<class vobj>
 | 
				
			||||||
  inline Lattice<vobj> Exchange(const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
 | 
					  inline Lattice<vobj> Exchange(Lattice<vobj> &in)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    GridBase *old_grid = in.Grid();
 | 
					    GridBase *old_grid = in.Grid();
 | 
				
			||||||
    int dims = old_grid->Nd();
 | 
					    int dims = old_grid->Nd();
 | 
				
			||||||
    Lattice<vobj> tmp = in;
 | 
					    Lattice<vobj> tmp = in;
 | 
				
			||||||
    for(int d=0;d<dims;d++){
 | 
					    for(int d=0;d<dims;d++){
 | 
				
			||||||
      tmp = Expand(d,tmp,cshift); // rvalue && assignment
 | 
					      tmp = Expand(d,tmp); // rvalue && assignment
 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    return tmp;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  template<class vobj>
 | 
					 | 
				
			||||||
  inline Lattice<vobj> ExchangePeriodic(const Lattice<vobj> &in) const
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    GridBase *old_grid = in.Grid();
 | 
					 | 
				
			||||||
    int dims = old_grid->Nd();
 | 
					 | 
				
			||||||
    Lattice<vobj> tmp = in;
 | 
					 | 
				
			||||||
    for(int d=0;d<dims;d++){
 | 
					 | 
				
			||||||
      tmp = ExpandPeriodic(d,tmp); // rvalue && assignment
 | 
					 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    return tmp;
 | 
					    return tmp;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  // expand up one dim at a time
 | 
					  // expand up one dim at a time
 | 
				
			||||||
  template<class vobj>
 | 
					  template<class vobj>
 | 
				
			||||||
  inline Lattice<vobj> Expand(int dim, const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
 | 
					  inline Lattice<vobj> Expand(int dim,Lattice<vobj> &in)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    Coordinate processors=unpadded_grid->_processors;
 | 
					 | 
				
			||||||
    GridBase *old_grid = in.Grid();
 | 
					    GridBase *old_grid = in.Grid();
 | 
				
			||||||
    GridCartesian *new_grid = grids[dim];//These are new grids
 | 
					    GridCartesian *new_grid = grids[dim];//These are new grids
 | 
				
			||||||
    Lattice<vobj>  padded(new_grid);
 | 
					    Lattice<vobj>  padded(new_grid);
 | 
				
			||||||
@@ -336,266 +111,26 @@ public:
 | 
				
			|||||||
    if(dim==0) conformable(old_grid,unpadded_grid);
 | 
					    if(dim==0) conformable(old_grid,unpadded_grid);
 | 
				
			||||||
    else       conformable(old_grid,grids[dim-1]);
 | 
					    else       conformable(old_grid,grids[dim-1]);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    double tins=0, tshift=0;
 | 
					    std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl;
 | 
				
			||||||
 | 
					 | 
				
			||||||
    int islocal = 0 ;
 | 
					 | 
				
			||||||
    if ( processors[dim] == 1 ) islocal = 1;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if ( islocal ) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // replace with a copy and maybe grid swizzle
 | 
					 | 
				
			||||||
      // return in;??
 | 
					 | 
				
			||||||
      double t = usecond();
 | 
					 | 
				
			||||||
      padded = in;
 | 
					 | 
				
			||||||
      tins += usecond() - t;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    } else {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      //////////////////////////////////////////////
 | 
					 | 
				
			||||||
      // Replace sequence with
 | 
					 | 
				
			||||||
      // ---------------------
 | 
					 | 
				
			||||||
      // (i) Gather high face(s); start comms
 | 
					 | 
				
			||||||
      // (ii) Gather low  face(s); start comms
 | 
					 | 
				
			||||||
      // (iii) Copy middle bit with localCopyRegion
 | 
					 | 
				
			||||||
      // (iv) Complete high face(s), insert slice(s)
 | 
					 | 
				
			||||||
      // (iv) Complete low  face(s), insert slice(s)
 | 
					 | 
				
			||||||
      //////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Middle bit
 | 
					    // Middle bit
 | 
				
			||||||
      double t = usecond();
 | 
					 | 
				
			||||||
    for(int x=0;x<local[dim];x++){
 | 
					    for(int x=0;x<local[dim];x++){
 | 
				
			||||||
      InsertSliceLocal(in,padded,x,depth+x,dim);
 | 
					      InsertSliceLocal(in,padded,x,depth+x,dim);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
      tins += usecond() - t;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    // High bit
 | 
					    // High bit
 | 
				
			||||||
      t = usecond();
 | 
					    shifted = Cshift(in,dim,depth);
 | 
				
			||||||
      shifted = cshift.Cshift(in,dim,depth);
 | 
					 | 
				
			||||||
      tshift += usecond() - t;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      t=usecond();
 | 
					 | 
				
			||||||
    for(int x=0;x<depth;x++){
 | 
					    for(int x=0;x<depth;x++){
 | 
				
			||||||
      InsertSliceLocal(shifted,padded,local[dim]-depth+x,depth+local[dim]+x,dim);
 | 
					      InsertSliceLocal(shifted,padded,local[dim]-depth+x,depth+local[dim]+x,dim);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
      tins += usecond() - t;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    // Low bit
 | 
					    // Low bit
 | 
				
			||||||
      t = usecond();
 | 
					    shifted = Cshift(in,dim,-depth);
 | 
				
			||||||
      shifted = cshift.Cshift(in,dim,-depth);
 | 
					 | 
				
			||||||
      tshift += usecond() - t;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
      t = usecond();
 | 
					 | 
				
			||||||
    for(int x=0;x<depth;x++){
 | 
					    for(int x=0;x<depth;x++){
 | 
				
			||||||
      InsertSliceLocal(shifted,padded,x,x,dim);
 | 
					      InsertSliceLocal(shifted,padded,x,x,dim);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
      tins += usecond() - t;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PaddedCell::Expand timings: cshift:" << tshift/1000 << "ms, insert-slice:" << tins/1000 << "ms" << std::endl;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    return padded;
 | 
					    return padded;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  template<class vobj>
 | 
					 | 
				
			||||||
  inline Lattice<vobj> ExpandPeriodic(int dim, const Lattice<vobj> &in) const
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    Coordinate processors=unpadded_grid->_processors;
 | 
					 | 
				
			||||||
    GridBase *old_grid = in.Grid();
 | 
					 | 
				
			||||||
    GridCartesian *new_grid = grids[dim];//These are new grids
 | 
					 | 
				
			||||||
    Lattice<vobj>  padded(new_grid);
 | 
					 | 
				
			||||||
    //    Lattice<vobj> shifted(old_grid);    
 | 
					 | 
				
			||||||
    Coordinate local     =old_grid->LocalDimensions();
 | 
					 | 
				
			||||||
    Coordinate plocal    =new_grid->LocalDimensions();
 | 
					 | 
				
			||||||
    if(dim==0) conformable(old_grid,unpadded_grid);
 | 
					 | 
				
			||||||
    else       conformable(old_grid,grids[dim-1]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //    std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl;
 | 
					 | 
				
			||||||
    double tins=0, tshift=0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int islocal = 0 ;
 | 
					 | 
				
			||||||
    if ( processors[dim] == 1 ) islocal = 1;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if ( islocal ) {
 | 
					 | 
				
			||||||
      padded=in; // slightly different interface could avoid a copy operation
 | 
					 | 
				
			||||||
    } else {
 | 
					 | 
				
			||||||
      Face_exchange(in,padded,dim,depth);
 | 
					 | 
				
			||||||
      return padded;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    return padded;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  template<class vobj>
 | 
					 | 
				
			||||||
  void Face_exchange(const Lattice<vobj> &from,
 | 
					 | 
				
			||||||
		     Lattice<vobj> &to,
 | 
					 | 
				
			||||||
		     int dimension,int depth) const
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    typedef typename vobj::vector_type vector_type;
 | 
					 | 
				
			||||||
    typedef typename vobj::scalar_type scalar_type;
 | 
					 | 
				
			||||||
    typedef typename vobj::scalar_object sobj;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t_gather=0.0;
 | 
					 | 
				
			||||||
    RealD t_scatter=0.0;
 | 
					 | 
				
			||||||
    RealD t_comms=0.0;
 | 
					 | 
				
			||||||
    RealD t_copy=0.0;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage << "dimension " <<dimension<<std::endl;
 | 
					 | 
				
			||||||
    //    DumpSliceNorm(std::string("Face_exchange from"),from,dimension);
 | 
					 | 
				
			||||||
    GridBase *grid=from.Grid();
 | 
					 | 
				
			||||||
    GridBase *new_grid=to.Grid();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Coordinate lds = from.Grid()->_ldimensions;
 | 
					 | 
				
			||||||
    Coordinate nlds=   to.Grid()->_ldimensions;
 | 
					 | 
				
			||||||
    Coordinate simd= from.Grid()->_simd_layout;
 | 
					 | 
				
			||||||
    int ld    = lds[dimension];
 | 
					 | 
				
			||||||
    int nld   = to.Grid()->_ldimensions[dimension];
 | 
					 | 
				
			||||||
    const int Nsimd = vobj::Nsimd();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    assert(depth<=lds[dimension]); // A must be on neighbouring node
 | 
					 | 
				
			||||||
    assert(depth>0);   // A caller bug if zero
 | 
					 | 
				
			||||||
    assert(ld+2*depth==nld);
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Face size and byte calculations
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    int buffer_size = 1;
 | 
					 | 
				
			||||||
    for(int d=0;d<lds.size();d++){
 | 
					 | 
				
			||||||
      if ( d!= dimension) buffer_size=buffer_size*lds[d];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    buffer_size = buffer_size  / Nsimd;
 | 
					 | 
				
			||||||
    int rNsimd = Nsimd / simd[dimension];
 | 
					 | 
				
			||||||
    assert( buffer_size == from.Grid()->_slice_nblock[dimension]*from.Grid()->_slice_block[dimension] / simd[dimension]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    static deviceVector<vobj> send_buf; 
 | 
					 | 
				
			||||||
    static deviceVector<vobj> recv_buf;
 | 
					 | 
				
			||||||
    send_buf.resize(buffer_size*2*depth);    
 | 
					 | 
				
			||||||
    recv_buf.resize(buffer_size*2*depth);
 | 
					 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
    static hostVector<vobj> hsend_buf; 
 | 
					 | 
				
			||||||
    static hostVector<vobj> hrecv_buf;
 | 
					 | 
				
			||||||
    hsend_buf.resize(buffer_size*2*depth);    
 | 
					 | 
				
			||||||
    hrecv_buf.resize(buffer_size*2*depth);
 | 
					 | 
				
			||||||
#endif    
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<MpiCommsRequest_t> fwd_req;   
 | 
					 | 
				
			||||||
    std::vector<MpiCommsRequest_t> bwd_req;   
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int words = buffer_size;
 | 
					 | 
				
			||||||
    int bytes = words * sizeof(vobj);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Communication coords
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    int comm_proc = 1;
 | 
					 | 
				
			||||||
    int xmit_to_rank;
 | 
					 | 
				
			||||||
    int recv_from_rank;
 | 
					 | 
				
			||||||
    grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Gather all surface terms up to depth "d"
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    RealD t;
 | 
					 | 
				
			||||||
    RealD t_tot=-usecond();
 | 
					 | 
				
			||||||
    int plane=0;
 | 
					 | 
				
			||||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
					 | 
				
			||||||
      int tag = d*1024 + dimension*2+0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      t=usecond();
 | 
					 | 
				
			||||||
      GatherSlice(send_buf,from,d,dimension,plane*buffer_size); plane++;
 | 
					 | 
				
			||||||
      t_gather+=usecond()-t;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      t=usecond();
 | 
					 | 
				
			||||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
      grid->SendToRecvFromBegin(fwd_req,
 | 
					 | 
				
			||||||
				(void *)&send_buf[d*buffer_size], xmit_to_rank,
 | 
					 | 
				
			||||||
				(void *)&recv_buf[d*buffer_size], recv_from_rank, bytes, tag);
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
      acceleratorCopyFromDevice(&send_buf[d*buffer_size],&hsend_buf[d*buffer_size],bytes);
 | 
					 | 
				
			||||||
      grid->SendToRecvFromBegin(fwd_req,
 | 
					 | 
				
			||||||
				(void *)&hsend_buf[d*buffer_size], xmit_to_rank,
 | 
					 | 
				
			||||||
				(void *)&hrecv_buf[d*buffer_size], recv_from_rank, bytes, tag);
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
      t_comms+=usecond()-t;
 | 
					 | 
				
			||||||
     }
 | 
					 | 
				
			||||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
					 | 
				
			||||||
      int tag = d*1024 + dimension*2+1;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      t=usecond();
 | 
					 | 
				
			||||||
      GatherSlice(send_buf,from,ld-depth+d,dimension,plane*buffer_size); plane++;
 | 
					 | 
				
			||||||
      t_gather+= usecond() - t;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      t=usecond();
 | 
					 | 
				
			||||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
      grid->SendToRecvFromBegin(bwd_req,
 | 
					 | 
				
			||||||
				(void *)&send_buf[(d+depth)*buffer_size], recv_from_rank,
 | 
					 | 
				
			||||||
				(void *)&recv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag);
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
      acceleratorCopyFromDevice(&send_buf[(d+depth)*buffer_size],&hsend_buf[(d+depth)*buffer_size],bytes);
 | 
					 | 
				
			||||||
      grid->SendToRecvFromBegin(bwd_req,
 | 
					 | 
				
			||||||
				(void *)&hsend_buf[(d+depth)*buffer_size], recv_from_rank,
 | 
					 | 
				
			||||||
				(void *)&hrecv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag);
 | 
					 | 
				
			||||||
#endif      
 | 
					 | 
				
			||||||
      t_comms+=usecond()-t;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Copy interior -- overlap this with comms
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    int Nd = new_grid->Nd();
 | 
					 | 
				
			||||||
    Coordinate LL(Nd,0);
 | 
					 | 
				
			||||||
    Coordinate sz = grid->_ldimensions;
 | 
					 | 
				
			||||||
    Coordinate toLL(Nd,0);
 | 
					 | 
				
			||||||
    toLL[dimension]=depth;
 | 
					 | 
				
			||||||
    t=usecond();
 | 
					 | 
				
			||||||
    localCopyRegion(from,to,LL,toLL,sz);
 | 
					 | 
				
			||||||
    t_copy= usecond() - t;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Scatter all faces
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    plane=0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    t=usecond();
 | 
					 | 
				
			||||||
    grid->CommsComplete(fwd_req);
 | 
					 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
					 | 
				
			||||||
      acceleratorCopyToDevice(&hrecv_buf[d*buffer_size],&recv_buf[d*buffer_size],bytes);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
    t_comms+= usecond() - t;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    t=usecond();
 | 
					 | 
				
			||||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
					 | 
				
			||||||
      ScatterSlice(recv_buf,to,nld-depth+d,dimension,plane*buffer_size); plane++;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    t_scatter= usecond() - t;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    t=usecond();
 | 
					 | 
				
			||||||
    grid->CommsComplete(bwd_req);
 | 
					 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
					 | 
				
			||||||
      acceleratorCopyToDevice(&hrecv_buf[(d+depth)*buffer_size],&recv_buf[(d+depth)*buffer_size],bytes);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
    t_comms+= usecond() - t;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    t=usecond();
 | 
					 | 
				
			||||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
					 | 
				
			||||||
      ScatterSlice(recv_buf,to,d,dimension,plane*buffer_size); plane++;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    t_scatter+= usecond() - t;
 | 
					 | 
				
			||||||
    t_tot+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: gather :" << t_gather/1000  << "ms"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: scatter:" << t_scatter/1000   << "ms"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: copy   :" << t_copy/1000      << "ms"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: comms  :" << t_comms/1000     << "ms"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: total  :" << t_tot/1000     << "ms"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: gather :" << depth*4.0*bytes/t_gather << "MB/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: scatter:" << depth*4.0*bytes/t_scatter<< "MB/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: comms  :" << (RealD)4.0*bytes/t_comms   << "MB/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: face bytes  :" << depth*bytes/1e6 << "MB"<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 
 | 
					 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
 
 | 
				
			|||||||
@@ -191,41 +191,6 @@ extern Colours    GridLogColours;
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
std::string demangle(const char* name) ;
 | 
					std::string demangle(const char* name) ;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<typename... Args>
 | 
					 | 
				
			||||||
inline std::string sjoin(Args&&... args) noexcept {
 | 
					 | 
				
			||||||
    std::ostringstream msg;
 | 
					 | 
				
			||||||
    (msg << ... << args);
 | 
					 | 
				
			||||||
    return msg.str();
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/*!  @brief make log messages work like python print */
 | 
					 | 
				
			||||||
template <typename... Args>
 | 
					 | 
				
			||||||
inline void Grid_log(Args&&... args) {
 | 
					 | 
				
			||||||
    std::string msg = sjoin(std::forward<Args>(args)...);
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << msg << std::endl;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/*!  @brief make warning messages work like python print */
 | 
					 | 
				
			||||||
template <typename... Args>
 | 
					 | 
				
			||||||
inline void Grid_warn(Args&&... args) {
 | 
					 | 
				
			||||||
    std::string msg = sjoin(std::forward<Args>(args)...);
 | 
					 | 
				
			||||||
    std::cout << "\033[33m" << GridLogWarning << msg << "\033[0m" << std::endl;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/*!  @brief make error messages work like python print */
 | 
					 | 
				
			||||||
template <typename... Args>
 | 
					 | 
				
			||||||
inline void Grid_error(Args&&... args) {
 | 
					 | 
				
			||||||
    std::string msg = sjoin(std::forward<Args>(args)...);
 | 
					 | 
				
			||||||
    std::cout << "\033[31m" << GridLogError << msg << "\033[0m" << std::endl;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/*!  @brief make pass messages work like python print */
 | 
					 | 
				
			||||||
template <typename... Args>
 | 
					 | 
				
			||||||
inline void Grid_pass(Args&&... args) {
 | 
					 | 
				
			||||||
    std::string msg = sjoin(std::forward<Args>(args)...);
 | 
					 | 
				
			||||||
    std::cout << "\033[32m" << GridLogMessage << msg << "\033[0m" << std::endl;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#define _NBACKTRACE (256)
 | 
					#define _NBACKTRACE (256)
 | 
				
			||||||
extern void * Grid_backtrace_buffer[_NBACKTRACE];
 | 
					extern void * Grid_backtrace_buffer[_NBACKTRACE];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -165,7 +165,7 @@ class BinaryIO {
 | 
				
			|||||||
	 * FIXME -- 128^3 x 256 x 16 will overflow.
 | 
						 * FIXME -- 128^3 x 256 x 16 will overflow.
 | 
				
			||||||
	 */
 | 
						 */
 | 
				
			||||||
	
 | 
						
 | 
				
			||||||
	int64_t global_site;
 | 
						int global_site;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	Lexicographic::CoorFromIndex(coor,local_site,local_vol);
 | 
						Lexicographic::CoorFromIndex(coor,local_site,local_vol);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -175,8 +175,8 @@ class BinaryIO {
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
	Lexicographic::IndexFromCoor(coor,global_site,global_vol);
 | 
						Lexicographic::IndexFromCoor(coor,global_site,global_vol);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	uint64_t gsite29   = global_site%29;
 | 
						uint32_t gsite29   = global_site%29;
 | 
				
			||||||
	uint64_t gsite31   = global_site%31;
 | 
						uint32_t gsite31   = global_site%31;
 | 
				
			||||||
	
 | 
						
 | 
				
			||||||
	site_crc = crc32(0,(unsigned char *)site_buf,sizeof(fobj));
 | 
						site_crc = crc32(0,(unsigned char *)site_buf,sizeof(fobj));
 | 
				
			||||||
	//	std::cout << "Site "<<local_site << " crc "<<std::hex<<site_crc<<std::dec<<std::endl;
 | 
						//	std::cout << "Site "<<local_site << " crc "<<std::hex<<site_crc<<std::dec<<std::endl;
 | 
				
			||||||
@@ -545,9 +545,7 @@ class BinaryIO {
 | 
				
			|||||||
				       const std::string &format,
 | 
									       const std::string &format,
 | 
				
			||||||
				       uint32_t &nersc_csum,
 | 
									       uint32_t &nersc_csum,
 | 
				
			||||||
				       uint32_t &scidac_csuma,
 | 
									       uint32_t &scidac_csuma,
 | 
				
			||||||
				       uint32_t &scidac_csumb,
 | 
									       uint32_t &scidac_csumb)
 | 
				
			||||||
				       int control=BINARYIO_LEXICOGRAPHIC
 | 
					 | 
				
			||||||
				       )
 | 
					 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    typedef typename vobj::scalar_object sobj;
 | 
					    typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
    typedef typename vobj::Realified::scalar_type word;    word w=0;
 | 
					    typedef typename vobj::Realified::scalar_type word;    word w=0;
 | 
				
			||||||
@@ -558,7 +556,7 @@ class BinaryIO {
 | 
				
			|||||||
    std::vector<sobj> scalardata(lsites); 
 | 
					    std::vector<sobj> scalardata(lsites); 
 | 
				
			||||||
    std::vector<fobj>     iodata(lsites); // Munge, checksum, byte order in here
 | 
					    std::vector<fobj>     iodata(lsites); // Munge, checksum, byte order in here
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    IOobject(w,grid,iodata,file,offset,format,BINARYIO_READ|control,
 | 
					    IOobject(w,grid,iodata,file,offset,format,BINARYIO_READ|BINARYIO_LEXICOGRAPHIC,
 | 
				
			||||||
	     nersc_csum,scidac_csuma,scidac_csumb);
 | 
						     nersc_csum,scidac_csuma,scidac_csumb);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    GridStopWatch timer; 
 | 
					    GridStopWatch timer; 
 | 
				
			||||||
@@ -584,8 +582,7 @@ class BinaryIO {
 | 
				
			|||||||
					  const std::string &format,
 | 
										  const std::string &format,
 | 
				
			||||||
					  uint32_t &nersc_csum,
 | 
										  uint32_t &nersc_csum,
 | 
				
			||||||
					  uint32_t &scidac_csuma,
 | 
										  uint32_t &scidac_csuma,
 | 
				
			||||||
					  uint32_t &scidac_csumb,
 | 
										  uint32_t &scidac_csumb)
 | 
				
			||||||
					  int control=BINARYIO_LEXICOGRAPHIC)
 | 
					 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    typedef typename vobj::scalar_object sobj;
 | 
					    typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
    typedef typename vobj::Realified::scalar_type word;    word w=0;
 | 
					    typedef typename vobj::Realified::scalar_type word;    word w=0;
 | 
				
			||||||
@@ -610,7 +607,7 @@ class BinaryIO {
 | 
				
			|||||||
    while (attemptsLeft >= 0)
 | 
					    while (attemptsLeft >= 0)
 | 
				
			||||||
    {
 | 
					    {
 | 
				
			||||||
      grid->Barrier();
 | 
					      grid->Barrier();
 | 
				
			||||||
      IOobject(w,grid,iodata,file,offset,format,BINARYIO_WRITE|control,
 | 
					      IOobject(w,grid,iodata,file,offset,format,BINARYIO_WRITE|BINARYIO_LEXICOGRAPHIC,
 | 
				
			||||||
	             nersc_csum,scidac_csuma,scidac_csumb);
 | 
						             nersc_csum,scidac_csuma,scidac_csumb);
 | 
				
			||||||
      if (checkWrite)
 | 
					      if (checkWrite)
 | 
				
			||||||
      {
 | 
					      {
 | 
				
			||||||
@@ -620,7 +617,7 @@ class BinaryIO {
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
        std::cout << GridLogMessage << "writeLatticeObject: read back object" << std::endl;
 | 
					        std::cout << GridLogMessage << "writeLatticeObject: read back object" << std::endl;
 | 
				
			||||||
        grid->Barrier();
 | 
					        grid->Barrier();
 | 
				
			||||||
        IOobject(w,grid,ckiodata,file,ckoffset,format,BINARYIO_READ|control,
 | 
					        IOobject(w,grid,ckiodata,file,ckoffset,format,BINARYIO_READ|BINARYIO_LEXICOGRAPHIC,
 | 
				
			||||||
	               cknersc_csum,ckscidac_csuma,ckscidac_csumb);
 | 
						               cknersc_csum,ckscidac_csuma,ckscidac_csumb);
 | 
				
			||||||
        if ((cknersc_csum != nersc_csum) or (ckscidac_csuma != scidac_csuma) or (ckscidac_csumb != scidac_csumb))
 | 
					        if ((cknersc_csum != nersc_csum) or (ckscidac_csuma != scidac_csuma) or (ckscidac_csumb != scidac_csumb))
 | 
				
			||||||
        {
 | 
					        {
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -162,14 +162,8 @@ template<class vobj> void ScidacMetaData(Lattice<vobj> & field,
 | 
				
			|||||||
 {
 | 
					 {
 | 
				
			||||||
   uint32_t scidac_checksuma = stoull(scidacChecksum_.suma,0,16);
 | 
					   uint32_t scidac_checksuma = stoull(scidacChecksum_.suma,0,16);
 | 
				
			||||||
   uint32_t scidac_checksumb = stoull(scidacChecksum_.sumb,0,16);
 | 
					   uint32_t scidac_checksumb = stoull(scidacChecksum_.sumb,0,16);
 | 
				
			||||||
   std::cout << GridLogMessage << " scidacChecksumVerify computed "<<scidac_csuma<<" expected "<<scidac_checksuma <<std::endl;
 | 
					   if ( scidac_csuma !=scidac_checksuma) return 0;
 | 
				
			||||||
   std::cout << GridLogMessage << " scidacChecksumVerify computed "<<scidac_csumb<<" expected "<<scidac_checksumb <<std::endl;
 | 
					   if ( scidac_csumb !=scidac_checksumb) return 0;
 | 
				
			||||||
   if ( scidac_csuma !=scidac_checksuma) {
 | 
					 | 
				
			||||||
     return 0;
 | 
					 | 
				
			||||||
   };
 | 
					 | 
				
			||||||
   if ( scidac_csumb !=scidac_checksumb) {
 | 
					 | 
				
			||||||
     return 0;
 | 
					 | 
				
			||||||
   };
 | 
					 | 
				
			||||||
   return 1;
 | 
					   return 1;
 | 
				
			||||||
 }
 | 
					 }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -212,7 +206,7 @@ class GridLimeReader : public BinaryIO {
 | 
				
			|||||||
  // Read a generic lattice field and verify checksum
 | 
					  // Read a generic lattice field and verify checksum
 | 
				
			||||||
  ////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////
 | 
				
			||||||
  template<class vobj>
 | 
					  template<class vobj>
 | 
				
			||||||
  void readLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name,int control=BINARYIO_LEXICOGRAPHIC)
 | 
					  void readLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    typedef typename vobj::scalar_object sobj;
 | 
					    typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
    scidacChecksum scidacChecksum_;
 | 
					    scidacChecksum scidacChecksum_;
 | 
				
			||||||
@@ -244,7 +238,7 @@ class GridLimeReader : public BinaryIO {
 | 
				
			|||||||
	uint64_t offset= ftello(File);
 | 
						uint64_t offset= ftello(File);
 | 
				
			||||||
	//	std::cout << " ReadLatticeObject from offset "<<offset << std::endl;
 | 
						//	std::cout << " ReadLatticeObject from offset "<<offset << std::endl;
 | 
				
			||||||
	BinarySimpleMunger<sobj,sobj> munge;
 | 
						BinarySimpleMunger<sobj,sobj> munge;
 | 
				
			||||||
	BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb,control);
 | 
						BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
 | 
				
			||||||
	std::cout << GridLogMessage << "SciDAC checksum A " << std::hex << scidac_csuma << std::dec << std::endl;
 | 
						std::cout << GridLogMessage << "SciDAC checksum A " << std::hex << scidac_csuma << std::dec << std::endl;
 | 
				
			||||||
	std::cout << GridLogMessage << "SciDAC checksum B " << std::hex << scidac_csumb << std::dec << std::endl;
 | 
						std::cout << GridLogMessage << "SciDAC checksum B " << std::hex << scidac_csumb << std::dec << std::endl;
 | 
				
			||||||
	/////////////////////////////////////////////
 | 
						/////////////////////////////////////////////
 | 
				
			||||||
@@ -414,7 +408,7 @@ class GridLimeWriter : public BinaryIO
 | 
				
			|||||||
  // in communicator used by the field.Grid()
 | 
					  // in communicator used by the field.Grid()
 | 
				
			||||||
  ////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////
 | 
				
			||||||
  template<class vobj>
 | 
					  template<class vobj>
 | 
				
			||||||
  void writeLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name,int control=BINARYIO_LEXICOGRAPHIC)
 | 
					  void writeLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////
 | 
					    ////////////////////////////////////////////////////////////////////
 | 
				
			||||||
    // NB: FILE and iostream are jointly writing disjoint sequences in the
 | 
					    // NB: FILE and iostream are jointly writing disjoint sequences in the
 | 
				
			||||||
@@ -465,7 +459,7 @@ class GridLimeWriter : public BinaryIO
 | 
				
			|||||||
    ///////////////////////////////////////////
 | 
					    ///////////////////////////////////////////
 | 
				
			||||||
    std::string format = getFormatString<vobj>();
 | 
					    std::string format = getFormatString<vobj>();
 | 
				
			||||||
    BinarySimpleMunger<sobj,sobj> munge;
 | 
					    BinarySimpleMunger<sobj,sobj> munge;
 | 
				
			||||||
    BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset1, format,nersc_csum,scidac_csuma,scidac_csumb,control);
 | 
					    BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset1, format,nersc_csum,scidac_csuma,scidac_csumb);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    ///////////////////////////////////////////
 | 
					    ///////////////////////////////////////////
 | 
				
			||||||
    // Wind forward and close the record
 | 
					    // Wind forward and close the record
 | 
				
			||||||
@@ -518,8 +512,7 @@ class ScidacWriter : public GridLimeWriter {
 | 
				
			|||||||
  ////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////
 | 
				
			||||||
  template <class vobj, class userRecord>
 | 
					  template <class vobj, class userRecord>
 | 
				
			||||||
  void writeScidacFieldRecord(Lattice<vobj> &field,userRecord _userRecord,
 | 
					  void writeScidacFieldRecord(Lattice<vobj> &field,userRecord _userRecord,
 | 
				
			||||||
                              const unsigned int recordScientificPrec = 0,
 | 
					                              const unsigned int recordScientificPrec = 0) 
 | 
				
			||||||
			      int control=BINARYIO_LEXICOGRAPHIC)
 | 
					 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    GridBase * grid = field.Grid();
 | 
					    GridBase * grid = field.Grid();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -541,7 +534,7 @@ class ScidacWriter : public GridLimeWriter {
 | 
				
			|||||||
      writeLimeObject(0,0,_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
 | 
					      writeLimeObject(0,0,_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    // Collective call
 | 
					    // Collective call
 | 
				
			||||||
    writeLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA),control);      // Closes message with checksum
 | 
					    writeLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA));      // Closes message with checksum
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -560,8 +553,7 @@ class ScidacReader : public GridLimeReader {
 | 
				
			|||||||
  // Write generic lattice field in scidac format
 | 
					  // Write generic lattice field in scidac format
 | 
				
			||||||
  ////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////
 | 
				
			||||||
  template <class vobj, class userRecord>
 | 
					  template <class vobj, class userRecord>
 | 
				
			||||||
  void readScidacFieldRecord(Lattice<vobj> &field,userRecord &_userRecord,
 | 
					  void readScidacFieldRecord(Lattice<vobj> &field,userRecord &_userRecord) 
 | 
				
			||||||
			     int control=BINARYIO_LEXICOGRAPHIC) 
 | 
					 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    typedef typename vobj::scalar_object sobj;
 | 
					    typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
    GridBase * grid = field.Grid();
 | 
					    GridBase * grid = field.Grid();
 | 
				
			||||||
@@ -579,7 +571,7 @@ class ScidacReader : public GridLimeReader {
 | 
				
			|||||||
    readLimeObject(header ,std::string("FieldMetaData"),std::string(GRID_FORMAT)); // Open message 
 | 
					    readLimeObject(header ,std::string("FieldMetaData"),std::string(GRID_FORMAT)); // Open message 
 | 
				
			||||||
    readLimeObject(_userRecord,_userRecord.SerialisableClassName(),std::string(SCIDAC_RECORD_XML));
 | 
					    readLimeObject(_userRecord,_userRecord.SerialisableClassName(),std::string(SCIDAC_RECORD_XML));
 | 
				
			||||||
    readLimeObject(_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
 | 
					    readLimeObject(_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
 | 
				
			||||||
    readLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA),control);
 | 
					    readLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA));
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  void skipPastBinaryRecord(void) {
 | 
					  void skipPastBinaryRecord(void) {
 | 
				
			||||||
    std::string rec_name(ILDG_BINARY_DATA);
 | 
					    std::string rec_name(ILDG_BINARY_DATA);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -34,7 +34,7 @@ class GridTracer {
 | 
				
			|||||||
};
 | 
					};
 | 
				
			||||||
inline void tracePush(const char *name) { roctxRangePushA(name); }
 | 
					inline void tracePush(const char *name) { roctxRangePushA(name); }
 | 
				
			||||||
inline void tracePop(const char *name) { roctxRangePop(); }
 | 
					inline void tracePop(const char *name) { roctxRangePop(); }
 | 
				
			||||||
inline int  traceStart(const char *name) { return roctxRangeStart(name); }
 | 
					inline int  traceStart(const char *name) { roctxRangeStart(name); }
 | 
				
			||||||
inline void traceStop(int ID) { roctxRangeStop(ID); }
 | 
					inline void traceStop(int ID) { roctxRangeStop(ID); }
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -44,7 +44,7 @@ public:
 | 
				
			|||||||
  ConfigurationBase() {}
 | 
					  ConfigurationBase() {}
 | 
				
			||||||
  virtual ~ConfigurationBase() {}
 | 
					  virtual ~ConfigurationBase() {}
 | 
				
			||||||
  virtual void set_Field(Field& U) =0;
 | 
					  virtual void set_Field(Field& U) =0;
 | 
				
			||||||
  virtual void smeared_force(Field&) = 0;
 | 
					  virtual void smeared_force(Field&) const = 0;
 | 
				
			||||||
  virtual Field& get_SmearedU() =0;
 | 
					  virtual Field& get_SmearedU() =0;
 | 
				
			||||||
  virtual Field &get_U(bool smeared = false) = 0;
 | 
					  virtual Field &get_U(bool smeared = false) = 0;
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
@@ -129,26 +129,6 @@ public:
 | 
				
			|||||||
  virtual ~Action(){}
 | 
					  virtual ~Action(){}
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template <class GaugeField >
 | 
					 | 
				
			||||||
class EmptyAction : public Action <GaugeField>
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  using Action<GaugeField>::refresh;
 | 
					 | 
				
			||||||
  using Action<GaugeField>::Sinitial;
 | 
					 | 
				
			||||||
  using Action<GaugeField>::deriv;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) { assert(0);}; // refresh pseudofermions
 | 
					 | 
				
			||||||
  virtual RealD S(const GaugeField& U) { return 0.0;};                             // evaluate the action
 | 
					 | 
				
			||||||
  virtual void deriv(const GaugeField& U, GaugeField& dSdU) { assert(0); };        // evaluate the action derivative
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ///////////////////////////////
 | 
					 | 
				
			||||||
  // Logging
 | 
					 | 
				
			||||||
  ///////////////////////////////
 | 
					 | 
				
			||||||
  virtual std::string action_name()    { return std::string("Level Force Log"); };
 | 
					 | 
				
			||||||
  virtual std::string LogParameters()  { return std::string("No parameters");};
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#endif // ACTION_BASE_H
 | 
					#endif // ACTION_BASE_H
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -55,11 +55,6 @@ public:
 | 
				
			|||||||
  RealD alpha; // Mobius scale
 | 
					  RealD alpha; // Mobius scale
 | 
				
			||||||
  RealD k;     // EOFA normalization constant
 | 
					  RealD k;     // EOFA normalization constant
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Device resident
 | 
					 | 
				
			||||||
  deviceVector<Coeff_t> d_shift_coefficients;
 | 
					 | 
				
			||||||
  deviceVector<Coeff_t> d_MooeeInv_shift_lc;
 | 
					 | 
				
			||||||
  deviceVector<Coeff_t> d_MooeeInv_shift_norm;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  virtual void Instantiatable(void) = 0;
 | 
					  virtual void Instantiatable(void) = 0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // EOFA-specific operations
 | 
					  // EOFA-specific operations
 | 
				
			||||||
@@ -97,11 +92,6 @@ public:
 | 
				
			|||||||
    this->k = this->alpha * (_mq3-_mq2) * std::pow(this->alpha+1.0,2*Ls) /
 | 
					    this->k = this->alpha * (_mq3-_mq2) * std::pow(this->alpha+1.0,2*Ls) /
 | 
				
			||||||
      ( std::pow(this->alpha+1.0,Ls) + _mq2*std::pow(this->alpha-1.0,Ls) ) /
 | 
					      ( std::pow(this->alpha+1.0,Ls) + _mq2*std::pow(this->alpha-1.0,Ls) ) /
 | 
				
			||||||
      ( std::pow(this->alpha+1.0,Ls) + _mq3*std::pow(this->alpha-1.0,Ls) );
 | 
					      ( std::pow(this->alpha+1.0,Ls) + _mq3*std::pow(this->alpha-1.0,Ls) );
 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    d_shift_coefficients.resize(Ls);
 | 
					 | 
				
			||||||
    d_MooeeInv_shift_lc.resize(Ls);
 | 
					 | 
				
			||||||
    d_MooeeInv_shift_norm.resize(Ls);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  };
 | 
					  };
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -90,16 +90,16 @@ public:
 | 
				
			|||||||
  void M5D(const FermionField &psi,
 | 
					  void M5D(const FermionField &psi,
 | 
				
			||||||
	   const FermionField &phi,
 | 
						   const FermionField &phi,
 | 
				
			||||||
	   FermionField &chi,
 | 
						   FermionField &chi,
 | 
				
			||||||
	   std::vector<Coeff_t> &lower,
 | 
						   Vector<Coeff_t> &lower,
 | 
				
			||||||
	   std::vector<Coeff_t> &diag,
 | 
						   Vector<Coeff_t> &diag,
 | 
				
			||||||
	   std::vector<Coeff_t> &upper);
 | 
						   Vector<Coeff_t> &upper);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void M5Ddag(const FermionField &psi,
 | 
					  void M5Ddag(const FermionField &psi,
 | 
				
			||||||
	      const FermionField &phi,
 | 
						      const FermionField &phi,
 | 
				
			||||||
	      FermionField &chi,
 | 
						      FermionField &chi,
 | 
				
			||||||
	      std::vector<Coeff_t> &lower,
 | 
						      Vector<Coeff_t> &lower,
 | 
				
			||||||
	      std::vector<Coeff_t> &diag,
 | 
						      Vector<Coeff_t> &diag,
 | 
				
			||||||
	      std::vector<Coeff_t> &upper);
 | 
						      Vector<Coeff_t> &upper);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  virtual void   Instantiatable(void)=0;
 | 
					  virtual void   Instantiatable(void)=0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -119,51 +119,35 @@ public:
 | 
				
			|||||||
  RealD mass_plus, mass_minus;
 | 
					  RealD mass_plus, mass_minus;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Save arguments to SetCoefficientsInternal
 | 
					  // Save arguments to SetCoefficientsInternal
 | 
				
			||||||
  std::vector<Coeff_t> _gamma;
 | 
					  Vector<Coeff_t> _gamma;
 | 
				
			||||||
  RealD                _zolo_hi;
 | 
					  RealD                _zolo_hi;
 | 
				
			||||||
  RealD                _b;
 | 
					  RealD                _b;
 | 
				
			||||||
  RealD                _c;
 | 
					  RealD                _c;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // possible boost
 | 
					 | 
				
			||||||
  std::vector<ComplexD> qmu;
 | 
					 | 
				
			||||||
  void set_qmu(std::vector<ComplexD> _qmu) { qmu=_qmu; assert(qmu.size()==Nd);};
 | 
					 | 
				
			||||||
  void addQmu(const FermionField &in, FermionField &out, int dag);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  // Cayley form Moebius (tanh and zolotarev)
 | 
					  // Cayley form Moebius (tanh and zolotarev)
 | 
				
			||||||
  std::vector<Coeff_t> omega;
 | 
					  Vector<Coeff_t> omega;
 | 
				
			||||||
  std::vector<Coeff_t> bs;    // S dependent coeffs
 | 
					  Vector<Coeff_t> bs;    // S dependent coeffs
 | 
				
			||||||
  std::vector<Coeff_t> cs;
 | 
					  Vector<Coeff_t> cs;
 | 
				
			||||||
  std::vector<Coeff_t> as;
 | 
					  Vector<Coeff_t> as;
 | 
				
			||||||
  // For preconditioning Cayley form
 | 
					  // For preconditioning Cayley form
 | 
				
			||||||
  std::vector<Coeff_t> bee;
 | 
					  Vector<Coeff_t> bee;
 | 
				
			||||||
  std::vector<Coeff_t> cee;
 | 
					  Vector<Coeff_t> cee;
 | 
				
			||||||
  std::vector<Coeff_t> aee;
 | 
					  Vector<Coeff_t> aee;
 | 
				
			||||||
  std::vector<Coeff_t> beo;
 | 
					  Vector<Coeff_t> beo;
 | 
				
			||||||
  std::vector<Coeff_t> ceo;
 | 
					  Vector<Coeff_t> ceo;
 | 
				
			||||||
  std::vector<Coeff_t> aeo;
 | 
					  Vector<Coeff_t> aeo;
 | 
				
			||||||
  // LDU factorisation of the eeoo matrix
 | 
					  // LDU factorisation of the eeoo matrix
 | 
				
			||||||
  std::vector<Coeff_t> lee;
 | 
					  Vector<Coeff_t> lee;
 | 
				
			||||||
  std::vector<Coeff_t> leem;
 | 
					  Vector<Coeff_t> leem;
 | 
				
			||||||
  std::vector<Coeff_t> uee;
 | 
					  Vector<Coeff_t> uee;
 | 
				
			||||||
  std::vector<Coeff_t> ueem;
 | 
					  Vector<Coeff_t> ueem;
 | 
				
			||||||
  std::vector<Coeff_t> dee;
 | 
					  Vector<Coeff_t> dee;
 | 
				
			||||||
 | 
					 | 
				
			||||||
  // Device memory
 | 
					 | 
				
			||||||
  deviceVector<Coeff_t> d_diag;
 | 
					 | 
				
			||||||
  deviceVector<Coeff_t> d_upper;
 | 
					 | 
				
			||||||
  deviceVector<Coeff_t> d_lower;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  deviceVector<Coeff_t> d_lee;
 | 
					 | 
				
			||||||
  deviceVector<Coeff_t> d_dee;
 | 
					 | 
				
			||||||
  deviceVector<Coeff_t> d_uee;
 | 
					 | 
				
			||||||
  deviceVector<Coeff_t> d_leem;
 | 
					 | 
				
			||||||
  deviceVector<Coeff_t> d_ueem;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Matrices of 5d ee inverse params
 | 
					  // Matrices of 5d ee inverse params
 | 
				
			||||||
  //  std::vector<iSinglet<Simd> >  MatpInv;
 | 
					  Vector<iSinglet<Simd> >  MatpInv;
 | 
				
			||||||
  //  std::vector<iSinglet<Simd> >  MatmInv;
 | 
					  Vector<iSinglet<Simd> >  MatmInv;
 | 
				
			||||||
  //  std::vector<iSinglet<Simd> >  MatpInvDag;
 | 
					  Vector<iSinglet<Simd> >  MatpInvDag;
 | 
				
			||||||
  //  std::vector<iSinglet<Simd> >  MatmInvDag;
 | 
					  Vector<iSinglet<Simd> >  MatmInvDag;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  ///////////////////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Conserved current utilities
 | 
					  // Conserved current utilities
 | 
				
			||||||
@@ -203,7 +187,7 @@ public:
 | 
				
			|||||||
protected:
 | 
					protected:
 | 
				
			||||||
  virtual void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c);
 | 
					  virtual void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c);
 | 
				
			||||||
  virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c);
 | 
					  virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c);
 | 
				
			||||||
  virtual void SetCoefficientsInternal(RealD zolo_hi,std::vector<Coeff_t> & gamma,RealD b,RealD c);
 | 
					  virtual void SetCoefficientsInternal(RealD zolo_hi,Vector<Coeff_t> & gamma,RealD b,RealD c);
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,196 +0,0 @@
 | 
				
			|||||||
/*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: ./lib/qcd/action/fermion/CompactWilsonCloverFermion5D.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2020 - 2025
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Author: Daniel Richtmann <daniel.richtmann@gmail.com>
 | 
					 | 
				
			||||||
    Author: Nils Meyer <nils.meyer@ur.de>
 | 
					 | 
				
			||||||
    Author: Christoph Lehner <christoph@lhnr.de>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
    *************************************************************************************/
 | 
					 | 
				
			||||||
/*  END LEGAL */
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#include <Grid/qcd/action/fermion/WilsonFermion5D.h>
 | 
					 | 
				
			||||||
#include <Grid/qcd/action/fermion/WilsonCloverTypes.h>
 | 
					 | 
				
			||||||
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
 | 
					 | 
				
			||||||
#include <Grid/qcd/action/fermion/CloverHelpers.h>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
// see Grid/qcd/action/fermion/CompactWilsonCloverFermion.h for description
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class Impl, class CloverHelpers>
 | 
					 | 
				
			||||||
class CompactWilsonCloverFermion5D : public WilsonFermion5D<Impl>,
 | 
					 | 
				
			||||||
				     public WilsonCloverHelpers<Impl>,
 | 
					 | 
				
			||||||
				     public CompactWilsonCloverHelpers<Impl> {
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // Sizes
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  INHERIT_COMPACT_CLOVER_SIZES(Impl);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // Type definitions
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  INHERIT_IMPL_TYPES(Impl);
 | 
					 | 
				
			||||||
  INHERIT_CLOVER_TYPES(Impl);
 | 
					 | 
				
			||||||
  INHERIT_COMPACT_CLOVER_TYPES(Impl);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  typedef WilsonFermion5D<Impl>            WilsonBase;
 | 
					 | 
				
			||||||
  typedef WilsonCloverHelpers<Impl>        Helpers;
 | 
					 | 
				
			||||||
  typedef CompactWilsonCloverHelpers<Impl> CompactHelpers;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // Constructors
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  CompactWilsonCloverFermion5D(GaugeField& _Umu,
 | 
					 | 
				
			||||||
			       GridCartesian         &FiveDimGrid,
 | 
					 | 
				
			||||||
			       GridRedBlackCartesian &FiveDimRedBlackGrid,
 | 
					 | 
				
			||||||
			       GridCartesian         &FourDimGrid,
 | 
					 | 
				
			||||||
			       GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
					 | 
				
			||||||
			       const RealD _mass,
 | 
					 | 
				
			||||||
			       const RealD _csw_r = 0.0,
 | 
					 | 
				
			||||||
			       const RealD _csw_t = 0.0,
 | 
					 | 
				
			||||||
			       const RealD _cF = 1.0,
 | 
					 | 
				
			||||||
			       const ImplParams& impl_p = ImplParams());
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // Member functions (implementing interface)
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void Instantiatable() {};
 | 
					 | 
				
			||||||
  int          ConstEE()     override { return 0; };
 | 
					 | 
				
			||||||
  int          isTrivialEE() override { return 0; };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void Dhop(const FermionField& in, FermionField& out, int dag) override;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void DhopOE(const FermionField& in, FermionField& out, int dag) override;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void DhopEO(const FermionField& in, FermionField& out, int dag) override;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void DhopDir(const FermionField& in, FermionField& out, int dir, int disp) override;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void DhopDirAll(const FermionField& in, std::vector<FermionField>& out) /* override */;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void M(const FermionField& in, FermionField& out) override;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void Mdag(const FermionField& in, FermionField& out) override;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void Meooe(const FermionField& in, FermionField& out) override;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void MeooeDag(const FermionField& in, FermionField& out) override;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void Mooee(const FermionField& in, FermionField& out) override;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void MooeeDag(const FermionField& in, FermionField& out) override;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void MooeeInv(const FermionField& in, FermionField& out) override;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void MooeeInvDag(const FermionField& in, FermionField& out) override;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void Mdir(const FermionField& in, FermionField& out, int dir, int disp) override;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void MdirAll(const FermionField& in, std::vector<FermionField>& out) override;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) override;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void MooDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void MeeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // Member functions (internals)
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void MooeeInternal(const FermionField&        in,
 | 
					 | 
				
			||||||
                     FermionField&              out,
 | 
					 | 
				
			||||||
                     const CloverDiagonalField& diagonal,
 | 
					 | 
				
			||||||
                     const CloverTriangleField& triangle);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // Helpers
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void ImportGauge(const GaugeField& _Umu) override;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // Helpers
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
private:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  template<class Field>
 | 
					 | 
				
			||||||
  const MaskField* getCorrectMaskField(const Field &in) const {
 | 
					 | 
				
			||||||
    if(in.Grid()->_isCheckerBoarded) {
 | 
					 | 
				
			||||||
      if(in.Checkerboard() == Odd) {
 | 
					 | 
				
			||||||
        return &this->BoundaryMaskOdd;
 | 
					 | 
				
			||||||
      } else {
 | 
					 | 
				
			||||||
        return &this->BoundaryMaskEven;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    } else {
 | 
					 | 
				
			||||||
      return &this->BoundaryMask;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  template<class Field>
 | 
					 | 
				
			||||||
  void ApplyBoundaryMask(Field& f) {
 | 
					 | 
				
			||||||
    const MaskField* m = getCorrectMaskField(f); assert(m != nullptr);
 | 
					 | 
				
			||||||
    assert(m != nullptr);
 | 
					 | 
				
			||||||
    CompactHelpers::ApplyBoundaryMask(f, *m);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // Member Data
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  RealD csw_r;
 | 
					 | 
				
			||||||
  RealD csw_t;
 | 
					 | 
				
			||||||
  RealD cF;
 | 
					 | 
				
			||||||
  int n_rhs;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  bool fixedBoundaries;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  CloverDiagonalField Diagonal,    DiagonalEven,    DiagonalOdd;
 | 
					 | 
				
			||||||
  CloverDiagonalField DiagonalInv, DiagonalInvEven, DiagonalInvOdd;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  CloverTriangleField Triangle,    TriangleEven,    TriangleOdd;
 | 
					 | 
				
			||||||
  CloverTriangleField TriangleInv, TriangleInvEven, TriangleInvOdd;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  FermionField Tmp;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  MaskField BoundaryMask, BoundaryMaskEven, BoundaryMaskOdd;
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
@@ -60,50 +60,6 @@ public:
 | 
				
			|||||||
  //      virtual void   Instantiatable(void)=0;
 | 
					  //      virtual void   Instantiatable(void)=0;
 | 
				
			||||||
  virtual void   Instantiatable(void) =0;
 | 
					  virtual void   Instantiatable(void) =0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary, std::vector<double> twist)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::cout << "Free Propagator for PartialFraction"<<std::endl;
 | 
					 | 
				
			||||||
    FermionField in_k(in.Grid());
 | 
					 | 
				
			||||||
    FermionField prop_k(in.Grid());
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    FFT theFFT((GridCartesian *) in.Grid());
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //phase for boundary condition
 | 
					 | 
				
			||||||
    ComplexField coor(in.Grid());
 | 
					 | 
				
			||||||
    ComplexField ph(in.Grid());  ph = Zero();
 | 
					 | 
				
			||||||
    FermionField in_buf(in.Grid()); in_buf = Zero();
 | 
					 | 
				
			||||||
    typedef typename Simd::scalar_type Scalar;
 | 
					 | 
				
			||||||
    Scalar ci(0.0,1.0);
 | 
					 | 
				
			||||||
    assert(twist.size() == Nd);//check that twist is Nd
 | 
					 | 
				
			||||||
    assert(boundary.size() == Nd);//check that boundary conditions is Nd
 | 
					 | 
				
			||||||
    int shift = 0;
 | 
					 | 
				
			||||||
    for(unsigned int nu = 0; nu < Nd; nu++)
 | 
					 | 
				
			||||||
      {
 | 
					 | 
				
			||||||
	// Shift coordinate lattice index by 1 to account for 5th dimension.
 | 
					 | 
				
			||||||
	LatticeCoordinate(coor, nu + shift);
 | 
					 | 
				
			||||||
	double boundary_phase = ::acos(real(boundary[nu]));
 | 
					 | 
				
			||||||
	ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu+shift])));
 | 
					 | 
				
			||||||
	//momenta for propagator shifted by twist+boundary
 | 
					 | 
				
			||||||
	twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI));
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    in_buf = exp(ci*ph*(-1.0))*in;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    theFFT.FFT_all_dim(in_k,in,FFT::forward);
 | 
					 | 
				
			||||||
    this->MomentumSpacePropagatorHw(prop_k,in_k,mass,twist);
 | 
					 | 
				
			||||||
    theFFT.FFT_all_dim(out,prop_k,FFT::backward);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    //phase for boundary condition
 | 
					 | 
				
			||||||
    out = out * exp(ci*ph);
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
 | 
					 | 
				
			||||||
    std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
 | 
					 | 
				
			||||||
    std::vector<Complex> boundary;
 | 
					 | 
				
			||||||
    for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions
 | 
					 | 
				
			||||||
    FreePropagator(in,out,mass,boundary,twist);
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  // Efficient support for multigrid coarsening
 | 
					  // Efficient support for multigrid coarsening
 | 
				
			||||||
  virtual void  Mdir (const FermionField &in, FermionField &out,int dir,int disp);
 | 
					  virtual void  Mdir (const FermionField &in, FermionField &out,int dir,int disp);
 | 
				
			||||||
  virtual void  MdirAll(const FermionField &in, std::vector<FermionField> &out);
 | 
					  virtual void  MdirAll(const FermionField &in, std::vector<FermionField> &out);
 | 
				
			||||||
@@ -134,12 +90,12 @@ protected:
 | 
				
			|||||||
  RealD mass;
 | 
					  RealD mass;
 | 
				
			||||||
  RealD R;
 | 
					  RealD R;
 | 
				
			||||||
  RealD ZoloHiInv;
 | 
					  RealD ZoloHiInv;
 | 
				
			||||||
  std::vector<double> Beta;
 | 
					  Vector<double> Beta;
 | 
				
			||||||
  std::vector<double> cc;;
 | 
					  Vector<double> cc;;
 | 
				
			||||||
  std::vector<double> cc_d;;
 | 
					  Vector<double> cc_d;;
 | 
				
			||||||
  std::vector<double> sqrt_cc;
 | 
					  Vector<double> sqrt_cc;
 | 
				
			||||||
  std::vector<double> See;
 | 
					  Vector<double> See;
 | 
				
			||||||
  std::vector<double> Aee;
 | 
					  Vector<double> Aee;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -69,10 +69,10 @@ public:
 | 
				
			|||||||
  // Instantiate different versions depending on Impl
 | 
					  // Instantiate different versions depending on Impl
 | 
				
			||||||
  /////////////////////////////////////////////////////
 | 
					  /////////////////////////////////////////////////////
 | 
				
			||||||
  void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
					  void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
				
			||||||
	   std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
 | 
						   Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
					  void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
				
			||||||
	      std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
 | 
						      Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  virtual void RefreshShiftCoefficients(RealD new_shift);
 | 
					  virtual void RefreshShiftCoefficients(RealD new_shift);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -83,7 +83,7 @@ public:
 | 
				
			|||||||
			RealD _M5, const ImplParams& p=ImplParams());
 | 
								RealD _M5, const ImplParams& p=ImplParams());
 | 
				
			||||||
 | 
					
 | 
				
			||||||
protected:
 | 
					protected:
 | 
				
			||||||
  void SetCoefficientsInternal(RealD zolo_hi, std::vector<Coeff_t>& gamma, RealD b, RealD c);
 | 
					  void SetCoefficientsInternal(RealD zolo_hi, Vector<Coeff_t>& gamma, RealD b, RealD c);
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -55,7 +55,6 @@ NAMESPACE_CHECK(Wilson);
 | 
				
			|||||||
NAMESPACE_CHECK(WilsonTM);
 | 
					NAMESPACE_CHECK(WilsonTM);
 | 
				
			||||||
#include <Grid/qcd/action/fermion/WilsonCloverFermion.h> // 4d wilson clover fermions
 | 
					#include <Grid/qcd/action/fermion/WilsonCloverFermion.h> // 4d wilson clover fermions
 | 
				
			||||||
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h> // 4d compact wilson clover fermions
 | 
					#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h> // 4d compact wilson clover fermions
 | 
				
			||||||
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion5D.h> // 5d compact wilson clover fermions
 | 
					 | 
				
			||||||
NAMESPACE_CHECK(WilsonClover);
 | 
					NAMESPACE_CHECK(WilsonClover);
 | 
				
			||||||
#include <Grid/qcd/action/fermion/WilsonFermion5D.h>     // 5d base used by all 5d overlap types
 | 
					#include <Grid/qcd/action/fermion/WilsonFermion5D.h>     // 5d base used by all 5d overlap types
 | 
				
			||||||
NAMESPACE_CHECK(Wilson5D);
 | 
					NAMESPACE_CHECK(Wilson5D);
 | 
				
			||||||
@@ -127,16 +126,6 @@ typedef WilsonFermion<WilsonTwoIndexSymmetricImplD> WilsonTwoIndexSymmetricFermi
 | 
				
			|||||||
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonTwoIndexAntiSymmetricFermionF;
 | 
					typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonTwoIndexAntiSymmetricFermionF;
 | 
				
			||||||
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonTwoIndexAntiSymmetricFermionD;
 | 
					typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonTwoIndexAntiSymmetricFermionD;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
// Sp(2n)
 | 
					 | 
				
			||||||
typedef WilsonFermion<SpWilsonImplF> SpWilsonFermionF;
 | 
					 | 
				
			||||||
typedef WilsonFermion<SpWilsonImplD> SpWilsonFermionD;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
typedef WilsonFermion<SpWilsonTwoIndexAntiSymmetricImplF> SpWilsonTwoIndexAntiSymmetricFermionF;
 | 
					 | 
				
			||||||
typedef WilsonFermion<SpWilsonTwoIndexAntiSymmetricImplD> SpWilsonTwoIndexAntiSymmetricFermionD;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
typedef WilsonFermion<SpWilsonTwoIndexSymmetricImplF> SpWilsonTwoIndexSymmetricFermionF;
 | 
					 | 
				
			||||||
typedef WilsonFermion<SpWilsonTwoIndexSymmetricImplD> SpWilsonTwoIndexSymmetricFermionD;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
// Twisted mass fermion
 | 
					// Twisted mass fermion
 | 
				
			||||||
typedef WilsonTMFermion<WilsonImplD2> WilsonTMFermionD2;
 | 
					typedef WilsonTMFermion<WilsonImplD2> WilsonTMFermionD2;
 | 
				
			||||||
typedef WilsonTMFermion<WilsonImplF> WilsonTMFermionF;
 | 
					typedef WilsonTMFermion<WilsonImplF> WilsonTMFermionF;
 | 
				
			||||||
@@ -165,17 +154,12 @@ typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiS
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
// Compact Clover fermions
 | 
					// Compact Clover fermions
 | 
				
			||||||
template <typename WImpl> using CompactWilsonClover = CompactWilsonCloverFermion<WImpl, CompactCloverHelpers<WImpl>>;
 | 
					template <typename WImpl> using CompactWilsonClover = CompactWilsonCloverFermion<WImpl, CompactCloverHelpers<WImpl>>;
 | 
				
			||||||
template <typename WImpl> using CompactWilsonClover5D = CompactWilsonCloverFermion5D<WImpl, CompactCloverHelpers<WImpl>>;
 | 
					 | 
				
			||||||
template <typename WImpl> using CompactWilsonExpClover = CompactWilsonCloverFermion<WImpl, CompactExpCloverHelpers<WImpl>>;
 | 
					template <typename WImpl> using CompactWilsonExpClover = CompactWilsonCloverFermion<WImpl, CompactExpCloverHelpers<WImpl>>;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
typedef CompactWilsonClover<WilsonImplD2> CompactWilsonCloverFermionD2;
 | 
					typedef CompactWilsonClover<WilsonImplD2> CompactWilsonCloverFermionD2;
 | 
				
			||||||
typedef CompactWilsonClover<WilsonImplF> CompactWilsonCloverFermionF;
 | 
					typedef CompactWilsonClover<WilsonImplF> CompactWilsonCloverFermionF;
 | 
				
			||||||
typedef CompactWilsonClover<WilsonImplD> CompactWilsonCloverFermionD;
 | 
					typedef CompactWilsonClover<WilsonImplD> CompactWilsonCloverFermionD;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
typedef CompactWilsonClover5D<WilsonImplD2> CompactWilsonCloverFermion5DD2;
 | 
					 | 
				
			||||||
typedef CompactWilsonClover5D<WilsonImplF> CompactWilsonCloverFermion5DF;
 | 
					 | 
				
			||||||
typedef CompactWilsonClover5D<WilsonImplD> CompactWilsonCloverFermion5DD;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
typedef CompactWilsonExpClover<WilsonImplD2> CompactWilsonExpCloverFermionD2;
 | 
					typedef CompactWilsonExpClover<WilsonImplD2> CompactWilsonExpCloverFermionD2;
 | 
				
			||||||
typedef CompactWilsonExpClover<WilsonImplF> CompactWilsonExpCloverFermionF;
 | 
					typedef CompactWilsonExpClover<WilsonImplF> CompactWilsonExpCloverFermionF;
 | 
				
			||||||
typedef CompactWilsonExpClover<WilsonImplD> CompactWilsonExpCloverFermionD;
 | 
					typedef CompactWilsonExpClover<WilsonImplD> CompactWilsonExpCloverFermionD;
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -102,11 +102,11 @@ public:
 | 
				
			|||||||
		     GaugeField &mat, 
 | 
							     GaugeField &mat, 
 | 
				
			||||||
		     const FermionField &A, const FermionField &B, int dag);
 | 
							     const FermionField &A, const FermionField &B, int dag);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void DhopInternal(StencilImpl &st, DoubledGaugeField &U,DoubledGaugeField &UUU,
 | 
					  void DhopInternal(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU,
 | 
				
			||||||
                    const FermionField &in, FermionField &out, int dag);
 | 
					                    const FermionField &in, FermionField &out, int dag);
 | 
				
			||||||
  void DhopInternalSerialComms(StencilImpl &st, DoubledGaugeField &U,DoubledGaugeField &UUU,
 | 
					  void DhopInternalSerialComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU,
 | 
				
			||||||
                    const FermionField &in, FermionField &out, int dag);
 | 
					                    const FermionField &in, FermionField &out, int dag);
 | 
				
			||||||
  void DhopInternalOverlappedComms(StencilImpl &st, DoubledGaugeField &U,DoubledGaugeField &UUU,
 | 
					  void DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU,
 | 
				
			||||||
                    const FermionField &in, FermionField &out, int dag);
 | 
					                    const FermionField &in, FermionField &out, int dag);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////
 | 
					  //////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -164,6 +164,8 @@ public:
 | 
				
			|||||||
  DoubledGaugeField UUUmuEven;
 | 
					  DoubledGaugeField UUUmuEven;
 | 
				
			||||||
  DoubledGaugeField UUUmuOdd;
 | 
					  DoubledGaugeField UUUmuOdd;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  LebesgueOrder Lebesgue;
 | 
				
			||||||
 | 
					  LebesgueOrder LebesgueEvenOdd;
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  ///////////////////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Conserved current utilities
 | 
					  // Conserved current utilities
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -100,6 +100,7 @@ public:
 | 
				
			|||||||
		     int dag);
 | 
							     int dag);
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
  void DhopInternal(StencilImpl & st,
 | 
					  void DhopInternal(StencilImpl & st,
 | 
				
			||||||
 | 
							    LebesgueOrder &lo,
 | 
				
			||||||
		    DoubledGaugeField &U,
 | 
							    DoubledGaugeField &U,
 | 
				
			||||||
		    DoubledGaugeField &UUU,
 | 
							    DoubledGaugeField &UUU,
 | 
				
			||||||
		    const FermionField &in, 
 | 
							    const FermionField &in, 
 | 
				
			||||||
@@ -107,6 +108,7 @@ public:
 | 
				
			|||||||
		    int dag);
 | 
							    int dag);
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    void DhopInternalOverlappedComms(StencilImpl & st,
 | 
					    void DhopInternalOverlappedComms(StencilImpl & st,
 | 
				
			||||||
 | 
							      LebesgueOrder &lo,
 | 
				
			||||||
		      DoubledGaugeField &U,
 | 
							      DoubledGaugeField &U,
 | 
				
			||||||
		      DoubledGaugeField &UUU,
 | 
							      DoubledGaugeField &UUU,
 | 
				
			||||||
		      const FermionField &in, 
 | 
							      const FermionField &in, 
 | 
				
			||||||
@@ -114,6 +116,7 @@ public:
 | 
				
			|||||||
		      int dag);
 | 
							      int dag);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    void DhopInternalSerialComms(StencilImpl & st,
 | 
					    void DhopInternalSerialComms(StencilImpl & st,
 | 
				
			||||||
 | 
							      LebesgueOrder &lo,
 | 
				
			||||||
		      DoubledGaugeField &U,
 | 
							      DoubledGaugeField &U,
 | 
				
			||||||
		      DoubledGaugeField &UUU,
 | 
							      DoubledGaugeField &UUU,
 | 
				
			||||||
		      const FermionField &in, 
 | 
							      const FermionField &in, 
 | 
				
			||||||
@@ -189,6 +192,8 @@ public:
 | 
				
			|||||||
  DoubledGaugeField UUUmuEven;
 | 
					  DoubledGaugeField UUUmuEven;
 | 
				
			||||||
  DoubledGaugeField UUUmuOdd;
 | 
					  DoubledGaugeField UUUmuOdd;
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
 | 
					  LebesgueOrder Lebesgue;
 | 
				
			||||||
 | 
					  LebesgueOrder LebesgueEvenOdd;
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
  // Comms buffer
 | 
					  // Comms buffer
 | 
				
			||||||
  //  std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> >  comm_buf;
 | 
					  //  std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> >  comm_buf;
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -42,11 +42,11 @@ public:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
  // Shift operator coefficients for red-black preconditioned Mobius EOFA
 | 
					  // Shift operator coefficients for red-black preconditioned Mobius EOFA
 | 
				
			||||||
  std::vector<Coeff_t> Mooee_shift;
 | 
					  Vector<Coeff_t> Mooee_shift;
 | 
				
			||||||
  std::vector<Coeff_t> MooeeInv_shift_lc;
 | 
					  Vector<Coeff_t> MooeeInv_shift_lc;
 | 
				
			||||||
  std::vector<Coeff_t> MooeeInv_shift_norm;
 | 
					  Vector<Coeff_t> MooeeInv_shift_norm;
 | 
				
			||||||
  std::vector<Coeff_t> MooeeInvDag_shift_lc;
 | 
					  Vector<Coeff_t> MooeeInvDag_shift_lc;
 | 
				
			||||||
  std::vector<Coeff_t> MooeeInvDag_shift_norm;
 | 
					  Vector<Coeff_t> MooeeInvDag_shift_norm;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  virtual void Instantiatable(void) {};
 | 
					  virtual void Instantiatable(void) {};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -74,18 +74,18 @@ public:
 | 
				
			|||||||
  // Instantiate different versions depending on Impl
 | 
					  // Instantiate different versions depending on Impl
 | 
				
			||||||
  /////////////////////////////////////////////////////
 | 
					  /////////////////////////////////////////////////////
 | 
				
			||||||
  void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
					  void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
				
			||||||
	   std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
 | 
						   Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void M5D_shift(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
					  void M5D_shift(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
				
			||||||
		 std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
 | 
							 Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper,
 | 
				
			||||||
		 std::vector<Coeff_t>& shift_coeffs);
 | 
							 Vector<Coeff_t>& shift_coeffs);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
					  void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
				
			||||||
	      std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
 | 
						      Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void M5Ddag_shift(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
					  void M5Ddag_shift(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
				
			||||||
		    std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
 | 
							    Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper,
 | 
				
			||||||
		    std::vector<Coeff_t>& shift_coeffs);
 | 
							    Vector<Coeff_t>& shift_coeffs);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  virtual void RefreshShiftCoefficients(RealD new_shift);
 | 
					  virtual void RefreshShiftCoefficients(RealD new_shift);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -102,11 +102,11 @@ public:
 | 
				
			|||||||
		     GaugeField &mat, 
 | 
							     GaugeField &mat, 
 | 
				
			||||||
		     const FermionField &A, const FermionField &B, int dag);
 | 
							     const FermionField &A, const FermionField &B, int dag);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void DhopInternal(StencilImpl &st, DoubledGaugeField &U,
 | 
					  void DhopInternal(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
 | 
				
			||||||
                    const FermionField &in, FermionField &out, int dag);
 | 
					                    const FermionField &in, FermionField &out, int dag);
 | 
				
			||||||
  void DhopInternalSerialComms(StencilImpl &st, DoubledGaugeField &U,
 | 
					  void DhopInternalSerialComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
 | 
				
			||||||
			       const FermionField &in, FermionField &out, int dag);
 | 
								       const FermionField &in, FermionField &out, int dag);
 | 
				
			||||||
  void DhopInternalOverlappedComms(StencilImpl &st, DoubledGaugeField &U,
 | 
					  void DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
 | 
				
			||||||
				   const FermionField &in, FermionField &out, int dag);
 | 
									   const FermionField &in, FermionField &out, int dag);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////
 | 
					  //////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -152,6 +152,9 @@ public:
 | 
				
			|||||||
  DoubledGaugeField UmuEven;
 | 
					  DoubledGaugeField UmuEven;
 | 
				
			||||||
  DoubledGaugeField UmuOdd;
 | 
					  DoubledGaugeField UmuOdd;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  LebesgueOrder Lebesgue;
 | 
				
			||||||
 | 
					  LebesgueOrder LebesgueEvenOdd;
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
  ///////////////////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Conserved current utilities
 | 
					  // Conserved current utilities
 | 
				
			||||||
  ///////////////////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////////////////
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -41,10 +41,6 @@ public:
 | 
				
			|||||||
public:
 | 
					public:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Constructors
 | 
					  // Constructors
 | 
				
			||||||
  virtual void   Instantiatable(void){};
 | 
					 | 
				
			||||||
  void  MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
 | 
					 | 
				
			||||||
    this->MomentumSpacePropagatorHw(out,in,_m,twist);
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  OverlapWilsonCayleyZolotarevFermion(GaugeField &_Umu,
 | 
					  OverlapWilsonCayleyZolotarevFermion(GaugeField &_Umu,
 | 
				
			||||||
				      GridCartesian         &FiveDimGrid,
 | 
									      GridCartesian         &FiveDimGrid,
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -41,9 +41,6 @@ public:
 | 
				
			|||||||
public:
 | 
					public:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  virtual void   Instantiatable(void){};
 | 
					  virtual void   Instantiatable(void){};
 | 
				
			||||||
  void  MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
 | 
					 | 
				
			||||||
    this->MomentumSpacePropagatorHw(out,in,_m,twist);
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  // Constructors
 | 
					  // Constructors
 | 
				
			||||||
  OverlapWilsonContFracTanhFermion(GaugeField &_Umu,
 | 
					  OverlapWilsonContFracTanhFermion(GaugeField &_Umu,
 | 
				
			||||||
				   GridCartesian         &FiveDimGrid,
 | 
									   GridCartesian         &FiveDimGrid,
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -40,9 +40,6 @@ public:
 | 
				
			|||||||
  INHERIT_IMPL_TYPES(Impl);
 | 
					  INHERIT_IMPL_TYPES(Impl);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  virtual void   Instantiatable(void){};
 | 
					  virtual void   Instantiatable(void){};
 | 
				
			||||||
  void  MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
 | 
					 | 
				
			||||||
    this->MomentumSpacePropagatorHw(out,in,_m,twist);
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  // Constructors
 | 
					  // Constructors
 | 
				
			||||||
  OverlapWilsonContFracZolotarevFermion(GaugeField &_Umu,
 | 
					  OverlapWilsonContFracZolotarevFermion(GaugeField &_Umu,
 | 
				
			||||||
					GridCartesian         &FiveDimGrid,
 | 
										GridCartesian         &FiveDimGrid,
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -41,9 +41,6 @@ public:
 | 
				
			|||||||
public:
 | 
					public:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  virtual void   Instantiatable(void){};
 | 
					  virtual void   Instantiatable(void){};
 | 
				
			||||||
  void  MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
 | 
					 | 
				
			||||||
    this->MomentumSpacePropagatorHw(out,in,_m,twist);
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  // Constructors
 | 
					  // Constructors
 | 
				
			||||||
  OverlapWilsonPartialFractionTanhFermion(GaugeField &_Umu,
 | 
					  OverlapWilsonPartialFractionTanhFermion(GaugeField &_Umu,
 | 
				
			||||||
					  GridCartesian         &FiveDimGrid,
 | 
										  GridCartesian         &FiveDimGrid,
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -40,11 +40,6 @@ public:
 | 
				
			|||||||
  INHERIT_IMPL_TYPES(Impl);
 | 
					  INHERIT_IMPL_TYPES(Impl);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  virtual void   Instantiatable(void){};
 | 
					  virtual void   Instantiatable(void){};
 | 
				
			||||||
 | 
					 | 
				
			||||||
  void  MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
 | 
					 | 
				
			||||||
    this->MomentumSpacePropagatorHw(out,in,_m,twist);
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  // Constructors
 | 
					  // Constructors
 | 
				
			||||||
  OverlapWilsonPartialFractionZolotarevFermion(GaugeField &_Umu,
 | 
					  OverlapWilsonPartialFractionZolotarevFermion(GaugeField &_Umu,
 | 
				
			||||||
					       GridCartesian         &FiveDimGrid,
 | 
										       GridCartesian         &FiveDimGrid,
 | 
				
			||||||
 
 | 
				
			|||||||
Some files were not shown because too many files have changed in this diff Show More
		Reference in New Issue
	
	Block a user